

Professional SQL Server®

Reporting Services

Paul Turley
Todd Bryant

James Counihan
George McKee

Dave DuVarney

Wiley Publishing, Inc.

68787_finalFM.qxp 26/03/2004 3:49 PM Page iii

68787_finalFM.qxp 26/03/2004 3:49 PM Page ii

Professional SQL Server®

Reporting Services

68787_finalFM.qxp 26/03/2004 3:49 PM Page i

68787_finalFM.qxp 26/03/2004 3:49 PM Page ii

Professional SQL Server®

Reporting Services

Paul Turley
Todd Bryant

James Counihan
George McKee

Dave DuVarney

Wiley Publishing, Inc.

68787_finalFM.qxp 26/03/2004 3:49 PM Page iii

Professional SQL Server® Reporting Services
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-6878-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700. Address
requests to the Publisher for permission to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint
Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, Email: permcoordinator@wiley.com.

For general information on our other products and services or for technical support, contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Microsoft SQL Server is a
trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

68787_finalFM.qxp 26/03/2004 3:49 PM Page iv

About the Authors

Paul Turley
Paul is an instructor for Netdesk Corporation in Seattle. As a consultant, he has worked with Microsoft
Consulting Services on enterprise-scale development projects and has created reporting solutions using
Crystal Reports, Active Reports, and Access. Since 1988, he has managed IT projects, designed and
programmed applications using Visual Basic 3, 4, 5, 6, ASP.NET, ADO.NET, and SQL Server. He obtained
his MCSD certification in 1996. Other certifications include MCDBA, IT Project+ and Microsoft Solutions
Framework (MSF) Practitioner.

He designed and maintains www.Scout-Master.com, a web-based service that enables Boy Scout units to
manage their membership and advancement records online using ASP.NET, SQL Server 2000, and
Reporting Services. Paul has been a contributing author on books and articles including Professional
Access 2000 Programming, Beginning Access 2002 VBA, and SQL Server Data Warehousing with Analysis
Services from WROX Press.

My deepest appreciation goes to my wife, Sherri, and our children: Josh, Rachael, Sara, and Krista for
their support and understanding while barricading myself in my office for four months. Thanks to Todd
Shelton, Lance Baldwin, and the rest of the Netdesk team for supporting our efforts and putting up with
this madness.

For their contributions, special thanks to: Tommy Joseph, Disney Internet Group; Andrew Bryan,
Dundas Software; Dennis Higgins, Strafford Technology; Mario Raia, Combined IQ.

Paul Turley contributed Chapters 1, 3, 4, 5, 10, 14, and Appendices D and E to this book.

Todd Bryant
Todd has been creating custom data-focused applications and reporting solutions since the early
eighties. He began using Microsoft technologies in 1998 and the love affair began. Todd has been
contract programming, teaching, and developing custom courseware every since. He is currently
working as a trainer at Netdesk Corporation, where he concentrates on Enterprise Solutions, Com+
Services, and Object Oriented Programming using both VB.NET and C#. His certifications include the
MCSD, MCSE, MCDBA, and MCT certifications from Microsoft, the CNA certification from Novell, and
both CompTIA's A+ and CTT+.

I would like to thank my parents Janice, Gary, and Abby for believing in me. I was not always who I am
today. Secondly, I would like to thank my daughter Ali for putting joy in my life, Christine for showing
me love, and Tommy and Stephanie for teaching me the true meaning of the word compromise. Lastly, I
would like to thank the Lord above who placed so many good people in my life and made all this
possible.

Todd Bryant contributed Chapters 11 and 12 and Appendix C to this book.

68787_finalFM.qxp 26/03/2004 3:49 PM Page v

James Counihan
James started working with databases and reporting applications when doing research for the
government back in 1979. Since then his program management and development experience has been
primarily in the retail and energy industries. He's been teaching development courses at Netdesk
Corporation in Seattle for the past three years, focusing on integrating LOB applications using Microsoft
application servers and web services.

Thanks to my wife and family. It was only with their understanding and support that I was able to
participate in this project. With my deepest love and appreciation, thank you!

James Counihan contributed Chapters 6 and 8 and Appendix B to this book.

George McKee
George McKee is a Solution Developer for Avanade Inc., a Seattle-based integrator for Microsoft
technology that's a joint venture between Accenture Ltd. and Microsoft. George specializes in the in-
house financial systems of Avanade. He has a degree in Chemical Engineering from Brigham Young
University and has been using computers and databases to resolve technical and business problems for
25 years. George has MCAD and MCSD certifications. When not sitting in front of a computer, George
likes to be found in backcountry skiing in the Washington Cascade Mountains. He can be reached via
email at georgem@avanade.com.

I would like to thank my wife Becky for tolerating various forms of computing at meal times and my
physical and mental absence from many family activities while writing this book. My children (George
Jr., Ben, Rosie, and Emily) deserve an honorable mention for patience with my generally distracted
interest in their activities during the production of this book.

George McKee contributed Chapter 13 and Appendix A to this book.

Dave DuVarney
Dave DuVarney is a Senior Consultant at Aspirity, LLC where he provides consulting and training
services in the fields of business intelligence and software development. He brings over 5 years of
finance, programming, and development methodologies experience to high technology business
intelligence solutions. Prior to joining Aspirity, Dave was a development instructor teaching a wide
range of Microsoft technologies. Dave also spent his early career working for a Seattle-based CPA firm.

When Dave is not working, he enjoys running. At the time of publishing, he is training for his first full
marathon.

I would like to thank my wife, Stephanie, for all the love and support she has provided in this process. I
would also like to thank my parents, Marcus and Trudy, for giving me the opportunities that have
helped me succeed in life.

Dave DuVarney contributed Chapters 2 and 9 to this book.

68787_finalFM.qxp 26/03/2004 3:49 PM Page vi

Authors
Paul Turley
Todd Bryant
James Counihan
George McKee
Dave DuVarney

Acquisitions Editors
Sharon Cox
Katie Mohr

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Robert Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Editorial Manager
Kathryn A. Malm

Production Editor
Pamela Hanley

Book Producer
Peer Technical Services Pvt. Ltd.

Credits

68787_finalFM.qxp 26/03/2004 3:49 PM Page vii

68787_finalFM.qxp 26/03/2004 3:49 PM Page viii

Foreword

Jason Carlson
Many people have asked me, "How can you be so passionate about reporting when it is so mundane?"
To me the most exciting thing about reporting is that it is so very common. Like basic transportation,
everybody uses it in some way or another. A report is a piece of art, meant to covey a message; but
unlike traditional art, that message changes based on the data driving it. The potential to help, and be
used by, millions of people and companies is one of the reasons I started writing software and
eventually joined Microsoft. No other company can reach out to so many people by making great
products accessible.

Reporting is a very broad topic covering areas ranging from packing lists and telephone bills to ad hoc
analysis and Excel spreadsheets. When designing Microsoft SQL Server Reporting Services, I started
with a simple definition for it: an information delivery platform. While this definition is also very broad,
it did allow us to focus on our design while leaving us significant room to expand in later versions. This
book will help you understand the power of Reporting Services and fully to utilize its capabilities.

Information is not just data; it is data that has been transformed into something meaningful. This
transformation is important. Any tool can read and display data; what people really need for doing their
jobs is well thought out, correct, and pertinent information. There are many tools that allow anyone with
access to data to build "views" or "reports". However, many times these users are unfamiliar with all of
the nuances of the data storage and can produce inaccurate results or inadvertently affect the
performance of the data engine. Reporting Services acts as the official source so that there is only one
version of the truth that everyone uses.

In future, Microsoft plans to take this even further by integrating with Information Rights Management
so that not only does the information come from a single source, but is also certified, can expire, and is
access-controlled even after it is delivered to the end user. The data does not always exist in one
database or even come from a database. For those of us who have spent careers working with corporate
data, this is a painful truth. Very few reports (or sets of reports that give you sufficient insight) come
from a single source. Building some type of data mart or data warehouse is the best solution, but not
always possible due to timing, policy, or budgetary constraints. Reports must be able to retrieve data
from any source and combine them in a single report.

What good is information if you do not have it when you need it? Delivering information is more than
just processing it and making it available; it is providing information when you need it, in any format,
and on any device that you have. The common case today is the ubiquitous online access via HTML in a
browser. This is perfect when you have a computer and connectivity to the server. However, as we all
know, nothing is perfect. We need the reports when we are on a plane, in a car, with the customer, at the
game, on the production floor, etc. This may include your pager, telephone, fax machine, laptop, paper,
and other devices. We also need different capabilities: interactivity, pixel perfect printing, integration
into applications like MS Excel for "What if" scenarios and additional analysis, universal access via PDF,
etc. A single format and a single delivery channel is not enough, but how do you know which ones you

68787_finalFM.qxp 26/03/2004 3:49 PM Page ix

x

Foreword

will need? Reporting Services insulates you from these choices. All reports may be distributed in any
channel or rendered in any format. Report design is independent of how it will be consumed. It is the
responsibility of the system to provide the report as accurately as possible, given the constraints of the
specific format or channel requested.

Building a platform is very different from building a solution. In fact the goals are in many cases
completely opposed. A platform is successful if the developers and administrators have complete access
to all aspects of the product. They need to be able to optimize, extend, restrict, embed, and replace parts
of the product to meet their needs. This means that all of the APIs are available and documented, all
formats are open and described, and every component is configurable or replaceable. While there are
always restrictions due to the many tradeoffs in software design, this was the goal when building
Reporting Services. Very much like Windows, SQL Server, or Visual Studio, Reporting Services is
designed to enable developers to build on a solid foundation and mold it to meet the business needs in
significantly less time and with more functionality, but without losing the flexibility and power of
building it themselves.

Looking to the future, there's an endless list of features and scenarios that Microsoft will add to make the
platform more powerful with little or no additional in-house development required. I have mentioned
some, and there are many that haven't even been considered yet.

We look forward to hearing from all of our customers about what is important to them and how we can
make designing, building, and operating their information delivery systems easier, faster, and (I hope)
more fun.

Jason Carlson
SQL Server Reporting Services Product, Unit Manager, Microsoft

Jason Carlson is the Product Unit Manager for SQL Server Reporting Services. He joined Microsoft in
1996 as a Program Manger for Visual Source Safe and Repository. In 1997, the Repository team joined
SQL Server and Jason became the development manager for SQL Server Meta Data Services. In 2001,
he built a team and started work on V1 of Reporting Services. Before joining Microsoft, Jason owned
and operated an independent software development company. This company provided consulting and
vertical software solutions for healthcare and telecommunications.

.

68787_finalFM.qxp 26/03/2004 3:49 PM Page x

Foreword

David Cunningham
Agility. In business today, key decisions must be made daily or weekly rather than monthly or quarterly.
Leading companies realize that to increase the speed of competitive response, their corporate agility,
they need to delegate as much decision-making authority as possible to employees on the front lines.
Real-time bidding systems, reverse auctions, accurate costing on spot production, build-to-order
manufacturing, a world-wide labor force, and globalization. These are just a handful of the trends in
today's business climate that demand better decisions faster.

To be successful in this new model, employees need the best quality information they can possibly get.
Information must be accurate, timely, and reliable; and it must be the information they need. Whether
your employees are trying to maximize revenues by intelligently attacking new markets, or minimizing
expenses through astute purchasing, they absolutely must have the right information at their fingertips.

Microsoft's release of SQL Server 2000 Reporting Services marks an important milestone in the world of
business intelligence: information truly accessible to the masses. By building reporting functionality
directly into Microsoft's Enterprise Data Platform, SQL Server 2000, software developers and
information architects can now count on the availability of a high quality, scalable, and robust
architecture on which to build their reporting systems.

For the past 20 years Business Intelligence (BI) has been working its way deeper and deeper into the
Enterprise. Previously, the domain of a handful of highly skilled analysts high in the corporate ivory
tower, BI is now in the hands of line managers, department heads, and knowledge workers at the very
edge of today's organizations.

In the past, dependable reporting systems could be horrendously expensive, with organizations forced
to deploy robust reporting services only where the greatest gains could be realized. Microsoft's long-
standing objective of reducing information technology cost to spur adoption is again evident in the SQL
Server 2000 Reporting Services licensing model. This technology is licensed to anyone currently licensed
for SQL Server 2000 and so essentially represents no additional cost. This is a fantastic development for
software developers and users alike; it will dramatically increase the adoption and distribution of
detailed, accurate, and timely reporting and will push quality BI even further down into the Enterprise.

In this excellent book, the authors walk us through SQL Server 2000 Reporting Services from the basics
of practical reporting through deployment and management of reporting solutions written for BI
Solution architects, designers and developers; it is certainly a most valuable resource.

David Cunningham
President & CEO, Dundas Software

Dundas Software has provided charting and graphing technology under license to Microsoft for
inclusion in SQL Server 2000 Reporting Services and is readying additional data visualization
extensions for the next version of SQL Server, code-named 'Yukon'.

68787_finalFM.qxp 26/03/2004 3:49 PM Page xi

68787_finalFM.qxp 26/03/2004 3:49 PM Page xii

Contents

Introduction xxvii

Chapter 1: Getting Started with Reporting Services 1
Who Is This Book for? 2
Agility 2
The Way We Were 3
That Was Then, This Is Now 4
Business Intelligence and Decision Support 4
Automation to the Rescue – A Scenario 5
Challenges of Existing Reporting Solutions 6
How Does SQL Server Reporting Services Meet This Challenge? 7
Business Intelligence Solutions 8
Who Uses Reports and Why? 8

Executive Leadership 9
Managers 9
Information Workers 9
Customers 10
Vendors and Partners 10

Reporting with Relational Data 10
Reporting for Decision Support 10
Data Warehouses 10
The Reporting Lifecycle 11
Report Delivery Application Types 12

Web Browser 12
Office Applications 12
Programmability 13
Subscriptions 13
Report Formats 13
Importing Data/Exchanging Data 13

System Requirements 13
Installing Reporting Services 15

Setup Options 15
Adding and Removing Options 16

Server Components 16
Client Components 16

Books Online 17
Reporting Services Samples 17
AdventureWorks Database 17

68787_finalFM.qxp 26/03/2004 3:49 PM Page xiii

xiv

Administrative Tools 17
Command Line and Unattended Installation 18
Log Files 18

Email Delivery 18
Designing Reports 18

Form Reports 18
Tabular Reports 18
Groupings and Drill-Down 19
Drill-Through Reports 19
Multi-Column Reports 19
Matrix 19
Charts 19
Data Sources 19
Queries 19
OLAP Reporting 20

Using Visual Studio .NET 20
Report Wizard 20
The .NET Framework 20

Custom Reporting Extensions 21
Data Processing Extensions 21
Delivery Extensions 21
Configuration Files 21
Scripting 22

Subscriptions 22
Securing Reports 22
The Report Manager 23

Designing Reports 24
URL Access to Reports 26
Rendering Reports in Program Code 26

Report Definition Language 26
Deploying Reports 27
Designing and Architecting Report Solutions 27

Summary 27

Chapter 2: Reporting Services Architecture 29
The Reporting Lifecycle 30

Authoring 30
Management 30
Delivery 31

Reporting Services Features 31
Visual Studio .NET 2003 Integration 31

Query Designer 31
Server Explorer 31
Visual Source Safe 32
Report Designer 32

Report Server Features 32
Central Report Storage 32
Security 32
Report Delivery 33

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xiv

xv

Chapter Title

Scheduling 33
Programming Interface Features 34

Open Architecture 34
Complete Access 34

Report Server Components 34
Report Processor 34

Report Request Handling 35
Report Definition 35
Intermediate Format 35
Caching 35
Session Cache 35
Cached Instances 35
Snapshots 36
Report Processing Illustrated 36

Data Processing Extensions 37
Data Processing Defined 37
Supported Providers 37

SQL Server Provider 37
Oracle Provider 37
OLEDB Provider 37
ODBC Processing Extension 38

Data Processing Extensions and Data Providers 38
Supported Rendering Extensions 39
Excel 39
PDF 39
HTML 39
Web Archive (MHTML) 40
CSV 40
TIFF 40
XML 40

Customized Extensions 41
Scheduling and Delivery Processor 41
Scheduling 41
Delivery 42
Scheduling and Delivery Processor Illustrated 43

Email 45
File Share 45
Custom Extensions 45

Report Server Databases 46
ReportServer Database 46
ReportServerTempDB Database 47
Viewing Execution Information 48

The Reporting Services Web Service 48
Web Services 48
Open Standards 48
Visual Studio .NET Integration 49
Available Features 49

Report Designer 50
Visual Studio .NET 50
Report Definition Language (RDL) 50

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xv

xvi

Reporting Services Tools 50
Report Manager 50
Report Server Command-Line Utility (RS.EXE) 51

Reporting Services Illustrated 51
Summary 52

Chapter 3: Designing Reports 55
Using the Report Wizard 56

Establishing a Data Source 57
Building a Query 59
Define the Report Structure 62
Specify the Deployment Location 63
The Report Designer 65
Scale Units 65

Importing Reports 68
Using RDL 69
Importing Access Reports 69

Plan for Extensibility 69
Browser Compatibility 70
Offline Viewing 70
Mobile Device Support 71

Report Items and Data Regions 71
Textbox Report Item 72
Line Report Item 73
Rectangle Report Item 74
Image Report Item 74
Subreport Item 76
Chart Report Item 77
Drill-Down and Drill-Through Reports 79
Tabular Reports 80
Grouping Data 80

Table Report Data Region 80
List Report Data Region 80
Matrix Report Data Region 81

Subtotals 82
Formatting 85

Standard Formatting 85
Explicit Formatting 86
Conditional Formatting 88
Multiple Columns 89

Pagination Control 90
Page Breaks for a Rectangle 91
Page Breaks for a List 91
Page Breaks for a Table 92
Page Breaks for a Group 92
Page Breaks for a Matrix 93
Page Breaks for a Chart 93

Printing Considerations 93
Summary 94

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xvi

xvii

Chapter Title

Chapter 4: Designing Data Access 95
Reporting for Relational Data 97

A Dataset Is Not a Dataset 97
Query Basics 97

Data Sources 98
Creating a Data Source in the Report Wizard 98
Creating a Data Source from the Project Add Item Template 99
Creating a Data Source When Defining a Dataset 99

Data Sources and Query Languages 100
Filtering Techniques 101

Filtering Data with Query Parameters 102
Report Parameters 103
Basing a Parameter on a Query 105
Cascading Parameters 106
Using Stored Procedures 112
Filtering Data with Report Parameters 116

Summary 119

Chapter 5: Advanced Report Design 121
Creating a Tabular Report Using a Table 122
Column Placement and Indentation 125
Headers and Footers 126
Drill-Down Reports 128
Creating a Document Map 130
Links and Drill-Through Reports 132

Bookmarks and Links 132
Drill-Through 132

Recursive Data 134
Subreports 137
Charting 139

Column Charts 141
3-D Column Charts 141
Stacked Column Chart 142

Area and Line Charts 142
Pie Charts 143
Bubble Charts 143
A Charting Example 144

Custom Fields 149
Conditional Expressions 150
Using Custom Code 151

Using Custom Code in a Report 152
Using a Custom Assembly 153

Designing for Mobility 156
Screen Size 156
Offline Solutions 158

Summary 159

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xvii

xviii

Chapter 6: Managing Reports Using the Report Manager 161
Introduction to the Report Manager 161

What Is Report Management? 162
Understanding the Report Manager 162
The Report Manager Interface 163
Navigating the Report Manager Interface 165

Navigation Tools 165
Breadcrumb Trail 166
Tabs and Options Toolbar 166
Local Menu 166
Global Toolbar and Details Button 167
Searching for Folders and Reports 168
The Report Manager Help 168

About System Site Settings 168
Report History Default Settings 169
Report Execution Timeout 169
Report Logging 169
About My Reports 170

Working with Folders and Reports 171
Creating New Folders 171
Moving Items into a Folder 172

Working with Data Sources 174
Configuring Shared Data Sources 175
Data Source Credentials 177

Credentials Supplied by the User 177
Credentials Stored Securely 178

Configuring Users and Permissions 178
About Report Manager Security 178
Understanding Role-Based Security 179
Using Report Manager Default Security 179
Understanding Roles 180
Understanding Tasks 180
System Tasks and Item Tasks 181
Understanding the Predefined Roles 181

System Administrator 182
System User 183
Content Manager 183
Publisher 184
My Reports 184
The Browser Role 184

Creating a New Role Definition 185
Understanding Role Assignments 186
Creating Role Assignments 187

System Security and Network Considerations 189
Revoking Access to My Reports 190
Intranet and Extranet Considerations 190

Viewing, Executing, and Scheduling Reports 191
Viewing Reports 191
Linked Reports 191
On-Demand Reports and Subscriptions 191

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xviii

xix

Chapter Title

The Report Execution Process 192
Providing Report Parameters and Credentials 193

On-Demand Reports 194
Caching the Report for Other Users 194
Creating and Editing Schedules 196
Snapshot Reports 198
Creating a Report History 199

Report Subscriptions 200
Standard Subscriptions 202
Data-Driven Subscriptions 202

Summary 203

Chapter 7: Managing Reports Using Program Code 205
Professional SQL Reporting Services Manager 205
Building the Visual Interface 207
Adding a Reference to the Web Service 210
Consuming the Web Service 212
Filling the Treeview 215
Credentials 219
Displaying the Folder Contents 221
Adding/Updating Folders 223

Folder Form 225
Deleting an Item from a Folder 238
Importing Report Definition Files 240
Managing Security 244

Tasks 244
Roles 244
Policies 244
Building the Security Forms 244

Policy Form 244
Adding, Editing, and Deleting Security Policies 250
Adding, Editing, and Deleting Security Roles 261

RoleForm 261
Adding, Editing, and Deleting Roles 266

Role Task Form 266
Summary 275

Chapter 8: Report Scripting 277
Command Line Utilities 277

rsconfig 278
rskeymgmt 278
rsactivate 279
rs 279

Automating Server and Report Management 279
Reporting Services RS Utility 280

RS Utility Command Line Syntax 280
RS Utility Errors 282

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xix

xx

Script Development 283
Script Format Requirements 283
Namespaces Available 283

System 283
System.IO 284
System.Xml 284
System.Web.Services 284
Reporting Services Web Service 284

Building a Script Development Harness 285
Creating the Console Project 285
Adding Imports Statements 287
Adding References 288
Using Conditional Compilation 290

Accessing Server Items 291
Creating the Proxy Instance 291
Passing Variable Values to the Script 293
Retrieving Items 293
Building Message Content 293

Retrieving Reports 295
Retrieving Report Items 295
Getting Report Definitions 296

Deploying Reports 297
The CreateReport Method 297
Error Handling 298

Logging Events 298
Opening the File 298
Writing XML Nodes 299

Running the Script 301
Scheduling the Script 302
Summary 305

Chapter 9: URL Access and Programmatic Rendering 307
URL Access 308

URL Syntax 308
Accessing Reporting Services Objects 308

Folders 309
Data Sources 309
Resources 311
Reports 312

Reporting Services URL Parameters 312
Parameter Prefixes 313
Parameters 314

Passing Report Information through the URL 318
Report Parameters 318
Rendering Snapshot History 319
URL Rendering Summary 319

Programmatic Rendering 320
Common Scenarios 320

Custom Security 320

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xx

xxi

Chapter Title

Server-Side Parameters 320
Rendering through Windows 321

Building the Application Interface 321
Setting Up the Reporting Service Web Service 321
Retrieving Report Information 325
Retrieving Report Parameters 328
Rendering a Report to a File System 330
Rendering a Report to the File System Summary 337

Rendering to the Web 337
Using Integrated Authentication 337
Modifying the web.config File 338
Setting Up the Reporting Service Web Service 339
Rendering to the Response Object 339
Rendering to the Web Summary 345

Summary 346

Chapter 10: Report Caching and Subscriptions 347
Report Delivery 347

Caching 347
Cached Instances 349
Snapshots 349

History 349
Storing Parameters 350

Parameterized Filters 350
Configuring Credentials for Data Sources 351

Storing Credentials 351
Linked Reports 353

Configuring Cached Reports 353
Subscriptions 357

Snapshot-Triggered Subscriptions 358
Schedule-Triggered Subscriptions 359

Individual and Shared Schedules 359
Configuring Email Delivery 361
File Share Subscriptions 361

Pocket PC Report File Updates 363
Data-Driven Subscriptions 363
Managing Subscriptions 365
Using the Reporting Service Web Service 366
Managing Subscriptions Using Script 375
Summary 376

Chapter 11: Report Definition Language 379
RDL – Underlying Technology 379

What Is XML? 380
XML Naming Rules 380

XML Elements 380
XML Attributes 381
XML Documents 382
XML Namespaces 383

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxi

xxii

XML Schema 384
What Is RDL? 388

Document RDL 390
Data RDL 392
Control RDL 396

TextBox 396
Line 397
Rectangle 397
Table 397
Matrix 398
List 399
Image 399
Subreport 400
Chart 400

Creating RDL 401
RDL with .NET 401
RDL with CodeSmith 402

Summary 409

Chapter 12: Extending Reporting Services 411
Overview 411
The Missing Pieces 412

Security Extensions 412
Rendering Extensions 412
Extensible Report Designer Classes 413

Business Opportunities 413
Common Extension Interfaces 413

What Is an Interface? 414
IExtension 414
IDisposable 415
Interface Language Differences 415
Data Processing Extensions 416

Creating a Custom Data Processing Extension 418
Creating the Project 418
Creating the CSVConnection Object 419

Variable Declarations 419
Constructors 420
Implementing IDbConnection 420
Implementing IDisposable 421
BeginTransaction Function 421
CreateCommand Function 421
Open Method 422
Close Method 422
ConnectionString Property 423
ConnectionTimeout Property 423

Creating the CSVParameter Class 424
Declarations 424

Implementing IDataParameter 424
ParameterName Property 425
Value Property 426

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxii

xxiii

Chapter Title

Creating the CSVParameterCollection Class 426
Namespaces 426
Implementing IDataParameterCollection 427

Creating the CSVCommand Class 428
Constructors 428
Implementing IDbCommand 429
Cancel Method 430
ExecuteReader Function 430
CommandText Property 431
CommandTimeout Property 432
CommandType Property 432
CreateParameter Function 433
Parameters Property 433

Creating the DataReader Object 434
Declarations 434
Implementing IDbDataReader 434
GetFieldType Function 435
GetName Function 436
GetOrdinal Function 436
GetValue Function 436
Read Method 437
FieldCount Property 438

Installing the CSVDataProcessing Extension 438
Testing the CSVDataExtension 439

Summary 441

Chapter 13: Deployment Strategies 443
Architecture Review 443

Reporting Services Components 443
Report Manager 444

Report Organization 444
Report Management 444
Site Management 444

Clients 445
Report Designer 445
Report Consumer 445

Reporting Services Web Service 446
Scale Up 446
Scale Out 446

Report Server 446
Report Server Databases 446

ReportServer 447
ReportServerTempDB 447

Reporting Services Components Illustrated 447
Reporting Services Deployment Scenarios 448

Small Deployment 449
Medium/Large Deployment 450
Enterprise Deployment 451

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxiii

xxiv

System Requirements and Prerequisites 452
Server Requirements 452

Licenses 454
Report Server Database 454
.NET Framework Requirement 454
Configuring Windows Server 2003 Application Server 454

Client Requirements 456
Report Designer Requirements 457
Accounts and Credentials 457

Installation 457
Ongoing Operations 458

Installation and Configuration 458
Running Setup 458

SQL Server Instance 461
Database Name 461
Database Credential 461

Finishing the Setup 462
Scaling Up Reporting Services 462

Report Server 462
Credentials 463

Server Configuration Files 463
Configuring Using the Command Line Utility 464

Administrative Issues 465
Database Space Requirements 465
Backup and Restore 466

Report Server Database Backup 466
Encryption Key Backup 466

Security Administration 467
Report Server Site 467
Report Server Items 468

Server Monitoring 469
Execution Log 470

Summary 471

Chapter 14: Designing Business Intelligence Reporting Solutions 473
Approaching Solution Design 474

Define the Business Problem 474
Performance Gaps 474
Missed Opportunity Costs 474
Current State/Future State 475
Business Goals and Objectives 475

Direction 475
Solution Design 476

Security 477
Manageability 478
Availability 478
Scalability 479

Transactional and Decision-Support Data 480
Concurrency 481
Strategic Latency 481

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxiv

xxv

Chapter Title

Why Be Normal? 481
Understanding Business Intelligence 482
BI Process Lifecycle 482

Information Gathering 483
Data Scrubbing and Consolidation 483
Data Staging and Transformation 484
Indexing Strategies 484
Decision-Support 485
Query Languages 487

Multidimensional Expressions (MDX) 487
OLAP and SQL Server Analysis Services 487

Architecting BI Solutions 490
Farms and Gardens 490
Federating and Partitioning Data 491

Reporting Solution Design 491
System Environments 491

Small Environments 492
Medium Environments 492
Large Environments 492

Content Organization 493
Security-Based Content Structure 493

Solution Profiles 494
Linked Reports for Multiple Field Offices 494
Scout-Master.com 496

Reporting Solution Development Environment 498
Isolated Development 498

Using Source Safe 499
Staging Reports 499

Summary 499

Appendix A: Troubleshooting 501
Resources 501

Reporting Services Books Online 501
Microsoft Knowledge Base 502
Microsoft Newsgroups 502
MSDN 502

Tools 502
Installation Errors 503
Credentials Errors 504
Changing Database Connection Information 504
Service Errors 504
Data Access Errors 505
Report Errors 505
Subscription Errors 506
Subscription Errors 507

Contents

xxv

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxv

xxvi

Appendix B: Migrating Access Reports 509
Property Settings 510
Functions 513
Report Elements 513

Appendix C: Reporting Services Object Model 515

Appendix D: Transact SQL Query Functions and Expressions 547
Naming Conventions 547

Tables 547
Columns 548
Views 548
Stored Procedures 548
User-Defined Functions 549
Multi-Part Names 549

Functions 549
Numeric Manipulation 549
String Manipulation 550
Mathematical 552
Dates 553
Aggregate Functions 554
Grouping Variations 554
Type Conversion and Formatting 555
Logic 555
Query Criteria 555

Appendix E: Configuration Files 557
XML Basics 557
Configuration Files 558

The RSReportServer.config File 558
The RSWebApplication.config File 559
The ReportingServicesService.exex.config File 560
The RSReportDesigner.config File 560

Contents

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxvi

Introduction

SQL Server Reporting Services is a serious reporting platform that delivers real business intelligence to
knowledge workers and business decision makers. It has the ability to render reports in many different
formats and also to execute those reports on demand, cache, archive, or automatically deliver them to
users. Whether you need reports to extend a custom desktop application, web site or a simple out-of-
the-box reporting solution, Reporting Services can make it happen. The fact that Microsoft makes this
capability available as an extension to their flagship database product with no additional investment is
exciting news.

Whether you're a novice or an advanced-level programmer, you'll learn to create reports with the right
tools for the job. We start with the architecture of Reporting Services and learn about its foundation of
.NET and XML web services. You will learn how easy it is to design reports practically for any data
source. We cover the basics thoroughly and show you everything you need to get started, working
through the processes of report authoring, management, and delivery. You'll create dynamic, interactive
reports with drill-down and drill-through features. With the use of tables, groupings, subreports,
matrices, images, and charts, reports can be attractive and to-the point. You'll use the Report Manager to
configure and execute reports. Next, we'll extend the capabilities of advanced reports using .NET
programming code and custom expressions.

After several comprehensive exercises in report design, we will build custom viewing and management
tools for advanced reporting solutions. You'll learn to use objects in code and script to render reports,
create custom data processing extensions, and manage security and subscriptions. You'll learn how to
design and extend reports with the Report Definition Language (RDL).

Finally, we'll put all the pieces together and discuss designing complete solutions and deploying reports
and Reporting Services in your business environment. Five experienced authors have worked very hard
over several months to make this book a comprehensive tutorial and source of useful information. We
sincerely hope it will be a valuable addition to your reference library.

Who Is This Book for?
William Shatner once said that the needs of the many outweigh the needs of the few. We've done our
best to dispel this myth and wanted this book to meet the needs of as many people as possible. As some
of us have traveled around the United States teaching and presenting Reporting Services, we've come to
realize that there isn't a "typical" Reporting Services user. This book was written to address the needs of
developers, serious reporting professionals who may be less experienced programmers or non-
programmers, system administrators, and solution designers. To meet this objective, we begin with the
basics of report design and then progress, chapter-by-chapter, through more advanced design and
programming techniques. We sincerely hope it will be a valuable addition to your reference library.

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxvii

xxviii

What Does This Book Cover?
Introduction to Reporting Services

In Chapters 1 and 2, you will learn what Reporting Services really is and what makes it a unique and
powerful reporting solution. We will introduce the stages of the reporting lifecycle and frame the steps
and tasks necessary to create a functional reporting solution.

Authoring Reports

This section spans Chapters 3, 4, and 5. These three chapters will teach you how to design reports using
the report project template in Visual Studio .NET and the report designer tools. Using all of the available
report items and data range items, you will create powerful reports with data groupings, conditional
formatting, drill-down and drill-through features.

In Chapter 3, you will learn the basics and shows you how to use the Report Wizard and Report Designer
environment in Visual Studio.NET.

In Chapter 4, you will learn how to plan and create data sources, design queries, and work with
parameters and filtering techniques.

Chapter 5 will introduce you to advanced programming techniques using in-line expressions, custom
code, and reusable code assemblies.

Managing Reports

In Chapter 6, you will use the Report Manager to configure, secure and manage the execution of reports
organized by business units or categories. You will also learn the basics of caching, creating snapshots
and history, and creating subscriptions.

In Chapter 7, you will learn how to manage reports using the Reporting Services Web Service through
custom program code.

In Chapter 8 you will learn how to manage and administer all reports and your Report Server using
command line and batch scripting.

Report Delivery

In Chapter 9, you will learn you how to render reports using program code with the Reporting Services
Web Service. This powerful feature can be used to integrate reporting into custom business applications,
creating a seamless user experience.

In Chapter 10, you will learn the details of subscriptions—giving users the ability to have reports
delivered to them on a regular schedule. Using custom program code, subscriptions and snapshots may
be used to deliver important business information to users when data changes and as conditions arise.

Advanced Topics

Introduction

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxviii

xxix

Chapter Title

Chapter 11 explores the details of RDL and shows you how to define reports in file-based XML. Using
custom tools and programming, reports may be designed and created outside of the Visual Studio.NET
environment. You will walkthrough an end-to-end solution using a third-party tool.

Chapter 12 will take you into the core of Reporting Services and show you how to replace and enhance
its fundamental capabilities. You will create a custom data processing extension and see how the
architecture supports the ability to build your own data access, security, and rendering extensions.

Chapter 13 discusses the nuts and bolts of deployment and report server administration. You will learn to
plan and design a scalable and secure Reporting Services solution.

Finally, Chapter 14 offers a birds-eye view of Business Intelligence (BI) and discusses the concepts and
issues involving database design, indexing, and delivering enterprise-wide decision-support systems.

What You Need To Use This Book
In order to use SQL Server Reporting Services and to run the samples in this book, you will need:

❑ SQL Server 2000, any edition. An evaluation version of SQL Server and Reporting Services may
be downloaded from Microsoft at http://www.microsoft.com/sql.

❑ Windows 2000, Windows Server 2003, or Windows XP.

❑ Visual Studio .NET 2003, any edition.

❑ Pentium II class PC with a 500 MHz processor and 256 megabytes of RAM.

The complete source code for the samples is available for download from our web site at
http://www.wrox.com/. There are versions available in both Visual Basic .NET and C#. (See the Source Code
section later in this introduction.)

Conventions
To help you get the most from the text and keep track of what's happening, we've used a number of
conventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight important words when we introduce them

❑ We show keyboard strokes like this: Ctrl+A

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Introduction

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxix

xxx

Introduction

❑ We show file names and code within the text like so: persistence.properties

❑ We present code in two different ways:

The Code Foreground style shows new, important, pertinent code. We indent
the 2nd line to show that you should enter both lines on one
line.

The Code Background style shows code that's less important in the present
context or has been shown before.

Occasionally, code that needs to be placed all on one line is split over two because of the layout of the
book, as shown in the preceding highlighted code. However, make sure you type it all on one line.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com. Once at the site, simply locate the book's title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book's
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-7645-6878-7.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book's errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don't spot your error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml and
complete the form there to send us the error you have found. We'll check the information and, if
appropriate, post a message to the book's errata page and fix the problem in subsequent editions of the
book.

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxx

xxxi

Chapter Title

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an email with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum e-
mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Acknowledgments
Our thanks to the members of the product team for making themselves accessible and responsive. We
appreciate you allowing us to participate—in a small way—in the process of making this a great
product. You've done a fantastic job! To Jason Carlson and the rest of his team, thanks taking the time to
field questions and support our efforts with this book.

Kudos to Andrew Bryan and David Cunningham at Dundas Software for your help with the charting
features. The integration in the product is awesome and your assistance has been invaluable. Thanks to
Dennis Higgins from Strafford Technology and Mario Raia from Combined IQ for your business
perspectives. To Tommy Joseph from Disney Internet Group: thanks for starting all of this madness. We
owe you cheesecake with bacon. A big thank you goes to Eric Smith for contributing his code generation
tool, CodeSmith, to the development community and the RDL templates to generate custom reports.

Special thanks goes to the Todd Shelton, Lance Baldwin, and the rest of the Netdesk team for your
patience and support as we've tested the limits of time, energy, and human sanity.

Introduction

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxxi

68787_finalFM.qxp 26/03/2004 3:49 PM Page xxxii

Getting Started with
Reporting Services

SQL Server Reporting Services is an amazing offering from Microsoft that will change the way you
create and deploy reporting solutions. It's difficult to fully appreciate the revolutionary nature of
this product until you understand its architecture. The look and feel of the Report Designer
environment and the functionality of a particular report view window have little to do with its full
capabilities. Like your favorite media player program, you can always bolt-on another skin or
façade, but it's what's inside that really matters. The product group has done a stellar job by
providing a design environment and a nice web-based report management and viewing
application. The impressive part is the underlying architecture that makes SQL Reporting Services
a fully scalable and extensible solution that is also surprisingly easy to work with.

If you are impressed by the capabilities of the .NET Framework, web services, SQL Server, and
ASP.NET, you should know that by using these technologies Reporting Services takes data
accessibility to the next level. Microsoft is making good on their promise of making information
available "any time, any place, and on any device." Reports may be designed using specific rendering
formats and page sizes to support mobile devices. There are many other reporting tools with
impressive capabilities but none of them are quite like this one.

This chapter will introduce several topics that will be covered in greater detail later in the book.
This will be a high-level view of the need for, purpose, capabilities, and mechanics of SQL Server
Reporting Services.

In short, this chapter includes a discussion on the following main topics:

❑ The history of reporting

❑ Business Intelligence (BI) and decision support in current and past reporting solutions

❑ Reporting solutions and application types used to deliver reports

111

68787_ch01.qxp 26/03/2004 3:50 PM Page 1

Chapter 1

2

❑ Installing Reporting Services, setup options, resources, and tools

❑ Report Definition Language (RDL)

Who Is This Book for?
Since you've picked up this book, you may be in need of a reporting solution. You may be an application
developer, solution architect, project manager, database administrator, or business owner. Maybe you're
not a technical professional and you just need reports for your business. Perhaps you are the executive
sponsor of a project and you need to know what kinds of capabilities are available for IT professionals to
build a solution for you. We assume that you have made (or are considering making) an investment in
Microsoft products to manage a business process of some kind. You may need SQL Server or Visual
Studio .NET.

We have made it a point to address several aspects of reporting from the perspectives of executives and
business managers who need to have solutions developed for them; project managers, business analysts,
and software developers who will design and create solutions; and for database and system
administrators who will configure, deploy, and maintain databases and business reporting
infrastructure.

After spending a couple of months with the early beta release versions of Reporting Services and
building solutions with them, I had the opportunity to conduct some early adopter classes for BI and
report solution professionals before the product was released. For most, this was their first look at SQL
Reporting Services. Everyone was impressed and excited about putting it into practice. I was taken back
by a handful of non-developers who complained that they wanted to use Visual Studio to create reports.
"Why should we have to buy this product and learn to use it?" they asked.

In Chapter 11 you will see how designing reports isn't restricted to the Visual Studio .NET design
environment. There will likely be other design tools for building reports in the market soon. The fact is
that designing reports is easy. If you have used other report design tools, I'm sure you will agree. One
nice thing about using the Visual Studio report designer is that it feels like the other Microsoft products
you already know how to use. If you are a Microsoft developer, you'll love it. If you're not a developer,
you'll love it when you realize how easy it is to design, deploy, and manage very powerful reporting
solutions with it.

