

ImageMagick Tricks
Web Image Effects from the Command Line
and PHP

Unleash the power of ImageMagick with this fast, friendly
tutorial and tips guide

Sohail Salehi

 BIRMINGHAM - MUMBAI

ImageMagick Tricks
Web Image Effects from the Command Line and PHP

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2006

Production Reference: 1130606

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-86-8

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

Sohail Salehi

Reviewers

Sven Henckel

Gabe Schaffer

Anthony Thyssen

Technical Editor

Rushabh Sanghavi

Editorial Manager

Dipali Chittar

Development Editor

David Barnes

Indexer

Mithil Kulkarni

Proofreader

Chris Smith

Production Coordinator

Manjiri Nadkarni

Cover Designer

Manjiri Nadkarni

About the Author

Sohail Salehi was born in Mashad, Iran, on March 18, 1975. He graduated in
Software Engineering from Mashad University in 2000. In recent years, Sohail has
contributed to over 20 books, mainly in programming and computer graphics. He
has written frequent articles for "0 & 1 Magazine", an IT magazine from Ferdowsi
University. You can find a complete list of his work at www.sohail2d.com. In the
past he has worked as a Chairman in the IT department of various universities
including Mashad, Ferdowsi, and the Industrial Management University. Currently
he is working on the IT training standards for the Iranian "Work and Science
Organisation" 2005-2006 period.

Many thanks to my lovely wife Ghazal for being so kind to me during
writing this book.

Many, many thanks to every one at Packt who helped me create such a
great book.

Thanks to my very dear friend David Barnes for starting things off from
the beginning, helping me nail down the concept, and accompanying me
during various parts of this book.

About the Reviewers

Sven Henckel studied media informatics at the University for Practical Business
Studies in Gütersloh, Germany. His diploma thesis was about the automatic
generation of layout documents like QuarkXPress and Adobe InDesign. Before
studying he worked as a developer and consultant for web applications. He
currently works as an IT project manager for a European media service provider.
He has developed a quality assurance system in which ImageMagick plays a very
important role. Through the years he has attained specialized knowledge in the
fields of Java, PHP, SQL, XML, and PDF. Moreover, he is interested in Open Source
software, communication, and design.

Gabe Schaffer has a degree in computer science from Case Western Reserve
University in Cleveland, Ohio where he resides. He has been programming for over
20 years, has been doing photography for 10 years, and does both as a freelancer. He
uses ImageMagick for automating digital photo labs.

I would like to thank Maggie for putting up with my late nights reviewing
this book.

Anthony Thyssen is a UNIX and Linux Systems Expert with an interest in image
processing tools for UNIX since 1996, and has released an unoffical patched version
of the old NetPBM graphic tool suite. He has been a user of the command-line
version of ImageMagick since its inception. In recent years he developed a Image
Magick version 6 Examples website, http://www.cit.gu.edu.au/~anthony/
graphics/imagick6/, as a practical users' manual for both new and old users of
ImageMagick. He has also been involved in the debugging and development of
the IM core software, specifically in the areas of Alpha Compositing and GIF
animation optimization.

Table of Contents
Preface 1
Chapter 1: Introduction 5

ImageMagick Features 7
ImageMagick’s Core Utilities 8

Display 8
Convert 8
Import 9
Animate 9
Composite 9
Montage 9
Mogrify 9
Conjure 10
Identify 10

Interfaces 10
ImageMagick and X11 standard 11

Summary 12
Chapter 2: Installation and Configuration 13

Where to get ImageMagick 13
What are the Installation Requirements? 14
Installation 14

Binary Installers 14
Source files 16

How to Install ImageMagick from Binaries 17
How to Install from UNIX-like Binary Releases 17

How to Verify the Program Installation 18
How to Install from a Windows Binary Release 18

How to Install ImageMagick from Source 21
Installing from a UNIX-like Source 22

What are Makefiles? 22
How to Use GNU Configure for Creating Makefiles 22
Configure Command in Action 24

Table of Contents

[ii]

How to Use the Make Command for LINUX 24
How to Build ImageMagick for the VMS Platform 25
How to Build ImageMagick for the Macintosh Platform 25
How to Build ImageMagick for the Windows Platform 26

How to Handle Bugs and Errors 26
Dealing with Configuration Failures 26

Summary 28
Chapter 3: Convert and Mogrify 29

Convert Syntax and Options 29
How to Draw Basic Shapes with Convert 30

Workshop I: Creating a Simple Logo 31
Painting Methods 33

Workshop II: Color Filling with –draw 33
Deformations 37

Workshop III: Image Distortion 39
Basic Transformations 40

How to Rotate Drawings in ImageMagick 40
Workshop IV: Rotating Text 40
How to Resize Drawings in ImageMagick 44
How to Crop Images Using ImageMagick 46
The –shave Option 47
Inserting and Deleting Rows and Columns in Images 47
Skewing Images 48
Workshop V: The Flag 48

Artistic Options 52
Workshop VI: Applying Various Filters on an Image 52

Mogrify Syntax and Options 55
Workshop VII: The Card 56

Summary 60
Chapter 4: Composite and Montage 61

Composite 61
Composite Syntax and Options 61

What is the Mask? 64
Workshop I: Colorful Logo 66
Composite Parameters 68
Workshop II: 3D Button 69
Workshop III: Fresh Candy 72

Montage 75
Montage Syntax and Options 75
Workshop IV: The Montage Descriptive Options 77

Table of Contents

[iii]

Workshop V: The Montage Adornment Options 81
Workshop VI: The Montage Arrangement Options 84
Workshop VII: Creating an Indexed Image Web Page 87

Summary 88
Chapter 5: Identify, Display, and Import 89

Identify 89
Identify Syntax and Options 90
How to Extract Information from an Image 91
How to get Brief Information from Images 91
How to get Detailed Information from Images 93
How to get Customized Information from Images 94
How to Get Information about ImageMagick 95

Display 96
Display Syntax and Options 97
Workshop I: Looking at Some Display Examples 99

Import 101
Import Syntax and Options 101
Workshop II: Looking at Some Import Examples 103

Summary 104
Chapter 6: Animation 105

Animate Syntax and Options 105
How to Display an Animation 106
How to Create an Animation 107

Workshop I: Simple Type Effect 108
Workshop II: Animated Logo 109
Workshop III: Animated Artistic Effects 111

How to make Complex Animations 114
How to Split an Animation into Frames 114
Workshop IV: Multi-Animation Files 115

Summary 118
Chapter 7: Conjure 119

Conjure Syntax and Options 120
What are the Valid Key-Value Pairs for MSL files? 123

Workshop I: Using Multiple MSL Files in One Conjure Call 129
Compare 130

How to Compare Two Images 131
Summary 131

Table of Contents

[iv]

Chapter 8: Practical Web Projects 133
How to call ImageMagick Command-line Utilities within PHP code 133
How to Save the Result of an Online Image Processing Task 135
How to Start Sessions for our Visitors 136
Building a Confirmation-Code Box 137
Online Image Water Marking 143
Summary 146

Chapter 9: An E-Card Application 147
Wizard Step 1: How to Receive Images 148

How to Receive Images from URLs 155
How to Upload Images 157

Wizard Step 2: How to Write Text on Input Images 160
How to Show Image, Image Size, and the Required Fields for Writing Text 162

Wizard Step 3: Final Image
171

Summary 174
Chapter 10: Exciting E-Card Designs 175

E-card A: Simple Letters 175
E-card B: Write on Curved Surfaces 179
E-card C: Carving Technique 181
How to Make Input Text more Flexible 184
Creating a Parameterized Book Cover Generator Page 185
Summary 198

Appendix A: Install New Fonts In ImageMagick 199
Why Don't Some Fonts Work Correctly? 199
How to Identify the Current Installed Fonts 199
Where to Find Fonts and Other Free Resources 202

Free Fonts 203
Free Photos 203
Free Animations 203

How to Define New Fonts for ImageMagick 204
Appendix B: Compression In ImageMagick 207

Compression versus Quality 207
ImageMagick Options for Compression 207
Lossy versus Lossless Compression Algorithms 208
ImageMagick –compress and –quality Options 210

Index 211

Preface
ImageMagick ™ was introduced in 1999 by ImageMagick Studio LLC for the first
time. It is a graphical application used for performing image processing tasks. It is
a powerful collection of tools and libraries to read, write, and manipulate images in
about 100 formats.

In this book, I’ll show how to use the various ImageMagick utilities to create
amazing artwork from the command line. You may find doing some image
processing tasks with this program is more convenient than using other solutions,
like Adobe Photoshop.

Let me give you an example. How do you resize about 3000 photos of different
sizes and formats and place a watermark on them? This question led me to examine
ImageMagick for the first time and after a while I found it to be a powerful and
easy-to-learn application.

You may not believe how easily ImageMagick can do it for you. With a single
command you can resize, watermark, add effects, frame, arrange, convert, format,
and do many more tasks on a single image or a bunch of various images.

To cut a long story short, I think it is the best command-line image processing
application that I’ve ever seen. It is more than a command-line application. If you
are a programmer using compilers like C, Delphi, Python, Perl, and so on or even
server-side languages like PHP, then you can find your favourite ImageMagick API
for your compiler.

Due to space limitaion, this book concentrates just on command-line utilities. Maybe
in the future we will publish titles on other ImageMagick APIs.

Preface

[2]

What This Book Covers
Chapter 1 is an introduction, which provides you with a brief history about
Imagemagick and its capabilities.

Chapter 2 contains useful steps for installing and configuring ImageMagick. There are
some good resources for downloading the application—based on your OS—too.

Chapter 3 covers the convert and mogrify utilities. You can find practical workshops
in this chapter.

Chapter 4 covers the composite and montage utilities and their role in combining and
presenting images.

Chapter 5 mainly focuses on input (import utility) and output (display utility) in
ImageMagick. There are some descriptions about obtaining useful information from
images using identify.

Chapter 6 teaches you how to create animations using ImageMagick.

Chapter 7 contains brief information about the ImageMagick command line
programming language—conjure. Moreover in this chapter the compare utility,
which compares the differences between two images of the same size, visually and
mathematically will be studied too.

Chapters 8, 9, and 10 cover some practical web projects including building a
confirmation-code box, online customized e-cards, and online customized templates
(for a book cover).

Appendix A will show you how to install and use new fonts. There are some free
resources for fonts and images too.

Appendix B covers the compression and quality trade-off in ImageMagick.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

Preface

[3]

A block of code will be set as follows:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

Any command-line input and output is written as follows:

convert rectangles.jpg –resize 900% rect_resized.jpg

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

Preface

[4]

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction
In 1999 the ImageMagick Studio LLC developed a graphical application named
ImageMagick for working on images. ImageMagick is a powerful collection of tools
and libraries to read, write, and manipulate images in close to a hundred formats.

The question, is what is the point of using ImageMagick when there are so
many professional image processing programs like Adobe Photoshop or
Macromedia Freehand? Maybe one good reason is ImageMagick's powerful
utilities and interfaces.

From a user's point of view, we may need a program to do a set of specific tasks (like
resizing, labeling, framing, format converting, and much more) on the images that
are located in a given URL with a single command. You may not believe how easily
ImageMagick can do this for you.

Using ImageMagick we can create and edit images dynamically and show the
result online on our desired URLs or locally on our computer. Besides popular
transformations like resize, crop, rotate, flip, and so on, we can also execute image
editing processes like inserting text, sharpen, blur, and color correction, and much
more with ImageMagick's internal utilities by using simple command-line scripts.

Moreover, there are some excellent tools and programs that can be used for adding
special effects to images. These effects include popular ones like border, blur,
composite, implode, explode, and some artistic effects like detect edges, add noise,
adaptive threshold, charcoal, oil paint, negate, shade, and plasma.

Introduction

[6]

Fig 1-1: Samples of ImageMagick's Abilities

Another interesting feature of ImageMagick is its ability to work on animated file
formats. It is possible to use all the ImageMagick effects available for still images
on animated formats. In addition, there are some facilities that can be used for
converting a group of still images to an animated sequence.

Making an animated graphic file is possible with a single ImageMagick command.
Moreover, it is possible to show all single frames of a directory in a sequenced,
animated order.

Chapter 1

[7]

Fig 1-2: With the Animate *.jpg Command we can Animate a Directory of JPEG Images

Screen capturing is another useful ImageMagick feature. With this ability you can
capture the current active window, the entire screen, or any rectangular portion of
the screen and save it as an image.

Fig 1-3: Using the Import Utility we can: a) Capture the Entire Screen b) Capture just the Active Window

c) Capture a Selected Portion of the Current Screen

Due to various ImageMagick interfaces and tools, we can perform various image
processing operations from the command line, or from our favorite programming
language like C, C++, Perl, Java, PHP, Python, or Ruby. Moreover, a high-quality 2D
renderer is included, which provides a subset of SVG capabilities.

ImageMagick Features
There are so many capabilities you can work with in ImageMagick! We are going
to study the most popular of them during the following chapters and then we will
see how to use these features as programmers in our practical projects. Some of the
topics and features that will be studied in this book are summarized as follows:

Introduction

[8]

Format Conversion: Convert an image from one format to another (about 100
formats supported)
Text & Comments: Inserting descriptive or artistic text in images
Transformations: Resize, rotate, crop, flip, and flop images
Color Correction: Define threshold, reduce color, and color conversion for images
Background: Create beautiful backgrounds and canvases
Thumbnail and Frame: Create a framed thumbnail of an image
Transparency: Create a transparent image for use on the World Wide Web
Animation: Create a GIF animation sequence from a group of images
Composite: Combine several images to create a composite image
Montage: Generate a thumbnail index of a list of images

Special Effects: Add artistic filters like charcoal, monochrome, and so on to
an image
Multifunctioning: Execute a group of tasks with a single script on entire
directories of images
Image Identification: Describe the format of the image and attributes
File Management: Retrieve, list, or print files from a remote network site

ImageMagick’s Core Utilities
The real power of ImageMagick comes from its utilities. In fact with the help of these
utilities we are able to do any reading, writing, and manipulating tasks on images.
There are always third-party utilities that add more power to ImageMagick but the
core utilities of this package are discussed below.

Display
We can expect any image viewing and managing functionality including load, print,
write to file, zoom, copy a region of the image, paste a region to the image, crop,
show histogram, and so on from this utility.

Convert
The main task of the Convert utility as its name suggests is converting image
formats. We can use Convert for more functions, like making thumbnails of images,
simulating a charcoal drawing, colorizing the image with the fill color, embossing an

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1

[9]

 image, specifying a clipping mask, morphing an image sequence, and simulating an
oil painting too.

Import
The Import utility is used to capture the screen and convert it to a file. We can specify a
single window, the entire screen, or any rectangular portion of the screen for capturing.

For saving as a file we have options to set the preferred number of colors in the
image, the type of colorspace, annotate an image with a comment, add coder/
decoder-specific options, and assign a label to an image.

Animate
For showing animated formats or a sequence of still images we use the Animate
utility. One of the important features of Animate is its capability for color reduction
to match the color resolution of the workstation. We can show any full color images
on a weak display unit (like a monochrome one).

Composite
The Composite utility has a number of unique techniques for combining several
separate images and making a composite result. Images can be composited together
with the following schemes: Over, In, Out, Atop, Xor, Plus, Minus, Difference,
Multiply, and Bumpmap. We will study them in detail in Chapter 4.

