

SQL ServerTM 2000
Stored Procedure

& XML Programming
Second Edition

Dejan Šunderic

McGraw-Hill/Osborne

New York Chicago San Francisco

Lisbon London Madrid Mexico City Milan

New Delhi San Juan Seoul Singapore Sydney Toronto

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /
Blind Folio i

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

McGraw-Hill/Osborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact

McGraw-Hill/Osborne at the above address. For information on translations or book distributors

outside the U.S.A., please see the International Contact Information page immediately following the

index of this book.

SQL Server™ 2000 Stored Procedure & XML Programming, Second Edition

Copyright © 2003 by The McGraw-Hill Companies. All rights reserved. Printed in the United States

of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be

reproduced or distributed in any form or by any means, or stored in a database or retrieval system,

without the prior written permission of publisher, with the exception that the program listings may be

entered, stored, and executed in a computer system, but they may not be reproduced for publication.

1234567890 CUS CUS 019876543

ISBN 0-07-222896-2

Publisher Brandon A. Nordin

Vice President & Associate Publisher Scott Rogers

Acquisitions Editor Lisa McClain

Project Editor Janet Walden

Acquisitions Coordinator Athena Honore

Technical Editor Deborah Bechtold

Development Editor Tom Woodhead

Copy Editor William McManus

Proofreader Laurie Stewart

Indexer Valerie Robbins

Computer Designers Carie Abrew, Tara A. Davis, Lucie Ericksen

Illustrators Lyssa Wald, Melinda Moore Lytle, Kathleen Fay Edwards

Series Designer Peter F. Hancik

Cover Series Designer Pattie Lee

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable. However, because of the possibility

of human or mechanical error by our sources, McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the

accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained

from the use of such information.

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /
Blind Folio ii

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Writing a book isn’t easy, but living with someone

who is writing a book can be, at times, even harder.

I would like to thank my family for their patience,

understanding, and inspiration.

Acknowledgments
I wish to thank all the people who helped to make this book a reality,

in particular:

� Tom Woodhead, for straightening the winding course of my writings.

� Olga Baranova, who created several examples for Chapters 10, 11, and 15.

� Wendy Rinaldi and Lisa McClain, for the opportunity to do this project.

� Athena Honore and Janet Walden, for their patience, expertise, and

hard work.

� Deborah Bechtold, for her expertise and hard work beyond the call of duty.

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /
Blind Folio iii

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 1:15:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

About the Author
Dejan Šunderic is the principal consultant at Trigon Blue, Inc. (www.trigonblue.com).

He specializes in database and application development for Internet and

Windows platforms.

Projects that he has been involved with cover B2C and B2B e-commerce, financial,

document-management, mortgage, asset management, insurance, real-estate, IT

supply chain, process control, communication, data warehouse, and OLAP systems.

Dejan has worked as a database architect, database and application developer, database

administrator, team leader, project manager, writer, and technical trainer.

He is the author of SQL Server 2000 Stored Procedure Programming (www

.trigonblue.com/stored_procedure.htm), coauthor of Windows 2000 Performance

Tuning and Optimization, and three other books, as well as numerous technical

articles for several computer and professional publications.

His career started in Belgrade, Yugoslavia where he graduated on Faculty of

Electrical Engineering. In 1995 he moved to Toronto, Canada and he is currently

in Pittsburgh, U.S.A. He holds certifications for Microsoft Certified Solution

Developer (MCSD), Microsoft Certified Database Administrator (MCDBA), and

Certified SQL Server Programmer Master Level. Dejan is a member of Toronto

SQL Server User Group (www.tssug.com), Visual Basic Developer’s Online

Group (www.visualbyte.com/vbdogs), Pittsburgh SQL Server User Group

(www.pssug.com), and Professional Association for SQL Server (www.sqlpass.org).

Dejan can be contacted by email (dejan’s username on hotmail.com server; to

avoid spam filter, put sp_book in the subject) or the book’s web site (www

.trigonblue.com/sqlxml).

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /
Blind Folio iv

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Contents at a Glance

Chapter 1 Introduction . 1

Chapter 2 The SQL Server Environment . 19

Chapter 3 Stored Procedure Design Concepts . 53

Chapter 4 Basic Transact-SQL Programming Constructs 85

Chapter 5 Functions . 131

Chapter 6 Composite Transact-SQL Constructs: Batches,
Scripts, and Transactions . 169

Chapter 7 Debugging and Error Handling . 207

Chapter 8 Special Types of Procedures . 259

Chapter 9 Advanced Stored Procedure Programming 341

Chapter 10 Interaction with the SQL Server Environment 389

Chapter 11 Source Code Management and Database Deployment 437

Chapter 12 Stored Procedures for Web Search Engines 467

Chapter 13 Introduction to XML for Database Developers 489

Chapter 14 Publishing Information Using SQLXML . 527

Chapter 15 Modifying Databases Using SQLXML . 605

Appendix T-SQL and XML Data Types in SQL Server 2000 659

Index . 669

v

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /
Blind Folio vi

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Contents

Chapter 1 Introduction . 1
Who Should Read This Book . 3
What You Will Find in This Book . 3
Requirements . 5

Stored Procedure Programming Requirements 5
XML Programming Requirements . 6

Sample Database and Other Resources . 6
Sample Database Installation . 7
Purpose and Design of the Sample Database . 9
Database Diagram . 10

Chapter 2 The SQL Server Environment . 19
SQL Server 2000 Tools . 20

Service Manager . 21
Query Analyzer . 22
Enterprise Manager . 24
DTS and Import/Export Data . 26
osql and isql . 27
SQL Server Profiler . 27
Client Network Utility . 28
Server Network Utility . 29
The Help Subsystem and SQL Server Books Online 29
SQL Server on the Web . 30

Basic Operations with Stored Procedures . 31
What Are Stored Procedures? . 31
Execution of Stored Procedures from Query Analyzer 32
Managing Stored Procedures from Enterprise Manager 36

vii

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Editing Stored Procedures in Enterprise Manager 41
Editing Stored Procedures in Query Analyzer . 41
Syntax Errors . 43

Naming Conventions . 44
Why Bother? . 45
Naming Objects and Variables . 46
Suggested Convention . 49

Chapter 3 Stored Procedure Design Concepts . 53
Anatomy of a Stored Procedure . 54

Composition . 54
Functionality . 57
Syntax . 64

Types of Stored Procedures . 65
Compilation . 67

The Compilation and Execution Process . 67
Reuse of Execution Plans . 68
Recompiling Stored Procedures . 71
Storing Stored Procedures . 72

Managing Stored Procedures . 74
Listing Stored Procedures . 75
Viewing Code of Stored Procedures . 77
Renaming Stored Procedures . 79
Deleting Stored Procedures . 79
Listing Dependent and Depending Objects . 80

The Role of Stored Procedures in the Development of Database Applications 82
Enforcement of Data Integrity . 82
Consistent Implementation of Complex Business Rules and Constraints 83
Modular Design . 83
Maintainability . 83
Reduced Network Traffic . 84
Faster Execution . 84
Enforcement of Security . 84

Chapter 4 Basic Transact-SQL Programming Constructs 85
T-SQL Identifiers . 86
Database Object Qualifiers . 88

v i i i S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Data Types . 89
Character Strings . 89
Unicode Character Strings . 90
Date and Time Data Types . 91
Integer Numbers . 92
Approximate Numbers . 93
Exact Numbers . 94
Monetary Data Types . 94
Binary Data Types . 95
Special Data Types . 95

Variables . 99
Local Variables . 99
Global Variables . 103
Table Variables . 106

Flow-Control Statements . 107
Comments . 108
Statement Blocks: Begin…End . 111
Conditional Execution: The If Statement . 112
Looping: The While Statement . 117
Unconditional Execution: The GoTo Statement . 119
Scheduled Execution: The WaitFor Statement . 121

Cursors . 121
Transact-SQL Cursors . 122
Cursor-Related Statements and Functions . 126
Problems with Cursors . 127
The Justified Uses of Cursors . 128

Chapter 5 Functions . 131
Using Functions . 132

In Selection and Assignment . 132
As Part of the Selection Criteria . 133
In Expressions . 133
As Check and Default Constraints . 134
Instead of Tables . 134

Types of Functions . 135
Scalar Functions . 136
Aggregate Functions . 164
Rowset Functions . 165

C o n t e n t s i x

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 6 Composite Transact-SQL Constructs: Batches,
Scripts, and Transactions . 169
Batches . 170

Using Batches . 172
Batches and Errors . 172
DDL Batches . 176
Self-Sufficient Content . 176

Scripts . 179
Database Scripting . 180

Transactions . 182
Autocommit Transactions . 183
Explicit Transactions . 184
Implicit Transactions . 186
Transaction Processing Architecture . 186
Nested Transactions . 188
Named Transactions . 192
Savepoints . 193
Locking . 196
Distributed Transactions . 200
Typical Locking Problems . 203

Chapter 7 Debugging and Error Handling . 207
Debugging . 208

What Is a “Bug”? . 208
The Debugging Process . 209
Debugging Tools and Techniques . 212
SQL Profiler . 227
Typical Errors . 231

Error Handling . 235
Raiserror . 236
Using Error Handling . 238
Why Bother? . 238
Tactics of Error Handling . 239
A Coherent Error Handling Methodology . 243
Xact_Abort . 248
Another Coherent Error Handling Methodology 252

x S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 8 Special Types of Procedures . 259
Types of Stored Procedures . 260

User-Defined Stored Procedures . 260
System Stored Procedures . 260
Extended Stored Procedures . 262
Temporary Stored Procedures . 269
Global Temporary Stored Procedures . 270
Remote Stored Procedures . 271

User-Defined Functions . 271
Design of User-Defined Functions . 271
Table-Valued User-Defined Functions . 276
Inline Table-Valued User-Defined Functions . 279
Managing User-Defined Functions in Enterprise Manager 281

Triggers . 283
Physical Design of After Triggers . 284
Handling Changes on Multiple Records . 291
Nested and Recursive Triggers . 293
Trigger Restrictions . 293
Instead-of Triggers . 294
Triggers on Views . 296
Trigger Order of Execution . 298
Managing Triggers . 298
Trigger Design Recommendations . 302
Transaction Management in Triggers . 304
Using Triggers . 305

Views . 311
Design of Standard SQL Views . 311
Dynamic Views . 317
INFORMATION_SCHEMA Views . 317
Indexed Views . 318
Partitioned Views . 321
Using SQL Views . 336

Chapter 9 Advanced Stored Procedure Programming 341
Dynamically Constructed Queries . 342

Executing a String . 342

C o n t e n t s x i

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Query By Form . 344
Data Script Generator . 347
Using the sp_executesql Stored Procedure . 351
Security Implications . 353

Optimistic Locking Using timestamp Values . 356
timestamp . 357
TSEqual() Function . 359
timestamp Conversion . 361

Full-Text Search and Indexes . 363
Nested Stored Procedures . 365

Using Temporary Tables to Pass a Recordset to a Nested Stored Procedure 365
Using a Cursor to Pass a Recordset to a Nested Stored Procedure 368
How to Process the Result Set of a Stored Procedure 371

Using Identity Values . 378
A Standard Problem and Solution . 378
Identity Values and Triggers . 379
Last Identity Value in the Scope . 380

GUIDs . 381
A While Loop with Min() or Max() Functions . 383
Looping with sp_MSForEachTable and sp_MSForEachDb 385
Property Management . 386

Chapter 10 Interaction with the SQL Server Environment 389

Execution of OLE Automation/COM Objects . 390
Data Type Conversion . 393

Running Programs . 394
Running Windows Script Files . 395
Running/Looping Through DTS Packages . 395
Interacting with the NT Registry . 398

xp_regread . 398
xp_regwrite . 399

Jobs . 400
Administration of Jobs . 400
An Alternative to Job Scheduler . 404
Stored Procedures for Maintaining Jobs . 405
Operators and Alerts . 406

x i i S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL Server and the Web . 407
Web Assistant . 407
Web Task Stored Procedures . 411
Web Page Templates . 413

E-Mail . 415
Extended Stored Procedures for Working with E-Mail 416

Security . 419
Security Architecture . 419
Implementing Security . 422
Synchronization of Login and Usernames . 430
Managing Application Security Using Stored Procedures,

User-Defined Functions, and Views . 432
Managing Application Security Using a Proxy User 434
Managing Application Security Using Application Roles 436

Chapter 11 Source Code Management and Database Deployment 437
The Concept of Source Code Management . 438

Introduction to Microsoft Visual SourceSafe . 439
Administering the Visual SourceSafe Database 440
Adding Database Objects to Visual SourceSafe in Visual Studio .NET 440
Managing Create Scripts in Visual Studio .NET . 443
Visual SourceSafe Explorer . 446
Adding Database Objects to Visual SourceSafe: Traditional Approach 451

Database Deployment . 453
Deployment of a Complete Database: Traditional Approach 453
Deployment of Individual Objects . 455

Chapter 12 Stored Procedures for Web Search Engines 467
Characteristics of the Environment . 468
A Simple Solution... . 468
...and Its Disadvantages . 470
Available Solutions . 471

Result Splitting . 472
Quick Queries . 481
Advanced Queries . 486

C o n t e n t s x i i i

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13 Introduction to XML for Database Developers 489
XML (R)evolution . 490
Introduction to XML . 492

Introduction to Markup Languages . 492
Building Blocks of Markup Languages . 492
XML Elements and Attributes . 493
Processing Instructions . 494
Document Type Definition . 495
XML Comments and CDATA sections . 496
Character and Entity References . 497
XML Namespaces . 498
Structure of XML Documents . 499
XML Parsers and DOM . 500

XML Document Quality . 501
XML Schema and XML Schemas . 501
XML–Data Reduced (XDR) Schema . 502
XML Schema (XSD) . 507

Linking and Querying in XML . 518
XPointer . 519
XPath . 520

Transforming XML . 522
XSL . 523
XSLT . 524

Why XML? . 524
Exchange of Information Between Organizations 524
Information Publishing . 526

Chapter 14 Publishing Information Using SQLXML . 527
For XML Clause . 528

Auto Mode . 529
Aggregate Functions . 534
Computed Columns . 534
The Elements Option . 534
The XMLData Option . 535
The BINARY Base64 Option . 536
Raw Mode . 537
Explicit Mode . 538

x i v S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Publishing Database Information Using HTTP . 547
Configuring Database Access Through HTTP . 548
Accessing Database Information Using a URL . 552
Troubleshooting Virtual Directories . 554
Executing a Stored Procedure Through HTTP . 556
Accessing Database Information Using Templates 557
POSTing Queries to the Server . 567
XML Views Based on Annotated XDR Schemas . 571
XML Views Based on Annotated XSD Schemas . 582

Programmatic Database Access . 588
Retrieving XML Data Using SQLXML Managed Classes 588

Retrieving XML Data Using ADO.NET . 597
Using SqlCommand . 597
Using DataSet Objects . 598

Client-Side XML Processing . 599
Using URL Queries . 600
Using Templates . 600
Using SQLXML Managed Classes . 601
Processing of Queries with the For XML Clause 602

Chapter 15 Modifying Databases Using SQLXML . 605
OpenXML() . 606

Document Preparation . 606
Closing the Document . 607
Retrieving the XML Information . 608
Metaproperties in OpenXML() . 611
What if an XML Document Is Longer Than 8000 Characters? 613

UpdateGrams . 615
Executing UpdateGrams . 617
Element-centric vs. Attribute-centric UpdateGram 619
UpdateGrams with Parameters . 619
Setting Parameters to Null . 621
Returning Identifier Values . 622
Special Characters . 624
UpdateGrams Behind the Scene . 624
Optimistic Locking with UpdateGrams . 625
Multiple Records and Multiple Tables in a Single UpdateGram 627

C o n t e n t s x v

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DiffGrams . 628
Using DiffGrams to Insert Data . 629
Using DiffGrams to Update Data . 631
Using DiffGrams to Delete Data . 633
Processing Multiple Records Using DiffGrams . 634
DiffGrams Behind the Scene . 634
Executing DiffGrams Programmatically Using SqlXmlCommand 636
Executing DiffGrams Using URLs . 636
Generating DiffGrams After DataSet Change . 637
Debugging DiffGrams . 638

SQLXML BulkLoad . 639
Executing SQLXML BulkLoad from a .NET Application 639
Error Log File . 640
Executing BulkLoad from DTS (Using VBScript) 641
Schema Generation . 642
BulkLoad Transactions . 643
Data Integrity . 643
Table Lock . 644
Using SQLXML BulkLoad . 644
Mapping Schema . 644

XML Web Services . 647
SOAP Messages and XML Web Services Architecture 647
Using SQLXML to Create XML Web Services . 648
Creating .NET SOAP Clients . 650

Appendix T-SQL and XML Data Types in SQL Server 2000 659

Index . 669

x v i S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Front Matter

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

1
Introduction

1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
Who Should Read This Book

What You Will Find in This Book
Requirements

Sample Database and Other Resources

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Welcome to SQL Server 2000 Stored Procedure & XML Programming.

This book identifies and describes the key concepts, tips and techniques,

and best practices the professional developer needs to master in order to

take full advantage of stored procedures in the SQL Server development environment.

Microsoft SQL Server is the relational database management system (RDBMS)

of choice for a growing number of business organizations and professional database

and application developers. The reasons for this growing popularity are quite simple:

� Integration No other RDBMS integrates as fully and cleanly with applications

and integrated development environments (IDEs) designed to run on the ubiquitous

Microsoft Windows platform.

� Ease of use SQL Server provides Enterprise Manager and Query Analyzer to

allow DBAs to design, develop, deploy, and manage database solutions. These

interfaces automate repetitive tasks and provide simple ways to perform complex

operations. SQL Server integrates seamlessly with development tools such as

Visual Basic and Visual Interdev to allow developers to design and develop

client/server or Internet solutions rapidly.

� Flexibility You can use different features within SQL Server to achieve

similar results. (Of course, with flexibility comes choice, and choice means

that the developer is responsible for choosing the most appropriate means of

achieving an end. This book will help you make those choices.)

� Power SQL Server makes large amounts of data available to large numbers

of concurrent users while maintaining the security and integrity of the data. At

the time of this writing, SQL Server holds the record in TPC-C benchmark

tests for performance and price/performance (see www.tpc.org).

When I began working with SQL Server, reference materials relating to the

development and deployment of stored procedures were rare and not particularly

helpful. These materials described basic concepts, but the examples presented were

often trivial and not complex enough to be applied to real-world situations in which

aspects such as error handling, debugging, naming conventions, and interfaces to other

applications are critical. As the legions of application developers and development

DBAs migrate from Microsoft Access to SQL Server, and as SQL Server becomes

the leading database for mission-critical application development, the need for more

advanced work on SQL Server stored procedures becomes even more critical.

2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : I n t r o d u c t i o n 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

Who Should Read This Book
This book has been written to fill this gap, and thus it has been written with a wide

audience in mind. Ideally, it will be neither the first nor the last book you read on SQL

Server, but it may be the one you refer to and recommend the most. Above all, this book

has been written to help professional developers get the most out of SQL Server stored

procedures and SQLXML extensions and to produce quality work for their clients.

If you are an experienced SQL Server developer, you will find this book to be an

essential reference text full of tips and techniques to help you address the development

issues you encounter in the course of your day-to-day development activities.

If you have some experience with SQL Server development, but substantially more in

other programming environments such as Visual Basic, you will find this book useful as

a tool to orient yourself with the SQL Server environment and become proficient more

quickly with SQL Server stored procedure and SQLXML concepts and methods. You

will be able to incorporate effective, swift stored procedures into Visual Basic code and

SQLXML methods and queries into your client Windows or web applications.

If you are a novice SQL Server developer, the concepts, tips, and techniques you

will learn in reading this book and working through the exercises will help you attain

the knowledge, skills, and good habits that will help you become an accomplished

professional.

I hope that this book remains close to your workstation for a long time. Indeed, in the

course of this book’s useful life, you may in turn be all three of the users just described.

What You Will Find in This Book
Each chapter in this book (aside from the one you are reading, which is introductory

in nature) will provide conceptual grounding in a specific area of the SQL Server

development landscape. The first 12 chapters are dedicated to stored procedure

programming, and Chapters 13, 14, and 15 are focused on XML programming on

SQL Server 2000.

As you may have gathered, this chapter describes the content of this book, as well

as its intended audience, and describes a sample database that we will use throughout

the book to demonstrate stored procedure development.

Chapter 2, “The SQL Server Environment,” provides a 30,000-foot overview of

the Transact-SQL language, SQL Server tools, and stored procedure design.

Chapter 3, “Stored Procedure Design Concepts,” explores SQL Server stored

procedure design in greater detail, with particular attention paid to the different

types of stored procedures, their uses, and their functionality.

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

Chapter 4, “Basic Transact-SQL Programming Constructs,” describes Transact- SQL,

the ANSI SQL-92–compliant programming language used to write scripts in SQL

Server. This chapter summarizes data types, variables, flow control statements, and

cursors in the context of SQL Server 2000.

Chapter 5, “Functions,” describes the extensive set of built-in functions available

in SQL Server 2000 and how to use them in various common situations.

Chapter 6, “Composite Transact-SQL Constructs: Batches, Scripts, and Transactions,”

describes the various ways in which you can group Transact-SQL statements for

execution.

Chapter 7, “Debugging and Error Handling,” provides a coherent approach to the

identification and resolution of defects in code and a coherent strategy for handling

errors as they occur.

Chapter 8, “Special Types of Procedures,” describes user-defined, system, extended,

temporary, global temporary, and remote stored procedures as well as other types of

procedures in Transact-SQL, such as user-defined functions, table-valued user-defined

functions, After triggers, Instead-of triggers, standard SQL views, indexed views,

INFORMATION_SCHEMA views, and local and distributed partitioned views.

Chapter 9, “Advanced Stored Procedure Programming,” introduces some advanced

techniques for coding stored procedures, such as dynamically constructed queries,

optimistic locking using timestamps, and nested stored procedures.

Chapter 10, “Interaction with the SQL Server Environment,” focuses on the ways

in which you can use system and extended stored procedures to interact with the SQL

Server environment, and discusses the ways in which user-defined stored procedures

can help you leverage the existing functionality of various elements within the SQL

Server environment.

Chapter 11, “Source Code Management and Database Deployment,” demonstrates

how you can manage and deploy Transact-SQL source code from development to

the test and production environment. It explains and demonstrates two alternative

approaches—one using Visual Studio .NET and the other, more traditional, using

scripts developed in Transact-SQL and VBScript.

Chapter 12, “Stored Procedures for Web Search Engines,” presents an example of

how to use stored procedures in a web application that queries the database system.

Several optimization techniques are used to avoid typical design problems and improve

the performance.

Chapter 13, “Introduction to XML for Database Developers,” introduces XML as

the markup language for information exchange and publishing, and then focuses on

complementary features and technologies like DTDs, XML Schemas, and XPath as

they are used in SQL Server 2000.

Chapter 14, “Publishing Information Using SQLXML,” describes methods for

returning an XML stream instead of a recordset from SQL Server 2000.

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15, “Modifying Databases Using SQLXML,” describes several methods

for parsing XML and updating database tables.

The appendix, “T-SQL and XML Data Types in SQL Server 2000,” provides you

with tables that list data types in use in SQL Server 2000 and the way they map.

Requirements
To make full use of this book, you will need access to a server running one of the

following versions of SQL Server 2000 or SQL Server 2000 (64-bit):

� Enterprise Edition Supports all features and scales to enterprise level;

supports up to 32 CPUs and 64GB RAM

� Standard Edition Scales to the level of departmental or workgroup servers;

supports up to four CPUs and 2GB RAM

� Evaluation Edition Supports all features of Enterprise Edition; use is limited

to 120 days; available for download over the Web

Stored Procedure Programming Requirements
You can also perform most of the stored procedure programming–oriented activities

described in this book using a stand-alone PC with Windows 98, Windows 2000, or

Windows NT Workstation to run one of the following versions of Microsoft SQL

Server 2000:

� Personal Edition Designed for mobile or stand-alone users and applications;

does not support some advanced features, such as fail-over clustering, publishing

of transactional replications, OLAP Server, or Full Text Search; supports up to

two CPUs

� Developer Edition Licensed to be used only as a development and test

server, although it supports all features of Enterprise Edition

� Desktop Engine Distributable but stripped-down version that software

vendors can package and deploy with their systems; part of Microsoft Access

and Visual Studio; also known as MSDE; does not contain administrative tools

such as Enterprise Manager, Query Analyzer, and Books Online; does not

support advanced features such as Analysis Services and replication; database

size is limited to 2GB

C h a p t e r 1 : I n t r o d u c t i o n 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Although MSDE is compatible with all other versions of SQL Server 2000 and

thus makes an excellent development tool in a stand-alone environment, the absence

of administrative tools such as Enterprise Manager and Query Analyzer means that

some of the information you find in this book will not be usable right away. I recommend

that you obtain some other version (such as Developer Edition or Evaluation Edition),

or at least buy a Server/Per-Seat Client Access License (CAL) that will allow you to

use administrative tools against MSDE.

XML Programming Requirements
To explore and use XML programming features, you need to install and use:

� XML for SQL Server Web release (SQLXML) I recommend that you

download and install at least SQLXML 3.0, Service Pack 1.

� Microsoft SOAP Toolkit Download version 2, Service Pack 2 or newer.

� Microsoft XML Core Services (MSXML) Use version 4, Service Pack 1 or

newer. Earlier versions were called Microsoft XML Parser.

� Internet Information Services (IIS) Use version 5 or newer.

� Internet Explorer Use version 5 or newer.

Sample Database and Other Resources
You may have noticed that this book does not include a CD. SQL Server development

is a dynamic field, as you will see if you compare the first and second editions of this

book. Rather than increase the cost of the book by adding a CD, which would be out

of date almost before it hits the bookstore, the publisher and I have chosen to make

additional resources available for download via the Web. In addition to the sample

database (more information on that in just a bit) that I have created and will use

through most of this book, other resources available include:

� Several tools for source code management and database deployment Set

of T-SQL, VBScript and .NET tools for generating, managing, and deploying

code of database objects.

� Sample SQLXML code Visual Studio .NET sample projects for demonstrating

use of SQLXML managed classes.

6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� Periodic updates As noted earlier, SQL Server development is a dynamic

field, and thus a book on SQL Server needs to be dynamic to meet the evolving

needs of its audience. Reader feedback is important to me. Check my web site

(www.trigonblue.com) for periodic updates on issues raised by readers.

� Author’s web site Aside from being the source of the sample database

and periodic update downloads, the Trigon Blue web site provides a wealth of

excellent reference materials and links. Visit the site often for SQL Server and

e-business news. While you’re there, have a look at the many articles and white

papers, and check out Trigon Blue’s many product and service offerings.

The subject of the Asset sample database created for this book is an asset

management system within a fictional organization. Although the database is

based on real-world experience within financial institutions, it is also applicable

in many other environments.

The main purpose of the database is to track assets. Assets are defined as equipment,

and all variations in their content, attributes, and shape are recorded as values of

properties. The Inventory table tracks location, status, leasing information, and who

is currently using each asset. To transfer an asset from one location to another, to

assign assets to a different owner or department, to request maintenance, or to request

upgrades or new assets, users of the database use orders and order items. Activities

performed to complete the order are recorded in the charge log and interdepartment

invoices are generated. There are lookup tables used to track provinces, lease

frequencies, statuses, and other details.

Sample Database Installation
You should download this database and install it on your server before you begin to

read the rest of this book. To download and install the sample Asset database:

1. Visit www.trigonblue.com/sqlxml

2. Click the Download Sample DB link.

3. Click the Asset sample database link to start the download. When prompted,

opt to save the file to disk. Remember the location to which you saved the file.

4. Unzip the contents of the Zip file into the Data folder of the machine on

which SQL Server is installed (usually \Program Files\Microsoft SQL

Server\MSSQL\Data).

C h a p t e r 1 : I n t r o d u c t i o n 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. Make sure that SQL Server is running. If necessary, run SQL Server Service

Manager from Programs | MS SQL Server or use the system tray icon. If

necessary, start the SQL Server service.

6. Run Query Analyzer (select Programs | MS SQL Server | Query Analyzer).

7. You will be prompted to connect to SQL Server. Type the server name and log

in as system administrator (sa). If the password has not been set, leave the

password blank (an empty string).

Query Analyzer opens a query window pointing to the master database.

8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : I n t r o d u c t i o n 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

8. Type the following text in the query window:

EXEC sp_attach_db 'Asset',
'E:\Program Files\Microsoft SQL Server\MSSQL\Data\Asset_data.mdf',
'E:\Program Files\Microsoft SQL Server\MSSQL\Data\Asset_log.ldf'

If the location of the folder containing the Asset database file is different from

the one shown in the command, change the command.

9. To attach the database, select Query | Execute from the menu bar. SQL Server

attaches the database. The database is now ready for use.

Purpose and Design of the Sample Database
The Asset database is designed to track and manage assets within an organization.

This database allows users to

� Track features of assets

� Search for assets with specific features

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� Record the current location and status of an asset

� Track the person and organizational unit to which the asset is assigned

� Note how an asset is acquired and the cost of the acquisition

� Keep parameters concerning leases (for example, lease payments, lease

schedules, and lease vendors used to obtain assets)

� Identify assets for which lease schedules have expired

� Record orders to departments in charge of services such as acquisition,

disposal, servicing, and technical support

� Monitor the processing of orders

� Manage the costs associated with actions taken on order items

Database Diagram
Figure 1-1 shows the physical implementation of the Asset entity relationship diagram.

1 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

Figure 1-1 A database diagram of the Asset database

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : I n t r o d u c t i o n 1 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

Description of Assets
The following illustration shows the tables involved in the description of each asset.

Detailed information about deployed equipment and their features is essential for the

proper management of current inventory as well as future upgrades and acquisitions.

Information in these asset description tables allows users to

� Manage a list of standard equipment deployed within the organization

� Manage a list of attributes (properties) that can be used to describe assets

� Manage a list of attributes for each asset

� Obtain a summary of equipment deployed within the organization

� Make decisions about the deployment of a software package based on the

capabilities of existing equipment in the field

� Find obsolete pieces of equipment that need to be disposed of and replaced

with new equipment

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Inventory The central table in the Asset database is the Inventory table. It is designed

to track the assets currently deployed within an organization. The most important

information about an asset indicates what kind of equipment it is. This table also

stores information about the asset’s current location and its status, as well as the way

in which the asset was acquired and the cost of acquisition.

Equipment The Equipment table stores the make and model of each type of asset.

Each piece of equipment with a unique make and model has a separate record in

this table. It groups equipment by equipment type. To accommodate SOUNDEX

searches (and illustrate the use of this SOUNDEX function), the Equipment table

also has a field for precalculated SOUNDEX codes representing the makes and

models of equipment.

EqType This table lists types of equipment. For example, equipment types include

notebook, printer, monitor, keyboard, mouse, scanner, and network hub.

Property Each asset in the database can be described with a set of attributes listed

in the Properties table. This table also records a unit used to store the value of the

property. For example, the properties (and units of measure) of a monitor are size

(inch), resolution (pixel), and type, while an external hard disk has properties (and

units) such as capacity (GB), size (inch), and adapter.

InventoryProperty Each Asset in the Inventory table has a set of properties. The

InventoryProperty table stores the values of each property (except for make and

model, which are recorded in the Equipment table).

For example, a Toshiba (Make) Protégé 7020 (Model) notebook (EqType) assigned

to an employee has 64 (value) MB (unit) of RAM (property), 4.3 (value) GB (unit)

of HDD capacity (property), a Pentium II 333 (value) processor (property), and so

on. Another employee is using an upgraded version of the same equipment with

128 (value) MB (unit) of RAM (property), 6.4 (value) GB (unit) of HDD capacity

(property), a Pentium II 366 (value) processor (property), and so on.

Deployment of Assets
This following set of tables keeps track of the location in which an asset is deployed

and the person and organizational unit to which the asset is assigned.

1 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The information in these asset deployment tables allows users to

� Manage a list of locations within an organization

� Manage a list of persons working within an organization

� Retrieve contact information about persons to whom assets are assigned

� Generate reports about assets deployed by province and organizational unit

� Retrieve a list of assets assigned to a particular person

� Manage relationships between organizational units

� Assign person(s) to organizational units

Location The Location table stores information about the physical location of the

deployed asset. Each location has a name and an address as attributes.

C h a p t e r 1 : I n t r o d u c t i o n 1 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Province This table contains a list of provinces and states. The primary key is the

abbreviation of the province/state. The presence of this table is essential for reports,

which will aggregate asset deployment by location, province/state, and country.

Contact This table contains a list of persons involved in the asset management

process. It includes persons with assets assigned to them, persons completing and

approving orders, and persons performing maintenance and support.

OrgUnit Each contact is assigned to some organizational unit within the organization.

The OrgUnit table records relationships between companies, cost centers, departments,

and the like. This table is designed as a recursive table: an organizational unit can be

part of some other organizational unit. This quality also reflects the need for rapid

changes in today’s work environment due to change of ownership, restructuring,

and so on.

Leasing Tables
An important aspect of asset management is the tracking of lease information. It

helps management avoid payment of penalties associated with late returns or the

failure to return leased assets to the leasing vendor:

1 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : I n t r o d u c t i o n 1 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

The information in the lease tables allows users to

� Keep track of the assets associated with each lease

� Manage lease schedules to keep track of the start, end, and duration of lease periods

� Identify assets that need to be returned to a lease vendor

� Generate reports on assets deployed by lease schedule and lease contract

� Retrieve a list of assets obtained from a particular lease vendor

� Retrieve the total value of lease payments, lease schedules, and lease contracts

Lease The Lease table contains information about lease contracts. It records the

name of the lease vendor, the number of the lease that the vendor is using to track the

contract, the date the contract was signed, and the total value of assets assigned to

the lease.

LeaseSchedule Assets obtained through one lease contract might not be received on

the same date. An asset might also be under a different payment regime and lease

duration. Therefore, each lease contains a set of lease schedules. Each schedule is

recorded in the LeaseSchedule table and is described with a start date, an end date,

and the frequency of payments. This table also tracks the total value of payments per

lease term.

LeaseFrequency LeaseFrequency is a lookup table that contains all possible values

for lease frequency including monthly, semimonthly, biweekly, and weekly.

AcquisitionType AcquisitionType is a lookup table that lists possible acquisition

types including lease, purchase, and rent.

Order Tables
Orders are the primary means of managing assets within the organization. Users can

request new assets and the disposal of obsolete assets. They can request maintenance

and technical support. Authorized personnel can monitor orders and react to them,

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

associate a cost with their execution, and generate invoices. The following tables are

used to store information about orders:

The information in these order tables allows users to

� Request new equipment

� Request technical support

� Request maintenance

� Execute scheduled maintenance

� Track the status of orders

� Assign a staff member to execute the order

� Approve the execution of orders

1 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : I n t r o d u c t i o n 1 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

� Manage a list of actions and the default costs associated with them

� Track costs associated with each activity

� Generate interdepartmental invoices

� Request the transfer of assets

� Request the disposal of obsolete assets

� Generate summaries and reports on performed activities

Order Users can record requests in the Order table. At that time, the order date and

target date are recorded. General request requirements are recorded as an order type,

and special requirements are recorded as a note. The person making the request is

recorded, as well as the person approving the request and assigning the order for

execution. If the order is a transfer request, the table also records a destination for the

asset. Users can track the status of the order, and once it is completed, its completion

date is set. At that point, one organizational unit is billed for performed actions, and

once the order is paid, the payment is noted on the order and funds are assigned to

the organizational unit completing the order.

OrderItem The OrderItem table records assets that need the intervention of authorized

personnel or new equipment that needs to be purchased. Special requests are recorded

in the Note field.

Action The Action table manages the list of activities needed to complete a request

as well as the default cost associated with each.

ChargeLog Actions performed on an order item to complete an order will be recorded

in the ChargeLog table. This table will be used to generate an invoice after completion

of the order.

OrderStatus The OrderStatus table is used as a lookup table to manage the status of

orders. It contains statuses such as

� Ordered

� In-process

� Canceled

� Deferred

� Completed

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

OrderType The OrderType table is used as a lookup table to store the general

requirements of the order. It contains values such as

� Requisition

� Transfer

� Support

� Scrap

� Repair

ActivityLog This table is not related specifically to the recording of orders. Rather, it

is a repository for audit trail information. Most of the time it is populated by a trigger

associated with some specific database change.

1 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 1

P:\010Comp\D_Base\896-2\ch01.vp
Monday, April 28, 2003 1:40:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

2
The SQL Server Environment

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

19

IN THIS CHAPTER:
SQL Server 2000 Tools

Basic Operations with Stored Procedures
Naming Conventions

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You already know that SQL Server is a full-featured and powerful database

management system. You may also be experienced in some or many aspects

of this system. But before you proceed to become an expert in application

development using SQL Server stored procedures, we should probably take a step back

and look at the “big picture” to ensure that we share the same conceptual grounding.

To attain this conceptual grounding, I will start with a 30,000-ft. overview that

will cover the following topics:

� A brief introduction to SQL Server tools

� A quick overview of stored procedure design

I have written this overview to enable people who are in a hurry to learn the basics and

then get down to developing complex stored procedures to retrieve, manipulate, update,

and delete data, and address a variety of business problems. I am going to assume that

you have already had an opportunity to work with SQL on SQL Server, or some other

database system, and that you understand common database concepts. The purpose of

this overview is to define the terminology that you will use as the foundation on which to

build your knowledge of programming in the SQL Server environment. I will direct you

to other books that will help to develop your knowledge of related SQL Server conceptual

and development topics:

� SQL Server 2000: A Beginner’s Guide by Dušan Petkovic

(McGraw-Hill/Osborne, 2000)

� SQL Server 2000 Design & T-SQL Programming by Michelle Poolet and

Michael D. Reilly (McGraw-Hill/Osborne, 2000)

SQL Server 2000 Tools
All versions of SQL Server 2000 except Microsoft Desktop Engine (MSDE) are

delivered with the following management tools:

� Service Manager

� Query Analyzer

� Enterprise Manager

� DTS and Import/Export Data

2 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� osql

� isql

� SQL Server Profiler

� Client Network Utility

� Server Network Utility

The following sections discuss the preceding tools as well as online resources.

Service Manager
The SQL Server database server is implemented as the following services:

� SQL Server (MSSQL)

� SQL Server Agent (SQLAgent)

� Distributed Transaction Coordinator (MSDTC)

� SQL Mail

The database server is actually implemented as the SQL Server (MSSQL) service.

It receives queries from users, executes them, sends responses to calling applications,

and manages data in database files.

SQL Server Agent (SQLAgent) is an automation service that manages the scheduled

execution of tasks and notifies administrators of problems that occur on the server.

Distributed Transaction Coordinator (MSDTC) is a service that manages two-phase

commit transactions spanned over multiple servers. This service ensures that changes

that need to be made to data stored on different servers complete successfully.

SQL Mail is used to send and receive e-mail. It is possible to configure SQL Server

to perform such tasks as receiving requests and returning result sets through e-mail to

notify administrators of the success status of scheduled tasks and of encountered errors.

On Windows NT Server and Windows 2000 Server, MSSQL, SQLAgent, and

Distributed Transaction Coordinator services can be started or stopped, as can

any other service, using the Services icon in Control Panel. In Windows 9x

environments, the only way to start and stop these services is to use Service

Manager. On Windows 2000, you can also use the net start command from

the command prompt. SQL Mail service can be controlled from the Support

Services node in Enterprise Manager. You will see in the “Enterprise Manager”

section later in this chapter how to control SQL Mail.

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 2 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

P:\010Comp\D_Base\896-2\ch02.vp
Tuesday, April 29, 2003 2:29:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

When the Service Manager applet is running, you can choose the current service

and server using combo boxes and then use the appropriate button to start, pause, or

stop the current service.

During SQL Server installation, Service Manager is set to run minimized in the

system tray. You can investigate the execution status of the current service by hovering

the mouse pointer over the icon in the system tray, or by right-clicking the icon and

selecting Properties from the pop-up menu. The icon will be displayed with a green

arrow if running, and a red block if not running.

Query Analyzer
Query Analyzer is a Windows application for designing, debugging, and executing

Transact-SQL (T-SQL) statements (such as queries) against a SQL Server database. This

application is a descendant of isql (a text-based tool) and ISQL/W (a Windows-based

tool). Before Enterprise Manager was introduced in SQL Server 6.0, administrators

relied on isql to manage servers and databases and to execute queries.

Query Analyzer is an MDI application that can contain one or more Query windows.

You can use Query windows to enter and execute a batch of Transact-SQL statements.

The Query window contains two major components: the Query pane and the Results

pane (see Figure 2-1).

The Query pane is a Transact-SQL syntax-sensitive editor. Because it is syntax-

sensitive, users can type Transact-SQL statements in the pane and Query Analyzer

uses different colors to distinguish keywords, variables, comments, and constants.

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

The Results pane displays the result of the code executed in the Query pane.

Earlier versions of SQL Server displayed results only in the form of text. Since SQL

Server 7.0, Query Analyzer has been able to display result sets in the form of a grid,

display messages separately, and diagram the way that SQL Server will execute the

query (that is, the execution plan).

The Query Analyzer toolbar contains icons for managing the contents of the

window. A noteworthy option is the DB combo box, which selects and displays the

current database.

The Object Browser is a window that allows users to explore database objects or

access predefined Transact-SQL code templates. Users can check for the existence

of a database object; explore its contents (that is, view records in a table); execute

and debug objects such as stored procedures; view the structure and dependencies

of an object; view and edit extended properties of the object; drag the name of a

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 2 3

Figure 2-1 Query Analyzer

Object Browser Query pane Query Analyzer toolbar

Results pane

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

database object to the Query window or a script object to the Query window, file,

or Clipboard. This very useful addition to Query Analyzer is available only in

SQL Server 2000.

Enterprise Manager
Enterprise Manager was introduced in SQL Server 6.0 as a tool to simplify server

and database administration on SQL Server. It was an innovation and a huge success

when introduced, and over time, Microsoft has improved its functionality. Now, all

competing products include equivalent tools.

Enterprise Manager visually represents database objects stored on the server and

provides tools for accessing and managing them. There are two main components—

the Console tree and the Details pane (see Figure 2-2).

The Console tree displays database and server objects in a hierarchy designed for

easy navigation. It works in the same way as any other GUI tree object. You can

2 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-2 Enterprise Manager

Console tree Details pane

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

click the + symbol next to any node on the tree or press the RIGHT ARROW key on the

keyboard to expand the node. When you right-click a node, a context-sensitive menu

is displayed.

The Details pane shows details of the node (object) selected in the Console tree.

If the user selects a folder with tables or stored procedures, the Details pane lists the

tables or stored procedures in the current database. The behavior of the Details pane

is quite similar to that of Windows Explorer.

If you select certain objects in the Console tree, such as a database or a server, the

Details pane can display the taskpad—a complex report showing the state of the database

or server that can also be used to manage the database or server (see Figure 2-3).

Taskpads are implemented as HTML pages. Activities can be initiated by clicking

links within the taskpad.

Enterprise Manager has been developed as a Microsoft Management Console

(MMC) snap-in. A snap-in is simply a program designed to run inside MMC. Other

BackOffice server management tools can also run inside MMC. This design is the

reason there are two major toolbars within the Enterprise Manager interface. The top

one contains options (under Console and Window) to let the user control the MMC

and its snap-ins. The lower one is the Enterprise Manager toolbar, in which you will

find menus and icons for administering servers and databases.

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 2 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-3 The taskpad

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As I mentioned earlier, SQL Mail service can be controlled from the Support

Services node in Enterprise Manager.

DTS and Import/Export Data
Data Transformation Services (DTS) is a component of SQL Server that enables

administrators to transfer data and objects between servers and databases. It is not

limited to export from and import to SQL Server. It can also be used between any

ODBC- or OLE DB–compliant databases, including Oracle, Sybase SQL Server,

Access, and FoxPro, and between other storage types such as text files, Excel

spreadsheets, and Outlook files.

The tangible part of DTS is the DTS Wizard, which can be started from Enterprise

Manager (the Data Transformation Services node) or the Windows menu (Import

and Export Data). In the screens that follow, you can specify the source and target

data locations as well as the transformation to be performed on the data. The result

of the DTS Wizard is also a package that could be further managed using tools

within the Data Transformation Services node in Enterprise Manager. Figure 2-4

shows such a package in DTS Designer. A package can transform data, run SQL

scripts, load files from the Internet, send e-mails, run ActiveX (VBScript and

JavaScript) tasks, copy SQL Server objects, run command shell processes, and so

on. Unfortunately, this exciting topic is beyond the scope of this book.

2 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-4 DTS Designer

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

osql and isql
Before Query Analyzer (and ISQL/W—ISQL for Windows), DBAs used a command

line utility called isql to run Transact-SQL statements against the server (see Figure 2-5).

Tools such as isql are reminiscent of UNIX environments, and they are seldom

used now that GUI applications like Query Analyzer are available.

Another tool that works from the command prompt is osql. It was introduced in

SQL Server 7.0. The major difference between these two command line utilities

lies in the API each uses to connect to SQL Server databases: osql uses ODBC

to connect, and isql uses DB-Library. isql does not support all SQL Server 2000

features because DB-Library is an API developed for SQL Server 6.5.

SQL Server Profiler
SQL Server Profiler is a component of SQL Server designed to monitor activities

on servers and in databases (see Figure 2-6).

You can use this utility to capture queries against a database, the activities of

a particular user application, login attempts, failures, errors, and transactions. It

is often used to improve the performance of a system, and you can also use it to

troubleshoot and debug stored procedures and T-SQL scripts.

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 2 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-5 The isql command line utility

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Client Network Utility
SQL Server client tools can use different protocols to communicate with SQL Server:

� Named pipes

� TCP/IP

� Multiprotocol

� NWLink IPX/SPX

� AppleTalk

� Banyan VINES

� Shared memory

For each protocol, Microsoft has designed a DLL communication library, referred to

as a Network Library or NetLib.

Figure 2-6 SQL Server Profiler

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 2 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

The Client Network Utility is designed to select the protocol and NetLib to be

used by other client tools. It is possible to specify a default network library and

exceptions on a per-server basis.

Server Network Utility
The Server Network Utility is designed to control network protocols and network

ports that SQL Server 2000 instance uses to listen for requests:

The Help Subsystem and SQL Server Books Online
Traditionally, due to the nature of the environment, SQL Server client tools (including

Enterprise Manager and Query Analyzer) have been light on context-sensitive help,

but SQL Server has a subsystem that is a great tool for browsing through its

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

documentation—SQL Server Books Online. This subsystem contains the complete

set of documentation—which used to be delivered on paper—in the form of an

online, searchable, indexed hierarchy of documents.

You can start SQL Server Books Online by selecting Start | Programs | Microsoft

SQL Server 2000 | Books Online (see Figure 2-7). You can also launch it from

Query Analyzer if you highlight a keyword in the Query pane and press SHIFT-F1.

In the Contents tab, you can browse through the hierarchy of the material as in

Windows Explorer, or you can switch to the Index tab to see a list of keywords or

to the Search tab to define search criteria. The Favorites tab enables you to record

pages that you want to refer to later.

SQL Server on the Web
Many SQL Server resources can be found on the Web. Traditional places are

Microsoft sites such as:

� www.microsoft.com/sql

� msdn.microsoft.com

3 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-7 SQL Server Books Online

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I was always able to find information quicker on Google.com. Later, I discovered

that it has a specialized tool that searches only Microsoft-related sites (see Figure 2-8).

Basic Operations with Stored Procedures
This section will serve as a primer to introduce you to the concepts of executing,

creating, and editing stored procedures. We will walk through the usage of the most

important SQL Server client tools. Since Transact-SQL is just another programming

language, we will follow a tradition first established by an unknown programmer and

start with a trivial Hello World example.

What Are Stored Procedures?
Stored procedures are database objects that encapsulate collections of Transact-SQL

statements on the server for later repetitive use. Although stored procedures use

nonprocedural Transact-SQL statements, they are in essence procedural. They define

algorithms that determine how operations should be performed.

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 3 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-8 Microsoft-related Google search

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Stored procedures are the T-SQL equivalents of subroutines in other programming

languages. Developers of custom database applications can use all major programming

constructs while building stored procedures:

� Variables

� Data types

� Input/output parameters

� Return values

� Conditional execution

� Loops

� Comments

SQL Server includes a set of system stored procedures designed for administering

the system. Their role is to provide information, set configuration, control the

environment, manage user-defined objects, and schedule and run custom tasks.

Execution of Stored Procedures from Query Analyzer
The execution of stored procedures from Enterprise Manager or Query Analyzer is

very simple. Let’s try it using the system stored procedure sp_who, which lists all

users and processes connected to the system.

1. Run Query Analyzer (Start | Programs | Microsoft SQL Server 2000 | Query

Analyzer). The Query Analyzer application prompts you for a server, login

name, and password, as shown in the following illustration. If the application

is unable to connect to the server, you should check whether the Microsoft SQL

Server service is running and whether you correctly typed the name of the

server and/or your login name and password.

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TIP

If you have not changed the server since installation, you can use sa as the login name and an
empty string (blank) as the password. The name of your machine is the name of the SQL Server.
If you are working on the machine that has SQL Server installed, you can always use “(local)” or
a simple dot “.” to refer to the current machine as the server to which you want to connect.

2. Once you have logged in successfully, the application opens the Query window

that you use to write code. In the Query pane, type the following code:

exec sp_who

NOTE

Query Analyzer uses different colors to distinguish keywords, variables, comments, and constants.

3. To run the stored procedure, you can select Query | Execute, click the green

arrow on the toolbar, or press CTRL-E. The application will split the screen to

display both query and results (see Figure 2-9).

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 3 3

Figure 2-9 Execution of stored procedures from Query Analyzer

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

4. You can click the Messages tab to see whether SQL Server has returned any

messages along with the result (such as the number of records, a warning, or

an error). This stored procedure lists active processes on the current server and

the login names of the users who started them.

5. Select Query | Results in Text and then execute the query again (Query | Execute).

Query Analyzer displays the result set in the form of text. Messages are mixed

with result sets in this case, which is the way in which Query Analyzer has always

worked in past versions (see Figure 2-10).

NOTE

Before we continue, please ensure that you have installed the sample Asset database. If you have
not already installed it, review the download and installation instructions in Chapter 1.

You can also use the Object Browser in Query Analyzer to list, execute, and edit

stored procedures:

1. If the Object Browser is not already present on the screen, select Tools | Object

Browser to display it (see Figure 2-11).

2. Expand the node for the master database and expand the Stored Procedures

node. Right-click the stored procedure sp_who in the list and select Open from

the pop-up menu. Query Analyzer prompts you to specify parameters (not

required in this case) and execute the stored procedure.

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 3 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-10 Results in text

Figure 2-11 The Object Browser

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3. Click Execute and Query Analyzer opens a new Query window with code of

the stored procedure. The code is executed automatically (Figure 2-12 above).

Managing Stored Procedures from Enterprise Manager
Enterprise Manager is arguably the most important tool in the arsenal of the DBA.

I will lead you through the most important features of Enterprise Manager:

1. Start Enterprise Manager (Start | Programs | Microsoft SQL Server 2000 |

Enterprise Manager). In some cases (for example, if you have never opened

Enterprise Manager before), you will have to register the first server with

which you will work.

3 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-12 Supporting code

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

Before you can work with a server in Enterprise Manager, you need to register it.

2. Again, you need to provide the name of the server, your login name, and your

password. You can accept default values for the Server Group option and all

other choices under Options. If the connection parameters are correct, Enterprise

Manager displays a window for managing SQL Server.

3. Click the + symbol to expand the SQL Server Group node.

4. Expand your server node (again, click the + symbol).

5. Expand the Databases node.

6. Expand the Asset sample database.

7. Click Stored Procedures and watch as a list of stored procedures is displayed

in the Details pane (see Figure 2-13).

8. In this list, find a stored procedure named prGetEqId, and right-click. When

you right-click an object in the Details pane, a context-sensitive menu appears

with options to let you perform operations such as deleting and renaming the

stored procedure or creating a new stored procedure.

9. Select Properties on the pop-up menu. The application opens a window to

allow you to view and edit the stored procedure (see Figure 2-14). See the

sidebar “The Structure of Stored Procedures” for more information.

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 3 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-13 List of stored procedures in Enterprise Manager

Figure 2-14 Properties of a stored procedure

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

Don’t worry. In the following chapters, I will give you detailed descriptions of all these objects and
their components.

10. Close the Properties window.

11. Right-click anywhere in the Details pane and select New Stored Procedure

from the pop-up menu. Enterprise Manager displays a Properties window with

a template for the stored procedure (see Figure 2-15).

12. Replace the template with the following code:

Create procedure prHelloWorld_1 As
Select 'Hello world'
Select * from Inventory

13. Click the Check Syntax button to verify the syntax of the procedure.

14. Click OK. The procedure is compiled and stored in the database. You will be

able to see it in the list of stored procedures.

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 3 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-15 A template of a new stored procedure

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

Earlier versions of Enterprise Manager did not display the stored procedure in the list automatically.
The user had to refresh the screen by right-clicking the database name and selecting Refresh from
the menu.

This scenario still arises on occasion. For example, if you create a stored procedure (or change
something in the database) using some other tool, you will need to refresh the list in Enterprise
Manager.

You can switch to Query Analyzer to run the newly created stored procedure:

1. On the Tools menu, select SQL Server Query Analyzer, switch to the Asset

database, and type the following code:

Exec prHelloWorld_1

NOTE

Query Analyzer will always open and connect to the current server when opened from within
Enterprise Manager, but will not necessarily default to the current database.

2. Execute it (choose Query | Execute).

4 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

The Structure of Stored Procedures
We will pause a minute to explain the structure of a stored procedure. The

prGetEqId stored procedure encapsulates a relatively simple Select statement for

later use. It returns a recordset containing values from the EquipmentId column.

The recordset will contain only records with the specified Make and Model.

The code of a stored procedure consists of a header and a body. The header

of the stored procedure defines external attributes of the stored procedure—its

name and a list of one or more parameters. The prGetEqId stored procedure

has two parameters. Parameter names must start with the @ character. The

developer must also define a data type for each parameter. The header must

begin with the Create Procedure keyword and finish with the As keyword.

The body of the stored procedure contains the Transact-SQL statements to

be executed when the stored procedure runs. In this case, there is just one Select

statement using the procedure parameters.

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 4 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Editing Stored Procedures in Enterprise Manager
The easiest way to edit stored procedures is to use Enterprise Manager. You simply

need to display the Properties window for the stored procedure:

1. Verify that the Stored Procedures node in the Asset database is still open in

Enterprise Manager.

2. Right-click the prHelloWorld_1 stored procedure and select Properties. The

Properties window displays the stored procedure code.

Editing Stored Procedures in Query Analyzer
Before Enterprise Manager was released in Microsoft SQL Server 6.0, administrators

used isql (the ancestor of Query Analyzer) to do most of the work. It is still possible to

edit stored procedures in the traditional way using Query Analyzer.

Traditionally, DBAs included the code for deleting (dropping) the original stored

procedure and then re-creating the stored procedure (with the changed code):

1. Launch Query Analyzer.

2. Make sure that you are in the Asset database.

3. Type the following code in the Query pane:

DROP PROCEDURE prHelloWorld_1
GO

CREATE PROCEDURE prHelloWorld_1
AS

SELECT 'Hello Dejan'
SELECT * from Inventory

RETURN 0
GO

4. Execute the code by selecting Query | Execute.

SQL Server will first delete the existing stored procedure and then re-create it (with

the new code).

The trouble with this method (dropping and then re-creating) is that you also drop

some attributes associated with the stored procedure (such as permissions), which

also affects other dependent objects. Since Microsoft SQL Server 7.0, it is possible

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to use the Alter Procedure statement to modify an existing stored procedure without

affecting permissions and other dependent objects:

ALTER PROCEDURE prHelloWorld_1

AS

SELECT 'Hello World again!'

SELECT * from Inventory

RETURN 0

GO

You may have noticed the Go command in the previous two examples. This command

is not a SQL statement. It is not even part of the T-SQL language. It is a signal to Query

Analyzer (and some other tools, such as isql and osql) to treat the SQL statements as one

set—a batch. All statements in a batch are compiled and executed together.

In SQL Server 2000, it is possible to use the Object Browser to edit stored procedures:

1. If the Object Browser is not already present on the screen, select Tools | Object

Browser to display it.

2. Open the Asset database and then its list of stored procedures.

3. Find and right-click prHelloWorld_1 in the list and select Edit. Query Analyzer

displays a Query window with the code of the stored procedure in it (see

Figure 2-16).

4 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-16 The Query window displays the stored procedure’s code.

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 4 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

NOTE

Do not be confused by the additional Set Quoted_Identifier and Set Ansi_Nulls statements.
They are present just to set an optimal environment for the execution of the Alter Procedure
statement. When they are present, the client session settings are ignored during the stored
procedure execution.

4. Once you are satisfied with changes in the code, you can simply execute it

(Query | Execute).

Syntax Errors
Sooner or later you will make a typo, and the server will react with an error. Let’s

deliberately cause a problem to see how the server reacts.

1. Verify that you are in Query Analyzer and that Asset is your current database.

We will attempt to alter the code of prHelloWorld_1.

NOTE

There are two ways to type comments in the Transact-SQL language. If you type two dashes (- -),
the rest of that line will be ignored by the server. Code stretched over multiple lines can be
commented out by using /* and */ as delimiters at either end of the comment.

2. We will comment out the second line (the keyword As):

Alter Procedure prHelloWorld_1
--As
Select 'Hello World again!'

Select * from Inventory
Return 0
Go

3. As soon as you execute this code, the server reports an error (see Figure 2-17).

Keep in mind that SQL Server is not a perfect compiler. Some error messages

that it reports may not contain sufficient details or may even be misleading.

The rule of thumb is simple: check your basic syntax first.

TIP

If you double-click the error message in the Results pane, Query Analyzer will try to return the cursor
to the line containing the error in the Query pane (actually, to the first line that appears after the last
statement that executed correctly). This is very useful when you are executing a long batch.

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Another advantage the Alter statement has over the Drop/Create approach is

that the stored procedure remains intact after an unsuccessful attempt such as we

produced in this example.

You have made your first steps in the development of stored procedures in

Transact-SQL. The next chapter explores SQL Server stored procedure design in

greater detail.

Naming Conventions
One of the most important things you can do to improve the quality and readability

of your code is to use standards to name variables, procedures, and objects in your

database. We will now go though the importance of using naming conventions and

describe one used in this book.

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

4 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Figure 2-17 An error in Query Analyzer

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Why Bother?
Unfortunately, many developers dislike, and avoid using, standards. Their usual

explanation is that standards stifle their creativity, or that the constant need to comply

with standards distracts them from what they are really being paid to do. While there

may be some truth in these claims, compliance with reasonable standards is another

one of those habits that differentiates the professional from the amateur (not to mention

the prima donna). Often, however, the problem lies not in the presence or content

of a standard but in the spirit of its enforcement. Frequently, organizations (or the

people in them) get carried away. They forget the reasons for enforcing standards,

and the standards become an end in themselves.

There are several valid reasons for introducing naming conventions:

� The main reason for the existence of naming conventions is to make code

readable, understandable, and easy to remember.

� A standard allows developers to speak a common “language” that will help

the team to communicate more efficiently.

� Team members will be able to understand and learn parts of the code with

which they are not familiar.

� New team members will have to learn only one standard way of coding instead

of having to learn the distinct coding habits of individual team members.

� Time will be saved and confusion avoided, since it will be easier to define and

identify unique names for objects and variables.

If you are developing a project on your own, you might go through it without

implementing a standard (or without being aware that you actually have a standard).

However, in most cases, the introduction of a standard becomes critical, such as

when the following conditions exist:

� More than one developer is working on the project.

� The code or project will be maintained or reviewed by other developers who

are not currently members of the team.

� The application under development is too complex for one person to analyze

all aspects at once and requires different components to be designed and

implemented separately.

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 4 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Conventions do not have to be complicated. To demonstrate this point, consider this

simple example. If you name a variable @OrderNum, you will become confused about

its contents because the name does not convey its purpose clearly. Does it contain

the total number of orders or the index of a particular order? To resolve this confusion,

you could establish a convention that indexes are named with “Id” and totals with

“Count” at the end of the name. In this case, the variable becomes @OrderId or

@OrderCount.

Naming Objects and Variables
The naming of objects should take into account the following details:

� Entity description

� Name length

� Abbreviations

� Name formatting

Entity Description
It is common knowledge that variables, procedures, and objects should be named after

the entities or processes that they represent. Therefore, just to type a full description

is a good start. The advantages of this approach are

� Nobody will be confused about the purpose or contents.

� It makes for easy-to-read code, since no cryptic abbreviations are used.

� It makes the entity name easy to understand and memorize, since the

description closely matches the entity.

Just compare the names in the following table:

Good Bad
@CurrentDate @D

@ActivityCount @ActNum

@EquipmentType @ET

CalculateOrderTotal RunCalc

4 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

Such descriptions are usually just the basis for a name. Standards generally prescribe the use of
different prefixes or suffixes to further describe other attributes such as the type of object, the
data type of a variable, and the scope.

A very common mistake is to use computer-oriented terminology instead of

business-oriented terminology. For example, ProcessRecord is a confusing name

for a procedure. It should be replaced with a business description of the process,

such as CompleteOrder.

Name Length
Unfortunately, if you are too literal in naming procedures according to their business

descriptions, you end up with names like

� PickupReconciliationInventoryIdentifier

� TotalAmountOfMonthlyPayments

� GetParentOrganizationalUnitName

Although SQL Server supports the use of identifiers up to 128 characters long,

research has shown that code in which most variable names are between 8 and 15

characters in length is easiest to develop, read, debug, and maintain. This fact does

not imply that all of your variables must have lengths in that range, but you can use

it as a rule of thumb.

Another rule of thumb is to try to limit names to three words. Otherwise, names

become too long, and thus more difficult to use and maintain.

You could go to an extreme in the other direction, as well. If you are using a

variable as a temporary counter in a loop, you could name it @I. But even in that

case, it might be easier to understand your code if you name it @OrderItem.

Abbreviations
A simple way to reduce the length of a name is to abbreviate it. If you can find an

abbreviation in a thesaurus or dictionary, you should use it. You will avoid potential

confusion. If not, you can simply remove vowels (except at the beginning of the

word) and duplicate letters from each word, as in these examples:

� Current = Crnt

� Address = Adr

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 4 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� Error = Err

� Average = Avg

You could also use the first letters of words or the first few letters of a word, but

make sure that the names you create will not be confused with other, more common

abbreviations. For example, you could abbreviate Complete Order Management to

COM, but Visual Basic programmers might assume it stands for “component.”

If you do not want to confuse readers of your code (such as the fellow programmers

trying to maintain it months after you have taken early retirement and moved to a

remote tropical island), you should avoid using phonetic abbreviations like

� 4tran (Fortran)

� xqt (execute)

� b4 (before)

Abbreviations are great, but you should be careful not to confuse your colleagues.

Try to be consistent. If you start abbreviating one word, you should do the same in

all occurrences (variables, procedures, objects). It is potentially confusing to abbreviate

the word Equipment as Eq in one case and leave the full word in another case. You

will cause confusion as to which to use and whether they are equivalent.

To avoid confusion, you can write a description (using full words) in comments

beside the declaration of a variable, in the definition of an object, or in the header of

a procedure; for example:

declare @ErrCd int -- Error Code

Ideally, the use of abbreviations should be defined, documented, and enforced as

a naming convention and therefore applied consistently by everyone on the team.

Name Formatting
I have seen people have endless debates about formatting identifiers. To underscore

or not to underscore—that is the question:

� LeaseScheduleId

� lease_schedule_id

The truth is: it does not matter. You should avoid mixing these two conventions

because developers will never know what they have used for which variable.

4 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Unfortunately, you can catch even Microsoft developers mixing them. They are just

human beings, after all.

In some rare cases, I believe it is justifiable to mix these two conventions in one

identifier. For example, I like to note modification statements at the end of the name

of a trigger (insert and update trigger on OrderItem table):

trOrderItem_IU

I also use an underscore to divide table names joined with a foreign key (such as a

foreign key between Order and OrderItem tables):

fk_Order_OrderItem

Suggested Convention
In computer science theory, you can find several well-documented formal conventions.

The most famous one is the Hungarian convention (http://msdn.microsoft.com/isapi/

msdnlib.idc?theURL=/library/techart/hunganotat.htm). I will present a convention

that is rather informal and tailored for use in Transact-SQL. You do not have to

follow it literally, but you should have a good reason to break any rule.

TIP

Rules are made to be broken, but only if the solution is thereby improved.

Variables
Variable identifiers should consist of two parts:

� The base part, which describes the content of the variable

� The prefix, which describes the data type of the variable

Table 2-1 shows data type abbreviations that should be used as prefixes.

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 4 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Data Type Prefix Example
char chr @chrFirstName

varchar chv @chvActivity

nchar chrn @chrnLastName

nvarchar chvn @chvnLastName

Table 2-1 Data Type Prefixes

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:36:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Database Objects
Names of database objects should consist of two parts:

� The base part, which describes the content of the object

� The prefix, which describes the type of database object

Table 2-2 shows database object abbreviations that should be used as prefixes.

5 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

Data Type Prefix Example
text txt @txtNote

ntext txtn @txtnComment

datetime dtm @dtmTargetDate

smalldatetime dts @dtsCompletionDate

tinyint iny @inyActivityId

smallint ins @insEquipmentTypeId

integer int @intAsset

bigint inb @inbGTIN

numeric or decimal dec @decProfit

real rea @reaVelocity

float flt @fltLength

smallmoney mns @mnsCost

money mny @mnyPrice

binary bin @binPath

varbinary biv @bivContract

image img @imgLogo

bit bit @bitOperational

timestamp tsp @tspCurrent

uniqueidentifier guid @guidOrderId

sql_variant var @varPrice

cursor cur @curInventory

table tbl @tblLease

Table 2-1 Data Type Prefixes (continued)

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:37:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : T h e S Q L S e r v e r E n v i r o n m e n t 5 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

NOTE

Tables and columns should not have prefixes describing the object type.

Triggers
Names of triggers should consist of three parts:

� The prefix (tr), which implies the database object type

� The base part, which describes the table to which the trigger is attached

� The suffix, which shows modification statements (Insert, Update, and Delete)

The following is an example of a trigger name:

trOrder_IU

If more than one trigger per modification statement is attached to the table, the

base part should contain the name of the table and a reference to a business rule

implemented by a trigger:

� trOrderCascadingDelete_D Delete trigger on Order table that implements

cascading deletes of order items.

Database Object Prefix Example
Table (no prefix) Activities

Column (no prefix) ActivityId

View v vActivities

Stored procedure pr prCompleteOrder

Trigger tr trOrder_IU

Default df dfToday

Rule rul rulCheckZIP

Index ix ix_LastName

Primary key pk pk_ContactId

Foreign key fk fk_Order_OrderType

User-defined data type udt udtPhone

User-defined functions fn fnDueDates

Table 2-2 Database Object Prefixes

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:37:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� trOrderItemTotal_D Delete trigger on Order table that maintains a total of

order item prices.

SQL Server 2000 has an additional type of trigger—Instead-of triggers (reviewed

in detail in Chapter 8). To differentiate them from standard triggers (called After

triggers in SQL Server 2000 documentation), you should use a different naming

convention for them. For example, to represent the Instead-of delete trigger on the

Order table, you could use “itr” as a prefix:

itr_Order_D

Stored Procedures
The base name of a stored procedure should usually be created from a verb followed

by a noun to describe the process the stored procedure performs on an object, as in

these examples:

� prGetEquipment

� prCloseLease

You can also adopt the opposite role—noun followed by verb:

� prEquipmentGet

� prLeaseClose

If the procedure performs several tasks, all of those tasks should become part of

the procedure name. It is okay to make procedure names longer than variable names.

You should be able to pack a name into between 20 and 40 characters.

Some developers use the sp_ prefix in front of the base name of a stored procedure.

This prefix should be reserved for system stored procedures that reside in the master

database and that are accessible from all databases.

You should also avoid computer-oriented or fuzzy names like these:

� prProcessData

� prDoAction

Names such as these are often a symptom of a poorly designed stored procedure.

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

5 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 2

P:\010Comp\D_Base\896-2\ch02.vp
Monday, April 28, 2003 2:37:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

3
Stored Procedure
Design Concepts

53

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
Anatomy of a Stored Procedure

Types of Stored Procedures
Compilation

Managing Stored Procedures
The Role of Stored Procedures in the Development of Database Applications

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Astored procedure is a set of T-SQL statements that is compiled and stored

as a single database object for later repetitive use. They are the equivalent

of subroutines and functions in other programming languages.

Upon completion of this chapter, you will be able to do the following:

� Create a stored procedure

� Explain the elements of a stored procedure

� List ways to return information from a stored procedure

� Pass input parameters to a stored procedure

� Receive output parameters from a stored procedure

� Receive a return value from a stored procedure

� Explain where stored procedures are stored on SQL Server

� Explain the compilation and reuse of stored procedures

Anatomy of a Stored Procedure
We can describe a stored procedure in terms of

� Composition

� Functionality

� Syntax

Composition
Logically, a stored procedure consists of

� A header that defines the name of the stored procedure, the input and output

parameters, and some miscellaneous processing options. You can think of it

as an API (application programming interface) or declaration of the stored

procedure.

� A body that contains one or more Transact-SQL statements to be executed

at runtime.

Creating Stored Procedures
Let’s look at the simplified syntax for implementing the core functionality of stored

procedures:

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 5 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

CREATE PROC[EDURE] procedure_name
[{@parameter data_type} [= default] [OUTPUT]] [,...n]

AS

sql_statement [...n]

The following is an example of a stored procedure:

Create Procedure prGetEquipment

@chvMake varchar(50)

as

Select *

from Equipment

where Make = @chvMake

This Transact-SQL statement creates a stored procedure named prGetEquipment

with one input parameter. During execution, prGetEquipment returns a result set

containing all records from the Equipment table having a Make column equal to the

input parameter.

Please, be patient and do not create the procedure in the Asset database yet. If you

try to create a stored procedure that already exists in the database, SQL Server will

report an error. You can reproduce such an error if you run the same statement for

creating a stored procedure twice. For example:

Server: Msg 2729, Level 16, State 5, Procedure prGetEquipment, Line 3

Procedure 'prGetEquipment' group number 1 already exists in the database.

Choose another procedure name.

As I have shown in Chapter 2, one way to change a stored procedure is to drop

and re-create it. There are two ways to prevent the error just described. One way is to

use an Alter Procedure statement to change the stored procedure. I will explain this

technique in the next section. The traditional way to prevent this error is to delete a

stored procedure (using the Drop Procedure statement) and then create it again:

Drop Procedure prGetEquipment

go

Create Procedure prGetEquipment

@intEqTypeId int

as

Select *

from Equipment

where EqTypeId = @intEqTypeId

go

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

If you are not sure whether a stored procedure exists, you can write a piece of

code to check for its existence. If you do not, SQL Server will report an error when

you try to drop a stored procedure that does not exist. This code takes advantage of

the fact that SQL Server records each database object in the sysobjects table (see

“Storing Stored Procedures,” later in this chapter). It also uses programming constructs

I have not yet introduced in this book. For now, do not worry about the details. All

will become clear later.

if exists (select * from sysobjects

where id = object_id('prGetEquipment ')

and OBJECTPROPERTY(id, 'IsProcedure') = 1)

drop procedure prGetEquipment

GO

Create Procedure prGetEquipment

@intEqTypeId int

as

Select *

from Equipment

where EqTypeId = @intEqTypeId

go

NOTE

Most of the stored procedures in this book already exist in the database. If you just try to create
them, SQL Server will complain. If you are sure that the code that you have typed is correct, you
can drop the original stored procedure and put yours in its place. Or you can alter the original
stored procedure and use your code instead.

It is much better to rename your stored procedure. All stored procedures in the Asset database
start with the pr prefix. You could start yours, for example, with up (for user procedure).
I follow a similar practice when I create several versions of the same stored procedure to illustrate
a point or a technique. I merely change the stored procedure’s suffix by adding a version number
(for instance, _1, _2, and so on).

Altering Stored Procedures
The other way to change a stored procedure is to use the Alter Procedure statement:

Alter Procedure prGetEquipment

@intEqTypeId int

as

Select *

from Equipment

where EqTypeId = @intEqTypeId

go

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 5 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

The syntax of this statement is identical to the syntax of the Create Procedure

statement (except for the keyword). The main reason for using this statement is to

avoid undesirable effects on permissions and dependent database objects. For more

details about permissions, see Chapter 10.

The Alter Procedure statement preserves all aspects of the original stored procedure.

The object identification number (id column) of the procedure from the sysobjects

table remains the same, and all references to the stored procedure are intact. Therefore,

it is much better to use the Alter Procedure statement than to drop and re-create the

procedure. For more details about the sysobjects table and the object identification

number (id column), see “Storing Stored Procedures,” later in this chapter.

Limits
When you are creating or changing a stored procedure, you should keep in mind the

following limits:

� The name of the procedure is a standard Transact-SQL identifier. The

maximum length of any identifier is 128 characters.

� Stored procedures may contain up to 2100 input and output parameters.

� The body of the stored procedure consists of one or more Transact-SQL

statements. The maximum size of the body of the stored procedure is 128MB.

Functionality
Stored procedures can be used to

� Return information to the caller

� Modify data in databases

� Implement business logic in data tier

� Control access to data

� Improve performance of the system

� Reduce network traffic

� Perform other actions and operations (such as process e-mail, execute operating

system commands and processes, and manage other SQL server objects)

There are four ways to receive information from a stored procedure:

� Result set

� Output parameters

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

� Return value

� Global cursor

Returning Result Sets
To obtain a result set from a stored procedure, insert a Transact-SQL statement that

returns a result set into the body of the stored procedure. The simplest way is by

using a Select statement, but you could also call another stored procedure.

It is also possible to return several result sets from one stored procedure. Such a

stored procedure will simply contain several Select statements. You should note that

some client data-access methods (such as ADO) can access all result sets, but others

will receive just the first one or possibly even report an error.

Input and Output Parameters
Let’s add a new procedure to the Asset database:

Create procedure prGetEqId

@chvMake varchar(50),

@chvModel varchar(50)

as

select EquipmentId

from Equipment

where Make = @chvMake

and Model = @chvModel

This is a very simple stored procedure. It uses two input parameters to receive the

make and model, and returns identifiers of equipment that matches the specified make

and model.

Physically, the stored procedure encapsulates just one Select statement. The

header and body of the procedure are divided by the keyword As. The header of the

stored procedure contains a list of parameters delimited with a comma (,) character.

Each parameter is defined with an identifier and a data type. Parameter identifiers

must begin with the at sign (@).

You can use the following statement to execute the stored procedure:

Execute prGetEqId 'Toshiba', 'Portege 7020CT'

The keyword Execute is followed by the name of the stored procedure. Since

the stored procedure requires two parameters, they are provided in the form of a

comma-delimited list. In this case, they are strings, so they must be delimited with

single quotation marks.

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 5 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

The keyword Execute is not needed if the stored procedure is executed in the first

statement of a batch:

prGetEqId 'Toshiba', 'Portege 7020CT'

However, I recommend you use it. It is a good habit that leads to clean code. You can

use its shorter version (Exec) to save keystrokes:

Exec prGetEqId 'Toshiba', 'Portege 7020CT'

The execution will return a result set containing just one value in one record:

EquipmentId

1

(1 row(s) affected)

Stored procedures can return output parameters to the caller. To illustrate, we will

create a stored procedure similar to the previous one, but having one critical difference:

this new stored procedure contains an additional parameter. The direction of the

parameter is controlled by including the keyword Output after the data type:

Create procedure prGetEqId_2

@chvMake varchar(50),

@chvModel varchar(50),

@intEqId int output

as

select @intEqId = EquipmentId

from Equipment

where Make = @chvMake

and Model = @chvModel

The Select statement does not return a result set, as the previous one did. Instead,

it assigns an output parameter, @EqId, with the selected value.

NOTE

This stored procedure is not perfect. It may seem correct at first glance, but there is a potential
problem with it. More than one piece of equipment (that is, more than one record) could
correspond to the criteria. I will address this issue in detail in the chapters to follow.

In this case, we require a more complicated batch of Transact-SQL statements to

execute the stored procedure. We must define the variable that will receive the output

value. The parameter must be followed by the Output keyword to indicate that a

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

value for the parameter will be returned by the procedure. At the end of the batch,

the result of the stored procedure is displayed using the Select statement:

Declare @intEqId int

Execute prGetEqId_2 'Toshiba', 'Portege 7020CT', @intEqId OUTPUT

Select @intEqId 'Equipment Identifier'

The batch returns the value of the variable as an output parameter:

Equipment Identifier

1

(1 row(s) affected)

NOTE

A typical error is to forget to mark parameters in Execute statements with Output. The stored
procedure will be executed, but the value of the variable will not be returned.

Return Value
An alternative way to send values from a stored procedure to the caller is to use a

return value. Each stored procedure can end with a Return statement. The statement

can be followed by an integer value that can be read by the caller. If the return value

is not explicitly set, the server will return the default value—zero (0).

Because return values are limited to integer data types, they are most often used to

signal an status or error code to the caller. We will examine this use later. First, let’s

explore its functionality in some unorthodox examples.

In the following example, the value returned by the procedure will be assigned to

the local variable and finally returned to the caller:

Create Procedure prGetEqId_3

@chvMake varchar(50),

@chvModel varchar(50)

as

Declare @intEqId int

Select @intEqId = EquipmentId

from Equipment

where Make = @chvMake

and Model = @chvModel

Return @intEqId

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 6 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

The same functionality could be achieved even without a local variable, since

a Return statement can accept an integer expression instead of an integer value:

Create Procedure prGetEqId_3

@chvMake varchar(50),

@chvModel varchar(50)

as

Return (select EquipmentId

from Equipment

where Make = @chvMake

and Model = @chvModel)

To execute the stored procedure and access the returned value, we require the

following lines of code:

Declare @intEqId int

Execute @intEqId = prGetEqId_3 'Toshiba', 'Portege 7020CT'

Select @intEqId 'Equipment Identifier'

Notice the difference in assigning a value. The local variable must be inserted before

the name of the stored procedure. The result of the batch is the returned value:

Equipment Identifier

1

(1 row(s) affected)

This solution, however, is not a perfect way to transfer information from a stored

procedure to a caller. In the first place, it is limited by data type. Only integers can be

returned this way (including int, smallint, and tinyint). This method is used

primarily to return status information to the caller:

Create Procedure prGetEqId_2

@chvMake varchar(50),

@chvModel varchar(50),

@intEqId int output

As

select @intEqId = EquipmentId

from Equipment

where Make = @chvMake

and Model = @chvModel

Return @@error

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

In this example, the stored procedure will potentially return an error code. @@error

is a global variable/scalar function that contains an error number in the case of failure or a

zero in the case of success. To execute the stored procedure, use the following code:

Declare @intEqId int,

@intErrorCode int

Execute @intErrorCode = prGetEqId_2 'Toshiba',

'Portege 7020CT',

@intEqId output

Select @intEqId result, @intErrorCode ErrorCode

The result will look like this:

result ErrorCode

----------- -----------

1 0

(1 row(s) affected)

An ErrorCode of 0 indicates the stored procedure was executed successfully

without errors.

Default Values
If the stored procedure statement has parameters, you must supply values for the

parameters in your Exec statement. If a user fails to supply them, the server reports

an error. It is possible, however, to assign default values to the parameters so that

the user is not required to supply them. Default values are defined at the end of a

parameter definition, behind the data types. All that is needed is an assignment (=)

and a value.

Add this new procedure to the Asset database:

Create Procedure prGetEqId_4

@chvMake varchar(50) = '%',

@chvModel varchar(50) = '%'

as

Select *

from Equipment

where Make Like @chvMake

and Model Like @chvModel

The procedure is designed as a small search engine that accepts T-SQL wild cards.

You can execute this stored procedure with normal values:

Execute prGetEqId_4 'T%', 'Portege%'

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 6 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

The result set will consist of records that match the criteria:

EquipmentId Make Model EqTypeId

----------- ---------------------- ------------------------ --------

1 Toshiba Portege 7020CT 1

(1 row(s) affected)

If one parameter is omitted, as follows, the procedure will behave, since the value

that was defined as a default has been supplied:

Execute prGetEqId_4 'T%'

The server will return the following result set:

EquipmentId Make Model EqTypeId

----------- ---------------------- ------------------------ --------

1 Toshiba Portege 7020CT 1

(1 row(s) affected)

Even both parameters may be skipped:

Execute prGetEqId_4

The server will return all records that match the default criteria:

EquipmentId Make Model EqTypeId

----------- ---------------------- ------------------------ --------

1 Toshiba Portege 7020CT 1

2 Sony Trinitron 17XE 3

(2 row(s) affected)

Passing Parameters by Name
You do not have to follow parameter order if you pass parameters by name. You

must type the name of the parameter and then assign a value to it. The parameter

name must match its definition, including the @ sign.

This method is sometimes called passing parameters by name. The original method

can be referred to as passing parameters by position. In the following example, the

server will use T% for the second parameter and a default value, %, for the first one:

Execute prGetEqId_4 @Model = 'T%'

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

The result of the search will be the following:

EquipmentId Make Model EqTypeId

----------- ---------------------- ------------------------ --------

2 Sony Trinitron 17XE 3

(1 row(s) affected)

The opportunity to skip parameters is just one reason for passing parameters by

name. Even more important is the opportunity to create a method that makes code

more readable and maintainable. And, if a developer makes a mistake and assigns

a value to a nonexistent parameter, the error will be picked up by SQL Server.

TIP

Although passing parameters by position can be a little faster, passing parameters by name
is preferable.

Syntax
The following is the complete syntax for the creation of a stored procedure:

CREATE PROC[EDURE] procedure_name [;number]
[

{@parameter data_type} [VARYING] [= default] [OUTPUT]
]

[,...n]
[WITH { RECOMPILE

| ENCRYPTION

| RECOMPILE, ENCRYPTION }

]

[FOR REPLICATION]

AS

sql_statement [...n]

When you create a stored procedure using With Encryption, the code of the stored

procedure is encrypted and then saved in the database. SQL Server will be able to use

the encrypted version of the source code to recompile the stored procedure when needed,

but none of the users (not even the system administrator) will be able to obtain it.

NOTE

That was the theory. In reality, you should not count on SQL Server encryption to protect your
code. It is possible to find on the Internet the means to defeat SQL Server encryption. Copyright
and good support are much better protection for the company’s interests when you deploy stored
procedures on the server of your client.

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Keep in mind that you will not be able to change a stored procedure if you create

the procedure using With Encryption. You must preserve its code somewhere else

(ideally in a source code management system like Visual SourceSafe, described in

Chapter 11). For more details about storage and encryption of stored procedures, see

“Storing Stored Procedures,” later in this chapter.

As a developer, you might decide to recompile a stored procedure each time it

is used. To force compilation, you should create the stored procedure using With

Recompile. Recompiling for each use may improve or degrade the performance of

the stored procedure: although the compilation process is extra overhead when you

are executing the stored procedure, SQL Server will sometimes recompile the stored

procedure differently (and more economically) based on the data it is targeting.

You will find more details about compilation and reasons for recompiling a stored

procedure later in this chapter.

[;number] is an optional integer value that can be added to the name of a stored

procedure. In this way, a user can create a group of stored procedures that can be

deleted with a single Drop Procedure statement. Procedures will have names such as

� prListEquipment;1

� prListEquipment;2

� prListEquipment;3

Numbering of stored procedures is sometimes used during development and testing,

so that all nonproduction versions of a procedure can be dropped simultaneously

and quickly.

Stored procedures that include the For Replication option are usually created by

SQL Server to serve as a filter during the replication of databases.

An output parameter for a stored procedure can also be of the cursor data type.

In such a case, the structure of the result set contained by the cursor might vary. The

[Varying] option will notify SQL Server to handle such cases. But it is too early to

talk about cursors. We will return to cursors in the next chapter.

All of these options involve rarely used features. Some of them will be covered in

more detail later in this book, but some are simply too esoteric.

Types of Stored Procedures
There are many types of stored procedures:

� User-defined

� System

� Extended

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 6 5

P:\010Comp\D_Base\896-2\ch03.vp
Tuesday, April 29, 2003 2:41:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� Temporary

� Global temporary

� Remote

There are also database objects, which are very similar in nature:

� Triggers

� Views

� User-defined functions

As you can infer from the name, user-defined stored procedures are simply plain

stored procedures assembled by administrators or developers for later use. All the

examples we have discussed so far in this chapter have been such stored procedures.

Microsoft delivers a vast set of stored procedures as part of SQL Server. They

are designed to cover all aspects of system administration. Internally, system stored

procedures are just regular stored procedures. Their special features result from the

fact that they are stored in system databases (master and msdb) and they have the

prefix sp_. This prefix is more than just a convention. It signals to the server that

the stored procedure should be accessible from all databases without putting the

database name as a prefix to fully qualify the name of the procedure. For example,

you can use sp_spaceused to examine usage of the current database; such as disk

space for data and indexes (see Figure 3-1).

We will examine all types of stored procedures in more detail in Chapter 8.

6 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Figure 3-1 Using sp_spaceused

P:\010Comp\D_Base\896-2\ch03.vp
Tuesday, April 29, 2003 2:45:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 6 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Compilation
Transact-SQL is not a standard programming language, nor is Microsoft SQL Server

a standard environment for program execution, but the process of compiling the source

code for a stored procedure and its execution bear some resemblance to the compilation

and execution of programs in standard programming languages.

The Compilation and Execution Process
When a developer executes any batch of T-SQL statements, SQL Server performs

the following three steps:

1. Parse the batch.

2. Compile the batch.

3. Execute the batch.

Parsing
Parsing is a process during which the Microsoft SQL Server command parser

module first verifies the syntax of a batch. If no errors are found, the command

parser breaks the source code into logical units such as keywords, identifiers, and

operators. The parser then builds an internal structure that describes the series of

steps needed to perform the requested operation or to extract the requested result set

from the source data. If the batch contains a query, this internal structure is called a

query tree, and if the batch contains a procedure, it is called a sequence tree.

Compilation
In this step, a sequence tree is used to generate an execution plan. The optimizer

module analyzes the ways that information can be retrieved from the source tables.

It attempts to find the fastest way that uses the smallest amount of resources (that is,

processing time). It also complements the list of tasks that need to be performed (for

instance, it checks security, it verifies that constraints are enforced, and it includes

triggers if they need to be incorporated in processing). The result is an internal

structure called an execution plan.

Execution
The execution plan is then stored in the procedure cache, from which it is executed.

Different steps in the execution plan will be posted to different modules of the

relational engine to be executed: DML manager, DDL manager, stored procedure

manager, transaction manager, or utility manager. Results are collected in the form

of a result set and sent to the caller.

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Reuse of Execution Plans
Execution plans remain in the procedure cache for a while. If the same or some

other user issues a similar batch, the relational engine first attempts to find a matching

execution plan in the procedure cache. If it exists, it will be reused. If it does not exist,

Microsoft SQL Server parses and compiles a batch.

If SQL Server requires more memory than is available, it might remove some

execution plans from memory. There is a sophisticated “aging” algorithm that takes

into account how long ago and how many times an execution plan is used. If there is

an abundance of memory, it is possible that execution plans will remain in the cache

indefinitely.

Reuse of Query Execution Plans
A simple query can be reused only in two scenarios. First, the query text of the

second query must be identical to the text of the query described by the execution

plan in the cache. Everything has to match—spaces, line breaks, indentation—even

case on case-sensitive servers.

The second scenario may occur when the query contains fully qualified database

objects to reuse execution plans:

Select *

from Asset.dbo.Inventory

Parameterized Queries
The designers of SQL Server have created two methods to improve the reuse of

queries that are not designed as stored procedures:

� Autoparameterization

� The sp_executesql stored procedure

We will cover the first of these methods in the following section and the second

one in Chapter 9.

Autoparameterization
When a Transact-SQL statement is sent to SQL Server, it attempts to determine

whether any of its constants can be replaced with parameters. Subsequent queries

that use the same template will reuse the same execution plan.

For example, let’s say that SQL Server receives the following ad hoc query:

SELECT FirstName, LastName, Phone, Fax, Email, OrgUnitId, UserName

FROM Asset.dbo.Contact

where ContactId = 3

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 6 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

It will try to parameterize it in the following manner and create an execution plan:

SELECT FirstName, LastName, Phone, Fax, Email, OrgUnitId, UserName

FROM Asset.dbo.Contact

where ContactId = @P1

After this, all similar queries will reuse the execution plan:

SELECT FirstName, LastName, Phone, Fax, Email, OrgUnitId, UserName

FROM Asset.dbo.Contact

where ContactId = 11

SQL Server applies autoparameterization only when a query’s template is “safe”—

that is, when the execution plan will not be changed and the performance of SQL

Server will not be degraded if parameters are changed.

NOTE

SQL Server might decide to create and use a different execution plan even if the query is based on
the same field. For example, imagine that you are querying a table with contact information using the
Country field. If your company is operating predominantly in North America, SQL Server might
carry out a query for Denmark contacts based on the index on the Country field and a query for
USA contacts as a table scan.

SQL Server attempts autoparameterization on Insert, Update, and Delete statements

too. In fact, the query must match a set of four templates in order for SQL Server to

attempt autoparameterization:

Select {* | column-list}
From table
Where column-expression
[Order by column-list]

Insert table
Values ({constant | NULL | Default} [, ...n])

Update table
set column-name = constant
where column-expression

Delete table
Where column-expression

Note that a column-expression is an expression that involves only column names,

constants, the And operator, and comparison operators: <, >, =, >=, <=, and <>.

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

SQL Server is more forgiving about formatting the query when autoparameterization

is used, but it still does not allow changes in capitalization or changes in the way an

object is qualified.

Reuse of Stored Procedure Execution Plans
Stored procedures do not have the limitations associated with ad hoc queries, and

that is the main reason stored procedures are reused more often then queries.

The reuse of execution plans is one of the main reasons why the use of stored

procedures is a better solution than the use of ad hoc queries. For example, if you

execute a query three times, SQL Server will have to parse, recompile, and execute

it three times. A stored procedure will most likely be parsed and recompiled only

once—just before the first execution.

NOTE

Someone might argue that the time needed to compile is insignificant compared with the time
needed to execute a query. That is sometimes true. But the SQL Server query engine in this
version compares dozens of new processing techniques in order to select the best one to process
the query or stored procedure. Therefore, the time needed to recompile a stored procedure is
greater in this version than it used to be in earlier versions.

The execution plan consists of two parts. One is reentrant and can be used

concurrently by any number of processes. The other part contains the data context;

that is, the parameters to be used during execution. Although this part can be reused,

it cannot be used by another process concurrently, so more instances of this part will

be created.

The execution plan will be removed from the procedure cache when a process

called lazywriter concludes that the execution plan has not been used for a while and

SQL Server needs more memory, or when the execution plan’s dependent database

objects are changed in any of the following ways:

� The amount of data is significantly changed

� Indexes are created or dropped

� Constraints are added or changed

� Distribution statistics of indexes are changed

� sp_recompile was explicitly called to recompile the stored procedure or trigger

I was impressed with the way that lazywriter determines which execution plans

are obsolete. Microsoft SQL Server 2000 contains a sophisticated emulation of the

aging process. When SQL Server creates an execution plan, it assigns it a “compilation

cost factor.” The value of this factor depends on the expense required to create the

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 7 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

execution plan in terms of system resources. For example, a large execution plan

might be assigned a compilation cost factor of 8, while a smaller one might be

assigned a factor of 2. Each time the execution plan is referenced by a connection,

its age is incremented by the value of the compilation cost factor. Thus, if the

compilation cost factor of the execution plan is 8, each reference to the execution

plan adds 8 to its “age.”

SQL Server uses the lazywriter process to decrement the age of the execution plan.

The lazywriter process periodically loops through the execution plans in the procedure

cache and decrements the age of each execution plan by 1. When the age of an

execution plan reaches 0, SQL Server deallocates it, provided that the system is in

need of the resources and no connection is currently referencing the execution plan.

If a dependent database object is deleted, the stored procedure will fail during

execution. If it is replaced with a new object (new object identification number)

with the same name, the execution plan does not have to be recompiled and will

run flawlessly. Naturally, if the structure of the dependent object is changed so that

objects that the stored procedure is referencing are not present or not compatible

any more, the stored procedure will fail, resulting in a run-time error.

Recompiling Stored Procedures
SQL Server is intelligent enough to recompile a stored procedure when a table

referenced by that stored procedure changes. Unfortunately, SQL Server does not

recompile when you add an index that might help execution of the stored procedure.

The stored procedure will be recompiled only when the procedure cache is flushed

(which usually happens only when SQL Server is restarted).

To force compilation of a stored procedure, a DBA can use sp_recompile:

Exec sp_recompile prListOrders

This task can be very tedious if many stored procedures and/or triggers depend on a

table for which an index was added. Fortunately, it is possible to name the table for

which dependent objects should be recompiled:

Exec sp_recompile Orders

This statement will recompile all triggers and stored procedures that depend on the

Orders table. When a stored procedure or a trigger is specified as a parameter, only

that stored procedure or trigger will be recompiled. If you use a table or a view as a

parameter, all dependent objects will be recompiled.

TIP

Do not forget to recompile dependent objects after you add an index to a table. Otherwise, SQL
Server will not be able to use them.

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A developer might also decide to recompile a stored procedure each time it is used.

A typical example is when a stored procedure is based on a query, the execution and

performance of which depend on the value used as a criterion. We discussed such

an example earlier, in the section “Autoparameterization.”

In that example, when a user requests orders from the USA, the selectivity of the

index might be such that it is better for the query to do a table scan. If a user requests

orders from a country that rarely appears in the particular database, the query engine

might decide to use the index. To force SQL Server to evaluate these options every

time, the developer should use the With Recompile option while designing the stored

procedure:

Create Procedure prListOrders

@Country char(3)

With Recompile

as

Select *

from Orders

where Country = @Country

The execution plan of a stored procedure created in this manner will not be cached

on SQL Server.

It is also possible to force recompilation of a stored procedure during execution

using the With Recompile option:

Exec prListOrders 'USA' With Recompile

Storing Stored Procedures
Stored procedures are persistent database objects, and Microsoft SQL Server stores

them in system tables to preserve them when their execution plan is removed from

the procedure cache or when SQL Server is shut down.

When the Create Procedure statement is executed, Microsoft SQL Server creates

a new record in the sysobjects table of the current database (see Figure 3-2).

This system table contains all types of database objects; it is sometimes useful to

filter it by object type using the xtype field.

NOTE

Microsoft does not recommend direct use of system tables in production system code because it
reserves the right to change them. Microsoft recommends usage of INFORMATION_SCHEMA views
or system stored procedures instead. We will cover these objects in Chapter 8.

7 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The source code of the stored procedure is recorded in the syscomments system

table (unless the stored procedure is encrypted). To see the source code, execute

sp_helptext or query the syscomments system table directly (see Figure 3-3).

The source code is stored in a field named text. The data type of this field is

varchar(4000). Fortunately, this does not mean that stored procedures are

limited to 4000 characters. If the stored procedure is larger than 4000 characters,

SQL Server allocates additional records with an incremented colid field. Since

this field is declared as smallint, a stored procedure can be 32K * 4000 bytes ≈
125MB long. In versions before SQL Server 2000 and SQL Server 7.0, colid was

byte and text was varchar(255), so stored procedures were limited to 255 *

255 ≈ 64ΚΒ.
You can hide the source code for a stored procedure if you encrypt it during

creation. After you create the stored procedure using With Encryption, none of the

users (not even the system administrator) will be able to see it on the server. Keep

in mind that you can (and should) keep source code in a separate external script file.

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 7 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Figure 3-2 Content of sysobjects table

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

NOTE

Before this feature was introduced in SQL Server, developers achieved the same effect by setting
the syscomments.text associated with the stored procedure to null. SQL Server was able to run the
stored procedure without any problem. Unfortunately, this solution caused problems during SQL
Server upgrades, since setup programs expected to use the text of stored procedures in order to
recompile the stored procedures in the new environment. The inclusion of the With Encryption
clause eliminated this issue.

Managing Stored Procedures
SQL Server Enterprise Manager and Query Analyzer are primary tools that you will

use to control the environment and manage stored procedures.

We will review the ways that you can use Enterprise Manager and Query

Analyzer to

� List stored procedures

� View code of stored procedures

Figure 3-3 Content of syscomments table

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� Rename stored procedures

� Delete stored procedures

� List dependent and depending objects

Listing Stored Procedures
The easiest way to list stored procedures in a database is to view them from

Enterprise Manager. All you need to do is follow these steps:

1. Open Enterprise Manager.

2. Expand the server group (click +).

3. Expand the server.

4. Expand the database.

5. Click the Stored Procedures node in a tree; Enterprise Manager lists the stored

procedures in the Details pane (see Figure 3-4).

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 7 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Figure 3-4 Listing stored procedures in Enterprise Manager

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There are two ways to list stored procedures from Query Analyzer. I have shown

how to use the Object Browser in the previous chapter. The traditional way is based

on Transact-SQL. SQL Server is delivered with the system stored procedure

sp_stored_procedures. It lists stored procedures in the current database:

1. Open Query Analyzer.

2. Switch the current database to Asset.

3. Set Query Analyzer to display results in a grid (Query | Results In Grid).

4. Type and execute sp_stored_procedures (Query | Execute). The program will

show the list of stored procedures in the current database (see Figure 3-5).

The stored procedure sp_stored_procedures retrieves a list of stored procedures

from the sysobjects system table in the database. If you want to see the sysobjects

table’s contents, execute the following statement:

Select *
from sysobjects

You can see the results in Figure 3-6.

7 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Figure 3-5 Listing stored procedures in Query Analyzer

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 7 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

To see just user-defined stored procedures, you need to filter the database objects

with xtype set to 'P':

Select *
from sysobjects
where xtype = 'P'

Viewing Code of Stored Procedures
I have already shown you in Chapter 2 how to display a stored procedure from

Enterprise Manager. You just double-click its name and the program displays it in

an editor. I have also shown that you can use the Object Browser in Query Analyzer

to achieve the same task. You just need to find the stored procedure in the Object

Browser, right-click, and then select Edit from the menu; Query Analyzer displays

it in a new Query window.

It is a little bit more difficult to display a stored procedure in the traditional way

using Transact-SQL. You need to use the sp_helptext system stored procedure. The

database that contains the stored procedure must be the current database, and you

must supply the name of the stored procedure as a parameter (see Figure 3-7).

Figure 3-6 A list of database objects in sysobjects

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

NOTE

You can also use sp_helptext to view the code of other database objects such as triggers, views,
defaults, and rules.

If you now want to save the code of the stored procedure, you can copy it through

the Clipboard to your Query pane, or you can save Results from Query Analyzer in a

text file:

1. Click the Results pane of Query Analyzer.

2. Select File | Save and specify a name for the file. Verify that the File Format is

set to ANSI.

The result will be saved to an ANSI file, which you can edit in any text editor,

such as Notepad. You can also open it in the Query pane:

1. Click the Query pane in Query Analyzer.

2. Select File | Open and specify the name of the file.

Figure 3-7 Viewing code of stored procedures in Query Analyzer

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 7 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Renaming Stored Procedures
There are several ways to change the name of a stored procedure. If you use sp_rename

or a command of Enterprise Manger, SQL Server will change the name of the object

in the sysobjects table, but it will not affect code of the stored procedure. You might

receive unexpected results if you try to execute the Create Procedure statement or the

Alter Procedure statement after that.

sp_rename was designed to change the names of all database objects (including

tables, views, columns, defaults, rules, and triggers). In fact, the versatility of this

stored procedure is the reason the code is not changed in the previous example.

The stored procedure is designed only to change the names of objects in the

sysobjects table.

Database objects with code such as stored procedures, views, and user-defined

functions require a different strategy. It is better to drop them and create them again.

Again, do not forget to change all associated objects, such as permissions, at the

same time. The Alter Procedure statement cannot help us in this case, since we need

to change the name of the stored procedure.

NOTE

This operation is not something that you should perform very often. It could be problematic if
you were to do it on a production server. SQL Server contains a procedure cache—a part of the
memory where it keeps compiled versions of stored procedures. You should flush the procedure
cache to force all dependent stored procedures (which refer to the stored procedure by its old
name) to recompile. You can use DBCC FREEPROCCACHE, or you can simply restart SQL Server
and the procedure cache will be emptied.

Deleting Stored Procedures
To delete a stored procedure from Enterprise Manager, right-click the name of the

stored procedure in the list and select Delete. It is also simple to delete a stored

procedure using the Object Browser in Query Analyzer: right-click the name of

the stored procedure in the list and select Delete.

Drop Procedure is a Transact-SQL statement for deleting a stored procedure.

To use it, you must supply the name of the stored procedure as a parameter:

DROP PROCEDURE prTest2

Objects that are referencing the stored procedure that has been dropped will not be

able to run properly after this.

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Listing Dependent and Depending Objects
If you plan to perform some dramatic action, such as deleting or renaming a database

object, you should first investigate which objects will be affected by it. Microsoft

SQL Server keeps a list of dependencies between objects in the sysdepends system

table in each database. To view this list in Enterprise Manager:

1. Right-click the name of the database object.

2. Select All Tasks.

3. Click Display Dependencies, and SQL Server will display a list of

dependencies.

The program displays two lists. The list to the left shows objects that reference

the selected object (dependent). The list to the right shows objects that are

referenced by the object (depending). In the case of prListInventoryEquipment,

since no object in the database is using it, the list to the left is empty.

4. Use the drop-down list box at the top to change the selected object. You can

also double-click any dependent or depending object and SQL Server will

display a form showing its dependencies.

5. Select vEquipment and the program will display the following form. From

this form, we can conclude that this view is based on two tables and that it

is referenced in one stored procedure.

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The system stored procedure sp_depends has a similar function. It can also return

one or two result sets—one for dependent objects and one for depending objects. If

you execute the following statement in Query Analyzer,

exec sp_depends prListLeasedAssets

you will see a result like that shown in Figure 3-8.

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 8 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Figure 3-8 Dependent and depending objects

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

The Object Browser can also be used to display a list of dependencies:

1. Expand the node of a database object (for example, the prListLeasedAssets

stored procedure).

2. Expand the Dependencies node.

NOTE

Unfortunately, you cannot completely rely on SQL Server to get a list of dependencies. It does
not update the content of the sysdepends table in all cases. You can reproduce and observe this
behavior when, for example, you drop and re-create a table. However, in that case, SQL Server
will warn you that it cannot properly update sysdependencies.

This problem has been a known issue since version 4.21, but in SQL Server 7.0 and SQL
Server 2000, the problem is even more difficult to manage, because of deferred name resolution.
Therefore, if SQL Server displays an empty list, you should open the source code and check it!

Neither of these methods will show you dependencies between objects outside of

the current database.

The Role of Stored Procedures in the
Development of Database Applications
To properly design and use stored procedures in the development of applications, it

is critical to understand their role and advantages.

Enforcement of Data Integrity
The most important task for each DBA is to maintain the data integrity of the database

that he or she is managing. If a DBA is not almost fanatical about data integrity,

the results for the database will be potentially disastrous. During my career, I have

encountered databases with

� 106 different provinces of Canada (one of them was France)

� An Address column filled with “Guest had frozen Fish.”

� Nine ways to write HP LaserJet III…

Stored procedures are an ideal tool to help you standardize and control data entry,

and to implement validation of information and even the most complex constraints.

P:\010Comp\D_Base\896-2\ch03.vp
Tuesday, April 29, 2003 2:49:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : S t o r e d P r o c e d u r e D e s i g n C o n c e p t s 8 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

Consistent Implementation of Complex
Business Rules and Constraints
Transact-SQL stored procedures are powerful enough to implement even the most

complex business rules because they can combine both procedural and set-oriented

statements. Everything that is too complicated to be implemented using other

constraints and that is procedural and not just set-oriented can be implemented in

the form of a stored procedure. These are complex and important considerations

and will be expanded upon throughout the remainder of this book.

NOTE

Naturally, stored procedures are not the only way to implement business logic on the server.
Three-tier architecture envisions implementation of business services on a middleware server.

Modular Design
Stored procedures allow developers to encapsulate business functionality and provide

callers with a simple interface. Stored procedures behave like a black box. The caller

does not have to know how they are implemented, just what they do, what input is

required, and what output will be generated. From a development standpoint, this

also reduces the complexity of the design process. You do not need to know how a

stored procedure is implemented. You just need to reference it in your application

or your own procedures.

Maintainability
System design is a cyclic process. Every system needs to be reviewed, changed,

and improved. By hiding database structure details behind stored procedures,

database administrators can reduce or hopefully eliminate the need to change all

other components (that is, client applications and middleware components) of the

system whenever they change the database structure.

Microsoft has achieved the same goal with system stored procedures and system

tables. Although you can use the contents of system tables directly in your applications,

you should base your code on system stored procedures, because Microsoft reserves the

right to change tables from version to version but has promised to keep the interface and

functionality of stored procedures intact.

Another advantage is that stored procedures are implemented on the server and can

be maintained centrally. If the business logic is implemented in the client application, a

huge effort will be needed to deploy changes.

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Reduced Network Traffic
One of the major disadvantages of file-server architecture is high network traffic due to

the fact that entire files are being transferred across the network. If a client/server system

is well designed, the client will receive just the information it needs, which is usually just

a slight portion of the database, thus significantly reducing the network traffic.

If a client/server system is implemented with even more of the processing/business

logic on the server (that is, using stored procedures), even less data will be transferred

back and forth through the network.

Faster Execution
Stored procedures have several performance advantages over ad hoc queries. Stored

procedures are cached in a compiled form on the database server, so when they need

to be used, the server does not have to parse and recompile them again.

A developer can optimize a stored procedure’s code so that every user will use the

best possible method to perform an action.

Enforcement of Security
One sign of a well-designed database system is that it prevents users from directly

accessing the tables and forces them to use stored procedures to perform specific

functions. It is also easier to manage a set of stored procedures by functionality

than to manage table- and column-level permissions.

8 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 3

P:\010Comp\D_Base\896-2\ch03.vp
Monday, April 28, 2003 2:42:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

4
Basic Transact-SQL

Programming Constructs

85

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
T-SQL Identifiers

Database Object Qualifiers
Data Types

Variables
Flow-Control Statements

Cursors

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

All modern relational database management systems are based on an

implementation of SQL (Structured Query Language). Most vendors have

extended SQL into a more sophisticated programming language. The ANSI

committee has standardized the language several times, of which ANSI SQL-92 is the

latest specification. Unfortunately (or fortunately—depending on your point of view),

each vendor has created its own version of this specification to extend ANSI SQL.

The language in use in Microsoft SQL Server is called Transact-SQL (T-SQL). It

complies with the Entry Level ANSI SQL-92 standard, and you can use this ANSI

SQL–compliant language to select, update, insert, and delete records from tables.

T-SQL Identifiers
All databases, servers, and database objects in SQL Server (such as tables, constraints,

stored procedures, views, columns, and data types) must have unique names, or

identifiers. They are assigned when an object is created, and used thereafter to identify

the object. The identifier for the object may, if needed, be changed.

The following are the rules for creating identifiers:

� Identifiers in SQL Server 2000 may have between 1 and 128 characters. There

are exceptions to this rule: certain objects are limited (for instance, temporary

tables can have identifiers up to only 116 characters long). Before Microsoft

SQL Server 7.0, identifiers were limited to 30 characters.

� The first character of the identifier must be a letter, underscore (_), at sign

(@), or number sign (#). The first letter must be defined in the Unicode 2.0

standard. Among other letters, Latin letters a–z and A–Z can be used as a first

character. Some characters (@ and #) have special meanings in T-SQL. They

act as signals to SQL Server to treat their carriers differently.

� Subsequent characters must be letters from the Unicode 2.0 standard, or

decimal digits, or one of the special characters @, #, _, or $.

� SQL Server reserved words should not be used as object identifiers.

� Identifiers cannot contain spaces or other special characters except for @, #,

_, or $.

TIP

You can check which identifiers are valid by using the system stored procedure sp_validname.

8 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the identifier does not comply with one of the previous rules, it is referred to

as a delimited identifier, and it must be delimited by double quotes (" ") or square

brackets ([]) when referenced in T-SQL statements. You can change the default

behavior if you use the Set Quoted_Identifier Off statement. The role of single and

double quotes will be reversed. Single quotes will delimit identifiers, and double

quotes will delimit strings.

As an interim migration aid, you can specify the compatibility mode in which

SQL Server will run using the system stored procedure sp_dbcmptlevel. Changing

the compatibility mode will affect the way in which SQL Server interprets identifiers.

You should check Books Online for more information if you are running in any

compatibility mode other than 80.

NOTE

The designers of Microsoft SQL Server have created a special system data type called sysname
to control the length of identifiers. You should use it—instead of nvarchar(128)—for
variables that will store database object identifiers. If Microsoft again changes the way identifiers
are named, procedures using sysname will automatically be upgraded.

The following are valid identifiers:

� Cost

� Premium36

� prCalcCost

� idx_User

� @@Make

� #Equipment

� [First Name]

� "Equipment ID"

� [User]

� [User.Group]

NOTE

Although delimiters can be used to assign identifiers that are also keywords (such as User) to
objects, this practice is not recommended. You will save a substantial amount of time if you use
regular identifiers.

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 8 7

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Database Object Qualifiers
The complete name of a database object consists of four identifiers, concatenated in

the following manner:

[[[server.][database].][owner].]database_object

Each of these identifiers must comply with the rules described in the previous

section. Server, database, and owner are often referred to as database object qualifiers.

The complete name of the object is often referred to as the fully qualified name, or

four-part name. You do not have to use all the qualifiers all the time. Server and

database are (naturally) the names of the server and the database in which the object

is stored. You can omit the server name and/or the database name if the database

object is located in the current database and/or on the current server.

Owner is the name of the user that created the object. If the object was created by

the user that created the database (or any member of the db_owner fixed database

role or sysadmin server role), SQL Server will record the owner as dbo. In other

cases, the username of whoever created the object will be assigned as the object owner.

When you are referencing the object, if you do not specify the name of the owner,

SQL Server will automatically try to find the named object owned by the current

user. If such an object does not exist, SQL Server will try to locate the named object

with the owner listed as dbo. (Actually, this is the reason you should always explicitly

specify dbo.)

For example, when you are connected to the Asset database on the SQLBox

server, instead of typing

SQLBox.Asset.dbo.prInventoryList

you can use any of the following:

prInventoryList

dbo.prInventoryList

Asset.dbo.prInventoryList

Asset..prInventoryList

SQLBox.Asset..prInventoryList

SQLBox...prInventoryList

SQLBox..dbo.prInventoryList

NOTE

You can also use consecutive periods to skip qualifiers.