Agility
Imagine that you are sitting in a presentation meeting at the corporate office of a key customer. You are a
senior sales representative for a company that sells high volume data backup systems, and the solution
they decide on will be implemented in several regional data centers around the world. Your team has
been preparing for this meeting for months. Your success depends on your ability to demonstrate your
competence to the customer and a clear understanding of their needs. Your team has done their
homework, and you know the customer has a history of scanning printed medical records and storing
them as image files. Based on this information, you are certain that a particular product will adequately
provide the file backup facilities for their moderate volume of image files. You have made it a point to
familiarize yourself with the capabilities of the system that appears to be the best fit.

68787_ch01.qxp 26/03/2004 3:50 PM Page 2

During your customer's opening presentation, they tell you that they have recently made a huge
investment into full motion video imaging equipment. Now they need a backup system that can handle
large file capacities. They are prepared to make an investment that is substantially larger than what you
had anticipated for a capable backup solution. Your company began to offer a large-scale solution just a
couple of weeks ago but you aren't very familiar with its capabilities. You've spent so much time
preparing to sell the smaller system that you haven't had time to learn more about this new product.
Your associate is doing introductions, and it will be your turn in about 15 minutes.

Discretely, you open your Pocket PC Phone and access the World Wide Web. You login to your
company's secure report server, select the product catalog report; choose the product category and then
drill-down to the new product. The report has a drill-through option that lets you quickly view a detailed
specification report for the new, high-volume backup system. After noting the pertinent specifications,
you save this report to a PDF file and then choose the customer sales inquiry history report. Looking up
this customer, you learn that someone named Julie made an inquiry about two months ago regarding
video media backups from this very company.

Looking around the room, you find a name card with her name on it. You explore the details of this call,
and you find that she had asked if you offer a solution comparable to a very expensive product from a
competitor. Checking the competition's web site, you discover that the competing product Julie had
mentioned uses older technology, has a smaller capacity than the new system, and it costs considerably
more. You save a report with all of the pertinent specifications to your memory card, hand the card to
the administrative assistant sitting next to you, and ask that he make printed copies of the PDF file it
contains.

Your colleague finishes her presentation and then introduces you. Taking another quick glance at the
new product specs, you begin your introduction. You explain that one of your team's greatest strengths
is your real experience and understanding of how business can change day-to-day. In order to be
responsive and competitive, it's necessary to adapt to these changes. You show the brochure for the mid-
scale product and explain that this product would be an excellent solution for a company that just scans
documents. But for digital video, a more capable solution is required. You share the product
specification and qualify the product to your customer's needs. During your presentation, the
administrative assistant returns with the printed specification report. Not missing a beat, you distribute
these to everyone and conclude. Making brief eye contact with your colleague, he raises an eyebrow just
before your customer's chief decision maker, Julie, aggressively shakes your hand, and thanks you
profusely for your time and effort.

The Way We Were
In many business applications, reports were an afterthought. This lack of planning often forced
developers to build ad-hoc reports with little opportunity for significant planning and design. Queries
became complicated and difficult to support. Reports ran slowly and were prone to errors. To avoid
these difficulties, you really need a plan. In a perfect world, you would architect the database and
application around your reporting needs, and would completely understand your users' requirements
before designing the system. In the real world, you may understand some of the users' needs ahead of
time but chances are that new reports will be requested long after the other features are in place.

According to Frederick P. Brooks' The Mythical Man-Month, it's usually a good idea to learn from and
throw away your first few attempts at almost any design. I typically try to develop reports in stages

3

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 3

realizing that the first attempt will be a prototype. My experience has been that when you gather the
initial requirements, users will ask for a handful of different reports based on some specific criteria. After
the solution is deployed and people begin to use it, others will almost inevitably realize that they too
would like reports to help make their jobs as easy as their associates. As users realize what kinds of
information they can get, they will find new and exciting ways to sort, filter, group, pivot, and slice and
dice their data – in ways they never thought possible. That is, until you show them the possibilities.

That Was Then, This Is Now
Static, printed reports may be an acceptable format for a list of products and prices or for a company, but
not for the majority of the information people use to make important decisions today. Business decision
makers need pertinent information, and they need to view it in a manner that applies to that person's
role or responsibility. Since most users deal with information in a slightly different manner, you can
create hundreds of reports, each designed for a specific need. Alternatively, you can create flexible
reports that serve a broader range of user needs. For example, a sales summary report could be grouped
or filtered by the sales person's region, by customer type, and include information for the week, month,
quarter or year, or for a specific product category. To produce individual reports for each of these needs
would be time-consuming and cost prohibitive. Besides, computer users are savvier than they were a
few years ago and need to have tools that help them take informed decisions, not just look at the
numbers.

I recall working at Hewlett-Packard several years ago in a manufacturing site IS group. Every Thursday
a report cart would come around. There were several regularly scheduled reports that the mainframe
system produced on a weekly and monthly basis. Users, typically department managers, would
subscribe to these reports that were then printed in another building and delivered by hand to each
subscriber. Many of these reports were little more than a huge list of numbers and text printed on
continuous, fan-fed paper – some as large as 500 pages. I watched inquisitively as managers would
meticulously scan through the pages, highlighting and circling figures of interest. Some would bind
them into large books and give them to their administrative assistants to go through with a ten-key
calculator and add up all of the figures they had highlighted.

At the end of the month dumpsters full of these reports were hauled off to landfills and recycling centers
as their usefulness quickly came to an end. I spent nearly two years developing a reporting application
for this group using Microsoft Access. We originally planned for eight to ten reports in this application.
But as time went on, and users began to rely on the reports to perform their jobs, they would ask for the
same reports with different sorting, grouping, and selection criteria. In the end, we deployed some 25-30
reports, most of which were variations on the few original reports.

Business Intelligence and Decision Support
Dennis Higgins is a BI Consultant with Strafford Technology, Inc. in Windham, NH. He says, "I think one
of the greatest challenges to providing BI Solutions is to educate the customer as to the extent of the long-range
problems (and the associated business costs) caused by disjointed attempts to derive information from corporate
data. Closely related to that is to correct the normal tendency to apply band aids. Foresight and planning with a BI
Strategy is the most effective means of halting the creation of stove-pipe data analysis systems. Once management
perceives the benefits and buys into the process, a 'master plan' strategy can be formulated, that will guide the

4

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 4

process of developing the solution. Integration of existing systems, new tools, or BI Platform migration can then
be tackled based on priority and available resources."

Business executives understand that it's important to have good data. They reason that good data should
lead to good decisions, and good decisions mean good business. This makes sense, right? A very
common scenario today is that businesses trying to get that edge will invest in expensive ERP systems
that effectively gather and store mountains of customer, product, and sales information. Mission
accomplished? Wrong! These days, the time between data entry and consumption is very short, almost
instant. More effective data-gathering mechanisms result in data silos and data warehouses populated to
the gills with all kinds of facts.

The new generation of business workers are informed and empowered to make decisions. They need
tools to get useful information and respond to changes. Having data available is useless unless it has
business value and can be used to effectively take informed decisions.

A fundamental fact in business is that the people who gather and collect data are often not the people
who use that data or need access to the information that the data represents. Business executives,
managers, and analysts make strategic decisions everyday that may affect many people, the direction of
their organizations, and ultimately, the way people and organizations will go about conducting business
in the industry. These decisions are largely driven by the relative height of a bar displayed in a chart or a
few numbers printed on a piece of paper. Having capable reporting tools doesn't necessarily solve this
problem. Most businesses don't know how to effectively use the products they own. A reporting tool is
of little value if it's complicated and difficult to use.

This presents some fundamental challenges such as collecting comprehensive, accurate and meaningful
information, storing it in a form so it continues to represent the facts, and presenting the information in a
concise and unbiased form. On the surface, it seems like a simple task.

Automation to the Rescue – A Scenario
I'll share an example of this kind of challenge. Several years ago, I spent a few months developing a
reporting system for the operations group at a paper mill in the Pacific Northwest. The old mill is
located in a small, remote town and many of the people operating the mill have been working there all
of their lives. As is common in the pulp and paper industry, the mill has changed ownership a few times
and is currently operated by a very large paper and office supply company.

As time went by and technology changed, several different computer systems were incorporated into
the operation of this mill; an IBM 360 and an AS400 system were used to manage customer orders and
production history records. The original inventory management system is still in place. It's a very old,
special-purpose computer that stores most of its data in a single, flat text file. All of its components are
redundant and it hardly ever needs significant maintenance. Shortly before I arrived, a Windows server
box was installed with a SQL Server database and an application that would replicate production and
inventory data from the existing database systems. Management within the parent company believed
that they didn't have a handle on the rates of material consumption and product quality. They wanted a
reporting system that would give them the figures they needed to make adjustments to their ordering
and pulp production processes.

5

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 5

Over a period of time, orders would be placed for certain grades of pulp. The system would calculate
quantities of ingredients to produce a batch – typically to fulfill an order for a customer. The order
would be sent to the production floor where workers had newly installed controls used to assure the
accurate delivery of pulp ingredients. Different batches of product continued to be produced with
varying degrees of quality and their ability to track the consumption of these materials didn't
significantly improve. Management continued to invest in reporting solutions. They bought and
developed software to look for trends and perform statistical analysis but to no avail.

After several months and hundreds of thousands of dollars invested, the product quality didn't really
improve much. Finally, one of the IT managers put on a hard hat and walked down to the production
floor to observe the process. What he learned was a simple lesson: when the orders arrived on their
computer workstations, workers were printing the orders and then putting them aside. They had
overridden the automated controls and were using the same manual techniques to make paper that
earlier generations had been using for decades. It was a matter of tradition and pride, and they weren't
about to let some computer do their job for them.

The initial reporting solution was elegant and technically capable. The calculations were accurate and
the report presentation was appropriate. However, the solution didn't fully support the process. This
cultural hurdle was eventually overcome (workers were instructed to use the automated systems if they
wanted to keep their jobs) and the product and process improved. A report is only as good as the data it
presents, and the data is only as good as the information used for collection. The information is only as
good as the process that it represents.

Challenges of Existing Reporting Solutions
For over ten years, Microsoft has offered only one product with substantial reporting capabilities.
Designed to run as a single-user or a small workgroup, desktop application, Microsoft Access is a
capable database and reporting solution. In Access 2000, Access Data Projects were added. This
extension of the product works well against a SQL Server back-end, in a LAN environment. In Visual
Studio 6, an integrated reporting tool was offered for Visual Basic 6 but its capabilities were meager at
best. Developers at that time thought this was a glimpse of things to come in subsequent versions of
Visual Studio.

Due to the lack of a unified, consistent approach for reporting, many developers have had to revert to
creating their own custom solutions. One case in point is the reports starter kit project available on the
ASP.NET development support site (www.asp.com). The developers did a bang-up job creating a
web-based reporting solution using ASP.NET datagrids and datalist controls. They even made their own
pie charts using line drawing objects. This effectively proves that .NET is a powerful arsenal of
programming tools. However, it also makes the point that we have lacked a strong reporting solution to
round out Microsoft's front-line development and database suite.

When Visual Studio .NET was released in 2002, I was a little disappointed because the only integrated
reporting component was a limited-use version of Crystal Reports. Now, before I get myself into too
much trouble with folks who may be loyal to this product, I'll say that Crystal Reports is a capable
reporting tool. However, it's neither a part of Microsoft's strategic direction nor does it behave like, or
integrate tightly with other Microsoft products. The version of Crystal Reports that installs with Visual

6

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 6

Studio is limited to five concurrent users (and the term concurrent is subject to some serious
interpretation). Now that Crystal Reports has changed hands once again (recently acquired by Business
Objects), it will be interesting to see how this affects the direction of this well-known product.

Notably, the most remarkable change in the industry over the past few years has been the opportunity
and need to exchange information over the Internet. Previous technologies simply don't provide the
means to access application components across the Internet. Component architectures such as COM,
DCOM, and CORBA were designed to communicate across secure LAN and WAN systems, which
required a substantial infrastructure investment. Connecting business trading partners and even
regional sites was often cost prohibitive and logistically infeasible. Few options existed for reporting
over the web. At best, a list or table filled with data could be viewed in custom-built, server-side web
page solutions using ASP or CGI. Each page had to be carefully designed and scripted at the cost of
dozens, or sometimes hundreds of programming hours.

With the recent maturity of the web, a new generation of mobile devices is evolving that can connect
users to company resources, email, documents, and databases. These laptop, hand-held, palm-top, and
wrist-worn devices open new doors of opportunity and present new challenges for data presentation.
Perhaps, it will soon be common for people to stagger around the streets, talking to themselves and
staring blindly into space in a zombie-like trance as they are connected to the world through web-
enabled cerebral implants! We can only hope!

To gain access to useful and readable information, data must be accessible over available communication
channels (such as corporate networks and the Internet), easy to access, secure, and available in a variety
or formats so that it may be viewed using available document readers or browsers – all compatible with
different devices. Did I mention the need to support different Operating Systems (OS), applications, and
perhaps, without the installation of any custom software on the client device? This is the challenge.

How Does SQL Server Reporting Services Meet
This Challenge?

SQL Server Reporting Services is a server-side reporting solution that meets all of these requirements
and more. It can obtain its data from a variety of data sources that you can access using modern
programming tools. That data may be grouped, sorted, aggregated, and presented in dynamic and
meaningful ways. The structure of the data and the presentation elements may be transmitted across
practically any communication medium, using an industry standard format, to just about any type of
client or server computer or device. The resulting content may then be displayed in many standard
formats using browsers and document readers. Further, the data itself may be consumed by standard
and custom applications to be further parsed, imported, manipulated, and consumed. It's a truly
remarkable innovation with incredible possibilities.

Since Reporting Services is based on .NET, it offers the advantage of integrating tightly with the
Windows platform and benefits from the performance, scalability, and security inherent to the .NET
Framework. When used in concert with BackOffice products like Share Point Portal, it can provide a
comprehensive enterprise solution with little programming effort. Reporting Services can be used with
ASP.NET and other .NET programming tools to produce highly customized, special-purpose solutions.

7

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 7

In Chapter 2, we will discuss the specific Reporting Services architecture that is used to perform all of
this magic. In brief, functionality is exposed through an XML web service that may be accessed across a
LAN or across the web. Reports may be rendered in program code or they may be accessed through a
simple web address – like any other web page. Reports may be rendered in several formats. These
include different flavors of HTML to provide compatibility with different browsers and devices, the
Adobe Acrobat Portable Document Format (PDF) for uniform presentation and printing, as a graphic file,
and in Microsoft Excel so users can slice, dice, pivot, and re-analyze the data. Content may also be
rendered in XML and CSV formats to import and exchange data with a variety of applications.

Business Intelligence Solutions
Traditionally, BI solutions have been very costly and only accessible to large businesses that could afford
them. Customer Relations Management (CRM) systems, Online Analytical Processing (OLAP) systems (or
data warehouses), and analysis solutions have been available for many years from specialized vendors.
However, they require costly deployment, training, and maintenance. By contrast, (this is the part I like
the best) Reporting Services is available at no additional cost if you install it on a computer with a
licensed instance of SQL Server. Reporting Services is an add-on to SQL Server rather than a stand-alone
product. In a single server installation, you don't need an additional license and you can use it royalty
free – so long as your database, and server products are appropriately licensed. For additional
information regarding licensing and deployment options, please refer to Chapter 13.

Comparatively speaking, collecting data is the easy part. Most companies have been doing this for
decades, but how they utilize all of this data is often another story. There is no doubt that effectively
collecting data may not be so easy but it's something businesses have been doing for quite some time.
Most companies have untold mega-, giga-, or even peta-bytes of "important" archived data residing in
documents, spreadsheets, and various databases on backup tapes, disks and folders throughout their
enterprise – with no hope of fully utilizing and gaining significant value from it all.

According to Tommy Joseph of Disney Interactive Group, "BI is about more than just tracking product sales.
It's about measuring performance, discovering patterns and trends; and measurable forecasting through statistical
analysis."

An effective BI solution provides visibility to important facts at all levels of an organization, and gives
people access to uniform data from different sources using familiar and easy to use applications. It ties
together applications, documents, and data sources in a manner that lets people collaborate and
communicate effectively.

BI systems are no longer a luxury but a necessity in many business environments. Today, having access
to timely information can make the difference between having a competitive edge and being left in the
dust behind competitors.

Who Uses Reports and Why?
In almost any organization, there is a universal condition that people in different roles and at different
levels have different perspectives on information. This is typically most apparent in large corporations,
where executive leaders who make financial and market-direction decisions have less exposure to the
daily processes of the company than the line-level workers. Ask any executive and they will tell you that

8

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 8

the line-level worker doesn't have a broad perspective regarding the challenges and direction of the
organization at a high level. Conversely, ask most of the line-level workers in the organization and they
will tell you that the upper management and executives don't share their perspective of "real problems"
and the daily pulse of the company. To a point, this is the natural condition of a healthy organization.

Bill Gates has spoken extensively about the information worker of the twentieth century. At all levels
within an organization, people who have convenient access to accurate and appropriate information are
empowered to take informed decisions that benefit the organization and the individual. This is rapidly
becoming the case throughout many industries today and continues to change the way people work and
are managed. Although this paradigm shift may be occurring for many people, organizations often
struggle to provide the resources necessary to support workers who are eager to use information to
make a difference in their environments.

Executive Leadership
Leaders simply must make informed decisions. They must fully understand their business environment
and the competitive climate in which they operate. Access to market conditions, customer needs, and
financial information can often make the difference between decisions that produce success or
jeopardize the organization.

Decision support systems provide interfaces for executive leadership through dashboards called
Executive Information Services (EIS). Reporting Services installs them with a simple web interface and
enhances integration with executive consoles through SharePoint Portal services and third party solution
integration.

Managers
Inefficient business processes can no longer remain the status quo. Customers demand results and
simply will not tolerate services or products that don't meet their expectations. Customers have choices
and will quickly switch to a competitor if their needs are not met. Managers need the information
necessary to drive customer satisfaction and make corrections, directing business processes and the
effective use of people and other important resources.

Information Workers
In businesses today, workers are educated and given more freedom to solve problems and effect change.
This category could be applied to workers at various levels within an organization, including the
managers and higher level workers. Often, the customer service representative or service provider will
be the only human interface a customer has with an organization. That person must be empowered to
collect and retrieve information quickly and accurately. They must also be empowered to make
corrections to - and to work with, not against - unyielding business processes. In the past, workers
simply had to accept the way information was presented to them, as well as the inefficiencies of most
automated systems. With greater demands on businesses, workers simply must have the means to
acquire accurate and concise information that meets their needs – in order to work efficiently.

9

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 9

Customers
Many businesses can't afford to put people in front of their customers on a routine basis. Customers who
can get the information, services and assistance they need may not demand that someone help them
when it's not warranted. By making regular services available through customer-friendly automation
and information portals, you can afford to offer assistance to customers who really need special
attention. Customers often need to look up account and transaction histories, order status, and shipping
information. Making these services available through a web browser, email, or a mobile device can
provide a greater degree of customer satisfaction.

Vendors and Partners
Like customers, business vendors may need to interface with an organization to place orders, schedule
service calls, and obtain status information. Making this information available in the most appropriate
form will improve efficiency and ultimately business-vendor partnerships. Business vendors are often
more accepting of special procedures and automated systems. Vendors can be trained to use more
sophisticated systems to obtain product information, service orders, invoices, and other business-related
information. Systems may be designed to interface and automate the download or exchange of
information that enable a partnering business to work cooperatively.

Reporting with Relational Data
Transactional databases are designed to capture and manage real data as it is generated; for example, as
products are purchased and as services are rendered. Relational databases are designed according to the
rules of normal form and typically have many tables, each containing fragments of data rather than
comprehensive information or business facts. This helps preserve the integrity and accuracy of data at
the detail level, but it presents challenges for deriving useful information from a large volume of
transactional data. In order to obtain information with meaningful context, tables must be joined and
values must be aggregated. Although relational database systems may support complex queries,
reporting against these queries routinely could prove to be slow and inefficient.

Reporting for Decision Support
Optimized data storage systems are for analysis and don't use normalized tables, and don't contain
details at the transactional level. Tables typically have more columns and fewer rows and often contain
descriptive values that would otherwise exist only in lookup tables. The purpose of a decision-support
data store is to drive meaningful reports and analysis tools with a sampling of read-only, historical, data
and not for keeping up-to-the minute details.

Data Warehouses
The usual approach for maintaining a decision-support system is to copy only necessary data from
relational, transaction-support databases to a separate data store at regular intervals. Depending on an
organization's reporting needs, this data dump (or import) is performed daily, weekly, or even monthly.

10

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 10

The transactional tables are joined and pre-aggregated to eliminate unnecessary detail. Surrogate key
values and codes have little use since the transformed data is readable in a more concise form.

Data warehouses (and smaller subsets of data analysis called data silos), can simply be implemented as
relational data stores that have been designed for analysis. There can also be special purpose data
structures that store data in hierarchal or multi-dimensional structures. These specialized data storage
structures are optimized for performing pivots and extensive calculations and aggregations against a
large volume of decision-support data.

A data warehouse is typically a large, central store of decision-support data whereas smaller, more
specialized data marts, effectively divide analysis data into business unit and divisional data warehouses.
SQL Server Analysis Services (see http://www.microsoft.com/sql/evaluation/bi/bianalysis.asp) is capable of
storing and analyzing data in both relational and multi-dimensional structures. Data warehouse systems
often use special query expressions that have capabilities beyond that of SQL. The Multidimensional
Expressions (MDX) language supports pivoting and slicing data cubes to derive informational facts for
comparative analysis.

Eventually most businesses that generate reports from live data will experience a common anomaly. As
the data in a transactional database is ever growing and changing, reports will reflect these subtle
changes and show up on the bottom line. Different users may produce similar reports in a short period
of relative time and will notice that totals and summary values slightly vary. With no other explanation,
users question the accuracy of report data and assume that there is a problem with their data. Believe it
or not, the technical term for this condition is known as "twinkling data". As this phrase suggests, the
totals and data points aren't typically way out of line. They just seem to fluctuate slightly. Reporting
Services helps this situation by "freezing" report data through caching and report snapshots.

You might not perceive this to be a problem but consider what might happen if a user had made data
entry mistakes and in an effort to correct the errors, entered duplicate, corrected data and then deleted
the old records. Or, they deleted the erroneous records and then re-entered corrected information. If a
report were produced at the wrong time, summary values could be skewed significantly. Statistically
speaking, the chances of this condition causing a crisis may not be significant, but over time, they may
increase. Data analysis should therefore be performed on unchanging values that are updated at regular,
predictable intervals. This problem is often addressed by building separate OLAP data stores used only
for analysis and reporting against snapshot data imported from transactional databases at regular
intervals.

The Reporting Lifecycle
Chapter 2 will discuss the reporting lifecycle in greater detail with the architecture that supports this
process. Briefly, creating a functional reporting solution requires an understanding of user and business
requirements. Existing data sources must be considered and new data stores must be designed to meet
reporting needs. From this perspective, the process of creating useful reports consists of three activities:

❑ Authoring: With the available tools, reports are authored using the Report Designer in Visual
Studio .NET. This interface is used to create data sources, queries and datasets, and the report
definition.

11

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 11

❑ Management: Report management is performed using the Report Manager, a web browser
interface used to manage and deploy report definition files, shared data sources, and
configuration settings; it can also be used to view and export report data.

❑ Delivery: Reports may be delivered to a user on-demand through the Report Manager or a
custom application; it can also be scheduled for delivery through subscriptions. Reports can be
delivered in the form of a web page, document, file, or even via email.

Report Delivery Application Types
In the past, reporting solutions were typically delivered through a desktop application of some kind.
Data was queried in real time, and of course the application had to be connected to the data source.
Users also had limited opportunity to save reports for later viewing and usually printed them on paper.

Now we have many opportunities to view and interact with reports in environments where it may not
be possible (or feasible) to connect to data stores. Reports may also be presented in different forms that
offer multiple capabilities and compatibility with various devices and software.

Web Browser
Web browser-based solutions have become popular for a number of reasons. User accessibility takes on a
whole new definition when special software isn't required on the client computer. Of course, a web
browser makes information available for viewing over the World Wide Web, but browser-based
solutions are also a compelling means to deliver information in a controlled business enterprise
environment. Whether users access resources within their corporate intranet environment or over the
web, the browser paradigm has significantly changed the approach to application delivery.

Some of the traditional challenges with browser-solutions are the lack of consistent support for client-
side script and components. These issues have largely been resolved with server-side rendering
mechanisms that output product-independent HTML content. For viewing offline content, HTML
documents require links to external files, such as images, sounds, and video. These issues have also been
resolved by using a MIME-encoded format call MHTML or Web Archive to encapsulate binary content
within the page definition. Although not supported in all browsers, this format is a viable means to
deliver extensible report content for live and off-line viewing. HTML 4.0 works on different types of
computers across the Internet, within a LAN on newer web browsers and HTML 3.2 works with older
browsers and on a portable or hand-held device.

Office Applications
Microsoft Office brings together a tremendous assortment of capabilities to assist report users at all
levels. Microsoft Excel has been the mainstay tool for data collection and analysis. By rendering a report
into Excel, the data may easily be reformatted, modified, or analyzed using formulas and calculations.
This capability has been around for several years but it required writing custom code to use the Excel
object model from Access or Visual Basic to produce report data in Excel; in addition, this process was
tedious at best. Now, pushing complex report data into a useful and well-formatted Excel document is
simple.

12

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 12

Microsoft Access continues to be the office worker's database of choice. Data tracking and management
solutions can be created with minimal cost and effort. Report Services may be used to exchange and
import data into an Access database using XML or CSV formats. Access and Excel both provide the
Office Web Components that may be used to view pivot tables and charts. These components duplicate
the functionality of the Matrix and Report Services chart items but might give users a more convenient
option for analyzing data.

Programmability
The possibilities for incorporating report features in your own applications are impressive. All of the
features of the Report Manager can be duplicated in many cases and can be extended through program
code. Reports may be viewed in place within an application by using an external web browser window,
integrated browser control, or a custom report viewer component. Report content may be rendered to a
file for persistent storage to directly into a viewer or browser.

Subscriptions
Subscriptions allow users to receive or gain access to reports on a regular schedule. Reports are
delivered by email or saved to files where they may be viewed offline at the users' convenience. Report
subscriptions may be setup for an individual user or large groups of users using data-driven
subscriptions. To put this into perspective, effectively reports may be delivered to any individual or size
group of users in practically any readable format at any place and any time.

Report Formats
In addition to the three HTML rendering formats, you can use document types to control formatting
elements, printing layout and adding other capabilities. The PDF document format remains the most
popular means for assuring that documents are formatted exactly as they were intended. Rendering a
report to a Microsoft Excel workbook gives users the ability to continue to message data and perform
calculations.

Importing Data/Exchanging Data
Not all "reports" may be intended to be read or printed. Reporting Services provides two report
rendering formats that can be used for export/import and data exchange. Using either the Comma
Separated Values (CSV) or XML formats, Reporting Services provides a very convenient mechanism for
inter system data exchange or pushing data out to a trading partner. Imagine your system automatically
sending invoices and shipping manifests to your order fulfillment vendor at end of the day via XML file
attachments to email.

System Requirements
The hardware system requirements for Reporting Services are very similar to those for SQL Server. The
default installation will place the Report Manager, Reporting Services, and the Report Server database
on the same physical server but this configuration is not a requirement. These components may be
installed on three separate servers.

13

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 13

The Report Server and the Report Manager servers must be running Internet Information Services (IIS) 5.0
or higher with ASP.NET, and the .Net Framework 1.1 or higher. The Report Server Database requires any
edition of SQL Server 2000 with Service Pack 3. The SQL Agent and the Distributed Transaction
Coordination (DTC) services must be running.

Editions of Reporting Services correspond to editions of SQL Server and include Evaluation, Standard,
Development, and Enterprise editions. Like SQL Server, Standard Edition is a good solution for a
single-server environment with a moderate number of users.

The Enterprise Edition has additional capabilities to support many users in a scalable environment using
web farms and clustering technology. Subscriptions may be managed for users and recipients whose
names and email addresses are stored in any accessible database.

The following table shows the requirements and features for each edition of Reporting Services:

SRS Edition Operating System Requirements

Windows 2003
Server

Must be configured as an Application Server
SQL Server 2000 Standard or Enterprise with
SP3

Enterprise

Windows 2000
Server

Windows 2000 SP4 SQL Server 2000 Standard
or Enterprise with SP3

Windows 2003
Server

SQL Server 2000 Standard or Enterprise with
SP3

Standard

Windows 2000
Server

Windows 2000 SP4 SQL Server 2000 Standard
or Enterprise with SP3

Windows XP
Professional

Windows XP SP1 SQL Server 2000 Developer,
Standard or Enterprise with SP3 limited to 10
database connections

Developer

Windows 2000
Professional

Windows 2000 SP4 SQL Server 2000
Developer, Standard or Enterprise limited to
10 database connections

Windows XP
Professional

Windows XP SP1 SQL Server 2000 Evaluation,
Developer, Standard or Enterprise with SP3
limited to 10 database connections

Evaluation

Windows 2000
Professional

Windows 2000 SP4 SQL Server 2000
Evaluation, Developer, Standard or Enterprise
with SP3 limited to 10 database connections

14

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 14

Installing Reporting Services
This section describes the steps for installing Reporting Services for SQL Server 2000. Reporting Services
may be installed using one of two methods. A standard, Windows setup package provides a wizard
dialog to guide the user through the entire process. It will prompt for file paths, server and other
resource names and allow for optional component selection. The other installation method is a
command-line utility and may be used, typically by system administrators, to script or automate the
installation process. This method is not quite as user-friendly and requires more planning and a better
understanding of the product and its components.

Setup Options
The following options are offered during setup as shown in Figure 1-1:

Figure 1-1

You can select the feature options that you want to install. Some features are related to others and appear
as expandable branches of the feature tree. A plus sign next to a feature indicates that the branch
includes related features. You can also specify that all related features under a branch should be installed
by choosing the option labeled Entire feature will be installed on local hard drive. Likewise, selecting Entire
feature will be unavailable will set this mode for all features under this branch. See Figure 1-2:

Figure 1-2

15

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 15

A few options can be installed so the content is located on a central network fileshare. Choosing this
option for Books Online, for example, will not copy these files to the local disk but will refer to files at a
central location. In order to use this option, it is necessary for the setup disk image to be copied to a
folder that will be accessible whenever this feature is used. Some features include the option to install
and run from the network displaying the drop-down list shown in Figure 1-3:

Figure 1-3

Adding and Removing Options
After the initial product installation, features may be added or removed by running setup again from the
Control Panel | Add or Remove Programs applet. The currently installed start is displayed for each feature.
Any changes made in the setup dialog will cause features to installed or removed.

Server Components
Server components include the Report Server and the Report Manager. It consists of a Windows service
that runs continually on the server computer, a .NET web service hosted in IIS and a SQL Server
database. The Report Server database can be installed on only one instance of SQL Server per physical
database sever computer. The database need not reside on the local Report Server computer but the
server must be a member of the Windows domain or a server trusted by the domain.

Report Manager is an ASP.NET application that exposes reports, configuration, and administrative
features through a web browser interface.

The Report Manager requires IIS 5.0 or greater to be running on the Report Server computer. The .NET
Framework version 1.1 also must be installed on the server. This is an included feature of Windows
Server 2003. On a Windows XP Professional system, SP1 is required. Windows 2000 Professional, Server,
and Advanced Server require SP4. Windows XP Home Edition is not supported.

Client Components
This includes the Report Designer. This option installs the Report Project and Report Wizard Project
templates and BI Projects project group into Visual Studio .NET 2003 or greater. The Report Designer
enables developers to create report projects in Visual Studio to create reports and related data sources. A
report project generates definition files in Report RDL, an XML grammar that defines report content,
layouts, and data sources. These reports may be deployed directly from Visual Studio into the Report
Server. Reports may also be deployed manually using the Report Manager.

The Report Designer and Report Server can reside on different computers to support a separate
development environment. The installation requirements for the Report Designer are the same as those
for Visual Studio .NET 2003.

Let's look at the documentation and samples for Reporting Services.

16

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 16

Books Online
The documentation for Reporting Services is the Reporting Services Books Online. Its format and
behavior are similar to that of SQL Server Books Online. All Reporting Services - related documentation
is contained in only one source. If you plan to install the server and client tools on different computers,
you should consider including the Books Online with both installations.

Reporting Services Samples
The samples include example projects for Visual Studio .NET, SQL Server databases, import data files,
report definitions, and scripts. The projects include Visual Basic and C# code samples to manage and
render reports using program code. The samples also include several reports exemplifying various
design techniques.

AdventureWorks Database
The AdventureWorks2000 sample database was created for demonstration and instructional purposes in
future versions of SQL Server and related products. Like the Northwind and Pubs databases, it will
include design elements and sample objects for SQL Server developers and administrators. Unlike
Northwind and Pubs, the AdventureWorks database is not a simplified design. It has been created to
model the design of a highly normalized, large-scale business database containing over 60 tables. We
will use this database for many of our sample reports later in the book.

Administrative Tools
Command-line utilities provide scripting and command level access to server management,
deployment, and configuration features. These capabilities are thoroughly discussed in Chapter 8.

The following command-line utilities are installed with the Administrative Tools option:

Utilities Description

rs Used to process script files for deploying reports, managing the Report Server
database, making and restoring backups, and other administrative tasks.

rsactivate Used to manage the Report Server Windows service on a local or remote Report
Server computer.

rsconfig Used to set or modify configuration settings for a Report Server. This includes
security authentication setting and database connections.

rskeymgmt Used to allow administrators to backup and restore private keys to enable access
to this secure information.

17

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 17

Command Line and Unattended Installation
The setup may be run using command line switch to automate the installation process. This capability is
provided by the standard Windows Installer 2.0. Although there is no command-line interface, the setup
process may be scripted and settings can be specified.

Log Files
Reporting Services records event information in the standard Windows Application Log and in specific
log files. Report execution logging is enabled by default and may be configured in the Report Manager.
Specific settings for the Report Server are stored in the RSReportServer.config file. More granular
tracing information may be captured in log files for a variety of application and server events and
system errors. These logs may be helpful in analyzing usage and debugging specific problems. The log
files are auto-generated using time-stamped names. The file names, categories, and locations correspond
to the configuration files mentioned in the Configuration Files section of this chapter.

Email Delivery
In order for Report Services subscriptions to utilize email delivery, an available server must be
configured for the Simple Mail Transport Protocol (SMTP). Internally, Report Services uses Collaborative
Data Objects (CDO) to send mail. These required components are part of the standard configuration of
Windows 2000 servers and Windows Server 2003 operating systems but you should verify that they are
installed and working. The best way to do this is to create a test subscription in the Report Manager and
verify that it has executed and the message is received in the recipient's inbox. Subscriptions are covered
in detail in Chapter 10.

The SMTP service is not required on the actual report server but an accessible SMTP server must be
available to the server in order for this feature to work. If you don't have an SMTP server configured, or
if you don't intend to use the email delivery option, simply leave these fields blank in the setup wizard.

Designing Reports
Chapter 3 will deal with the essentials of report design and followed by Chapter 4 will take more
specific design elements to the next level. Reports fall into a few design categories which will be covered
next.

Form Reports
A report can display a single record on a page with data from a table, calculations and just static text.
Form reports can be used to print or display a letter, invoice, contract or informational sheet.

Tabular Reports
This is a fundamental style for reports that have repeated rows of data called data regions. Tabular data
is repeated in free-forum bands or table rows with rows and columns. Either the list or table items may
be used to produce a tabular report in various layouts. Column headers can be displayed for each
column in a table and subtotals and summary information may be displayed in table or group section
footers.

18

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 18

Groupings and Drill-Down
Records in a report may be sorted and grouped. Each group can be collapsed and expanded to
drill-down into more detail. This capability gives users the ability to explore large sets of data without
the need to scroll though long, multi-page reports. The report may also be printed in its expanded form.

Drill-Through Reports
A drill-through report can be any standard form, tabular or pivot table report that contains links to a
separate report. Any textbox item may used as a link to provide drill-through capability. Key values are
hidden with the link and passed as a parameter to the target report for filtering.

Multi-Column Reports
A report may contain multiple columns. List or tabular rows are repeated vertically within a column and
then snake from one column to the next, filling the page. This type of format is ideal for optimizing page
space for labels and contact information.

Matrix
A matrix is like a cross-tab or a pivot table in which the rows and columns roll-up summary values and
may be expanded or collapsed to expose more detail. It is a simple and easy-to-use control, much like
the datagrid control in ASP.NET.

Charts
Charts are used to display a graphical representation of data, typically aggregated along at least two
axes. Common types of charts are bar and column, pie and donut, line, area and scatter charts. More
specific types of charts like stock and bubble charts are more specialized.

Data Sources
Reports can obtain data from standard data providers supported by the .NET Framework. In addition to
SQL Server versions 7.0 and 2000, this list includes Oracle, Access, Excel, Informix, DB2, and any other
databases and data sources accessible via an OLE DB provider or ODBC driver. Non-relational sources
such as Active Directory Services, Exchange Server, and OLAP sources like Analysis Services can be
queried. Developers can create custom data provider extensions— when an OLEDB provider or ODBC
driver does not exist—to make practically any type of data accessible to a report.

Queries
Each report contains a query expression within its definition. A standard Transact-SQL query builder
tool is incorporated into the report designer, capable of producing complex query expressions to be
stored in the report. Although this is the defacto behavior of the designer, keeping queries in the report
may not always be the best practice. Using a view or stored procedure from a SQL Server database can
be a far more efficient method to query enterprise data. Parameters passed to a stored procedure cause
the precompiled query to be processed on the database server before data is transferred across network
connections.

19

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 19

OLAP Reporting
Decision-support databases come in many sizes and shapes. In its simplest form, a reporting data source
can be a relational database with a few tables that can be queried more easily with some joins to other
tables. Unlike transactional databases (often called online transaction processing or OLTP systems),
OLAP databases are designed for efficient read-only access and reporting.

Large-scale OLAP databases require special storage and retrieval engines. Data may be managed in a
cube structure, which enables values to be summarized and aggregated into slices and pivots. To query
these structures effectively, MDX is used—much like SQL is used for relational structures. Reporting
services supports the use of MDX queries although the reporting engine was not specifically built
around this capability. When an OLAP data provider is used as a data source, the Report Designer
displays the Generic Query Designer, which supports MDX expressions. The dataset resulting from this
type of query is flattened into rows and columns like any other dataset. For this reason, all report items
are supported for MDX queries.

Using Visual Studio .NET
Visual Studio .NET is Microsoft's integrated development environment tools for developing all types of
applications. It replaces several different development tools in previous versions. Visual Studio now
supports many different programming languages and file types. Whether you are an application
developer or not, Visual Studio is the only tool currently available to design and build reports for SQL
Server Reporting Services. Because of the extensibility of Reporting Services and the RDL XML
grammar, other design tools will likely become available soon.

Report Wizard
The Report Wizard is a simple way to get started creating reports. It leads a designer though all of the
steps necessary to build a simple report interface. New designers will find it an easy, uncomplicated tool
for creating or choosing a data source, creating a query, selecting fields for header, grouping and display
values, and choosing report styles and format options. Experienced designers will likely not find the
wizard helpful as they become more familiar with the design process and prefer to have more control of
these options. After completing the wizard, the report design may be extended and tuned to provide
more functionality.

The .NET Framework
The Microsoft .NET Framework is a completely new direction for Microsoft, and replaces the Application
Programming Interfaces (API) and object technology of the past. It's far more than a marketing strategy or
a product. It gives application developers the objects and building blocks to create powerful applications
of all kinds. Design and debugging features are also available in it to help developers through the
tedious application development process. Utilities and compilers enable applications to be configured,
compiled, and deployed. A runtime environment manages execution, resource allocation, security, and
interoperability with other services, servers, and operating systems.

The main thing to understand about .NET is that it is a core component of Windows and it supports
applications at many levels. The runtime and the development support tools are free. Visual Studio .NET

20

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 20

is a development tool that gives developers convenient access to these design and development
capabilities.

Reporting Services is built on the .NET platform. The Report Server runs as a Windows service and is a
.NET-managed assembly. Rendering and management features are exposed as an ASP.NET web service.
The Report Manager is an ASP.NET web forms application. Finally, the report metadata, subscriptions
and configuration information is managed in a SQL Server 2000 database access through the SQL Server
ADO.NET data provider. As you can see, Reporting Services is purely a .NET solution.