Montage
This arranges a group of images into a single image or page and can apply ambiences
such as border and shadow to them. This is useful for creating thumbnail images or a
gallery effect. We will see how to use this feature in Chapter 4.

Mogrify
Mogrify is mainly used for image transformation. These transformations include image
scaling, image rotation, color reduction, and others. The main difference between
Mogrify and other utilities is that it overwrites the result on the original image.

Introduction

[10]

Conjure
Do you have an aversion to popular ImageMagick programming languages like Perl,
C, C++, PHP, and so on? If yes then you can use the Magick Scripting Language (MSL). the Magick Scripting Language (MSL).
This is an XML-based language and using the Conjure utility you can do any image
processing activity without a Perl interpreter. First you write code for desired action
and then call Conjure to execute that code. The code has a syntax similar to this:

 <group> -- start a group of processing
  -- end of process
  -- end of process
 <write filename="image.png" /> -- output
 </group> -- dispose of both images

 conjure -dimensions 400x400 mycode.msl

Between the 

Write this code in your favorite text editor, save it as test.msl, and see it in action
when you invoke it using the conjure utility as follows:

conjure test.msl

If you notice the conjure usage notation, there are some options in the command. In
fact, these options perform the same task as the options in the batch files.

Fig 7-2: Diagram Showing Data Replacement of conjure Options in a .msl File

In a batch file execution we can define some external parameters and values that will
be used by the batch file during run time. The options in the MSL files do the same.
The keywords in the MSL file are replaced by the options from the command line.

Conjure

[122]

Here is an example. Write the following code in a text editor and save it with the
name swirl.msl:

<?xml version="1.0" encoding="UTF-8"?>



Now use it on your desired image as follows:

conjure –inputfile myimage.jpg –myeffect 220 swirl.msl

That command will twist the input image by 220 degrees and save it as twisted.png
and will print a two line output message at the command line:

The file myimage.jpg swirled about 220 degrees.

And the result saved as twisted.png

Fig 7-3: Image Processing using conjure and a .msl File

Let's take a closer look at this code. We specified two options (-inputfile and
–myeffect) in the command line. For the first parameter the file name myimage.jpg
is used and the second one has the value 220. As I mentioned before every value of
these options will be substituted for the option's name in the .msl file.

So the swirl.msl will be changed as follows before being processed by conjure:

<?xml version="1.0" encoding="UTF-8"?>



Keep in mind for naming your customized options not to use
reserved keywords like debug, help, version, and verbose.

-debug: enables and displays debug strings on output

-help: displays conjure usage instructions on output

-version: shows the ImageMagick version that is in use

-verbose: prints more information about the current image

-log: This is used with debug and specifies the content and
 format of output.

-monitor: displays all errors and warning message

-quiet: ignores to display errors and warning message

What are the Valid Key-Value Pairs for
MSL files?
Based on the current version of ImageMagick (it is 6.2.5 at the time of writing this
chapter) there is a limit to the number of keys and values that we can use in MSL files.

Due to using XML notation in MSL, every element consists of a structure that starts
with <element name>, content appears after that, and ends with </element name>.
The table given overleaf summarizes them:

Conjure

[124]

Element

Attribute name

Description

Usage



background,
color, id,
size

Use this key for defining
a new object. Every other
key that will be placed
between the start and
end of this one will act on
the current image object.
We can use multiple
nested . There
are 4 options for this key.
The background and
color options are used
for setting background
and foreground colors
respectively; Id and
size used for setting
image ID and size.

<image color=”red”
background=
”#00458620”>
...
</image>
<image id=”3”
size=”640x480”>
...
</image>

<group>
</group>

If we need to do special

tasks on a group of
images, Then we can use
this key. Every 

<write filename=
"image.mng" />
</group>

Chapter 7

[125]

Element

Attribute name

Description

Usage

<read>

filename

Reads a new image from
a disk file.

<read filename=
"myimage.jpg" />

We can set to read as
many images as we
want to be read in the
form of multiple calling
this key:

<read filename=
"file1.jpg" />

<read filename=
"file2.png />

...

<read filename=
"filen.tif />

<write>

filename

Writes the image(s) to
disk.

<write filename
="myimage.jpg" />

We can set to write
images either as a single
or multiple image files.

<get>

height,

width

With this key we can
obtain the height and
width of an image and
store them for later
retrieval. Although
this key is created for
getting any attribute
that the PerlMagick
GetAttribute()
function can recognize, for
now only width and height
are supported.

<get width="img-
width"
height="img-
height" />

The current image
height and width are
stored in the
img-height and
img-width variables.

<set>

background,
bordercolor,
clip-mask,
colorspace,
density,
magick,
mattecolor,
opacity

Sets an attribute that is
listed in the previous
column for the current
image. All of these
attributes are recognized
by the PerlMagick
GetAttribute()
function.

Conjure

[126]

Element

Attribute name

Description

Usage

<border>

fill,
geometry,
height, width

For the current image
this key draws border
at the height, width,
and location defined by
geometry with thickness
defined by height and
width and the color that
is specified in fill.

<border geometery=
“30x20+50+40”
fill=”blue”

height=”4”
width=”4”/>

<blur>

radius, sigma

Blurs the current image
as in the blur option in
the Convert utility. The
radius defines the range
and the Sigma sets the
power of blur.

<blur radius=”4”
sigma=”2”/>

<charcoal>

radius, sigma

Adds charcoal effect
to the current image as
in the Charcoal option
in ImageMagick. The
radius defines the range
and the Sigma sets the
thickness of charcoal.

<charcoal
radius=”6”
sigma=”3”/>

<chop>

geometry,
height, width,
x, y

Removes rows and
columns of pixels from
the current image. The
location and size of
the removed area can
be defined with the
parameters of this key.

<chop x=”10”
y=”5” height=”20”
width=”14”/>

<crop>

geometry,
height, width,
x, y

Clips the current image
at the location and size
that are defined in the
parameter section.

<crop geometery==
“30x20+50+40”
x=”15” y=”15”/>

<despeckle>

Removes or reduces
the unwanted noises
and speckles from the
current image.

<despeckle/>

<emboss>

radius, sigma

Acts like ImageMagick
emboss option.

<emboss radius=”4”
sigma=”3”/>

<enhance>

Acts like ImageMagick
enhance option.

<enhance/>

Chapter 7

[127]

Element

Attribute name

Description

Usage

<equalize>

Acts like ImageMagick
equalize option.

<flip>

Acts like ImageMagick
flip option.

<flip/>

<flop>

Acts like ImageMagick
flop option.

<flop/>

<frame>

fill,
geometry,
height, width,
x, y, inner,
outer

Acts like ImageMagick
frame option.

<frame fill=”red”
height=”3”
width=”2”
inner=”2”
outer=”2”/>

<magnify>

Acts like ImageMagick
magnify option.

<magnify/>

<minify>

Acts like ImageMagick
minify option.

<minify/>

<normalize>

Acts like ImageMagick
normalize option.

<normalize/>

<print>

output

This key prints any string
that we specified in the
output parameter. Using
control character like \n
for carriage return and
line feed, is allowed.

<print
output=”This \n is
a \n multi line \n
output”/>

<resize>

blur, filter,
geometry,
height, width

Acts like ImageMagick

resize option.

<resize
filter=”box”
height=”30%”
width=”400”/>

<roll>

geometry, x, y

Acts like ImageMagick
roll option.

<roll geometry=
”40x40+100+90” x=
”30” y=”10”/>

<rotate>

degrees

Acts like ImageMagick
degrees option.

<rotate
degrees=”45”/>

<sample>

geometry,
height, width

Acts like ImageMagick
sample option.

<sample
geometry=”8x5”
height=”30”
width=”10”/>

Conjure

[128]

Element

Attribute name

Description

Usage

<scale>

geometry,
height, width

Acts like ImageMagick
scale option.

<scale geometry=
”80x50”
height=”30”
width=”10”/>

<sharpen>

radius, sigma

Acts like ImageMagick
sharpen option.

<sharpen
radius=”4”
sigma=”3”/>

<shave>

geometry,
height, width

Acts like ImageMagick
shave option.

<shave geometry=”8
x1+1+1”height=”8”
width=”10”/>

<shear>

x, y

Acts like ImageMagick
shear option.

<shear x=”30” y=
”10”/>

<solarize>

threshold

Acts like ImageMagick
solarize option.

<solarize
threshold=”10”/>

<spread>

radius

Acts like ImageMagick
spread option.

<spread radius=”4”
sigma=”3”/>

<stegano>

image

Acts like ImageMagick
stegano option.

<stegano image=
”myimage.jpg”/>

<stereo>

image

Acts like ImageMagick

stereo option.

<stereo image=
”myimage.jpg”/>

<swirl>

degrees

Acts like ImageMagick
swirl option.

<swirl degrees=
”45”/>

<texture>

image

Acts like ImageMagick
texture option.

<texture image=
”myimage.jpg”/>

<threshold>

threshold

Acts like ImageMagick
threshold option.

<threshold
threshold=”10”/>

<transparent>

color

Acts like ImageMagick
transparent option.

<trim>

Acts like ImageMagick
trim option.

<trim/>

Chapter 7

[129]

Workshop I: Using Multiple MSL Files in One
Conjure Call
As you see in the Conjure syntax it is possible to call the conjure utility with two
MSL files. In this workshop we will see how to do that.

1. In your favorite text editor create an MSL file and write the following
commands in it. Save this file as sharp.msl:

 <?xml version="1.0" encoding="UTF-8"?>

 

2. Create another MSL file and write these commands in it and save it as
frame.msl:

<?xml version="1.0" encoding="UTF-8"?>



3. Now call these files with the conjure utility as follows:

conjure –in input.bmp –rad 4 –sig 2 sharp.msl –in output.tif
–framecolor darkgray –frameheight 3 –framewidth 3 –innerside 2
–outerside 2 frame.msl

Let's see what happens in these files. First of all the sharp.msl reads the filename
in the -in option then sharpens the image with radius of four pixels and strength of
two pixels and finally saves it as the output.tif file.

Conjure

[130]

Fig 7-4: Sharpening an Image with sharp.msl

In the next step frame.msl takes the output.tif and makes a frame for it and saves
the result as final.jpg. The frame color is dark gray and has a thickness of three
pixels. Moreover it is two pixels thick on both the inner and outer sides.

Fig 7-5: Create a Frame for the Image with frame.msl

As you can see, all these settings are sent to frame.msl via external options and all
value replacement takes place in the next steps.

Compare
The last utility that we will examine is the simplest ImageMagick utility, which is
used for comparing two images of the same size. When using compare, keep in mind
that both images that are to be compared must be of the same size. Otherwise you'll
get the following error message: image size differs.

This utility compares each pixel of the first image to the corresponding pixel of the
second image and the result will be displayed numerically on screen and saved
visually as an image. In the output image that contains compared pixels, all the pixel
changes are marked with red. Let's see an example.

Chapter 7

[131]

How to Compare Two Images
The –metric option is used for mathematical and visual comparison between two
images. It outputs the amount of change as its first line output and the size and
format of two images as its second line. Here is an example in which a normal and
sharpened image are compared:

compare –metric rmse normal.jpg sharp.jpg output.jpg

Here is the output::

1944.72 dB

640,320,JPEG

And here is the image generated after comparing:

Fig 7-6: Using the Compare Utility

Summary
In this chapter we learned about a command-line interpreter called conjure and its
scripting language called MSL (standing for Magick Scripting Language). We saw
that MSL is XML and every operation in this language is done by elements.

MSL was introduced in 2002 and no serious development has been done on it yet.
So if you have any idea or suggestion for MSL you can send it to the ImageMagick
development team at magick-developers@imagemagick.org.

The last ImageMagick utility that we studied was compare. It is used for comparing
two images: numerically and visually.

This chapter marks the end of the ImageMagick utilities. In the next chapter we will
see some practical usage of ImageMagick, especially in web programming.

Practical Web Projects
Some of the most important uses of ImageMagick are its web capabilities and online
image processing features. We can perform almost any command-line image handling
on websites too. There are two ways for calling ImageMagick from a web page:

Installing command-line ImageMagick utilities on the server and using a
PHP function like exec or system for running these utilities
Installing Magickwand for PHP on the server and calling the library
functions that Magickwand provides for image handling

Please keep in mind this is not a PHP training book and we assume you have
some basic knowledge about PHP and dynamic web programming. Installing and
configuring ImageMagick on a Linux server has been described before. During this
chapter we assume that you’ve installed it on your server correctly.

How to call ImageMagick Command-line
Utilities within PHP code
There are some commands in PHP that we can use for calling external executable
files (like ImageMagick command-line utilities). So by passing an ImageMagick
command as a parameter to these PHP functions we can do our request online.

The popular PHP functions for executing external programs are exec and system.

There are other functions like passthru(), popen(),
escapeshellcmd(), and pcntl_exec() that can run
executable files but they have lower popularity.

•

•

Practical Web Projects

[134]

The exec function executes an external program that is specified as a parameter to it.
Here is the usage format:

string exec (string command [, array &output])

This function does not give any output and simply returns the last line from the
result of the command. The output parameter is an array that will be filled with each
line of output from the command. If the array already contains some elements, exec
will append the command output to the end of the array. A sample usage of exec is
as follows:

<?php

echo exec('whoami');

?>

Assuming that the whoami command exists in the PATH configuration, this command
outputs the username that owns the running php/httpd process.

The simplest form of using this function with ImageMagick is using a parameterized
command utility as a parameter in it. For example:

exec("fullpathtoimagemagick/convert fullpathtoimage/A.jpg
fullpathtoimage/B.png)

Look at this command. It is very important when calling an ImageMagick utility in
an exec command to address the correct locations of the executable and the source
and destination image files. In fact most errors when using ImageMagick online
come from incorrect addressing. In the previous command we have to place a valid
address of where we’ve installed ImageMagick instead of fullpathtoimagemagick.
Moreover the absolute address of where we are going to read and write an image
should be specified in fullpathtoimage placeholder.

The better solution when using exec is to initialize some variables with the
environment path of the ImageMagick command-line utilities installation and the
path of where the images are going to be read and written. Here is an example:

exec("$CONVERT $filename ".$IMAGES.$id."_1.jpg");

In this command, $CONVERT is a UNIX path to the convert utility (for example, /usr/
bin/convert). The variable $IMAGES contains the path to where the output file is to
be stored, and the variable $filename contains a temporary file or the full UNIX path
to the original file. The PHP system command can also be used for executing external
programs. It has a similar syntax to exec. However, in this chapter we will use exec
for our workshops.

Chapter 8

[135]

The examples provided in this chapter don’t need a large
amount of memory and the default memory size specified in
the php.ini file is enough. You can change the memory size
by editing the php.ini file if it is required.

How to Save the Result of an Online
Image Processing Task
Let’s look at the required steps for online image processing using ImageMagick.
First we need a form that takes user inputs, including text and image. By clicking
on a submit button these inputs should be sent to another page where ImageMagick
utilities and commands are waiting to do their task.

After making an artwork successfully, we have to show it back to the user. This means
that we need to save the image on our server space and this will be a challenge for us.
If you think about the filename of the final image you’ll understand what I mean.

Suppose three users send their personal settings and information at the same time
for working on the same image. The question is what name we should give the
resulting image.

If we overwrite the original image then we will lose it for other users and if we
choose a specific name for it, then the result belongs to the last user who clicked on
the submit button on our website.