8 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Data Types
Data types specify the type of information (such as number, string, picture, date) that

can be stored in a column or a variable.

SQL Server recognizes 27 system-defined data types. Apart from these data types,

you can create user-defined data types to fulfill specific needs.

The following are the categories of system-defined data types:

� Character strings

� Unicode character strings

� Date and time

� Interoximate numeric

� Exact numeric

� Moger numbers

� Appnetary

� Binary

� Special

NOTE

In some cases, you can use different identifiers to refer to a data type in T-SQL code. For example,
the char data type can be referenced as character, and varchar can be referenced
as character varying. Some of these synonyms are based on ANSI SQL-92 standard
requirements.

Character Strings
Character data types store character strings. The three different character types vary

in length and storage characteristics:

� char

� varchar

� text

The char data type is used to store strings of fixed size. As noted earlier, the

maximum size of this data type is 8000 characters, which is a significant increase

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 8 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

over the 255-character limit in early versions. When a variable or a table column is

assigned with a string that is shorter than its nominal size, it is padded with trailing

spaces to fill the specified field length.

The varchar data type stores strings of variable size up to 8000 characters long.

When a character value whose length is less than the nominal size is assigned to the

column or variable, SQL Server does not add trailing spaces to it, but records it as

is. varchar data types occupy two additional bytes in order to record the length

of the string.

NOTE

Maintenance of this information requires some additional computation during I/O operation, but
that time is usually countered by savings in the space required. A record using such columns
occupies less space, and more records fit into a single page. Therefore, SQL Server reads more
records when accessing data, and it is more likely that a single page contains the information that
the user is looking for.

The text data type is used to store huge amounts of data. One field can store up

to 2GB (2
31

– 1 bytes) of information. Only a 16-byte pointer to this data is stored in

the table. Therefore, additional processing overhead is involved with the use of text

columns. There are special functions for processing text values.

The following command creates a table with three fields using different character

string data types:

Create table Contacts(ContactId char(8),

Name varchar(50),

Note text)

Character constants are delimited from the rest of the Transact-SQL code with

quotes. For example, the following statement inserts contact information:

insert into Contacts (ContactId, Name, Note)

values ('CO-92-81', 'Tom Jones', 'Tom@trigon.com')

Unicode Character Strings
Microsoft SQL Server 2000 has three character data types for storing Unicode

data—using non-ASCII character sets. They are equivalent to the char, varchar,

and text data types and are called

� nchar

� nvarchar

� ntext

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 9 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

The main difference between these new data types and the older character data

types is that the new data types can hold Unicode characters, which occupy 2 bytes

per character. Therefore, the maximum string length that they can store is half that

of the corresponding older data types (4000 for nchar and nvarchar).

The following statement creates the same table, but using Unicode data types:

Create table Contacts_2(ContactId nchar(8),

Name nvarchar(50),

Note ntext)

go

Unicode character constants are also delimited with quotes but are prefixed with N':

insert into Contacts_2 (ContactId, Name, Note)

values (N'CO-92-81', N'Tom Jones', N'Tom@trigonblue.com')

This N' prefix might look a little odd, but you will get used to it. Microsoft

documentation is full of samples with Unicode constants. It was some time before

I discovered the reason Microsoft uses N' as a prefix. It stands for “National.” In

fact, acceptable alternative identifiers for these data types are

� National char

� National char varying

� National text

TIP

Typically, it is not a problem if you omit the N' prefix on constants. SQL Server automatically
converts the string to its Unicode equivalent. Naturally, it is better to insert it whenever you are
dealing with Unicode columns or variables, but it is not a big problem. The CPU will just have to
perform a couple of extra cycles to make the conversion.

However, there are cases in which it becomes a problem. When your string constant is part of
a query criterion, then the presence of the N' prefix might significantly affect execution of the
query. If the column is defined as a non-Unicode string and the criterion is specified with the N'
prefix, SQL Server converts every row of the table to compare it with the Unicode constant. As a
result, the query performs a table scan instead of using an index.

Date and Time Data Types
SQL Server supports two data types for storing date and time:

� datetime

� smalldatetime

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

The main difference between these two data types is in the amount of space they

occupy. datetime occupies 8 bytes and smalldatetime only 4 bytes. The

difference between the two types is the precision of the date stored, and the range

of dates that can be used. The precision of smalldatetime is one minute, and it

covers dates from January 1, 1900, through June 6, 2079, which is usually more than

enough. The precision of datetime is 3.33 ms, and it covers dates from January 1,

1753, to December 31, 9999.

Date and time constants are written in Transact-SQL with quote delimiters (as are

character strings):

update Contacts_2

Set DateOfBirth = '2/21/1965 10:03 AM'

where ContactId = 'CO-92-81'

TIP

SQL Server supports many different date and time formats. The Convert() function accepts a
parameter that controls the format of date and time functions (explained in detail in Chapter 5).

If time is not specified in a constant, SQL Server automatically assigns a default

value—12:00 A.M. (midnight). You should keep in mind that SQL Server always

records time as a part of these data types. Thus, if you want to select all contacts

born on a particular day, you should not use something like this:

select *

from Contacts_2

where DateOfBirth = '2/21/1965'

This statement would extract records with DateOfBirth set to midnight of that day.

Such a solution might be acceptable if all other applications recording values in the

field also make the same mistake. A proper solution would be

select *

from Contacts_2

where DateOfBirth >= '2/21/1965' and DateOfBirth < '2/22/1965'

Integer Numbers
Integers are whole numbers. Traditionally, SQL Server supported 1-, 2-, and 4-byte

integers. SQL Server 2000 introduces an 8-byte integer. The bit data type is used

to store 1 or 0, to represent logical true and false values. The following table lists

integer data types, their storage size, and range of values.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 9 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

Data Type Storage Size Minimum Maximum
int 4 bytes –2,147,483,648 (–2G) 2,147,483,647 (2G – 1)

smallint 2 bytes –32768 (–32K) 32767 (32K – 1)

tinyint 1 byte 0 255 (28 – 1)

bigint 8 bytes –9,223,372,036,854,775,808
(–263)

9,223,372,036,854,775,807
(263–1)

bit 1 bit 0 1

The great thing about the int data types is that they can store huge numbers in a

small space. For this reason, they are often used for key values. If the data type of the

primary key is int, the table can store up to four billion records.

TIP

We are starting to see computers with billions of records—both OLTP and data warehousing
systems are getting bigger and bigger, and there are also some implementations of distributed
databases that can use integers higher than two billion. In those cases you could use bigint
for primary keys.

Integer constants do not need delimiters:

update Inventory_2

Set StatusId = 3,

Operational = 0

Where InventoryId = 3432

Approximate Numbers
Decimal numbers are often stored in real and float data types, also known as

single and double precision. Their advantage is that they do not occupy much space

but they can hold large ranges of numbers. The only trouble is that they are not

exact. They store a binary representation of the number that is often approximately,

but not exactly, equal to the original decimal number.

Precision is the number of significant digits in the number, and scale is the number

of digits to the right of the decimal point. For example, the number 123456.789 has a

precision of 9 and a scale of 3. The precision of real numbers is up to 7 digits, and

the precision of float numbers is up to 15 digits. For this reason, they are ideal for

science and engineering (where, for example, you may not care about a couple of

meters when you are measuring the distance between the Earth and the Moon), but

they are not adequate for the financial industry (where a company budget has to be

exact to the last cent).

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

To record the number 234,000,000,000 in mathematics, you can use 234×109
,

and in Transact-SQL, you can use 234E9. This is known as scientific notation.

The number after E is called the exponent, and the number before E is called the

mantissa. This notation can be used to store small constants, too. In mathematics,

0.000000000234 can be written as 0.234×10
–9

, and in Transact-SQL, it can be

written as 0.234E-9.

SQL Server uses the IEEE 754 standard to store these numbers. When a float
or real variable or column is assigned a number, SQL Server first converts the

decimal number to its binary representation. This conversion is the reason these

values are approximately, but not exactly, equal to the decimal version. This is why

they are referred to as approximate numbers. Therefore, you should not rely on the

equivalence of two such numbers. You should limit their use in Where clauses to <

and > operators and avoid the use of the = operator.

Exact Numbers
The decimal or numeric data type does not use approximations when storing

numbers. Unfortunately, it requires much more space than the real and float
data types. When a decimal column or a variable is defined, you have to specify

its scale and precision.

SQL Server can store decimal numbers with a maximum precision of 38. Scale

can be less than or equal to the precision.

In the next example, Weight and Height columns have precision 5 and scale

2—the columns can have up to two digits after the decimal point and up to three

digits before.

Create table Patient (PatientId int,

FullName varchar(30),

Weight decimal(5,2),

Height decimal(5,2),

ADP smallint,

BDZ tinyint)

go

decimal constants do not need delimiters either:

insert into Patient (PatientId, FullName, Weight, Height, ADP, BDZ)

values (834021, 'Tom Jones', 89.5, 188.5, 450, 11)

Monetary Data Types
The money and smallmoney data types are a compromise between the precision

of decimal numbers and the small size of real numbers. smallmoney occupies

4 bytes and uses the same internal structure as int numbers. The data can have up

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 9 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

to four digits after the decimal point. For this reason, you can store numbers ranging

from –214,768.3648 to 214,768.3647 in the smallmoney data type. The money
data type uses the same structure for storing information as the bigint data type.

It occupies 8 bytes for storage, so its values must range from –922,337,203,685,477.5808

to +922,337,203,685,477.5807.

Monetary constants can be preceded by $ or one of 17 other currency symbols

(listed in SQL Server Books Online):

update Inventory_2

Set Rent = $0,

LeaseCost = $119.95

Where InventoryId = 3432

Binary Data Types
Binary data types are used to store strings of bits. SQL Server supports three basic

binary data types, the attributes of which are similar to character data types:

� binary

� varbinary

� image

The binary and varbinary data types can store up to 8000 bytes of

information, and image can store up to 2GB of data. The following example

creates a table that has two binary columns:

CREATE TABLE MyTable (

Id int,

BinData varbinary(8000),

Diagram image)

go

Binary constants are written as hexadecimal representations of bit strings and

prefixed with 0x (zero and x):

Update MyTable

Set BinData = 0x82A7210B

where Id = 121131

Special Data Types
The following sections cover the special data types.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

timestamp
The timestamp data type is not designed to store date or time information, but

rather is a binary value that serves as a version number of the record. The value is

updated every time the record is updated, and the value is unique in the database. It

is used to implement optimistic locking. You can find more details about this subject

in “Optimistic Locking Using Timestamp Values” Chapter 9. Only one field in a

table can be defined as the timestamp value. It occupies 8 bytes.

uniqueidentifier
The uniqueidentifier data type stores 16-byte binary values. These values

are often called globally unique identifiers (GUIDs). When a system generates a new

GUID value, it is guaranteed that the same value cannot be produced again, neither

on the same computer nor on any other computer in the world. GUIDs are generated

using the identification number of the network card and a unique number obtained

from the computer’s clock. Manufacturers of network cards guarantee that the

identification number of a network card will not be repeated in the next 100 years.

A uniqueidentifier constant is usually presented as

� Character string '{BB7DF450-F119-11CD-8465-00AA00425D90}'

� Binary constant 0xaf16a66f7f8b31d3b41d30c04fc96f46

However, you will rarely type such values. In Transact-SQL, GUIDs should be

generated using the NEWID function. There is also a Win32 API function that can

produce a GUID value.

uniqueidentifier values are used relatively often for implementations of

web applications and distributed database systems. In web applications, designers

might use the uniqueidentifier data type to generate a unique identifier before

the record is sent to the database. In distributed systems, this data type serves globally

unique identifiers.

sql_variant
The sql_variant data type is based on the same idea as the variant data type

in Visual Basic. It is designed to allow a single variable, column, or parameter to

store values in different data types. Internally, variant objects record two values:

� The actual value

� The metadata describing the variant: base data type, maximum size, scale,

precision, and collation

The following statement creates a lookup table that can store values of different types:

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 9 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

Create table Lookup(

LookupGroupId tinyint,

LookupId smallint,

LookupValue sql_variant)

Go

Before SQL Server 2000, more than one field was needed to store lookup values of

different data types.

The following statements illustrate how you can insert different types of values in

one column:

Insert Lookup (LookupGroupId, LookupId, LookupValue)

Values (2, 34, 'VAR')

Insert Lookup (LookupGroupId, LookupId, LookupValue)

Values (3, 22, 2000)

Insert Lookup (LookupGroupId, LookupId, LookupValue)

Values (4, 16, '1/12/2000')

Insert Lookup (LookupGroupId, LookupId, LookupValue)

Values (4, 11, $50000)

A sql_variant object can store values of any data type except:

� text

� ntext

� image

� timestamp

� sql_variant

But there are more serious restrictions on their use:

� sql_variant columns can be used in indexes and unique keys if the total

length of the data in the key is shorter than 900 bytes.

� sql_variant columns cannot have an identity property.

� sql_variant columns cannot be part of a computed column.

� You must use functions for converting data types when assigning values from

sql_variant objects to objects of other data types.

� The comparison of sql_variant values has complex rules and is prone

to errors.

� sql_variant values are automatically converted to nvarchar(4000)
when accessed from client applications using OLE DB Provider for SQL

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

Server 7.0 or the SQL Server ODBC Driver from SQL Server version 7.0. If

stored values are longer then 4000 characters, SQL Server will return just the

first 4000 characters.

� sql_variant values are automatically converted to varchar(255) when

accessed from client applications using the SQL Server ODBC Driver from

SQL Server version 6.5 or earlier, or using DB-Library. If stored values are

longer than 255 characters, SQL Server will return just the first 255 characters.

� sql_variant columns are not supported in the Like predicate.

� sql_variant columns do not support full-text indexes.

� sql_variant objects cannot be concatenated using the + operator, even if

the stored values are strings or numeric. The proper solution is to convert

values before concatenation.

� Some functions—Avg(), Identity(), IsNumeric(), Power(), Radians(), Round(),

Sign(), StDev() StDevP(), Sum(),Var(), VarP()—do not support sql_variant
parameters.

TIP

You should be very conservative in using the sql_variant data type. Its use has serious
performance and design implications.

table
The table data type is used to store a recordset for later processing. In some ways,

this data type is similar to a temporary table. You cannot use this type to define a

column. It can only be used as a local variable to return the value of a function.

NOTE

You will find more information about table variables in the “Table Variables” section later in
this chapter, and information about functions in Chapters 5 and 8.

The Cursor Data Type
This is a special kind of data type that contains references to cursors. You will see in

the “Cursors” section later in this chapter that cursors are programming constructs

that are designed to allow operations on records one at a time. It is not possible to

define a column of this type. It can be used only for variables and stored procedure

output values.

User-Defined Data Types
You can define custom data types in the database. These new types are based on

system-defined data types and are accessible only in the database in which they are

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 9 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

defined. You can define them from Enterprise Manager, or using the system stored

procedure sp_addtype:

Exec sp_addtype Phone, varchar(20), 'NOT NULL'

Exec sp_addtype typPostalCode, varchar(7), 'NULL'

The first parameter is the name of the new data type, the second parameter is the

system-defined data type on which it is based, and the third parameter defines the

nullability of the new data type. When the command is executed, the server adds

the type to the systype table of the current database. New types can be based on

any system-defined type except timestamp.

TIP

A fascinating aspect of user-defined data types is that you can change them in one step across
the database. For example, if you decide that decimal(19,6) is not big enough for you
monetary values, you can replace it with decimal(28,13). You can simply run the script
that first changed the data type and then re-create all database objects that are referencing it.
This feature is very useful during the development stage of a database. Unfortunately, when a
database is already in the production phase, tables contain data, and this feature becomes a lot
more complicated.

The designers of Microsoft SQL Server have included one special data type with

the server—sysname. It is used to control the length of Transact-SQL identifiers.

When the server is working in default mode, the length of this type is set to 128

characters. When the compatibility level is set to 65 or 60, the length is shortened

to 30 characters. You should use it to define columns and variables that will contain

Transact-SQL identifiers.

Variables
Variables in Transact-SQL are the equivalent of variables in other programming

languages, but due to the nature of the Transact-SQL language, their use and

behavior are somewhat different.

There are two types of variables in Transact-SQL:

� Local variables

� Global variables

Local Variables
The major difference between the two types of variables is their scope. The scope of

local variables is a batch (a set of T-SQL statements that is sent to SQL Server and

executed simultaneously). This restriction implicitly includes a single stored procedure

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 0 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

(because stored procedures are defined in a batch). This is a significant limitation.

However, several workarounds can be used as solutions to this problem.

A stored procedure cannot access variables defined in other stored procedures.

One way to pass values to and from stored procedures is to use parameters. Keep in

mind that you are passing only the values associated with the variables, not references,

as you can in some other programming languages.

Another way to transfer value between stored procedures or between batches

is the use of more permanent database objects such as tables or temporary tables.

Let’s review basic operations with local variables.

Declaring Variables
Before you can do anything with a local variable, you need to declare it. Declaration

consists of the reserved word Declare and a list of variables and their respective

data types.

The names of variables must comply with the rules for identifiers:

� They must begin with @:

Declare @LastName varchar(50)

� It is possible to define several variables in a single Declare statement. You just

need to separate them with commas:

Declare @LastName varchar(50),
@FirstName varchar(30),
@BirthDate smalldatetime

� You can also define variables based on user-defined data types:

Declare @OfficePhone phone

NOTE

You cannot define the nullability of the variable, as you can with table columns. This does not
mean that variables cannot contain null values. In fact, before assignment, the value of each
variable is null. It is also possible to explicitly set the value of each variable to null.

Assigning Values with the Select Statement
There are several ways to assign a value to a local variable. In early versions of SQL

Server, the only way to do this was to use a modification of the Select statement:

Select @LastName = 'Smith'

It is also possible to assign several variables in the same statement:

P:\010Comp\D_Base\896-2\ch04.vp
Tuesday, April 29, 2003 3:01:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 0 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

Select @LastName = 'Smith',

@FirstName = 'David',

@BirthDate = '2/21/1965'

NOTE

It is necessary to assign a value of an appropriate data type to the variable; however, there are
some workarounds. In some cases, the server will perform an implicit conversion from one data
type to another. SQL Server also includes a set of functions for explicit conversion. Convert() and
Cast() can be used to change the data type of the value (see Chapter 5). Some data types are not
compatible, so explicit conversion is the only solution.

Quite often, variables are assigned values from the result set of the Select

statement:

Select @Make = Equipment.Make,

@Model = Equipment.Model,

@EqType = Equipment.EqType

From EqType INNER JOIN Equipment

ON EqType.EqTypeId = Equipment.EqTypeId

Where EquipmentId = 2

There are some potential problems associated with this approach. How will the

server assign values if the result set contains multiple records, or no records?

If more than one record is returned in the result set, a variable will be assigned the

values from the last record. The only trouble is that we cannot predict which record

will be the last, because this position depends on the index that the server uses to

create the result set.

It is possible to create workarounds to exploit these facts (that is, to use hints

to specify an index or use minimum and/or maximum functions to assign extreme

values). The recommended solution, however, is to narrow the search criteria so that

only one record is returned.

The other behavior that might cause unexpected results is the case in which a

result set does not return any records. It is a common belief and expectation of many

developers that the variable will be set to null. This is absolutely incorrect. The content

of the variable will not be changed in this case.

Observe the following example, or try to run it against the Asset database:

Declare @make varchar(50),

@model varchar(50),

@EqType varchar(50)

Select @Make = 'ACME',

@Model = 'Turbo',

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 0 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

@EqType = 'cabadaster'

Select @Make = make,

@Model = Model,

@EqType = EqType.EqType

From EqType INNER JOIN Equipment

ON EqType.EqTypeId = Equipment.EqTypeId

Where EquipmentId = -1

Select @make make, @model model, @EqType EqType

Since the Equipment table does not have a record with the identifier set to –1, the

variables will keep their original values. Only if the values of the variables were not

previously set will they continue to contain a null value.

The variable can be assigned with any Transact-SQL expression such as a constant,

or a calculation, or even a complete Select statement that returns a single value:

Select @Make = Make,

@Model = Model,

@EquipmentName = Make + ' ' + Model,

@EqType = (select EqType

from EqType

where EqTypeId = Equipment.EqTypeId)

From Equipment

Where EquipmentId = 2

There is one combination of statements and expressions that will result in a syntax

error. It is not possible to return a result set from the Select statement and to assign a

variable in the same Select statement:

Select Make,

@Model = Model -- wrong

From Equipment

Where EquipmentId = 2

Assigning Values with the Set Statement
In SQL Server 2000 and SQL Server 7.0, the syntax of the Set statement has been

expanded to support the assignment of local variables. In earlier versions, it was

possible to use the Set statement only to declare cursor variables. Today, Microsoft

is proclaiming this as a preferred method for assigning variables:

Set @LastName = 'Johnson'

Use of the Set statement is preferable, since it makes code more readable and

reduces the opportunity to make a mistake (assign a variable and return a result set

at the same time).

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 0 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

There is just one problem with the Set statement—it is not possible to assign

several values with one statement. You will be forced to write code like this:

Set @Make = 'ACME'

Set @Model = 'Turbo'

Set @EqType = 'cabadaster'

Assigning Values in the Update Statement
The ability to set the values of local variables in an Update statement is a feature that

is buried deep in the oceans of SQL Server Books Online. It is an element that was

designed to solve concurrency issues when code needs to read and update a column

concurrently:

Update Inventory

Set @mnsCost = Cost = Cost * @fltTaxRate

Where InventoryId = @intInventoryId

Displaying the Values of Variables
The value of a variable can be displayed to the user by using a Select or a Print

statement:

Select @LastName

Print @FirstName

It is possible to include a local variable in a result set that will be returned to

the user:

Select make "Selected make",

Model "Selected Model",

@Model "Original model"

From Equipment

Where EquipmentId = 2

Global Variables
Global variables constitute a special type of variable. The server maintains the values

in these variables. They carry information specific to the server or a current user session.

They can be examined from anywhere, whether from a stored procedure or a batch.

In the SQL Server 7.0 and SQL Server 2000 documentation, Microsoft refers to them

as scalar functions, meaning that they return just one value. Since you can still find

references to global variables in some documentation, and since I would like to use

some of them in this chapter, I will review them both here and in the next chapter,

which is dedicated to functions.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 0 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

Global variable names begin with an @@ prefix. You do not need to declare them,

since the server constantly maintains them. They are system-defined functions and

you cannot declare them.

Let’s review the principal global variables/scalar functions.

@@identity
This is a function/global variable that you will use frequently. It is also a feature that

generates many of the questions on Usenet newsgroups.

One column in each table can be defined as the Identity column, and the server

will automatically generate a unique value in it. This is a standard technique in

Microsoft SQL Server for generating surrogate keys (keys whose values are just

numbers and do not carry any information). Usually, such columns will be set to

assign sequential numbers:

Create table Eq (EqId int identity(1,1),

Make varchar(50),

Model varchar(50),

EqTypeId int)

The @@identity global variable allows you to get the last identity value generated

in the current session. It is important to read the value as soon as possible (that is, in

the next Transact-SQL statement). Otherwise, it might happen that you initiate, for

example, another stored procedure or a trigger that inserts a record to a different

table with an Identity column. In such a case, SQL Server overwrites the number

stored in @@identity with the new value. In the following example, a record will

be inserted and a new identifier will immediately be read:

Declare @intEqId int

Insert into Eq(Make, Model, EqTypeId)

Values ('ACME', 'Turbo', 2)

Select @intEqId = @@identity

If one Transact-SQL statement inserts several records into a table with an Identity

column, @@identity will be set to the value from the last record:

Declare @intEqId int

Insert into Equipment(Make, Model, EqTypeId)

Select Make, Model, EqTypeID

From NewEquipment

Select @intEqId = @@identity

You will use this function very often. One of the most common types of stored

procedures that you will write will just insert a record and return its new key to

the caller.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 0 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

@@error
After each Transact-SQL statement, the server sets the value of this variable to an

integer value:

� 0 If the statement was successful

� Error number If the statement has failed

This global variable is the foundation of all methods for error handling in the

Microsoft SQL Server environment. It is essential to examine the value of this variable

before any other Transact-SQL statement is completed, because the value of @@error

will be reset. Even if the next statement is only a simple Select statement, the value of

the @@error variable will be changed after it. In the following example, let’s assume

that an error will occur during the Update statement. @@error will contain the error code

only until the next statement is executed; even the command for reading the @@error

value will reset it. If it was completed successfully, SQL Server will set @@error to 0.

The only way to preserve the @@error value is to immediately read it and store it in

a local variable. Then it can be used for error handling.

Update Equipment

Set EqTypeId = 3

Where EqTypeId = 2

Select @intErrorCode = @@error

If it is necessary to read more than one global variable immediately after a

statement, all such variables should be included in a single Select statement:

Declare @intEqId int,

@intErrorCode int

Insert into Equipment(Make, Model, EqTypeId)

Values ('ACME', 'Turbo', 2)

Select @intEqId = @@identity,

@intErrorCode = @@Error

The @@error variable will be set to an error number only in the case of errors,

not in the case of warnings. Supplementary information that the server posts regarding

errors or warnings (that is, severity, state, and error messages) are not available inside

a stored procedure or a batch. Only the error number is accessible from a stored

procedure or a batch. Further components of error messages can be read only from

the client application.

You will find more details about use of the @@error function in the “Error Handling”

section in Chapter 7.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 0 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

@@rowcount
After each Transact-SQL statement, the server sets the value of this variable to the

total number of records affected by it. It can be used to verify the success of selected

operations:

select Make, Model, EqTypeid

into OldEquipment

from Equipment

where EqTypeid = 2

if @@rowcount = 0

Print "No rows were copied!"

NOTE

Certain statements (like the If statement) will set @@rowcount to 0, and certain statements (like
Declare) will not affect it.

Rowcount_big() is a function introduced in SQL Server 2000. It returns the

number of affected records in the form of a bigint number.

TIP

When you try to update an individual record, SQL Server will not report an error if your Where
clause specifies a criterion that does not qualify any records. SQL Server will not update anything,
and you might, for example, think that the operation was successful. You can use @@rowcount to
identify such cases.

Table Variables
SQL Server 2000 introduces the table data type. A statement declaring a variable

for table initializes the variable as an empty table with a specified structure. As a

table definition, such a statement includes definitions of columns with their data type,

size, precision, optional primary key, unique and check constraints, and indexes. All

elements have to be defined during the declaration. It is not possible to alter or add

them later.

The following batch declares a variable for table, inserts rows, and returns them

to the user:

Declare @MyTableVar table

(Id int primary key,

Lookup varchar(15))

Insert @MyTableVar values (1, '1Q2000')

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 0 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

Insert @MyTableVar values (2, '2Q2000')

Insert @MyTableVar values (3, '3Q2000')

Select * from @MyTableVar

Go

Because of their nature, table variables have certain limitations:

� table variables can only be part of the Select, Update, Delete, Insert, and

Declare Cursor statements.

� table variables can be used as a part of the Select statement everywhere

tables are acceptable, except as the destination in a Select...Into statement:

Select LookupId, Lookup
Into @TableVariable -- wrong
From Lookup

� table variables can be used in Insert statements except when the Insert

statement collects values from a stored procedure:

Insert into @TableVariable -- wrong
Exec prMyProcedure

� Unlike temporary tables, table variables always have a local scope. They

can be used only in the batch, stored procedure, or function in which they are

declared.

� The scope of cursors based on table variables is limited to the scope of the

variable (the batch, stored procedure, or function in which they are defined).

� table variables are considered to be nonpersistent objects, and therefore they

will not be rolled back after a Rollback Transaction statement.

TIP

If possible, use table variables instead of temporary tables. table variables have less
locking overhead and therefore are faster.

Flow-Control Statements
Flow-control statements from T-SQL are rather rudimentary compared to similar

commands in other modern programming languages such as Visual Basic and C++.

Their use requires knowledge and some skill to overcome their lack of user

friendliness. However, on a positive note, they allow the creation of very complex

procedures.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 0 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

This section covers the use of the following Transact-SQL statements and

programming constructs:

� Comments

� Statement block

� If…Else

� While…Break

� Break

� Continue

� GoTo

� WaitFor

� Begin…End

Comments
You can include comments inside the source code of a batch or a stored procedure;

these comments are ignored during compilation and execution by SQL Server. It

is a common practice to accompany source code with remarks that will help other

developers to understand the your intentions.

Comments can also be a piece of Transact-SQL source code that you do not want

to execute for a particular reason (usually while developing or debugging). Such a

process is usually referred to as commenting out the code.

Single-Line Comments
There are two methods to indicate a comment. A complete line or part of the line can

be marked as a comment if the user places two hyphens (--) at the beginning. The

remainder of the line becomes a comment. The comment ends at the end of the line:

-- This is a comment. Whole line will be ignored.

You can place the comment in the middle of a Transact-SQL statement. The

following example comments out the last column:

Select LeaseId, LeaseVendor --, LeaseNumber

From Lease

Where ContractDate > '1/1/1999'

This type of comment can be nested in another comment defined with the same or

a different method:

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 0 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

-- select * from Equipment –- Just for debugging

This commenting method is compatible with the SQL-92 standard.

Multiline Comments: /* … */
The second commenting method is native to SQL Server. It is suitable for commenting

out blocks of code that can span multiple lines. Such a comment must be divided

from the rest of the code with a pair of delimiters—(/*) and (*/):

/*

This is a comment.

All these lines will be ignored.

*/

/* List all equipment. */

select * from Equipment

Comments do not have a length limit. It is best to write as much as is necessary to

adequately document the code.

SQL Server documentation forbids the nesting of multiline comments. In different

versions and in different tools, the following may or may not generate a syntax error:

/* This is a comment.

/* Query Analyzer will understand the following delimiter

as the end of the first comment. */

This will generate a syntax error in some cases. */

Select * from Equipment

If you type this code in Query Analyzer, the program will not color the last line

of explanation as a comment. (I am not sure you will be able to see a difference on

the paper.) However, during the execution in Query Analyzer, the third line of the

comment is ignored and will return a result set without reporting a syntax error

(see Figure 4-1).

Single-line comments can be nested inside multiline comments:

/*

-- List all equipment.

Select * from Equipment

*/

In Chapter 6, when I discuss batches, I will illustrate the restriction that multiline

comments cannot span more than one batch.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 1 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

Documenting Code
Again, your comments will be of benefit to other developers who read your code;

your comments will be better still if you make their presence in the code as obvious

as possible. It is a favorable, although not required, practice to accompany comment

delimiters with a full line of stars, or to begin each commented line with two stars:

/***

** File: prInsertEquipment.sql

** Name: prInsertEquipment

** Desc: Insert equipment and equipment type

** (if not present).

**

** Return values: ErrorCode

**

** Called by: middleware

**

** Parameters:

Figure 4-1 Problems with comments

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 1 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

** Input Output

** ---------- -----------

** Make EqId

** Model

** EqType

**

** Auth: Dejan Sunderic

** Date: 1/1/2000

**

** Change History

**

** Date: Author: Description:

** -------- -------- -------------------------------------

** 11/1/2003 DS Fixed:49. Better error handling.

** 11/2/2003 DS Fixed:36. Optimized for performance.

***/

Inserting two stars at the beginning of each line serves two purposes:

� They are a visual guide for your eye. If you comment out code this way, you

will not be in doubt whether a piece of code is functional or commented out.

� They force SQL Server to report a syntax error if somebody makes an error

(for example, by nesting comments or by spanning comments over multiple

batches).

The preceding example is based on part of a SQL script for creating a stored

procedure generated by Visual InterDev. It is very useful to keep track of all these

items explicitly, especially Description and Change History. It is a personal choice

to be more elaborate in describing stored procedures, but if you are, your comments

can be used as instant design documentation.

Occasionally, developers believe that this type of header is sufficient code

documentation, but you should consider commenting your code throughout. It is

important to comment not how things are being done, but what is being done. I

recommend that you write your comments to describe what a piece of code is

attempting to accomplish, then write the code itself. In this way, you create design

documentation that eventually becomes code documentation.

Statement Blocks: Begin…End
The developer can group several Transact-SQL statements by using Begin…End

statements in a logical unit. Such units are then typically used in flow-control statements

to execute a group of Transact-SQL statements together. Flow-control statements,

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 1 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

such as If and While, can incorporate a single statement or a statement block to be

executed when certain conditions are met.

Begin

Transact-SQL statements

End

There must be one or more Transact-SQL statements inside a block. If there is

only one statement inside, you could remove the Begin and End keywords. Begin

and End must be used as a pair. If a compiler does not find a matching pair, it will

report a syntax error.

Begin and End can also be nested, but this practice is prone to errors. However,

if you are cautious and orderly, there should not be a problem. An excellent way to

avoid such problems is to indent the code:

Begin

Insert Order(OrderDate, RequestedById,

TargetDate, DestinationLocation)

Values(@OrderDate, @ContactId,

@TargetDate, @LocId)

Select @ErrorCode = @@Error,

@OrderId = @@Identity

if @ErrorCode <> 0

begin

RaiseError('Error occurred while inserting Order!', 16,1)

Return @@ErrorCode

end

End

Conditional Execution: The If Statement
The If statement is the most common flow-control statement. It is used to examine

the value of a condition and to change the flow of code based on the condition. First,

let us review its syntax:

If boolean_expression

{Transact-SQL_statement | statement_block}

[else

{Transact-SQL_statement | statement_block}]

When the server encounters such a construct, it examines the value of the Boolean

expression. If this value is True (1), it executes the statements or the statement block

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 1 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

that follows it. The Else component of the statement is optional. It includes a single

statement or a statement block that will be executed if the Boolean expression returns

a value of False (0).

The following code sample tests the value of the @ErrorCode variable. If the

variable contains a 0, the server inserts a record in the Order table and then records

the value of the identity key and any error that may have occurred in the process.

If @ErrorCode = 0

Begin

Insert Order(OrderDate, RequestedById,

TargetDate, DestinationLocation)

Values(@dtOrderDate, @intContactId,

@dtTargetDate, @intLocId)

Select @intErrorCode = @@Error,

@intOrderId = @@Identity

End

Let us take a look at a more complex case. The following stored procedure inserts

a record in the Equipment table and returns the ID of the record to the caller. The

stored procedure accepts the equipment type, make, and model as input parameters.

The stored procedure must then find out if such an equipment type exists in the

database and insert it if it does not.

Create Procedure prInsertEquipment_1

-- store values in equipment table.

-- return identifier of the record to the caller.

(

@chvMake varchar(50),

@chvModel varchar(50),

@chvEqType varchar(30)

)

As

declare @intEqTypeId int,

@intEquipmentId int

-- read Id of EqType

Select @intEqTypeId = EqTypeId

From EqType

Where EqType = @chvEqType

-- does such eqType already exists in the database

If @intEqTypeId IS NOT NULL

--insert equipment

Insert Equipment (Make, Model, EqTypeId)

Values (@chvMake, @chvModel, @intEqTypeId)

Else

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 1 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

--if it does not exist

Begin

-- insert new EqType in the database

Insert EqType (EqType)

Values (@chvEqType)

-- get id of record that you've just inserted

Select @intEqTypeId = @@identity

--insert equipment

Insert Equipment (Make, Model, EqTypeId)

Values (@chvMake, @chvModel, @intEqTypeId)

End

Select @intEquipmentId = @@identity

-- return id to the caller

return @intEquipmentId

There are a few items that could be changed in this stored procedure, but the

importance of this example is to illustrate a use of the Else statement.

One item that could be improved upon is the process of investigating the EqType

table with the Exists keyword. Its use here is similar to its use in the Where clause.

It tests for the presence of the records in the subquery:

If [NOT] Exists(subquery)

{Transact-SQL_statement | statement_block}

[else

{Transact-SQL_statement | statement_block}]

The stored procedure prInsertEquipment can be modified to use the Exists

keyword:

. . .

If Exists (Select EqTypeId From EqType Where EqType = @chvEqType)

. . .

Naturally, if you use the Not operator, the encapsulated statement will be executed

if the subquery does not return records:

Alter Procedure prInsertEquipment_2

-- store values in equipment table.

-- return identifier of the record to the caller.

(

@chvMake varchar(50),

@chvModel varchar(50),

@chvEqType varchar(30)

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 1 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

)

As

declare @intEqTypeId int,

@intEquipmentId int

-- does such eqType already exists in the database

If Not Exists (Select EqTypeId From EqType Where EqType = @chvEqType)

--if it does not exist

Begin

-- insert new EqType in the database

Insert EqType (EqType)

Values (@chvEqType)

-- get id of record that you've just inserted

Select @intEqTypeId = @@identity

End

else

-- read Id of EqType

Select @intEqTypeId = EqTypeId

From EqType

Where EqType = @chvEqType

--insert equipment

Insert Equipment (Make, Model, EqTypeId)

Values (@chvMake, @chvModel, @intEqTypeId)

Select @intEquipmentId = @@identity

-- return id to the caller

Return @intEquipmentId

Both If and Else statements can be nested:

Create Procedure prInsertEquipment_3

-- store values in equipment table.

-- return identifier of the record to the caller.

(

@chvMake varchar(50),

@chvModel varchar(50),

@chvEqType varchar(30),

@intEquipmentId int

)

As

declare @intEqTypeId int,

@ErrorCode int

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 1 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

-- does such eqType already exists in the database

If Not Exists (Select EqTypeId From EqType Where EqType = @chvEqType)

--if it does not exist

Begin

-- insert new EqType in the database

Insert EqType (EqType)

Values (@chvEqType)

-- get id of record that you've just inserted

Select @intEqTypeId = @@identity,

@ErrorCode = @@Error

If @ErrorCode <> 0

begin

Select 'Unable to insert Equipment Type. Error: ',

@ErrorCode

Return 1

End

End

Else

Begin

-- read Id of EqType

Select @intEqTypeId = EqTypeId

From EqType

Where EqType = @chvEqType

Select @ErrorCode = @@Error

If @ErrorCode <> 0

begin

Select 'Unable to get Id of Equipment Type. Error: ',

@ErrorCode

Return 2

End

End

--insert equipment

Insert Equipment (Make, Model, EqTypeId)

Values (@chvMake, @chvModel, @intEqTypeId)

-- return id to the caller

Select @intEquipmentId = @@identity,

@ErrorCode = @@Error

If @ErrorCode <> 0

Begin

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

Select 'Unable to insert Equipment. Error: ', @ErrorCode

Return 3

End

-- return id to the caller

Select @intEquipmentId = @@identity

Return @intEquipmentId

There is no limit to the number of levels. However, this capability should not be

abused. The presence of too many levels is a sure sign that a more in-depth study

should be made concerning code design.

Looping: The While Statement
Transact-SQL contains only one statement that allows looping:

While Boolean_expression

{sql_statement | statement_block}

[Break]

{sql_statement | statement_block}

[Continue]

If the value of the Boolean expression is True (1), the server will execute one or

more encapsulated Transact-SQL statement(s). From inside the block of statements,

this execution can be controlled with the Break and Continue statements. The server

will interrupt the looping when it encounters a Break statement. When the server

encounters a Continue statement, it will ignore the rest of the statements and restart

the loop.

NOTE

Keep in mind that loops are primarily tools for third-generation languages. In such languages, code
was written to operate with records one at a time. Transact-SQL is a fourth-generation language
and is written to operate with sets of information. It is possible to write code in Transact-SQL that
will loop through records and perform operations on a single record, but you pay for this feature
with severe performance penalties. However, there are cases when such an approach is necessary.

It is not easy to find bona fide examples to justify the use of loops in Transact-SQL.

Let us investigate a stored procedure that calculates the factorial of an integer number:

Create Procedure prCalcFactorial

-- calculate factorial

-- 1! = 1

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 1 7

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 1 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

-- 3! = 3 * 2 * 1

-- n! = n * (n-1)* . . . 5 * 4 * 3 * 2 * 1

@inyN tinyint,

@intFactorial int OUTPUT

As

Set @intFactorial = 1

while @inyN > 1

begin

set @intFactorial = @intFactorial * @inyN

Set @inyN = @inyN - 1

end

return 0

Another example could be a stored procedure that returns a list of properties

assigned to an asset in the form of a string:

Create Procedure prGetInventoryProperties

/*

Return comma-delimited list of properties that are describing asset.

i.e.: Property = Value Unit;Property = Value Unit;Property = Value

Unit;Property = Value Unit;Property = Value Unit;...

*/

(

@intInventoryId int,

@chvProperties varchar(8000) OUTPUT

)

As

declare @intCountProperties int,

@intCounter int,

@chvProperty varchar(50),

@chvValue varchar(50),

@chvUnit varchar(50)

Create table #Properties(

Id int identity(1,1),

Property varchar(50),

Value varchar(50),

Unit varchar(50))

-- identify Properties associated with asset

insert into #Properties (Property, Value, Unit)

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 1 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

select Property, Value, Unit

from InventoryProperty inner join Property

on InventoryProperty.PropertyId = Property.PropertyId

where InventoryProperty.InventoryId = @intInventoryId

-- set loop

select @intCountProperties = Count(*),

@intCounter = 1,

@chvProperties = ''

from #Properties

-- loop through list of properties

while @intCounter <= @intCountProperties

begin

-- get one property

select @chvProperty = Property,

@chvValue = Value,

@chvUnit = Unit

from #Properties

where Id = @intCounter

-- assemble list

set @chvProperties = @chvProperties + '; '

+ @chvProperty + '='

+ @chvValue + ' ' + @chvUnit

-- let's go another round and get another property

set @intCounter = @intCounter + 1

end

drop table #Properties

return 0

Unconditional Execution: The GoTo Statement
The GoTo statement forces the server to continue the execution from a label:

GoTo label
...

label:

The label has to be within the same stored procedure or batch. It is not important

whether the label or the GoTo statement is defined first in the code. The label can

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 2 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

even exist without the GoTo statement. On the contrary, the server will report an

error if it encounters a GoTo statement that points to a nonexistent label.

The following stored procedure uses the GoTo statement to interrupt further

processing and display a message to the user when an error occurs:

Create Procedure prCloseLease

-- Clear Rent, ScheduleId, and LeaseId on all assets associated

-- with specified lease.

@intLeaseId int

As

-- delete schedules

Update Inventory

Set Rent = 0,

LeaseId = null,

LeaseScheduleId = null

Where LeaseId = @intLeaseId

If @@Error <> 0 Goto PROBLEM_1

-- delete schedules

Delete from LeaseSchedule

Where LeaseId = @intLeaseId

If @@Error <> 0 Goto PROBLEM_2

-- delete lease

Delete from Lease

Where LeaseId = @intLeaseId

If @@Error <> 0 Goto PROBLEM_3

Return 0

PROBLEM_1:

Select 'Unable to update Inventory!'

Return 50001

PROBLEM_2:

Select 'Unable to remove schedules from the database!'

Return 50002

PROBLEM_3:

Select 'Unable to remove lease from the database!'

Return 50002

NOTE

The stored procedure is only an academic example. It would be better to use transactions and
rollback changes in case of errors. I will describe transactions in Chapter 6.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 2 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

Scheduled Execution: The WaitFor Statement
There are two ways to schedule the execution of a batch or stored procedure in SQL

Server. One way is based on the use of SQL Server Agent. The other way is to use

the WaitFor statement. The WaitFor statement allows the developer to specify the

time when, or a time interval after which, the remaining Transact-SQL statements

will be executed:

WaitFor {Delay 'time' | Time 'time'}

There are two variants to this statement. One specifies the delay (time interval)

that must pass before the execution can continue. The time interval specified as a

parameter of the statement must be less than 24 hours. In the following example,

the server will pause for one minute before displaying the list of equipment:

WaitFor Delay '00:01:00'

Select * from Equipment

The other variant is more significant. It allows the developer to schedule a time

when the execution is to continue. The following example runs a full database backup

at 11:00 P.M.:

WaitFor Time '23:00'

Backup Database Asset To Asset_bkp

There is one problem with this Transact-SQL statement. The connection remains

blocked while the server waits to execute the statement. Therefore, it is much better

to use SQL Server Agent than the WaitFor statement to schedule jobs.

Cursors
Relational databases are designed to work with sets of data. In fact, the purpose of the

Select statement, as the most important statement in SQL, is to define a set of records.

In contrast, end-user applications display information to the user record by record

(or maybe in small batches). To close the gap between these conflicting requirements,

RDBMS architects have invented a new class of programming constructs—cursors.

Many types of cursors are implemented in various environments using different

syntax, but all cursors work in a similar fashion:

1. A cursor first has to be defined and its features have to be set.

2. The cursor must be populated.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 2 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

3. The cursor has to be positioned (scrolled) to a record or block of records that

needs to be retrieved (fetched).

4. Information from one or more current records is fetched, and then some

modification can be performed or some action can be initiated based on

the fetched information.

5. Optionally, Steps 3 and 4 are repeated.

6. Finally, the cursor must be closed and resources released.

Cursors can be used on both server and client sides. SQL Server and the APIs for

accessing database information (OLE DB, ODBC, DB-Library) all include sets of

functions for processing cursors.

SQL Server supports three classes of cursors:

� Client cursors

� API server cursors

� Transact-SQL cursors

The major difference between Transact-SQL cursors and other types of cursors is

their purpose. Transact-SQL cursors are used from stored procedures, batches, functions,

or triggers to repeat custom processing for each row of the cursor. Other kinds of cursors

are designed to access database information from the client application. We will review

only Transact-SQL cursors.

Transact-SQL Cursors
Processing in Transact-SQL cursors has to be performed in the following steps:

1. Use the Declare Cursor statement to create the cursor based on the Select

statement.

2. Use the Open statement to populate the cursor.

3. Use the Fetch statement to change the current record in the cursor and to store

values into local variables.

4. Do something with the retrieved information.

5. If needed, repeat Steps 3 and 4.

6. Use the Close statement to close the cursor. Most of the resources (memory,

locks, and so on) will be released.

7. Use the Deallocate statement to deallocate the cursor.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 2 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

NOTE

Transact-SQL cursors do not support processing blocks of records. Only one record can be fetched
at a time.

It is best to show this process through an example. We will rewrite the stored

procedure that we used to illustrate the use of the While statement. The purpose of

this stored procedure is to collect the properties of a specified asset and return them

in delimited format (Property = Value Unit;). The final result should look like this:

CPU=Pentium II;RAM=64 MB;HDD=6.4 GB;Resolution=1024x768;Weight=2 kg;

Here is the code for the new instance of the stored procedure:

Alter Procedure prGetInventoryProperties_Cursor

/*

Return comma-delimited list of properties that are describing asset.

Property = Value unit;Property = Value unit;Property = Value unit;

Property = Value unit;Property = Value unit;Property = Value unit;...

*/

(

@intInventoryId int,

@chvProperties varchar(8000) OUTPUT,

@debug int = 0

)

As

declare @intCountProperties int,

@intCounter int,

@chvProperty varchar(50),

@chvValue varchar(50),

@chvUnit varchar(50),

@insLenProperty smallint,

@insLenValue smallint,

@insLenUnit smallint,

@insLenProperties smallint

Set @chvProperties = ''

Declare @CrsrVar Cursor

Set @CrsrVar = Cursor For

select Property, Value, Unit

from InventoryProperty inner join Property

on InventoryProperty.PropertyId = Property.PropertyId

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 2 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

where InventoryProperty.InventoryId = @intInventoryId

Open @CrsrVar

Fetch Next From @CrsrVar

Into @chvProperty, @chvValue, @chvUnit

While (@@FETCH_STATUS = 0)

Begin

Set @chvUnit = Coalesce(@chvUnit, '')

If @debug <> 0

Select @chvProperty Property,

@chvValue [Value],

@chvUnit [Unit]

-- check will new string fit

Select @insLenProperty = DATALENGTH(@chvProperty),

@insLenValue = DATALENGTH(@chvValue),

@insLenUnit = DATALENGTH(@chvUnit),

@insLenProperties = DATALENGTH(@chvProperties)

If @insLenProperties + 2 + @insLenProperty + 1 +

@insLenValue + 1 + @insLenUnit > 8000

Begin

Select 'List of properties is too long (> 8000 char)!'

Return 1

End

-- assemble list

Set @chvProperties = @chvProperties + @chvProperty + '='

+ @chvValue + ' ' + @chvUnit + '; '

If @debug <> 0

Select @chvProperties chvProperties

Fetch Next From @CrsrVar

Into @chvProperty, @chvValue, @chvUnit

End

Close @CrsrVar

Deallocate @CrsrVar

Return 0

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 2 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

The stored procedure will first declare a cursor:

Declare @CrsrVar Cursor

The cursor will then be associated with the collection of properties related to the

specified asset:

Set @CrsrVar = Cursor For

Select Property, Value, Unit

From InventoryProperty inner join Property

On InventoryProperty.PropertyId = Property.PropertyId

Where InventoryProperty.InventoryId = @intInventoryId

Before it can be used, the cursor needs to be opened:

Open @CrsrVar

The content of the first record can then be fetched into local variables:

Fetch Next From @CrsrVar

Into @chvProperty, @chvValue, @chvUnit

If the fetch was successful, we can start a loop to process the complete recordset:

While (@@FETCH_STATUS = 0)

After the values from the first record are processed, we read the next record:

Fetch Next From @CrsrVar

Into @chvProperty, @chvValue, @chvUnit

Once all records have been read, the value of @@fetch_status is set to –1 and

we exit the loop. We need to close and deallocate the cursor and finish the stored

procedure:

Close @CrsrVar

Deallocate @CrsrVar

Now, let’s save and execute this stored procedure:

Declare @chvRes varchar(8000)

Exec prGetInventoryProperties_Cursor 5, @chvRes OUTPUT

Select @chvRes Properties

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 2 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

SQL Server will return the following:

Properties

CPU=Pentium II ; RAM=64 MB; HDD=6.4 GB; Resolution=1024x768 ; Weight

=2 kg; Clock=366 MHz;

Cursor-Related Statements and Functions
Let’s review statements and functions that you need to utilize to control cursors.

The Declare Cursor Statement
The Declare Cursor statement declares the Transact-SQL cursor and specifies its

behavior and the query on which it is built. It is possible to use syntax based on the

SQL-92 standard or native Transact-SQL syntax. I will display only the simplified

syntax. If you need more details, refer to SQL Server Books Online.

Declare cursor_name Cursor

For select_statement

The name of the cursor is an identifier that complies with the rules set for local

variables.

The Open Statement
The Open statement executes the Select statement specified in the Declare Cursor

statement and populates the cursor:

Open { { [Global] cursor_name } | cursor_variable_name}

The Fetch Statement
The Fetch statement reads the row specified in the Transact-SQL cursor:

Fetch [[Next | Prior | First | Last

| Absolute {n | @nvar}
| Relative {n | @nvar}

]

From

]

{ { [Global] cursor_name } | @cursor_variable_name}
[Into @variable_name[,...n]]

This statement can force the cursor to position the current record at the Next, Prior,

First, or Last record. It is also possible to specify the Absolute position of the record

or a position Relative to the current record.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 2 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

If the developer specifies a list of global variables in the Into clause, those variables

will be filled with values from the specified record.

If the cursor has just been opened, you can use Fetch Next to read the first record.

@@fetch_status
@@fetch_status is a function (or global variable) that returns the success code of the

last Fetch statement executed during the current connection. It is often used as an

exit criterion in loops that fetch records from a cursor.

Success Code Description
0 Fetch was completely successful.

–1 The Fetch statement tried to read a record outside the recordset (last record was already
read) or the Fetch statement failed.

–2 Record is missing (for example, somebody else has deleted the record in the meantime).

@@cursor_rows
As soon as the cursor is opened, the @@cursor_rows function (or global variable) is

set to the number of records in the cursor (you can use this variable to loop through

the cursor also).

When the cursor is of a dynamic or keyset type, the @@cursor_rows function will

be set to a negative number to indicate it is being asynchronously populated.

The Close Statement
The Close statement closes an open cursor, releases the current recordset, and

releases locks on rows held by the cursor:

Close { { [Global] cursor_name } | cursor_variable_name }

This statement must be executed on an opened cursor. If the cursor has just been

declared, SQL Server will report an error.

The Deallocate Statement
After the Close statement, the structure of the cursor is still in place. It is possible to

open it again. If you do not plan to use it any more, you should remove the structure

as well, by using the Deallocate statement:

Deallocate { { [Global] cursor_name } | @cursor_variable_name}

Problems with Cursors
Cursors are a valuable but dangerous tool. Their curse is precisely the problem they

are designed to solve—the differences between the relational nature of database

systems and the record-based nature of client applications.

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 2 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

First of all, cursors are procedural and thus contradict the basic idea behind the

SQL language—that is, to define what is needed in a result, not how to get it.

Performance penalties are an even larger problem. Regular SQL statements are

set-oriented and much faster. Some types of cursors lock records in the database and

prevent other users from changing them. Other types of cursors create an additional

copy of all records and then work with them. Both approaches have performance

implications.

Client-side cursors and API server cursors are also not the most efficient way to

transfer information between server and client. It is much faster to use a “fire hose”

cursor, which is actually not a cursor at all. You can find more details about “fire

hose” cursors in Hitchhiker’s Guide to Visual Basic and SQL Server, 6th edition, by

William Vaughn (Microsoft Press, 1998).

The Justified Uses of Cursors
The rule of thumb is to avoid the use of cursors whenever possible. However, in

some cases, such avoidance is not possible.

Cursors can be used to perform operations that cannot be performed using

set-oriented statements. It is acceptable to use cursors to perform processing based

on statements, stored procedures, and extended stored procedures, which are designed

to work with one item at a time. For example, the sp_addrolemember system stored

procedure is designed to set an existing user account as a member of the SQL Server

role. If you can list users that need to be assigned to a role, you can loop through

them (using a cursor) and execute the system stored procedure for each of them.

Excessive processing based on a single row (for example, business logic implemented

in the form of an extended stored procedure) can also be implemented using a cursor.

If you implement such a loop in a stored procedure instead of in a client application,

you can reduce network traffic considerably.

Another example could be the export of a group of tables from a database to text

files using bcp. The bcp utility is a command-prompt program that can work with

one table at a time. To use it within a stored procedure, you need to execute it using

the xp_cmdshell extended stored procedure, which can run just one command at

a time:

Create Procedure prBcpOutTables

--loop through tables and export them to text fields

@debug int = 0

As

Declare @chvTable varchar(128),

@chvCommand varchar(255)

Declare @curTables Cursor

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : B a s i c T r a n s a c t - S Q L P r o g r a m m i n g C o n s t r u c t s 1 2 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

-- get all USER-DEFINED tables from current database

Set @curTables = Cursor FOR

select name

from sysobjects

where xType = 'U'

Open @curTables

-- get first table

Fetch Next From @curTables

Into @chvTable

-- if we successfully read the current record

While (@@fetch_status = 0)

Begin

-- assemble DOS command for exporting table

Set @chvCommand = 'bcp "Asset..[' + @chvTable

+ ']" out C:\sql7\backup\' + @chvTable

+ '.txt -c -q -Sdejan -Usa -Pdejan'

-- during test just display command

If @debug <> 0

Select @chvCommand chvCommand

-- in production execute DOS command and export table

If @debug = 0

Execute xp_cmdshell @chvCommand, NO_OUTPUT

Fetch Next From @curTables

Into @chvTable

End

Close @curTables

Deallocate @curTables

Return 0

If you execute this stored procedure (without specifying the @debug parameter),

SQL Server will execute the following sequence of command-prompt commands to

export tables:

bcp "Asset..[AcquisitionType]" out C:\sql7\backup\AcquisitionType.txt -c -q

-Sdejan -Usa -Pdejan

bcp "Asset..[MyEquipment]" out C:\sql7\backup\MyEquipment.txt -c -q

P:\010Comp\D_Base\896-2\ch04.vp
Monday, April 28, 2003 4:40:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

-Sdejan -Usa -Pdejan

bcp "Asset..[Equipment]" out C:\sql7\backup\Equipment.txt -c -q

-Sdejan -Usa -Pdejan

bcp "Asset..[EqType]" out C:\sql7\backup\EqType.txt -c -q

-Sdejan -Usa -Pdejan

bcp "Asset..[ActivityLog]" out C:\sql7\backup\ActivityLog.txt -c -q

-Sdejan -Usa -Pdejan

bcp "Asset..[OrderType]" out C:\sql7\backup\OrderType.txt -c -q

-Sdejan -Usa -Pdejan

bcp "Asset..[OldEquipment]" out C:\sql7\backup\OldEquipment.txt -c -q

-Sdejan -Usa -Pdejan

bcp "Asset..[Property]" out C:\sql7\backup\Property.txt -c -q

-Sdejan -Usa -Pdejan

bcp "Asset..[OrderStatus]" out C:\sql7\backup\OrderStatus.txt -c -q

-Sdejan -Usa –Pdejan

...

TIP

In Chapter 9, in the “A While Loop with Min() or Max() Functions” section, I will demonstrate
another method for looping through a set of records using the While statement. Personally,
I seldom use cursors; I prefer to use the method demonstrated in Chapter 9.

1 3 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 4

P:\010Comp\D_Base\896-2\ch04.vp
Tuesday, April 29, 2003 3:06:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

5
Functions

131

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
Using Functions

Types of Functions

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 3 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

M
icrosoft has done a fantastic job providing database administrators and

developers with an extensive set of built-in functions for SQL Server.

In SQL Server 2000, you are now also able to create your own functions.

We will cover the design of user-defined functions in detail in Chapter 8 and focus

here on the uses and attributes of built-in functions.

Using Functions
Functions are Transact-SQL elements that are used to evaluate zero or more input

parameters and return data to the caller. The syntax for calling a function is

Function_name ([parameter] [,...n])

For example, the Sin() function has the following syntax:

Sin(float_expression)

So, to display the sine of 45 degrees, you would use:

SELECT Sin(45)

Some functions accept more than one parameter, and some do not require parameters

at all. For example, the GetDate() function, which returns the current date and time

on the system clock to the caller, accepts no parameters. We will use the GetDate()

function to illustrate the most common ways to use functions in Transact-SQL.

In Selection and Assignment
Functions can be used to represent a value or a part of a value to be assigned or

selected in a Set or Select statement. In the following example, two variables are

populated using values stored in the selected record and a third variable is populated

using a function:

Select @chvMake = Make,

@Model = Model,

@dtsCurrentDate = GetDate()

from Equipment

where EquipmentID = @intEqId

As previously noted, this use is not limited to the Select statement. Values can be

assigned in the Set statement, displayed in the Print statement, stored in a table using

Update and Insert, or even used as parameters for other functions:

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Create Procedure prInsertNewSchedule

@intLeaseId int,

@intLeaseFrequencyId int

As

Insert LeaseSchedule(LeaseId, StartDate,

EndDate, LeaseFrequencyId)

Values (@intLeaseId, GetDate(),

DateAdd(Year, 3, GetDate()), @intLeaseFrequencyId)

return @@Error

This procedure inserts the current date using the GetDate() function in the StartDate

column. The EndDate column is calculated using the DateAdd() function, which

accepts the GetDate() function as one parameter. It is used to set the end date three

years from the current date. This was just an example of the usage of functions. You

will be able to see more details about GetDate() and DateAdd() in the “Date and Time

Functions” section of this chapter.

As Part of the Selection Criteria
Functions are often used in the Where clause of Transact-SQL statements:

SELECT Inventory.InventoryId

FROM LeaseSchedule INNER JOIN Inventory

ON LeaseSchedule.ScheduleId = Inventory.LeaseScheduleId

WHERE (LeaseSchedule.EndDate < GetDate())

AND (Inventory.Rent <> 0)

This Select statement selects the lease schedules that have reached the end of the

term by comparing the EndDate to the current date.

In Expressions
You can also use functions anywhere you can use an expression, such as in an If

statement, which requires a Boolean expression to determine further execution steps:

If @dtmLeaseEndDate < GetDate()

Begin

...

end

C h a p t e r 5 : F u n c t i o n s 1 3 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 3 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

As Check and Default Constraints
Functions can also be used to define Check and Default constraints:

ALTER TABLE [dbo].[Order] (

[OrderId] [int] IDENTITY (1, 1) NOT null ,

[OrderDate] [smalldatetime] NOT null ,

[RequestedById] [int] NOT null ,

[TargetDate] [smalldatetime] NOT null ,

[CompletionDate] [smalldatetime] null ,

[DestinationLocationId] [int] null

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Order] WITH NOCHECK ADD

CONSTRAINT [DF_Order_OrderDate] DEFAULT (GetDate()) FOR [OrderDate],

CONSTRAINT [PK_Order] PRIMARY KEY CLUSTERED

(

[OrderId]

) ON [PRIMARY]

GO

In this case, the Order table will automatically set the OrderDate field to the

current date if a value is not supplied.

Instead of Tables
Because SQL Server 2000 has a new table data type, it is also possible for a

function to return a recordset. Such functions are referred to as table-valued functions.

These functions can be used in T-SQL statements anywhere tables are expected. In

the following example, the result of the function is joined with a table (EqType) to

produce a new result set:

declare @dtmLastMonth datetime

set @dtmLastMonth = DateAdd(month, -1, GetDate())

Select *

from dbo.fnNewEquipment (@dtmLastMonth) NewEq

inner join EqType

on NewEq.EqTypeId = EqType.EqTypeId

To reference any user-defined function including a table-valued function, you

must specify the object owner along with the function name (owner.function). The

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

only exception to this rule is in the use of built-in table-valued functions. In this

case, you must place two colons (::) in front of the function name. For example,

the fn_ListExtendedProperty() function lists properties of the database object (see

Figure 5-1). For more details about extended properties, see Chapter 9.

Types of Functions
There are three primary groups of built-in functions, distinguishable by the type of

result that is returned:

� Scalar

� Aggregate

� Rowset

C h a p t e r 5 : F u n c t i o n s 1 3 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

Figure 5-1 Using table-valued user-defined functions

P:\010Comp\D_Base\896-2\ch05.vp
Tuesday, April 29, 2003 3:10:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 3 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

Scalar Functions
Most of the time when we refer to functions, we are thinking of the scalar type. The

name of this type refers to the fact that these functions return only one value.

Based on their functionality (although not necessarily their return values), we can

divide scalar functions into the following groups:

� System

� Date and time

� String

� Mathematical

� Metadata

� Security

� Text and image

� Cursor

� Configuration

� System statistical

We will not be able to cover in detail all the built-in functions available in SQL

Server 2000, but we will discuss the key functions that you will use most frequently.

You can find complete documentation of all built-in functions in SQL Server Books

Online.

System Functions
System functions return information related to the Microsoft SQL Server environment.

They are used to return object names and identifiers, the current user, the current

database, session, application, and login; to investigate the data type of an expression;

and to perform conversions between data types.

Let’s examine some of the system functions that are likely to be more frequently

used and look at some examples.

Conditional Expression: Case In other programming languages, Case is considered

to be a flow-control programming construct. In earlier versions of SQL Server

documentation, Case was classified as an expression. Since SQL Server 7.0, it is

classified as a function, which is mathematically more correct. However, all of

these classifications are more or less true.

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : F u n c t i o n s 1 3 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

The Case function/expression enables the user to evaluate an expression and to

return the value associated with the result of the expression. For example, the Case

function/expression in the following stored procedure returns the approximate number

of days associated with a leasing schedule:

Create Procedure prLeasePeriodDuration

-- return approximate number of days associated with lease frequency

@inyScheduleFrequencyId tinyint,

@insDays smallint OUTPUT

As

Declare @chvScheduleFrequency varchar(50)

Select @chvScheduleFrequency = ScheduleFrequency

From ScheduleFrequency

where ScheduleFrequencyId = @inyScheduleFrequencyId

select @insDays =

Case @chvScheduleFrequency

When 'monthly' then 30

When 'semi-monthly' then 15

When 'bi-weekly' then 14

When 'weekly' then 7

When 'quarterly' then 92

When 'yearly' then 365

END

return

The Case function/expression works much like a Select statement with

nested If statements. In fact, most of the time, you can write equivalent code

using nested If statements.

There are two types of Case function/expressions:

� Simple Case function/expressions

� Searched Case function/expressions

A simple Case function/expression has the following syntax:

Case input_expression
WHEN when_expression THEN result_expression

[...n]
[

ELSE else_result_expression
]

END

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 3 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

The previous example used this kind of Case function/expression. SQL Server

attempts to match the input_expression with one of the when_expressions. If it

is successful, it returns the result_expression associated with the first matching

when_expression. An Else clause is also part of the Case function/expression.

If the value of the input_expression is not equal to either of the when_expressions,

the function returns the value of the else_result_expression.

A searched Case function/expression is very similar. The only difference is that it

does not have an input_expression. The complete criteria are inside the When clause

in the form of a Boolean expression:

Case

WHEN Boolean_expression THEN result_expression
[...n]

[

ELSE else_result_expression
]

END

SQL Server returns the result_expression associated with the first Boolean_expression,

which is True. If all Boolean_expressions are false, SQL Server returns the

else_result_expression.

In the following example, a searched Case function/expression has to be used

because the Boolean_expressions have different operators (= and Like):

Create Procedure prListLeaseInfo

-- list all lease contract information

As

Select LeaseVendor [Lease Vendor],

LeaseNumber [Lease Number],

Case -- some vendors have id of sales reps

-- incorporated in lease numbers

When LeaseVendor = 'Trigon FS'

THEN SUBSTRING(LeaseNumber, 5, 12)

When LeaseVendor Like 'EB%'

THEN SUBSTRING(LeaseNumber, 9, 8)

When LeaseVendor Like 'MMEX%'

THEN SUBSTRING(LeaseNumber, 7, 6)

When LeaseVendor = 'DAFS'

THEN SUBSTRING(LeaseNumber, 8, 11)

Else 'Unknown'

end [Lease Agent],

ContractDate [Contract Date]

from Lease

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : F u n c t i o n s 1 3 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

TIP

Although both examples use Case functions/expressions as a part of the Select statement, keep in
mind that you can use it anywhere that you can place an expression. This flexibility might come in
very handy in some situations.

Getting Information about Data You can use numerous functions to return information

about expressions, the most important of which are the following:

� IsDate()

� IsNumeric()

� DataLength()

� Binary_CheckSum()

IsDate() is a function that is used to determine whether an expression is a valid

date. It is particularly useful when you need to read data from text files. If the result

of this function is 1 (true), SQL Server guarantees that you will be able to convert

the data to the datetime data type. IsDate() uses the following syntax:

IsDate(expression)

In the following stored procedure, SQL Server verifies that Lease Data (received

as a string) can be converted to a datetime value. It then stores this result with the

rest of the parameters in the Lease table.

Create Procedure prLoadLeaseContract

-- insert lease contract information and return id of lease

@chvLeaseVendor varchar(50),

@chvLeaseNumber varchar(50),

@chvLeaseDate varchar(50),

@intLeaseId int OUTPUT

As

Declare @intError int

-- test validity of date

if IsDate(@chvLeaseDate) = 0

begin

Raiserror ('Unable to Convert to date.', 16, 1)

return 1

end

insert into Lease(LeaseVendor, LeaseNumber, ContractDate)

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 4 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

values (@chvLeaseVendor, @chvLeaseNumber,

Convert(smalldatetime, @chvLeaseDate))

select @intError = @@Error,

@intLeaseId = @@identity

return @intError

You can use the IsNumeric() function to determine whether it is possible to

convert a character value or expression into one of the numeric data types (int,

smallint, tinyint, real, float, money, smallmoney, decimal, or

numeric). IsNumeric() uses the following syntax:

IsNumeric(expression)

The DataLength() function returns the number of bytes used to store or display an

expression. This information is particularly useful when processing variable-length

character data types.

NOTE

DataLength() returns the number of bytes used to store the expression, not the number of
characters, as Len() function. For example, each character in the nvarchar data type
(or any of the Unicode data types) uses 2 bytes.

The DataLength() function uses the following syntax:

DataLength(expression)

If you assign a string value to a variable, and that value is too long, SQL Server

will not report an error. It will simply truncate the value and assign it. The following

stored procedure was originally designed without verifying that the list of properties

will fit into the output variable. Since SQL Server 2000 and SQL Server 7.0 support

data lengths up to 8000 characters using the varchar data type, it is unlikely that

you will exhaust the available storage very often. However, experienced developers

do not rely on such expectations (just think of the Y2K problem).

This stored procedure uses the DataLength() function to evaluate whether the

resulting string is longer then 8000 characters before the strings are concatenated:

Alter Procedure prGetInventoryProperties

-- return comma-delimited list of properties describing asset.

-- i.e.: Property = Value unit;Property = Value unit;Property

-- = Value unit;

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : F u n c t i o n s 1 4 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

(

@intInventoryId int,

@chvProperties varchar(8000) OUTPUT

)

As

declare @intCountProperties int,

@intCounter int,

@chvProperty varchar(50),

@chvValue varchar(50),

@chvUnit varchar(50),

@insLenProperty smallint,

@insLenValue smallint,

@insLenUnit smallint,

@insLenProperties smallint

Create table #Properties(

Id int identity(1,1),

Property varchar(50),

Value varchar(50),

Unit varchar(50))

-- identify Properties associated with asset

insert into #Properties (Property, Value, Unit)

select Property, Value, Unit

from InventoryProperty inner join Property

on InventoryProperty.PropertyId = Property.PropertyId

where InventoryProperty.InventoryId = @intInventoryId

-- set loop

select @intCountProperties = Count(*),

@intCounter = 1,

@chvProperties = ''

from #Properties

-- loop through list of properties

while @intCounter <= @intCountProperties

begin

-- get one property

select @chvProperty = Property,

@chvValue = Value,

@chvUnit = Unit

from #Properties

where Id = @intCounter

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 4 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

-- check will new string fit

select @insLenProperty = DataLength(@chvProperty),

@insLenValue = DataLength(@chvValue),

@insLenUnit = DataLength(@chvUnit),

@insLenProperties = DataLength(@chvProperties)

if @insLenProperties + 2 + @insLenProperty

+ 1 + @insLenValue + 1 + @insLenUnit > 8000

begin

select 'List of properties is too long '

+ '(over 8000 characters)!'

return 1

end

-- assemble list

set @chvProperties = @chvProperties + '; '

+ @chvProperty + '='

+ @chvValue + ' '

+ @chvUnit

-- let's go another round and get another property

set @intCounter = @intCounter + 1

end

drop table #Properties

return 0

SQL Server 2000 introduces the Binary_CheckSum() function, which calculates

the binary checksum of a specified expression or set of table columns. It is designed

to detect changes in a record. This function uses the following syntax:

Binary_CheckSum(*|expression[,...n])

TIP

Binary_CheckSum() is a much-needed tool for data warehousing projects. It allows DBAs to detect
and handle the problem of “slowly changing dimensions” type 2 and 3.

The following stored procedure compares the binary checksum of columns

containing new information with the checksum of columns already stored in the

table; if the values do not match, the new data will be inserted into the table:

CREATE Procedure prUpdateEquipment

-- Check if values were changed in the meanwhile

-- Update values in equipment table.

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : F u n c t i o n s 1 4 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

@intEquipmentId int,

@chvMake varchar(50),

@chvModel varchar(50),

@intEqTypeId int,

@debug int = 0

As

declare @intNewEquipmentBC int

set @intNewEquipmentBC = Binary_CheckSum(@chvMake,

@chvModel,

@intEqTypeId)

if @debug <> 0

Select @intNewEquipmentBC NewBC

if @debug <> 0

select EquipmentBC OldBC

from EquipmentBC

where EquipmentId = @intEquipmentId

if not exists (Select EquipmentBC

from EquipmentBC

where EquipmentId = @intEquipmentId)

insert EquipmentBC (EquipmentId, EquipmentBC)

select @intEquipmentId,

Binary_CheckSum(Make, Model, EqTypeId)

from Equipment

where EquipmentId = @intEquipmentId

-- Check if values were changed in the meanwhile

if @intNewEquipmentBC <> (Select EquipmentBC

from EquipmentBC

where EquipmentId = @intEquipmentId)

begin

if @debug <> 0

select 'Information will be updated.'

-- update information

update Equipment

Set Make = @chvMake,

Model = @chvModel,

EqTypeId = @intEqTypeId

where EquipmentId = @intEquipmentId

if exists(select EquipmentId

from EquipmentBC

where EquipmentId = @intEquipmentId)

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 4 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

update EquipmentBC

Set EquipmentBC = @intNewEquipmentBC

where EquipmentId = @intEquipmentId

else

insert EquipmentBC (EquipmentId, EquipmentBC)

values (@intEquipmentId, @intNewEquipmentBC)

end

return

NOTE

Binary_CheckSum() is case-sensitive. It evaluates columns/expressions differently depending on
the case (uppercase/lowercase) used in the column or expression. This might seem unusual since
most SQL Server behavior depends on the code page that you select during installation.

If the default is selected, SQL Server ignores the case of characters when matching them. The
nature of the algorithm used to implement the Binary_CheckSum() function is such that it cannot
work that way.

Functions for Handling null Values SQL Server is equipped with a set of three

functions to help ease the pain of using null in your database system:

NullIf(expression, expression)
IsNull(check_expression, replacement_value)
Coalesce(expression [,...n])

NullIf() returns null if two expressions in the function are the same value. If the

expressions are not equivalent, the function returns the value of the first expression.

This function can be useful when calculating the average of columns that

accept null values. For example, let’s assume that the author of the Asset database

has created constraints or stored procedures such that a user can leave the value of

the Inventory.Rent column as either null or zero when equipment is not leased. In

this case, the Avg() function for calculating the average of the column will eliminate

records containing null from the average but keep records with zero. It is not that the

Avg() function is implemented improperly, but rather that our design can be improved.

It is possible to implement a workaround using the NullIf() function:

select AVG(Rent) [average without nulls],

AVG(NullIf(Rent, 0)) [average without nulls and zeros]

from Inventory

An average calculated in this way will be different from an average calculated in the

standard way:

average without nulls average without nulls and zeros

--------------------- -------------------------------

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : F u n c t i o n s 1 4 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

100.0000 150.0000

(1 row(s) affected)

Warning: Null value eliminated from aggregate.

The IsNull() function examines the check_expression. If its value is null, the

function returns the replacement_value. If the value of the check_expression is not

null, the function returns the check_expression.

Let’s suppose you want to calculate an average based on the total number of

computers in the Inventory table. You can use the IsNull() value to replace null

values during the calculation:

select AVG(Rent) [Eliminating nulls],

AVG(ISNULL(rent, 0)) [with nulls as zeros]

from Inventory

The average price of computers that counts nulls as zeroes is less than the average

that ignores computers with the price set to null:

Eliminating nulls with nulls as zeros

------------------ ---------------------

100.0000 75.0000

(1 row(s) affected)

Warning: Null value eliminated from aggregate.

The last line is a warning that refers to the fact that null values are excluded when

Avg() is calculated.

NOTE

The name of this function is confusing, especially if you are a Visual Basic programmer as well.
It cannot be used to test whether the value of an expression is null. You should use these
operators instead:
If expression IS null

If expression IS NOT null

The Coalesce() function is often used to coalesce (unite) values that are split into

several columns. The result of the function is the first non-null expression. This

function uses the following syntax:

COALESCE(expression [,...n])

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

1 4 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

In the following example, we coalesce values from three columns (Rent, Lease,

and Cost) into one value (Acquisition Cost). Coalesce() evaluates the input

expressions and returns the first non-null value.

SELECT Inventory.Inventoryid,

Equipment.Make + ' ' + Equipment.Model Equipment,

AcquisitionType.AcquisitionType,

COALESCE(Inventory.Rent, Inventory.Lease, Inventory.Cost) [Cost]

FROM Inventory INNER JOIN AcquisitionType ON

Inventory.AcquisitionTypeID = AcquisitionType.AcquisitionTypeId

INNER JOIN Equipment

ON Inventory.EquipmentId = Equipment.EquipmentId

The result contains just one column, showing the cost of acquisition:

Inventoryid Equipment AcquisitionType Cost

----------- ------------------------------ -------------- ---------

5 Toshiba Portege 7020CT Purchase 1295.0000

6 Toshiba Portege 7020CT Rent 200.0000

8 Toshiba Portege 7020CT Lease 87.7500

10 Toshiba Portege 7020CT Lease 99.9500

Conversion Functions The Cast() and Convert() functions are used to explicitly

convert the information in one data type to another specified data type. There is just

one small difference between these two functions: Convert() allows you to specify

the format of the result, whereas Cast() does not.

Their syntax is

Cast(expression AS data_type)
Convert(data_type[(length)], expression [, style])

In this case, expression is any value or expression that you want to convert, and

data_type is the new data type. The following statement concatenates two strings

and an error number and returns them as a string:

Select "Error ["+Cast(@@Error as varchar)+"] has occurred."

The result is an error number integrated with a sentence, which might be useful in an

error handling situation:

--

Error [373] has occurred.

In the Convert() function, style refers to the formatting style used in the conversion

of date and time (datetime, smalldatetime) or numeric (money, smallmoney,

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

float, real) expressions to strings (varchar, char, nvarchar, nchar). The

following command displays the current date in default and German style:

select GetDate() standard, Convert(varchar, GetDate(), 104) German

The result is

standard German

--------------------------- ------------------------------

2003-07-11 11:45:57.730 11.07.2003

Table 5-1 lists formatting styles that you can use when converting datetime to

character or character to datetime information.

C h a p t e r 5 : F u n c t i o n s 1 4 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

Style with
2-Digit Year

Style with
4-Digit Year Standard Format

– 0 or 100 Default mon dd yyyy hh:miAM (or PM)

1 101 USA mm/dd/yy

2 102 ANSI yy.mm.dd

3 103 British/French dd/mm/yy

4 104 German dd.mm.yy

5 105 Italian dd-mm-yy

6 106 – dd mon yy

7 107 – mon dd, yy

8 108 – hh:mm:ss

– 9 or 109 Default + milliseconds mon dd yyyy hh:mi:ss:mmmAM (or PM)

10 110 USA mm-dd-yy

11 111 Japan yy/mm/dd

12 112 ISO yymmdd

- 13 or 113 Europe default + milliseconds dd mon yyyy hh:mm:ss:mmm(24h)

14 114 – hh:mi:ss:mmm(24h)

– 20 or 120 ODBC canonical yyyy-mm-dd hh:mi:ss(24h)

– 21 or 121 ODBC canonical (with milliseconds) yyyy-mm-dd hh:mi:ss.mmm(24h)

– 130 Kuwaiti dd/mm/yyyy hh:mi:ss.mmmAM

– 131 Kuwaiti dd mm yyyy hh:mi:ss.mmmAM

Table 5-1 Formatting Styles for datetime Information

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following table lists formatting styles that you can use when converting

monetary values to character information:

Value Output
0 (default) Two digits behind decimal point

No commas every three digits
Example: 1234.56

1 Two digits behind decimal point
Commas every three digits
Example: 1,234.56

2 Four digits behind decimal point
No commas every three digits
Example: 1234.5678

In the following example, we format a monetary value:

Select $12345678.90,

Convert(varchar(30), $12345678.90, 0),

Convert(varchar(30), $12345678.90, 1),

Convert(varchar(30), $12345678.90, 2)

The result is

------------- ------------- --------------- -------------

12345678.9000 12345678.90 12,345,678.90 12345678.9000

The following table lists formatting styles that you can use when converting float

or real values to character information:

Value Output
0 (default) In scientific notation, when needed; 6 digits maximum

1 8 digits always in scientific notation

2 16 digits always in scientific notation

TIP

Microsoft recommends using the Cast() function whenever the formatting power of Convert() is not
required, because Cast() is compatible with the ANSI SQL-92 standard.

1 4 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you specify the target data type of variable length as a part of the Cast() or

Convert() functions, you should include its length, too. If you do not specify length,

SQL Server assigns a default length of 30. Therefore, the previous example could be

written as

Select $12345678.90,

Convert(varchar, $12345678.90, 0),

Convert(varchar, $12345678.90, 1),

Convert(varchar, $12345678.90, 2)

You need to use conversion functions when you do any of the following:

� Supply a Transact-SQL statement or function with a value in a specific data type

� Set the format of a date or number

� Obtain a value that uses an exotic data type

In some cases, SQL Server automatically (that is, behind the scenes) converts the

value if the required data type and the supplied data type are compatible. For example,

if some function requires a char parameter, you could supply a datetime parameter

and SQL Server will perform an implicit conversion of the value. In the opposite

direction, you must use an explicit conversion—that is, you must use conversion

functions. If it is not possible to convert the expression to the specified data type,

SQL Server raises an error.

TIP

SQL Server Books Online includes a table that lists which data types can be converted to other data
types and which kind of conversion (explicit or implicit) is required.

Information about the Current Session The following functions return information

associated with the current session (for instance, how you logged on to the server,

your username in the database, the name of the server, the permissions you have in

the current database, and so on):

Function Description
App_Name() Name of the application that opened the session.

Host_Id() ID of the computer hosting the client application.

Host_Name() Name of the computer hosting the client application.

C h a p t e r 5 : F u n c t i o n s 1 4 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 5 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

Function Description
Permissions() Bitmap that specifies permissions on a selected column, a database object, or the current database.

Current_User Name of the database user; same as User_Name().

Session_User Name of the database user who owns the current session.

System_User Name of the server login that owns the current session. If the user has logged on to the server
using Microsoft Windows NT Authentication, this function returns the Windows NT login.

User_Name() Name of the database user; same as Current_User.

The following stored procedure uses the System_User function to identify the user

adding an order to the system:

Create Procedure prAddOrder

-- insert Order record

@dtmOrderDate datetime = null,

@dtmTargetDate datetime = null,

@chvUserName varchar(128) = null,

@intDestinationLocation int,

@chvNote varchar(200),

@intOrderid int OUTPUT

As

declare @intRequestedById int

-- If user didn't specify order date

-- default is today.

if @dtmOrderDate = null

Set @dtmOrderDate = GetDate()

-- If user didn't specify target date

-- default is 3 days after request date.

if @dtmTargetDate = null

Set @dtmTargetDate = DateAdd(day, 3, @dtmOrderDate)

-- if user didn't identify himself

-- try to identify him using login name

if @chvUserName = null

Set @chvUserName = System_User

-- get Id of the user

select @intRequestedById = ContactId

from Contact

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : F u n c t i o n s 1 5 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

where UserName = @chvUserName

-- if you cannot identify user report an error

If @intRequestedById = null

begin

Raiserror('Unable to identify user in Contact table!', 1, 2)

return 1

end

-- and finally create Order

Insert into [Order](OrderDate, RequestedById, TargetDate,

DestinationLocationId, Note)

Values (@dtmOrderDate, @intRequestedById, @dtmTargetDate,

@intDestinationLocation, @chvNote)

set @intOrderid = @@identity

return 0

Functions for Handling Identity Values Identity columns are used in SQL Server tables

to automatically generate unique identifiers for each record. Numbers that are generated

in this manner are based on two values—identity seed and identity increment. SQL

Server starts assigning identity values from an identity seed, and every row is given

a value that is greater than the previous one by the value specified in the identity

increment (or less than that value if you use a negative increment value).

In Chapter 4, we covered the use of the @@identity function/global variable. It

returns the last value generated by SQL Server while inserting record(s) into the

table with an identity value:

Declare @intEqId int

Insert into Equipment(Make, Model, EqTypeId)

Values ('ACME', 'Turbo', 2)

Select @intEqId = @@identity

Select @intEqId [EqId]

The Ident_Seed() and Ident_Incr() functions return to the user the values of the

seed and the increment for the selected table or view:

Select IDENT_SEED('Inventory'), IDENT_INCR('Inventory')

The Identity() function allows a user to generate identity values while using the

Select…Into command. Let me remind you that this command selects records and

immediately inserts them into a new table. Without it, you would be forced to create

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a new table with an identity column and then insert the selected records into the

table. With it, everything can be achieved in one step:

SELECT Identity(int, 1,1) AS ID,

Property.Property,

InventoryProperty.Value,

Property.Unit

INTO #InventoryProperty

FROM InventoryProperty INNER JOIN Property ON

InventoryProperty.PropertyId = Property.PropertyId

WHERE (InventoryProperty.InventoryId = 12)

Ident_Current() returns the last identity value set for a specified table (in any

scope of any process). To use it, just supply the table name as a parameter:

Select Ident_Current('Equipment')

The Scope_Identity() function, new with SQL Server 2000, returns the last identity

value generated in the scope of the current process. We will discuss in detail usage of

the Scope_Identity() function and the problems it solves in the “Using Identity Values”

section of Chapter 9.

Date and Time Functions
The following set of functions is designed to process data and time values and

expressions.

Get (Current) Date GetDate() is the function that you will probably use more often

than any other date and time function. It will return the system time in datetime
format.

We have already demonstrated the use of this function in the first section of this

chapter, “Using Functions.”

GetUtcDate() is the function that returns the date and time for the Greenwich time

zone, also known as Universal Time Coordinate (UTC).

Extracting Parts of Date and Time From time to time, you will need to extract just one

component of the date and time value. The basic functionality necessary to achieve

this end is implemented in the following three functions:

DAY(date)
MONTH(date)
YEAR(date)

1 5 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

These functions require expressions of the datetime or smalldatetime data

type, and they all return the corresponding integer value.

The DatePart() and DateName() functions provide similar functionality, but they

are more flexible:

DatePart(datepart, date)
DateName(datepart, date)

The user can specify which component of the date to obtain by supplying a datepart

constant from Table 5-2 (you can use either the full name or the abbreviation).

DatePart() then returns the value of the datepart, and DateName() returns the

string that contains the appropriate name. Naturally, DateName() is not meaningful

in some cases (for example, year, second) and SQL Server will return the same value

as it would for DatePart(). The following Select statement shows how can you use

data functions:

SELECT GetDate()'Date',

DateName(month, GetDate()) AS 'Month Name',
DatePart(yyyy, GetDate()) AS 'Year'

C h a p t e r 5 : F u n c t i o n s 1 5 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

Datepart—Full Datepart—Abbreviation
Millisecond ms

Second ss, s

Minute mi, n

Hour hh

weekday dw

Week wk, ww

dayofyear dy, y

Day dd, d

Month mm, m

Quarter qq, q

Year yy, yyyy

Table 5-2 Dateparts and Abbreviations Recognized by SQL Server

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 5 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

Notice that the first parameter is not a character parameter. You cannot fill it using an

expression or variable. SQL Server will return:

Date Month Name Year

-------------------------- --------------- -----------

2003-02-20 00:45:40.867 February 2003

Date and Time Calculations Transact-SQL contains two functions for performing

calculations on date and time expressions:

DateAdd(datepart, number, date)
DateDiff(datepart, startdate, enddate)

DateAdd() is used to add a number of datepart intervals to the specified date

value. DateDiff() returns the number of datepart intervals between a startdate and an

enddate. Both of these functions use a value from Table 5-2, shown in the previous

section, to specify datepart. The following stored procedure uses these functions to

list the due dates for leases:

Alter Procedure prListTerms

-- return list of due days for the leasing

@dtsStartDate smalldatetime,

@dtsEndDate smalldatetime,

@chvLeaseFrequency varchar(20)

As

set nocount on

declare @insDueDates smallint -- number of intervals

-- calculate number of DueDates

select @insDueDates =

Case @chvLeaseFrequency

When 'monthly'

then DateDiff(month, @dtsStartDate, @dtsEndDate)

When 'semi-monthly'

then 2 * DateDiff(month, @dtsStartDate, @dtsEndDate)

When 'bi-weekly'

then DateDiff(week, @dtsStartDate, @dtsEndDate)/2

When 'weekly'

then DateDiff(week, @dtsStartDate, @dtsEndDate)

When 'quarterly'

then DateDiff(qq, @dtsStartDate, @dtsEndDate)

When 'yearly'

then DateDiff(y, @dtsStartDate, @dtsEndDate)

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : F u n c t i o n s 1 5 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

END

-- generate list of due dates using temporary table

Create table #DueDates (ID int)

while @insDueDates >= 0

begin

insert #DueDates (ID)

values (@insDueDates)

select @insDueDates = @insDueDates - 1

end

-- display list of Due dates

select ID+1, Convert(varchar,

Case

When @chvLeaseFrequency = 'monthly'

then DateAdd(month,ID, @dtsStartDate)

When @chvLeaseFrequency = 'semi-monthly'

and ID/2 = CAST(ID as float)/2

then DateAdd(month, ID/2, @dtsStartDate)

When @chvLeaseFrequency = 'semi-monthly'

and ID/2 <> CAST(ID as float)/2

then DateAdd(dd, 15,

DateAdd(month, ID/2, @dtsStartDate))

When @chvLeaseFrequency = 'bi-weekly'

then DateAdd(week, ID*2, @dtsStartDate)

When @chvLeaseFrequency = 'weekly'

then DateAdd(week, ID, @dtsStartDate)

When @chvLeaseFrequency = 'quarterly'

then DateAdd(qq, ID, @dtsStartDate)

When @chvLeaseFrequency = 'yearly'

then DateAdd(y, ID, @dtsStartDate)

END , 105) [Due date]

from #DueDates

order by ID

-- wash the dishes

drop table #DueDates

return 0

You can see the result of the stored procedure in Figure 5-2.

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 5 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

String Functions
Microsoft SQL Server supports an elaborate set of string functions. (Who would

expect such a thing from a tool developed in C?)

Basic String Manipulation The Len() function uses the following syntax:

Len(string_expression)

This function returns the length of a string in characters. The input parameter can

be any kind of string expression. DataLength(), a similar system function, returns the

number of bytes occupied by the value.

declare @chvEquipment varchar(30)

set @chvEquipment = 'Toshiba Portege 7020CT'

select Len(@chvEquipment)

The result is

22

Figure 5-2 Execution prListTerms

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : F u n c t i o n s 1 5 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

The following two functions return the number of characters from the left or right

side of the string:

Left(character_expression, integer_expression)

Right(character_expression, integer_expression)

Early versions of Microsoft SQL Server contained only the Right() function:

declare @chvEquipment varchar(30)

set @chvEquipment = 'Toshiba Portege 7020CT'

select Left(@chvEquipment, 7) Make, Right(@chvEquipment, 14) Model

The result of this batch is

Make Model

------- --------------

Toshiba Portege 7020CT

Before the introduction of the Left() function, developers had to implement its

functionality using the SubString() function:

SubString(expression, start, length)

The SubString() function returns a set (length) of characters from the string (expression)

starting from a specified (start) character. The expression can be any character,

text, image, or binary data type. Because of this data type flexibility, the length

and start parameters are based on the number of bytes when the expression is of the

text, image, binary, or varbinary data types, rather than on the number of

characters. In the case of Unicode data types, one character occupies 2 bytes. If you

specify an odd number, you may get unexpected results in the form of split characters.

The following batch extracts part of a string:

declare @chvEquipment varchar(30)

set @chvEquipment = 'Toshiba Portege 7020CT'

select SubString(@chvEquipment, 9, 7)

The result set is

Portege

The CharIndex() function returns the index of the first occurrence of a string

(expression1) within a second string (expression2):

CharIndex(expression1, expression2 [, start_location])

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 5 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

There is an optional parameter that allows you to specify the start location for the search:

Create Procedure prSplitFullName

-- split full name received in format 'Sunderic, Dejan'

-- into last and first name

-- default delimiter is comma and space ', ',

-- but caller can specify other

@chvFullName varchar(50),

@chvDelimiter varchar(3) = ', ',

@chvFirstName varchar(50) OUTPUT,

@chvLastName varchar(50) OUTPUT

As

set nocount on

declare @intPosition int

Set @intPosition = CharIndex(@chvDelimiter, @chvFullName)

If @intPosition > 0

begin

Set @chvLastName = Left(@chvFullName, @intPosition - 1)

Set @chvFirstName = Right(@chvFullName,

Len(@chvFullName) - @intPosition - Len(@chvDelimiter))

end

else

return 1

return 0

All of these string functions might look to you like a perfect tool for searching

table columns, but there is just one problem with this application. If you apply a

conversion function inside the Where clause of a Select statement, SQL Server does

not use the index to query the table. Instead, it performs a table scan—even if the

index exists. For example, you should not use the CharIndex() function to identify

records with a particular string pattern:

select *

from Equipment

where CharIndex('Portege', Model) > 0

The Like operator with wild card characters is a much better choice if the string that

you are looking for is at the beginning of the field:

select *

from Equipment

where Model like 'Portege%'

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : F u n c t i o n s 1 5 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

The PatIndex() function is similar to the CharIndex() function:

PatIndex('%pattern%', expression)

The major difference is that it allows the use of wild card characters in the search

pattern:

Set @intPosition = PATINDEX('%,%', @chvFullName)

Again, if you use this function to search against a table column, SQL Server ignores

the index and performs a table scan.

TIP

In earlier versions of SQL Server, PatIndex() was the only reasonable (although not very fast) way
to query the contents of text columns and variables. Since version 7.0, SQL Server has had a new
feature—Full-Text Search—that allows linguistic searches against all character data and works
with words and phrases instead of with character patterns. Basically, Microsoft has included Index
Server in the Standard and Enterprise editions of SQL Server 7.0 and 2000.

String Conversion The following two functions remove leading and trailing blanks

from a string:

LTrim(character_expression)
RTrim(character_expression)

In the following query, we use both of them at the same time:

select LTrim(RTrim(' Dejan Sunderic '))

The following functions convert a string to its uppercase or lowercase equivalent:

Upper(character_expression)
Lower(character_expression)

Use the Str() function to convert numeric values to strings:

Str(float_expression[, length[, decimal]])

The length parameter is an integer that specifies the number of characters needed for

the result. This parameter includes everything: sign, digit, and decimal point. If necessary

to fit the output into the specified length, SQL Server will round the value before

converting it. If you do not specify a length, the default length is ten characters, and

the default decimal length is 0.

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

SQL Server provides a number of functions for representing the conversion from

character types to ASCII codes and vice versa:

Char(integer_expression)
ASCII(character_expression)
NChar(integer_expression)
Unicode(character_expression)

The Char() and NChar() functions return characters with the specified integer

code according to the ASCII and Unicode standards:

select NChar(352) + 'underi' + NChar(263)

Depending on fonts, operating systems, language settings, and other criteria, you

may get proper or improper results from this expression (see Figure 5-3).

There is another interesting use of the Char() function. You can use it to insert

control characters into output. For example, you can add tabulators Char(9) or carriage

returns Char(13). In the past, this was a very important way to format output.

Figure 5-3 Using Unicode characters

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The ASCII() and Unicode() functions perform the opposite operation. They return

the integer that corresponds to the first character of an expression (see Figure 5-4).

The following two functions generate a string of a specified length (integer_

expression) and fill it with spaces or a specified character:

Space(integer_expression)
Replicate(character_expression, integer_expression)

For example:

select Space(4) + Replicate('*', 8)

This statement returns a useless result, but these functions were used at one time

primarily to format output:

C h a p t e r 5 : F u n c t i o n s 1 6 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

Figure 5-4 Identifying Unicode character

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

Use the Stuff() function to stuff a string:

Stuff(character_expression1, start, length, character_expression2)

SQL Server removes a length of character_expression1, beginning at the specified

start point, and replaces it with character_expression2. The specified length does not

have to match that of character_expression2:

select Stuff('Sunderic, Dejan', 9, 2, Char(9))

This query replaces the comma and space in the target string with a tabulator:

Sunderic Dejan

Metadata Functions
These functions are like a drill that you can use to obtain information about a database

and database objects. The following table contains a partial list of metadata functions:

Function Description
Col_Length(table, column) Returns the length of the column.

Col_Name(table_id, column_id) Returns the name of the column specified by Table Identification
Number and Column Identification Number.

ColumnProperty(id, column, property) Returns information about a column or stored procedure
parameter.

DatabaseProperty(database, property) Returns the value of the named database property for a given
database and property name.

DatabasePropertyEx(database, property) Returns the value of the named database property for a given
database and property name. The returned value is of the
sql_variant data type.

Db_Id(database) Returns the database identification number for the given
database.

Db_Name(database_id) Returns the database name for a given database identification
number.

Index_Col(table, index_id, key_id) Returns the indexed column name.

IndexProperty(table_id, index, property) Returns the value of the given property for a given table
identification number and index name.

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Function Description
Object_Id(object) Returns the identification number of the given object.

Object_Name(object_id) Returns the database object name for the given object
identification number.

ObjectProperty(id, property) Returns information about the specified property for a given
object’s identification number.

@@ProcID Returns the identification number of the current stored procedure.

Sql_Variant_Property(expression, property) Returns the value of the given property for a given expression.

TypeProperty(type, property) Returns information about the data type.

The Sql_Variant_Property() function retrieves information about the sql_variant
data type, introduced in SQL Server 2000. It returns specified property information

about data stored in or obtained from the expression parameter. You can specify one

of the following properties to be returned:

Property Output
BaseType The SQL Server data type

Precision Number of digits of the base type

Scale Number of digits behind decimal point

TotalBytes Number of bytes required to store data and metadata

Collation Collation of the data

MaxLength Maximum length in bytes

The Sql_Variant_Property() function uses the following syntax:

SQL_Variant_Property(expression, property)

The property parameter must be specified in the form of a string:

SELECT SQL_Variant_Property(Lookup,'BaseType'),

SQL_Variant_Property(Lookup,'Precision'),

SQL_Variant_Property(Lookup,'Scale')

FROM Lookup

WHERE LookupGroupId = 16

AND LookupId = 4

C h a p t e r 5 : F u n c t i o n s 1 6 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

Aggregate Functions
Aggregate functions perform an operation on a set of records and return a single

value. They can be used in the following situations:

� The selection list of the Select statement

� A Having clause

� A Compute clause

Function Description
Avg([All | Distinct] expression) Returns the average value in the group.

Count([All | Distinct] expression |*) Counts the number of items in the group.

Count_Big([All | Distinct] expression |*) Counts the number of items in the group. The result is returned in
the form of a bigint number.

Grouping(Column_Name) Creates an additional column with a value of 1 when a row is added by
the CUBE or ROLLUP operator or 0 if it is not the result of a CUBE or
ROLLUP operator.

Max(expression) Returns the maximum value in the expression.

Min(expression) Returns the minimum value in the expression.

Sum(expression) Returns the sum of the expression’s values.

StDev(expression) Returns the statistical standard deviation for the values in the expression.

StDevP(expression) Returns the statistical standard deviation for the population for the
values in the expression.

Var(expression) Returns the statistical variance of the values in the expression.

VarP(expression) Returns the statistical variance for the population for the values in the
expression.

Except for the Count() function, all aggregate functions ignore records that have

null in the specified field from the set:

select Avg(Rent) [Average Rent] from Inventory

As you can see, SQL Server will even print a warning about nulls:

Average Rent

200.0000

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : F u n c t i o n s 1 6 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

(1 row(s) affected)

Warning: Null value eliminated from aggregate.

You apply Count() on a specific field:

select Count(Rent) [Rentals] from Inventory

SQL Server will count only records that do not have null in the Rent field:

Rentals

241

(1 row(s) affected)

Warning: Null value eliminated from aggregate.

You can apply Count() on all fields:

select Count(*) [Assets] from Inventory

SQL Server counts all records in the table:

Assets

7298

(1 row(s) affected)

Rowset Functions
Functions of this type are distinguished from other functions in that they return a

complete recordset to the caller. They cannot be used (as is the case for scalar functions)

in any place where an expression is acceptable. They can be used in Transact-SQL

statements only in situations where the server expects a table reference. An example

of such a situation is the From clause of the Select statement.

The OpenQuery() function is designed to return a recordset from a linked server.

It can be used as a part of Select, Update, Insert, and Delete Transact-SQL statements.

The Query parameter must contain a valid SQL query in the dialect of the linked

server, since the query will be executed (as-is—as a pass-through query) on the

linked server. This function uses the following syntax:

OpenQuery(linked_server, 'query')

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

Linked servers are OLE DB data sources that are registered on the local SQL server. After registration,
the local server knows how to access data on the remote server. All that is needed in your code is a
reference to the name of the linked server.

You can register a linked server to be associated with the Northwind.mdb sample

database either from Enterprise Manager or using the following code:

EXEC sp_addlinkedserver

@server = 'Northwind_Access',

@provider = 'Microsoft.Jest.OLEDB.4.0',

@srvproduct = 'OLE DB Provider for Jet',

@datasrc = 'c:\program files\Microsoft '

+ 'Office2000\Office\Samples\northwind.mdb'

Go

Then, you can use the OpenQuery() function to return records from the linked server:

SELECT *

FROM OpenQuery(Northwind_Access, 'SELECT * FROM Orders')

OpenRowSet() is very similar to the OpenQuery() function:

OpenRowset(

'provider_name',

{'datasource';'user_id';'password' | 'provider_string' },

{ [catalog.][schema.]object | 'query'}

)

It is designed for connecting to a server that is not registered as a linked server.

Therefore, you must supply both the connection parameters and the query in order

to use it. There are several options for defining the connection, such as OLE DB,

ODBC, and OLE DB for ODBC, along with two options for specifying a result set:

a pass-through query or a valid name for a database object.

The following query joins one table from the remote SQL server with two tables

on the local SQL server:

SELECT a.au_lname, a.au_fname, titles.title

FROM OpenRowset('MSDASQL',

'DRIVER={SQLServer};SERVER=Toronto;UID=sa;PWD=pwd',

pubs.dbo.authors) AS a

INNER JOIN titleauthor

1 6 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ON a.au_id = titleauthor.au_id

INNER JOIN titles

ON titleauthor.title_id = titles.title_id

The OpenDataSource() function is more similar to OpenRowset() than to

OpenQuery(). It allows the caller to specify connection parameters inside the

four-part database object name. It can be used in T-SQL in every position where

a linked server can be used. The following example joins tables on the local server

with tables on the remote server:

SELECT a.au_lname, a.au_fname, titles.title

FROM OpenDataSource('SQLOLDB',

'DataSource=Toronto;User ID=sa; Password=pwd).pubs.dbo.authors as a

INNER JOIN titleauthor

ON a.au_id = titleauthor.au_id

INNER JOIN titles

ON titleauthor.title_id = titles.title_id

TIP

Although OpenRowset() and OpenDataSource() will work fine, if you plan repetitive use of
some data source, you should consider registering a linked server and using OpenQuery().
The execution of OpenQuery() will be considerably faster.

Depending on the features of the OLE DB provider, you can also use these

functions to delete, update, or insert information on other servers.

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 5

C h a p t e r 5 : F u n c t i o n s 1 6 7

P:\010Comp\D_Base\896-2\ch05.vp
Monday, April 28, 2003 4:50:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /
Blind Folio vi

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER

6
Composite Transact-SQL

Constructs:
Batches, Scripts,
and Transactions

169

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
Batches
Scripts

Transactions

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 7 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

Transact-SQL statements can be grouped and executed together in a variety

of ways. They can be

� Compiled as a part of a stored procedure, user-defined function, or trigger

� Written and executed individually or in groups from client utilities in the form

of batches

� Grouped and stored in external script files that can be opened and executed

from various client utilities

� Grouped in transactions that succeed completely or fail completely

This chapter discusses batches, scripts, and transactions.

It is not necessary to run examples from the text against the Asset database, but

if you do, you must first make sure that the database contains the following table by

executing the following script against the Asset database:

Create Table Part(PartId int identity,

Make varchar(50),

Model varchar(50),

Type varchar(50))

This table is used to illustrate the concepts discussed in this chapter. Some of the

changes are destructive, so existing tables such as Equipment will not be used, which

may be needed for other purposes later.

Batches
A batch is a set of Transact-SQL statements that are sent to and executed by SQL

Server as a single unit. The most important characteristic of a batch is that it is parsed

and executed on the server as an undivided entity. In some cases, batches are created

implicitly. For example, if you execute a set of Transact-SQL statements from Query

Analyzer, the program will treat that set as one batch and do so invisibly:

Insert Into Part (Make, Model, Type)

Values ('Toshiba', 'Portege 7010CT', 'notebook')

Insert Into Part (Make, Model, Type)

Values ('Toshiba', 'Portege 7020CT', 'notebook')

Insert Into Part (Make, Model, Type)

Values ('Toshiba', 'Portege 7030CT', 'notebook')

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Some tools, such as Query Analyzer, osql, and isql, use the Go command to

divide Transact-SQL code into explicitly set batches. In the following example, the

code for dropping a stored procedure is in one batch and the code for creating a new

stored procedure is in another. The batch is explicitly created using the Go command.

If Exists (Select * From sysobjects

Where id = object_id(N'[dbo].[prPartList]')

And OBJECTPROPERTY(id, N'IsProcedure') = 1)

Drop Procedure [dbo].[prPartList]

Go

Create Procedure prPartList

As

Select * from Part

Return 0

Go

In Query Analyzer, you can highlight part of the code and execute it. Query

Analyzer treats the selected piece of code as a batch and sends it to the server and

ignores the rest of the code (see Figure 6-1).

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 7 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

Figure 6-1 Executing selected code in Query Analyzer

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In other utilities and development environments, batches may be divided in some

other manner. In ADO, OLEDB, ODBC, and DB-Library, each command string

prepared for execution (in the respective object or function) is treated as one batch.

Using Batches
Batches reduce the time and processing associated with transferring statements from

client to server, as well as that associated with parsing, compiling, and executing

Transact-SQL statements. If you need to execute a set of 100 insert commands

against a database, it is preferable to group them in one batch rather than send them

to the server as 100 separate statements. The overhead involved in sending 100

separate statements and receiving 100 separate results is very high. Network traffic

will be increased unnecessarily, and the whole operation will be slower for the user.

Batches and Errors
The fact that the batch is compiled as an undivided entity has interesting implications

for statements that contain syntax errors. Results will vary according to whether

the syntax error occurs in a statement or in the name of a database object. If you

create a batch that includes a statement containing a syntax error, the whole batch

will fail to execute.

Consider the following batch:

Insert into Part (Make, Model, Type)

Values ('Toshiba', 'Portege 7020CT', 'Notebook')

Selec * from Part

It consists of two commands, the second of which contains a syntax error—a

missing letter in the Select keyword. If you execute this batch in Query Analyzer,

SQL Server will not compile or execute it but will return the following error:

Server: Msg 170, Level 15, State 1, Line 3

Line 3: Incorrect syntax near 'Selec'

If you make a typo in the name of the database object (for instance, in a table or

column name), the situation is very different. Note that the name of the table in the

following Insert statement is incorrect:

Insert into art (Make, Model, Type)

Values ('Toshiba', 'Portege 7020CT', 'Notebook')

Select * from Part

1 7 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 7 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

In this example, the application will notice an error and stop execution as soon as it

encounters it:

Server: Msg 208, Level 16, State 1, Line 1

Invalid object name 'art'.

SQL Server executes the batch in three steps: it parses, compiles, and then executes.

In the first phase, SQL Server verifies batch syntax. It focuses on the sequence of

keywords, operators, and identifiers. The first batch used a statement with an error

in a keyword. SQL Server picked up the error during the parsing phase.

The error in the second batch (an invalid object name) was picked up during

execution. To further demonstrate this fact, let’s investigate the following example,

where the error is in the second statement:

Insert into Part (Make, Model, Type)

Values ('Toshiba', 'Portege 7020CT', 'Notebook')

Select * from art

In this case, the application behaves differently:

(1 row(s) affected)

Server: Msg 208, Level 16, State 1, Line 1

Invalid object name 'art'.

Both commands are parsed and compiled, then the first command is executed, and

finally the second command is canceled. Users with experience of earlier versions of

Microsoft SQL Server remember that such a scenario would produce very different

results in those earlier versions.

Microsoft SQL Server 2000 supports deferred name resolution (actually introduced

in SQL Server 7.0). Deferred name resolution allows the server to compile Transact-

SQL statements even when dependent objects do not yet exist in the database. This

feature can prove to be very useful when you are creating or transferring objects

from one database or server to another. You do not have to worry about dependencies

and the order in which objects are created. Unfortunately, the introduction of this

feature also has some strange secondary effects. In the case of the last example:

� The server has successfully compiled a batch, since the name resolution is not

part of the compilation.

� The first command was executed without a problem.

� When a problem was encountered in the second command, the server canceled

all further processing and returned a runtime error.

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Keep this problem in mind when writing batches. Developers in modern programming

languages like Visual Basic or Visual C++ usually employ sophisticated error-handling

strategies to avoid situations like this. Transact-SQL also contains programming

constructs for error handling. We will explore them in the next chapter.

The situation could be worse. Particular runtime errors (for example, constraint

violations) do not stop execution of the batch. The following case attempts to use an

Insert statement to insert a value in the identity column:

Select PartId, Make + ' ' + Model Part from Part

Insert into Part (PartId, Make, Model, Type)

Values (1, 'IBM', 'Thinkpad 390D', 'Notebook')

Select PartId, Make + ' ' + Model Part from Part

Go

The result is a “partial failure”:

PartId Part

----------- --

1 Toshiba Portege 7020CT

(1 row(s) affected)

Server: Msg 544, Level 16, State 1, Line 1

Cannot insert explicit value for identity column in table

'Part' when IDENTITY_INSERT is set to OFF.

PartId Part

----------- ----------------------------------

1 Toshiba Portege 7020CT

(1 row(s) affected)

In some cases, “partial success” may be tolerable, but in the real world it is generally

not acceptable.

Let’s investigate a case in which several batches are written, divided by a Go

statement, and executed together. Although the user has issued a single command

to execute them, the client application will divide the code into batches and send

them to the server separately. If an error occurs in any batch, the server will cancel

its execution. However, this does not mean that execution of the other batches is

canceled. The server will try to execute the next batch automatically.

In some cases, this may be useful, but in most cases, it may not be what the user

expects to happen. In the following example, one column needs to be deleted from

the Part table. One way to perform this action (very popular until we were spoiled

1 7 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 7 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

with fancy tools like Enterprise Manager or the Alter Table…Drop Column

statement) would be to do the following:

1. Create a provisional table to preserve the information that is currently

in the Part table.

2. Copy information from the Part table to the provisional table.

3. Drop the existing Part table.

4. Create a Part table without the column you want to delete.

5. Copy the preserved information back to the Part table.

6. Drop the table.

The code necessary to implement this functionality could be created in a set of

five batches:

Create Table TmpPart (PartId int,

Make varchar(50),

Model varchar(50))

GO

Insert into TmpPart (PartId, Make, Model)

Select PartId, Make, Model from Part

GO

Drop Table Part

GO

Create Table Part (PartId int,

Make varchar(50),

Model varchar(50))

GO

Insert into Part (PartId, Make, Model)

Select PartId, Make, Model from TmpPart

Go

Drop Table TmpPart

GO

In theory, this set of batches would work perfectly. However, there is just one

problem—it doesn’t take errors into account. For example, if a syntax error occurs

in the first batch, the temporary table will not be created. Part information will not

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 7 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

be preserved in it, and when the code drops the table, the information will be lost.

To observe a method that you can use to handle errors, read the next chapter.