Custom Reporting Extensions
On the advanced end of the opportunity scale, reports can be extended and enhanced in a variety of
ways. At the core of the Reporting Services architecture is a set of extendable programming interfaces
that enable the use of custom components written with .NET programming tools.

Data Processing Extensions
The .NET Framework includes native support for connecting to standard data sources using the SQL
Server, OLE DB, ODBC, and Oracle .NET data providers.. However, to report on non-traditional types of
data, developers can create custom data processing extensions to expose practically any type of data as a
data provider, for instance. If a cache of data could be held in memory rather than written to disk.
Another example would be data stored in files using a proprietary format.

Delivery Extensions
Reporting Services supports subscription delivery via email or file output with no additional
programming work. Additional delivery options can be added by creating a custom delivery extension.
Using a custom solution, reports could be sent to a message queue, FTP site or practically any other
destination.

Configuration Files
Options and settings are stored in XML-based text files that are easy to edit and maintain. The purpose,
location and content of these files are detailed in Appendix E. Configuration files include the following:

Table Continued on the following page

File Name Purpose

RSReportServer.config All settings that apply to the Report Server
including connections and security, caching, and
subscription delivery options.

RSWebApplication.config Settings that apply to the Report Manager web
application. Most settings correspond to options
in the Report Manager application configuration
pages.

21

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 21

Scripting
Most report management and delivery features may be automated through a simple scripting interface.
A single utility executable, rs.exe, is used to obtain access to the vast capabilities of the Report Services
web service. You can create scripts to manage batch processing of reports or programmatically
manipulate any exposed functionality of reporting service. Capabilities are similar to that of the web
service proxy used in .NET programming code but a scripting solution is a simpler approach that
doesn't require complex programming or a compiled project. Scripting is an ideal approach for system
administrators to create simple maintenance, deployment and ad-hoc delivery solutions. Chapter 8 will
detail report scripting options.

Subscriptions
Subscriptions allow users to request reports to be delivered to them automatically. Based on a schedule
(single-instance or recurring) reports may be delivered using any available deliver extension (email, file
or custom) in any available rendering format. Subscriptions can be either standard, where a user
requests the scheduled delivery of a specific report, or data-driven, where a group of users can request
the scheduled delivery of one or more reports. This is an extremely powerful tool that can be used to
provide report content in an efficient manner to users in practically any location or work schedule.
Chapter 10 will lead you through this compelling feature.

Securing Reports
Reporting Services uses a role-based security model that is installed and configured by default. This
model is highly extensible and may be changed after installation to use a custom authentication
component.

In order for sensitive data to be protected from intrusion, it should be encrypted both at the Report
Server and in the web browser or client application. The preferred method to do this is to use Reporting
Services' built-in support for certification-based encryption over the Secure Sockets Layer (SSL).
Implementing SSL will automatically redirect web requests to an address at the same location using the

File Name Purpose

ReportingServicesService.exe.config Enables tracing and logging of certain server
events that include restarts, exceptions, warnings
and status messages. Some settings are used to
manage the trace and log files and tracing output
options.

RSReportDesigner.config Used to manage and configure custom data
processing and rendering extensions. Also sets
designer preview and rendering options.

22

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 22

http:// prefix. This enables bidirectional encrypted streaming of all data over port 443 (by default) rather
than the standard HTTP port 80. Reporting Services supports levels of automatic encryption which are
detailed in the section that follows. There is currently no maintenance interface for this setting through
the Report Manager or any other provided utility.

You will need to obtain a digital certificate from a certificate authority such as Verisign, AuthentiCode or
Thawte. These companies will sell or lease the certificate for a specified period of time for a few hundred
dollars per year. The authority will do a background check on your business to verify you are legitimate.
Configuring the certificate is actually quite easy. This is performed using the IIS management console
and setting the properties for the ReportServer web folder.

To enable encryption in Report Services, edit the RSReportServer.Config file using Visual Studio or a
text editor and set the SecureConnectionLevel element to a value from 0 to 3.

In the RSReportServer.Config file, you will find this setting near the top of the file after the encrypted
login and connection settings:

<Add Key="SecureConnectionLevel" Value="0"/>

Modify only the number value between the double quotes and save and close the file:

The values are as follows:

The Report Manager
The Report Manager (shown in Figure 1-4) is a web-based interface that provides both user-level access
to reports and administrative features to configure security, subscriptions, report caching, and data
access.

Value Description

0 (default) Disables encryption support

1 Enables minimal support but may expose credentials if a certificate isn't installed or
configured properly

2 Provides an appropriate level of encryption for rendering and authentication calls

3 Encrypts all data

23

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 23

Figure 1-4

This web application is used to perform report and server administration as well as report delivery.
Users may use it simply navigate to reports, provide parameter values and view them. The Report
Manager will be discussed in detail in Chapter 6.

Designing Reports
In this first release of Reporting Services, reports are designed and created in Visual Studio .NET using a
special type of project especially for report design. Simple reports can be built with little effort using the
report wizard. The wizard (shown in Figure 1-5) leads the user through all of the steps necessary to
produce a variety of useful but simple report designs.

24

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 24

Figure 1-5

Chapter 3 will lead you through a series of exercises to get you started with simple report design and lay
the foundation of the report design elements.

In Chapter 4, we will explore data sources and datasets that provide data for reports. We will discuss
different query types like SQL expressions, MDX expressions, views and stored procedure. Query
parameters and report parameters enable data to be filtered at the right level and to make the best use of
data, server and network resources.

In Chapter 5, we cover the spectrum of report design items, data ranges and formatting tools. By using
groupings, we can design multi-level, hierarchal reports. Drill-down reports let users interactively
expand groupings and discover more detail without having to navigate through many pages of content.
Drill-though reports let users navigate from one report to another, passing filtering parameters to obtain
detail information about items in the report. Navigational links may also be used to drill-through to
external resources like web pages, documents and email links.

Charts are useful for aggregating values and presenting a series of data for comparison. A number of
standard charts are available including bar, column, line, area, pie and doughnut charts. Specialized
charts types like scatter, bubble, and stock charts are used with multi-dimensional data and values in
distinct ranges.

25

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 25

Report formatting and content may be enhanced by using program code in a few different ways.
Custom functions may be written in a block of code that is embedded into the report. These functions
may then be called in various property expressions providing conditional formatting and business rules.
More complex code routines may be built into a class library and exposed to reports as custom
assemblies. An assembly is deployed to the Report Server and may be shared by many reports. Finally,
custom extensions may be written to replace or extend inherent data source and rendering capabilities,
providing custom capabilities beyond those built-into the product.

URL Access to Reports
The Report Manager environment is the default entry point and a convenient, comprehensive interface
to view reports. However, one easy method to view a report is to simply navigate to the report's web
address provided by the Report Server. URL query string parameters are used to specify a variety of
options including rendering formats, filtering parameter values, and display options. This is a simple
method for managing and using reports right out of the box—without additional programming or
configuration.

Rendering Reports in Program Code
Possibly the most unique characteristic of Reporting Services is the way it renders report content. Unlike
traditional report solutions that use a proprietary, custom viewer to render the report content; at its core,
Reporting Services is built on a programmatic interface (an XML web service) that outputs the entire
contents of reports in several different file or rendering formats. This capability gives programmers an
incredible range of options for creating custom solutions. These options may include:

❑ On a simple web page, users could click a link to display a custom report in their web browser
using simple URL rendering.

❑ In a custom ASP.NET web application, users provide filtering criteria on a web page; click a
button and view the resulting report in a secondary browser window without navigating off the
application's web site.

❑ In a desktop application, users provide filtering criteria and view the report within the desktop
application form.

❑ Custom reports are saved to an Adobe Acrobat (PDF) file that may be viewed offline on a
laptop, Pocket PC or other mobile device.

An in-depth discussion of programmatic rendering may be found in Chapter 9. Even for the novice
programmer, creating these kinds of solutions is relatively simple and may be accomplished with just a
few lines of program code.

Report Definition Language
Rather than defining a proprietary specification for individual report definitions, our friends at
Microsoft took a very different approach. They chose to publish an extensible and well documented
standard. The entire set of instructions that define a report are stored in a single XML document using an
RDL XML grammar. If necessary, property values for elements of a report's design could be modified

26

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 26

with a text editor. If someone wanted to build their own report design tool, they would simply need to
output the appropriate XML tags to an RDL file. This also makes it easy and convenient to send the
report definition to someone or to deploy a report to another server.

In chapter eleven, we will use a third-party tool to build reports from an RDL template. This will enable
us to create new reports without using Visual Studio .NET. This exercise should open your eyes to the
possibilities to design and build reports from your own custom software, extending vertical business
systems and making Reporting Services part of a complete business solution.

Deploying Reports
Reports are defined in an RDL file but the report's definition is stored in the Report Server database once
it has been deployed to the server. Report deployment may be performed in at least three different ways.
In Visual Studio .NET, the project defines a corresponding web folder on the target Report Server.
Building a report project will deploy reports to a designated target Report Server. The Report Manager
web interface may be used to deploy individual reports manually by simply browsing for and selecting
the RDL file. The Reporting Services web service may be used to deploy reports programmatically using
methods of this multi-purpose object. Chapter 13 will explore each of these options and detail
deployment techniques and related considerations.

Designing and Architecting Report Solutions
Reporting Services does offer an out-of-the-box solution. Reports can be designed in Visual Studio .NET,
deployed to a server and viewed using the Report Manager Web interface quite easily. However, for
custom applications or to meet specific business needs, this may not be the ideal solution. Reporting
Services is an extensible service with several options for designing, managing, deploying, rendering and
delivering reports to users.

In Chapter 13, we will discuss these options and consider how understanding your business
requirements should lead to the most ideal solution. We will look at different business cases and how a
reporting solution fits into the overall picture to meet business and users' needs now and in the future.

Summary
At this point, you should understand that Reporting Services uses a new approach for report delivery.
Each report has a data source that may be shared with other reports. A data source can obtain from
practically any database product or data provider.

Report definitions are stored in an XML document format called RDL. Out-of-the-box, reports may be
designed in Visual Studio .NET but third-party and custom solutions may be used to create and design
reports as well.

Reporting Services can be completely secured and highly customized. The Report Manager is provided
to simplify server, user and report management. Solutions may be simple and easy to implement or they
may be completely customized and integrated into your custom-built software.

27

Getting Started with Reporting Services

68787_ch01.qxp 26/03/2004 3:50 PM Page 27

Reports may be delivered using snapshots and subscriptions that are either pulled by the user in
real-time, or pushed by the server on a schedule. Using these capabilities, valuable system resources are
conserved since reports are rendered less often and can be cached in the Report Server database

Setup is performed using a standard Windows Installer package. We've explored the setup options and
selections. Configuration settings are stored in XML configuration files that may be modified by an
administrator using a text editor.

The next chapter will help you understand the architecture that makes Reporting Services work. You
will learn about the nuts and bolts that give this impressive product the ability to provide scalable and
extensible reporting solutions. Throughout the book, we will build on this foundation as you learn to
design, manage and deploy your own reporting solutions.

28

Chapter 1

68787_ch01.qxp 26/03/2004 3:50 PM Page 28

Reporting Services
Architecture

Before writing any reports, we need to take a good look at what Reporting Services does. This
chapter will introduce you to Reporting Services features and architecture.In the first part of the
chapter, you will look at all the features of Reporting Services. These include the Report Designer,
Report Server, and Programming Interface. The chapter will provide a surface-level overview of
what you will see later in the book.

Next, we'll look at how Reporting Services is put together. We will walk you through the various
processing components, data source extensions, and rendering extensions and take a closer look at
how the Reporting Services Web Service works. This chapter also includes a series of illustrations
to help you visualize each component.Once you have completed this chapter you will have a good
understanding of the Reporting Services "big picture". This knowledge will carry you through the
following chapters and help you draw it all together.

This chapter covers:

❑ The reporting lifecycle

❑ Reporting Services features

❑ Report Server components

❑ Data Processing Extensions

❑ Delivery extensions

❑ Report Server databases

❑ The Reporting Services Web Service

❑ Report Designer

❑ Reporting Services tools

222

68787_ch02.qxp 26/03/2004 3:50 PM Page 29

Chapter 2

30

The Reporting Lifecycle
Before digging into the architecture of Reporting Services, you need to understand the fundamentals of a
reporting lifecycle. Reporting platforms can be evaluated by their support for the following
areas—authoring, management, and delivery. We will take a look at what is included in each of these
phases and later see how Reporting Services implements them. Take a look at the reporting lifecycle
block diagram shown in Figure 2-1:

Figure 2-1

Authoring
The authoring phase is concerned with the actual development of reports. Authoring generally includes
the following features:

❑ Connecting to a data source

❑ Writing database queries

❑ Creating report layout

❑ Creating report parameters

❑ Setting report properties such as height and width

These capabilities are important for the initial development of the report. They must be flexible enough
to handle diverse reporting needs and structured enough to be easy to use.

Management
After developing the report, you move into the management phase, which is concerned with setting
properties of reports specific to the production environment. These properties include:

❑ Data source connection information

❑ Default parameter values

❑ Security permissions

❑ Report caching

❑ Report execution schedules

❑ Report delivery schedules

Management phase is generally performed by the administrators. Most of the user access to reports is
defined in this phase.

68787_ch02.qxp 26/03/2004 3:50 PM Page 30

Delivery
The delivery phase looks at how reports get to the end users. Delivery includes:

❑ Providing an end user interface for browsing reports

❑ Publishing reports on a specific schedule

❑ Delivering reports to end users

A common concept in reporting platforms is push/pull delivery. Push delivery constitutes the reports that
are sent to the user. Pull delivery constitutes reports that can be accessed on-demand by the user . Users
are required to take the effort to get the report information. The report could be emailed to the requestor
of the report, or published to a specified fileshare.

Reporting Services Features
Having seen the main phases in a reporting platform, let's look at the specific features in Reporting
Services that make the three phases of reporting services possible. In this section, we will look at the
Report Designer, Reporting Services, and the programming interface, and then move on to the specific
components that make these features possible.

Visual Studio .NET 2003 Integration
Any respectable reporting platform must provide report writers with a rich set of design tools. Microsoft
has created a designer to do just that. Because of the integration with Visual Studio .NET, users can take
full advantage of the established development features. The designer also gives several design options to
fulfill the users reporting requirements.

The Report Designer is fully integrated with Visual Studio .NET 2003. Through this integration, the
Report Designer can take advantage of a number of established tools. Let's take a closer look at what the
designer has to offer.

Query Designer
The query designer allows users to visually create data source queries. It works with multiple data
sources and should be familiar to people already working with Microsoft products. Users can
graphically drag and drop database objects to create SQL queries. They can also switch to a generic
query designer to create freeform queries.

Server Explorer
The Visual Studio .NET Server Explorer allows users to view and work with multiple servers. This is
extremely helpful when working with Microsoft SQL Server. Users do not have to switch from the
Report Designer to other tools to view database objects. They can simply open the Server Explorer and
browse for the specific object.

31

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 31

Visual Source Safe
Visual Studio .NET also integrates with Microsoft Visual Source Safe. Report writers can easily store and
maintain the version history of their report files. This can be an invaluable tool when working on both
large and small scale reporting projects.

Report Designer
Microsoft has created a couple of new Visual Studio .NET templates that allow you to create Reporting
Services Report Projects. These Report Projects give you a graphical interface for creating their report
definition. This interface displays the data sources used by the report, the layout of the report and also
allows you to preview a report before it is published.

The Report Designer also provides a number of controls to facilitate report writing. You can create table
reports, matrices, and freeform lists. The ability to combine these controls gives you even more
possibilities.

If you want more control over the actual report definition, you can simply switch to Code view and see
the XML generated by the designer. Working with the XML might seem a bit complicated, but when you
need to do a search and replace a given word, this can be invaluable. It also lets you see a little more of
what is created under the covers. Unlike other proprietary formats, XML allows you to easily read and
debug report definitions.

Report Server Features
The Report Server is the main component of Reporting Services. It takes care of all report processing,
data access, security, and rendering. For a while now, I have looked for what I truly felt was a
service-based application—you hear a lot about it in development circles. I believe Microsoft has hit it on
the head with this one. Reporting Services is truly a serviced application. Microsoft has elegantly
encapsulated all the reporting functionality into one neat package. In this section we'll take a quick look
at what's available.

Central Report Storage
Reporting Services creates one central store for your reports. This eliminates the need to deal with a
bunch of messy fileshares. On a recent client engagement, I used it to help consolidate all of their
different report areas into a hierarchical structure. This is easily accomplished with features available in
Reporting Services. Central storage also makes it much easier for your users to access their reports—no
more searching a bunch of directories for the item you want!

Security
In any reporting environment, you will have the need to secure certain items. Reporting Services
integrates with Windows security to create a flexible role-based security model. This model allows you
to create roles with a number of different permissions. You can then assign Users and Groups to these
roles.

32

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 32

Reporting Services security is really the combination of three different items:

❑ Role definitions: A set number of tasks that can be performed. These include item-level roles,
which apply to reports, folders, resources, and data sources, and system roles, those that apply
to the Report Server site.

❑ Securable object: Securable objects include reports, folders, resources, data sources, and the
Report Server itself.

❑ Windows users and groups: The combination of a role definition, securable object, and a
Windows user/group creates a role assignment. This security model encapsulates the common
features needed in a reporting system and gives you the flexibility to adopt it in your
organization.

Report Delivery
Once you have created your reports, you will need an easy mechanism to deliver them. Reporting
Services follows the standard push/pull model for reports. Push/pull refers to the ways in which a user
can access information.

When you go to a web site and view stock quotes, you are pulling information, hence the push/pull part
of the model. Users must be able to access information freely. Reporting Services allows users to
navigate through the web to see listings of available reports.

Let's say you order a book online from http://www.amazon.com/ (hopefully this book). After you enter
your credit card information, email address, and so on, and press Buy, Amazon sends a receipt to your
inbox. This is an example of a push report. Email is just one delivery method for push reports. Reporting
Services supports both email and fileshare push deployment along with the ability to create your own
delivery extensions.

To take maximum advantage of a truly effective reporting system, users should have the ability to grab
information when convenient and get information delivered on a regular basis.

Scheduling
Along with being able to deliver reports via email or a fileshare, a reporting system must have some
mechanism to send these items on a regular basis. Reporting Services relies on SQL Server Agent to
schedule and execute given tasks. Scheduling features in Reporting Services allows individual users and
administrators to subscribe to reports on a schedule they define.

But, delivering information is not the only area where a scheduling tool comes in handy. If we think
about what part of generating a report takes the longest, it is generally the actual retrieval of data.
Reporting Services helps you eliminate some of this wait time by scheduling reports to execute (retrieve
their data) on a regular schedule. So, if you update your sales information every Sunday, you could
easily schedule a report to run early Monday morning. So when users come in on Monday, they'll have
quick access to their information.

33

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 33

Programming Interface Features
When selecting a reporting platform, it is crucial to be able to extend that platform and incorporate it in
existing systems. Microsoft has provided a web service interface for accomplishing these goals. Through
the web service, you have complete access to the Reporting Services platform. Anything from rendering
reports to creating subscriptions can be performed programmatically.

Open Architecture
Why did Microsoft use a web service interface? Web services are built on an open architecture. This
means you do not need to have Microsoft development technologies to take advantage of them. The key
to web services is that they are built on industry standard technologies. Through the use of XML, SOAP,
and HTTP just about any platform can call and use web services.

Complete Access
Not only did Microsoft create a platform-neutral programming interface, they also let you do anything
you need to through the interface. It is common to work with an API where the developer has limited
control over what happens. With Reporting Services, the world is really open to you. If you just don't
like the administrative tools that come with Reporting Services, you could write your own.

Most people do not go to this extreme, but it is important to have the flexibility. This means that as an
application developer you can add any part of Reporting Services you need into your application. A
common example would be creating your own custom interface for rendering reports. You could make it
much easier for your users to get the report in exactly the format they want. Another example would be
creating your own subscription interface. You might already know the users email information, so they
click a few buttons and the subscriptions are done.

The possibilities for using the Reporting Services Web Service are only limited by what the product can
do. This should be incredibly good news to all the code junkies out there.

Report Server Components
Now that we have taken a look at what Reporting Services can do, let's get down to the nuts and bolts of
how it works. In this section we will focus on the various components of Reporting Services. We'll move
through processing of the report and data to rendering and delivering reports.

Report Processor
Report processing is the main driver in the Report Server. The Report Processor is responsible for
handling user requests and returning the appropriate report and data. Along with this task it also
performs caching of reports to improve performance. Let's take a look at the individual components that
constitute report processing.

The main job of the Report Processor is to combine the report definition and report data to create and
return this data.

34

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 34

Report Request Handling
When a report request is received, the report processor takes the following steps:

1. It determines which report is being asked for and retrieves the report definition from the Report
Server database.

2. The report processor asks for the report data. This is a call made into the data processing
extensions (more on this in a moment).

3. The Report Server combines the two into an intermediate format. The intermediate format is
then sent to the rendering extensions for delivery.

Report Definition
The report definition is an output format and a neutral representation of the report. Reporting Services
was designed to support numerous output formats, so the report definition is not aware of how the
report will actually be rendered. The report definition defines the query and layout of a report. These are
things like the tables contained in the report, their position in the report, and number of columns. The
query information is then used to retrieve data and to combine it with the layout. Once the report
definition and data are combined, they form an intermediate format.

Intermediate Format
The intermediate format is an internal format of the report used by Reporting Services for rendering and
caching. It is this format that is sent to the rendering extensions. It is a combination of both the data and
report definition. The size of the intermediate format will depend mostly on the data that is returned.

Caching
The report processor also handles the caching of reports. When working with a reporting solution, the
main bottleneck in report performance inevitably is the execution of queries. To solve this problem,
Microsoft has developed a number of caching strategies. These strategies offer various performance
gains and flexibility. The basic premise of a cached report is that we stored the report definition and data
together. Thus when a user requests a report, the only thing that needs to be performed is the actual
rendering. Rendering by comparison with other activities, is a relatively inexpensive part of the report
processing in terms of server resources. Let's take a look at each of the caching strategies.

Session Cache
Since Reporting Services works over HTTP (we will talk more about this later), it must maintain some
information about each user request. This is referred to as session information. If the same user asks for
the same report in a relatively short period of time, it does not make sense to query that information
again. So, when a user makes an initial request, the report definition and data are stored in the session
cache. Session cache is used with on-demand reports (reports not cached).

Cached Instances
Cached instances also store the report definition and data, but they must expire at some given time. This
time frame could be an hour, week, or month. The actual start time, however, is not defined. With a
cached instance, the first user that requests the report has to wait for the query to process. After this
initial request, the timeout is started. Once the report expires, the next user requesting the same
information will have to execute the associated query.

35

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 35

This caching strategy is perfect if you have slower changing data, or even data that changes frequently
but is not critical to update as soon as it changes. A good example of this would be stock quotes. They
update constantly. It would be incredibly taxing on software systems if they had to keep up with this
rapid rate of change. So, instead of updating every millisecond, stock quotes are generally updated
every five to ten minutes.

Snapshots
The final type of caching strategy is the snapshot. Like the name implies, it is a snapshot of the data at a
given point in time. Unlike cached instances, snapshots have a defined start time and not definite end
time. Let's say you have a group of users that needs summary reports every Monday at 7:00 am for a
weekly meeting. You are in the data warehousing group and have jobs that process data late Sunday
night in preparation for the meeting. Once the data is processed, it does not change. This data is also
very large and takes a long time to query. In that case, it makes perfect sense to store the reports right
after the information is available. This way when people come in Monday morning to run the reports,
they are kept ready and the users will not have to wait for any query processing. Therefore, by using
snapshots, data is made available at a specific time within minimum amount of processing time.

Working again from our example above, a week goes by and you are again ready to run your reports.
Would you want to get rid of the previous week's information? Certainly not—as soon as you do,
someone is bound to ask for it! So, you need a mechanism to store that information away. Reporting
Services gives you the ability to store a history of report snapshots. That way, even though the new
snapshot has been created, the old one is still available.

Report Processing Illustrated
Figure 2-2 shows the process of requesting a report and moving through the Report Processor:

Figure 2-2

36

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 36

Data Processing Extensions
Now that we have seen the Report Processor, let's take a look at how the actual data is retrieved. Data is
returned to the Report Processor through the Data Processing Extensions. The Data Processing Extension
that is used will depend on the data source defined in your report. We describe the common functions of
all these extensions and then those that are supported by Reporting Services.

Data Processing Defined
Data Processing Extensions are used to return data from a given data source. The architecture in
Reporting Services supports the .NET managed providers and allows you to create extensions for your
own particular data source.

The common functions that all Data Processing Extensions perform are as follows:

❑ Connect to the data source

❑ Pass parameters to the query

❑ Run the query on the data source

❑ Return a list of field names from the query

❑ Move through the rowset to retrieve data

Supported Providers
Reporting Services supports the .NET managed providers for returning data. These include SQL Server,
OLEDB, ODBC, and Oracle. Since they are managed providers, they take full advantage of the .NET
Framework. Using these four data providers, users should be able to connect to just about any data
source. Let's take a look at some common providers.

SQL Server Provider
Using the SQL Server provider, users can retrieve data from SQL Server tables, stored procedures, views,
and User Defined Functions (SQL 2000). The SQL Server managed provider is optimized to connect to
SQL Server. Extra layers such as OLEDB and ODBC have been removed for optimal performance.

Oracle Provider
Although Reporting Services uses SQL Server to store its metadata, you can use Oracle as a source for
your reports. Like the SQL Server managed provider, the Oracle managed provider is optimized for
Oracle and removes extra layers such as OLEDB and ODBC.

OLEDB Provider
The OLEDB provider gives report writers a great deal of flexibility. Using this provider, you can query a
number of different data sources. The following is a list of just a few:

❑ Microsoft Analysis Services

❑ Microsoft Access

37

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 37

❑ Microsoft Excel

❑ Microsoft Directory Services

ODBC Processing Extension
ODBC works through the .NET OLEDB managed provider. The ODBC Processing Extension allows
users to access any system with a compatible ODBC driver. This opens the door to reporting on a
number of legacy systems, such as dBase and FoxPro. ODBC drivers have been written for most of
today's database systems.

Be careful when using an ODBC driver. It is possible to connect to SQL Server, Oracle, and a number of
data sources listed earlier. If you use an ODBC driver to connect to these data source instead of the
native .NET managed provider or OLEDB provider, you could seriously hamper query performance.
With your data sources, look for a .NET managed provider first, then an OLEDB provider, and if neither
of these options is available, use an ODBC driver.

Data Processing Extensions and Data Providers
Along with the four .NET managed providers, users can also create their own custom Data Processing
Extensions or data providers through the Reporting Services API. This allows users to expose the
functionality of their data source to the end user and achieve some performance gains. The .NET
Framework also allows the creation of .NET data providers. Since Reporting Services supports .NET
data providers, this would be another viable option for connection to your custom data source. The role
of Data Processing Extensions in relation to the report processor and the data source is shown in
Figure 2-3:

Figure 2-3

38

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 38

Supported Rendering Extensions
Reporting Services also supports a number of different rendering extensions. When creating a report in
Reporting Services you are creating them in a neutral output format. In the report, you define the query,
the fields, and how they should be laid out. It is the job of the rendering extensions to take this
information combined with the data and create a useful output. Often, this is not an easy task. Let's take
a look at some of the supported extensions. Microsoft has provided seven different rendering extensions.
Each of these can be used to return report information.

Excel
The Excel rendering extension takes report data and outputs it to Excel. This is a common format for
many users, especially for those users who will perform further analysis on the information.

The Excel rendering is more sophisticated than competing reporting platforms. Many reporting
platforms lay out reports in a banded format. If you are familiar with Microsoft Access, you will
understand the different bands for data detail, grouping headers and footers, page headers and footers,
and report headers and footers. While this type of banded report does offer an extremely flexible report
design, it does not always translate well into an Excel document.

By incorporating table and matrix controls in reports, users can create report layouts almost like they
would in Excel. This type of layout lends itself nicely to rendering in Excel.

At the time of writing, Excel rendering is limited to Office XP and Office 11.

PDF
Microsoft also provides a rendering extension for PDF Format, which is probably the most popular
document format on the web. It is clean and easy to read and has printing capabilities. You would most
likely choose this format for reports that are widely distributed but not analyzed by the end users. The
reports that are in PDF format cannot be altered. Some common examples would be invoices, inventory
pick tickets, weekly sales summaries, and a company's public financial documents.

PDFs also support document map functionality. This feature in Reporting Services allows you to define
bookmarks within your report. Once the report is rendered, users can click on links to easily navigate to
different areas of the report.

End users can download Adobe Acrobat Reader for free and you do not need a license to distribute PDF
documents generated by Reporting Services.

HTML
Probably the most common output format for reports in Reporting Services is HTML. Since both the
Designer Preview and Report Manager work in this view, reports can be rendered in HTML 4.0 or
HTML 3.2. The .NET Framework looks at the user request to determine which browser is being used and
then renders the report in the appropriate HTML format.

HTML rendering is good for interactive reports. By navigating to a web site, a user can easily
manipulate report parameters to find specific information. HTML rendering also supports dynamic
visibility, which gives users the ability to drill down to detailed information and supports document

39

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 39

maps for easier navigation. Users can also render reports to HTML with Office Web Components. This
allows for even greater manipulation of report information.

HTML rendering, however, is not good for printing. HTML pages are truly meant for displaying
information. Most web applications will allow users to click a link and print printer friendly
information. In Reporting Services, users can simply export a report to PDF or Excel and print it from
there.

Web Archive (MHTML)
Web Archive or MHTML is commonly found in email messages. MHTML stands for MIME Encapsulation
of Aggregate HTML Documents and these files have a .MHT extension. Generally an HTML document
references a number of external resources such as images and style sheets. Although HTML allows for
rich formatting of documents, it is hard to transport them when they reference other independent
objects. MHTML takes care of this by encapsulating the externally referenced information such as
images into one document.

MHTML documents are useful when sending out subscriptions. If users would like to view reports
through email without opening an attachment, then MHTML is the appropriate format. One thing to
note though is that not all email clients support this standard, so check your User Communities setup
first.

CSV
The Comma Separated Value (CSV) format takes the report definition and data and transforms it into a flat
file. This type of output is not appropriate for reading. It is suitable as a data exchange format. You
might have customers with legacy systems that are very good at parsing and consuming flat files. In this
case, you could electronically send reports in CSV format to these users. They could in turn consume the
data and report on it or manipulate it how they see fit.

TIFF
The Tag Image File Format (TIFF) is a widely used format for storing document images. Many facsimile
programs use this format to transfer data. Many organizations store documents in document
management systems such as SharePoint Portal Server. Reports rendered in TIFF format would be
excellent candidates for this type of document system. You could place historical snapshots of reports
into your document management system and then remove them from the Report Server. This would
allow you to take advantage of common document management features such as indexing.

XML
The Extensible Markup Language (XML) is very different from CSV rendering, but can serve many of the
same purposes. XML is a structured markup language that lets you define data. Reporting Services uses
this markup in a number of areas. When reports are rendered as XML, they include both the report
definition and data, much like CSV rendered reports. Similar to CSV files, XML files are designed
explicitly for the exchange of information. You could send XML rendered reports to customers or other
applications for additional processing, or you could run the XML rendered report through an XML
Transform document to control the standard formatting of the document.

40

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 40

Customized Extensions
Along with the seven supported rendering extensions, the Reporting Services API also allows users to
create their own rendering extensions. So, if you want to output a report to a Word or a GIF file, you
could create your own extension. Report rendering is illustrated in Figure 2-4:

Figure 2-4

Scheduling and Delivery Processor
The Scheduling and Delivery Processor has two major functions, creating report snapshots and
delivering subscriptions. These tasks hinge on the use of Microsoft's SQL Server Agent. The SQL Server
Agent is responsible for queuing scheduled events. Reporting Services monitors these events and takes
appropriate action as and when required. Scheduling and delivery have been encapsulated together
because they use similar functionality. In both cases, Reporting Services is watching for a given event,
processing the report, and then either storing that processed report or delivering it. Let's take a closer
look at both the scheduling and delivery areas.

Scheduling
Scheduling refers to the actual setting up of the report execution and delivery schedule. When we store
report schedules, this information is relayed to the SQL Server Agent to queue the request at the
appropriate time. Both users and administrators can define schedules for report execution and delivery.

41

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 41

Delivery
Delivery deals with the mode of delivery of reports in Reporting Services. Users can have reports
delivered via email, a fileshare, or a customized delivery extension, you will see more on delivery
extensions in the forthcoming sections.

There are two types of subscriptions available in Reporting Services, standard and data-driven
subscriptions.

Standard Subscriptions

Users can create their own subscriptions through Report Manager or a custom interface. Additionally,
administrators can also create subscriptions for users. When setting up a standard subscription,
information such as parameter values and rendering format can be set along with a schedule for report
delivery.

With standard subscriptions, users can define their own schedule for receiving a report. This is
important for small scale reports and gives users a great deal of freedom in how they receive certain
information.

Data-Driven Subscriptions

Data-driven subscriptions offer a great deal of flexibility when delivering reports. You can create reports
for any number of users, use different rendering formats for each user, and even change report
parameters for each. This allows you to create a very custom report experience for users with a minimal
amount of work.

Think of a large retail organization where each store in the organization has a store manager. Each week
the store manager receives the sales numbers from the previous week. The report is identical for each
manager except for the reference to the actual store. So, using data-driven subscriptions, you could
dynamically set the store report parameter for each report and then email these individual reports to
each manager. In the end you have created only one report, but quickly tailored it for a number of
different users.

In both standard and data-driven subscriptions, the delivery of these reports is event-driven.

Schedule-Based Events

One of the common methods of determining when reports are to be delivered is doing so through some
sort of schedule. The report could be delivered every month, week, day, or at any such pre-decided
interval of time. Reporting Services gives users a number of different options when setting schedules.
These schedules can be either specific to a given subscription or shared through Reporting Services.

Let's imagine that your organization has a set of reports that have their underlying data updated every
Sunday evening. Executives for a Monday morning meeting can use this information. You could define a
shared scheduled that contains information such as "Weekly, Monday, 6 am". This shared schedule could
then be used for any number of reports. If later you decide that sending the report at 6 am does not meet
new requirements, you could simply edit the shared schedule and thereby change the schedule for each
report using it.

42

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 42

Snapshot Update Events

Delivery of reports can also be triggered by the update of snapshot reports. Many reports in an
organization have set intervals after which they are updated. For example, data for a monthly sales
report is always updated on the last day of the month. Once this has happened, the data is frozen and
does not change for an entire month. If you want to create a report from this information, does it make
sense to query the database each time the report runs? No, the information at this point is static. So, we
create a snapshot of the data at the end of each month and store the entire report. At this point when
users display the report you no longer have the overhead of a database call.

If we were going to update our reports according to a given schedule, it would only make sense to
deliver them to the appropriate users when they are ready. Reporting Services allows users to set their
subscriptions based on updates to snapshots. Through this method, we do not have to worry about
setting a defined time when we think the report will be done processing; instead it will send off the
delivery when report processing is finished.

Scheduling and Delivery Processor Illustrated
The following set of illustrations (Figure 2-5) will walk you through the various tasks performed by the
Scheduling and Delivery Processor. Let's begin by handling the initial subscription and then move on to
running snapshots and delivering subscriptions.

Figure 2-5

Now that we have seen how report schedules are created, we can look at both snapshot processing and
subscriptions processing (Figure 2-6):

43

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 43

Figure 2-6

The final piece of scheduling and delivering is subscription processing. In Figure 2-7, you can see the
individual steps in the processing of report subscriptions:

Figure 2-7

44

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 44

Delivery Extensions

Delivery extensions are tied heavily to the Scheduling and Delivery Processor. They are used when
sending subscriptions to users. Microsoft has provided two delivery extensions and given users the
ability to develop their own. Reporting Services comes with two delivery extensions—email and
fileshare. Let's take a look at each.

Email
The email delivery extension allows users to receive reports directly in their inbox. You can specify the
rendering format that you would like the report to be delivered in and whether or not to include a web
link to the report. Depending on the rendering extension used in the report, users will either see the
report directly in their mailbox or receive it as an attachment. As mentioned earlier, you could use the
Web Archive (MHTML format) to embed reports and their images in an email message.

To send email deliveries, Reporting Services must be able to communicate with a valid SMTP server.
This setting is initially set when installing Reporting Services.

File Share
Reports can also be delivered directly to a fileshare. For this, Reporting Services must have Write
permissions to the share. You can also specify credentials to use when sending reports to a fileshare.

Custom Extensions
Along with the supported extensions, Reporting Services also allows for the creation of custom delivery
extensions. Say you like monthly reports to be delivered directly to a printer after they have been
processed. You can create your own delivery extension and then schedule a subscription to use this
delivery extension. In the Reporting Services sample folder, you can find an example for creating a
delivery extension for a printer. Delivery extensions are illustrated in Figure 2-8:

Figure 2-8

45

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 45

Report Server Databases
Reporting Services relies on SQL Server for storing its metadata. This allows for greater scalability in
large reporting applications. This also allows you to take advantage of features inherent to SQL Server,
such as backup and transaction logging.

Reporting Services uses two SQL Server databases to store data, ReportServer and
ReportServerTempDB. In the next section, we will take a look at the major components of each database
and describe how they are used. We will also take a quick look at a Data Transformation Service (DTS)
package provided for monitoring information.

ReportServer Database
The ReportServer database is the main store for data in Reporting Services. It houses all report
definitions, data sources, schedules and delivery information, security information, and snapshots and
snapshot history. There are a series of tables for each functional area. The database schema is open and
generally easy to follow.

Updating or querying these database tables is not recommended, but an understanding of how they are
arranged should give you a better understanding of how Reporting Services works.

The following table lists some of the tables in the ReportServer database and their related functions:

Table Name Function

Resources

Catalog Information such as report definitions, folder locations, and data
sources.

DataSources Information about individual data sources. When reports are
published, the data source information is removed to avoid
inadvertent overwrites.

Security

Users User name and security ID (SID) information for authorized users.

Policies User/Group role assignment information.

PolicyUserRole User/Group role assignment information.

Roles Role descriptions and permissions.

Snapshots and Snapshot History

SnapshotData Snapshot schedule information.

ChunkData Actual report snapshots containing report definition and data.

History Snapshot history information.

46

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 46

ReportServerTempDB Database
As the name implies, the ReportServerTempDB database stores temporary Reporting Services
information. User session information is stored in the ReportServerTempDB. Because Reporting
Services communicates using HTTP, no state is maintained between the client application and the server.
Session state about the reports that the user is running must be stored between each server call. The
ReportServerTempDB stores this information in a SessionData table.

ReportServerTempDB also stores report cache information. When a report is set as a cached instance,
there is no definite time when that report is executed. It depends on which process requests the report
first. Once the report is executed, the intermediate format and data are stored in the
ReportServerTempDB database. If this database were to fail, the cached information would be lost. But,
since it is executed when a user views the report, there is no real loss of information. Snapshots, on the
other hand, are not stored here. Their execution time is usually at a set moment to ensure that the data
on the report is correct. Therefore, this information is stored in the more permanent ReportServer
database. Reporting Services will not be able to function without the ReportServerTempDB database.

When working with Reporting Services, it is important to pay close attention to the
ReportServer database. It contains all critical information related to Reporting
Services and should be backed up on a regular schedule.

Table Name Function

Scheduling and Report History

Schedule Schedule execution information.

ReportSchedule Relates a given report to its execution schedule and subscription
information.

Subscriptions Subscription information such as owner, parameters and delivery
extension.

Notifications Subscription notification information such as date processed and
last runtime and delivery extension.

ActiveSubscriptions Information on subscription success and failure.

RunningJobs Currently executing schedule processes.

Administrative

Configuration Reporting Services configuration settings.

ExecutionLog Log of report executions including report, time started, time ended,
format, and parameters.

47

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 47

It is not necessary to backup the data in the ReportServerTempDB.

Viewing Execution Information
As mentioned earlier, it is not recommended to view or modify the underlying SQL Server tables. It is
also very difficult to analyze execution information in the ReportServer database. So, Microsoft has
provided a DTS package for moving this data out of the ReportServer database.

To use the DTS package, you must first create a database to hold execution log information. Microsoft
provides a number of scripts in Reporting Services to help with this task. Once the database has been
created, you can use the DTS package to move information into it. Once the information has been moved
to the new database, you can run queries against it or maybe even create a Reporting Service report.