The following figure represents this issue in an easier way:

Fig 8-1: User 3 is the Last One to Press the Submit Button

and hence, her/his Image Overwrites the Others

Practical Web Projects

[136]

What should we do? One solution is to generate a random number for each submit
action and use that number in the name of the image file generated by ImageMagick.
The drawback is that the random numbers may be the same because it is possible that
at the same time thousands of users press the submit button. Moreover, spending
time checking for repeated numbers for each submit is not the optimum solution.

We need something unique and quick. How about using cookies in the body of file
names? In this way every image file name will be generated for only one user and
even if a million users work on the same image simultaneously, a million unique file
names will be generated.

A cookie is specific data that a web script can generate and
store on the user's computer. It can be used for tracking users
and recognize them when they return to a website.

But there is an issue with using cookies. Some of the web browsers do not support
cookies. Moreover sometimes users disable cookies in their browser. So our strategy
for using cookies in naming image files will fail.

One of the excellent features of PHP programming is its session capabilities. There
are some functions in PHP that are used to implement a session for each user who
visits a web page. These functions implement cookies internally even if the browser
doesn't support it or if the users disable it themselves.

How to Start Sessions for our Visitors
There are two alternatives for activating a session for a visitor. We can simply use
a PHP function called session_start() at the beginning of our PHP code or we
can edit our php.ini file and add the session.autostart option. We will use the
session_start() function in this chapter. The former method has its own drawbacks.

After starting a session we can access the session ID for each user through the SID
constant. So it will provide us a unique file name for our artwork. We just need to
add this ID number at the end of the original file name and save the result with that
name. The general form of such code is something like this:

<?php

Session_start();

$filename = $original_filename.strip_tags(SID);

// our required code for image processing

//we just need to use $filename variable for saving the result

?>

Chapter 8

[137]

In this piece of code the strip_tags() function strips its
parameter of any extra data. We use it for preventing any
cross-site attack issues.

So let’s see some practical examples and study what ImageMagick and PHP can do
for us.

Building a Confirmation-Code Box
While using the Internet, especially when we are filling membership forms,
sometimes they ask us to write down a jerky random alphanumeric combination into
a specific field. This field has various names, but it is usually called the confirmation-
code field.

Fig 8-2: Hotmail Sample Confirmation Code

What is the reason for putting such a field in an application or membership form? On
the Internet, there are too many techniques and mechanisms that professionals use
for speeding up their work and increasing their benefits.

For example, a referral system requires users to fill out a long survey form and
then introduce five extra buddies to be a qualified person for monthly bonuses. So
if you write a program that can fill out these forms for you then you can definitely
speed up this thing. To defend against these mechanisms the webmasters and
web programmers provide a confirmation-code box in which due to the irregular
character arrangement on a pattern or crowded background, any internet robot or
form filler program cannot parse the field and hence it fails.

Recently it was reported that the confirmation code in such
images can be detected using advanced code. So a confirmation
image does not prevent robots, it just makes the process difficult.

Practical Web Projects

[138]

In this workshop we are going to design and develop a random confirmation-code
box with the help of ImageMagick and PHP.

This workshop has two main parts. The first part is a random string generator, which
produces an alphanumeric string four to fifteen characters long. This generator will
be completely developed in PHP. In the second part we pass the generated string to a
function that calls ImageMagick for drawing each character with a specific font, size,
position, rotation, and so on.

Before writing these characters on an image file, a random patterned or colored
background is generated. So let’s start.

We use the rand function for generating random numbers and use the chr function
for achieving a character corresponding to the given ASCII code. As you can see we
map the generated random numbers from 48 to 57 for numbers (that is, 0 to 9), 65 to
90 for capital letters (that is, A to Z), and 97 to 122 for lower case letters (that is, a to
z). The first step is to define every variable that is used in this program. This includes
initializing the minimum length and maximum length, and emptying the string code:

$min=4;

$max=15;

$code="";

By using the rand function we will generate a random string length. We use a for
loop for creating it:

for($i=0;$i<rand($min,$max);$i++)

Now we produce a random integer number from 48 to 122 to choose a letter
corresponding to the generated ASCII code, but we have to be sure there are valid
letters and not other characters. We can extract our required letters using a set of if
and else conditions:

// The range of valid characters for string

$num=rand(48,122);

// The range of lower case letters

if(($num > 97 && $num < 122))

{

$code.=chr($num);

}

// The range of capital letters

else if(($num > 65 && $num < 90))

Chapter 8

[139]

{

$code.=chr($num);

}

// The range of numbers

else if(($num >48 && $num < 57))

{

$code.=chr($num);

}

// Decrement counter

else

{

$i--;

}

In the code opposite we use the chr function for converting a number to a character.
Moreover, as we want to add the generated character at the end of the previous
string, we use the dot operator at the end of the string variable. For example,
$code .= chr($num);

Look at the last else in that piece of code. In that block we decrement the loop counter.
So if the generated ASCII code doesn’t match with any valid alphanumeric character
then we have to decrement the counter in order to get the right length for our string.

Save the script as randomstr.php and upload it in the same path as the web page
that will call it. The complete code is here:

<?php

// filename "randomstr.php"

$min=4; // minimum length of string

$max=9; // maximum length of string

$code=""; // to store generated string

for($i=0;$i<rand($min,$max);$i++)

{

// The range of valid characters for string

$num=rand(48,122);

// The range of lower case letters

if(($num > 97 && $num < 122))

Practical Web Projects

[140]

{

$code.=chr($num);

}

// The range of capital letters

else if(($num > 65 && $num < 90))

{

$code.=chr($num);

}

// The range of numbers

else if(($num >48 && $num < 57))

{

$code.=chr($num);

}

// Decrement counter

 else

{

$i--;

}

}

?>

The image_creator.php file is where the operational part of this is called. This
file has two main parts. This first part uses includes to insert the code for creating
random strings and creating backgrounds. The second part will work on the
generated string and set size, position, and rotation specifications for each character.

<?php

Session_start();

// calling the random string generator here

include “randomstr.php”;

// calling the random background generator here

include “bkgnd.php”;

// Save the background image in a variable

$background = “background.gif”;

Chapter 8

[141]

// Save the path where convert installed in a variable

$CONVERT = “/usr/bin/convert”;

// use a variable for command line contents

$CMD = “$CONVERT $background –pointsize 30 –strokewidth 1

–stroke black –fill white –gravity center”;

for (i=1; i<= strlen($code); i++)

{

$Ch_size[i] = rand (15,20);

$Ch_rot[i] = rand (-10,10);

$Ch_xpos[i] = i * 30;

if($Ch_rot > 0)

{

if (i<= strlen($code)/2)

{

$Ch_ypos[i] = strlen(code)/(2*i);

$Ch_xpos[i] -= $Ch_xpos[i];

}

else

$Ch_ypos[i] = - (2*i)/ strlen($code);

}

else if($Ch_rot < 0)

{

if (i<= strlen($code)/2)

{

$Ch_ypos[i] = -strlen($code)/(2*i);

$Ch_xpos[i] -= $Ch_xpos[i];

}

else

$Ch_ypos[i] = (2*i)/ strlen($code);

}

else

$Ch_ypos[i] = 0;

$CMD.= “–draw \‘rotate $Ch_rot[i] text $Ch_xpos[i] $Ch_ypos[i]
\”$code[i-1]\” \’ ”;

}

$CMD.= “ code”.strip_tags(SID).”.gif”;

Practical Web Projects

[142]

// run the command

exec($CMD);

}

Let’s see what happens in this script. After setting a session the first four lines are
used for including prewritten code and initializing variables, which will simplify the
programming process.

In the next line we use a variable called $CMD for making our command body.
Observing this command, we find that it can be divided into three parts:

The first part is the section where the initial ImageMagick parameters are
called. The following code is generated in the first part:

 convert background.gif –pointsize 30 –gravity center

The middle part contains a set of similar –draw parameters. In fact in this section
the –draw parameter is called several times (based on string length) with various
arguments so we use a loop to simplify the code. In this code random size,
vertical and horizontal position, and rotation are used for each character.
The last part will add the name of the image that these letters are going to be
written on.

We need a unique name for our image file so, by using the SID constant, we use a
user session ID for naming the image file.

Finally, we run the command by calling exec and the produced image is ready to be
used in a web form.

As you may notice, in the previous code a file named bkgnd.php is included at the
beginning of the program. Let’s take a look at this file:

$CMD= “/usr/bin/convert –size 250x60”;

switch (rand(1,4))

{

case 1:

$CMD.=”xc: blue ”;

Break;

case 2:

$CMD.=”gradient: yellow-blue ”;

Break;

case 3:

$CMD.=”plasma: fractal ”;

•

•

•

Chapter 8

[143]

Break;

case 4:

$CMD.=”pattern: hexagons”;

Break;

}

$CMD.= “ background.gif”

exec($CMD);

This command has three parts, which deal with initializing, setting the background
type based on a random number between 1 and 4 (1 = solid color, 2 = gradient, 3=
plasma, 4= pattern), and saving the result in a .gif file.

After making the command body we will run it using the exec command.

You may want to add more power to this code by
randomizing the content of each case command.

The complete source of this program can be found on the download bundle
on www.packtpub.com.

Here are some sample code images generated by this program.

Fig 8-3: Samples from the Program Output

Online Image Water Marking
One of the most important usages of online image processing is watermarking.
A watermark is a little sign or logo that is placed on an image to mark it as a
copyrighted resource. This is a simple workshop that shows you how to place a
watermark on an image with a single command call.

Practical Web Projects

[144]

1. Design your logo or sign that you are going to use as a watermark. This sign
should have a transparent background for better results. The sign should be
uploaded, preferably to the directory where the other images are uploaded.

Fig 8-4: The Image (Left) and the Logo (Right) that

will be Used on it as a Watermark

2. Now use the –watermark option as shown in the following code for
watermarking:

 <?php

 //initializing variables

 $image= $_POST[‘input’];

 $water= $_POST[‘mrk’];

 $result= $_POST[‘output’];

 // Save the path where composite installed in a variable

 $COMPOSITE = “/usr/bin/composite”;

 if ($result == null)

 // use a variable for command line contents

 $CMD = “$COMPOSITE –watermark 30% -gravity southeast

 $image $water $image “;

 else

 // use a variable for command line contents

 $CMD = “$COMPOSITE –watermark 30% -gravity southeast

 $image $water $result “;

Chapter 8

[145]

 // run the command

 Exec($CMD);

 ?>

The output will look like this:

Fig 8-5: The Watermarked Image

In the code opposite we first get the input files that have been sent to our .php page
using the POST method and save them in some variables. The path to the composite
utility is saved in a variable (as before) to make it easier to call the ImageMagick
command-line utility.

//initializing variables

$image= $_POST['input'];

$water= $_POST['mrk'];

$result= $_POST['output'];

$COMPOSITE = "/usr/bin/composite";

Next we should study the output file. We have two choices for that file. The first
solution is to overwrite the watermarked image on the input file (which saves web
space, but the original uploaded file will be lost):

if ($result == null)

// use a variable for command line contents

$CMD = "$COMPOSITE –watermark 30% -gravity southeast

$image $water $image ";

Practical Web Projects

[146]

Another alternative is to save the watermarked image as a new file (which needs
more space, but the original uploaded file will remain unchanged):

if else

// use a variable for command line contents

$CMD = "$COMPOSITE –watermark 30% -gravity southeast

$image $water $result ";

To use this code save it as a PHP file (wmark.php for example) and simply send the
image name, watermark, and if you wish output file as its parameters as shown below:

http://www.yourdomain.com/samples/wmark.php?input=statue.jpg&mrk=c2i.
gif &output=copyrighted_statue.jpg

or:

http://www.yourdomain.com/samples/wmark.php?input=statue.jpg&mrk=c2i.
gif

Summary
In this chapter we saw how to use ImageMagick with PHP to add some useful
functions to your website. We saw how to make life harder for spammers with a
confirmation-code generator, and how to stamp your site's mark on all the images
you serve with a watermark feature.

In the next two chapters, we'll continue looking at ImageMagick and PHP. We're
going to create an application for generating e-cards and other fun combinations of
text and graphics.

An E-Card Application
E-cards and websites that provide customized digital images like posters, flash clips,
and animated or still e-cards have attracted internet users’ attention during recent
years. There are several technologies used for implementing this group of art works.

You can implement them using Macromedia Flash (or using other flash-like
applications, for example, koolmove, swishmax, and so on) or you can build them
using the internal PHP graphic library known as GD.

In this chapter we will see how to use ImageMagick for creating them. But before
starting please keep the following notes in mind:

ImageMagick or other graphic libraries and applications are just tools with
some capabilities for creating various graphics like poster, e-cards, and so
on. Familiarity with these packages is required but not enough. The more
important factor is having good knowledge and creativity when it comes to
selecting image, text, font, color, and any other artistic concept that may help
in creating excellent and amazing artwork.
Due to the subject of this book (ImageMagick) and our need for e-card
elements like fonts and images we have to refer to some image and font
websites. Moreover, we need to install downloaded fonts and define them
for ImageMagick. I’ve introduced links to various websites offering free
collections of fonts, animated GIFs, and images in Appendix A. The required
steps for installing new fonts for ImageMagick are described in Appendix A.
I would recomend you to go through Appendix A before proceeding further
with this chapter.
This workshop unlike previous ones consists of a few sections. In each
part a unique creative technique for implementing a professional e-card
is discussed.

•

•

•

An E-Card Application

[148]

And finally we have three similar steps for creating customized e-cards.
First we need a web form in which the user will select the image source. The
image may come from a current web image gallery, an off-site URL, or it
can be uploaded from the user's computer to the website. At the second step
the user inputs (including texts and other settings) are received and sent to
the image processing page by clicking the Submit button. At the next step a
session is implemented in a PHP page and after doing any necessary image
processing the user's session ID is used for creating a unique file name and
finally the created artwork will be displayed to him or her. This process will
be implemented as a three-step wizard.

Wizard Step 1: How to Receive Images
The first step involves deciding on an image source. There are three possible
resources for input images:

Current web image gallery
Off-site image URLs
Images uploaded by user

So the first step will need the following code in order to create a selectable
resource page:

<html>

<head>

<title>My Ecards</title>

<meta http-equiv="Content-Type" content="text/html; charset=windows-
1256">

<META content="MSHTML 6.00.2900.2802" name=GENERATOR>

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0" marginwidth="0"
marginheight="0">

Customized E-Cards Wizard.

 STEP 1. S E L E C T T H E
 S O U R C E

<hr>

•

•

•

•

Chapter 9

[149]

<table align="center" width="600" cellpadding="0" cellspacing="0">

<tr align="center">

<td>

Web Image Gallery

</td>

<td>

Off-site Image URL

</td>

<td>

Upload Your Image

</td>

</tr>

<tr>

<td colspan="3"><hr></td>

</tr>

<tr>

<td colspan="3">

<iframe frameborder="0" marginheight="0" marginwidth="0"

scrolling="no" src="gallery.htm" height="550" width="600"

name="mainframe">

</iframe>

</td>

</tr>

</table>

</body>

</html>

At the first step of the wizard the image source must be specified. So an iframe
is defined after the three possible image sources given above, which contains the
images in the web gallery by default:

<tr>

<td colspan="3">

<iframe frameborder="0" marginheight="0" marginwidth="0"

scrolling="no" src="gallery.htm" height="550" width="600"

name="mainframe">

</iframe>

An E-Card Application

[150]

</td>

</tr>

Every time you choose another image source the content of the related web page will
be displayed in this frame.