DDL Batches
Data Definition Language (DDL) is that part of Transact-SQL dedicated to the

creation and modification of database objects. Some DDL statements must stand

alone in the batch, including the following statements:

� Create Procedure

� Create Trigger

� Create Default

� Create Rule

� Create View

� Set Showplan_Text

� Set Showplan_All

If any of these statements is combined with other statements in a batch, the batch

will fail. Create statements must stand alone because every other statement that

follows them will be interpreted as a part of the Create statement. Set Showplan_Text

and Set Showplan_All must stand alone in the batch because they are setting how

SQL Server 2000 processes the batch and execution plan.

Self-Sufficient Content
During compilation, the batch is converted into a single execution plan. For this

reason, the batch must be self-sufficient. In the real world, this concept has vast

implications for the scope of database objects, variables, and comments.

Scope of Objects
Some DDL statements can be inside batches together with other commands, but keep

in mind that the resulting object will not be accessible until the batch is completed.

For example, it is not possible to add new columns to the table and to access those

new columns in the same batch. Therefore, the following batch will fail:

Alter Table Part ADD Cost money NULL

select PartId, Cost from Part

Go

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 7 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

The Select statement is not able to access the Cost column, and the whole batch

will fail:

Server: Msg 207, Level 16, State 3, Line 1

Invalid column name 'Cost'.

Therefore, the batch has to be divided in two:

Alter Table Part ADD Cost money NULL

Go

Select PartId, Cost from Part

Go

NOTE

Some DDL statements can be combined with DML statements that reference them. For example,
it is possible to create a table and insert records into it in the same batch.

Scope of Variables
All (local) variables referenced in a batch must also be declared in that batch. The

following code will result in the failure of the second batch:

Declare @Name as varchar (50)

Go

Select @Name = 'Dejan'

Go

Scope of Comments
Comments must be started and finished within the same batch. Ignoring this

requirement will result in some very interesting outcomes, because Go commands

are preprocessed on the client side, before the code is sent to the server. Take a

look at the comment in the following sample:

Select * From Part

Go

Update Part

Set Type = 'desktop'

Where Type = 'PC'

/*

Go

Update Part

Set Type = 'Notebook'

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 7 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

Where Type = 'Laptop'

Go

Select * from Part

Go

Update Part

Set Type = 'desktop'

Where Type = 'computer'

Go

*/

Select * from Part

Go

To developers of other programming languages, this might look perfectly legal.

Query Analyzer will even change the color of the code that is commented out.

Unfortunately, this code is a complete disaster. Due to errors, the server will cancel

execution of parts that the user expects to run and execute other parts that are

commented out:

PartId Make Model Type

----------- ------------- ----------------- ------------------

1 Toshiba Portege 7020CT Laptop

(1 row(s) affected)

Server: Msg 113, Level 15, State 1, Line 2

Missing end comment mark '*/'.

(1 row(s) affected)

PartId Make Model Type

----------- ------------- ----------------- ------------------

1 Toshiba Portege 7020CT Notebook

(1 row(s) affected)

Server: Msg 170, Level 15, State 1, Line 4

Line 4: Incorrect syntax near '/'.

The first batch is the only batch that will behave in accordance with our intention.

The second batch fails because the comments are not complete:

Update Part

Set Type = 'desktop'

Where Type = 'PC'

/*

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The third batch is executed because the server is not aware of our intention to

comment it out:

Update Part

Set Type = 'Notebook'

Where Type = 'Laptop'

The fourth batch is also executed, again because the server is not aware of our

intention to comment it out:

Select * from Part

The fifth batch is also executed:

Update Part

Set Type = 'desktop'

Where Type = 'computer'

The last batch fails:

*/

Select * from Part

If you want to comment out the Go command, you must use two dashes as a

comment marker at the beginning of the row:

--Go

Scripts
A script is usually defined as a collection of Transact-SQL statements (in one or more

batches) in the form of an external file. Client tools, such as Query Analyzer, isql, osql,

and Enterprise Manager, usually have support for managing script files.

Scripts are usually stored in plain text files with a .sql extension. This makes them

manageable from any text editor as well as from many sophisticated tools, such as

the Microsoft application for code control, Visual SourceSafe.

Query Analyzer has the usual features (File | Open, Save) of any text editor. isql

and osql are command-line utilities that allow the user to specify script files with

code to be executed against the server.

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 7 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Database Scripting
One of the most exciting features in Enterprise Manager is the ability to perform

reverse engineering on the database without the need for external tools. The result

of this process is a script that contains DDL statements, which can be used to

re-create the database objects included in the script. This script can be used to

� Explore user and system database objects

� Back up source code

� Establish a source control process

� Transfer the complete database (or just some objects) to another server

(and/or another database)

The process of database scripting is very simple. Select a database in Enterprise

Manager and runs Tools | Generate SQL Script. SQL Server prompts you to specify

the objects to be scripted. You can select all database objects or all objects of a

specific type by selecting the appropriate check box. You can also select individual

objects by transferring them from the Object On Database list to the Objects To Be

Scripted list.

1 8 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 8 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

On the Formatting tab, you can specify the format in which each database object

is to be scripted. A small preview template helps you to make the right choice among

several options.

The Options tab allows you to specify options for supporting objects such as

indexes, triggers, constraints, logins, users, roles, and permissions. The ability to

specify a file format is very important for multilanguage environments.

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TIP

If you want to be able to open a script file from regular editors (that do not support Unicode)
such as Notepad, you should select Windows Text (ANSI) as your file format.

The reason you are generating script and the use that you have planned for it will

influence the decision to generate a single file (for example, when you want to transfer

the object) or one file per object (for example, when you want to use scripts to establish

source code control).

TIP

Use database scripting to explore the sample databases associated with this book and the sample
and system databases published with SQL Server. Exploration of other styles and methods in
coding will help you to gain knowledge and build experience.

Transactions
Even from the very name of the Transact-SQL language, you can conclude that

transactions play a major role in SQL Server. They are an important mechanism

for enforcing the consistency and integrity of the database.

A transaction is the smallest unit of work in SQL Server. To qualify a unit of work

as a transaction, it must satisfy the following four criteria, often referred to

as the ACID test:

� Atomicity All data changes must be completed successfully, or none of

them will be written permanently to the database.

� Consistency After a transaction, the database must be left in a consistent

state. All rules must be applied during processing to ensure data integrity.

All constraints must be satisfied. All internal data structures must be left in

an acceptable state.

� Isolation Changes to the database made by a transaction must not be visible

to other transactions until the transaction is complete. Before the transaction

is committed, other transactions should see the data only in the state it was in

before the transaction.

� Durability Once a transaction is completed, changes must not revert even

in the case of a system failure.

1 8 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Autocommit Transactions
In fact, every Transact-SQL statement is a transaction. When it is executed, it either

finishes successfully or is completely abandoned. To illustrate this, let’s try to delete

all records from the EqType table. Take a look at the following diagram:

A foreign key relationship exists between the EqType and Equipment tables. The

foreign key prevents the deletion of records in the EqType table that are referenced

by records in the Equipment table.

Let’s try to delete them anyway. You can see the result of such an attempt in

Figure 6-2.

Two Select statements that will count the number of records in EqType are placed

around the Delete statement. As expected, the Delete statement is aborted because

of the foreign key. The count of records before and after the Delete statement is the

same, which confirms that all changes made by the Delete statement were canceled.

So the database remains in the state that it was in before the change was initiated.

If there were no errors, SQL Server would automatically commit the transaction

(that is, it would record all changes) to the database. This kind of behavior is called

autocommit.

In this case, SQL Server deleted records one after the other from the EqType table

until it encountered a record that could not be deleted because of the foreign key

relationship, at which point the operation was canceled.

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 8 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 8 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

Explicit Transactions
The most popular and obvious way to use transactions is to give explicit commands

to start or finish the transaction. Transactions started in this way are called explicit

transactions. You can group Transact-SQL statements into a single transaction using

the following statements:

� Begin Transaction

� Rollback Transaction

� Commit Transaction

If anything goes wrong with any of the grouped statements, all changes need

to be aborted. The process of reversing changes is called rollback in SQL Server

terminology. If everything is in order with all statements within a single transaction,

all changes are recorded together in the database. In SQL Server terminology, these

changes are committed to the database.

Figure 6-2 Complete failure of attempt to delete records

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 8 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

I will demonstrate the use of these processes on the prClearLeaseSchedule stored

procedure. Its main purpose is to set monthly lease amounts to zero for each asset

associated with an expired lease schedule. It also sets the total of the lease amounts

to zero. These two operations must be performed simultaneously to preserve the

integrity of the database.

Create Procedure prClearLeaseShedule

-- Set value of Lease of all equipment

-- associated with expired Lease Schedule to 0.

-- Set total amount of Lease Schedule to 0.

@intLeaseScheduleId int

As

Begin Transaction

-- Set value of Lease of all equipment

-- associated with expired Lease Schedule to 0

Update Inventory

Set Lease = 0

Where LeaseScheduleId = @intLeaseScheduleId

If @@Error <> 0 goto PROBLEM

-- Set total amount of Lease Schedule to 0

Update LeaseSchedule

Set PeriodicTotalAmount = 0

Where ScheduleId = @intLeaseScheduleId

If @@Error <> 0 goto PROBLEM

Commit Transaction

Return 0

PROBLEM:

Print ' Unable to eliminate lease amounts from the database!'

Rollback Transaction

Return 1

Before the real processing starts, the Begin Transaction statement notifies SQL

Server to treat all of the following actions as a single transaction. It is followed

by two Update statements. If no errors occur during the updates, all changes are

committed to the database when SQL Server processes the Commit Transaction

statement, and finally the stored procedure finishes. If an error occurs during the

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

updates, it is detected by If statements and execution is continued from the PROBLEM

label. After displaying a message to the user, SQL Server rolls back any changes

that occurred during processing.

We will review more complex transactions (including nested transactions) and

ways to process errors in the next chapter.

Implicit Transactions
The third transaction mode is called the implicit transaction. To use this mode, you

must set the Set Implicit_Transactions On statement for the connection. Any of the

following statements will serve as an implicit start to a transaction:

� Alter Table

� Create

� Delete

� Drop

� Fetch

� Grant

� Insert

� Open

� Revoke

� Select

� Truncate Table

� Update

To finish the transaction, you must use the Commit Transaction or Rollback

Transaction statement. After that, any of the preceding commands will start a

new implicit transaction.

Transaction Processing Architecture
An explanation of how transactions are implemented in Microsoft SQL Server will

give you some insight into many processes.

Every change to the database is recorded in a transaction log before it is written to the

appropriate tables. In SQL Server 2000, transaction logs are implemented in separate

1 8 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

files (or sets of files) with the extension .ldf. All modifications are written to this file

chronologically. The records in this transaction log can later be used to roll back the

transaction (thus providing atomicity) or to commit the changes to the database (thus

providing durability). Two types of records can be stored in transaction logs:

� Logical operations performed (for instance, insert, delete, and start of transaction)

� Before and after images of the changed data (that is, copies of data before and

after the change is made)

NOTE

The transaction log does not record queries that are executed against the database (since they do
not modify its content).

The transaction log mechanism helps to resolve many issues:

� If a client application loses its connection before a transaction is finished,

SQL Server will detect a problem and roll back changes, to ensure consistency.

� If the machine loses power during processing, SQL Server will recover the

database when services are restored. All transactions that were recorded in the

transaction log in an undivided manner (that is, as part of a complete transaction

set) are rolled forward (written to data tables) as if nothing unusual has happened.

All transactions that were not completed before the problem occurred are rolled

back (deleted) from the database.

NOTE

The transaction log also plays an important role in the implementation of backups in SQL Server.
When a user starts a full backup, SQL Server records a complete snapshot of the data tables
in backup files. At that point, SQL Server marks the current position in the transaction log and
continues to record all changes to the database in the transaction log. Transactions logged during
the process are also recorded as part of the full backup. When the backup is complete, SQL Server
makes another mark in the transaction log. At the time of the next backup, a transaction log
backup will suffice. To restore the database, an administrator first uses the full backup and then
one or more transaction log backups that have been run since the full backup. SQL Server runs
through the transaction log and applies changes to the data tables.

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 8 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 8 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

Nested Transactions
SQL Server allows you to nest transactions. Basically, this feature means that a new

transaction can start even though the previous one is not complete:

Begin transaction

...

Begin transaction

...

Commit transaction

...

Commit transaction

Usually this situation occurs when one stored procedure containing a transaction

calls another stored procedure that also contains a transaction. In the following

example, prCompleteOrder completes an order by setting its completion date and

changing the status of the order, and then looping through associated order items and

calling prCompleteOrderItem to complete each of them; prCompleteOrderItem sets

the completion date of an order item to the last ChargeLog date associated with that

OrderItem. Both of these procedures contain a transaction.

Alter Procedure prCompleteOrder_1

-- complete all orderItems and then complete order

@intOrderId int,

@dtsCompletionDate smalldatetime

As

set nocount on

Declare @intErrorCode int,

@i int,

@intCountOrderItems int,

@intOrderItemId int

Select @intErrorCode = @@Error

If @intErrorCode = 0

Begin Transaction

-- complete order

If @intErrorCode = 0

Begin

Update [Order]

Set CompletionDate = @dtsCompletionDate,

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 8 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

OrderStatusId = 4 -- completed

Where OrderId = @intOrderId

Select @intErrorCode = @@Error

End

-- loop through OrderItems and complete them

If @intErrorCode = 0

Begin

Create Table #OrderItems(

id int identity(1,1),

OrderItemId int)

Select @intErrorCode = @@Error

End

-- collect orderItemIds

If @intErrorCode = 0

Begin

Insert Into #OrderItems(OrderItemId)

Select ItemId

From OrderItem

Where OrderId = @intOrderId

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

Select @intCountOrderItems = Max(Id),

@i = 1

From #OrderItems

Select @intErrorCode = @@Error

End

while @intErrorCode = 0 and @i <= @intCountOrderItems

Begin

If @intErrorCode = 0

Begin

Select @intOrderItemId = OrderItemId

From #OrderItems

Where id = @I

Select @intErrorCode = @@Error

End

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 9 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

If @intErrorCode = 0

Exec @intErrorCode = prCompleteOrderItem_1 @intOrderItemId

If @intErrorCode = 0

Set @i = @i + 1

End

If @intErrorCode = 0 and @@trancount > 0

Commit Transaction

Else

Rollback Transaction

return @intErrorCode

Go

Alter Procedure prCompleteOrderItem_1

-- Set CompletionDate of OrderItem to date

-- of last ChargeLog record associated with OrderItem.

@intOrderItemId int

As

set nocount on

Declare @intErrorCode int

Select @intErrorCode = @@Error

If @intErrorCode = 0

Begin Transaction

-- Set CompletionDate of OrderItem to date

-- of last ChargeLog record associated with OrderItem.

If @intErrorCode = 0

Begin

update OrderItem

Set CompletionDate = (Select Max(ChargeDate)

from ChargeLog

where ItemId = @intOrderItemId)

Where ItemId = @intOrderItemId

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

exec @intErrorCode = prNotifyAccounting intOrderItemId

End

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 9 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

If @intErrorCode = 0 and @@trancount > 0

Commit Transaction

Else

Rollback Transaction

Return @intErrorCode

In the case of nested transactions, no Commit statements except the outer one will

save changes to the database. Only after the last transaction is committed will all

changes to the database become permanent. Up to that point, it is still possible to roll

back all changes.

The interesting question is how SQL Server knows which transaction is the last one.

It keeps the number of opened transactions in the @@trancount global variable for

each user connection. When SQL Server encounters a Begin Transaction statement, it

increments the value of the @@trancount, and when SQL Server encounters a Commit

Transaction statement, it decrements the value of the @@trancount. Therefore,

the only effect of a nested (internal) Commit Transaction statement is a change

to the @@trancount value. Only the outer Commit Transaction statement (when

@@trancount = 1) stores changes in data tables rather than in the transaction log.

The following is a purely academic example that does not perform any real

processing, but it demonstrates the effect of nested transactions on the @@trancount

global variable:

print 'Trancount = ' + Convert(varchar(4), @@trancount)

BEGIN TRANSACTION

print 'Trancount = ' + Convert(varchar(4), @@trancount)

BEGIN TRANSACTION

print 'Trancount = ' + Convert(varchar(4), @@trancount)

COMMIT TRANSACTION

print 'Trancount = ' + Convert(varchar(4), @@trancount)

COMMIT TRANSACTION

print 'Trancount = ' + Convert(varchar(4), @@trancount)

Each transactional statement will increment and decrement the @@trancount:

Trancount = 0

Trancount = 1

Trancount = 2

Trancount = 1

Trancount = 0

An interesting inconsistency to observe is in the behavior of the Rollback

Transaction statement. No matter how many transaction levels deep execution

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 9 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

extends, the Rollback Transaction statement will cancel all changes caused by

all transactions (and bring the @@trancount value down to zero). In fact, if you

execute an additional Rollback Transaction statement after the first one, SQL Server

will report an error.

print 'Trancount = ' + Convert(varchar(4), @@trancount)

BEGIN TRANSACTION

print 'Trancount = ' + Convert(varchar(4), @@trancount)

BEGIN TRANSACTION

print 'Trancount = ' + Convert(varchar(4), @@trancount)

ROLLBACK TRANSACTION

print 'Trancount = ' + Convert(varchar(4), @@trancount)

ROLLBACK TRANSACTION

print 'Trancount = ' + Convert(varchar(4), @@trancount)

The following is the result of this example:

Trancount = 0

Trancount = 1

Trancount = 2

Trancount = 0

Server: Msg 3903, Level 16, State 1, Line 8

The ROLLBACK TRANSACTION request has no corresponding BEGIN TRANSACTION.

Trancount = 0

TIP

I have to admit that I had many problems with this issue at one time. Be careful.

To prevent this error, you need to test for the value of the @@trancount variable

before you execute the Rollback Transaction statement. A simple way to test for this

value works something like this:

if @@trancount > 0

Rollback Transaction

You will find a much better solution in Chapter 7.

Named Transactions
Transaction statements can be named. The name must be a valid SQL Server

identifier (that is, no more than 128 characters), but SQL Server will read only

the first 32 characters:

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:56:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 9 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

Begin Tran[saction][transaction_name|@transaction_name_variable]
Commit Tran[saction][transaction_name|@transaction_name_variable]
Rollback [Tran[saction][transaction_name|@transaction_name_variable]]

I know that this sounds like a perfect tool for resolving some issues with nested

transactions. Unfortunately, in nested transactions, only the names of outer transactions

are recorded by SQL Server. If you try to roll back any of the inner transactions,

errors occur. The following listing is an academic demonstration of such an attempt:

BEGIN TRANSACTION t1

BEGIN TRANSACTION t2

ROLLBACK TRANSACTION t2

ROLLBACK TRANSACTION t1

SQL Server will return an error:

Server: Msg 6401, Level 16, State 1, Line 3

Cannot roll back t2. No transaction or savepoint of that name was found.

TIP

You can see that you need to know the name of the outer transaction that has called all other
stored procedures/transactions. This is not a practical requirement, especially when your stored
procedure will be called from more than one stored procedure. Therefore, I recommend that you
do not use transaction names.

Savepoints
SQL Server contains a mechanism for rolling back only part of a transaction.

This statement may seem to contradict the basic idea of a SQL Server transaction

as I have explained it, but it can be justified in some cases. Microsoft recommends

savepoints to be used if it is more expensive to check will change be valid in advance

(for example, because of a slow connection) and operation has high probability of

success. For example, assume that you are trying to reserve a set of plane tickets (or

to get a set of some other resources) using different companies (distributed database

system). Each leg of a journey has to be booked separately. If the reservation fails,

you will roll back just that leg of the journey, not all reservations that you already

successfully made. Only in the case that it is impossible to find any alternative for the

remaining part of the journey will you roll back the complete transaction.

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 9 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

To mark a savepoint in a transaction, use the following statement:

Save Tran[saction]{savepoint_name|@savepoint_variable}

The savepoint’s name is also a SQL Server identifier, but SQL Server reads only the

first 32 characters.

To roll back part of the transaction, you must use the savepoint name or variable:

Rollback Tran[saction]{savepoint_name|@savepoint_variable}

NOTE

Rollback Transaction statements without a savepoint will roll back the complete transaction.

Savepoints do not save anything to the database. They just mark the point to

which you can roll back a transaction. Resources (like locks) also stay in place after

a Save Transaction statement. They are released only when a transaction has been

completed or canceled.

The following procedures are designed to store an order and set of order items in

a database. The prScrapOrderSaveItem stored procedure uses savepoints to roll back

the insertion of a particular item.

Create Procedure prScrapOrder

-- save order information.

@dtsOrderDate smalldatetime,

@intRequestedById int,

@dtsTargetDate smalldatetime,

@chvNote varchar(200),

@insOrderTypeId smallint,

@inyOrderStatusId tinyint

As

Set nocount on

Insert [Order](OrderDate, RequestedById,

TargetDate, Note,

OrderTypeId, OrderStatusId)

Values (@dtsOrderDate, @intRequestedById,

@dtsTargetDate, @chvNote,

@insOrderTypeId, @inyOrderStatusId)

Return @@identity

Go

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 9 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

Create Procedure prScrapOrderSaveItem

-- Saves order item.

-- If error occurs, this item will be rolled back,

-- but other items will be saved.

-- demonstration of use of Save Transaction

-- must be called from sp or batch that initiates transaction

@intOrderId int,

@intInventoryId int,

@intOrderItemId int OUTPUT

As

Set nocount on

Declare @intErrorCode int,

@chvInventoryId varchar(10)

-- name the transaction savepoint

Set @chvInventoryId = Convert(varchar, @intInventoryId)

Save Transaction @chvInventoryId

-- Set value of Lease of all equipment associated

-- with expired Lease Schedule to 0

Insert OrderItem (OrderId, InventoryId)

Values (@intOrderId, @intInventoryId)

Select @intOrderItemId = @@identity,

@intErrorCode = @@Error

If @intErrorCode <> 0

Begin

Rollback Transaction @chvInventoryId

Return @intErrorCode

End

Return 0

Go

Let’s assume that the caller is some external application that is trying to fulfill an

order by adding a line item by line item. If one line item fails, the application will

detect an error, roll back to the last savepoint, and try to add some other line item.

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 9 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

The stored procedures are designed in such a manner that a transaction must be

initiated by the caller. You can test the stored procedures by using the following batch:

Declare @intOrderId int,

@intOrderItemId int

Begin Tran

Exec @intOrderId = prScrapOrder @dtsOrderDate = '1/10/2003',

@intRequestedById = 1,

@dtsTargetDate = '1/1/2004',

@chvNote = NULL,

@insOrderTypeId = 3, -- scrap

@inyOrderStatusId = 1 -- ordered

Exec prScrapOrderSaveItem @intOrderId,

5,

@intOrderItemId OUTPUT

Exec prScrapOrderSaveItem @intOrderId,

6,

@intOrderItemId OUTPUT

Exec prScrapOrderSaveItem @intOrderId,

8,

@intOrderItemId OUTPUT

Commit Tran

In nested transaction statements, transaction names are ignored, or can cause errors.

If you are using transactions in stored procedures, which could be called from within

other transactions, do not use transaction names. In the previous example, although

stored procedures with transaction names are called from a batch (it could have been

implemented as a stored procedure), the transaction itself was not nested.

Locking
Let me remind you of the requirements represented by the so-called ACID test. The

isolation requirement means that changes to the database made by a transaction are

not visible to other transactions that are themselves in an intermediate state at the

time of that transaction’s completion, and that before the transaction is committed,

other transactions can see data only in the state it was in before the transaction.

To satisfy the isolation requirement, SQL Server uses locks. A lock is a restriction

placed on the use of a resource in a multiuser environment. It prevents other users

(that is, processes) from accessing or modifying data in the resource. SQL Server

automatically acquires and releases locks on resources in accordance with the

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 9 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

actions a user performs. For example, while the user is updating a table, nobody else

can modify (and in some cases, even see) records that are already updated. As soon

as all updates connected to the user action are completed, the locks are released and

the records become accessible.

There is just one problem with this process. Other users have to wait for the

resource to become available again—they are blocked. Such blocking can lead to

performance problems or even cause a process to fail. The use of locking is a trade-off

between data integrity and performance. SQL Server is intelligent enough to handle

most problems, and it does a great job in preventing problems. It is also possible to

control locking using transaction isolation levels and optimizer hints, both of which

are described in the next section.

Locks can have different levels of granularity. They can be acquired on

� Rows

� Pages

� Keys

� Ranges of keys

� Indexes

� Tables

� Databases

SQL Server automatically acquires a lock of the appropriate granularity on a

resource. If SQL Server determines during execution that a lock is no longer adequate,

it dynamically changes the lock’s granularity.

Locks are acquired by connection. Even if two connections are initiated from the

same application, one can block the other.

The type of lock acquired by SQL Server depends on the effect that the change

statement will have on the resource. For example, different locks are applied for the

Select statement and the Update statement. There are five lock types:

� Shared (read) locks Usually acquired for operations that do not modify data

(that is, read operations). Another transaction can also acquire a nonexclusive

lock on the same record, and thus the lock is shared. The shared lock is released

when the transaction moves on to read another record.

� Exclusive (write) locks Acquired for statements that modify data (such

as Insert, Update, and Delete). Only one exclusive lock on a resource can be

held at a time. An exclusive lock can be acquired only after other locks on

the resource (including shared locks) are released.

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� Update locks Resemble shared locks more than they do exclusive locks. They

are used to notify SQL Server that a transaction will later modify a resource.

They prevent other transactions from acquiring exclusive locks. Update locks

can coexist with shared locks. Just before the resource is modified, SQL Server

promotes the update lock to an exclusive lock.

� Intent locks Set on an object of higher granularity to notify SQL Server that

a process has placed a lock of lower granularity inside the object. For example,

if a transaction places a lock on a page in a table, it will also place an intent

lock on the table. The intent lock means that SQL Server does not have to scan

the whole table to find out if a process has placed a lock on some page or record

inside, in order to place a table lock for another transaction. In fact, there are

three different types of intent locks: IS (intent share), IX (intent exclusive), and

SIX (shared with intent exclusive).

� Schema locks Prevent the dropping or modifying of a table or index while it

is in use. There are two types of schema locks. Sch-S (schema stability) locks

prevent table or index drops. Sch-M (schema modification) locks ensure that

other transactions cannot access the resource while it is being modified.

Transaction Isolation Levels and Hints
You can change the default behavior of SQL Server using transaction isolation levels

or lock hints. Transaction isolation levels set locking at the connection level, and

lock hints set locking at the statement level. SQL Server can work on four different

transaction isolation levels:

� Serializable The highest level in which transactions are completely isolated.

The system behaves as though the transactions are occurring one after another.

SQL Server will hold locks on both data and key records until the end of the

transaction. This may lead to some performance issues.

� Repeatable Read Forces SQL Server to place shared locks on data records

and hold them until the transaction is completed. Unfortunately, it allows

phantoms, which occur when a transaction reads a range of records. There is

no guarantee that some other concurrent transaction will not add records that

fall in the range or modify keys of records so that they fall out of the range. If

the uncommitted transaction repeats the read, the result will be inconsistent.

� Read Committed The default level in SQL Server. SQL Server places shared

locks while reading. It allows phantoms and nonrepeatable reads. There is no

1 9 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 1 9 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

guarantee that the value of the record that a transaction reads multiple times

during execution will stay consistent. Some other transaction could change it.

� Read Uncommitted The lowest level of isolation in SQL Server. It ensures

that physically corrupt data is not read. SQL Server will not place shared locks,

and it will ignore exclusive locks. You will have the fewest performance issues

when using this level, but you will also likely have many data integrity problems.

It allows phantoms, nonrepeatable reads, and dirty reads (everybody can see

the content of the changed record, even if a transaction is not yet committed

and could potentially be rolled back).

The isolation level is specified in the Set statement. For example:

Set Transaction Isolation Level Repeatable Read

Locking hints change the behavior of the locking manager as it processes a single

Transact-SQL statement. They overwrite behavior set by the transaction isolation

level. The following table describes hints that can be used to control locking:

Hints Description
Holdlock or Serializable Holds a shared lock until a transaction is completed. The lock will not be released when the

resource is no longer needed, but rather when the transaction is completed.

Nolock This hint applies only to Select statements. SQL Server will not place shared locks, and it will
ignore exclusive locks.

Updlock Uses update instead of shared locks while reading a table.

Rowlock Specifies the granularity of locks at the row level.

Paglock Specifies the granularity of locks at the page level.

Tablock Specifies the granularity of locks at the table level.

Tablockx Specifies the granularity of locks at the table level and the type of lock to be exclusive.

Readcommitted Equivalent to the default isolation level (Read Committed).

Readpast This hint is applicable only in Select statements working under the Read Committed isolation
level. Result sets created with this hint will not contain records locked by other transactions.

Readuncommitted Equivalent to the Read Uncommitted isolation level.

Repeatableread Equivalent to the Repeatable Read isolation level.

Locking hints can be used in Select, Insert, Update, or Delete statements. They

are set after the table reference in SQL statements (for example, in the From clause

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of a Select statement or in the Insert clause of an Insert statement). Their scope is

just the table that they are used for. For example, the following command will hold a

lock until the transaction is completed:

Select *

From Inventory With (HOLDLOCK)

Where InventoryId = @intInventoryId

Nobody will be able to change data records that were read and keys that match the

criteria of this table until the transaction is completed. Therefore, this table cannot

have phantoms, nonrepeatable reads, or dirty reads.

The next example demonstrates the use of hints in an Update statement and the

use of more than one hint in a statement:

Update Inventory With (TABLOCKX, HOLDLOCK)

Set StatusId = 4

Where StatusId = @intStatusId

The complete table will be locked for the duration of the transaction.

Distributed Transactions
Microsoft Distributed Transaction Coordinator (MS DTC) is a component that allows

you to span transactions over two or more servers while maintaining transactional

integrity.

Servers in this scenario are called resource managers, and MS DTC performs the

function of transaction manager. In fact, all those resource managers do not even have

to be Microsoft servers; they just have to be compatible with MS DTC. For example, it

is possible to execute a single transaction against databases on Microsoft SQL Server

and Oracle.

When transactions are distributed over different resource managers, different

mechanisms have to be applied by the transaction coordinator to compensate for

problems that might occur in such an environment. A typical problem is network

failure. For example, everything might be executed properly by each individual

resource manager, but if the transaction coordinator is not informed due to a network

failure, the result is the same as if one of the resource managers had failed, and the

transaction will be rolled back.

The mechanism for dealing with such problems is called the two-phase commit

(2PC). As the name implies, it consists of two phases:

2 0 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 2 0 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

� Prepare phase Starts when a transaction manager receives a request to

execute a transaction. It notifies the resource managers and informs them of

the work that needs to be done. The resource managers perform all changes

and even write everything from the transaction log in memory to the disk.

When everything is completed, each resource manager sends a status message

indicating success or failure to the transaction manager.

� Commit phase Starts when the transaction manager receives messages

from resource managers. If the resource managers successfully complete the

preparation phase, the transaction manager sends a Commit command to the

resource managers. Each of them makes the changes permanently to the database

and reports the success of the operation to the transaction manager. If any of the

resource managers reports failure during the preparation phase, the transaction

manager will send a Rollback command to all resource managers.

From a developer’s point of view, distributed transactions are very similar to

regular transactions. The major difference is that you need to use the following

statement to start the transaction:

Begin Distributed Tran[saction] [transaction_name]

Distributed transactions can also be started implicitly, by executing a query or

stored procedure that will be run against distributed servers.

Transactions are completed with regular Commit or Rollback statements. The

following stored procedure updates two tables in a local database and then updates

information in a remote database using a remote stored procedure:

Alter Procedure prClearLeaseShedule_distributed

-- Set value of Lease of all equipment associated to 0

-- Set total amount of Lease Schedule to 0.

-- notify lease company that lease schedule is completed

@intLeaseScheduleId int

As

Declare @chvLeaseNumber varchar(50),

@intErrorCode int

-- Verify that lease has expired

If GetDate() < (Select EndDate

From LeaseSchedule

Where ScheduleId = @intLeaseScheduleId)

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 0 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

Raiserror ('Specified lease schedule has not expired yet!', 16,1)

If @@Error <> 0

Begin

Print 'Unable to eliminate lease amounts from the database!'

Return 50000

End

-- get lease number

Select @chvLeaseNumber = Lease.LeaseNumber

From Lease

Inner Join LeaseSchedule

On Lease.LeaseId = LeaseSchedule.LeaseId

Where (LeaseSchedule.ScheduleId = @intLeaseScheduleId)

Begin Distributed Transaction

-- Set value of Lease of all equipment associated to 0

Update Inventory

Set Lease = 0

Where LeaseScheduleId = @intLeaseScheduleId

If @@Error <> 0 Goto PROBLEM

-- Set total amount of Lease Schedule to 0

Update LeaseSchedule

Set PeriodicTotalAmount = 0

Where ScheduleId = @intLeaseScheduleId

If @@Error <> 0 Goto PROBLEM

-- notify lease vendor

Exec @intErrorCode = lease_srvr.LeaseShedules..prLeaseScheduleComplete

@chvLeaseNumber, @intLeaseScheduleId

If @intErrorCode <> 0 GoTo PROBLEM

Commit Transaction

Return 0

PROBLEM:

print 'Unable to complete lease schedule!'

Rollback Transaction

Return 50000

Apart from a reference to the remote stored procedure, the only thing that needed

to be done was to use the Distributed keyword to start the transaction. Everything

else was managed by MS DTC.

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 2 0 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

Typical Locking Problems
Transactions are a powerful weapon in the hands of a programmer, but improper use

can cause substantial damage. I will try to forewarn you of some typical problems.

A Never-Ending Story
The worst thing that you can do is to explicitly open a transaction and then forget to

close it. All changes sent to the database through that connection will become part

of that transaction; resources normally released at the end of a transaction are held

indefinitely; other users cannot access resources; and eventually, your server chokes.

Spanning a Transaction over Batches
A transaction can span batches. SQL Server counts transactions over the connection,

so it is “legal” to issue two batches like this over one connection:

Begin Transaction

update Inventory

set Lease = 0

where LeaseScheduleId = 141

Go

update LeaseSchedule

Set PeriodicTotalAmount = 0

where ScheduleId = 141

Commit Transaction

Go

However, I cannot think of any justification for doing so, and you significantly

increase the probability of error. For example, you could easily forget to finish the

transaction.

There are some cases in which it is justified for a transaction to span batches. For

example, when a DDL statement must be in a separate batch.

Rollback Before Begin
Sometimes you might set your error handling so that all errors that occur in a stored

procedure are treated in the same way. Naturally, you will include a statement to roll back

the transaction. If an error occurs before the transaction starts, the stored procedure will

jump to the error handling code and another error will occur:

Create Procedure prClearLeaseShedule_1

-- Set value of Lease of all equipment associated

-- with expired Lease Schedule to 0

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 0 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

-- Set total amount of Lease Schedule to 0.

@intLeaseScheduleId int

As

-- Verify that lease has expired

If GetDate() < (select EndDate

from LeaseSchedule

where ScheduleId = @intLeaseScheduleId)

raiserror ('Specified lease schedule has not expired yet!',

16,1)

-- If error occurs here,

-- server will execute Rollback before transaction is started!

if @@Error <> 0 goto PROBLEM

Begin Transaction

-- Set value of Lease of all equipment associated

-- with expired Lease Schedule to 0

update Inventory

set Lease = 0

where LeaseScheduleId = @intLeaseScheduleId

if @@Error <> 0 goto PROBLEM

-- Set total amount of Lease Schedule to 0

update LeaseSchedule

Set PeriodicTotalAmount = 0

where ScheduleId = @intLeaseScheduleId

if @@Error <> 0 goto PROBLEM

commit transaction

return 0

PROBLEM:

print 'Unable to eliminate lease amounts from the database!'

rollback transaction

return 1

Multiple Rollbacks
Unlike Commit statements, only one Rollback statement is required to close a set

of nested transactions. In fact, if more than one Rollback statement is executed, SQL

Server will raise another error.

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Long Transactions
SQL Server places locks on data that has been modified by a transaction, to prevent

other users from further changing the data until the transaction is committed. This

feature can lead to problems if a transaction takes “too long” to complete.

NOTE

There is no exact definition of “too long.” The longer a transaction works, the greater the
likelihood that problems will occur.

Some of the problems that might occur if a long transaction is present in the

database include the following:

� Other users are blocked. They will not be able to access and modify data.

� The transaction log fills up. (SQL Server 2000 and SQL Server 7.0 can be

configured to automatically increase the size of the transaction log, but you

could fill your disk as well.)

� Most of the time, transaction log work is performed in memory. If all available

memory is used before the transaction is complete, SQL Server will start saving

changes to disk, thus reducing the overall performance of the server.

TIP

You should be particularly aware of concurrency problems because they are the problems most
likely to happen. While you are developing applications, you will probably work alone (or in a
small group) on the server, but the situation will change drastically when you place 50, 250, or
5000 concurrent users on the production server.

C h a p t e r 6 : C o m p o s i t e T r a n s a c t - S Q L C o n s t r u c t s : B a t c h e s , S c r i p t s , a n d T r a n s a c t i o n s 2 0 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 6

P:\010Comp\D_Base\896-2\ch06.vp
Monday, April 28, 2003 4:57:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /
Blind Folio vi

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

207

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

CHAPTER

7
Debugging and
Error Handling

IN THIS CHAPTER:
Debugging

Error Handling

P:\010Comp\D_Base\896-2\ch07.vp
Wednesday, April 30, 2003 10:57:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Debugging and error handling seem like such negative topics. By admitting

debugging as a necessary phase of development and error handling as

a required practice, we seem to admit to weakness in our abilities as

developers. But we are not the computers themselves: we cannot account for all

contingencies when we write code. So, to find the error of our ways after the fact,

we need a coherent approach to the identification and resolution of defects in our

code and a coherent strategy for handling errors in our code as they occur.

Debugging
The process of debugging is an integral part of both the development and stabilization

phases of software production.

What Is a “Bug”?
You have probably heard errors and defects found in software referred to as “bugs.”

This word has found its way into our everyday language and reality so that we now

seem to regard the bug as normal and inevitable—like death and taxes. However,

not many people know how this term actually entered the language.

It happened in the dim, distant technological past when computers occupied

whole rooms (if not buildings). On one occasion, technicians were investigating a

malfunction on such a computer. Much to their surprise, they found the cause of the

circuit malfunction to be a large moth that had been attracted by the heat and glow

of the machine’s vacuum tubes. Over time, all computer-related errors (particularly

the ones that were difficult to explain) came to be known as bugs.

Sometimes we anthropomorphize bugs—give them human attributes. They can

seem in turn capricious and malicious, but the bugs we experience in application

and database development are not related to mythological folk such as gremlins.

Bugs are very real, but their causes are inevitably human. Computers bear no malice

toward users or developers, compilers do not play practical jokes, and operating

systems are not being stubborn when they refuse to operate as expected. No, when

you encounter an error, you can be sure that it was you or another programmer who

caused it. What you need to do is find the offending code and fix it, but to find bugs

efficiently and painlessly, you need to establish a debugging process—a formal

routine with well-defined steps and rules.

2 0 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 0 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

The Debugging Process
The objectives of the debugging process are to identify and resolve the defects present

in a software product. This process consists of two phases:

1. Identification

2. Resolution

Identification
The identification phase consists of two primary activities:

1. Stabilize the error.

2. Find the source of the error.

Stabilize the Error In most cases, identifying the error consumes 95 percent of your

debugging time, whereas fixing it often requires just a few minutes. The first step

in identifying an error is to stabilize (or isolate) the error. You must make the error

repeatable. What this means is that you must find a test case that causes the error to

recur predictably. If you are not able to reproduce the error, you will not be able to

identify its cause nor will you be able to fix it.

But we need to qualify the test case in another way. It is not enough to create

a test case that will cause the error to occur predictably. You must also strive to

simplify the test case in order to identify the minimum circumstances under which

the error will occur. Refining the test case is certainly the most difficult aspect of

debugging, and cultivating this skill will greatly enhance your debugging efficiency,

while removing a large part of the frustration. Stabilizing the error answers the question,

“What is the error?” With this knowledge in hand, you can go on to answer the

question, “Why does the error occur?”

Find the Source of the Error After you identify the minimum circumstances under

which the error will occur, you can proceed to find the source of the error. If your

code is properly structured and well written, this search should not be a difficult

task. You can apply a variety of tools at this point:

� Your brain The most important debugging tool at your disposal is your

brain. If you can follow the program’s execution and understand its logic,

you will be able to understand the problem as well. When you have learned

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

everything your test cases can teach you, you can create a hypothesis, and

then prove it through further testing.

� SQL Server Some errors will be clearly reported by SQL Server. Be sure

that your client application picks up and displays all error messages reported by

the server. Also, try using Query Analyzer to execute your stored procedures

without the client application. Naturally, you should take care to use the same

parameters that were passed from the client application when you produced

the error.

� SQL Profiler Some errors will occur only when the application is executing

stored procedures and queries in SQL Server. Too often, the application does

not properly collect all error information, and then application and database

developers play ping-pong blaming each other for the reported defect. SQL

Profiler can resolve such disputes. It can be configured to collect information

about events such as stored procedures, transactions, and server, database,

and session events. When you analyze the collected data, you will be able to

determine which of the stored procedure’s calls and parameters are responsible

for the individual errors.

� T-SQL Debugger An integral part of Visual Studio is the T-SQL Debugger. It

enables you to set breakpoints in your code and pause execution to investigate and

change the contents of local variables, functions, and input and output parameters.

The T-SQL Debugger lets you step through the code of your stored procedures

and triggers. It is fully integrated with many development environments and lets

you move from Visual Basic, JavaScript, C++, or any other client code into a

Transact-SQL statement. Query Analyzer in SQL Server 2000 also contains a

T-SQL Debugger. It has features similar to the tool provided in Visual Studio.

Resolution
Resolving defects in code is usually much easier than finding those defects, but do

not take this phase too lightly. At this point in the development cycle, when the product

shipping date is looming large, you may be tempted by the “quick fix.” Resist this

temptation: it often causes developers to introduce new errors while fixing the old

ones. It is seldom an issue of carelessness or incompetence, but rather of increased

pressure to fix and ship a product.

The resolution phase consists of two primary activities:

1. Develop the solution in a test environment.

2. Implement the solution in the production environment.

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Develop the Solution in a Test Environment To consistently resolve defects in your

code, you need to assemble two critical ingredients—a test environment and

source code control.

� Test environment SQL Server is especially susceptible to errors generated

in haste to solve a problem because a stored procedure is compiled and saved

as a single action. If you are trying to resolve defects on the production system,

you are performing brain surgery in vivo.

Although it is possible to perform fixes in a production environment, it

is always much better to step back, spend adequate time understanding the

problem, and then attempt to solve the problem outside of the production

environment.

If a test environment does not exist or if the existing test environment is outdated,

you may be tempted to save time with a “quick and dirty” fix. Before you go

down this path, however, you should consider the resources that would be required

to reverse the changes made if you happen to make a mistake. Anything you

do, you should be able to undo quickly and easily.

Let it be understood, loud and clear: you need a test environment!

� Source code control Keep source code of your procedures and database

objects. Source code control gives you a snapshot of your application at critical

points in the development cycle and allows you to “turn back the clock.” It

gives you the ability to reverse changes if you find they have introduced new

problems or failed to solve the existing one. Visual SourceSafe, which is

examined in Chapter 11, is a perfect tool for this function.

Source code control works best if you take a patient approach to debugging.

You should save versions often to help you identify the source of errors when

they occur. It is a poor practice to make multiple changes per version. Old and

new errors tend to overlap and lead you to incorrect conclusions.

Implement the Solution in the Production Environment Once you are satisfied with the

change, you should implement it in the production environment. Then test. Then

test again. You should not assume that it will work in the production environment

because it worked in the test environment. If, after stringent testing, everything is

still functioning properly, you should then look for other places in the code and

database structure where similar errors may exist.

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 1 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Wednesday, April 30, 2003 10:59:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

Debugging Tools and Techniques
Modern development environments contain sophisticated tools to help you debug

your applications. The T-SQL Debugger in Visual Studio and the T-SQL Debugger

in Query Analyzer are examples of these tools, and will help you to identify and fix

problems in your code. I will first examine the T-SQL Debugger in Visual Studio,

and then in Query Analyzer. However, even if your development environment does

not support the T-SQL Debugger, there are techniques you can employ to achieve

the same results. I will discuss these techniques in “Poor Man’s Debugger” later in

this chapter.

T-SQL Debugger in Visual Studio
The T-SQL Debugger is a dream tool for developers working in Visual Studio to find

errors in a Microsoft SQL Server environment, but there is a downside: the T-SQL

Debugger from Visual Studio is difficult to install and configure. This difficulty arises

from the nature of the environment and the complexity of the components required

for debugging.

The T-SQL Debugger was initially released as a part of Visual C++ 4.2. Now it

is a component of the Enterprise Edition of all Visual Studio tools (such as Visual

Basic and Visual InterDev).

Requirements Before you continue, make sure that your development environment

fulfills the following requirements:

� Microsoft SQL Server 7.0 or 2000 (or Microsoft SQL Server 6.5 with

Service Pack 2 or later) must be installed. At the time of publication, the

T-SQL Debugger was not compatible with Desktop Engine (MSDE).

� Microsoft SQL Server must be running on Windows NT 4 Server or

Windows 2000 Server or higher.

� Client-side tools must be installed on workstations with Windows 9x,

Windows NT 4, or Windows 2000.

� You must have the Enterprise Edition of one Visual Studio development

tool such as Visual Basic or Visual InterDev.

Configuration The T-SQL Debugger is a complex tool that relies on the synchronous

behavior of many components. Because all of these components are delivered with

different versions of various programs, the biggest challenge that you face is to force

all of these components to work together. You can achieve this end by following

these configuration steps:

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 1 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

1. Install debugging components on your SQL Server machine.

2. Set up a valid user account (not a system account).

3. Verify that DCOM is properly configured.

Install debugging components: The installation of debugging components is

different for each development tool. First, check the documentation for details.

When you are installing the T-SQL Debugger, use the Custom Setup option to

make sure that the SQL Server Debugging components are installed.

In Visual Studio 6.0, the setup program is in the Sqldbg_ss folder on Disc 2.

You may need to reinstall SQL Server Debugging if the Application Event Log

contains error messages referring to missing DLLs containing “SDI” in their names.

For example:

17750: Cannot load the DLL SDI, or one of the DLLs it references.

Reason: 126 (The specified module could not be found.).

You should check the Application Event Log for messages like this one if your

debugger is not working.

With some development tools, you need to perform an additional step to enable

the T-SQL Debugger. For example, in Visual Basic you need to access the Add In

Manager and select T-SQL Debugger To Be Loaded.

Set up a valid user account (not a system account): SQL Server can run as a

service under the virtual LocalSystem account or under a real user account with

adequate privileges. For debugging purposes, it must run under a real user account.

To set up a user account under Windows 2000:

1. Open the Control Panel and then Administrative Tools.

2. Open the Services applet.

3. Select the MSSQLServer service and then right-click.

4. When the context menu appears on the screen, select Properties.

5. The program will display the Properties dialog box. Switch to the Log On

tab (see Figure 7-1).

6. Select This Account and type the username in the text box.

7. Type the password for the account in the Password text box.

8. Type the password again in the Confirm Password text box, and then click OK

to close the dialog box.

9. Right-click the MSSQLServer service again, and choose Restart from the menu.

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

TIP

I use an Administrator account that was created by the system during Windows NT setup, but it is
not classified as a local system account.

Verify that DCOM is properly configured: SQL Server uses DCOM to communicate

between the client workstation and the database server during debugging.

TIP

If both the T-SQL Debugger and SQL Server are running on the same machine during debugging,
you will not need to configure DCOM.

When Microsoft SQL Server is installed on a server machine, all DCOM settings

are configured to support DCOM for cross-machine debugging. However, due to

security issues, administrators occasionally have unrestricted access to the server

Figure 7-1 Setting services

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 1 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

through DCOM. If you have followed all the instructions in your development tool’s

documentation and your debugger is still not working, check DCOM configuration:

1. Run dcomcnfg.exe from the command prompt. The Distributed COM

Configuration Properties window appears.

2. Open the Default Security tab.

3. In Default Access Permissions, click Edit Default.

4. If the Everyone group already has Allow Access permission, your DCOM

configuration is okay. If it does not, add the user that you plan to use (apply

domain\user format).

5. Assign Allow Access permission to the new user.

6. If the System group does not have Allow Access permission, add it.

SQL Server Debugging Interface Microsoft developers have defined a DLL with a set

of functions to be called before each Transact-SQL statement. This tool is called the

SQL Server Debugging Interface (SDI). The core of SDI is a pseudo-extended stored

procedure called sp_sdidebug. It is defined in the sysobjects table as an extended

stored procedure, although it is based on an external DLL file. Its name includes the

prefix “sp” so that it can be accessed from all databases as a system stored procedure.

When the debugger executes this stored procedure, it loads the DLL, which provides

access to SQL Server internal state information.

NOTE

SDI adds substantial overhead and makes the machine run more slowly. For this reason, you
should never use the T-SQL Debugger on a production machine.

Using the T-SQL Debugger in Visual Studio This section demonstrates the use of the

T-SQL Debugger from Visual InterDev. The major difference between debugging

stored procedures and debugging within other programming languages is that you do

not need to run the application to debug a single procedure.

1. Open Data View in Visual InterDev.

2. Open Stored Procedures and right-click the prGetInventoryProperties_3 stored

procedure.

3. When you click Debug, the T-SQL Debugger starts the procedure and prompts

you for input parameters (see Figure 7-2). Use the Value combo box to select

<DEFAULT> or Null, or enter an appropriate value.

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

4. Click OK. The T-SQL Debugger opens the source code of the procedure and

pauses on the first executable statement. A small yellow arrow on the left border

marks the position of the statement to be executed next. The commands in the

Debug menu become enabled, as do two more windows, described next, that

enable you to examine the state of the environment, as shown in Figure 7-3.

� Locals window Allows you to scroll through the local variables and

parameters of the stored procedure and to see its current contents and

data type:

Figure 7-2 Setting input parameters in the T-SQL Debugger

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

As the stored procedure’s code is executed, the values of variables change.

To help you follow the execution, the T-SQL Debugger colors the values of

variables that were changed in the previous statement. The Locals window

allows you to change values of variables interactively during execution of

the code. This window has more than one tab, but only this one has meaning

in the T-SQL Debugger. The other tabs are used to debug client applications.

� Watch window Has a similar function to the Locals window. You can

type, or drag from the code, a Transact-SQL expression to be evaluated in

this window. This feature is useful when you want to investigate the values

of expressions in If, While, Case, and other similar statements. The Watch

window also contains an Output tab, which displays result sets returned by

the Select statement and messages sent from the Print statement.

5. Click the Debug menu. The majority of commands available on the Debug

menu target execution control. Most of the time, you will use the Step Into or

Step Over commands to step through a stored procedure. These commands

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 1 7

Figure 7-3 The T-SQL Debugger

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

execute one Transact-SQL statement at a time. The difference between them is

in the way they behave when they encounter a nested stored procedure:

� Step Into Opens the code of the nested stored procedure and lets you

step through it.

� Step Over The nested stored procedure is treated as any other Transact-

SQL statement and is executed in a single step.

� Step Out Enables you to execute the rest of the nested stored procedures

without pause and halts only when the stored procedure is completed in the

calling stored procedure.

� Run To Cursor Enables you to position the cursor somewhere in the

code and to execute everything to that point in a single step. In essence,

this command lets you set a temporary breakpoint.

NOTE

Breakpoints are markers in code that serve to stop execution when certain conditions are met. In
the T-SQL Debugger, the only such condition is when the execution has reached the position of the
breakpoint. In Visual Basic, Visual C++, and other tools, the condition can be met when a variable
changes value, when a breakpoint has been reached a selected number of times, or when a
Boolean expression is true.

6. Right-click a line of code containing an executable Transact-SQL statement,

then choose Insert Breakpoint on the Debug menu. SQL Server marks that

position with a red dot on the left border. The breakpoint makes it unnecessary

to step through the code. Just run it and it will stop when execution reaches

the breakpoint. From this point, you can either explore variables or continue

to step through the code, as shown in Figure 7-4.

If you want to continue until another breakpoint is reached, use the Debug | Start

menu item.

One of my favorite features in the Visual Basic debugger is the ability to continue

execution from the position of the cursor. Unfortunately, due to the architecture of

the T-SQL Debugger, the Set Next Step command is not available.

T-SQL Debugger in Query Analyzer
Query Analyzer in SQL Server 2000 also contains a T-SQL Debugger. It seems that

Microsoft has decided to resolve its support nightmare that was introduced with the

setup and configuration of the T-SQL Debugger in Visual Studio by providing a tool

in Query Analyzer that is much more robust, as well as easier to configure.

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 1 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

Requirements The requirements for using the T-SQL Debugger in Query Analyzer

are quite simple:

� You must have Microsoft SQL Server 2000 installed (any version other than

the Desktop Engine or Desktop Edition).

� Microsoft SQL Server 2000 must be running on Windows NT 4 Server or

Windows 2000 Server (or higher).

� Client-side tools must be installed on workstations with Windows 98,

Windows ME, Windows NT 4, or Windows 2000.

Configuration T-SQL Debugger setup is quite simple. Just make sure that you select

the Debugger Interface from among the Development Tools during SQL Server

setup. If you did not select it during the initial setup, you can simply run Setup again

and add this component.

Figure 7-4 Breakpoints in the T-SQL Debugger

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the T-SQL Debugger in Query Analyzer The T-SQL Debugger in Query Analyzer

has features similar to the Visual Studio Debugger. Although the interface is a little

different, it is quite intuitive. To use it, follow these steps:

1. Open Query Analyzer and connect to the database.

2. Use the Object Browser or Object Search to find a target stored procedure.

3. Right-click the stored procedure and choose Debug from the pop-up menu.

Query Analyzer prompts you to supply parameters for the stored procedure:

4. Click each parameter in the Parameters list and type the value. When you are

done, click Execute; SQL Server launches the T-SQL Debugger window (see

Figure 7-5).

The T-SQL Debugger opens the source code for the procedure and pauses on

the first executable statement. A small yellow arrow on the left border marks the

position of the statement to be executed next. You will not be able to edit the stored

procedure’s code, but you can use buttons on the window’s toolbar to step through

the stored procedure, and you can use the panels in the lower part of the window to

investigate local and global variables, view the callstack, and view the result of the

procedures.

The left section of the middle portion of the window allows you to monitor, and

even set, values for local variables and parameters of the stored procedure.

The middle section allows you to monitor values of global variables. Naturally,

all values are not initially present, but you can type them yourself. The right section

lists (nested) procedures in the order in which they are called. The lower part of the

window displays the result as it would be in the Results pane of the Query window.

2 2 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 2 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

The buttons on the toolbar of the T-SQL Debugger window control the execution

of the code. Most of the time you will use the Step Into and Step Over buttons.

These commands have the same effect as those in Visual Studio—they allow you to

execute one Transact-SQL statement at a time. Again, the difference between them is

in the way they behave when they encounter a nested stored procedure (a procedure

that is executed from the procedure that you are debugging). If you choose Step Into

(F11), the T-SQL Debugger opens the code of the nested stored procedure and lets

you step through it. If you choose Step Over (F10), the nested stored procedure is

treated as any other Transact-SQL statement and is executed in a single step. The

Step Out (SHIFT-F11) command enables you to execute the rest of the nested stored

procedures without pause and halts only when the stored procedure is completed in

the calling stored procedure. Run To Cursor (CTRL-F10) enables you to position the

cursor somewhere in the code and to execute everything to that point in a single step.

It is also possible to use breakpoints in Query Analyzer. As explained earlier,

breakpoints are markers in code that serve to stop execution when certain conditions

are met. In the T-SQL Debugger, the only such condition is when the execution has

Figure 7-5 The T-SQL Debugger window in Query Analyzer

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 2 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

reached the position of the breakpoint. To set (or remove) a breakpoint, you can click

a line of code and then click the Toggle Breakpoints button (or press F9). Again, the

program marks the breakpoint with a big red dot at the beginning of the line. Then,

you can simply run the procedure using the Go button (F5). It is not necessary to step

through the code. The program stops execution when it encounters a breakpoint.

NOTE

The T-SQL Debugger in Query Analyzer has one small limitation—it is not possible to open more
than one T-SQL Debugger, and only one stored procedure can be debugged at a time (along with
any nested stored procedures).

Poor Man’s Debugger
You can debug your stored procedures even if you do not have the T-SQL Debugger

(that is, if your environment does not comply with all the requirements). Before

debuggers became part of the programming environment, developers used simple

techniques to print the contents of variables and follow the execution of code. Some

programming languages include commands (for instance, Assert in Visual Basic 6.0)

that are active only during debugging. In others, you simply add print commands

during the development stage and comment them out before releasing the code into

production.

In Transact-SQL, I use a very simple technique that allows me to view the contents

of the variables and recordsets when I am testing a stored procedure from Query

Analyzer. I add one additional parameter with the default set to 0 to the stored procedure:

@debug int = 0

In the stored procedure, at all important points, I add code that tests the value of

the @debug variable and displays the values of selected variables or result sets:

if @debug <> 0

select @chvProperty Property,

@chvValue [Value],

@chvUnit [Unit]

. . .

if @debug <> 0

select * from #Properties

I do not use the Print statement for this purpose because

� It does not support the display of result sets.

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 2 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

� In older versions, it was impossible to concatenate a string inside a Print

statement.

� Some utilities handle messages from the Print statement differently than they

do the result set from the Select statement.

� If the procedure was moved into production without removing the debug code,

the debug code would not be executed due to the value of the variable. If Print

statements were inadvertently left in procedures when they were moved into

production, this would present a problem for the application.

In the following example, you can see a stored procedure that is designed to

support this kind of testing:

Alter Procedure prGetInventoryProperties_2

-- Return comma-delimited list of properties

-- which are describing asset.

-- i.e.: Property=Value unit;Property=Value unit;... (

@intInventoryId int,

@chvProperties varchar(8000) OUTPUT,

@debug int = 0

As

set nocount on

declare @intCountProperties int,

@intCounter int,

@chvProperty varchar(50),

@chvValue varchar(50),

@chvUnit varchar(50),

@insLenProperty smallint,

@insLenValue smallint,

@insLenUnit smallint,

@insLenProperties smallint

declare @chvProcedure sysname

set @chvProcedure = 'prGetInventoryProperties_2'

if @debug <> 0

select '**** '+ @chvProcedure + 'START ****'

Create table #Properties(Id int identity(1,1),

Property varchar(50),

Value varchar(50),

Unit varchar(50))

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 2 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

-- identify Properties associated with asset

insert into #Properties (Property, Value, Unit)

select Property, Value, Unit

from InventoryProperty inner join Property

on InventoryProperty.PropertyId = Property.PropertyId

where InventoryProperty.InventoryId = @intInventoryId

if @debug <> 0

select * from #Properties

-- set loop

select @intCountProperties = Count(*),

@intCounter = 1,

@chvProperties = ''

from #Properties

-- loop through list of properties

while @intCounter <= @intCountProperties

begin

-- get one property

select @chvProperty = Property,

@chvValue = Value,

@chvUnit = Coalesce(Unit, '')

from #Properties

where Id = @intCounter

if @debug <> 0

select @chvProperty Property,

@chvValue [Value],

@chvUnit [Unit]

-- check will new string fit

select @insLenProperty = DATALENGTH(@chvProperty),

@insLenValue = DATALENGTH(@chvValue),

@insLenUnit = DATALENGTH(@chvUnit),

@insLenProperties = DATALENGTH(@chvProperties)

if @insLenProperties + 2

+ @insLenProperty + 1

+ @insLenValue + 1

+ @insLenUnit > 8000

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 2 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

begin

select 'List of properties is too long '

+ '(over 8000 characters)!'

return 1

end

-- assemble list

set @chvProperties = @chvProperties + @chvProperty

+ '=' + @chvValue + ' ' + @chvUnit + '; '

if @debug <> 0

select @chvProperties chvProperties

-- let's go another round and get another property

set @intCounter = @intCounter + 1

end

drop table #Properties

if @debug <> 0

select '**** '+ @chvProcedure + 'END ****'

return 0

To debug or test a stored procedure, I execute the stored procedure from Query

Analyzer with the @debug parameter set to 1:

declare @chvResult varchar(8000)

exec prGetInventoryProperties_2

@intInventoryId = 5,

@chvProperties = @chvResult OUTPUT,

@debug = 1

select @chvResult Result

Remember that you can pass parameters either by name or by position. The result

of the execution will be an elaborate printout like the one shown in Figure 7-6.

Execution in the Production Environment In production, the stored procedure is called

without a reference to the @debug parameter. Here, SQL Server assigns a default

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 2 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

value to the parameter (0), and the stored procedure is executed without debug

statements:

exec prGetInventoryProperties_2

@intInventoryId = 5,

@chvProperties = @chvResult OUTPUT

Nested Stored Procedures Two tricks can help you debug a set of nested stored

procedures (that is, when a stored procedure calls another stored procedure). It is

a useful practice to display the name of the stored procedure at the beginning and

end of the stored procedure:

declare @chvProcedure sysname

set @chvProcedure = 'prGetInventoryProperties_2'

if @debug <> 0

Figure 7-6 Poor man’s debugger

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 2 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

select '**** '+ @chvProcedure + 'START ****'

...

if @debug <> 0

select '**** '+ @chvProcedure + 'END ****'

return 0

When you call a nested stored procedure, you need to pass the value of the

@debug parameter to it as well. In this way, you will be able to see its debugging

information.

exec prGetInventoryProperties @intInventoryId,

@chvProperties OUTPUT,

@debug

SQL Profiler
SQL Profiler allows you to monitor and capture events on an instance of SQL Server.

You can configure it to capture all events, or just a subset that you need to monitor. It

lets you do the following:

� Capture T-SQL statements that are causing errors

� Debug individual stored procedures or T-SQL statements

� Monitor system performance

� Collect the complete T-SQL load of a production system and replay it in your

test environment

SQL Profiler can collect external events initiated by end users (such as batch

starts or login attempts), as well as internal events initiated by the system (such as

individual T-SQL statements from within a stored procedure, table or index scans,

objects locks, and transactions).

Using SQL Profiler
SQL Profiler is an MDI application that contains one or more trace windows. A

trace window allows you to first configure events, filters, and data columns, and

then to collect data from the server that is being audited.

After you start SQL Profiler, the first thing you should do is open a new trace

window (File | New | Trace) and select the server to be audited. You will be prompted

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to configure trace properties either manually or by choosing a predefined template

(in the Template Name list box):

There are numerous templates available, some of the most useful of which are the

following:

� SQLProfilerStandard.tdf Collects information about connections, stored

procedures, and batches that are executed against the server

� SQLProfilerT-SQL_SPs.tdf Collects information about individual stored

procedures and all T-SQL statements initiated within the stored procedure

� SQLProfilerSP_Counts.tdf Displays stored procedures and the number of

times they have been executed

� SQLProfilerT-SQL_Replay.tdf Collects all T-SQL statements that have

been executed against the server to allow you to replay them later (against the

same or some other server)

2 2 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

By default, data is collected on the screen, but it can also be stored in a file or in

a database table. The latter two options allow you to preserve the data for future use

and further analysis.

On the corresponding tabs of the Trace Properties window, you can specify events

and data columns to be recorded. Some data columns are not applicable for some

events, and SQL Server will leave them empty. It takes a little time and experimentation

to learn which are the most useful. I recommend you analyze some of the templates

and see how they are built.

Filters provide you with a way to avoid information overload. For example, you

can decide to monitor only those activities performed just by a particular user, or

all activities except those initiated by SQL Profiler in a specific database.

When you have finished modifying the trace properties, you run the trace. Profiler

starts to collect data and display it on the screen (see Figure 7-7).

When you have gathered enough data, you can pause or stop data collection

without closing the window. The top pane displays all specified data columns. In the

bottom pane, SQL Profiler displays the complete content of the TextData column for

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 2 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 3 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

the selected event. In the case of batches and stored procedures in the TextData column,

you can find (and copy to Query Analyzer) the command that caused an error.

SQL Profiler may consume substantial resources if you just run it without careful

planning. For example, gathering too many different events and too many data columns

without filtering might reduce the performance of the monitored server; and the trace

itself might overwhelm the machine with the amount of data gathered. Some database

departments have therefore introduced very rigid limitations on the use of SQL

Profiler in production environments. It is unfortunate to lose such a valuable tool,

but there are ways to reduce resource contention:

� Do not run SQL Profiler on the server that you are monitoring.

� If the volume of the gathered data is an issue, save it to a file (not to the screen

or a database table). Storing trace data in a database table allows you to

analyze it with the full power of SQL Server tools, but it might also introduce

a performance problem. Ideally, gather data in a file and then periodically load

it to a database table.

Figure 7-7 A running trace

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 3 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

� To reduce network contention on a busy production server, add a new network

connection dedicated to SQL Profiler (in other words, an additional NIC and

additional network).

� Use PerfMon to track the impact of SQL Profiler on the production system.

Typical Errors
You should keep the following issues in mind when you are writing your code and

testing Transact-SQL programs:

� Handling null

� Assignment of variable from the result set

� No records affected

� Wrong size or data type

� Default length

� Rollback of triggers

� Warnings and lower-priority errors

� Nested comments

� Deferred name resolution

� Cursors

� Overconfidence

Handling Null
Many errors are a result of the inadequate treatment of null values in Transact-SQL

code. Developers often forget that local variables or table columns might contain

null. If such a value becomes part of any expression, the result will also be null.

The proper way to test the value of an expression for null is to use the Is Null or

Is Not Null clause. Microsoft SQL Server treats the use of = Null as another way to

type Is Null (when Set Ansi_Nulls is set to Off), but <> Null is not the equivalent of

Is Not Null. The result of such an expression is always simply null. It will never be

true, and stored procedures will always skip statements after the If statement when

you use the <> Null clause.

If @intInventoryId IS NULL

...

If @intInventoryId = NULL

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 3 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

...

If @intInventoryId IS NOT NULL

...

If @intInventoryId <> NULL -- WRONG!!!

...

Assignment of Variable from the Result Set
Earlier, I discussed assigning the value for a variable using the result set of the

Select statement. This technique is fine when the result set returns only one record.

However, if the result set returns more than one record, the variable is assigned using

the value from the last record in the recordset—not perfect, but in some cases, you

can live with it. It is sometimes difficult to predict which record will be returned last

in the recordset. It depends on both the query and the index that SQL Server has used.

A more serious problem occurs when the recordset is empty. The values of the

variables are changed in this case, and the code is vulnerable to several mistakes.

If you do not expect the result set to be empty, your stored procedure will fail. If

you expect the values of the variables to be null, your stored procedure will function

correctly only immediately after it is started (that is, in the first iteration of the process).

In such a case, the local variables are not yet initialized and will contain null. Later,

when variables are initialized, their values will remain unchanged. If you are testing

the contents of the variables for null to find out if the record was selected, you will

just process the previous record again.

No Records Affected
Developers sometimes assume that SQL Server will return errors if a Transact-SQL

statement affects no records. Unfortunately, this error is semantic rather than syntactic

and SQL Server will not detect it.

To identify this type of error, use the @@rowcount function rather than the

@@error function:

declare @intRowCount int

declare @intErrorCode int

update Inventory

Set StatusId = 3

where InventoryID = -11

select @intRowCount = @@rowCount,

@intErrorCode = @@error

if @intRowCount = 0

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 3 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

begin

select 'Record was not updated!'

--return 50001

end

Wrong Size or Data Type
I can recall one occasion when a colleague of mine spent two days going through a

complicated data conversion process to find out why his process was consistently

failing. In one of the nested stored procedures, I had declared the variable as tinyint
instead of int. During the testing phase of the project, everything worked perfectly

because the variable was never set to a value higher than 255. However, a couple of

months later in production, the process started to fail as values climbed higher.

Similar problems can occur if you do not fully understand the differences between

similar formats (for example, char and varchar or money and smallmoney),

or if you fail to synchronize the sizes of data types (for instance, char, varchar,

numeric, and other data types of variable size).

Default Length
A similar problem can occur when a developer does not supply the length of the variable

data type and SQL Server assigns a default length.

For example, the default length of the varchar data type is 30. Most of the time

SQL Server reports an error if the length is omitted, but not in all cases. In the Convert()

function, for example, the user need only specify the data type:

Convert(varchar, @intPropertyId)

If the resulting string is short enough, you will not have any problems. I recall a

colleague who employed this method for years without any problems, and then….

Unfortunately, other statements and functions behave as expected. If you declare

a variable and assign it like so:

Declare @test varchar

Set @test = '123456789012345678901234567890'

Select datalength(@test), @test

SQL Server will allocate just one byte to the string and return the following:

----------- ----

1 1

(1 row(s) affected)

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Rollback of Triggers
In different versions of SQL Server, triggers react differently in rollback transaction

statements. When a trigger is rolled back in SQL Server 7.0 or SQL Server 2000, the

complete batch that initiated the trigger fails and the execution continues from the

first statement of the next batch. Version 4.2 behaves in a similar manner. In version

6.0, processing continues in the trigger, but the batch is canceled. In version 6.5, the

processing continues in both the trigger and the batch. It was the responsibility of the

developer to detect errors and cascade out of the process (in other words, go out of

all nested procedures and triggers).

Warnings and Lower-Priority Errors
Warnings do not stop the execution of a stored procedure. In fact, you cannot even

detect them from within the SQL Server environment.

Low-level errors, which are detectable using the @@error function, do not abort

the execution either. Unfortunately, there are also errors that abort processing

completely, so that the error handlers in stored procedures do not process the error.

Nested Comments
Only single-line comments (--) can be nested. Nested multiline comments (/* */)

may be treated differently by different client tools.

I recommend that you put one or two stars (**) at the beginning of each line that

is commented out. In this manner, the problem will be obvious if the comments are

nested and SQL Server starts to compile part of the code that you consider to be

commented out:

/**

** select *

** from #Properties

***/

Deferred Name Resolution
It is possible (in Microsoft SQL Server 7.0 and Microsoft SQL Server 2000) to

create database objects (such as stored procedures and triggers) that refer to other

database objects that do not yet exist within the database. In previous versions, this

would have been treated as a syntax error. This feature helps tremendously when

you need to generate a database structure and objects using script. Unfortunately,

this introduces a number of risks. If, as in the following example, you make a typo

in the name of the table from which you want to retrieve records, SQL Server will

2 3 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 3 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

not report a syntax error during compilation but will report a runtime error during

execution.

Create Procedure prDeferredNameResolution

As

set nocount on

select 'Start'

select * from NonExistingTable

select 'Will execution be stopped?'

return

If you attempt to run this stored procedure, SQL Server will return the following:

Start

Server: Msg 208, Level 16, State 1,

Procedure prDeferredNameResolution, Line 7

Invalid object name 'NonExistingTable'.

The execution will be stopped. Even an error handler written in Transact-SQL will

not be able to proceed at this point.

Cursors
Be very cautious when you use cursors: test the status after each fetch; place error

handling after each command; do not forget to close and deallocate the cursor when

you do not need it any more. There are many rules and regulations for using cursors,

and some of them might seem trivial, but even the smallest mistake can halt the

execution of your code.

Overconfidence
The overconfidence that comes with routine may be your worst enemy. If you

perform the same or similar tasks over and over again, you can lose focus and skip

basic steps. Do not put code into production before it is thoroughly tested; do not

place bug fixes directly into production; use error handling even if the code seems

straightforward and the chance for error slight.

Error Handling
A developer’s effective use of error handling procedures is often an excellent

indicator of his or her experience in that particular programming language. Those of

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

us who deal with a C or Visual Basic environment are accustomed to a whole set

of feature-rich error handling objects, procedures, and functions. Compared with

those, T-SQL seems rather inadequate. You can employ only one function and a few

procedures for setting or raising errors. However, the apparent limitations of the tool

set still do not justify sloppy solutions.

This section starts by investigating how errors can be returned to a caller. Then, it

discusses the concept of error handling and offers a comprehensive methodology for

implementation. It also discusses some alternative techniques involving the Set

Xact_Abort On statement.

Raiserror
An important tool for implementing error handling is the Raiserror statement. Its

main purpose is to return a user-defined or system-defined message to the caller.

Open Query Analyzer and execute the following statement:

Raiserror ('Error occurred!', 0, 1)

The server will display an error message in the Result pane (see Figure 7-8).

The second and third parameters indicate the severity and state of the error.

2 3 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

Figure 7-8 Using Raiserror

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 3 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

Naturally, this statement does more than return this meager result. It also sets the

value of the @@error function to the number of the error that you have raised. If

you do not specify an error number (as was the case in the previous example), SQL

Server will assign the default of 50000.

You can also display errors that are predefined in SQL Server if you reference

them by their numbers, and you can define your own errors using the sp_addmessage

system stored procedure:

Exec sp_addmessage 50001,

16,

'Unable to update Total of LeaseSchedule'

Then you can display this message using the following statement:

Raiserror (50001, 16, 1)

The server will return the following:

Server: Msg 50001, Level 16, State 1, Line 1

Unable to update Total of LeaseSchedule

You can set the state and severity of the error, record the error in the SQL Server

Error Log, and even record the error in the Windows NT Error Log:

Raiserror (50001, 16, 1) WITH LOG

Enterprise Manager contains a tool for displaying and editing error messages. To

start it, click a server node and then choose Tools | Manage SQL Server Messages.

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 3 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

Using Error Handling
Since T-SQL is so laconic (critics may say feature poor), development DBAs commonly

express themselves in a very concise manner. DBAs frequently write ad hoc scripts for

one-time use or manual execution, and they thus neglect the need for consistent error

handling.

Logic that is fine in standard languages like Visual Basic or C frequently does not

work in T-SQL. For example, an error may occur in T-SQL, but if T-SQL does not

consider it fatal, processing will continue. Also, if the error is fatal, all processing will

stop. The process does not react: it is just killed.

Why Bother?
For many, the question is why be concerned with implementing error handling at all?

Let us review this question through the following example:

Create Procedure prInsertLeasedAsset_1

-- Insert leased asset and update total in LeaseSchedule.

-- (demonstration of imperfect solution)

(

@intEquipmentId int,

@intLocationId int,

@intStatusId int,

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnyLease money,

@intAcquisitionTypeID int

)

As

set nocount on

begin transaction

-- insert asset

insert Inventory(EquipmentId, LocationId,

StatusId, LeaseId,

LeaseScheduleId, OwnerId,

Lease, AcquisitionTypeID)

values (@intEquipmentId, @intLocationId,

@intStatusId, @intLeaseId,

@intLeaseScheduleId, @intOwnerId,

@mnyLease, @intAcquisitionTypeID)

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 3 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

-- update total

update LeaseSchedule

Set PeriodicTotalAmount = PeriodicTotalAmount + @mnyLease

where LeaseId = @intLeaseId

commit transaction

return

This may seem like a trivial example, and it is true that in all probability nothing

would go wrong, but imagine that an error occurs on the Update statement. The error

could be for any reason—overflow, violation of a constraint, or inadequate security

privileges, for example. As explained earlier, transactions do not automatically roll

back when an error occurs. Instead, SQL Server simply commits everything that was

changed when it encounters the Commit Transaction statement as if nothing unusual

had happened. Unfortunately, from that moment on, the total of the lease schedule

will have the wrong value.

Tactics of Error Handling
Most developers recognize the importance of this issue and place error handling in

critical positions in their code. The result would be something like the following:

Create Procedure prInsertLeasedAsset_2

-- Insert leased asset and update total in LeaseSchedule.

-- (demonstration of not exactly perfect solution)

(

@intEquipmentId int,

@intLocationId int,

@intStatusId int,

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnyLease money,

@intAcquisitionTypeID int

)

As

set nocount on

begin transaction

-- insert asset

insert Inventory(EquipmentId, LocationId,

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 4 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

StatusId, LeaseId,

LeaseScheduleId, OwnerId,

Lease, AcquisitionTypeID)

values (@intEquipmentId, @intLocationId,

@intStatusId, @intLeaseId,

@intLeaseScheduleId, @intOwnerId,

@mnyLease, @intAcquisitionTypeID)

If @@error <> 0

Begin

Print 'Unexpected error occurred!'

Rollback transaction

Return 1

End

-- update total

update LeaseSchedule

Set PeriodicTotalAmount = PeriodicTotalAmount + @mnyLease

where LeaseId = @intLeaseId

If @@error <> 0

Begin

Print 'Unexpected error occurred!'

Rollback transaction

Return 1

End

commit transaction

return 0

This kind of solution contains substantial repetition—especially if your business

logic requires more than two Transact-SQL statements to be implemented. A more

elegant solution is to group codes into a generic error handling procedure:

Create Procedure prInsertLeasedAsset_3

-- Insert leased asset and update total in LeaseSchedule.

-- (demonstration of not exactly perfect solution)

(

@intEquipmentId int,

@intLocationId int,

@intStatusId int,

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnyLease money,

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 4 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

@intAcquisitionTypeID int

)

As

set nocount on

begin transaction

-- insert asset

insert Inventory(EquipmentId, LocationId,

StatusId, LeaseId,

LeaseScheduleId, OwnerId,

Lease, AcquisitionTypeID)

values (@intEquipmentId, @intLocationId,

@intStatusId, @intLeaseId,

@intLeaseScheduleId, @intOwnerId,

@mnyLease, @intAcquisitionTypeID)

If @@error <> 0 GOTO ERR_HANDLER

-- update total

update LeaseSchedule

Set PeriodicTotalAmount = PeriodicTotalAmount + @mnyLease

where LeaseId = @intLeaseId

If @@error <> 0 GOTO ERR_HANDLER

commit transaction

return 0

ERR_HANDLER:

Print 'Unexpected error occurred!'

Rollback transaction

Return 1

This is better, but it does not deal with all the issues that need to be handled.

A typical error that beginners in T-SQL make is to check the value of a global

variable and then try to return or process it. Such an attempt is usually the result of

a good intention, such as wanting to notify the user of an error that has occurred.

Create Procedure prInsertLeasedAsset_4

-- Insert leased asset and update total in LeaseSchedule.

-- (demonstration of not exactly perfect solution)

(

@intEquipmentId int,

@intLocationId int,

@intStatusId int,

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnyLease money,

@intAcquisitionTypeID int

)

As

set nocount on

begin transaction

-- insert asset

insert Inventory(EquipmentId, LocationId,

StatusId, LeaseId,

LeaseScheduleId, OwnerId,

Lease, AcquisitionTypeID)

values (@intEquipmentId, @intLocationId,

@intStatusId, @intLeaseId,

@intLeaseScheduleId, @intOwnerId,

@mnyLease, @intAcquisitionTypeID)

If @@error <> 0 GOTO ERR_HANDLER

-- update total

update LeaseSchedule

Set PeriodicTotalAmount = PeriodicTotalAmount + @mnyLease

where LeaseId = @intLeaseId

If @@error <> 0 GOTO ERR_HANDLER

commit transaction

return 0

ERR_HANDLER:

Print 'Unexpected error occurred: '

+ Convert(varchar, @@error) –- this will

-- not work,

-- as expected

Rollback transaction

Return @@error

Although something like this could work in Visual Basic, for example, in this case

the stored procedure will return 0 as an error number. SQL Server sets the value of the

@@error variable after each statement. It treats each statement separately, so the value

2 4 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of @@error is set to 0 subsequently when the If statement is (successfully) executed.

Thus the Print statement displays 0 as an error number, and eventually the stored

procedure will also return 0.

A Coherent Error Handling Methodology
This section presents a single comprehensive error handling methodology. The

fundamental idea is that all SQL statements within a stored procedure should be

covered by this error handling solution. Any time an unexpected error occurs, a

stored procedure should stop further processing. When a nested stored procedure

stops processing, so should the stored procedures that called it.

The basic feature of this solution is to follow all SQL statements with a statement

that reads the contents of the @@error function, and to use an If statement to check

whether the previous command completed successfully:

Create Procedure prInsertLeasedAsset_5

-- Insert leased asset and update total in LeaseSchedule.

(

@intEquipmentId int,

@intLocationId int,

@intStatusId int,

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnyLease money,

@intAcquisitionTypeID int

)

As

set nocount on

Declare @intErrorCode int

Select @intErrorCode = @@error

begin transaction

If @intErrorCode = 0

begin

— insert asset

insert Inventory(EquipmentId, LocationId,

StatusId, LeaseId,

LeaseScheduleId, OwnerId,

Lease, AcquisitionTypeID)

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 4 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

values (@intEquipmentId, @intLocationId,

@intStatusId, @intLeaseId,

@intLeaseScheduleId, @intOwnerId,

@mnyLease, @intAcquisitionTypeID)

Select @intErrorCode = @@error

end

If @intErrorCode = 0

begin

— update total

update LeaseSchedule

Set PeriodicTotalAmount = PeriodicTotalAmount + @mnyLease

where LeaseId = @intLeaseId

Select @intErrorCode = @@error

end

If @intErrorCode = 0

COMMIT TRANSACTION

Else

ROLLBACK TRANSACTION

return @intErrorCode

If an error occurs, the If statements prevent further execution and pass control to

the end of the procedure. Changes will be rolled back, and the stored procedure

returns the value of the @intErrorCode variable to the calling stored procedure or

script. This variable can then be used to notify the calling procedure that there was

a problem.

Nested Stored Procedures
The calling stored procedure might have the same error handling system in place.

In such a case, calls to the stored procedures should treat the returned values as

error codes:

...

If @ErrorCode = 0

Begin

execute @intErrorCode = MyStoredProcedure @parm1, @param2…

End

The method works like a cascade that stops all further processing in a whole set of

nested stored procedures.

2 4 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Interfacing to Other Environments
This error handling structure is very useful even in cases when a stored procedure is

called from another programming environment, such as Visual Basic or Visual C++.

The return value of a stored procedure can be retrieved, and the error can be handled

by the calling application.

conn.Open "provider=sqloledb;data source=sqlserver;" + _

"user id=sa;password=;initial catalog=Asset"

With cmd

Set .ActiveConnection = conn

.CommandText = "prInsertLeasedAsset_5"

.CommandType = adCmdStoredProc

.Parameters.Refresh

.parameters(1).Value = 4

.parameters(2).Value = 1

.parameters(3).Value = 1

.parameters(4).Value = 1

.parameters(5).Value = 1

.parameters(6).Value = 1

.parameters(7).Value = 99.95

.parameters(8).Value = 1

Set rs = .Execute()

lngReturnValue = .Parameters(0).Value

end with

If lngReturnValue <> 0 Then

MsgBox "Procedure has failed!"

Exit Sub

Else

MsgBox "Procedure was successful"

end if

Other Functions
Cases should be handled with the same Select statement that reads @@error when

you wish to read the value of other functions immediately after the statement. You

often require such a technique when you are using identity columns.

insert Inventory(EquipmentId, LocationId,

StatusId, LeaseId,

LeaseScheduleId, OwnerId,

Lease, AcquisitionTypeID)

values (@intEquipmentId, @intLocationId,

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 4 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 4 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

@intStatusId, @intLeaseId,

@intLeaseScheduleId, @intOwnerId,

@mnyLease, @intAcquisitionTypeID)

Select @intErrorCode = @@error,

@intInventoryId = @@identity

Transaction Processing
You can integrate transaction processing perfectly with this solution. Review Chapter 6

to remind yourself why Rollback and Commit statements must be treated differently.

At the beginning of a stored procedure or transaction, you should add the

following code:

Declare @intTransactionCountOnEntry int

If @intErrorCode = 0

Begin

Select @intTransactionCountOnEntry = @@TranCount

BEGIN TRANSACTION

End

At the end of the procedure (and/or transaction), you should complete the transaction:

If @@TranCount > @intTransactionCountOnEntry

Begin

If @intErrorCode = 0

COMMIT TRANSACTION

Else

ROLLBACK TRANSACTION

End

The solution will also perform well in the case of nested stored procedures. All

procedures are rolled back using the same cascading mechanism.

The local variable @TransactionCountOnEntry is used to track the number of

opened transactions upon entry into a stored procedure. If the number is unaffected

within the stored procedure, there is no reason to commit or roll back (using either

the Commit or Rollback statement) within the procedure. The finished stored

procedure looks like this:

Alter Procedure prInsertLeasedAsset_6

-- Insert leased asset and update total in LeaseSchedule.

(

@intEquipmentId int,

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

@intLocationId int,

@intStatusId int,

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnyLease money,

@intAcquisitionTypeID int,

@intInventoryId int OUTPUT

)

As

set nocount on

Declare @intErrorCode int,

@intTransactionCountOnEntry int

Select @intErrorCode = @@error

If @intErrorCode = 0

Begin

Select @intTransactionCountOnEntry = @@TranCount

BEGIN TRANSACTION

End

If @intErrorCode = 0

begin

-- insert asset

insert Inventory(EquipmentId, LocationId,

StatusId, LeaseId,

LeaseScheduleId, OwnerId,

Lease, AcquisitionTypeID)

values (@intEquipmentId, @intLocationId,

@intStatusId, @intLeaseId,

@intLeaseScheduleId, @intOwnerId,

@mnyLease, @intAcquisitionTypeID)

Select @intErrorCode = @@error,

@intInventoryId = @@identity

end

If @intErrorCode = 0

begin

-- update total

update LeaseSchedule

Set PeriodicTotalAmount = PeriodicTotalAmount + @mnyLease

where LeaseId = @intLeaseId

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 4 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Select @intErrorCode = @@error

end

If @@TranCount > @intTransactionCountOnEntry

Begin

If @@error = 0

COMMIT TRANSACTION

Else

ROLLBACK TRANSACTION

End

return @intErrorCode

Xact_Abort
SQL Server does, in fact, have an equivalent to the On Error Go To command used

by Visual Basic. The Set Xact_Abort statement forces SQL Server to roll back the

complete transaction and stop further processing on the occurrence of any error:

create Procedure prInsertLeasedAsset_7

-- Insert leased asset and update total in LeaseSchedule.

-- (demonstration of imperfect solution)

(

@intEquipmentId int,

@intLocationId int,

@intStatusId int,

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnyLease money,

@intAcquisitionTypeID int

)

As

set nocount on

SET XACT_ABORT ON

begin transaction

-- insert asset

insert Inventory(EquipmentId, LocationId,

StatusId, LeaseId,

LeaseScheduleId, OwnerId,

Lease, AcquisitionTypeID)

values (@intEquipmentId, @intLocationId,

2 4 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

@intStatusId, @intLeaseId,

@intLeaseScheduleId, @intOwnerId,

@mnyLease, @intAcquisitionTypeID)

-- update total

update LeaseSchedule

Set PeriodicTotalAmount = PeriodicTotalAmount + @mnyLease

where LeaseId = @intLeaseId

commit transaction

return (0)

Unfortunately, this solution presents a problem. This statement will also completely

stop execution of the current batch. The error can still be detected and handled from

the client application, but inside the Transact-SQL code, SQL Server will treat it as

a fatal error.

Another problem is that the Set Xact_Abort statement does not detect “compilation”

errors. According to SQL Server Books Online: “Compile errors, such as syntax

errors, are not affected by Set Xact_Abort.” Unfortunately, because of deferred

name resolution, compilation errors can occur at runtime as well. By editing the

stored procedure from the previous example, the Update statement references a

nonexistent table:

-- update total

update LeaseSchedule_NON_EXISTING_TABLE

Set PeriodicTotalAmount = PeriodicTotalAmount + @mnyLease

where LeaseId = @intLeaseId

Next, run the stored procedure:

Exec prInsertLeasedAsset_8

@intEquipmentId = 100,

@intLocationId = 1,

@intStatusId = 1,

@intLeaseId = 1,

@intLeaseScheduleId = 1,

@intOwnerId = 1,

@mnyLease = 5000,

@intAcquisitionTypeID = 1

-- test transaction

select *

from Inventory

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 4 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 5 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

where EquipmentId = 100

and LocationId = 1

SQL Server simply stops the execution of the stored procedure without a rollback:

Server: Msg 208, Level 16, State 1, Procedure prInsertLeasedAsset_8, Line 30

Invalid object name 'LeaseSchedule_NON_EXISTING_TABLE'.

Server: Msg 266, Level 16, State 1, Procedure prInsertLeasedAsset_8, Line 36

Transaction count after EXECUTE indicates that a COMMIT or ROLLBACK

TRANSACTION statement is missing. Previous count = 0, current count = 1.

EquipmentId LocationId StatusId Lease

----------- ----------- -------- ------------

100 1 1 5000.0000

This is a potentially significant problem. The official response concerning my

support question on this matter was that SQL Server is behaving as specified in SQL

Server Books Online. Developers have different expectations—in the case of an error,

the transaction should be rolled back. This explanation makes it sound like the Set

Xact_Abort statement is useless. Fortunately, the stored procedure will be promoted

to production only after detailed unit testing, and therefore it should not reference

nonexistent tables.

However, there is an additional problem: only the stored procedure with the syntax

error is aborted. Assume that the stored procedure is executed as a nested stored

procedure and that the compilation error occurs in the inner stored procedure. The

earlier procedure is split into two procedures to demonstrate this scenario:

Create Procedure prUpdateLeaseSchedule

@intLeaseId int,

@mnyLease int

as

update LeaseSchedule_NON_EXISTING_TABLE

set PeriodicTotalAmount = PeriodicTotalAmount + @mnyLease

where LeaseId = @intLeaseId

return (0)

GO

create Procedure prInsertLeasedAsset_9

-- Insert leased asset and update total in LeaseSchedule.

-- (demonstration of compilation error in nested stored procedure)

(

@intEquipmentId int,

@intLocationId int,

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

@intStatusId int,

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnyLease money,

@intAcquisitionTypeID int

)

As

set nocount on

SET XACT_ABORT ON

begin transaction

-- insert asset

insert Inventory(EquipmentId, LocationId,

StatusId, LeaseId,

LeaseScheduleId, OwnerId,

Lease, AcquisitionTypeID)

values (@intEquipmentId, @intLocationId,

@intStatusId, @intLeaseId,

@intLeaseScheduleId, @intOwnerId,

@mnyLease, @intAcquisitionTypeID)

-- update total

exec prUpdateLeaseSchedule @intLeaseId, @mnyLease

commit transaction

return (0)

GO

Now run them:

Exec prInsertLeasedAsset_9

@intEquipmentId = 200,

@intLocationId = 1,

@intStatusId = 1,

@intLeaseId = 1,

@intLeaseScheduleId = 1,

@intOwnerId = 1,

@mnyLease = 5000,

@intAcquisitionTypeID = 1

-- test transaction

select EquipmentId, LocationId, StatusId, Lease

from Inventory

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 5 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 5 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

where EquipmentId = 200

and LocationId = 1

SQL Server simply stops the execution of the inner stored procedure, but the outer

stored procedure continues as though nothing has happened (and even commits the

transaction):

Server: Msg 208, Level 16, State 1, Procedure prUpdateLeaseSchedule, Line 5

Invalid object name 'LeaseSchedule_NON_EXISTING_TABLE'.

EquipmentId LocationId StatusId Lease

----------- ----------- -------- ------------

200 1 1 5000.0000

At the time, my expectation was that the Set Xact_Abort statement would abort

further execution of everything, as it does in case or runtime errors. Unfortunately, it

does not behave in that way. This is potentially very dangerous, but as I said before,

problems such as this should be caught during QA phase.

Another Coherent Error Handling Methodology
On a recent .NET project I was involved with, there were many errors when we

mixed different types of transactions—COM+, DTC, ADO, and T-SQL. Therefore,

we decided not to mix them. We went even further and decided not to nest any

transactions. If the caller initiates a transaction, the nested procedure skips its own

initiation of the transaction. Furthermore, the transaction should be closed only

from within the procedure that initiated it.

The following procedure records the number of opened transactions on the entry.

The Begin Tran statement is preceded by the If statement that initiates the transaction

only if the procedure is not already in one transaction:

create procedure dbo.prEquipment_Insert

-- insert equipment (and if necessary equipment type)

-- (demonstration of alternative method for error handling and

transaction

processing)

@chvMake varchar(50),

@chvModel varchar(50),

@chvEqType varchar(50),

@intEqupmentId int OUTPUT

AS

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

set xact_abort on

set nocount on

declare @intTrancountOnEntry int,

@intEqTypeId int

set @intTrancountOnEntry = @@tranCount

-- does such EqType already exist in the database

If not exists (Select EqTypeId From EqType Where EqType = @chvEqType)

--if it does not exist

Begin

if @@tranCount = 0

BEGIN TRAN

-- insert new EqType in the database

Insert EqType (EqType)

Values (@chvEqType)

-- get id of record that you've just inserted

Select @intEqTypeId = @@identity

End

else

begin

-- read Id of EqType

Select @intEqTypeId

From EqType

Where EqType = @chvEqType

end

--insert equipment

Insert Equipment (Make, Model, EqTypeId)

Values (@chvMake, @chvModel, @intEqTypeId)

Select @intEqupmentId = @@identity

if @@tranCount > @intTrancountOnEntry

COMMIT TRAN

return 0

The Commit Tran statement will similarly be executed only if the transaction is

initiated in the current procedure.

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 5 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following procedure demonstrates the way to return logic errors to the caller.

Notice that I am using both Raiserror and Return statements. It is very important to

use the Return statement to communicate an error to the caller because the caller

might not be able to detect the effect of the Raiserror statement.

ALTER Procedure dbo.prInsertInventory_XA

-- insert inventory record , update inventory count and return Id

-- (demonstration of alternative method for error handling and

transaction

processing)

@intEquipmentId int,

@intLocationId int,

@inyStatusId tinyint,

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnsRent smallmoney,

@mnsLease smallmoney,

@mnsCost smallmoney,

@inyAcquisitionTypeID int,

@intInventoryId int output

As

declare @intTrancountOnEntry int

set nocount on

set xact_abort on

set @intTrancountOnEntry = @@tranCount

if @@tranCount = 0

begin tran

Insert into dbo.Inventory (EquipmentId, LocationId, StatusId,

LeaseId, LeaseScheduleId, OwnerId,

Rent, Lease, Cost,

AcquisitionTypeID)

values (@intEquipmentId, @intLocationId, @inyStatusId,

@intLeaseId, @intLeaseScheduleId, @intOwnerId,

@mnsRent, @mnsLease, @mnsCost,

@inyAcquisitionTypeID)

select @intInventoryId = Scope_Identity()

2 5 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 5 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

update dbo.InventoryCount

Set InvCount = InvCount + 1

where LocationId = @intLocationId

if @@rowcount <> 1

begin

-- business error

Raiserror(50133, 16, 1)

if @@tranCount > @intTrancountOnEntry

rollback tran

return 50133

end

if @@tranCount > @intTrancountOnEntry

commit tran

return 0

The following procedure demonstrates detection of logic errors from the nested

stored procedure:

Create procedure prInventory_Insert_XA

-- insert new inventory and new equipment

-- (demonstration of alternative method for error handling and transaction

processing)

@chvMake varchar(50),

@chvModel varchar(50),

@chvEqType varchar(30),

@intLocationId int,

@inyStatusId tinyint,

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnsRent smallmoney,

@mnsLease smallmoney,

@mnsCost smallmoney,

@inyAcquisitionTypeID int,

@intInventoryId int output,

@intEquipmentId int output

as

Set nocount on

set xact_abort on

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 5 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

declare @intError int,

@intTrancountOnEntry int

set @intError = 0

set @intTrancountOnEntry = @@tranCount

if @@tranCount = 0

begin tran

-- is equipment already in the database

if not exists(select EquipmentId

from Equipment

where Make = @chvMake

and Model = @chvModel)

EXEC @intError = dbo.prEquipment_Insert @chvMake, @chvModel, @chvEqType,

@intEquipmentId OUTPUT

if @intError > 0

begin

if @@tranCount > @intTrancountOnEntry

rollback tran

return @intError

end

exec @intError = dbo.prInsertInventory_XA

@intEquipmentId, @intLocationId, @inyStatusId,

@intLeaseId, @intLeaseScheduleId, @intOwnerId,

@mnsRent, @mnsLease, @mnsCost,

@inyAcquisitionTypeID, @intInventoryId output

if @intError > 0

begin

if @@tranCount > @intTrancountOnEntry

ROLLBACK TRAN

return @intError

end

if @@tranCount > @intTrancountOnEntry

COMMIT TRAN

return 0

If an error has been returned, the current stored procedure will roll back the

transaction (using Rollback Transaction) if a transaction has been initiated in it. The

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

caller stored procedure can also be designed so that it knows about all (or some)

error codes that can be returned from a nested stored procedure. Then it is possible

to write code that will handle the errors.

To test it, run the following:

declare @intError int,

@intInvId int,

@intEqId int

begin tran

exec @intError = prInventory_Insert_XA

@chvMake = 'Compaq',

@chvModel = 'IPaq 3835',

@chvEqType = 'PDA',

@intLocationId = 12,

@inyStatusId = 1,

@intLeaseId = null,

@intLeaseScheduleId = 1,

@intOwnerId = 411,

@mnsRent = null,

@mnsLease = null,

@mnsCost = $650,

@inyAcquisitionTypeID = 1,

@intInventoryId = @intInvId output,

@intEquipmentId = @intEqId output

if @intError = 0

commit tran

else

rollback tran

select @intError Err

select * from Inventory where InventoryId = @intInvId

select * from Equipment where EquipmentId = @intEqId

In the case of an error, SQL Server returns the error message and rolls back the

transaction:

Server: Msg 50133, Level 16, State 1, Procedure prInsertInventory_XA, Line 48

Unable to update inventory count.

Err

50133

(1 row(s) affected)

C h a p t e r 7 : D e b u g g i n g a n d E r r o r H a n d l i n g 2 5 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Inventoryid EquipmentId LocationId StatusId LeaseId LeaseScheduleId

----------- ----------- ----------- -------- ------- ---------------

(0 row(s) affected)

EquipmentId Make Model

----------- -- -------

(0 row(s) affected)

2 5 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 7

P:\010Comp\D_Base\896-2\ch07.vp
Monday, April 28, 2003 5:02:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

8
Special Types of

Procedures

259

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
Types of Stored Procedures

User-Defined Functions
Triggers

Views

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 6 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

This chapter examines other types of procedures available in the SQL Server

environment:

� Special types of stored procedures

� User-defined functions

� Triggers

� Views

Some of these procedures are just special types of stored procedures, whereas

others are completely different types of database objects. However, they all share

a common attribute: they are used to describe or implement an algorithm for the

purpose of achieving some result.

Types of Stored Procedures
There are six types of stored procedures:

� User-defined

� System

� Extended

� Temporary

� Global temporary

� Remote

User-Defined Stored Procedures
As you may infer from the name, user-defined stored procedures are simply groups

of Transact-SQL statements assembled by administrators or developers and compiled

into a single execution plan. The design of this type of stored procedure is the primary

focus of this book.

System Stored Procedures
Microsoft delivers a vast set of stored procedures as a part of SQL Server. They

are designed to cover all aspects of system administration. Before Microsoft SQL

Server 6.0, you had to use scripts from isql to control the server and their databases.

Although administrators today customarily use Enterprise Manager, system stored

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

procedures are still very important, since Enterprise Manager uses the same system

stored procedures, through SQL-DMO, behind the scenes.

NOTE

SQL-DMO stands for SQL Distributed Management Objects. It is a collection of objects designed to
manage the SQL Server environment. You can use it to create your own Enterprise Manager or
automate repetitive tasks. It is interesting that it does not support the return of a recordset to the
caller. You should use other objects (such as ADO) to achieve this result.

System stored procedures are stored in the system databases (master and msdb),

and they have the prefix sp_. This prefix is more than just a convention. It signals

to the server that the stored procedure is located in the master database and that

it should be accessible from all databases without the user needing to insert the

database name as a prefix to fully qualify the name of the procedure:

Exec sp_who -- instead of exec master..sp_who

It also signals to the server that the stored procedure should be executed in the

context of the current database. For example, the script shown in Figure 8-1 will

return information about the current database, and not the master.

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 6 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-1 The system procedure works in the context of the current database.

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

There is a small behavioral inconsistency between stored procedures in the master database and
the msdb database. Stored procedures in the msdb database are delivered with SQL Server, but
they must be referenced with the database name (for example: msdb..sp_update_job), and they
do not work in the context of the current database. In this respect, you can understand them as
“system-supplied stored procedures” rather than as “system stored procedures” as we have
defined them.

Extended Stored Procedures
Certain SQL Server features cannot be implemented through Transact-SQL statements.

The designers of SQL Server have developed a way to use the functionality encapsulated

in special DLL libraries written in languages such as C or C++. Extended stored

procedures are actually these C functions encapsulated in DLL files. They have a

wrapper stored in the master database that uses the prefix xp_. Using this wrapper,

you can access them just as you would any other stored procedure.

NOTE

Selected extended stored procedures stored in the master database are named with the
prefix sp_ to allow users to access them from any database (such as sp_execute, sp_executesql,
and sp_sdidebug).

In the following example, the extended stored procedure runs an operating system

command to list all scripts in the BINN directory. Since it is not declared with the

sp_ prefix, you must qualify its name with that of the database in which it is located:

Exec master..xp_cmdshell 'dir c:\mssql7\binn*.sql'

Design of Extended Stored Procedures
It is not possible to create an extended stored procedure from just any DLL file. The

file must be prepared in a special way. It is also not possible to create these files from

Visual Basic, since it does not create classic DLL files, but just in-process versions

of COM objects.

NOTE

Fortunately, it is possible to access code in the form of COM objects from Transact-SQL. Chapter 11
describes the creation and execution of such code in detail.

2 6 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 6 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

The development of extended stored procedures is based on the use of the Open

Data Services API (ODS API). In the past, it was a tedious job and the developer had

to perform all tasks manually. Nowadays, the process is automated in the Enterprise

Edition of Visual C++ through the Extended Stored Proc Wizard. I will quickly

demonstrate its use.

With the proper initialization code, the Extended Stored Proc Wizard generates

Win32 DLL projects that contain an exported function. You should change the

content of the exported function to perform the job of the future extended stored

procedure. The wizard includes the header file (srv.h) and a library (opends60.lib)

needed for using ODS in the code.

To create an extended stored procedure:

1. In Visual C++ Enterprise Edition, select File | New. The New dialog box should

appear with the Projects tab opened. You need to set the name of the project.

You could and should also use the name of the extended stored procedure as

the name of the project. Extended stored procedure names commonly begin

with the xp_ prefix.

2. Select Extended Stored Proc Wizard from the list of project types:

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 6 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

3. When you click OK, the program will launch the Extended Stored Proc

Wizard. It prompts you to name your extended stored procedure:

4. Click Finish. The wizard generates the following project files:

� proc.cpp The exported Win32 function, which is the extended stored

procedure

� [projname].dsp The Visual C++ project file

� [projname].cpp A file that includes DLL initialization code

� StdAfx.h An include file for standard system include files, or

project-specific include files that are used frequently

� StdAfx.cpp A source file that includes just the standard includes

5. Open proc.cpp and change the code to implement features of the extended

stored procedure. Figure 8-2 shows Visual Studio with the code of the

extended stored procedure.

6. Compile the generated project to generate a DLL—[projname].DLL.

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 6 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

The following code listing shows the contents of proc.cpp. It contains the

exported Win32 function xp_hello. The function was generated by the wizard,

and it returns a simple message and a recordset that contains three records.

#include <stdafx.h>
#define XP_NOERROR 0
#define XP_ERROR 1
#define MAXCOLNAME 25
#define MAXNAME 25
#define MAXTEXT 255

#ifdef __cplusplus
extern "C" {
#endif

Figure 8-2 Code of the extended stored procedure

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 6 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

RETCODE __declspec(dllexport) xp_hello(SRV_PROC *srvproc);

#ifdef __cplusplus
}
#endif

RETCODE __declspec(dllexport) xp_hello(SRV_PROC *srvproc)
{

DBSMALLINT i = 0;
DBCHAR colname[MAXCOLNAME];
DBCHAR spName[MAXNAME];
DBCHAR spText[MAXTEXT];

// Name of this procedure
wsprintf(spName, "xp_hello");

//Send a text message
wsprintf(spText, "%s Sample Extended Stored Procedure", spName);
srv_sendmsg(

srvproc,
SRV_MSG_INFO,
0,
(DBTINYINT)0,
(DBTINYINT)0,
NULL,
0,
0,
spText,
SRV_NULLTERM);

//Set up the column names
wsprintf(colname, "ID");
srv_describe(srvproc, 1, colname, SRV_NULLTERM, SRVINT2,

sizeof(DBSMALLINT), SRVINT2, sizeof(DBSMALLINT), 0);

wsprintf(colname, "spName");
srv_describe(srvproc, 2, colname, SRV_NULLTERM, SRVCHAR, MAXNAME,

SRVCHAR, 0, NULL);

wsprintf(colname, "Text");
srv_describe(srvproc, 3, colname, SRV_NULLTERM, SRVCHAR, MAXTEXT,

SRVCHAR, 0, NULL);

// Update field 2 "spName", same value for all rows
srv_setcoldata(srvproc, 2, spName);

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

srv_setcollen(srvproc, 2, strlen(spName));

// Send multiple rows of data
for (i = 0; i < 3; i++) {

// Update field 1 "ID"
srv_setcoldata(srvproc, 1, &i);

// Update field 3 "Text"
wsprintf(spText,

"%d) Sample rowset generated by the %s extended stored procedure", i,
spName);

srv_setcoldata(srvproc, 3, spText);
srv_setcollen(srvproc, 3, strlen(spText));

// Send the entire row
srv_sendrow(srvproc);

}

// Now return the number of rows processed
srv_senddone(srvproc, SRV_DONE_MORE | SRV_DONE_COUNT,

(DBUSMALLINT)0, (DBINT)i);

return XP_NOERROR ;
}

TIP

If you are fluent enough in the techniques required to create extended stored procedures, you
should not be spending your time creating business applications. You should be working on more
fundamental stuff like operating systems or RDBMSs and devoting your time to hacking. Let the
rest of us collect the easy money.

Registering the Extended Stored Procedure
Once the DLL is compiled, the extended stored procedure has to be registered on the

server before it can be used:

1. Copy the xp_hello.dll file to the SQL Server \…\Binn folder.

2. Register the new extended stored procedure using the SQL Server Enterprise

Manager, or by executing the following SQL command:

sp_addextendedproc 'xp_hello', 'XP_HELLO.DLL'

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 6 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once the extended stored procedure is registered, you can test it using Query

Analyzer (see Figure 8-3).

You should carefully test the new extended stored procedure. If you find out that

it is not working as expected or that you need to make some modification, you need

to unregister (drop) the extended stored procedure by using the following SQL

command:

sp_dropextendedproc 'xp_hello'

When the extended stored procedure is executed in SQL Server, it is loaded into

memory. It stays there until SQL Server is shut down or until you issue a command

to remove it from memory:

DBCC xp_hello(FREE)

To register an extended stored procedure from Enterprise Manager, right-click the

Extended Stored Procedures node in the master database and select New Extended

2 6 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-3 Using the extended stored procedure

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 6 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Stored Procedure. Enterprise Manager prompts you for the name of the extended

stored procedure and the location of the DLL file:

It is also simple to remove an extended stored procedure using Enterprise Manager.

You merely right-click it and select Delete from the pop-up menu.

NOTE

The trouble with extended stored procedures is that they work in the address space of SQL Server.
Therefore, an extended stored procedure that doesn’t behave properly could crash SQL Server.
Such a problem is not likely to occur because SQL Server monitors the behavior of extended stored
procedures. If an extended stored procedure attempts to reference memory outside of its address
space, SQL Server will terminate it. Commonsense programming practices (using error checking,
doing exception handling, and thoroughly testing final code) will further reduce the possibility
of errors.

Temporary Stored Procedures
Temporary stored procedures are related to stored procedures as temporary tables

are related to tables. You use them when you expect to reuse the execution plan of a

stored procedure within a limited time frame. Although you can achieve the same

functionality with a standard user-defined stored procedure, temporary stored procedures

are a better solution because you do not have to worry about maintenance issues

(such as dropping the stored procedure).

Temporary stored procedures reside in the tempdb database and must be named

with the prefix #. You create them in the same way you create user-defined stored

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 7 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

procedures. The only change is the use of a # as a name prefix. This prefix signals

the server to create the procedure as a temporary stored procedure. This kind of

stored procedure can only be used from the session in which it was created. When

the session is closed, it will be dropped automatically. This behavior indicates why

this type of stored procedure is often also referred to as a private temporary stored

procedure.

The following code example creates a private temporary stored procedure:

Create Procedure #prGetId

@Make varchar(50),

@Model varchar(50)

as

Select EquipmentId

from Equipment

where Make = @Make

and Model = @Model

Sometimes, all user-defined stored procedures in tempdb are referred to as

temporary stored procedures. This is incorrect because there are major differences

between the two. For example, user-defined stored procedures stored in the tempdb

database are accessible to all authorized users and are not limited to the session in

which they were created. These stored procedures stay in tempdb until the server is

shut down, at which time the complete content of tempdb is flushed.

Global Temporary Stored Procedures
Global temporary stored procedures are related to temporary stored procedures as

global temporary tables are related to private temporary tables. They also reside in

the tempdb database, but they use the prefix ##. You create them in the same way

you create temporary stored procedures. The only difference is that they are visible

and usable from all sessions. In fact, permissions are not required and the owner

cannot even deny other users access to them.

When the session that has created the procedure is closed, no new sessions will

be able to execute the stored procedure. After all instances of the stored procedure

already running are finished, the procedure is dropped automatically.

The following code example creates a global temporary stored procedure:

Create Procedure ##prInsertEquipment

@Make varchar(50),

@Model varchar(50),

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 7 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

@EqType varchar(50)

as

declare @EqTypeId smallint

select @EqTypeId = EqTypeId -- This is OK in a perfect world,

from EqType -- but it is based on the

Where EqType = @EqType -- unreasonable assumption that

-- you can identify the key using

-- the description.

Insert Equipment (Make, Model, EqTypeId)

Values (@Make, @Model, @EqTypeId)

Remote Stored Procedures
This type is actually a user-defined stored procedure that resides on a remote server.

The only challenge implicit in this type of stored procedure is that the local server

has to be set to allow the remote use of stored procedures.

For more information, search SQL Server Books Online using the following

string: How to set up a remote server to allow the use of remote stored procedures.

TIP

Microsoft, in fact, considers this mechanism as a legacy of older versions of SQL Server.
Heterogeneous queries are the recommended way to execute stored procedures or access
tables on other servers.

User-Defined Functions
The ability to design user-defined Transact-SQL functions is a new feature in SQL

Server 2000. In earlier versions, you were only able to use built-in functions.

Design of User-Defined Functions
User-defined functions can be created using the Create Function statement, changed

using Alter Function, and deleted using Drop Function. You can use sp_help and

sp_stored_procedures to get information about a function, and sp_helptext to obtain

its source code. From Enterprise Manager, you can use the same technique to manage

user-defined functions as you used to create and manage stored procedures.