The Reporting Services Web Service
One of the most outstanding aspects of Reporting Services is its open programming interface.
Everything that we have seen so far can be performed through the Reporting Services Web Service. The
Reporting Services Web Service is a set of functions you can use to render, subscribe to, and publish
reports.

Reporting Services takes advantage of technologies already implemented in Internet Information Server
(IIS) and the .NET Framework. Both these components provide the backbone infrastructure for web
services. IIS performs web request handling and routing along with some security. The .NET Framework
provides classes for consuming and publishing web service interfaces.

To understand the Reporting Services Web Service, you must first understand the underlying
technology.

Web Services
Web services have really been a hot topic over the last few years. With them comes the promise of
various applications exchanging information freely with one another. No more complicated interfaces
for calling code on disparate systems—just one set of standards that everyone can follow.

The standards are what make web services so inviting. In the past, different companies have come up
with their own standards for interfacing different sections of code. COM for example is a specification
that allows code written in Visual Basic to talk to code written in C++. This is fine if you are working on
Microsoft platforms, but what if you want your Visual Basic application to use functionality in a COBOL
application. You would have to write some cumbersome code to make this happen. Let's take a look at
the standards that make web services possible.

Open Standards
There are a number of open standards that make web services possible. When you think of code
communicating with other code and all the tasks that entails, you quickly find some similarities. First of
all, you need some transport mechanism for sending information.

48

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 48

One of the most widely adopted standards for sending information is Hypertext Transfer Protocol (HTTP)
which is the default standard for web communication. It has the ability to send information back and
forth between remote machines and has a huge implementation base. All major platforms today support
sending information via this protocol. Now that we have a transport mechanism, we need to package (or
address) the information.

Simple Object Access Protocol (SOAP) is a messaging protocol designed specifically for the distribution of
information via HTTP. SOAP messages define a standard to package data and send it across the Internet.
Some of this information includes header information for the message, security information, and the
actual message body of itself. SOAP also uses XML as part of its protocol. So, you've got a package and a
way to send it—now all you need is the message.

Visual Studio .NET Integration
Visual Studio .NET has complete support for using web services. Consuming web services is almost as
easy as working with objects in the .NET base classes. Using the Visual Studio .NET IDE, you can easily
add web references to your projects and get full access to a web services. Using the Reporting Services
Web Service through Visual Studio .NET allows you to take advantage of the IDE built-in functionality.

Although Visual Studio .NET makes it easy to work with web services, it is not the only development
option. Because web services are built on open standards, any development tool supporting these
standards can be used to work with them. For example, if you want to integrate Reporting Service
functionality into your Microsoft Office applications, you can. Through Visual Basic for applications, you
can write code that calls web services and therefore can call Reporting Services. You might want to build
a list of reports into an existing Microsoft Access application. This could be easily accomplished in a few
lines of code using the Reporting Services web service.

Available Features
Any feature that you use in the Report Manager interface can be used or accessed through the Reporting
Services Web Service. There are no special calls from the Report Manager to Reporting Services.

Here is a list of just a few things available through the Reporting Service Web Service. The rest of the
book will go into detail on these topic areas:

❑ Rendering reports through various rendering extensions

❑ Publishing reports programmatically

❑ Creating snapshot reports

❑ Adding snapshot reports to history

❑ Creating subscriptions

❑ Modifying data sources

Web service messages are sent encoded in XML. This allows services to have richly
defined interfaces and yet be able to use the structure of XML. It also allows other
systems to easily read and manipulate data.

49

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 49

The list could continue on with a number of different features. Just remember that anything you do in
Report Manager can be done through the Reporting Service Web Service.

Report Designer
Creating reports in Reporting Services is very straightforward. Microsoft has provided a set of tools that
allow you to easily build and publish your reports. In this section, we will take a look at how the Report
Designer is incorporated in Visual Studio .NET and also explain the RDL file created by the designer.

Visual Studio .NET
Microsoft has chosen Visual Studio .NET as the standard development tool for their products. Along
these lines, they have incorporated the Reporting Services Report Designer into Visual Studio .NET.
Visual Studio .NET provides a number of other features other than the Report Designer.

Once you have installed the Reporting Services, there are a couple of project templates added to Visual
Studio .NET. Inside Visual Studio .NET you will see a folder called Business Intelligence Projects. This
folder contains both the Report Project Wizard template and Report Project template. Choosing either of
these project templates will load the Report Designer.

Report Definition Language (RDL)
Now let's take a look at what exactly the Report Designer does. The Report Designer allows you to
visually layout reports and build their underlying queries. This information is used to create an, RDL
file. An RDL file is a XML document that defines the elements of a report. It is this file that is eventually
published to the Report Server. Once the file is published, the report definition is stored in the
ReportServer database. Any subsequent publishing of the report replaces most of the definition stored
in the ReportServer database. You will learn more about RDL in Chapter 11.

Reporting Services Tools
There are a couple of tools included with Reporting Services. These tools allow you to publish reports,
modify data sources, set security information, and a number of other tasks. Each of these tools relies on
the Reporting Services Web Service. Anything that you can perform with these tools can be written in
your own custom code. Let's take a look at a couple of the major tools, Report Manager and RS.EXE.

Report Manager
Report Manager is the main management tool for Reporting Services. It provides the following
functionality:

❑ Report management

❑ Uploading RDL files

❑ Managing folder hierarchies

50

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 50

❑ Setting data source credentials

❑ Managing default parameter values

❑ Creating linked reports

❑ Creating execution snapshots

❑ Setting caching options

❑ Security

❑ Setting server-level and item-level security

❑ Defining Reporting Services Roles

❑ Assigning Windows Users and Groups to roles

❑ Report delivery

❑ Viewing reports

❑ Exporting reports to different rendering formats

❑ Defining report subscriptions

We will take a closer look at the Report Manager in Chapter 5.

Report Server Command-Line Utility (RS.EXE)
Reporting Services also comes with a command-line utility to simplify management of reports. After
installing Reporting Services, you will find a file named RS.EXE. This utility contains a reference to the
Reporting Services Web Service and allows users to call any of the service methods. To use the Reporting
Services command line utility, you must first create a Visual Basic .NET input file. This file contains one
main procedure and then instructions for working with the Report Server. The commands in the Visual
Basic .NET file rely on the Reporting Services Web Service to perform their tasks. This file can then be
passed into the command-line utility for execution.

A common example of this would be deploying development reports on a set basis. You can create a
command line utility that checks for files updated in the Report Definition files. Once file changes are
found, you could then use the Reporting Services command line utility to publish these files to the
report server.

Reporting Services comes with a few samples that demonstrate how to perform various tasks using
RS.EXE.

Reporting Services Illustrated
Now that we have seen all the components that make up Reporting Services, let's take a look at an
overall illustration. Figure 2-9 shows the different components of Reporting Services and how they are
grouped. Notice that the actual functionality of Reporting Services is all encapsulated in one area. The
databases storing data for the Reporting Service are separate. This means that we can physically separate

51

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 51

the different components of Reporting Services to take advantage of web farm configurations (multiple
servers combined to distribute processing), allowing us to create highly scalable applications.

Also notice that all calls to the Reporting Service go through the Reporting Services Web Service. This
means that you can create your own custom front ends and have complete access to the Reporting
Service.

Figure 2-9

Summary
In this chapter, we covered the basics of Reporting Services. We started with a look at the three different
reporting phases, authoring, management, and delivery. In the authoring phase, you dealt-with
developing the report. In the management phase, you set attributes around the reports to use in the
report generation phase. In the delivery phase, you specified the format in which users can view reports.

52

Chapter 2

68787_ch02.qxp 26/03/2004 3:50 PM Page 52

After discussing the phases, we saw the features of Reporting Services that support these phases. The
Report Designer allows users to create rich reports. Once reports are created, they can be published to
the Reports Server. Using Report Manager, we can update and maintain report information such as data
sources and security information. If users need to view reports, they can go through the Report Manager
interface or a custom interface created using the Reporting Services Web Service. Users and
administrators also have the ability to create subscription information for a report.

In the final section of the chapter, we saw the specific components of Reporting Services. We started by
looking at how reports definitions and data are combined by the Report Processor. The Report Processor
also relies on data extensions to do the physical retrieval of information. After the data is received, the
Report Processor calls the Rendering Extensions to get the formatted output of the report. Along with
the Report Processor, you saw the Scheduling and Delivery Processor. This component allows execution
snapshots to be created and report subscriptions to be sent out. When report subscriptions are sent out,
they are sent using delivery extensions such as email and fileshare.

Now that you have seen the foundation of Reporting Services, you can move on to creating your first
reports.

53

Reporting Services Architecture

68787_ch02.qxp 26/03/2004 3:50 PM Page 53

68787_ch02.qxp 26/03/2004 3:50 PM Page 54

Designing Reports

Let's take a look at the big picture of designing reports in SQL Server Reporting Services. We will
examine most of the important features of Reporting Services just to get an idea of what you can
do with the product. We'll also point you to later chapters to get more information and to learn
about the details. We will be using Visual Studio .NET to design and create reports. You may use
any edition of Visual Studio .NET 2003 or later.

Before you read on you need to get your bearings and discuss this chapter's direction. In any
technical book, it's necessary to get every reader at a basic level of understanding before moving
on to advanced material. Different readers may have varying levels of expertise or experience with
Visual Studio, so let's start with the basics. Don't worry whether you've never seen Visual Studio
before, or if you are a tenured Visual Studio .NET developer, we're going to cover the right
material at the right depth at the right time. If you have used Visual Studio for application
development, please be patient as you read through the next section. If you have never written a
line of code in your life or if you are new to Visual Studio .NET, you're in luck.

This chapter covers the following topics:

❑ Using the Report Wizard

❑ Importing reports

❑ Planning for extensibility

❑ Report items and data regions

❑ Formatting considerations

❑ Pagination and printing considerations

We're covering all the essentials in this section. This chapter contains a series of walkthrough
exercises that are intended to lead you step-by-step through some basic report design.

333

68787_ch03.qxp 26/03/2004 3:50 PM Page 55

Chapter 3

56

Using the Report Wizard
To get acquainted with the basic mechanics of reports, let's start with a quick tour of the Report Wizard
used to create a simple, tabular report. The Report Wizard will take you through all of the steps
necessary to design a basic report. From that point, you can make adjustments and add more features to
your report. To get started, open Visual Studio .NET as in Figure 3-1 and close any projects or solutions
that you may have opened. Click the left-most button on the standard toolbar to create a new project:

Figure 3-1

The Reporting Services installation adds a project type category called Business Intelligence Projects.
Choose this group, select the Report Project Wizard template and enter a name for the project. This creates
a new report project and launches the wizard as in Figure 3-2:

Figure 3-2

68787_ch03.qxp 26/03/2004 3:50 PM Page 56

Establishing a Data Source
Since you have no data sources created yet, let's add one. It usually makes sense to use a name that
means indicates the name and location of the database. In this example, you will use the
AdventureWorks2000 sample database that installs with Reporting Services.

Figure 3-3

Make sure the New data source radio button is selected and enter AdventureWorks_Local for the name as
shown in Figure 3-3. Leave the Type set to Microsoft SQL Server and then click the Edit button. This
opens the Data Link Properties dialog to set up a connection string shown in Figure 3-4. If you have used
other Microsoft products that use SQL Server, this interface should be familiar to you:

Figure 3-4

57

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 57

There are three steps to complete this dialog:

1. Select the database server from the drop-down list. Since you're using the database server
installed on the local computer, enter localhost. If this were a production application, you could
select the name of any server on your network from the list, and then type the server name or
enter an IP address to connect to a server over the Internet.

2. To use integrated Windows security, select the first radio button reading Use Windows NT
Integrated Security. The second option would be used if you were using the SQL Server security
model. If that were the case, your database administrator would provide this information.

3. Finally, select the AdventureWorks2000 database from the drop down list. You may use the Test
Connection button to validate the settings. When you click the OK button, a connection string is
generated and returned to the Report Wizard dialog as shown in Figure 3-5:

Figure 3-5

Selecting the check box labeled Make this a shared data source will cause this data source to be available
to other reports. This simple but important feature is quite powerful and will save you a tremendous
amount of time and effort. By creating a central data source for all reports on the server, connection and
database information may be changed in only one place to affect all your reports. This is preferable to
the traditional approach where each report must be updated separately. This can be very inconvenient
when the system administrator moves your database to another server or when you migrate your
reporting solution from the development environment to your production server.

So far, the Report Wizard has created a report project and has led you through creating a shared data
source. There isn't much to see yet. You need to continue to work through the pages of the wizard before
you see any results. In an established report project, you would create a new report using the shared
data source you created earlier.

58

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 58

Building a Query
The next wizard page prompts for a query string as shown in Figure 3-6. If you are using a SQL Server
database as the data source, this is a Transact SQL SELECT statement used to retrieve the data for the
report.

Figure 3-6

More complex reports may be based on more than one query. In fact, data can even be obtained from
multiple data sources in a single report. Let's create a very simple query that will select records from
only the Employee table.

Click the ellipsis (…) button to open the Transact SQL Query Builder dialog:

Figure 3-7

This is dialog box is common to several Microsoft products. There are no toolbar controls available in
this dialog screen. All functionality is available from a pop up menu. If you've never created a query
before, this might seem a little complicated, but it's not. The following steps will take you through the
process and with a little practice you'll see that it's pretty easy. Right click the mouse while pointing to
the top area of the screen shown in Figure 3-7:

Figure 3-8

59

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 59

From the pop up menu, select Add Table to display the Add Table dialog as shown in Figure 3-9:

Figure 3-9

Select the Employee table from the list and then click the Add button. This adds the table to the top pane
of the Query Builder as in Figure 3-10. Click the Close button on the Add Table dialog. You need to include
four columns in the report so let's add them to the query.

Figure 3-10

In the Employee table window, check the FirstName, LastName, Title, and EmailAddress columns. You
should see them added to the column list and to the SQL statement, which is in the third pane of the
Query Builder window. You will also need to sort the report by the LastName and FirstName columns.
This may be done by setting the Sort Type of these columns to Ascending. Note that the Sort Order values

60

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 60

are set in the order you selected the Sort Type. You could also set up sorting within the report definition;
however, having the data presorted from the database as you have done here is far more efficient.

To test the query results, right click in the top pane again and select Run from the pop up menu. The
query results are displayed in the lower pane in this window. You should see that the employees' records
are ordered by the LastName and then FirstName columns.

The query string is returned to the Report Wizard dialog when you click the OK as in Figure 3-11 button
in the Query Builder window. Click the Next button to continue.

Figure 3-11

The Query Builder does one very simple thing. It creates the Transact SQL expression that you see in the
Query string box in this page of the Report Wizard. If you know your way around Transact SQL, you can
simply type the expression into this box or into the SQL pane of the Query Builder Window. You can also
go back and make changes if necessary either directly to the query string or using the Query Builder
dialog. In a later example, a stored procedure will be used in place of the query string.

When you view data in this window, system memory is allocated that uses significant
resources. This tool has a built-in feature that will prompt you if the query results are
viewed for several minutes and the Query Builder is not closed. Often this occurs after
you switch to another application and forget about what you were doing in the Query
Builder. If you receive a warning message regarding the query results, your response
(to leave the results open or not) will not affect the work you have done.

61

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 61

Define the Report Structure
The following pages will guide you through specifying report design elements such as the style, layout,
data sorting, and grouping. In an effort to keep things simple, specify a Tabular style with all data fields
in a single detail section as in Figure 3-12:

Figure 3-12

This report will simply be a list of records and is known as a Tabular report. Click the Next button to go to
the next page, which is used to design a Table control that will display rows and columns of data. In
this simple report, you will not be using any groupings so all four fields will be added to the Details
section.

Figure 3-13

Select the four fields from the Available fields list and click the Details button in the order FirstName,
LastName, Title, and EmailAddress; then click the Next button as you can see in Figure 3-13.

62

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 62

The Report Wizard will create controls with coordinated fonts and colors using one of five different
themes. These properties may be modified in the designer later. Retain the default Bold setting and click
Next as in Figure 3-14:

Figure 3-14

As you create other reports, you will have the opportunity to define your own look and feel by using
fonts, colors, borders, and graphics. The Report Wizard sets many of these properties for you using the
style templates you see on this page. If you like, all of these properties can be changed in the Report
Designer.

Specify the Deployment Location
The first time the Report Wizard is used in a report, the dialogue box shown in figure 3-15 is displayed,
prompting for the Report server path and Deployment folder name:

Figure 3-15

The default URL is used for the Report server. Unless you intend to use a different server, leave this
value as it is. Enter a folder name for the Deployment folder. This folder will be created and displayed in

63

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 63

the Report Manager will contain all of the reports defined within this project. It's important to note that
these folders do not correspond with folders in the file system. The hierarchy of folders is actually stored
in the Report Server catalog database and can be based upon functional or operational classification.
This method simplifies making related reports available to various user roles. Folders may be useful for
grouping reports categorically, and searching and securing reports as a group.

When Reporting Services is installed, a web folder is created on the server and is managed by Internet
Information Services (IIS), which exposes this path as a URL or web folder. The URL you see in Figure 3-14
is the default location, if you are developing on the Report Server. If you are developing on another
computer you should enter a URL that points to that Report Server's installation path, most likely
http://yourservername/ReportServer. If you're not sure, talk to your server administrator. The
Deployment folder isn't really a physical folder. It's a virtual path that is managed and exposed by
Reporting Services. You'll see this folder when you use the Report Manager later on.

Finally, enter a Report name, call this report Employee_List as in Figure 3-16. Click the Finish button.

Figure 3-16

This causes the report to be built and the Report Designer to be displayed in either Layout or Preview
mode. The Report Designer has three tabs along the top labeled as:

❑ Data: It displays the query designer used in the Report Wizard.

❑ Layout: It is used to create or alter the report design.

❑ Preview: This is used to view the report with data.

Visual Studio .NET contains several useful designer windows that are automatically hidden by default.
These windows are accessible when you hover the mouse pointer over icons positioned along the left
and right edge of the designer window. As you can see some of these icons are labeled and some are not.

64

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 64

Let's take a closer look at the Tool Box, Fields, Solution Explorer, and the Properties designer windows after
this tour.

The Report Designer
The next thing you should see is the actual report in Layout view. The Report Designer is now a
component of the Visual Studio .NET Integrated Development Environment (IDE) and uses many of the
windows and tools that are built into Visual Studio. You'll be taking a look at a number of these tools as
you continue. The Report Wizard can also decipher intelligent column labels from the column names.
For example, the First Name column header has a space between the words First and Name as in
Figure 3-17:

Figure 3-17

Scale Units
Let's take a short break from the wizard and discuss some important information you need to
understand before you move on. Notice that these examples were created on a computer configured
with US/English regional settings. As a result, all of the scaling units are set to inches. If your computer
is configured for another culture or regional setting, your environment may use metric units.

It's also important to understand how a report fits onto a page. The report content fits onto a design
element called the Body. The report defines the page for printing and displaying purposes with
associated margins. The relationship between these two design elements will be shortly discussed.

American SAE, pixels, and metric scale units may be used for the report, body, margins, and control size
measurements. The designer will automatically use either inches (in) or centimeters (cm) depending on
the current locale setting in Windows. This example uses inches with the default US letter 8.5in x 11in
page size. If you are using metric units or a different page size, please make the appropriate
adjustments. For example, if you are designing reports for A4 paper, the report width and height would
be set to 21cm and 29.7cm respectively.

65

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 65

Note that the Report Designer is currently only five inches wide and that the grid containing the fields
partially fills this space. You need to make some adjustments to use the available space.

You should be able to use all of the available space to fill your target page size. Apply the following
formula to calculate the report page width:

Report Width = Body Width + Left Margin + Right Margin

You can set the report size by either resizing the report body in the designer with the mouse or by setting
the Height and Width values in the Properties window.

Click on the report background and view the Properties window (either right click and choose Properties
or just click the Properties tab on the right side of the designer). Verify that Body is displayed in the drop
down list at the top of the properties window. Now, click the small plus sign next to Size to expand this
item and set the properties as shown in Figure 3-18:

Figure 3-18

To set the report margins, select Report from the drop-down list and expand the Margins item. Change
the Left, Right, Top, and Bottom margins as shown in Figure 3-19:

Figure 3-19

66

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 66

Here's a quick review. The report body contains the actual report content. This area must fit within the
area defined for a page of the report. Using the properties window set the report dimensions to be 8.5
inches wide by 11 inches tall with the left and right margins set to 0.25 inches each. This leaves 8.0 inches
of available width for the report body. To use all of this horizontal space for report data, set the body to
be 8.0 inches wide.

With the report and margins set correctly, you can reformat the report. For the list of repeated data, the
wizard added a grid control with columns bound to the four fields you exposed in the query. Sizing
these columns for optimum space is a simple matter of trial and error. The first order of business is to
select the grid and resize it to fill the report body.

To select the grid, click anywhere in the grid and then click on the gray box at the intersection between
the column and row headers. This is shown in Figure 3-20:

Figure 3-20

This will display a selection box around the grid with resizing handles as in Figure 3-21:

Figure 3-21

Grab the grid on the right side and drag it to fill the report body as in Figure 3-22:

Figure 3-22

Using the column headers at the top of the grid, resize each column. You can switch between Layout and
Preview to see how the data looks in the report. With a little adjustment to column sizes and text
alignment, the table may easily be formatted so text in each cell doesn't wrap and the report appears
balanced. Let's fix the report heading. You can edit the heading text right in the text box. Remove the
underscore character and type a space between the words Employee and List.

67

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 67

Select the Preview tab to view the completed report as in Figure 3-23:

Figure 3-23

That's it! You've created your first report using the Report Wizard. You can go back and make changes to
the report design by opening it from the Visual Studio Solution Explorer. In the future, you may find it
more effective to create reports without the wizard where you have more control and don't have the tool
making so many decisions for you. To get more practice, you may want to design additional reports
using different data sources, queries, or other options. At the very least, you'll end up with a few
attempts that didn't go so well and some reports that worked. On one of my kids' favorite Saturday TV
programs, the teacher character would always say, "Get dirty, make messes, and don't be afraid to try
things". That concept applies here.

The remainder of this chapter will focus on individual design elements and concepts rather than the
overall process. You will apply this information in another walkthrough exercise in the chapter as
designing more advanced reports are discussed.

Importing Reports
One very compelling aspect of this product is that the definition of each report is managed in a standard
file format called Report Definition Language (RDL), which is just an XML document with a standard
definition of markup tags that define all of the properties for a report. All objects placed into the Report
Designer and the related property settings result in entries made to the RDL content for that report. This
simple approach will make it easy for independent software vendors and custom solution developers to
generate a report definition from a variety of sources and tools.

68

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 68

Using RDL
There is little doubt that a host of applications and products will have the ability to create report
definitions for Reporting Services. Chapter 11 discusses advanced techniques for generating report
definitions outside of the integrated Report Designer.

However, a small snippet of an RDL file content describing a textbox is as follows:

<Textbox Name="textbox1">
<Style>
<PaddingLeft>2pt</PaddingLeft>
<PaddingBottom>2pt</PaddingBottom>
<PaddingTop>2pt</PaddingTop>
<PaddingRight>2pt</PaddingRight>

</Style>
<Top>0.25in</Top>
<rd:DefaultName>textbox1</rd:DefaultName>
<Height>0.25in</Height>
<Width>1in</Width>
<CanGrow>true</CanGrow>
<Value />
<Left>0.375in</Left>

</Textbox>

In the current version of Reporting Services, you have the ability to import reports from Microsoft
Access. Access has an excellent report writer and has long been the only real substantial reporting tool in
the Microsoft armada of products. Since the early 1990s, Access was the product of choice for creating
reporting solutions and still is for many desktop solutions. Its greatest limitation, however, is that Access
must be licensed and installed on the user's desktop and can effectively be used only in a single user or
small network environment.

Importing Access Reports
If you are already familiar with creating reports in Access, this may be a good starting point to learn
report design in Reporting Services. Most Access reports will import very nicely. There are some
functions and expressions used in Access that are not supported and Access reports that run code
behind them will likely not work when imported. These details are explained in Appendix B but the
short version is that most basic report functionality will work. Grouping and sorting features are
preserved as are most expressions and formatting. The use of domain functions and any custom code is
not supported.

Plan for Extensibility
If your goal is to create a reporting solution that will work for users with different needs, there are a
number of things to be considered. The users may need to:

❑ Access reports from a web-enabled hand-held device or cell phone

❑ Download reports for off-line viewing

❑ View reports in different web browsers

69

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 69

Reporting Services can meet all of these needs if you understand the requirements and plan ahead. Let's
briefly discuss some of these design considerations.

Browser Compatibility
A solution should be designed to meet the needs of the least capable user or platform. The optimal
design for the web has always been a moving target. If, when designing reports, you view them only in
the latest version of Internet Explorer, you may not be aware of incompatibilities or design issues for
other browsers. Creating solutions independent of the client platform for a diverse audience will always
be challenging, with a certain degree of unpredictability.

Reports with interactive design elements like drill-down and auto-hide sections, for example, generate
client-side JavaScript. This script runs in the user's browser to produce effects and interactive
functionality. Theoretically, pages containing many JavaScript functions should run in newer versions of
Internet Explorer, Netscape Navigator, and other browsers. In a report, scripted features include
documentation maps, bookmarks, and show/hide features (used for drill-down reports). On the
standard report toolbar, scripted features provide the ability to zoom, search, refresh, export, and request
help.

Another variable to consider when using HTML is the font typeface and size. If you make a point to use
common fonts, this is not typically an issue. However, the user's configuration isn't always predictable.
Font files on the user's computer can be uninstalled or deleted and default font sizes can be changed in
the browser. A popular solution for unpredictable HTML results is to use a proprietary document format
typically read in a downloadable viewer. Rendering reports to an Adobe Portable Document Format (PDF)
document will ensure that reports are displayed and printed consistently.

Offline Viewing
Reporting Services can render reports in three different forms of HTML including MHTML (or web
archive). As mentioned in earlier chapters, MHTML is a fairly recent standard that encapsulates content
that would normally be linked to separate files, typically graphics, into a single document. Using this
format simplifies web content rendering for portability, but it isn't supported in all browsers (including
Pocket Internet Explorer). Even when using standard HTML format, most report files will be self-
contained with the exception of any graphics. If all of the content is contained in one file, it will be easier
to download and view offline. If your users are consistently using Internet Explorer or a browser you
have tested thoroughly, consider rendering reports in MHTML to preserve embedded graphics content.
If you don't have that kind of control over the user's environment, PDF document rendering may be the
best choice.

Another possibility is to allow the user to download report content into a storage file and then render
the content using your own client-side solution. Reports rendered as Comma Separated Values (CSV) can
be opened in Microsoft Excel where the user can format or further manipulate the data. Data saved to an
XML file may be imported or read using Excel, Word, or a custom application. The Excel rendering
format currently supports Microsoft Excel versions 2002 and 2003 only.

70

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 70

Mobile Device Support
Portable electronic devices are available in different sizes and shapes. This medium could prove to be a
very convenient reporting solution for users who need to get information on the go. Web-enabled
cellular phones generally fit into three categories:

❑ The Pocket PC and Palm OS devices with integrated cellular phones have the advantage of a
relatively larger display (240 x 320 pixels) and a more traditional-style web browser.

❑ The new generation of Smart Phones runs a slightly scaled down version of the Windows CE
operating system with a smaller display (176 x 220 pixels) and fewer features, but in a more
convenient size.

❑ The standard web-enabled cell phone. It's hard to find a new cell phone that doesn't offer the
capability to surf the web. Most of these phones have very small displays and many will only
display text.

The simple fact is that you can develop reporting solutions using Reporting Services for all of these
devices, making it possible and convenient for users to access information wherever they are.

Of course, screen size is one of the most significant limitations so reports may simply be scaled down to
a smaller page size to fit a smaller screen size. The Pocket PC and Smart Phone browsers will run
client-side JavaScript to support drill-down and other such effects. To support less capable devices, you
can design simple text reports rendered in HTML.

Report Items and Data Regions
Reports consist of items and regions that define the placement and format of data from a data source. In
the Report Designer, you can place items or draw them onto the report body. If you have worked with
Visual Basic or Access forms, you would be familiar with the practice of placing controls on forms. This
is pretty much the same environment. When you add a new report to a report project in Visual Studio
.NET, the designer is displayed in the Layout view. Much of the Visual Studio functionality is exposed
using various utility windows. On the left side of the designer, you will find the Toolbox that contains all
of the available report items as shown in Figure 3-24. The toolbox may be set to auto hide using the
pushpin icon in its toolbar.

Figure 3-24

71

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 71

Textbox Report Item
The Textbox item can be used to display data from a data source, calculations or expressions or static
data, much like a label control in a Windows forms project. When you drag fields from the Fields list
onto the Report Designer, bound textbox items are created. Common expressions can refer to a field in the
report'

The following example in Figure 3-25 shows a textbox used as a label and another text box bound to the
LastName field of the report data source:

Figure 3-25

Right click the Textbox and select Properties from the pop up menu to display the Textbox Properties
dialog as in Figure 3-26:

Figure 3-26

Properties may also be viewed and set using the standard properties sheet located to the right of the
designer. This window may be pinned out or will auto hide by default. As in Figure 3-27, this window
contains quite a bit more detail than the custom properties window. However, the property information
is not as conveniently organized. Right click to get to the most common properties and use the property
sheet when you need to set other properties.

72

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 72

Figure 3-27

Line Report Item
Lines may be drawn in any direction and may be set to a variety of styles and colors as displayed in
Figure 3-27. The properties for a line are simple and mostly set using the properties window or designer
toolbar.

Figure 3-28

Some clever techniques are used to render lines. Reporting Services will typically try to render content
using the most effective way possible. In Figure 3-28, when outputting standard HTML, the two black
lines are rendered as table borders, the wide gray line is rendered as a DIV tag filled using a JavaScript
function and the diagonal broken line is rendered using Virtual Reality Modeling Language (VRML)
commands.

VRML is an industry standard extension to HTML for displaying vector-based graphics in the web
browser.

73

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 73

Rectangle Report Item
A rectangle item can have many different uses. A rectangle is simply used to visually separate a region of
the report. It may be used to visually contain other items. If items such as text boxes, grids and so on are
placed into a rectangle, all these items can be moved together by simply moving the rectangle. A
rectangle may also be used as a data container for data items and can be related to and repeated with a
parent container.

Image Report Item
Images can be embedded into the report, linked to an external file, or obtained from a data source.
Images can be of the BMP, GIF, JPG, JPE, PNG, or X-PNG type. Adding an image in the designer is pretty
straightforward. A critical factor is that images are sized and cropped prior to being added to a report.
You can resize the image in the Report Designer but this will not result in a smaller file size. Use a
graphics editing tool like the Office Picture Library, Microsoft PhotoDraw, Adobe PhotoShop, or
Macromedia Fireworks to resize or crop the image and them save it to a new file.

Drag and drop an image item from the Toolbox onto the report. This will launch the Image Wizard dialog
(see Figure 3-29). Select the method you want to use; the image can be from a table or a file and may be
linked or embedded into the report:

Figure 3-29

Keep the default selection Embedded and click Next to show the image selection page shown in
Figure 3-30. Click New Image and find your image file.

Selecting the Project option will result in a linked image using a file found in the project. Selecting the
Database option will allow you to extract an image stored in an Image or Binary type column within a
database, exposed through your dataset.

74

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 74

Figure 3-30

When you click Next, a summary is displayed with information about the image; see Figure 3-31:

Figure 3-31

If your picture data is stored in the database and the Database option is selected, the database field page
is displayed in the wizard. This gives you the option to derive an image file type from the image as in
Figure 3-32.

75

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 75

Figure 3-32

Generally, the JPEG format is most flexible. If the image uses transparency, use either the GIF or X-PNG
formats. The GIF and JPEG formats are most widely used on the Internet and are supported by all web
browsers.

Subreport Item
A subreport is a container for another report. The subreport can contain practically any other report with
its own, independent data source. It can optionally have its data linked to a record in the main report
often referred to as a master/detail report. Subreports are an important element in complex report
designs. Figure 3-33 shows a simple report containing a master record and related detail records in the
subreport:

Figure 3-33

The design details of the subreport are not visible in the designer. This report is designed separately and
then inserted into the main report as a subreport item.

76

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 76

Chart Report Item
The chart functionality in Reporting Services is really a simplified version of Dundas Chart that Microsoft
has licensed from Dundas Software. It's very capable and easy-to-use charting solution with a variety of
available chart types.

Probably the most common and most recognizable chart type is the column graph. This example as in
Figure 3-34 shows store sales data grouped by year, with the total product sales grouped by product
category:

Figure 3-34

If any of the sample sales data in the AdventureWorks2000 database is accurate, I'm glad that I don't
own a bike shop. Let's use the same data to take a peek at some other report types.

Bar charts and column charts are pretty much the same. You can tilt your head to the side to get the same
view as the other. In addition to the standard, single bar view, the stacked view provides a consolidated
look at a series of values by using fewer bars or columns. Each bar is like a mini pie chart where each
value in the bar's range is in proportion to the others.

Figure 3-35 shows a standard stacked column chart. A series of related values are stacked in the column
to show the aggregate sum of values and their proportional values:

Figure 3-35

77

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 77

A variation, the 100% stacked bar or chart (not shown), displays each bar with the same height or length
as others, regardless of the total values. This type of chart is useful for comparing values within the bar's
range but not for comparing the aggregates represented by each bar.

Area and line charts are useful for analyzing trends and helping the viewer to follow data points
through a series. Figure 3-36 shows a simple area chart with three points of data for each series:

Figure 3-36

To view the proportional components of an aggregate sum, this type of chart comes in two pastry types:
Pie and Doughnut. Values are presented visually as a percentage of the total for all values in a series. Pie
and Doughnut chart views may be either Simple or Exploded. Figure 3-37 is an example of an exploded
Doughnut (sounds messy). This presentation may help to visually separate values, especially the smaller
slices. This chart looks more like PacMan undergoing a root canal than retail sales figures, but these
types of charts can be useful for placing values into comparative perspective.

Figure 3-37

The data source for a chart can either be pre-aggregated in the underlying query using GROUPBY and SUM
functions, or the chart will perform the aggregation for you. If you have a large volume of data,
aggregating the values in the database, using a View or stored procedure, will be much more efficient.
The chart item will be discussed in detail in Chapter 5.

78

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 78

Drill-Down and Drill-Through Reports
Although related, these are two different features. A drill-down report as in Figure 3-38 contains related
groups or sections of information. Each section can be expanded or collapsed to show or hide pertinent
information. In the following report, product categories only are displayed when the report opens.
Using the expand icon next to a category, the category group (in this case, Clothing) is expanded
revealing a group of related subcategories. Expanding a subcategory (such as Bib-Short) reveals
individual products within the subcategory.

Figure 3-38

A drill-through report may or may not include some drill-down functionality. Items shown in the report
may represent sections or more detailed information that may be viewed in a separate report. These key
items are displayed as a hyperlink and when a user clicks the link, a separate detailed report is
displayed for the item selected as in Figure 3-39:

Figure 3-39

79

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 79

Tabular Reports
One of the most fundamental reports is a simple list of record values arranged in rows and columns.
Typical tabular reports display column headers above repeated row values. Rows may also be grouped
categorically and may be followed by totals, subtotals, or other aggregate values pertaining to a
grouping or the entire report.

The two common techniques used to obtain this design are by using the grid or the list control. The grid
control makes it easy to format rows and columns with column headers and supports groupings,
headers, footers, and multiple row sections.

Grouping Data
Tabular or matrix data may be sorted and grouped on one or multiple levels. The table, list, and matrix
controls support this functionality. Groupings may be based on field values or expressions that may
include conditional qualifiers, functions, and combined values from multiple fields.

When values are grouped, they may need to be aggregated. This means that a row in the report layout
represents a rollup of multiple rows from the data source (like the sum or average of a range of values).
After introducing the data region items used to perform grouped operations, let's take a closer look at
the aggregate functions that are used as rollup values within the group.

Table Report Data Region
The following example in Figure 3-40, using a table, contains three groupings for product records on the
Category, Sub Category and Product fields:

Figure 3-40

List Report Data Region
Using embedded list items allows greater flexibility over the formatting and placement of individual
report items. The list control may also be used as the basis for a more complex report with embedded
sub reports, lists, matrices, or grids. Figure 3-41 shows a preview of a report with groupings created
using nested list items. The list item is useful for creating groups of repeated data that isn't constrained
to a tabular format.

80

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 80

Figure 3-41

In the design for this report, there are four list controls placed inside one another. Groupings have been
created for each of the lists to organize them into a hierarchy. For the sake of clarity in this
demonstration, each list control is drawn well inside its parent list and the borders are made easier to see
as in Figure 3-42. It is common for the list borders to share the same line space if you don't need to create
additional white space around data elements typically on the right side and bottom borders.

Figure 3-42

Matrix Report Data Region
The matrix item produces a pivot table with automated drill-down functionality on both axes. This
matrix report contains the same groupings for row data as the previous report and also contains column
groupings for Product Category and Sub Category fields. The aggregate value in the center cells is the
sum of product sales for the intersection of each of the groupings. By default, values are aggregated and
rolled up within groupings. To view detail values, use the plus sign (+) icon to drill-down in one axis
(rows or columns) and then do the same for the other axis. Figure 3-43 shows a matrix report that has
been expanded to show details on both the axes:

81

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 81

Figure 3-43

The matrix control takes care of the grouping functionality in this report. As in Figure 3-44, the design is
fairly simple:

Figure 3-44

Subtotals
Although Reporting Services generically refers to these type of expressions as subtotals, they may be
used to perform any aggregation of grouped data. Subtotals may be added to a table's footer row, list
control, or in the detail or grouping cells of a matrix. The following table is a list of aggregate functions
supported by Reporting Services:

82

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 82

Using the table from Figure 3-40, let's take a closer look at the summary rows and their aggregated
values. In this example, a table that has groupings on the Category and Sub Category fields is created.
Note that the grouping numbers in the row markers next to each row indicate the grouping level. The
detail row is selected and sandwiched between grouping levels 1 and 2. In the grouping footers and the
report footer, the aggregate functions Count, Sum, and Avg are used for the Color, StandardCost, and
ListPrice columns. In this report, an additional row is added for each of the grouping footers for the
columns as shown in Figure 3-45:

Figure 3-45

Function Description

Avg Average for all values in a range

Count Count of all non-null values in a range

CountDistinct Count of unique values in a range

CountRows Count of all rows in a range, regardless of null values or uniqueness

First First value in a range based on the current sort order

Last Last value in a range based on the current sort order

Max Highest value in a range

Min Lowest value in range

StDev Standard deviation of non-null values

StDevP Population standard deviation of non-null values

Sum Sum of all values in a range

Var Variance of non-null values

VarP Population variance of non-null values

83

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 83

Aggregate expressions may be entered in different ways. The expression may be typed directly into the
textbox, or into the value property using the property sheet window or customer property page window.
Next to each applicable property, a button can be used to open the expression builder dialog, which can
be used to assemble the expression. This will be discussed in detail in Chapter 5.

Here is a condensed view of the same report shown in the print preview. Since you are using the Count
function on the Color field value, rows that don't have a value in this column (the value is Null) have a
count of 0. First you see four sections with subtotals for the Sub Category field, and then further down
the page, you see rollups for the Category and then for the entire report as shown in Figure 3-46:

Figure 3-46

84

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 84

Formatting
Many data values need to be formatted appropriately as the default formats are usually not acceptable.
The following table shows common SQL Server data types and their unformatted defaults:

If these values are not what you want to see in your reports, you will need to use the Format property of
each control to change them. The formatting capabilities of Reporting Services controls are based on the
formatting mechanics in the .NET Framework and use a form of regular expressions. Regular expressions
are very powerful and can be used to format values in just about any way imaginable. Expression strings
can range from simple to extremely complex. If you need to learn more about the advanced use of
regular expressions, search the Visual Studio .NET online help or the MSDN library for Regular
Expression Language Elements. For most of your needs, however, we'll show you how to use the basics.

Standard Formatting
Standard, one character, strings may be used to specify formatting options for numbers and dates. One
advantage of using standard format strings is that culture specific formats are automatically applied.

There is plenty of information on this subject in Reporting Services Books Online. Unfortunately, there is
also a lot of extra information that just doesn't apply to most reporting needs. The objective is to keep
this simple and show only what you really need to know for majority of reports. The following table lists
the common format strings that apply to numeric data types:

Data Type Default Display Example

Float Large number of decimal positions with no rounding or
truncation. Large numbers with no thousand separators
or scientific notation.