Fig 9-1: Sample Web Page that Contains some E-Card Thumbnails

The simplest method for image handling is using images that are already uploaded
to the current website. Assume you have a page with several images that will be
used as e-card backgrounds. We have to choose an image on which to write our
personal text. This page could have the following structure:

<html>

<head><title>My Ecards</title></head>

<body>

<div align="center">

<table width=”100%” cellspacing="5" cellpadding="5" border="0" >

<tr>

<td>

Chapter 9

[151]

<div align="center">

<img src="images/card1.jpg" height="80" width="120"

border=0>

Card1

</div>

</td>

<td>

<div align="center">

<img src="images/card2.jpg" height="80" width="120"

border=0>

Card2

</div>

</td>

<td>

<div align="center">

<img src="images/card3.jpg" height="80" width="120"

border=0>

Card3

</div>

</td>

<td>

<div align="center">

<img src="images/card4.jpg" height="80" width="120"

border=0>

Card4

</div>

</td>

</tr>

<tr>

<td>

<div align="center">

<img src="images/card5.jpg" height="80" width="120"

border=0>

Card5

</div>

</td>

An E-Card Application

[152]

<td>

<div align="center">

<img src="images/card6.jpg" height="80" width="120"

border=0>

Card6

</div>

</td>

<td>

<div align="center">

<img src="images/card7.jpg" height="80" width="120"

border=0>

Card7

</div>

</td>

<td>

<div align="center">

<img src="images/card8.jpg" height="80" width="120"

border=0>

Card8

</div>

</td>

</tr>

</table>

</div>

</body>

</html>

You can edit this code and add any necessary elements to it
based on your personal requirements.

Clicking on an image should lead us to a page containing a form for getting the
required input texts from the user. We have several pages. In fact there is a unique
page for each image. The reason that we cannot use the same page for these images is
that each image has its own characteristics. So it is up to you as a designer to choose
font, size, color, and other design factors for each image. Moreover, based on the

Chapter 9

[153]

empty space on the image and other settings, you need to have various webpages
for image processing.

For example if you choose Card7 the page has the following contents:

<html>

<head><title>My Ecards</title></head>

<body>

<FORM action=step3.php method=post>

<TABLE cellSpacing=0 cellPadding=2 border=1 >

<TR>

<TD colspan=2 align=center>

<INPUT type=hidden name="final_image" value=”card7.jpg”>

</TD>

</TR>

<TR>

<TD >

<INPUT name="msg_1stline" maxLength=25 size="30">

</TD>

<TD >

First line of the message:

 (you have to write it with maximum 25 characters)

</TD>

</TR>

<TR>

<TD>

<INPUT name="msg_2ndline" maxLength=25 size="30">

</TD>

<TD >

Second line of the message:

(you have to write it with maximum 25 characters)

</TD>

</TR>

<TR>

<TD>

<INPUT type=submit value="submit">

<INPUT type=reset value="clear">

</TD>

An E-Card Application

[154]

</TR>

</TABLE>

</FORM>

</body>

</html>

Keep in mind that we can implement this page in any static or
dynamic form. This is just simple html code to show you the
overall process of making an e-card.

This code will generate a page like the one shown below. Due to balloon size on the
image we can write a two line message for the image.

Fig 9-2: Sample Web Form that will Get some Input Text from the User

Chapter 9

[155]

By clicking on the Submit button, the image and the required two line text will
be sent to the step3.php page. As a designer you have to set up a suitable setting
for font, size, and color (for each prepared image). So in step3.php, predefined
charactristics will be applied to the image and the result will be generated and
displayed as below:

Fig 9-3: Output of step3.php for image7.jpg

The step3.php page is the place that contains various predefined/userdefined
settings for sentences in the images. Hence, the question is what mechanism does it
need to distinguish a web gallery image from a URL or uploaded one?

Before answering this question, let us see what happens if we choose another source
for the input image.

How to Receive Images from URLs
Another option in the first step of the wizard is referring to an image which is located
on an off-site URL. So we need a form that specifies a URL address. This form may
contain the following tags:

<html>

<head><title>My Ecards</title></head>

<body>

<div align="center">

An E-Card Application

[156]

<table width=”100%” cellspacing="0" cellpadding="0" border="0" >

<tr>

<td >

<div align="left">

Enter your image url here:

</div>

</td>

</tr>

<tr>

<td>

<form method="post" name="myform" action="step2.php")>

<input type="text" size="75" name="url" >

<input type="submit" value=" » " >

</form>

</td>

</tr>

</table>

</div>

</body>

</html>

Write this code in a simple text editor, save it as url.htm, and upload it in the same
path where the first page of the wizard is located. Then if you click on the Off-site
Image URL link, the content of url.htm will be displayed in the first page frame:

Fig 9-4: Choosing an Image from a URL

Chapter 9

[157]

After entering the image URL and pressing the button after it (that is the button
which is labeled with the » character), that image will be sent to step2.php.

When addressing an image from an off-site URL, be careful!
Sometimes because of security issues webmasters prefer to block
their website contents (including images) from being accessed
from outside. This feature is called Hotlink Protection and can
be activated via the website's control panel. When this feature is
activated images are not shown via URL addressing.

How to Upload Images
The third method for working on images is uploading them from your computer to
the server. So we need another page that contains a form for uploading the image to
the server.

Clicking on the Upload Your Image link will display a form that contains the
following commands:

<html>

<head><title>My Ecards</title></head>

<body>

<div align="center">

<table width=”100%” cellspacing="0" cellpadding="0" border="0" >

<tr>

<td >

<div align="left">

Select the image file from your computer

</div>

</td>

</tr>

<tr>

<td align="center">

<form action="upload.php" method="post"

enctype="multipart/form-data">

<input type="file" name="myfile">

<input type="Submit" value="upload">

</form>

</td>

An E-Card Application

[158]

</tr>

</table>

</div>

</body>

</html>

This piece of code will generate a web page in which we have a Browse button (i.e.
<input type="file" name="myfile">) to locate our image.

Fig 9-5: The Page that will be Used to Upload an Image

You may notice that the sample pages generated based on code
I provided in this chapter are simple. In fact they have CSS-free
black text on a white background and the links in them use the
default color definition. For your personal use you can define
your favorite styles in a CSS file and include it in your code.

Pressing the upload button sends the image name to a PHP page that uploads it to
the server. Here is the content of the upload.php file:

<?php

// we assume that your image will be uploaded at the current path of

// upload.php file and in the subfolder which is specified in

// $image_upload_dir variable.

// you can define any folder name you wish. Moreover multi-depth

// subfolders are allowed too.

$image_upload_dir = "uploaded_images/";

Chapter 9

[159]

// check if the directory exists or not. If folder doesn’t exist an

// error message will be displayed.

if (!is_dir("$image_upload_dir"))

{

die ("The directory ($image_upload_dir) doesn't exist");

}

// The function is_writeable() returns true if the directory is

// writable. Otherwise an error message will be displayed

if (!is_writeable("$image_upload_dir"))

{

die ("The directory ($image_upload_dir) is NOT

writable. Refer to that directory and define access

mode 777 for it");

}

// With the is_uploaded_file('filename') we can check to see if

// a file has been selected and uploaded with a temporary name

if (!is_uploaded_file($_FILES['myfile']['tmp_name']))

{

echo "Error!!!";

exit();

}

// The variable $filename contains the value of the file name

// submitted from the form.

$filename = $_FILES['myfile']['name'];

// Before saving the temporary image data to the target, we have to

// check if file already exists with the file_exists() function

if(file_exists($image_upload_dir.$filename))

{

echo "Warning!!! The file $filename already exists";

exit();

}

// The function move_uploaded_file('filename','destination') Moves

// image data as a new file to a new location.

if (move_uploaded_file($_FILES['myfile']['tmp_name'],

$image_upload_dir.$filename))

{

// If this function returns true we should inform

// the user

An E-Card Application

[160]

echo "File (<a href=

step2.php?resource=./$image_upload_dir$filename>$filename

) uploaded!</br>";

// File name is a link to step2.php page which uses file name

// and its path as input resource

echo "click on the file name to write your text on it.</br>"

exit();

}

else

{

//Print error

echo "There was a problem copying your file";

exit();

}

?>

We have implemented the information receive phase and are ready to customize the
image that we have chosen.

Wizard Step 2: How to Write Text on
Input Images
We saw that the images in the web gallery have various predefined settings for
writing text on them, but what about other images?

So we need a page to define new charactristics for fonts that we are going to use
on the image text. step2.php contains several parts for defining these settings and
a unique naming mechanism for files. As we saw in the earlier discussions in this
chapter we can create unique file names using user session IDs.

The first problem is to obtain the overall properties of the image that is addressed or
uploaded. We have no idea about the format and size of the image that the user is
going to work on and hence it is necessary to get information like:

What is the image dimension?
How long is the text (after font specifications are defined) that the user is
going to write?
How big is the area the user is going to write the text on?

•

•

•

Chapter 9

[161]

When the user knows the image dimensions, then he or she has better estimation
about what portion of the image is suitable for work and how big an area he or she
can use for writing the text.

We need some code to check these issues otherwise the final image may have the
wrong text alignment.

A PHP file called identify_image.php can help us obtain the height and width of
the images:

<?php

if(empty($settings)){

// define an array for image charactristics

array $im_specs[];

// store image path and name

$working_image = POST_[‘resource’]

// Save the path where identify is installed in a variable

$identify = “/usr/bin/identify”;

// obtain image width and height

$CMD = “$identify –format \”%w\n%h\” $working_image”;

exec($CMD, $im_specs[]);

}

?>

The variable $settings is used here to figure out if the code is running for the
first time. I am going to use identify_image.php in the body of step2.php so I’ll
provide a better description of the $settings variable in the next paragraphs.

Let’s take a closer look at the line that runs the ImageMagick command. As you
know from Chapter 5, the format parameter in identify can be used to extract
specific charactristics from an image. Here the %w and %h are used to obtain image
width and height respectively. Between these control characters a \n is used to print
them on separate lines. Why? Because the exec() command has an array parameter
that contains every single line of the command output as its element.

Do you remember the exec() command usage?

string exec (string command [, array &output])

An E-Card Application

[162]

The output parameter is an array that will be filled with every line of output from
the command. If the array already contains some elements, exec() will append the
command output to the end of the array.

So after executing the following lines:

// obtain image width and height

$CMD = “$identify –format \”%w\n%h\” $working_image”;

exec($CMD, im_spec[]);

The im_specs[0] element will contain width and im_specs[1] will contain the height
of the image. Let's see how we can use them to convey the image size to the user.

In the same manner it is possible to extract other image
specifications from an image.

How to Show Image, Image Size, and the
Required Fields for Writing Text
The first step for implementing step2.php is activating a session for the user and
then including the previous PHP file (identify_image.php). We have to show the
image and other fields for creating some text on it and the final part of step2.php
has some code to generate an image with some text on it. So this file may contain the
following general form:

<?php

Session_start();

// Computing width and height of image

include ‘identify_image.php’;

// initializing variable with form fields

$txt1=POST_[‘line1’];

$txt2=POST_[‘line2’];

$txt3=POST_[‘line3’];

$txt4=POST_[‘line4’];

$txt5=POST_[‘line5’];

$fname=POST_[‘font_name’];

$fsize=POST_[‘font_size’];

$fcolor=POST_[‘font_color’];

$X=POST_[‘x_pos’];

$Y=POST_[‘y_pos’];

Chapter 9

[163]

?>

// creating the page

<html>

<head>

<title>My Ecards</title>

<meta http-equiv=Content-Type content=text/html;charset=windows-1256>

<META content=MSHTML 6.00.2900.2802 name=GENERATOR>

</head>

<body bgcolor=#ffffff >

Customized E-Cards Wizard.

 STEP 2. W R I T E S O M E
 T E X T

<hr>

<?php

// Displaying the form for the first time

if(empty($settings)){

$settings = 1;

$output_image = strip_tags(SID).$working_image;

?>

<table width=800 cellpadding=0 cellspacing=0>

<tr align=center>

<td align=left>

<form method=post name=data action=$PHP_SELF>

1st line:<input name=line1 size=25>

2nd line:<input name=line2 size=25>

3rd line:<input name=line3 size=25>

4th line:<input name=line4 size=25>

5th line:<input name=line5 size=25>

Font name:<input name=font_name size=15>

Select a

name between Arial, Tahoma, Times

Font Size:<input name=font_size size=15>

Enter a

An E-Card Application

[164]

number between 1-99 for text size

Font color:<input name=font_color size=15>

Select a

color name like: Black, Blue,...

or enter a hex number like: #a789f1

Text X position:<input name=x_pos size=4>

Text Y position:<input name=y_pos size=4>

<input type=submit value=submit>

</form>

</td>

<td align=center valign=middle>

.$im_spec[0].”

$im_spec[1].<img src=”.$working_image.“ border=0

align=absmiddle>

</td>

</tr>

</table>

<?php

// Save the path where convert is installed in a variable

$convert = “/usr/bin/convert”;
// Create the output image

$CMD= “$convert ”.$working_image.” -fill “.$fcolor. “–pointsize
“.$fsize.” –draw \"text “.$X.”,”.$Y.” “.$txt1.”\n” .$txt2.”\n”
.$txt3.”\n” .$txt4.”\n” .$txt5.\" .$output_image;

exec($CMD);

}

// displaying the form testing other settings

// or confirm the image

else{

?>

<table width=800 cellpadding=0 cellspacing=0>

<tr align=center>

<td align=left>

<form method=post name=data >

Chapter 9

[165]

1st line:<input name=line1 size=25>

2nd line:<input name=line2 size=25>

3rd line:<input name=line3 size=25>

4th line:<input name=line4 size=25>

5th line:<input name=line5 size=25>

Font name:<input name=font_name size=15>

Select a

name between Arial, Tahoma, Times

Font Size:<input name=font_size size=15>

Enter a

number between 1-99 for text size

Font color:<input name=font_color size=15>

Select a

color name like: Black, Blue,...

or enter a hex number like: #a789f1

Text X position:<input name=x_pos size=4>

Text Y position:<input name=y_pos size=4>

<input type=hidden name=final_image value=

“.$outputimage.”

<input type=submit value=again?

onClick=(data.action=$PHP_SELF)>

<input type=submit value=confirm

onClick=(data.action=step3.php)>

>

</form>

</td>

<td align=center valign=middle>

.$im_spec[0].”

$im_spec[1].<img src=”.$output_image.”

border=0 align= absmiddle>

</td>

</tr>

</table>

<?php

// Save the path where convert is installed in a variable

An E-Card Application

[166]

$convert = “/usr/bin/convert”;
// Create the output image

$CMD= “$convert ”.$working_image.” -fill “.$fcolor. “–pointsize
“.$fsize.” –draw \"text “.$X.”,”.$Y.” “.$txt1.”\n” .$txt2.”\n”
.$txt3.”\n” .$txt4.”\n” .$txt5.\" .$output_image;

exec($CMD);

}

echo “</body>”;

echo “</html>”;

?>

There is a conditional block in this code that may need some more description. Here
is the if clause. The content of this section of code is run if it is the first time we are
referring to the code. This is figured out by checking the contents of the $settings
variable. This variable is set to 1 to inform that we have visited this page already:

// Displaying the form for the first time

if(empty($settings)){

$settings = 1;

Now we need to save a copy of the original image for future reference as it is
possible that the user may need to test various text and settings several times on the
image to get a final result. Besides if that image is an off-site one, we have no access
to it and for handling such an image we need to save it with a unique name locally.
So by adding a session ID at the beginning of the original image name we get a new
name for it and it is ready to be saved on the server:

$output_image = strip_tags(SID).$working_image;

In the next section a form with some fields is displayed using a bunch of echo
commands. The user can enter text and required settings in this form.