Functions can accept zero, one, or more input parameters, and must return a single

return value. The returned value can be scalar, or it can be a table. Input parameters

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 7 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

can be values of any data type except timestamp, cursor, and table. Return

values can be of any data type except timestamp, cursor, text, ntext,

and image.

The Create Function statement has the following syntax:

Create Function [owner_name.]function_name

(

[{@parameter_name scalar_data_type [= default]} [,...n]]

)

returns scalar_data_type

|Table

|return_variable Table({column_def|table_constraint}[,…n])

[With {Encryption|Schemabinding}[,…n]]

[As]

{Begin function_body End}

| Return [(] {value|select-stmt} [)]

The following example produces a function that will return the quarter for a

specified date:

Create Function fnQuarterString

-- returns quarter in form of '3Q2000'.

(

@dtmDate datetime

)

Returns char(6) -- quarter like 3Q2000

As

Begin

Return (DateName(q, @dtmDate) + 'Q' + DateName(yyyy, @dtmDate))

End

As I mentioned in Chapter 5, and as you can see in Figure 8-4, to reference a function,

you must specify both the object owner and the object identifier.

The function in the previous example had just one Return statement in the body

of the function. In fact, a function can be designed with flow control and other

Transact-SQL statements. A function can even contain more than one Return statement.

Under different conditions, they can serve as exit points from the function. The only

requirement is that the last statement in the function body be an unconditional

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 7 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Return statement. The following function illustrates this principle in returning a date

three business days after the specified date:

Create Function fnThreeBusDays

-- returns date 3 business day after the specified date

(@dtmDate datetime)

Returns datetime

As

Begin

Declare @inyDayOfWeek tinyint

Set @inyDayOfWeek = DatePart(dw, @dtmDate)

Set @dtmDate = Convert(datetime, Convert(varchar, @dtmDate, 101))

If @inyDayOfWeek = 1 -- Sunday

Return DateAdd(d, 3, @dtmDate)

Figure 8-4 Using a function by specifying an object owner and an object identifier

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 7 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

If @inyDayOfWeek = 7 -- Saturday

Return DateAdd(d, 4, @dtmDate)

If @inyDayOfWeek = 6 -- Friday

Return DateAdd(d, 5, @dtmDate)

If @inyDayOfWeek = 5 -- Thursday

Return DateAdd(d, 5, @dtmDate)

If @inyDayOfWeek = 4 -- Wednesday

Return DateAdd(d, 5, @dtmDate)

Return DateAdd(d, 3, @dtmDate)

End

Side Effects
User-defined functions have one serious limitation—they cannot have side effects. A

function side effect is any permanent change to resources (such as tables) that have a

scope outside of the function (such as a nontemporary table that is not declared in

the function). Basically, this requirement means that a function should return a value

while changing nothing in the database.

TIP

In some development environments like C or Visual Basic, a developer can write a function that
can perform some additional activities or changes, but it is a matter of good design and discipline
not to abuse that opportunity.

SQL Server prevents you from creating side effects by limiting which Transact-

SQL statements can be used inside a function:

� Assignment statements (Set or Select) referencing objects local to the function

(such as local variables and a return value)

� Flow control statements

� Update, Insert, and Delete statements that update local table variables

� Declare statements that define local variables or cursors

� Statements that declare, open, close, fetch, and deallocate local cursors (the

only Fetch statements allowed are ones that retrieve information from a cursor

into local variables)

Use of Built-in Functions
User-defined functions cannot call built-in functions that return different data on

each call, such as these:

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

@@CONNECTIONS @@TIMETICKS

@@CPU_BUSY @@TOTAL_ERRORS

@@IDLE @@TOTAL_READ

@@IO_BUSY @@TOTAL_WRITE

@@MAX_CONNECTIONS GetDate()

@@PACK_RECEIVED NewId()

@@PACK_SENT Rand()

@@PACKET_ERRORS TextPtr()

Notice that GetDate() is among the forbidden functions. If you try to use it inside

a user-defined function, SQL Server will report an error, as shown in Figure 8-5.

Encryption
As is the case with stored procedures, functions can be encrypted so that nobody

can see their source code. You just need to create or alter the function using the With

Encryption option.

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 7 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-5 Limitation on use of built-in functions in user-defined functions

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 7 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Schema-Binding
A new option, With Schemabinding, allows developers to schema-bind a user-defined

function to database objects (such as tables, views, and other user-defined functions)

that it references. Once the function is schema-bound, it is not possible to make

schema changes on underlying objects. All attempts to drop the objects and all attempts

to alter underlying objects (which would change the object schema) will fail.

A function can be schema-bound only if all of the following criteria are satisfied:

� All existing user-defined functions and views referencing the objects referenced

by the function must already be schema-bound.

� All database objects that the function references must reside in the same

database as the function. References to database objects cannot have server

or database qualifiers. Only object owner qualifiers and object identifiers

are allowed.

� The user who executes the Create (or Alter) Function statement must have

References permissions on all referenced database objects.

Table-Valued User-Defined Functions
Since SQL Server 2000 has a table data type, it is possible to design a user-defined

function that returns a table. The primary use of table-valued user-defined functions

is similar to the use of views. However, these functions are far more flexible and

provide additional functionality.

You can use a table-valued user-defined function anywhere you can use a table (or

view). In this respect, table-valued user-defined functions implement the functionality

of views, but functions can have parameters, and therefore are dynamic. Views are

also limited to a single Select statement. Functions can have one or more Transact-SQL

statements inside, enabling them to implement more complex functionality. That

is why functions of this type are often referred to as multistatement table-valued

user-defined functions. Stored procedures can also return a result set, but the use of

such result sets is somewhat limited. For example, only a result set returned by a

function (and not a stored procedure) can be referenced in the From clause of a

Select statement.

To demonstrate this functionality, the following Select statement references the

user-defined function fnDueDays(), which returns a list of lease payment due dates.

The statement returns a list of remaining payments and due dates.

select DD.TermId, DD.DueDate, Inventory.Lease

from dbo.fnDueDays('1/1/2000','1/1/2004','monthly') DD, Inventory

where InventoryId = 8

and DD.DueDate > GetDate()

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 7 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

The result looks like this:

TermId DueDate Lease

----------- --------------------------- ------------

3 2000-04-01 00:00:00 87.7500

4 2000-05-01 00:00:00 87.7500

5 2000-06-01 00:00:00 87.7500

6 2000-07-01 00:00:00 87.7500

7 2000-08-01 00:00:00 87.7500

...

The stored procedure prListTerms has functionality similar to the functionality

of the fnDueDates() function. But to perform additional filtering of the result set

returned by the stored procedure, you would first need to load the result set into a

temporary table:

Create Table #tbl(TermId int, DueDate smalldatetime)

Insert Into #Tbl(TermId, DueDate)

Exec prListTerms '1/1/2000','1/1/2004','monthly'

Select #tbl.TermId, #tbl.DueDate, Inventory.Lease

From #tbl, Inventory

Where InventoryId = 8

And #tbl.DueDate > GetDate()

Drop Table #tbl

This is much more complicated than using the comparable function.

Let’s investigate the internals of the fnDueDate() function:

Create Function fnDueDays

-- return list of due days for the leasing

(

@dtsStartDate smalldatetime,

@dtsEndDate smalldatetime,

@chvLeaseFrequency varchar(20)

)

Returns @tblTerms table

(

TermID int,

DueDate smalldatetime

)

As

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 7 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Begin

Declare @insTermsCount smallint -- number of intervals

Declare @insTerms smallint -- number of intervals

-- calculate number of terms

Select @insTermsCount =

Case @chvLeaseFrequency

When 'monthly'

then DateDIFF(month, @dtsStartDate, @dtsEndDate)

When 'semi-monthly'

then 2 * DateDIFF(month, @dtsStartDate, @dtsEndDate)

When 'bi-weekly'

then DateDIFF(week, @dtsStartDate, @dtsEndDate)/2

When 'weekly'

then DateDIFF(week, @dtsStartDate, @dtsEndDate)

When 'quarterly'

then DateDIFF(qq, @dtsStartDate, @dtsEndDate)

When 'yearly'

then DateDIFF(y, @dtsStartDate, @dtsEndDate)

End

-- generate list of due dates

Set @insTerms = 1

While @insTerms <= @insTermsCount

Begin

Insert @tblTerms (TermID, DueDate)

Values (@insTerms, Convert(smalldatetime, CASE

When @chvLeaseFrequency = 'monthly'

then DateADD(month,@insTerms, @dtsStartDate)

When @chvLeaseFrequency = 'semi-monthly'

and @insTerms/2 = Cast(@insTerms as float)/2

then DateADD(month, @insTerms/2, @dtsStartDate)

When @chvLeaseFrequency = 'semi-monthly'

and @insTerms/2 <> Cast(@insTerms as float)/2

then DateADD(dd, 15,

DateADD(month, @insTerms/2, @dtsStartDate))

When @chvLeaseFrequency = 'bi-weekly'

then DateADD(week, @insTerms*2, @dtsStartDate)

When @chvLeaseFrequency = 'weekly'

then DateADD(week, @insTerms, @dtsStartDate)

When @chvLeaseFrequency = 'quarterly'

then DateADD(qq, @insTerms, @dtsStartDate)

When @chvLeaseFrequency = 'yearly'

then DateADD(y, @insTerms, @dtsStartDate)

End , 105))

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Select @insTerms = @insTerms + 1

End

Return

End

Let me point out to you a few differences between these functions and scalar

functions. User-defined functions that return a table have a table variable definition

in the Returns clause:

...

Returns @tblTerms table

(

TermID int,

DueDate smalldatetime

)

...

In the body of the function, there are statements that fill the contents of the table

variable:

...

Insert @tblTerms (TermID, DueDate)

Values (@insTerms, Convert(smalldatetime, CASE

When @chvLeaseFrequency = 'monthly'

...

The Return statement at the end of the function does not specify a value. As soon as

it is reached, SQL Server returns the contents of the table variable to the caller:

Return

End

Inline Table-Valued User-Defined Functions
An inline table-valued user-defined function is a special type of table-valued user-

defined function. Its purpose is to implement parameterized views.

The syntax of an inline table-valued user-defined function is a bit different from

the syntax of other functions:

Create Function [owner_name.]function_name

(

[{@parameter_name scalar_data_type [= default]} [,...n]]

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 7 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

)

Returns Table

[With {Encryption|Schemabinding}[,...n]]

[As]

| Return (select-stmt)

You do not have to define the format of the return value. It is enough to specify

just the Table keyword. An inline table-valued function does not have the body of a

function. A result set is created by a single Select statement in the Returns clause. It

is best to demonstrate this feature with an example. The following function returns

only a segment of a table based on a role the user belongs to. The idea is that a

manager or any other employee can see only equipment from his own department:

Create Function fn_DepartmentEquipment

(@chvUserName sysname)

Returns table

As

Return (

Select InventoryId, Make + ' ' + model Model, Location

From Inventory inner join Contact C

On Inventory.OwnerId = C.ContactId

Inner Join Contact Manager

On C.OrgUnitId = Manager.OrgUnitId

Inner Join Equipment

On Inventory.EquipmentId = Equipment.EquipmentId

Inner Join Location

On Inventory.LocationId = Location.LocationId

Where Manager.UserName = @chvUserName

)

Go

You can use this function in any place where a view or table is allowed, such as in

a Select statement:

Select *

From fn_DepartmentEquipment ('dejans')

Go

Figure 8-6 shows the result of such a statement.

2 8 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Managing User-Defined Functions in Enterprise Manager
You can access user-defined functions from Enterprise Manager, as shown in

Figure 8-7.

If you double-click a function, SQL Server displays a modal form for editing its

properties (that is, code and permissions). This editor is identical to the editor you

use to edit stored procedures (see Figure 8-8).

If you right-click a function and select New User Defined Function, SQL Server

opens a form with a template for creating a new function (see Figure 8-9).

Once you have written or changed the function, you can click the Check Syntax

button to verify it, then click OK or Apply to compile and save it.

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 8 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-6 Using an inline table-valued user-defined function

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 8 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-7 Managing user-defined functions in Enterprise Manager

Figure 8-8 Editing user-defined functions

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 8 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Triggers
Triggers are a unique type of procedure. Triggers are very similar to events—a type

of procedure in certain programming languages such as Visual Basic. Events in

Visual Basic are initiated by the system when certain actions occur (for instance, a

form is loaded, a text box receives focus, or a key is pressed).

Triggers are associated with a table in a database and executed by SQL Server

when a specific change occurs in the table. The change could be the result of the

following modification statements:

� Insert

� Update

� Delete

SQL Server 7.0 and earlier versions recognized only one type of trigger. In SQL

Server 2000, this type is called an After trigger. SQL Server 2000 introduces a new

type—an Instead-of trigger. In the following sections, we first examine the standard

(After) triggers and then introduce the new Instead-of trigger.

Figure 8-9 A function template

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Physical Design of After Triggers
The following is the simplified syntax for implementing the core functionality of

triggers:

Create Trigger trigger_name

On table

{After { [Delete] [,] [Insert] [,] [Update] }

As

sql_statement [...n]

As a stored procedure, a trigger logically consists of

� A header, which is a Transact-SQL statement for creating a trigger. It consists

of three components:

� The name of the trigger

� The name of the table with which the trigger will be associated

� A modification statement (that is, an event) that will initiate the trigger

� A body, which contains Transact-SQL statement(s) to be executed at runtime.

The following example first creates a new table called MyEquipment, and then

populates it with Make and Model information from the Equipment table, and finally

creates a trigger. The trigger is named trMyEquipment_D and is associated with the

MyEquipment table. It is fired after a Delete statement is executed against the table.

Its function is very simple—it notifies the user regarding actions and the number of

records that have been deleted.

Create Table MyEquipment

(Id int identity,

Description varchar(500))

GO

-- populate table

Insert MyEquipment(Description)

Select Make + ' ' + Model from Equipment

GO

Create Trigger trMyEquipment_D

On dbo.MyEquipment

After Delete -- For Delete

2 8 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As

Print 'You have just deleted '

+ Cast(@@rowcount as varchar)

+ ' record(s)!'

Go

To execute the trigger, you need to execute the Delete statement:

Delete MyEquipment

Where Id = 2

SQL Server returns the following:

You have just deleted 1 record(s)!

(1 row(s) affected)

You can also execute the Delete statement to delete multiple records:

Delete MyEquipment

Even in this case, the trigger will not be fired once for each record. You will receive

just one message:

You have just deleted 4 record(s)!

(4 row(s) affected)

For this reason, it is important to design your trigger to handle actions against multiple

records. You will see more reasons in following paragraphs.

Inserted and Deleted Virtual Tables
SQL Server maintains two temporary virtual tables during the execution of a trigger:

Deleted and Inserted. These tables contain all the records inserted or deleted during

the operation that fired the trigger. You can use this feature to perform additional

verification or additional activities on affected records.

You are probably wondering if there is an Updated table. No. Because an Update

can be performed as a combination of the Delete and Insert statements, records that

were updated will appear in both the Deleted and Inserted tables.

SQL Server does not create both tables in all cases. For example, in a trigger fired

during a Delete statement, only a Deleted virtual table is accessible. A reference to

an Inserted virtual table will cause an error.

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 8 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 8 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

The following table summarizes the presence of virtual tables in the relevant

Transact-SQL statements:

Modification Statement Deleted Inserted
Insert N/A New records

Update Old version of updated records New version of updated records

Delete Deleted records N/A

The following modifies the trigger from the previous section to display which

records are deleted:

Alter Trigger trMyEquipment_D

On dbo.MyEquipment

After Delete -- For Delete

As

Select 'You have just deleted following '

+ Cast(@@rowcount as varchar)

+ ' record(s)!'

Select * from deleted

go

When you delete all records from the MyEquipment table, SQL Server returns the

following:

You have just deleted following 5 record(s)!

(1 row(s) affected)

Id Description

----------- --

1 Toshiba Portege 7020CT

2 Sony Trinitron 17XE

3 NEC V90

4 HP LaserJet 4

5 HP LaserJet 4

(5 row(s) affected)

You can use values from these tables, but you cannot modify them directly. If

you need to perform some operation on records that were inserted, for example, you

should not try to change them in the Inserted table. The proper method would be to

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 8 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

issue a regular Transact-SQL statement against the original table. In the Where or

From clause, you can reference the virtual table (Inserted) and in that way limit the

subset of the original table that you are targeting.

In the following example, the trigger calculates a SOUNDEX code for the Make

and Model of the Equipment records affected by the Insert or Update statement that

has fired the trigger:

Alter Trigger trEquipment_IU

On dbo.Equipment

After Insert, Update -- For Insert, Update

As

-- precalculate ModelSDX and MakeSDX field

-- to speed up use of SOUNDEX function

update Equipment

Set ModelSDX = SOUNDEX(Model),

MakeSDX = SOUNDEX(Make)

where EquipmentId IN (Select EquipmentId from Inserted)

What Triggers a Trigger?
A trigger is executed once for each modification statement (Insert, Update, or Delete).

An After trigger is fired after the modification statement finishes successfully. If a

statement fails for another reason (for example, foreign key or check constraints),

the trigger is not invoked. For example, the Equipment table has the following

Delete trigger:

Alter Trigger Equipment_DeleteTrigger

On dbo.Equipment

After Delete -- For Delete

As

Print 'One or more rows are deleted in Equipment table!'

If you attempt to delete all records from the table:

delete Equipment

SQL Server aborts the execution because there is a foreign key relationship with the

Inventory table. The execution is aborted before the trigger is invoked:

Server: Msg 547, Level 16, State 1, Line 1

DELETE statement conflicted with COLUMN REFERENCE constraint

'FK_Inventory_Equipment'. The conflict occurred in database

'Asset', table 'Inventory', column 'EquipmentId'.

The statement has been terminated.

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A trigger and developer might have different definitions of what is a successfully

finished modification to a table. The trigger will fire even when a modification

statement affected zero records. The following example is based on the assumption

that the record with EquipmentId set to 77777 does not exist in the database:

Delete Equipment

Where EquipmentId = 77777

SQL Server nonchalantly prints from the trigger:

One or more rows are deleted in Equipment table!

Full Syntax of After Triggers
After triggers were the only type of triggers before SQL Server 2000. After triggers

in SQL Server 2000 have the same syntax as before except that the keyword For is

replaced with After:

Create Trigger trigger_name

On table
[With Encryption]

{

{After { [Delete] [,] [Insert] [,] [Update] }

[With Append]

[Not For Replication]

As

sql_statement [...n]
}

|

{After { [Insert] [,] [Update] }

[With Append]

[Not For Replication]

As

{ If Update (Column)
[{And | Or} Update (Column)]

[...n]
| If (Columns_Updated()

{bitwise_operator}
updated_bitmask)

{ comparison_operator} column_bitmask [...n]
}

sql_statement [...n]
}

}

2 8 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If a trigger is defined with the With Encryption clause, SQL Server encrypts it so

that its code remains concealed. Keep in mind that you need to preserve the source

code in a script outside SQL Server if you plan to modify it later.

The Not For Replication clause indicates that SQL Server should not fire a trigger

during replication of the table.

The With Append clause is used only when the compatibility mode of SQL Server

is set to a value less than 70. For more details, refer to SQL Server Books Online.

It is possible to determine which columns were updated during the Update

operation. Transact-SQL includes two functions that you can use within the trigger—

Update() and Columns_Updated():

If Update (column)
sql_statement [...n]

If (Columns_Updated() {bitwise_operator} updated_bitmask)
{comparison_operator} column_bitmask [...n]

sql_statement [...n]

You can now modify your previously used trigger to update only the fields that

were changed:

Alter Trigger trEquipment_IU

On dbo.Equipment

After Insert, Update -- For Insert, Update

As

-- precalculate ModelSDX and MakeSDX field

-- to speed up use of SOUNDEX function

if Update(Model)

update Equipment

Set ModelSDX = SOUNDEX(Model)

where EquipmentId IN (Select EquipmentId from Inserted)

if Update(Make)

update Equipment

Set MakeSDX = SOUNDEX(Make)

where EquipmentId IN (Select EquipmentId from Inserted)

go

The Update() function might not perform exactly as you expect. In fact, it returns

True for columns that were referenced during the Transact-SQL statement rather

than for columns that were actually changed. For example, if you issue the following

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 8 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

2 9 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Update statement, SQL Server references the Make column of all records, and the

trigger recalculates the SOUNDEX code in all records:

Update Equipment

Set Make = Make

TIP

This behavior might cause some problems for you if you forget about it. However, in some cases, you
can use it to your advantage. For example, to speed up the upload of information to the table, you can
temporarily disable triggers (see the “Disabling Triggers” section, later in this chapter). Later, when you
want to execute the triggers (for example, to verify their validity and/or perform additional activities),
you can use this feature to initiate triggers for records that are present in the table.

Too often, developers forget that the presence of a Default constraint in a column

causes the Update() function to return True for that column during the execution of

the Insert statement. This will occur even if the Insert statement did not reference the

column itself.

The Columns_Updated() function operates with a bitmap that is related to the

positions of columns. You can investigate its contents if you use an integer bitmask.

To test whether the third column in a table was updated, you can use the following:

if Columns_Updated() & 3 = 3

print 'Column 3 was updated!'

The ampersand (&) is a binary and operator, with which you can test the value of

the flag.

Naturally, hard-coding the order of columns does not make much sense. The real

value of this function is as a means of looping through all the columns that were

updated and performing specified actions.

The following trigger loops through columns and displays which ones were updated:

Create Trigger trEquipmentN_IU_2

-- list all columns that were changed

On dbo.EquipmentN

after Insert, Update

As

Set Nocount Off

declare @intCountColumn int,

@intColumn int

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

-- count columns in the table

Select @intCountColumn = Count(Ordinal_position)

From Information_Schema.Columns

Where Table_Name = 'EquipmentN'

Select Columns_Updated() "COLUMNS UPDATED"

Select @intColumn = 1

-- loop through columns

while @intColumn <= @intCountColumn

begin

if Columns_Updated() & @intColumn = @intColumn

Print 'Column ('

+ Cast(@intColumn as varchar)

+ ') '

+ Col_Name(Object_ID('EquipmentN'), @intColumn)

+ ' has been changed!'

set @intColumn = @intColumn + 1

End

Use the following statement to test this trigger:

Insert EquipmentN(Make, Model, EqTypeID)

Values('Acme', '9000', 1)

Handling Changes on Multiple Records
The following example is a trigger designed to record the name of the user that

changed the status of an order in the ActivityLog table, along with some additional

information:

Create Trigger trOrderStatus_U_1

On dbo.[Order]

After Update -- For Update

As

declare @intOldOrderStatusId int,

@intNewOrderStatusId int

If Update (OrderStatusId)

Begin

select @intOldOrderStatusId = OrderStatusId from deleted

select @intNewOrderStatusId = OrderStatusId from inserted

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 9 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Insert into ActivityLog(Activity,

LogDate,

UserName,

Note)

values ('Order.OrderStatusId',

GetDate(),

User_Name(),

'Value changed from '

+ Cast(@intOldOrderStatusId as varchar)

+ ' to '

+ Cast((@intNewOrderStatusId) as varchar)

)

End

This method is far from perfect. Can you detect the problem?

It records the user who has changed the status of an order only when the user

changes no more than a single order:

select @intOldOrderStatusId = OrderStatusId from deleted

Let me remind you that if the Select statement returns more than one record, the

variable(s) will be filled with values from the last record. This is sometimes all that

is required. If you have restricted access to the table and the only way to change the

status is through a stored procedure (which allows only one record to be modified at

a time), then this is sufficient.

Unfortunately, there is always a way to work around any restriction and possibly

issue an Update statement that will change the status of all tables. The following is

the proper solution:

Alter Trigger trOrderStatus_U

On dbo.[Order]

After Update -- For Update

As

If Update (OrderStatusId)

begin

Insert into ActivityLog(Activity,

LogDate,

UserName,

Note)

Select 'Order.OrderStatusId',

GetDate(),

User_Name(),

2 9 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 9 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

'Value changed from '

+ Cast(d.OrderStatusId as varchar)

+ ' to '

+ Cast(i.OrderStatusId as varchar)

from deleted d inner join inserted i

on d.OrderId = i.OrderId

end

In this case, a set operation is used and one or more records from the Deleted and

Inserted virtual tables will be recorded in the ActivityLog.

Nested and Recursive Triggers
A trigger can fire other triggers on the same or other tables when it inserts, updates,

or deletes records in them. This technique is called nesting triggers.

If a trigger changes records in its own table, it can fire another instance of itself.

Such an invocation is called direct invocation of recursive triggers.

There is another scenario in which recursive invocation of triggers might occur.

The trigger on one table might fire a trigger on a second table. The trigger on the

second table might change the first table again, and the first trigger will fire again.

This scenario is called indirect invocation of recursive triggers.

All these scenarios might be ideal for implementing referential integrity and business

rules, but they might also be too complicated to design, understand, and manage. If you

are not careful, the first trigger might call the second, then the second might call the first,

then the first the second, and so on.

Very often, the SQL Server environment is configured to prevent this kind of behavior.

To disable nested triggers and recursive triggers, you need to use the stored procedure

sp_configure to set the Nested Triggers server option and use the Alter Table statement to

set the Recursive_Triggers option to Off mode. Keep in mind that recursive triggers will

be disabled automatically if you disable nested triggers.

Trigger Restrictions
The following are the trigger restrictions, none of which usually cause any

difficulties:

� The trigger must be created with the first statement in a batch.

� The name of the trigger is its Transact-SQL identifier, and therefore must be

no more than 128 characters long.

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 9 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

� The trigger’s name must be unique in the database.

� A trigger can only be associated with one table, but one table can have many

triggers. In the past, only one trigger could be associated with one modification

statement on one table. Now, each required function can be implemented in a

separate trigger. By implementing these features in separate triggers, you assure

that the triggers will be easier to understand and manage.

� Triggers cannot be nested to more than 32 levels, nor can they be invoked

recursively more than 32 times. Attempting to do so causes SQL Server to

return an error.

� A trigger must not contain any of following Transact-SQL statements:

Alter Database Drop Database

Alter Procedure Drop Default

Alter Table Drop Index

Alter Trigger Drop Procedure

Alter View Drop Rule

Create Database Drop Table

Create Default Drop Trigger

Create Index Drop View

Create Procedure Grant

Create Rule Load Database

Create Schema Load Log

Create Table Reconfigure

Create Trigger Restore Database

Create View Restore Log

Deny Revoke

Disk Init Truncate Table

Disk Resize Update Statistics

Instead-of Triggers
Instead-of triggers are executed instead of the modification statement that has

initiated them. The following trigger is executed when an attempt is made to delete

records from the MyEquipment table. It will report an error instead of allowing the

deletion:

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Create Trigger itrMyEquipment_D

On dbo.MyEquipment

instead of Delete

As

-- deletion in this table is not allowed

raiserror('Deletion of records in MyEquipment '

+ 'table is not allowed', 16, 1)

GO

Instead-of triggers are executed after changes to base tables occur in Inserted and

Deleted virtual tables, but before any change to the base tables is executed. Therefore,

the trigger can use information in the Inserted and Deleted tables. In the following

example, a trigger tests whether some of the records that would have been deleted are

in use in the Equipment table:

Create Trigger itrEqType_D

On dbo.EqType

instead of Delete

As

If exists(select *

from Equipment

where EqTypeId in (select EqTypeId

from deleted)

)

raiserror('Some recs in EqType are in use in Equipment table!',

16, 1)

else

delete EqType

where EqTypeId in (select EqTypeId from deleted)

GO

Instead-of triggers are initiated before any constraints. This behavior is very

different from that of After triggers. Therefore, the code for an Instead-of trigger

must perform all checking and processing that would normally be performed by

constraints.

Usually, an Instead-of trigger executes the modification statement (Insert, Update,

or Delete) that initiates it. The modification statement does not initiate the trigger

again. If some After triggers and/or constraints are defined on the table or view,

they will be executed as though the Instead-of trigger does not exist.

A table or a view can have only one Instead-of trigger (and more than one After

trigger) per modification type.

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 9 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Triggers on Views
Instead-of triggers can be defined on views also. In the following example, a trigger

is created on a view that displays fields from two tables:

Create View dbo.vEquipment

AS

Select Equipment.EquipmentId,

Equipment.Make,

Equipment.Model,

EqType.EqType

From Equipment Inner Join EqType

On Equipment.EqTypeId = EqType.EqTypeId

Go

Create Trigger itr_vEquipment_I

On dbo.vEquipment

instead of Insert

As

-- If the EqType is new, insert it

If exists(select EqType

from inserted

where EqType not in (select EqType

from EqType))

-- we need to insert the new ones

insert into EqType(EqType)

select EqType

from inserted

where EqType not in (select EqType

from EqType)

-- now you can insert new equipment

Insert into Equipment(Make, Model, EqTypeId)

Select inserted.Make, inserted.Model, EqType.EqTypeId

From inserted Inner Join EqType

On inserted.EqType = EqType.EqType

GO

Insert Into vEquipment(EquipmentId, Make, Model, EqType)

Values (-777, 'Microsoft', 'Natural Keyboard', 'keyboard')

2 9 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 9 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

The trigger first examines whether the Inserted table contains EqType values that

do not exist in EqTable. If they exist, they will be inserted in the EqType table. At

the end, values from the Inserted table are added to the Equipment table.

The previous example illustrates one unusual feature in the use of Instead-of

triggers on views. Since EquipmentId is referenced by the view, it can (and must)

be specified by the modification statement (Insert statement). The trigger can (and

will) ignore the specified value since it is inserted automatically (EquipmentId is

an identity field in the base table). The reason for this behavior is that the Inserted

and Deleted tables have different structures from the base tables on which the view

is based. They have the same structure as the Select statement inside the view.

Columns in the view can be nullable or not nullable. The column is nullable if its

expression in the Select list of the view satisfies one of the following criteria:

� The view column references a base table column that is nullable.

� The view column expression uses arithmetic operators or functions.

If the column does not allow nulls, an Insert statement must provide a value for

it. This is the reason a value for EquipmentId column was needed in the previous

example. An Update statement must provide values for all nonnullable columns

referenced by the Set clause in a view with an Instead-of update trigger.

NOTE

You must specify values even for view columns that are mapped to timestamp, Identity,
or computed base table columns.

You can use the AllowNull property of the ColumnProperty() function (table

function) to examine which fields are nullable from code.

NOTE

The previous code example is much more important than you might think. It allows you to insert a
whole set of records at one time into the view (actually to the set of base tables behind the view).
Before Instead-of triggers, you had to do this record by record with a stored procedure. This
capability is very useful for loading information into a SQL Server database. For example, you
can load information from a denormalized source (such as a flat file) and store it in a set of
normalized, linked tables.

Another unusual feature of Instead-of triggers is the fact that they support text,

ntext, and image columns in Inserted and Deleted tables. After triggers cannot

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 9 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

handle these data types. In base tables, text, ntext, and image columns actually

contain pointers to the pages holding data. In Inserted and Deleted tables, text,

ntext, and image columns are stored as continuous strings within each row.

No pointers are stored in these tables, and therefore the use of the Textptr() and

Textvalid() functions and the Readtext, Updatetext, and Writetext statements is not

permitted. All other uses are valid, such as references in the Select list or Where

clause, or use of Charindex(), Patindex(), or Substring() functions.

Trigger Order of Execution
SQL Server 7.0 introduced the idea that more than one trigger could be created per

modification statement. However, the execution order of such triggers could not

be controlled. In SQL Server 2000, it is possible to define which After trigger to

execute first and which to execute last against a table. For example, the following

statement will set trInventory_I to be the first trigger to be executed in the case of an

Insert modification statement:

Exec sp_settriggerorder @triggername = 'trInventory_I',

@order = 'first',

@stmttype = 'INSERT'

The @order parameter must have one of these values: 'first', 'last', or 'none'. The

value 'none' is used to reset the order of the execution of the trigger after it has been

specified. The @smttype parameter must have one of these values: 'INSERT',

'UPDATE', or 'DELETE'.

Since only one Instead-of trigger can be associated with a table, and since it is

executed before any other trigger (or constraint), it is not possible to set its order.

Alter Trigger statements reset the order of the trigger. After altering the trigger,

you must execute the sp_SetTriggerOrder statement to set it again.

Managing Triggers
You can manage triggers using GUI tools such as Enterprise Manager, Query

Analyzer Object Browser, or Visual Database Tools. Other methods include using

Transact-SQL statements within tools like Query Analyzer.

Managing Triggers in Enterprise Manager
You can access triggers from Enterprise Manager by right-clicking the table with

which the trigger is associated and selecting All Tasks | Manage Triggers from the

pop-up menus.

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL Server displays a modal form for editing trigger properties (see Figure 8-10).

This editor is very similar to the editor you use to edit stored procedures.

SQL Server initially fills the form with a template for creating a new trigger. If

you want to access a trigger that is already defined for the table, use the Name list

box to select it.

Once you have created or modified the trigger, you can click the Check Syntax

button to verify it, then click OK or Apply to attach it to the table. You can delete

triggers by selecting the trigger from the drop-down list and clicking the Delete

button.

Managing Triggers in the Query Analyzer Object Browser
You can access triggers from the Object Browser when you open the tree node under

the table with which the trigger is associated. When you open the Triggers node, Query

Analyzer displays a list of triggers. You can right-click any trigger and the program

will offer you the usual options (for instance, Edit and Delete).

Managing Triggers Using Transact-SQL Statements
SQL Server has a rich pallet of system stored procedures for managing triggers from

Transact-SQL.

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 2 9 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-10 Editing triggers

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Listing Triggers To list triggers associated with a table, use the system stored

procedure sp_helptrigger:

sp_helptrigger 'Order'

The server returns the list of triggers associated with the specified table and

displays the type of trigger found in the isupdate, isdelete, isinsert,

isafter, and isinteadof columns:

trigger_name owner isupdate isdelete isinsert isafter isinteadof

----------------- ----- -------- -------- -------- ------- ----------

trOrderStatus_U dbo 1 0 0 1 0

trOrderStatus_U_1 dbo 1 0 0 1 0

(2 row(s) affected)

Viewing Triggers You can obtain the code for a trigger using the system stored

procedure sp_helptext:

sp_helptext 'trOrderStatus_U'

The server returns the code for the specified trigger:

Text

CREATE Trigger trOrderStatus_U

On dbo.[Order]

After Update -- For Update

As

If Update (OrderStatusId)

Begin

Insert into ActivityLog(Activity,

LogDate,

UserName,

Note)

Select 'Order.OrderStatusId',

GetDate(),

USER_NAME(),

'Value changed from '

+ Cast(d.OrderStatusId as varchar)

+ ' to '

+ Cast(i.OrderStatusId as varchar)

3 0 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

From deleted d inner join inserted i

On d.OrderId = i.OrderId

End

Deleting Triggers A trigger can be deleted, as can all other database objects, using

the appropriate Drop statement:

Drop Trigger 'Orders_Trigger1'

Modifying Triggers Earlier in this chapter, you saw details of the syntax of a

Transact-SQL statement for creating triggers. Triggers can be modified using the

Alter Trigger statement. Since the features of the Alter Trigger and Create Trigger

statements are identical, we will not explore the syntax a second time.

It is much better to use the Alter Trigger statement to modify a trigger than to

drop and then re-create the trigger. During the period between dropping and creating

a trigger, a user might make a change to the table, the consequence of which is that

the rules that are usually enforced by the trigger will not be enforced.

NOTE

Keep in mind that the order of execution is lost when the trigger is altered—you must reset it
again using sp_SetTriggerOrder.

Renaming Triggers Triggers are often renamed using Transact-SQL statements

designed for the creation and modification of triggers, such as Alter Trigger. As

with all other database objects, a trigger can be forced to change its name using

the following system stored procedure:

Exec sp_rename 'Orders_Trigger1', 'trOrders_IU'

The first parameter is the current name of the database object, and the second

parameter is the new name of the object.

Disabling Triggers It is possible to temporarily disable and enable triggers without

dropping them:

Alter Table [Order] Disable Trigger trOrders_IU

After the execution of this statement, the specified trigger will not fire, but it will

still be associated with the table. This technique is often used to load large amounts

of data into a table without initiating the business logic encapsulated in a trigger.

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 0 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 0 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Trigger Design Recommendations
Since triggers are relatively complex database objects, it is easy to create design,

performance, or maintainability problems inside your database. Therefore, I will

spend some time pointing out a proper way to use them.

Go out ASAP
Triggers take time to execute. If your server is very busy and/or other users are

locking resources in the database, execution might take much more time than

expected. On the other hand, locks that you (or rather SQL Server) have placed

in the database while the trigger is executing will not be released until the trigger

is finished. Thus, your trigger may increase competition for resources and affect

other users and their sessions.

For these reasons, you should always try to exit a trigger as soon as possible.

For example, you could start (almost) every trigger with the following test:

If @@rowcount = 0

Return

It will abort further execution of the trigger if no records were changed.

Keep in mind that this If clause must occur at the very beginning of the trigger. If

you put it after any other statement, @@rowcount will return the number of records

affected by that statement. For example, if you put a simple Print statement at the

beginning of the trigger and then this test, the remainder of the trigger will not be

executed:

Alter Trigger trOrderStatus_U

On dbo.[Order]

After Update -- For Update

As

Print 'Start of trOrderStatus_U'

If @@Rowcount = 0 -- This is always true

-- and the rest will NEVER be executed.

Return

If Update (OrderStatusId)

Begin

Insert into ActivityLog(Activity,

LogDate,

UserName,

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note)

Select 'Order.OrderStatusId',

GetDate(),

USER_NAME(),

'Value changed from '

+ Cast(d.OrderStatusId as varchar)

+ ' to '

+ Cast(i.OrderStatusId as varchar)

From deleted d inner join inserted i

On d.OrderId = i.OrderId

End

Make It Simple
It is true that triggers are suitable for implementing complex business rules, particularly if

those business rules are too complex to be handled by simpler database objects such

as constraints. However, just because you are using them to handle complex business

rules, you do not have to make your code so complex that it is difficult to understand

and follow. It is challenging enough to work with triggers: keep them as simple as

possible.

Divide and Conquer
In earlier versions of Microsoft SQL Server, only one trigger per modification

statement could be associated with a table. This physical restriction led developers

to produce poor code. Features that were not related had to be piled up in a single

trigger. However, this restriction no longer applies. There is no reason to couple the

code for multiple triggers. Each distinct piece of functionality can be implemented

in a separate trigger (except in the case of Instead-of triggers).

Do Not Use Select and Print Inside a Trigger
The Print and Select commands are very useful in triggers during the debugging

process. However, they can be very dangerous if left in a trigger after it has been

introduced into production. These statements generate additional result sets, which

might cause the client application to fail if it is not able to handle them or does not

expect them.

Do Not Use Triggers at All
If you can implement the required functionality using constraints, do not use

triggers!

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 0 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 0 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

If you can implement the required functionality using stored procedures, and if

you can prevent users from accessing your tables directly, do not use triggers!

Triggers are more difficult to implement, debug, and manage. You will save both

time and money for your company or your client if you can find simpler ways to

implement the required functionality.

Transaction Management in Triggers
A trigger is always part of the transaction that initiates it. That transaction can be

explicit (when SQL Server has executed Begin Transaction). It can also be implicit—

basically, SQL Server treats each Transact-SQL statement as a separate transaction

that will either succeed completely or fail completely.

It is possible to abort the entire transaction from inside the trigger by using Rollback

Transaction. This command, shown in action next, is valid for both implicit and

explicit transactions:

Alter Trigger trOrderStatus_U

On dbo.[Order]

After Update --For Update

As

If @@Rowcount = 0

Return

If Update (OrderStatusId)

Begin

Insert into ActivityLog(Activity,

LogDate,

UserName,

Note)

Select 'Order.OrderStatusId',

GetDate(),

USER_NAME(),

'Value changed from '

+ Cast(d.OrderStatusId as varchar)

+ ' to '

+ Cast(i.OrderStatusId as varchar)

From deleted d inner join inserted i

On d.OrderId = i.OrderId

If @@Error <> 0

Begin

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 0 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

RAISERROR ("Error in trOrderStatus_U", 16, 1)

Rollback Transaction

End

End

In this trigger, SQL Server investigates the presence of the error and rolls back the

complete operation if it is unable to log changes to the ActivityLog table.

The processing of Rollback Transaction inside a trigger differs from its processing

inside a stored procedure. It also differs in different versions of Microsoft SQL Server.

When a Rollback statement is encountered in a stored procedure, changes made

since the last Begin Transaction are rolled back, but the processing continues.

In Microsoft SQL Server 2000, when a Rollback statement is executed within a

trigger, a complete batch is aborted and all changes are rolled back. SQL Server

continues to process from the beginning of the next batch (or stops if the next batch

does not exist).

Microsoft SQL Server 7.0 and 4.2 and all versions of Sybase SQL Server behaved

in this manner. In Microsoft SQL Server 6.0, execution was continued through the

trigger, but the batch was canceled. Version 6.5 went to an opposite extreme. Execution

of both the trigger and the batch was continued. It was the responsibility of the developer

to detect an error and stop further processing.

Using Triggers
In SQL Server, triggers may have the following roles:

� To enforce data integrity, including referential integrity and cascading deletes

� To enforce complex business rules too complex for Default and Check

constraints

� To log changes and send notification to administrators via e-mail

� To maintain derived information (computed columns, running totals,

aggregates, and so on)

Triggers can be implemented to replace all other constraints on a table. A typical

example is the use of a trigger to replace the functionality enforced by a foreign key

constraint.

It is possible to implement cascading deletes using triggers. For example, if you

do not have a foreign key between the Inventory and InventoryProperty tables, you

might implement a trigger to monitor the deletion of Inventory records and to delete

all associated InventoryProperty records.

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 0 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Check and Default constraints are limited in that they can base their decision only

on the context of current records in the current tables. You can implement a trigger

that functions in a manner similar to Check constraints and that verifies on the contents

of multiple records or even on the contents of other tables.

Triggers can be set to create an audit trail of activities performed on a table. For

example, you might be interested in obtaining information on who changed the contents

of, or specific columns in, the Lease table, and when that user made the changes.

It is possible to create a trigger to notify you when a specific event occurs in the

database. For example, in a technical support system, you might send e-mail to

the person responsible for dispatching technical staff, to inform that person that a

request for technical support has been received. In an inventory system, you might

automatically generate a purchase order if the quantity of an inventory item falls

below the specified level.

Triggers are suitable for computing and storing calculated columns, running

totals, and other aggregates in the database. For example, to speed up reporting,

you might decide to keep a total of ordered items in an order table.

Cascading Deletes
Usually, referential integrity between two tables is implemented with a foreign key,

such as in the following illustration:

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In such cases, a foreign key prevents the user from deleting records from a parent

table (Inventory) if a record is referenced in a linked table (InventoryProperty). The

only way to delete the record would be to use the following code:

Delete InventoryProperty

Where InventoryId = 222

Delete Inventory

Where InventoryId = 222

In some cases, the system design requirements might call for cascading deletes,

which automatically delete records from the linked table when the record in the

parent table is deleted. In this case, only one command is required to delete any

instance of an asset with an InventoryId value of 222:

Delete Inventory

Where InventoryId = 222

SQL Server 2000 introduces cascading referential integrity constraints that can

implement this behavior. In SQL Server 7.0 and earlier versions, you had to use

triggers to implement cascading operations. The following example creates two

new tables (without a foreign key), populates them with a few records, and creates

a trigger that will implement a cascading delete:

Create Table MyInventory

(

Inventoryid int Not Null Identity (1, 1),

EquipmentId int Null,

LocationId int Null,

StatusId tinyint Null,

LeaseId int Null,

LeaseScheduleId int Null,

OwnerId int Null,

Rent smallmoney Null,

Lease smallmoney Null,

Cost smallmoney Null,

AcquisitionTypeID tinyint Null

)

Go

Alter Table MyInventory Add Constraint

PK_Inventory Primary Key Nonclustered

(

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 0 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Inventoryid

)

Go

Create Table MyInventoryProperty

(

InventoryId int Not Null,

PropertyId smallint Not Null,

Value varchar(50) Null

)

Go

Alter Table MyInventoryProperty Add Constraint

PK_InventoryProperty Primary Key Nonclustered

(

InventoryId,

PropertyId

)

Go

Create Trigger trMyInventory_CascadingDelete_D

On MyInventory

After Delete --For delete

As

If @@Rowcount = 0

Return

Delete MyInventoryProperty

where InventoryId In (Select InventoryID from deleted)

Go

Insert into myInventory(EquipmentId) Values (1)

Insert into myInventory(EquipmentId) Values (2)

Insert into myInventory(EquipmentId) Values (3)

Insert into myInventory(EquipmentId) Values (4)

Insert into myInventory(EquipmentId) Values (5)

Insert into myInventoryProperty(InventoryId, PropertyId, Value)

Values (1, 1, 'ACME')

Insert into myInventoryProperty(InventoryId, PropertyId, Value)

Values (1, 2, 'Turbo')

Insert into myInventoryProperty(InventoryId, PropertyId, Value)

Values (1, 3, '311')

Insert into myInventoryProperty(InventoryId, PropertyId, Value)

Values (2, 1, 'ACME')

3 0 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Insert into myInventoryProperty(InventoryId, PropertyId, Value)

Values (2, 2, 'TurboPro')

Insert into myInventoryProperty(InventoryId, PropertyId, Value)

Values (2, 3, '312')

Go

Delete MyInventory

Where InventoryId = 1

Select * from myInventory

Select * from myInventoryProperty

Aggregates
Imagine that users of an Asset database are often clogging the Inventory table. One

operation that they perform often is the execution of reports that prepare the sum of

all monthly lease payments per lease schedule. If the sum were prepared in advance,

the report would be available in an instant, the table would be less clogged, and the

user would experience fewer locking and deadlocking problems.

To provide this functionality, you could create one or more triggers to maintain

the PeriodicTotalAmount field in the LeaseSchedule table. The field will

contain the sum of lease payments for assets in the Inventory table that are

associated with a lease schedule.

It is possible to implement diverse solutions for this task. This solution is based

on separate triggers for different modification statements.

The Insert trigger is based on a relatively complex Update statement with a

subquery based on the contents of the Inserted table. Each new record increments

the total in the related lease schedule.

The Coalesce statement is used to replace nulls with zeros in the calculation. The

trigger evaluates the number of records affected by the modification statement at the

beginning and, if no records are affected, aborts further execution.

This solution executes properly even when multiple records are inserted with one

statement:

Create Trigger trInventory_Lease_I

On dbo.Inventory

after Insert -- For Insert

As

If @@Rowcount = 0

return

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 0 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

-- add inserted leases to total amount

Update LeaseSchedule

Set LeaseSchedule.PeriodicTotalAmount =

LeaseSchedule.PeriodicTotalAmount

+ Coalesce(i.Lease, 0)

from LeaseSchedule inner join inserted i

on LeaseSchedule.ScheduleId = i.LeaseScheduleId

Go

The Delete trigger is very similar to the previous trigger. The main difference is

that the values from the Deleted table are subtracted from the total, as shown here:

Create Trigger trInventory_Lease_D

On dbo.Inventory

After Delete -- For delete

As

If @@Rowcount = 0

Return

-- subtract deleted leases from total amount

Update LeaseSchedule

Set LeaseSchedule.PeriodicTotalAmount =

LeaseSchedule.PeriodicTotalAmount

- Coalesce(d.Lease, 0)

from LeaseSchedule inner join deleted d

on LeaseSchedule.ScheduleId = d.LeaseScheduleId

Go

The Update trigger is the most complicated. The calculation of a total is performed

only if the Lease and LeaseScheduleId fields are referenced by the Update

statement. The trigger then subtracts the Lease amounts from the deleted records

and adds the Lease amounts from the inserted records to the related totals.

Create Trigger trInventory_Lease_U

On dbo.Inventory

After Update -- For Update

As

if @@Rowcount = 0

return

3 1 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 1 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

If Update (Lease) or Update(LeaseScheduleId)

begin

-- subtract deleted leases from total amount

Update LeaseSchedule

Set LeaseSchedule.PeriodicTotalAmount =

LeaseSchedule.PeriodicTotalAmount

- Coalesce(d.Lease, 0)

From LeaseSchedule inner join deleted d

On LeaseSchedule.ScheduleId = d.LeaseScheduleId

-- add inserted leases to total amount

Update LeaseSchedule

Set LeaseSchedule.PeriodicTotalAmount =

LeaseSchedule.PeriodicTotalAmount

+ Coalesce(i.Lease, 0)

From LeaseSchedule inner join inserted i

On LeaseSchedule.ScheduleId = i.LeaseScheduleId

End

Go

Views
Views are database objects that behave like stored queries or virtual tables. There are

several types of views, and they differ in internal design and purpose:

� Standard SQL views

� Dynamic views

� INFORMATION_SCHEMA views

� Indexed views

� Partitioned views

Design of Standard SQL Views
In their basic form, views are designed simply as queries enclosed inside a Create

View statement:

CREATE VIEW dbo.vInventory

AS

SELECT dbo.Inventory.Inventoryid, dbo.Equipment.Make, dbo.Equipment.Model,

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

dbo.Location.Location, dbo.Status.Status, dbo.Contact.FirstName,

dbo.Contact.LastName, dbo.Inventory.Cost, dbo.AcquisitionType.AcquisitionType,

dbo.Location.Address, dbo.Location.City, dbo.Location.ProvinceId,

dbo.Location.Country, dbo.EqType.EqType, dbo.Contact.Phone,

dbo.Contact.Fax, dbo.Contact.Email, dbo.Contact.UserName,

dbo.Inventory.Rent, dbo.Inventory.EquipmentId, dbo.Inventory.LocationId,

dbo.Inventory.StatusId, dbo.Inventory.OwnerId, dbo.Inventory.AcquisitionTypeID,

dbo.Contact.OrgUnitId

FROM dbo.EqType

RIGHT OUTER JOIN dbo.Equipment

ON dbo.EqType.EqTypeId = dbo.Equipment.EqTypeId

RIGHT OUTER JOIN dbo.Inventory

INNER JOIN dbo.Status

ON dbo.Inventory.StatusId = dbo.Status.StatusId

LEFT OUTER JOIN dbo.AcquisitionType

ON dbo.Inventory.AcquisitionTypeID =

dbo.AcquisitionType.AcquisitionTypeId

ON dbo.Equipment.EquipmentId = dbo.Inventory.EquipmentId

LEFT OUTER JOIN dbo.Location

ON dbo.Inventory.LocationId = dbo.Location.LocationId

LEFT OUTER JOIN dbo.Contact

ON dbo.Inventory.OwnerId = dbo.Contact.ContactId

After a view is created, it can be used in the same way as any other table:

SELECT dbo.vInventory.EquipmentId, dbo.vInventory.Make,

dbo.vInventory.Model, dbo.vInventory.Status

FROM dbo.vInventory

WHERE LocationId = 2

Although data is accessible through a view, it is not stored in the database inside

a view. When the view is referenced in a query, SQL Server simply processes the

Select statement behind the view and combines the data with the rest of the query:

EquipmentId Make Model Status

--

1 Toshiba Portege 7020CT Active

6 NEC V90 Ordered

5 Bang & Olafson V4000 Active

1 Toshiba Portege 7020CT Active

34 Toshiba Portege 7030CT Active

(5 row(s) affected)

A view is often created on a query that joins many tables and contains aggregate

functions:

3 1 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Create View vInventoryCost

WITH SCHEMABINDING

as

select ET.EqType, e.Make, e.Model, Sum(Cost) TotalCost, Count(*) [Count]

from dbo.Inventory I

inner join dbo.Equipment e

on i.EquipmentId = e.EquipmentId

inner join dbo.EqType ET

on e.EqTypeId = ET.EqTypeId

where Cost is not null

group by ET.EqType, e.Make, e.Model

Syntax
Views can be created and edited by simply executing Create View and Alter View

statements:

{CREATE}|{ALTER} VIEW view_name [(column [,...n])]

[WITH < view_option > [,...n]]

AS

select_statement

[WITH CHECK OPTION]

It is not necessary to specify column names in the header of the view. The

view just transfers column names from the Select statement if they are uniquely

identified. You just need to make sure that column names are not repeated and that

all computed columns also have names assigned (for example, you can add aliases

to computed columns).

As with stored procedures and functions, views can be encrypted so that nobody

can see their source code. You just need to create or alter it using the With Encryption

view option.

The With Schemabinding option allows you to schema-bind a view to database

objects (such as tables, views, and user-defined functions) that it references. Once

the function is schema-bound, it is not possible to make schema changes on the

underlying objects. All attempts to drop the objects and all attempts to alter underlying

objects (which would change the object schema) will fail. When this option is used,

all objects inside the view must be referenced using two-part names (owner.dbobject).

The View_Metadata option specifies that SQL Server will return information

about the view’s columns (not base table columns) to client-side APIs. This feature

might be useful for making views with triggers that are updateable.

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 1 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Design View in Enterprise Manager
When a query is complicated, it is sometimes easier to create it in the Design View

window of Enterprise Manager (see Figure 8-11). You can launch it from the

context-sensitive menu of the View node in Enterprise Manger. It consists of four

components: the Diagram pane (for managing tables visually), the Grid pane (for

managing columns), the SQL pane (for editing SQL statements), and the Results

pane (for displaying and editing data). This window is used in a manner similar to

the Query Design window in Microsoft Access or Visual Studio, so I will not spend

more time describing it here.

Security
Typically, a user does not need permissions on underlying base tables and views

when the user has permission to access a view. There are two exceptions—SQL

Server checks permissions if all underlying tables and views do not belong to the

same database, or when base objects belong to different owners.

Standard SQL Views in Execution Plans
It is a common misconception that SQL Server creates, stores, and reuses an execution plan

of a view. The idea behind this wishful thinking is that SQL Server would optimize the

execution plan of the view, so when it is referenced from a stored procedure or a query,

3 1 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-11 Design View window

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 1 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

SQL Server would just include it in the execution plan of the caller. Although this might

sound like a good idea (time would be saved since recompilation would not be necessary

and since the “optimal” plan will be used), SQL Server has a better solution.

There is another common misconception about view execution. Although I used

the phrase “virtual table” to describe views, SQL Server does not execute the view,

create a result set in memory, and then process the rest of the query.

When a SQL view is referenced with other tables in a query, SQL Server compiles

everything again and creates a new optimal execution plan. Other elements of the

query (joins with other tables, additional criteria, and the list of required columns)

typically change the nature of the query significantly so that a new execution plan

works better than simply reusing the execution plan of a view.

NOTE

Execution plans of other types of views are constructed differently, and I will discuss them
“Indexed Views in Execution Plans” and “Execution Plans of Distributed Partitioned Views,”
later in this chapter.

Limitations of Views
Keep in mind that views have the following limitations:

� A view can contain up to 1024 columns.

� A view can be based on tables and other views, but not on temporary tables

or table variables.

� It is possible to have only 32 levels of nested views.

� The Select statement in a view cannot have an Into clause (it cannot create a

new table as a side effect).

� A view cannot have Compute and Compute By clauses.

� Only Instead-of triggers can be created on a view (not After triggers).

� An Order By clause can be used in the view only together with a Top clause.

The last statement points to a very cool workaround if you need to order the results

in a view—the attempt to create a view using just the Order By clause will result in

a syntax error:

Server: Msg 1033, Level 15, State 1, Procedure vInventory_Ordered, Line 25

The ORDER BY clause is invalid in views, inline functions, derived tables,

and subqueries, unless TOP is also specified.

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To solve this problem, add Top 100 Percent to it:

Create VIEW dbo.vInventory_Ordered

AS

SELECT TOP 100 PERCENT

dbo.Inventory.Inventoryid, dbo.Equipment.Make, dbo.Equipment.Model

FROM dbo.Equipment

RIGHT OUTER JOIN dbo.Inventory

ON dbo.Equipment.EquipmentId = dbo.Inventory.EquipmentId

order by dbo.Equipment.Make, dbo.Equipment.Model

Editing Data Using Views
It is possible to modify data in base tables through a view:

Update dbo.vInventory

Set Cost = 2000

Where InventoryId = 1234

SQL Server has to be able to identify rows and fields that clearly need to be

modified. The view cannot contain derived columns (columns based on calculated

values such as aggregate functions or expressions).

If a view is created using With Check Option, SQL Server does not accept

changes on records that will fall out of scope of the view after modification. For

example, a manager who can see Inventory for his own location cannot assign it

to some other location:

CREATE VIEW vInventoryTrigonTower

AS

SELECT *

FROM dbo.vInventory

WHERE LocationId = 2

WITH CHECK OPTION

GO

update dbo.vInventoryTrigonTower

set LocationId = 10

where InventoryId = 6

SQL Server will generate an error:

Server: Msg 550, Level 16, State 1, Line 1

The attempted insert or update failed because the target view

either specifies WITH CHECK OPTION or spans a view that specifies

3 1 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

WITH CHECK OPTION and one or more rows resulting from the operation

did not qualify under the CHECK OPTION constraint.

The statement has been terminated.

With standard SQL views, it is not possible to modify data in more then a single

base table. However, when an Instead-of trigger is placed on a view, the trigger

can issue separate statements that modify individual base tables. See “Triggers on

Views,” earlier in this chapter, for a detailed example and discussion of this method.

It is very interesting and useful.

Dynamic Views
Compared with stored procedures, views have one serious limitation—they do not

support parameters. Fortunately, you can use a table-valued user-defined function as

a dynamic view, which do support parameters (you can also call them parameterized

views):

Create Function fnInventoryByLocationId(

@LocationId int)

Returns Table

AS

Return (SELECT *

FROM dbo.vInventory

WHERE LocationId = @LocationId)

They can be referenced in the From clause of a Select statement, which makes them

work like a view:

select *

from dbo.fnInventoryByLocationId (2)

INFORMATION_SCHEMA Views
SQL Server 2000 contains a group of system views that are used to obtain metadata.

Their names consist of three parts. The first part is the database name (optional); the

second part is always INFORMATION_SCHEMA (as opposed to being the database

owner, which is why these views are so named); and the third part references the

type of metadata that the view contains.

In Figure 8-12, you can see the usage of an INFORMATION_SCHEMA.TABLES

view. It returns the names of all tables (and views—virtual tables) that the current

user has permission to see in the current database. INFORMATION_SCHEMA

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 1 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 1 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

views work like system stored procedures—they are defined in the master database,

but they return information in the context of the current database (or the database

that is referenced in the first part of the name).

The INFORMATION_SCHEMA views are designed to be compatible with SQL-92

naming standards. Therefore, instead of database, owner, object, and user-defined data

types INFORMATION_SCHEMA views are named with catalog, schema, object,

and domain as a third parts of the name, respectively.

Microsoft recommends that you reference these views (as well as system stored

procedures) instead of directly referencing system tables in your procedures.

Indexed Views
It is possible to materialize a view—to create a table in the database that will contain

all the data that is referenced by a view. This technique can significantly improve the

performance of a Select statement when SQL Server has to join many tables, and

return or aggregate a large number of records.

When you create a unique clustered index on a view, SQL Server materializes the

view. Records are saved in the database in the same manner that clustered indexes

on regular tables are stored:

Figure 8-12 Using INFORMATION_SCHEMA views

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Create View vLaptopInventory

WITH SCHEMABINDING

as

select i.Inventoryid, i.EquipmentId, i.StatusId, e.Make, e.Model

from dbo.Inventory I

inner join dbo.Equipment e

on i.EquipmentId = e.EquipmentId

where EqTypeId = 1

GO

CREATE UNIQUE CLUSTERED INDEX idxvLaptopInventory

ON vLaptopInventory (InventoryID)

Although the index references only a subset of columns, the index (indexed view)

contains all columns in the leaf-level nodes (as does every clustered index).

Indexed View Limitations
There are many limitations with which a view must comply to be converted to an

indexed view:

� The view must be created using the With Schemabinding option.

� The view must reference only tables—not other views, derived tables, rowset

functions, or subqueries.

� All base tables must have the same owner as the view.

� The view cannot join tables from more than one database.

� The view cannot contain an outer or self-join.

� The view cannot have a Union clause, Top clause, Order By clause, or Distinct

keyword.

� Some aggregate functions are not allowed: Count(*) [use Count_Big(*)

instead], Avg(), Max(), Min(), Stdev(), Stdevp(), Var(), or Varp(). But all of

these aggregate functions can be reengineered using valid functions [such as

Sum() and Count_Big(*)].

� If a query contains a Group By clause, it must contain Count_Big(*) in the

Select list.

� The view and all base tables must be created with Set Ansi_Nulls On.

� All tables and user-defined functions in the view must be referenced using

two-part names (owner.dbobject).

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 1 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 2 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

� All columns must be explicitly specified—Select * is not allowed.

� The view cannot contain text, ntext, or image columns.

� Having, Rollup, Cube, Compute, and Compute By clauses are not allowed.

� The same table column must not be converted to more than a single view

column.

� You can only create indexed views in SQL Server 2000 Enterprise Edition

or SQL Server 2000 Developer Edition.

� The Create Index statement and all subsequent Insert, Update, and Delete

statements must be executed with the following option settings (explicitly

or implicitly):

Set ANSI_NULLS ON
Set ANSI_PADDING ON
Set ANSI_WARNINGS ON
Set ARITHABORT ON
Set CONCAT_NULL_YIELDS_NULL ON
Set QUOTED_IDENTIFIERS ON
Set NUMERIC_ROUNDABORT OFF

Indexed Views in Execution Plans
Optimizer treats indexed views as tables. SQL Server simply joins them with other

tables. There is one exception—Optimizer can use an indexed view even when the

view is not explicitly referenced in the query (when the query is referencing only

some of the base tables). SQL Server compares the cost of the execution plan with base

tables and the execution plan with the indexed view and chooses the cheapest one.

You can force SQL Server to ignore the indexed view using the Expand View

hint. Conversely, you can also force SQL Server to use the indexed view using the

Noexpand hint.

Nonclustered Indexes on Views
Once a clustered index is added to a view, you can add more nonclustered indexes:

CREATE INDEX idxvLaptopInventory_MakeModel

ON vLaptopInventory (Make, Model)

Performance Implications
Indexed views typically improve the performance of data warehouse systems and

other systems that predominantly have queries that read data. On the other hand,

P:\010Comp\D_Base\896-2\ch08.vp
Wednesday, April 30, 2003 12:19:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 2 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

indexed views can reduce the performance of OLTP systems. Updates to an indexed

view become part of transactions that modify the base tables. This fact may increase

the cost of OLTP transactions and offset the savings achieved on read operations.

Partitioned Views
Views can be a very useful tool for managing very large databases (VLDBs). Typically,

data warehouse systems contain huge volumes of uniform data. A textbook example

is a retailer that collects information about sales over years. Some analyses would

process many years of data, but others would focus on only a few months or the current

year. If everything were in a single table, queries and management of data would

become increasingly difficult. In such a scenario, the retailer’s sales information

would be split into several horizontally partitioned tables such as OrderItem2000,

OrderItem2001, and OrderItem2002. For analyses (queries) that span all tables, you

can create a view that puts them all together:

Create View vOrderItem

as

select * from OrderItem2000

UNION ALL

select * from OrderItem2001

UNION ALL

select * from OrderItem2002

Horizontal and Vertical Partitioning
Views based on multiple instances of the same table are called partitioned views.

A horizontal partitioning occurs when different subsets of records are stored in

different table instances (as in the preceding example).

It is also possible to do vertical partitioning—to put columns in separate tables

based on the frequency with which they are needed. On “wide” tables, each record

occupies a substantial amount of space. Since each data page is limited to 8KB, a

smaller number of records can fit onto a single data page. As a result, the number

of IO operations needed to access a large number of records is much higher. To

reduce it, we can put frequently used fields in one table and other fields in a second

table. The tables will have a one-to-one relationship. In the following example, the

InventorySum table has been split into InventoryPrim and InventorySec tables:

CREATE TABLE [dbo].[InventoryPrim] (

[Inventoryid] [int] NOT NULL ,

[Make] [varchar] (50) NULL ,

[Model] [varchar] (50) NULL ,

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[Location] [varchar] (50) NULL ,

[FirstName] [varchar] (30) NULL ,

[LastName] [varchar] (30) NULL ,

[UserName] [varchar] (50) NULL ,

[EqType] [varchar] (50) NULL ,

CONSTRAINT [PK_InventoryPrim] PRIMARY KEY CLUSTERED

(

[Inventoryid]

) ON [PRIMARY]

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[InventorySec] (

[Inventoryid] [int] NOT NULL ,

[AcquisitionType] [varchar] (12) NULL ,

[Address] [varchar] (50) NULL ,

[City] [varchar] (50) NULL ,

[ProvinceId] [char] (3) NULL ,

[Country] [varchar] (50) NULL ,

[EqType] [varchar] (50) NULL ,

[Phone] [typPhone] NULL ,

[Fax] [typPhone] NULL ,

[Email] [typEmail] NULL ,

CONSTRAINT [PK_InventorySec] PRIMARY KEY CLUSTERED

(

[Inventoryid]

) ON [PRIMARY]

) ON [PRIMARY]

GO

The following creates a view that joins them:

create view vInventoryVertSplit

as

select IP.Inventoryid, IP.Make, IP.Model,

IP.Location, IP.FirstName, IP.LastName,

IP.UserName, IP.EqType, ISec.AcquisitionType,

ISec.Address, ISec.City, ISec.ProvinceId,

ISec.Country, ISec.Phone, ISec.Fax,

ISec.Email

from dbo.InventoryPrim IP

full join dbo.InventorySec ISec

on IP.Inventoryid = ISec.Inventoryid

3 2 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following creates a query that references only fields from one table:

SET STATISTICS PROFILE ON

SELECT Make, Model, Location, UserName

FROM dbo.vInventoryVertSplit

where Inventoryid = 1041

In this case, SQL Server realizes that there is no need to access both tables:

Make Model Location UserName

--------- ----------------------------- ------------ ----------

Compaq 18.2GB 10K RPM Ultra2 Disk Dr Royal Hotel PMisiaszek

(1 row(s) affected)

Rows Executes StmtText

---- -------- --

1 1 SELECT [Make]=[Make],[Model]=[Model],[Location]=[Locatio

1 1 |--Clustered Index Seek(OBJ:(Asset.dbo.InventoryPrim.P

(2 row(s) affected)

Unfortunately, this is not always the case. If we remove criteria from the previous

Select statement, SQL Server accesses both tables (although the columns selected

are in only one table):

Rows Executes StmtText

---- -------- --

980 1 SELECT [Make]=[Make],[Model]=[Model],[Location]=[Locatio

980 1 |--Merge Join(Full Outer Join, MERGE:(InventorySec.Inv

980 1 |--Clustered Index Scan(OBJ:(Asset.dbo.InventorySec.

980 1 |--Clustered Index Scan(OBJ:(Asset.dbo.InventoryPrim

NOTE

You can always force SQL Server to use just one table if you reference the table and not the view.

Distributed Partitioned Views
If all base tables of a view are stored on a single server, it is called a local partitioned

view. If the underlying tables of a view are stored on separate servers, it is called a

distributed partitioned view. Distributed partitioned views are always created on tables

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 2 3

D_Base / SQL Server 2000 Stored Procedures & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

that are horizontally partitioned. In the following example, the vSales view on server

Alpha references tables on servers Beta and Gamma:

Create view vSales

as

select * from Sales.dbo.OrderItem2000

UNION ALL

select * from Beta.Sales.dbo.OrderItem2001

UNION ALL

select * from Gamma.Sales.dbo.OrderItem2002

That’s the basic idea, but it is not that simple. I will discuss all the details and then

show a complete example.

Servers that host horizontally partitioned tables and that work together are called

federated servers. This technology is one of the major new features of SQL Server 2000

and it has allowed Microsoft to beat the competition consistently on TPC-C

benchmarks since it became available in the Beta version of SQL Server 2000.

The strategy of splitting the transaction and query load among a set of distributed

servers is often called scaling-out (as opposed to scaling-up, which refers to the brute

force method of simply applying bigger and faster hardware instead).

Partitioned tables are split based on a partitioning key—a column that determines

which of the partitioned tables/federated servers the record will fall into. In the

previous example, the partitioning key is a year. A partitioning key should be

selected to ensure that the majority of queries are served from a single table/server.

The success of a federated server project depends largely on the selection of an

appropriate partitioning key.

NOTE

You do not have to have multiple physical servers to test federated servers. You can install several
instances of SQL Server on the same machine to develop and test the solution. Naturally, it would
be pointless to implement federated servers that way in a production environment.

By way of example, assume that your Asset database is serving a Canadian company

and that it is functionally divided into three divisions—one serves the Canadian

market, the second the U.S. market, while the third serves the international market

(see Figure 8-13). This schema is very good when reporting is typically done per

division.

You will partition the table using the Country column as a partitioning key. To

assist the resolution of the distributed partitioned view, make Country the first field

of the primary key and create Check constraints to prevent entry of records from an

3 2 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Wednesday, April 30, 2003 12:23:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

incorrect geographic location. It is very important that data ranges do not overlap

and that a single record can end up only on a single server. The following Create

Table statements should be executed on the respective servers:

-- on Canada server

CREATE TABLE [dbo].[InventoryCanada] (

[Inventoryid] [int] NOT NULL ,

[Make] [varchar] (50) NULL ,

[Model] [varchar] (50) NULL ,

[Location] [varchar] (50) NULL ,

[FirstName] [varchar] (30) NULL ,

[LastName] [varchar] (30) NULL ,

[AcquisitionType] [varchar] (12) NULL ,

[Address] [varchar] (50) NULL ,

[City] [varchar] (50) NULL ,

[ProvinceId] [char] (3) NULL ,

[Country] [varchar] (50) NOT NULL ,

[EqType] [varchar] (50) NULL ,

[Phone] [typPhone] NULL ,

[Fax] [typPhone] NULL ,

[Email] [typEmail] NULL ,

[UserName] [varchar] (50) NULL ,

CONSTRAINT [PK_InventoryCanada] PRIMARY KEY CLUSTERED

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 2 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-13 Federated servers

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(

[Country],

[Inventoryid]

) ON [PRIMARY] ,

CONSTRAINT [chkInventoryCanada] CHECK ([Country] = 'Canada')

) ON [PRIMARY]

GO

--

-- on US server

CREATE TABLE [dbo].[InventoryUSA] (

[Inventoryid] [int] NOT NULL ,

[Make] [varchar] (50) NULL ,

[Model] [varchar] (50) NULL ,

[Location] [varchar] (50) NULL ,

[FirstName] [varchar] (30) NULL ,

[LastName] [varchar] (30) NULL ,

[AcquisitionType] [varchar] (12) NULL ,

[Address] [varchar] (50) NULL ,

[City] [varchar] (50) NULL ,

[ProvinceId] [char] (3) NULL ,

[Country] [varchar] (50) NOT NULL ,

[EqType] [varchar] (50) NULL ,

[Phone] [typPhone] NULL ,

[Fax] [typPhone] NULL ,

[Email] [typEmail] NULL ,

[UserName] [varchar] (50) NULL ,

CONSTRAINT [PK_InventoryUS] PRIMARY KEY CLUSTERED

(

[Country],

[Inventoryid]

) ON [PRIMARY] ,

CONSTRAINT [chkInventoryUSA] CHECK ([Country] = 'USA')

) ON [PRIMARY]

GO

--

-- on World server

CREATE TABLE [dbo].[InventoryWorld] (

[Inventoryid] [int] NOT NULL ,

[Make] [varchar] (50) NULL ,

[Model] [varchar] (50) NULL ,

[Location] [varchar] (50) NULL ,

[FirstName] [varchar] (30) NULL ,

[LastName] [varchar] (30) NULL ,

[AcquisitionType] [varchar] (12) NULL ,

3 2 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[Address] [varchar] (50) NULL ,

[City] [varchar] (50) NULL ,

[ProvinceId] [char] (3) NULL ,

[Country] [varchar] (50) NOT NULL ,

[EqType] [varchar] (50) NULL ,

[Phone] [typPhone] NULL ,

[Fax] [typPhone] NULL ,

[Email] [typEmail] NULL ,

[UserName] [varchar] (50) NULL ,

CONSTRAINT [PK_InventoryWorld] PRIMARY KEY CLUSTERED

(

[Country],

[Inventoryid]

) ON [PRIMARY] ,

CONSTRAINT [chkInventoryWorld] CHECK ([Country] in ('UK',

'Ireland', 'Australia'))

) ON [PRIMARY]

GO

Create linked servers that reference all other servers that will participate in the

distributed partitioned view on each server. In the current example, on server Canada,

you need to create linked servers that reference the USA and World servers; on server

USA, create linked servers that reference the Canada and World servers; and on the

World server, create linked servers that reference the Canada and USA servers.

exec sp_addlinkedserver N'(local)\USA', N'SQL Server'

GO

exec sp_addlinkedserver N'(local)\WORLD', N'SQL Server'

GO

NOTE

As you can see, I am running these statements against three instances of SQL Server 2000 running
on the same physical machine.

To achieve better performance, it is necessary to set each linked server with the

Lazy Schema Validation option. In the current example, on Canada server, you

should execute

USE master

EXEC sp_serveroption '(local)\USA', 'lazy schema validation', 'true'

EXEC sp_serveroption '(local)\World', 'lazy schema validation', 'true'

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 2 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Other servers should be set with the option for their linked servers. After that, the

partitioned view will request metadata that describes the underlying table only if it

is really needed.

Create distributed partitioned views that reference the local table and two tables

on remote servers. On Canada Server, you should execute

Create view vInventoryDist

as

select * from Asset.dbo.InventoryCanada

UNION ALL

select * from [(local)\USA].Asset.dbo.InventoryUSA

UNION ALL

select * from [(local)\World].Asset.dbo.InventoryWorld

Now, you can test the distributed partitioned view. Figure 8-14 shows the query

that calls all three servers. The highlighted part of the result shows that the view is

redirecting parts of the query to other servers. Figure 8-15 shows execution of the

same query against database objects.

3 2 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-14 Usage of distributed partitioned view

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 2 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Execution Plans of Distributed Partitioned Views
If the query contains a criterion based on the partitioning key, SQL Server evaluates

which servers contain matching data and executes the query against them only:

set statistics Profile ON

select * from vInventoryDist

where Country = 'UK'

Rows Executes StmtText

---- -------- --

154 1 SELECT * FROM [vInventoryDist] WHERE [Country]=@1

154 1 |--Compute Scalar(DEFINE:([InventoryWorld].[Inventoryid

154 1 |--Clustered Idx Seek(OBJ:([Asset].[dbo].[InventoryWo

Figure 8-15 Distributed partitioned view connects to tables on all member servers

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The profile shows that the query was executed on the local server. In a case in

which the data resides on another server, the profile would look like this:

set statistics Profile ON

select * from vInventoryDist

where Country = 'CANADA'

Rows Executes StmtText

---- -------- --

872 1 SELECT * FROM [vInventoryDist] WHERE [Country]=@1

872 1 |--Compute Scalar(DEFINE:([(local)\CANADA].[Asset].[d

872 1 |--Remote Query(SOURCE:((local)\CANADA), QUERY:(SE

Figure 8-16 shows how the view will route the query to the remote server.

It is necessary to create partitioned views on two other servers with identical names.

In that way, an application can get the data through the view on any of the servers.

The views will reroute the query to the server that contains the data that is needed

(see Figure 8-17).

3 3 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-16 Distributed partitioned view routes the query to the remote server

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 3 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

The system will achieve better performance if the partitioned view does not have

to perform query routing—that is, if the application knows which server contains the

data needed and therefore sends the query to the appropriate server. This technique is

often called data-dependent routing.

NOTE

If the application is that intelligent, you might wonder why you need distributed partitioned views.
Well, not all queries can be served from a single server. Some queries require data that is located
on more than one server, and a distributed partitioned view would give you access to it.

The selection of a partitioning key and implementation of a Check constraint have

a critical impact on the performance of the system. You would have seen this fact

Figure 8-17 Data-dependent routing

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

demonstrated had you implemented the partitioning key using the nonoptimizable

argument (an argument that leads the optimizer to create an execution plan that will

ignore indexes):

...

CONSTRAINT [chkInventoryWorld] CHECK ([Country] <>'USA'

and [Country] <>'Canada'))

) ON [PRIMARY]

In such a case, SQL Server cannot determine where data is located and the query

will always be routed to the World server as well:

Rows Executes StmtText

---- -------- --

872 1 SELECT * FROM [vInventoryDist] WHERE [Country]=@1

872 1 |--Concatenation

872 1 |--Remote Query(SOURCE:((local)\CANADA), QUERY:(SELECT

0 1 |--Clustered Idx Seek(OBJ:(Asset.dbo.InventoryWorld.P

As you can see, the query was executed unnecessarily on one of the servers—no

records were returned. SQL Server compares Check constraints with the partition

key ranges specified in the Where clause and builds the execution plan accordingly.

You might think that SQL Server won’t do such a good job when stored procedures

are used against distributed partitioned views. It is true that SQL Server does not know

which parameter will be specified in the stored procedure, and therefore it creates an

execution plan that runs the query against all servers. However, the plan will have

dynamic filters that serve as conditional logic and execute only the queries that are

needed. To demonstrate, I will create a stored procedure that references the view:

CREATE PROCEDURE prInventoryList

@chvCountry varchar(50)

AS

SELECT *

FROM vInventoryDist

WHERE Country = @chvCountry

I will now execute it so that you can review the profile:

set statistics Profile ON

exec prInventoryList 'CANADA'

3 3 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The execution plan will contain queries against all tables:

Rows Executes StmtText

---- -------- ---

872 1 select * from vInventoryDist where Country = @chvCoun

872 1 |--Concatenation

872 1 | |--Clustered Index Seek(OBJECT:([Asset].[dbo].[

0 1 |--Filter(WHERE:(STARTUP EXPR([@chvCountry]='USA')))

0 0 | |--Remote Query(SOURCE:(.\USA), QUERY:(SELECT C

0 1 |--Filter(WHERE:(STARTUP EXPR([@chvCountry]='Ireland

0 0 |--Remote Query(SOURCE:(.\World), QUERY:(SELECT

But two of these queries are not executed (as you can see in the Executes
column). Figure 8-18 shows a graphical representation of the execution plan with

dynamic filters.

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 3 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-18 Execution plan with dynamic filers

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Updateable Distributed Partitioned Views
Distributed partitioned views in SQL Server 7.0 were not updateable. On SQL

Server 2000 Enterprise Edition and Developer Edition servers, data can be modified

through a distributed partitioned view:

set xact_abort on

update vInventoryDist

set UserName = 'unknown'

where UserName is null

and Country = 'Canada'

I needed to set the Xact_Abort option because each such statement is treated as a

distributed transaction. Therefore, Distributed Transaction Coordinator must be

running on each server. The result will look like this:

(2 row(s) affected)

Rows Executes StmtText

---- -------- --

0 1 update vInventoryDist set UserName = 'unknown' where Use

0 1 |--Sequence

0 1 |--Remote Query(SOURCE:((local)\CANADA), QUERY:(UPDAT

0 1 |--Filter(WHERE:(STARTUP EXPR(0)))

0 0 | |--Remote Query(SOURCE:((local)\USA), QUERY:(UP

0 1 |--Clustered Index Update(OBJECT:(Asset.dbo.Invent

0 1 |--Filter(WHERE:(STARTUP EXPR(0)))

0 0 |--Clustered Index Seek(OBJECT:(Asset.dbo.Inv

Note that SQL Server has again created dynamic filters, and only the appropriate

queries will be executed, although they are all incorporated in the execution plan.

Unfortunately, views and modification statements have to satisfy additional

requirements to allow modifications in that manner. I will mention only the most

interesting and most restrictive ones:

� Member tables on other servers must be referenced using four-part names, the

OpenRowset function, or the OpenDataSource function. These functions must

not use pass-through queries.

� Member tables must not have triggers and cascading deletes or updates defined.

� All columns of a member table must be included in the distributed partitioned

view. The order of the columns must be identical.

3 3 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� The column definitions in all base tables must match (data type, scale,

precision, collation).

� Ranges of partition key values in member tables must not overlap.

� There can be only one Check constraint on the partitioning column and it

may use only these operators: BETWEEN, AND, OR, <, <=, >, >=, =.

� Tables cannot have identity values (otherwise, Insert statements will fail).

� Partitioning keys cannot have defaults, allow nulls, be computed columns, or

be timestamp values.

� smallmoney and smalldatetime columns on remote tables are

automatically converted to money and datetime. Since all data types

must match, the local table must use money and datetime. To avoid

confusion it is best not to use smallmoney and smalldatetime.

It is sometimes possible to work around some of these rules—you can create an

Instead-of trigger to modify the member tables directly. Unfortunately, in that case,

query optimizer might not be able to create an execution plan as good as the one that

would be created for a view that follows all the rules.

Scalability and Performance of Distributed Systems
Federated servers and distributed partitioned views are not a magic bullet that will

solve all your problems. Note that distributed partitioned views are primarily designed

to improve scalability of the system, not its performance. Although these two parameters

might seem similar to you, there is a significant difference. Performance refers to the

speed of execution of the system (or of individual transactions), while scalability

refers to the ability to increase transactional load or the number of concurrent users

without significant performance degradation. For example, if a metric describing

system performance is 100 percent on a single server, adding another server might

cause performance to fall to, for example, 50 percent. In this case, end users would

notice improvements only after a third server is added (3×50 percent). But the

advantage is that we now have a system with nearly linear scalability—every additional

server would increase performance by another 50 percent.

Federated servers (like other distributed database systems) are also more difficult

to manage. Even “simple” operations, such as backups and restores, become very

complicated. Promotion of hot fixes or new code in a production environment requires

significant manual intervention or development of specialized tools.

It is very important to evaluate the pros and cons of this design before you start.

A rule of thumb is that all other options should be explored and exhausted first, and

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 3 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 3 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

only then should scaling out be attempted. The game plan should be something

like this:

1. Optimize the database and the application.

2. Scale up the server.

3. Scale out the system.

A Poor Man’s Federated Server
It is possible to create a distributed system without the use of distributed partitioned

views. For example, if you are in a business that has only a few, large customers (with

a heavy transactional load), you could create a single database per customer instead

of storing all transactions in the same database. Then, you could divide databases

between several servers or install each one on a separate dedicated server. An application

can be designed to direct each query or transaction to the appropriate server—to

perform data-dependent routing.

A similar design would be applicable for an organization that can easily be

partitioned into its suborganizations, based, for example, on geographic locations.

The key requirement is that there be no (or very little) need to aggregate data on

the complete system—that is, to run queries (or transactions) that span multiple servers.

Using SQL Views
SQL views can have different roles in your database system. Their basic role is to

customize table data, but there are more complex roles. You can use standard SQL

views to implement security and to ease export and import of data, or you can use

the other types of views to achieve performance improvement.

Export and Import
Because they can transform and join data from one or more tables, standard SQL

views are useful for exporting data out of your database system. Standard SQL views

alone are not convenient for importing data, since you can insert data only in one

base table at the time. Fortunately, you can add an Instead-of trigger to the view and

then you will be able to modify multiple base tables (see “Triggers on Views” earlier

in this chapter).

Security Implementation
Standard SQL views are the preferred means of setting security when users are

accessing the database through generic tools for accessing and editing database

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

information (such as Access or Excel). Different users could have permissions to use

different views with different filters on tables:

CREATE VIEW vInventoryTrigonTower

AS

SELECT *

FROM dbo.vInventory

WHERE LocationId = 2

Using this technique, developer can also “filter” which columns are accessible

by certain users. For example, you could allow only users from the accounting or

human resources departments to view and edit salary data in a table containing

employee information.

Reduce Complexity
Views are a very nice way to simplify queries. As shown in Figure 8-19, I’ve created

a vSpaceUsed view, which lists all database tables and their sizes. Its results are very

similar to the results of sp_spaceused. In the past, I used this procedure to get the

size of tables. As you may remember, Microsoft recommends that developers use

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 3 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

Figure 8-19 Using vSpaceUsed

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 3 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

system procedures, instead of querying system tables directly, since the structure of

tables might change between SQL Server versions. Unfortunately, sp_spaceused

returns data about a single object only, and I often need a recordset that contains all

tables. So, instead of calling sp_spaceused in a loop to collect data in the temporary

table, I created a view that returns all data that I might be interested in:

create view vSpaceUsed

as

select distinct TOP 100 PERCENT

db_name() as TABLE_CATALOG

, user_name(obj.uid) as TABLE_SCHEMA

, obj.name as TABLE_NAME

, case obj.xtype

when 'U' then 'BASE TABLE'

when 'V' then 'VIEW'

end as TABLE_TYPE

, obj.ID as TABLE_ID

, Coalesce((select sum(reserved)

from sysindexes i1

where i1.id = obj.id

and i1.indid in (0, 1, 255))

* (select d.low from master.dbo.spt_values d

where d.number = 1 and d.type = 'E')

, 0) as RESERVED

, Coalesce((select Sum (reserved) - sum(used)

from sysindexes i2

where i2.indid in (0, 1, 255)

and id = obj.id)

* (select d.low from master.dbo.spt_values d

where d.number = 1 and d.type = 'E')

, 0) as UNUSED

, case obj.xtype

when 'U' then Coalesce((select i3.rows

from sysindexes i3

where i3.indid < 2

and i3.id = obj.id), 0)

when 'V' then NULL

end as [ROWS]

, Coalesce

(((select sum(dpages) from sysindexes

where indid < 2 and id = obj.id

) + (select isnull(sum(used), 0) from sysindexes

where indid = 255 and id = obj.id

)

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

) * (select d.low from master.dbo.spt_values d

where d.number = 1 and d.type = 'E'

), 0) as [DATA]

, Coalesce(

((select sum(reserved)

from sysindexes i1

where i1.id = obj.id

and i1.indid in (0, 1, 255)

) - ((select sum(dpages) from sysindexes

where indid < 2 and id = obj.id

) + (select isnull(sum(used), 0) from sysindexes

where indid = 255 and id = obj.id)

))

* (select d.low from master.dbo.spt_values d

where d.number = 1 and d.type = 'E')

, 0) as [INDEX]

from sysobjects obj

where obj.xtype in ('U', 'V')

and permissions(obj.id) != 0

order by db_name(), user_name(obj.uid), obj.name

The view has a very complex structure, but its use is very simple. You just need to

reference a table in a SQL statement (see Figure 8-19).

Performance Improvement
Views are often used as a mechanism for improving system performance. When an

index is added to the view, SQL server typically does not have to query and join

underlying tables—the request will be satisfied using data from the indexed view.

Unfortunately, this feature can also degrade overall performance if the system is

mostly modifying underlying tables.

Distributed partitioned views can divide the execution of workload between

servers and provide an exciting new way to linearly scale out the performance of

the system. Unfortunately, this is not a magic bullet either—if typical queries need

data from multiple servers, performance may be degraded.

C h a p t e r 8 : S p e c i a l T y p e s o f P r o c e d u r e s 3 3 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 8

P:\010Comp\D_Base\896-2\ch08.vp
Monday, April 28, 2003 5:10:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /
Blind Folio vi

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER

9
Advanced Stored

Procedure Programming

341

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
Dynamically Constructed Queries

Optimistic Locking Using timestamp Values
Full-Text Search and Indexes

Nested Stored Procedures
Using Identity Values

GUIDs
A While Loop with Min() or Max() Functions

Looping with sp_MSForEachTable and sp_MSForEachDb
Property Management

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter introduces some advanced techniques for coding stored

procedures, including

� Dynamically constructed queries

� Optimistic locking using timestamp values

� Full-text searches and indexes

� Nested stored procedures

� Temporary tables

� Parameterized queries

� Inserting the results of a stored procedure into a table

� Techniques for generating unique identifiers and potential problems

associated with their use

� The uniqueidentifier (GUID) data type

� Additional looping methods

� Property management—using extended properties

Dynamically Constructed Queries
This section examines some ways in which you can construct queries dynamically,

including

� Executing a string statement

� Querying by form

� Using parameterized queries

Executing a String
Transact-SQL contains a variation of the Execute statement that you can use to run

a batch recorded in the form of a character string:

EXEC[UTE] ({@string_variable | [N]'tsql_string'} [+...n])

You can supply a Transact-SQL batch in the form of a character string, a variable,

or an expression:

3 4 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Exec ('select * from Contact')

The Execute statement allows you to assemble a batch or a query dynamically.

This might look like magic to you:

declare @chvTable sysname

set @chvTable = 'Contact'

Exec ('select * from ' + @chvTable)

The Execute statement is necessary because the following batch, which you might

expect to work, will actually result in a syntax error:

declare @chvTable sysname

set @chvTable = 'Contact'

select * from @chvTable -- this will cause an error

The error occurs because SQL Server expects a table name, and will not accept

a string or a variable, in a From clause.

It is important to realize that you are dealing with two separate batches in the example

with the Execute statement. You can use the variable to assemble the second batch,

but you cannot reference variables from the batch that initiated the Execute statement

in the string batch. For example, the following code will result in a syntax error:

declare @chvTable sysname

set @chvTable = 'Contact'

Exec ('select * from @chvTable')

The server will return:

Server: Msg 137, Level 15, State 2, Line 1

Must declare the variable '@chvTable'.

NOTE

Even if you were to declare the variable in the second batch, the Select statement would fail
because you cannot use a string expression or variable in the From clause.

You cannot use a database context from the other batch, either:

Use Asset

exec ('Use Northwind select * from Employees')

select * from Employees -- Error

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 4 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Query By Form
One of the simplest ways to create a search form in a client application is to list all

the fields in a table as text boxes on a form. The user will fill some of them in, and

they can be interpreted as search criteria.

The trouble with this kind of solution is that, most of the time, the user will leave

blank most of the text boxes. This does not mean that the user wants to find only

those records in which the values of the blank fields are set to empty strings, but

rather that those fields should not be included in the criteria. Stored procedures have

a static structure, but something dynamic would be more appropriate to launch this

kind of query.

The following stored procedure assembles a character-string query. The contents

of the Where clause are based on the criteria that were specified (that is, fields that

were not set to null). When all components are merged, the query returns a list of

matching contacts:

Create Procedure prQbfContact_1

-- Dynamically assemble a query based on specified parameters.

(

@chvFirstName varchar(30) = NULL,

@chvLastName varchar(30) = NULL,

@chvPhone typPhone = NULL,

@chvFax typPhone = NULL,

@chvEmail typEmail = NULL,

@insOrgUnitId smallint = NULL,

@chvUserName varchar(50) = NULL,

@debug int = 0

)

As

set nocount on

Declare @intErrorCode int,

3 4 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 4 5

@intTransactionCountOnEntry int,

@chvQuery varchar(8000),

@chvWhere varchar(8000)

Select @intErrorCode = @@Error,

@chvQuery = 'SET QUOTED_IDENTIFIER OFF SELECT * FROM Contact',

@chvWhere = ''

If @intErrorCode = 0 and @chvFirstName is not null

Begin

Set @chvWhere = @chvWhere + ' FirstName = "'

+ @chvFirstName + '" AND'

Select @intErrorCode = @@Error

End

If @intErrorCode = 0 and @chvLastName is not null

Begin

Set @chvWhere = @chvWhere + ' LastName = "'

+ @chvLastName + '" AND'

Select @intErrorCode = @@Error

End

If @intErrorCode = 0 and @chvPhone is not null

Begin

set @chvWhere = @chvWhere + ' Phone = "' + @chvPhone + '" AND'

Select @intErrorCode = @@Error

End

If @intErrorCode = 0 and @chvFax is not null

Begin

set @chvWhere = @chvWhere + ' Fax = "' + @chvFax + '" AND'

Select @intErrorCode = @@Error

End

If @intErrorCode = 0 and @chvEmail is not null

Begin

set @chvWhere = @chvWhere + ' Email = "' + @chvEmail + '" AND'

Select @intErrorCode = @@Error

End

If @intErrorCode = 0 and @insOrgUnitId is not null

Begin

set @chvWhere = @chvWhere + ' OrgUnitId = '

+ @insOrgUnitId + ' AND'

Select @intErrorCode = @@Error

End

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

If @intErrorCode = 0 and @chvUserName is not null

Begin

set @chvWhere = @chvWhere + ' UserName = "' + @chvUserName + '"'

Select @intErrorCode = @@Error

End

if @debug <> 0 select @chvWhere chvWhere

-- remove ' AND' from the end of string

If @intErrorCode = 0 And

Substring(@chvWhere, Len(@chvWhere) - 3, 4) = ' AND'

Begin

set @chvWhere = Substring(@chvWhere, 1, Len(@chvWhere) - 3)

Select @intErrorCode = @@Error

if @debug <> 0 select @chvWhere chvWhere

End

If @intErrorCode = 0 and Len(@chvWhere) > 0

Begin

set @chvQuery = @chvQuery + ' WHERE ' + @chvWhere

Select @intErrorCode = @@Error

End

if @debug <> 0

select @chvQuery Query

-- get contacts

If @intErrorCode = 0

Begin

exec (@chvQuery)

Select @intErrorCode = @@Error

End

return @intErrorCode

The procedure is composed of sections that test the presence of the criteria in each

parameter and add them to the Where clause string. At the end, the string with the

Select statement is assembled and executed. Figure 9-1 shows the result of the stored

procedure (along with some debugging information).

TIP

You are right if you think that this solution can probably be implemented more easily using client
application code (for example, in Visual Basic).

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 4 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Data Script Generator
Database developers often need an efficient way to generate a set of Insert statements

to populate a table. In some cases, data is already in the tables, but it may need to be

re-created in the form of a script to be used to deploy it on another database server,

such as a test server.

One solution is to assemble an Insert statement dynamically for every row in the

table using a simple Select statement:

select 'Insert dbo.AcquisitionType values('

+ Convert(varchar, AcquisitionTypeId)

+ ', ''' + AcquisitionType

+ ''')' from dbo.AcquisitionType

When you set Query Analyzer to Result In Text and execute such a statement, you

get a set of Insert statements for each row:

--

Insert dbo.AcquisitionType values(1, 'Purchase')

Figure 9-1 The results of Query By Form

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Insert dbo.AcquisitionType values(2, 'Lease')

Insert dbo.AcquisitionType values(3, 'Rent')

Insert dbo.AcquisitionType values(4, 'Progress Payment')

Insert dbo.AcquisitionType values(5, 'Purchase Order')

(5 row(s) affected)

The Insert statements can now be encapsulated inside a pair of Set Insert_Identity

statements and then saved as a script file or copied (through Clipboard) to the Query

Pane. This process can save you a substantial amount of typing time, but you still

have to be very involved in creating the original Select statement that generates the

desired results.

An alternative solution is to use the setup_DataGenerator stored procedure:

alter proc setup_DataGenerator

-- generate a set of Insert statements

-- that can reproduce content of the table.

@table sysname = 'Equipment',

@debug int = 0

-- debug: setup_DataGenerator @debug = 1

as

declare @chvVal varchar(8000)

declare @chvSQL varchar(8000)

declare @chvColList varchar(8000)

set @chvColList = ''

set @chvVal = ''

SELECT @chvVal = @chvVal

+ '+'',''+case when ' + [COLUMN_NAME]

+ ' is null then ''null'' else '

+ case when DATA_TYPE in ('varchar', 'nvarchar', 'datetime',

'smalldatetime', 'char', 'nchar')

then '''''''''+convert(varchar(8000),'

else '+ convert(varchar(8000),'

end

+ convert(varchar(8000),[COLUMN_NAME])

+ case when DATA_TYPE in ('varchar', 'nvarchar', 'datetime',

'smalldatetime','char', 'nchar')

then ')+'''''''''

else ')'

end

+ ' end '

FROM [INFORMATION_SCHEMA].[COLUMNS]

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

where [TABLE_NAME] = @table

order by [ORDINAL_POSITION]

set @chvVal = substring(@chvVal, 6, len(@chvVal))

if @debug <> 0 select @chvVal [@chvVal]

-- get column list

SELECT @chvColList = @chvColList

+ ',' + convert(varchar(8000),[COLUMN_NAME])

FROM [INFORMATION_SCHEMA].[COLUMNS]

where [TABLE_NAME] = @table

order by [ORDINAL_POSITION]

if @debug <> 0 select @chvColList [@chvColList]

-- remove first comma

set @chvColList = substring(@chvColList, 2, len(@chvColList))

-- assemble a command to query the table to assemble everything

set @chvSQL = 'select ''Insert dbo.' + @table

+ '(' + @chvColList +') values (''+'

+ @chvVal + ' + '')''from ' +@table

-- get result

if @debug <> 0 select @chvSQL chvSQL

exec(@chvSQL)

The procedure is based on the way SQL Server behaves when a recordset is

assigned to a variable. This behavior was discussed in Chapter 4, but let me remind

you: SQL Server loops through the records and assigns them each, one by one, to

the variable. Each change overwrites the previous change and, finally, the value

of the last row is assigned to the variable. This value stays in the variable after the

statement has completed. You can use this behavior to produce a comma-delimited

list of column names:

declare @chvColList varchar(8000)

declare @table sysname

set @chvColList = ''

set @ table = 'Equipment'

SELECT @chvColList = @chvColList + ',' + [COLUMN_NAME]

FROM [INFORMATION_SCHEMA].[COLUMNS]

where [TABLE_NAME] = @table

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 4 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 5 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

order by [ORDINAL_POSITION]

select @ chvColList

If you execute this batch, you get the following:

,EquipmentId,Make,Model,EqTypeId,ModelSDX,MakeSDX

NOTE

You should not use this method for application code, but it is okay to use it for noncritical tasks,
such as in a utility to manage code. If you use it, keep in mind that you should use Coalesce() or
IsNull() in cases in which the column is nullable.

The procedure assembles another string using this method—part of the final string

that will be used to gather data. It is designed in a similar manner, but the code is

more complex, to handle nullability of columns and to insert different delimiters for

different data types. In the final step before execution, these strings are put together

in a Select statement that will retrieve data from the table:

select 'Insert dbo.Equipment(EquipmentId,Make,Model,

EqTypeId,ModelSDX,MakeSDX)

values ('

+ case

when EquipmentId is null then 'null'

else + convert(varchar(8000),EquipmentId)

end

+ ',' + case

when Make is null then 'null'

else '''' + convert(varchar(8000),Make) + ''''

end

+ ',' + case

when Model is null then 'null'

else '''' + convert(varchar(8000),Model) + ''''

end

+ ',' + case

when EqTypeId is null then 'null'

else + convert(varchar(8000),EqTypeId)

end

+ ',' + case

when ModelSDX is null then 'null'

else '''' + convert(varchar(8000),ModelSDX) + ''''

end

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 5 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

+ ',' + case

when MakeSDX is null then 'null'

else '''' + convert(varchar(8000),MakeSDX) + ''''

end

+ ')'

from Equipment

The result is set of Insert statements:

--

Insert dbo.Equipment(EquipmentId,Make,Model,EqTypeId,ModelSDX,MakeSDX)

values (478,'Trigon',

'15 Cart. DLT Library Tabletop Conversion Kit (Beac',1,null,null)

Insert dbo.Equipment(EquipmentId,Make,Model,EqTypeId,ModelSDX,MakeSDX)

values (394,'Trigon','2KVA Prestige W/Ext full Bat',1,null,null)

Insert dbo.Equipment(EquipmentId,Make,Model,EqTypeId,ModelSDX,MakeSDX)

values (347,'Trigon',

'DeskSys EN CMT PIII 733 10GB 128MB 48xCD NT',1,null,null)

...

Using the sp_executesql Stored Procedure
In Chapter 3, you saw that an important advantage stored procedures have over ad

hoc queries is their capability to reuse an execution plan. SQL Server, and developers

working in it, can use two methods to improve the reuse of queries that are not designed

as stored procedures. The first of these is autoparameterization, covered in Chapter 3.

This section focuses on the second of these methods: using a stored procedure to

enforce parameterization of a query.

If you know that a query will be re-executed with different parameters and that

reuse of its execution plan will improve performance, you can use the sp_executesql

system stored procedure to execute it. This stored procedure has the following syntax:

sp_executesql [@stmt =] stmt

[

{, [@params =] N'@parameter_name data_type [,...n]' }

{, [@param1 =] 'value1' [,...n] }

]

The first parameter, @stmt, is a string containing a batch of Transact-SQL statements.

If the batch requires parameters, you must also supply their definitions as the second

parameter of the sp_executesql procedure. The parameter definition is followed by

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

a list of the parameters and their values. The following script executes one batch

twice, each execution using different parameters:

EXECUTE sp_executesql

@Stmt = N'SELECT * FROM Asset.dbo.Contact WHERE ContactId = @Id',

@Parms = N'@Id int',

@Id = 11

EXECUTE sp_executesql

@Stmt = N'SELECT * FROM Asset.dbo.Contact WHERE ContactId = @Id',

@Parms = N'@Id int',

@Id = 313

There is one unpleasant requirement to this exercise. If all database objects are

not fully qualified (that is, hard-coded with the database name and object owner),

the SQL Server engine will not reuse the execution plan.

In some cases, you may be able to ensure that all database objects are fully qualified.

However, this requirement becomes a problem if you are building a database that

will be deployed under a different name or even if you use more than one instance

of the database in your development environment (for example, one instance for

development and one for testing).

The solution is to obtain the name of a current database using the Db_Name()

function. You can then incorporate it in a query:

Declare @chvQuery nvarchar(200)

Set @chvQuery = N'Select * From ' + DB_NAME()

+ N'.dbo.Contact Where ContactId = @Id'

EXECUTE sp_executesql @stmt = @chvQuery,

@Parms = N'@Id int',

@Id = 1

EXECUTE sp_executesql @stmt = @chvQuery,

@Parms = N'@Id int',

@Id = 313

Solutions based on this stored procedure are better than solutions based on the

execution of a character string. The execution plan for the latter is seldom reused. It

might happen that it will be reused only when parameter values supplied match those

in the execution plan. Even in a situation in which you are changing the structure of

a query, the number of possible combinations of query parameters is finite (and some

of them are more probable than others). Therefore, reuse will be much more frequent

if you force parameterization using sp_executesql.

3 5 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 5 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

When you use Execute, the complete batch has to be assembled in the form of a

string each time. This requirement also takes time. If you are using sp_executesql,

the batch will be assembled only the first time. All subsequent executions can use the

same string and supply an additional set of parameters.

Parameters that are passed to sp_executesql do not have to be converted to characters.

That time is wasted when you are using Execute, in which case parameter values of

numeric type must be converted. By using all parameter values in their native data

type with sp_executesql, you may also be able to detect errors more easily.

Security Implications
As a reminder, the following are two security concerns that are important in the case

of dynamically assembled queries:

� Permissions on underlying tables

� SQL injection

Permissions on Underlying Tables
The fact that a caller has permission to execute the stored procedure that assembles the

dynamic query does not mean that the caller has permission to access the underlying

tables. You have to assign these permissions to the caller separately. Unfortunately,

this requirement exposes your database—someone might try to exploit the fact that

you are allowing more than the execution of predefined stored procedures.

SQL Injection
Dynamically assembled queries present an additional security risk. A malicious user

could use a text box to type something like:

Acme' DELETE INVENTORY --

A stored procedure (or application) can assemble this into a query, such as

Select *

from vInventory

Where Make = 'Acme' DELETE INVENTORY --'

The quote completes the parameter value and, therefore, the Select statement, and

then the rest of the query is commented out with two dashes. Data from an entire

table could be lost this way.

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 5 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Naturally, a meticulous developer, such as you, would have permissions set to

prevent this kind of abuse. Unfortunately, damage can be done even using a simple

Select statement:

Acme' SELECT * FROM CUSTOMERS --

In this way, your competitor might get a list of your customers:

Select *

from vInventory

Where Make = 'Acme' SELECT * FROM CUSTOMERS --'

A hack like this is possible not just on string parameters; it might be even easier to

perform on numeric parameters. A user can enter the following:

122121 SELECT * FROM CUSTOMERS

The result might be a query such as this:

Select *

from vInventory

Where InventoryId = 122121 SELECT * FROM CUSTOMERS

Fortunately, it’s not too difficult to prevent this. No, you do not have to parse strings

for SQL keywords. It’s much simpler. The application must validate the content of

text boxes. If a number or date is expected, the application must make sure that values

really are of numeric or date data types. If text (such as a T-SQL keyword) is added,

the application should prompt the user to supply a value of the appropriate data type.

Unfortunately, if a text box is used to specify a string, there is little that you can

validate. The key is to prevent the user from adding a single quote (') to the query.

There are several ways to do this. The quote is not a legal character in some types of

fields (such as keys, e-mails, postal codes, and so forth) and the application should

not accept it in such fields. In other types of fields (such as company names, personal

names, descriptions, and so on), use of quotes may be valid. In that case, in the procedure

that assembles the string, you should replace a single quote—char(39)—with two

single quotes—char(39) + char(39)—and SQL Server will find a match for

the string:

set @chvMake = Replace(@chvMake, char(39), char(39) + char(39))

The dynamic query will become a query that works as expected:

Select *

from vInventory

Where Make = 'Dejan''s Computers Inc.'

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 5 5

In the case in which someone tries to inject a SQL statement, SQL Server will just

treat it as a part of the parameter string:

Select *

from vInventory

Where Make = 'Dejan'' SELECT * FROM CUSTOMERS --'

Another possibility is to replace a single quote—char(39)—with a character that

looks similar onscreen but that is stored under a different code, such as ()̀—char(96).

Naturally, you have to make this substitution for all text boxes (on both data entry

and search pages). In some organizations, this substitution might be inappropriate,

since existing databases may already contain quotes.

NOTE

You are at risk not only when you are passing strings directly from a GUI into the stored procedure
that is assembling a query, but also when an application is reading the field with injected SQL into
a variable that will be used in a dynamic query. A user might attempt to weaken security with
some administrative procedure—there is no need for direct interaction with the code by the
attacker. Therefore, you should convert all string input parameters and local variables that are
participating in the dynamic assembly of the query.

You also might want to prevent users from injecting special characters (such as

wild cards) into strings that will be used in Like searches. The following function

will make a string parameter safe for use in dynamic queries:

CREATE FUNCTION dbo.fnSafeDynamicString

-- make string parameters safe for use in dynamic strings

(@chvInput varchar(8000),

@bitLikeSafe bit = 0) -- set to 1 if string will be used in LIKE

RETURNS varchar(8000)

AS

BEGIN

declare @chvOutput varchar(8000)

set @chvOutput = Replace(@chvInput, char(39), char(39) + char(39))

if @bitLikeSafe = 1

begin

-- convert square bracket

set @chvOutput = Replace(@chvOutput, '[', '[[]')

-- convert wild cards

set @chvOutput = Replace(@chvOutput, '%', '[%]')

set @chvOutput = Replace(@chvOutput, '_', '[_]')

end

RETURN (@chvOutput)

END

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You can test the function with the following:

SELECT 'select * from vInventory where Make = '''

+ dbo.fnSafeDynamicString ('Dejan' + char(39) + 's Computers Inc.', 0)

+ ''''

This test simulates a case in which a user enters the following text on the screen:

Dejan' s Computers Inc.

The result becomes:

--

select * from vInventory where Make = 'Dejan''s Computers Inc.'

(1 row(s) affected)

In the case of a Like query, you must prevent the user from using wild cards.

The following query simulates a case in which a user enters % in the text box. It

also assumes that the application or stored procedure is adding another % at the

end of the query.

SELECT 'select * from vInventory where Make like '''

+ dbo.fnSafeDynamicString ('%a', 1)

+ '%'''

When you set the second parameter of the function to 1, the function replaces the

first % character with [%], in which case it will not serve as a wild card:

select * from vInventory where Make = '[%]a%'

(1 row(s) affected)

Optimistic Locking Using timestamp Values
When more than one user is working in a database, you might expect some concurrency

problems to appear. The most common problem is the following: User A reads a record.

User B also reads the record and then changes it. Any changes that user A now decides

to commit to the database will overwrite the changes that user B made to it, without

knowing that user B already changed it. Two standard solutions for this kind of problem

are the following:

3 5 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

� Pessimistic locking

� Optimistic locking

In the pessimistic locking scenario, user A acquires a lock on the record so that

nobody can change it until user A is finished with it. User A is a pessimist and

expects that someone will attempt to change the record while user A is editing it.

NOTE

I will not go into the details of how locks are implemented. Locks are covered in detail in other
SQL Server books. At this time, it is important to know that it is possible to mark a record so that
nobody else can change it.

When user A changes the record, the lock is released and user B can now access

the updated record and change it.

The trouble with this solution is that user A might go out for lunch—or on

vacation—and, if user A didn’t close the application that retrieved the record,

the lock will not be released. This scenario is one of the reasons why this kind

of solution is not recommended in a client/server environment.

In the optimistic locking scenario, user A locks the record only while he or she

is actually performing the change. User A is an optimist who believes that nobody

while change the record while user A is editing it. A mechanism in SQL Server will

notify other users if somebody has changed the record in the meantime. The user can

then decide either to abandon their changes or to overwrite the updated record.

A simple way to find out whether somebody has changed a record since the time

user A read it would be to compare all fields. To run this comparison, user A must

keep both an “original” and a “changed” record and needs to send them both to the

server. Then, a process on the server must compare the original record with the current

record in the table to make sure that it wasn’t changed. Only then can the record

be updated with the changed record. This process is obviously slow and increases

network traffic, but there are solutions in the industry that use precisely this method.

timestamp
SQL Server has a timestamp data type. It is used for versioning records in a table.

When you insert or update a record in a table with a timestamp field, SQL Server

“timestamps” the change. Figure 9-2 demonstrates such behavior.

The table is created with a timestamp field. When a record is inserted, SQL

Server automatically sets its value. When the record is updated, SQL Server increases

the value of the timestamp.

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 5 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

It is important to realize that timestamp values are not actually a kind of

timekeeping. They are just binary values that are increased with every change in

the database and, therefore, are unique within the database. You should not make

any assumptions about their values and growth. Somebody (or some process) might

change something in the database concurrently, and even two changes that you executed

consecutively might not have consecutive timestamp values.

To make sure that nobody has changed a record in the meantime, you might

decide to update it like this:

update #aTable

set description = 'test3'

where id = 1

and ts = 0x000000000000007A -- not a perfect solution

The record will be updated only if the timestamp is unchanged. The trouble

with this solution is that you will not know what happens after the statement is

3 5 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Figure 9-2 Use of the timestamp data type

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

executed. Maybe everything is okay and the record has been successfully changed. It

is possible that the record was not updated because the timestamp was changed, but

it is also possible that the record is not in the table any more.