123456789.123456
1.23456789012346E+19

Decimal Large numbers with no thousand separators. The
number of decimal positions is defined by the column's
scale attribute.

123456789.1234

Int,
SmallInt,
BigInt

Large numbers with no thousand separators. 123456789

Money Up to four decimal positions. Large numbers with no
thousand separators.

123456789.1234

Date Always displays date and time. Seconds included. 11/1/2003 3:34:26 PM

Bit Displays the words True or False. True
False

85

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 85

The following table lists the common format strings that apply to date and time data types:

Explicit Formatting
In addition to the standard formatting techniques, you may also use an explicit format string to get more
control and deal with specific format needs. Keep in mind that the formatted output will be the same for
dates and currency even if the locale setting is changed for the server.

Format Description Example

d Short date 11/1/03

D Long date Saturday, November 01, 2003

t Short time 3:34 PM

T Long time 3:23:26 PM

f Full date and time Saturday, November 01, 2003 3:34 PM

F Full date and time Saturday, November 01, 2003 3:34:26 PM

g General date and time 11/1/03 3:34 PM

G General date and time 11/1/03 3:34:26 PM

M or m Month November 01

Y or y Year November, 2003

Format Description Example

C Currency $123,456,78.9.12

D Decimal
followed by optional precision specifier

123456789
000123456789 using D12

E Scientific notation
followed by optional precision specifier

1.234568e+008
1.234567891234+008 using E12

F Fixed-point
followed by optional precision specifier

123456789.12
123456789.123400000000 using F12

P Percent
followed by optional precision specifier

12.35%

86

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 86

Again, the Reporting Services Books On-line contains detailed information about specific formats for
string elements so we won't rehash that information here. What we will do, however, is show a few
common examples of explicit formatting. You can find the details about this topic under the topics
Custom Numeric Format Strings and Custom DateTime Format Strings in Books Online. The following table
is a summary of some common format expression elements:

Format
Element

Type Description Example

yyyy DateTime Four character year 2004

yy DateTime Two character year 03

MMMM DateTime Month, full name August

MMM DateTime Month, three characters Aug

MM DateTime Month, two numerals 09 or 11

M DateTime Month, one or two numerals 9 or 11

dddd DateTime Week day, full name Saturday

ddd DateTime Week day, three characters Sat

dd DateTime Day, two numerals 04 or 15

d DateTime Day, one or two numerals 4 or 15

hh DateTime Hour in 12-hour time, two numerals 08 or 10

h DateTime Hour in 12-hour time, one or two numerals 8 or 10

HH DateTime Hour in 24-hour time, one or two numerals 08 or 23

H DateTime Hour in 24-hour time, one or two numerals 8 or 23

mm DateTime Minute, two numerals 35

ss DateTime Seconds, two numerals 45

tt DateTime 12-hour time using AM or PM AM or PM

t DateTime 12-hour time using A or P A or P

0 Number Required numeral placeholder 09

Number Optional numeral placeholder

% Number Percentage 95 = 95%

- , : /. Any Literals 123.45, 1-234,
12:34 PM

87

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 87

Let's use a common scenario as an example; say your company has offices around the world and follows
a corporate standard to use European style dates, regardless of where users are located. Instead of letting
the system decide how to format dates, you want them to be explicitly formatted using your corporate
standard.

By setting the Format property of the date type controls to the string MMMM d, yyyy; the resulting date
would be displayed in the format, November 1, 2003.

Conditional Formatting
Under certain conditions, you may need to alter the format of a value based on an expression related to
other fields or conditions in the report. The use of different functions and expression will be discussed in
Chapter 4. For now, let's take a look at a couple of examples to explore the concept and some techniques.

Let's say that your company has locations in England, Germany, and the US, and, for whatever reason
(remember, we're making this up), you want different rows to display information formatted for the
corresponding locales. Each row in the underlying table includes a column named MyLocale that holds
your own two-character code for the locale. The industry has a five character standard known as the
RFC1766. Your codes are loosely translatable to this standard. Based on the anticipated values in this
column (UK, DE, or US), you will display currency and date information in the corresponding format.
The objective will be to format the following date and currency values as follows:

A control's property may be set to an expression that will actually parse and set the property value for
the row as it is rendered. There are a few techniques to do this; one is to use the Immediate If or IIF
function. This works if you have one condition to test and two possible outcomes. A more powerful
technique is the Switch function. It works like the Switch statement in C# and like the Select Case
statement in VB rolled into one. This technique will be used to set the Format property of the date. For
the textbox that will display this value, use the following expression:

=Switch(Fields!MyLocale.Value="DE", "d.MM.yy", Fields!MyLocale.Value="UK",
"d/MM/yy", Fields!MyLocale.Value="US", "M/d/yy")

Value Locale Formatted Value

November 1, 2003 US 11/1/03

November 1, 2003 UK 1/11/03

November 1, 2003 DE 1.11.03

12345.1234 US $1,234.12

12345.1234 UK £1,234.12

12345.1234 DE 1.234,12

88

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 88

The currency value could be set the same way, except that the German form would be difficult to
contend with since commas are used to designate the thousand separator and a period is used for
decimals. In the German language, these characters have the opposite meaning. Fortunately each control
has a Language property that is equipped to handle this and many other language and culture-specific
idiosyncrasies. By dynamically manipulating this property in the same manner, you can reach your
objective. Using the Switch function, you can translate your two-character codes to the industry
standard that uses five-character codes. The following expression can be used to change the Language
property of the currency text box:

=Switch(Fields!MyLocale.Value="DE", "de-DE", Fields!MyLocale.Value="UK", "en-GB",
Fields!MyLocale.Value="US", "en-US")

Again, this is an example of one possible business problem and one possible solution. If this were a real
situation, it might make more sense to store the actual culture information string in the table and simply
set the Language property of the control to that value pulled directly from the table. By the way, all of
the supported culture information strings can be found in the MSDN library under the search key
CultureInfo. The sample report in Figure 3-47 shows the final result using the formatting examples just
discussed:

Figure 3-47

Multiple Columns
A report can display list values in multiple columns. Values in a column snake from top to bottom and
then left to right. It's important to note that Reporting Services can only do so much in HTML and that
some multi-column reports can't be rendered in some (or possibly any) versions of HTML, so your only
option may be to render these reports in PDF format.

Columns are defined for the Body of a report. When the Columns property for the Body is set to a value
greater than 1, the report page width should be set according to the following equation:

Report Page Width >= (Body Width x number of columns) + (ColumnSpacing x (number of
columns – 1)

For example, a report, which has a body width of 2.5 inches with three columns and the column spacing
set to 0.25 inches, this will yield a report width of 8 inches. If the report's left and right margins were set
to 0.25 inches each, this should fit neatly into an 8.5 inch page width.

89

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 89

The following screenshot is that of a report designed with these dimensions and property settings
(Figure 3-48):

Figure 3-48

This report is very simple and contains no headers or footers. You can add them to this report but the
options are limited. You are limited to the width of the report body and the header will only show above
the first column. In order to use a report header wider then 2.5 inches in this example, you have to create
another report and use the multi-column report as an embedded sub report. Creating sub reports will be
looked at in the Chapter 4.

Pagination Control
Unlike traditional reporting tools like Microsoft Access, Reporting Services doesn’t have its own specific
report viewer. Since reports may be rendered in different formats and viewed in different browsers or
document viewers, page handling may be different for various rendering formats. The following chart
shows the behavior of pagination in the supported rendering formats:

For PDF and TIFF formats, reports will naturally paginate as the content exceeds the usable page height.
In cases where you need content to paginate uniformly, you can force page breaks using a number of
different data containers or data ranges. For each of the following report items, right click on the item
and select Properties from the pop up menu to view the related properties dialog.

Rendering Format Pagination Behavior

HTML Pages are separated on specific page breaks but are not based on page
length. Page handing depends on the browser and is unpredictable.

PDF Pages are separated based on the page length and for specific page breaks.
This format is good for large, page-oriented reports.

Excel Specific page breaks cause the workbook to be split into separate
worksheets. Worksheets are not split base on page length.

TIFF Pages are separated based on the page length and for specific page breaks.
This format is good for small, page-oriented reports.

MHTML Page breaks are not supported.

XML Page breaks are not supported.

CSV Page breaks are not supported.

90

Chapter 3

68787_ch03.qxp 26/03/2004 3:50 PM Page 90

Page Breaks for a Rectangle
You can set a page break to occur before or after a rectangle. Using the properties dialog or properties
sheet for a rectangle, set one or both of the page break properties as seen in Figure 3-49. If all you want to
do is set a page break at a specific location in a static report, you can use a rectangle with no border to do
this:

Figure 3-49

Page Breaks for a List
Since the list item is designed to repeat a group of bound report items, it is a natural place to force a page
break. Set these properties using the List Properties dialog as shown in Figure 3-50. In addition to
breaking before or after the entire range of listed items, you can cause a list to fit onto one page if the
rendered content permits this to happen. If this property is checked, the rendering engine will test the
length of the listed data and move the entire list to the next page so that it fits.

Figure 3-50

Remember that forcing page breaks may have different results depending upon the
rendering format used. For example, a report with forced page breaks rendered to an
Excel workbook will produce separate worksheets for each page.

91

Designing Reports

68787_ch03.qxp 26/03/2004 3:50 PM Page 91

Page Breaks for a Table
The table can have page breaks defined in much the same way that they are for a list item. A page break
may be set to occur immediately before or after the table. You can also try to fit all of the table data on
one page, in which case a page break will occur before the table. The Table Properties page is shown in
Figure 3-51:

Figure 3-51

Breaks may be specified within the table at data groupings. Grouping and sorting will be covered in
greater detail in the next chapter. Once a grouping has been defined for a table, the grouping and sorting
properties dialog is accessible by selecting the grouping row in the table. Either right click on the row
selector and select Edit | Group from the pop up menu or choose Grouping/Sorting from the standard
Properties window.

Page Breaks for a Group
In the Grouping and Sorting Properties dialog, shown here in Figure 3-52, page breaks may also be forced
before or after the grouping:

Figure 3-52

92

Chapter 3

68787_ch03.qxp 26/03/2004 3:51 PM Page 92

Page Breaks for a Matrix
The matrix page break options are the same as for the table report item. As the matrix rows are
expanded, data will automatically span pages. If the content fits on one page and the Fit this matrix on
one page if possible option is checked (Figure 3-53), a page break will be placed before the content. You
can also force a page break immediately before or after the matrix content.

Figure 3-53

Page Breaks for a Chart
Page break properties for charts are available only in the standard Visual Studio properties window and
not in the custom properties dialog for the chart. You may set a page break immediately before or after a
chart by setting the Page Break At Start and Page Break At End properties respectively.

Printing Considerations
An important issue to keep in mind is that Reporting Services doesn't display reports. It generates and
renders report content to be viewed in a web browser or an application. Report printing will be
managed by the application that you use to view your report. This means that most reports will be
printed using either Internet Explorer or the Adobe Acrobat Reader.

The Report Manager, which is an HTML interface designed to run in Internet Explorer contains printing
features.

In cases where international users might need to acess and print your reports, you may need to specify a
page size that will accommodate different paper sizes. For example, if you anticipate that a report will be
read and printed in the United States and Great Britan, the report content should fit on both letter and
A4 paper sizes.

93

Designing Reports

68787_ch03.qxp 26/03/2004 3:51 PM Page 93

Summary
The purpose of this chapter was to introduce the Report Designer and get you started on designing a
report. Several features and design considerations were mentioned but not discussed in depth. The
chapter starts by using the Report Wizard to create a simple, tabular report. This should have given you
a birds view of a Report project in Visual Studio .NET and the basic features of the Report Designer.
Furthermore, importing reports from Access will allow you to leverage existing report solutions. You can
also use the features of Access you already understand as a learning tool. Designing reports for
extensibility with different user environments, including different browsers, computers, and mobile
devices, was also covered.

Different reporting formats can assure formatting control and compatibility. Report items can be used to
display static values as well as data from a data source. Simple items like textboxes may be repeated and
grouped in data ranges and list-type containers. More sophisticated report items like the list, table, and
matrix may be used to create tabular and pivot reports that perform functions like aggregate, subtotal,
and group, and provide drill-down and drill-through functionality.

Data formatting can be achieved using simple, standard format strings, explicit format expressions, and
conditional logic using programming functions and expressions. Several report items can be used to
paginate a report statically or based on the size andcontent of data regions.

By now, you should be comfortable using Visual Studio .NET to create and extend a simple report
project. Chapter 4 will expand on what you have learned so far and take you to the next level.

94

Chapter 3

68787_ch03.qxp 26/03/2004 3:51 PM Page 94

Designing Data Access

This chapter will discuss the essential steps of report design—how to consume data. Although this
is typically simple and straightforward, there are a number of options to be considered when
designing data sources and queries. We'll discuss the following topics:

❑ Creating standalone and shared data sources

❑ Designing queries and datasets

❑ Using parameters to filter data at the database

❑ Using parameters to filter data at the Report Server

Every report will have at least one data source (with the rare exception of a static form that doesn't
use any data). The simplest of reports will have a single data source to provide data for a single
dataset. The data source defines a connection using a simple text string. This connection
information may include security credentials information. The dataset defines a query expression
or data source object reference. A data source may be shared among multiple reports or may be
contained within the report definition. The dataset is also contained within the report definition.
Figure 4-1 depicts how data flows to the report. The data source provides the ability to connect to
the database and the dataset contains a query expression that populates the report with data:

Figure 4-1

444

68787_ch04.qxp 26/03/2004 6:01 PM Page 95

Chapter 4

96

More complex reports may require multiple datasets to provide data for different data ranges or items in
the report, or to feed values to parameter value selection. Datasets can be based on query expressions
from the same data source as shown in Figure 4-2:

Figure 4-2

Multiple datasets can get their data from multiple data sources. This model would enable a report to
have parameter selection values to be obtained from a local database and report data to be obtained
from a central data store. In some cases, data regions, subreports, and various report items might obtain
data from multiple sources through associated datasets as shown in Figure 4-3:

Figure 4-3

As you can see, almost anything is possible in terms of combining data sources and datasets.

Data sources can be practically anything you can query in program code and products that consume
data. Reporting Services consumes data using the .NET data providers, which include support for SQL
Server, Oracle, and all OLE DB providers. These include almost any database product that supports
ODBC access or a capable ISAM driver. Datasets in Reporting Services are always read-only so there is
no need to specify cursor types or locking options.

A report can be a central point of data collection and aggregation.

68787_ch04.qxp 26/03/2004 6:01 PM Page 96

Reporting for Relational Data
In the previous chapter you briefly looked at using the Query Builder. Now you'll take a closer look at
how queries are created and how data is provided for a report. At this point it's important to understand
the basic building blocks for reports. We will begin by discussing some of these fundamentals. You will
go through several short walkthrough exercises so you can see and experience how it works. It is
assumed that you have used Visual Studio .NET and you have created a report using the Report Wizard.
If this is not the case, please read Chapter 2 to get acquainted with these tools.

A Dataset Is Not a Dataset
If you are a .NET programmer as I am, you probably saw this term and thought, "I know what a dataset
is and I use them all the time in .NET data access program code so I should have a leg up on doing data
access in Reporting Services". If you are not a .NET programmer you're already a step ahead of those
programmers who have to relearn the application of this term.

We ran out of new words in the English language a long time ago. Everyone knows that to be
environmentally responsible we need to recycle so this is what we're doing—recycling words and
phrases. The fact is that we just simply don't have the means to assign a unique name to every object or
concept that we need to represent in written or spoken language—especially in this industry where we
reinvent the technology every few years. So, we have a plethora of homonyms (two or more words that
have the same sound and often the same spelling but differ in meaning) in our glossary of technical
terms. The challenge is to understand the context of a term and to differentiate between their meanings.

This one is a classic example. In Reporting Services, you have the concept of a query in the report
definition that provides data values for the report output; our good friends at Microsoft decided to call
this a Dataset. If you have worked at all with programmatic data access in the .NET Framework, you
should know that a Dataset is also an object that stores a cache of data (perhaps from a query) as an XML
structure in memory. Although these two items may both handle data and deal with queries, result sets,
and binding values displayed in a report, they are two very different concepts. Now, since we have that
straightened out, try this: If you were to create a custom data source extension in program code, you
might use an ADO.NET Dataset that would serve as the Dataset for a report!

Query Basics
Reporting Services has the ability to obtain data from a variety of data sources. Most database products
are queried using a form of SQL,which means that a query created for one database product (say,
Microsoft Access) may be portable to a different data source (perhaps Oracle or SQL Server). Most
database products implement a form of SQL conforming to the ANSI SQL standard. SQL Server, for
example, conforms to the ANSI 92 SQL standard and other products may conform to other revisions
(like ANSI 89 SQL or ANSI 99 SQL). Beyond the most fundamental SQL statements, most dialects of SQL
are not completely interchangeable and will require some understanding of their individual
idiosyncrasies.

The main point here is that you can use whatever query language your database product understands.
Reporting Services provides a query editor designed especially for Transact SQL and a generic editor
that will accommodate other query languages and SQL dialects.

97

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 97

Data Sources
A data source contains the connection information for a dataset. Data sources can either be created only
for a specific report dataset or may be shared among different reports. Since most reports will get data
from a common data source, it often makes sense to create a shared data source. There are a number of
advantages in using shared data sources. Even if you don't have several reports that need to share a
central data source, it takes no additional effort to create a shared data source. This may still be
advantageous in this case as the data source is managed separately from each report and can be easily
updated if necessary. Then, as you add new reports, the shared data source will already be established
and deployed to the Report Server.

In a Visual Studio report project there are three different ways to create a data source:

❑ Creating a data source in the Report Wizard

❑ Creating a data source from the Project Add Item template

❑ Creating a data source when defining a dataset

Let's look at each of these in detail.

Creating a Data Source in the Report Wizard
If you choose Add New Report from the Solution Explorer right-click menu the Report Wizard is launched.
The first page in the wizard will give you the opportunity to select an existing shared data source or
create a new data source as shown in Figure 4-4:

Figure 4-4

98

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 98

Creating a Data Source from the Project Add Item Template
Choose Add New Item from the Solution Explorer's right-click menu, new item options, and include
Report Wizard, Report, and Data Source. Selecting the Data Source option creates a shared data source.

The following is an example of the standard Data Link Properties dialog used to define a data source. If
your database server was named DWServer, this name would be selected or entered in the first box,
under step 1 in this dialog as shown in Figure 4-5:

Figure 4-5

If you are working with a local development database server, installed on the same computer, you can
enter local or localhost. Otherwise, enter the name of the database server.

In step 2, you choose the security authentication method to be used by the database server to check
security credentials. SQL Server may be configured to use Integrated Windows Security, SQL Server
security or both. In a development environment, integrated security is a simple choice.

Finally, you would select or type the database name.

Creating a Data Source When Defining a Dataset
If you create a new report without using the Report Wizard, data sources are selected or created from the
Report Designer Data tab when creating a dataset. From the Dataset drop-down list, select New Dataset
to get the dialog shown in Figure 4-6:

You may also enter an IP address to access a SQL Server across the Internet.
Connecting across the Internet requires some ports to be opened through the
firewall. By default, ports 1433 and 1434 are used.

99

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 99

Figure 4-6

Select a shared data source from the drop-down list or click the ellipsis (…) button to create a new one.
This will open the Data Link Properties dialog with the same options as selecting the Data Source new
item template.

Regardless of the method used, a data source is simply a connection string saved into the report
definition or shared data source file.

Data Sources and Query Languages
The examples in this chapter will all use SQL Server 2000 databases. When creating a data source, if you
choose any data provider other than SQL Server, queries must be written in the query language
appropriate for that product. For most relational database products, this will be a dialect of SQL. For
example, Oracle uses a version of SQL called PL/SQL and Microsoft Access understands Access SQL.
Some providers require unique types of query expressions or scripting code specifically designed for
that data source environment.

When defining a dataset's query expression, the Designer will display one of the two similar query
windows. If you are using the SQL Server data provider, the Transact SQL Query Builder will be
displayed. In the case of another data provider that uses another query language or dialect of SQL, a
generic query window is displayed.

To query cube structures in Analysis Services, a specialized expression language called
Multidimensional Expressions (MDX) is used. The current implementation of Reporting Services
supports MDX with some limitations. Unlike the Cube Browser in Analysis Services and other
specialized multi-dimensional data query tools, reports are based on data that is flattened to two-
dimensional structures and represented as rows and columns like a SQL query.

In this sample MDX query expression for the FoodMart2000 OLAP database (included in SQL Server
2000 Analysis Services), column data is generated from the Store Type dimension and rows are created
from the Store dimension:

"SELECT {[Store Type].[Store Type].MEMBERS}
ON COLUMNS, {[Store].[Store State].MEMBERS}
ON ROWS FROM

100

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 100

[Product_Sales]
WHERE
(Measures.[Average Sales], [Time].[Year].[2003])"

We will discuss the use of data warehouses and specialized decision-support databases in our discussion
about in Chapter 14.

Filtering Techniques
When retrieving report data from a data source, it's important to consider the most efficient means for
filtering report data based on the user's selection criteria. Many databases contain large amounts of data.
Therefore, it is always important to retrieve just the right amount of data required for reporting. At
times, a report will only be used to view data for a narrow range of values and at other times the user
may specify different criterion causing the report to render a varied range of related values. In the case
of a narrow range of possible values, it makes more sense to retrieve only the associated data. However,
if users will specify different criteria during a session—causing the data source to be re-queried multiple
times—it could prove to be slow and also an inefficient use of resources.

In Figure 4-7, parameters presented to the data source cause data to be filtered and return only the data
for a single rendering of the report. The dataset represents the database server's result set on the client
side (the Report Server). As you see in the diagram, this is small volume of data since it has already been
filtered at the database.

Figure 4-7

By passing selection criteria parameters at the database object level, network traffic can be greatly
reduced and the report is rendered more efficiently. However, if the user will be providing different
parameter values to render several views of the same report within a session, the database will be
queried repeatedly, perhaps resulting in longer overall wait times and much of the same data will be
moving across the network multiple times. In Figure 4-8, a larger volume of data is returned from the
database server since it is unfiltered. Filtering then occurs by using report parameters on the Report
Server.

101

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 101

Figure 4-8

If all of the data necessary for each query to be executed in a user's session is obtained in one result set, it
will result in a greater volume of network traffic for a single execution. However, it may reduce
subsequent report rendering times.

Selection parameters may be applied to data at the report level rather than at the data source. Since all of
the data is cached (held in memory) reports will render much faster. This technique can reduce the
overall network traffic and rendering time.

You certainly don't want to retrieve unnecessary data from the data source, so a combination of these
two techniques may be the appropriate solution depending upon specific reporting needs. For example,
if you are a regional sales manager and you wish to get sales summaries for each of the territories within
your region, you may begin your session by retrieving all of the regional sales data for a range of dates.
For each territory report, this data is simply filtered down to the territory level.

Filtering Data with Query Parameters
Let's begin this discussion by talking about using parameters to filter data at the data source. Whether
the data is to be filtered within the report or not, filtering at least some of the data within the database is
an essential technique for most report solutions. If you have created parameterized stored procedures in
SQL Server, you are already familiar with this pattern. The technique applies to stored procedures and
query expressions using very similar syntax. Let's start with a simple ad hoc query expression and then
we'll move on to creating a stored procedure.

Query parameters begin with the @ symbol and must conform to the naming convention standards for
Transact SQL identifiers. The name should not contain spaces or certain punctuation characters and can't
begin with a numeral; for simplicity, just use letters. In stored procedures, parameters must be declared
before they are used. In an ad hoc query, simply make up parameter names when you need them. In the
WHERE part of a SQL statement, use a parameter to represent a variable valuable as follows:

SELECT * FROM Products WHERE ProductID = @ProductID

102

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 102

In this case, the parameter has the same name as the corresponding field name but this isn't necessary. If
you want to use the Query Builder to create a more complex query, parameters may be specified in the
Criteria column of the builder grid. This is shown in Figure 4-9:

Figure 4-9

In this example, rows will be returned for records where the ListPrice column value is less than or equal
to the value specified using the @ListPriceMax parameter.

Report Parameters
All query parameters specified for a dataset will automatically generate corresponding report
parameters. Additionally, report parameters (that do not have corresponding query parameters) can be
added to support addition report functionality.

The following example demonstrates some simple report parameters used to dynamically set values on
the report. Later we'll apply this technique to some practical report features. This example is intended to
demonstrate two very simple report parameters for academic purposes.

Create a new report without using the wizard. You can do this by selecting Add and then Add New Item
from the Solution Explorer's right-click menu; select Report from the report item templates in the Add
New Item dialog. Do not specify a dataset for the new report and then switch to the Layout view in the
Report Designer.

Report parameters are added using the Report Parameters dialog. Select the Report item in the properties
window and click the ellipsis (…) button next to the ReportParameters item.

103

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 103

Figure 4-10

As you see in Figure 4-10, the ReportTitle parameter is a string value with the default set to Report Title.
The TextColor parameter is similar and has a default value set to Blue.

Drag two text box items from the toolbox window onto the body of the report in the Report Designer.
Normally it's a good idea to give items an appropriate name (especially if they are to be referenced in an
expression) but this isn't necessary in this simple example.

Set two properties for these text boxes: the Value property for each text box and the Color property of the
second text box. The Designer displays the value property in the text boxes but it's a good idea to change
these property values in the standard properties window or the custom text box properties dialog (right
click the text box and choose Properties).

The first text box will get its value from the ReportTitle parameter. Set its Value property
to =Parameters!ReportTitle.Value and set the Value property of the second text box to ="This Text is " &
Parameters!TextColor.Value. With the second text box selected, set its Color property
to =Parameters!TextColor.Value. See Figure 4-11:

Figure 4-11

104

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 104

You can also change the FontSize and FontWeight properties if you prefer to dress things up a bit more.
I've also added a line to the report.

Now click the Preview tab and notice what happens. The ReportTitle and TextColor parameters are
displayed in the header of the preview window with the default values and these values are displayed
in the report.

Try changing the ReportTitle and Color using the parameter fields in the header and click the View Report
button to refresh the report preview. The first text box should display the text entered into the ReportTitle
parameter and the second text box should not only display the specific color name but the text should
also be displayed in that color as in Figure 4-12:

Figure 4-12

As you can see, this is an effective way to feed values to the report to be used in expressions. We will
expand this technique to provide filtering and dynamic formatting.

Basing a Parameter on a Query
Whether report parameters are derived from query parameters or created within the report explicitly,
they may be used for a variety of things in the report. Often, it will make sense to let your user select
from a list of items to supply a parameter value. Parameter items may be populated from a static list or
from a data-driven query.

Parameter values can be selected from a data source through a dataset that is set up within the Report
Designer like any dataset you would use for the report itself. A report may contain any number of
datasets, some to supply parameter values and others to supply data for items within the report.

Using the sample Northwind database for a simple example, your report may be driven by a dataset that
selects records from the Products table where the CategoryID matches a user-specified parameter
value. The CategoryID parameter values would be based on another dataset that selects the
CategoryID and CategoryName columns from the Categories table. In Report Manager, the user
simply selects a category name from a drop-down list and then the report is viewed showing only
products that match the selected category.

In the upcoming walkthrough exercise, you will create different parameters that will not only drive the
report but will filter the values for multiple, related parameters.

105

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 105

Cascading Parameters
The behavior I just described is what we call cascading parameters. This is a feature in the Report Manager
that allows one parameter value selection to cause another parameter list to be populated with related
values. There will be times when you may want to filter a list of parameter values based on another
parameter selection. In the earlier example for product categories and products let's say that the
selection from the Products table is to provide another parameter value that will be used to generate a
report of sales records for the selected product. In this case, you may want to select the category first.
This would give you a filtered list of products that would be used to select a specific product. The
product selection would then be used to render the sales report.

We'll use another example from the AdventureWorks2000 database. We'll raise the bar just a little more
and create three different parameters to drive a fairly simple walkthrough example. The outcome of this
exercise will be a report showing stores in a given location. You will be prompted to select a country.
When the country is selected, related states or provinces will be listed. Making a selection from this list
will make cities available. Selecting an item from this list will drive the report data—a list of stores in the
selected city.

This walkthrough requires that you either complete the steps in the preceding chapter or that you
already know how to create a report project and a shared data source.

To begin with, add a new report to a Visual Studio report project. From the Solution Explorer, right click
on Reports and choose Add and then Add New Item. Select Report from the templates list and give it any
name you like. I'm calling mine Cascading_Parameters. I know it's not very imaginative but it makes the
point.

In the Report Designer, you should be looking at the Data tab at this point. Drop down the list labeled
Dataset and select New Dataset. The dialog as in Figure 4-13 will appear:

Figure 4-13

Enter the name Country_List for the new dataset. Select or create a shared data source for the
AdventureWorks2000 database (created one in the previous chapter) and then click the OK button to
move to the Query Builder window.

106

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 106

Rather than going through the whole Query Builder procedure, here is the SQL statement to type into
the SQL pane. Place the cursor in the third pane down in this window (between the two grids) and type
the following code:

SELECT CountryRegionCode, Name
FROM CountryRegion
ORDER BY Name

Note that the carriage returns and most of the spacing are optional. The only critical spaces are between
the words ORDER and BY. Everything else should have one or more spaces. This query doesn't use any
parameters since it won't be filtered.

Drop down the dataset list, choose New Dataset and repeat the preceding steps to create a new dataset
called StateProvince_List. The SQL expression for this dataset can also be typed into the Query Builder
window:

SELECT StateProvinceID, StateProvinceCode, CountryRegionCode
FROM StateProvince
WHERE CountryRegionCode = @CountryCode
ORDER BY StateProvinceCode

If you used the Query Builder to create this expression, there may be some additional parentheses. These
are unnecessary and, again, the spacing and returns are not particularly important.

This expression does include a parameter, @CountryCode, which will get its value from a row selected
from the previous dataset. A corresponding parameter will be created for the report called
CountryCode.

Drop down the dataset list and create a third dataset called City_list. Like the last dataset, this one also
includes a parameter that will get its value from the selected state or province. Type the following SQL
statement for this dataset:

SELECT StateProvinceID, City
FROM Address
GROUP BY StateProvinceID, City
HAVING StateProvinceID = @StateProvinceID
ORDER BY City

There is no table exclusively for cities so you can use the Address table and grouping on the City
column to eliminate duplicates. This query will return a list of cities for the selected state or province
using the StateProvinceID parameter.

Finally you will need to create the dataset for the report itself. The SQL for this is going to be a little
more complicated. Due to the normalized design of the AdventureWorks2000 database, it takes several
tables to take you from a city to a store with the necessary report values. Let's use the Query Builder for
this one.

If you prefer, you may skip the following Query Builder steps and type the SQL statement directly into
the SQL pane.

107

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 107

Add one more dataset and call it Stores_By_City. Click the Add Table toolbar button (or right click the top
pane and choose Add Table) and add the tables illustrated in Figure 4-14:

Figure 4-14

The joins will be added automatically by the Query Builder. An additional join will be added between
the StateProvince and CountryRegion tables. To remove the join, click once on the line and then press the
delete key.

In the second pane, select the table columns in the order you see here. You can either use the drop-down
lists in the grid for the column and table or check them in the table diagram in the first pane. Since the
Store and CountryRegion tables both contain columns called Name, you can use aliases to make these
column names more descriptive. Enter the alias names as you see in the grid in Figure 4-15:

Figure 4-15

Finally, enter the query parameters @StateProvinceID and @City as you see here. This dataset should
be complete. To check it, compare this SQL statement with the one in the Query Builder:

SELECT Customer.CustomerID, Store.Name AS StoreName,
CountryRegion.Name AS CountryName, StateProvince.StateProvinceCode,
Address.City, StateProvince.StateProvinceID

FROM Customer
INNER JOIN
CustomerAddress ON Customer.CustomerID = CustomerAddress.CustomerID
INNER JOIN Store ON Customer.CustomerID = Store.CustomerID
INNER JOIN Address ON CustomerAddress.AddressID = Address.AddressID
INNER JOIN CountryRegion

ON Address.CountryRegionCode = CountryRegion.CountryRegionCode
INNER JOIN StateProvince

ON Address.StateProvinceID = StateProvince.StateProvinceID

108

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 108

WHERE Address.City = @City
AND StateProvince.StateProvinceCode = @StateProvinceID

Let's now look into configuring parameters.

Switch to the Layout tab and select the Report item from the properties window drop-down list. Click the
ellipsis button next to the ReportParameters property. This opens the Report Parameters dialog as seen in
Figure 4-16:

Figure 4-16

The CountryCode parameter will get its values from the Country_List dataset. Like most typical lookup
tables, the key value is not intended to be a user-readable value but is used to indicate the selected
country for related tables through a foreign key relationship.

Select this parameter in the Parameters list box and then enter Country for the prompt. This is the caption
the user will see next to the parameter drop-down list when they view the report. Uncheck both of the
check boxes to indicate that the user must select a value from the drop-down list.

The parameter drop-down list will display values in the Name column and return the corresponding
value in the CountryRegionCode column. Set the Label field and Value field properties accordingly. Finally,
indicate that there is no default value by selecting the last radio button and click OK when you're done.

We will repeat this process for the other two parameters. Use the following Report Parameters screen
diagram to set these properties.

The StateProvinceID parameter is configured as shown in Figure 4-17:

109

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 109

Figure 4-17

The properties for this parameter are set much like they were before. This time use the StateProvince_List
dataset as the drop-down list data source. You should remember that this dataset contains a query
parameter called CountryRegionCode. The reporting engine is smart enough to make the connection
between the Value field of the previous parameter's dataset and this dataset's corresponding parameter.
One parameter selection will filter the list for the next parameter as long as the parameters are listed in
their order of dependency.

The final parameter, City, is configured as shown in Figure 4-18:

Figure 4-18

110

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 110

Much like the previous parameter, the City parameter gets its value list from the City_List dataset, which
contains a query parameter related to the value field selection for the StateProvinceID parameter.

Designing the report is easy. I've made it a point to size the text box items so you can read their value
properties in this view of the Report Designer:

Figure 4-19

The wide rectangle at the bottom of the report body is a list item. Drag this from the toolbox to the report
body first and set its DataSetName property to Stores_By_City. The toolbox is located on the left side of
theDesigner window and has a little wrench and hammer icon.

The easiest way to create data-bound text boxes is to drag fields from the fields list (located on the left
side near the toolbox). With the fields list open, drop down the list at the top and select the
Stores_By_City dataset. Now drag the CustomerID and Name fields onto the list item you created earlier.

From the Toolbox, drag two text boxes above the list and change the Value properties to Customer ID and
Store like you see in the Figure 4-19. The Stores By Location, Country, State/Province, and City text boxes
are also unbound and serve only as static labels.

Drag and drop the CountryName, StateProvinceCode, and City fields to the right of the corresponding
label text boxes near the top of the report body.

Note the value of these three items contains some additional information. An aggregate function (like
the First function used here) is necessary when an item isn't contained in a list, grid or other container
item that repeats rows of data. Since this report defines more than one dataset, the dataset name is
required in the second argument of the First function.

With these settings in place, you should be able to preview the report and see the results. Switch to the
Preview tab and select a Country from the drop-down list.

As shown in Figure 4-20, select United States from the list and the State/Province parameter list is
enabled:

Figure 4-20

111

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 111

Drop this list down and you will see that it contains only states in the US. Select AZ for Arizona and the
City parameter list becomes available.

Drop down the City list, select Phoenix and then click the View Report button as shown in Figure 4-21:

Figure 4-21

As you can see, the report manager offers a great deal of built-in functionality for using parameters
without very little effort. Even in Microsoft Access, getting this kind of behavior would have required
writing some code.

Using Stored Procedures
The best way to go about querying a data source will depend highly on your requirements. Refer back to
our earlier discussion about filtering techniques where processing parameters (on the database server,
the client or both) affects performance, efficiency, and the flexibility of your reporting solution. Handling
parameters on the database server will almost always be more efficient, while processing parameters on
the client will give you the flexibility of handling a wider range of records and query options without
needing to go back to the database every time you need to render the report.

Using a parameterized stored procedure is typically going to provide the most efficient means for
filtering data since it returns only the data matching your criteria. Stored procedures are compiled to
native processor instructions on the database server. When any kind of query is processed, SQL Server
creates an execution plan, which defines the specific instructions the server uses to retrieve data. In the
case of a stored procedure, the execution plan is prepared the first time it is executed and then it is
cached on the database server. In subsequent executions, results will be returned faster since some of the
work has already been done. Stored procedures for SQL Server can be created in three different places:
the SQL Enterprise Manager, the SQL Query Analyzer, or in Visual Studio's integrated Query Builder.

In the next exercise we will create a stored procedure that will be used to create columnar report. This is
performed using the Server Explorer to obtain a connection to the database server and then manage
objects on the server.

With Visual Studio open, you can see the Server Explorer located on the left side of the Designer by
default. Click the plus sign handle to the left of these items to expand each branch of the tree. Open

112

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 112

Servers | (your computer name) | SQL Servers | (your computer name) | AdventureWorks2000 and then right
click on Stored Procedures. From the pop-up menu, select New Stored Procedure as shown in Figure 4-22:

Figure 4-22

This action will open a new Designer window to create a new stored procedure. The text in Figure 4-23
demonstrates the basic structure of a simple stored procedure:

Figure 4-23

We will replace the procedure name and parameters, and add a Transact-SQL statement to complete the
procedure.

Note that the line numbers shown in the left side of the code window are an optional feature of the
Visual Studio editor and are not part of the stored procedure text. If you don't see them, don't worry
about it.

Enable line numbers in the editor, so you can easily keep track of things in your
code.

113

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 113

Highlight the procedure name (dbo.StoredProcedure1) and replace it with spGetStoresByLocation.
Highlight all of the green-colored text in the block including the /* and */ and delete it and replace it
with:

@StateProvinceCode Char(2),
@City nVarChar(30)

The spacing and indentation isn't important. Highlight and delete the text /* SET NOCOUNT ON */ and
then right click in this location. From the pop-up menu, select Insert SQL. In the Query Builder, type the
following into the third pane down (between the grids in the second and fourth panes):

SELECT Store.Name AS StoreName, StateProvince.StateProvinceCode,
StateProvince.Name AS StateProvinceName, Address.City

FROM Customer INNER JOIN Store
ON Customer.CustomerID = Store.CustomerID
INNER JOIN CustomerAddress
ON Customer.CustomerID = CustomerAddress.CustomerID
INNER JOIN Address
ON CustomerAddress.AddressID = Address.AddressID
INNER JOIN StateProvince
ON Address.StateProvinceID = StateProvince.StateProvinceID

WHERE StateProvinceCode = @StateProvinceCode AND City = @City
ORDER BY City, StoreName

Again, using spaces and indentation (as well as carriage returns) is not mandatory, but is a good practice
for increasing the clarity of code and reducing errors. If you are familiar with the Query Builder, you can
build this query in the table diagram and column grid panes rather than typing all of this into the SQL
pane. Close this window and confirm that you want to save changes and update the stored procedure
with this expression. The finished stored procedure should appear as shown in Figure 4-24:

Figure 4-24

Go ahead and close this window and save any changes if prompted. The stored procedure should show
up in the Server Explorer tree under the stored procedures branch.

114

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 114

Next create a new report and use this stored procedure as the dataset. In the Solution Explorer, right
click on Reports and select Add | Add New Item. In the Add New Item dialog, select Report and enter the
report name Stores By Location. Click Open to create the new report. On the Data tab of the Report
Designer, drop down the Dataset list and select New Dataset. In this dialog, enter StoresByLocation for the
dataset name and then select or create a data source for the AdventureWorks2000 database.

We created a shared data source for this database in the section Establishing a Data Source. You can refer
to that exercise to create it if the shared data source isn't available in this project.

Change the Command type from Text to Stored Procedure and then type the stored procedure name,
spGetStoresByLocation, into the Query string box. Click OK when you're done. See Figure 4-25:

Figure 4-25

The Designer's appearance will change to a grid with the stored procedure name in a drop-down list at
top-right.

Click the Execute button (dark red exclamation mark icon) to test the dataset and execute the stored
procedure. You will be prompted for the two parameter values, @StateProvinceCode and @City. Enter
two valid values and click OK to view the results. Figure 4-26 shows an example:

Figure 4-26

The dataset is used exactly as before. The stored procedure parameters become report parameters.