<table width=800 cellpadding=0 cellspacing=0>

<tr align=center>

<td align=left>

<form method=post name=data action =$PHP_SELF>

1st line:<input name=line1 size=25>

2nd line:<input name=line2 size=25>

3rd line:<input name=line3 size=25>

4th line:<input name=line4 size=25>

5th line:<input name=line5 size=25>

Font name:<input name=font_name size=15>

Select a

Chapter 9

[167]

name between Arial, Tahoma, Times

Font Size:<input name=font_size size=15>

Enter a

number between 1-99 for text size

Font color:<input name=font_color size=15>

Select a

color name like: Black, Blue,...

or enter a hex number like: #a789f1

Text X position:<input name=x_pos size=4>

Text Y position:<input name=y_pos size=4>

<input type=submit value=submit>

</form>

As you see the output of the form is sent to step2.php again (that is, the action
parameter in the Form tag is set to $PHP_SELF). So any necessary changes can be
performed if needed.

Beside this form the image that has been uploaded or addressed through an off-site
URL is also displayed:

</td>

<td align=center valign=middle>

”

.$im_spec[0].”

$im_spec[1].<img src=”.$working_image.”

border=0 align=absmiddle>

</td>

</tr>

</table>

As you can see the width and height of the image are displayed as well using the
$im_spec variables from the previous included PHP page.

An E-Card Application

[168]

If you run this code it will output a form with an image, labeling the width (at the
top) and the height (at the left):

Fig 9-6: The step2.php Form when it Runs for the First Time

But we need to display another form if the step2.php page has been run before.
Why? Suppose that the user has used this page and added some text to his/her
desired image but then is not satisfied with the result; if we simply guided him/her
to the next step (that is step3.php) she/he would have had no chance to change the
image except by repeating the whole process from the beginning. The solution is
provided in the else clause as follows:

// displaying the form to test other settings or confirm the image

else{

?>

<table width=800 cellpadding=0 cellspacing=0>

<tr align=center>

<td align=left>

<form method=post name=data >

Chapter 9

[169]

1st line:<input name=line1 size=25>

2nd line:<input name=line2 size=25>

3rd line:<input name=line3 size=25>

4th line:<input name=line4 size=25>

5th line:<input name=line5 size=25>

Font name:<input name=font_name size=15>

Select a

name between Arial, Tahoma, Times

Font Size:<input name=font_size size=15>

Enter a

number between 1-99 for text size

Font color:<input name=font_color size=15>

Select a

color name like: Black, Blue,...

or enter a hex number like: #a789f1

Text X position:<input name=x_pos size=4>

Text Y position:<input name=y_pos size=4>

<input type=hidden name=final_image value=

“.$outputimage.”>

<input type=submit value=again?

onClick=(data.action=$PHP_SELF)>

<input type=submit value=confirm

onClick=(data.action=$step3.php)>

</form>

</td>

<td align=center valign=middle>

.$im_spec[0].”

$im_spec[1].<img src=”.$output_image.”

border=0 align= absmiddle>

</td>

</tr>

</table>

An E-Card Application

[170]

The main difference between these two forms (that is, the form in the if clause and
the form in else clause) is the value of the action parameter in the Form tag. In fact
there is no action parameter here. Instead there are three extra <input> tags:

<input type=hidden name=final_image value=

“.$outputimage.”>

<input type=submit value=again?

onClick=(data.action=$PHP_SELF)>

<input type=submit value=confirm

onClick=(data.action=step3.php)>

The first <input> tag is a hidden control, which contains the image produced based
on last text settings. It is hidden because we don’t need to see its content but in
step3.php we do need to know the image file name to display it.

As you may have noticed, the name of this field is the same as
the hidden control in the gallery image form. So step3.php can
act on any image coming from the website gallery, off-site URL,
or an uploaded image.

The second <input> tag is a submit button (labled with again?) and if it is clicked the
user will be led to step2.php because of this code:

onClick=(data.action=$PHP_SELF)

The third <input> tag is a submit button (labled with confirm) and if it is clicked the
user will be led to step3.php because of this code:

onClick=(data.action=step3.php)

Pressing this button means that the current settings are approved.

Fig 9-7: Running the Page after the First

Visit causes these Buttons to Replace
the Previous one on the Form

Now the important part of the page (which is the same for both if and else
sections) is the part that generates the image:

Chapter 9

[171]

// Save the path where convert is installed in a variable

$convert = “/usr/bin/convert”;

// Create the output image

$CMD= “$convert ”.$working_image.” -fill “.$fcolor. “–pointsize
“.$fsize.” –draw \"text “.$X.”,”.$Y.” “.$txt1.”\n” .$txt2.”\n”
.$txt3.”\n” .$txt4.”\n” .$txt5.\" .$output_image;

exec($CMD);

The $convert variable contains the full path to the convert.exe utility and the
$CMD variable is set to any text settings (including font name, size, and color and the
position that the text is going to be written on the image).

Finally, the exec command runs the $CMD contents and creates the specified image.

Wizard Step 3: Final Image
This step is pretty simple if you decide to just show the result. In fact we can
implement it as a frame in the previous step. But let’s do it in a new page because
if someday you decide to use the final image for commercial usage (that is, sell the
output as an e-card, poster, etc.) making it in a new page will help you.

The general form of step3.php may be as follows:

<?php

// initializing variable with form field

$image=POST_[‘final_image’];

// creating the page

?>

<html>

<head><title>My Ecards</title>

<meta http-equiv=Content-Type content=text/html; charset=windows-1256>

<META content=MSHTML 6.00.2900.2802 name=GENERATOR>

</head>

<body bgcolor=#ffffff >

Customized E-Cards Wizard.

 STEP 3. S E N D T H E R E
S U L T

An E-Card Application

[172]

<hr>

<!-- building the form -->

<table align=center cellpadding=6 cellspacing=0>

<tr align=left>

<td>

</td>

<TD>

<FORM name=sender action=send_image.php

method=post>

<TABLE cellSpacing=0 cellPadding=0 width=180

border=0>

<TBODY>

<TR>

<TD >How would you liketo send your personal

message?

<TABLE>

<TBODY>

<TR>

<TD vAlign=top>

<INPUT type=radio CHECKED value=1

name=sender>As a Postcard</TD>

<TD > € 3 </TD></TR>

<TR>

<TD vAlign=top>

<INPUT type=radio value=2 name=sender>

As a Poster</TD>

<TD class=text vAlign=bottom> € 7

</TD></TR>

<TR>

<TD vAlign=top>

<INPUT type=radio value=3 name=sender>

As a Download</TD>

<TD vAlign=bottom> € 1</TD></TR>

<TR>

<TD vAlign=top>

<INPUT type=radio value=4 name=sender>

As an E-Card</TD>

Chapter 9

[173]

<TD> (free)</TD></TR>

</TBODY>

</TABLE>

</TD>

</TR>

<TR>

<TD >

<input type="submit" value="proceed"></TD>

</TR>

</TBODY>

</TABLE>

</FORM>

</TD>

</tr>

</table>

</body>

</html>

This code will generate a page with a form like the one shown below:

Fig 9-8: The step3.php Page

An E-Card Application

[174]

This page contains a form with four radio options and a submit button (labled
proceed), pressing which will lead the user to a page named send_image.php:

<FORM name=sender action=send_image.php method=post>

The send_image.php script may have several parts each of which acts based on what
value is posted for the sender variable by the previous page form.

For the first three options you can implement a form in which user information
including personal info and the payment method is gathered and saved in a
predefined database.

For the money transfer process you can use financial services gates like PayPal or use
direct manners like MasterCard and Visa.

The last option is a free service so you can email the generated image to your friends
via the related section in the send_image.php page.

This means that this page must have a form for specifying sender's and receiver's
names and email addresses and an optional message for the receiver. Then using
the PHP mail function the send process must be done. It is possible to write code for
storing all email addresses for future support.

As you may guess implementing send_image.php is your homework and I'll be very
glad to answer any questions and problems you may have while developing this
page. You can contact me at info@sohail2d.com.

Summary
In this chapter we learned to combine text and images chosen by a visitor to your
website, and produce unique designs especially for them. In the next chapter, we're
going to do some exciting things with the text so that the message the reader creates
ends up looking like it's a real part of the photo!

Exciting E-Card Designs
In the previous chapter we concentrated on how to develop the required steps
for implementing a wizard-based image handling process. So we had no special
effects on the generated images (we just inserted some simple text in the image).
In this last chapter, I'm going to show you how to use PHP code and ImageMagick
functionalities for creating some amazing electronic art.

E-card A: Simple Letters
After choosing your image write PHP code to generate graphical letters with colored
background as follows. It is assumed that you’ve designed a complete web form with
any required controls already, and that form gets the user multi-line string (in this case
three lines are provided; you can expand this code to support more lines).

<?php

Session_start();

//initializing variables

$message1 = POST_[‘msg_1stline’];

$message2 = POST_[‘msg_2ndline’];

$message3 = POST_[‘msg_3rdline’];

$backgnd = POST_[‘image’];

// Save the path where convert is installed in a variable

$convert = “/usr/bin/convert”;
$mogrify = “/usr/bin/mogrify”;
// a function for writing each line of text as a block of letters

function write_text(int $x, int $y, string $msg)

{

//create a new image with the same size as the background

//for writing the first line of the letters on

Exciting E-Card Designs

[176]

$CMD = “$convert –size 540x400 xc:transparent line1”.strip_
tags(SID).”.gif”;

exec($CMD);

for($i=0;$i<strlen($msg);$i++)

{

// we use mogrify because the result doesn’t need to be

// written on a new image

$CMD=“$mogrify line1”.strip_tags(SID).”.gif” –fill white –pointsize
30”;

// select a random font

$FONT = rand(1,3);

Switch ($FONT){

Case 1: $FONT=arial; break;

Case 2: $FONT=times; break;

Case 3: $FONT=tahoma; break;

}

$CMD.= “–box \’rgb(rand(0,200), rand(0,200), rand(0,200))\’ –

font $FONT –draw \’text “.$x.”+30*$i,”.$y.” \”$msg[$i]\”\’“;

exec($CMD);

}

//create first line

Write_text(10, 40, $message1);

Write_text(10, 95, $message2);

Write_text(10, 140, $message3);

// combine the created images in a new file

$CMD = “$convert $backgnd

Line1”.strip_tags(SID).”.gif”

Line2”.strip_tags(SID).”.gif”

Line3”.strip_tags(SID).”.gif”

final”.strip_tags(SID).”.jpg”;

exec($CMD);

?>

<!-- show the result to the user -->

<table width=100>

<tr>

<td align=center>

</td>

</tr>

</table>

Chapter 10

[177]

Save the code as makecard.php in the same folder as the input form. This will enable
the user's data to get placed on it by simply clicking on the submit button.

You can call this page directly using the following URL
address http://www.yourdomain.com/makecard.
php?image=back.jpg&msg_1stline=this is& msg_
2ndline=just a&msg_3rdline=simple test

I think I’ve to give you some explanation on this code. As before there is some
initializing at the beginning and after that the main function that will write each line
of text is developed. In this function there is a command that creates an image that is
the same size as the background:

$CMD = “$convert –size 540x400 xc:transparent line1”.strip_tags

(SID).”.gif”;

exec($CMD);

Then a loop repeats for the number of letters in each line. (The repetition is
controlled by the strlen function). While running this loop, a letter with a colored
background is generated and because there is no need to create new images we use
the mogrify utility to overwrite the created letter on the previous image. As you can
see each letter has a random font and background color:

for($i=0;$i<strlen($msg);$i++)

{

// we use mogrify because the result doesn’t need to be

// written on a new image

$CMD=“$mogrify line1”.strip_tags(SID).”.gif” –fill white –pointsize
30”;

// select a random font

$FONT = rand(1,4);

Switch ($FONT){

Case 1: $FONT=arial; break;

Case 2: $FONT=times; break;

Case 3: $FONT=tahoma; break;

Case 4: $FONT=courier; break;

}

$CMD.= “–box \’rgb(rand(0,200), rand(0,200), rand(0,200))\’ –

font $FONT –draw \’text “.$x.”+30*$i,”.$y.” \”$msg[$i]\”\’“;

exec($CMD);

Exciting E-Card Designs

[178]

Please note that the size of the background image and the
location you are going to put the text on are important factors in
writing the previous loops. Hence for your personal images you
may need to rewrite the loops again.

After creating three images for each line of text we combine them in a new file using
the convert utility:

// combine the created images in a new file

$CMD = “$convert $backgnd Line1”.strip_tags(SID).”.gif” Line2”.
strip_tags(SID).”.gif” Line3”.strip_tags(SID).”.gif” final”.strip_
tags(SID).”.jpg”;

exec($CMD);

?>

And finally the combined image will be shown to the user:

<!-- show the result to the user -->

<table width=100>

<tr>

<td align=center>

</td>

</tr>

</table>

Here is a sample output of this code:

Fig 10-1: Creating Letters using the Color Box Background

Chapter 10

[179]

E-card B: Write on Curved Surfaces
Based on what image we are going to mix with a text there are many ways for
creating the right effect. In this workshop we will experiment using a curved surface.

Firstly, you need to choose your own image with a curved element inside.

Fig 10-2: An Image with a Curved Surface Element

Now assuming you have created the required input form page and variable initialization
in the next page (as shown in the previous workshop) write the following code.

<?php

Session_start();

//initializing variables

$message1 = POST_[‘msg_1stline’]; // contains No

$message2 = POST_[‘msg_2ndline’]; // contains MORE

$message3 = POST_[‘msg_3rdline’]; // contains WAR

$backgnd = POST_[‘image’];

$CMD = “$CONVERT –size 130x145 –xc:black –fill:white -font beurk -
pointsize 35 -gravity north -draw \"text 0,0 .$message1.\" -draw
\"text 0,50 .$message2.\"

-draw \"text 0,100 .$message3.\" text”.strip_tags(SID).”.gif”;

exec($CMD);

$CMD = “$COMPOSITE gradient.jpg text”.strip_tags(SID).”.gif” –diaplace

Exciting E-Card Designs

[180]

-8 curvedtext”.strip_tags(SID).”.gif”;

exec($CMD);

$CMD = “$COMPOSITE -compose copyopacity –gravity south –geometery -
10+0 urvedtext”.strip_tags(SID).”.gif”Background.jpg card”.strip_
tags(SID).”.jpg”;

exec($CMD);

?>

<!-- show the result to the user -->

<table width=100>

<tr>

<td align=center>

</td>”;

</tr>

</table>

Fig 10-3: Creating a Simple
Text on a Black Background

As you can see we choose a font that simulates color drops fallen from a big brush.
This will help make the effect better.