TSEqual() Function
The SQL Server TSEqual() function (no longer described in SQL Server Books

Online) compares timestamp values in the table and the Transact-SQL statement

(see Figure 9-3). If they do not match, this function raises an error 532 and aborts the

statement. This function allows you to write code that handles errors properly (for

example, the user can be prompted for further action). If you executed the previous

Update statement, the following one should cause SQL Server to force an error:

update #aTable

set description = 'test4'

where id = 1

and TSEQUAL(ts, 0x000000000000007A)

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 5 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Figure 9-3 The use of the TSEqual() function

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 6 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

You can use this function in stored procedures to implement optimistic locking:

Create Procedure prUpdateContact_1

-- update record from contact table

-- prevent user from overwriting changed record

(

@intContactId int,

@chvFirstName varchar(30),

@chvLastName varchar(30),

@chvPhone typPhone,

@chvFax typPhone,

@chvEmail typEmail,

@insOrgUnitId smallint,

@chvUserName varchar(50),

@tsOriginal timestamp

)

As

Set nocount on

Update Contact

Set FirstName = @chvFirstName,

LastName = @chvLastName,

Phone = @chvPhone,

Fax = @chvFax,

Email = @chvEmail,

OrgUnitId = @insOrgUnitId,

UserName = @chvUserName

Where ContactId = @intContactId

and TSEQUAL(ts, @tsOriginal)

Return @@Error

You will have no problem executing this code from Transact-SQL:

Declare @intErrorCode int

Exec @intErrorCode = prUpdateContact_1

1, 'Dejan', 'Sunderic',

'121-1111', '111-1112', 'dejans@hotmail.com',

1, 'dejans', 0x00000000000009C3

Select @intErrorCode ErrorCode

Unfortunately, some versions of client development tools (for example, Visual

Basic) and some data access methods (for example, RDO and ADO) have problems

retrieving and using timestamp values.

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 6 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Before you implement 50 stored procedures in this manner, you should test

whether your client development tools support timestamp values. If they do not,

you must implement a workaround.

timestamp Conversion
The first workaround that comes to mind is to pass the timestamp as some

other data type. Binary(8) and varchar are the first options most people

try. Unfortunately, client tools usually do not support binary data types either.

The trouble with varchar is that SQL Server converts the timestamp to an

empty string.

One solution that works is based on the conversion of the timestamp to

a datetime or money data type (sounds strange, doesn’t it?). Conversion in

the opposite direction results in the same timestamp as well. You can test this

workaround using the following code:

declare @dtmOriginal datetime,

@tsOriginal timestamp

Set @tsOriginal = 0x00000000000009C3

select @dtmOriginal = Convert(datetime, @tsOriginal)

select @dtmOriginal, Convert (timestamp, @dtmOriginal)

NOTE

Both of these data types are 8 bytes long, as is the timestamp data type. Converted
datetime or money values do not have any meaning. Although “timestamp” sounds
as if it contains date information, it is, as previously stated, just a sequential number that is
increased with every database change.

The stored procedure has to be modified as follows:

Create Procedure prUpdateContact

-- update conrecord from contact table

-- prevent user from overwriting changed record

(

@intContactId int,

@chvFirstName varchar(30),

@chvLastName varchar(30),

@chvPhone typPhone,

@chvFax typPhone,

@chvEmail typEmail,

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 6 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

@insOrgUnitId smallint,

@chvUserName varchar(50),

@dtmOriginalTS datetime

)

As

set nocount on

declare @tsOriginalTS timestamp,

@intErrorCode int

set @intErrorCode = @@Error

if @intErrorCode = 0

begin

Set @tsOriginalTS = Convert(timestamp, @dtmOriginalTS)

set @intErrorCode = @@Error

end

if @intErrorCode = 0

begin

Update Contact

Set FirstName = @chvFirstName,

LastName = @chvLastName,

Phone = @chvPhone,

Fax = @chvFax,

Email = @chvEmail,

OrgUnitId = @insOrgUnitId,

UserName = @chvUserName

where ContactId = @intContactId

and TSEqual(ts, @tsOriginalTS)

set @intErrorCode = @@Error

end

return @intErrorCode

Naturally, you have to read records using a stored procedure that will convert the

timestamp to a datetime or money data type, too:

Create Procedure prGetContact

-- get Contact record with timestamp converted to datetime

(

@intContactId int

)

As

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 6 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

set nocount on

SELECT ContactId,

FirstName,

LastName,

Phone,

Fax,

Email,

OrgUnitId,

UserName,

Convert(datetime, ts) dtmTimestamp

FROM Contact

where ContactId = @intContactId

return @@Error

Full-Text Search and Indexes
The Standard and Enterprise editions of SQL Server 2000 include Microsoft Search

Service, a search engine that allows full-text indexing and querying like the search

engines used to query the Web. You can search for combinations of words and phrases.

It allows linguistic searches whereby the engine also matches variations of the original

word (singular, plural, tenses, and so on). The result may be a simple list or a table

that ranks how well the results match the search criteria. Part of the criteria may also

be the proximity of words and phrases—that is, how close one word is to another.

These capabilities are different from those of standard database search engines,

in which you can do the following:

� Search for an exact match of a word or phrase

� Use wild card characters and the Like operator to search for character patterns

� Use indexes only if a pattern matches the beginning of the field

Microsoft Search Service was first introduced as a component of Internet Information

Server. At that time, it was called Index Server.

I will not go into the details of Microsoft Search Service’s architecture and

administration, except to note that

� Full-text indexes are not stored in databases but in files (usually in C:\

Program Files\Microsoft SQL Server\MSSQL\FTDATA).

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 6 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

� You have to set the full-text index search capability and create full-text

catalogs on tables and columns explicitly.

� A table must have a unique index based on a single field to be indexed in

this manner.

I will focus on full-text search capabilities. The two most important predicates are

Contains and Freetext. They are designed to be used in the Where clause of a Select

statement.

The Contains predicate returns true or false for records that contain specified

keywords. Variations of this predicate accommodate linguistic searches for variations

of words and for words that are in proximity to other words. For more details, see

SQL Server Books Online.

Freetext orders the search engine to evaluate specified text and extract “important”

words and phrases. It then constructs queries in the background to be executed

against the table.

The following stored procedure implements different forms of full-text search on

the ActivityLog.Note field:

Alter Procedure prFTSearchActivityLog

-- full-text search of ActivityLog.Note

-- this will only work if you enable full-text search

(

@chvKeywords varchar(255),

@inySearchType tinyint

)

As

set nocount on

--------- Constants -----------

declare @c_Contains int,

@c_FreeText int,

@c_FormsOf int

Set @c_Contains = 0

Set @c_FreeText = 1

Set @c_FormsOf = 2

--------- Constants -----------

if @inySearchType = @c_Contains

exec ('select * from Activity Where Contains(Note, '

+ @chvKeywords + ')')

else if @inySearchType = @c_FreeText

exec ('select * from Activity Where FreeText(Note, '

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 6 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

+ @chvKeywords + ')')

else if @inySearchType = @c_FormsOf

exec ('select * from Activity '

+ 'Where FreeText(Note, FORMSOF(INFLECTIONAL,'

+ @chvKeywords + ')')

Return

NOTE

Full-text search has additional features related to the use of ContainsTable and FreeText table
and the use of the Formsof, Near, and Weight keywords, but the description of these features
is beyond the scope of this chapter and this book.

Nested Stored Procedures
Nested stored procedures are simply stored procedures that were called by other

stored procedures. Using SQL Server 2000, it is possible to do 32 levels of nesting.

You can investigate current nesting level using the @@nestlevel function.

This section explores methods for passing recordsets between a nested stored

procedure and its caller.

Using Temporary Tables to Pass a Recordset
to a Nested Stored Procedure
Some programming languages (such as Visual Basic and Pascal) use the concept

of global and module variables. These types of variables are very useful for passing

complex parameters (like arrays or recordsets) to a procedure when its parameter list

supports only basic data types.

The same problem exists with stored procedures. You cannot pass a recordset

through a parameter list to a stored procedure from the current batch or stored procedure,

and neither recordsets nor local variables from the outer stored procedure (or batch)

are visible to the inner stored procedure unless they are passed as a parameter to that

procedure.

Unfortunately, SQL Server does not support user-defined global variables. Modules,

and therefore module variables, do not even exist in Transact-SQL.

One way to pass a recordset is to create and fill a temporary table and then reference

that temporary table from the inner stored procedure, which will be able to see and

access its contents. The following example consists of two stored procedures. The

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 6 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

first is business-oriented and collects a list of properties associated with an inventory

asset. The list is implemented as a temporary table:

Alter Procedure prGetInventoryProperties_TempTbl_Outer

/*

Return comma-delimited list of properties

that are describing asset.

i.e.: Property = Value unit;Property = Value unit;Property =

Value unit; Property = Value unit; Property = Value unit; Property =

Value unit;

*/

@intInventoryId int

As

set nocount on

declare @chvProperties varchar(8000)

Create table #List(Id int identity(1,1),

Item varchar(255))

-- identify Properties associated with asset

insert into #List (Item)

select Property + '=' + Value + ' ' + Coalesce(Unit, '') + '; '

from InventoryProperty inner join Property

on InventoryProperty.PropertyId = Property.PropertyId

where InventoryProperty.InventoryId = @intInventoryId

-- call sp that converts records to a single varchar

exec prConvertTempTbl @chvProperties OUTPUT

-- display result

select @chvProperties Properties

drop table #List

return 0

go

The second stored procedure, the nested stored procedure, is not business-oriented—

unlike the caller stored procedure, the nested stored procedure does not implement

the business rule. It simply loops through the records in the temporary table (which

was created in the calling stored procedure) and assembles them into a single

varchar variable:

Alter Procedure prConvertTempTbl

-- Convert information from Temporary table to a single varchar

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 6 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

@chvResult varchar(8000) output

As

set nocount on

declare @intCountItems int,

@intCounter int,

@chvItem varchar(255),

@insLenItem smallint,

@insLenResult smallint

-- set loop

select @intCountItems = Count(*),

@intCounter = 1,

@chvResult = ''

from #List

-- loop through list of items

while @intCounter <= @intCountItems

begin

-- get one property

select @chvItem = Item

from #List

where Id = @intCounter

-- check will new string fit

select @insLenItem = DATALENGTH(@chvItem),

@insLenResult = DATALENGTH(@chvResult)

if @insLenResult + @insLenItem > 8000

begin

print 'List is too long (over 8000 characters)!'

return 1

end

-- assemble list

set @chvResult = @chvResult + @chvItem

-- let's go another round and get another item

set @intCounter = @intCounter + 1

end

return 0

go

You can execute this example from Query Analyzer, as shown in Figure 9-4.

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 6 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

You may question when this kind of solution is justified and whether these stored

procedures are coupled. It is true that neither of these stored procedures can function

without the other. If you have other stored procedures that also use prConvertTempTbl,

I would consider this solution justified.

Using a Cursor to Pass a Recordset to a Nested Stored Procedure
Similar solutions can be implemented using cursors. Cursors are also visible to,

and accessible from, nested stored procedures.

The following example also consists of two stored procedures. The first is

business-oriented and creates a cursor with properties associated with specified

inventory:

create Procedure prGetInventoryProperties_Cursor_Nested

/*

Return comma-delimited list of properties

that are describing asset.

Figure 9-4 Using temporary tables to pass a recordset to a nested stored procedure

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 6 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

i.e.: Property = Value unit;Property = Value unit;Property =

Value unit; Property = Value unit; Property = Value unit; Property =

Value unit;

*/

(

@intInventoryId int,

@chvProperties varchar(8000) OUTPUT,

@debug int = 0

)

As

Select @chvProperties = ''

Declare curItems Cursor For

Select Property + '=' + [Value] + ' '

+ Coalesce([Unit], '') + '; ' Item

From InventoryProperty Inner Join Property

On InventoryProperty.PropertyId = Property.PropertyId

Where InventoryProperty.InventoryId = @intInventoryId

Open curItems

Exec prProcess_Cursor_Nested @chvProperties OUTPUT, @debug

Close curItems

Deallocate curItems

Return 0

Go

The second stored procedure is generic and converts information from a cursor

into a single variable:

Create Procedure prProcess_Cursor_Nested

-- Process information from cursor initiated in calling sp.

-- Convert records into a single varchar.

(

@chvResult varchar(8000) OUTPUT,

@debug int = 0

)

As

Declare @intCountProperties int,

@intCounter int,

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

@chvItem varchar(255),

@insLenItem smallint,

@insLenResult smallint

Fetch Next From curItems

Into @chvItem

While (@@FETCH_STATUS = 0)

Begin

If @debug <> 0

Select @chvItem Item

-- check whether new string will fit

Select @insLenItem = DATALENGTH(@chvItem),

@insLenResult = DATALENGTH(@chvResult)

If @insLenResult + @insLenItem > 8000

Begin

Select 'List is too long (over 8000 characters)!'

Return 1

End

-- assemble list

If @insLenItem > 0

Set @chvResult = @chvResult + @chvItem

If @debug <> 0

Select @chvResult chvResult

Fetch Next From curItems

Into @chvItem

End

Return 0

Go

You can execute this code from Query Analyzer, as shown in Figure 9-5.

3 7 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 7 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

How to Process the Result Set of a Stored Procedure
From time to time, you will encounter stored procedures that return result sets that

you need to process. This is not as simple as it sounds.

One option is to receive the result set in a client application or middleware component

and process it from there. Sometimes this option is not acceptable, for a variety of

reasons. For example, the result set might be too big, in which case network traffic

could be considerably increased. Since the result set needs to be transferred to the

middleware server before it is processed, the performance of the system could be

degraded. There might be security implications—for example, you may determine

that a user should have access only to a segment of a result set and not to the complete

result set.

Figure 9-5 Using a cursor to pass a recordset to a nested stored procedure

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 7 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

An alternative option is to copy the source code of the stored procedure into your

stored procedure. This could be illegal, depending on the source of the original stored

procedure. It also reduces the maintainability of your code, since you have two copies

to maintain; if the other stored procedure is a system stored procedure, Microsoft can

change its internals with the release of each new version of SQL Server. Your stored

procedure will then need to be changed.

It is possible to collect the result set of a stored procedure in Transact-SQL code.

You need to create a (temporary) table, the structure of which matches the structure

of the result set exactly, and then redirect (insert) the result set into it. Then you can

do whatever you want with it.

The following stored procedure uses the sp_dboption system stored procedure to

obtain a list of all database options and to obtain a list of database options that are set

on the Asset database. Records that have a structure identical to that of the result set as

returned by the stored procedure are collected in temporary tables. The Insert statement

can then store the result set in the temporary table. The contents of the temporary

tables are later compared and a list of database options not currently set is returned

to the caller.

Create Procedure prNonSelectedDBOption

-- return list of non-selected database options

@chvDBName sysname

As

Set Nocount On

Create Table #setable

(

name nvarchar(35)

)

Create Table #current

(

name nvarchar(35)

)

-- collect all options

Insert Into #setable

Exec sp_dboption

-- collect current options

Insert Into #current

Exec sp_dboption @dbname = @chvDBName

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 7 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

-- return non-selected

Select name non_selected

From #setable

Where name not in (Select name

From #current

)

Drop Table #setable

Drop Table #current

Return 0

The only trouble with this method is that you need to know the structure of the

result set of the stored procedure in advance in order to create a table with the same

structure, although this is not a problem for user-defined stored procedures. It used

to be a problem for system stored procedures, but SQL Server Books Online now

provides information regarding the result sets generated by these stored procedures.

NOTE

Unfortunately, it is not possible to capture the contents of a result set if a stored procedure returns
more than one result set, as is the case with sp_spaceused when no table name is specified.

This technique also works with the Exec statement. For example, if you try to collect

a result set from the DBCC command in this way, SQL Server will return an error.

But you can encapsulate the DBCC statement in a string and execute it from Exec.

The following stored procedure returns the percentage of log space used in a

specified database:

Create Procedure prLogSpacePercentUsed

-- return percent of space used in transaction log for

-- specified database

(

@chvDbName sysname,

@fltPercentUsed float OUTPUT

)

As

Set Nocount On

Declare @intErrorCode int

Set @intErrorCode = @@Error

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

If @intErrorCode = 0

Begin

Create Table #DBLogSpace

(dbname sysname,

LogSizeInMB float,

LogPercentUsed float,

Status int

)

Set @intErrorCode = @@Error

End

-- get log space info. for all databases

If @intErrorCode = 0

Begin

Insert Into #DBLogSpace

Exec ('DBCC SQLPERF (LogSpace)')

set @intErrorCode = @@Error

end

-- get percent for specified database

if @intErrorCode = 0

begin

select @fltPercentUsed = LogPercentUsed

from #DBLogSpace

where dbname = @chvDbName

set @intErrorCode = @@Error

end

drop table #DBLogSpace

return @intErrorCode

You can test this stored procedure from Query Analyzer, as shown on Figure 9-6.

These techniques were extremely important before SQL Server 2000. It is now

possible to use the table data type as a return value for user-defined functions. You

learned how to use table-valued user-defined functions in Chapter 8. Unfortunately,

it is still not possible to use a table variable as the output parameter of a stored

procedure.

You have another option available when you want to pass a result set (or

multiple result sets) to a calling stored procedure—you can use the cursor
data type as the output parameter of a stored procedure. In the following example,

3 7 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

prGetInventoryProperties_CursorGet creates and opens a cursor. The content of the

cursor is then returned to the calling procedure.

Create Procedure prGetInventoryProperties_CursorGet

-- Return Cursor that contains properties

-- that are describing selected asset.

(

@intInventoryId int,

@curProperties Cursor Varying Output

)

As

Set @curProperties = Cursor Forward_Only Static For

Select Property, Value, Unit

From InventoryProperty inner join Property

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 7 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Figure 9-6 Percentage of log space used in specified database

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 7 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

On InventoryProperty.PropertyId = Property.PropertyId

Where InventoryProperty.InventoryId = @intInventoryId

Open @curProperties

Return 0

The preceding stored procedure will be called from the following stored procedure:

Create Procedure prGetInventoryProperties_UseNestedCursor

-- return comma-delimited list of properties

-- that are describing asset.

-- i.e.: Property = Value unit;Property = Value unit;

-- Property = Value unit;Property = Value unit;...

(

@intInventoryId int,

@chvProperties varchar(8000) OUTPUT,

@debug int = 0

)

As

Declare @intCountProperties int,

@intCounter int,

@chvProperty varchar(50),

@chvValue varchar(50),

@chvUnit varchar(50),

@insLenProperty smallint,

@insLenValue smallint,

@insLenUnit smallint,

@insLenProperties smallint

Set @chvProperties = ''

Declare @CrsrVar Cursor

Exec prGetInventoryProperties_CursorGet @intInventoryId,

@CrsrVar Output

Fetch Next From @CrsrVar

Into @chvProperty, @chvValue, @chvUnit

While (@@FETCH_STATUS = 0)

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin

Set @chvUnit = Coalesce(@chvUnit, '')

If @debug <> 0

Select @chvProperty Property,

@chvValue [Value],

@chvUnit [Unit]

-- check whether new string will fit

Select @insLenProperty = DATALENGTH(@chvProperty),

@insLenValue = DATALENGTH(@chvValue),

@insLenUnit = DATALENGTH(@chvUnit),

@insLenProperties = DATALENGTH(@chvProperties)

If @insLenProperties + 2

+ @insLenProperty + 1

+ @insLenValue + 1 + @insLenUnit > 8000

Begin

Select 'List of properties is too long (over 8000 chrs)!'

Return 1

End

-- assemble list

Set @chvProperties = @chvProperties

+ @chvProperty + '='

+ @chvValue + ' '

+ @chvUnit + '; '

If @debug <> 0

Select @chvProperties chvProperties

Fetch Next From @CrsrVar

Into @chvProperty, @chvValue, @chvUnit

End

Close @CrsrVar

Deallocate @CrsrVar

Return 0

It is the responsibility of the caller to properly close and deallocate the cursor at

the end.

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 7 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 7 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

TIP

You should not use a cursor as an output parameter of a stored procedure unless you have to.
Such a solution is inferior because procedures are coupled and prone to errors. If you are working
with SQL Server 2000, you should use table-valued user-defined functions as part of your Select
statements instead.

Using Identity Values
In previous chapters, I introduced the function of identity values in a table. They are

used to generate surrogate keys—unique identifiers based on sequential numbers.

A Standard Problem and Solution
Identity values are similar to the autonumber data type in Access tables. But there

is one difference that generates many questions in Usenet newsgroups among developers

who are used to Access/DAO behavior. When you insert a record into a table, the

value of the autonumber fied is immediately available in Access. Unfortunately,

due to the nature of the client/server environment, this is not the case in SQL Server.

The best way to insert a record into a SQL Server table and obtain an identity key

is to use a stored procedure. The following stored procedure, prInsertInventory, presents

such a solution. A new record is inserted into a table and the key is read using the

@@identity function.

Create Procedure prInsertInventory

-- insert inventory record and return Id

@intEquipmentId int,

@intLocationId int,

@inyStatusId tinyint,

@intLeaseId int,

@intLeaseScheduleId int,

@intOwnerId int,

@mnsRent smallmoney,

@mnsLease smallmoney,

@mnsCost smallmoney,

@inyAcquisitionTypeID int,

@intInventoryId int output

As

Set Nocount On

Declare @intErrorCode int

Select @intErrorCode = @@Error

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 7 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

If @intErrorCode = 0

Begin

Insert into Inventory (EquipmentId, LocationId, StatusId,

LeaseId, LeaseScheduleId, OwnerId,

Rent, Lease, Cost,

AcquisitionTypeID)

Values (@intEquipmentId, @intLocationId, @inyStatusId,

@intLeaseId, @intLeaseScheduleId, @intOwnerId,

@mnsRent, @mnsLease, @mnsCost,

@inyAcquisitionTypeID)

Select @intErrorCode = @@Error,

@intInventoryId = @@identity

End

Return @intErrorCode

Identity Values and Triggers
Unfortunately, the previous solution does not always work as you might expect.

SQL Server has a bug/feature that can change a value stored in the @@identity

global variable. If the table in which the record was inserted (in this case, Inventory)

has a trigger that inserts a record into some other table with an identity key, the value

of that key will be recorded in @@identity.

You can reproduce this behavior using the following script. It must be executed

against the tempdb database.

Create Table a (a_id int identity(1,1),

a_desc varchar(20),

b_desc varchar(20))

Go

Create Table b (b_id int identity(1,1),

b_desc varchar(20))

Go

Create Trigger tr_a_I

On dbo.a

After Insert -- For Insert

As

If @@Rowcount = 0

Return

Insert Into b (b_desc)

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 8 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Select b_desc from inserted

Go

Now execute this batch:

Insert into b (b_desc)

Values ('1')

Insert into a (a_desc, b_desc)

Values ('aaa', 'bbb')

Select @@identity [IdentityValue]

Query Analyzer returns the following result:

(1 row(s) affected)

(1 row(s) affected)

IdentityValue

--

2

(1 row(s) affected)

The first Insert statement adds the first record to table b. The second Insert

statement adds the first record in a table. Because there is a trigger on the table,

another record (the second one) will be inserted into table b, and the value of

@@identity will be set to 2. If there was no trigger, the Select statement would

return a value of 1.

Last Identity Value in the Scope
The problem with identity values and triggers has been resolved in the proper manner

with SQL Server 2000. The new Scope_Identity() function returns the last identity

value generated in the current scope of the current process. The following example

adds this function to the code executed earlier against the tempdb database:

Insert into b (b_desc)

Values ('1')

Insert into a (a_desc, b_desc)

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 8 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Values ('aaa', 'bbb')

Select @@identity [@@Identity], SCOPE_IDENTITY() [SCOPE_IDENTITY()]

When you execute it, notice that the Scope_Identity() function returns the proper

result:

(1 row(s) affected)

(1 row(s) affected)

@@Identity SCOPE_IDENTITY()

-- -----------------------------

4 2

(1 row(s) affected)

NOTE

You now should use Scope_Identity() instead of the @@identity function.

GUIDs
Distributed environments have different requirements for the generation of unique

keys. A typical example is a database of sales representatives who are carrying

notebook computers with local databases installed on them. These users do not have

to be connected to a central database. They do the majority of their work locally and

then replicate the information in their local database to the central database once in

a while. The use of identity fields as a unique key will lead to unique key violations,

unless the key is composite and consists of an identity field and another field that

is unique to the user. Another solution could be to divide key ranges between users

(for example, by setting an identity seed differently in each database). Each of these

solutions has different limitations.

One way to generate unique keys is to use GUIDs (globally unique identifiers).

The uniqueidentifier data type was discussed in Chapter 4. When a

column in a table is assigned this data type, it does not mean that its (unique) value

will be generated automatically. The unique value must be generated using the

NewID() function.

Typically, a GUID value is generated as a default value of a table, as shown in

the following code:

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 8 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Create Table Location(

LocationId uniqueidentifier NOT NULL DEFAULT newid(),

Location varchar(50) not null,

CompanyId int NOT NULL,

PrimaryContactName varchar(60) NOT NULL,

Address varchar(30) NOT NULL,

City varchar(30) NOT NULL,

ProvinceId varchar(3) NULL,

PostalCode varchar(10) NOT NULL,

Country varchar(20) NOT NULL,

Phone varchar(15) NOT NULL,

Fax varchar(15) NULL

)

Go

You can also generate a GUID in a stored procedure:

Create Procedure prInsertLocation

@Location varchar(50),

@CompanyId int,

@PrimaryContactName varchar(60),

@Address varchar(30) ,

@City varchar(30) ,

@ProvinceId varchar(3) ,

@PostalCode varchar(10),

@Country varchar(20) ,

@Phone varchar(15),

@Fax varchar(15),

@LocationGUID uniqueidentifier OUTPUT

AS

Set @LocationGUID = NewId()

Insert Into Location (Location_id, Location, CompanyId,

PrimaryContactName, Address, City,

ProvinceId, PostalCode, Country,

Phone, Fax)

values (@LocationGUID, @Location, @CompanyId,

@PrimaryContactName, @Address, @City,

@ProvinceId, @PostalCode, @Country,

@Phone, @Fax)

Return @@error

The stored procedure will return the GUID value to the caller.

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A While Loop with Min() or Max() Functions
It is possible to iterate through a table or recordset using a While statement with the

aggregate() function, which returns extreme values: Min() and Max(). Take a look at

the following batch:

declare Value int

-- get first value

Select @Value = MIN(Value)

From aTable

-- loop

While @Value is not null

Begin

-- do something instead of just displaying a value

Select @Value value

-- get next value

Select @Value = MIN(Value)

From aTable

Where Value > @Value

End

The first Select statement with the Min() function obtains a first value from the

set (table):

Select @Value = MIN(Value)

From aTable

The next value is obtained in a loop as a minimal value bigger than the

previous one:

Select @Value = MIN(Value)

From aTable

Where Value > @Value

If no records qualify as members of the set, an aggregate() function will return

null. You can then use null as a criterion to exit the loop:

While @Value is not null

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 8 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 8 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

To demonstrate this method, the following rewrites prSpaceUsedByTables, which

displays the space used by each user-defined table in the current database:

Create Procedure prSpaceUsedByTables_4

-- loop through table names in current database

-- display info about amount of space used by each table

-- demonstration of while loop

As

Set nocount on

Declare @TableName sysname

-- get first table name

Select @TableName = Min(name)

From sysobjects

Where xtype = 'U'

While @TableName is not null

Begin

-- display space used

Exec sp_spaceused @TableName

-- get next table

Select @TableName = Min(name)

From sysobjects

Where xtype = 'U'

And name > @TableName

End

Return 0

This was just an academic example. Naturally, the proper solution includes a

temporary table to collect all results and display them at the end in one recordset.

Note that I am not talking about a temporary table such as the one used in Chapter 4

for looping using a While statement.

You can step backward through the recordset if you use the Max() function and if

you compare the old record and the remainder of the set using the < operator.

TIP

This method may be a quick solution for problems that require iteration. However, solutions based
on set operations usually provide superior performance.

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Looping with sp_MSForEachTable
and sp_MSForEachDb
You can find and review the sp_MSForEachTable and sp_MSForEachDb system stored

procedures in the master database, but they are not documented in SQL Server Books

Online. Microsoft has designed them to support writing a single statement that can

perform the same activity on all databases on the current server or on all tables in

the current database.

To demonstrate this, set Query Analyzer to Result In Text and execute the

following:

exec sp_MSforEachDb

@Command1 = "Print '?'",

@Command2 = "select count(name) from ?.dbo.sysobjects where xtype = 'U'"

SQL Server returns a count of user-defined tables from each database on the

current server:

Asset

36

DEPLOY

0

master

10

...

The @Command1 and @Command2 parameters are used to specify the actions

that the stored procedure will execute against each database. The database name

was replaced with a question mark. It is possible to specify up to three commands

(using @Command3). Behind the scenes, the stored procedure will open a cursor

for the records in the sysdatabases table (which contains a list of existing databases)

and dynamically assemble a batch that will be executed against each record in a loop.

The following command creates a report about space usage of each database:

exec sp_MSforEachDb @Command1 = "use ? exec sp_Spaceused"

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 8 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

It is even more interesting to run sp_spaceused against all tables in the current

database:

exec sp_MSforEachTable @Command1 = "sp_spaceused '?'"

Unfortunately, the result is not nicely aligned in either text or grid mode.

You can also get a number of records in each table:

exec sp_MSforEachTable

@Command1 = "Print '?'",

@Command2 = "select Count(*) from ?"

In the last two queries, the result is not ordered as you might expect. It simply

follows the order of records in systables (in other words, the order of creation).

If you want to order it by table name, you must use the @whereand parameter:

exec sp_MSforEachTable

@command1 = "exec sp_spaceused '?'",

@whereand = "order by name"

This parameter was originally designed to allow you to add a Where clause, but

since the query is dynamically assembled, you can sneak an Order By clause into

it as well.

You can use the @replacechar parameter to specify a different placeholder for

database and table names. This parameter is useful when your commands require

the use of a question mark—for example, as a wild card in the Like clause.

If a command should be executed only once before or after the loop, you should

use the @precommand and @postcommand parameters.

Property Management
One of the features that I have always wanted to see in SQL Server is the capability

to add descriptions to database objects. Microsoft Access already has this feature.

Naturally, you could be even more ambitious. It would be helpful on some projects

to be able to store additional attributes such as field formats, input masks, captions,

and the location and size of screen fields in the database. The more things you

manage centrally, the fewer maintenance and deployment issues you will have later

in production.

3 8 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A d v a n c e d S t o r e d P r o c e d u r e P r o g r a m m i n g 3 8 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

SQL Server 2000 introduces extended properties. You can define extended properties,

store them in the database, and associate them with database objects. Each database

object can have any number of extended properties, and an extended property can

store a sql_variant value up to 7500 bytes long.

SQL Server 2000 introduces three stored procedures and one function for managing

extended properties. The sp_addextendedproperty, sp_updateextendedproperty, and

sp_dropextendedproperty stored procedures are used to create, change, or delete

extended properties, respectively. They all have very unusual syntax. The following

example examines this syntax in sp_addextendedproperty:

sp_addextendedproperty

[@name =]{'property_name'}

[, [@value =]{'extended_property_value'}

[, [@level0type =]{'level0_object_type'}

, [@level0name =]{'level0_object_name'}

[, [@level1type =]{'level1_object_type'}

, [@level1name =]{'level1_object_name'}

[, [@level2type =]{'level2_object_type'}

, [@level2name =]{'level2_object_name'}

]

]

]

]

Here, @name and @value are the name and value of the extended property. Other

parameters define the name and type of the object with which the extended property

will be associated. For this reason, database objects are divided into three levels:

1. User, user-defined type

2. Table, view, stored procedure, function, rule, default

3. Column, index, constraint, trigger, parameter

If you want to assign an extended property to an object of the second level, you

must also specify an object of the first level. If you want to assign an extended property

to an object of the third level, you must also specify an object of the second level.

For example, to specify an extended property Format to be associated with the column

Phone in the table Contact, you must specify the owner of the table:

Exec sp_addextendedproperty 'Format', '(999)999-9999',

'user', dbo,

'table', Contact,

'column', Phone

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The fn_ListExtendedProperty() function is designed to list the extended properties

of an object. It requires that you specify objects in the same manner as the stored

procedures do. You can see the result set returned by the function in Figure 9-7.

3 8 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 9

Figure 9-7 Extended properties of an object

P:\010Comp\D_Base\896-2\ch09.vp
Tuesday, April 29, 2003 11:03:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

10
Interaction with the

SQL Server Environment

389

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
Execution of OLE Automation/COM Objects

Running Programs
Running Windows Script Files

Running/Looping Through DTS Packages
Interacting with the NT Registry

Jobs
SQL Server and the Web

E-Mail
Security

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 9 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

This chapter focuses on the ways you can use system and extended stored

procedures to interact with the SQL Server environment. It also discusses

the ways user-defined stored procedures can help you leverage the existing

functionality of elements within the SQL Server environment.

By the end of this chapter, you will be able to do the following:

� Use OLE Automation in Transact-SQL

� Run programs and operating system commands from the command shell

� Execute DTS packages

� Implement looping in DTS packages

� Manage jobs in Job Scheduler

� Read and write Registry entries

� Use the e-mail capabilities of SQL Server to notify users of events on the server

� Use the e-mail capabilities of SQL Server to send queries, process them, and

receive result sets

� Publish the contents of the database on the Web

� Perform administration tasks with stored procedures

� Manage application security

Execution of OLE Automation/COM Objects
Microsoft has developed several technologies that enable developers to encapsulate code

and custom objects into executable components. These components can then be invoked

by other applications developed in the same (or any other) programming language that

supports these kinds of components. Through the years, this technology has been known

by different names: OLE, OLE Automation, COM, DCOM, Automation, ActiveX,

COM+ … and the saga continues.

SQL Server can initiate code components and access the properties and methods

exposed by them. A set of system stored procedures (with the prefix sp_OA) has

been designed and implemented in SQL Server to help you accomplish such tasks.

NOTE

When Microsoft first unveiled this feature in SQL Server, code components were known as “OLE
Automation objects.” For this reason, Microsoft attached the OA prefix to these stored procedure
names, and I used OLE Automation Objects in the title of the section.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

To demonstrate the use of OLE Automation on a simple Visual Basic function:

1. Create the DjnToolkit ActiveX DLL project in Visual Basic and then create a

DjnTools class.

2. Create a method called SpellNumber, which ignores the input value (currency

amount) and returns a constant string (see Figure 10-1).

NOTE

Even if you run the object from the Visual Basic IDE (instead of compiling and installing it), you
will still be able to access it from Transact-SQL code. This is an important feature for debugging
the object.

The stored procedure shown in the code on the following page first initiates the COM

object using the sp_OACreate system stored procedure. It obtains a token @intObject,

which is used from that point to access the class.

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 3 9 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

Figure 10-1 A COM object created in Visual Basic

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 9 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

The sp_OAMethod stored procedure is used to execute class methods. The return

value and input parameter of the method are placed at the end of the stored procedure’s

parameter list.

Before the stored procedure is complete, the COM object must be destroyed using

sp_OADestroy.

If an automation error occurs at any point, sp_OAGetErrorInfo can be used to obtain

the source and description of the most recent error:

Alter Procedure prSpellNumber

-- demo of use of Automation objects

@mnsAmount money,

@chvAmount varchar(500) output,

@debug int = 0

As

set nocount on

Declare @intErrorCode int,

@intObject int, -- hold object token

@bitObjectCreated bit,

@chvSource varchar(255),

@chvDesc varchar(255)

Select @intErrorCode = @@Error

If @intErrorCode = 0

exec @intErrorCode = sp_OACreate 'DjnToolkit.DjnTools',

@intObject OUTPUT

If @intErrorCode = 0

Set @bitObjectCreated = 1

else

Set @bitObjectCreated = 0

If @intErrorCode = 0

exec @intErrorCode = sp_OAMethod @intObject,

'SpellNumber',

@chvAmount OUTPUT,

@mnsAmount

If @intErrorCode <> 0

begin

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Raiserror ('Unable to obtain spelling of number', 16, 1)

exec sp_OAGetErrorInfo @intObject,

@chvSource OUTPUT,

@chvDesc OUTPUT

Set @chvDesc = 'Error ('

+ Convert(varchar, @intErrorCode)

+ ', ' + @chvSource + ') : ' + @chvDesc

Raiserror (@chvDesc, 16, 1)

end

if @bitObjectCreated = 1

exec sp_OADestroy @intObject

return @intErrorCode

Once you are sure that communication between Transact-SQL and Visual Basic

code is working, you can write code in Visual Basic that converts numbers to text.

Since this is not a book about Visual Basic, I will not go into detail on that subject.

There is an even better example on how to use these stored procedures in Chapter 11.

Data Type Conversion
Keep in mind that code components and Transact-SQL code use different data types.

You have to set compatible data types on both sides to allow the OLE Automation

system stored procedures to automatically convert data between them. You can identify

most of the compatible data types using common sense (for example, varchar,

char, and text types in SQL Server translate to the String data type in Visual

Basic, and the int SQL Server data type translates to the Long data type). However,

some data types deserve special attention.

When values are passed from SQL Server to Visual Basic, binary, varbinary,

and image are converted to a one-dimensional Byte array. Any Transact-SQL value

set to null is converted to a Variant set to null. Decimal and numeric are

converted to String (not currency).

When values are passed from Visual Basic to SQL Server, Long, Integer,

Byte, Boolean, and Object are converted to the int data type. Both Double
and Single data types are converted to float. Strings shorter than 255 characters

are converted to varchar, and strings longer then 255 characters are converted to

the text data type. One-dimensional Byte() arrays shorter than 255 characters

become varbinary values, and those longer than 255 become image values.

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 3 9 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Running Programs
Before Microsoft included support for OLE Automation and COM in SQL Server,

administrators ran command prompt programs and commands using the xp_cmdshell

extended stored procedure:

xp_cmdshell {'command'} [, no_output]

When xp_cmdshell is executed, a command string is passed to the command shell

of the operating system to be executed. Any rows of text that are normally displayed

by the command shell are returned by the extended stored procedure as a result set.

There is also an option to ignore the output.

The status of the execution is returned as an output parameter of the extended

stored procedure. Its value is set to 0 if execution was successful and 1 if execution

failed. In Windows 95 and Windows 98, the value will always be set to 0.

Figure 10-2 shows the use of the command prompt instruction to list files in the

Backup folder. This output can be received in a temporary table and further processed

in Transact-SQL code.

3 9 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

Figure 10-2 Using xp_cmdshell to run commands and programs

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The following batch copies files from the Backup folder to another drive:

exec master..xp_cmdshell 'copy e:\w2kPro~1\Mocros~1\'

+ 'MSSQL\BACKUP*.* m:', no_output

Running Windows Script Files
The Windows Script Host enables users to write and execute scripts in VBScript,

JavaScript, and other languages compatible with the Windows environment. It was

initially developed as an additional component, but it is now integrated into the

Windows 98, Me, 2000, and XP platforms.

Script files usually have .vbs and .js extensions. They are executed from the

Windows environment using wscript.exe or from the command prompt using

csript.exe.

Execution of script files can also be initiated from Transact-SQL code. The

following statement runs a demo script that starts Excel and populates a worksheet

with information:

exec xp_cmdshell 'c:\windows\command\cscript.exe '

+ 'c:\windows\samples\wsh\Excel.vbs', NO_OUTPUT

Running/Looping Through DTS Packages
Data Transformation Services (DTS) is a SQL Server tool used for the visual design

and execution of data transformation routines. These routines are stored on a server as

DTS packages. Naturally, their design and management are beyond the scope of this

book, but I will show you how to run a DTS package from a stored procedure.

SQL Server 2000 includes the dtsrun.exe utility, which allows you to execute DTS

packages from the command prompt. We can simply call it using xp_cmdshell:

exec xp_cmdshell 'dtsrun /SA1000 /Udbo /E /NExportData '

+ '/ADatabase:8=Asset7 /AServer:8=A1000', NO_OUTPUT

One of the features that you might wish to use, but that is missing from DTS, is

looping. The tool simply does not allow you to create tasks to be executed in a loop.

The solution is to use a scripting language (such as T-SQL or VBScript) to launch

a group of tasks (organized into a single DTS package) in a loop. The following

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 3 9 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

procedure loops though a list of databases and executes a DTS package with a

database name as an input parameter (a global variable in DTS terminology):

ALTER PROCEDURE dbo.prDbLoop_DTS

-- loop through Asset databases

-- run the DTS package for each of them

@debug int = 0

As

set nocount on

declare @intCount int,

@intCounter int,

@chvDOS varchar(2000),

@chvDB sysname,

@chvServer sysname

Declare @intErrorCode int,

@chvProcedure sysname

set @chvProcedure = 'prDbLoop_DTS'

if @debug <> 0

select '**** '+ @chvProcedure + ' START ****'

Select @intErrorCode = @@Error

If @intErrorCode = 0

Begin

Create table #db(Id int identity(1,1),

Name sysname)

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

insert into #db (Name)

select Name from master.dbo.sysdatabases

where name like 'Asset%'

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

-- set loop

3 9 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

select @intCount = Count(*),

@intCounter = 1,

@chvServer = @@SERVERNAME

from #db

Select @intErrorCode = @@Error

End

-- loop through list of databases

while @intErrorCode = 0 and @intCounter <= @intCount

begin

-- get db

If @intErrorCode = 0

Begin

select @chvDB = Name

from #db

where Id = @intCounter

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

SELECT @chvDOS = 'dtsrun /S' + @chvServer

+ ' /Udbo /E /NExportData'

+ ' /ADatabase:8=' + @chvDB

+ ' /AServer:8=' + @chvServer

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

if @debug = 0

EXEC master.dbo.xp_cmdshell @chvDOS, no_output

else

select @chvDOS

Select @intErrorCode = @@Error

End

-- let's go another round and get another property

If @intErrorCode = 0

Begin

set @intCounter = @intCounter + 1

Select @intErrorCode = @@Error

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 3 9 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

End

end

drop table #db

if @debug <> 0

select '**** '+ @chvProcedure + ' END ****'

return @intErrorCode

If you run the procedure, it will generate and execute the following set of

commands:

dtsrun /SA1000 /Udbo /E /NExportData /ADatabase:8=Asset7 /AServer:8=A1000

dtsrun /SA1000 /Udbo /E /NExportData /ADatabase:8=Asset2000 /AServer:8=A1000

dtsrun /SA1000 /Udbo /E /NExportData /ADatabase:8=Asset2000_2 /AServer:8=A1000

Interacting with the NT Registry
Developers of client applications in a 32-bit environment often use the Registry as a

repository for application configuration data and defaults. The Registry is a database

(but not an RDBMS) that stores configuration information centrally.

SQL Server exposes the following extended stored procedures for manipulating

the Registry:

Extended Stored Procedure Purpose
xp_regread Reads a Registry value

xp_regwrite Writes to the Registry

xp_regdeletekey Deletes a key

xp_regdeletevalue Deletes a key’s value

xp_regenumvalues Lists names of value entries

xp_regaddmultistring Adds a multi string (zero-delimited string)

xp_regremovemultistring Removes a multi string (zero-delimited string)

xp_regread
This stored procedure enables you to read the value of the Registry key located on

the specified path of the specified subtree:

3 9 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

xp_regread subtree,
path,
key,
@value OUTPUT

In the following example, this extended stored procedure reads the root directory

of the SQL Server installation:

declare @chvSQLPath varchar(255)

exec master..xp_regread

'HKEY_LOCAL_MACHINE'

,'SOFTWARE\Microsoft\MSSQLServer\Setup'

,'SQLPath',@chvSQLPath OUTPUT

select @chvSQLPath SQLPath

go

xp_regwrite
This stored procedure enables you to write a new value to the Registry key located

on the specified path of the specified subtree:

xp_regwrite subtree,
path,
key,
datatype,
newvalue

In the following example, this extended stored procedure adds one value to the

Setup key:

exec master..xp_regwrite

'HKEY_LOCAL_MACHINE'

,'SOFTWARE\Microsoft\MSSQLServer\Setup'

,'Test'

,'REG_SZ'

,'Test'

go

TIP

You should be very careful when writing and deleting Registry keys using Transact-SQL. It is often
a better idea (performance-wise) to store most of your configuration parameters in a special table
in the application database.

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 3 9 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 0 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

Jobs
One valuable administrative feature of Microsoft SQL Server is the capability to launch

the execution of custom jobs at specified times. Each job has properties such as name,

description, schedule, and a list of operators to be notified in case of success,

completion, or failure, as well as a list of steps that will be performed as part of the

job and actions to be taken after completion of a job. These steps can be defined as

Transact-SQL code, Active Script code, or operating system commands.

Administration of Jobs
This section looks at the basics of job creation from Enterprise Manager to show

the potential of this feature, but it will not go into too much detail. The following

exercise creates a job that performs a backup of the transaction log if it is more then

95 percent full. It is based on the prBackupIfLogAlmostFull stored procedure.

You can create a job using a wizard or directly from the Enterprise Manager tree:

1. Open Enterprise Manager and expand the local server in the tree pane.

2. Expand Management, then SQL Server Agent. Make sure that it is running.

3. Click Jobs; SQL Server displays a list of existing jobs.

4. Right-click Jobs and choose New Job. Enterprise Manager displays a New Job

Properties dialog box.

5. Fill in the General tab with the information shown in the following illustration:

6. Click the Steps tab.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 0 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

7. Click New to start creating the first step. The application displays the New Job

Step dialog box.

8. In the Step Name field, type do backup.

9. Select Transact-SQL Script in the Type list.

10. Specify Asset as the working database.

11. You can either populate the Command text box with script from the file (using

the Open button) or, as in this case, enter code manually for the execution of a

stored procedure:

exec prBackupIfLogAlmostFull 'Asset', 95

The dialog box should look like this:

12. Click the Advanced tab to see other options. You can specify behavior in the

case of successful or unsuccessful completion, the log file to record the output

of the script, and retry options. For this exercise, accept the default values and

close the dialog box. SQL Server returns you to the Steps tab of the New Job

Properties dialog box.

13. You will create only one step for this job, so now you can click the Schedules

tab to set a schedule.

14. Click the New Schedule button to display the New Schedule dialog box.

15. Name the schedule Every 5 min.

The Schedule Type is set to Recurring, but the default frequency is not what

you want. Click the Change button. The Edit Recurring Job Schedule dialog

box appears.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

4 0 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

16. Select Daily in the Occurs group.

17. Set Daily Frequency to Occurs Every 5 Minute(s), as shown here:

18. Click OK to close the dialog box; the application displays a message describing

the schedule. Close the message box; the application returns you to the New

Job Properties dialog box.

19. Click the Notifications tab to set activities that will occur when the job completes. It

is possible to page or send e-mail to operators, write the status to the Windows NT

application event log, or automatically delete the job:

20. Accept the default values and click OK to close the dialog box.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 0 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

Keep in mind that SQL Server will execute this job every five minutes from now

on. If you want to disable it, you can edit the job or just right-click the job in Enterprise

Manager and select Disable Job from the pop-up menu.

All of the functionality in this job is actually provided by the

prBackupIfLogAlmostFull stored procedure. The only requirement that such a

stored procedure must comply with is that it must return a success status (0 in

the case of success; any other number represents an error code). SQL Server

Agent uses this value to determine the completion status of the job and potentially

execute subsequent steps. Returning a success status is a highly recommended

practice when the stored procedure works inside the job.

The prBackupIfLogAlmostFull stored procedure calls the prLogSpacePercentUsed

stored procedure to obtain the amount of log space available in the database. If the

limit is reached, it creates a backup device using the sp_addumpdevice system stored

procedure and performs a backup of the transaction log.

CREATE Procedure prBackupIfLogAlmostFull

-- Do backup of transaction log

-- if percent of space used is bigger than @fltPercentLimit

(

@chvDbName sysname,

@fltPercentLimit float,

@debug int = 0

)

As

set nocount on

declare @intErrorCode int,

@fltPercentUsed float,

@chvDeviceName sysname,

@chvFileName sysname

set @intErrorCode = @@Error

-- how much of log space is used at the moment

if @intErrorCode = 0

exec @intErrorCode = prLogSpacePercentUsed @chvDbName,

@fltPercentUsed OUTPUT

-- if limit is not reached, just go out

if @intErrorCode = 0 and @fltPercentUsed < @fltPercentLimit

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

return 0

if @intErrorCode = 0

begin

Select @chvDeviceName = @chvDbName

+ Convert(Varchar, GetDate(), 112),

@chvFileName = 'C:\PROGRAM FILES\MICROSOFT.SQL SERVER'

+ '\MSSQL\BACKUP\bkp'

+ @chvDeviceName

+ '.dat'

set @intErrorCode = @@Error

end

if @debug <> 0

select @chvDeviceName chvDeviceName,

@chvFileName chvFileName

if @intErrorCode = 0

begin

EXEC sp_addumpdevice 'disk', @chvDeviceName, @chvFileName

set @intErrorCode = @@Error

end

-- 15061 it is OK if dump device already exists

if @intErrorCode = 0 or @intErrorCode = 15061

begin

BACKUP LOG @chvDbName TO @chvDeviceName

set @intErrorCode = @@Error

end

return @intErrorCode

TIP

Some might argue that such a stored procedure and job are not needed in Microsoft SQL
Server 2000 because it can increase the size of a transaction log automatically if it approaches
its specified limit. This is true, but it’s valid only if you can afford unlimited storage. If your disk
resources are limited, it is a much better solution to clear the log.

An Alternative to Job Scheduler
Microsoft has developed Job Scheduler into a relatively sophisticated tool, with

these features:

4 0 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

� Steps are included as components of jobs to allow better control.

� You can continue or even stop execution from different points, depending

on the success or failure of each step.

� Operators can be notified according to predefined criteria.

� Each step can be coded in a different language (including Transact-SQL,

ActiveX Scripts, operating system commands, or commands that call

replication and maintenance services and utilities).

In the past, the only way to create a complex job was to code everything in

Transact-SQL. Now, simpler jobs can be implemented using steps. If you really need

a sophisticated solution, you still need the power of Transact-SQL or ActiveX Script.

SQL Server includes a set of stored procedures and extended stored procedures

inside Enterprise Manager that can achieve everything that you can do within Job

Scheduler. They reside in the msdb database. (This database is used by SQL Server

Agent to hold information about jobs, schedules, and operators.)

The following paragraphs will quickly review some of these stored procedures.

Stored Procedures for Maintaining Jobs
The sp_help_job stored procedure returns information about jobs. If no parameters

are specified, the stored procedure returns a result set with a list of jobs and their

attributes. If the job name (or ID) is specified, the stored procedure returns an additional

result set that describes the job’s steps, schedules, and target servers.

The sp_add_job, sp_delete_job, and sp_update_job stored procedures are used to

create, delete, and change existing jobs, respectively.

The sp_add_jobstep and sp_add_jobschedule stored procedures are designed to

associate a schedule and steps with an existing job. Naturally, there are corresponding

stored procedures that allow you to delete or update schedules and steps and obtain

information about them.

The following example creates a single-step job to perform a backup of the

transaction log and assigns a nightly schedule to it:

USE msdb

EXEC sp_add_job @job_name = 'Asset Backup Log',

@enabled = 1,

@description = 'Backup transaction Log of Asset database',

@owner_login_name = 'sa'

EXEC sp_add_jobserver @job_name = 'Asset Backup Log',

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 0 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

@server_name = 'DSUNDERIC\ss2k'

EXEC sp_add_jobstep @job_name = 'Asset Backup Log',

@step_name = 'Backup Log',

@subsystem = 'TSQL',

@server = 'DSUNDERIC\ss2k',

@command = ' BACKUP LOG Asset TO bkpAssetLog',

@retry_attempts = 5,

@retry_interval = 5

EXEC sp_add_jobschedule @job_name = 'Asset Backup Log ',

@name = 'Nightly Backup',

@freq_type = 4, -- daily

@freq_interval = 1, -- every 1 day

@active_start_time = '000000' -- midnight

It is much easier to create jobs, schedules, and steps from Enterprise Manager, but

the previous script might be useful for deploying a job from a development or test

environment into a production environment. You can also use sp_start_job to instruct

SQL Server Agent to run the job immediately, as in the following example:

USE msdb

EXEC sp_start_job @job_name = 'Asset Backup Log'

There is also an orthogonal stored procedure, sp_stop_job, that is designed to stop

execution of a job that is in progress.

Once a job is completed, SQL Server Agent will record its completion status in

the job history. You can view the history of a job using sp_help_jobhistory, and you

can delete old records from the history using sp_purge_jobhistory.

Operators and Alerts
SQL Server Agent also maintains a list of operators and a list of alerts.

Operators are administrators who should be notified of predefined events configured

in SQL Server. The system keeps track of the operator’s network, e-mail, and pager

addresses, as well as a timetable indicating when the operator is available during the

week (and weekends).

Alerts are events that can occur in SQL Server, such as specific errors, errors of

a certain severity, and conditions that can occur in a database, as well as the actions

that need to be taken to handle the event (such as sending a message to the operator

or executing a job).

4 0 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 0 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

There is also a third type of object that serves as a link between alerts and operators.

Notifications are used to assign and send a message to operator(s) to handle alerts.

Naturally, there are stored procedures to manage these lists of operators and alerts:

� sp_help_operator, sp_add_operator, sp_delete_operator, sp_update_operator

� sp_help_alert, sp_add_alert, sp_delete_alert, sp_update_alert

� sp_help_notification, sp_add_notification, sp_delete_notification,

sp_update_notification

SQL Server and the Web
SQL Server is not designed as a tool for publishing content to the Web, but support

for the basic tasks is built into it. You can do the following with SQL Server:

� Publish the contents of the database on the Web

� Create a web page based on the result of a query

� Use HTML templates to format result sets

� Update a web page periodically or on demand to incorporate changes

to the database

� Set a database to update a web page whenever underlying tables are changed

Many tools and technologies are available that are suitable for creating web

applications, but Visual InterDev is one that you should investigate before others

because of the seamless integration between it and SQL Server.

NOTE

Web publishing from SQL Server is available only from the Standard and Enterprise Editions of SQL
Server 2000

Web Assistant
The easiest way to generate web pages is to use the Web Assistant Wizard:

1. From Enterprise Manager, select Tools | Wizards. The Select Wizard tree appears.

2. Expand the Management subtree, select the Web Assistant Wizard, then click OK.

3. Click Next to open the second page; the wizard prompts you for the database to

be used as a source of information.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 0 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

4. The next page prompts you for the name of the web page you want to generate.

You will also have to specify the type of query you want to use to get a result

set from the database. The query can be a stored procedure, an ad hoc query,

or a selection of table columns to be assembled into a query by the wizard.

5. Select the first option (Data From The Tables And Columns That I Select) and

click Next, and the wizard will prompt you to select a table and the columns

that should appear in the result set.

6. Select the table and columns you want to include, and click Next.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 0 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

7. The wizard gives you the option to filter the recordset you have defined. You

can type a Where clause, use list boxes to specify columns, operators, and the

values of criteria, or accept the default to return all rows. When you have

finished specifying criteria, click Next.

8. The next page prompts you to schedule the job to create a web page. You can

also specify that the web page needs to be generated at scheduled intervals or

when data changes. SQL Server will schedule a recurring job or create triggers

that will fire when the table changes. The trouble with using a recurring job

is that changes will not be published immediately to the Web; the trouble with the

trigger approach is that the generation of the web page will become part of (that

is, overhead for) the transaction. Accept the default and click Next to continue.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

9. Specify the location of the web page to be generated. Click Next to continue.

10. The Web Assistant Wizard then asks you to format the web page. It prompts

you to specify a predefined template that you want to use, or to specify that you

want the wizard to provide options that enable you to format all elements of the

page. I will talk about templates in “Web Page Templates” later in this chapter.

In this case, just accept the default to tell SQL Server to help you format the

page. Click Next to continue.

11. The next page lets you specify titles for the page and the table, and specify font

sizes for those titles. Click Next to continue.

12. The next page lets you specify the formatting of the table containing the result

set. You can change the font style, decide whether you want to display columns,

and choose whether you want borders around the table. Click Next to continue.

13. The next page prompts you to add one or an entire list of hyperlinks to the

page. If you specify a list, you should specify a query that returns labels and

links as columns of the result set. Click Next to continue.

14. The next page provides options that are helpful if the table is very long. You

can limit the number of rows that you want to display on the page or decide

to create a set of linked pages with a specified number of rows on each page.

Click Next to continue.

4 1 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

15. The final page allows you to save and execute the command for creating the

web task that you have defined. Click the Write Transact SQL To File button to

save the script created by the wizard, and then click Finish to execute the script.

Web Task Stored Procedures
Everything that the Web Assistant does can be accomplished using a set of three stored

procedures:

� sp_makewebtask

� sp_runwebtask

� sp_dropwebtask

These stored procedures are designed to manage web tasks, which are just regular

jobs. You can see them in the SQL Server Agent’s list of jobs.

NOTE

The reason these stored procedures use “webtask” in their names is that they were introduced in
SQL Server 6.5. At that time, jobs were called tasks.

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 1 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

sp_makewebtask
This stored procedure creates a job that produces an HTML document containing the

result set of a query (or a stored procedure). The syntax of the command looks terrifying:

sp_makewebtask [@outputfile =] 'outputfile', [@query =] 'query'
[, [@fixedfont =] fixedfont]
[, [@bold =] bold]
[, [@italic =] italic]
[, [@colheaders =] colheaders]
[, [@lastupdated =] lastupdated]
[, [@HTMLHeader =] HTMLHeader]
[, [@username =] username]
[, [@dbname =] dbname]
[, [@templatefile =] 'templatefile']
[, [@webpagetitle =] 'webpagetitle']
[, [@resultstitle =] 'resultstitle']
[

[, [@URL =] 'URL', [@reftext =] 'reftext']
| [, [@table_urls =] table_urls, [@url_query =] 'url_query']

]

[, [@whentype =] whentype]
[, [@targetdate =] targetdate]
[, [@targettime =] targettime]
[, [@dayflags =] dayflags]
[, [@numunits =] numunits]
[, [@unittype =] unittype]
[, [@procname =] procname]

[, [@maketask =] maketask]
[, [@rowcnt =] rowcnt]
[, [@tabborder =] tabborder]
[, [@singlerow =] singlerow]
[, [@blobfmt =] blobfmt]
[, [@nrowsperpage =] n]
[, [@datachg =] table_column_list]
[, [@charset =] characterset]
[, [@codepage =] codepage]

Fortunately, there is usually no need for you to start populating all of these

parameters by hand. Use Web Assistant to create the script, and save the command

during the final step of the wizard. You can later modify it using Query Analyzer.

The @whentype parameter specifies when the web task should be executed. The

default value is 1, meaning that a web task should be created and executed immediately.

4 1 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A job set with the default value of 1 will actually be created, executed, and then deleted.

However, most of the other settings will leave the job for SQL Server Agent to launch.

When sp_makewebtask is executed, several database objects are created. A new

record is added to the list of jobs in the msdb database. A new stored procedure is

created in the database specified by the @dbname parameter. The new stored procedure

has the same name as the job. It encapsulates the query that returns the recordset to

be published (@query). If the web task is designed to update a web page whenever

underlying data changes, the wizard also creates a trigger to run the job.

For discussion of other parameters, consult SQL Server Books Online.

sp_runwebtask
This is a stored procedure for managing web tasks that you use more often than

others. It is designed to run an existing web task:

sp_runwebtask [[@procname =] 'procedurename']
[,[@outputfile =] 'outputfile'

The result of the web task is an HTML file (outputfile) that can be specified by

either the sp_runwebtask or the sp_makewebtask stored procedure.

sp_dropwebtask
This stored procedure is designed to delete web tasks. It deletes all objects that belong

to the web task (for example: job, stored procedure with query, triggers):

sp_dropwebtask [[@procname =] 'procedurename']
[,[@outputfile =] 'outputfile'

Web Page Templates
The best way to format your web page is to use a template file, which is an ordinary

HTML file with placeholders for incorporating a result set.

There are two types of placeholders:

� <%insert_data_here%>

� <%begindetail%>, <%enddetail%>

<%insert_data_here%>
This placeholder is used to mark the spot where SQL Server is to place a complete

result set. The placeholder is formatted as a regular HTML table.

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 1 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The following code has been extracted from such a template file:

<html>

<head>

<title>Price List</title>

</head>

<body>

<H1>Price List<H1>

<%insert_data_here%>

</body>

</html>

Naturally, you can enrich your template with logos, links, additional text, and

other elements. A simple trick is to design your page first in an HTML editor such

as FrontPage and add the table placeholder later.

<%begindetail%>, <%enddetail%>
If you want more control over the look of your table, you can use these placeholders.

They mark the beginning and end of the HTML code that will be replicated for each

row in the result set. Between them, you should use the <%insert_data_here%>

placeholder to mark the position where each field should be inserted.

The following code was generated in FrontPage. It is a simple page that uses a

table with two rows and three columns. I have inserted the column heading in the

first row and then marked a block around the next record with the <%begindetail%>

and <%enddetail%> tags. Inside each table cell in the row, I have inserted a placeholder

for the fields.

<html>

<head>

<title>Price List</title>

</head>

<body>

<table border="1" width="336">

<tr>

<td>Action ID</td>

4 1 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<td>Action</td>

<td>List Price</td>

</tr>

<%begindetail%>

<tr>

<td><%insert_data_here%></td>

<td><%insert_data_here%></td>

<td><%insert_data_here%></td>

</tr>

<%enddetail%>

</table>

</body>

</html>

Of course, the point of this whole exercise is to create a more complex layout.

You can also include code for hyperlinks and more complex formatting options.

E-Mail
SQL Server has the capability to interact with administrators and users via e-mail.

Usually, operators are notified by SQL Server when specific events occur. You can

use the Alert and Operator mechanisms to implement and define this behavior.

This feature is an alternative to standard methods of processing errors, such as

recording critical errors in the Error Log. If SQL Server is in critical need of attention,

and your operators do not possess pagers, SQL Server can send e-mail to them. This

approach is also practical for notifying administrators of successfully completed jobs.

Another common use for SQL Mail is to process e-mail that contains database

queries. Remote users can send queries to SQL Server and have it return result sets

to them.

SQL Server can also send messages that include result sets in the form of a report

to one or more users. Although these result sets are rather crude (just ASCII text), it

is possible to envision and create an application that uses this capability to notify

management when some change occurs in the database.

SQL Server 2000 contains two services that handle e-mail. The MSSQLServer

service contains a component called SQL Mail that processes all extended stored

procedures that use e-mail. SQL Server Agent contains a separate e-mail capability

in a component often called SQLAgentMail.

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 1 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 1 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

I will not go into detail on the implementation and configuration of these services.

Refer to SQL Server Books Online and the Microsoft Support web site for more details.

Extended Stored Procedures for Working with E-Mail
To implement custom behavior and features, you need to use extended stored procedures

and build your own code in the form of stored procedures. These stored procedures

can be executed from a client application or by the Job Scheduler. See Table 10-1 for

a list of extended stored procedures available for processing e-mail.

xp_sendmail
This stored procedure can send a text message and/or query result to the list of

recipients. The following statement will notify an administrator that the transaction

log is almost full:

EXEC xp_sendmail

@recipients = 'SQLAdmin',

@Message = 'The transaction log of Asset database is over 95% full.'

NOTE

You cannot use e-mail addresses in the @recipients parameter. The stored procedure expects the
name of a contact that is defined in the address book of an e-mail client application.

The next example sends the result set of the query to the receiver. It could be a job

that periodically lists all databases and their log usage and sends this information to

the database administrator:

Exec xp_sendmail

@recipients = 'SQLAdmin',

@query = 'DBCC SQLPERF (LogSpace)'

A query can be returned in the form of an attached file:

Exec xp_sendmail

@recipients = 'SQLAdmin; NetAdmin',

@query = 'DBCC SQLPERF (LogSpace)',

@subject = 'Transaction Log usage',

@attach_results = 'TRUE'

Attachment files are also used to overcome the message size limit of 8000 characters:

create table #Message(msg text)

Insert into #Message

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 1 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

values ('You can put more then 8000 chrs in a text field.')

Exec xp_sendmail

@recipients = 'SQLAdmin; NetAdmin',

@query = 'select * from #Message',

@attach_results = 'TRUE'

drop #Message

xp_readmail
This extended stored procedure can be used to

� Read a single message

� Return a list of e-mail messages and their contents

When the stored procedure is executed without a specified @messageid parameter,

SQL Server will return a recordset that contains a list of all messages in the SQL

Server mailbox. The result set will contain fields to identify the following:

� Message ID

� Subject

� Body of message

� Sender

� Recipient list

Extended Stored Procedure Use
xp_sendmail Sends e-mail

xp_readmail Returns a message in the form specified by output parameters

xp_findnextmsg Finds a pointer to the next e-mail message

sp_processmail* Reads incoming e-mail messages with queries in them; returns the result sets to
the message senders

xp_deletemail Deletes a message from the inbox

xp_startmail Runs an administrative procedure that starts SQL Mail

xp_stopamail Runs an administrative procedure that stops SQL Mail
*Actually, sp_processmail is a Transact-SQL system stored procedure, not an extended stored procedure.

Table 10-1 Extended Stored Procedures for Working with E-Mail

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 1 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

� CC list

� BCC list

� Attachments

� Date received

� Read status

� Message type

To read a single message, you must specify the @messageid parameter. You can

retrieve this ID either from the previous list or by using the xp_findnextmsg extended

stored procedure.

EXEC @intStatus = xp_findnextmsg

@msg_id = @intMessageId OUTPUT

EXEC @intStatus = xp_readmail

@msg_id = @intMessageId,

@originator = @chvOriginator OUTPUT,

@cc_list = @chvCC OUTPUT,

@bcc_list = @chvBCC OUTPUT,

@subject = @chvSubject OUTPUT,

@message = @query OUTPUT

Unfortunately, this extended stored procedure can only read messages in segments

that are no longer than 255 characters. Two parameters control where to start reading

and the length of the message. Using these parameters, you can implement a loop

that will read the whole message. See SQL Server Books Online for an example of

such a procedure.

sp_processmail
This system stored procedure reads e-mail messages from the inbox, executes the

queries specified in them, and returns a result set to the sender and all recipients

specified on the CC list. It is usually used internally within a job that is periodically

executed on the SQL Server.

The following statement can be placed in the Job Scheduler and executed periodically

to process e-mail that contains the string 'Asset' in the subject against the Asset

database. A result set is returned in the form of a comma-separated value (CSV)

attachment file:

exec sp_processmail @Subject = 'Asset',

@filetype = 'CSV',

@separator = ',',

@dbuse = 'Asset'

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 1 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

The sp_processmail stored procedure uses xp_readmail, xp_deletemail,

xp_findnextmsgl, and xp_sendmail to process messages.

TIP

Open this stored procedure and study its code. It is a good example of Transact-SQL code.

Security
Implementing security on SQL Server is not difficult, but you need to have a good

understanding of its security architecture before you can define and implement an

effective and manageable security solution.

Security Architecture
A user (a person or application) has to go through four levels of security before

performing an action on a database object:

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Network/OS Access
A user needs access to the client computer, operating system, and network on which the

server is located. Usually, this access is the responsibility of technical support specialists

or network administrators. However, in smaller environments, this responsibility may fall

to a DBA or developer instead.

Server Access
The first level of security that pertains strictly to SQL Server allows a client to access

a server. This security level is always the responsibility of database administrators.

SQL Server supports three security models:

� SQL Server Authentication Requires a login and password from each user.

These may be different from his or her network login and password and may be

different from one instance of SQL Server to another. This model was the first

to be developed; it was implemented by Sybase. Before SQL Server 7.0, it was

called standard security. In fact, in SQL Server 7.0 and SQL Server 2000, it is

not possible to configure a server to work in this mode only. If SQL Server

Authentication is needed, the DBA should configure the server to use mixed

model security.

� Windows NT/2000 Authentication Introduced by Microsoft, it allows SQL

Server logins and passwords to be based on Windows NT network logins and

passwords. This practice is easier for both the user (who has to remember only

one login and password combination) and the administrator (who can manage

all logins and passwords centrally). Before SQL Server 7.0, it was called

integrated security.

� Mixed model—SQL Server and Windows NT/2000 Authentication A

combination of the previous two models, it allows some users to log in with

their network account while allowing other users (who may or may not have

a Windows account) to use their SQL Server login.

Database Access
Access to a server does not automatically provide a user with access to a database.

An administrator has to assign a database to a login in one of the following manners:

� The administrator creates a database user that corresponds to the login in each

database to which the user needs access.

4 2 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

� The administrator configures a database to treat a login/database user as a

member of a database role. Such a user inherits all permissions from the role.

� The administrator sets a login to use one of the default user accounts: guest or

database owner (dbo).

Once access to a database has been granted, the user can see all database objects

because the object definitions are stored in system tables to which every user has

read access.

Permissions
Permissions are the final level of SQL Server security. To have access to user-defined

database objects, a user has to have permissions to perform actions on them. There

are three types of permissions in SQL Server:

� Object permissions Allow a user to read and change data and execute stored

procedures

� Statement permissions Allow a user to create and manage database objects

� Implied permissions Allow members of fixed roles and owners of database

objects to perform activities that are not part of the object or statement permissions

Roles Users can be granted permissions individually or as members of a database

role. Roles are the SQL Server equivalent to groups in Windows NT or roles in

Microsoft Transaction Server.

In earlier versions of SQL Server, a user could belong to only one role. This restriction

led to some pretty unrefined security solutions. A user can now be a member of many

database roles. Therefore, roles can be used to provide a sophisticated security model,

managing access to the required functionality and database objects.

Object Permissions The following table indicates which object permissions are

applicable to which database objects:

Table View
Stored
Procedure

User-Defined
Function Column

Select X X X X

Update X X X

Insert X X

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 2 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 2 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

Table View
Stored
Procedure

User-Defined
Function Column

Delete X X

Reference X X

Execute X X

Database users can be given Select, Update, Insert, and Delete permissions to tables

and views. This access level means that the user can read, write, delete, or change data

in the respective tables or views. Reference permission allows a user to use a foreign

key constraint to validate an entry to a column or table. Permissions to select, update,

and reference can also be handled at the column level.

To access a stored procedure or a user-defined function, a user has to have Execute

permission on it.

Statement Permissions Database users can be granted the following permissions to

create and manage other databases or database objects:

� Create Database

� Create Table

� Create View

� Create Default

� Create Rule

� Backup Database

� Backup Log

Implementing Security
You can implement a security solution using Enterprise Manager or system and

extended stored procedures. Security stored procedures can also be used to manage

security or implement some additional security features from a client application.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 2 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

Selection of Security Model
You select a security model in the SQL Server Properties dialog box.

To open this dialog, select Tools | SQL Server Configuration Properties.

Managing Logins
To create a login, expand the Security branch of the SQL server in Enterprise

Manager, right-click Logins, and select New Login from the pop-up menu. To

manage an existing login, right-click the login in the list pane and select Properties.

The application opens the SQL Server Login Properties dialog box to enable you to

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

manage login properties. You can select a name and type of login, password,

default database and language, and membership in Server Roles.

Alternatively, you can use sp_addlogin and sp_droplogin to manage SQL

Server logins:

EXEC sp_droplogin 'tomjones'

EXEC sp_addlogin @loginame='tomj',@passwd='T.Pwd',@defdb='Asset'

A password of a SQL Server login can be changed using sp_password:

exec sp_password @old='T.Pwd',@new='jso83-au82',@loginname='tomj'

The Database Access tab controls the databases the user can access and the user’s

membership in roles.

4 2 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 2 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

You can also grant logins using stored procedures. You can use sp_grantlogin to

create a login on SQL Server. To give a Windows user access to a SQL server, only

the name of the user is required as a parameter:

exec sp_grantlogin @login = 'Accounting\TomB'

However, when you create a login for SQL Server, you usually specify an

authentication password and a default database as well:

exec sp_addlogin @login='TomB',@passwd='password',@defdb='Asset'

Granting Database Access
As you have seen, database access can be granted to a login during the login’s

creation. There is also a way to grant access to additional databases after the login

has been created. Database users can be managed from the Users node of a database

in Enterprise Manager. You can both manage existing users and create new users.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 2 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

Login names have to be selected from the list box. The User Name list box is set

by default to the name of the login. This default is not required, but it simplifies user

management. In the Database Role Membership section, you check all databases to

which you want to grant the user membership.

You can perform the same operation from Transact-SQL.

To grant access to the database, use sp_grantdbaccess:

exec sp_grantdbaccess @loginname='TomB', @name_in_db='TomB'

In this case, login TomB will become associated with the new TomB user in the

current database.

You can review access using sp_helpusers and revoke access using

sp_revokedbaccess.

To assign a user to a user-defined database role, you issue a command such as

exec sp_addrolemember @rolename='Management', @membername='TomB'

You can review membership using sp_helprolemember and revoke it using

sp_droprolemember. You can create roles using sp_addrole:

exec sp_addrole @rolename='Management'

You can remove roles using sp_droprole. To view a list of roles, use

sp_helpfixeddbroles and sp_helproles.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 2 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

Assigning Permissions
The system of permissions controls user and role access to database objects and

statements. Permissions can exist in one of following three states:

� Granted Means that a user has permission to use an object or statement.

� Denied Means that a user is not allowed to use a statement or object, even

if the user has previously inherited permission (that is, the user is a member

of a role that has permission granted).

� Revoked Means that records that were stored for that security account

(that is, the records granting or revoking permissions) are removed from

the sysprotects table.

Physically, a record is stored in the sysprotects table for each user (or role) and

object (or statement) for which permission has been granted or denied.

Because of their physical implementation, permissions are cumulative. For example,

a user can receive permissions from one role and other permissions from some other

role. Or, the user can be denied permissions that have been granted to all other

members of a role.

You can control statement permissions from the Permissions tab of a database’s

Properties dialog box. You can set object permissions using the Permissions button in a

database object’s Properties dialog box. In both cases, you see a list of users and roles:

An administrator can grant (�), deny (�), or revoke (�) permissions.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

Grant Statement To grant statement permission, an administrator can issue a Grant

statement with the following syntax:

Grant {ALL | statement_name_1
[, statement_name_2, … statement_name_n]
}

To account_1[, account_2, … account_n]

To grant object permission, an administrator can issue a Grant statement with the

following syntax:

Grant {All [Privileges]| permission_1[,permission_2, … permission_n]}
{

[column_1, column_2, … column_n] ON {table | view }
| On {table | view } [column_1, column_2, … column_n]
| On {stored_procedure }

}

To account_1[, account_2, … account_n]
[With Grant Option]

As {group | role}

The following statement allows JohnS (SQL Server login) and TomB from the

Accounting domain (Windows domain user) to create a table in the current database:

Grant Create Table

To JohnS, [Accounting\TomB]

The following statement allows members of the AssetOwners role to view, store,

delete, and change records in the Inventory table:

Grant Select, Insert, Update, Delete

On Inventory

To AssetOwner

When you grant a user object permission using WITH GRANT OPTION, the user

will also be able to grant that permission to other users:

GRANT SELECT ON Contact TO roleHR

WITH GRANT OPTION

Deny Statement The Deny statement is used to explicitly negate permissions. Its

syntax is basically the same as the syntax of the Grant statement (except that the

keyword Deny is used).

4 2 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 2 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

The following statement prevents TomB from the Accounting domain from

creating a database:

Deny Create Database

To [Accounting\TomB]

The following statement prevents JohnS from deleting and changing records

from the Inventory table, even though he has inherited rights to view, store, delete,

and change records as a member of the AssetOwners role:

Deny Update, Delete

On Inventory

To JohnS

A Deny statement, even at the user level, will supercede all Grant permissions,

whether at the user or role level.

Revoke Statement The Revoke statement is used to deactivate statements that have

granted or denied permissions. It has the same syntax as the Grant and Deny statements

(except that the keyword Revoke is used).

It is easy to understand that permission can be removed using the Revoke statement.

It is a little more challenging to understand how a permission can be granted by

revoking it. To help you understand this concept, consider the following example in

which a user, JohnS, is a member of the AssetOwners role, which has permission to

insert, update, select, and delete records from the Inventory table:

exec sp_addrolemember 'AssetOwner', 'JohnS',

The administrator then decides to deny JohnS permission to delete and update records

from Inventory:

Deny Update, Delete

On Inventory

To JohnS

After a while the administrator issues the following statement:

Revoke Update, Delete

On Inventory

To JohnS

In effect, this command has granted Update and Delete permission on the Inventory

table to JohnS.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

Since the Revoke statement removes records from the sysprotects table in the current

database, the effect of the Revoke statement is to return permissions to their original

state. Naturally, this means that the user will not have access to the object (or statement).

In that respect, its effect is similar to the Deny statement. However, there are two major

differences between revoked and denied permissions: the Revoke statement does not

prevent permissions from being granted in the future; and the Revoke statement doesn’t

supercede any other granted permissions provided by membership in other roles, whereas

Deny does supercede those permissions.

Synchronization of Login and Usernames
Chapter 11 discusses in detail deploying/moving databases from one server to another.

The problem you will encounter in this situation is a mismatch between users and

logins. This problem is a result of the fact that records in the sysusers table of the

copied database point to the records in the syslogins table with matching sid fields.

Unfortunately, same sid value might be used by different logins on two different

servers. It is also possible that login with specific sid value does not yet exist on a

new server. One solution is to create and manage a script that re-creates logins and

users on the new server after a database is copied.

Another solution is to dynamically assemble a script to create logins on the target

server:

SET NOCOUNT ON

SELECT 'EXEC sp_addlogin @loginame = ''' + loginname + ''''

,', @defdb = ''' + 'tempdb'+ ''''

,', @deflanguage = ''' + language + ''''

,', @encryptopt = ''skip_encryption'''

,', @passwd ='

, cast(password AS varbinary(256))

,', @sid ='

, sid

FROM syslogins

WHERE name NOT IN ('sa')

AND isntname = 0

SELECT 'EXEC sp_grantlogin @loginame = ''' + loginname + ''''

FROM syslogins

WHERE loginname NOT IN ('BUILTIN\Administrators')

AND isntname = 1

4 3 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

select 'EXEC sp_addsrvrolemember '''+loginname+''', ''sysadmin'''

from syslogins

where sysadmin = 1

union

select 'EXEC sp_addsrvrolemember '''+loginname+''', ''securityadmin'''

from syslogins

where securityadmin = 1

union

select 'EXEC sp_addsrvrolemember '''+loginname+''', ''serveradmin'''

from syslogins

where serveradmin = 1

union

select 'EXEC sp_addsrvrolemember '''+loginname+''', ''setupadmin'''

from syslogins

where setupadmin = 1

union

select 'EXEC sp_addsrvrolemember '''+loginname+''', ''processadmin'''

from syslogins

where processadmin = 1

union

select 'EXEC sp_addsrvrolemember '''+loginname+''', ''diskadmin'''

from syslogins

where diskadmin = 1

union

select 'EXEC sp_addsrvrolemember '''+loginname+''', ''dbcreator'''

from syslogins

where dbcreator = 1

union

select 'EXEC sp_addsrvrolemember '''+loginname+''', ''bulkadmin'''

from syslogins

where bulkadmin = 1

select 'Run these after dbs are created:'

select ' EXEC sp_defaultdb @loginame = ''' + loginname + ''''

,', @defdb = ''' + Coalesce(dbname, 'tempdb') + ''''

FROM syslogins

where name NOT IN ('sa')

AND isntname = 0

--

select ' EXEC sp_defaultdb @loginame = ''' + loginname + ''''

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 3 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

,', @defdb = ''' + Coalesce(dbname, 'tempdb') + ''''

FROM syslogins

WHERE loginname NOT IN ('BUILTIN\Administrators')

AND isntname = 1

When executed on the source server, the script generates one group of commands

to be executed before deployment, and one group to be executed after the databases

are deployed on the target server. The first group re-creates logins, preserves their

IDs and passwords, and then renews their membership in server roles. The second

group sets their default databases.

SQL Server also offers the sp_change_users_login procedure. You can use it to

display the mapping between the user and login:

exec sp_change_users_login @Action = 'Report'

Note that using sp_change_users_login with @Action='Report' does not accept

parameters for user or login names.

You can set a login manually for a single user:

exec sp_change_users_login @Action = 'Update_one',

@UserNamePattern = 'TomB',

@LoginName = 'TomB'

SQL Server can also match database users to logins with the same name:

exec sp_change_users_login @Action = 'Auto_Fix',

@UserNamePattern = '%'

For each user, SQL Server tries to find a login with the same name and to set the

login ID.

TIP

sp_change_users_login with 'Auto_Fix' does a decent job, but the cautious DBA should inspect
the results of this operation.

Managing Application Security Using Stored Procedures,
User-Defined Functions, and Views
When permissions are granted on complex objects like stored procedures, user-

defined functions, or views, the user does not need to have permissions on the

4 3 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

underlying objects within or referenced by it. This characteristic is illustrated in the

following example:

Create Database Test

Go

sp_addlogin @loginame = 'AnnS',

@passwd = 'password',

@defdb = 'test'

GO

Use Test

Exec sp_grantdbaccess @loginame = 'AnnS',

@name_in_db = 'AnnS'

Go

Create Table aTable(

Id int identity(1,1),

Description Varchar(20)

)

Go

Create Procedure ListATable

as

Select * from aTable

go

Create Procedure InsertATable

@Desc varchar(20)

as

Insert Into aTable (Description)

Values (@Desc)

Go

Deny Select, Insert, Update, Delete

On Atable

To Public

Grant Execute

On InsertATable

To Public

Grant Execute

On ListATable

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 3 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

To Public

Go

A table is created along with two stored procedures for viewing and inserting

records into it. All database users are prevented from using the table directly but are

granted permission to use the stored procedures.

NOTE

All database users are automatically members of the Public role. Whatever permissions are
granted or denied to the Public role are automatically granted or denied to all database users.

After this script is executed, you can log in as AnnS in Query Analyzer and try to

access the table both directly and through stored procedures. Figure 10-3 illustrates

such attempts.

There are two exceptions to the rule I have just described:

� If the owner of the stored procedure is not the owner of the database objects by

the stored procedure, SQL Server will check the object’s permissions on each

underlying database object. Usually, this is not an issue because all objects

should be owned by the dbo user.

� If you are executing a character string batch in a stored procedure, you still

need to set permissions on all underlying objects.

Stored procedures, user-defined functions, and views are important tools for

implementing sophisticated security solutions in a database. Each user should have

permissions to perform activities tied to the business functions for which he or she is

responsible and to view only related information. It is also easier to manage security

in a database on a functional level than on the data level. Therefore, client applications

should not be able to issue ad hoc queries against tables in a database. Instead, they

should execute stored procedures.

Users should be grouped in roles by the functionality they require, and roles should

be granted execute permissions to related stored procedures. Since roles are stored only

in the current database, using them helps you avoid problems that occur during the

transfer of the database from the development to the production environment.

Managing Application Security Using a Proxy User
Security does not have to be implemented on SQL Server. If the application is

developed using three-tier architecture, objects can use roles, users, and other

4 3 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : I n t e r a c t i o n w i t h t h e S Q L S e r v e r E n v i r o n m e n t 4 3 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

security features of Microsoft Transaction Server (on Windows NT) or Component

Services (in Windows 2000) to implement security. Security is sometimes also

implemented inside the client application.

In both cases, database access is often accomplished through a single database

login and user. Such a user is often called a proxy user.

NOTE

The worst such solution occurs when the client application developer completely ignores SQL Server
security and achieves database access using the sa login. I have seen two variants on this solution.

One occurs when the developer hard-codes the sa password inside an application. The administrator
is then prevented from changing the password (or the application will stop functioning) and the
security of the entire SQL Server is exposed.

The other occurs when a developer stores login information in a file or Registry so that it can be
changed later. Unfortunately, it can also be read by unauthorized people, and again, SQL Server
security is compromised.

Figure 10-3 Stored procedures are accessible even when underlying objects are not.

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Managing Application Security Using Application Roles
Application roles are designed to implement security for particular applications.

They are different from standard database roles in that

� Application roles require passwords to be activated.

� They do not have members. Users access a database via an application.

The application contains the name of the role and its password.

� SQL Server ignores all other user permissions when the application role

is activated.

To create an application role, administrators should use sp_addapprole:

Exec sp_addapprole @rolename = 'Accounting', @password = 'password'

Permissions are managed using Grant, Deny, and Revoke statements in the usual manner.

A client application (or a middle-tier object) should first log in to SQL Server in

the usual manner and then activate the application role using sp_setapprole:

Exec sp_setapprole @rolename = 'Accounting', @password = 'password'

4 3 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 10

P:\010Comp\D_Base\896-2\ch10.vp
Tuesday, April 29, 2003 10:42:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

11
Source Code

Management and
Database Deployment

437

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
The Concept of Source Code Management

Database Deployment

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:52:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

S
ource code control (or version control) is typically introduced in development

environments in which more than one developer needs to work with the same

piece of code. It allows development organizations and their members to

� Manage code centrally

� Manage multiple versions of the same code

� Track change history

� Compare versions

� Prevent or allow developers from modifying the same piece of code at the

same time

� Synchronize deployment of all modifications needed to implement a single

feature or bug fix

The problem that you will face relatively often is that, while you develop your

database (and application) in a development environment, you must deploy the database

first in a test environment and then in a production environment. Initially, you need to

deploy the complete database, but later you will have to update the database with design

changes and hotfixes.

In this chapter, I will introduce methods and tools for source code management

and database deployment. I will present solutions using two different approaches.

One approach is for developers who have Visual Studio .NET (and who are probably

doing both database and application development). The other, more traditional,

approach is geared toward SQL Server specialists who are working with traditional

database development tools. I will use the tools that are delivered with SQL Server,

as well as tools that I have developed, to automate some processes.

The Concept of Source Code Management
Microsoft provides source code control software as an integral part of its development

environment under the name Visual SourceSafe. This application allows developers

to control their most valuable asset—source code. You can also use the Visual

SourceSafe database to manage other file types such as web content, documentation,

and test data, but our focus in this chapter is on how to use Visual SourceSafe to

manage database objects.

4 3 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:52:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introduction to Microsoft Visual SourceSafe
Microsoft’s primary purpose in delivering Visual SourceSafe as a part of its Visual

Studio .NET suite of development tools is to provide a project-oriented means of

storing and organizing code that allows developers to spend more time developing

their projects and less time managing them. The emphasis is on ease of use and

integration with a wide range of development tools. SQL Server developers can

benefit greatly from this ease of use and integration, not only with regard to source

code, but also as a means of organizing related files such as project documentation

and test data.

As with SQL Server, there are different ways to use Visual SourceSafe. It is

essentially a client/server application, but if you are an independent developer, your

development workstation will likely also be your application server, database server,

and source code server. Of course, if you are an independent developer, you may be

wondering why you have a need for source code control at all. I will discuss this

issue later in the chapter. For now, you can take my word that source code control

is just as important for the solo developer working on a simple project as it is for a

large development team working on a complex, component-based project.

If you are a member of a development team, the Visual SourceSafe client will

allow you to work with local copies of code while preventing other members of your

team from overwriting your changes while you have the code checked out from the

Visual SourceSafe database. The benefit of this simple concept is obvious, but you

have to work with and become comfortable with Visual SourceSafe before its many

other benefits will become just as obvious. After you have posted your source code,

you can

� Get the current version of all files.

� Check out a copy of a file that needs to be changed. Visual SourceSafe is,

by default, configured to prevent all other developers from changing the

file until it is returned (checked in) to the Visual SourceSafe database.

� View differences between a local version of a source code file and the

latest version stored in the Visual SourceSafe database.

� Label versions of files to identify them with a particular release of a

software product.

� Retrieve older versions of a particular file or a complete set of project files.

� View changes between any two versions of a source code file.

� Share common files between separate projects.

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 3 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:52:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

� Make a single backup copy of the complete source code and all supporting files.

� Create branches of source code files to separately manage multiple versions of

a software project.

� Merge code in different branches of the source code file.

Administering the Visual SourceSafe Database
Before you can use Visual SourceSafe, you need to create users and assign privileges

to them.

When you install Visual SourceSafe, you create just two users: Admin and Guest.

The Admin user has all privileges in the database and can also create other users. The

Guest user is initially limited to read-only access to source code files. Both users are

created with their password set to an empty string (that is, blank). Since this state

constitutes a threat to your source code, your first step should be to set the Admin

password using Visual SourceSafe Administrator (User | Change Password). When

you are done, create a user for yourself (Users | Add User) with the appropriate

permissions.

TIP

If your Visual SourceSafe username and password match your operating system username and
password, you will not have to type them each time you open Visual SourceSafe on the local
system. Visual SourceSafe can be configured to use them automatically.

With Visual SourceSafe, you can assign more refined permission levels, such as

Add, Rename, Delete, Check In, Check Out, Destroy, and Read. To activate this

wide-ranging control, click Tools | Options | Project Security and check the Enable

Project Security option.

Adding Database Objects to Visual SourceSafe in Visual Studio .NET
To demonstrate the implementation of source code control in a database project, you

add code from your sample Asset database in Visual Studio .NET:

1. Create the Asset database project in Visual Studio .NET.

2. Open Solution Explorer.

3. Make sure that the Asset database is one of the Database References. If the

reference does not already exist, right-click Database References and select

New Database Reference to create one that points to the Asset database.

4 4 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:52:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 4 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

4. In the Server Explorer, expand the Data Connections node.

5. Right-click the Asset data connection and choose Generate Create Script. The

program prompts you for objects to be scripted (see Figure 11-1 above).

6. Select Script All Objects, and then switch to the Options tab and select the

Script Database, Script Object-level Permissions, Windows Text (ANSI), and

Create One File per Object options.

7. When the program prompts for the folder, accept …\Asset\Change Scripts.

The program will then create a set of script files for the database objects

(see Figure 11-2).

8. Select File | Source Control | Add Solution to Source Control. Visual Studio

.NET will prompt you to log in to the Visual SourceSafe Common database:

Figure 11-1 The Generate Create Scripts dialog box

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:52:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 4 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

9. If your Visual SourceSafe database is stored locally, you can keep the Common

database. If your Visual SourceSafe database is not stored locally, use the Browse

button to locate the shared srcsafe.ini file.

NOTE

On my machine, the Visual SourceSafe database is located in the C:\Program Files\Microsoft Visual
Studio\Common\VSS folder. My computer, in this case, is a development workstation, as well as the
database server and Visual SourceSafe server.

If the Visual SourceSafe client is installed on the same machine as SQL Server, the location of
the Visual SourceSafe database that you need to specify in this text box should be relative to the
server machine. If you are developing from a workstation that is separate from the “development”
server, you have to be careful how you enter the location of the Visual SourceSafe database.
You should use the server’s absolute path (for example: C:\Program Files\Microsoft Visual
Studio\Common\VSS) regardless of whether you have that drive mapped on your workstation
using another drive letter (such as S:).

Figure 11-2 Create scripts

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 4 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

10. Visual SourceSafe prompts you to add a project to Visual SourceSafe. Name

the project (you can also type a comment to describe the project).

Visual SourceSafe creates a project and locks all Create scripts (scripts that can

be used to drop and create objects from scratch). You can see a small lock icon

beside each Create script in Solution Explorer:

NOTE

From this moment, you must check out a Create script before you can change it.

Managing Create Scripts in Visual Studio .NET
When Create scripts are locked, you can open them for viewing in the editor, but

Visual Studio .NET will prevent you from changing them until you check them out.

To view a Create script, right-click the script you want to review and select Open.

Visual Studio .NET opens a copy of the Create script but marks it “read-only.”

The following list demonstrates how to change a stored procedure:

1. Close the window with the read-only version of the Create script.

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 4 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

2. Right-click the script for a stored procedure and select Check Out from the

pop-up menu. The program prompts you for confirmation and comment:

3. Make some trivial change to the stored procedure.

4. Save the changes (File | Save) in the change file.

5. Right-click the file and choose Check In from the menu. The program prompts

you for confirmation and comment again.

TIP

Take the time to describe what changes you made in your comment. This will be incredibly helpful
if some detective work is required later.

6. Click Check In. Visual Studio .NET saves the changes in Visual SourceSafe

and locks the Create script.

7. At this point, the stored procedure does not yet exist in SQL Server. You must

right-click the file and select Run to add it to the default database. Visual Studio

.NET opens the Database Output pane to show the results (and possibly errors)

of the execution (see Figure 11-3).

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

Unfortunately, this solution does not prevent another developer from using some other tool to
change a database object directly in the database. You can even open Server Explorer in Visual
Studio .NET to change them without source code control. Visual SourceSafe only works through
consensus. Loose cannons can still wreak havoc on your development ship.

To promote the change to another server, you can choose the Run On option in

the context menu of the change script.

TIP

When I first started to use Visual SourceSafe, the directions implied by the terms “Check Out”
and “Check In” sounded inverted to me. Just think of Visual SourceSafe as an actual safe from
which you are taking your code and into which you subsequently return your code after you are
done with it.

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 4 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

Figure 11-3 Database Output pane of the Create script executed against the server

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

8. Now, go back and check out the same stored procedure again.

9. Open it and reverse your previous changes.

10. Save the stored procedure.

11. Run the Change script against the server to test it (right-click the Change script

and select Run).

Assume that you are not satisfied with these changes and that you want to

abandon them. (Assume that you have tested them and the result is not what you

expected.) To do so:

1. Select Undo Check Out from the context menu. The Visual SourceSafe Server

locks the file again and uses the previous copy from Visual SourceSafe to

reverse the changes in the local file.

2. To reverse changes to the database, you must Run the change script again.

NOTE

Undo Checkout does not actually change any code already deployed, but merely reverses the
check out process.

Visual SourceSafe Explorer
The full power of Visual SourceSafe can only be realized through one special tool—

Visual SourceSafe Explorer. Take a look at this tool by following these steps:

1. Open Visual SourceSafe Explorer from the Windows Start menu (depending

on the version that you have: Start | Programs | Microsoft Visual Studio .NET |

Microsoft Visual SourceSafe | Visual SourceSafe) or from Visual Studio .NET

(File | Source Control | Microsoft Visual SourceSafe).

2. Expand the Asset project and drill down until you reach Stored Procedures (see

Figure 11-4).

The following sections examine some of the most interesting features of the

Visual SourceSafe Explorer, particularly history, labels, and versions.

History
Visual SourceSafe keeps an audit trail of changes made to a file. To view this history

of changes:

4 4 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1. Right-click the stored procedure that you edited earlier in this chapter and

select Show History from the pop-up menu.

2. Visual SourceSafe prompts you to define the history details you would like

to display:

3. In this case, accept the defaults and click OK.

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 4 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

Figure 11-4 Visual SourceSafe Explorer

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Visual SourceSafe Explorer displays a list of the different versions of the stored

procedure, along with the name of the user responsible for each action.

Now you have several options. If you select one version, you can view (click

View) the code in an ASCII viewer. You can also see details (click Details) of the

selected version such as comments and timestamp. The Get button lets you obtain

a version of the stored procedure in a text file.

You can also temporarily or permanently set one of the previous versions to be

a current one. The Pin option is usually applied as a temporary measure to test the

behavior of an older version of a procedure. If you find that changes you made in

your code are introducing more problems than they are solving, you can use the

Rollback function to return to an earlier version of the code. Note that all newer

versions will be deleted.

My favorite option is Diff. It compares two versions of a file. To use it:

1. Select two versions of a stored procedure (for example, version 2 and version 3)

in the History window. You can select multiple versions by pressing the CTRL

key and then clicking them.

2. Click the Diff button. The Difference Options dialog box appears.

4 4 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3. This dialog box lets you specify parameters for comparing files. If you wish to

ignore case and white space, click OK to accept the defaults; Visual SourceSafe

Explorer displays a window in which the differences between the two versions

are highlighted (see Figure 11-5).

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 4 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

Figure 11-5 File differences in Visual SourceSafe Explorer

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 5 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

Labels and Versions
You have probably realized by now that the term “version” in Visual SourceSafe

does not actually correspond to the concept of version (or release) that we generally

think of when we consider software. A Visual SourceSafe “version” actually corresponds

to a change in the source code. You should use labels in Visual SourceSafe to implement

the equivalent of a release.

You can apply the Label option from the main window of the Visual SourceSafe

Explorer. You can select one or more files and/or one or more projects (folders).

When you apply the Label option (File | Label), the Label dialog box appears and

prompts you to specify the text of the label (your official release number, for example).

The current versions of all selected files will be labeled. Later, you can use these

labels to collect the code that belongs to a particular version. This feature can be

very important for supporting or testing the product.

Even more exciting is the opportunity to view the complete history of a project

(right-click the project folder and select Show History from the pop-up menu) and

determine many historical facts about the project, such as which changes were

performed on it after a particular release.

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Adding Database Objects to Visual SourceSafe: Traditional Approach
Unfortunately, if you do not have Visual Studio .NET, it is not easy enough to manage

the code of individual database objects with only the tools built into SQL Server and

Visual SourceSafe. The process involves two steps:

1. Generate scripts from SQL Server.

2. Check in files into Visual SourceSafe.

Therefore, I’ve created a tool that loops through database objects and scripts them

into separate files—TbDbScript. It’s written in VBScript and you can download it

from www.TrigonBlue.com/sqlxml/sqlxml_download.htm. To run it, you must use

Windows Script Host and cscript.exe. Execute from the command prompt:

cscript TbDbScript.vbs .\ss2k sa password c:\dbscripter\ Asset

The parameters are: server, login, password, destination of database files, and,

optionally, the database name. Use the space character as a parameter delimiter. If you

omit the last parameter, the program will script all nonsystem databases on the server.

When scripting is finished, you will find database objects in the set of Create

scripts in the folder named after the database (see Figure 11-6).

The tool also creates deployment scripts. They contain Create scripts grouped by

type. You will read more about them in the “Deployment Scripts: Traditional Approach”

section, later in the chapter.

It is true that the Generate SQL Scripts Wizard in Enterprise Manager will perform

similar actions, but there are several significant differences:

� TbDbScript follows naming conventions used in Visual Studio.

� Generation does not require user intervention and therefore is less prone to

errors. The resulting files are always the same.

� The script generates individual database object Create scripts and deployment

scripts at the same time.

� You can also schedule usage of TbDbScript, which may be very useful when

the development team is not using Visual SourceSafe religiously—as when the

team is making changes live to the development database.

� Every deployment script file begins with a Use database_name statement and

they can even be deployed manually using Query Analyzer.

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 5 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 5 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

Now that Create scripts and deployment scripts are created, all you need to do is

check them into the Visual SourceSafe database. You can do this manually with Visual

SourceSafe Explorer or automatically with a little VBScript tool—TbDir2Vss.vbs.

You can download the tool from www.TrigonBlue.com/sqlxml/sqlxml_download.htm.

To run it, you must use Windows Script Host and cscript.exe. You need to specify

the location of the srcsafe.ini file, username, password, Visual SourceSafe project/

folder, and local folder:

cscript TbDir2Vss.vbs "C:\Program Files\Microsoft Visual

Studio\Common\VSS\srcsafe.ini" admin password $/Asset/ c:\dbscripter\Asset

The TbDir2Vss.vbs tool can also be scheduled along with TbDbScript.vbs to

script databases and put them in Visual SourceSafe.

Figure 11-6 Database object scripts generated by TbDbScript

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Database Deployment
Traditionally, RDBMS installation is perceived as complicated, and your customer

will understand that you need to send a database administrator (or a couple of them)

to set up the environment. When you work with a file-based database system such as

Access, database deployment is not a big issue. You usually create a setup program

for your client application, and your database (mdb) file is just one more file that

must be installed on the computer. When you are working in a client/server environment

with SQL Server, you first have to install and configure the database server and then

install databases.

Fortunately, installation of SQL Server has been simplified significantly. Almost

anyone can perform it and there are usually no problems. In fact, SQL Server can be

configured to be installed unattended. Microsoft SQL Server Desktop Engine (MSDE)

is designed to be deployed on client computers using a special set of setup files that

can be included in your setup program.

Some early versions of SQL Server required that all dependent objects be present

on the server before a new object could be created. Administrators had to use many

tricks to transfer a database from one server to another. The introduction of Deferred

Name Resolution has reduced the complexity of database deployment in the SQL

Server environment. For example, a stored procedure can be created even if it references

a stored procedure that is not yet on the server. Unfortunately, it is not perfect yet.

For example, it is not possible to create a foreign key that references a table that is

not yet in the database.

The methods for database deployment can be divided into two groups:

� Deployment of a complete database

� Deployment of individual objects

Deployment of a Complete Database: Traditional Approach
The idea behind this method is to use some means of moving the complete database

so that relationships between individual database objects do not have to be managed

once they are established. There are several options:

� Detach and reattach the database

� Use the Copy Database Wizard

� Back up and restore

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 5 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 5 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

The idea behind the first two options is to detach the database from the server,

copy the database files to the production server, and then attach the database files to

the new server (and reattach the database files to the original server, if applicable).

To detach the Asset database manually, you can use the following script:

EXEC sp_detach_db 'Asset'

SQL Server checks the integrity of the database, flushes everything that is in memory

to disk, stops further changes to the database, and releases database files.

NOTE

You must have exclusive use of the database to perform this function.

You can then copy the files (in this case, Asset.mdf and Asset_log.ldf) from the

\mssql\data folder to a data folder on the target server. To attach the Asset database,

you can use

EXEC sp_attach_db @dbname = 'Asset',

@filename1 = 'c:\Program Files\Microsoft SQL ',

+ 'Server\mssql\data\Asset.mdf'

@filename2 = 'c:\Program Files\Microsoft SQL '

+ 'Server\mssql\data\Asset_log.ldf'

If your database consists of more files, simply add them to the list of parameters.

But if your database contains just one data file, you can use an alternative command:

EXEC sp_attach_single_file_db

@dbname = 'Asset',

@physname = 'c:\Program Files\Microsoft SQL ',

+ 'Server\mssql\data\Asset.mdf'

TIP

There is no harm in dropping the transaction log file and attaching just the data file (as long as
you do not have some special reason, such as replication, to preserve the log).

You can execute these Transact-SQL statements manually in Query Analyzer or

from the setup program. The setup program can use the command-prompt utility

osql.exe to run a script file or use ADO to execute the script.

NOTE

I have chosen this method for deployment of the sample database to your computer.

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A new feature found in SQL Server 2000 is the Copy Database Wizard. You can

use it to copy (or move) a database on a known (production, testing, or some other)

server. Behind the scenes, the wizard uses stored procedures for detaching and

attaching the database. It also contains features for copying logins, error messages,

jobs, and system stored procedures, which may be useful for completing server

configuration. The disadvantage to this wizard is that it can be used only between

servers on the same network. It is useful for deployment of databases used internally

in a local department or organization, but not for deployment of databases that are

required for shrink-wrapped software.

Another solution is based on creating a backup of the database on a development

server and then restoring the database on a production server. Again, this can be

performed manually or it can be scripted and included in the setup program.

Unfortunately, these techniques will not restore the links between server logins and

database users. Server logins are stored in the master database; on different servers,

different logins will have different IDs. Database users are stored in each user database.

One of the parameters for a database user is the ID of the login to which it is attached.

However, that ID is likely to refer to a different login on the production server. The

simplest way to handle this problem is either to create all users again using Enterprise

Manager or a script that you have prepared in advance, or to use roles instead of users

as the foundation of your security solution. See the “Security” section in Chapter 10

for more information. SQL Server offers another solution to this problem—see

“Synchronization of Login and Usernames” in Chapter 10.

Another disadvantage to these methods is that you have to maintain a “clean”

database—a database that contains just database objects and seed data. Such a database

can be delivered to a customer, but it cannot be used for development and testing. In

both development and test environments, you need to add test data in order to test all

features. You need to develop either scripts for adding test data or, alternatively, scripts

for removing test data from a development database.

Deployment of Individual Objects
Some organizations choose to manage the code for individual objects and to deploy

the database piecemeal by executing the code on the production server. This provides

more flexibility, but requires more effort.

Deployment Scripts: Traditional Approach
Individual object scripts can be grouped in files with all objects of a particular type

or even with all objects in a database. Such files can be created using the Generate

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 5 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL Script tool in Enterprise Manager. It can be set so that the group of objects

of the same type is saved in a single file. It is also possible to use a custom tool to

aggregate individual database object files from the Visual SourceSafe database. Most

ERD modeling tools can also produce such scripts (but their scripts often require

manual intervention). You can also use TbDbScript, described earlier in this chapter.

To have better control, I like to use the TbDbScript tool, or the Generate SQL

Script tool in SQL Server, to create one deployment script for each type of database

object. When the system contains more than one database, I find it very useful that

TbDbScript names deployment script files using the Database - DbObjectType.sql

convention (see Figure 11-7).

Scripting Data: Traditional Approach
Some tables contain data (seed, static, or lookup data) that needs to be deployed along

with the database schema. To assist in deployment and to facilitate storing the data with

the source code, use the setup_DataGenerator stored procedure, described in Chapter 9.

Use the setup_DataGenerator procedure on all tables with data that need to

be scripted:

set nocount on

exec setup_DataGenerator 'AcquisitionType'

exec setup_DataGenerator 'EqType'

exec setup_DataGenerator 'Location'

exec setup_DataGenerator 'OrderStatus'

exec setup_DataGenerator 'OrderType'

exec setup_DataGenerator 'Status'

exec setup_DataGenerator 'Province'

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

4 5 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

Figure 11-7 Deployment scripts

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The result will be a script that consists of Insert statements (which had to be cropped

to fit the page):

Insert into AcquisitionType(AcquisitionTypeId,AcquisitionType) values

Insert into AcquisitionType(AcquisitionTypeId,AcquisitionType) values

Insert into AcquisitionType(AcquisitionTypeId,AcquisitionType) values

Insert into AcquisitionType(AcquisitionTypeId,AcquisitionType) values

Insert into AcquisitionType(AcquisitionTypeId,AcquisitionType) values

--

Insert into EqType(EqTypeId,EqType) values (1,'Desktop')

Insert into EqType(EqTypeId,EqType) values (2,'Notebook')

Insert into EqType(EqTypeId,EqType) values (3,'Monitor')

Insert into EqType(EqTypeId,EqType) values (4,'Ink Jet Printer')

...

Save the resulting scripts in a text file (I often use Database - Data.sql as the name

of this file).

Scripting Data in Visual Studio .NET
Alternatively, you can use Visual Studio .NET to script data and add it to Visual

SourceSafe:

1. Open Server Explorer, navigate through the nodes, and expand the Tables node

in the Asset database.

2. Select the tables with seed data (such as AcquisitionType, EqType, OrderStatus,

and OrderType).

3. Right-click the selection and select Export Data from the menu.

4. The program prompts you for Locations For Exported Data File and to confirm

that you want to export the selected data. The default location will be the folder that

contains the Create scripts you generated earlier.

5. When you confirm the export operation, the program generates a set of DAT

files. You typically need to select the files in Solution Explorer and Check

(them) In.

These files are not SQL Server scripts but simple binary files (see the content of a

file in Figure 11-8).

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 5 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Deploying Scripts: Traditional Approach
The deployment scripts can then be executed manually one by one in Query Analyzer,

but I have created a stored procedure that allows me to automate execution of a set of

scripts—prBatchExec.

To prepare for deployment, I need to create a list of scripts and save it in a text file.

The procedure executes the scripts in the order in which they are listed in the text file:

-- list of deployment scripts for Asset database

Asset - database.DBS

Asset - UDT.sql

Asset - Table.sql

Asset - DRI.sql

Asset - Functions.sql

Asset - sp.sql

Asset - Views.sql

4 5 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

Figure 11-8 Content of DAT file

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Although Deferred Name Resolution allows you to ignore the order of creation

of stored procedures, there are still some dependencies that must be followed. For

example, indexes must be created after tables, tables after user-defined data types,

and all of them after the database has been initiated. With this in mind, one of the

main advantages of prBatchExec is that it preserves the order of execution of files.

No human intervention is required and the opportunity for error is reduced.

The procedure uses SQL Distributed Management Objects (SQL-DMO) to

execute individual scripts against the database server. SQL-DMO is a set of COM

objects that encapsulate the functionality needed for administering SQL Server. To

use SQL-DMO from SQL Server, you have to use the system stored procedures for

OLE Automation (COM), described in Chapter 10:

create proc prBatchExec

-- Execute all sql files in the specified folder using the alphabetical order.

-- Demonstration of use of OLE Automation.

@ServerName sysname = '(local)\ss2k2',

@UserId sysname = 'sa',

@PWD sysname = 'my,password',

@DirName varchar(400)='C:\dbScripter\test',

@File varchar(400) = 'list.txt',

@UseTransaction int = 0

as

set nocount on

declare @FileSystemObject int,

@objSQL int,

@hr int,

@property varchar(255),

@return varchar(255),

@TextStream int,

@BatchText varchar(8000),

@FilePath varchar(500),

@ScriptId varchar(200),

@Cmd varchar(1000)

--- Get list of files

create table #FileList (ScriptId int identity(1,1),

FileName varchar(500))

select @Cmd = 'cd ' + @DirName + ' & type ' + @File

insert #FileList (FileName)

exec master..xp_cmdshell @Cmd

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 5 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

-- remove empty rows and comments

delete #FileList where FileName is null

delete #FileList where FileName like '--%'

-- prepare COM to connect to SQL Server

EXEC @hr = sp_OACreate 'SQLDMO.SQLServer', @objSQL OUTPUT

IF @hr < 0

BEGIN

print 'error create SQLDMO.SQLServer'

exec sp_displayoaerrorinfo @objSQL, @hr

RETURN

END

EXEC @hr = sp_OAMethod @objSQL, 'Connect', NULL, @ServerName, @UserId, @PWD

IF @hr < 0

BEGIN

print 'error Connecting'

exec sp_displayoaerrorinfo @objSQL, @hr

RETURN

END

EXEC @hr = sp_OAMethod @objSQL, 'VerifyConnection', @return OUTPUT

IF @hr < 0

BEGIN

print 'error verifying connection'

exec sp_displayoaerrorinfo @objSQL, @hr

RETURN

END

-- prepare file system object

EXEC @hr = sp_OACreate 'Scripting.FileSystemObject', @FileSystemObject OUTPUT

IF @hr < 0

BEGIN

print 'error create FileSystemObject'

exec sp_displayoaerrorinfo @FileSystemObject, @hr

RETURN

END

-- begin transaction

if @UseTransaction <> 0

BEGIN

EXEC @hr = sp_OAMethod @objSQL, 'BeginTransaction '

IF @hr < 0

BEGIN

print 'error BeginTransaction'

exec sp_displayoaerrorinfo @objSQL, @hr

RETURN

END

4 6 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

END

-- iterate through the temp table to get actual file names

select @ScriptId = Min (ScriptId) from #FileList

WHILE @ScriptId is not null

BEGIN

select @FilePath = @DirName + '\' + FileName

from #FileList where ScriptId = @ScriptId

if @FilePath <> ''

BEGIN

print 'Executing ' + @FilePath

EXEC @hr = sp_OAMethod @FileSystemObject, 'OpenTextFile',

@TextStream output, @FilePath

IF @hr < 0

BEGIN

print 'Error opening TextFile ' + @FilePath

exec sp_displayoaerrorinfo @FileSystemObject, @hr

RETURN

END

EXEC @hr = sp_OAMethod @TextStream, 'ReadAll', @BatchText output

IF @hr < 0

BEGIN

print 'Error using ReadAll method.'

exec sp_displayoaerrorinfo @TextStream, @hr

RETURN

END

-- print @BatchText

-- run it.