115

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 115

Filtering Data with Report Parameters
So far you've only filtered data at the database level. In cases where users may be using the same report
in one sitting to view data for different criteria, it may be more effective to retrieve a larger result set
from the data source and then filter the report data on the Report Server.

As you've already seen, parameters defined in a query or stored procedure that serves as report dataset
are pulled into the report as report parameters. You can also define your own parameters and use
expressions to filter data at the report level.

We're going to use both product categories and sub-categories for report parameters. The category will
be filtered in the dataset (at the SQL Server) and the sub-category will be filtered in the report (on the
Report Server).

Add a new report to a project. Use the AdventureWorks2000 shared data source and apply the following
SQL expression in the dataset:

SELECT Product.ProductID, Product.Name AS ProductName,
ProductSubCategory.Name AS SubCategoryName,
ProductCategory.Name AS CategoryName,
ProductSubCategory.ProductCategoryID,
Product.ProductSubCategoryID

FROM Product INNER JOIN ProductSubCategory
ON Product.ProductSubCategoryID = ProductSubCategory.
ProductSubCategoryID
INNER JOIN ProductCategory
ON ProductSubCategory.ProductCategoryID = ProductCategory.
ProductCategoryID

WHERE ProductSubCategory.ProductCategoryID = @CategoryID
ORDER BY Product.Name

You're going to create two more datasets to populate parameter drop-down lists and set up a cascading
relationship between the two parameters.

Using the same data source, add another dataset and name it CategoryList. Type this text into the third
pane of the Query Builder:

SELECT ProductCategoryID, Name
FROM ProductCategory
ORDER BY Name

And add one more dataset named SubCategoryList using this text:

SELECT ProductSubCategoryID, Name, ProductCategoryID
FROM ProductSubCategory
WHERE ProductCategoryID = @CategoryID
ORDER BY Name

With the Report Designer Layout tab selected, select the Report item from the properties window
drop-down list and find the ReportParameters property. Click the ellipsis button next to this property.
This will open the Report Parameters dialog. Note that the CategoryID parameter has been added to the

116

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 116

report parameters as expected. Click the Add button to add a new parameter and name it SubCategoryID.
Leave all of the other settings at default values to keep things simple. Click OK to close the Report
Parameters dialog.

Now switch back to the Data tab and click the ellipsis next to the dataset name. On the Dataset dialog
change to the Filter tab. There are three required elements for a filter expression—the Expression (what
you want to filter), Operator (how you're going to compare a value), and Value (the source of the filter
value). For the expression, drop down the list and select =Fields!SubCategoryName.Value.

Leave the equality operator set to = then drop down the Value list and select Expression. This opens the
expression builder. Use the controls to select the SubCategoryID parameter and use the Insert button to
move it into the expression box on the right side of this dialog. The resulting expression should
be =Parameters!SubCategoryName.Value.

Modify the first expression using the CInt function and place parentheses around the field expression.
Some value comparisons don't resolve data types correctly. If such a comparison results in a data type
conversion or casting error, it can be corrected by explicitly converting the expression to the correct data
type as you've done here with the field expression. To be on the safe side, you can use Visual Basic type
conversion functions with any expression or value. See Figure 4-27:

Figure 4-27

The Filters expression builder has an interesting feature. The And / Or column doesn't allow an explicit
selection to be made. If you want to use a more complex expression (for example, if you wanted to bring
back all products for a category if no sub-category was selected), you can enhance the expression
manually as a single expression. However, you can't do it line-by-line using this tool. We'll likely see
enhancements to this dialog in future version of Reporting Services.

Now that you have the datasets and parameters set up, you can actually create a report. We'll keep it
simple. In the Layout tab, drag a text box to the report body, click on it to set focus and type the report
title Products by Category / Subcategory. Add a table to the report just below the text box and stretch it to
fill the width of the report.

Click once in the table and then select the table by clicking the top-left corner selector to select the table.
Select the DatasetName property in the properties window for the table and select the dataset
ProductsByCategory. From the fields list on the left of the Designer, drag the ProductName,
CategoryName, and SubCategoryName fields into the detail row's first, second, and third columns
respectively.

117

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 117

Dress up the grid by selecting the header row (click once on the grid and use the row selector on the left
to select the header row) and use the report formatting toolbar to make the text bold. Use the property
window to set the Border Style | Bottom property to Solid and the Border Width | Bottom to 2pt.

Switch to the Preview tab. You should be prompted to select a category using a drop-down list. The
category selection will populate the CategoryID query parameter and retrieve records from the database
into memory. Select any category value and you should be prompted to select a subcategory. This is the
report parameter SubCategoryID. Selecting a value will cause the filter to be applied and the resulting
data will be fed to the report. Click the View Report button to render the report as shown in Figure 4-28:

Figure 4-28

The category parameter filters data at the database. This is shown in Figure 4-29:

Figure 4-29

118

Chapter 4

68787_ch04.qxp 26/03/2004 6:01 PM Page 118

The resulting data is cached in memory on the Report Server where the subcategory filter further limits
results.

You could easily extend the design of this report using more complex items, sorting, and grouping. The
dataset query could also be replaced with a stored procedure. With these building blocks, you now have
the capability to create efficient reports that move the appropriate volume of data across network
connections and allow users to using filtering criteria without needing to re-query the entire dataset.

Summary
Defining data sources and datasets to manage data source queries is the starting point for almost any
data-driven report. It's essential to understand basic data storage and query architecture to achieve the
best design. Data can be filtered within the database server or in the report. Making the correct choice
and finding the best combination of these options will improve performance and provide flexibility with
the least degree of overhead.

Defining shared data sources in your projects makes it much easier to maintain data connections for all
of your reports as a group. Changing the database location or security credentials becomes a much
simpler proposition. The datasets for your reports define queries for retrieving data and may be used as
the source for the report and repeatable data regions or to provide data value for report parameters.

An ad hoc query expression is stored in the report within the report definition and a stored procedure is
stored in the database. Using stored procedures is an effective means for processing parameters and
filtering data before sending it to the report while using a report filter lets you reuse the data you've
already retrieved. A combination of these parameterized filtering techniques may be an optimal solution
for more complex reporting needs.

119

Designing Data Access

68787_ch04.qxp 26/03/2004 6:01 PM Page 119

68787_ch04.qxp 26/03/2004 6:01 PM Page 120

Advanced Report Design

Picking up where we left off in Chapter 2, we will expand on the elements of report design and
learn how to use a number of interesting and useful features. This chapter should serve as both a
tutorial to get you started with these advanced techniques, and a reference for creating your own
reports from your own data sources. The topics covered in this chapter are:

❑ Creating a tabular report using tables

❑ Links and drill-through reports

❑ Using charts in reports

❑ Using custom code to extend formatting and apply business logic

❑ Designing reports for mobile devices

At this point, you should be comfortable using Visual Studio .NET to create and add reports to a
project and you should be familiar with the basic mechanics of the Designer. If you are new to this
environment, please work through the exercises in Chapter 4 before you read on.

You will no longer be using the Report Wizard. You should be able to add a new report to a
project, create or select a shared data source, create a dataset, and add items to the Report Designer
by now. This chapter will provide directions for using nearly all of the design elements mentioned
here.

In Chapter 4, we talked about using items and data regions in a report. In particular, you used the
wizard to generate a tabular report with a table data region. In this chapter, you will start by
repeating this exercise, only with a greater level of detail to create a report to your own
specifications.

555

68787_ch05.qxp 26/03/2004 6:02 PM Page 121

Chapter 5

122

Creating a Tabular Report Using a Table
The Table data region is a very useful controland can be used to create report interfaces with multiple
levels of groupings and drill-down functionality. As you briefly saw in Chapter 2, groupings give you
the ability to organize repeated data within hierarchies and related groups.

Using the Products by Subcategory/Category query you created in the previous chapter, you can create a
simple report that demonstrates the use of groupings within a table. After demonstrating groupings in a
multi-level grouped table, drill-down and drill-through capabilities will be added.

Groupings are added directly to the table item using the right click menu and a custom properties dialog
window. Table groupings can have an associated header and footer row. Cells in these rows contain
textboxes (by default) that can be used to display column values for the grouping level. Different
columns can be used to indent grouped values, or you can use the padding property of a textbox to
achieve more precise control.

You'll use a modified version of the previous query without the parameter. Add a new report without
using the wizard. For the dataset, use the shared data source for the local AdventureWorks2000 database
or create a data source that points to this database.

From the Products by Subcategory/Category exercise, you can copy and paste the SQL expression from the
ProductsByCategory dataset into the new report's dataset, and then remove the @CategoryID
parameter reference and the two key columns, ProductCategoryID and ProductSubCategoryID. If
you didn't do this exercise, type the following SQL expression into the third pane of the Query Builder:

SELECT Product.ProductID, ProductCategory.Name AS CategoryName,
ProductSubCategory.Name AS SubCategoryName, Product.Name AS ProductName

FROM Product INNER JOIN ProductSubCategory
ON Product.ProductSubCategoryID = ProductSubCategory.
ProductSubCategoryID
INNER JOIN ProductCategory
ON ProductSubCategory.ProductCategoryID = ProductCategory.
ProductCategoryID

ORDER BY ProductCategory.Name, ProductSubCategory.Name, Product.Name

As you can see, we've simplified the expression since you're not going to use any parameters in this
example.

Switch to the Layout tab and drag a Table data region item from the toolbox to the Report Designer.
Click on the table and then click the gray handle on the top-left to select it. This should display a border
with selection handles around the table. In the properties window, select the DatasetName property and
in the drop-down list, select the dataset name.

The table currently contains a detail, header, and footer row. You will add two groups for the Category
and Subcategory. Groups are added in top-down order so we will add the Category group first. Right
click the detail row handle and select Insert Group from the pop-up menu as shown in Figure 5-1:

68787_ch05.qxp 26/03/2004 6:02 PM Page 122

Figure 5-1

The Grouping and Sorting Properties dialog is displayed with a default name for the new grouping. For a
complex report, you may want to devise a more intuitive naming convention than the one offered by the
Designer. Note the features in this dialog include:

❑ Name is used for identifying and referring to this group in expressions

❑ Group on may contain one or more expressions to group on

❑ Document map label is a field value or text that will be used in the document map for the report

❑ Parent group may be used to create a hierarchy of nested groupings

❑ Page break options may be used to force a page break

❑ Header and footer options enable group header and footer rows

For simplicity, just add the group field name to the end as you see in the Figure 5-2. In the Expression
box, drop down the first list and select =Fields!CategoryName.Value:

Figure 5-2

123

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 123

Switch to the Sorting tab and choose the same field to ensure that records are sorted correctly prior to
grouping on this field value as shown in Figure 5-3:

Figure 5-3

Click OK to close the Grouping and Sorting Properties dialog. Right click on the detail row handle again
and repeat the same process for the ProductSubCategory field. This is shown in Figure 5-4 and Figure 5-5:

Figure 5-4

Figure 5-5

124

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 124

Adding the fields to the table is a snap. Just drag and drop them from the Fields window on the left.
Place the CategoryName in the first cell in the group 1 row. Drag the SubCatgoryName field to the second
column on the group 2 row and drag the ProductName field to the third column on the detail row as
shown in Figure 5-6:

Figure 5-6

The report should be functional at this point although it needs a little cosmetic work. Select the header
row by clicking in the table and then on the header row selector handle. This selects all of the textboxes
in this row. Using the properties window set the BorderStyle | Bottom property to Solid and the
BorderWidth | Bottom property to 2pt.

Column Placement and Indentation
One of the typical limitations of a grid is that if you want values to be indented or staggered, the values
are restricted to specific column placement and widths. If you want the indentation between each level
to be less pronounced, it wouldn't allow much room for values in their respective columns.

There are two common techniques for dealing with these limitations. The first technique, you'll use in
this example, is to merge columns together which will give values more space, even with the column
spacing reduced. To apply this technique, click and drag the mouse pointer across a group of adjacent
columns to group select them. Right click and select Merge Cells. Note that this effectively extends the
first cell in the range and hides other cell values. You may find it necessary to abbreviate column
headings so you can resize the columns and get the desired effect. In Figure 5-7, you can see that I've
changed the column headings, resized the columns, and set the Category and Sub Category textboxes to
use bold text:

Figure 5-7

125

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 125

The other technique for indenting column values in a multi-level grouping is to place different group
row values in the same column and change the left padding property. In Figure 5-8, the table contains
only one column. The CategoryName textbox left padding is set to the default value of 2px. The
SubCategoryName textbox is set to 22px and the ProductName textbox left padding is set to 42px:

Figure 5-8

One restriction on using this technique is that the column header text can be slightly more difficult to
align. The finished report (using the multi-column technique) is shown in Figure 5-9:

Figure 5-9

Headers and Footers
Page headers and footers can be configured so that they are displayed and printed on all pages, or
omitted from the first and/or last pages. Using the report you created for the last section on filtering,
let's move the report header text into a header and show page count information in the footer on each
page.

126

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 126

Add a page header and footer by selecting Page Header and Page Footer from the Report menu while the
report is open in Layout view. Select Report Properties from the Report menu. This is where you can
optionally leave a page header or footer off the first or last page of the report (see Figure 5-10):

Figure 5-10

Now that the page header and footer are visible in the Designer, drag the report title textbox into the
header area. You'll also replace the header row of the table with textboxes in the page header. Add three
textboxes and label them with the same text as the three columns in the table header row. Let's also add
a line and place it immediately below the row of textboxes. Resize the page header area as needed.

In the report body, click on the table and then right click the row selector to the left of the table header.
Choose Delete Rows to get rid of the header row. Resize the report body as needed. Finally, in the report
footer section, place a horizontal line and a textbox item below it.

You're going to set the value of the textbox so that it reads Page X of Y. To do this, you'll use an
expression to create a dynamic value. Expressions may be used to set most property values based on a
variety of global variables, fields and calculations. To display the page number and page count, select
the Value property for the textbox in the properties window and drop down the list. Select Expression
and use the Edit Expression window to create the expression. Begin by typing '=''Page '' & ' in the
Expression box and then use the Globals item on the Fields list to select the PageNumber field. Next, insert
the field reference into the expression using the Insert button. Concatenate the text ' & '' of '' & ', and then
select and insert the TotalPages field. The finished expression should read as follows:

=''Page '' & Globals!PageNumber & '' of '' & Globals!TotalPages

The Edit Expression window, or the Expression Builder, in turn should appear as shown in Figure 5-11:

Figure 5-11

127

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 127

The Expression Builder is a simple tool that builds string values. You can always type the expression into
the property window. The finished report in the Designer window can be seen in Figure 5-12:

Figure 5-12

The report should be ready to preview and is shown in Figure 5-13:

Figure 5-13

Drill-Down Reports
A drill-down report is an interactive report design that allows the user to expand and collapse sections
of the report to discover more detail as needed. In recent years, users have become accustomed to this
type of tree-view navigation in software, so it has become a common user interface metaphor. Interactive
reports give the user more options and reduce unnecessary screen space used by data that the user need
not view. They can drill down further as per their need to view more specific details.

The magic of drill-down reports is that rows and sections are simply hidden and displayed based on a
toggle item. This means that a value item (like a textbox) is used to toggle the hidden property of rows
and other report items. A plus sign or icon (+) is displayed to the left of the toggle item. Each time the
user clicks the icon, the hidden property for the associated row items is toggled between true and false,

128

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 128

and the toggle icon toggles between a plus (+) and minus (-) sign. The rows must also be set up to
collapse when they are hidden.

Continuing from the previous example, the first thing you need to do is to remove the unused row
footers in the table. Click in the table to show the row selector handles, and then right click the handle
for each of the two empty footer rows and delete them. As drill-down visibility is managed at the
grouping level, you need to define a grouping for the detail row. Select the detail row using the row
selector and find the Grouping/Sorting property in the properties window. Click the ellipsis button (…)
next to this property to show the Grouping and Sorting Properties dialog. You need to specify a name. To
keep the naming consistent with the other two groupings, enter Table1_Group3_ProductName in the
Name box. Select =Fields!ProductName.Value from the drop down in the first row of the Expression list
box as shown in Figure 5-14:

Figure 5-14

On the Visibility tab, change the initial visibility to Hidden and then check the box labeled Visibility can be
toggled by another report item. This enables the report item drop-down list. Select the SubCategoryName
item in the Report item drop-down list. The SubCategoryName textbox is in the second column of the
subcategory group row. It will be used to toggle the visibility of the row that is being dealt with. See
Figure 5-15:

Figure 5-15

129

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 129

The same process should be repeated for the subcategory row grouping. Select the row using the row
selector and click the ellipsis button next to the Grouping/Sorting property. On the dialog, choose the
Visibility tab and set the initial visibility to Hidden and use the CategoryName report item to toggle the
visibility of this grouping. Click OK to save the settings. Figure 5-16 shows the preview for this report:

Figure 5-16

Use the (+) icons to drill-down into a category or subcategory row. As you see, the report now becomes
interactive and users can customize the display of the report by viewing only the information that they
need.

Creating a Document Map
This is a simple navigation feature that allows the user to find a group label or item value in the report
by using a tree displayed along the left side of the report. It's sort of like a table of contents for report
items, which can be used to quickly navigate to a specific area of a large report.

The document map is limited to the HTML, Excel, and PDF rendering formats. In Excel and HTML
formats, the document map may not survive when saving report files to an older document
format – such as Pocket Excel on a Pocket PC device.

You will add the CategoryName and SubCategoryName groupings to the document map. In the Grouping
and Sorting Properties dialog for the Category row (group 1), drop down the Document map label list and
choose the =Fields!CategoryName.Value item. See Figure 5-17:

130

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 130

Figure 5-17

Click OK to close the dialog and then do the same for the second row group.

Be careful and specify the document map label property only for items that you want to include in the
document map. For example, if you specify this property for a grouping (like you've done here), don't
do the same for a textbox containing the same value. Otherwise, you will see the same value appear
twice in the document map. A report with a document map is illustrated in Figure 5-18:

Figure 5-18

The document map may be shown or hidden using the left-most icon in the Report Designer's Preview or
the Report Manager report view toolbar.

131

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 131

Links and Drill-Through Reports
Any textbox or image item can be used for intra-report or inter-report navigation, for navigation to
external resources like web pages and documents, and also to send email. All of these features are
enabled by using navigation properties that can be specified in the Textbox Properties or Image Properties
dialog. In the Image Properties dialog, select the Navigation tab. In the Textbox Properties dialog, click the
Advanced button to show the Advanced Textbox Properties dialog, and then switch to the Navigation tab.

Bookmarks and Links
A bookmark is a textbox or image in a report that can be used as a navigation link. If you want to allow
the user to click an item and navigate to another item, assign a bookmark value to each of the target
items. To enable navigation to a bookmark, set the Jump to Bookmark property to the target bookmark.

The Jump to URL property can be used to navigate to a static location (a bookmarked item, report, or
URL). It can also be set to an expression that uses links stored in a database, custom code, or any other
values. Any standard URL can be specified for linking to a web page, file, or even an email address.

Drill-Through
This powerful feature enables a textbox or image to be used as a link to another report by passing
parameter values to the target report. The target report can consist of a specific record or multiple
records depending on the parameters passed to the target report. The following example uses the
Products by Category report created earlier to demonstrate the use of grouped tables. The Product Name
textbox is used to link to a report that will display the details of a single product record. This report
accepts a ProductID parameter to filter the records and narrow down to the record requested.

In the Advanced Textbox Properties dialog box, select the Jump to report radio button and select the target
report from the drop-down list. See Figure 5-19:

Figure 5-19

132

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 132

Any parameters you need to pass to the target report can be configured using the Parameters button. In
the Parameters dialog, parameters for the target report are selected in the Parameter Name column.
Values supplied from the current report are provided in the Parameter Value column as you can see in
Figure 5-20:

Figure 5-20

If you need to give a cue to the user that the item is a link, you may want to display text with an
underline. The resulting reports provide drill-through functionality. When a product name is clicked on
the main report, the viewer redirects to the detailed report for the specific product by passing the
ProductID parameter value. This is shown in Figure 5-21:

Figure 5-21

If you set an item as a link to a target, its appearance does not change.

133

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 133

Recursive Data
Representing recursive hierarchies has always been a pain for reporting and often a challenge to
effectively model in relational database systems. Examples of this type of relationship (facilitated
through a self-join) may be found in the Employees table of the Northwind and AdventureWorks2000
sample databases. Report tools were designed to work with data organized in traditional multi-table
relationships. Fortunately, our friends at Microsoft built recursive support into the reporting engine to
deal with this common challenge. A classic example of a recursive relationship (where child records are
related to a parent contained in the same table) is the employee/boss relationship. For example, if I were
to diagram the organizational hierarchy of the developer instructors group at Netdesk, it would look
something like Figure 5-22:

Figure 5-22

In our employee database, each of these records exists in the same table. My record (Paul) would indicate
that my boss is Dan. Dan reports to Lance, who in turn reports to Todd S.

In the AdventureWorks2000 database, you have a similar set of data. The Employee table contains a
primary key, EmployeeID, that uniquely identifies each employee record. The ManagerID is a foreign
key that depends on the EmployeeID attribute of the same table, and it contains the EmployeeID value
for the employee's manager. The only record that won't have a ManagerID would be the president of the
company or any such employee who doesn't have a boss.

Representing the hierarchy through a query would be quite difficult. However, defining the dataset for
such a report is very simple. You simply expose the primary key, foreign key, employee name, and any
other values that you want to include on the report. You'll just include these three values for our simple
example.

Create a new report and define a dataset using the AdventureWorks2000 shared data source. The name of
the new dataset will be EmployeesAndManagers. Enter this SQL expression into the third pane of the
Query Builder:

SELECT EmployeeID, FirstName + ' ' + LastName AS EmployeeName, ManagerID
FROM Employee
ORDER BY FirstName + ' ' + LastName

134

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 134

Add a table to the report in the Layout tab. The single grouping will provide all of the recursive
functionality for the table. Click on the table to show the selection handles and then click the selector to
the left of the detail row. You're not adding a new grouping, but simply using the grouping that exists on
this row. In the properties window, click the ellipsis next to the Grouping/Sorting property. In the Grouping
and Sorting Properties dialog, enter the grouping name as OrgChart_Recursive. In the first row of the
Group on list box, select the expression =Fields!EmployeeID.Value. Drop down the Parent group list and
select the expression =Fields!ManagerID.Value. The reporting engine recognizes this as a recursive
grouping because these fields are in the same table. Select the Sorting tab and select the expression
=Fields!EmployeeName.Value in the first row of the Sort on list box. Click OK to close the dialog. See
Figure 5-23:

Figure 5-23

Now the fun begins; Reporting Services recognizes that recursive groupings have special characteristics.
We use the Level function that returns a group level number within the recursive hierarchy. Each row is
assigned a level value that represents its relative position to parent and children rows in the hierarchy.
You will also use a Count function indicating that you want the count of the recursive group's children.

Drag the EmployeeName field from the Fields list window to the first column of the detail row. Enter
column headers for the second and third columns as Level and Count respectively. In the second detail
cell, set the Value property to =Level(''OrgChart_Recursive'') + 1. You're adding 1 to this value because the
Level function returns 0 for the first level, 1 for the second, and so on. The expression for the third
column will use the Recursive keyword in the Count function's third argument. This indicates that the
aggregate function should be applied to child rows of this grouping. Set the value to the expression
=Count(Fields!EmployeeID.Value, ''OrgChart_Recursive'', Recursive).

Finally, you want each row's padding to be progressively greater based on the grouping level. Using the
Level function you can apply some simple math to the padding property value to get the desired result.
Since padding values are expressed as a string value, you will concatenate the value px to the end of a
calculated numeric value.

135

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 135

Click on the first cell in the detail row to select the EmployeeName textbox and in the properties window,
set the Padding > Left property to =Level(''OrgChart_Recursive'') * 15 & ''pt''. This will set the padding for
the first level (level 0) to 0 pixels, the second to 15 pixels, and the third to 30 pixels, and so on. I've
dressed up the header row using bold text, a border, text alignment, and added a title textbox as in
previous examples. See Figure 5-24:

Figure 5-24

Save the report and then select the Preview tab to view the results. The generated report should appear
as shown in Figure 5-25:

Figure 5-25

136

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 136

Subreports
This feature is largely borrowed from Microsoft Access. Essentially, a subreport is a standalone report
that is embedded into another report. Using parameters, you can link the contents of a subreport to the
main report.

There are some limitations to the content and formatting that can be rendered for a subreport. For
example, a multi-column report may not be possible within a subreport (depending upon the rendering
format used). If you plan to use multiple columns in a subreport, test your report with the rendering
formats you plan to use

A subreport can be linked to the main report so that it can be used like a data region, but this is not
essential. A subreport could be used to show aggregated values unrelated to groupings or content in the
rest of the report.

Creating a subreport is like creating any other report. The fact is that you just create a report and then
add it to another report as a subreport. If you intend to use the main report and subreport as a
Master/Detail view of related data, the subreport should expose a parameter that can be linked to a field in
the main report. You'll build a simple report that lists products and exposes a subcategory parameter.
The main report will list categories and subcategories and the products list report will then be used as a
data region, like a table or list like in previous examples.

The first report, which will be used as a subreport, will include a list of products. The second report will
consist of the product categories and subcategories and will contain the subreport, which renders a list
of products for each subcategory.

1. Add a new report to your project called Product_List_Subreport.

2. On the Data tab, create a new dataset called Product_List using the AdventureWorks2000 data
source. Add the Products table to the dataset and select the Name, StandardPrice, and
ProductSubCategoryID columns to be output by the query. Sort the records by the Name column
in ascending order.

3. Create a parameter for the ProductSubCategoryID column called @SubCategoryID. The easiest
way to do this is to move the cursor to the grid column labeled Criteria on the row for the
ProductSubCategoryID table column and type = @SubCategoryID. The SQL for the dataset should
look like this:

SELECT Name, StandardCost, ProductSubCategoryID
FROM Product
WHERE ProductSubCategoryID = @SubCategoryID
ORDER BY Name

4. On the Layout tab, add a List item and set its DataSetName property to the Product_List dataset.

5. From the Fields window, drag the Name and StandardPrice fields into the List item and arrange
them horizontally to form a row with sufficient room for these values. Resize the list so that it is
the height of one textbox and about four inches wide. Place two textboxes to be column
headings above the list and set their values to read Product and Price, as shown in
Figure 5-26. Arrange the textboxes and the items in the list to line up, right justify the Price
heading textbox, and then resize the report body background to fit closely around the list.

137

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 137

Figure 5-26

6. Add a new report called Product_List_Categories and create a new dataset with the same name
using the ProductCategory and ProductSubCategory tables. Leave the join in place, alias the name
columns from both the tables, and sort by first the category name and then the subcategory
name. The resulting SQL expression should look like the following:

SELECT ProductCategory.Name AS ProductCategory,
ProductSubCategory.Name AS SubCategory,
ProductSubCategory.ProductSubCategoryID

FROM ProductCategory INNER JOIN ProductSubCategory
ON ProductCategory.ProductCategoryID =
ProductSubCategory.ProductCategoryID

ORDER BY ProductCategory.Name, ProductSubCategory.Name

7. On the Layout tab, add a textbox for the report heading and a list item with the DataSetName
property set to the new dataset. Drag and drop the ProductCategory and SubCategory fields
from the fields window into the list data region, with the Product_List_Categories dataset
selected. Size the list item to be about 6.5 inches wide by 1.5 inches tall (about 13 cm x 4 cm).
Arrange the two new textboxes in a row in the top area of the list.

8. From the Solution Explorer, drag and drop the Product_List report into the list data region below
the textboxes. Resize the new subreport to be about 4.5 inches wide and 0.75 inches tall (7 cm x 2
cm) and place it under the second textbox. Resize the list around the contained items. The report
should be as shown in Figure 5-27:

Figure 5-27

9. You need to use the subcategory parameter to associate the product list subreport with the outer
list data region. Right click the subreport and select Properties. In the Subreport Properties
dialog, switch to the Parameters tab and select the SubCategoryID parameter in the first row of
the parameters box. In the Parameter Value column, select =Fields!ProductSubCategoryID.Value in
the drop down list. See Figure 5-28:

138

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 138

Figure 5-28

This completes the report design. You should be able to preview the report and see subcategory names
followed by a list of related products as shown in Figure 5-29:

Figure 5-29

Charting
The charting capabilities in Reporting Services are quite impressive and as easy to use as those in Excel
or Access, and in many ways, more powerful. The charting components are based on Dundas Charts
developed by Dundas Software. Dundas provides a suite of ASP.NET charting components that have
been available for .NET developers since .NET was in early beta stages nearly four years ago. A chart
item is based on a dataset just like any data range and can use query parameters and filters in much the
same way as with a table or matrix.

Some of the more common chart types (like Column, Bar, Line, and Area) can be used for different views
of the same data. Pie and Doughnut charts are also quite simple but work well with fewer dimensions.
The other charts are more specialized.

When a report is rendered, the chart output is rendered to a bitmap and streamed to a PNG type image.
This image is then linked or embedded in the report. There are nine general chart types available and are
described in the following table:

139

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 139

Chart Type Description

Column This is a classic vertical bar chart with columns representing values along the Y
axis. Like-valued items along the X axis are grouped together and bars representing
values for each group along the X axis have the same colors or patterns. Series
values can also be grouped and sub-grouped. Columns can have point labels and
the colored bars may be labeled using a legend. Columns may be arranged side-by-
side (along the X axis) or in front of one another (along the Z axis). Columns may
appear to be extruded from their base using a rectangular or circular shape.

Bar This has the same functionality as a Column chart turned 90 degrees with the
advantage of accurately depicting value comparisons, especially for layouts where
you have more available horizontal space.

Area This is like a Column chart with a trend line drawn from one point to the next in the
series. It is appropriate for a series of values that tend to progress over a relatively
even plane that describes a ''level'', ''up'', or ''down'' trend. It is not at all appropriate
for series values that tend to jump around or fluctuate a lot. The solid shading of
the charted area depicts a volume of data values.

Line Similar to the Area chart but the area of the charted region isn't filled. It is useful for
comparing multiple series (along the Z axis) without obscuring trend lines behind a
series.

Pie This is an excellent tool for comparing relative values. Unlike the above mentioned
charts, the aggregate value isn't quantified. The value of each data point in a bar
chart is expressed by the length of each bar, whereas only the relative values of each
point are expressed by the size of each pie slice. Pie charts put comparative values
into a proportional context and can help formulate quick decisions at a glance. Pie
chart views can be exploded to visually separate each section.

Doughnut This is a Pie chart with a hole in the middle. A 3-dimensional Doughnut rendering
may expose smaller slices more clearly than a Pie chart since each slice has four
sides rather than three.

Scatter This chart plots several points in a range (both X and Y) to show trends and
variations in value. The result is more like a cloudy band of points rather than a
specific aggregated point or line.

Bubble The Bubble chart is used to chart points on three dimensions. Values are plotted
using different sized points, or bubbles, on a two-dimensional grid. The size of the
bubble indicates the related value along the Z axis.

Stock The Stock chart plots values vertically like a Column chart. For each item along the
Y axis series, a vertical line indicates a start and end value for the range. A tick
mark in the line can indicate a significant value in that range or an aggregation of
the range. It is useful for showing trading stocks with opening, closing, and
purchase values or represent wholesale, retail, and discount prices, and so on.

140

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 140

Column Charts
The following chart in Figure 5-30 is an example of a simple Column chart. The X axis series values are
product categories and the Y axis values represent annual sales revenue. In this view, the legend at the
bottom indicates the X axis series values.

Figure 5-30

3-D Column Charts
Figure 5-31 is a three-dimensional view with cylindrical columns arranged in a clustered formation. If
used correctly and in appropriate moderation, a 3-D chart adds a sense of realism (and looks cool). This
type of view can be effective for making an impact, but a flatter view may be more appropriate to
maintain accuracy.

Figure 5-31

141

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 141

I'm not suggesting that this is the most appropriate view for all column charts. I've made a point to set
this chart up with a fairly extreme 3-D and perspective view, just to show you what can be done. This
type of view tends to distort the values, and the clustering (stacking the columns along the Z axis) can
hide some columns from view (in the preceding chart, I had to choose whether to hide the left-most
column in the back row or the right-most column in the second row).

Stacked Column Chart
Column and Bar charts may have their bars stacked. This appends the different colored bars (for a like
series value) into one bar with multiple colored bands. This may be an appropriate method for showing
the accumulation of all values within the series point. The individual values are displayed in a different
color as a percentage of the bar. In essence, each bar becomes like a linear Pie chart (see Figure 5-32):

Figure 5-32

To emphasize the proportion of like values rather than the comparative accumulation, the 100% stacked
view (not pictured) will make all of the bars in the chart the same length rather than depicting the sum
of all the values in the bar.

Area and Line Charts
An Area chart plots the values of each point and then draws a line from point to point to show the
progression of values along the series. This is an effective method for analyzing trends and works well
when values tend to climb, decline, or remain level in the series. It typically doesn't work well to express
a series of values that are not in a relatively uniform plane. Figure 5-33 is an example of an Area chart:

Figure 5-33

142

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 142

The Line chart is a variation of an Area chart using a line or ribbon rather than a solid area. The Line
chart works better than the area chart for comparing multiple categories for a series of values as one
layer may obscure another in the area view. In the preceding example, the Area chart works because
values are sorted in a way that larger values are in the background and other points in the foreground
are smaller, the trend increases back to front.

Pie Charts
A Pie chart is an excellent tool for comparing proportional values. Display options for a Pie chart include
exploded and 3-D views. The following 3-D Pie chart in Figure 5-34 clearly shows that Touring Bike
sales are a small percentage, around 10% of total Bike Sales, and that Road Bike sales account for about
half of the total sales:

Figure 5-34

Bubble Charts
Bubble charts are essentially a point plotted in a three dimensional grid. The value of the Z axis is
expressed by the size of the bubble. Image that the bubble exists in a 3-D plane and will appear large if it
is closer to you. Actually the 'bubble' can be a circle, square, triangle, diamond, or cross shape. This also
means that a combination of shapes may be used to represent different data elements in the same chart
space.

In Figure 5-35, employees' vacation and sick hours are plotted above their names. The number of
vacation hours is represented by the bubble's vertical distance from the 0 baseline and the number of
sick hours is represented by the size of the bubble.

143

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 143

Figure 5-35

The chart shown in figure 5-36 is a Stock chart. As you see, for each product, a line is plotted to span a
range of values and has a large tick mark to indicate the position of a value within the high/low range.
In this example, the beginning (lowest point of the line) of the range is the standard cost of the product.
The tick mark represents the last receipt cost and the high range of the line is the list price.

Figure 5-36

A Charting Example
To get you started on creating charts, you will create a column chart using sales information from
AdventureWorks2000. This chart will include an added feature with a category grouping that shows sales
associates grouped by their respective regions.

The dataset SQL expression and the steps to set up the chart have been provided for you. You need to
take care of the standard report design details that were covered in the earlier sections of this chapter.

To demonstrate a Column or Bar chart, you only need a simple query with values to plot on two axes.
You will also add a third value to categorize or group another set of values. To get started, add this SQL
expression in a new dataset using the AdventureWorks2000 database:

144

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 144

SELECT Employee.LastName AS EmployeeName, SalesPerson.SalesYTD,
SalesTerritory.Name AS TerritoryName, SalesPerson.SalesLastYear

FROM Employee INNER JOIN SalesPerson
ON SalesPerson.SalesPersonID = Employee.EmployeeID
INNER JOIN SalesTerritory
ON SalesPerson.TerritoryID = SalesTerritory.TerritoryID

WHERE SalesPerson.SalesYTD > 0 AND SalesPerson.SalesLastYear > 0
AND SalesPerson.TerritoryID < 5

ORDER BY SalesPerson.TerritoryID

Add a new Chart item to the report and resize it to fill an area about 7 inches wide and 5 inches tall (18
cm x 12 cm). Right click the chart item in the Report Designer and select Column | Simple Column for the
Chart Type.

When you drag fields onto the report item, drop zones are displayed in the areas above to the right, and
below the report. These areas will change depending on the report type. Switch to the Fields window
and drag these fields to the drop locations indicated in the following table:

This is also illustrated in Figure 5-37:

Figure 5-37

Field Drop Zone Label

Sales YTD
Sales Last Year

Drop data fields here
(above the chart)

TerritoryName
EmployeeName

Drop category fields here
(below the chart)

145

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 145

Verify your results using this example. It's important that the fields are dropped in this order. However,
you can switch them later in the properties dialog.

Right click the chart again and select Properties to display the Chart Properties dialog. On the General tab,
give the chart the name SalesPerformanceChart and for the title, enter North American Sales Associate
Performance. This is shown in Figure 5-38:

Figure 5-38

Note that the preview chart image in this dialog is the result of all the specified property settings. You
can use this as a reference when you've completed all of the settings for this report.

Figure 5-39

146

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 146

You're going to make several changes on the Y Axis tab. The title will be displayed along the left side of
the chart as you see in the preview image. Set the title to Total Sales ($ M). For the Scale, set Minimum to 0
and Maximum to 3000000 and set the Format code to 0,, to indicate that this is to be a numerical value
using comma separators per thousand. By providing a range of values, the tallest column will be shorter
than the top of the chart (unless it exceeds the maximum value).

Gridlines can be used to make charts easier to read but can also make them more cluttered. The
appropriate use of major and minor gridlines can emphasize comparable points. In this chart, you will
show major and minor gridlines by using the values shown in Figure 5-40:

Figure 5-40

On the Legend tab, place the legend at the bottom, in the lower-right corner of the chart with labels
arranged in a row (short and wide). This is shown in Figure 5-41. You can select Display legend inside plot
area to maximize the size of the chart; this works well on Pie and Doughnut charts that have free corner
space. However, this could cause the legend to overlap the chart area for some types of charts.

Figure 5-41

147

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 147

Use the 3-D Effect settings at your discretion. You often have to play with these settings to achieve the
right balance between an effective 3-D rendering and an accurate display of data (see Figure 5-42):

Figure 5-42

Realistic shading makes the 3-D chart appear to have a light source that casts shadows on the borders.
The Orthographic property causes the 3-D effect to be slightly exaggerated. The Clustered property causes
rows or columns at the same series point to be arranged in front of one another rather than side-by-side.
Cylinder bars or columns are less traditional than block style bars.

Click OK on the Chart Properties dialog, save the report, and select the Preview tab to see the completed
chart.

As you can see in Figure 5-43, having two related groups on the X axis causes set lines to show the
regional groupings (in this case, the values Northwest, Northeast, Central, and Southwest) that you can see
along the bottom of the chart. Two different values are plotted at each X axis point using differently
colored, cylindrical columns.

148

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 148

Figure 5-43

Custom Fields
Custom fields can be added to any report and can include expressions, calculations, and text
manipulation. This might be similar in functionality to alias columns in a query or view but the
calculation or expression is performed on the report server after data has been retrieved from the
database. Expressions can also use globals and functions that may not be available in a SQL expression.
The term globals applies to a set of variables built in to Reporting Services that provide useful
information like page numbers. A list of available globals, fields, and parameters may be found in the
Expression Builder. The global variables currently offered in Reporting Services are:

❑ Page Number

❑ Total Pages

❑ Execution Time

❑ Report Server URL

❑ Report Folder

❑ Report Name

❑ User ID

❑ Language

149

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 149

Use the Fields window in the Designer to select the dataset you want to use. Right click in the Fields
window and select Add.

In the Add New Field dialog, enter the name you would like to use for the custom field. If you want to use
an expression, select the Calculated field property as shown in Figure 5-44, and then use the builder
button to create the expression:

Figure 5-44

Here you can see that the price and quantity fields are used to calculate the total purchase amount.

Conditional Expressions
You've seen some simple examples of using expressions to set item values in unique ways. You can use
expressions with most properties as well. In Chapter 3, you used an expression to set the Language
property of a text box based on the value of a field.

Let's take a look at one more example of a conditional expression, and then we'll discuss using program
code to handle more complex situations. This will be a simple list of products with current inventory
values. The Product table in the AdventureWorks2000 database contains a ReorderPoint value that
informs stock managers when they need to reorder products. If the inventory count falls below this
value, you can set the inventory quantity to appear in red next to the name. Using a conditional
expression in this manner is similar to using conditional formatting in Excel.