In the second command a previously created gradient image is used for curving the
text. The negative value for –displace sets the curve downward.

Fig 10-4: Creating Curved Text with the Help of a Gradient Image

Finally, in the last command the curved text is mixed with the background at the
location defined using the –gravity and –geometry options.

Chapter 10

[181]

Fig 10-5: Placing the Text on the Rook

After compositing the text on the image it will be displayed to the user as shown in
the last seven lines of our PHP code.

E-card C: Carving Technique
Carving is the one of the amazing techniques that helps e-cards look more natural.
Follow the steps provided in this workshop to implement a carving.

Choose an image that you’re going to carve. I select a close-up of a red pepper and
I’m going to write some text on it.

Fig 10-6: An Image with a Clear Side for Carving

Exciting E-Card Designs

[182]

Again assuming the initializing step is done, create a new file, put the text you
received from the user in it, and skew it along the Y axis.

$CMD = “$convert -size 285x235 xc:black -fill white -pointsize 40

-font blazed -gravity north -draw\"skewY -12 text 0,0 \'Would U\nLike
2 Try\nThis little\nHottie!\'\" text”.strip_tags(SID).”.gif”;

exec($CMD);

Fig 10-7: Skewed White Text on the Black Background

Now blur the text.

$CMD = “$convert text”.strip_tags(SID).”.gif -blur 0x3

blured_text”.strip_tags(SID).”.gif”;

exec($CMD);

Fig 10-8: Blurred Text

Chapter 10

[183]

Next, mix and displace the blurred text with the background image:

$CMD = “$composite blured_text”.strip_tags(SID).”.gif background.jpg
-displace

3 displace”.strip_tags(SID).”.jpg”;

exec($CMD);

Now use a mask and extract the displaced area from the image:

$CMD = “$composite -compose copyopacity –gravity center

–geometry +30+45 text”.strip_tags(SID).”.gif

displace”.strip_tags(SID).”.jpg

carved_text”.strip_tags(SID).”.gif”;

exec($CMD);

Fig 10-9: Mask the Displaced Area

To complete the image combine the extracted and displaced text with the
background:

$CMD = “$composite -compose multiply –gravity center

–geometery +30+45 background.jpg

carved_text”.strip_tags(SID).”.gif

ecard”.strip_tags(SID).”.jpg”;

exec($CMD);

?>

Now it’s time to display it back to the user:

<!-- show the result to the user -->

<table width=100>

<tr>

Exciting E-Card Designs

[184]

<td align=center>

</td>

</tr>

</table>

Fig 10-10: The Final Result

How to Make Input Text more Flexible
You may have noticed that there are some limitations for text space in the previous
scripts. On the other hand we have to obey the specified text size and length and
number of lines specified earlier on in those workshops.

Is it possible to implement a mechanism in which the input text understands the
space it has and makes any necessary changes in the size or break itself as a multi-line
phrase? Yes it is possible. We just need to change the ImageMagick commands.

In the current commands we set a specific number of lines and used the –pointsize
option to fix the size of input texts so that it fits into specific areas of our images.

Another alternative is using the –size and -caption options. For example, we can
set the typing area as follows:

Chapter 10

[185]

convert -background lightgray -size 70x120

caption:"here it is a long text" textfit.png

As you see a 120 pixel wide area is defined for the text and can be shown as follows:

Fig 10-11: Defined Text Area

So if the text words are extended then more lines will be used automatically:

convert -background lightgray -size 70x120

caption:"here it is a long text which can be resized when it needs"
textfit2.png

Fig 10-12: Automatic Usage of Extra Lines

Creating a Parameterized Book Cover
Generator Page
In this last workshop, I’m going to review all the tips and tricks that we have learned
during this chapter. In this workshop we will design a Book Cover Generator web
page in which there is a form to receive required data like:

Book Title
Number of Pages
Author
Front Image
Back Image
Descriptions

This cover will be produced based on the Packt Publishing cover template. So the
Packt Publishing logo and its cover template will be used as the default. For your
personal use you can change the code and use your preferred settings instead.

•

•

•

•

•

•

Exciting E-Card Designs

[186]

Before starting let's take a look at a sample Packt Publishing book cover:

Fig 10-13: A Sample Book Cover

So we can divide a cover into eleven parts as follows:

Front Cover Image
The From Technologies to Solutions slogan
Front Cover Book Title
Front Cover Brief Description
The Orange Band at the Cover Bottom
Author Name
Packt Publishing Logo
Book Title on the Spine
Author Name on the Spine
Packt Publishing Logo on the Spine
Comments on Back Cover

So for the first step we need a form to get this information. This form may have
contents in the cover-step1.php script as follows:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

Chapter 10

[187]

<html>

<head>

<title> My Ecards </title>

<meta http-equiv=Content-Type content=text/html; charset=windows-1256>

<META content=MSHTML 6.00.2900.2802 name=GENERATOR>

</head>

<body bgcolor=#ffffff >

Book Cover Wizard

<strong STEP 1. G A T H E R I N G I N F O

<hr>

<!-- Displaying the form for gathering book information -->

<table width=800 cellpadding=0 cellspacing=0>

<tr align=center>

<td align=left>

<form method=post name=data action= cover-step2.php >

Image for cover:<input type=file size=38

name=cover_img>

Book Title:<input name=Title size=43>

Brief Description:<textarea name=B_Desc cols=38

rows=5 >

Author Name:<input name=Author size=53>

Comments on back:<textarea name=comments cols=36

rows=5>

<input type=submit value=submit>

</form>

</td>

</tr>

<tr align=center>

<td align=left>

change configuration

</td>

</tr>

</table>

Exciting E-Card Designs

[188]

That code will generate a page like this:

Fig 10-14: First Step of the Book Cover Wizard

In this page the image required for the cover is uploaded by
the user. You can rewrite it and choose your own manner for
choosing the cover image. This image can be received by a URL
and it is even possible to use current images on the server.

At the bottom of this page there is a link for predefined template configuration. We
can use it to define any constant element in the cover template. For example, slogan,
color box, and publication logo are parts that may never or seldom be changed. So
instead of generating them for each cover we can produce them once and use

Chapter 10

[189]

them. Every time we need to add, remove, or change such elements we can go to the
change configuration link and redefine its contents.

By clicking on this link a new page will be opened that may have the following contents:

<?php

// initializing variables with form fields

$width=POST_[‘width’];

$height=POST_[‘height’];

$bk_color=POST_[‘bk_color’];

$slogan=POST_[‘slogan’];

$slogan_font =POST_[‘slogan_font’];

$slogan_size =POST_[‘slogan_size’];

$slogan_color =POST_[‘slogan_color’];

$slogan_bar=POST_[‘slogan_bar’];

$logo=POST_[‘logo’];

$author_bar=POST_[‘author_bar’];

// Displaying this page for the first time

if(empty($settings)){

$settings = 1;

}

else{

// Save the path where convert is installed in a variable

$convert = “/usr/bin/convert”;
// Create the cover template

$CMD= “$convert

// template size and color

xc:”.$bk_color.” –size “.$widthx$height.“

// slogan settings

–fill “.$slogan_bar.”

–draw \”rectangle “.$width.”/1.75,”.$height.”/1.8 “.$width.”,”.$heigh
t.”/32\”

–pointsize “.$slogan_size.”

–fill “.$slogan_color.”

–draw \"text “.$width.”/1.75 + 10,

”.$height.”/1.8 - 10 “.$slogan.”\"

// logo settings

-gravity southeast

–draw \"image over “.$width.” - 10,

Exciting E-Card Designs

[190]

”.$height.” - 10 “.$logo.”\"

-gravity south

–draw \"image over “.$width.” - 10,

”.$height.” - 10 “.$logo.” Scale 90%, 90%\"

// author bar

–fill “.$author_bar.”

–draw \”rectangle 0,”.$height.”/1.1 “.$width.”,”.$height.”/32\”

current_template.jpg”;

exec($CMD);

}

?>

<!-- creating the page -->

<html>

<head>

<title> Cover Creator </title>

<meta http-equiv=Content-Type content=text/html; charset=windows-1256>

<META content=MSHTML 6.00.2900.2802 name=GENERATOR>

</head>

<body bgcolor=#ffffff >

Book Cover Wizard

<strong T E M P L A T E S E T T I N G S

<hr>

<table width=800 cellpadding=0 cellspacing=0>

<tr align=center>

<td align=left>

<form method=post name=data action=$PHP_SELF>

<!-- cover dimension -->

Cover width:<input name=width size=4>

Cover height:<input name=height size=4>

<!-- background color -->

Background color:<input name=bk_color size=15>

Select a

color name like: Black, Blue,...

or enter a hex number like: #a789f1

Chapter 10

[191]

<!-- Slogan settings -->

Slogan:<input name=sloagan size=25>

Slogan Font:<input name=slogan_font size=15>

Select a

name between Arial, Tahoma, Times

Slogan size:<input name=slogan_size size=15>

Select a

number between 1-99

For colors

Select a name like: Black, Blue,...

or enter a hex number like: #a789f1

Slogan Color:<input name=slogan_color size=25>

Slogan bar color:<input name=slogan_bar

size=25>

<!-- Publisher Logo -->

Logo image:<input name=logo size=25>

<!-- Author bar color -->

Author bar color:<input name=author_bar

size=25>

//Send new settings

<input type=submit value=Save>

</form>

</td>

<td align=center valign=middle>

current template

<img src=current_template.jpg border=0

align =absmiddle>

</td>

</tr>

</table>

A preview of the current cover template settings helps us to have a clear idea of what
we are going to change it to. The form located below the preview provides us with
full control of the size, position, color, and contents of each element. After making
any changes, click on the Save button to make them active.

Exciting E-Card Designs

[192]

Fig 10-15: Template Configuration Page

The Submit button on the first page opens cover-step2.php, in which user data
will be arranged and the generated cover will be displayed.

Here is the code for cover-step2.php:

<?php

Session_start();

// initializing variables with form fields

$cover_img=POST_[‘cover_img’];

$title =POST_[‘Title];

$B_Desc =POST_[‘B_Desc’];

$Author =POST_[‘Author];

$comments =POST_[‘comments’];

array $tmpl_dim;

include(‘upload.php’);

include(‘get_dim.php’);

// upload the image user specified for cover

Upload_image($cover_img);

Chapter 10

[193]

// get template dimension

Get_dim(“current_template.jpg”, $tmpl_dim);

// Save the path where convert is installed in a variable

$convert = “/usr/bin/convert”;
// Create the cover image

$CMD= “$convert

// the predefined template file

current_template.jpg

// draw cover image

–draw \”image over“.$tmpl_dim[0].”/1.85, 0 “.$tmpl_dim[0].”- “.$tmpl_
dim[0].” /1.85,” ”.$tmpl_dim[1].”/1.75\”

// draw book title

–pointsize 30

–fill white

-font arial

–draw \"text “.$tmpl_dim[0].”/1.75 + 10,

”.$ tmpl_dim[1].”/1.3 - 10 “.$title.”\"

// draw brief description

–pointsize 10

–fill orange

-font arial

–draw \"text “.$tmpl_dim[0].”/1.75 + 10,

”.$ tmpl_dim[1].”/1.35 - 10 “.$B_Desc.”\"

// draw authors' names

–pointsize 15

–fill white

-font arial

–draw \"text “.$tmpl_dim[0].”/1.75 + 10,

”.$ tmpl_dim[1].”/1.05 - 10 “.$author.”\"

// draw back cover comments

–pointsize 10

–fill white

-font arial

–draw \"text 50,50 “.$comments.”\"

my_cover”.strip_tags(SID).”.jpg”;

exec($CMD);

}

?>

<!-- creating the page -->

Exciting E-Card Designs

[194]

<html>

<head>

<title>Cover Creator</title>

<meta http-equiv=Content-Type content=text/html; charset=windows-1256>

<META content=MSHTML 6.00.2900.2802 name=GENERATOR>

</head>

<body bgcolor=#ffffff >

Book Cover Wizard

<strong S A M P L E C O V E R

<hr>

<table width=800 cellpadding=0 cellspacing=0>

<tr align=center>

<td align=center valign=middle>

Sample Cover

<img src= my_cover”.strip_tags(SID).”.jpg

border=0 align =absmiddle>

</td>

</tr>

</table>

As usual a session is required to create a unique name at the first line of code:

Session_start();

Then some variables are initialized with data that is sent from the previous
page. Moreover, we need to define an array variable because we need it to save
template dimensions:

// initializing variables with form fields

$cover_img=POST_[‘cover_img’];

$title =POST_[‘Title];

$B_Desc =POST_[‘B_Desc’];

$Author =POST_[‘Author];

$comments =POST_[‘comments’];

array $tmpl_dim;

Next, two PHP files are included in this code. One is for uploading the image for the
cover and the other for computing template dimensions:

Chapter 10

[195]

include(‘upload.php’);

include(‘get_dim.php’);

// upload the image user specified for cover

Upload_image($cover_img);

// get template dimensions

Get_dim(“current_template.jpg”, $tmpl_dim);

The content of these two PHP files has already been discussed
earlier in this chapter.

Initializing ImageMagick's path is the next step:

// Save the path where convert is installed in a variable

$convert = “/usr/bin/convert”;

The heart of this page is the line in which the convert utility with the required
parameters is constructed and then run:

// Create the cover image

$CMD= “$convert

// the predefined template file

current_template.jpg

// draw cover image

–draw \”image over“.$tmpl_dim[0].”/1.85, 0 “.$tmpl_dim[0].”- “.$tmpl_
dim[0].” /1.85,” ”.$tmpl_dim[1].”/1.75\”

// draw book title

–pointsize 30

–fill white

-font arial

–draw \"text “.$tmpl_dim[0].”/1.75 + 10,

”.$ tmpl_dim[1].”/1.3 - 10 “.$title.”\"

// draw brief description

–pointsize 10

–fill orange

-font arial

–draw \"text “.$tmpl_dim[0].”/1.75 + 10,

”.$ tmpl_dim[1].”/1.35 - 10 “.$B_Desc.”\"

// draw authors' names

Exciting E-Card Designs

[196]

–pointsize 15

–fill white

-font arial

–draw \"text “.$tmpl_dim[0].”/1.75 + 10,

”.$ tmpl_dim[1].”/1.05 - 10 “.$author.”\"

// draw back cover comments

–pointsize 10

–fill white

-font arial

–draw \"text 50,50 “.$comments.”\"

my_cover”.strip_tags(SID).”.jpg”;

exec($CMD);

In the above piece of code, there are five –draw options used with a convert utility.
As you see each -draw option places a cover element (that is text or image) in a
specific location on the template file (current_template.jpg).

The question is how do we figure out the location of each element?

You saw that at the beginning of this code a function named get_dim() is used
to compute template dimensions. That function outputs the width and height of a
template in an array.

So by knowing the template image size, we can use a bunch of formulas to compute
the location of each cover element. In this way even if a new size for original
template is defined (in the Template Settings page), all the cover elements including
text, logos, and images will be relocated automatically.

For example, if the template image is a 1000x600 file, then the location for writing the
book title will be figured out as shown below.

The code formula:

–draw \"text “.$tmpl_dim[0].”/1.75 + 10,

”.$ tmpl_dim[1].”/1.3 - 10 “.$title.”\"

We have:

$tmpl_dim[0] = 1000

$tmpl_dim[1] = 600

So the code will be converted to:

–draw \"text 581,451 “.$title.”\"

Chapter 10

[197]

This means that the book title will be written around the (581,451) location on the
template file.