EXEC @hr = sp_OAMethod @objSQL, 'ExecuteImmediate', Null , @BatchText

IF @hr <> 0

BEGIN

if @UseTransaction <> 0

BEGIN

EXEC @hr = sp_OAMethod @objSQL, 'RollbackTransaction '

IF @hr < 0

BEGIN

print 'error RollbackTransaction'

exec sp_displayoaerrorinfo @objSQL, @hr

RETURN

END

END

print 'Error ExecuteImmediate.' --Transaction will be rolled back.'

exec sp_displayoaerrorinfo @objSQL, @hr

RETURN

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 6 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 6 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

END

EXECUTE sp_OADestroy @TextStream

END

print 'Finished executing ' + @FilePath

select @ScriptId = Min(ScriptId) from #FileList where ScriptId > @ScriptId

end

print 'Finished executing all files.'

drop table #FileList

EXECUTE sp_OADestroy @FileSystemObject

if @UseTransaction <> 0

BEGIN

EXEC @hr = sp_OAMethod @objSQL, 'CommitTransaction '

IF @hr < 0

BEGIN

print 'error CommitTransaction'

exec sp_displayoaerrorinfo @objSQL, @hr

RETURN

END

END

RETURN 0

Before you can use the prBatchExec stored procedure, you must locate in SQL

Server Books Online sp_displayoaerrorinfo and sp_hexadecimal and store them in

the same database with prBatchExec (in other words, the Asset database).

To execute the prBatchExec procedure, you need to specify values for the parameters

for the SQL Server instance, login, password, folder that contains your deployment

scripts, and the name of the file containing the list of deployment scripts. You also need

to decide whether deployment is to be performed as a transaction. Transactions cannot

be used for initial deployment because database creation cannot be performed by

a transaction. However, using transactions is very useful for incremental builds.

The prBatchExec procedure has one limitation. It can process only short (up to

8000 characters) scripts. I have decided to include it in this the book for two reasons.

First, 8000 characters is probably enough for running an incremental build. Second,

it’s educational—it demonstrates use of COM objects from Transact-SQL. For full

builds, you have to use an updated version—prBatchExec3.

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 6 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

You can also download BatchExec.exe program from www.Trigonblue.com/

sqlxml/sqlxml_download.htm. This is a console C# application and you can run it

on computers that have the .NET Framework installed using

BatchExec (local)\ss2k2 sa my,password c:\script\test list.txt

Deploying Create Scripts in Visual Studio .NET
Create scripts generated in Visual Studio .NET can also be “glued” together and

deployed on other servers:

1. Select the Create Scripts folder in Solution Explorer, and then select Project |

Create Command File.

2. Set the Name of Command File and move all or just some of the scripts in the

Available Scripts list to the list of Scripts To Be Added To The Command File.

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3. If you have moved some of the table files (TAB) that have data files (DAT)

associated with them, the Add Data button becomes available. Click the button

and the program prompts you to confirm associations between files:

4. You probably do not need to change anything, so just click OK and the program

returns you to the previous screen.

5. Click OK again and the program generates a command file (or batch file) that

can be used to execute all Create scripts on any server (see Figure 11-9).

4 6 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

Figure 11-9 Command file for deploying Create scripts

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Incremental Build: Traditional Approach
Whichever method you choose for performing a full build of the database, you will

eventually need to deploy design changes and hotfixes while preserving data in the

database. Such changes can even accumulate over time. Typically, code changes for

procedures can simply be executed in their latest form against the production database,

but changes to the database structure (tables) must be implemented in such a way

that they preserve data.

prBatchExec is very useful for deploying incremental changes on the database

server. Individual changes to database objects can be grouped by defect number or

version number (see Figure 11-10).

It is especially useful to run the process as a transaction in this case. If an unexpected

error occurs during the deployment, it is preferable to roll back all the changes,

leaving the production system intact.

TIP

Once you assemble deployment scripts, it is critical to perform sufficient unit testing. You can run
the scripts against a new server or a new instance on the existing server and test the changes.
You should repeat the deployment, fixing issues that you find, until it runs without a glitch. The
ultimate test is whether the application can work with the database system without additional
intervention.

C h a p t e r 1 1 : S o u r c e C o d e M a n a g e m e n t a n d D a t a b a s e D e p l o y m e n t 4 6 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

Figure 11-10 Deployment script for incremental build

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Incremental Build in Visual Studio .NET
Alternatively, you can create incremental scripts in Visual Studio .NET. In this case,

you create Change scripts and manage them in the folder of the same name (in Solution

Explorer). You should again create a command file, but you should probably name

it differently. You will use the same techniques and methods that have already been

described regarding the full build in the earlier section “Scripting Data in Visual

Studio .NET.”

TIP

You should pay special attention to avoid mixing versions of files and to execute database changes in
the right order. It is a good idea to add sequential numbers or the date and time at the beginning of
filenames. You can store different releases in different folders, or you can have different command
files if you keep all change scripts in the same folder. When you are done, test, test, and test again.

4 6 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 11

P:\010Comp\D_Base\896-2\ch11.vp
Tuesday, April 29, 2003 11:53:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

12
Stored Procedures for

Web Search Engines

467

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
Characteristics of the Environment

A Simple Solution…
…and Its Disadvantages

Available Solutions

P:\010Comp\D_Base\896-2\ch12.vp
Wednesday, April 30, 2003 12:01:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
he search engine is a standard element of every web application. Many tools

are available to help web developers create a search engine when information

is stored in the form of web pages, but if the information is on a database

server, everything has to be customized. This chapter demonstrates some typical

problems you may encounter and solutions for them.

Characteristics of the Environment
The following are the characteristics of a typical web-based application environment:

� The system has impatient users. Pages must be served quickly or users will

leave and go to another web site.

� A three-tier architecture is typically used to make the system more scalable.

� To be scalable, the system may be deployed on a farm of web and/or middleware

servers. If more users need to be processed, you can simply add more servers.

� Since it may be deployed on a farm of servers, the application must use

stateless connections to the database.

� The database server cannot be scaled in the same manner as web and middleware

servers. Federated servers allow users to split a database among several servers,

but one record will be stored on only one server. It is also not such a trivial

matter to add another database server. Tables that are vertically split between

servers have to be reorganized so that a new server gets its share of the table.

Therefore, the database server is a more precious resource than the web and

middleware servers.

� Network traffic could be an issue—both internally (between servers) and

externally (users could be linked by modem).

A Simple Solution…
Typically, web search engines have two types of web pages—one type for entering

criteria and another type for displaying results. The criteria page can sometimes be

very simple—a single text box feeding a single table in the database. Sometimes,

you may have a web page with a number of objects (such as text boxes, list boxes,

and check boxes) that correspond to different fields in different tables. Potentially,

4 6 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

P:\010Comp\D_Base\896-2\ch12.vp
Wednesday, April 30, 2003 12:02:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

C h a p t e r 1 2 : S t o r e d P r o c e d u r e s f o r W e b S e a r c h E n g i n e s 4 6 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

all recordset (table) fields could be exposed as criteria fields. A user can use a single

field or multiple fields to specify the criteria. I call such pages and corresponding

queries quick and full (or advanced), respectively.

The quick criteria page is naturally implemented in SQL Server as a stored

procedure with one parameter. In the case of full criteria, the fact that users can

specify values for an unknown number of fields, unsurprisingly, leads developers

to implement it as a dynamically assembled ad hoc query joining a large number

of normalized tables. To illustrate this in the Asset database, I have created a query

against Inventory and other associated tables:

SELECT Inventoryid, Make, Model,

EqType, Location, FirstName,

LastName, AcquisitionType, Address,

City, ProvinceId, Country,

Phone, Fax, Email,

UserName, OrgUnit

from Inventory

inner join Contact

on Inventory.OwnerId = Contact.ContactId

inner join Location

on Inventory.LocationId = Location.LocationId

inner join AcquisitionType

on AcquisitionType.AcquisitionTypeId = Inventory.AcquisitionTypeId

inner join Equipment

on Equipment.EquipmentId = Inventory.EquipmentId

inner join EqType

on Equipment.EqTypeId = EqType.EqTypeId

inner join OrgUnit

on Contact.OrgUnitId = OrgUnit.OrgUnitId

where Make = 'Compaq'

And EqType = 'Storage Array'

order by Country, ProvinceId, City, Location

In the real world, such a query may be designed to run against more tables—I

have seen solutions with 20 or more joined tables. Such a design might look elegant

during development if it is tested by only a couple of users using only a small number

of records per table. Unfortunately, in production, an application will work against

tables with thousands (or millions) of records and will have to serve dozens (or

hundreds) of concurrent users.

NOTE

One such system that I've encountered in the past had difficulty supporting even ten users. The
simplest queries took five to ten seconds. Regular queries often timed out after 60 seconds. Users
were so frustrated that they would issue a query without criteria, and then copy the complete
result set to Excel or Access to query it on their local machines.

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 7 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

…and Its Disadvantages
The following are the standard problems with a “simple” solution based on a

single query:

� The query joins many tables Specifying a number of tables that is acceptable

is difficult, but 15 or 20, and sometimes even 10, is too many. SQL Server has

to do a considerable amount of work to join them all. A normalized set of tables

is optimal for modifying data, but for querying, designers should explore

denormalization of the model.

� (B)locking If users are accessing the same set of tables for both updating and

querying, they will block each other. SQL Server puts a shared lock on records

that qualify as a result of a query while the query is in progress. Other queries

are not blocked by it and can be executed at the same time. However, those

locks will prevent modifications of the records until the query is done. On the

other hand, when a transaction is modifying a record, users will have to wait

for the transaction to be completed to have the results to their queries returned.

� The complete result set is sent to the client Too often, users specify criteria

that are not selective enough and may return hundreds (or thousands) of records.

Such a recordset is seldom required and users will not browse through it.

Typically, they will modify the original criteria and make the query more

selective to get a subset of the original recordset.

� Sorting Users expect the result set to be sorted and they also expect to be able

to change the sort order on-the-fly. These actions require processing power.

� Table scans Some queries may contain criteria that are not optimizable

(SARG-able). A common example occurs when a user requests all records for

which the Name field contains a specified string. The query is implemented

using the Like operator with wildcards (%) at the beginning and the end of the

string, such as

Where name Like '%str%'

SQL Server will not be able to use the index on the name field to process such

a query.

� Ad hoc queries Since the user has the freedom to specify an unknown

number and combination of criteria, queries are typically assembled dynamically.

The disadvantage to this flexibility is that you do not have control over these

queries, which opens up code management, optimization, and security issues.

On the other hand, a dynamically created query allows an experienced user to

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

restrict the query to only those elements that are really needed. You can drop

unnecessary tables and segments of criteria.

� Improper indexes You should review indexes that are created on tables. Keep

in mind that indexes are optimal for querying but not optimal for modifying data.

They become overhead on transactions.

Available Solutions
You can do many things to improve this kind of system:

� Denormalization This is probably the most effective way to improve the

system. SQL Server will have to query a smaller number of tables. You can

create a redundant set of tables (one or more, depending on the subject) and

periodically (for example, every hour or every day) transfer data from the

normalized tables to it. An additional benefit is that “readers” and “writers”

will not block each other.

� Limit the result set Most search engines on the Web limit the number of

results that the user can return (for example, 200 or 500 records).

� Split results rather than limit result sets Users should be able to access

records in batches (of, for example, 25 or 50 records). Chances are that the

user will browse through only the first couple of pages. There is no need to

serve the user with 5000 records that he or she will not review.

� Index An additional benefit of splitting tables to provide one table for data

modification and another for querying is that the indexes you would need to

create on the denormalized tables will not slow down data modification

transactions.

� Stored procedures vs. ad hoc queries Because of the many performance

and management reasons discussed earlier, in “Reuse of Stored Procedure

Execution Plans” in Chapter 3, you should use precompiled objects such as

stored procedures as much as you can. Often, you can significantly simplify a

query by dynamically assembling it. When you reduce the number of tables

and parameters, the query optimizer creates a better execution plan.

� Search types Good results can sometimes be achieved by using a little

psychology. For example, users do not always need to do a “Contains” search

on a string (like '%string%'). Most of the time, “Begins with” (like 'string%')

and “Match” (='string') searches are sufficient. For the latter two, SQL Server

C h a p t e r 1 2 : S t o r e d P r o c e d u r e s f o r W e b S e a r c h E n g i n e s 4 7 1

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

does not ignore the index. If you add a list box with “Search types” to the text

box and make “Begins With” the default option, users will use it probably 90

percent of the time. SQL Server does a table scan only when users really need

to scan the whole field.

I will review in detail some of these options in an Asset database scenario.

Result Splitting
There are three options for achieving result splitting:

� On a web server

� Using a temporary table on the database server

� Using a static denormalized table on the database server

Page Splitting on a Web Server
Some web sites split the result set on a web server. The complete result set is

transferred to the web server and components on it create HTML pages with links

between them. There are several good reasons to use this technique. A farm of web

servers can efficiently balance the load. There are solutions on the market that can be

purchased and implemented rapidly. Unfortunately, network traffic between servers

is not reduced and SQL Server has to grab and transfer much more than it should. I

will not go into the details of how to implement such a solution (you’ll need a different

book for that).

Page Splitting Using a Temporary Table on the Database Server
The idea of this solution is to collect the complete recordset in a temporary table and

then to send to the caller only a subset of records (for example, 25 records) to be

displayed on the current page.

In the following example, the query creates a temporary table that has an additional

identity field. The second query returns records with identity values between the

specified numbers. Initially, these numbers might be 1 and 25. The next time it is

called, the client increases the values of the first and the last records to be displayed.

Alter PROCEDURE prInventoryByMakeModel_Quick_TempTbl

-- Return a batch (of specified size) of records which satisfy the criteria

-- Demonstration of use of temporary table to perform recordset splitting.

@Make varchar(50) = '%',

@Model varchar(50) = '%',

@FirstRec int = 1,

4 7 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S t o r e d P r o c e d u r e s f o r W e b S e a r c h E n g i n e s 4 7 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

@LastRec int = 25,

@RowCount int = null output

AS

/* test:

declare @rc int

exec prInventoryByMakeModel_Quick_TempTbl @RowCount = @rc output

select @rc

exec prInventoryByMakeModel_Quick_TempTbl @FirstRec = 26,

@LastRec = 50,

@RowCount = @rc output

*/

SET NOCOUNT ON

Create table #Inv(ID int identity,

Inventoryid int,

Make varchar(50),

Model varchar(50),

Location varchar(50),

FirstName varchar(30),

LastName varchar(30),

AcquisitionType varchar(12),

Address varchar(50),

City varchar(50),

ProvinceId char(3),

Country varchar(50),

EqType varchar(50),

Phone varchar(20),

Fax varchar(20),

Email varchar(128),

UserName varchar(50))

insert into #Inv(InventoryId, Make, Model,

Location, FirstName, LastName,

AcquisitionType, Address, City,

ProvinceId, Country, EqType,

Phone, Fax, Email,

UserName)

SELECT

Inventory.Inventoryid, Equipment.Make, Equipment.Model,

Location.Location, Contact.FirstName,

Contact.LastName, AcquisitionType.AcquisitionType, Location.Address,

Location.City, Location.ProvinceId, Location.Country,

EqType.EqType, Contact.Phone, Contact.Fax,

Contact.Email, Contact.UserName

FROM EqType

RIGHT OUTER JOIN Equipment

ON EqType.EqTypeId = Equipment.EqTypeId

RIGHT OUTER JOIN Inventory

ON Equipment.EquipmentId = Inventory.EquipmentId

INNER JOIN Status

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ON Inventory.StatusId = Status.StatusId

LEFT OUTER JOIN AcquisitionType

ON Inventory.AcquisitionTypeID = AcquisitionType.AcquisitionTypeId

LEFT OUTER JOIN Location

ON Inventory.LocationId = Location.LocationId

LEFT OUTER JOIN Contact

ON Inventory.OwnerId = Contact.ContactId

where Make Like @Make

and Model Like @Model

order by Location, LastName, FirstName

select @RowCount = @@rowcount

SELECT *

FROM #Inv

WHERE ID >= @FirstRec AND ID <= @LastRec

order by ID

return

The stored procedure should be used the first time in the following manner to get

the first batch of records and the number of records:

declare @rc int

exec prInventoryByMakeModel_Quick_TempTbl @RowCount = @rc output

select @rc

The next time, the user must specify the first and last record that he wants to see:

declare @rc int

exec prInventoryByMakeModel_Quick_TempTbl @FirstRec = 26,

@LastRec = 50,

@RowCount = @rc output

There are, however, several problems with this solution. You are still executing the

query against a large set of normalized tables. You are also creating a large temporary

table every time you execute the stored procedure. Because you are working in a

stateless environment, you cannot keep the temporary table on the server. Therefore,

SQL Server works much harder than it should. The advantage to this technique is

that network traffic is significantly reduced.

Page Splitting Using Denormalized Tables on the Database Server
To reduce the number of tables that need to be joined every time, you can create a new

table that contains all the fields that you typically need in the query. The InventorySum

table has such a role in the Asset database.

4 7 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Most of the fields are just copied from normalized tables. ID is an identity field,

which you will use to request a subset of records and to sort records on. Several

records have a SIdx suffix. I call them surrogate indexes. They store the position of

the record in a set when it is sorted in a particular order. For example, LFNameSIdx

is the surrogate index that is used when a recordset is returned sorted by first and last

name (see Figure 12-1).

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

C h a p t e r 1 2 : S t o r e d P r o c e d u r e s f o r W e b S e a r c h E n g i n e s 4 7 5

Figure 12-1 Surrogate index

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 7 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

I have created a stored procedure to be executed periodically from a job to populate

the denormalized table:

ALTER Procedure prInvSum_Generate

-- Generate denormalized table that will speed-up the querying.

As

set nocount on

Declare @intErrorCode int,

@intTransactionCountOnEntry int

Select @intErrorCode = @@Error

If @intErrorCode = 0

Begin

create table #Inv(ID int identity(1,1),

Inventoryid int,

Make varchar(50),

Model varchar(50),

Location varchar(50),

Status varchar(15),

FirstName varchar(30),

LastName varchar(30),

AcquisitionType varchar(12),

Address varchar(50),

City varchar(50),

ProvinceId char(3),

Country varchar(50),

EqType varchar(50),

Phone varchar(20),

Fax varchar(20),

Email varchar(128),

UserName varchar(50),

MakeModelSIdx int,

LFNameSIdx int,

CountrySIdx int)

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

insert into #Inv(Inventoryid , Make , Model ,

Location , FirstName , LastName ,

AcquisitionType, Address ,

City ,ProvinceId , Country ,

EqType ,Phone , Fax ,

Email , UserName

)

SELECT Inventory.Inventoryid, Equipment.Make, Equipment.Model,

Location.Location, Contact.FirstName,

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S t o r e d P r o c e d u r e s f o r W e b S e a r c h E n g i n e s 4 7 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

Contact.LastName, AcquisitionType.AcquisitionType, Location.Address,

Location.City, Location.ProvinceId, Location.Country,

EqType.EqType, Contact.Phone, Contact.Fax,

Contact.Email, Contact.UserName

FROM EqType

RIGHT OUTER JOIN Equipment

ON EqType.EqTypeId = Equipment.EqTypeId

RIGHT OUTER JOIN Inventory

ON Equipment.EquipmentId = Inventory.EquipmentId

LEFT OUTER JOIN AcquisitionType

ON Inventory.AcquisitionTypeID = AcquisitionType.AcquisitionTypeId

LEFT OUTER JOIN Location

ON Inventory.LocationId = Location.LocationId

LEFT OUTER JOIN Contact

ON Inventory.OwnerId = Contact.ContactId

order by Location, LastName, FirstName

Select @intErrorCode = @@Error

End

-- now let’s do record sorting

---- Make, Model -------------------

If @intErrorCode = 0

Begin

create table #tmp (SID int identity(1,1),

ID int)

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

insert into #tmp(ID)

select ID

from #inv

order by Make, Model

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

update #inv

set MakeModelSIdx = #tmp.SId

from #inv inner join #tmp

on #inv.ID = #tmp.id

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

drop table #tmp

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 7 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

Select @intErrorCode = @@Error

End

--

---- CountrySIdx: Country, Province, City, Location -------------------

If @intErrorCode = 0

Begin

create table #tmp2 (SID int identity(1,1),

ID int)

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

insert into #tmp2(ID)

select ID

from #inv

order by Country, ProvinceId, City, Location

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

update #inv

set CountrySIdx = #tmp2.SId

from #inv inner join #tmp2

on #inv.ID = #tmp2.id

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

drop table #tmp2

Select @intErrorCode = @@Error

End

--

---- LFNameSIdx: LName, FName -------------------

If @intErrorCode = 0

Begin

create table #tmp3 (SID int identity(1,1),

ID int)

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

insert into #tmp3(ID)

select ID

from #inv

order by LastName, FirstName

Select @intErrorCode = @@Error

End

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S t o r e d P r o c e d u r e s f o r W e b S e a r c h E n g i n e s 4 7 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

If @intErrorCode = 0

Begin

update #inv

set LFNameSIdx = #tmp3.SId

from #inv inner join #tmp3

on #inv.ID = #tmp3.id

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

drop table #tmp3

Select @intErrorCode = @@Error

End

--

If @intErrorCode = 0

Begin

Select @intTransactionCountOnEntry = @@TranCount

BEGIN TRANSACTION

End

If @intErrorCode = 0

Begin

if exists (select * from dbo.sysobjects

where id = object_id(N'[InventorySum]')

and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [InventorySum]

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

create table InventorySum(ID int,

Inventoryid int,

Make varchar(50),

Model varchar(50),

Location varchar(50),

FirstName varchar(30),

LastName varchar(30),

AcquisitionType varchar(12),

Address varchar(50),

City varchar(50),

ProvinceId char(3),

Country varchar(50),

EqType varchar(50),

Phone typPhone,

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 8 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

Fax typPhone,

Email typEmail,

UserName varchar(50),

MakeModelSIdx int,

LFNameSIdx int,

CountrySIdx int)

Select @intErrorCode = @@Error

End

-- copy

If @intErrorCode = 0

Begin

insert into InventorySum

select * from #inv

Select @intErrorCode = @@Error

End

-- create indexes

If @intErrorCode = 0

Begin

CREATE UNIQUE CLUSTERED INDEX [idx_InvSum_Id]

ON [dbo].[InventorySum] ([ID])

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

CREATE INDEX [idx_InvSum_LFName]

ON [dbo].[InventorySum] (LastName, FirstName)

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

CREATE INDEX [idx_InvSum_Location]

ON [dbo].[InventorySum] (Location)

Select @intErrorCode = @@Error

End

If @intErrorCode = 0

Begin

CREATE INDEX [idx_InvSum_ModelMakeEqType]

ON [dbo].[InventorySum] (Model, Make, EqType)

Select @intErrorCode = @@Error

End

If @@TranCount > @intTransactionCountOnEntry

Begin

If @intErrorCode = 0

COMMIT TRANSACTION

Else

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S t o r e d P r o c e d u r e s f o r W e b S e a r c h E n g i n e s 4 8 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

ROLLBACK TRANSACTION

End

return @intErrorCode

At first sight, the stored procedure might look a bit unusual to you. I first collect

all data in a temporary table and then, within a transaction, drop the denormalized

table, re-create it, and copy the collected data from the temporary table into it. I

wrote the stored procedure in this way for performance reasons. It is critical for users

to be able to query the table without interruption. The whole process typically takes a

couple of minutes, and queries will time-out if not completed after 30 seconds (or

the limit that is specified on the server, in the ADO connection, or MTS). Therefore,

it is critical to shorten the interruption. The process of copying collected data is much

shorter than the process of collecting it.

On one project where I applied this solution, the complete process took about

three minutes. The transaction that re-creates the table and copies data into it took

about 20 seconds.

NOTE

It is certainly possible to perform the loading transaction in other ways. Creating an additional
static table and renaming it comes to mind.

Quick Queries
This section walks you through the process of gradually adding the following features

to a stored procedure, implementing a quick query:

� Result splitting

� Sorting

� Search type

� Counting

I will build a stored procedure that returns a list of equipment with a specified make

and model:

Alter Procedure prInventoryByMakeModel_Quick_1

@Make varchar(50) = null, -- criteria

@Model varchar(50) = null -- criteria

/* test:

exec prInventoryByMakeModel_Quick_1 'Compaq', 'D%'

*/

as

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 8 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

select Inventoryid , Make , Model,

Location , FirstName , LastName ,

AcquisitionType, Address , City ,

ProvinceId , Country , EqType ,

Phone , Fax , Email ,

UserName

from InventorySum

where Make LIKE @Make

and Model LIKE @Model

The preceding is a simple stored procedure that uses the Like operator, and therefore

enables the caller to add a wildcard (%) to the string.

Now I’ll add sorting to the stored procedure. I can sort only by sort orders for

which I have defined surrogate indexes:

Alter procedure prInventoryByMakeModel_Quick_2

@Make varchar(50) = null, -- criteria

@Model varchar(50) = null, -- criteria

@SortOrderId smallint = 0

/* test:

exec prInventoryByMakeModel_Quick_2 'Compaq', 'D%', 1

*/

as

select Id = Case @SortOrderId

when 1 then MakeModelSIdx

when 2 then CountrySIdx

when 3 then LFNameSIdx

End,

Inventoryid , Make , Model,

Location , FirstName , LastName ,

AcquisitionType, Address , City ,

ProvinceId , Country , EqType ,

Phone , Fax , Email ,

UserName

from InventorySum

where Make like @Make

and Model like @Model

order by case @SortOrderId

when 1 then MakeModelSIdx

when 2 then CountrySIdx

when 3 then LFNameSIdx

end

return

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S t o r e d P r o c e d u r e s f o r W e b S e a r c h E n g i n e s 4 8 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

I have also added an ID column to the recordset. I use a Case statement to set it with

one of the surrogate indexes. The second instance of the Case statement is a little bit

unusual. Note that I am using it inside an Order By clause.

Now I will add code that will return the result set in batches of 25 records:

alter procedure prInventoryByMakeModel_Quick_3

@Make varchar(50) = null, -- criteria

@Model varchar(50) = null, -- criteria

@PreviousID int = 0, -- last record from the previous batch

@SortOrderId smallint = 0

/* test:

exec prInventoryByMakeModel_Quick_3 'Compaq', 'D%', 444, 1

*/

as

select top 25 Id = Case @SortOrderId

when 1 then MakeModelSIdx

when 2 then CountrySIdx

when 3 then LFNameSIdx

End,

Inventoryid , Make , Model,

Location , FirstName , LastName ,

AcquisitionType, Address , City ,

ProvinceId , Country , EqType ,

Phone , Fax , Email ,

UserName

from InventorySum

where Case @SortOrderId

when 1 then MakeModelSIdx

when 2 then CountrySIdx

when 3 then LFNameSIdx

End > @PreviousID

and Make like @Make

and Model like @Model

order by case @SortOrderId

when 1 then MakeModelSIdx

when 2 then CountrySIdx

when 3 then LFNameSIdx

end

return

I have added Top 25 to the Select statement. I added a parameter that will be used to

pass the identifier of the last record seen in the previous batch. I also added a Case

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 8 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

function in the Where clause that allows me to return records that were not previously

seen by the user.

Next I will add code to support Begins With, Contains, and Match search types.

I will simply add different combinations of wildcards to the search parameters:

Alter procedure prInventoryByMakeModel_Quick

-- display a batch of 25 assets of specified status

@Make varchar(50) = null, -- criteria

@Model varchar(50) = null, -- criteria

@PreviousID int = 0, -- last record from the previous batch

@SortOrderId smallint = 0,

@SearchTypeid tinyint = 0 -- 0: Begins With, 1: Match, 2: Contains

/* test:

exec prInventoryByMakeModel_Quick 'Compaq', 'D', 50, 2, 2

*/

as

if @SearchTypeId = 0

begin

set @Make = @Make + '%'

set @Model = @Model + '%'

end

if @SearchTypeid = 2

begin

set @Make = '%' + @Make + '%'

set @Model = '%' + @Model + '%'

end

select top 25 Id = Case @SortOrderId

when 1 then MakeModelSIdx

when 2 then CountrySIdx

when 3 then LFNameSIdx

End,

Inventoryid , Make , Model,

Location , FirstName , LastName ,

AcquisitionType, Address , City ,

ProvinceId , Country , EqType ,

Phone , Fax , Email ,

UserName

from InventorySum

where Case @SortOrderId

when 1 then MakeModelSIdx

when 2 then CountrySIdx

when 3 then LFNameSIdx

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S t o r e d P r o c e d u r e s f o r W e b S e a r c h E n g i n e s 4 8 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

End > @PreviousID

and Make like @Make

and Model like @Model

order by case @SortOrderId

when 1 then MakeModelSIdx

when 2 then CountrySIdx

when 3 then LFNameSIdx

end

return

Since it is important to display the total number of records that satisfy specified

criteria, I will create a stored procedure to return the count to the user. I have two

options: I could add the code to the stored procedure that does the search; but the

better option is to make code more readable and create a separate procedure:

Alter procedure prInventoryByMakeModel_Count

-- display a batch of 25 assets of specified status

@Make varchar(50) = null, -- criteria

@Model varchar(50) = null, -- criteria

@SearchTypeid tinyint = 0, -- 0: Begins With, 1: Match, 2: Contains

@Count int output

/* test:

declare @count int

exec prInventoryByMakeModel_Count 'Compaq', 'D', 2, @count output

select @count count

*/

as

if @SearchTypeId = 0

begin

set @Make = @Make + '%'

set @Model = @Model + '%'

end

if @SearchTypeid = 2

begin

set @Make = '%' + @Make + '%'

set @Model = '%' + @Model + '%'

end

select @Count = count(*)

from InventorySum

where Make like @Make

and Model like @Model

return

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 8 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

Advanced Queries
An advanced query allows users to specify criteria using any combination of input

parameters. Therefore, all parameters have default values specified so that they will

never become part of the criteria (I can agree with web developers that null means

that the user didn’t specify a value for the parameter on the web page):

Alter procedure prInventorySearchAdvFull_ListPage

-- display a batch of 25 assets that specify the criteria

-- Example of use of dynamically assembled query

-- and denormalized table with surrogate index fields

-- to return result in batches of 25 records.

@Make varchar(50) = null,

@Model varchar(50) = null,

@Location varchar(50) = null,

@FirstName varchar(30) = null,

@LastName varchar(30) = null,

@AcquisitionType varchar(20) = null,

@ProvinceId char(3) = null,

@Country varchar(50) = null,

@EqType varchar(30) = null,

@City varchar(50) = null,

@UserName varchar(50) = null,

@email varchar(50) = null,

@SortOrderId smallint = 0, -- 1: Make and model;

-- 2: Country, Prov, City, Loc;

-- 4: LName; FName

@PreviousID int = 0, -- last record from the previous batch

@BatchSize int = 25,

@debug int = 0

/* test:

exec prInventorySearchAdvFull_ListPage

@Make = 'Compaq',

@Model= null,

@Location = null,

@FirstName = 'Michael',

@LastName = null,

@AcquisitionType = null,

@ProvinceId = null,

@Country = null,

@EqType = null,

@City = null,

@UserName = null,

@email = null,

@SortOrderId = 2, -- 2: Make and model

@PreviousID = 25, -- last record from the previous batch

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S t o r e d P r o c e d u r e s f o r W e b S e a r c h E n g i n e s 4 8 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

@BatchSize = 25,

@debug = 0

*/

as

set SET CONCAT_NULL_YIELDS_NULL OFF

set nocount on

declare @chvSelect varchar(8000),

@chvFrom varchar(8000),

@chvWhere varchar(8000),

@chvOrderby varchar(8000),

@chvSQL varchar(8000)

-- order records

set @chvSelect = 'SELECT top ' + Convert(varchar, @BatchSize)

+ ' Inventoryid , Make , Model,

Location , FirstName ,

LastName , AcquisitionType, Address ,

City , ProvinceId , Country ,

EqType , Phone , Fax ,

Email , UserName, '

+ Case @SortOrderId

when 1 then ' MakeModelSIdx '

when 2 then ' CountrySIdx '

when 3 then ' LFNameSIdx '

End

+ ' as ID '

set @chvFrom = ' FROM InventorySum '

set @chvWhere = ' where '

+ Case @SortOrderId

when 1 then ' MakeModelSIdx'

when 2 then ' CountrySIdx '

when 3 then ' LFNameSIdx '

End + '> '

+ Convert(varchar, @PreviousID)

if @Make is not null

set @chvWhere = @chvWhere + ' AND Make = ''' + @Make + ''' '

if @Model is not null

set @chvWhere = @chvWhere + ' AND Model = ''' + @Model + ''' '

if @Location is not null

set @chvWhere = @chvWhere + ' AND Location = ''' + @Location + ''' '

if @FirstName is not null

set @chvWhere = @chvWhere + ' AND FirstName = ''' + @FirstName + ''' '

if @LastName is not null

set @chvWhere = @chvWhere + ' AND lastName = ''' + @lastName + ''' '

if @AcquisitionType is not null

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

set @chvWhere = @chvWhere + ' AND AcquisitionType = '''

+ @AcquisitionType + ''' '

if @ProvinceId is not null

set @chvWhere = @chvWhere + ' AND ProvinceId = ''' + @ProvinceId + ''' '

if @Country is not null

set @chvWhere = @chvWhere + ' AND Country = ''' + @Country + ''' '

if @EqType is not null

set @chvWhere = @chvWhere + ' AND EqType = ''' + @EqType + ''' '

if @City is not null

set @chvWhere = @chvWhere + ' AND City = ''' + @City + ''' '

if @UserName is not null

set @chvWhere = @chvWhere + ' AND UserName = ''' + @UserName + ''' '

if @email is not null

set @chvWhere = @chvWhere + ' AND email = ''' + @email + ''' '

set @chvOrderBy = ' order by '

+ Case @SortOrderId

when 1 then ' MakeModelSIdx'

when 2 then ' CountrySIdx '

when 3 then ' LFNameSIdx '

End

set @chvSQL = @chvSelect + @chvFrom + @chvWhere + @chvOrderby

if @debug = 0

exec (@chvSQL)

else

select @chvSQL

The stored procedure dynamically assembles the query using just the Where clause

for input parameters that were specified. This technique allows SQL Server to optimize

the query and use the appropriate indexes. Similarly, Order By and Select clauses are

assembled based on the specified sort order. The Top clause is added dynamically to

the Select clause based on the number of records that the user wants to see in the batch.

NOTE

Something that I didn't demonstrate here, but that could also be very useful for joining tables on
demand is the following: if some tables are joined just to support some additional search criteria,
they might be added to the rest of the From clause only when their values are specified. The query
will perform better if the number of joined tables is smaller.

4 8 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 12

P:\010Comp\D_Base\896-2\ch12.vp
Tuesday, April 29, 2003 12:30:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

13
Introduction to XML for

Database Developers

489

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
XML (R)evolution

Introduction to XML
XML Document Quality

Linking and Querying in XML
Transforming XML

Why XML?

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 9 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

M
icrosoft SQL Server has become a giant among the select group of

enterprise-ready relational database management systems, but as

with those other RDBMSs, its roots are in pre-Internet solutions.

The Internet revolution has highlighted a set of old tactical and strategic challenges

for the Microsoft SQL Server development team. These challenges include

the following:

� Storing the large amounts of textual information that web-based, user-friendly

database applications require

� Delivering that textual (and other) stored information to the Web

� Sharing information with other departments and organizations that may not use

the same RDBMS system

In earlier editions of SQL Server, Microsoft addressed these issues with features

such as Full Text Search, the Web Publishing Wizard, DTS, ADO, and OLE DB.

SQL Server 2000 introduces XML compatibility—the new holy grail of the computing

industry and the latest attempt to tackle the same old problems.

XML (R)evolution
To communicate with customers in today’s rich-content world, you need to provide

them with information. Until very recently, such information was inevitably encapsulated

in proprietary, document-based formats that are not shared easily. For example, word

processor documents are optimized for delivery on paper, and relational databases

are often structured and normalized in formats unsuitable to end users.

The first step in the right direction was the Standard Generalized Markup Language

(SGML). Although it was designed in the late 1960s (by Charles Goldfarb), it became

the international standard for defining markup languages in 1986, after the creation

of the ISO standard. In the late 1980s, companies and government agencies started

to adopt this tag-based language. It allowed them to create and manage paper

documentation in a way that was easy to share with others.

Then, in the 1990s, the Web appeared on the scene and our collective focus

shifted from isolated islands of personal computers and local networks to a global

network of shared information. SGML’s tagged structure would seem to make it a

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

perfect candidate to lead the Internet revolution, but the complexity of SGML makes

it difficult to work with and unsuitable for web application design.

Instead of SGML, the developers of the Internet adopted the Hypertext Markup

Language (HTML), a simple markup language used to create hypertext documents

that are portable from one platform to another. HTML is a simplified subset of SGML.

It was originally defined in 1991 by Tim Berners-Lee as a way to organize, view, and

transfer scientific documents across different platforms. It uses the Hypertext Transfer

Protocol (HTTP) to transfer information over the Internet. This new markup language

was an exciting development and soon found nonscientific applications. Eventually,

companies and users started to use it as a platform for e-commerce—the processing

of business transactions without the exchange of paper-based business documents.

Unfortunately, HTML has some disadvantages. One of the biggest arises as a

result of its main purpose. HTML is designed to describe only how information

should appear—that is, its format. It was not designed to define the syntax (logical

structure) or semantics (meaning) of a document. It could make a document readable

to a user, but it required that user to interact with, and interpret, the document. The

computer itself could not parse the document because the necessary metadata (literally,

data about the data) was not included with the document.

Another problem with HTML is that it is not extensible. It is not possible to create

new tags. HTML is also a “standard” that exists in multiple versions—and multiple

proprietary implementations. Web developers know that they have to test even their

static HTML pages in all of the most popular browsers (and often in several versions

of each) because each browser (and each version of each browser) implements this

“standard” somewhat differently. Different development tool sets support different

versions of this standard (and often different features within a single standard).

In 1996, a group working under the auspices of the World Wide Web Consortium

(W3C) created a new standard tagged language called the eXtensible Markup Language

(XML). It was designed to address some of the problems of HTML and SGML. XML

is a standardized document formatting language (again, a subset of SGML) that enables

a publisher to create a single document source that can be viewed, displayed, or

printed in a variety of ways. As is the case with HTML, XML is primarily designed

for use on the Internet. However, as already mentioned, HTML is designed primarily

to address document formatting issues, while XML addresses issues relating to data

and object structure. XML is also extensible in that it provides a standard mechanism

for any document builder to define new XML tags within any XML document. Its

features lower the barriers for creation of integrated, multiplatform, application-to-

application protocols.

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 4 9 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 9 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

Introduction to XML
In today’s world, words such as “tag,” “markup,” “element,” “attributes,” and

“schema” are buzzwords that you can hear anywhere (well, at least in the IT

industry), but what do these terms mean in the context of markup languages?

Introduction to Markup Languages
In a broader sense, a markup is anything that you place within a document that

provides additional meaning or additional information. For example, this book uses

italic font to emphasize each new phrase or concept that is defined or introduced.

I have a habit of using a highlighter when I am reading books. Each time I use my

highlighter, I change the format of the text as a means of helping me find important

segments later.

Markups usually define

� Formatting

� Structure

� Meaning

A reader has to have an implicit set of rules for placing markups in a document—

otherwise those markups are meaningless to that reader. A markup language is a set

of rules that defines

� What constitutes a markup

� What a markup means

Building Blocks of Markup Languages
The syntax of markup languages such as SGML, HTML, and XML is based on tags,

elements, and attributes.

A tag is a markup language building block that consists of delimiters (angled

brackets) and the text between them:

<TITLE>

An element is a markup language part that consists of a pair of tags and the text

between them:

<TITLE>SQL Server 2000 Stored Procedure Programming</TITLE>

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 4 9 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

Each element has an opening tag and a closing tag. The text between these tags is

called the content of the element.

An attribute is a component in the form of a name/value pair that delimits a tag:

Okay, suppose you have created a document and have marked up some parts of it.

Now what? You can share it with others. They will use something called a user agent

to review the document. In a broader context, a user agent could be a travel agent that

helps a customer buy tickets for a trip. However, in the IT industry, a user agent is a

program that understands the markup language and presents information to an end

user. An example of such a program is a web browser designed to present documents

created using HTML.

XML Elements and Attributes
The following is a simple example of an XML document:

<Inventory>

<Asset Inventoryid="5">

<Equipment>Toshiba Portege 7020CT</Equipment>

<EquipmentType>Notebook</EquipmentType>

<LocationId>2</LocationId>

<StatusId>1</StatusId>

<LeaseId>1234</LeaseId>

<LeaseScheduleId>1414</LeaseScheduleId>

<OwnerId>83749271</OwnerId>

<Cost>6295.00</Cost>

<AcquisitionType>Lease</AcquisitionType>

</Asset>

</Inventory>

An XML document must contain one or more elements. One of the elements is

not part of any other element and therefore is called the document’s root element.

It must be uniquely named. In the preceding example, the root element is named

Inventory.

Each element can, in turn, contain one or more elements. In the preceding example,

the Inventory element contains one Asset element. The Asset element also

contains other elements (Equipment, EquipmentType, and so on). The Equipment
element contains just its content—the text string "Toshiba Portege 7020CT."

Unlike HTML, XML is case sensitive. Therefore, Asset, asset, and ASSET
would represent different elements.

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

It is possible to define an empty element. Such elements can be displayed using

standard opening and closing tags:

<Inventory></Inventory>

or using special notation:

<Inventory/>

If an element contains attributes but no content, an empty element is an efficient

way to write it:

<Asset Inventoryid="5"/>

An element can have more than one attribute. The following example shows an

empty element that contains nine attributes:

<Asset Inventoryid="12" EquipmentId="1" LocationId="2" StatusId="1"

LeaseId="1" LeaseScheduleId="1" OwnerId="1" Lease="100.0000"

AcquisitionTypeID="2"/>

You are not allowed to repeat an attribute in the same tag. The following example

shows a syntactically incorrect element:

<Inventory Inventoryid="12" Inventoryid="13"/>

Processing Instructions
An XML document often starts with a tag that is called a processing instruction. For

example, the following processing instruction notifies the reader that the document it

belongs to is written in XML that complies with version 1.0:

<?xml version="1.0"?>

A processing instruction has the following format:

<?name data?>

The name portion identifies the processing instruction to the application that is

processing the XML document. Names must start with xml. The data portion that

follows is optional and includes information that may be used by the application.

4 9 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TIP

Although it is not required, it is recommended that you start an XML document with a processing
instruction that explicitly identifies that document as an XML document defined using a specified
version of the standard.

Document Type Definition
As mentioned earlier, markups are meaningless if defining rules for the following is

not possible:

� What constitutes a markup

� What a markup means

A Document Type Definition (DTD) is a type of document that is often used to

define such rules for XML documents. The DTD contains descriptions and constraints

(naturally, not Transact-SQL constraints) for each element (such as the order of element

attributes and membership). User agents can use the DTD file to verify that an XML

document complies with its rules.

The DTD can be an external file that is referenced by an XML document:

<!DOCTYPE Inventory SYSTEM "Inventory.dtd">

or it can be part of the XML document itself:

<?xml version="1.0"?>

<!DOCTYPE Inventory [

<!ELEMENT Inventory (Asset+)>

<!ELEMENT Asset (EquipmentId, LocationId, StatusId, LeaseId,

LeaseScheduleId, OwnerId, Cost, AcquisitionTypeID)>

<!ATTLIST Asset Inventoryid CDATA #IMPLIED>

<!ELEMENT EquipmentId (#PCDATA)>

<!ELEMENT LocationId (#PCDATA)>

<!ELEMENT StatusId (#PCDATA)>

<!ELEMENT LeaseId (#PCDATA)>

<!ELEMENT LeaseScheduleId (#PCDATA)>

<!ELEMENT OwnerId (#PCDATA)>

<!ELEMENT Cost (#PCDATA)>

<!ELEMENT AcquisitionTypeID (#PCDATA)>

]>

<Inventory>

<Asset Inventoryid="5">

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 4 9 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 9 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

<EquipmentId>1</EquipmentId>

<LocationId>2</LocationId>

<StatusId>1</StatusId>

<LeaseId>1</LeaseId>

<LeaseScheduleId>1</LeaseScheduleId>

<OwnerId>1</OwnerId>

<Cost>1295.00</Cost>

<AcquisitionTypeID>1</AcquisitionTypeID>

</Asset>

</Inventory>

The DTD document does not have to be stored locally. A reference can include

a URL or URI that provides access to the document:

<!DOCTYPE Inventory SYSTEM "http://www.trigonblue.com/dtds/Inventory.dtd">

A Uniform Resource Identifier (URI) identifies a persistent resource on the Internet.

It is a number or name that is globally unique. A special type of URI is a Uniform

Resource Locator (URL) that defines a location of a resource on the Internet. A URI

is more general because it should find the closest copy of a resource and because it

would eliminate problems in finding a resource that was moved from one server to

another.

NOTE

In some cases, it is not important that a URI points to a specific resource, but the string that is
supplied must be globally unique, meaning no other XML document (that can be merged with the
current XML document) is using the same string for some other resource. However, there are also
cases in which a URI points to a specific resource on the Internet and the content of the string is
critical for proper processing of an XML document.

XML Comments and CDATA sections
It is possible to write comments within an XML document. The basic syntax of the

comment is

<!--commented text-->

where commented text can be any character string that does not contain two

consecutive hyphens (--) and that does not end with a hyphen (-).

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 4 9 7

Comments can stretch over more than one line:

<!-- This is a comment. -->

<!--

This is another comment.

-->

Comments cannot be part of any other tag:

<Order <!-- This is an illegal comment. --> OrderId = "123">

...

</Order>

You can use CDATA sections in XML documents to insulate blocks of text from

XML parsers. For example, if you are writing an article about XML and you want

also to store it in the form of an XML document, you can use CDATA sections to

force XML parsers to ignore markups with sample XML code.

The basic syntax of a CDATA section is

<![CDATA[string]]>

The string can be any character string that does not contain the string]]>.

CDATA sections can occur anywhere in an XML document where character data

is allowed:

<Example>

<Text>

<![CDATA[<Inventory Inventoryid="12"/>]]>

</Text>

</Example>

Character and Entity References
Like HTML and SGML, XML also includes a simple way to reference characters that

do not belong to the ASCII character set. The syntax of a character reference is

&#dec-value;
&#xhex-value;

The decimal (dec-value) or hexadecimal (hex-value) code of the character must be

preceded by &# or &#x, respectively, and followed by a semicolon (;).

Entity references are used in XML to insert characters that would cause problems

for the XML parser if they were inserted directly into the document. This type of

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 9 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

reference is basically a mnemonic alternative to a character reference. There are five

basic entity references:

Entity Meaning
& &

' ′
< <

> >

" “

Entity references are often used to represent characters with special meaning

in XML. In the following example, entity references are used to prevent the XML

parser from parsing the content of the Text element:

<Example>

<Text>

<Inventory Inventoryid="12"/>

</Text>

</Example>

XML Namespaces
Some entities from different areas of a document can have the same name. For example,

you could receive a purchase order document that contains a <name> tag for the

customer and a <name> tag for the company. People reading this document would

be able to distinguish them by their context. However, an application would need

additional information to interpret the data correctly.

A solution to this problem is to create XML namespaces to provide the XML

document with a vocabulary (that is, a context). After that, customer and company

names can be referenced using a context prefix:

<contact:name>Tom Jones</contact:name>

<Company:name>Trigon Blue</Company:name>

Naturally, before these prefixes can be used, they have to be defined. The root

element of the following document contains three attributes, each of which specifies

a namespace and a prefix used to reference it:

<PurchaseOrders

xmlns:contact="http://www.trigonblue.com/schemas/Contact.xsd"

xmlns:Company="http://www.trigonblue.com/schemas/Company.xsd"

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 4 9 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

xmlns:dsig="http://dsig.org">

<PurchaseOrder>

<Customer>

<contact:name>Tom Jones</contact:name>

</Customer>

<PurchaseDate>2000-09-11</PurchaseDate>

<SalesOrganization>

<Company:name>Trigon Blue</Company:name>

<Company:DUNS>817282919</Company:DUNS>

<Company:ID>1212</Company:ID>

</SalesOrganization>

<dsig:digital-signature>78901314</dsig:digital-signature>

</PurchaseOrder>

</PurchaseOrders>

In some cases, it is critical that the namespace points to an actual URL for a resource

so that the XML document can be processed correctly, but in some cases (as in the

preceding XML document), it is only important that the URI string in the namespace

is globally unique (that is, that no other XML document is using the same URI for

some other purpose).

Even when you have to use a specific namespace in an XML document, you can

still arbitrarily chose a prefix. However, some prefixes are traditionally associated

with some namespaces. For example, XML Schema documents traditionally use

the xsd prefix and UpdateGrams (see Chapter 15) use the updg prefix.

Structure of XML Documents
XML documents consist of three parts, as you can see in the following illustration:

The first part of the document, called the prolog or document type declaration

(not Document Type Definition), is optional. It can contain processing instructions,

a DTD, and comments. The second part of the document is the body, which contains

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the document’s elements. The data in these elements is organized into a hierarchy of

elements, their attributes, and their content. Sometimes an XML document contains

a third part, an epilog, which is an optional part that can hold final comments, processing

instructions, or just white space.

XML Parsers and DOM
Applications (or user agents) that use XML documents can use proprietary procedures

to access the data in them. Usually, such applications use special components called

XML parsers. An XML parser is a program or component that loads the XML document

into an internal hierarchical structure of nodes (see Figure 13-1) and provides access

to the information stored in these nodes to other components or programs.

The XML Document Object Model (DOM) is a set of standard objects, methods,

events, and properties used to access elements of an XML document. DOM is a

specification that has received Recommended status from the W3C. Different software

vendors have created their own implementations of DOM so that you can use it from

(almost) any programming language on (almost) any platform.

Microsoft has initially implemented DOM as a COM component called Microsoft

.XMLDOM in msxml.dll. Microsoft used to call it Microsoft XML Parser, but at the

5 0 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

Figure 13-1 A possible graphical interpretation of a node tree

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 0 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

time of this writing it is called Microsoft XML Core Services. It is delivered, for

example, with Internet Explorer, or you can download it separately from Microsoft’s

web site. Developers can use it from any programming language that can access COM

components or ActiveX objects (for example, Visual Basic, Visual Basic .NET,

VBScript, Visual C# .NET, Visual J++, JScript, and Visual C++).

Nevertheless, it is unlikely that you will use DOM from Transact-SQL. Microsoft

has built special tools for development in Transact-SQL (which are reviewed in the

next chapter).

XML Document Quality
There are two levels of document quality in XML: well-formed documents and valid

documents.

An XML document is said to be a well-formed document when

� There is one and only one root element.

� All elements that are not empty are marked with start and end tags.

� The order of the elements is hierarchical; that is, an element A that starts

within an element B also ends within element B.

� Attributes do not occur twice in one element.

� All entities used have been declared.

An XML document is said to be a valid document when

� The XML document is well-formed.

� The XML document complies with a specified DTD document.

The concept of a valid document has been ported to XML from SGML. In SGML,

all documents must be valid; in other words, they must comply with the rules defined

in the DTD. XML is not so strict. It is possible to use an XML document even without

a DTD document. If the user agent knows how to use the XML document without

the DTD, then the DTD need not even be sent over the Internet. It just increases

traffic and ties up bandwidth.

XML Schema and XML Schemas
The DTD is not the only type of document that can store rules for an XML document.

At the current time, several companies (including Microsoft) have submitted a

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 0 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

proposal to W3C for an alternative type of metadata document called the XML

Schema. In fact, there are other proposed standards for the same use, which are all

referred to as XML schemas. In May of 2001, W3C published its XML Schema

Recommendation, which should gradually replace all other XML schemas. However,

some of these schemas (such as the one defined by Microsoft) are already in use.

XML schemas are XML language for defining the business rules with which a class

of XML documents (data) must comply in order to be valid.

These are the major differences between a DTD and an XML schema:

� XML schemas support data types and range constraints.

� XML schemas allow users to define new data types.

� The language in which XML schemas are written is XML. Developers

do not have to learn an additional language as they do with DTDs.

� XML schemas support namespaces (XML entities for defining context).

Why are XML schemas important? A huge portion of application development

resources is spent on checking whether data complies with (business) rules about

structure and content. If you have a simple language to define the structure and

content of data (that is, the business rules by which it is constrained) and you have

a schema validator (a tool or program that can check compliance), you will be able

to reduce development resource requirements significantly, and therefore reduce the

cost to implement applications.

XML–Data Reduced (XDR) Schema
When SQL Server 2000 was released, the W3C was still working on its XML Schema

specification—it was not even clear which variation would be adopted. Microsoft has

implemented a variation of XML schema syntax called XML–Data Reduced (XDR) in

the MSXML parser (Microsoft XML Core Services) that was delivered initially as

a part of Internet Explorer 5, and later in SQL Server 2000.

Microsoft promised complete support for XML Schema when the W3C awarded

it Recommended status, but before that could happen, more and more organizations

started using XDR. It is also important to note that Microsoft uses XDR in BizTalk,

one of the most significant initiatives in the Web Services market. It is an initiative

intended to create e-commerce vocabularies for different vertical markets.

At the time of this writing, SQL Server 2000 is using XDR schemas for several

features, and support for XML Schema is increasing with each SQL Server 2000

Web Release.

The following is an example of an XDR schema document:

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 0 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

<Schema name="Schema"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Inventory" content="empty" model="closed">

<AttributeType name="Inventoryid" dt:type="i4"/>

<AttributeType name="EquipmentId" dt:type="i4"/>

<AttributeType name="LocationId" dt:type="i4"/>

<AttributeType name="StatusId" dt:type="ui1"/>

<AttributeType name="LeaseId" dt:type="i4"/>

<AttributeType name="LeaseScheduleId" dt:type="i4"/>

<AttributeType name="OwnerId" dt:type="i4"/>

<AttributeType name="Rent" dt:type="fixed.14.4"/>

<AttributeType name="Lease" dt:type="fixed.14.4"/>

<AttributeType name="Cost" dt:type="fixed.14.4"/>

<AttributeType name="AcquisitionTypeID" dt:type="ui1"/>

<attribute type="Inventoryid"/>

<attribute type="EquipmentId"/>

<attribute type="LocationId"/>

<attribute type="StatusId"/>

<attribute type="LeaseId"/>

<attribute type="LeaseScheduleId"/>

<attribute type="OwnerId"/>

<attribute type="Rent"/>

<attribute type="Lease"/>

<attribute type="Cost"/>

<attribute type="AcquisitionTypeID"/>

</ElementType>

</Schema>

This XDR schema describes the structure of an XML document that contains

Inventory information. The schema describes just one element—ElementType.

The definition also specifies its name ("Inventory"), content (the tag is

"empty" because all information will be carried in attributes), and content model
("closed"—indicating that it is not possible to add elements that are not specified

in the schema).

The element contains several attributes. Each attribute is first defined in an

AttributeType element and then instantiated in an attribute element:

<AttributeType name="Cost" dt:type="fixed.14.4"/>

...

<attribute type="Cost"/>

For each attribute, the schema defines a name and a data type. You can see a list

of acceptable data types in the appendix at the end of this book.

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 0 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

The following listing shows an XML document that complies with the previous

XDR schema:

<Inventory xmlns="x-schema:Schema.xml"

Inventoryid="5"

EquipmentId="1"

LocationId="2"

StatusId="1"

LeaseId="1"

LeaseScheduleId="1"

OwnerId="1"

Cost="1295.0000"

AcquisitionTypeID="1"/>

Schema Constraints
This section reviews XDR schema attributes that can be used to declare elements and

attributes. These can be classified as

� Element constraints

� Attribute constraints

� XML data types

� Group constraints

Element Constraints
Elements in an XDR schema can be constrained using attributes of the

<ElementType> tag:

� name

� content

� model

� order

� group

� minOccurs

� maxOccurs

The name attribute defines the name of the subelement.

Possible values for the content attribute are listed in the Table 13-1.

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An important innovation in XDR schemas (that was not available in DTDs) is

the capability to add nondeclared elements and attributes to an XML document.

By default, every element of every XML document has its model attribute set to

"open". To prevent the addition of nondeclared elements and attributes, the model
attribute has to be set to "closed".

It is also possible to define how many times a subelement can appear in its

parent element by using the maxOccurs and minOccurs attributes. Positive

integer values and "*" (unlimited number) are allowed in the maxOccurs
attribute, and "0" and positive integer values are allowed in the minOccurs
attribute. The default value for minOccurs is "0". The default value for

maxOccurs is "1", except that when the content attribute is "mixed",

maxOccurs must be "*".

An order attribute specifies the order and quantity of subelements (see Table 13-2).

The default value for order is "seq" when the content attribute is set to

"eltOnly" and is "many" when the content attribute is set to "mixed".

Attribute Constraints
By their nature, attributes are more constrained than elements. For example, attributes

do not have subelements (or subattributes), and it is not possible to have more than

one instance of an attribute within the element.

The required attribute (constraint) in a schema specifies that the attribute is

mandatory in XML documents that follow the schema. The default attribute

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 0 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

content Meaning
"textOnly" Only text is allowed as content

"eltOnly" Only other elements are allowed as content

"empty" No content

"mixed" Both text and elements are allowed as content

Table 13-1 content Attribute Values

order Meaning
"seq" Subelements must appear in the order listed in the schema.

"one" Only one of the subelements listed in the schema can appear in the XML document.

"many" Any number of subelements can appear in any order.

Table 13-2 order Attribute Values of <ElementType>

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(constraint) in a schema specifies the default value of the attribute in an XML

document (the parser will use that value if an attribute is not present).

The schema can be set so that an attribute value is constrained to a set of

predefined values:

<AttributeType name="status"

dt:type="enumeration"

dt:values="open in-process completed" />

XML Data Types
The schema can also enforce the data type of the attribute or element. Table A-2

in the appendix lists data types and their meanings, and Table A-3 in the appendix

shows the mapping between XML data types and SQL Server data types.

Group Constraints
The group element allows an author to apply certain constraints to a group of

subelements. In the following example, only one price (rent, lease, or cost) can be

specified for the Inventory element:

<Schema name="Schema" xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Inventory" content="eltOnly"

model="closed" order="many">

<element type="Inventoryid"/>

<element type="EquipmentId"/>

<element type="LocationId"/>

<element type="StatusId"/>

<element type="LeaseId"/>

<element type="LeaseScheduleId"/>

<element type="OwnerId"/>

<group order = "one">

<element type="Rent"/>

<element type="Lease"/>

<element type="Cost"/>

</group>

<element type="AcquisitionTypeID"/>

</ElementType>

</Schema>

The group constraint accepts order, minOccurs, and maxOccurs attributes.

5 0 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 0 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

XML Schema (XSD)
In May of 2001, XML Schema was given Recommended status by the W3C.

Unfortunately, this stamp of approval happened after Microsoft had already

released SQL Server 2000. However, in subsequent web releases of XML for

SQL and SQLXML, and in releases of other products such as Visual Studio .NET,

Microsoft has added support for XML Schema.

You can find the W3C XML Schema Recommendation specification, tools, and

other resources at www.w3.org/XML/schema.html. I will try, however, to introduce

the most important concepts.

The purpose of XML Schema is to define a class of XML documents. Each

document of a specified class is an instance of that XML document class. The

Equipment.xsd file contains an XML Schema document that defines instances

of XML documents with Equipment information:

<?xml version="1.0" encoding="utf-8" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.trigonblue.com/Equipment.xsd"

xmlns="http://www.trigonblue.com/Equipment.xsd"

xmlns:mstns="http://www.trigonblue.com/Equipment.xsd"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

elementFormDefault="qualified"

attributeFormDefault="qualified">

<xsd:element name="Document">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Equipment">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="EquipmentId"

msdata:ReadOnly="true"

msdata:AutoIncrement="true"

type="xsd:int" />

<xsd:element name="Make" type="xsd:string" />

<xsd:element name="Model" type="xsd:string" />

<xsd:element name="EqTypeId" type="xsd:short" />

<xsd:element name="ModelSDX" type="xsd:string" />

<xsd:element name="MakeSDX" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<xsd:unique name="DocumentKey1" msdata:PrimaryKey="true">

<xsd:selector xpath=".//mstns:Equipment" />

<xsd:field xpath="mstns:EquipmentId" />

</xsd:unique>

</xsd:element>

</xsd:schema>

You may notice that all elements in all XML Schema documents have an xsd

prefix. Therefore, they are often stored in .xsd files and referred to as XSD schemas.

An XSD schema defines the structure and the types of data that can be used in a

valid XML document instance. The following XML document is a valid instance of

the previous schema:

<?xml version="1.0" encoding="utf-8" ?>

<Document xmlns="http://www.trigonblue.com/Equipment.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="Equipment.xsd">

<Equipment>

<EquipmentId>478</EquipmentId>

<Make>Compaq</Make>

<Model>15 Cart. DLT Library Tabletop Conversion Kit </Model>

<EqTypeId>1</EqTypeId>

</Equipment>

<Equipment>

<EquipmentId>394</EquipmentId>

<Make>Compaq</Make>

<Model>2KVA Prestige W/Ext full Bat</Model>

<EqTypeId>1</EqTypeId>

</Equipment>

<Equipment>

<EquipmentId>347</EquipmentId>

<Make>Compaq</Make>

<Model>Deskpro EN CMT PIII 733 10GB 128MB 48xCD nVidia NT</Model>

<EqTypeId>1</EqTypeId>

</Equipment>

...

</Document>

When an instance of an XML document and an XSD schema are processed

together in a schema validator, the program checks whether the instance complies

with the business rules defined in the schema and reports the result to the caller.

5 0 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 0 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

xsd:schema Element
All XML Schema documents must contain the xsd:schema root element:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.trigonblue.com/Equipment.xsd"

xmlns="http://www.trigonblue.com/Equipment.xsd"

xmlns:mstns="http://www.trigonblue.com/Equipment.xsd"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

elementFormDefault="qualified"

attributeFormDefault="qualified">

...

</xsd:schema>

The xmlns:xsd attribute notifies a parser (or any other agent) that all elements

with an xsd prefix should be processed as XSD schemas. You must be very careful

to include a reference to the namespace using the URL indicated in the preceding

listing. Otherwise, parsers and validators will not recognize it and will not be able

to process the XSD schema properly. All components of an XSD schema (such as

elements, types, sequence, schema) are defined in this namespace.

The targetNamespace attribute specifies the namespace of a target XML

document instance. The XML document instance must have a matching namespace

declaration.

The xmlns attribute defines the default name of the namespace in the

XML document instance. When you set elementFormDefault and

attributeFormDefault to “qualified,” all elements and attributes defined

in the XSD schema (not just global elements and attributes) will belong to the

target namespace in the XML document instance, and they must be namespace

qualified (that is, they must contain the appropriate prefix).

Structure Declarations and Definitions
The primary tasks of the developer (or program) writing an XSD schema are to

� Declare the components of an XML document instance (elements and

attributes)

� Define the components that are used inside the XSD schema (such as

simple and complex types and attribute and model groups)

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Element and Attribute Declaration
xsd:element and xsd:attribute are used to declare elements and attributes

in an XML document instance. In their simplest forms, elements and attributes can

be defined by name and type (data type). In the following case, the LocationId
attribute is defined as int and the Location element is defined as string:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Location" type="xsd:string"/>

<xsd:attribute name="LocationId" type="xsd:int"/>

</xsd:schema>

Attributes can be declared based only on simple types, while elements can be

declared based on both simple and complex types (I will define types in the next

two sections).

Attributes and elements can be defined either globally (just below xsd:schema),

as in the previous example, or inside other elements and complex types.

Simple Type Declarations
Types are XSD schema equivalents of data types. Simple types are XSD components

that cannot contain xsd:elements and xsd:attributes. Some simple types

like int, datetime, string, ID, IDREF, language, and gYear (Gregorian

year) are defined along with the XML Schema in the xsd namespace, while others can

be derived from them in the XSD schema (like user-defined data types in TSQL).

A new simple type is derived in an xsd:simpleType element:

<xsd:simpleType name="ProdYear">

<xsd:restriction base="xsd:gYear">

<xsd:minInclusive value="1990"/>

<xsd:maxInclusive value="2010"/>

</xsd:restriction>

</xsd:simpleType>

A new simple type is defined by a name (attribute) and a set of facets (elements)

inside the xsd:restriction element. In this case, the minInclusive and

maxInclusive facets define the range of acceptable years.

The enumeration facet can be used to define a lookup list (the list of acceptable

values):

<xsd:simpleType name="CanProvince">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="ON"/>

5 1 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<xsd:enumeration value="BC"/>

<xsd:enumeration value="MA"/>

<xsd:enumeration value="NB"/>

...

</xsd:restriction>

</xsd:simpleType>

The pattern facet uses regular expressions to define the format of values in

the element:

<xsd:simpleType name="GUID">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}

-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"/>

</xsd:restriction>

</xsd:simpleType>

In this case, the GUID type is defined as a set of 8, 4, 4, 4, and 12 hexadecimal digits

divided by dashes (-).

The W3C Recommendation defines the following facets:

� length

� minLength

� maxLength

� pattern

� enumeration

� whiteSpace

� maxInclusive

� minInclusive

� maxExclusive

� minExclusive

� totalDigits

� fractionDigits

Naturally, you cannot use every facet with every type. Only some combinations

make sense.

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 1 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complex Types
Complex types are XSD schema elements that can be defined to contain additional

attributes and elements. In the following example, the EqType complex type

definition consists of two element declarations:

<xsd:complexType name="EqType">

<xsd:sequence>

<xsd:element name="EqTypeId" type="xsd:integer"/>

<xsd:element name="EqTypeName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

The meaning of the xsd:sequence element is that both elements must be present

in the sequence (order) in which they are declared.

Complex types can be built from other simple and complex types:

<xsd:complexType name="Equpment">

<xsd:sequence>

<xsd:element name="EqId" type="xsd:integer" minOccurs="1"/>

<xsd:element name="Make" type="string" minOccurs="1"/>

<xsd:element name="Model" type="string" minOccurs="1"/>

<xsd:element name="eqType" type="EqType" minOccurs="1"/>

<xsd:element ref="comment" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="guid" type="GUID"/>

</xsd:complexType>

The first three elements are defined as simple types, but the eqType element is

defined as an instance of the EqType complex type defined earlier.

The first four elements are defined inline—the definition of each element also

contains its type. There is an alternative means of defining elements: you can name

an element in one place and reference it in another. For example, the comment
element was named somewhere else in the schema and is only referenced here.

NOTE

The advantage of an inline definition is that it is more compact—the definition and the instance
of an element are in the same place. The advantage of a named definition is that it can be
referenced in many places.

5 1 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

Groups
An xsd:group element allows you to define a set of xsd:elements that will later

be referenced together. In the following example, the ExtendedPrice element has

been defined as the group of Price, Currency, and Quantity elements:

<xsd:element name="OrderItem">

<xsd:complexType>

...

<xsd:group ref="ExtendedPrice"/>

...

</xsd:complexType>

</xsd:element>

...

<xsd:group name="ExtendedPrice">

<xsd:sequence>

<xsd:element name="Price" type="xsd:decimal"/>

<xsd:element name="Currency" type="xsd:string"/>

<xsd:element name="Quantity" type="xsd:decimal"/>

</xsd:sequence>

</xsd:group>

An attributeGroup element also allows you to define a group of attributes

that can later be referenced together:

<xsd:element name="Equipment" maxOccurs="unbounded">

<xsd:complexType>

...

<xsd:attributeGroup ref="EquipmentProp"/>

...

</xsd:complexType>

</xsd:element>

...

<xsd:attributeGroup name="EquipmentProp">

<xsd:attribute name="Make" type="xsd:string"/>

<xsd:attribute name="Model" type="xsd:string"/>

<xsd:attribute name="EqType" use="required">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Monitor"/>

<xsd:enumeration value="Desktop"/>

<xsd:enumeration value="Keyboard"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:attributeGroup>

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 1 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Annotating Schemas
To add a comment to the schema, you can use the xsd:annotation element. It

can contain two subelements. The xsd:documentation element is used to mark

comments written for people, while the xsd:appinfo element is used to mark

information for programs (such as style sheets and SQLXML). The content of the

appinfo element should be well formed XML (so that target applications can

parse them).

NOTE

It’s not that programs need a valid comment from the developer. The appinfo annotations
simply do not have any meaning for the schema validator, while they might be very important
instructions for target programs.

<xsd:annotation>

<xsd:documentation xml:lang="en-US">

This element should be linked with Location.LocId.

</xsd:documentation>

<xsd:appinfo>

<TbSql proc="Location.LocId">Link</TbSql>

</xsd:appinfo>

<xsd:/annotation>

You should also use the xml:lang attribute inside the xsd:documentation
element to indicate the language in which your comment is written.

Annotations can be placed only:

� Before and after any global component (such as schema, simpleType,

and attribute)

� At the beginning of nonglobal components

XSD Schema Tools
The XML development community, including Microsoft, has developed many useful

tools for development and management of XSD schemas. You can find a comprehensive

list with links at www.w3.org/XML/Schema#Tools. I will now demonstrate use of

three tools developed by Microsoft.

XSD Designer Visual Studio .NET supports the use of XSD schemas primarily to

process ADO.NET data sets. It contains the XSD Designer—a graphical tool that

5 1 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

allows you to drag and drop relation tables to link them and then build XSD schema

out of them. To use it:

1. Open a new Visual Studio .NET project.

2. Select File | Add Item from the menu.

3. Select XSD Schema. The program will open the XSD Schema Designer

with the Schema pane active.

4. Open Server Explorer.

5. Expand the server node until you reach the tables in the Asset database.

6. Drag the Equipment table onto the XSD Schema Designer (see Figure 13-2).

7. You can switch to the XML pane to see the code of the schema.

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 1 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

Figure 13-2 The XSD Schema Designer

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 1 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

The XSD Schema Designer generates schemas that have some additional

elements and attributes that are needed to validate ADO.NET datasets:

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"

elementFormDefault="qualified"

xmlns="http://tempuri.org/XMLSchema.xsd"

xmlns:mstns="http://tempuri.org/XMLSchema.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xs:element name="Document">

<xs:complexType>

<xs:choice maxOccurs="unbounded">

<xs:element name="Equipment">

<xs:complexType>

<xs:sequence>

<xs:element name="EquipmentId"

msdata:ReadOnly="true"

msdata:AutoIncrement="true"

type="xs:int" />

<xs:element name="Make" type="xs:string"

minOccurs="0" />

<xs:element name="Model" type="xs:string"

minOccurs="0" />

<xs:element name="EqTypeId" type="xs:short"

minOccurs="0" />

<xs:element name="ModelSDX" type="xs:string"

minOccurs="0" />

<xs:element name="MakeSDX" type="xs:string"

minOccurs="0" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

<xs:unique name="DocumentKey1" msdata:PrimaryKey="true">

<xs:selector xpath=".//mstns:Equipment" />

<xs:field xpath="mstns:EquipmentId" />

</xs:unique>

</xs:element>

</xs:schema>

The XSD is generated with temporary URI (tempuri.org) namespace references.

You can replace them with your own namespaces:

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema targetNamespace="http://www.trigonblue.com/Equipment.xsd"

elementFormDefault="qualified"

xmlns="http://www.trigonblue.com/XMLSchema.xsd"

xmlns:mstns="http://www.trigonblue.com/Equipment.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

XSD by Example: Microsoft XSD Inference Microsoft XSD Inference is a web-based

utility that you can use to create an XSD schema from an XML instance document

(see Figure 13-3). You can think of it as “XSD by example.” When you select a well-

formed XML file, the utility generates an XSD schema that can be used to validate

it. You can continue refining the XSD schema by selecting more XML files. At the

end, you might also need to edit it manually to implement additional components

such as facets (restrictions) and annotations.

XSD Schema Validator Another tool that you might find useful when working with

XSD schemas is the XSD Schema Validator, a web application (see Figure 13-4) that

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 1 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

Figure 13-3 XSD by example

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 1 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

you can find at http://apps.gotdotnet.com/xmltools/xsdvalidator/. If you load your

schema and your XML document instance, the XSD Schema Validator will report

whether or not the instance complies with rules specified in the schema.

NOTE

You cannot validate an instance if you simply put the instance and schema in a folder on an IIS
server and open it using Internet Explorer. Unfortunately, the parser in IE is not set as a validating
parser and will simply display the content of the document instance.

Linking and Querying in XML
XML today represents more than a simple language for encoding documents. W3C

is working on a whole other set of specifications for using information in XML

documents. Specifications such as XLink, XPointer, XPath, and XQL allow querying,

linking, and access to specific parts of an XML document.

This is a vast topic, and I will briefly review only XPointer and XPath, since they

are used in SQL Server 2000.

Figure 13-4 The XSD Schema Validator

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

XPointer
The XPointer reference works in a fashion very similar to the HTML hyperlink.

You can point to a segment of an XML document by appending an XML fragment

identifier to the URI of the XML document. A fragment identifier is often enclosed

in xpointer(). For example, the following pointer directs the parser to an element

with the ID attribute set to "Toshiba" in the document at a specified location:

http://www.trigonblue.com/xml/Equipment.xml#xpointer(Toshiba)

The character # is a fragment specifier. It serves as a delimiter between the URI

and the fragment identifier, and it specifies the way that the XML parser will render

the target. In the preceding case, the parser renders the whole document to access

only a specified fragment. To force the parser to parse only the specified fragment,

you should use | as a fragment specifier:

http://www.trigonblue.com/xml/Equipment.xml|xpointer(Toshiba)

Use of the | fragment specifier is recommended because it leads to reduced

memory usage.

xpointer() is not always required. If a document has a schema that specifies

the ID attribute of an element, you can omit the xpointer() and point to a fragment

of the document using only the ID attribute value:

http://www.trigonblue.com/xml/Equipment.xml#Toshiba

Child sequence fragment identifiers use numbers to specify a fragment:

http://www.trigonblue.com/xml/Equipment.xml#/2/1/3

The preceding example should be interpreted as follows: /—start from the top

element of the document; 2—then go to the second child element of the top element;

1—then go to the first subelement of that element; 3—then go to the third subelement

of that element.

Child sequence fragment identifiers do not have to start from the top element:

http://www.trigonblue.com/xml/Equipment.xml#Toshiba/1/3

In this example, fragment identification starts from the element with its ID set

to "Toshiba". The parser then finds its first subelement and points to its third

subelement.

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 1 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

XPath
The full XPointer syntax is built on the W3C XPath recommendation. XPath was

originally built to be used by XPointer and XSLT (a language for transforming XML

documents into other XML documents), but it has found application in other standards

and technologies. You will see in the next chapter how it is used by OpenXML() in

SQL Server 2000, but first you need to examine its syntax.

Location steps are constructs used to select nodes in an XML document. They

have the following syntax:

axis::node_test[predicate]

The location step points to the location of other nodes from the position of the

current node. If a current node is not specified in any way, the location step is based

on the root element.

Axes break up the XML document in relation to the current node. You can think

of them as a first filter that you apply to an XML document to point to target nodes.

Possible axes are listed in Table 13-3.

5 2 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

Axes Description
parent The parent of the current node.

ancestor All ancestors (parent, grandparent, and so on) to the root of the current node.

child All children of the current node (first generation).

descendant All descendants (children, grandchildren, and so forth) of the current node.

self The current node only.

descendant-or-self All descendant nodes and the current node.

ancestor-or-self All ancestor nodes and the current node.

attribute All attributes of the current node.

namespace All namespace nodes of the current node.

following All nodes after the current node in the XML document. The set does not include
attribute nodes, namespace nodes, or ancestors of the context node.

preceding All nodes before the current node in the XML document. The set does not include
attribute nodes, namespace nodes, or ancestors of the current node.

following-sibling All siblings (children of the same parent) after the current node in the XML
document.

preceding-sibling All siblings (children of the same parent) before the current node in the XML
document.

Table 13-3 Axes in XPath

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The node test is a second filter that you can apply on nodes specified by axes.

Table 13-4 lists all node tests that can be applied.

A predicate is a filter in the form of a Boolean expression that evaluates each

node in the set obtained after applying axes and node test filters. Developers have a

rich set of functions (string, node set, Boolean, and number), comparative operators

(=, !=, <=, >= <, >), Boolean operators (And, Or), and operators (+, –, *, div, mod).

The list is very long (especially the list of functions), and I will not go into detail

here. I will just mention the most common function, position(). It returns the

position of the node.

Let’s now review how all segments of the location step function together:

child::Equipment[position()<=10]

This location set first points to child nodes of the current node (root if none is selected).

Of all child nodes, only elements named Equipment are left in the set. Finally,

each of those nodes is evaluated by position and only the first 10 are specified.

Very often, you will try to navigate from node to node through the XML document.

You can attach location sets using the forward slash (/). The same character is often

used at the beginning of the expression to establish the current node.

In the following example, the parser is pointed to the Inventory.xml file, then to its

root element, and then to the first child called Equipment, and finally to the first

Model node among its children:

Inventory.xml#/child::Equipment[position() = 1]/child::

Model[position() = 1]

It all works in a very similar fashion to the notation of files and folders, and

naturally you can write them all together:

http://www.trigonblue.com/xml/Inventory.xml#/child::

Equipment[position() = 1]/child::Model[position() = 1]

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 2 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

Node Test Description
element name Selects just node(s) with specified name in the set specified by axes.

* or node() All nodes in the set specified by axes.

comment() All comment elements in the set specified by axes.

text() All text elements in the set specified by axes.

processing-
instruction()

All processing instruction elements in the set specified by axes (if the name is specified
in brackets, the parser will match only processing instructions with the specified name).

Table 13-4 Node Tests in XPath

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 2 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

XPath constructs are very flexible, but also very complex and laborious to write.

To reduce the effort, a number of abbreviations are defined. position() = X can

be replaced by X (it is enough to type just the number). Thus, an earlier example can be

written as

Inventory.xml#/child::Equipment[1]/child::Model[1]

If an axis is not defined, the parser assumes that the child axis was specified.

Thus, the preceding example could be written as

Inventory.xml#/Equipment[1]/Model[1]

The attribute:: axis can be abbreviated as @. Therefore, the following two

expressions are equivalent:

Inventory.xml#/child::Equipment[1]/attribute::EquipmentId

Inventory.xml#/child::Equipment[1]/@EquipmentId

The current node can be specified using either self::node() or a dot (.).

The following two expressions are equivalent:

Order.xml#/self::node()/OrderDate

Order.xml#/./OrderDate

A parent node can be specified either by parent::node() or two dots (..).

The following two expressions are equivalent:

parent::node()/Order

../Order

/descendant-or-self::node() selects the current node and all

descendant nodes. It can be abbreviated with //. The following two examples

select all EquipmentId attributes in the document:

Inventory.xml#/descendant-or-self::node()/@EquipmentId

Inventory.xml#//@EquipmentId

Transforming XML
In many cases in business, information that is already in the form of an XML document

needs to be converted to another XML structure. For example, a client of mine is

participating in RossetaNet, an e-commerce consortium of IT supply chain organizations

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 2 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

that defines standard messages to be sent between partners. Although messages are

standardized, each pair of partners can agree to modify their messages slightly to

better serve their needs. Such changes are mostly structural—new nodes (fields) can

be defined, standard ones can be dropped, a node can change its type from element

to attribute, and so on. Instead of generating completely different messages each time

(and developing two separate procedures for performing similar tasks), it is preferable

to create a simple procedure that will transform a standard XML message into

another form.

Another typical situation occurs when an application uses a browser to display an

XML document. Although modern browsers such as the latest versions of Internet

Explorer are able to display the content of an XML document in the form of a

hierarchical tree, this format is not user-friendly. More often, the XML document

is transformed into an HTML document and information is organized visually into

tables and frames. Such HTML applications usually allow the end user to modify the

displayed information interactively (for example, to sort the content of the tables, to

display different information in linked tables, or to present data in different formats).

Each of these tasks could be performed by modifying the original XML document.

A typical problem with HTML browsers from different vendors is that they are not

compatible. Naturally (well, actually, it seems quite unnatural), even different versions

of the same browser behave differently. Each of them uses a different variation of the

HTML standard. However, these differences are not major, and instead of generating

a separate XML document for each of them, you can create a procedure to transform

the XML document so that it fits the requirements of the browser currently in use.

You can think of XML as just one type of rendering language. Some systems use

other types of rendering languages and appropriate browsers. For example, more and

more PDAs and wireless devices such as cellular phones are offering Internet access.

They often use a special protocol (Wireless Application Protocol, or WAP) that has

its own markup language (Wireless Markup Language—WML) based on XML. A

web server offering information should be able to transform the XML document to

fulfill the needs of different viewers.

XSL
The eXtensible Stylesheet Language (XSL) addresses the need to transform XML

documents from one XML form to another and to transform XML documents to

other formats such as HTML and WML. It is based on Cascading Style Sheets (CSS),

a language for styling HTML documents. Over time, XSL has been transformed into

three other languages:

� XSLT for transforming XML documents

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 2 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

� XSLF for rendering

� XPath for accessing a specific part of an XML document

XSLT
XSLT is a (new) language for transforming XML documents. W3C gave it

Recommended status in November 1999. XSLT style sheet files are also well-formed

XML documents. These files are processed by XSLT processors. Such a processor

can be a separate tool or part of an XML parser (as in the case of MSXML).

At this point, I will not go into detail about XSL and XSLT syntax. Such topics

are really beyond the scope of this book. Refer to www.w3.org/Style/XSL/ and

www.w3.org/TR/xslt for more information on this topic. However, I will cover the

use of XSLT in SQL Server 2000 later in “Using XSL,” in Chapter 14.

Why XML?
I have described XML, which is all well and fine, but of course the questions arise: why

do you need XML, and what can you do with it? Two major areas of application are

� Exchange of information between organizations

� Information publishing

Exchange of Information Between Organizations
XML provides platform-independent data transport for a variety of types of information,

from simple messages (commands, information requests) to the most complex business

documents. Its extensible nature—the ease with which you can add new nodes or

branches, create multiple instances of the same element, and use open schemas to

add elements as necessary (provided they comply with schema rules)—makes XML

an ideal development language for the rapidly evolving “dotcom” economy. You can

use XML to implement solutions that can grow and evolve with an organization and

be relatively certain that your solution will not end up on next year’s scrap heap and

that the organization will not have to replace it at an enormous cost as the needs of

the organization grow and change.

It is no wonder that Microsoft has incorporated support for XML in its new releases

of applications such as SQL Server, Exchange, Visual Studio, and Internet Explorer.

This support allows Microsoft to remain the major player in operating systems and

network solutions even as businesses organize themselves into trading communities

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 3 : I n t r o d u c t i o n t o X M L f o r D a t a b a s e D e v e l o p e r s 5 2 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

and industry associations defined by their ability to exchange information seamlessly

and securely via the Internet.

EDI: a Cautionary Tale
XML is finding extensive application within the B2B (business-to-business) and

B2C (business-to-consumer) arenas, to name but two of this young century’s most

ubiquitous buzzwords. XML’s success in this emerging marketplace is largely due

to its platform independence, which translates directly to the bottom line in terms of

low implementation costs. Trading partners require only Internet access and a web

browser to conduct secure business transactions over the Internet.

One of the buzzwords of the early 1990s was EDI (Electronic Data Interchange).

EDI is still around, but it has never fulfilled its promise to make the exchange of

paper documents between businesses obsolete. It was the cost of implementation

that prevented EDI from fulfilling this promise. The problem that EDI encountered

is a variation on the “Tower of Babel” theme: the proliferation of languages and

protocols ensured that each implementation would be unique, and therefore costly.

Classic EDI follows a hub-and-spoke model: a large company (the “hub”) that

must manage business relationships with a large number of suppliers (the “spokes”)

decrees that the spoke organizations must implement EDI or lose their trading-partner

status. The spoke organizations have to bear the considerable cost of implementation

or lose a considerable portion of their business income.

A company that is forced to implement EDI by virtue of a trading relationship with

a hub company receives an “implementation guide” that describes the EDI standard

with which it must comply. One EDI veteran described the difference between classic

EDI and XML-based e-commerce succinctly: with EDI, your postal carrier delivers

an implementation guide printed on paper; with XML-based e-commerce, the

implementation guide is attached to the electronic business document/transaction

in the form of a DTD or XML schema.

This comparison is a gross oversimplification of the relationship between these

two technologies, but it does highlight one reason that XML-based e-commerce has

succeeded with small- to medium-sized businesses where EDI could not, and that is

its relatively low cost of implementation.

The other reason for this success is that XML-based e-commerce leverages

Internet-based communications. The dial-up Value Added Networks (VANs) of the

EDI world are more or less glorified (and generally expensive) electronic mailboxes

to which you post business documents and from which you download business

documents from your trading partners. The XML revolution has spawned Internet-

based, third-party Application Service Providers (ASPs) and “Infomediaries” to take

the place of the VANs and use XML to conduct business transactions between diverse

trading partners.

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Of course, these ASPs and Infomediaries are in the business of developing data-

based applications for the Web, so you can begin to see why it is so important that

SQL Server be XML-ready. The new XML features in SQL Server 2000, along

with SQL Server’s ease of use, make it a leader in this emerging market.

Information Publishing
Just as trading partners can use XML to exchange business documents, organizations

and individuals can use XML to develop data-based applications that publish

information. The only real difference between business document exchange

and information publishing is that the information itself becomes the commodity.

Using XML to publish information located in a SQL Server database combines

the easy access of the Internet with the power and data integrity of a mature RDBMS.

Browser-based applications allow users to retrieve data dynamically from diverse

databases.

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

5 2 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 13

P:\010Comp\D_Base\896-2\ch13.vp
Tuesday, April 29, 2003 12:48:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

14
Publishing Information

Using SQLXML

527

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
For XML Clause

Publishing Database Information Using HTTP
Programmatic Database Access

Retrieving XML Data Using ADO.NET
Client-Side XML Processing

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this chapter, I will explain the methods you can use to publish and access

SQL Server 2000 data in the form of XML documents. These methods include:

� Publishing database information using HTTP

� Database access using URL

� Database access using POST

� Accessing database information using templates

� Database access using annotated schemas

� Client-side XML processing

� Programmatic database access from .NET applications

I will start by exploring the For XML clause of the Select statement.

For XML Clause
SQL Server 2000 can return data as XML. The foundation for all new features related

to publishing database information in XML format is the extended syntax of the

Select statement.

The Select statement has a new For XML clause:

[For { XML { Auto | Raw | Explicit }

[, XMLData]

[, Elements]

[, Binary base64]

}

]

This clause allows a caller to request the results of a query as an XML document

instead of a recordset. The structure of the resulting XML document depends on the

XML mode that the caller has selected:

� Auto

� Raw

� Explicit

5 2 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Auto Mode
The following example uses Auto mode against the Inventory table in the Asset

database:

Select *

From Inventory

For XML Auto

TIP

Before you issue such a query against the database yourself, go to Tools | Options in Query
Analyzer and open the Results tab. Change the Maximum Characters per Column value to 8192
(the maximum allowed value). The default value is too short. If you do not change it, you will
wonder why the resulting XML document is shortened.

Figure 14-1 shows how Query Analyzer displays the results. To analyze the result,

I recommend that you either copy and paste it into some other editor or insert line

breaks and tabs to emphasize the structure of the document:

<Inventory Inventoryid="5"

EquipmentId="1"

LocationId="2"

StatusId="1"

LeaseId="1"

LeaseScheduleId="1"

OwnerId="1"

Cost="1295.0000"

AcquisitionTypeID="1"/>

<Inventory Inventoryid="6"

EquipmentId="6"

LocationId="2"

StatusId="2"

LeaseId="1"

...

Each record in the Inventory table is represented as an element. The Inventory
element is named after the table, and all columns are represented as attributes of

the element. Since there is no other content aside from these attributes, each element

is coded as an empty tag: <Inventory/>.

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 2 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

There is one problem with this XML document. Strictly speaking, it is not a valid XML document
since there is no root element. The first element, Inventory, does not qualify as the root
element because it is not unique within the document (the document has one instance for each
record). This type of XML file is often called an XML fragment. Later in the chapter I will show
you how to handle this problem.

The following example shows what happens when another table is added to

the query:

select *

from Inventory inner join Equipment

on Inventory.EquipmentId = Equipment.Equipmentid

for XML Auto

5 3 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-1 An XML document as a result of a query

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I will execute this query and then add some line breaks so that you can more

easily see the structure of the resulting XML:

XML_F52E2B61-18A1-11d1-B105-00805F49916B

<Inventory Inventoryid="5" EquipmentId="1" LocationId="2"

StatusId="1" LeaseId="1" LeaseScheduleId="1"

OwnerId="1" Cost="1295.0000" AcquisitionTypeID="1">

<Equipment EquipmentId="1" Make="Toshiba"

Model="Portege 7020CT" EqTypeId="1" ModelSDX="P632"/>

</Inventory>

<Inventory Inventoryid="6" EquipmentId="6" LocationId="2"

StatusId="2" LeaseId="1" LeaseScheduleId="1"

OwnerId="1" Rent="200.0000" Lease="0.0000"

AcquisitionTypeID="3">

<Equipment EquipmentId="6" Make="NEC" Model="V90"

EqTypeId="1" ModelSDX="V000"/>

</Inventory>

<Inventory Inventoryid="8" EquipmentId="5" LocationId="2"

StatusId="1" OwnerId="1" Lease="87.7500"

AcquisitionTypeID="2">

<Equipment EquipmentId="5" Make="HP" Model="LaserJet 4"

EqTypeId="7" ModelSDX="L262"/>

</Inventory>

<Inventory Inventoryid="12" EquipmentId="1" LocationId="2"

StatusId="1" LeaseId="1" LeaseScheduleId="1"

OwnerId="1" Lease="100.0000" AcquisitionTypeID="2">

<Equipment EquipmentId="1" Make="Toshiba"

Model="Portege 7020CT" EqTypeId="1" ModelSDX="P632"/>

</Inventory>

...

This time, the result is a simple nested XML tree. The structure of the XML

document is based on the content of the From clause. The leftmost table is mapped

to the top element; the second leftmost table is mapped as a subelement of the

top element; the third leftmost table (if it exists) is mapped as a subelement of the

second-level element, and so on. Again, table columns are mapped to the attributes

of the element.

If I now create a query that joins Inventory with all other lookup tables, I get

a nested tree with a number of levels (see Figure 14-2).

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 3 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 3 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

In the preceding case, each Inventory element contains one Equipment
element, which could be very useful for client applications. Each record from the

main table is followed by the associated lookup (foreign key) records.

The following example reverses the order of tables in the From clause and uses

Left Join:

Select *

From Equipment Left Outer Join Inventory

On Inventory.EquipmentId = Equipment.Equipmentid

For XML Auto

Now each record in the Equipment table is followed by a variable number of

records from the Inventory table. There are records in the Equipment table that are

Figure 14-2 An XML document with a number of levels

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

not associated with any Inventory record and Equipment records that are associated

with more than one Inventory record:

XML_F52E2B61-18A1-11d1-B105-00805F49916B

--

<Equipment EquipmentId="1" Make="Toshiba" Model="Portege 7020CT"

EqTypeId="1" ModelSDX="P632">

<Inventory Inventoryid="5" EquipmentId="1" LocationId="2"

StatusId="1" LeaseId="1" LeaseScheduleId="1"

OwnerId="1" Cost="1295.0000" AcquisitionTypeID="1"/>

<Inventory Inventoryid="12" EquipmentId="1" LocationId="2"

StatusId="1" LeaseId="1" LeaseScheduleId="1"

OwnerId="1" Lease="100.0000"

AcquisitionTypeID="2"/>

</Equipment>

<Equipment EquipmentId="2" Make="Sony" Model="Trinitron 17XE"

EqTypeId="3" ModelSDX="T653">

<Inventory/>

</Equipment>

<Equipment EquipmentId="6" Make="NEC" Model="V90" EqTypeId="1"

ModelSDX="V000">

<Inventory Inventoryid="6" EquipmentId="6" LocationId="2"

StatusId="2" LeaseId="1" LeaseScheduleId="1"

OwnerId="1" Rent="200.0000" Lease="0.0000"

AcquisitionTypeID="3"/>

</Equipment>

<Equipment EquipmentId="4" Make="HP" Model="LaserJet 4"

EqTypeId="6" ModelSDX="L262">

<Inventory/>

</Equipment>

<Equipment EquipmentId="5" Make="HP" Model="LaserJet 4"

EqTypeId="7" ModelSDX="L262">

<Inventory Inventoryid="8" EquipmentId="5" LocationId="2"

StatusId="1" OwnerId="1" Lease="87.7500"

AcquisitionTypeID="2"/>

</Equipment>

(6 row(s) affected)

TIP

You do not have to use column names as tag names. You can assign aliases to columns and these
aliases will be mapped to the attributes.

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 3 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 3 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Aggregate Functions
Aggregate functions and the Group By clause are not supported in Auto mode.

However, it is possible to use a simple workaround based on a derived table to pool

such values in an XML document:

Select Inv.InventoryId, Inv.SumCost

From (Select InventoryId, Sum(Cost) SumCost

From Inventory

Group By InventoryId) Inv

For XML Auto

In this example, the inner Select statement returns the required data, and the outer

Select statement functions as a wrapper with a For XML Auto clause. It is also possible

to join the results from the inner Select statement with other tables to provide

additional information.

Computed Columns
If the column list of the Select statement includes a column that cannot be directly

associated with a table (such as a computed column), SQL Server will map it to the

attribute (or subelement) at the nesting level that is current when the column is

encountered in the list. For example, if a computed column is included as the first

in the column list, it is added as an attribute (or a subelement) of the top element;

if it is included after the columns of another table are referenced, the computed

column is mapped at the second level.

The Elements Option
Table columns do not have to be encoded as attributes. If you add the Elements option

to the For XML clause, all columns will be coded as subelements. You can see the

result set of the following query in Figure 14-3. Nested tables are also encoded as

subelements.

Select *

From Inventory Inner Join Equipment

On Inventory.EquipmentId = Equipment.Equipmentid

For XML Auto, Elements

NOTE

The Elements option is supported only in Auto mode.

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The XMLData Option
If the XMLData option is specified in the For XML clause, the XML document will

also contain an XML–Data Reduced (XDR) schema:

select *

from Equipment

for XML Auto, XMLData

The schema is added at the beginning of the document as an inline schema:

<Schema name="Schema"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Equipment" content="empty" model="closed">

<AttributeType name="EquipmentId" dt:type="i4"/>

<AttributeType name="Make" dt:type="string"/>

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 3 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-3 Use of the Elements option in the For XML clause

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 3 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

<AttributeType name="Model" dt:type="string"/>

<AttributeType name="EqTypeId" dt:type="i2"/>

<AttributeType name="ModelSDX" dt:type="string"/>

<AttributeType name="MakeSDX" dt:type="string"/>

<attribute type="EquipmentId"/>

<attribute type="Make"/>

<attribute type="Model"/>

<attribute type="EqTypeId"/>

<attribute type="ModelSDX"/>

<attribute type="MakeSDX"/>

</ElementType>

</Schema>

<Equipment xmlns="x-schema:#Schema" EquipmentId="1" Make="Toshiba"

Model="Portege 7020CT" EqTypeId="1" ModelSDX="P632"/>

<Equipment xmlns="x-schema:#Schema" EquipmentId="2" Make="Sony"

Model="Trinitron 17XE" EqTypeId="3" ModelSDX="T653"/>

<Equipment xmlns="x-schema:#Schema" EquipmentId="6" Make="NEC"

Model="V90" EqTypeId="1" ModelSDX="V000"/>

<Equipment xmlns="x-schema:#Schema" EquipmentId="4" Make="HP"

Model="LaserJet 4" EqTypeId="6" ModelSDX="L262"/>

<Equipment xmlns="x-schema:#Schema" EquipmentId="5" Make="HP"

Model="LaserJet 4" EqTypeId="7" ModelSDX="L262"/>

Data elements also include an attribute with a reference to the schema:

xmlns="x-schema:#Schema"

TIP

You have to be very careful when generating a schema this way. The schema could be incorrect if,
for example, your query specifies a recordset that contains fields (and/or aliases) with the same
name (for example, when fields have the same name in both main and lookup tables). SQL Server
will not resolve name or data type collisions.

The BINARY Base64 Option
The BINARY Base64 option is designed for encoding binary data such as images,

video, and sounds via XML. It is not required in Auto mode, but it must be specified

in Explicit and Raw modes of the For XML clause. Figure 14-4 shows an encoded

photograph of an employee from the Northwind database.

SELECT Photo

FROM Northwind..Employees

WHERE EmployeeID=2

FOR XML RAW, XMLData, BINARY Base64

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 3 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Raw Mode
Raw mode of the For XML clause returns every row of the result set as an individual

XML element named row:

Select Equipment.Make, Equipment.Model,

Inventory.InventoryID, Inventory.Cost

From Inventory Inner Join Equipment

On Inventory.EquipmentId = Equipment.Equipmentid

For XML Raw

Note that elements in the result set are called row and that the mode is called Raw:

<row Make="Toshiba" Model="Portege 7020CT"

InventoryID="5" Cost="1295.0000"/>

<row Make="NEC" Model="V90" InventoryID="6"/>

<row Make="HP" Model="LaserJet 4" InventoryID="8"/>

<row Make="Toshiba" Model="Portege 7020CT" InventoryID="12"/>

Figure 14-4 Encoding of binary data in XML

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<row Make="Toshiba" Model="Portege 7020CT"

InventoryID="5"Cost="1295.0000"/>

<row Make="NEC" Model="V90" InventoryID="6"/>

<row Make="HP" Model="LaserJet 4" InventoryID="8"/>

<row Make="Toshiba" Model="Portege 7020CT" InventoryID="12"/>

Columns that have a null value are skipped in the list of attributes. Columns are

always encoded as attributes because it is not possible to specify the Elements option

in this mode. Again, it is important to avoid name collisions.

Explicit Mode
Explicit mode is much more flexible than Auto mode or Raw mode. It allows you to

specify all details of an XML document including the shape and data. You are therefore

responsible for ensuring that the XML document is well formed and valid.

The process of creating such a document involves writing a query that defines a

universal table. This table contains all the information (both metadata and data)

needed to create the XML document. Table 14-1 shows a universal table.

When the query that generates the universal table is executed with the For XML

Explicit option, SQL Server returns an XML document such as the following:

<Equipment EquipmentID="1" Make="Toshiba" Model="Portege 7020CT">

<Inventory InventoryID="5" StatusID="1"/>

<Inventory InventoryID="12" StatusID="1"/>

</Equipment>

<Equipment EquipmentID="2" Make="Sony" Model="Trinitron 17XE"/>

<Equipment EquipmentID="4" Make="HP" Model="LaserJet 4"/>

<Equipment EquipmentID="5" Make="HP" Model="LaserJet 4">

<Inventory InventoryID="8" StatusID="1"/>

</Equipment>

<Equipment EquipmentID="6" Make="NEC" Model="V90">

<Inventory InventoryID="6" StatusID="2"/>

</Equipment>

...

The first two columns of the table (Tag and Parent) control the shape (that is,

the nesting) of the XML document. The Tag column contains an identifier for the

current element. The Parent column contains a tag value for the Parent element.

SQL Server uses these columns to create the hierarchy. The top-level element will

have a 0 (zero) or null value for the Parent column.

5 3 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The other columns in the universal table represent the elements, attribute names,

and data. Column names have to be specified using the following template:

ElementName!TagNumber!AttributeName!Directive

Table 14-2 explains the meaning of the components of the template.

The example on the following page illustrates how the Tag and Parent columns

are used to form the hierarchy of the XML document and how the AttributeName

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 3 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Tag Parent
Equipment!1!
EquipmentID

Equipment!1!
Make

Equipment!1!
Model

Inventory!2!
InventoryID

Inventory!2!
StatusID

1 Null 1 Toshiba Portege 7020CT Null Null

2 1 1 Toshiba Portege 7020CT 5 1

2 1 1 Toshiba Portege 7020CT 12 1

1 Null 2 Sony Trinitron 17XE Null Null

1 Null 4 HP LaserJet 4 Null Null

1 Null 5 HP LaserJet 4 Null Null

2 1 5 HP LaserJet 4 8 1

1 Null 6 NEC V90 Null Null

2 1 6 NEC V90 6 2

Table 14-1 A Universal Table

Component Meaning
ElementName Generic identifier of the element.

TagNumber The tag number of the element.

AttributeName The name of the attribute if the Directive is not specified. In the case in which the Directive is
specified (as xml, cdata, or element), the AttributeName becomes the name of the
contained element. If the Directive is specified, the AttributeName can be empty.

Directive The optional component. If neither the AttributeName nor the Directive are specified, SQL Server
defaults to ELEMENT.

Table 14-2 Components of Column Names

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

component of the column name is used to name attributes (I have already shown the

corresponding universal table and resulting XML document):

SELECT 1 as Tag,

NULL as Parent,

Equipment.EquipmentID as [Equipment!1!EquipmentID],

Equipment.Make as [Equipment!1!Make],

Equipment.Model as [Equipment!1!Model],

NULL as [Inventory!2!InventoryID],

NULL as [Inventory!2!StatusID]

FROM Equipment

UNION ALL

SELECT 2,

1,

Equipment.EquipmentID,

Equipment.Make,

Equipment.Model,

Inventory.InventoryID,

Inventory.StatusID

FROM Equipment, Inventory

WHERE Equipment.EquipmentID = Inventory.EquipmentID

ORDER BY [Equipment!1!EquipmentID], [Inventory!2!InventoryID]

FOR XML EXPLICIT

The Directive has two purposes. When hide, element, xml, xmltext, or

cdata is used, the Directive controls how the data in the column is mapped into

the XML document. id, idref, and idrefs are used to allow the XDR schema

to enable intradocument links.

The hide Directive
The content of the column with the hide directive will not be displayed in the

resulting document. This feature is useful when you want to sort information by

columns that you do not want to display.

The element Directive
You will likely use the element directive most often. It forces SQL Server to

generate an element instead of an attribute. If the column contains data that could

confuse an XML parser, SQL Server replaces it with entity references (for example,

the ampersand character, &, is replaced with & and the < symbol is replaced

with <).

5 4 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following example illustrates the use of the hide and element directives:

SELECT 1 as Tag,

NULL as Parent,

Equipment.EquipmentID as [Equipment!1!EquipmentID!hide],

Equipment.Make as [Equipment!1!Make!element],

Equipment.Model as [Equipment!1!Model!element],

NULL as [Inventory!2!InventoryID],

NULL as [Inventory!2!StatusID!element]

FROM Equipment

UNION ALL

SELECT 2,

1,

Equipment.EquipmentID,

Equipment.Make,

Equipment.Model,

Inventory.InventoryID,

Inventory.StatusID

FROM Equipment, Inventory

WHERE Equipment.EquipmentID = Inventory.EquipmentID

ORDER BY [Equipment!1!EquipmentID!hide], [Inventory!2!InventoryID]

FOR XML EXPLICIT

A partial result of the query is displayed in the following listing. Make, Model,

and StatusId information are displayed as elements. Note that the ampersand

character has been replaced with & in the Make element:

<Equipment>

<Make>Toshiba</Make>

<Model>Portege 7020CT</Model>

<Inventory InventoryID="5">

<StatusID>1</StatusID>

</Inventory>

<Inventory InventoryID="12">

<StatusID>1</StatusID>

</Inventory>

</Equipment>

<Equipment>

<Make>Bang & Olafson</Make>

<Model>V3000</Model>

...

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 4 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

The xml and cdata Directives
The xml and cdata directives are similar to the element directive. They just treat

special characters differently. If the xml directive is specified, SQL Server does not

perform entity encoding but rather leaves the content intact. If the cdata directive

is specified, SQL Server encapsulates the content of the column in a CDATA section.

In the following example, the Equipment.Make column is displayed three times and

is treated each time with a different directive:

SELECT 1 as Tag,

NULL as Parent,

Equipment.EquipmentID as [Equipment!1!EquipmentID!hide],

Equipment.Make as [Equipment!1!Make!element],

Equipment.Make as [Equipment!1!Make!xml],

Equipment.Make as [Equipment!1!!cdata],

Equipment.Model as [Equipment!1!Model!element],

NULL as [Inventory!2!InventoryID],

NULL as [Inventory!2!StatusID!element]

FROM Equipment

UNION ALL

SELECT 2,

1,

Equipment.EquipmentID,

Equipment.Make,

Equipment.Make,

Equipment.Make,

Equipment.Model,

Inventory.InventoryID,

Inventory.StatusID

FROM Equipment, Inventory

WHERE Equipment.EquipmentID = Inventory.EquipmentID

ORDER BY [Equipment!1!EquipmentID!hide], [Inventory!2!InventoryID]

FOR XML EXPLICIT

A partial result of the query is displayed in the following listing. Note that the

Make data is treated differently each time:

...

<Equipment>

<Make>Bang & Olafson</Make>

<Make>Bang & Olafson</Make>

<![CDATA[Bang & Olafson]]>

<Model>V3000</Model>

...

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The xmltext Directive
The xmltext directive is used to incorporate an XML document (or section of the

document) stored in a column of the record into the resulting document.

Imagine a scenario in which you have created a database table, but the nature of

the business is such that new information (and new columns) will often be added.

In the past, I have used a solution that you can see in the Asset database in the

InventoryProperty table:

Instead of adding a new field for a property of the equipment entity, I have created

a new table in which each property of an asset is stored in a separate record. Instead

of storing information in a mostly empty table

InventoryId Make Model CPU Capacity HDD Clock RAM Resolution
1 HP LaserJet 4 Null Null Null Null 4MB 600 dpi

5 Toshiba Portege 7020 CT Pentium II Null 6.4GB 366 MHz 64MB 1024×768

information is stored “vertically”:

InventoryId Property Value Unit
1 RAM 4 MB

1 Resolution 600 dpi

5 CPU Pentium II Null

5 RAM 64 MB

5 HDD 6.4 GB

5 Resolution 1024×768 Null

5 Weight 2 kg

5 Clock 366 MHz

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 4 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

An XML alternative to this solution is to create a special column to store the

“overflow” data. In the following statement, the Inventory table is created with

a Properties column to store additional information in XML format:

CREATE TABLE [InventoryXML] (

[Inventoryid] [int] IDENTITY (1, 1) NOT NULL ,

[EquipmentId] [int] NOT NULL ,

[LocationId] [int] NOT NULL ,

[StatusId] [tinyint] NOT NULL ,

[LeaseId] [int] NULL ,

[LeaseScheduleId] [int] NULL ,

[OwnerId] [int] NOT NULL ,

[Rent] [smallmoney] NULL ,

[Lease] [smallmoney] NULL ,

[Cost] [smallmoney] NULL ,

[AcquisitionTypeID] [tinyint] NULL ,

[Properties] [text] NULL,

) ON [PRIMARY]

You can then insert information in the form of an XML document or its subset

into the Properties column:

<Inventory CPU = "Pentium II"

RAM = "64 MB"

HDD = "6.4 GB"

Resolution = "1024x768"

Weight = "2 kg"

Clock="366 MHz"/>

To integrate this information into the resulting XML document, you should use

the xmltext directive:

SELECT 1 as Tag,

NULL as Parent,

InventoryXML.InventoryID as [Inventory!1!InventoryID],

InventoryXML.StatusID as [Inventory!1!StatusID],

InventoryXML.Properties as [Inventory!1!Properties!xmltext]

FROM InventoryXML

ORDER BY [Inventory!1!InventoryID]

FOR XML EXPLICIT

The following listing contains a partial result:

<Inventory InventoryID="1" StatusID="1">

<Properties

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 4 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

CPU="Pentium II"

RAM="64 MB"

HDD="6.4 GB"

Resolution="1024x768"

Weight="2 kg"

Clock="366 MHz"/>

</Inventory>

<Inventory InventoryID="2" StatusID="2"/>

...

If AttributeName is specified (as in the preceding example), SQL Server uses this

value instead of the tag name specified for the column (in the preceding example

they were the same).

If AttributeName is omitted, SQL Server appends the attribute to the list of

attributes in the enclosing element:

SELECT 1 as Tag,

NULL as Parent,

InventoryXML.InventoryID as [Inventory!1!InventoryID],

InventoryXML.StatusID as [Inventory!1!StatusID],

InventoryXML.Properties as [Inventory!1!!xmltext]

FROM InventoryXML

ORDER BY [Inventory!1!InventoryID]

FOR XML EXPLICIT

The following listing displays a partial result:

<Inventory

InventoryID="1"

StatusID="1"

CPU="Pentium II"

RAM="64 MB"

HDD="6.4 GB"

Resolution="1024x768"

Weight="2 kg"

Clock="366 MHz">

</Inventory>

<Inventory

InventoryID="2"

StatusID="2"

...

The author of a query using the xmltext directive assumes a huge responsibility

for the validity of the content of the column. If the column does not contain well-

formed XML, the results may be unpredictable.

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

The xmltext directive is permitted (and meaningful) only with columns of

character data types (varchar, nvarchar, char, nchar, text, ntext).

The id, idref, and idrefs Directives
The id, idref, and idrefs directives are used to modify schemas when the

XMLData option of the For XML clause is specified. When the id directive is

specified, elements receive an id attribute. Attributes specified using the idref
directive can be used to reference elements with an id attribute. This kind of

relationship is the XML equivalent of the foreign key relationship that you are

used to in relational databases.

The following example links Equipment.EquipmentId to Inventory.EquipmentId.

These two columns are also linked by a foreign key relationship in the database.