The following example will use a dataset with the SQL expression:

SELECT Product.Name, Product.ReorderPoint, ProductInventory.Quantity
FROM ProductInventory INNER JOIN Product

ON ProductInventory.ProductID = Product.ProductID
ORDER BY Product.Name

A table bound to this dataset has three columns, Name, ReorderLevel, and Quantity. On the Quantity
textbox in the detail row of the table, the Color property is set to an expression containing conditional
logic instead of to a set value. You can use the Expression Builder or just type this expression into the
properties window under the Color property:

=IF(Fields!Quantity.Value < Fields!ReorderPoint.Value, "Red", "Black")

150

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 150

You can do the same thing with the Font > FontWeight property, so that if the inventory quantity for a
product is below the reorder point value, the quantity is displayed in both red and bold text.

Switch to the Preview tab to check the results; these should be as shown in Figure 5-45:

Figure 5-45

Using Custom Code
When you need to process more complex expressions, it may be difficult to build all of the logic into one
expression. In such cases, you can write your own function to handle different conditions and call it
from a property expression.

There are two different approaches for managing custom code. One is to write a block of code to define
functions that are embedded into the report definition. This technique is simple but the code will be
available only to that report. The second technique is to write a custom class library compiled to an
external .NET assembly and reference this from any report on your Report Server. This approach has the
advantage of sharing a central repository of code, which makes updates to the code easier to manage.
The down side of this approach is that the configuration and initial deployment is a bit tedious.

151

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 151

Using Custom Code in a Report
A report may contain embedded Visual Basic .NET code that defines a function that you can call from
property expressions. The code editor window is very simple and doesn't include any editing and
formatting capabilities. For this reason, you may want to write the code in a separate Visual Studio
project to test and debug before you place it into the report. After your code is ready, open the report in
the Designer. With the Layout tab selected, drop down the Report menu and select Report Properties.

On the Report Properties window, switch to the Code tab and write or paste your code in the Custom
Code box. As you can see, you can't even use the tab key to indent your code, which is why you will
want to write the code elsewhere.

Here is the code along with the expressions you will need to create a simple example report on your
own. The following Visual Basic function accepts a phone number or social security number in a variety
of formats and outputs a standard US phone number and properly formatted SSN. The Value argument
accepts the value and the Format argument accepts the values Phone or SSN. You're only going to use it
with phone numbers so you can leave the SSN branch out if you wish:

'***
' Returns properly formatted Phone Number or SSN
' based on Format arg & length of Value arg
' PT – 12/12/03
'***
Public Function CustomFormat(Value as String, Format as String) as String

Select Case Format
Case "Phone"

Select Case Value.Length
Case 7

Return Value.SubString(0, 3) & "-" & Value.SubString(3, 4)
Case 10

Return "(" & Value.SubString(0, 3) & ") " _
& Value.SubString(3, 3) _
& "-" & Value.SubString(6, 4)

Case 12
Return "(" & Value.SubString(0, 3) & ") " _

& Value.SubString(4, 3) & "-" & Value.SubString(8, 4)
Case Else

Return Value
End Select

Case "SSN"
If Value.Length = 9 Then

Return Value.SubString(0, 3) & "-" _
& Value.SubString(3, 2) & "-" & Value.SubString(5, 4)

Else
Return Value

End If
Case Else

Return Value
End Select

End Function

152

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 152

The dataset in this report gets its data from the Vendor and related tables in AdventureWorks2000 and
returns three columns: FirstName, LastName, and Phone. The SQL expression used to retrieve this
information is as follows:

SELECT Vendor.Name, Contact.FirstName, Contact.LastName, Contact.Phone
FROM Vendor

INNER JOIN VendorContact ON Vendor.VendorID = VendorContact.VendorID
INNER JOIN Contact ON VendorContact.ContactID = Contact.ContactID

These three columns are used in a table bound to the dataset. The Value property of the Phone column
uses an expression that calls the custom function preceded by a reference to the Code object:

=Code.CustomFormat(Fields!Phone.Value, "Phone")

The report preview should be as shown in Figure 5-46:

Figure 5-46

Using a Custom Assembly
Rather than embedding code directly into each report, using a custom assembly facilitates the use of a
reusable central repository of code to extend the functionality of multiple reports. As I mentioned, this is
a powerful technique but setting it up is a little cumbersome in the product's current form. The custom
assembly feature is disabled by default and requires that you make simple but manual modifications in
two configuration files. In a default installation of Reporting Services, you will find these files in the
following locations:

153

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 153

If you double click the file icon in Windows Explorer, it should open in Visual Studio, thus allowing you
to edit and save the file. In each of the files, you will find XML elements with the following content.
Comments are provided with instructions to remove a commented block of tags to enable custom
assemblies.

<!-- Remove this comment to enable custom assemblies
<CustomAssemblies>
<Default>

<PermissionSet class="System.Security.PermissionSet">
<IPermission class="System.Security.Permissions .Security
Permission"
version="1" Flags="Execution"/>
</PermissionSet>

</Default>
</CustomAssemblies> -->

Remove the line beginning with <!- - and the - -> at the end of the closing tag. Close and save each of
these configuration files.

Create a class module project. You can write this code in any .NET language since it's going to be
compiled to an assembly. The methods you create can be either static or instantiated. It's a little easier to
use static methods so you don't have to manage the instancing and life of each object. This simply means
is that you will declare public functions in your class using the Static keyword in C# or the Shared
keyword in Visual Basic. Using the same code logic as in the previous example, the Visual Basic class
code would look like:

Public Class Report_Formats
'***
' Returns properly formatted Phone Number or SSN
' based on Format arg & length of Value arg
' PT – 12/12/03
'***
Public Shared Function CustomFormat(Value as String, Format as String) as String

Select Case Format
Case "Phone"

Select Case Value.Length
Case 7

Return Value.SubString(0, 3) & "-" & Value.SubString(3, 4)
Case 10

Return "(" & Value.SubString(0, 3) & ") " _
& Value.SubString(3, 3) _
& "-" & Value.SubString(6, 4)

Case 12

File Name Default Installation Path

RSReportDesigner.config C:\Program Files\Microsoft SQL
Server\80\Tools\Report Designer

RSReportServer.config C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportServer

154

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 154

Return "(" & Value.SubString(0, 3) & ") " _
& Value.SubString(4, 3) & "-" & Value.SubString(8, 4)

Case Else
Return Value

End Select
Case "SSN"

If Value.Length = 9 Then
Return Value.SubString(0, 3) & "-" _

& Value.SubString(3, 2) & "-" & Value.SubString(5, 4)
Else

Return Value
End If

Case Else
Return Value

End Select
End Function

End Class

Save and build the class library project in Release configuration and then copy the assembly (DLL) file
to the ReportServer\bin folder. The default path to this folder is C:\Program Files\Microsoft
SQL Server\MSSQL\Reporting Services\ReportServer\bin.

In the Report Properties dialog (this is where you entered the code in the previous topic example), select
the References tab and add the reference by browsing to the assembly file. The reference line shows
metadata from the assembly, including the version number, as you can see in Figure 5-47:

Figure 5-47

To use a custom method in an expression, reference the namespace, class, and method using standard
code syntax. The expression for the CustomFormat method should look like:

=Reporting_Component.Report_Formats.CustomFormat(Fields!Phone.Value, "Phone")

The report should look exactly as it did in the previous example.

To deploy a report using custom assembly files to a production server, you will need
to copy the assembly file to the same location on the server.

155

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 155

Designing for Mobility
The idea of making reports available in custom applications that run over the Internet or letting users
access reports from desktop computers outside of the office opens many doors of opportunity that were
earlier not possible. These capabilities are now very easy to achieve but the promise of this technology
doesn't stop there. This brings to mind the unforgettable words of Ron Popeil, ''...but wait. There's
more...'' Another very quotable figure, Bill Gates, announced in 2000 that the next generation of services
from Microsoft would enable people to access information ''any time, any place, and on any device."
This product fulfills that promise making reports available to the next generation of mobile computing
devices.

There are many different devices on the market that could be categorized as mobile internet devices or
mobile network devices capable of viewing reports. These may include Personal Digital Assistants (PDAs),
palm-sized or hand-held computers, and enhanced pagers or cellular phones. The lines separating these
devices are becoming quite blurred as the newest generation of cell phones can be used to surf the web
and some PDAs now include integrated cell phones. There are also camcorders with built-in networking
and web browsers! For our discussion, the scope of these devices will be limited to the Windows-based
units. However, some Palm OS devices may be used to view online content via a wireless corporate
network or the World Wide Web and can be used to view offline documents in standard formats (such as
PDFs). We acknowledge that many of the capabilities may also be supported on the Palm platform.

The challenges and opportunities for delivering mobile device-enabled reports are varied but fall into
the following areas:

❑ Screen size

❑ Device, browser, and viewer capabilities

❑ File portability

❑ File size restrictions

Current Windows-powered devices run a version of Windows CE called Pocket PC or Windows Mobile
SmartPhone. The Pocket PC form factor has a screen resolution of 240 by 320 pixels and features a
number of scaled-down desktop applications (like Pocket Word, Excel, Outlook, and Internet Explorer).
The SmartPhone screen is considerably smaller at 176 by 220 pixels and is designed to function primarily
as a phone with some additional PDA features. An edition of the Pocket PC called the Pocket PC Phone
Edition has integrated features to support units with a built-in cell phone. All Pocket PC devices have a
touch screen interface and many of the SmartPhone units are controlled only by the phone's keypad.
These devices, and many non-Windows cell phone devices, may be used to view online web content.

Screen Size
The most significant restriction for most mobile devices is the limited screen size. The Pocket PC and
SmartPhone can view web content with some client-side scripting support and can also cache recently
viewed content for offline viewing. Most web pages designed for desktop users can be viewed on the
tiny screen but it requires the user to scroll extensively just to navigate a single page. Web-based reports
created with Reporting Services are no exception. Most stock reports will likely work on a Pocket PC
running Pocket Internet Explorer if they can be viewed in Internet Explorer on a desktop PC. The user
experience, however, is often like watching a large-screen movie through a keyhole.

156

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 156

To design reports optimized for the mobile user, reports must be simplified and designed for smaller
page size. Some dynamic reporting features (like drill-down and drill-through) may not be supported in
all rendering formats. The page size of the Pocket PC screen is about 3.25 inches (8.25 cm) wide. Simply
scaling your mobile reports down to this width will resolve most screen resolution issues for mobile web
users. Keep the font sizes small and avoid clutter, large graphics, and unnecessary extra space.

Figure 5-48 illustrates a simple employee email directory that was created using a Table data region on a
narrow page:

Figure 5-48

The sample report shown earlier has only two columns but it could easily have several. There is no need
to restrict the functionality of your reports simply because users can't see all of the information at one
time. Just keep in mind that when the user navigates to the report, they will only see the information
beginning in the top-left hand corner of the content. Design your reports with this in mind, placing the
most important content near this entry point. Users can always scroll to find other information if the
report is intuitive and easy to navigate. This is yet another reason to use interactive reporting features
like drill-down.

Keep the report content size to a minimum as well. Regardless of the device or computer used to view
reports, a dial-up user will always suffer a significant performance penalty from large reports. Avoid
unnecessary use of graphics and filter the data whenever possible. The Pocket PC phone device pictured

157

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 157

in Figure 5-49 can connect to the Internet using either cell phone dial-up or a wireless network
connection, but broadband wireless is typically only available in close proximity to a secure wireless
access point. At best, cellular dial-up connection speeds are 14400 to 19200 bps.

Figure 5-49

Offline Solutions
One of the challenges that mobile users face on a number of levels is that they typically don't have the
opportunity to remain continuously connected to a network or the Internet. Mobile devices are intended
to give us the ability to cut ties with the corporate network and work without wires or wireless
connections. At times, report users might need to render reports on their desktops or have them pushed
out to files or email via subscriptions. They can then view these reports offline on the mobile device.

Typically the best solution for off-line reporting is to save the report to a document. Pocket IE will store a
cached copy of an HTML report if it has been viewed online. In the case of a drill-down report, the entire
report content may not be stored in cache. When a cached drill-down report is viewed, exploring
sections that have not been previously viewed may cause the device to try to connect and retrieve the
newly requested content. Overall, caching HTML is not a comprehensive solution.

The PDF format is by far the most reliable method for transporting a report document and keeping
content consistently formatted. After the report has been exported to a PDF document it is a simple

158

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 158

matter to drop the file into the synchronization folder on the partnering desktop and let ActiveSync
automatically copy it to the device the next time it is placed into its cradle. Unfortunately, Adobe
Acrobat doesn't support the drill-down functionality in Reporting Services, so the report will need to be
designed without dynamic drill-down and drill-through. The TIF image format also guarantees that the
report will look and print consistently as the file is sent from place to place, but one drawback of this
format is that files will typically be much larger than in PDF format.

The Excel rendering format is also an excellent medium for small offline reports but Pocket Excel doesn't
support drill-down either. The Excel rendering format is supported only in Excel 2002 and later. One
advantage to using this format is that users can make modifications to their local copy of the report
content, and then sort and format the data. A user can also add calculations and other content to extend
the report for their own needs. See Figure 5-50:

Figure 5-50

Summary
You have covered a lot of ground in this chapter. By using what is covered in the previous two chapters,
you saw how many types of reports using data sources and filtering techniques that exposed different
design strategies are created.

159

Advanced Report Design

68787_ch05.qxp 26/03/2004 6:02 PM Page 159

Data regions let you repeat and group data in a section of the report. The table organizes repeated data
into specific rows and columns and provides inherent grouping capabilities with headers and footers.
Using a list, you can achieve similar results with a little more formatting flexibility. With a subreport,
you can essentially use a separately defined report as a data region and filter the data it contains with
parameters and filters.

Drill-down and drill-through techniques optimize screen space and allow the user to interact with a
report by expanding groupings of a table or list, or by using links to jump to an item, or bookmark
another report. The document map provides a mini drill-down report in a separate frame that may be
used to easily find headings and category labels and navigate to them in the report. Recursive
relationships are easy to manage and will produce multi-level groups using a single source of data.

Charts are a powerful tool used to express aggregated values in a series and in multiple dimensions.
Several chart types are available for different types of data and presentation formats.

Advanced formatting and calculations can be performed by adding customized programming code to
your reports. This can be done by simply adding code in the Report Designer or by creating a compiled
.NET assembly and adding a reference to the assembly in the report. Report properties can be set using
expressions and program code to achieve conditional formatting.

Developing reports for mobile users is a relatively simple task, keeping in mind the limits and
capabilities of devices. Reports are designed to fit smaller screen sizes and may be optimized for online
or disconnected scenarios. Mobile reporting opens vast opportunities for traveling information workers
using convenient wireless and synchronized devices.

160

Chapter 5

68787_ch05.qxp 26/03/2004 6:02 PM Page 160

Managing Reports Using
the Report Manager

Now that the report authoring process is complete and reports have been deployed to the Report
Server, you need some way of managing how the reports are organized and controlling who has
access to them. For example, once the monthly sales report for your company has been added to
the Report Server database, you may want to schedule the report to run on the first of every
month and ensure that only managers have access to it. Microsoft has included an application
with Reporting Services that provides access to all the functionality typically needed by a manager
of the content in the Report Server database. This application is called Report Manager.

In this chapter, you'll learn to use the Report Manager for common Reporting Service tasks:

❑ Managing the organization of your reports and other resources

❑ Configuring report properties and adding needed resources

❑ Administrating users and implementing security policies

❑ Managing the scheduling and execution of a report

Introduction to the Report Manager
The Report Manager application is a tool that enables you to perform tasks related to managing
the content in the Report Server database. This particular function is commonly referred to as
content management. In Reporting Services, a Content Manager is a predefined role specifically for
managing reports and content. While the Content Manager role is important in administering a
Reporting Service platform, it might not be the same person who is responsible for administering
the web server or SQL Server instances directly. The Report Manager application was built to
primarily support managing the content within the Report Server database rather than performing
administration of the server infrastructure.

666

68787_ch06.qxp 26/03/2004 6:02 PM Page 161

Chapter 6

162

What Is Report Management?
An effective Reporting Service platform needs to support key content management tasks. Typically, a
Report Server manager handles generating reports, organizing reports, and controlling access to them.
The key Report Server management responsibilities include:

❑ Administrating the organization and identification of content

❑ Managing other resources needed by reports

❑ Configuring users and defining access permissions

❑ Managing the generation and deployment of reports

Let's see how the Report Manager addresses these content management responsibilities.

Understanding the Report Manager
The Report Manager application resides on a web server and is accessed using a web browser. It
provides an interface that's used to manage the contents of the Report Server database. The Report
Manager is an ASP.NET Web application that acts as a graphical user interface for the Reporting Services
Web Service, which also happens to be an ASP.NET Web application. Figure 6-1 shows the relationship
between the Report Server exposed via the Reporting Services Web Service, the Report Manager
application, and the browser running on your client machine:

Figure 6-1

You could even build your own version of the Report Manager by creating an application that works
against the same Reporting Services Web Service API. Choosing to do that might be a good opportunity
to further understand the design and implementation of a service-based application architecture. For
example, common tasks that were often performed in pieces using separate applications are now
achievable using a single, consolidated interface, without compromising the freedom required for
diverse and heterogeneous reporting. In the opinion of a noted professional, this capability is "really a
piece of art in application architecture". However, the Report Manager is included with the Reporting
Services package and is robust enough and suitable for most business needs.

Using the Report Manager, you have the ability to:

❑ Create folders and folder structures to act as containers for report collections

❑ Create and modify data sources, and add additional resources to the Report Server database

68787_ch06.qxp 26/03/2004 6:02 PM Page 162

❑ Implement an identity based security model, controlling access to Reporting Services resources

❑ Configure automated report generation and delivery

Most importantly, access to all reports and resources can be flexibly managed. For example, a user can be
provided access to reports that run on demand based on values supplied by that user, or they may be
restricted to viewing static reports delivered by subscription. The task of managing content can also be
broken up among multiple roles, each responsible for managing the functions of different reports or
other resources. Using the Report Manager, you can perform create, read, update, and delete operations
on almost anything in the Report Server database.

The Report Manager Interface
Although you've probably spent time surfing the web using your browser, you may not have used it as a
sophisticated application for managing content and resources in a Reporting Service database. Let's see
the interface in action.

For opening the Report Manager, you'll need to have Microsoft SQL Server Reporting Services installed,
an updated Microsoft Internet Explorer browser running on your client machine, and permissions to
access the Report Manager interface.

There are two ways of accessing the Report Manager. The first is by using the Start button on your
system taskbar. If Reporting Services has been installed on your local machine, click Start | Programs |
Microsoft SQL Server | Reporting Services | Report Manger as in Figure 6-2:

Figure 6-2

163

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:02 PM Page 163

The menu item will open Internet Explorer and display the initial Report Manager screen, as seen in
Figure 6-3:

Figure 6-3

Figure 6-3 also shows that the current user location is in the Home folder. This Home folder contains
several folders, called sub folders or children. The SampleReports parent folder, for example, is
contained in the Home folder and could be considered a child of it. You'll take a closer look at the user
interface shortly.

The second way of getting to the Report Manager is by manually typing the Report Manager URL into
the address bar of your browser. If Reporting Services is not installed on your local machine, you may
find this technique the easiest way to access the Report Manager. Open Internet Explorer, and type the
URL of your Report Server in the address bar. By default, the address is:

http://<ServerName>/reports

Be sure to replace <ServerName> with the server hosting the Report Manager application. During
installation, the name of the virtual directory containing the Report Manager can be changed from the
default /reports to something that works better for you. If that's the case for your installation, you'll
need to specify that virtual directory name rather than /reports. You should see the same page
displayed in Internet Explorer as you saw when using the first technique to open the Report Manager.

Note that in the first technique used to access the interface, the Report Manager menu item has an
Internet Explorer icon. It is, in fact, a shortcut to the same address you typed into the address bar using
the second method. Some users add shortcuts to the desktop or Quick Launch toolbar for convenience.

One of the reasons the Report Manager application is so effective is because it leverages capabilities of
the client browser used to access it. Specifically, working with the Report Manager requires Microsoft
Internet Explorer 6.0 with Service Pack 1 (SP1) or Internet Explorer 5.5 with SP2 as the browser client. As
an ASP.NET application, the Report Manager also makes use of client-side scripting to support
functionality, so you'll also need to have scripting enabled.

164

Chapter 6

68787_ch06.qxp 26/03/2004 6:02 PM Page 164

To check the script security settings for your browser, select Tools | Internet Options | Security tab. In the
Web Content Zone window, be sure that the Local intranet zone is selected. Below that window, there's an
area called Security level for this zone. Click the Custom Level button to open the Security Settings dialog
box, where you can view your current script settings. Scroll down to the section called Scripting to see
whether Active scripting is enabled as shown in Figure 6-4:

Figure 6-4

Although most browsers are already configured to support scripting, some organizations have scripting
disabled as part of company policy. If so, that part of the security policy may need to be revisited for
users who are responsible for using and working with the Report Manager.

Navigating the Report Manager Interface
The Report Manager uses the concept and hierarchical structure of folders extensively. In fact, when you
open the Report Manager, your initial view is of the Home folder. As you move between folders, forms,
and items, it's important to be aware of where you are in that hierarchical structure. To help you to move
around in the Report Manager, let's take a look at the various navigational controls available.

Navigation Tools
Several navigational methods have been incorporated into the Report Manager interface. Which ones
you see and which options are available vary depending on where in the folder structure you are and
what permissions you've been granted. For example, if a user doesn't have permission to view certain
reports or upload resources to folders, they won't be given access to the controls needed to perform

165

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:02 PM Page 165

those actions. Let's take a tour of the Report Manager interface by taking a look at the navigational
elements and talk about a couple of global settings.

Breadcrumb Trail
Frequently referred to as breadcrumb trail, this control displays links to each level back up the file or in
folder structure. It's in the top left corner of the browser window. Figure 6-5 shows an example:

Figure 6-5

In this figure, you are currently viewing the Employee_List_Operations report in the Staff_Listings folder,
which is contained in the Professional_SQL_Reporting_Services folder, which in turn is one level below
the top level Home folder. In XML terms, the Home folder could be considered the root node of the
structure and everything is descendant from it. Note the hand icon indicating a hyperlink back up to the
Staff_Listings folder.

This navigation tool is not always available, for example, when viewing certain forms. The breadcrumb
trail is a quick way to navigate back to the parent folder when viewing an item's properties pages.

Tabs and Options Toolbar
Tabs are defined by blue and orange lines across the Report Manager interface, just below the
breadcrumb trail. Available, but not active, tabs are displayed in blue. Active tabs are orange in color and
flows into the orange line above the current view. The orange line borders the top of a toolbar that
displays option buttons for the current view. Figure 6-6 shows an options toolbar for the Subscriptions
tab and a sample option button:

Figure 6-6

In Figure 6-6, two option buttons for creating new subscriptions are displayed on the Subscriptions tab.
Like tabs, the option buttons available to a user will vary depending on the permissions granted to that
user on that item.

Local Menu
Under the Properties tab, local links may be available along the left side of the page. These links are used
to access the different property pages for an item. The links are shown in Figure 6-7:

166

Chapter 6

68787_ch06.qxp 26/03/2004 6:02 PM Page 166

Figure 6-7

You'll be taking a closer look at each of these property pages and how they're used throughout this
chapter.

Global Toolbar and Details Button
The global toolbar is available on every page in the Report Manager. It's located in the top right corner of
the page, displayed as a series of links with a blue background to separate them from other items on the
page. There are links to the Home folder, user-specific report subscriptions called My Subscriptions, global
Site Settings, and Report Manager Help.

The Show Details button is one of those items that get more useful as you get more comfortable working
with the Report Manager. The button text toggles between Show Details and Hide Details, depending on
your current view as in Figure 6-8:

Figure 6-8

When viewing folder contents in Detail view, for example, you have direct access to Move and Delete
option buttons to work with folder items as seen in Figure 6-9:

Figure 6-9

Clicking on the Properties link, seen to the left in Figure 6-9, brings you directly to the Properties tab for
that item. When the details are hidden, you must first select the item and then go to the Properties
tab—so you save a step with details displayed (great for frequent users).

167

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:02 PM Page 167

Icons beneath the Type column head indicate the type of item listed. There are icons for:

❑ Folder

❑ Report

❑ Linked report

❑ Resource

❑ Subscription

❑ Data-driven subscription

Hold the cursor over the icon to see a descriptive tool tip. Clicking the icon will perform a default action
on that item. For example, clicking the folder icon will open the folder, clicking the properties icon will
access the properties pages, and clicking the report icon will open the report.

Searching for Folders and Reports
Use the search function available in the upper-right corner of the Report Manager interface to search for
items. Because items (folders, reports, resources, and data sources) are stored in the Report Server
database, doing a search on the file system using Windows Explorer won't return the desired results. The
Report Manager search function searches the database for items matching your search keywords,
whether searching by the item name or description.

Search results are only returned for items that you have permission to access, making the tool very
useful even for end users. For example, Report Server allows storage of incremental snapshot reports for
archival purposes. A single report design can be a source of many report items. In the Report Manager,
there literally may be hundreds of available reports in a typical organization. The search function returns
a filtered report set based on user permissions.

To search within a report, you can use the report toolbar displayed above the generated report in the
HTML Viewer. To read more about viewing reports, see the section on Viewing, Executing, and Scheduling
Reports later in this chapter.

The Report Manager Help
The Help link is always available to you from within the Report Manager. The link is in the far upper-
right corner of the browser window. The Report Manager Help is a separate help application that
provides information about every form in the Report Manager and is a valuable resource.

You'll be using those navigation tools quite a bit as you explore Report Manager. Let's start the rest of
our tour by taking a look at what's behind the Site Settings link.

About System Site Settings
The Site Settings form is accessed using the Site Settings link in the global links area, in the top-right
corner of the Report Manager interface. This form is used to configure default settings for the site and
enable different features of the Report Manager. Usually, you won't have access to this form unless
you're a member of the System Administrator role. Figure 6-10 shows the Site Settings form:

168

Chapter 6

68787_ch06.qxp 26/03/2004 6:02 PM Page 168

Figure 6-10

Using this form, you can change the name that's displayed in the top left corner of every page in the
Report Manager. My Reports can be enabled here as you'll read about shortly. Let's briefly cover the other
main properties on this page.

Report History Default Settings
This property defines the number of previously run reports to keep archived. Although this sets the
default report history value for all reports, this value can be overridden by individual reports. You'll
read more about configuring report histories in the Creating a Report History section later in this chapter.

Report Execution Timeout
Execution timeout is the length of time the Report Server will continue attempting to execute a report.
When the timeout value elapses, execution will stop and rendering or delivery of the report will not
occur. This value can be overridden in individual reports.

Report Logging
By default, Report Server logs information about report execution. The report log contains values such
as delivery format, the parameters used, and server processing time. The report log is not viewable in

169

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:02 PM Page 169

the Report Manager; a SQL Server DTS package is used to obtain values from the log. For more
information on viewing report logs, search for Report Execution Log in Reporting Services Books Online.

About My Reports
My Reports is a folder that provides a central location for the management of user-specific content and
subscriptions. Rather than having to navigate through the public folders for regularly generated and
referenced reports, My Reports provides a self-managed area for users to place and maintain their
content, similar to My Documents. The similarity of My Reports to My Documents in both name and
function is not an accident. My Documents is a concept and tool almost universally accepted by users,
and My Reports is a variation of that successful theme. Building on the experience and familiarity a user
has with an existing environment or feature is a good tip for feature designers and architects.

To enable My Reports, you need permission for the Manage the security settings of the Report Server task.
The steps to enable this are as follows:

1. From the Home directory, click the Site Settings link in the global navigation bar in the top right
corner of the browser window. You'll see the area displayed in Figure 6-11:

Figure 6-11

2. Check the Enable My Reports checkbox. Optionally, you can choose a role definition used to
group users who have access to their My Reports. Microsoft created the My Reports role for this
purpose, and it is the default selection. Leave that setting as My Reports, and click Apply. Then
return to the Home folder view. You'll see the new My Reports folder added to the Home folder
contents.

My Reports is a folder that allows users to manage their own content. Enabling My Reports lets users
create and delete their own folders and reports and create personalized linked reports. Users don't have
access to the My Reports folders of other users; only Report Server administrators can do that. Using My
Reports, you can upload reports and other resources as well as publish reports you've created using the
Report Designer.

It's important to keep in mind that there's a My Reports folder, and a MyReports role. The My Reports role
defines permissions the user has in their My Reports folder. System administrators can change the
permission set for all roles including My Reports. Because of that, your capabilities may be different than
those just described. It's a good practice to reserve a specific role for accessing My Reports to help ensure
a consistent user experience when using it. It's easy to create a shortcut to your My Reports folder,
creating a portal to the reports you frequently need to work with. Functionally, the My Reports folder
provides a secure area for users who need to manage and view reports as part of their regular work
responsibilities.

Once a user has added items to their My Reports folder, it's important to understand the different choices
available if tyou need to revoke access. That topic is covered in the Revoking Access to My Reports section
later in this chapter.

170

Chapter 6

68787_ch06.qxp 26/03/2004 6:02 PM Page 170

Working with Folders and Reports
Folders represent the structure and relationship of content in the Report Server database. Folders are
containers for items and other folders. Each folder is considered the parent of the content it contains, and
items in that folder inherit properties of that parent. Individual folder and item properties can be set by
overriding the properties inherited from the parent folder.

Working with folders requires permission to tasks that are used to support folder management. If your
Report Manager application hasn't been modified since installation, the local system administrator
automatically has rights to perform actions such as create and delete folders. If new roles have been
created, the role you belong to will need the same task permissions in order to manage folders.

Creating New Folders
In Report Manager, folders are created in place, meaning it's necessary to navigate to a folder before
creating a new folder inside it. For example, to create a new folder within My Reports, you have to be in
your My Reports folder. Once the folder is created, you can set the properties of that new folder. Home is
also a folder, so you can create folders there as well. As an example, to create a new folder within My
Reports, follow these steps:

1. With Report Manager open the Home folder and click the My Reports folder to open it.

2. Be sure you're viewing the Contents tab.

3. Click the New Folder button on the option button bar. You'll be brought to the New Folder form.
Verify that Create a new folder in My Reports is the action displayed at the top of the form as
shown in Figure 6-12:

Figure 6-12

4. Type a name for your folder. A folder name can contain spaces, but because the name appears as
part of the URL used to access the folder, you can't use characters that are reserved for URL
encoding (such as @ & $? , ; : + * / % = < >). For testing and exploring purposes, Samples and
Demonstrations works well.

5. Type a description for your new folder. This field is optional but the item description is
searchable. It's good to use a description containing keywords that helps to search for items. The
description used for this chapter is Sample reports and other items for demonstrating Report
Manager.

6. Hide in list view refers to making the folder hidden when viewing the parent folder contents in
the default view of its Contents tab. Note that when content details are listed by clicking the
Show Details button, the folder will still be visible. Leave that checkbox cleared for now.

7. Click OK. The folder will be created, and you'll see it in the Contents tab of your My Reports
folder. Figure 6-13 shows an example:

171

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:02 PM Page 171

Figure 6-13

Notice the icon indicating a new item and how the folder description displays underneath the new
folder link. Let's see how this works.

Your new folder inherits the security of the parent My Reports folder. By changing folder permissions,
you can override the parent folder settings and define your own values. The changed values will in turn
be applied to the contents of that folder. This application of parent settings continues to the deepest level
of the folder structure. The use of configuration settings that are inherited by child nodes is used
extensively in .NET.

Creating folders and modifying their security settings can degrade into an unplanned, ad hoc
combination of configuration settings for different folders and users, which can be difficult to manage
and maintain. Making the My Reports folder available to users allows them to manage settings in the
context of their own My Reports folder, rather than modifying individual folder properties to grant the
required permissions.

Moving Items into a Folder
Items can be added to folders and moved between folders. When you add an item, you've seen how it
inherits the security properties of the new parent. When you move an item, its properties and contents
go with it to the new location. You will need permission to manage the item type you're working with, to
add or move items to a folder. Specifically, those tasks include Manage folders, Manage reports, and
Manage data sources. For an example of how to add a report to a folder, follow these steps:

1. Open Report Manager to the Home folder.

2. Click the link to your My Reports folder to view its contents.

3. The Samples and Demonstrations folder you created earlier is there. Click the link to view its
contents.

4. Click the Upload File button on the options toolbar. This will open the Upload File form as shown
in Figure 6-14:

Figure 6-14

172

Chapter 6

68787_ch06.qxp 26/03/2004 6:02 PM Page 172

5. Click the Browse button to open the Choose File dialog box. Navigate to the directory on your
file system containing the SQL Server Reporting Services sample reports. By default, the sample
reports are located on the installed machine at:

C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\Samples\Reports

6. Select the Company Sales.rdl file as shown in Figure 6-15:

Figure 6-15

7. Enure that the Company Sales.rdl file is listed in the File name field of the form, and click Open.

8. Change the name to Company Sales Report. This changes the name displayed in Report
Manager but does not change the underlying report. Note that you can choose to overwrite the
item if it's already in the folder. For this example, leave that checkbox cleared.

9. Click the OK button on the Report Manager Upload File form to add the report to your folder.
You'll see the Company Sales Report item added to the Samples and Demonstrations folder, with
the Report and New icons alongside.

10. When you click the link to view your new report, unfortunately, you'll see the kind of message
displayed in Figure 6-16:

Figure 6-16

Adding a report to a folder this way is functionally the same as a report author publishing the report
using Report Designer. When a report author designs a report, a data source is configured to retrieve the
desired dataset for the report-rendering engine to work with. Without the data source, the report is

173

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:02 PM Page 173

unable to retrieve, process, or display any data. In that case, you'll need to go in and configure some
properties for the report to function correctly.

You can set properties for reports in several categories. Some settings are specific to reports; others are
inherited from the parent folder and overridden where necessary. For example in the General Properties
of a report, you can create a new linked report based on the current report definition. Figure 6-17 shows
an example of the General Properties page for a report:

Figure 6-17

In the General Properties window, you can view metadata about the report such as the Creation Date of the
report and the user who last modified it. Using the text boxes, you can change the name or description
of the report. Buttons along the bottom of the form let you apply changes, create a linked report, move
or delete this report. Linked reports are extensions of an existing report definition; you'll read more
about linked reports in the Viewing, Executing, and Scheduling Reports section later in this chapter.

In the rest of the chapter, you'll read about property settings and actions that can be performed on both
the system and items contained in the Report Server. Let's start addressing that report problem by taking
a look at data sources.

Working with Data Sources
A data source represents what the report definition uses to connect with the Report Server database to
retrieve data from it. Data sources are generally created by the report author and added to the database

174

Chapter 6

68787_ch06.qxp 26/03/2004 6:02 PM Page 174

content along with the report definition. At times, it may be necessary to adjust data source properties.
When a database gets moved to a new machine, you may need to update data sources referencing that
database to point them at the new machine. Data sources are used by reports and by data-driven
subscriptions. There are two types of data sources:

❑ Report-specific (or private) data source: This is created for use by a single report definition and
is embedded within the report definition. Since private data sources are part of the report
definition file (.rdl), modifications to the data source properties must be made using the
Report Designer. When making changes in the Report Designer, the author can choose to
overwrite the existing data source property values in the Report Server database. In some
circumstances, a report may display values returned as multiple datasets. When that happens,
the property settings for each data source are contained in the report definition.

❑ Shared data sources: These items are separate from report definitions and can also be managed
using Report Manager. Shared data sources are intended for use by reports and subscriptions
that access similar datasets, giving you the ability to configure and manage a single data source
for use by multiple reports. Note that the changes you make to a shared data source using
Report Manager overwrite the data source properties previously held in the Report Server
database.

Configuring Shared Data Sources
Shared data sources are items that can be managed from within Report Manager. You can create, delete,
move, and update shared data sources. In general, it's better to rely on shared data sources rather than
private ones that are hardcoded in the report design. Deployment is easier with shared data sources, and
multiple reports benefit from the centralized maintenance of their data sources. For example, if a data
source changes, only the required properties need to be changed. There's no need to worry about
whether individual, dependent reports need to be updated and re-tested. The updating and
management is all performed at a single data source location rather than within multiple reports.

The next sample exercise assumes you've completed the previous examples in this chapter, and that you
have permission to manage data sources. The custom data source properties specified here are for a
machine running Microsoft SQL Server in the context of the system using mixed mode security.
Following are the steps to configure a shared data source:

1. From your My Reports folder, click the Samples and Demonstrations folder to open it. The report
you uploaded earlier should be there.

2. Click the Company Sales Report. You'll be brought to the View tab for the report, where you'll see
the error displayed earlier.

3. Click the Properties tab.

4. Click the Data Source link in the left navigation area. You'll see the Data Sources properties page,
and the error indicating that shared data source reference is no longer valid. The Company Sales
report is configured to use a data source called AdventureWorks, and the selected radio button
shows that this data source is A shared data source.

5. Click the radio button to select A custom data source. The shared data source information greys
out while the custom data source fields become enabled.

175

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:02 PM Page 175

6. For the Connection Type drop-down combo box, select Microsoft SQL Server. SQL Server, SQL
Server Analysis Services, Oracle, OLE DB, and ODBC data providers are all available by default.

7. Type an OLE DB connection string to the AdventureWorks2000 database location in the
Connection String field. It's not a good practice to include credential information in the
connection string, doing so overrides the values provided in the credentials section below. A
sample connection string is as follows:

data source=(local);persist security info=False;initial catalog=AdventureWorks2000

8. In the Connect Using section, select Credentials stored securely in the Report Server. Enter the user
ID and password you use to log into your system.

9. Click the Use as Windows credentials when connecting to the data source checkbox to select it.
Figure 6-18 shows a completed data source Properties page:

Figure 6-18

10. Click the Apply button to apply your changes.

11. Click the View tab. The report will execute, and in a few moments it's displayed as HTML in
your browser. Figure 6-19 shows the rendered report:

176

Chapter 6

68787_ch06.qxp 26/03/2004 6:02 PM Page 176

Figure 6-19

A custom data source can be configured for a report, overriding the previously published values. In the
previous example, you pointed the report away from a shared data source to one that was custom
configured. Creating a shared data source uses exactly the same process, except you begin by clicking
the New Data Source button on the options toolbar when viewing the contents of a folder. Configuring
the credentials section of the form can be confusing, so let's take a closer look at that.

Data Source Credentials
SQL Server has very effective security mechanisms in place to control access to data. When a report or
subscription attempts to retrieve data from the SQL data store through a configured data source,
authentication is performed to ensure that whoever is attempting to access the data has permission to do
so. If your SQL Server instance is configured to use both SQL Server and Integrated Windows
authentication, there are four ways that Reporting Services can handle authentication to SQL Server:

❑ NTLM

❑ Basic

❑ Kerberos

❑ Passport

In a way, how Reporting Services handles passing authentication credentials depends on which device is
requesting the report. When the Report Server ultimately connects to SQL Server to retrieve data,
authorization is performed on the credentials it provides. Those credentials can be obtained from the
user when the report is run or can be values previously stored in the Report Server database.

Credentials Supplied by the User
By selecting this choice, the user will be prompted for a user name and password each time they run the
report. The credentials can be used to identify the user as a Windows account holder, or passed directly

177

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:02 PM Page 177

to SQL Server for it to perform its own authentication and authorization. You'll need to instruct your
users whether to provide Windows or SQL credentials, depending on whether your SQL Server is
configured for Integrated Windows or SQL Server security. The Use as Windows credentials checkbox
indicates whether Reporting Services should use the user-provided values as Windows account
credentials or not.

Credentials Stored Securely
You can choose to have the user credentials stored in the Report Server database for use when required
later. The values are stored in encrypted form in the database. Storing credentials in the Report Server is
required for reports that are run on a schedule or are made available through a subscription.

It's possible to configure the security policy for an item so only certain role members can perform certain
actions. This applies to all items in the Report Server database, including data sources. Let's see how you
can control access to the report and data source contained in your folder.

Configuring Users and Permissions
Report Manager is an effective tool for managing access to Report Server content. Although configuring
Reporting Services security is straightforward, it's not to be taken lightly. It's important to understand
the effects of your decisions.

There are a number of topics to cover in this section, so here's a map of where we are going:

❑ After looking at an overview of the Report Manager security policy, you'll read about role-based
security that is the foundation of how roles and tasks are implemented in Report Manager.

❑ You'll look at the Report Manager predefined roles. Each role is made up of a particular
permission set, which defines the role definition. You'll read about how to create your own role
definition.

❑ You'll look at assigning users to roles and how to create your own role assignments.

About Report Manager Security
Security is based on two essential elements:

❑ Identifying who or what is attempting to perform an action

❑ Determining if that user has permission to perform that action on the resource

For example, to view the Report Manager you must first log in to the system where Report Manager is
running, and then you must have the correct permissions to view the Report Manager application. By
default, anyone belonging to the Everyone group can view Report Manager, so the application is
available to a wide group of users. Regardless of this, you still have to log in and be authenticated as
belonging to that group.