As mentioned before, these computations are based on the Packt
Publishing cover template. For your own covers you have to
redefine all formulas based on your needs.

Finally, the created cover will be shown to the user:

<!-- creating the page -->

 <html>

<head>

<title>Cover Creator</title>

<meta http-equiv=Content-Type content=text/html; charset=windows-1256>

<META content=MSHTML 6.00.2900.2802 name=GENERATOR>

</head>

<body bgcolor=#ffffff >

Book Cover Wizard

<strong S A M P L E C O V E R

<hr>

<table width=800 cellpadding=0 cellspacing=0>

<tr align=center>

<td align=center valign=middle>

Sample Cover

<img src= my_cover”.strip_tags(SID).”.jpg

border=0 align =absmiddle>

</td>

</tr>

</table>

Exciting E-Card Designs

[198]

Fig 10-16: Creating and Showing the Cover Page

Summary
In this chapter we've generated some exciting images, and seen some very powerful
techniques for creating web graphics. I hope it's given you lots of ideas for your own
projects. We saw how to map text onto different 3D objects, so that the text really
appears to be part of the image.

We've covered a lot of ground in this ImageMagick book. I hope it was as much fun
to read as it was to write. Happy Manipulations!

Install New Fonts In
ImageMagick

Why Don't Some Fonts Work Correctly?
There are many samples and workshops in this book (especially in Chapter 4) that
need special fonts for writing text on images. You may notice that these samples
don’t work correctly on your system and although the expected image processing
task is approved and the text is shown on the image, the font is not what you want
and a simple default font is displayed instead.

In this appendix you will learn how to add new fonts to ImageMagick and activate
them for your usage.

How to Identify the Current Installed
Fonts
Sometimes the font that you specify in your command-line code has been already
installed but it is important to call it using the correct name.

If you don’t know the correct name for a particular font, use the identify utility to
see the list of installed fonts and their names:

identify –list type

Install New Fonts In ImageMagick

[200]

Here is the sample output for Windows users:

Path: C:\Program Files\ImageMagick-6.2.5-Q16\type-ghostscript.xml

Name Family Style Stretch Weight

AvantGarde-Book AvantGarde Normal Normal 400

AvantGarde-BookOblique AvantGarde Oblique Normal 400

AvantGarde-Demi AvantGarde Normal Normal 600

AvantGarde-DemiOblique AvantGarde Oblique Normal 600

Bookman-Demi Bookman Normal Normal 600

Bookman-DemiItalic Bookman Italic Normal 600

Bookman-Light Bookman Normal Normal 300

Bookman-LightItalic Bookman Italic Normal 300

Courier Courier Normal Normal 400

Courier-Bold Courier Normal Normal 700

Courier-BoldOblique Courier Oblique Normal 700

Courier-Oblique Courier Oblique Normal 400

Helvetica Helvetica Normal Normal 400

Helvetica-Bold Helvetica Normal Normal 700

Helvetica-BoldOblique Helvetica Italic Normal 700

Helvetica-Narrow Helvetica Narrow Normal Condensed 400

Helvetica-Narrow-Bold Helvetica Narrow Normal Condensed 700

Helvetica-Narrow-BoldOblique Helvetica Narrow Oblique Condensed 700

Helvetica-Narrow-Oblique Helvetica Narrow Oblique Condensed 400

Helvetica-Oblique Helvetica Italic Normal 400

NewCenturySchlbk-Bold New CenturySchlbk Normal Normal 700

NewCenturySchlbk-BoldItalic NewCenturySchlbk Italic Normal 700

NewCenturySchlbk-Italic wCenturySchlbk Italic Normal 400

NewCenturySchlbk-Roman NewCenturySchlbk Normal Normal 400

Palatino-Bold Palatino Normal Normal 700

Palatino-BoldItalic Palatino Italic Normal 700

Palatino-Italic Palatino Italic Normal 400

Palatino-Roman Palatino Normal Normal 400

Times-Bold Times Normal Normal 700

Times-BoldItalic Times Italic Normal 700

Times-Italic Times Italic Normal 400

Times-Roman Times Normal Normal 400

As you can see, in the first part of this command output the default fonts, which
are defined during the ImageMagick installation, are listed. We will see how to

Appendix A

[201]

change this font definition by referring to the type-ghostscript.xml file and
editing its contents.

The second part of this command lists the fonts that have been previously installed
on your platform. For example, if you are using Windows then your output will look
like this:

Path: Windows Fonts

Name Family Style Stretch Weight

02.10-fenotype 02.10 fenotype Normal Normal 400

02.10ital-fenotype 02.10ital fenotype Normal Normal 400

1942-report 1942 report Normal Normal 400

3D-Noise 3D Noise Normal Normal 400

4YEOmonstrum 4YEOmonstrum Normal Normal 400

7inch-Regular 7inch Normal Normal 400

7inch-Rounded 7inch Rounded Normal Normal 400

[.atari-kids.] [.atari-kids.] Normal Normal 400

A.C.M.E.-Secret-Agent A.C.M.E. Secret Agent Normal Normal 400

A.M.P. A.M.P. Normal Normal 400

Abaddon™ Abaddon™ Normal Normal 400

Abduction2002 Abduction2002 Normal Normal 400

AddShade AddShade Normal Normal 400

Aharoni-Bold Aharoni Normal Normal 700

Airstream Airstream Normal Normal 400

Alfredo's-Dance Alfredo's Dance Normal Normal 400

Alien-Encounters Alien Encounters Normal Normal 400

Alien-Encounters-Bold Alien Encounters Normal Normal 700

Alien-Encounters-Bold-Italic Alien Encounters Italic Normal 700

Alien-Encounters-Italic Alien Encounters Italic Normal 400

Alpine-7558M Alpine 7558M Normal Normal 400

Amped-For-Evil Amped For Evil Normal Normal 400

Andalus Andalus Normal Normal 400

Angel-Normal Angel Normal Normal 400

Anger-is-a-gift Anger is a gift Normal Normal 400

Anglo-Text Anglo Text Normal Normal 400

Angsana-New Angsana New Normal Normal 400

Angsana-New-Bold Angsana New Normal Normal 700

Angsana-New-Italic Angsana New Italic Normal 400

AngsanaUPC AngsanaUPC Normal Normal 400

Install New Fonts In ImageMagick

[202]

AngsanaUPC-Bold AngsanaUPC Normal Normal 700

Argor-Flahm-Scaqh Argor Flahm Scaqh Normal Normal 400

YoungStar YoungStar Normal Normal 400

Zebraesq Zebraesq Normal Normal 400

Zebrra Zebrra Normal Normal 400

Zenda Zenda Normal Normal 400

ZendaEmbossed ZendaEmbossed Normal Normal 400

Zippo Zippo Normal Normal 400

Zoetrope--BRK- Zoetrope -BRK- Normal Normal 400

As you can see, in the first column is the font name that you can use in your
command. The second column represents the font family that particular font belongs
to. For example, Angsana-New, Angsana-New-Bold, and Angsana-New-Italic
belong to the Angsana New font family.

Don’t use a family name as a font name in your commands or
ImageMagick will use the default font.

The third, fourth, and fifth columns are some descriptive information about font
style, stretch, and size.

You need to replace every space between words of a font name
with a – character. For example, the font anglo text should be
referred as anglo-text in ImageMagick:

convert –size 100x100 xc:none –font anglo-text
–pointsize 20 –draw “text 20,50 ‘hello’” hi.jpg

Where to Find Fonts and Other Free
Resources
ImageMagick is an image processing package. This means that it can handle various
image elements like fonts and still images as well as animated images. Hence,
ImageMagick users who decide to create amazing art works need to have a good
archive of these elements.

The following tables briefly list some of the websites where you can find free
resources like fonts, photos, and animated GIFs on the Internet.

Appendix A

[203]

Free Fonts
Website URL
1001 Free Fonts http://www.1001freefonts.com

Free fonts http://www.free-fonts.com

Font Freak http://www.fontfreak.com

Acid Fonts http://www.acidfonts.com

DaFont http://www.dafont.com

CoolArchive http://www.coolarchive.com

Larabie Fonts http://www.larabiefonts.com

FontFile http://www.fontfile.com

Simplythebest http://www.simplythebest.net/fonts/

AbstractFonts http://www.abstractfonts.com

Free Photos
Name URL
Stock.xchange http://www.sxc.hu/

Flickr http://flickr.com/

Buzz net http://www.buzznet.com/

PD Photo http://pdphoto.org/

Open Photo http://openphoto.net/

Our Media http://ourmedia.org/

Free Stock Photos http://freestockphotos.com/

ImageAfter http://imageafter.com/

Free Animations
Name URL
Animation Factory http://www.animationfactory.com

GIFAnimations http://www.gifanimations.com

Gifs http://www.gifs.net

Web Developer http://www.webdeveloper.com/

Animation Library http://www.animationlibrary.com

AnimatedGIF http://www.animatedgif.net

Feeble Minds http://www.feebleminds-gif.com

Best Animations http://www.bestanimations.com

Animation Station http://www.animation-station.com

Install New Fonts In ImageMagick

[204]

How to Define New Fonts for ImageMagick
For Windows users all the True Type fonts installed on the system can be accessed
by ImageMagick. As mentioned before you just need to know the right name of the
font or the font family.

But Linux users need to change some settings for activating new fonts. If you specify a
font in your command, ImageMagick searches it in the font configuration file, type.xml.

Here is the order in which the search is done:

$MAGICK_CONFIGURE_PATH

$MAGICK_HOME/lib/ImageMagick-6.2.4/config

$MAGICK_HOME/share/ImageMagick-6.2.4/config

$HOME/.magick/

<client path>/lib/ImageMagick-6.2.4/

<current directory>/

$MAGICK_FONT_PATH

Sometimes we need to add and install a new True Type font (TTF) on ImageMagick
if you are a Linux user. Here are the required steps for doing this.

Copy the TTF font file to your server in the font directory (and make sure it has read
and write permission).

Linux has a utility called ttf2pt1.exe, which converts a TTF font file to suitable font
files that can be used in the system. Use this utility as follows:

ttf2pt1 -e ARIAL.TTF arial

The output of this program is two files with .afm and .pfa extensions.

The arial.afm file is used for metrics (size, stretch, and so on) and arial.pfa is the
font itself that is used in Linux.

In the next step copy the .pfa and .afm files to the Ghostscript font directories. First
we need to find the directory, so enter the following command to list the directories
where Ghostscript looks for fonts:

Gs –h

The output of that command may look like the following:

/usr/share/fonts/default/ghostscript/

Or:

usr/share/fonts/default/Type1/

Appendix A

[205]

Now refer to the Type-Ghostscript.xml file and add a new entry to it for the new
font files. For editing this file you can use the pico utility. As you can see, after the
heading part in this file there are some <type> tags, using which new fonts can
be defined.

Here is an example :

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE typemap [

 <!ELEMENT typemap (type+)>

 <!ELEMENT type (#PCDATA)>

 <!ELEMENT include (#PCDATA)>

 <!ATTLIST type name CDATA #REQUIRED>

 <!ATTLIST type fullname CDATA #IMPLIED>

 <!ATTLIST type family CDATA #IMPLIED>

 <!ATTLIST type foundry CDATA #IMPLIED>

 <!ATTLIST type weight CDATA #IMPLIED>

 <!ATTLIST type style CDATA #IMPLIED>

 <!ATTLIST type stretch CDATA #IMPLIED>

 <!ATTLIST type format CDATA #IMPLIED>

 <!ATTLIST type metrics CDATA #IMPLIED>

 <!ATTLIST type glyphs CDATA #REQUIRED>

 <!ATTLIST type version CDATA #IMPLIED>

 <!ATTLIST include file CDATA #REQUIRED>

]>

<typemap>

 <type

 name="AvantGarde-Book"

 fullname="AvantGarde Book"

 family="AvantGarde"

 foundry="URW"

 weight="400"

 style="normal"

 stretch="normal"

 format="type1"

 metrics="@ghostscript_font_path@a010013l.afm"

 glyphs="@ghostscript_font_path@a010013l.pfb"

 />

 <type

 name="AvantGarde-BookOblique"

Install New Fonts In ImageMagick

[206]

 fullname="AvantGarde Book Oblique"

 family="AvantGarde"

 foundry="URW"

 weight="400"

 style="oblique"

 stretch="normal"

 format="type1"

 metrics="@ghostscript_font_path@a010033l.afm"

 glyphs="@ghostscript_font_path@a010033l.pfb"

 />

 <type

 name="AvantGarde-Demi"

 fullname="AvantGarde DemiBold"

 family="AvantGarde"

 foundry="URW"

 weight="600"

 style="normal"

 stretch="normal"

 format="type1"

 metrics="@ghostscript_font_path@a010015l.afm"

 glyphs="@ghostscript_font_path@a010015l.pfb"

 />

...

</typemap>

The new font should be ready to use now. Try the following command and see if it
has been added to the ImageMagick default fonts:

identify –list type

Compression In ImageMagick

Compression versus Quality
In all the samples provided in this book we just follow a bunch of commands and set
some options in them without considering factors like size, quality, and compression.

In this appendix we will take a look at the options that ImageMagick has provided
for them and some hints about the best way to select an image format for our work
and compress it using a suitable algorithm.

The goal of image compression is reducing the size of an image so it can be saved
using less space and can be read faster especially when we are dealing with online
image processing tasks.

But it definitely has its costs. By compressing an image we reduce its quality. It is
up to you as a user to choose the right format and compression scheme to achieve a
good balance between quality and compression. Let us see what capabilities we can
find in ImageMagick for handling these issues.

ImageMagick Options for Compression
There are two main options for working on image size and quality. The –compress
option sets the compression algorithm that we are going to use on an image and for
setting the amount of the compression and the quality of the generated image we can
use the –quality option.

This is not as simple as mentioned here. In fact, there are some limitations on the
usage of these two options. Some formats cannot accept some types of compression
so we cannot use all of the -compress option parameters for all image formats.
Moreover, the –quality option works only on lossy compression algorithms.

Compression In ImageMagick

[208]

Before describing the parameters of these two options and for better understanding
of these options let’s study the compression types.

Lossy versus Lossless Compression
Algorithms
The image compression algorithms can be divided into two main groups. An
algorithm in which the original image data will remain unchanged after compression
and decompression phases is called a lossless algorithm. LZW and RLE are the most
famous types of lossless algorithms. These algorithms are mainly used on image
formats that contain a color palette like .gif, .png and so on

The main limitation in these formats is the number of colors. The colors in each
channel cannot exceed 256. So these formats are not suitable for saving true-color
images. Also for saving images with non-uniform adjacent pixels these formats are
not optimal.

In contrast for saving images with solid background or minimum number of colors
they considerably optimize the image size and displaying speed.

In the following figure you can compare several versions of two images, which are
saved in the .gif, .png, and .jpg formats.

Fig B-1: A Comparison between Lossy and Lossless Image Formats

Appendix B

[209]

In a lossy compression algorithm, due to the quality that we have specified for
compression, some of the image data will be omitted. This will produce more
compression and the resulting image will have a smaller size than with the lossless
methods. You may imagine that eliminating some image data will reduce the quality
and generate a poor noisy image. In fact although we lose some data from the
original image, due to the internal algorithm of lossy compressions the changed or
lost pixel color will not be noticeable.