SELECT 1 as Tag,

NULL as Parent,

Equipment.EquipmentID as [Equipment!1!EquipmentID!id],

Equipment.Make as [Equipment!1!Make],

Equipment.Model as [Equipment!1!Model],

NULL as [Inventory!2!InventoryID],

NULL as [Inventory!2!StatusID],

NULL as [Inventory!2!EquipmentID!idref]

FROM Equipment

UNION ALL

SELECT 2,

1,

Equipment.EquipmentID,

Equipment.Make,

Equipment.Model,

Inventory.InventoryID,

Inventory.StatusID,

Inventory.EquipmentId

FROM Equipment, Inventory

WHERE Equipment.EquipmentID = Inventory.EquipmentID

ORDER BY [Equipment!1!EquipmentID!id], [Inventory!2!InventoryID]

FOR XML EXPLICIT, XMLDATA

A partial result is shown in the following XML document. Note that the data type

of the EquipmentId attribute of the Equipment element is set to "id" (it must

be unique) and that the EquipmentId attribute of the Inventory element is set to

"idref":

<Schema name="Schema" xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Equipment" content="mixed" model="open">

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<AttributeType name="EquipmentID" dt:type="id"/>

<AttributeType name="Make" dt:type="string"/>

<AttributeType name="Model" dt:type="string"/>

<attribute type="EquipmentID"/>

<attribute type="Make"/>

<attribute type="Model"/>

</ElementType>

<ElementType name="Inventory" content="mixed" model="open">

<AttributeType name="InventoryID" dt:type="i4"/>

<AttributeType name="StatusID" dt:type="ui1"/>

<AttributeType name="EquipmentID" dt:type="idref"/>

<attribute type="InventoryID"/>

<attribute type="StatusID"/>

<attribute type="EquipmentID"/>

</ElementType>

</Schema>

<Equipment xmlns="x-schema:#Schema"

EquipmentID="1" Make="Toshiba" Model="Portege 7020CT">

<Inventory InventoryID="5" StatusID="1" EquipmentID="1"/>

<Inventory InventoryID="12" StatusID="1" EquipmentID="1"/>

</Equipment>

<Equipment xmlns="x-schema:#Schema"

EquipmentID="2" Make="Sony" Model="Trinitron 17XE"/>

...

Publishing Database Information Using HTTP
SQL Server 2000 has an external set of components that allow users to access data in

the form of XML documents using the HTTP protocol. It is important to understand

that these components are external. The most important of these is the ISAPI filter that

works within IIS (Internet Information Server—a web server) rather than within SQL

Server (see Figure 14-5). It retrieves data through the SQL Server 2000 OLE DB

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 4 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-5 Accessing database information through HTTP and SQLXML

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

provider (SQLOLEDB). The SQLOLEDB provider itself has been modified to use

a new SQLXML.dll component and to support returning the result in the form of a

stream. Figure 14-5 illustrates the transfer of information from a client computer to

the server and back.

To continue working through the examples in this book, you first need to install

the latest version of SQLXML (XML for Microsoft SQL Server 2000 Web Release).

You can find the latest version at msdn.microsoft.com. You can also download files

with XML-related examples from www.trigonblue.com/sqlxml/sqlxml_download.htm.

Configuring Database Access Through HTTP
One new component delivered with SQL Server 2000 is an MMC snap-in called IIS

Virtual Directory Management for SQLXML. This snap-in provides a graphical user

interface for configuring database access through HTTP.

This tool can operate on any edition of Windows NT or Windows 2000. Computers

with Windows NT must also have IIS 4.0 or higher (or Peer Web Services 4.0 or

higher on Windows NT Workstation) and MMC 1.2 or higher.

The configuration of database access requires only one operation—the administrator

needs to create a virtual directory. Apart from the usual information (such as name

and path), this virtual directory must contain information for accessing the database

(login, password, database, server name, database name, and the type of access allowed

through the URL and virtual names). Before I explain what a virtual name is, first

consider the four types of access that end users can accomplish through IIS:

� dbobject You can issue a Select statement as a part of an HTTP request and

access a database object (such as a table or a view).

� template You can specify a template that is a valid XML document and

contains one or more T-SQL statements. SQL Server will execute the statement(s).

� schema The URL can include an XPath query to be executed against the

annotated mapping schema file.

� SOAP An application can send SOAP requests. The SQLXML server will

execute the associated stored procedure or template and return the SOAP response

to the caller. SOAP is used for implementing web services.

A virtual name is the part of a URL that specifies and executes a dbobject, a template,

a schema, or a SOAP request.

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following steps demonstrate how you can configure IIS to provide access to

SQL Server:

1. Launch IIS Virtual Directory Management for SQLXML: Start | Programs |

SQLXML 3.0 | Configure IIS Support.

2. When the application appears on the screen, expand the server node and select

Default Web Site. From the menu, select Action | New | Virtual Directory. In

the dialog box that appears, select the General tab.

3. Set the name and the physical path of the virtual directory.

4. Select the Security tab and define the authentication method that the user will

use to connect to the database.

5. Select the Data Source tab and define the server and the database for which you

want to enable IIS support.

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 4 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6. Select the Settings tab to specify the type of access to allow through the virtual

directory. For purposes of this exercise, allow them all (although on a production

server you will probably allow only templates, XPath, and POST).

7. Leave the Run On The Client option unchecked.

8. Select the Expose Runtime Errors As HTTP Error option.

NOTE

By default, when a T-SQL error occurs in the query, SQLXML returns HTTP/1.1 200 OK. The error is
returned in the body of the response. This setting allows you to change the behavior—instead of
indicating a successful query, SQLXML returns HTTP/1.1 512 Runtime error.

9. Select the Virtual Names tab to associate a specific type of access and optional

directory to a virtual name.

10. Click the <New virtual name> entry in the list box. Type a new name, specify

dbobject as the Type, select an existing Path that will store files, and then save it.

5 5 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

11. Repeat the previous step to create virtual names for schema and template types:

NOTE

The SOAP type requires additional settings and configuration and therefore I will cover it in the
“XML Web Services” section of the next chapter.

12. Switch to the Advanced tab. You can disable caching of mapping schemas,

templates, and XSLT in your development environment to avoid the need to

restart the virtual directory (in other words, the application) every time you

make a change. Naturally, in a production environment, caching should be

turned on, since it can boost performance of the application up to 40 percent.

13. Click Apply to save the settings and close the dialog box. The application

creates a new virtual directory (see Figure 14-6).

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 5 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 5 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Accessing Database Information Using a URL
After the virtual directory is created, an end user can use a browser such as Internet

Explorer (version 5.0 or later) to query the database using HTTP GET and POST

methods. The simplest syntax for making HTTP GET queries would be

http://server/virtual_directory?sql=tsql_statement

Unfortunately, characters such as a blank space, ?, /, %, #, and & have special

meaning in URL syntax. Therefore, they must be encoded using their hexadecimal

value in the form %xx. For example, the space character can be replaced using %20
or +. Therefore, to query the Inventory table, a user can issue the following statement:

http://localhost/Asset?sql=select%20top%201%20*%20

from%20Inventory%20for%20xml%20auto

The query returns an XML document that contains just one node (see Figure 14-7).

Figure 14-6 A new virtual directory

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

You do not have to type %20 instead of a space in the query. If you omit it and use a space
instead, Internet Explorer first replaces all spaces with %20 and then executes the URL.

If you leave the clause top 1 out of the following query, the parser will not be

able to process the result:

http://localhost/Asset?sql=select%20*%20

from%20Inventory%20for%20xml%20auto

The Inventory element in the result string is repeated for each record and there is,

therefore, no unique top element (see Figure 14-8).

There are two solutions to this problem. You can add a root parameter to the

HTTP GET method, and the server will add a root node to the result:

&root=root_node

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 5 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-7 An XML document as a result of a database query in Internet Explorer

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 5 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

In this case, the previous query would be

http://localhost/asset?sql=select%20*%20

from%20Inventory%20for%20xml%20auto&root=ROOT

The other alternative is to write the T-SQL statement so that it returns the missing

root element. In the following example, two additional Select statements were added:

http://localhost/Asset?sql=SELECT%20'<Root>';

%20SELECT%20*%20FROM%20Inventory%20FOR%20XML%20AUTO;

%20select%20'</Root>'

The results of both methods are identical, as shown in Figure 14-9.

Troubleshooting Virtual Directories
Unfortunately, many things can go wrong when you connect all these components

and try to make them work together. Internet Explorer and the XML parser are not

Figure 14-8 The problem with no unique top element

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 5 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

ideal debugging tools, which is understandable considering the number of layers

created and the transformations that occurred. The following activities can help

you to identify and fix problems:

� Try to run a different or less complex type of query (such as select 1).

� Disable “friendly” messages in Internet Explorer (Tools | Internet Options |

Advanced | Browsing and then uncheck Show Friendly HTTP Error Messages).

� Make sure that IIS is running (try to open the home page).

� Restart the application (right-click the virtual directory name in the IIS Virtual

Directory Management snap-in and select Restart Application).

� Check the Virtual Directory security settings.

� Use SQL Profiler to ensure that the queries are reaching SQL Server.

� If you are using templates, make sure that they are well-formed and valid

XML documents.

Figure 14-9 The result as an XML document with root element

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� Try running your URL, template, or schema query from Query Analyzer.

Sometimes, the original error is overwritten by subsequent errors.

� If nothing else helps, try to delete the Virtual Directory and re-create it.

Executing a Stored Procedure Through HTTP
SQL Server 2000 and SQLXML do not force you to use only the Select statement to

access data via HTTP. Naturally, you can also use stored procedures. The following

stored procedure contains a simple Select statement with a For XML clause:

CREATE PROCEDURE prListEquipment_xml

AS

select *

from Equipment

for xml auto

The stored procedure can then be executed through HTTP:

http://localhost/asset?sql=execute%20prListEquipment_xml&root=ROOT

The following example demonstrates two things. First, a list of parameters can be

included as a part of the T-SQL statement that executes the stored procedure. Second,

the root element can be created in the stored procedure as well.

CREATE PROCEDURE prGetEquipment_xml

@EquipmentId int

AS

Select '<Root>'

Select * from Equipment

Where EquipmentID= @EquipmentId

For XML AUTO, elements

Select '</Root>'

This stored procedure can be executed using the following URL:

http://localhost/asset?sql=execute%20prGetEquipment_xml%20@EquipmentId=5

Naturally, you are not required to use named parameters. The following URL is

also legal, but a little confusing to read:

http://localhost/asset?sql=execute%20prGetEquipment_xml%205

5 5 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Accessing Database Information Using Templates
The preceding section showed how you can incorporate a T-SQL statement as a part

of the URL to access data via HTTP. Naturally, you should not use this technique on

a production system, because

� It is too complicated for end users.

� It is prone to errors.

� The security of the system could easily be compromised.

� Browsers support only a limited URL length (2K).

Fortunately, there is an alternative—templates.

Syntax
A template file is an XML document that contains all the technical information such

as For XML and XPath queries, parameters, and XSL transformation files required

to access, process, and display data. Template files have the following syntax:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"

sql:xsl='XSL_FileName' >

<sql:header>

<sql:param name=parameter_name>default_value</sql:param>
<sql:header>

<sql:query>

tsql_statements
</sql:query>

<sql:XPath-query mapping-schema="Schema_FileName">
XPath_query

</sql:XPath-query>

</ROOT>

The root element of the template file has one mandatory and one optional

parameter. All other elements and attributes of the template file are declared in

the urn:schemas-microsoft-com:xml-sql namespace. Therefore, all

template files must have an xmlns:sql='urn:schemas-microsoft-
com:xml-sql' attribute. The xsl attribute is optional. It is used to specify

the name of the XSL transformation file.

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 5 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 5 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Using the Query Element
The sql:query element is used to specify one or more T-SQL statements. The

following template file queries the Equipment table:

<root xmlns:sql='urn:schemas-microsoft-com:xml-sql'>

<sql:query>

select * from Equipment for XML auto, elements

</sql:query>

</root>

You can access a template using

http://server/virtual_directory/virtual_name/template_name

So, if the template file is saved as ListEquipment.xml in the template folder, it

can be executed using the following URL. You can see the result in Figure 14-10.

http://localhost/asset/template/ListEquipment.xml

Figure 14-10 The result of an XML template designed for accessing database information

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 5 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

NOTE

The template file can contain more than one sql:query element (and more than one
sql:XPath-query element). It is important to note that all queries contained within
separate elements are treated as separate transactions. Even if some of these transactions fail,
the others will be executed independently.

Using Parameters
If the T-SQL statements contain parameters, they are defined in the sql:header
element. Each parameter definition contains the name of the parameter and the

default value to be assigned if a value is not supplied:

<sql:param name=parameter_name>default_value</sql:param>

The following example defines a simple template file with two parameters:

<root xmlns:sql='urn:schemas-microsoft-com:xml-sql'>

<sql:header>

<sql:param name='Make' >Toshiba</sql:param>

<sql:param name='Model'>Portege 7020CT</sql:param>

</sql:header>

<sql:query>

exec prGetEquipment2_xml @Make, @Model

</sql:query>

</root>

Assume that the template is saved as GetEquipment.xml in the template folder. As

usual, the parameter list in the URL starts with a ? character. If multiple parameters

are listed, they should be delimited with an & character. Parameters such as strings

(that are delimited with quotes in T-SQL) must be delimited without quotes, as shown

in the following URL:

http://localhost/asset/template/GetEquipment2.xml?Make=Toshiba&Model

=Portege%207020CT

You can see the result in Figure 14-11.

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 6 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Using XSL
It is possible to use XSL files to change the way information is presented in a web

browser. The following template references a query (stored procedure) that provides

an XML result and an XSL file, Equipment.xsl, that converts it to HTML:

<?xml version ='1.0' encoding='UTF-8'?>

<root xmlns:sql='urn:schemas-microsoft-com:xml-sql'

sql:xsl='/Equipment.xsl'>

<sql:query>

exec prListEquipment2_xml

</sql:query>

</root>

If you execute just the stored procedure (for example, from Query Analyzer), you

can see the simple XML document it produces:

<Equipment

EquipmentId="1"

Figure 14-11 The result of an XML template with parameters

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 6 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Make="Toshiba"

Model="Portege 7020CT">

<EqType EqType="Desktop"/>

</Equipment>

<Equipment

EquipmentId="2"

Make="Sony"

Model="Trinitron 17XE">

<EqType EqType="Monitor"/>

</Equipment>

<Equipment

EquipmentId="6"

Make="NEC"

Model="V90">

<EqType EqType="Desktop"/>

</Equipment>

...

The XSL file shown in the following code listing describes how the XML file

is converted:

<?xml version='1.0' encoding='UTF-8'?>

<xsl:stylesheet xmlns:xsl='http://www.w3.org/TR/WD-xsl' >

<xsl:template match = '*'>

<xsl:apply-templates />

</xsl:template>

<xsl:template match = 'Equipment'>

<TR>

<TD><xsl:value-of select = '@EquipmentId' /></TD>

<TD><xsl:value-of select = '@Make' /></TD>

<TD><xsl:value-of select = '@Model' /></TD>

<TD><xsl:value-of select = './EqType/@EqType' /></TD>

</TR>

</xsl:template>

<xsl:template match = '/'>

<HTML>

<HEAD>

<title>Equipment</title>

</HEAD>

<BODY>

<TABLE border = "1" width="100%">

<TR><TH colspan="4" bgcolor="#000000">

<p align="left">

Equipment

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 6 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

</p>

</TH></TR>

<TR>

<TH align="left" bgcolor="#C0C0C0">

Equipment ID

</TH>

<TH align="left" bgcolor="#C0C0C0">

Make

</TH>

<TH align="left" bgcolor="#C0C0C0">

Model

</TH>

<TH align="left" bgcolor="#C0C0C0">

Equipment Type

</TH>

</TR>

<xsl:apply-templates select = 'root' />

</TABLE>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

You can distinguish two segments within the XSL file. The last xsl:template
match = '/' element defines the static part of the HTML page. It consists of the

<HEAD> and <BODY> tags of the HTML page and the definition of the table (using

the <TABLE> tag). Because of the match = '/' attribute, the described transformation

is performed on the root node of the XML document.

The second xsl:template match = 'Equipment' element is applied to

each element node called 'Equipment'. Each node is converted to a row within

an HTML table (using row <TR> and column <TD> tags):

<xsl:template match = 'Equipment'>

</TR>

<TD><xsl:value-of select = '@EquipmentId' /></TD>

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<TD><xsl:value-of select = '@Make' /></TD>

<TD><xsl:value-of select = '@Model' /></TD>

<TD><xsl:value-of select = 'EqType/@EqType' /></TD>

</TR>

</xsl:template>

The xsl:value-of elements define the source from which the parser obtains

the values for the table cells. Recall that in the “XPath” section in the previous chapter,

'@EquipmentId' referred to an attribute called EquipmentId (not a T-SQL

local variable). The last node reference ('EqType/@EqType') is most interesting.

It first points to a child node named EqType and then to its attribute named EqType.

To execute the template file, you can specify the following URL:

http://localhost/asset/template/ListEquipmentWithXSL.xml

Unfortunately, Internet Explorer displays HTML code, as shown in Figure 14-12.

To see how everything works together, you must prompt Internet Explorer to treat

the content received from the web server as an HTML file rather than an XML file.

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 6 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-12 HTML code obtained using an XML template with XSL

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You must specify an additional parameter (contenttype=text/html) when

you specify the URL:

http://localhost/asset/template/ListEquipmentWithXSL.xml?contenttype=text/html

You can see the result in Figure 14-13.

Using Schemas and XPath Queries
The sql:XPath-query element of the template is used to specify XPath query

expressions and mapping schema against which the XPath query expression should

be executed. I will not describe mapping schemas until the next section, so I will

demonstrate XPath queries in this section on the simplest possible schema.

If you execute a simple Select statement with a For XML clause that contains an

XMLData option against the Equipment table,

Select EquipmentId, Make, Model from Equipment For XML auto, XMLData

5 6 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-13 HTML page as a result of XSL transformation

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 6 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

you get an inline XDR schema at the beginning of the XML document:

<Schema name="Schema" xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Equipment" content="empty" model="closed">

<AttributeType name="EquipmentId" dt:type="i4"/>

<AttributeType name="Make" dt:type="string"/>

<AttributeType name="Model" dt:type="string"/>

<attribute type="EquipmentId"/>

<attribute type="Make"/>

<attribute type="Model"/>

</ElementType>

</Schema>

<Equipment xmlns="x-schema:#Schema"

EquipmentId="1" Make="Toshiba" Model="Portege 7020CT"/>

...

To get a proper mapping schema in this case, you need to extract the schema into

a separate file and add another namespace to it (xmlns:sql="urn:schemas-
microsoft-com:xml-sql"):

<Schema name="Schema" xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Equipment" content="empty" model="closed">

<AttributeType name="EquipmentId" dt:type="i4"/>

<AttributeType name="Make" dt:type="string"/>

<AttributeType name="Model" dt:type="string"/>

<attribute type="EquipmentId"/>

<attribute type="Make"/>

<attribute type="Model"/>

</ElementType>

</Schema>

NOTE

This is not the only operation usually needed to create a mapping schema. It is successful in this
case only because the target XML document is so simple. The following section explores the details
of mapping a schema.

Now it is possible to create a template file to use the XPath query to get information

using this schema:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<sql:xpath-query mapping-schema="EqSchema.xml">

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Equipment

</sql:xpath-query>

</ROOT>

The schema is referenced in a mapping-schema attribute, and the XPath query

is specified as the content of the sql:xpath element. The XPath query in the

template references only the Equipment node. If the template and the schema are

saved as EqTemplate.xml and EqSchema.xml, respectively, in the template virtual

directory, they can be executed using

http://localhost/asset/template/EqTemplate.xml

Figure 14-14 shows the result.

We can use more complicated XPath queries in a template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<sql:xpath-query mapping-schema="EqSchema.xml">

Equipment[@EquipmentId=1]

</sql:xpath-query>

</ROOT>

5 6 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-14 Using an XPath query in a template file

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This query filters Element nodes that have an EquipmentId attribute with a

value set to 1. Figure 14-15 shows the result.

POSTing Queries to the Server
In preceding sections, I demonstrated how you can access database information over

HTTP using the GET method. This method is easier to use for testing purposes—

you supply parameters in the URL after the ? sign in the form of an ampersand-

separated list. Unfortunately, this database access method has two problems:

� You cannot expect even the most skilled users to be able to type proper queries

in the form of a URL address.

� The size of the URL is limited to 2K, thus limiting the number of parameters

and complexity of the query.

HTTP’s POST method does not set limitations on the size of a query, but it is even

more difficult to use. You need a custom application (or component) to pass parameters

to the web server.

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 6 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-15 Using an XPath query to filter results

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

Before you can start using the POST method, you must set the virtual directory to allow
POST queries.

The simplest version of such an application is an HTML form that uses the

POST method to pass the content of its controls to the server. In this case, instead

of passing the query to an ASP page or some other component on the server, you

need to pass the query to the virtual directory that processes XML requests. This

technique can be demonstrated using the following stored procedure with two

parameters:

CREATE PROCEDURE prListEquipment3_xml

@Make varchar(50),

@Model varchar(50)

AS

select EquipmentId, Make, Model, EqType

from Equipment inner join EqType

on Equipment.EqTypeId = EqType.EqTypeId

where Make like @Make

and Model like @Model

for xml auto

GO

Next, I create a web page with an HTML form. The form contains two visible

controls that allow a user to specify the parameters of the query. There are also two

hidden controls that specify an XML template to be passed to the server and the

content type in which the result is expected:

<head>

<TITLE>Query Equipment</TITLE>

</head>

<body>

<H3>Query Equipment (use % as wild card).</H3>

<form action="http://localhost/Asset" method="POST">

Make:

<input type=text name=Make value='Tosh%'>

Model:

<input type=text name=Model value='Por%'>

<input type=hidden name=contenttype value=text/xml>

<input type=hidden name=template value='

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

<sql:header>

5 6 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<sql:param name="Make">%</sql:param>

<sql:param name="Model">%</sql:param>

</sql:header>

<sql:query>

exec prListEquipment3_xml @Make, @Model

</sql:query>

</ROOT>

'>

<p><input type="submit">

</form>

</body>

When a user opens this form, he or she is prompted to supply parameters (see

Figure 14-16).

After the form and query are submitted, Internet Explorer displays the result

shown in Figure 14-17.

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 6 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-16 An HTML form for querying the database

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 7 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

You can polish this form if you add an XSL file to convert the XML result into an

HTML form:

<head>

<TITLE>Query Equipment</TITLE>

</head>

<body>

<H3>Query Equipment (use % as wild card). </H3>

<form action="http://localhost/Asset" method="POST">

Make:

<input type=text name=Make value='Tosh%'>

Model:

<input type=text name=Model value='Por%'>

<input type=hidden name=contenttype value=text/xml>

<input type=hidden name=xsl value="template\Equipment.xsl">

<input type=hidden name=template value='

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

<sql:header>

Figure 14-17 Result of query

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 7 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

<sql:param name="Make">%</sql:param>

<sql:param name="Model">%</sql:param>

</sql:header>

<sql:query>

exec prListEquipment3_xml @Make, @Model

</sql:query>

</ROOT>

'>

<p><input type="submit">

</form>

</body>

Now, you can assemble a more complex application by adding more forms,

security, links between pages, and other elements, but this type of solution is really

more suitable for simple search pages than for such complex applications.

XML Views Based on Annotated XDR Schemas
The “Using Schemas and XPath Queries” section, earlier in the chapter, demonstrated

how XDR schemas and XPath queries can be used to retrieve data from a database.

This section now examines in greater detail the use of XDR schemas for mapping.

The main purpose of an XDR schema is to define the structure of the XML document.

SQL Server 2000 extends the XDR schema language with annotations designed to

map XML nodes (elements and attributes) and database objects (tables, views, and

columns). Other annotations enable features such as the definition of hierarchical

relationships between XML nodes, the change of a target namespace, and the retrieval

of XML-encoded data from a database. Such XDR schemas produce XML documents

that behave in a fashion similar to database views and, therefore, are sometimes

called XML views.

The basic idea is that all metadata needed to generate and validate an XML document

should be stored in one place—a schema document. The basic features of schemas

define the structure, and annotations-based features extend that definition by providing

mapping information.

Mapping Tables, Views, and Columns
The XDR schema used in the “Using Schemas and XPath Queries” section was

based on default mapping between tables and elements, and between columns and

attributes. Because SQL Server was able to find a table that corresponded to the

specified element and attributes that corresponded to the table’s columns, the result

was an XML document containing information from the database table.

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the case in which an element is named differently than a table (or a view), you

must add a sql:relation annotation (an attribute of the <ElementType> tag)

to the XDR schema. In the case in which attributes of the element are named differently

than the columns of the table (or the view), you must add a sql:field annotation

(an attribute of the <attribute> tag) to the schema. In the following example, the

Equipment table is mapped to the element Part, and the columns EquipmentId and

Make are mapped to the attributes PartNum and Manufacturer:

<Schema name="Schema"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Part" sql:relation="Equipment"

content="empty" model="closed">

<AttributeType name="PartNum" dt:type="i4" />

<AttributeType name="Manufacturer" dt:type="string" />

<AttributeType name="Model" dt:type="string"/>

<attribute type="PartNum" sql:field="EquipmentId"/>

<attribute type="Manufacturer" sql:field="Make"/>

<attribute type="Model"/>

</ElementType>

</Schema>

The following template can use the preceding schema:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<sql:xpath-query mapping-schema="PartSchema.xml">

Part

</sql:xpath-query>

</ROOT>

The result is shown in Figure 14-18.

sql:field annotations can be applied to elements as well. The following schema

is not attribute-based, but element-based:

<Schema name="Schema"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Part" sql:relation="Equipment"

content="eltOnly" model="closed" order="many">

<element type="PartNo" sql:field="EquipmentId"/>

<element type="Manufacturer" sql:field="Make"/>

5 7 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<element type="Model"/>

</ElementType>

<ElementType name="PartNo" content="textOnly"

model="closed" dt:type="i4"/>

<ElementType name="Manufacturer" content="textOnly"

model="closed" dt:type="string"/>

<ElementType name="Model" content="textOnly"

model="closed" dt:type="string"/>

</Schema>

You can use this schema through the following template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<sql:xpath-query mapping-schema="PartElementSchema.xml">

Part

</sql:xpath-query>

</ROOT>

The result is shown on the following page in Figure 14-19.

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 7 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-18 The result of the annotated schema

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Required Namespaces
All XDR schemas are defined in the urn:schemas-microsoft-com:xml-
data namespace. Therefore, each schema must contain a reference to that

namespace. The XDR data types are defined in the urn:schemas-microsoft-
com:datatypes namespace. SQL Server annotations that allow you to map

relational objects with XML components are defined in the urn:schemas-
microsoft-com:xml-sql namespace. The typical XDR schema needs

a root element similar to the following:

<Schema name="Schema"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">

...

</Schema>

5 7 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-19 An element-based XML document as a result of an annotated schema

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 7 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Mapping Relationships
So far, I have demonstrated only schemas based on a single table (or view). When

the XML document has to map to more than one table, that relationship has to

be annotated using the <sql:relationship> tag. This process is similar

to the creation of foreign keys in relational databases. The following attributes

of the <sql:relationship> tag need to be defined:

Attribute Description
key-relation Name of the primary relation

key Node (field) in a primary relation (table) that serves as the primary key

foreign-relation Name of the foreign relation (table)

foreign-key Node (field) in a foreign relation (table) that serves as the foreign key

The following schema contains the definition for a relationship between the

Contact and Inventory elements:

<Schema name="Schema"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Contact" content="eltOnly"

model="closed" order="many">

<element type="Inventory" maxOccurs="*">

<sql:relationship

key-relation="Contact"

key="ContactId"

foreign-key="OwnerId"

foreign-relation="Inventory" />

</element>

<AttributeType name="ContactId" dt:type="i4"/>

<AttributeType name="FirstName" dt:type="string"/>

<AttributeType name="LastName" dt:type="string"/>

<AttributeType name="Phone" dt:type="string"/>

<AttributeType name="Fax" dt:type="string"/>

<AttributeType name="Email" dt:type="string"/>

<AttributeType name="OrgUnitId" dt:type="i2"/>

<AttributeType name="UserName" dt:type="string"/>

<AttributeType name="ts" dt:type="i8"/>

<attribute type="ContactId"/>

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 7 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

<attribute type="FirstName"/>

<attribute type="LastName"/>

<attribute type="Phone"/>

<attribute type="Fax"/>

<attribute type="Email"/>

<attribute type="OrgUnitId"/>

<attribute type="UserName"/>

<attribute type="ts"/>

</ElementType>

<ElementType name="Inventory" content="empty" model="closed">

<AttributeType name="Inventoryid" dt:type="i4"/>

<AttributeType name="EquipmentId" dt:type="i4"/>

<AttributeType name="LocationId" dt:type="i4"/>

<AttributeType name="StatusId" dt:type="ui1"/>

<AttributeType name="LeaseId" dt:type="i4"/>

<AttributeType name="LeaseScheduleId" dt:type="i4"/>

<AttributeType name="OwnerId" dt:type="i4"/>

<AttributeType name="Rent" dt:type="fixed.14.4"/>

<AttributeType name="Lease" dt:type="fixed.14.4"/>

<AttributeType name="Cost" dt:type="fixed.14.4"/>

<AttributeType name="AcquisitionTypeID" dt:type="ui1"/>

<attribute type="Inventoryid"/>

<attribute type="EquipmentId"/>

<attribute type="LocationId"/>

<attribute type="StatusId"/>

<attribute type="LeaseId"/>

<attribute type="LeaseScheduleId"/>

<attribute type="OwnerId"/>

<attribute type="Rent"/>

<attribute type="Lease"/>

<attribute type="Cost"/>

<attribute type="AcquisitionTypeID"/>

</ElementType>

</Schema>

It can be used through the following template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<sql:xpath-query mapping-schema="OwnerSchema.xml">

Contact

</sql:xpath-query>

</ROOT>

The result is shown in Figure 14-20.

Naturally, you can join more than two tables.

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 7 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Other Annotations
There are other annotations that you can also use in mapping schemas: sql:is-
constant="1" annotations are used on static nodes such as the root node; id,

idref, and idrefs attributes can be used to create intradocument links in XML

documents; sql:id-prefix annotations can be used to make ID attributes

unique; sql:use-cdate annotations can be used to specify a CDATA section in

the XML document; sql:overflow-field attributes are used to retrieve data

from fields that contain XML tags; sql:map-field attributes are used to prevent

nodes from being mapped in the schema; and so on.

Retrieving Data Using XDR Schemas
There are many ways to retrieve database information using XDR annotated

schemas, including:

� Templates that contain XPath queries

� Templates with inline mapping schemas

Figure 14-20 Relationship as an annotation of an XDR schema

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� A URL that refers to the mapping schema and specifies an XPath query

� Applications that refer to mapping schemas and use XPath queries

So far, all examples have used the first method—templates that contain XPath

queries. We will now explore the next two. The last method is covered in the

“Programmatic Database Access” section later in this chapter.

Templates with Inline Mapping Schemas
It is very simple to create this type of template. The following example merges

template and schema files used earlier into one file:

<ROOT xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<Schema name="Schema"

sql:id="InlineSchema"

sql:is-mapping-schema="1">

<ElementType name="Part" sql:relation="Equipment"

content="empty" model="closed">

<AttributeType name="PartNum" dt:type="i4" />

<AttributeType name="Manufacturer" dt:type="string" />

<AttributeType name="Model" dt:type="string"/>

<attribute type="PartNum" sql:field="EquipmentId"/>

<attribute type="Manufacturer" sql:field="Make"/>

<attribute type="Model"/>

</ElementType>

</Schema>

<sql:xpath-query mapping-schema="#InlineSchema">

Part

</sql:xpath-query>

</ROOT>

The schema is identified using the sql:id attribute and described using the

sql:is-mapping-schema attribute of the Schema element. The identifier

is used later in the mapping-schema attribute of the sql:xpath-query
element. The template can be used with a simple URL reference to the file, as

shown in Figure 14-21.

5 7 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 7 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

A URL with a Reference to a Mapping Schema and an XPath Query
To refer to an XDR-annotated schema in a URL, you must first create a virtual name

for the schema of the type described in “Configuring Database Access Through

HTTP,” earlier in this chapter. Such a URL has the following structure:

http://server/virtual_directory/virtual_name/schema_file/XPath_query

The following schema joins three tables (Inventory, Equipment, and EqType).

They are related using the <sql:relationship> tag.

<Schema name="Schema"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">

Figure 14-21 Using a template with an inline mapping schema

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 8 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

<ElementType name="Inventory" content="eltOnly"

model="closed" order="many">

<element type="Equipment" maxOccurs="*">

<sql:relationship

key-relation="Inventory"

key="EquipmentId"

foreign-key="EquipmentId"

foreign-relation="Equipment" />

</element>

<AttributeType name="Inventoryid" dt:type="i4"/>

<AttributeType name="EquipmentId" dt:type="i4"/>

<AttributeType name="LocationId" dt:type="i4"/>

<AttributeType name="StatusId" dt:type="ui1"/>

<AttributeType name="LeaseId" dt:type="i4"/>

<AttributeType name="LeaseScheduleId" dt:type="i4"/>

<AttributeType name="OwnerId" dt:type="i4"/>

<AttributeType name="Rent" dt:type="fixed.14.4"/>

<AttributeType name="Lease" dt:type="fixed.14.4"/>

<AttributeType name="Cost" dt:type="fixed.14.4"/>

<AttributeType name="AcquisitionTypeID" dt:type="ui1"/>

<attribute type="Inventoryid"/>

<attribute type="EquipmentId"/>

<attribute type="LocationId"/>

<attribute type="StatusId"/>

<attribute type="LeaseId"/>

<attribute type="LeaseScheduleId"/>

<attribute type="OwnerId"/>

<attribute type="Rent"/>

<attribute type="Lease"/>

<attribute type="Cost"/>

<attribute type="AcquisitionTypeID"/>

</ElementType>

<ElementType name="Equipment" content="eltOnly"

model="closed" order="many">

<element type="EqType" maxOccurs="*">

<sql:relationship

key-relation="Equipment"

key="EqTypeId"

foreign-key="EqTypeId"

foreign-relation="EqType" />

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

</element>

<AttributeType name="EquipmentId" dt:type="i4"/>

<AttributeType name="Make" dt:type="string"/>

<AttributeType name="Model" dt:type="string"/>

<AttributeType name="EqTypeId" dt:type="i2"/>

<AttributeType name="ModelSDX" dt:type="string"/>

<AttributeType name="MakeSDX" dt:type="string"/>

<attribute type="EquipmentId"/>

<attribute type="Make"/>

<attribute type="Model"/>

<attribute type="EqTypeId"/>

<attribute type="ModelSDX"/>

<attribute type="MakeSDX"/>

</ElementType>

<ElementType name="EqType" content="empty" model="closed">

<AttributeType name="EqTypeId" dt:type="i2"/>

<AttributeType name="EqType" dt:type="string"/>

<attribute type="EqTypeId"/>

<attribute type="EqType"/>

</ElementType>

<ElementType name="ROOT" sql:is-constant="1">

<element type="Inventory"/>

</ElementType>

</Schema>

In the preceding examples with template files, it was not necessary to define

a unique root element in the schema. The template took care of that requirement.

In this case, you have to define the root element explicitly in the XML schema:

<ElementType name="ROOT" sql:is-constant="1">

<element type="Inventory"/>

</ElementType>

You can see the complete tree of the XML document by using the following URL:

http://localhost/asset/Schema/InvSchema.xml/ROOT

The XPath query refers to the <ROOT> node and all nodes that it contains. The result

is shown in Figure 14-22.

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 8 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You could use XPath to further filter the result. The following URL retrieves only

Inventory nodes that have a StatusId attribute set to 2:

http://localhost/asset/Schema/InvSchema.xml/ROOT/Inventory[@StatusId=2]

The result is shown in Figure 14-23.

XML Views Based on Annotated XSD Schemas
Since the W3C gave the XML Schema Recommended status in May of 2001,

Microsoft has been adding support for XSD schemas in SQL Server 2000. If you

install SQLXML on your server, you will be able to create XML views using XSD

annotated schemas.

5 8 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-22 Using a URL with an XDR schema and an XPath query

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

If you have already made an investment to develop a number of XDR schemas (for example,
on a BizTalk project), you can convert them to XSD schemas. SQLXML 3.0 (and newer versions)
includes the CvtSchema.exe tool in the \Program Files\SQLXML 3.0\bin folder, which enables
you to convert the XDR schemas to XSD schemas.

I will now delve into the design details of XSD annotated schemas. You will see

that they are not much different from XDR annotated schemas.

Required Namespaces
XSD schemas are defined in the http://www.w3.org/2001/XMLSchema
namespace. SQL Server annotations are defined in the urn:schemas-
microsoft-com:mapping-schema namespace. If an XSD schema

also specifies SQL Server data types, it must contain a reference to the

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 8 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-23 Filtering XML documents using an XPath query

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

urn:schemas-microsoft-com:datatypes namespace. Therefore,

a typical XSD schema will have a root element similar to the following:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

...

</xsd:schema>

Mapping Tables, Views, and Columns
In the case in which an element is named differently than a table (or a view), you must

add a sql:relation annotation (as an attribute of the xsd:element element)

to the schema. Its value must match the table (or the view) name. In the case in which

attributes or elements are named differently than the columns of the table (or the view),

you must add a sql:field annotation to the schema. In the following example,

the Equipment table is mapped to the element Part and the columns EquipmentId

and Make are mapped to the attributes PartNum and Manufacturer:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xsd:element name="Part" sql:relation="Equipment" type="Part_type" />

<xsd:complexType name="Part_type">

<xsd:all>

<xsd:element name="PartNo" sql:field="EquipmentId" type="xsd:int" />

<xsd:element name="Manufacturer" sql:field="Make" type="xsd:string" />

<xsd:element name="Model" type="xsd:string" />

</xsd:all>

</xsd:complexType>

<xsd:element name="PartNo" sql:field="PartNo" type="xsd:int" />

<xsd:element name="Manufacturer" sql:field="Make" type="xsd:string" />

<xsd:element name="Model" type="xsd:string" />

</xsd:schema>

The name of the Model element is the same as the name of the database field,

so there is no need to include annotations to link them. SQL Server will use default

mapping to automatically link XML and SQL Server components.

Mapping Relationships
XSD schemas can map to more than one table. As previously discussed, table

relationships are annotated using the sql:relationship element. This tag must

be contained within the xsd:appinfo element inside the xsd:annotation

5 8 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

element. In XSD Schemas, the sql:relationship element has four attributes

that link elements in a manner similar to the creation of foreign keys between tables

in relational databases:

Attribute Description
parent Name of the primary relation

parent-key Node (field) in a primary relation (table) that serves as the primary key

child Name of the foreign relation (table)

child-key Node (field) in a foreign relation (table) that serves as the foreign key

The following schema contains the definition for a relationship between the

Contact and Inventory elements:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xsd:element name="Contact"

sql:relation="Contact"

type="Contact_type" />

<xsd:complexType name="Contact_type">

<xsd:all>

<xsd:element name="Inventory"

sql:relation="Inventory"

type="Inventory_type">

<xsd:annotation>

<xsd:appinfo>

<sql:relationship parent="Contact"

parent-key="ContactId"

child="Inventory"

child-key="OwnerId" />

</xsd:appinfo>

</xsd:annotation>

</xsd:element>

</xsd:all>

<xsd:attribute name="ContactId" type="xsd:int" />

<xsd:attribute name="FirstName" type="xsd:string" />

<xsd:attribute name="LastName" type="xsd:string" />

<xsd:attribute name="Phone" type="xsd:string" />

<xsd:attribute name="Fax" type="xsd:string" />

<xsd:attribute name="Email" type="xsd:string" />

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 8 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 8 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

<xsd:attribute name="OrgUnitId" type="xsd:short" />

<xsd:attribute name="UserName" type="xsd:string" />

<xsd:attribute name="ts" type="xsd:long" />

</xsd:complexType>

<xsd:element name="Inventory"

sql:relation="Inventory"

type="Inventory_type" />

<xsd:complexType name="Inventory_type">

<xsd:attribute name="Inventoryid" type="xsd:int" />

<xsd:attribute name="EquipmentId" type="xsd:int" />

<xsd:attribute name="LocationId" type="xsd:int" />

<xsd:attribute name="StatusId" type="xsd:unsignedByte" />

<xsd:attribute name="LeaseId" type="xsd:int" />

<xsd:attribute name="LeaseScheduleId" type="xsd:int" />

<xsd:attribute name="OwnerId" type="xsd:int" />

<xsd:attribute name="Rent" type="xsd:decimal" />

<xsd:attribute name="Lease" type="xsd:decimal" />

<xsd:attribute name="Cost" type="xsd:decimal" />

<xsd:attribute name="AcquisitionTypeID" type="xsd:unsignedByte" />

</xsd:complexType>

</xsd:schema>

NOTE

XML views have one significant advantage over relational views—they are updateable. You can
use UpdateGrams or XML Bulk Load to load XML documents into multiple tables.

Other Annotations
sql:is-constant="1" annotations are used on static nodes. This annotation is

useful for defining the root node or other nodes that are not linked to table columns.

In the following schema, the root node (EqList) is artificially added as a container

for all other nodes:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xsd:element name="EqList"

sql:is-constant="1">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Eq"

sql:relation="Equipment"

maxOccurs="unbounded">

<xsd:complexType>

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

<xsd:attribute name="EqId"

sql:field="EquipmentId"

type="xsd:integer" />

<xsd:attribute name="Make" type="xsd:string" />

<xsd:attribute name="Model" type="xsd:string" />

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

The sql:mapped attribute serves an opposite purpose. It is useful in cases in which

you have a schema that contains a component that cannot be mapped to a database

object. SQL Server will not return XML view components that are annotated with

sql:mapped = "0":

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xsd:element name="EqList"

sql:is-constant="1">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Eq"

sql:relation="Equipment"

maxOccurs="unbounded">

<xsd:complexType>

<xsd:attribute name="EqId"

sql:field="EquipmentId"

type="xsd:integer" />

<xsd:attribute name="Make" type="xsd:string" />

<xsd:attribute name="Model" type="xsd:string" />

<xsd:attribute name="GTIN" type="xsd:string"

sql:mapped = "0"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

The id, idref, and idrefs attributes can be used to create intradocument

links in XML documents; sql:id-prefix annotations can be used to make ID

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 8 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

attributes unique; sql:use-cdate annotations can be used to specify a CDATA
section in the XML document; sql:overflow-field attributes are used

to retrieve data from fields that contain XML tags; sql:limit-field and

sql:limit-value annotations are used to filter result sets; sql:identity
and sql:guid are used to control whether SQL Server uses values supplied by

DiffGram and UpdateGram or generates new ones; and so on.

Programmatic Database Access
SQLXML contains two data providers that can manage SQL Server data using XML:

� SQLXML Managed Classes For creating .NET applications using the

.NET Framework

� SQLXMLOLEDB Provider For creating database application using

ADO and ADO.NET

Retrieving XML Data Using SQLXML Managed Classes
The SQLXML Managed Classes assembly contains three main classes:

� SqlXmlCommand Used to specify a query and retrieve XML from

SQL Server 2000

� SqlXmlParameter Used to set parameters to SqlXmlCommand

� SqlXmlAdapter Used to retrieve a DataSet object based in

a SqlXmlCommand query

To use these classes in your .NET application, you must add to your project a

reference to the Microsoft.Data.SqlXml namespace (implemented as the

Microsoft.Data.SqlXml.dll assembly in the \Program Files\SQLXML 3.0\bin folder).

NOTE

Although these managed classes were initially delivered with SQLXML 2.0, you should install
the newest version. Earlier versions were designed to work with the Beta 2 version of the .NET
Framework, and you will resolve some compatibility issues when you install the latest version.

Figure 14-24 shows the architecture of a .NET application that uses SQLXML

Managed Classes.

5 8 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 8 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Retrieving XML Data Using the SqlXmlCommand Class
You can use the SqlXmlCommand class to specify a SQL query (with the For XML

clause), a template, or an XPath query (against the mapping schema) to retrieve an

XML document (or fragment) from SQL Server 2000.

The query itself has to be specified using the CommandText property of the

SqlXmlCommand class. The type of query is specified using the CommandType

property. Possible values are

� SqlXmlCommandType.SQL (default)

� SqlXmlCommandType.Template

� SqlXmlCommandType.TemplateFile

� SqlXmlCommandType.XPath

� SqlXmlCommandType.UpdateGram

� SqlXmlCommandType.DiffGram

The next chapter discusses how you can use the SqlXmlCommand class with

UpdateGrams and DiffGrams; this chapter focuses on the rest of the available

properties.

There are three methods for returning XML data using the SqlXmlCommand class:

� ExecuteToStream The resulting XML fragment is written to an existing

Stream object (typically a file)

� ExecuteStream The result is returned as a new Stream object (typically

console)

� ExecuteXmlReader Returns the result as an XmlTextReader instance

(to be used in data-bound controls)

Each of these options has its advantages and can be used in different circumstances.

Figure 14-24 Retrieving data using SQLXML Managed Classes

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Relational Queries The following code sample is written in Visual Basic .NET. To

retrieve XML fragments from SQL Server, you need to instantiate the SqlXmlCommand

class with the appropriate connection string, set the command type, set the query,

and retrieve the result as a Stream object:

'SqlXml_SqlQuery

Imports System

Imports System.IO

Imports Microsoft.Data.SqlXml 'The SQLXML managed classes

Module Module1

Sub Main()

'Instantiate the SqlXmlCommand object and the connection

Dim objSqlXmlCmd As New SqlXmlCommand("Provider=SQLOLEDB;" _

& "Server=(local)\SS2K;Database=Asset;" _

& "Integrated Security=SSPI")

'Set type of query

objSqlXmlCmd.CommandType = SqlXmlCommandType.Sql

'Set the query

objSqlXmlCmd.CommandText = "SELECT * FROM Inventory FOR XML AUTO"

'Execute the query and retrieve result as a stream

Dim objResult As MemoryStream = objSqlXmlCmd.ExecuteStream()

'Write result to the console

Dim objStreamReader As New StreamReader(objResult)

Console.Write(objStreamReader.ReadToEnd)

End Sub

End Module

If you build this project in Visual Studio .NET, it will create an executable file in

the bin subfolder of the project. If you execute it from the command prompt, it will

return an XML fragment to the console:

<Inventory Inventoryid="5" EquipmentId="1" LocationId="2" StatusId="1"

LeaseId="1" LeaseScheduleId="1" OwnerId="1" Cost="1295"

AcquisitionTypeID="1"/>

<Inventory Inventoryid="6" EquipmentId="6" LocationId="2" StatusId="2"

LeaseId="1" LeaseScheduleId="1" OwnerId="1" Rent="200" Lease="0" AcquisitionTypeID="3"/>

<Inventory Inventoryid="8" EquipmentId="5" LocationId="2" StatusId="1"

OwnerId="1" AquisitionTypeID="2"/>

...

5 9 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Output from the console can be redirected to a file:

...\sqlxml_sqlquery> sqlxml_sqlquery > Inventory.xml

The other option for directing XML results to a file is to create a FileStream

object, use the ExecuteStream method, and write the XML directly to a file:

'SqlXml_SqlQuery2File

Imports System

Imports System.IO

Imports Microsoft.Data.SqlXml 'The SQLXML managed classes

Module Module1

Sub Main()

'Instantiate the SqlXmlCommand object and the connection

Dim objSqlXmlCmd As New SqlXmlCommand("Provider=SQLOLEDB;"

& "Server=(local)\SS2K;Database=Asset;"

& "Integrated Security=SSPI")

'Set type of query

objSqlXmlCmd.CommandType = SqlXmlCommandType.Sql

'Set the query

objSqlXmlCmd.CommandText = "SELECT * FROM Inventory FOR XML AUTO"

'execute into a stream reader

Dim objStrmReader As New StreamReader(objSqlXmlCmd.ExecuteStream())

'prepare destination file

Dim objResult As New FileStream("Inventory.xml", FileMode.Create)

Dim objStrmWriter As New StreamWriter(objResult)

'write result into destination file

objStrmWriter.WriteLine(objStrmReader.ReadToEnd)

objStrmWriter.Close()

objResult.Close()

objStrmReader.Close()

End Sub

End Module

The SqlXmlCommand can also return data to a StreamReader instance. It is designed

to read forward efficiently through an XML document. To use it, you must define

a StreamReader object and instantiate it using the ExecuteStream method of the

SqlXmlCommand class. Then you need to instantiate a FileStream object that points

to the file that you want to create. You also need an instance of the StreamWriter

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 9 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

object that will allow you to write in a file through the FileStream object. You will

glue everything together when you read the content of the StreamReader object and

write it into the StreamWriter object:

objStrmWriter.WriteLine(objStrmReader.ReadToEnd)

Naturally, the SQL query used in CommandText is not limited to the Select statement.

It could also be a stored procedure that returns a result set using a For XML clause

(in a Select statement):

ALTER PROCEDURE prListEquipment2_xml

AS

Select EquipmentId, Make, Model, EqType

From Equipment inner join EqType

On Equipment.EqTypeId = EqType.EqTypeId

For XML Auto

To use it, add an Execute statement in the CommandText string:

objSqlXmlCmd.CommandType = SqlXmlCommandType.SQL

objSqlXmlCmd.CommandText = "exec prListEquipment2_xml"

If you want to add the root element to the result, you can use the RootTag

property:

objSqlXmlCmd.RootTag = "CompleteInventory"

When the root tag is specified, SqlXmlCommand will also add a processing

instruction that defines the XML version and the encoding of the document. The

default encoding is UTF-8. If you want to change it, you must use the OutputEncoding

property (alternatives are Unicode and ASCII):

objSqlXmlCmd.OutputEncoding = "Unicode"

To add a default namespace, use the Namespaces property:

objSqlXmlCmd.Namespaces = "xmlns:inv = ""www.TrigonBlue.com/Xml/Inv"""

NOTE

Since double quotes (") have special meaning in Visual Basic .NET, you must double them so that
they appear in the final XML string.

5 9 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Templates You can also use an inline template as a query. You need to specify

CommandType as SqlXmlCommandType.Template and provide a string with the

template as a CommandText:

objSqlXmlCmd.CommandType = SqlXmlCommandType.Template

objSqlXmlCmd.CommandText = _

& "<root xmlns:sql='urn:schemas-microsoft-com:xml-sql'>" & vbCrLf _

& " <sql:query>" & vbCrLf _

& " select * from Equipment for XML auto, elements" & vbCrLf _

& " </sql:query>" & vbCrLf _

& " </root>"

The template can also be in an external file, in which case you must use

SqlXmlCommandType.TemplateFile constant and set CommandText to the

location of the template file:

objSqlXmlCmd.CommandType = SqlXmlCommandType.TemplateFile

objSqlXmlCmd.CommandText = "ListEquipment.xml"

The template can also be a stream, in which case you need to assign the template

to the CommandStream property (instead of CommandText). You also need to set

CommandType to SqlXmlCommandType.Template, even if the origin of the stream

is a file, as in this case:

Dim objStrmTemplate As New FileStream ("ListEquipment.xml", _

FileMode.Open, FileAccess.Read)

objSqlXmlCmd.CommandType = SqlXmlCommandType.Template

objSqlXmlCmd.CommandStream = objStrmTemplate

XSL Transformation SqlXmlCommand calls can also transform XML documents

using XSL files. In the following example, the prListEquipment2_xml stored procedure

returns an XML stream that will be converted using Equipment.xsl into an HTML

stream to be saved in the Inventory.htm file:

Imports System

Imports System.IO

Imports Microsoft.Data.SqlXml 'The SQLXML managed classes

Module Module1

Sub Main()

'Instantiate the SqlXmlCommand object and the connection

Dim objSqlXmlCmd As New SqlXmlCommand("Provider=SQLOLEDB;" _

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 9 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 9 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

& "Server=(local)\SS2K;Database=Asset;" _

& "Integrated Security=SSPI")

'Set type of query

objSqlXmlCmd.CommandType = SqlXmlCommandType.Sql

'Set the query

objSqlXmlCmd.CommandText = "exec prListEquipment2_xml"

objSqlXmlCmd.RootTag = "Root"

objSqlXmlCmd.XslPath = "Equipment.xsl"

'execute into a stream reader

Dim objStrmReader As New StreamReader(objSqlXmlCmd.ExecuteStream())

'prepare destination file

Dim objResult As New FileStream("Inventory.htm", FileMode.Create)

Dim objStrmWriter As New StreamWriter(objResult)

'write result into destination file

objStrmWriter.WriteLine(objStrmReader.ReadToEnd)

objStrmWriter.Close()

objResult.Close()

objStrmReader.Close()

End Sub

End Module

XML Views and XPath Queries You can also use XPath queries against XML views

(or annotated schemas) to retrieve data from the database. You need to specify

CommandType as XPath, point to the schema file, and specify the XPath query,

before you execute the SqlXmlCommand object in the usual manner:

'Set type of query

objSqlXmlCmd.CommandType = SqlXmlCommandType.XPath

'Point to schema file

objSqlXmlCmd.SchemaPath = "InvSchema.xsd"

'Set the XPath query

objSqlXmlCmd.CommandText = "/ROOT/Inventory[@StatusId=5]"

objSqlXmlCmd.RootTag = "DefectiveInventory"

Retrieving XML Data Using the SqlXmlParameter Class
Relational queries (including stored procedures) and templates can have parameters.

The SqlXmlParameter class is used to pass values, for which the user has been

prompted, to SqlXmlCommand query objects.

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

In the following example, a T-SQL statement (in this case, a stored procedure) is

prepared for execution with ? as a placeholder for the parameter. A SqlXmlParameter

object is declared, instantiated (in the context of a SqlXmlCommand object), and

named. After the user is prompted, the value is assigned to the parameter, and finally

the query is executed:

'SqlXml_Param

Imports System

Imports System.IO

Imports Microsoft.Data.SqlXml 'The SQLXML managed classes

Module Module1

Sub Main()

'Instantiate the SqlXmlCommand object and the connection

Dim objSqlXmlCmd As New SqlXmlCommand("Provider=SQLOLEDB;" _

& "Server=(local)\SS2K;Database=Asset;" _

& "Integrated Security=SSPI")

'Set type of query

objSqlXmlCmd.CommandType = SqlXmlCommandType.Sql

'Set the parameterized query

objSqlXmlCmd.CommandText = "exec prGetEquipment_xml ?"

'define parameter

Dim objParam As SqlXmlParameter

'instantiate parameter

objParam = objSqlXmlCmd.CreateParameter()

objParam.Name = "EquipmentId"

'prompt for the value

Console.WriteLine("Equipment Id:")

objParam.Value = Console.Read()

'Execute the query and retrieve result as a stream

Dim objResult As MemoryStream = objSqlXmlCmd.ExecuteStream()

'Write result to the console

Dim objStreamReader As New StreamReader(objResult)

Console.Write(objStreamReader.ReadToEnd)

End Sub

End Module

Retrieving DataSet Using the SqlXmlAdapter Class
A DataSet object is very convenient for further processing since many other classes

and methods (in other words, data-bound controls) are designed to use it. The

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 9 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

following example is a simple Windows application that consists of a form (frmGrid)

that contains a grid (gridTable) and a button (btnLoad). When the user clicks btnLoad,

the application connects to the database using the SqlXmlCommand, retrieves data

in the form of SqlXmlAdapter, fills the data set, and finally passes the data set content

to the grid (only one line is needed):

'SqlXml2Grid.frmGrid

Imports Microsoft.Data.SqlXml 'The SQLXML managed classes

Public Class frmGrid

Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

...

#End Region

Private Sub btnLoad_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnLoad.Click

Dim objSqlXmlCmd As New SqlXmlCommand("Provider=SQLOLEDB;" _

& "Server=(local)\SS2K;Database=Asset;" _

& "Integrated Security=SSPI")

objSqlXmlCmd.CommandType = SqlXmlCommandType.Sql

objSqlXmlCmd.CommandText = "exec prListEquipment2_xml"

objSqlXmlCmd.RootTag = "Root"

Dim objAdpt = New SqlXmlAdapter(objSqlXmlCmd)

Dim objDs = New DataSet()

objAdpt.Fill(objDs)

'load it to grid

gridTable.DataSource = objDs.Tables(0).DefaultView

End Sub

End Class

NOTE

Typically, there is no need to use SQLXML to retrieve a data set. You can use standard methods like
ADO.NET to achieve that. SqlXmlAdapter is more important in cases in which a stored procedure
or template already has a For XML clause (or when you want to use it to modify data, but that
is a topic for the next chapter).

5 9 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Retrieving XML Data Using ADO.NET
Developers are able to retrieve data in XML format without SQLXML. They can use

standard relational access methods based on ADO.NET.

Using SqlCommand
The SqlCommand class is used in ADO.NET to execute SQL commands against

a database server. To use it against SQL Server, you must include a reference to

System.Data.SqlClient in the application. You need an instantiated SqlConnection

object and SQL query to define the SqlCommand object.

The SqlCommand class’s ExecuteXmlReader method can be used to pass the

result of SQL queries with a For XML clause to an instance of the XmlTextReader

object. In the following example, the XmlTextReader object is used to write the

XML result through a FileStream object to a file:

'SqlCommand_Simple

Imports System

Imports System.IO

Imports System.Data

Imports System.Data.SqlClient

Imports System.Xml

Module Module1

Sub Main()

'Instantiate the SqlCommand object and the connection

Dim objConn As New SqlConnection("Server=(local)\SS2K;" _

& "Database=Asset;" _

& "Integrated Security=SSPI")

objConn.Open()

Dim objCmd As New SqlCommand(_

"SELECT * FROM Inventory FOR XML AUTO", objConn)

'read the result as XML

Dim objXMLReader As XmlTextReader

objXMLReader = objCmd.ExecuteXmlReader()

'prepare the destination file

Dim objFile As New FileStream("Inventory.xml", FileMode.Create)

Dim objStrmWriter As New StreamWriter(objFile)

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 9 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

'skip processing instructions, etc.

objXMLReader.MoveToContent()

'write xml line by line to file

While objXMLReader.IsStartElement

objStrmWriter.WriteLine(objXMLReader.ReadOuterXml)

End While

objStrmWriter.Close()

objFile.Close()

objXMLReader.Close()

objConn.Close()

End Sub

End Module

Using DataSet Objects
DataSet objects from ADO.NET are typically used in .NET applications to access

the result of a relational query. One of their features is also to serialize the result as

XML using the WriteXML method. The query that the DataSet object is based upon

does not need to contain a For XML clause.

In the following example, a DataSet object is created using SqlConnection,

SqlCommand, and SqlAdapter object instances. The WriteXML method is then

used to write XML data without schema in a file to a FileStream object.

'SqlCommand_DataSet2XML

Imports System

Imports System.IO

Imports System.Data

Imports System.Data.SqlClient

Imports System.Xml

Module Module1

Sub Main()

'Instantiate the SqlCommand object and the connection

Dim objConn As New SqlConnection("Server=(local)\SS2K;" _

& "Database=Asset;" _

& "Integrated Security=SSPI")

objConn.Open()

Dim objCmd As New SqlCommand(_

"SELECT * FROM Inventory", objConn)

5 9 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dim objAdpt As New SqlDataAdapter(objCmd)

Dim objDs As New DataSet("CompleteInventory")

objAdpt.Fill(objDs, "Inventory")

'prepare the destination file

Dim objFile As New FileStream("Inventory.xml", FileMode.Create)

Dim objStrmWriter As New StreamWriter(objFile)

'write dataset

objDs.WriteXml(objStrmWriter, XmlWriteMode.IgnoreSchema)

objStrmWriter.Close()

objFile.Close()

objConn.Close()

End Sub

End Module

Client-Side XML Processing
Since SQLXML 2.0, it has been possible to move XML processing from SQL

Server to the client (meaning in this case an application on the client or an object

in the middleware or on the web server). In this scenario (see Figure 14-25), a

client application executes a SQL query that includes a For XML clause. The

SQLXMLOLEDB provider strips the For XML clause out and sends the rest of

the query down the line. SQLOLEDB then passes the SQL query to SQL Server.

After execution, SQL Server returns a result set. SQLOLEDB passes the recordset

to the SQLXMLOLEDB provider, which performs the conversion to an XML

document based on the For XML clause and returns the XML response to the caller.

Client-side processing is important in the following scenarios:

� To move processing from SQL Server to a middleware component or web server

� To reduce network traffic (an XML response is large, because it contains metadata)

� To use SQLXML against SQL Server 7.0

� To access existing stored procedures and queries that do not contain a For

XML clause

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 5 9 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using URL Queries
The easiest way to force client-side XML conversion is to set the Run On The Client

option for the virtual directory in the IIS Virtual Directory Management for SQLXML

tool (see Figure 14-26).

Using Templates
The result of a query referenced in a template will be converted to XML data on the

client if you add a client-side-xml attribute to the template and set the value

to "1":

<root xmlns:sql='urn:schemas-microsoft-com:xml-sql'

client-side-xml = "1">

<sql:query>

select * from Equipment for XML auto, elements

</sql:query>

</root>

6 0 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-25 Server-side vs. client-side XML processing

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using SQLXML Managed Classes
You can force a .NET application that is using SQLXML managed class to access

database information to process record set to XML on the client side if you set

the ClientSideXml property of the SqlXmlCommand managed class to True:

Imports System

Imports System.IO

Imports Microsoft.Data.SqlXml 'The SQLXML managed classes

Module Module1

Sub Main()

'Instantiate the SqlXmlCommand object and the connection

Dim objSqlXmlCmd As New SqlXmlCommand("Provider=SQLOLEDB;" _

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 6 0 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

Figure 14-26 Setting the Run On The Client option for the virtual directory

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 0 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

& "Server=(local)\SS2K;Database=Asset;"_

& "Integrated Security=SSPI")

'Set the query

objSqlXmlCmd.CommandType = SqlXmlCommandType.Sql

objSqlXmlCmd.CommandText = "SELECT * FROM Inventory FOR XML ROW"

'convert to XML on the client

objSqlXmlCmd.ClientSideXml = True

'write result to file

Dim objResult As New FileStream("Inventory.xml", FileMode.Create)

objSqlXmlCmd = objSqlXmlCmd.ExecuteStream(objResult)

objResult.Close()

End Sub

End Module

Processing of Queries with the For XML Clause
Processing queries with a For XML clause on the client is very similar to processing

them on the server, but there are a few differences:

� It is illegal to try to return multiple result sets when you are trying to process

the queries on the client.

� You can use aggregations and the Group By clause:

select EquipmentId, Count(*) [Count]
from dbo.Inventory
Group By EquipmentId
for XML ROW

� All sql_variant fields are converted to Unicode strings: their base types

are ignored.

� If you try to process a query that has a For XML Auto clause on the client,

SQL Server will process it on the server. When you want to process the query

on the client, use the For XML Nested clause instead. It is very similar to For

XML Auto.

The For XML Nested clause, although very similar to For XML Auto, has some

important differences:

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� You can add it to a string that executes a stored procedure:

exec prListEquipment2
FOR XML Nested

� The resulting XML fragment will have element names based on base tables,

not on their aliases or view names.

� Keywords behind For XML Nested do not have to be separated with commas.

It is perfectly legal to separate them with spaces only:

select * from dbo.Inventory
FOR XML NESTED XMLDATA ELEMENTS

C h a p t e r 1 4 : P u b l i s h i n g I n f o r m a t i o n U s i n g S Q L X M L 6 0 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 14

P:\010Comp\D_Base\896-2\ch14.vp
Tuesday, April 29, 2003 1:44:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /
Blind Folio vi

P:\010Comp\D_Base\896-2\fm.vp
Wednesday, April 30, 2003 12:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER

15
Modifying Databases

Using SQLXML

605

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

IN THIS CHAPTER:
OpenXML()

UpdateGrams
DiffGrams

SQLXML BulkLoad
XML Web Services

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQLXML supports several methods for modifying data:

� OpenXML(), in association with modification statements

� UpdateGrams

� DiffGrams

� SQLXML BulkLoad

� XML Web Services and SOAP

OpenXML()
OpenXML() is a new function in Transact-SQL. It provides access to an in-memory

rowset similar to a view or a table. Since it is a rowset provider, OpenXML() can be

used in Transact-SQL statements in any place where a table, view, or rowset provider

such as OpenRowset() can be used. It is a replacement for DOM that Transact-SQL

developers can use to parse, access, and return the content of an XML document. By

itself, it cannot modify data, but it can be part of a modification statement.

Document Preparation
Before an XML document can be accessed using OpenXML(), the document must

be loaded into memory using sp_xml_preparedocument. This stored procedure has

the following syntax:

exec sp_xml_preparedocument hdoc OUTPUT

[, xmltext]
[, xpath_namespaces]

The stored procedure reads the XML document provided in xmltext, parses the

document using the MSXML parser, and places the document into an in-memory

structure that is ready for use with the OpenXML() statement. This structure is a tree

that contains assorted nodes such as elements, attributes, comments, and text. The

stored procedure returns a handle for the XML document hdoc that OpenXML() can

use to access the information, and that sp_xml_removedocument uses to remove the

document from memory.

6 0 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 0 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

The xmltext parameter accepts any type of character data (char, varchar, nchar,

nvarchar, text, or ntext).

xpath_namespaces is an optional parameter that is used to provide a namespace

declaration for row and column expressions in OpenXML(). The default value is

as follows:

<root xmlns:mp="urn:schemas-microsoft-com:xml-metaprop">

The stored procedure returns a non-zero value when SQL Server cannot prepare

the document. You should use this return value to perform error handling in the

usual manner.

In the following example an XML document is loaded in memory and its handle

is recorded in the @intDoc variable:

DECLARE @intDoc int

DECLARE @chvXMLDoc varchar(8000)

-- sample XML document

SET @chvXMLDoc ='

<root>

<Equipment EquipmentID="1" Make="Toshiba" Model="Portege 7020CT">

<Inventory InventoryID="5" StatusID="1" EquipmentID="1"/>

<Inventory InventoryID="12" StatusID="1" EquipmentID="1"/>

</Equipment>

</root>'

--Load the XML document into memory.

EXEC sp_xml_preparedocument @intDoc OUTPUT, @chvXMLDoc

Closing the Document
As soon as it is no longer used, the document should be removed from memory

using sp_xml_removedocument. This stored procedure uses very simple syntax:

exec sp_xml_removedocument hdoc

The hdoc parameter is a handle for a loaded XML document:

remove the XML document from memory

EXEC sp_xml_removedocument @intDoc

NOTE

The memory is not released until sp_xml_removedocument is called, and hence it should be called
as soon as possible.

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Retrieving the XML Information
OpenXML() is a rowset provider that provides access to the internal tree memory

structure that contains the information in an XML document. It has the following

syntax:

OpenXML(hdoc, rowpattern, flags)
[With (SchemaDeclaration | TableVariable)]

hdoc is a handle that points to the tree containing the XML data. rowpattern is

the XPath string used to identify nodes that need to be processed. flags is an optional

parameter that controls the way that data from the XML document is mapped to the

rowset and how data is to be copied to the overflow property (I will explain this a

little later).

SchemaDeclaration is a declaration of the structure in which data will be returned.

Alternatively, it is possible to use the name of a table variable (TableVariable)

instead. The rowset will be formed using the structure of the table variable. The

SchemaDeclaration can be composed using the following syntax:

ColName ColType [ColPattern | MetaProperty]
[, ColName ColType [ColPattern | MetaProperty]...]

ColName is the name and ColType is the data type of the column. This structure

is very similar to the table structure of the Create Table statement. ColPattern is an

optional parameter that defines how a column is to be mapped to the XML node.

A MetaProperty is specified to extract metadata such as data types, node types, and

namespace information.

Finally, take a look at an example that uses all these constructs:

DECLARE @intDoc int

DECLARE @chvXMLDoc varchar(8000)

-- sample XML document

SET @chvXMLDoc =

'<root>

<Equipment EquipmentID="1" Make="Toshiba" Model="Portege 7020CT">

<Inventory InventoryID="5" StatusID="1" EquipmentID="1"/>

<Inventory InventoryID="12" StatusID="1" EquipmentID="1"/>

</Equipment>

<Equipment EquipmentID="2" Make="Sony" Model="Trinitron 17XE"/>

<Equipment EquipmentID="4" Make="HP" Model="LaserJet 4"/>

<Equipment EquipmentID="5" Make="Bang & Olafson" Model="V4000">

<Inventory InventoryID="8" StatusID="1" EquipmentID="5"/>

</Equipment>

6 0 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<Equipment EquipmentID="6" Make="NEC" Model="V90">

<Inventory InventoryID="6" StatusID="2" EquipmentID="6"/>

</Equipment>

</root>'

--Load the XML document into memory.

EXEC sp_xml_preparedocument @intDoc OUTPUT, @chvXMLDoc

-- SELECT statement using OPENXML rowset provider

SELECT *

FROM OPENXML (@intDoc, '/root/Equipment/Inventory', 8)

WITH (InventoryID int '@InventoryID',

StatusID int '@StatusID',

Make varchar(25) '../@Make',

Model varchar(25) '../@Model',

Comment ntext '@mp:xmltext')

-- remove the XML document from memory

EXEC sp_xml_removedocument @intDoc

The result is shown in Figure 15-1.

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 0 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Figure 15-1 Use of OpenXML() as a rowset provider

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the preceding example, the OpenXML() rowset provider is used in a Select

statement:

SELECT *

From Openxml (@intDoc, '/root/Equipment/Inventory', 8)

WITH (InventoryID int '@InventoryID',

StatusID int '@StatusID',

Make varchar(25) '../@Make',

Model varchar(25) '../@Model',

Comment ntext '@mp:xmltext')

The rowpattern parameter specifies that information will be extracted (mostly)

from Inventory nodes ('/root/Equipment/Inventory').

The third parameter of the OpenXML() clause sets the way in which the overflow

property is to be filled. In the preceding example, the last column (Comment) was

filled with metadata provided by the XML parser (since the column is associated

with the @mp:xmltext attribute). Because the third parameter of OpenXML() is

set to 8 (the XML_NOCOPY constant), the overflow property does not contain the

nodes that are extracted into the rowset. Only nodes that are not included in the rowset

are recorded.

Other columns in the rowset are filled from the attribute data. If you remember

XPath (see the “XPath” section in Chapter 13), the @ character is used as an

abbreviation that points to attribute nodes.

The Make and Model columns are not in the same group of nodes as InventoryID
and StatusId. Since they are attributes of the Equipment node, ColPattern has

to refer to the parent node ('../@Model') first.

Table 15-1 shows a list of possible values of the flags parameter.

XML_NOCOPY could be combined (logical OR) with XML_ATTRIBUTES

(1 + 8 = 9) or XML_ELEMENTS (2 + 8 = 10). This flag can be used to generate

either a string with the overflow information or a string with a complete branch of

6 1 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Mnemonic Value Description
XML_ATTRIBUTES 1 Attribute-centric mapping

XML_ELEMENTS 2 Element-centric mapping

XML_DEFAULT 0 Default—equivalent to XML_ATTRIBUTES (1)

XML_NOCOPY 8 Overflow metaproperty of the document (@mp:xmltext) should contain
only nodes that were not extracted using the OpenXML() rowset provider

Table 15-1 Values of the flags Parameter of OpenXML()

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the XML document. The following example extracts the branch of the XML

document/tree that describes a node with EquipmentID set to 1:

Select *

From Openxml (@intDoc, '/root/Equipment', 2)

With (EquipmentID int '@EquipmentID',

Branch ntext '@mp:xmltext')

Where EquipmentId = 1

SQL Server 2000 returns the following:

EquipmentID Branch

----------- ---

1 <Equipment EquipmentID="1" Make="Toshiba"

Model="Portege 7020CT">

<Inventory InventoryID="5" StatusID="1" EquipmentID="1"/>

<Inventory InventoryID="12" StatusID="1" EquipmentID="1"/>

</Equipment>

(1 row(s) affected)

XML_ATTRIBUTES and XML_ELEMENTS can also be combined. The first

level of (selected) nodes are mapped as attributes and others are mapped as elements.

Metaproperties in OpenXML()
After the parser loads the XML document into memory, SQL Server allows the

OpenXML() rowset to access a set of properties that describe attributes of the data.

These properties are defined in a special namespace (urn:schemas-microsoft
-com:xml-metaprop). Table 15-2 shows the list of possible values and their

meanings.

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 1 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Metaproperty Description
@@mp:id System-generated identifier. It could be used as a unique identifier on the level of the

document (until the document is reparsed).

@@mp:localnamed Name of the current node.

@@mp:namespaceuri Namespace URI for the current element.

@@mp:Prefix Prefix of the namespace for the current element.

Table 15-2 Metaproperties in OpenXML()

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following example and Figure 15-2 demonstrate the use of metaproperties.

6 1 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Metaproperty Description
@@mp:xmltext String containing the XML branch of the current element, its attributes, and

subelements. It could be set not to contain nodes that have already been read by
other columns of the OpenXML() provider.

@@mp:prev ID of the previous sibling of the node.

@@mp:parented ID of the parent node (equivalent of ../@mp:parentid).

@@mp:parentlocalname Name of the parent node (equivalent of ../@mp:localname).

@@mp:parentnamespaceuri Namespace of the parent node (equivalent of ../@mp:namespaceuri).

@@mp:parentprefix Prefix of the namespace of the parent node (equivalent of ../@mp:prefix).

Table 15-2 Metaproperties in OpenXML() (continued)

Figure 15-2 Use of metaproperties in OpenXML()

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 1 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

DECLARE @intDoc int

DECLARE @chvXMLDoc varchar(8000)

-- sample XML document

SET @chvXMLDoc ='

<root>

<Equipment EquipmentID="1" Make="Toshiba" Model="Portege 7020CT">

<Inventory InventoryID="5" StatusID="1" EquipmentID="1"/>

<Inventory InventoryID="12" StatusID="1" EquipmentID="1"/>

</Equipment>

<Equipment EquipmentID="2" Make="Sony" Model="Trinitron 17XE"/>

<Equipment EquipmentID="4" Make="HP" Model="LaserJet 4"/>

<Equipment EquipmentID="5" Make="Bang & Olafson" Model="V4000">

<Inventory InventoryID="8" StatusID="1" EquipmentID="5"/>

</Equipment>

<Equipment EquipmentID="6" Make="NEC" Model="V90">

<Inventory InventoryID="6" StatusID="2" EquipmentID="6"/>

</Equipment>

</root>

'

--Load the XML document into memory.

EXEC sp_xml_preparedocument @intDoc OUTPUT, @chvXMLDoc

-- SELECT statement using OPENXML rowset provider

SELECT top 4 *

FROM OPENXML (@intDoc, '/root/Equipment/Inventory')

WITH (InventoryID int '@InventoryID',

ID int '@mp:id',

localname varchar(20) '@mp:localname',

namespaceuri varchar(40) '@mp:namespaceuri',

Prefix varchar(40) '@mp:Prefix',

prev varchar(40) '@mp:prev',

comment ntext '@mp:xmltext')

-- remove the XML document from memory

EXEC sp_xml_removedocument @intDoc

What if an XML Document Is Longer Than 8000 Characters?
You have probably noticed that we used long varchar strings (8000 characters) in

the preceding examples to store XML documents. Naturally, XML documents could

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

be longer than this arbitrary figure. The trouble is that you cannot define local

variables of the text data type (and varchar is limited to only 8000 characters).

Fortunately, sp_xml_preparedocument and OpenXML() can handle text parameters.

Instead of using a local variable of the text data type, you can use an input parameter

of a custom stored procedure as a parameter for sp_xml_preparedocument. The

following stored procedure illustrates this method:

Alter Procedure prTestXML

-- Extract Inventory info. from long XML document.

-- Demonstration of usage of text input parameters

-- to parse long XML document.

@chvXMLDoc text

As

set nocount on

Declare @intErrorCode int,

@intTransactionCountOnEntry int

@intDoc int

Select @intErrorCode = @@Error

--Create an internal representation of the XML document.

EXEC sp_xml_preparedocument @intDoc OUTPUT, @chvXMLDoc

-- SELECT statement using OPENXML rowset provider

SELECT *

FROM OPENXML (@intDoc, '/root/Equipment/Inventory', 8)

WITH (InventoryID int '@InventoryID',

StatusID int '@StatusID',

Make varchar(25) '../@Make',

Model varchar(25) '../@Model',

comment ntext '@mp:xmltext')

EXEC sp_xml_removedocument @intDoc

return @intErrorCode

Figure 15-3 demonstrates the use of the stored procedure. A large XML document

was created by copying and pasting the same set of nodes into the string (XML

document) over and over.

6 1 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 1 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

UpdateGrams
UpdateGrams are a special type of XML document that allow users to modify tables

in SQL Server. They are defined using the urn:schemas-microsoft-com:
xml-updategram namespace. The namespace defines three elements: sync,

before, and after. These elements allow users to control how data is processed

in SQL Server. The sync element initiates a transaction; everything within one

sync element is treated as a single transaction. The before element specifies how

the data looked before the change. The after element specifies how the data should

look after the change. These elements traditionally use the updg: namespace prefix,

but you can change this convention in the namespace declaration.

It is probably easier to demonstrate the features of UpdateGrams in an example.

UpdateGrams that update existing data must contain both before and after

Figure 15-3 Use of a text input parameter

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 1 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

elements. The before element must contain the data that will allow SQL Server

to identify the record(s) to be changed. The after element specifies the new

values. The table is identified by the name of the element and columns are

identified by attributes of the element:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync>

<updg:before>

<Contact ContactId = "1"/>

</updg:before>

<updg:after>

<Contact ContactId = "1" Phone = "(416) 123-1234"/>

</updg:after>

</updg:sync>

</root>

This UpdateGram sets a new phone number for any record that has a ContactId value

of 1. Naturally, to be properly processed, the UpdateGram needs the namespace that

is defined in the root element.

To delete a record, an UpdateGram needs only the before element. In the

following example, the Contact table will delete any record with a ContactId value

of 1212:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync>

<updg:before>

<Contact ContactId = "1212"/>

</updg:before>

</updg:sync>

</root>

To insert a record into a table, only the after element is needed:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync>

<updg:after>

<Contact FirstName = "Tom" LastName = "Jones" OrgUnitId = "2"/>

</updg:after>

</updg:sync>

</root>

The SQLISAPI driver converts the UpdateGram internally to a Transact-SQL

batch, which is processed as usual. In the previous example, since the ContactID

is the identity field, we do not need to specify its value.

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Executing UpdateGrams
The UpdateGrams can be posted to the server using any of the means already

described. I will first describe how to do it using HTTP, and then programmatically

using SqlXml managed classes.

Executing UpdateGrams Through a URL
The least secure way to execute an UpdateGram is to pass it as a part of a URL. To

execute them, XML files with UpdateGrams must be in the folder that is associated

with the virtual name of the template type or you must specify the template as a part

of the URL:

http://localhost/asset?template=<root xmlns:updg="urn:schemas

-microsoft-com:xml-updategram">

<updg:sync>

<updg:after>

<Contact FirstName = "Tom" LastName = "Jones" OrgUnitId = "2"/>

</updg:after>

</updg:sync>

</root>

If the UpdateGram is successful, SQL Server will return:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram" />

NOTE

As you can imagine, this is very insecure. Anybody can connect to the database and do anything
they want.

If the previous UpdateGram is saved as InsertContactUpdategram.xml in the

template folder, it can be executed using the following URL:

http://localhost/asset/template/InsertContactUpdategram.xml

If the UpdateGram is successful, the browser will display an empty screen.

Executing UpdateGrams Using SqlXml Managed Classes
You can execute UpdateGrams through the SqlXmlCommand object. In this case,

you need to set the CommandType to SqlXmlCommandType.UpdateGram and pass

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 1 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the text of the UpdateGram to the CommandText property. Since there is no result to

be returned, you should use the ExecuteNonQuery() method:

'SqlXml_UpdateGram

Imports System

Imports System.IO

Imports Microsoft.Data.SqlXml 'The SQLXML namespace

Module Module1

Sub Main()

'Instantiate the SqlXmlCommand object and the connection

Dim objSqlXmlCmd As New SqlXmlCommand("Provider=SQLOLEDB;" _

& "Server=(local)\SS2K;Database=Asset;" _

& "Integrated Security=SSPI")

'Set type of query

objSqlXmlCmd.CommandType = SqlXmlCommandType.UpdateGram

'Query is UpdateGram

objSqlXmlCmd.CommandText = "<root " _

+ " xmlns:updg=""urn:schemas-microsoft-com:xml-updategram"">" _

+ "<updg:sync>" _

+ "<updg:after>" _

+ "<Contact FirstName = ""Tom"" LastName = ""Jones"" OrgUnitId = ""2""/>"

+ "</updg:after>" _

+ "</updg:sync>" _

+ "</root>"

'Execute the UpdateGram

objSqlXmlCmd.ExecuteNonQuery()

'since there is no result to return

Console.Write("Completed.")

End Sub

End Module

Since both Visual Basic .NET and XML use double quotes (") as string delimiters,

you have to use double pairs of double quotes ("") or use single quotes as attribute

delimiters in your string literal.

If you need to read the result stream and return it to the screen, you can use the

ExecuteStream() method instead of ExecuteNonQuery(). As in the case of execution

through HTTP, SQL Server returns:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram" />

6 1 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Element-centric vs. Attribute-centric UpdateGram
So far, we have been using attribute-centric UpdateGrams to demonstrate its features—

in other words, columns have been mapped using XML attributes. If it is more

convenient, you can use element-centric UpdateGrams instead:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync>

<updg:before>

<Contact>

<ContactId>

1

</ContactId>

</Contact>

</updg:before>

<updg:after>

<Contact>

<ContactId>

1

</ContactId>

<Phone>

(416) 123-1234

</Phone>

</Contact>

</updg:after>

</updg:sync>

</root>

UpdateGrams with Parameters
There is not much sense in posting a static UpdateGram to SQL Server. UpdateGrams

really become useful only when you use parameters. The parameters must be declared

using the updg:param element, after which they can be used in before and

after elements:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:header>

<updg:param name="ContactId"/>

<updg:param name="Phone" />

</updg:header>

<updg:sync>

<updg:before>

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 1 9

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<Contact ContactId = "$ContactId"/>

</updg:before>

<updg:after>

<Contact ContactId = "$ContactId" Phone = "$Phone"/>

</updg:after>

</updg:sync>

</ROOT>

If the preceding UpdateGram is saved as UpdateGramPhone.xml in the template

folder, it can be executed using the following URL:

http://localhost/asset/template/UpdateGramPhone.xml?ContactId=1&

Phone=416-123-1217

Alternatively, you can execute it programmatically:

'SqlXml_UpdategramParam

Imports System

Imports System.IO

Imports Microsoft.Data.SqlXml 'The SQLXML namespace

Module Module1

Sub Main()

'Instantiate the SqlXmlCommand object and the connection

Dim objSqlXmlCmd As New SqlXmlCommand("Provider=SQLOLEDB;" _

& "Server=(local)\SS2K;Database=Asset;" _

& "Integrated Security=SSPI")

'Set type of query

objSqlXmlCmd.CommandType = SqlXmlCommandType.UpdateGram

'Set the parameterized query

objSqlXmlCmd.CommandText = "<ROOT " _

+ " xmlns:updg=""urn:schemas-microsoft-com:xml-updategram"" > " _

+ "<updg:header>" _

+ " <updg:param name=""ContactId""/>" _

+ " <updg:param name=""Phone"" />" _

+ "</updg:header>" _

+ " <updg:sync>" _

+ " <updg:before>" _

+ " <Contact ContactId = ""$ContactId""/>" _

+ " </updg:before>" _

+ " <updg:after>" _

+ " <Contact ContactId = ""$ContactId"" Phone = ""$Phone""/>"_

+ " </updg:after>" _

6 2 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

+ " </updg:sync>" _

+ "</ROOT>"

'define parameters

Dim objParam1 As SqlXmlParameter

Dim objParam2 As SqlXmlParameter

'instantiate parameter

objParam1 = objSqlXmlCmd.CreateParameter()

objParam1.Name = "ContactId"

objParam2 = objSqlXmlCmd.CreateParameter()

objParam2.Name = "Phone"

'prompt for the value

Console.Write("Contact1 Id: ")

objParam1.Value = Console.ReadLine()

Console.Write("Phone: ")

objParam2.Value = Console.ReadLine()

'Execute the query and retrieve result as a stream

Dim objResult As MemoryStream = objSqlXmlCmd.ExecuteStream()

'Write result to the console

Dim objStreamReader As New StreamReader(objResult)

Console.Write(objStreamReader.ReadToEnd)

End Sub

End Module

In this case, as confirmation that the update has been successful, the program

displays

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram" />

Setting Parameters to Null
SQL Server designers have developed a special method for setting the values of

UpdateGram parameters to null: the UpdateGram template must contain the

nullvalue attribute of the updg:header element, which must be set to the

string that will be used in the URL as an alias for null:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:header nullvalue="isnull">

<updg:param name="ContactId"/>

<updg:param name="Phone" />

</updg:header>

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 2 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<updg:sync>

<updg:before>

<Contact ContactId = "$ContactId"/>

</updg:before>

<updg:after>

<Contact ContactId = "$ContactId" Phone = "$Phone"/>

</updg:after>

</updg:sync>

</ROOT>

If you save the UpdateGram as UpdateGramPhone.xml in the template folder, you

will be able to set the value of a parameter to null using a URL like the following:

http://localhost/asset/template/UpdateGramPhone.xml?

ContactId=1&Phone=isnull

Returning Identifier Values
One of the basic operations that developers need to be able to do is to insert a record

with a unique identifier into the database. Earlier chapters reviewed Transact-SQL

methods for returning an identity value to the caller and for inserting a global unique

identifier. All of those examples were based on the use of stored procedures.

Unfortunately, UpdateGrams cannot access stored procedures. However, SQL

Server’s designers did not forget this requirement.

Identity Values
Two attributes are used to process identity values—updg:at-identity and

updg:returnid. The updg:at-identity attribute is used to name and

capture the value that will be inserted in the Identity column. The captured value

can be used in other places in the UpdateGram or be returned to the caller using

the updg:returnid attribute. You just have to be very careful not to use a name

that you might later try to insert as a field value.

In the following example, the identity value obtained from the Order record

is first named "x" and then passed to the Foreign Key column OrderId in the

OrderItem record:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync>

<updg:before>

</updg:before>

<updg:after updg:returnid="x">

6 2 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<_x005B_Order_x005D_ updg:at-identity="x"

RequestedById = "1"

TargetDate = "1/1/2004"

DestinationLocationId = "10"

RequestedById = "1"

OrderTypeId = "3"

OrderStatusId = "1"

OrderDate = "11/3/2004" />

<OrderItem OrderID="x"

InventoryId="90"

EquipmentId="10"

Quantity="1"

Note="B123112" />

</updg:after>

</updg:sync>

</ROOT>

If you need to return the identifier to the calling application to do some additional

processing, you should use the updg:returnid attribute. If you add it to the

updg:after element, the calling application will receive a response in the form of

an XML document with the identity value:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<returnid>

<x>11091</x>

</returnid>

</ROOT>

It is possible to process more than one set of records—in the preceding example,

more than one order is processed. Each identity value would need to be named

differently. The updg:returnid attribute needs to contain a list of all identity

value names (separated by spaces) that will be returned to the caller:

<updg:after updg:returnid="x y" >

<_x005B_Order_x005D_ updg:at-identity="x"

...

<Order_x0020_Details OrderID="x"

...

<_x005B_Order_x005D_ updg:at-identity="y"

...

<Order_x0020_Details OrderID="y"

...

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 2 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 2 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

The result will again be an XML document:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<returnid>

<x>11091</x>

<y>11092</y>

</returnid>

</ROOT>

Uniqueidentifiers
UpdateGrams can also process uniqueidentifier values. They first need to be initialized

and named using the updg:guid attribute of the updg:after element. Then you

can use this attribute to set one or more fields and even return it to the caller. In the

following example, the record will be inserted and the GUID returned to the caller:

<SessionGuid updg:guid="x" >

The caller will receive the GUID inside an XML document:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<returnid>

<x>7111BD1A-7F0B-4CEE-B411-260DADFEFA2A</x>

</returnid>

</ROOT>

TIP

You will be able to save some time if you generate the GUID (in the middleware or client) before
you send it to the database.

Special Characters
You have probably noticed in the preceding examples that I encoded some values

using _xHex-value_. The Hex-value stands for a four-digit hexadecimal

USC-2 code. For example, the characters [and] are encoded as _x005B_ and

x005D. You must use such codes for characters that are legal in Transact-SQL,

but illegal in UpdateGrams.

UpdateGrams Behind the Scene
You can run SQL Profiler to evaluate the way that UpdateGrams are converted to

Transact-SQL code. Here is an example that I have captured:

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

SET XACT_ABORT ON

BEGIN TRAN

DECLARE @eip INT, @r__ int, @e__ int

SET @eip = 0

DECLARE @V1 nvarchar(40);INSERT [Order] (RequestedById, TargetDate,

DestinationLocationId, OrderTypeId, OrderStatusId, OrderDate)

VALUES (N'1', N'1/1/2004', N'10', N'3', N'1', N'11/3/2004');

SELECT @e__ = @@ERROR, @r__ = @@ROWCOUNT

IF (@e__ != 0 OR @r__ != 1) SET @eip = 1

SELECT @V1 = SCOPE_IDENTITY();INSERT OrderItem (OrderID, InventoryId,

EquipmentId, Note) VALUES (@V1, N'90', N'4', N'B123112');

SELECT @e__ = @@ERROR, @r__ = @@ROWCOUNT

IF (@e__ != 0 OR @r__ != 1) SET @eip = 1

select '<returnid>'+ '<x>' + cast(@V1 as varchar(4000))+ '</x>'

+ '</returnid>'

IF (@eip != 0) ROLLBACK ELSE COMMIT

SET XACT_ABORT OFF

Optimistic Locking with UpdateGrams
There are two basic ways to solve concurrency problems using optimistic locking

with UpdateGrams:

� By comparing all fields

� By comparing only timestamp fields

In the first scenario, the updg:before element should contain the original

values of all fields. The updg:after element contains only the changed values.

SQL Server performs the update only if the record contains all of the original values

specified in the updg:before element:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync>

<updg:before>

<Contact ContactId="1013" FirstName="Tom"

LastName="Jones" OrgUnitId="2" Phone = "(416) 123-1217"/>

</updg:before>

<updg:after>

<Contact Phone = "(416) 123-1234"/>

</updg:after>

</updg:sync>

</root>

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 2 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The second scenario is based on the use of the timestamp field in the updg:
before element (along with the key value). Again, the updg:after element

contains only the changed values. SQL Server performs the update only if the

timestamp value matches the one found in the record:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync mapping-schema="UpdategramContact_TS.xsd" >

<updg:before>

<Contact ContactId = "1013" ts = "0x0000000000001907"/>

</updg:before>

<updg:after>

<Contact OrgUnitId = "1"/>

</updg:after>

</updg:sync></root>

However, timestamp values require special care because they are essentially

binary fields, and UpdateGram needs to treat this attribute value as a binary (not

a string) value. You must assign the sql:timestamp data type to them using a

mapping schema. The UpdateGram must reference the schema in the mapping-
schema attribute of the updg:synch element:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:dt="urn:schemas-microsoft-com:datatypes"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xsd:element name="Contact" sql:relation="Contact" type="Contact_type"/>

<xsd:complexType name="Contact_type">

<xsd:attribute name="ContactId" type="xsd:int"/>

<xsd:attribute name="FirstName" type="xsd:string"/>

<xsd:attribute name="LastName" type="xsd:string"/>

<xsd:attribute name="Phone" type="xsd:string"/>

<xsd:attribute name="Fax" type="xsd:string"/>

<xsd:attribute name="Email" type="xsd:string"/>

<xsd:attribute name="OrgUnitId" type="xsd:short"/>

<xsd:attribute name="UserName" type="xsd:string"/>

<xsd:attribute name="ts" sql:datatype="timestamp" type="xsd:hexBinary"/>

</xsd:complexType>

</xsd:schema>

In cases where the timestamp in UpdateGram matches the timestamp in the

record, SQLXML returns the usual confirmation:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram" />

6 2 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 2 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

In the case of nonmatching timestamps, you will receive the following error:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<?MSSQLError HResult="0x80040e14"

Source="Microsoft OLE DB Provider for SQL Server"

Description="SQLOLEDB Error Description:

Empty update, no updatable rows found Transaction aborted "?>

</root>

Unfortunately, the nature of the problem is not clear from this error message.

Someone may have changed the record or it could be something more fundamental

such as an attempt to update a nonexistent record. It would have been better had

the authors of SQLXML used the TSEqual function (described in the section

“Optimistic Locking Using Timestamp Values” in Chapter 9).

Multiple Records and Multiple Tables in a Single UpdateGram
You can change multiple records in a single UpdateGram. If multiple records are

contained in a single updg:sync element, they will be executed in a single

transaction:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync>

<updg:before>

<Contact ContactId="1013" />

<Contact ContactId="1014" />

</updg:before>

</updg:sync>

</root>

Alternatively, you can put statements into multiple updg:sync elements and

SQL Server will process them in separate transactions:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync>

<updg:before>

<Orders OrderId="1013" />

<OrderItem OrderId="1013" />

</updg:before>

</updg:sync>

<updg:sync>

<updg:before>

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

<Orders OrderId="1014" />

<OrderItem OrderId="1014" />

</updg:before>

</updg:sync>

</root>

Multiple Insert or Delete operations on the same table in a single transaction

are not problematic since all data is in either updg:before or updg:after
element. But when you want to update multiple records in a single transaction, you

must first link elements (records) in updg:before or updg:after elements.

It is easy to link them using key values, but you can do so only when keys are not

being changed. If you cannot use keys, you can do it using the updg:id element:

<root xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync>

<updg:before>

<OrderItem ItemId="1013" updg:id = "c1"/>

<OrderItem ItemId="1014" updg:id = "c2"/>

</updg:before>

<updg:after>

<OrderItem EquipmentId="12" updg:id = "c2"/>

<OrderItem EquipmentId="16" updg:id = "c1"/>

</updg:after>

</updg:sync>

</root>

Alternatively, items in the updg:before or updg:after element can be

linked using the sql:key-fields annotation in a mapping schema.

TIP

You will not be able to update multiple base tables if you execute a single UpdateGram against
a view because of SQL Server limitations. You also won’t be able to create a mapping schema
that will map a single UpdateGram to multiple relational tables because of the UpdateGram
implementation. There is an alternative. You can create a view with an instead-of trigger on top
of it. When you execute UpdateGram, the trigger will kick in and distribute data to base tables.

DiffGrams
DiffGrams are very similar to UpdateGrams in both structure and function. They are

designed as an internal format of the DataSet class for persisting and executing data

set changes.

6 2 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A typical DiffGram document has a structure like this:

<?xml version="1.0"?>

<Root xmlns:sql = "urn:schemas-microsoft-com:xml-sql

sql:mapping-schema = "Inventory.xsd">

<diffgr:diffgram

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<DataSetName>
...

</DataSetName>
[<diffgr:before>

...

</diffgr:before>]

[<diffgr:errors>

...

</diffgr:errors>]

</diffgr:diffgram>

<Root>

The first element (DataSetName in the previous example) will get its value

from the Name property of the data set from which DiffGram was generated. To

a certain level, it is the functional equivalent of the updg:after element. This

element is mandatory and it could contain both elements that were changed and

elements that were not changed. SQL Server will process only elements that have

the diffgr:hasChanges attribute set to an appropriate value. The diffgr:
before element is the functional equivalent of the updg:before element. It is

used to identify records that need to be changed. The diffgr:errors element

is optional and it will not have any effect on data changes.

The DiffGram must contain a reference to a mapping schema to be able to map

the data in the DiffGram (if you plan to run it against a database). The annotation

for mapping (sql:mapping-schema) must be placed at the root element of the

DiffGram.

Using DiffGrams to Insert Data
DiffGrams that insert data do not need the diffgr:before element. All elements

(records) inside the DataSetName element (CompleteInventory in the following

case) must have diffgr:hasChanges="inserted".

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 2 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:23:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<?xml version='1.0' ?>

<AddInv xmlns:sql='urn:schemas-microsoft-com:xml-sql'

sql:mapping-schema='Inventory.xsd'>

<diffgr:DiffGram xmlns:msdata='urn:schemas-microsoft-com:xml-msdata'

xmlns:diffgr='urn:schemas-microsoft-com:xml-diffgram-v1'>

<CompleteInventory>

<Inventory diffgr:id='Inventory1'

diffgr:hasChanges='inserted'>

<EquipmentId>246</EquipmentId>

<LocationId>14</LocationId>

<StatusId>4</StatusId>

<LeaseId>8</LeaseId>

<LeaseScheduleId>185</LeaseScheduleId>

<OwnerId>161</OwnerId>

<Lease>2209</Lease>

<AcquisitionTypeID>2</AcquisitionTypeID>

</Inventory>

</CompleteInventory>

</diffgr:diffgram>

</AddInv>

Identity and uniqueidentifier columns must be treated uniquely in DiffGrams.

You cannot simply skip these columns because SQL Server would interpret that as

a null value. You must set sql:identity and sql:guid annotations for those fields. The

annotations use these values:

Annotation Effect
sql:identity="ignore" Ignore value supplied by DiffGram—Identity constraint will set the value. You can

even omit the value in DiffGram.

sql:identity="useValue" Use value from DiffGram (similar to Set Identity_Insert On).

sql:guid="generate" SQL Server will generate value behind the scenes using the NewID() function. The
value can be omitted in DiffGram.

sql:guid="useValue" Use value from DiffGram.

NOTE

Unfortunately, it is not possible to retrieve and use identity values from SQL Server using
DiffGrams.

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

6 3 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following schema maps the Inventory element to the InventoryBulkLoad

table. The Identity field will be passed as an attribute and SQL Server will ignore

the value if it is set in the DiffGram.

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xsd:element name="Inventory" sql:relation="InventoryBulkLoad">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="EquipmentId" type="xsd:int" minOccurs="1" />

<xsd:element name="LocationId" type="xsd:int" minOccurs="1" />

<xsd:element name="StatusId" type="xsd:unsignedByte" minOccurs="1" />

<xsd:element name="LeaseId" type="xsd:int" minOccurs="0" />

<xsd:element name="LeaseScheduleId" type="xsd:int" minOccurs="0" />

<xsd:element name="OwnerId" type="xsd:int" minOccurs="1" />

<xsd:element name="Rent" type="xsd:decimal" minOccurs="0" />

<xsd:element name="Lease" type="xsd:decimal" minOccurs="0" />

<xsd:element name="Cost" type="xsd:decimal" minOccurs="0" />

<xsd:element name="AcquisitionTypeID" type="xsd:unsignedByte"

minOccurs="1" />

</xsd:sequence>

<xsd:attribute name="InventoryId" type="xsd:integer"

sql:field="InventoryId" sql:identity="ignore" />

</xsd:complexType>

</xsd:element>

</xsd:schema>

Using DiffGrams to Update Data
DiffGrams that update data need to have both the DataSetName and diffgr:
before elements populated. Elements in the DataSetName element must have

diffgr:hasChanges="modified" or they will be ignored. Elements in the

DataSetName and corresponding diffgr:before elements must be linked

using the diffgr:id attribute.

In the following example, I am trying to change the StatusID of the record.

The DataSetName element is again called CompleteInventory.

<Root xmlns:sql="urn:schemas-microsoft-com:xml-sql"

sql:mapping-schema="InventoryUseId.xsd">

<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

<CompleteInventory>

<Inventory diffgr:id="Inventory1"

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 3 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

msdata:rowOrder="0"

diffgr:hasChanges="modified">

<Inventoryid>3</Inventoryid>

<EquipmentId>246</EquipmentId>

<LocationId>14</LocationId>

<StatusId>2</StatusId>

<LeaseId>8</LeaseId>

<LeaseScheduleId>185</LeaseScheduleId>

<OwnerId>161</OwnerId>

<Lease>2209</Lease>

<AcquisitionTypeID>2</AcquisitionTypeID>

</Inventory>

</CompleteInventory>

<diffgr:before>

<Inventory diffgr:id="Inventory1"

msdata:rowOrder="0">

<Inventoryid>3</Inventoryid>

<EquipmentId>246</EquipmentId>

<LocationId>14</LocationId>

<StatusId>4</StatusId>

<LeaseId>8</LeaseId>

<LeaseScheduleId>185</LeaseScheduleId>

<OwnerId>161</OwnerId>

<Lease>2209</Lease>

<AcquisitionTypeID>2</AcquisitionTypeID>

</Inventory>

</diffgr:before>

</diffgr:diffgram>

</Root>

Both copies of the record have all fields defined. This forces SQL Server to check

if someone has changed the record in the meanwhile (optimistic concurrency control).

It is not possible to force SQL Server to do pessimistic locking (because of the

disconnected nature of the system). It is also impossible to ignore changes on the

record by dropping elements from the diffgr:before element. SQL Server will

consider those columns as null and no record will match the criteria.

You cannot use an XSD schema with sql:identity="ignore" in a DiffGram

to update a record. SQL Server would replace the identity value with null and the

update would fail. You must create a new schema that contains sql:identity=
"useValue":

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

6 3 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 3 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xsd:element name="Inventory" sql:relation="InventoryBulkLoad">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Inventoryid" sql:field="InventoryId"

type="xsd:integer" sql:identity="useValue" />

<xsd:element name="EquipmentId" type="xsd:int" minOccurs="1" />

<xsd:element name="LocationId" type="xsd:int" minOccurs="1" />

<xsd:element name="StatusId" type="xsd:unsignedByte" minOccurs="1" />

<xsd:element name="LeaseId" type="xsd:int" minOccurs="0" />

<xsd:element name="LeaseScheduleId" type="xsd:int" minOccurs="0" />

<xsd:element name="OwnerId" type="xsd:int" minOccurs="1" />

<xsd:element name="Rent" type="xsd:decimal" minOccurs="0" />

<xsd:element name="Lease" type="xsd:decimal" minOccurs="0" />

<xsd:element name="Cost" type="xsd:decimal" minOccurs="0" />

<xsd:element name="AcquisitionTypeID" type="xsd:unsignedByte"

minOccurs="1" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Using DiffGrams to Delete Data
To delete a record using DiffGram, reference the record only in the diffgr:before
block. The other element will be empty:

<Root xmlns:sql="urn:schemas-microsoft-com:xml-sql"

sql:mapping-schema="Inventory.xsd">

<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

<CompleteInventory />

<diffgr:before>

<Inventory diffgr:id="Inventory1" msdata:rowOrder="0">

<Inventoryid>83</Inventoryid>

<EquipmentId>246</EquipmentId>

<LocationId>14</LocationId>

<StatusId>4</StatusId>

<LeaseId>8</LeaseId>

<LeaseScheduleId>185</LeaseScheduleId>

<OwnerId>161</OwnerId>

<Lease>2209</Lease>

<AcquisitionTypeID>2</AcquisitionTypeID>

</Inventory>

</diffgr:before>

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 3 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

</diffgr:diffgram>

</Root>

Again, you must use a schema that contains the sql:identity="useValue"
annotation for an identity field.

Processing Multiple Records Using DiffGrams
DiffGrams may process multiple records at the same time. In the case of updates, it

is essential to link records in both the DataSetName and the diffgr:before
block using the diffgr:id attribute.

A data set could contain records from more than one base table. If a DataSet object

is used to generate a DiffGram, it will group records by table. In this case, you

typically need to use a mapping schema as well. You need to reference the schema

using the sql:mapping-schema attribute in the root element of the DiffGram.

The order of modification operations is often very important for successful

completion. A standard example is the deletion of records in two tables linked by

a foreign key. In that case, you must use the diffgr:parentID attribute in the

child element and the diffgr:id attribute in the parent record (the data set). This

attribute must be used in the diffgr:before block. The DiffGram must also

point to the XSD schema with a sql:relationship annotation. Such DiffGrams

will not follow the order of records in the document, but rather the order dictated by

diffgr:parentID attribute.

DiffGrams Behind the Scene
All changes in a DiffGram will become part of a single transaction. If any of them

fail or if any of them do not modify a single record, the transaction will be rolled back.

You can use SQL Server Profiler to display the Transact-SQL batch generated

for a DiffGram. The following batch was created to insert three records into the

InventoryBulkLoad table:

SET XACT_ABORT ON

BEGIN TRAN

DECLARE @eip INT, @r__ int, @e__ int

SET @eip = 0

INSERT InventoryBulkLoad (EquipmentId, LocationId, StatusId, LeaseId,

LeaseScheduleId, OwnerId, Rent, Lease, Cost, AcquisitionTypeID)

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 3 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

VALUES (246, 14, 4, 8, 185, 161, NULL, 2209, NULL, 2);

SELECT @e__ = @@ERROR, @r__ = @@ROWCOUNT

IF (@e__ != 0 OR @r__ != 1) SET @eip = 1

INSERT InventoryBulkLoad (EquipmentId, LocationId, StatusId, LeaseId,

LeaseScheduleId, OwnerId, Rent, Lease, Cost, AcquisitionTypeID)

VALUES (126, 14, 4, 8, 185, 160, NULL, 1200, NULL, 2);

SELECT @e__ = @@ERROR, @r__ = @@ROWCOUNT

IF (@e__ != 0 OR @r__ != 1) SET @eip = 1

INSERT InventoryBulkLoad (EquipmentId, LocationId, StatusId, LeaseId,

LeaseScheduleId, OwnerId, Rent, Lease, Cost, AcquisitionTypeID)

VALUES (286, 14, 4, 8, 185, 151, NULL, 2500, NULL, 2);

SELECT @e__ = @@ERROR, @r__ = @@ROWCOUNT

IF (@e__ != 0 OR @r__ != 1) SET @eip = 1

IF (@eip != 0) ROLLBACK ELSE COMMIT

SET XACT_ABORT OFF

Unfortunately, SQL Server will not roll back the transaction and finish processing

as soon as an error occurs, but will do so only when all modification statements have

been executed.

The following batch was created for an update DiffGram:

SET XACT_ABORT ON

BEGIN TRAN

DECLARE @eip INT, @r__ int, @e__ int

SET @eip = 0

UPDATE InventoryBulkLoad SET StatusId=2, Rent=NULL, Cost=NULL

WHERE (InventoryId=3) AND (EquipmentId=246) AND (LocationId=14)

AND (StatusId=4) AND (LeaseId=8) AND (LeaseScheduleId=185)

AND (OwnerId=161) AND (Rent IS NULL) AND (Lease=2209)

AND (Cost IS NULL) AND (AcquisitionTypeID=2) ;

SELECT @e__ = @@ERROR, @r__ = @@ROWCOUNT

IF (@e__ != 0 OR @r__ != 1) SET @eip = 1

IF (@r__ > 1) RAISERROR (N'SQLOLEDB Error Description:' +

'Ambiguous update, unique identifier required Transaction aborted ', 16, 1)

ELSE IF (@r__ < 1) RAISERROR (N'SQLOLEDB Error Description: ' +

'Empty update, no updatable rows found Transaction aborted ', 16, 1)

IF (@eip != 0) ROLLBACK ELSE COMMIT

SET XACT_ABORT OFF

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note how the Update statement includes a Where clause to verify that all column

values are unchanged. The batch will also verify that exactly one record was updated

and raise an error if that is not the case.

Executing DiffGrams Programmatically Using SqlXmlCommand
DiffGrams are executed in the same manner as UpdateGrams. You must set the

CommandType property to SqlXmlCommandType.DiffGram and you will typically

execute it using the ExecuteNonQuery() method. In the following example,

CommandText() will be set by reading the DiffGram from the file:

'SqlXml_DiffGram

Imports System

Imports System.IO

Imports System.Xml

Imports Microsoft.Data.SqlXml 'The SQLXML namespace

Module SqlXml_DiffGram

Sub Main()

Dim objSqlXmlCmd As New SqlXmlCommand("Provider=SQLOLEDB;" _

& "Server=(local);Database=Asset;" _

& "Integrated Security=SSPI")

'read DiffGram from file

Dim objFile As StreamReader = New StreamReader(_

File.OpenRead("DiffGramInvInsert.xml"))

objSqlXmlCmd.CommandText = objFile.ReadToEnd()

'execute DiffGram

objSqlXmlCmd.CommandType = SqlXmlCommandType.DiffGram

objSqlXmlCmd.ExecuteNonQuery()

End Sub

End Module

Executing DiffGrams Using URLs
DiffGrams can also be executed through HTTP in the same manner as UpdateGrams.

You need to save the DiffGram file and XSD schema file in the template virtual

directory. Then you can execute them by referencing the DiffGram file in the URL:

http://localhost/asset/template/DiffGramInvInsert.xml

6 3 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 3 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

IIS will return the page with the root element of the DiffGram:

<?xml version="1.0" ?>

<AddInv xmlns:sql="urn:schemas-microsoft-com:xml-sql" />

In case of an error, you might get a message similar to this one:

<Root xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<?MSSQLError HResult="0x80004005"

Source="Microsoft XML Extensions to SQL Server"

Description="Specified attribute or element ('Inventoryid')

does not have a corresponding mapping in the schema,

and no overflow field defined"?>

</Root>

Generating DiffGrams After DataSet Change
I have mentioned before that DiffGrams are designed primarily as an internal format

for storing DataSet changes. Therefore, I have created a program that loads a DataSet

object, makes a change in it, and then stores the change in a DiffGram file:

'SqlCommand_DataSet2XML

Imports System

Imports System.IO

Imports System.Data

Imports System.Data.SqlClient

Imports System.Xml

Module Module1

Sub Main()

'Instantiate the SqlCommand object and the connection

Dim objConn As New SqlConnection("Server=(local);" _

& "Database=Asset;" _

& "Integrated Security=SSPI")

objConn.Open()

'prepare a data set

Dim objCmd As New SqlCommand("SELECT * FROM Inventory " _

& "where InventoryId = 83 ", objConn)

Dim objAdpt As New SqlDataAdapter(objCmd)

Dim objDs As New DataSet("CompleteInventory")

objAdpt.Fill(objDs, "Inventory")

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

'prepare the destination file

Dim objFile As New FileStream("DiffGramInvDelete.xml", _

& FileMode.Create)

Dim objStrmWriter As New StreamWriter(objFile)

'delete row

objDs.Tables(0).Rows(0).Delete()

'write DiffGram that will delete the record

objDs.WriteXml(objStrmWriter, XmlWriteMode.DiffGram)

objStrmWriter.Close()

objFile.Close()

objConn.Close()

End Sub

End Module

Debugging DiffGrams
DiffGrams are relatively difficult to debug. There are two groups of DiffGram-related

errors:

� XML parsing errors DiffGram and XSD schema files might not be valid

� SQL Server errors SQL Server constraints are preventing the change

When your DiffGram is not giving you the result that you expect, you should use

SQL Server Profiler to see if the DiffGram is able to generate a valid query, and then

execute the query against the database. If you execute the query in Query Analyzer,

you will see the error that SQL Server is returning. If there is no query generated in

Profiler, you will have to determine why the system is unable to parse and process

the DiffGram. Investigate the following:

� Is the DiffGram a well-formed XML file?

� Is the DiffGram pointing to an XSD schema file?

� Is the XSD schema valid?

� Do the DiffGram and XSD files contain all required namespace references?

� Does the XSD schema map the XML components to database objects?

� Did you map all columns to elements and attributes?

6 3 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� Do the elements and attributes in the XSD schema match the elements and

attributes in the DiffGram (remember that the XML parser is case sensitive)?

� Are all target table columns referenced in the DiffGram?

� Does the DiffGram contain a proper value for the diffgr:hasChanges
attribute?

� Does the DiffGram have a root element and the DataSetName element?

SQLXML BulkLoad
BulkLoad is a SQLXML variant of bcp (Bulk Copy Program) and the Bulk Insert

statement. It is designed for fast loading of large XML documents (or XML fragments)

into SQL Server 2000. It is implemented as a COM object and, therefore, can only

be used programmatically. You can use any COM-compatible language, including

Visual Basic, Visual C++, VBScript, and all .NET languages such as Visual Basic

.NET and Visual C# .NET. Since the component is designed for programmatic access,

this section immediately dives into its programmatic use.

Executing SQLXML BulkLoad from a .NET Application
You must include a reference to the Microsoft SQLXML BulkLoad 3.0 Type Library

in your program before you can start using it in your code. After the project has been

opened (or created), select Project | Add Reference. In the Add Reference dialog box,

switch to the COM tab, select Microsoft SQLXML BulkLoad 3.0 Type Library, click

Select, and click OK. If the component is not present, you can browse for it. You

should be able to find xblkld3.dll in the \Program Files\Common Files\System\Ole

DB\ folder.

After you have added the reference to the project, you can declare an object of the

SQLXMLBULKLOADLib.SQLXMLBulkLoad3 type.

NOTE

The number 3 at the end of the PROGID string represents the version of the component. If you
want, your application can be set to always use the latest version by using the PROGID without
the number. However, Microsoft has been changing features and interfaces between versions,
and it is probably better to specify the version.

Before executing, you need to specify the ConnectionString and ErrorLog
attributes of the object. In the following case, we also set the object to accept XML

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 3 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

fragments, and to drop and generate the target table, by setting the XMLFragment,

SGDropTables, and SchemaGen attributes to True:

'XmlBulkLoad_Simple

Module Module1

Sub Main()

Dim objBulk As New SQLXMLBULKLOADLib.SQLXMLBulkLoad3()

objBulk.ConnectionString = "provider=SQLOLEDB.1;" + _

+ "data source=(local)\ss2k;database=Asset;" _

+ "integrated security=SSPI"

objBulk.ErrorLogFile = "error.log"

objBulk.XMLFragment = True

objBulk.SchemaGen = True

objBulk.SGDropTables = True

'do the load

objBulk.Execute("Inventory.xsd", "Inventory.xml")

objBulk = Nothing

End Sub

End Module

Error Log File
During the load, the BulkLoad component will write fatal and nonfatal errors to the

file specified by the ErrorLogFile property. The file is naturally an XML document:

<?xml version="1.0"?>

<Result State="FAILED">

<Error>

<HResult>0x80004005</HResult>

<Description>

<![CDATA[No data was provided for column 'Cost' on

table 'InventoryBulkLoad', and this column

cannot contain NULL values.]]>

</Description>

<Source>General operational error</Source>

<Type>FATAL</Type>

</Error>

</Result>

6 4 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Executing BulkLoad from DTS (Using VBScript)
DTS is my tool of choice for implementing data transfer applications in SQL Server.

The current version of DTS does not have a specialized connection or task object for

using XML documents as a data source. Fortunately, you can use an ActiveX Script

Task (which allows you to write VBScript or JScript code) with the SQLXML

BulkLoad component to achieve this objective.

I created a DTS package with global variables for the XML document, XSD

document, error log file, and connection string. Then I created an ActiveX Script

Task (see Figure 15-4) to perform the load using the following code:

Function Main()

Dim objBulk, objDTS, s

Set objDTS = DTSGlobalVariables.Parent

Set objBulk = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")

objBulk.ConnectionString = objDTS.GlobalVariables("ConnectionString")

objBulk.ErrorLogFile = objDTS.GlobalVariables("ErrorLog")

objBulk.XMLFragment = True

objBulk.SchemaGen = True

objBulk.SGDropTables = True

objBulk.Execute objDTS.GlobalVariables("XSD"), _

CStr(objDTS.GlobalVariables("XML"))

Main = DTSTaskExecResult_Success

End Function

The statement for initializing the object is slightly different in VBScript, but you

still need to reference the same component. The properties of the bulk load object are

set from the global variables of the DTS package. The location of the XML document

had to be converted to a string before it could be used in the Execute method.

After the object is prepared, the procedure uses the Execute method to load the

document. The Execute method requires the name of the XML data file and the

name of the mapping schema that maps the XML file to the relational tables. The

mapping file can be either an annotated XSD schema or an annotated XDR schema.

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 4 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE

The preceding ActiveX script uses a hard-coded version (3.0) of the SQLXML BulkLoad component.
Again, if you want your package always to use the latest version, use the PROGID without
the number.

Schema Generation
The preceding examples have demonstrated how you can set the SGDropTables
and SchemaGen attributes to True to force the bulk load process to first drop the

target tables and then to generate them using information in the mapping schema file.

SGUseID can only be used when the SchemaGen property is set to True. If SGUseID

is set to True, the component will set, as primary key on the new table, the column

with dt:type="id" in the mapping schema. The default is False.

BulkLoad is used in scenarios in which you want to use the object with SchemaGen

and SGDropTables set to True, just to re-create tables. If it is set to False, the component

will not load the document. By default, it is set to True.

6 4 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Figure 15-4 ActiveX Script task for using BulkLoad component

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BulkLoad Transactions
In the case of a nontransactional load, the BulkLoad component creates and executes

an Insert statement as soon as it parses an element. In the case of a transactional

load, it first writes data to a set of temporary files—it creates a separate file for each

table involved. These temporary files will later be loaded into the permanent tables

in a single transaction.

You must set the Transaction property to True if you want to force the BulkLoad

component to roll back the transaction in case of an error.

The TempFilePath property is used to specify the folder that will be used to store

the temporary data files. These files are needed when BulkLoad component is set

to load data within a transaction. If a value is not specified, the process will use the

folder specified in the TEMP environment variable. Naturally, there should be enough

space in that folder, and the user account that is used to run the bulk load process

must have appropriate privileges for that folder.

NOTE

You should not attempt to load records with binary and image columns (with XML data types such
as bin.hex and bin.base64) in a transaction.

Data Integrity
The CheckConstraints property is used when data needs to be loaded and verified

at the same time against constraints such as foreign keys and unique indexes.

By default, this property is set to False. Alternatively, you could load the file

with CheckConstraints set to False to speed up the load and then use DBCC

CHECKCONSTRAINTS to verify the records.

The KeepIdentity property controls how SQL Server handles identity values

during the bulk load operation. If it is set to False, SQL Server ignores records

supplied in the XML document and assigns the identity values. The default value is

True, in which case SQL Server preserves the values specified in the XML document.

(It is equivalent to Set Identity_Insert On.)

NOTE

Unfortunately, you will not be able to set BulkLoad to insert a parent record, obtain the identity
value generated, and then use it in a child record. If that is required, you will have to convert
your XML document to an UpdateGram, but you will pay a severe performance penalty.

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 4 3

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

KeepNulls controls how values are set for attributes and subelements that are

missing in the XML document. If you set this attribute to True, the BulkLoad

component will assign null values to them. The default value is False and, in that

case, values will be assigned by SQL Server using constraints defined on the

column (such as default and null).

IgnoreDuplicateKeys can only be used when the Transaction property is set to

False. It forces the BulkLoad component to regard the existence of duplicate keys

in the XML document as a nonfatal error.

Table Lock
By default, BulkLoad component acquires and releases an exclusive lock during

each record insertion. If you set ForceTableLock to True, you will improve the

performance of the load operation by putting an exclusive lock on each database

table for the duration of the load. Keep in mind that this also prevents other

processes from both reading and modifying data in the tables during the load.

Using SQLXML BulkLoad
BulkLoad component is able to process large XML documents because it does not

need to load the complete document into memory. It reads documents element by

element and processes each element individually.

Although SQLXML BulkLoad component is significantly faster then UpdateGrams,

DiffGrams, and OpenXML(), it is not as fast as the Transact-SQL Bulk Insert statement

and the Bulk Insert task in DTS. The reason is the amount of overhead associated

with XML parsing.

Mapping Schema
What should you do when someone sends you a large XML document to load to

the database? The most important task, and the most difficult, is to create an XSD

schema to map the XML components of the document to database tables and columns.

If you can extract a chunk that is smaller than 1MB, you could use Microsoft XSD

Inference 1.0 at http://apps.gotdotnet.com/xmltools/xsdinference/ to infer (generate)

the XSD schema automatically for you. If you cannot extract a chunk smaller than

1MB, you could download the command-line utility from the same site and try to

perform the operation locally on your computer.

6 4 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

If your document is simply too large, you might start from the target table(s).

XSD Schema Designer in Visual Studio .NET can create a schema for you if you

drag and drop a table into it.

After the initial version of the XSD schema has been created, you will probably

need to improve it. If the names of the XML elements and attributes do not match

those of the tables and columns, you will have to use sql:relation and sql:
field annotations to map them. If the XML document contains multiple tables,

you will need to use the sql:relationship annotation to establish the

relationships between parent and child elements.

Another source of problems is the nullability of columns. You might need to remove

use="required" from the schema for columns that do not require data.

You should add a sql:overflow-field annotation to point to a large field

(typically of the text data type) that will collect all the data not mapped to specific

columns. You might need it later. More importantly, this is a safety net in case your

partner organization decides to change the structure of the XML document they

send you.

You will also need to investigate whether data types are compatible. The size of

some types, such as numbers and strings, can be an issue. Microsoft also recommends

that you explicitly map xsd:dateTime and xsd:time types to datetime or

smalldatetime, and xsd:GUID to uniqueidentifier so that the bulk

load process performs the necessary conversions.

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xs:element name="Inventory" sql:relation="InventoryBulkLoad"

sql:overflow-field ="Note" >

<xs:complexType>

<xs:attribute name="Inventoryid" type= "xs:unsignedByte"

sql:datatype ="int" use="required" />

<xs:attribute name="EquipmentId" type="xs:unsignedByte"

sql:datatype ="int" use="required" />

<xs:attribute name="LocationId" type="xs:unsignedByte"

sql:datatype ="int" use="required" />

<xs:attribute name="StatusId" type="xs:unsignedByte"

sql:datatype ="tinyint" use="required" />

<xs:attribute name="LeaseId" type="xs:unsignedByte"

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 4 5

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

sql:datatype ="int" />

<xs:attribute name="LeaseScheduleId" type="xs:unsignedByte"

sql:datatype ="int" />

<xs:attribute name="OwnerId" type="xs:unsignedByte"

sql:datatype ="int" use="required" />

<xs:attribute name="Cost" type="xs:unsignedShort"

sql:datatype ="money" />

<xs:attribute name="AcquisitionTypeID" type="xs:unsignedByte"

sql:datatype ="tinyint" use="required" />

</xs:complexType>

</xs:element>

</xs:schema>

When you are done with the schema, running the load is easy. If there are no

errors, you will end up with a table like the one shown in Figure 15-5.

6 4 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Figure 15-5 Overflow field

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 4 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

XML Web Services
Simple Object Access Protocol (SOAP) is a platform-independent, XML-based

protocol for cross-system component communication. There are other protocols for

carrying out such communication (for example, COM/DCOM, CORBA, .NET

Remoting, and Internet Inter-ORB Protocol), but they are typically tied to a single

component technology. SOAP, on the other hand, is intended to be truly platform

independent. To this end, a working group was formed under the W3C to define

a protocol for the exchange of structured, typed information between peers in a

distributed, decentralized environment using XML. The result of its work is the

SOAP protocol for implementing web services. In SQLXML 3.0, Service Pack 1,

and in the .NET Framework, Microsoft implements SOAP version 1.1. W3C’s

XML Protocol Working Group has already defined SOAP version 1.2, and soon

new versions of Microsoft tools will add support for it.

Before I describe the details of SOAP implementation within SQL Server, I’ll

review the web services architecture.

SOAP Messages and XML Web Services Architecture
XML Web Services are components that expose functionality to callers using standard

web protocols. SOAP defines messages to be used when a client (component) sends

a request message to an XML Web Service component. The SOAP message is parsed

and the request is processed by the XML Web Service. The service returns a response

message to the caller, also using a SOAP message.

An XML Web Service component must describe its interfaces to (potential) callers.

A standard way to describe these interfaces is to provide an XML document that

follows the Web Services Description Language (WSDL) standard. Developers can

then build applications using any language on any platform to use the exposed services.

To help potential users find WSDL documents, web services need to be registered

using Universal Discovery Description and Integration (UDDI, standard for registering

and discovery of descriptions of web services).

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using SQLXML to Create XML Web Services
SQLXML 3.0, and newer, can be used to create a web service. You can expose

stored procedures, functions, and XML templates using SQLISAPI. Web services

are implemented as a SOAP type of the SQLISAPI virtual directory.

To create a web service, you can configure an existing virtual directory to support

SOAP, or add a new virtual directory that supports SOAP:

1. Use the Configure IIS Support application to open the Properties sheet of the

existing virtual directory.

2. Switch to the Virtual Names tab.

3. Create a new virtual name of the SOAP type.

4. As soon as you choose SOAP, the program enables the Path, Web Service

Name, and Domain Name text boxes.

The Web Service Name text box allows you to set the name of the web

service to be used in the WSDL document. By default, the program sets it

to the virtual name, but you can change it to something more meaningful.

The Domain Name text box entry will be used as a namespace for the web

service and as the Location attribute in the Service element of the WSDL

document. The default is the name of the IIS server that hosts the virtual

directory. If you use the server on your local network, you can leave the default,

but if you are going to expose it to the Internet, you should add a domain

name to it.

As soon as you save the virtual name, the program enables the Configure

button.

5. Click Configure. The program opens the Soap Virtual Name Configuration

dialog box (see Figure 15-6), which is used to configure the methods of the

web service. Methods can be based on XML templates or stored procedures

(including user-defined functions). A web service will not function properly

if you use stored procedures that contain the For XML clause.

6. Select the Type of method (SP or Template) and click the Browse button

(indicated by “...”) to the right of the SP/Template list box. If you selected

the SP radio button, the program prompts you to choose a stored procedure

or function.

6 4 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. Select the format that will be used for converting a recordset to XML (using

the For XML Row or For XML Row Nested clause) and the format for returning

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 4 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Figure 15-6 The Soap Virtual Name Configuration dialog box

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the output (XML elements, array of DataSet objects, or single data set). Methods

based on XML templates are always returned as XML elements.

If you select the Return Errors As Soap Faults check box, the web service

returns all errors as SOAP Fault elements of the response. SOAP-aware clients,

like those developed using the .NET Framework or SOAP Toolkit from Microsoft,

can trap exceptions. If the option is not checked, error messages will simply

be returned as XML elements (if they originated in a stored procedure) or

processing instructions (if they originated in a template). Stored procedures

configured to return output as a single data set must return errors as SOAP faults.

8. Click Apply and close the Configure IIS Support application.

The program creates web service description (.wsdl) and configuration (.ssc)

files in the folder associated with the SOAP type of the virtual name. The WSDL

file contains a description of the web service created. The configuration file contains

the mapping information entered in the Soap Virtual Name Configuration dialog box.

SQLISAPI will use this information to map the web service’s methods to stored

procedures and templates. These files are updated each time you make a change to

the virtual name of the web service.

Creating .NET SOAP Clients
Using the .NET Framework, this section demonstrates the creation of SOAP clients

that access methods configured to return data via different methods and using the

following formats:

� Return values and output parameters

� XML elements

� Array of data sets

� Single data set

If you are planning to run the code examples, you will need to map the following

functions to web service methods:

Method Stored Procedure Output
OrderAdd prOrder_Add XML elements

fn_DepartmentEquipment fn_DepartmentEquipment XML elements

6 5 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Stored Procedure Output
prOrderItemByOrderId_List prOrderItemByOrderId_List Single data set

prOrderRequestedBy_List prOrderRequestedBy_List Array of data sets

Adding a Web Service Reference in Visual Studio .NET Project
To create a SOAP client in Visual Studio .NET, you need to create a new project, and

then add a reference to the XML Web Service using Project | Add Web Reference.

The program opens the Add Web Reference browser window to allow you to connect

to the UDDI directory of the web services (see Figure 15-7), or you can simply type

the web address of the web service:

http://localhost/Asset/soap?wsdl

The wsdl parameter of the URL compels the program to open the file containing the

web service description.

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 5 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Figure 15-7 The Add Web Reference browser window

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The program opens the WSDL file and displays it on the screen. You can browse

it or simply click Add Reference and the program adds it to your solution as a web

reference. The web reference is named after the server that hosts the web service

(localhost in this case). Use this opportunity to give it a more meaningful name

(see Figure 15-8).

Based on information found in the WSDL file, Visual Studio .NET generates a

proxy class in your project, which you can use to access web service methods.

NOTE

The proxy class does not allow non-string output parameters to get null values from XML Web
Services. If your service returns nulls, you can either assign it to string values or rewrite the proxy
class to accept nulls.

If you ever make a change to the web service, you can refresh the web reference

and the class it creates: open Solution Explorer, open Web References, right-click

the service name (in the example, localhost, or AssetOrderService), and select Update

Web Reference from the context menu.

Simple .NET Client
I will start with a client that simply makes a request from the web service and

retrieves an output parameter. The client uses the OrderAdd method mapped to the

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

6 5 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Figure 15-8 A web reference in Visual Studio .NET Solution Explorer

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 5 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

prOrder_Add stored procedure. It accepts several parameters and returns the OrderId

that was assigned to the order during the insert.

alter procedure prOrder_Add

-- insert Order and return Order id

-- used in soap demonstration

@OrderDate smalldatetime,

@RequestedById int,

@TargetDate smalldatetime,

@DestinationLocationId int,

@Note varchar(200),

@OrderTypeId smallint,

@OrderStatusid tinyint,

@OrderId int output

as

declare @intErrorCode int

INSERT INTO [Order]([OrderDate], [RequestedById], [TargetDate],

[DestinationLocationId], [Note], [OrderTypeId], [OrderStatusid])

VALUES(@OrderDate, @RequestedById, @TargetDate, @DestinationLocationId, @Note,

@OrderTypeId, @OrderStatusid)

select @OrderId = scope_identity(),

@intErrorCode = @@Error

return @intErrorCode

The following Visual Basic .NET console application instantiates a web service

proxy object (objWSProxy) based on the class that was generated using WSDL.

The application needs to set the Credentials property of the proxy object when a web

service does not accept anonymous users. Finally, the method of the web service is

executed through the proxy method of the proxy object. As an application developer,

you do not have to worry about the intricacies of the SOAP protocol. The proxy object

takes care of it.

'SqlXml_SoapSimple

Imports System

Imports System.IO

Module Module1

Sub Main()

Dim objResponse As Object()

Dim iOrderId As Integer

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 5 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Dim objWSProxy As New AssetOrdersService.AssetOrders()

objWSProxy.Credentials = System.Net.CredentialCache.DefaultCredentials

objResponse = objWSProxy.OrderAdd("3/3", 1, "5/5", 1, _

"URGENT!", 1, 1, _

iOrderId)

Console.WriteLine("OrderID: " & iOrderId)

End Sub

End Module

Function That Returns Data Sets as XML Elements
The next project uses a table-valued, user-defined function mapped to the method

that returns output as XML elements:

'SqlXml_Soap_XmlElements

Imports System

Imports System.IO

Module Module1

Sub Main()

Dim objResponse As Object()

Dim objError As Object

Dim iElem As Integer

Dim objResponseElement As System.Xml.XmlElement

Dim objWSProxy As New AssetOrdersService.AssetOrders()

objWSProxy.Credentials = System.Net.CredentialCache.DefaultCredentials

objResponse = objWSProxy.fn_DepartmentEquipment("dejans")

For iElem = 0 To objResponse.GetUpperBound(0)

Select Case objResponse(iElem).GetType().ToString()

Case "System.Xml.XmlElement"

objResponseElement = objResponse(iElem)

Console.WriteLine(objResponseElement.OuterXml)

Case "SqlMessage"

objError = objResponse(iElem)

Console.WriteLine(objError.Message)

Console.WriteLine(objError.Source)

End Select

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Next

End Sub

End Module

The application loops through the XML elements of the response and writes them

to the screen. It differentiates between data set and error and writes them separately.

In the case of a function that returns a scalar value, or a stored procedure that

returns a value as a data set, you can add the following code in the Select Case

statement:

Case "System.Int32"

iReturn = objResponse(iElem)

Console.WriteLine("Return Value: " & iReturn)

Stored Procedure That Returns a Single Data Set
This is probably the easiest case to code. The proxy method returns a data set that

you can use to fill any data-bound control such as a grid:

'SqlXml_Soap_SingleDateSet

Public Class Form1

Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Dim iReturn As Integer

Dim dsResponse As DataSet

Dim objWSProxy As New AssetOrdersService.AssetOrders()

objWSProxy.Credentials = System.Net.CredentialCache.DefaultCredentials

dsResponse = objWSProxy.prOrderItemByOrderId_List(CInt(TextBox1.Text), _

iReturn)

'load it to grid

gridTable.DataSource = dsResponse.Tables(0).DefaultView

End Sub

End Class

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 5 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 5 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

Since the proxy method returns a DataSet object, the return value of the stored

procedure has to be returned as a parameter of the proxy method.

Stored Procedure That Returns Array of Data Sets
In this case, you have to combine approaches from the preceding two examples. You

will be able to extract data sets and use them to populate grids, but first you have to

parse XML elements to find them. Look for "System.Data.DataSet" to identify the

XML element with data set information:

'SqlXml_Soap_DateSetArray

Public Class frmOrders

Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

Private Sub btnLoad_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnLoad.Click

Dim iReturn As Integer

Dim dsResponse As DataSet

Dim objResponse As Object()

Dim objError As Object

Dim iElem As Integer

Dim objResponseElement As System.Xml.XmlElement

Dim objWSProxy As New AssetOrdersService.AssetOrders()

objWSProxy.Credentials = System.Net.CredentialCache.DefaultCredentials

objResponse = objWSProxy.prOrderRequestedBy_List(txtUserName.Text)

For iElem = 0 To objResponse.GetUpperBound(0)

Select Case objResponse(iElem).GetType().ToString()

Case "System.Data.DataSet"

dsResponse = objResponse(iElem)

...

grdOrders.DataSource = dsResponse.Tables(0).DefaultView()

...

grdOrderItems.DataSource = dsResponse.Tables(0).DefaultView()

...

Case "System.Int32"

iReturn = objResponse(iElem)

Console.WriteLine("Return Value: " & iReturn)

Case "SqlMessage"

objError = objResponse(iElem)

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MsgBox(objError.Message)

Stop

End Select

Next

End Sub

End Class

The application gets two data sets from the web service and uses them to populate

grids on the form.

NOTE

Visual Studio .NET is not the only tool that you can use to create SOAP clients. You can use
Microsoft’s SOAP Toolkit to create COM-based SOAP clients using Visual Studio 6. There is also
an Office XP SOAP Toolkit that you can use to create VBA applications.

'SqlXml_Soap_DateSetArray

Public Class frmOrders

Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

Private Sub btnLoad_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnLoad.Click

Dim iReturn As Integer

Dim dsResponse

Dim dtOrderItems As DataTable

Dim objResponse As Object()

Dim objError As Object

Dim iElem As Integer

Dim dsOrderItems As DataSet

Dim objResponseElement As System.Xml.XmlElement

Dim objWSProxy As New AssetOrdersService.AssetOrders()

objWSProxy.Credentials = System.Net.CredentialCache.DefaultCredentials

objResponse = objWSProxy.prOrderRequestedBy_List(txtUserName.Text)

For iElem = 0 To objResponse.GetUpperBound(0)

Select

Case objResponse(iElem).GetType().ToString()

Case "System.Data.DataSet"

'put both tables in dsResponse

If dsResponse Is Nothing Then

'process Orders

dsResponse = objResponse(iElem)

C h a p t e r 1 5 : M o d i f y i n g D a t a b a s e s U s i n g S Q L X M L 6 5 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

dsResponse.Tables(0).TableName = "Orders"

Else

'process OrderItems

dsOrderItems = objResponse(iElem)

dtOrderItems = dsOrderItems.Tables(0)

dsOrderItems.Tables.Remove(dtOrderItems)

dsResponse.Tables.Add(dtOrderItems)

'link tables

Dim custOrderRel As DataRelation =_

dsResponse.Relations.Add("OrderItems", _

dsResponse.Tables(0).Columns("OrderID"), _

dsResponse.Tables(1).Columns("OrderID"))

'assign new datasets to grids

grdOrders.DataSource = dsResponse '.Tables(0).DefaultView()

grdOrders.DataMember = "Orders"

grdOrderItems.DataSource = dsResponse

grdOrderItems.DataMember = "Orders.OrderItems"

End If

Case "System.Int32"

iReturn = objResponse(iElem)

Console.WriteLine("Return Value: " & iReturn)

Case "SqlXml_Soap_DatasetArray.AssetOrdersService.SqlMessage"

objError = objResponse(iElem)

MsgBox(objError.Message)

End

End Select

Next

End Sub

End Class

6 5 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Chapter 15

P:\010Comp\D_Base\896-2\ch15.vp
Tuesday, April 29, 2003 1:24:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

APPENDIX

T-SQL and
XML Data Types in

SQL Server 2000

659

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /

P:\010Comp\D_Base\896-2\app.vp
Tuesday, April 29, 2003 12:31:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

I
n this appendix, you will find four tables that provide an overview of the data

types in use in SQL Server 2000. Table A-1 lists all Transact-SQL data types,

their synonyms, their most important attributes (range and size), as well as sample

constants. Table A-2 lists XML data types that you can use in XDR schemas. Table A-3

provides a mapping between Transact-SQL and XML (XDR) data types. Table A-4 lists

XSD Schema built-in data types.

6 6 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

P:\010Comp\D_Base\896-2\app.vp
Tuesday, April 29, 2003 12:31:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

A p p e n d i x : T - S Q L a n d X M L D a t a Ty p e s i n S Q L S e r v e r 2 0 0 0 6 6 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

Da
ta

Ty
pe

an
d

Sy
no

ny
m

De
sc

rip
tio

n
Ra

ng
e

or
Le

ng
th

St
or

ag
e

Si
ze

Sa
m

pl
e

Co
ns

ta
nt

Ch
ar

ac
te

rS
tri

ng
s

c
h
a
r

(c
h
a
r
a
c
t
e
r

)
Ch

ar
ac

ter
str

ing
1

to
80

00
ch

rs
1

to
80

00
by

tes
'
D
1
2
-
D
1
3
A
3
6
'

v
a
r
c
h
a
r

(c
h
a
r
a
c
t
e
r

v
a
r
y
i
n
g

)
Va

ria
ble

-le
ng

th
ch

ar
ac

ter
str

ing
1

to
80

00
ch

rs
1

to
80

00
by

tes
'
T
o
r
o
n
t
o
'

t
e
x
t

Lo
ng

va
ria

ble
-le

ng
th

ch
ar

ac
ter

str
ing

1
t o

231
–

1
ch

rs
16

by
tes

+
0

t o
2G

B
'
S
Q
L
S
e
r
v
e
r
'

Un
ico

de
Ch

ar
ac

te
rS

tri
ng

s

N
c
h
a
r

(n
a
t
i
o
n
a
l

c
h
a
r
a
c
t
e
r

or
n
a
t
i
o
n
a
l

c
h
a
r

)

Un
ico

de
ch

ar
ac

ter
str

ing
1

to
40

00
ch

rs
2

to
80

00
by

tes

N
v
a
r
c
h
a
r

(n
a
t
i
o
n
a
l

c
h
a
r
a
c
t
e
r
v
a
r
y
i
n
g

or
n
a
t
i
o
n
a
l
c
h
a
r
v
a
r
y
i
n
g

)

Va
ria

ble
-le

ng
th

Un
ico

de
ch

ar
ac

ter
str

ing
1

to
40

00
ch

rs
2

to
80

00
by

tes

N
t
e
x
t

(n
a
t
i
o
n
a
l
t
e
x
t

)
Lo

ng
va

ria
ble

-le
ng

th
Un

ico
de

lar
ge

ch
ar

ac
ter

str
ing

1
to

230
–

1
ch

rs
16

by
tes

+
0

to
1G

B

Da
te

an
d

Tim
e

d
a
t
e
t
i
m
e

Da
te

an
dt

im
e

1-
Ja

n-
17

53
to

31
-D

ec
-9

99
9;

pr
ec

isi
on

:3
ms

8
by

tes
'
6
/
2
7
/
1
9
9
8
1
0
:
2
0
:
1
7
.
3
1
'

s
m
a
l
l
d
a
t
e
t
i
m
e

Sm
all

da
te

an
dt

im
e

1-
Ja

n-
19

00
to

6-
Ju

n-
20

79
;

pr
ec

isi
on

:1
mi

n
4

by
tes

'
O
c
t
3
0
,
1
9
9
3
1
4
:
3
0
'

In
te

ge
rN

um
be

rs

t
i
n
y
i
n
t

Tin
yi

nt
eg

er
0

to
25

5
1

by
tes

1
7

s
m
a
l
l
i
n
t

Sm
all

int
eg

er
–3

2,
76

8
to

32
,7

67
(–

215
to

215
–1

)
2

by
tes

2
3
0
1
7

i
n
t

In
teg

er
–2

,1
47

,4
83

,6
48

to
2,

14
7,

48
3,

64
7

(–
231

to
231

–1
)

4
by

tes
3
4
3
0
1
3

Ta
bl

e
A-

1
SQ

L
Se

rv
er

Bu
ilt

-in
D

at
a

Ty
pe

s

P:\010Comp\D_Base\896-2\app.vp
Tuesday, April 29, 2003 12:31:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 6 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

Da
ta

Ty
pe

an
d

Sy
no

ny
m

De
sc

rip
tio

n
Ra

ng
e

or
Le

ng
th

St
or

ag
e

Si
ze

Sa
m

pl
e

Co
ns

ta
nt

In
te

ge
rN

um
be

rs

b
i
g
i
n
t

Bi
gi

nt
eg

er
–9

,2
23

,3
72

,0
36

,8
54

,7
75

,8
08

to
9,

22
3,

37
2,

03
6,

85
4,

77
5,

80
7

(–
263

to
263

–1

8
by

tes
3
2
2
2
1
2
1
3
4
3
0
1
3

b
i
t

Lo
gic

al
0,

1,
or

Nu
ll

1
by

tes
(u

pt
o8

bit
s

pe
rb

yt
e)

1

Ex
ac

tN
um

be
rs

n
u
m
e
r
i
c

(d
e
c
i
m
a
l

or
d
e
c

)
Nu

me
ric

or
de

cim
al

–1
038

to
10

38
–1

(d
ep

en
ds

on
pr

ec
isi

on
an

ds
ca

le)
5

to
17

by
tes

-
3
5
2
.
4
5
1
2

Ap
pr

ox
im

at
e

Nu
m

be
rs

r
e
a
l

Re
al

(si
ng

le-
pr

ec
isi

on
)n

um
be

r
–3

.4
0

10
38

to
3.

40
10

38
4

by
tes

-
2
3
2
.
2
1
2
E
6

f
l
o
a
t

Flo
at

(d
ou

ble
-

pr
ec

isi
on

)n
um

be
r

–1
.7

9
10

30
8

to
1.

79
10

30
8

8
by

tes
3
4
.
2
1
3
1
3
4
3
E
-
6
4

M
on

et
ar

y

s
m
a
l
l
m
o
n
e
y

Sm
all

mo
ne

ta
ry

da
ta

ty
pe

–2
14

,7
68

.3
64

8
to

21
4,

74
8.

36
47

4
by

tes
$
1
2
0
.
3
4

m
o
n
e
y

Mo
ne

ta
ry

da
ta

ty
pe

–9
22

,3
37

,2
03

,6
85

,4
77

.5
80

8
to

92
2,

33
7,

20
3,

68
5,

47
7.

58
07

8
by

tes
$
1
2
0
0
0
0
0
0
0

Bi
na

ry

b
i
n
a
r
y

Fix
ed

-le
ng

th
bin

ar
ys

tri
ng

1
to

80
00

by
tes

1
to

80
00

by
tes

0
x
a
5
d
1

v
a
r
b
i
n
a
r
y

Va
ria

ble
-le

ng
th

bin
ar

ys
tri

ng
1

to
80

00
by

tes
1

to
80

00
by

tes
0
x
A
5
F
2

i
m
a
g
e

Lo
ng

va
ria

ble
-le

ng
th

bin
ar

ys
tri

ng
1

to
231

–1
by

tes
n/

a

t
i
m
e
s
t
a
m
p

Da
ta

ba
se

-w
ide

un
iqu

en
um

be
r

n/
a

8
by

tes
n/

a

u
n
i
q
u
e
i
d
e
n
t
i
f
i
e
r

Gl
ob

all
yu

niq
ue

ide
nt

ifi
er

(G
UI

D)
n/

a
16

by
tes

6
F
9
6
1
9
F
F
-
8
B
8
6
-
D
0
1
1
-
B
4
2
D

-
0
0
C
0
4
F
C
9
6
4
F
F

Ta
bl

e
A-

1
SQ

L
Se

rv
er

Bu
ilt

-in
D

at
a

Ty
pe

s
(c

on
tin

ue
d)

P:\010Comp\D_Base\896-2\app.vp
Tuesday, April 29, 2003 12:31:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

A p p e n d i x : T - S Q L a n d X M L D a t a Ty p e s i n S Q L S e r v e r 2 0 0 0 6 6 3
Da

ta
Ty

pe
an

d
Sy

no
ny

m
De

sc
rip

tio
n

Ra
ng

e
or

Le
ng

th
St

or
ag

e
Si

ze
Sa

m
pl

e
Co

ns
ta

nt
Sp

ec
ia

l

c
u
r
s
o
r

Cu
rso

rr
ef

er
en

ce
n/

a
n/

a
n/

a

s
q
l
_
v
a
r
i
a
n
t

Va
ria

nt
n/

a
n/

a
n/

a

t
a
b
l
e

Ta
ble

n/
a

n/
a

n/
a

Ta
bl

e
A-

1
SQ

L
Se

rv
er

Bu
ilt

-in
D

at
a

Ty
pe

s
(c

on
tin

ue
d)

P:\010Comp\D_Base\896-2\app.vp
Tuesday, April 29, 2003 12:31:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 6 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

XML Data Type Description
bin.base64 Binary BLOB MIME-style Base64-encoded.

bin.hex Hexadecimal digits.

Boolean 0 (false) or 1 (true).

char One character–long string.

date Date in a subset of ISO 8601 format (no time data). For example: 2000-12-25.

dateTime Date in a subset of ISO 8601 format, with optional time. Time zone is not allowed. Time
can be specified to the level of nanoseconds. Data and time segments are delimited with “T”.
For example: 2001-02-12T13:29:19.

dateTime.tz Date in a subset of ISO 8601 format, with optional time and time zone (specified as time
difference from GTM). Precise as nanoseconds. For example: 2001-02-12T13:29:19-06:00.

fixed.14.4 Decimal number with up to 14 digits left and up to 4 digits right of decimal point. Optional
leading sign.

float Real number; no limit on digits; optional leading sign, fractional digits, and an exponent.
Value range: 1.7976931348623157E+308 to 2.2250738585072014E–308.

int Integer number.

number Real number, with no limit on digits; optional leading sign, fractional digits, and an exponent.
Value range: 1.7976931348623157E+308 to 2.2250738585072014E–308.

time Time in a subset of ISO 8601 format. No date and no time zone. For example: 04:12:17.

time.tz Time in a subset ISO 8601 format, with no date but optional time zone. For example:
14:18:1237-03:00.

i1 Signed integer represented in 1 byte.

i2 Signed integer represented in 2 bytes.

i4 Signed integer represented in 4 bytes.

r4 Real number; 7-digit precision; optional leading sign, fractional digits, and an exponent.
Value range: 3.40282347E+38F to 1.17549435E–38F.

r8 Real number; 15-digit precision; optional leading sign, fractional digits, and an exponent.
Value range: 1.7976931348623157E+308 to 2.2250738585072014E–308.

ui1 Unsigned integer represented in 1 byte.

ui2 Unsigned integer represented in 2 bytes.

ui4 Unsigned integer represented in 4 bytes.

uri Universal Resource Identifier (URI). For example: urn:schemas-microsoft-com:datatype.

uuid Hexadecimal digits representing octets, optional embedded hyphens that are ignored.
For example: 331B7AB4-630B-11F4-AD03-0720B7052C81.

Table A-2 XDR Data Types

P:\010Comp\D_Base\896-2\app.vp
Tuesday, April 29, 2003 12:31:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

A p p e n d i x : T - S Q L a n d X M L D a t a Ty p e s i n S Q L S e r v e r 2 0 0 0 6 6 5

SQL Server Data Type XML Data Type
bigint i8

binary bin.base64

bit Boolean

char char

datetime datetime

decimal r8

float r8

image bin.base64

int int

money r8

nchar string

ntext string

nvarchar string

numeric r8

real r4

smalldatetime datetime

smallint i2

smallmoney fixed.14.4

sysname string

text string

timestamp ui8

tinyint ui1

varbinary bin.base64

varchar string

uniqueidentifier uuid

Table A-3 Mapping Between XDR Data Types and SQL Server Data Types

P:\010Comp\D_Base\896-2\app.vp
Tuesday, April 29, 2003 12:31:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 6 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

Data Type and Synonym Description Range Sample Constant

Logical

boolean n/a 1, 0, true, false 1

Numbers

decimal n/a Arbitrary precision (minimum 18)
decimal positive and negative
numbers

–2.45,3001021.212

double Double-precision
64-bit floating-point
m × 2^e

+0, –, INF (infinity), –INF
(negative infinity), NaN
(not-a-number), ±m × 2^e
(floating-point number where
m <= 2^53, –1075 < e < 970)

–00, –2E200,
–2.00000002e200,
–200.000002, INF,
NaN

float Single-precision
32-bit floating-point
m × 2^e

+0, –0, INF (infinity), –INF
(negative infinity), NaN
(not-a-number), ±m × 2^e
(floating-point number where
m <= 2^24, –149 < e < 104)

–200, –2E2,
–2.00000002e2,
–200.000002, INF,
NaN

integer Whole number Infinite set of integer numbers 0, 1, –1, 2, –2

nonNegativeInteger n/a Derived from integer 0, 1, 2

nonPositiveInteger n/a Derived from integer 0, –1, –2

long Long (8-byte) integer –9,223,372,036,854,775,808
to 9,223,372,036,854,775,807
(–263 to 263 –1)

3222121343013

int 4-byte integer –2,147,483,648 to
2,147,483,647 (–231 to 231–1)

n/a

short 2-byte integer –32,768 to 32,767 (215 to 215–1) –19281, 0, 23131

byte 1-byte integer –128 to 127 (–27 to 27 –1) –81, 0, 31

unsignedLong Long (8-byte) integer 0 to
18,446,744,073,709,551,615
(0 to 264 –1)

3222121343013

unsignedInt 4-byte integer 0 to 4,294,967,295 (0 to 232 –1) n/a

unsignedShort 2-byte integer 0 to 65,535 (0 to 216 –1) –19281, 0, 23131

unsignedByte 1-byte integer 0 to 255 (0 to 28 –1) –81, 0, 31

Dates and Times

date Calendar date CCYY-MM-DD 2001-01-01

time ISO 8061 time with
time zone offset

hh:mm:ss-hh:mm 17:35:00-05:00
(17:35 ET -5h)

Table A-4 XSD Built-in Data Types

P:\010Comp\D_Base\896-2\app.vp
Tuesday, April 29, 2003 12:31:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

A p p e n d i x : T - S Q L a n d X M L D a t a Ty p e s i n S Q L S e r v e r 2 0 0 0 6 6 7

Data Type and Synonym Description Range Sample Constant
dateTime ISO 8061 data and

time with time
zone offset

CCYY-MM-DDThh:mm:ss-hh:mm 2001-01-01T17:35:00
-05:00 (17:35 on
Jan 1, 2001 ET -5h)

duration Duration ±PyYmMdDThHmMsS P3Y (3 years),
-PT30M30S
(-30 min 30 sec)

gYear Gregorian year 0001 to 9999 2010

gMonth Gregorian month --m-- (--1-- to --12--) --02-- (Feb)

gDay Gregorian day --d (--1 to --31) --15

gMonthDay Gregorian month
and day

--m-d --02-21 (Feb 21)

gYearMonth Gregorian year
and month

yyyy-mm 2010-5 (Feb 2010)

Binary

hexBinary Hex-encoded binary Finite set of binary octets (octet
consists of pair of hex characters
[0-9a-fA-F])

A7F4, 0b7c

base64Binary 64-base encoded
binary

Finite set of binary octets A7F4, 0b7c9812aa

Text

string Character string n/a asdasd

anyURI Uniform Resource
Identifier Reference

Absolute or relative http://www.
trigonblue.com/
sqlxml

normalizedString Normalized string String that does not contain the
carriage return, line feed, nor tab

n/a

token Token Normalized string that does not
have leading and trailing spaces
and no internal sequences with
two or more spaces

n/a

language Language tokens n/a en, fr

XML Types

Name XML names n/a n/a

NCName XML noncolonized
names

n/a n/a

NOTATION n/a n/a n/a

Qname XML qualified names n/a n/a

Table A-4 XSD Built-in Data Types (continued)

P:\010Comp\D_Base\896-2\app.vp
Tuesday, April 29, 2003 1:52:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 6 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Appendix A

Data Type and Synonym Description Range Sample Constant
XML Types

ENTITY ENTITY
attribute type

n/a n/a

ENTITIES ENTITIES
attribute type

n/a n/a

ID ID attribute type n/a n/a

IDREF IDREF
attribute type

n/a n/a

IDREFS IDREFS
attribute type

n/a n/a

NMTOKEN NMTOKEN
attribute type

n/a n/a

NMTOKENS NMTOKENS
attribute type

n/a n/a

Table A-4 XSD Built-in Data Types (continued)

P:\010Comp\D_Base\896-2\app.vp
Tuesday, April 29, 2003 12:31:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Index
Symbols
prefix, 269-270

prefix, 270

< and > operators, 94

@@ prefix, 104

@@cursor_rows, 127

@@error, 62, 105, 234, 237, 242-246

@@fetch_status, 125, 127

@@identity, 104, 151, 378-380

@@nestlevel, 365

@@rowcount, 106, 232

@@trancount, 191-192

@debug, 222-227

@ErrorCode, 113

@intErrorCode, 244

@TransactionCountOnEntry, 246

A
ACID test, 182, 196

AcquisitionType table, 15

Action table, 17

ActiveX Script Task for using BulkLoad,

641-642

ActivityLog table, 18

Ad hoc queries, 470-471

admin password, setting, 440

Administrators, notifying in e-mail, 415

ADO.NET, using to retrieve XML data,

597-599

after element (UpdateGrams), 615-616

after (keyword), 288

After triggers, 52, 283

design of, 284-291

full syntax of, 288-291

triggering, 287

Aggregate() function, 383

Aggregates, 164-165, 309-311, 383, 534

Aging of execution plans, 68, 70

Alerts, 406-407, 415

AllowNull property of ColumnProperty()

function, 297

Alter Function statement, 271

Alter Procedure statement, 56-57

Alter Trigger statement, 301

Alter View statement, 313

And operator (&), 290

Annotated schemas, 571-588

ANSI SQL-92, 86

Application roles, 436

Application security, managing, 432-436

Approximate numbers, 93-94

ASCII viewer, viewing code in, 448

ASCII() function, 161

ASPs (Application Service Providers), 525

Asset management system, 7

Asset sample database, 7

asset deployment tables, 12-14

asset description tables, 11-12

design of, 10-18

downloading, 6

entity relationship diagram, 10

installation, 7-9

leasing tables, 14-15

order tables, 15-18

purpose of, 7, 9-10

running book’s examples against, 170

Assignment (=), 62, 94

At sign (@), 58, 86, 100

Atomicity requirement (ACID test), 182

Attribute constraints (XDR), 505-506

Attributes (markup language), explained, 493

Audit trail, triggers to create, 306

Author’s web site, 7

Auto mode (of For XML clause), 529-534

Autocommit transactions, 183-184

Autoparameterization, 68-70

Avg() function, 144-145

Axes (in XPath), 520

B
Backups, transaction log, 187

Base name, of stored procedure, 52

Batches, 42, 170-179

creating using the Go command, 171

defined, 170

errors and, 172-176

execution steps, 173

scope of comments in, 177-179

scope of objects in, 176-177

scope of variables in, 177

self-sufficient content in, 176-179

transactions spanning, 203

BatchExec.exe program, 463

bcp (Bulk Copy Program), 128, 639

before element (UpdateGrams), 615-616

Begin Distributed Transaction, 202

Begin...End, 111-112

Begin Transaction statement, 184-185, 252

Berners-Lee, Tim, 491

bigint data type, 93

Binary And operator (&), 290

BINARY Base64 option, in For XML

clause, 536-537

Binary constants, 95

Binary data encoding (in XML), 536-537

Binary data types, 95

Binary_CheckSum() function, 142-144

bit data type, 92-93

BizTalk, 502

Blocked resources, 197

Body (of stored procedure), 40, 54

break statement, 117

Breakpoints, in debugging, 218-219,

221-222

Browser-based applications, XML and, 526

B2B (business-to-business), 525

B2C (business-to-consumer), 525

Bugs, explained, 208

Bulk Insert statement, 639

BulkLoad (SQLXML). See SQLXML

BulkLoad

Business rules, consistent implementation

of, 83

Business-oriented terminology, in naming, 47

C
CAL (Client Access License),

Server/Per-Seat, 6

Cascading deletes, 305, 306-309

Cascading referential integrity

constraints, 307

Case function/expression, 136-139

in an Order By clause, 483

in a Where clause, 484

Cast() function, 146-149

CDATA sections (XML document), 497,

542, 577, 588

Changes committed to the database, 184

Char() function, 160

Character data types, 89-90

Character references (XML), 497

Character strings, 89-91

character varying data type, 89

ChargeLog table, 17

CharIndex() function, 157-158

Check constraints, 324, 331

functions as, 134

and partition key ranges, 332

on triggers, 306

Check Out dialog box (Visual Studio

.NET), 444

CheckConstraints property, 643

Child sequence fragment identifiers, 519

Client Network Utility, 28-29

Client-side cursors, 128

Client-side XML processing, 599-603

ClientSideXml property, 601

Close statement, 127

Closing tag, 493

Coalesce statement, 309-310

Coalesce() function, 145-146, 350

Code (source). See Source code

Column aliases, 533

669

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Column names

as tag names, 533

comma-delimited list of, 349

ColumnProperty() function AllowNull

property, 297

Columns

as attributes of elements, 529

computed, 534

mapping, 584

Columns_Updated() function, 289-290

COM objects

created in Visual Basic, 391

execution of, 390-393

using from Transact-SQL, 459-462

COM (OLE Automation), 459

Command file for deploying Create

scripts, 464

Command parser module, 67

CommandStream property, 593

CommandText property, 593, 618

CommandText() method, 636

Commented out line of code (**), 108,

110-111, 234

Comments (T-SQL), 43, 108-111

for documenting code, 110-111

multiline (/*...*/), 43, 109, 234

nested, 234

problems with, 109-110

scope of in batches, 177-179

single-line (--), 108-109

Comments (in XML), 496-497

Commit phase (two-phase commit), 201

Commit Transaction statement, 184-185,

202, 239, 253

Complete database deployment, 453-455

Complex types (XSD), 512

Composite T-SQL constructs, 169-205

Compute clause, 164

Computed columns, and For XML

clause, 534

Concurrency, and optimistic locking,

356, 625

Conditional execution (If), 112-117

Conditional expressions (Case), 136-139

Connect to SQL Server dialog box, 8

Consistency requirement (ACID test),

83, 182

Console tree (Enterprise Manager), 24

Constraints, 83, 303

Contact table, 14

Contains predicate, 364

Content attribute values (XML

document), 505

Context prefix (XML namespace),

498-499

Continue statement, 117

Conversion of data types

character to datetime, 147

datetime to character, 147

implicit or explicit, 101, 149

monetary values to character, 148

timestamp to datetime/money type,

361-363

Conversion functions, 146-149

Convert() function, 146-149, 233

Converting information from a cursor to a

variable, 369-370

Copy Database Wizard, 455

Count() function, 164-165

Create Command File dialog box, 463

Create Function statement, 271-272

Create Procedure statement, 39, 55, 58,

64-65

Create scripts (in Visual Studio .NET)

Database Output pane of, 445

deploying 463-464

grouped by type, 451

locked, 443

managing, 443-446

viewing, 443

Create statements, standing alone in a

batch, 176

Create Table statement, 325-327

Create View statement, 311, 313

Criteria pages (search engine), 468-469

cscript.exe, 451

CSS (Cascading Style Sheets), 523

CSV (comma-separated value) attachment

file, 418

Current machine, as server for connection, 33

Current node (in XPath), 520, 522

Current session, getting information

about, 149-151

cursor data type, 65, 98, 374-378

Cursor-related statements and functions, 126

Cursors, 121-130

classes of, 122

errors with, 235

justified uses of, 128-130

to pass recordset to nested stored

procedure, 368-371

problems with, 127-128, 235

CvtSchema.exe tool, 583

D
DAT file, content of, 458

Data entry, standardizing and controlling, 82

Data integrity, enforcement of, 82

Data providers, XML, 588

Data script generator, 347-351

Data type compatibility, 645

Data type conversion, Visual Basic and

T-SQL, 393

Data type mapping, XDR and SQL

Server, 665

Data type prefixes, 49-50

Data types, 89-99

implicit or explicit conversion of, 101

SQL Server, 661-663, 665

synchronizing sizes of, 233

XDR, 664-665, 574

XML, 506

XSD, 666, 667-668

user-defined, 98-99

Data warehousing, 142, 321

Database

attaching, 454-455

detaching, 454-455

loading information into, 297

Database access, 420-421

configuring through HTTP, 548-552

granting, 425-427

programmatic, 588-596

using the sa login, 435

Database application development, 82-84

Database changes, committed, 184

Database deployment, 453-466

Database deployment tools, downloading, 6

Database diagram of Asset database, 10

Database information

accessing using templates, 557-567

accessing using an URL, 552-554

publishing with HTTP, 547-588

retrieving using XDR schemas, 577-578

Database log space used percentage, 373-375

Database name, 88

Database object list (in sysobjects), 77

Database object prefixes, 50-51

Database object qualifiers, 88

Database objects, 50-51, 66, 352, 387, 451-452

deploying, 455-466

naming, 46-49

Database Output pane of Create script, 445

Database Properties dialog box, Permissions

tab, 427

Database roles, 421, 426, 436

Database scripting, 180-182

Data-dependent routing, 331, 336

DataLength() function, 140-142, 156

DataSets/Data sets, 598-599, 628

persisting and executing changes, 628

retrieving using SqlXmlAdapter class,

595-596

returning as XML elements, 654-655

Date, getting current, 152

Date and time calculations, 154-156

Date and time constants, 92

Date and time data types, 91-92

Date and time functions, 152-156

Date and time parts

extracting, 152-154

full and abbreviated names of, 153

DateAdd() function, 133, 154

DateDiff() function, 154

DateName() function, 153

Datepart constant, 153-154

DatePart() function, 153

datetime data type, 91-92

conversion of timestamp to, 361-363

converting to character, 147

formatting styles, 147

db_Name() function, 352

db_owner (dbo) fixed database role, 88

DBCC CHECKCONSTRAINTS, 643

DBCC FREEPROCCACHE, 79

DCOM, verifying configuration of, 214-215

DDL (Data Definition Language), 176

Deallocate statement, 127

Debugger (T-SQL), 210

poor man’s, 222-227

in Query Analyzer, 218-222

in Visual Studio, 212-218

Debugging, 208-235

commenting out code when, 108

tools and techniques, 212-227

6 7 0 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

user account for, 213

using breakpoints, 218-219, 221-222

Debugging process, 209-211

identification phase, 209-210

resolution phase, 210-211

decimal data type, 94

Declare Cursor statement, 126

Declare statement, 100

Default constraints, 134, 290, 306, 505

Default mapping (XML and SQL Server), 584

Default network library, 29

Default user accounts, 421

Deferred name resolution, 173, 234-235, 453

Delete trigger, 284-285, 287, 310

Deleted virtual table, 285-287

Deleting records, failure of, 184

Delimited identifiers, 87

Denied (permission state), 427, 430

Denormalization, 471

Denormalized tables, populating, 476-481

Deny statement, 429-430

Dependencies, 80-82, 459

Dependent and depending objects, listing,

80-82

Deploying scripts, 458-463

Deployment, as a transaction, 462

Deployment of complete database, 453-455

Deployment of objects, 455-466

Deployment scripts, 451

for incremental build, 465

traditional approach, 455-456

Design View (in Enterprise Manager), 314

Details pane (Enterprise Manager), 24-25

Developer Edition (SQL Server 2000), 5

Development

commenting out code, 108

XML for, 489-526

Development server, 442

Diff option (Visual SourceSafe), 448-449

DiffGrams, 588, 628-639

behind the scene, 634-636

debugging, 638-639

document structure, 629

executing using SqlXmlCommand, 636

executing using URLs, 636-637

generating after DataSet changes,

637-638

processing multiple records using, 634

using to delete data, 633-634

using to insert data, 629-631

using to update data, 631-633

Directives (universal table column), 540-547

Dirty reads, 199

Disable Trigger statement, 301

Distributed partitioned views, 323-335

connecting to tables on member

servers, 329

execution plans of, 329-333

for performance improvement, 339

routing a query to a remote server, 330

stored procedures against, 332

updateable, 334-335

usage of, 328

Distributed servers, 324

Distributed systems, 324-325, 335-336

Distributed Transaction Coordinator (MS

DTC), 21, 200, 334

Distributed transactions, 21, 200-202, 334

Document formatting language,

standardized, 491

Document type declaration (XML

document), 499

Documenting code, 110-111

Documents. See XML documents

DOM (Document Object Model), 500-501

Double precision numbers, 93

Double quotes ("), 87

Drop Function statement, 271

Drop Procedure statement, 55, 79

Drop Trigger statement, 301

DTC (Distributed Transaction Coordinator),

21, 200, 334

DTD (Document Type Definition),

495-496, 502

DTS (Data Transformation Services), 26,

395-398, 641-642

DTS Designer, 26

DTS packages, 395-398

DTS Wizard, 26

dtsrun.exe utility, 395

Durability requirement (ACID test), 182

Dynamic filters, execution plan with, 333

Dynamic queries, 342-356, 470-471

for executing strings, 342-343

security and, 353-356

string parameter for, 355

Dynamic views, 317

E
E-commerce, XML-based, 491, 522-523, 525

E-commerce consortium of IT supply chains,

522-523

EDI (Electronic Data Interchange), 525-526

Element constraints (XDR), 504-505

Element nodes, 567

Element-based XML document, 574

Elements (markup language), explained, 492

Else statement, 113-117, 138

E-mail, 415-419

attachment files, 416-418

extended stored procedures for, 416-419

E-mail messages in SQL Server mailbox, 417

Empty element (XML), 494

Encryption, of functions, 275

Enterprise Edition (SQL Server 2000), 5

Enterprise Manager, 24-26

Design View, 314

Generate SQL Scripts Wizard, 451

Entity description, 46-47

Entity references (XML), 497-498

Enumeration facet (XSD), 510

Environment (SQL Server), interaction with,

389-436

EqType table, 12

Equipment table, 12

Error handling (T-SQL), 235-258

coherent methodology for, 243-248,

252-258

generic procedure for, 240-241

interfacing to other environments, 245

need for, 238-239

tactics of, 239-243

transaction processing, 246-248

Error logs, 237

Error messages, displaying and editing,

236-237

Error numbers, 105, 237

Errors (in T-SQL programs), 231-235

batches and, 172-176

finding the source of, 209-210

stabilizing (isolating), 209

Evaluation Edition (SQL Server 2000), 5

Exact numbers, 94

Examples in this book, running against Asset

database, 170

Exclusive (write) locks, 197

Execute statement, 58-59, 342-343, 373

Execute() method, 641

ExecuteNonQuery() method, 618, 636

ExecuteStream() method, 591, 618

ExecuteXmlReader() method, 597

Execution plans, 67, 329-333

aging of, 68, 70

compilation cost factor of, 70-71

with dynamic filters, 333

indexed views in, 320

parts of, 70

reuse of, 68-71, 351

standard SQL views in, 314-315

Execution speed, stored procedures and, 84

Exists keyword, 114

Expand View hint, 320

Explicit conversion of data types, 101, 149

Explicit mode (of For XML clause), 538-547

Explicit transactions, 184-186

Exponent (in scientific notation), 94

Extended properties, 387-388

Extended Stored Proc Wizard, 263-264

Extended stored precedures, 262-269

causing crash of SQL Server, 269

code of, 265-267

creating, 263-264

design of, 262-267

for manipulating the Registry, 398

in master database, 262

registering on the server, 267-269

removing, 268-269

testing using Query Analyzer, 268

unregistering (dropping), 268

for working with e-mail, 416-419

xp_ prefix, 262

F
Facets (XSD), 510-511, 517

Federated servers, 324-325, 336

Fetch statement, 126-127

Fetching cursors, explained, 122

File copying, from Backup folder to a

drive, 395

File versions, comparing, 448-449

FileStream object, 591-592, 598

Filtering XML documents. See XPath

queries

Fire hose cursors, 128

Flexibility, of SQL Server, 2

I n d e x 6 7 1

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

float data type, 94, 148

Flow-control statements, 107-121

For Replication clause, 65

For XML Auto clause, 529-534

aggregate functions and, 534

vs. For XML Nested clause, 602-603

Group By clause and, 534

For XML clause (of Select statement),

528-547

Auto mode, 529-534

BINARY Base64 option in, 536-537

on the client, 602-603

computed columns and, 534

Elements option, 534-535

Explicit mode, 538-547

Raw mode, 537-538

stored procedures with, 556

XML modes of, 528

XMLData option in, 535-536

For XML Explicit clause, 538-547

For XML Nested clause, 602-603

For XML Raw clause, 537-538

ForceTableLock, 644

Foreign Key column, 622

Foreign key constraints, 305

Foreign key relationship, 183

Foreign keys, 183, 287, 305-307, 622

Four-part name (database object

qualifiers), 88

Freetext, 364

FrontPage, 414

Full backup, 187

Full criteria page (search engine), 469

Full-text search, 159, 363-365

Fully qualified database objects, 352

Fully qualified name, 88

Function input parameters, 271

Function object owner and identifier, 273

Function parameters, 132

Function return values, 271-272

Function side effects, 274

Function template, 283

Functions, 131-167. See also User-defined

functions

as Check and Default constraints, 134

as part of selection criteria, 133

encryption of, 275

in expressions, 133

in selection and assignment, 132-133

syntax for calling, 132

T-SQL statements that can be used

inside, 274

types of, 135-167

using, 132-135

using instead of tables, 134-135

G
Generate Create Scripts dialog box, 441

Generate SQL Scripts tool, 180-181,

455-456

Generate SQL Scripts Wizard, 451

GET method (HTTP), 552-553

GetDate() function, 132-133, 152, 275

GetUtcDate() function, 152

Global temporary stored procedures,

270-271

Global variable names, 104

Global variables, 103-106, 365

Go command, 42, 171, 174, 177

Goldfarb, Charles, 490

Google search, Microsoft-related, 31

GoTo statement, 119-120

Grant statement, 428

Granted (permission state), 427

Group By clause, and For XML Auto

clause, 534

Group constraints (XDR), 506

Groups (XSD), 513

Guest user, 440

GUIDs (globally unique identifiers), 96,

381-382, 511, 622, 624

H
Having clause, 164

Header (After trigger), 284

Header (stored procedure), 40, 54

Header (template), 559

Help subsystem, 29

Heterogeneous queries, 271

Hex values, in UpdateGrams, 624

Hide directive (universal table column),

540-541

Hierarchical relationships between XML

nodes, 571

Hints (lock), 197, 198-200

History Options (Visual SourceSafe), 447

History of a project, viewing complete, 450

Horizontal partitioning (partitioned

views), 321

HTML browsers from different vendors, 523

HTML forms, 568-569

HTML (Hypertext Markup Language)

disadvantages of, 491

XSL file that converts XML to,

560-564, 570-571

HTML page as a result of XSL

transformation, 564

HTML placeholders, 413-415

HTTP (Hypertext Transfer Protocol), 491

accessing XML document data,

547-588

configuring database access through,

548-552

executing a stored procedure

through, 556

GET method, 552-553

POST method, 552, 567-571

publishing database information

using, 547-588

Hub-and-spoke model, 525

Hyperlinks, adding to a web page, 410

Hypertext documents, 491

I
id directive (universal table column),

546-547

Ident_Current() function, 152

Ident_Incr() function, 151

Ident_Seed() function, 151

Identifiers (T-SQL), 86-88

Identity columns, 104, 151, 245, 622

Identity increment, 151

Identity seed, 151

Identity values, 104, 622-624

functions for handling, 151-152

last value in the scope, 380-381

triggers and, 379-380

using, 378-381

Identity() function, 151-152

IE (Internet Explorer), 553

If Exists statement, 56

If statements, 112-117

at beginning of trigger, 302

to check command completed, 243-244

functions in, 133

nested, 115-117, 137

preceding Begin Tran statement, 252

IgnoreDuplicateKeys, 644

IIS (Internet Information Server), 547-551

IIS Virtual Directory Management for

SQLXML, 548

Image columns, 297-298

image data type, 95

Implicit conversion of data types, 101, 149

Implicit transactions, 186

Implied permissions, 421

Import/export of data, 26

Incremental builds, 462, 465-466

Index Server, 363

Indexed views, 318-321

Indexes

full-text, 363-365

search engine, 471

Indirect invocation of recursive triggers, 293

Infomediaries, 525

Information exchange between organizations, 524

Information publishing, XML and, 526

INFORMATION_SCHEMA views, 317-318

Inline definition (XSD elements), 512

Inline table-valued user-defined functions, 279-281

Insert statements, 347-348, 372, 380

Insert trigger, 309-310

Inserted virtual table, 285-287

Instead-of triggers, 52, 283, 294-298, 317, 628

Integer numbers, 92-93

Integrated security, 420

Integration, of SQL Server, 2

Intent locks, 198

Internet, 490-491

Inventory table, 12

InventoryProperty table, 12

InventorySum table, 474-475

Is Not Null clause, 231

Is Null clause, 231

ISAPI filter, 547

IsDate() function, 139

IsNull() function, 145, 350

IsNumeric() function, 140

Isolating errors, 209

Isolation requirement (ACID test), 182, 196

isql command-line utility, 27

ISQL/W, 22

6 7 2 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

J
Job name (or ID), 405

Job properties, 400

Job Scheduler

alternative to, 404-405

features of, 404-405

processing e-mail, 418

Jobs, 400-407

administration of, 400-404

creating, 400

scheduling to create a web page, 409

stored procedures for maintaining, 405

Joining tables beween local and remote

servers, 166

JScript, for writing ActiveX Script Task, 641

K
KeepIdentity, 643

KeepNulls, 644

L
Label dialog box (Visual SourceSafe), 450

Lazy Schema Validation option, 327

Lazywriter process, 70-71

Lease table, 15

LeaseFrequency table, 15

LeaseSchedule table, 15

Left Join, 532

Left() function, 157

Len() function, 140, 156

Like operator, 158, 470, 482

Like queries, 355-356

Linear scalability, 335

Linked servers, 165-166

Load balancing, 472

Local partitioned view, 323

Local scope, of table variables, 107

Local variables, 61, 99-103

assigning values to, 100-103

declaring, 100

including in a result set, 103

scope of, 99-100

Location steps (in XPath), 520

Location table, 13

Lock hints, 197, 198-200

Lock types, 197-198

Locking of Create scripts, 443

Locking of transactions, 196-200,

203-205, 470

Locks

levels of granularity, 197

optimistic, 356-363, 625-627, 632

satisfying the isolation requirement, 196

Log space used percentage (database),

373-375

Login

granting using stored procedures, 425

managing, 423-425

setting for a single user, 432

storage of, 435

Login names, 426, 430-432

Login and usernames, synchronization of,

430-432

Long transactions, problems with, 205

Long varchar strings, 613

Lookup table, creating, 96-97

Looping with sp_MSForEachTable and

sp_MSForEachDb, 385-386

Looping (While), 117-119

Loops, fourth-generation languages and, 117

Lower() function, 159

Low-level errors, 234

LTrim() function, 159

M
Maintainability, stored procedures and, 83

Mantissa (in scientific notation), 94

mapping-schema attribute, 578

Markup, defined, 492

Markup languages, 491-493

master database, 66, 261-262

Max() function, 383-384

MaxOccurs attribute (XML document), 505

Metadata functions, 162-163

Microsoft

support for XML, 524

support for XSD schemas, 582

Microsoft Search Service, 363

Microsoft XML Core Services, 501

Microsoft XML Parser, 500

Microsoft .XMLDOM, 500

Microsoft XSD Inference, 517, 644

Microsoft-related Google search, 31

Min() function, 383-384

MinOccurs attribute (XML document), 505

Mixed mode security, 420

MMC (Microsoft Management Console), 25

MMC snap-ins, 25

Model attribute (XML document), 505

Modular design of stored procedures, 83

Module variables, 365

Monetary data types, 94-95, 148, 361-363

MS DTC (Distributed Transaction

Coordinator), 21, 200, 334

msdb database, 66, 261-262, 405

MSDE (MS Desktop Engine), 5-6, 20, 453

MSSQL service, 21, 415

MSXML parser, 606

Multiline comments (/*...*/), 43, 109, 234

Multiple records

handling changes on, 291-293

processing using DiffGrams, 634

in UpdateGrams, 627-628

Multiple rollbacks, 204

Multistatement table-valued user-defined

functions, 276

N
Named definition (XSD elements), 512

Named transactions, 192-193, 196

Namespaces property, 592

Namespaces (XML), 498-499

Naming conventions, 44-52

need for, 45-46

for objects and variables, 46-49, 100

for stored procedures, 40, 52

suggested, 49-52

for triggers, 51-52

Naming standard, implementing, 45

nchar data type, 90-91

NChar() function, 160

Nested Begin...End, 112

Nested comments, 234

Nested If statements, 115-117, 137

Nested stored procedures, 226-227, 244,

250-252, 365-378

Nested transactions, 188-192, 196

Nested triggers, 293

.NET application

executing SQLXML BulkLoad from,

639-640

using SQLXML Managed Classes,

588-589

.NET SOAP clients, creating, 650-657

Network failure, 200

Network Library (NetLib), 28

Network traffic reduction, stored procedures

and, 84

Network/OS access, 420

NewID() function, 96, 381

Node test (in XPath), 521

Nonclustered indexes on views, 320

Nonnullable columns, 297

Nonrepeatable reads, 198

Not For Replication clause, 289

Not operator, 114

Notifications, 407

NT Registry, interacting with, 398-399

Ntext columns, 297-298

ntext data type, 90

Null values

functions for handling, 144-146

handling, 144-146, 231-232

variables and, 100

NullIf() function, 144

Numbering of stored procedures, 65

Numeric data types, 92-94

nvarchar data type, 90-91

nvarchar(128), 87

O
Object Browser (in Query Analyzer), 23-24,

34-35

editing stored procedures, 42-43

listing dependencies, 82

viewing stored procedure source code,

77-78

Object On Database (Generate SQL

Scripts), 180

Object owner, functions and, 273

Object permissions, 421-422, 427

Object Properties dialog box, 427

Object scope, in batches, 176-177

Objects (database). See Database objects

Objects To Be Scripted (Generate SQL

Scripts), 180

Office XP SOAP Toolkit, 657

OLE Automation (COM), 390-393, 459

OLE Automation objects, execution of,

390-393

I n d e x 6 7 3

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

OLTP systems, indexed views and, 321

On Error Go To command (Visual

Basic), 248

One-to-one table relationship, 321

Open Data Services API (ODS API), 263

Open statement, 126

OpenDataSource() function, 167

Opening tag, 493

OpenQuery() function, 165-167

OpenRowSet() function, 166-167, 606

OpenXML(), 606-615

and closing the document, 607

document preparation, 606-607

flags parameter values, 610

long documents and, 613-615

metaproperties in, 611-613

retrieving XML information, 608-611

syntax of, 608

Operators, 406-407, 415

Optimistic locking, 357, 632

implementing in stored procedures, 360

with UpdateGrams, 625-627

using timestamps, 356-363

Optimizer hints, 197

Optimizer module, 67

Order attribute (XML document), 505

Order By clause, 315, 386, 483, 488

Order table, 17

OrderItem table, 17

OrderStatus table, 17

OrderType table, 18

OrgUnit table, 14

osql.exe utility, 27, 454

output (keyword/parameter), 59-60

Overconfidence, errors and, 235

Owner name (database object), 88

P
Page splitting (on a web server), 472-481

Parameter list (URL), 559

Parameterized queries, 68, 351-352

Parameterized views, 279, 317

Parameter passing by name, 63-64

Parameter passing by position, 63

Parameters (function), 132

Parameters (stored procedure), 40

Parent node (in XPath), 522

Parsing, of stored procedures, 67

Partitioned views, 321-336

Partitioning key, 324, 332

PatIndex() function, 159

Pattern facet (XSD), 511

Permission levels, in Visual SourceSafe, 440

Permission states, 427

Permissions, 421

assigning, 427-430

on dynamic query underlying

tables, 353

revoked vs. denied, 430

types of, 421

on views, 314

Permissions tab (database Properties

dialog box), 427

Personal Edition (SQL Server 2000), 5

Pessimistic locking, 357

Phantoms, 198

Phonetic abbreviations, avoiding, 48

Poor man’s debugger, 222-227

Poor man’s federated server, 336

Position() function, 521

POST method (HTTP), 552, 567-571

Posting queries to the server, 552,

567-571

Precision (of numbers), 93

Predicates (in XPath), 521

Print statements, triggers and, 303

Private temporary stored procedures, 270

Procedure cache (SQL Server), 79

Processing instructions (XML document),

494-495

PROGID string, 639

Programming constructs for stored

procedures, 32

Programs, running, 394-395

Project files, 264

Properties table, 12

Property management, 386-388

Province table, 14

Proxy user, 434-435

Public role, for database users, 434

Publishing information

using HTTP, 547-588

using SQLXML, 527-603

Q
Query Analyzer, 22-24

Connect to SQL Server dialog box, 8

editing stored procedures, 41-43

errors in, 44, 236

executing stored procedures, 32-36

executing T-SQL statements, 170-171

listing stored procedures, 76

managing triggers, 299

Query pane, 22-23

Result In Text, 347, 385

running a stored procedure, 40

saving results in a text file, 78

testing an extended stored

procedure, 268

viewing stored procedure source

code, 77-78

Query Analyzer toolbar, 23

Query Analyzer T-SQL Debugger,

218-222

Query By Form, 344-347

Query element (templates), 558-559

Query execution plans. See Execution

plans

Query parameterization, 351-352

Query tree, 67

Query window, stored procedure code in, 42

Quick criteria page (search engine), 469

R
Raiserror statement, 236-237, 254

Raw mode (of For XML clause), 537-538

RDBMS (relational database management

system), 2

Read Committed transaction, 198-199

Read Uncommitted transaction, 199

Reader feedback, 7

real data type, 94, 148

Record types stored in transaction logs, 187

Records

finding number of in each table, 386

handling changes to multiple, 291-293

represented as elements, 529

Recordsets

empty, 232

inserting in a view, 297

passing to nested stored procedures, 365-371

returning from a linked server, 165

Recursive triggers, 293

Referential integrity, 306-307

Referential integrity constraints, cascading, 307

Registering an extended stored procedure, 267-269

Registering a linked server, 166

Registering a server (in Enterprise Manager), 37

Registry, 398

Registry keys, 398-399

Relational queries, 590-592

Relational views, vs. XML views, 586

Relationships, mapping, 584-586

Remote stored procedures, 271

Repeatable Read transaction, 198

Required constraint (XDR), 505

Resource contention, 197, 230-231

Resource managers, 200

Result In Text (in Query Analyzer), 347, 385

Result set (query)

as an XML document, 528-547

containing thousands of records, 470

filtering with XPath query, 567

including a local variable in, 103

limiting, 471

returning in batches, 483

serialized as XML using WriteXML(),

598-599

variable values from, 101, 232

Result set (stored procedure), processing, 371-378

Result splitting (search results), 471, 472-481

Results pane (in Query Analyzer), 23

Return statement, 60-62, 254, 272-273, 279

Returns clause, 279-280

Reuse of queries and execution plans, 68-71, 351

Reverse engineering on the database, 180

Revoke statement, 429-430

Revoked (permission state), 427, 430

Right() function, 157

Roles, 421, 436

Rollback function (Visual SourceSafe), 448

Rollback Transaction statement, 184-185, 202, 256

in nested transactions, 191-192

triggers and, 234, 304-305

Rollback of triggers, 234

Rollbacks, 184, 204

RossetaNet, 522-523

Rowcount_big() function, 106

Rowset functions, 165-167

Rowset provider. See OpenXML()

RTrim() function, 159

Run On The Client (virtual directory), 600-601

Run To Cursor (Debug menu), 218

6 7 4 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

S
sa login and password, 435

Sample database. See Asset sample database

Savepoints, in transactions, 193-196

Scalability, of distributed systems, 335-336

Scalar functions, 103, 136-163, 279

Scale (of numbers), 93

Scaling-out, explained, 324

Scaling-up, explained, 324

Scheduled execution (WaitFor), 121

Schema locks, 198

Schema validator, 502

Schema (XML), 501-502

Schema-binding a user-defined function, 276

Schema-binding a view, 313

Schemas (XML). See XDR schemas; XSD

schemas

Scientific notation, 94

Scope

of comments in batches, 177-179

of local variables, 99-100

of objects in batches, 176-177

of variables in batches, 177

Scope_Identity() function, 152, 380-381

Script files (Windows), executing from

T-SQL, 395

Scripting data

traditional approach, 456-457

in Visual Studio .NET, 457-458

Scripts, 179-182

Scrolling cursors, explained, 122

SDI (SQL Server Debugging Interface), 215

Search, full-text, 363-365

Search engines, 468

advanced queries, 486-488

based on a single query, 468-471

criteria fields, 469

criteria pages, 468-469

improving, 471-488

problems of simple solution, 470-471

quick queries, 481-485

result splitting, 472-481

search types, 471-472

simple solution, 468-469

stored procedures for, 467-488

types of pages in, 468

Search parameters, adding wildcards to, 484

Searched Case function/expression, 138

Security, 419-436

for database access, 420-421

dynamic queries and, 353-356

implementing, 422-430

levels of, 419-422

for Network/OS access, 420

object permissions for, 421-422

roles for, 421

for server access, 420

statement permissions for, 422

of views, 314

Security architecture, 419-422

Security enforcement, stored procedures

and, 84

Security models, 420-423

Select statement result set. See Result set (query)

Sequence tree, 67

Serializable transaction, 198

Server Network Utility, 29

Server/Per-Seat Client Access License, 6

Server-side vs. client-side XML processing, 600

Service Manager, 21-22

Set statements

assigning values to variables with,

102-103

Insert_Identity, 348

Quoted_Identifier, 87

Showplan_All, 176

Showplan_Text, 176

Xact_Abort, 248-252

setup_DataGenerator stored procedure,

348, 456

SGML (Standard Generalized Markup

Language), 490-491

Shared (read) locks, 197

Sid fields, 430

Simple types (XSD), 510

Single-line comments (--), 108-109, 234

Single-precision numbers, 93

Single-quote substitution, 354-355

smalldatetime data type, 91-92

smallmoney data type, 94-95

Snap-ins, explained, 25

SOAP clients, creating, 650-657

SOAP Fault elements, 650

SOAP messages, 647

SOAP (Simple Object Access Protocol),

647-657

SOAP Toolkit (Microsoft), 657

SOAP Virtual Name Configuration dialog

box, 649

Solution Explorer (Visual Studio .NET),

440, 652

Sorting, in a quick query, 482

Source code control, 211, 438-439

Source code management, 438-452

Source code management tools,

downloading, 6

Source code (of stored procedures)

compiling, 67-74

components, 390

encrypting, 73

hiding, 73

in Query window, 42

viewing, 36, 77-78

Source code versions, 439, 450

sp_ prefix, 52, 66, 261-262

sp_addapprole, 436

sp_addextendedproc, 267

sp_addextendedproperty, 387

sp_addjob, 405

sp_addjobschedule, 405

sp_addjobstep, 405

sp_addlogin, 424-425

sp_addmessage, 237

sp_addrole, 426

sp_addrolemember, 128

sp_addtype, 99

sp_addumpdevice, 403

sp_attach_db, 454

sp_attach_single_file_db, 454

sp_change_users_login, 432

sp_cmdshell, 394

sp_configure, 293

sp_dbcmptlevel, 87

sp_dboption, 372

sp_delete_job, 405

sp_depends, 81

sp_detach_db, 454

sp_displayoaerrorinfo, 462

sp_dropextendedproc, 268

sp_dropextendedproperty, 387

sp_droplogin, 424

sp_droprole, 427

sp_droprolemember, 426

sp_dropwebtask, 413

sp_executesql, 351-353

sp_grantdbaccess, 426

sp_grantlogin, 425

sp_help, 271

sp_helpfixeddbroles, 427

sp_helpjob, 405

sp_helpjobhistory, 406

sp_helprolemember, 426

sp_helproles, 427

sp_helptext, 271, 300

sp_helptrigger, 300

sp_helpusers, 426

sp_hexadecimal, 462

sp_makewebtask, 412-413

sp_MSForEachDb, 385-386

sp_MSForEachTable, 385-386

sp_OA prefix, 390

sp_OACreate, 391

sp_OADestroy, 392

sp_OAGetErrorInfo, 392

sp_OAMethod, 392

sp_password, 424

sp_processmail, 418-419

sp_purge_jobhistory, 406

sp_recompile, 71

sp_rename, 79, 301

sp_revokedbaccess, 426

sp_runwebtask, 413

sp_setapprole, 436

sp_spaceused, 66, 337-338, 385-386

sp_start_job, 406

sp_stop_job, 406

sp_stored_procedures, 76, 271

sp_update_job, 405

sp_updateextendedproperty, 387

sp_who, 33-34

sp_xml_preparedocument, 606, 614

sp_xml_removedocument, 606-607

Special characters

encoding, 552

in UpdateGrams, 624

Special data types, 95-99

.sql extension, 179

SQL injection, 353-356

SQL Mail, 21, 415

SQL Profiler, 227-231

errors, 210

filters, 229

reducing resource contention, 230-231

running a trace, 230

templates, 228

Trace Properties window, 228-229

Trace window, 227

I n d e x 6 7 5

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL Server Authentication, 420

SQL Server Books Online, 29-30

SQL Server environment, 19-52, 389-436

SQL Server Error Log, 237

SQL Server Login Properties dialog box,

423-425

SQL Server mailbox, e-mail messages

in, 417

SQL Server Profiler, 27-28, 634, 638

SQL Server Properties dialog box, 423

SQL Server Service Manager, 8

SQL Server Service (MSSQL), 21, 415

SQL Server 2000 OLE DB provider,

547-548, 599

SQL Server 2000 tools, 20-31

SQL Server 2000 versions, 5

SQL Server to Visual Basic data type

conversion, 393

SQL Server-Windows NT/2000

authentication, 420

SQL (Structured Query Language), 86

SQL views. See Views (SQL)

sql:field annotation, 572, 584, 645

sql:guid annotation, 588, 630

sql:header element (templates), 559

sql:id attribute, 578

sql:identity annotation, 588, 630

sql:id-prefix annotation, 577, 587

sql:is-constant="1" annotation, 577, 586

sql:is-mapping-schema attribute, 578

sql:limit-field annotation, 588

sql:limit-value annotation, 588

sql:map-field annotation, 577

sql:mapped annotation, 587

sql:overflow-field annotation, 577, 588, 645

sql:query element (templates), 558-559

sql:relation annotation, 572, 584, 645

sql:relationship annotation, 575, 579,

584-585, 645

sql:use-cdate annotation, 577, 588

sql:XPath-query element, 564-566, 578

sql_variant data type, 96-98

Sql_Variant_Property() function, 163

SQLAgent (SQL Server Agent), 21,

406, 415

SQLAgentMail, 415

SqlCommand class, 597-598

SQL-DMO (SQL Distributed

Management Objects), 261, 459

SQLISAPI, 648, 650

SQLOLEDB provider, 547-548, 599

SQLXML BulkLoad, 639-646

data integrity, 643-644

error log file, 640

executing from DTS, 641-642

executing from a .NET application,

639-640

mapping schema, 644-646

overflow field, 646

schema generation, 642

speed and overhead of, 644

table lock, 644

transactions, 643

SQLXML BulkLoad 3.0 Type Library, 639

SQLXML code, downloading sample, 6

SQLXML managed classes, 588

for client-side XML processing,

601-602

executing UpdateGrams, 617-618

.NET application using, 588-589

retrieving data using, 589

SQLXML (XML for SQL Server 2000

Web Release), 548

modifying databases using, 605-657

publishing information using,

527-603

using to create XML Web Services,

648-650

SqlXmlAdapter class, 588, 595-596

SqlXmlCommand class, 588, 590, 594,

596, 617, 636

SqlXmlCommandType object, 617

SQLXML.dll, 548

SQLXMLOLEDB Provider, 588, 599

SqlXmlParameter class, 588, 594-595

Square brackets ([]), 87

Stabilizing errors, 209

Standard Edition (SQL Server 2000), 5

Standard security, 420

Standard tagged language, 491

Statement blocks, 111-112

Statement permissions, 422, 427

Step Into (Debug menu), 218

Step Out (Debug menu), 218

Step Over (Debug menu), 218

Stored procedure result set, processing,

371-378

Stored procedure template, 39

Stored procedures, 31-32, 40, 54, 435.

See also Extended stored procedures

vs. ad hoc queries, 471

advanced, 341-388

altering, 56-57

anatomy of, 54-65

based on queries, 72

basic operations with, 31-44

called by other stored procedures,

365-378

changing in Visual Studio .NET,

443-446

checking for existence of, 56

compilation and execution process, 67

compiling source code for, 67-74

composition of, 54-57

and consistency, 83

in context of the current database, 261

creating, 54-56, 64-65

cursor data type as output parameter

of, 374-378

and data integrity, 82

in database application development,

82-84

default values, 62-63

deleting, 55, 79

design concepts, 53-84

editing in Enterprise Manager, 41

editing in Query Analyzer, 41-43

encrypting source code of, 73

executing, 58

executing from Query Analyzer, 32-36

executing through HTTP, 556

execution speed, 84

forcing compilation of, 65

functionality of, 57-64

global temporary, 270-271

hiding source code of, 73

input and output parameters, 58-60

limits of, 57

listing in Enterprise Manager, 38, 40, 75-77

listing in Query Analyzer, 76

and maintainability, 83

managing, 36-40, 74-82

managing from Enterprise Manager, 36-40

in master database vs. msdb database, 262

modular design of, 83

naming, 52

nested, 226-227, 244, 250-252, 365-378

and network traffic reduction, 84

numbering of, 65

parsing, 67

passing parameters by name, 63-64

private temporary, 270

programming constructs, 32

programming requirements, 5-6

properties of, 38

recompiling, 65, 71-72

remote, 271

renaming, 56, 79

reuse of, 70-71

running DTS packages from, 395-398

running in Query Analyzer, 40

and security enforcement, 84

sp_ prefix, 52, 66, 261-262

storing, 72-74

structure of, 40

system, 32, 66, 260-262

temporary, 269-270

that must return a success status, 403

vs. triggers, 304

types of, 65-66, 260-271

user-defined, 66, 260

viewing code for, 36, 77-78

ways to receive information from, 57-58

Str() function, 159

StreamReader object, 591-592

StreamWriter object, 591-592

String conversion, 159-162

String functions, 156-162

String manipulation, 156-159

Strings (character), 89-91, 355

Strings for dynamic queries, 342-343, 355

Stuff() function, 162

SubString() function, 157

Surrogate indexes, 475, 482

Surrogate keys, generating, 104, 378-381

Sync element (UpdateGrams), 615

Synchronization of login and usernames, 430-432

Syntax errors

batches and, 172-176

in T-SQL, 43-44

sysadmin server role, 88

syscomments system table, 73-74

sysdepends system table, 80

sysname system data type, 87, 99

sysobjects table

content of, 73

list of database objects in, 77

6 7 6 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

text field, 73

xtype field, 72

System databases (master and msdb), 66, 261

System functions, 136-152

System stored procedures, 32, 66, 260-262

System_User() function, 150

System-defined data types, 89

T
table data type, 98, 106-107, 374

table keyword, 280

Table scans, 470

Table space usage report, 385

Table variables, 106-107

Tables

Insert statements to populate, 347

mapping, 584

query that joins many, 470

using functions instead of, 134-135

view that joins, 322

Table-valued functions, 134-135,

276-281, 317

Tag-based language, 490

Tagged language, 491

Tags (markup language), explained, 492

TargetNamespace attribute, 509

Taskpad (Enterprise Manager), 25

TbDbScript tool, 451-452, 456

TbDir2Vss.vbs, 452

tempdb database, 269-270

TempFilePath property, 643

Template file syntax, 557

Template files (templates), 557-567, 593

client-side XML processing using, 600

with inline mapping schemas, 578-579

with parameters, 559-560

root element of, 557

using to access database information,

557-567

using schemas and XPath queries,

564-567

using XSL, 560-564

for web page templates, 413

Temporary stored procedures, 269-270

global, 270-271

private, 270

Temporary tables, 365-368

Temporary virtual tables, 285-287

Test environment, debugging in, 211

Text columns, 297-298

text data type, 90

Text element XML parsing, preventing, 498

Time and date type compatibility, 645

timestamp data type, 96, 357-363, 626

tinyint variable, 233

Top clause, 488

Top element, need for unique, 554

Top 1 clause, 553

Top 100 Percent clause, 316

Transaction isolation levels, 197, 198-200

Transaction log, 186-187, 403

Transaction log backup, 187, 403

Transaction management, in triggers,

304-305

Transaction processing, error handling in,

246-248

Transaction processing architecture, 186-187

Transactions, 182-205

autocommit, 183-184

concurrency problems with, 205

distributed, 200-202

explicit, 184-186

forgetting to close, 203

implicit, 186

locking, 196-200

locking problems, 203-205

long, 205

named, 192-193, 196

nested, 188-192, 196

savepoints in, 193-196

spanning across servers, 200-202

spanning over batches, 203

T-SQL statements as, 183

using for incremental builds, 462

Trigger restrictions, 293

Triggers, 283-311

cascading deletes using, 305

vs. constraints, 303

deleting, 301

design recommendations, 302-304

disabling, 301

distinct functionality in separate, 303

editing, 299

executing, 285

exiting as soon as possible, 302

identity values and, 379-380

listing, 300

making simple, 303

managing, 298-301

modifying, 301

names of, 51-52

nested and recursive, 293

order of execution, 298

problems of, 304

renaming, 301

roles of, 305

and Rollback Transaction, 234, 304-305

Select and Print and, 303

vs. stored procedures, 304

transaction management in, 304-305

triggering, 287-288

using, 305-311

viewing, 300

on views, 296-298

Trigon Blue web site, 7

TSEqual() function, 359-361

T-SQL basic programming constructs,

85-130

T-SQL cursors, 122-130

T-SQL Debugger, 210, 222-227

T-SQL Debugger in Query Analyzer, 218-222

configuration, 219

requirements, 219

using, 220-222

T-SQL Debugger in Visual Studio, 212-218

configuration, 212-215

Debug menu, 217-218

Locals window, 216-217

requirements, 212

setting input parameters, 216

using, 215-218

Watch window, 217

T-SQL (Transact-SQL), 22, 86

Two-phase commit (2PC), 21, 200-201

Types (XSD schema), defined, 510

U
UDDI (Universal Discovery Description and

Integration), 647

Unconditional execution (GoTo), 119-120

Underscore (_), 48-49, 86

Unicode characters, 90-91, 160-161

Unicode() function, 161

Unique clustered index on a view, 318

Unique key generation with GUIDs, 381-382

uniqueidentifier data type, 96, 381, 624

Universal table, 538

AttributeName component, 539-540

column names template, 539

directives, 540-547

example, 539

Parent column, 538-539

Tag column, 538-539

Update locks, 198

Update statements, 290, 292

assigning variable values in, 103

error in, 239

hints in, 200

Update triggers, 310-311

Update() function, 289-290

Updateable distributed partitioned views,

334-335

UpdateGrams, 588, 615-628

against views, 628

behind the scenes, 624-625

element-centric vs. attribute-centric, 619

executing, 617-618

executing through an URL, 617

executing using SqlXml managed

classes, 617-618

multiple records and tables in, 627-628

optimistic locking with, 625-627

with parameters, 619-621

processing uniqueidentifiers, 624

returning identifier values, 622-624

setting parameters to null, 621-622

special characters in, 624

timestamp values in, 626

Updating a record that has a timestamp field,

357-358

Upper() function, 159

URI (Uniform Resource Identifier), 496

URL queries, client-side XML processing

using, 600

URL (Uniform Resource Locator), 496

accessing database information using,

552-554

for executing DiffGrams, 617, 636-637

parameter list, 559

with XDR schema and XPath query,

579-582

USC-2 code, four-digit hexadecimal, 624

User account, setting up for debugging, 213

User agent, defined, 493

User Name list box, 426

I n d e x 6 7 7

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

User-defined data types, 89, 98-100

User-defined functions, 271-283

built-in functions they cannot call,

274-275

design of, 271-276

editing, 282

inline table-valued, 279-281

limitations of, 274-275

managing application security with,

432-434

managing in Enterprise Manager,

281-283

vs. scalar functions, 279

schema-binding, 276

table-valued, 317

that return tables, 276-279

User-defined stored procedures, 66, 260

Users (database) 420

blocked from accessing the same

table, 470

identifying, 150-151

and Public role, 434

server login links to, 455

Users node, 425

UTC (Universal Time Coordinate), 152

UTF-8 encoding, 592

V
Valid XML document, 501

VANs (Value Added Networks), 525

varbinary data type, 95

varchar data type, 89-90, 613

varchar strings, long, 613

variable data type, default length of, 233

Variable identifiers, 49

Variable scope, in batches, 177

Variable value assignment

from a result set, 232

in an Update statement, 103

using Select for, 100-102

using a Set statement for, 102-103

Variables, 99-107

declaring and assigning, 233

displaying the values of, 103

global, 103-106

local, 99-103

naming, 46-49

null values and, 100

populated by functions, 132

rules for naming, 100

table, 106-107

testing contents of for null, 232

of wrong size or data type, 233

Variant object values, 96

VBScript, for writing ActiveX Script

Task, 641

Verifying success of operations, 106

Version control, 438

Versions, in Visual SourceSafe, 450

Vertical partitioning (partitioned views), 321

View_Metadata option, 313

Views (SQL), 311-339

creating, 314

design of, 311-317

distributed partitioned, 323-335

dynamic, 317

editing data using, 316-317

and execution plans, 314-315

export and import, 336

for improving system performance, 339

indexed, 318-321

INFORMATION_SCHEMA,

317-318

inserting a set of records into, 297

limitations of, 315-316

managing application security with,

432-434

materializing, 318

nonclustered indexes on, 320

partitioned, 321-336

for reducing complexity, 337-338

schema-binding, 313

security and, 314, 336-337, 432-434

for simplifying queries, 337-338

syntax for, 313

that join tables, 322

triggers on, 296-298

types of, 311

unique clustered index on, 318

Views (XML), 571-588, 594

mapping, 584

relational, 586

UpdateGrams against, 628

Virtual directories, 548, 552, 648

Run On The Client option for,

600-601

troubleshooting, 554-556

Virtual name, 548

Visual Basic

COM object created in, 391

communication with T-SQL, 392-393

OLE Automation with, 391

Visual Basic to SQL Server data type

conversion, 393

Visual InterDev, 407

Visual SourceSafe, 438-452

abandoning changes in, 446

adding database objects to, 440-443,

451-452

Diff option, 448-449

history of changes, 446-447

introduction to, 439-440

locking of Create scripts, 443

permission levels, 440

Pin option, 448

Rollback function, 448

Show History, 450

source code control, 211

username and password, 440

versions, 450

viewing code in an ASCII viewer, 448

Visual SourceSafe Administrator, 440

Visual SourceSafe database

administering, 440

location of, 442

Visual SourceSafe Explorer, 446-450

labels and versions, 450

viewing file difference in, 449

Visual SourceSafe Login dialog box, 441

Visual Studio .NET

Add Data dialog box, 464

adding database objects, 440-443

abandoning changes, 446

changing stored procedures, 443-446

Create Command File dialog box, 463

creating a SOAP client, 651-652

deploying Create scripts in, 463-464

incremental build in, 466

managing Create scripts in, 443-446

scripting data in, 457-458

Web Service reference, 651-652

Visual Studio .NET Solution Explorer, 440, 652

Visual Studio .NET suite, 439

Visual Studio .NET T-SQL Debugger, 212-218

Visual Studio .NET XSD Schema Designer, 645

VLDBs (very large databases), managing, 321

W
WaitFor statement, 121

WAP (Wireless Application Protocol), 523

Warnings and lower-priority errors, 234

Web, SQL Server and, 407-415

Web Assistant, 407-411

Web Assistant Wizard, 407-411

Web Assistant Wizard screens

Add Hyperlinks to the Web Page, 410

Limit Rows, 411

Schedule the Web Assistant Job, 409

Select Rows, 409

Select a Table and Columns, 408

Start a New Web Assistant Job, 408

Web page templates, 413-415

Web pages

adding hyperlinks to, 410

formatting, 410

generating, 407-411

Web publishing from SQL Server, 407

Web search engines. See Search engines

Web server (IIS) 547-551

Web Service configuration (.ssc) files, 650

Web Service description (.wsdl) files, 650

Web Services, 647-657

architecture, 647

components, 647

creating using SQLXML, 648-650

implementing using SOAP, 647-657

referencing in Visual Studio .NET, 651-652

Web task stored procedures, 411-413

Web tasks, defined, 411

Web-based application environment, 468

Well-formed XML document, 501

Where clause, 133, 484, 488

While statements, 117-119, 123, 383-384

Wildcards, 470, 482, 484

Windows NT Error Log, 237

Windows NT/2000 Authentication, 420

Windows Script files, running, 395

Windows Script Host, 395, 451

Win32 DLL projects, 263

With Append clause, 289

With Check Option clause, 316

With Encryption clause, 64-65, 73-74, 275,

289, 313

6 7 8 S Q L S e r v e r 2 0 0 0 S t o r e d P r o c e d u r e & X M L P r o g r a m m i n g

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

With Grant Option clause, 428

With Recompile clause, 65, 72

With Schemabinding clause, 276, 313

WML (Wireless Markup Language), 523

WriteXML method, 598-599

WSDL (Web Services Description

Language), 647

W3C (World Wide Web Consortium), 491

Recommendation for XML Schema, 507

Recommendation for XSD facets, 511

www.trigonblue.com, 7

X
Xact_Abort option, 248-252, 334

XDR data types, 574, 664

XDR group constraints, 506

XDR and SQL Server data type mapping, 665

XDR (XML–Data Reduced) schemas, 535

annotations, 571-582

at beginning of XML document, 565

constraints, 504-506

converting to XSD schemas, 583

vs. DTD, 502

main purpose of, 571

mapping relationships, 575-577

namespaces required for, 574

retrieving data using, 577-578

root element, 574, 581

table/view/column mapping, 571-573

template file using, 564-567

URL referencing, 579-582

use of for mapping, 571-582

XML Core Services, 501

XML data providers, 588

XML data retrieval

using ADO.NET, 597-599

using HTTP, 547-588

using SQLXML managed classes, 588

using SqlXmlCommand class, 589-589

using SqlXmlParameter class, 594-595

XML data types, 506

XML document class, 507

XML document element attributes, 494

XML document elements, 493, 654-655

XML document processing instructions,

494-495

XML documents

body section, 499

browser to display, 523

bulk loading large, 644-646

CDATA sections, 497

converting to HTML, 560-564, 570-571

defining a class of, 507

element-based, 574

epilog section, 500

filtering using an XPath query, 582-583

longer than 8000 characters, 613-615

maxOccurs attribute, 505

minOccurs attribute, 505

model attribute, 505

with a number of levels, 532

OpenXML() for, 606-615

order attribute, 505

prolog (document type declaration), 499

quality of, 501-518

query results as, 528-547

resulting from Internet Explorer query, 553

root element, 493, 530, 554-556

simple example, 493

structure of, 499-500

transforming using XSL files,

522-524, 593

valid, 501

well-formed, 501

XDR schema at beginning of, 565

XML (eXtensible Markup Language), 491.

See also SQLXML; XML documents

as one type of rendering language, 523

case sensitivity of, 493

character and entity references, 497-498

client-side processing, 599-603

comments, 496-497

for database developers, 489-526

elements and attributes, 493-494

encoding of binary data in, 536-537

for information exchange between

organizations, 524

for information publishing, 526

introduction to, 492-501

linking and querying in, 518-522

need for and uses for, 524-526

XML fragment identifier, 519

XML fragment specifier, 519

XML fragments, 519, 530, 590

XML mapping schema. See XSD schemas

XML modes (of For XML clause), 528

XML namespaces, 498-499

XML nodes, 571

XML parsers, 498, 500-501

XML processing, server-side vs.

client-side, 600

XML programming requirements, 6

XML revolution, 490-491

XML Schema, 501-502

XML Schema documents. See XSD schemas

XML templates. See Template files

(templates)

XML tree, 531

XML views, 571-588, 594

XML Web Services. See Web Services

xml:lang attribute, 514

XML_ATTRIBUTES constant, 610-611

XML_ELEMENTS constant, 610-611

XML_NOCOPY constant, 610

XML-based e-commerce, 491, 522-523, 525

XMLData option, in For XML clause,

535-536

xmlns attribute, 509

xmlns:xsd attribute, 509

XmlTextReader object, 597

xp_ prefix, 262

xp_cmdshell, 128, 395

xp_findnextmsg, 418

xp_readmail, 417-418

xp_regread, 398-399

xp_regwrite, 399

xp_sendmail, 416-417

XPath, 520-522

XPath abbreviations, 522

XPath queries

against XML views, 594

URL referencing, 579-582

using to filter results, 567

using to filter XML documents, 583

using in a template file, 564-567

XPointer reference, 519

Xpointer() function, 519

XSD by example, 517

XSD facets, 510-511, 517

XSD Inference, 517

xsd prefix, 508

XSD Schema Designer, 514-517, 645

XSD schema tools, 514-518

XSD Schema Validator, 517-518

XSD schemas (XML Schema documents),

507-518

annotating, 514

built-in data types, 666-668

complex types, 512

converting XDR schemas to, 583

defined, 508

element and attribute declaration, 510

global attributes and elements, 510

groups, 513

for large document to bulk load, 644-646

namespace required by, 583

root element, 584

simple type declarations, 510

structure declarations, 509

XML views based on annotated,

582-588

xsd:annotation element, 514, 584

xsd:appinfo element, 514, 584

xsd:attributeGroup element, 513

xsd:documentation element, 514

xsd:group element, 513

xsd:restriction element, 510

xsd:schema root element, 509

xsd:sequence element, 512

xsd:simpleType element, 510

XSL (eXtensible Stylesheet Language),

523-524

XSL file segments, 562

XSL transformations, 557, 560-564,

570-571, 593

xsl:template, 562

xsl:value-of element, 563

XSLT processors, 524

I n d e x 6 7 9

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 / Index

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.

TEL +61-2-9900-1800

FAX +61-2-9878-8881

http://www.mcgraw-hill.com.au

books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.

TEL +905-430-5000

FAX +905-430-5020

http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA

(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-210-6560-990

TEL +30-210-6560-993

TEL +30-210-6560-994

FAX +30-210-6545-525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589

http://www.mcgraw-hill.com.mx

fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)

McGraw-Hill Book Company

TEL +65-6863-1580

FAX +65-6862-3354

http://www.mcgraw-hill.com.sg

mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045

robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de España, S.A.U.

TEL +34-91-180-3000

FAX +34-91-372-8513

http://www.mcgraw-hill.es

professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,

EASTERN, & CENTRAL EUROPE

McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224

http://www.mcgraw-hill.co.uk

computing_europe@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:

McGraw-Hill/Osborne

TEL +1-510-420-7700

FAX +1-510-420-7703

http://www.osborne.com

omg_international@mcgraw-hill.com

D_Base / SQL Server 2000 Stored Procedure & XML Programming / Sunderic / 222896-2 /
Blind Folio 680

P:\010Comp\D_Base\896-2\index.vp
Wednesday, April 30, 2003 1:30:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	SQL Server 2000 Stored Procedure & XML Programming
	Cover

	Contents at a Glance
	Contents
	Chapter 1 Introduction
	Who Should Read This Book
	What You Will Find in This Book
	Requirements
	Stored Procedure Programming Requirements
	XML Programming Requirements

	Sample Database and Other Resources
	Sample Database Installation
	Purpose and Design of the Sample Database
	Database Diagram

	Chapter 2 The SQL Server Environment
	SQL Server 2000 Tools
	Service Manager
	Query Analyzer
	Enterprise Manager
	DTS and Import/Export Data
	osql and isql
	SQL Server Profiler
	Client Network Utility
	Server Network Utility
	The Help Subsystem and SQL Server Books Online
	SQL Server on the Web

	Basic Operations with Stored Procedures
	What Are Stored Procedures?
	Execution of Stored Procedures from Query Analyzer
	Managing Stored Procedures from Enterprise Manager
	Editing Stored Procedures in Enterprise Manager
	Editing Stored Procedures in Query Analyzer
	Syntax Errors

	Naming Conventions
	Why Bother?
	Naming Objects and Variables
	Suggested Convention

	Chapter 3 Stored Procedure Design Concepts
	Anatomy of a Stored Procedure
	Composition
	Functionality
	Syntax

	Types of Stored Procedures
	Compilation
	The Compilation and Execution Process
	Reuse of Execution Plans
	Recompiling Stored Procedures
	Storing Stored Procedures

	Managing Stored Procedures
	Listing Stored Procedures
	Viewing Code of Stored Procedures
	Renaming Stored Procedures
	Deleting Stored Procedures
	Listing Dependent and Depending Objects

	The Role of Stored Procedures in the Development of Database Applications
	Enforcement of Data Integrity
	Consistent Implementation of Complex Business Rules and Constraints
	Modular Design
	Maintainability
	Reduced Network Traffic
	Faster Execution
	Enforcement of Security

	Chapter 4 Basic Transact-SQL Programming Constructs
	T-SQL Identifiers
	Database Object Qualifiers
	Data Types
	Character Strings
	Unicode Character Strings
	Date and Time Data Types
	Integer Numbers
	Approximate Numbers
	Exact Numbers
	Monetary Data Types
	Binary Data Types
	Special Data Types

	Variables
	Local Variables
	Global Variables
	Table Variables

	Flow-Control Statements
	Comments
	Statement Blocks: Begin…End
	Conditional Execution: The If Statement
	Looping: The While Statement
	Unconditional Execution: The GoTo Statement
	Scheduled Execution: The WaitFor Statement

	Cursors
	Transact-SQL Cursors
	Cursor-Related Statements and Functions
	Problems with Cursors
	The Justified Uses of Cursors

	Chapter 5 Functions
	Using Functions
	In Selection and Assignment
	As Part of the Selection Criteria
	In Expressions
	As Check and Default Constraints
	Instead of Tables

	Types of Functions
	Scalar Functions
	Aggregate Functions
	Rowset Functions

	Chapter 6 Composite Transact-SQL Constructs: Batches, Scripts, and Transactions
	Batches
	Using Batches
	Batches and Errors
	DDL Batches
	Self-Sufficient Content

	Scripts
	Database Scripting

	Transactions
	Autocommit Transactions
	Explicit Transactions
	Implicit Transactions
	Transaction Processing Architecture
	Nested Transactions
	Named Transactions
	Savepoints
	Locking
	Distributed Transactions
	Typical Locking Problems

	Chapter 7 Debugging and Error Handling
	Debugging
	What Is a "Bug"?
	The Debugging Process
	Debugging Tools and Techniques
	SQL Profiler
	Typical Errors

	Error Handling
	Raiserror
	Using Error Handling
	Why Bother?
	Tactics of Error Handling
	A Coherent Error Handling Methodology
	Xact_Abort
	Another Coherent Error Handling Methodology

	Chapter 8 Special Types of Procedures
	Types of Stored Procedures
	User-Defined Stored Procedures
	System Stored Procedures
	Extended Stored Procedures
	Temporary Stored Procedures
	Global Temporary Stored Procedures
	Remote Stored Procedures

	User-Defined Functions
	Design of User-Defined Functions
	Table-Valued User-Defined Functions
	Inline Table-Valued User-Defined Functions
	Managing User-Defined Functions in Enterprise Manager

	Triggers
	Physical Design of After Triggers
	Handling Changes on Multiple Records
	Nested and Recursive Triggers
	Trigger Restrictions
	Instead-of Triggers
	Triggers on Views
	Trigger Order of Execution
	Managing Triggers
	Trigger Design Recommendations
	Transaction Management in Triggers
	Using Triggers

	Views
	Design of Standard SQL Views
	Dynamic Views
	INFORMATION_SCHEMA Views
	Indexed Views
	Partitioned Views
	Using SQL Views

	Chapter 9 Advanced Stored Procedure Programming
	Dynamically Constructed Queries
	Executing a String
	Query By Form
	Data Script Generator
	Using the sp_executesql Stored Procedure
	Security Implications

	Optimistic Locking Using timestamp Values
	timestamp
	TSEqual() Function
	timestamp Conversion

	Full-Text Search and Indexes
	Nested Stored Procedures
	Using Temporary Tables to Pass a Recordset to a Nested Stored Procedure
	Using a Cursor to Pass a Recordset to a Nested Stored Procedure
	How to Process the Result Set of a Stored Procedure

	Using Identity Values
	A Standard Problem and Solution
	Identity Values and Triggers
	Last Identity Value in the Scope

	GUIDs
	A While Loop with Min() or Max() Functions
	Looping with sp_MSForEachTable and sp_MSForEachDb
	Property Management

	Chapter 10 Interaction with the SQL Server Environment
	Execution of OLE Automation/COM Objects
	Data Type Conversion

	Running Programs
	Running Windows Script Files
	Running/Looping Through DTS Packages
	Interacting with the NT Registry
	xp_regread
	xp_regwrite

	Jobs
	Administration of Jobs
	An Alternative to Job Scheduler
	Stored Procedures for Maintaining Jobs
	Operators and Alerts

	SQL Server and the Web
	Web Assistant
	Web Task Stored Procedures
	Web Page Templates

	E-Mail
	Extended Stored Procedures for Working with E-Mail

	Security
	Security Architecture
	Implementing Security
	Synchronization of Login and Usernames
	Managing Application Security Using Stored Procedures, User-Defined Functions, and Views
	Managing Application Security Using a Proxy User
	Managing Application Security Using Application Roles

	Chapter 11 Source Code Management and Database Deployment
	The Concept of Source Code Management
	Introduction to Microsoft Visual SourceSafe
	Administering the Visual SourceSafe Database
	Adding Database Objects to Visual SourceSafe in Visual StudioNET
	Managing Create Scripts in Visual StudioNET
	Visual SourceSafe Explorer
	Adding Database Objects to Visual SourceSafe: Traditional Approach

	Database Deployment
	Deployment of a Complete Database: Traditional Approach
	Deployment of Individual Objects

	Chapter 12 Stored Procedures for Web Search Engines
	Characteristics of the Environment
	A Simple Solution...
	...and Its Disadvantages
	Available Solutions
	Result Splitting
	Quick Queries
	Advanced Queries

	Chapter 13 Introduction to XML for Database Developers
	XML (R)evolution
	Introduction to XML
	Introduction to Markup Languages
	Building Blocks of Markup Languages
	XML Elements and Attributes
	Processing Instructions
	Document Type Definition
	XML Comments and CDATA sections
	Character and Entity References
	XML Namespaces
	Structure of XML Documents
	XML Parsers and DOM

	XML Document Quality
	XML Schema and XML Schemas
	XML–Data Reduced (XDR) Schema
	XML Schema (XSD)

	Linking and Querying in XML
	XPointer
	XPath

	Transforming XML
	XSL
	XSLT

	Why XML?
	Exchange of Information Between Organizations
	Information Publishing

	Chapter 14 Publishing Information Using SQLXML
	For XML Clause
	Auto Mode
	Aggregate Functions
	Computed Columns
	The Elements Option
	The XMLData Option
	The BINARY Base64 Option
	Raw Mode
	Explicit Mode

	Publishing Database Information Using HTTP
	Configuring Database Access Through HTTP
	Accessing Database Information Using a URL
	Troubleshooting Virtual Directories
	Executing a Stored Procedure Through HTTP
	Accessing Database Information Using Templates
	POSTing Queries to the Server
	XML Views Based on Annotated XDR Schemas
	XML Views Based on Annotated XSD Schemas

	Programmatic Database Access
	Retrieving XML Data Using SQLXML Managed Classes

	Retrieving XML Data Using ADO.NET
	Using SqlCommand
	Using DataSet Objects

	Client-Side XML Processing
	Using URL Queries
	Using Templates
	Using SQLXML Managed Classes
	Processing of Queries with the For XML Clause

	Chapter 15 Modifying Databases Using SQLXML
	OpenXML()
	Document Preparation
	Closing the Document
	Retrieving the XML Information
	Metaproperties in OpenXML()
	What if an XML Document Is Longer Than 8000 Characters?

	UpdateGrams
	Executing UpdateGrams
	Element-centric vs. Attribute-centric UpdateGram
	UpdateGrams with Parameters
	Setting Parameters to Null
	Returning Identifier Values
	Special Characters
	UpdateGrams Behind the Scene
	Optimistic Locking with UpdateGrams
	Multiple Records and Multiple Tables in a Single UpdateGram

	DiffGrams
	Using DiffGrams to Insert Data
	Using DiffGrams to Update Data
	Using DiffGrams to Delete Data
	Processing Multiple Records Using DiffGrams
	DiffGrams Behind the Scene
	Executing DiffGrams Programmatically Using SqlXmlCommand
	Executing DiffGrams Using URLs
	Generating DiffGrams After DataSet Change
	Debugging DiffGrams

	SQLXML BulkLoad
	Executing SQLXML BulkLoad from aNET Application
	Error Log File
	Executing BulkLoad from DTS (Using VBScript)
	Schema Generation
	BulkLoad Transactions
	Data Integrity
	Table Lock
	Using SQLXML BulkLoad
	Mapping Schema

	XML Web Services
	SOAP Messages and XML Web Services Architecture
	Using SQLXML to Create XML Web Services
	CreatingNET SOAP Clients

	Appendix T-SQL and XML Data Types in SQL Server 2000
	Index