In the following image you can see and compare two levels of quality for creating
.jpg images from a raw .bmp file. As you can see the changed pixels can be
recognized if we focus on them.

Fig B-2: A Comparison between Lossy Image Formats and Raw Data

Compression In ImageMagick

[210]

ImageMagick –compress and –quality
Options
Now let us see what capabilities ImageMagick offers for lossy and lossless
compression. Here is the -compress option:

–compress type

We can use one of the following parameters for type—None, BZip, Fax, Group4, JPEG,
JPEG2000, Lossless, LZW, RLE, or Zip.

The None parameter corresponds to the +compress option and will store the binary
image in an uncompressed format.

Other options correspond to the format that supports them. For example, when you
are dealing with a .gif file set the –compress option with the LZW parameter.
Or when you are dealing with the .tif or .jpg format the JPEG scheme is suitable.

Don’t worry about the right parameter for your image formats.
If you don’t use -compress option in your commands,
ImageMagick simply chooses the appropriate compression
scheme for it. That's why we skipped the –compress option in
our previous workshops.

The –quality option has the following format and is used mainly for the JPEG
family compression type:

–quality value

For the value we can place numbers between 0 (poor quality) and 10 (high quality).
If you don’t use the –quality option in your commands then the quality of the input
image is used for processing or the value of 7.5 is used.

Beside formats like .jpg and .mpg this option can set the quality for the .miff and
.png image formats too.

For .png files with a transparency channel, we have to define
two quality values. Besides image data quality, the quality for
the alpha channel is needed and can be specified as follows:

–quality xxxyyy

In this command xxx and yyy are numbers between 0 and 100.
The xxx will refer to the quality of the alpha channel and yyy
will be used for quality of the image data itself.

A
alpha concept, 65
animate utility, ImageMagick

about, 105
animation display, settings 106
options, 105

syntax, 105
animation

free resources 203
animation, creating See also Complex
animation, creating

about 107
animated artistic effects, workshop 111-113
animated GIFs creating, options 107
animated logo, workshop 109-111
-annotate option 108
-deconstruct option 113
-dispose background option 112
-dispose previous option 110
-loop0 option 108
-page option 108
simple type effects, workshop 108, 109

animation, ImageMagick feature 8
artistic options

about 52
-box option 53
filters-applying on an image,
workshop 52, 53
-preview option 53
-preview option-charcoal effect 55
-preview option-implode effect 55

B
background, ImageMagick feature 8
book cover generator page

about 185
change configuration link 189, 191
computing template dimensions 194
convert utility used 195
cover displaying 197
form for getting book information 186, 188
generated cover display 192, 194
predefined template configuration 188
sample book cover 186
template configuration page 192
uploading image for cover 194
user data arranged 192, 194
variable, initializing 194

book cover wizard 197
building a confirmation code box, workshop

$CMD variable 142, 143
about 138
chr function 138, 139
creating random strings, code 140
rand function 138
random string generator 138

C
carving technique, e-cards

about 181
image choosing 181
image displaying 183
working 182

Index

[212]

color correction, ImageMagick feature 8
color representation, 36
command line utilities, calling

PHP used 133
compare utility, ImageMagick

about 130
image comparison 131
-metric option 131

complex animation, creating See also
animation, creating

about 114
+adjoin option 114
-adjoin option 114
animation into frames, splitting 114
coalesce option 117
multi animation files, workshop 115-118
+repage option 117

composite, ImageMagick feature 8
composite utility, ImageMagick

3D button, workshop 69, 71, 72
about 61
-channel matte option 66
colorful logo, workshop 66, 67
-displace option 73
fresh candy, workshop 72, 73, 74
mask image 65
-negate option 66
options 61
parameters 68
-sample option 66
syntax, 61
valid parameters 61

Configure command
about 26
help options 23

Configure script 26
conjure utility, ImageMagick

about 119
functionality 119
image conversion 121
image twisting 122
options 122, 123
syntax 120

convert and mogrify utilities, difference 55
convert utility, ImageMagick

drawing shapes 30
-draw option 30

-fill option 32
format conversion 30
logo creating, workshop 31, 32, 33
-size option 30
syntax, 29
options 29

cookie 136
core utilities, ImageMagick

about 8
animate 9, 105
compare 130
composite 9, 61
conjure 10, 119
convert 8, 29
display 8, 96
identify 10, 89
import 9, 101
mogrify 9, 55
montage 9, 61

D
display utility, ImageMagick

about 96
Display examples, workshop 99, 101
-debug option 100
options 97
syntax 97

Duff-Porter composite methods 68, 69

E
e-cards

$settings 161
creating 148
else clause in form 168, 170
final image 171, 173
form display using echo commands 166
generating, 170
if clause in form 166
image displaying 167
image generating 170
images, receiving from URLs 155, 156
image selection 152
image sources 148
image with text, generating 162, 164, 166
input tags 170

[213]

page content for selected image 153
resource page, creating 148
sample web page 150
text, writing on images 160, 161
uploading images to server 157, 158, 160
web form, getting input text from user
154, 155
website page, structure 150

e-cards, special effects
carving technique 181
convert utility used 178
curved text,creating 180
graphical letters with colored background,
generating 175, 177, 178
image display 178
mogrify utility used 177
text, writing on curved surface 179, 181

e-cards wizard 168, 174
exec function, PHP

about 134
format 134
ImageMagick utility calling 134
output parameter 134
usage 161

external executable files, calling
PHP used 133

F
file management, ImageMagick feature 8
fonts

defining new fonts for ImageMagick 204
free resources 202
identifying installed fonts 199, 201, 202
installing new TTF font 204, 206

format conversion, ImageMagick feature 8
free resources, ImageMagick

animations 203
fonts 202
photos 203

I
identify utility, ImageMagick

about 89
identifying installed fonts 199
-list option 89

options 90
syntax 90
-verbose option 93

iframe 150
image

-format option, information retrieval 94
-ping option 91, 92
-verbose option, image retrieval 93
compression 207
compression versus quality 207
e-cards generating, 170
handling 150
information, extracting 91
information retrieval 91, 92, 94

image compression
about 207
-compress option 207
lossless algorithm 208
lossy algorithm 209
-quality option 207
image cropping
-crop option 46
-gravity option 46
overview 46
-repage option 46
-size option 46

image cutting
-shave option 47

image deformations,
image distortion, workshop 39, 40
-implode option 37
overview 37
-region option 38, 39
roundrectangle parameter 37
-swirl option 37
-wave option 38

image handling 150
image identification, ImageMagick feature 8
ImageMagick

API 10
about 5
advantages over other image processing

tools 5, 6
+compress option 210
-compress option 210
defining new fonts 204

[214]

downloading 13
format character strings 78
identifying installed fonts 199, 201, 202
installing new TTF font 204, 206
interfaces 10
interfaces and tools 7
-list option 95
-quality option 210

ImageMagick, bugs and errors
configuration failures 26
handling bugs and errors 26

ImageMagick and X11 11
ImageMagick calling

web page used 133
ImageMagick compiling

Macintosh platform 25
VMS platform 25
Windows platform 26

ImageMagick features
about 7
animation 8
background 8
color correction 8
composite 8
file management 8
format conversion 8
image identification 8
montage 8
multifunctioning 8
special effects 8
text and comments 8
thumbnail and frame 8
transformations 8
transparency 8

ImageMagick installing
Binary installers used, platform dependent
14, 16
installtion program categories 16
requirements 14
source files used 16

ImageMagick installing, Binaries used
about 17
program installation, verifying 18
UNIX like Binary release 17
UNIX like Binary release, settings 17

Windows Binary release 18, 19, 21
ImageMagick installing, source used

about 21
UNIX like source 22-24, 26

image resizing
-filter option 44
overview 44
-resize option 44
resize parameters 44
-sample option 45
-size option 45

images
free resources 203
receiving from URLs 155
uploading to server 157

image skewing
-flip option 50
-flop option 50
-shear option 48
the flag, workshop 48-51

import utility, ImageMagick
about 101
Import examples, workshop 103
options 101
syntax 101

input text size
-caption option 184
-pointsize option 184
-size option 184

K
key-value, MSL files 123

L
lossless algorithm

about 208
LZW algorithm 208
RLE algorithm 208

lossy algorithm, 209
lossy algorithm and lossless algorithm,
comparison 208, 209
lossy image and raw data, comparison 209

[215]

M
Magick Scripting Language. See MSL
Make command 24
Makefiles

about 22
creating, GNU configure used 22, 23

mask image
about 65
creating 66

matte channel
about 64
-channel option 65
+matte option 65
-matte option 65
-separate option 65

mogrify utility, ImageMagick
border command-syntax 58
label command 59
Mogrify command 60
options 55
syntax, 55
the card, workshop 56, 57, 58, 59

montage, ImageMagick feature 8
montage utility, ImageMagick

about 61, 75
-background option 82
-bordercolor option 81
-compose option 83
creating indexed image web page, work-

shop 87, 88
-frame option 81
-geometry option 84
-matte option 81
-mode option 86, 87
Montage adornment options, workshop
81, 83
Montage arrangement options, workshop
84-86
Montage descriptive options, workshop
77, 78, 80
-null option 86
options 75
popular options 77
-shadow option 81

syntax, 75
-texture option 82
-tile option 85
-title option 80
valid parameters 75, 77

MSL
about 119
key-value pairs for MSL files 123
MSL files, key-value pairs 128
multiple MSL files used, Conjure calling 129

multifunctioning, ImageMagick feature 8

O
online image processing using ImageMagick

cookies used 136
steps 135

online image water marking, workshop
about 143
code explanation 145
placing water mark on an image 144, 145
-watermark option 144, 145

P
painting methods, ImageMagick

about 33
bordercolor parameter 35
color filling with -draw option, workshop
33, 35, 36
-draw option 34
font parameter 34
fuzz parameter 35
point parameter 34
reset parameter 36
stroke parameter 34

PHP functions
exec 134
running executable files 133
session_start 136
system 133

R
rows and columns, inserting and deleting

-chop option 48
-splice option 47, 48

[216]

S
screen capturing, ImageMagick feature 7
session activating

for users, 162
for visitors 136

special effects, ImageMagick feature 8

T
technologies, implementing digital image
artwork 147
text and comments, ImageMagick feature 8
thumbnail and frame, ImageMagick feature 8
transformations, ImageMagick. See also

image cropping; See also image resizing
about 40

-gravity option 42
image parameter-draw option 43
-radial blur option 43
-rotate option 40
rotating text, workshop 40, 42, 44

transformations, ImageMagick feature 8
transparency, ImageMagick feature 8

U
Using Multiple MSL Files in One Conjure
Calling, workshop 129, 130

X
X11 11
X Window System 11

	Cover
	Table of Contents
	Preface
	Chapter 1: Introduction
	ImageMagick Features
	ImageMagick’s Core Utilities
	Display
	Convert
	Import
	Animate
	Composite
	Montage
	Mogrify
	Conjure
	Identify
	Interfaces
	ImageMagick and X11 standard

	Summary

	Chapter 2: Installation and Configuration
	Where to get ImageMagick
	What are the Installation Requirements?
	Installation
	Binary Installers
	Source files

	How to Install ImageMagick from Binaries
	How to Install from UNIX-like Binary Releases
	How to Verify the Program Installation

	How to Install from a Windows Binary Release

	How to Install ImageMagick from Source
	Installing from a UNIX-like Source
	What are Makefiles?
	How to use GNU Configure for Creating Makefiles
	Configure Command in Action
	How to Use the Make Command for LINUX
	How to Build ImageMagick for the VMS Platform
	How to Build ImageMagick for the Macintosh Platform
	How to Build ImageMagick for the Windows Platform

	How to Handle Bugs and Errors
	Dealing with Configuration Failures

	Summary

	Chapter 3: Convert & Mogrify
	Convert Syntax and Options
	How to Draw Basic Shapes with Convert
	Workshop I: Creating a Simple Logo

	Painting Methods
	Workshop II: Color Filling with –draw

	Deformations
	Workshop III: Image Distortion

	Basic Transformations
	How to Rotate Drawings in ImageMagick
	Workshop IV: Rotating Text
	How to Resize Drawings in ImageMagick
	How to Crop Images using ImageMagick
	The –shave Option
	Inserting and Deleting Rows and Columns in Images
	Skewing Images
	Workshop V: The Flag

	Artistic Options
	Workshop VI: Applying Various Filters on an Image

	Mogrify Syntax and Options
	Workshop VII: The Card

	Summary

	Chapter 4: Composite & Montage
	Composite
	Composite Syntax and Options
	What is the Mask?
	Workshop I: Colorful Logo
	Composite Parameters
	Workshop II: 3D Button
	Workshop III: Fresh Candy

	Montage
	Montage Syntax and Options
	Workshop IV: The Montage Descriptive Options
	Workshop V: The Montage Adornment Options
	Workshop VI: The Montage Arrangement Options
	Workshop VII: Creating an Indexed Image Web Page

	Summary	

	Chapter 5: Identify, Display & Import
	Identify
	Identify Syntax and Options
	How to Extract Information from an Image
	How to get Brief Information from Images
	How to get Detailed Information from Images
	How to get Customized Information from Images
	How to Get Information about ImageMagick

	Display
	Display Syntax and Options
	Workshop I: Looking at Some Display Examples

	Import
	Import Syntax and Options
	Workshop II: Looking at Some Import Examples

	Summary

	Chapter 6: Animation
	Animate Syntax and Options
	How to Display an Animation
	How to Create an Animation
	Workshop I: Simple Type Effect
	Workshop II: Animated Logo
	Workshop III: Animated Artistic Effects

	How to make Complex Animations
	How to Split an Animation into Frames
	Workshop IV: Multi Animation Files

	Summary

	Chapter 7: Conjure
	Conjure Syntax and Options
	What are the Valid Key-Value Pairs for MSL files?
	Workshop I: Using Multiple MSL Files in One Conjure Call
	Compare
	How to Compare Two Images

	Summary

	Chapter 8: Practical Web Projects
	How to call ImageMagick Command-line Utilities within PHP code
	How to Save the Result of an Online Image Processing Task
	How to Start Sessions for our Visitors
	Workshop I: Building a Confirmation-Code Box
	Workshop II: Online Image Water Marking
	Summary

	Chapter 9: An E-Card Application
	Wizard Step 1: How to Receive Images
	How to Receive Images from URLs
	How to Upload Images

	Wizard Step 2: How to Write Text on Input Images
	How to show Image, Image Size, and the Required Fields for Writing Text

	Wizard Step 3: Final Image
	Summary

	Chapter 10: Exciting E-Card Designs
	E-card A: Simple Letters
	E-card B: Write on Curved Surfaces
	E-card C: Carving Technique
	How to Make Input Text more Flexible
	Creating a Parameterized Book Cover Generator Page
	Summary

	Appendix A: Install New Fonts InImageMagick
	Why Don’t Some Fonts Work Correctly?
	How to Identify the Current Installed Fonts
	Where to Find Fonts and Other Free Resources
	Free Fonts
	Free Photos
	Free Animations

	How to Define New Fonts for ImageMagick

	Appendix B: Compression In ImageMagick
	Compression versus Quality
	ImageMagick Options for Compression
	Lossy versus Lossless Compression Algorithms
	ImageMagick –compress and –quality Options

	Index