Reporting Services uses a role-based security model, which can be implemented and managed through
the Report Manager interface.

178

Chapter 6

68787_ch06.qxp 26/03/2004 6:02 PM Page 178

In Report Manager, security is addressed at two levels:

❑ System-level: This type of security addresses the tasks required to administrate the Report
Server globally

❑ Item-level: This type of security addresses the tasks that can be performed on an individual
item in the Report Server database

If you've worked with configuring users and groups in SQL Server, you're already familiar with adding
users and groups to role definitions. Let's take a closer look at how to use it in Report Manager.

Understanding Role-Based Security
Role-based security is a security model that's based on the identity of the user who's attempting to
access a resource. In a Windows environment, the user is identified by their Windows account. Users can
be identified using other techniques, however. For example, user-provided values can be used to
perform a database lookup from a web or Windows application.

Authentication is determining who is attempting to access a resource; authorization is determining
whether they have permission to perform the requested action on that resource.

Once the users have been identified (authenticated), it needs to be determined if they are authorized to
access the resource. This is done by identifying which roles the users have been placed in (role
membership). For example, administrators have more permissions than users. Ultimately, the security
settings of the resource are checked to see if the user has permission to perform that particular action.

Identifying the user is the foundation of a role-based security model. In Reporting Services, users are
identified by their Windows account. The Reporting Services application itself does not authenticate the
user. To use role-based security in Report Manager, you create task-based roles and then add Windows
users to your defined roles. This is considered to be the best model to use when defining the security
architecture for a complex application. For example, don't add overhead to your application by having it
handle user authentication. Let the user be identified outside your application, using any one of the
many mechanisms available. Once authentication is handled, then authorization becomes your
application's responsibility. Your application is the best judge of what permissions to grant to the user,
and is typically also the best place to manage those permissions.

In Report Manager, the role definition defines the permission set for each user that belongs to it. A user
can belong to multiple roles, and those role permissions can be different for different items. For example,
a user who has update permissions for one resource may have read-only permissions for another
resource.

Role-based security works well in the case of Reporting Services, because it's both flexible and scalable
while still being relatively simple to manage.

Using Report Manager Default Security
Reporting Services installs with a default set of permissions in place. These permissions provide the
initial settings, so you can go in and start defining the implementation of your own security policy.
Called Default security, it's configured so that users who belong to the local Administrator group are
given System Administrator role permissions and Windows users belonging to the Everyone group are
given browser role permissions.

179

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:02 PM Page 179

You'll need to edit the default security settings to support other Windows users and groups depending
on the permissions needed for users to accomplish their tasks. To better understand how security is
configured in Reporting Services, let's take a closer look at what roles are.

Understanding Roles
Once Reporting Services is installed, you'll want to go in and change the default security configuration
to support your specific access requirements. For example, you may want to create new roles, add users
to those roles, or change security settings to modify access to a particular item.

At the beginning of this chapter, you read about the role of a content manager in the context of a
reporting application. The content manager role is responsible for organizing the report folder structure
and overseeing the generation of reports. To perform that role, a content manager has the permissions to
create, update, and delete specific content items. The Content Manager role in Report Manager has been
given the permissions to perform those tasks. A role might be considered a functional job description,
with each role being granted the rights it needs to carry out its particular tasks. In addition to Content
Manager, the Report Manager application contains a number of other predefined roles.

Understanding Tasks
In Report Server, roles are defined by the permissions they have been granted. To make managing
permission sets easier, they've been grouped into subsets called tasks. Combinations of task permissions
define the overall permission set for a role.

A task is an action that can be performed by a user or administrator. In terms of security, tasks are
comprised of the permissions needed to perform that task. The tasks defined in Report Manager cannot
be modified and you cannot create your own.

Tasks are essentially combinations of three elements:

❑ A domain user account or group that defines the user context

❑ The role the user belongs to that defines the allowed tasks

❑ Specific item properties that define whether or not permission is granted

Permissions are defined as rights to perform specific create, read, update, or delete actions on either the
global Report Server system or on an individual item in the Report Server database.

A Report Server item can be one of four things:

❑ Folder

❑ Report

❑ Resource

❑ Data source

Tasks are a combination of permissions granted to perform actions on each of those items. Folders act as
containers for other items. Because of this, everything contained within a folder inherits the permissions

180

Chapter 6

68787_ch06.qxp 26/03/2004 6:02 PM Page 180

of that folder. Remember that an individual item can have its own security properties set differently,
which would then override the settings of the parent folder.

System Tasks and Item Tasks
In Report Manager, a distinction is made between two groups of actions that can be performed: actions
performed on the system and actions performed on items. They are referred to as system-level and item-
level tasks. System-level tasks are actions that apply to the Reporting Services system as a whole, while
item-level tasks are actions that can be performed on items such as folders and reports that are contained
in the Report Server database. The two groups essentially form separate security zones, each containing
different permission sets. Typically, system tasks are performed by administrators and item tasks are
performed by users. Figure 6-20 shows a sample Edit System Role page with the system-level tasks and
their descriptions:

Figure 6-20

Understanding the Predefined Roles
By default, Report Manager contains definitions for six roles that act as the basis for implementing
security policies in Reporting Services. You are free to modify the default role definitions, and you'll see
later how to create your own roles. Continuing with the concept of grouping tasks into system-level and
item-level tasks, Reporting Services has system-level and item-level roles. Different forms are used to
configure each type, which are each accessed from the Site Settings page. Figure 6-21 shows the links as
they appear at the bottom of the Site Settings page:

Figure 6-21

181

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:02 PM Page 181

In each of the following sections, the displayed task permissions were taken from the Edit Role form of
each role. Figure 6-22 shows a complete Edit Role form, displaying the default definition of the Content
Manager item-level role:

Figure 6-22

First let's look at the predefined system-level roles and then the item-level roles.

System Administrator
The system-level System Administrator role is for Report Server users who are responsible for
administrating the application but might not be involved in the process of managing the actual content
in the Report Server database. It's a role used by Report Manager default security, and role members
include Windows accounts that are members of the Administrator group. Figure 6-23 shows the
permissions granted to this role:

Figure 6-23

182

Chapter 6

68787_ch06.qxp 26/03/2004 6:02 PM Page 182

Notice how the System Administrator is not granted the View report server properties or View shared
schedules task permissions. Permission to view Report Server properties is granted in the Manage Report
Server properties task, and permission to view shared schedules is granted in the Manage shared
schedules task. This is an example of how task permissions can overlap and how important it is to
carefully consider modifying existing role permissions.

System User
System User is a system-level role, used for providing minimum access to Report Server functionality. It
is one of the roles used in the Report Server default security configuration, where user accounts
belonging to the Windows Everyone role are added to this role. Figure 6-24 shows the permissions
granted to the System User role:

Figure 6-24

Note that although the System User role has access to Report Server properties and shared schedules,
this role has read-only permissions on both.

Report Manager installs with four predefined item-level roles. Let's look at them in detail.

Content Manager
Just as it sounds, Content Manager is the primary role meant for managers of content held in the Report
Server database; it is an item-level role. Figure 6-25 shows the permissions granted to this role:

Figure 6-25

183

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 183

Publisher
Publisher consists of a subset of the Content Manager permissions, allowing report authors to publish
their reports to the Reporting Services database and manage the resources required by those reports.
This is a good example of segmenting tasks and responsibilities to allow delegation. In this case, tasks
related to publishing reports and uploading resources have been delegated without compromising
access to security settings or user subscriptions. Figure 6-26 shows the permissions granted to this role:

Figure 6-26

My Reports
My Reports is the role for granting permissions to the My Reports folder, and defines the actions the user
is allowed to perform on items within it. Figure 6-27 shows the permissions granted to this role:

Figure 6-27

The Browser Role
The Browser role is the most restrictive of the predefined roles. It's applied when you want to restrict a
user to a minimum level of Report Server functionality such as viewing reports. It's a good idea to
initially add new users to this role and add to their permissions as required, rather than dumping users
into an "anything goes" role. A good security practice is called the principle of least privilege. It states that
users should be granted the least privilege required to accomplish their tasks. Applying this principle is

184

Chapter 6

68787_ch06.qxp 26/03/2004 6:03 PM Page 184

not only helpful in mitigating security threats, but it's also helpful in preventing users from wreaking
unintentional havoc on the system. Figure 6-28 shows the permissions granted to the Browser role:

Figure 6-28

Creating a New Role Definition
Generally, you don't need to create many new roles. Having too many roles defined can quickly become
a management headache, particularly if you start modifying role definitions that are already in use. With
a complex folder and report structure, it can be difficult to tell what effects your changes will have.

To create a new role definition, you'll need to have permission to manage system security policy. An
example of the steps required to create a new role definition are as follows:

1. In Report Manager, click the Site Settings link. It's a global link in the upper-right corner of the
page.

2. Click the Configure item-level role definitions link. Note that you also have the ability to configure
system-level roles.

3. Click the New Role button on the options toolbar. You'll be brought to the New Role form.

4. Give your new role the name, Demo User. It's a good practice to use a name that matches the job
function or title for the group you're creating. The name can include spaces and special
characters, though it can't be more than 256 characters long.

5. Type Role to demonstrate item-level security for the description. The description should make it
easy for administrators who create role assignments to understand what purpose the role is
intended for. Ideally, the description should describe the role responsibilities. Providing a
complete description keeps an administrator from having to open a role definition just to figure
out what task permissions it has.

6. Check the View folders, View reports, and View resources checkboxes. Figure 6-29 shows the
completed New Role form:

185

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 185

Figure 6-29

7. Click OK to save the new role into the Report Server database. You'll see the new role and its
description listed on the Item-Level Roles page.

The Demo User role is now ready for user or group accounts to be added. You can go back in and
modify the task permissions, if needed, but have your changes ironed out before adding users.
Remember that many management headaches have started with modifying a role after users have
already begun using it. If desired, you can also delete the role by clicking the Delete button on the Edit
Role form. The Copy button will open a new Edit Role form with the same task permissions already
selected. This way, you can easily extend an existing role to create a new one.

Creating a new role definition is straightforward, but it's important to be careful and not go overboard.
Note how changing task permissions affects users. When you remove tasks or delete a role entirely, the
change applies to every item in every folder in the Report Server database. Things can get tricky, because
a role can be associated with a single item as well as an upper-level folder and all its children. There isn't
any way to easily view how the web of user roles and permissions affect their access to different reports
and folders, so use care when modifying existing role definitions. Start with an existing definition, and
extend task permissions only as required.

Users are added to roles through role assignments.

Understanding Role Assignments
Ultimately, access to the Report Server content is controlled by role assignments. Role assignments are
created when you add a Windows domain account to a role definition. Remember that Report Server
doesn't perform its own authentication; it relies on Windows to perform that function. Report Manager
is used to map Windows users and groups to Report Manager role definitions. As you've seen, each role
is a unique collection of permissions. When a user attempts to perform an action, Report Server checks

186

Chapter 6

68787_ch06.qxp 26/03/2004 6:03 PM Page 186

the roles that the user is a member of to determine whether to allow the action. Figure 6-30 illustrates
how the Report Server permission stack maps specific domain users or groups to finally determine
access permission on an item:

Figure 6-30

Reporting Services creates its own role assignments when it implements the default security policy upon
installation. Default security allows members of the local Administrators group to perform
administrative actions on the Report Server database, while restricting users in the Everyone group to
viewing items only.

Creating Role Assignments
Creating role assignments is how you bring life to your role definitions. Role assignments are created in
place, meaning that you must be looking at the properties for a specific item before you can make a role
assignment for it. An example of how to create a new role assignment is as follows:

1. Open Report Manager and navigate to your Samples and Demonstrations folder in My Reports.

2. Be sure you're viewing the Contents tab of the Samples and Demonstrations folder. On the
Options toolbar, click the Show Details button. You'll see the contents listed as in Figure 6-31:

Figure 6-31

3. Click the Properties icon for the Company Sales Report. The icon is in the Edit column on the left
side of the page. Click on it to go to the Properties page of the report.

187

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 187

4. In the left navigation area, click the Security link to view the security properties page for the
report as in Figure 6-32:

Figure 6-32

5. On the Options toolbar, click the Edit Item Security button. You'll see a message box display a
security message as seen in Figure 6-33:

Figure 6-33

6. Click OK on the message box. The page view changes and has new buttons on the options
toolbar as shown in Figure 6-34:

Figure 6-34

7. Click the New Role Assignment button to view the New Role Assignment form.

8. In the Group or user name field, type the username you log in with.

9. Locate the Demo User role, and click the checkbox next to it. This will add you as a user to the
Demo User role, and you now have the permissions of that role on the Company Sales Report
item. This role permission set is in addition to the one you are currently using as you perform
this exercise. Note that you can click a role to view its task permissions. Figure 6-35 shows a
completed form:

188

Chapter 6

68787_ch06.qxp 26/03/2004 6:03 PM Page 188

Figure 6-35

10. Click OK to apply the new assignment.

Note that you can easily revert back to the security settings of the parent folder by clicking the Revert to
Parent Security button. That will cause the security settings for the Company Sales Report to be set back
to mirror those of the parent folder. Subfolders inherit the security characteristics of their parent, so the
security settings of the Home folder effectively establish the default settings for the rest of the tree unless
over-ridden by a child in the structure. For example, the My Reports folder has different permission
settings than the Home folder. It's a good practice to grant limited permissions on the Home folder
because of the inheritance of security settings down the folder hierarchy. It's also a good idea to bear in
mind that when modifying the role assignments for a folder, your new settings can affect items much
further down in the folder hierarchy.

You can add multiple users and groups to a role assignment, though you can add a specific named
group or user to a role only once. When accessing an item, the task permissions in allowed roles are
combined for a user. For example, let's say that Mary belongs to the domain Department Managers and
that both Mary and Department Managers' rights have been assigned to a folder, then she'll have the
combined permissions of both Mary and Department Managers for that folder (and its contents).

Role definitions are applied across the system. Modifying them can have unforeseen consequences
unless careful consideration is given to the effects of that change. If a user needs certain permissions on
an item in the Report Server database, it may be better to address the issue at the item level rather than
the role level. Modifying the role definition affects all assignments to that role and in every location that
the role has access.

Creating roles and role assignments aren't an everyday task, but it's important to know what happens
when you do make or modify one. Let's look at a couple of other important security considerations.

System Security and Network Considerations
The best-practices approach to implementing a Reporting Services security policy is to use a small
number of role definitions, assign users to the roles, and make changes to the security policy on an as-

189

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 189

needed special case basis. Remember that Reporting Services security is divided into two zones, system-
level and item-level. Ensure you're addressing both system-level and item-level security zones.

Like item-level role assignments, you can create your own system-level role assignments. Reporting
Services security is set at the system level by configuring user permissions for actions such as creating
shared schedules and setting report security properties. To define system-level role assignments, click
Configure site-wide security on the Site Settings form by accessing the Site Settings link. For more
information on the specific system tasks and permissions available, see the Understanding the Predefined
Role section in this chapter.

Revoking Access to My Reports
Consider the possible ways to prevent users from accessing their My Reports folder. First, you can clear
the Enable My Reports checkbox under Site Settings. That removes the My Reports folder from the Home
folder contents.

Its important to note that although clearing the checkbox removes the My Reports folder from display, it
doesn't actually prevent access to the My Reports folder content. If you know the structure and path to a
folder, you can still navigate to the location directly.

Another way to prevent access to the contents of My Reports is to modify the role definition used for
accessing My Reports. Clearing all the task permissions will effectively lock it down and prevent a user
from accessing its contents. Unfortunately, it also denies access to anyone else in that role (who doesn't
already have permissions granted through other role memberships).

Finally, My Reports can be secured by removing the user's Windows account from My Reports role
membership. This is the most effective way of locking out individual users, without creating potentially
far-reaching side effects.

Intranet and Extranet Considerations
Reporting Services relies on Internet Information Services (IIS) and Windows to perform user
authentication. Remember, users are granted access to Report Manager because their Windows account
or group was added to a role assignment. To provide Report Manager access, users must have a valid
Windows user account or be a member of a Windows group.

Report Manager itself is not meant for use in an extranet or Internet environment, although you can
create a custom application to provide extranet access to reports and/or resources through another
interface. If you build an ASP.NET Web application, for example, you have many options for configuring
security and improving performance. Combinations of IIS and .NET authentication and authorization
mechanisms with response output and user session caching capabilities enable you to make a custom
application that's both secure and reliable. For example, you can create a subscription to deploy a
rendered report out to a location on the file system and use an ASP.NET configuration file for the IIS
virtual directory to require authentication to access it.

You'll want authenticate users against Active Directory and encrypt the communication to ensure
privacy. Because of this, the Report Server machine should be configured as a certificate server,
responding to requests over a Secure Sockets Layer (SSL) connection. Users can be authenticated against
Active Directory using ASP.NET Forms authentication, or by using IIS Basic or Integrated Windows

190

Chapter 6

68787_ch06.qxp 26/03/2004 6:03 PM Page 190

authentication mechanisms. If using Basic authentication, be sure to use an SSL connection. Certificate
configuration may be the source of unexpected issues.

One note from the field refers to a Report Manager instance returning errors indicating problems
accessing the machine.config file, which infact turned out to be a certificate service configuration
issue.

Viewing, Executing, and Scheduling Reports
As you've seen, the first things defining the ability of a user to view a report are the permissions of the
user and the security settings applied to that report. After that, there are a variety of ways that reports
can be run, deployed, and viewed. Let's talk about the different options available and when to use them.

Viewing Reports
As Report Manager is a web-based management tool, the default rendering of reports is in HTML
format so they render in your browser as part of the Report Manager interface. When you view a report
in one of the other available formats, the rendered output is displayed in a new browser window.

The .NET Common Language Runtime (CLR) handles the job of determining whether to send HTML 3.2
or 4.0 to the client depending on the browser making the request. HTML 3.2 displays static HTML
reports without client-side script. Reports with advanced functionality such as search and generation of
multiple report formats are output as HTML 4.0.

Refreshing the current report view is not done by refreshing the browser window. To view the report
using updated data, be sure to click the refresh button on the HTML Viewer toolbar.

Linked Reports
Linked reports are based on already existing reports. Because the base report has already been
configured, a linked report uses those property values for much of the processing. Where linked reports
differ is in the security properties and report parameters used to render the data. Linked reports are a
way to provide filtered views of existing reports. By creating a linked report that uses predefined
parameters, for example, you can control what data renderings can be viewed by your users.

You should know that deleting a report that's being used as the base for other linked reports will break
the link and cause those reports to fail. Unfortunately, there's no way to globally view the connections
related to linked reports. You've got to view the properties of each linked report, to see what report it's
based on.

On-Demand Reports and Subscriptions
Reporting Services has two types of report execution:

❑ On-demand, which execute upon user request

❑ Subscription, which execute unattended

To begin our discussion of these report types, it's important to understand the report execution process.

191

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 191

The Report Execution Process
Running a report means generating a rendered version of the report definition based on values
contained in the Report Server and SQL Server databases. The authored, published report is executed
using retrieved data and staged in an intermediate format for further processing. Figure 6-36 shows the
major steps to rendering a report:

Figure 6-36

How an intermediate report is processed into a generated report depends on the type of rendering
requested. Report execution properties are accessed by navigating to the report, then selecting the
Properties tab for the report selected, and finally clicking the Execution link in the left of the navigation
area. Figure 6-37 shows a sample report Execution property page:

Figure 6-37

192

Chapter 6

68787_ch06.qxp 26/03/2004 6:03 PM Page 192

Providing Report Parameters and Credentials
As a report viewer, you may be allowed or required to provide values for the report to use when it's
generated. Dates and date ranges, categories and credentials are examples of commonly used parameter
values. The report author has designed the report to run using the values you provide. This is used to
display a filtered view of the underlying data. After you've provided the required parameters, clicking
the View Report button will run and display the resulting view.

Earlier, many reporting tools required additional coding and manual passing of values in order to accept
parameters from users at runtime. Reporting Services, however, handles all the underlying tasks
associated with parameter management. For example, consider some of the different parameter
possibilities default values, derived parameters, cascading parameters, linked report parameters, data
source parameters, and so on. Reporting Services provides an elegant solution to what was once a
cumbersome process.

Credentials are special parameters the values of which determine whether the user has the correct
permissions to view the report. Depending on how the report was designed, two users may see entirely
different results when the reports run. Figure 6-38 shows a sample parameter bar for a report:

Figure 6-38

A report can contain default parameters or may run only after the user has provided values. The number
and types of parameters a report takes is part of the report definition. However, you can change what
values are used and whether the report viewer has the option of changing them. Figure 6-39 shows an
example report Parameters property page:

Figure 6-39

A change has been made to the report viewed in Figure 6-39. The OrderDateFrom parameter value has
been set to 1/1/2002, and the users ability to change that value has been revoked. The user will still be
able to specify the OrderDateTo parameter value, but the user prompt will only say Order Date To for
usability. Figure 6-40 shows the resulting change rendered with the report:

193

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 193

Figure 6-40

Entering a new Order Date To value and clicking the View Report button will render the report based on
the new parameter value. Any parameter that has a default value can be hidden from the user. Without a
default value, the user must supply a value and click the View Report button to render the report. If the
Prompt User checkbox is cleared and the parameter has a default value, the user will never see the
parameter. If you do allow the user to enter parameter values, the Prompt String property can be used to
provide information to the user about the type of values required.

On-demand and subscription reports have different requirements when providing parameter and
credential values. Let's take a look at how these two report generation techniques differ.

On-Demand Reports
When an on-demand report is generated, the following steps occur:

1. Data is retrieved from the SQL data store.

2. The data is processed according to the report definition.

3. A temporary copy of the report in intermediate form is generated and added to memory.

4. The intermediate report is rendered based on the requested format and delivered.

The temporary, intermediate copy of the report is session-specific. The individual user is tracked during
the Report Manager session, and if the generated report is requested again, the user will see the cached
version. This behavior is similar to using session state in an ASP.NET application, with one important
point. If the underlying values of the report have changed, the user must click the refresh report icon on
the parameter toolbar. Clicking the Refresh button on the browser will not cause the report to refresh
and retrieve updated values; rather it will cause the browser to merely update its view of the cached
report.

There currently isn't any way to define or restrict the specific report rendering format when a user views
an on-demand report, except in the behavior of your own application interface. You can control the
rendering of reports that are not created on demand, however, as described in the section on Report
Subscriptions later in this chapter.

Caching the Report for Other Users
On-demand reports are executed each time the report is requested. For example, if ten users request the
same report, ten connections will be made, ten sets of data will be retrieved, and the report will be
generated and cached ten times. That's because the report is executed and cached for each unique user.
Rather than separate copies of the intermediate report being generated for each user, you can specify

194

Chapter 6

68787_ch06.qxp 26/03/2004 6:03 PM Page 194

that one cached version of the report be made available to all users. This is a great way to increase
Report Server performance.

Generating a cached version of the intermediate report is set at the item level. For example, you must be
looking at the properties of the Company Sales Report to enable and configure caching. Figure 6-41
shows the section of the Execution properties page where cache settings are made:

Figure 6-41

The first time this report is executed, the intermediate version of the report will be cached and be made
available for another user to view. That user will not cause a data connection to be made, but rather will
cause a rendering of the cached intermediate report to be made. This process saves server resources. The
Report Server Web Service and Report Manager web application are then able to handle more incoming
HTTP requests, while making fewer SQL connections for them.

This ability enables a Report Server instance to scale enough to support even high client loads. For
example, consider an online sports site that tracks player and team statistics. These statistics are updated
periodically, not continually. Because of that, cached versions of the various reports can be stored. When
the processing of a web page requires a report, it's simply served up from the cache. The overhead of
connecting to the data source and processing the data is avoided entirely. Few thought it was the
responsibility of the reporting engine to handle caching intelligently, but here Microsoft has done a great
job of blending technologies and capabilities for the best possible results.

There are two ways you can specify when the cached report expires:

❑ You can set the time after which the report must expire. When the cached copy expires, the
report is executed on the next user request. The new intermediate report is then cached,
expiring when the minutes specified are passed. The default value for this is 30 minutes.

❑ You can set cache expiration by scheduling a new-cached copy to be generated after a specific
time. For example, you can set the Company Sales Report to run every Sunday at midnight. The
generated intermediate report will be placed in the cache, available to users until the next time
the report executes. This process creates what is called a snapshot report. Snapshot reports are
discussed in the next section.

When a report takes query parameters, the cached version of the report will reflect the parameter values
supplied when the report executed. If another user provides different parameter values, the new report
will cause a new cache to be created. This behavior is known as vary by parameter. There can be as many
different cached versions of the report as there are possible parameter combinations.

Reports that use filters have a slightly different behavior. For filtered reports, only one copy of the
intermediate report is cached. Filtering is applied during the rendering of the report based on the
intermediate version in memory.

195

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 195

It's important to know that cached reports require the credentials used to run a report to be stored in the
Report Server database. Reports that prompt users for authentication credentials cannot be cached.

Creating and Editing Schedules
You can automate the generation of cached reports; to do this, you create a schedule item. Like data
sources, there are two types of schedules:

❑ Report-specific

❑ Shared

Unlike data sources, both schedule types are managed using Report Manager. Report-specific and
shared schedules are both configured almost the same way. You need to have permissions to manage
schedules in Report Manager to create a shared schedule. The steps are as follows:

1. Open Report Manager and click the Site Settings link on the global toolbar. In the bottom-left
corner of the Site Settings page, click the Manage shared schedules link. This will open the
Shared Schedules page, which lists the currently defined shared schedules.

2. Click the New Schedule button on the options toolbar as shown in Figure 6-42. This will bring
you to the Reporting Services Scheduling form.

Figure 6-42

3. In the Schedule Name field, enter a name for the schedule. Unlike other new item forms,
schedules don't have a description field. Because of this, it's helpful to write a descriptive name
for the schedule. For this example, type Sample Short-term Hourly Schedule.

4. In the Schedule details section, you can set the schedule to run on an hourly, daily, weekly,
monthly or one time basis. Click the various options, to see how the schedule pane changes and
allows you to supply different values depending on the schedule type. Select the Hour option.

5. The Hourly Schedule pane lets you specify how frequently the schedule runs and when the
schedule begins. Set the schedule to run every 30 minutes and leave the default start time of
2:00 AM. Figure 6-43 shows a completed Schedule details section:

Figure 6-43

196

Chapter 6

68787_ch06.qxp 26/03/2004 6:03 PM Page 196

6. At the bottom of the form, set the start date of the schedule to today. This is an optional
schedule setting. Click the calendar icon to the right of the textbox to display a calendar of the
current month and select the date as in Figure 6-44:

Figure 6-44

7. Check the checkbox to stop the schedule on a specific date and choose tomorrow for the stop
date. Like the start date, the stop date is an optional property setting for schedules.

8. Click OK to apply the new schedule. You'll be taken back to the Shared Schedules page where
the new schedule is listed. Note that it's easy to Pause, Resume, or Delete a schedule by selecting
the checkbox for a schedule and then choosing the action on the options toolbar.

The Sample Short-term Hourly Schedule is now available for users to choose for scheduling a report or
subscription.

Schedules are items that are stored in the Report Server database. Shared schedules differ from report-
specific schedules as they are available for use by any report or subscription that needs to run on that
same schedule. They are implemented as SQL Server Agent jobs, which has a very practical implication.
For example, consider a company where different reports are generated on weekly or monthly schedules
as required.

Using a shared schedule configured for a particular time/day/date frequency, all reports cycling on a
similar schedule can be pointed to the same schedule. Then, if the schedule changes for some reason
such as scheduled closings or delayed shipments, all the reports can be rescheduled at one location.
Even better, both generated and subscription reports can share a schedule.

Working with shared schedules requires system-level permissions, and is done from the Site Settings
page in the Report Manager. Report-specific schedules are items that can be created in-place by users
who have the permissions. Creation and editing is done from the property pages for an individual
report or subscription.

Shared schedules are created once and then referred to when setting the execution properties for a report
or subscription. Because shared schedules are managed from a central location and enable reuse, they
are usually preferred over report-specific schedules. For example, a report-specific schedule would be
used when the existing shared schedules don't have the right interval settings to suit the report
execution requirements.

197

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 197

Snapshot Reports
Snapshot reports are cached reports that are executed based on a schedule rather than on a user request.
To schedule a report snapshot, the steps are as follows:

1. Open Report Manager, and navigate to the Samples and Demonstrations folder. If you're not
already viewing the folder contents in the details view, click the Show Details button.

2. Click the properties icon in the Edit column for the Company Sales Report item. You'll be taken to
the General properties page.

3. Click the Execution link in the local navigation area on the left. and choose the Render this report
from an execution snapshot option.

4. Click the Use the following schedule checkbox. In this area, you can configure a report-specific
schedule or choose an existing shared schedule.

5. Choose the Shared schedule option, and select the Sample Short-term Hourly Schedule shared
schedule item in the drop-down combo box. Notice how the schedule execution properties for
the schedule are displayed.

6. Leave the checkbox to allow creation of a snapshot when the user clicks the Apply button,
manually forcing a snapshot to be generated.

7. Leave the default report execution timeout to Use default setting. The default value is set in the
Site Settings form, and applies to all reports unless over-ridden by an individual report. Figure
6-45 shows the completed property settings:

Figure 6-45

8. Click the Apply button to apply your updated execution settings.

198

Chapter 6

68787_ch06.qxp 26/03/2004 6:03 PM Page 198

Snapshot reports are cached intermediate reports. Cached reports execute when the user makes a
request, but snapshot reports execute automatically based on a schedule. Like cached reports, snapshot
reports are rendered from the intermediate report. Unlike cached reports, snapshots aren't required to
expire after a period of time. Instead, snapshots expire and are removed when a new one is generated.
Although there can only be one current snapshot, you can archive them in the report history for later
viewing. Snapshots are accessed using the View tab of the report; a report history is accessed using the
History tab.

The Company Sales Report will now be executed hourly, creating a new intermediate report snapshot
each time. The snapshot will be served up from cache and rendered for each user request, until the new
snapshot is created. To verify that the report ran, go to the Contents tab of the Samples and
Demonstrations folder. The Last Run value will be displayed there.

You can specify that snapshots be archived, rather than replaced. To do that, you create report history.

Creating a Report History
Configuring report caching and snapshots is done using the Execution properties page, accessed from the
Properties tab. Creating a report history is done in place, using the History tab of a report as shown in the
following steps:

1. Open Report Manager and navigate to the Samples and Demonstrations folder. Display the
contents in details view.

2. Click the properties icon for the Company Sales Report item to view the report Properties tab.

3. Go to the History property page.

4. By default, the Allow history to be created manually checkbox is selected. Leave the default setting.

5. Click the Use the following schedule to add snapshots to report history checkbox to select it. That
will enable the option buttons below it as shown in Figure 6-46:

Figure 6-46

199

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 199

6. Click the option to use a Shared schedule and select the Sample Short-term Hourly Schedule in the
drop-down combo box.

7. Note that you can define your own setting for the number of copies to be kept in History. For
now, go ahead and use the default setting.

8. Click Apply to save your changes.

9. Go to the History tab and click the New Snapshot button on the options toolbar. That will force
the first snapshot to be generated and added to the report history.

If you don't see the snapshot available, try refreshing your browser. To view a snapshot, click the link
that indicates the date and time of the report run. To verify that a snapshot ran, check the When Run
value. Report executions that raise an error will not create a snapshot and so will not be archived.

Snapshots created for a report history are subject to the same credential limitations as other snapshots.
The report execution runs automatically, so the credentials used to create the intermediate report must
be stored in the Report Server database. Because snapshots are historical perspectives, users can't be
prompted for credentials or have their Windows account used for authorization.

Snapshots in history are items separate from the report definition. For example, changes made to the
report definition or its data sources don't affect the previous snapshots kept in the report history.

However, changes made to the property value specifying the number of snapshots to be kept in report
history do affect the existing snapshots. For example, if you reduce the property value setting the
number of copies to be kept in a report history, any report copies older than the new property value will
be deleted from the database. If current users need access to those earlier snapshots, there's a problem.
Be careful when changing History property values.

Report Subscriptions
The report rendering mechanisms you've read about so far all share one requirement for the user, to
initiate the action of viewing the rendered report. Subscriptions are a way to allow the automated
delivery of rendered reports. The following steps demonstrate creating a report subscription. Create a
folder on your C drive called RSTemp (this example builds on the previous examples in this chapter):

1. Open Report Manager and navigate to the Samples and Demonstrations folder.

2. Click the Company Sales Report item and view the report Subscriptions tab.

3. Click the New Subscription button on the options toolbar. This should bring you to the
Subscription: Company Sales Report page.

4. For the Delivered by: field, select Report Server File Share. Report Manager will display the page
with the appropriate properties for your selection.

5. Leave the File Name field as the default value Company Sales Report.

6. Enter a valid UNC path to the RSTemp folder you created. For this example, type the path as
follows (replacing serverName with your server name):

\\serverName\C$\RSTemp

200

Chapter 6

68787_ch06.qxp 26/03/2004 6:03 PM Page 200

7. Select XML file with report data as the Render Format.

8. Leave the User Credentials checkbox checked, and enter your login user ID and password.

9. Leave the default Overwrite an existing file with a newer version option selected.

10. In the Subscription Processing Options section, choose to run the subscription On a shared
schedule.

11. Choose the Sample Short-term Hourly Schedule in the shared schedule combo box.

The execution properties for the schedule will be displayed below the combo box. Figure 6-47 shows a
completed subscription form:

Figure 6-47

12. Click OK to create the new subscription. You'll be taken to the Subscriptions tab for the Company
Sales Report where the subscription will be listed.

When the scheduled event is raised, Reporting Services will process the schedule and deliver the report
using the specified channel. Out of the box, SQL Server Reporting Services provides support for file
share and email delivery. You just saw the use of file share delivery in this example. When the half hour
schedule event is raised, the report in the XML version will be written to the file system. This delivery of
a single report to a single location, for example, a file path or email address, is considered a standard
subscription.

201

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 201

Standard Subscriptions
Typically, subscriptions are user defined. To create a subscription, you need permission to Manage
individual subscriptions as well as permission to view the report itself. You can choose to have the
delivered report rendered in any of the available options. Email delivery provides you the option of
receiving a link to the report rather than having the entire rendered report sent as an email.

Subscriptions are not considered as items, so you cannot use the Report Manager search function to find
an existing subscription. There are two other ways to access a subscription. The first is by viewing the
Subscriptions tab for a report. The second is by using the link to My Subscriptions, which is located on the
global toolbar. My Subscriptions provides a central location to manage all your subscriptions without
having to navigate to each report item with access to the subscription and the report parent folder.
There, you can also verify the Status and Last Run values for the subscription. To delete an existing
subscription, select it using the checkbox and click the Delete button on the options toolbar. Figure 6-48
shows the subscription you created listed on the My Subscriptions page:

Figure 6-48

Like snapshot reports, the user credentials for the subscription report must be stored in the Report
Server database (or take no credentials at all). There is no way for the user to be prompted for
credentials; the report must be able to run unattended. This also applies to whatever parameters might
be needed by the report. These parameters must be contained in the report definition or should be
supplied by the user when creating the subscription.

It's possible to change the parameters used to execute the report. When that happens, the report is
considered changed, and the subscription will not run until it is saved. Re-open your subscription and
save it, enabling the report to run again.

System Administrator role members have the ability to edit and delete individual subscriptions. They
also can create subscriptions that are delivered to multiple users at once. These are called data-driven
subscriptions.

Data-Driven Subscriptions
Data-driven subscriptions give you the ability to broadcast a report to many users in a variety of
rendering formats. The delivery values and report parameters are dynamic and are read during the
report execution process. Consider, for example, a utility company that as part of its business process its
invoices are generated indicating utility consumption and charges. Using Reporting Services, the invoice
could also include representations of comparative usage, and so on. Data-driven subscriptions then

202

Chapter 6

68787_ch06.qxp 26/03/2004 6:03 PM Page 202

enable the distribution through direct email to the customer in an example of one to one custom mass
mailing. The same process could be used to make the information available through email or secured
web page. Creating data-driven subscriptions is a seven-step process and requires the Enterprise Edition
of SQL Reporting Services.

Summary
Report Manager is a robust tool, and this chapter has covered a lot of ground to address it. From
navigating the interface to managing content and configuring security, there's a lot to consider. Using
Report Manager as a report viewing application is intuitive and flexible. However, administering
security, permissions, and report execution can be more of a challenge.

It's important to understand the implications that your choices can have. For example, remember to
exercise care when extending the default security model. Reporting Services, including the Report
Manager interface, demonstrate a number of sophisticated and elegant design practices.

Even if you choose to develop your own Report Server interface, much can be learned from Microsoft's
Report Manager. The next chapter, in fact, shows how to build your own Reporting Services interface.

203

Managing Reports Using Report Manager

68787_ch06.qxp 26/03/2004 6:03 PM Page 203

68787_ch06.qxp 26/03/2004 6:03 PM Page 204

Managing Reports Using
Program Code

A friend of mine, who happens to be a very funny person, coined the following: "There is very little
that cannot be accomplished if you have a positive mental attitude, tons of money, and supernatural
powers". Steve's philosophy is so appropriate for much of what happens in software development.
Fortunately, with Reporting Services bringing enterprise reporting to any application, it only takes
the first of Steve's ingredients but the other two are always nice to have.

We discussed the use of the Report Manager web application for managing reports in Chapter 6.
In this chapter you will learn how the exposed interfaces of Reporting Services can be used to
develop custom applications to manage reports. All the tools that can be used in the Report
Manager application are available for use through the Reporting Services Web Service. In fact the
web application is just a pretty wrapper around the web service. In this chapter we will not be
demonstrate all the features of the web service but will give you an understanding of what can be
done and the methods necessary to create your own user interface to the service. So get ready to
get your hands dirty with some code.

Professional SQL Reporting Services Manager
In order to program the web service, you'll be creating a Windows Forms application called
Professional SQL Reporting Services Manager, PSRSM for short. The application will have the
familiar look and feel of Windows Explorer, but instead of looking at the file system or resources
on the computer, you will be looking at the objects stored in the Reporting Services database. We
will develop the application with the assumption that you have installed Reporting Services on
your local machine. The application will work properly when pointed to any machine on your
network that has Reporting Services installed, but the example will be easier to create if the service
is installed on your development machine.

Start Visual Studio .NET and create a New Project. You are going to create a Windows application
in both C# and VB.NET. Name the new project PSRS_Manager and give it an appropriate location.

777

68787_ch07.qxp 26/03/2004 6:24 PM Page 205

Chapter 7

206

The location is not important, but as you can see in Figure 7-1, the application is created in
C:\Professional SQL Reporting Services:

Figure 7-1

By default Visual Studio will create a form called Form1 that will be the startup object of the application.
Right click anywhere in the form Design Window and select Properties. Change the Name property to
MainForm. It will also be necessary to right click on the Form1.cs file in the Solution Explorer window
and rename it to MainForm.cs.

When creating a new Windows application, Visual Studio inserts a method named Main into the code
behind Form1 that will be the starting point for the application. Since you have renamed the form, the
method will try and start the wrong object. Right click anywhere on the design window and select View
Code. Scroll to the bottom of the code window until you find the Main method. Change the following
line of code in the method so that it looks like:

C#
/// <summary>
/// the main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{

Application.Run (new MainForm());
}

If you are creating a VB.NET application as you follow along, the above step and the namespace step are
both taken care of when you set the properties of the application.

While you are looking at the code window you should change the namespace for your application.
Declaring your own namespace is a useful way of collecting all of your code into a single area. When
you created your project, Visual Studio placed your new form into PSRS_Manager and change the
namespace code line to the following:

namespace Wrox.Professional.ReportingServices

The final bit of housekeeping that you need to take care of in order to have the application build
properly is to set the default namespace and the startup object. Click the Project menu and choose
PSRS_Manager Properties menu item. This will bring up the dialog box shown in Figure 7-2. In the

68787_ch07.qxp 26/03/2004 6:24 PM Page 206

General section of the Common Properties folder, change the Default Namespace property to
Wrox.Professional.ReportingServices. Below the default namespace open the combo box for the startup
object and choose Wrox.Professional.ReportingServices.MainFrom:

Figure 7-2

Click OK to save the settings and close the Property Pages dialog box.

Building the Visual Interface
A blank form is only a canvas on which to paint or build your application. To make your application do
something worthwhile you need to place controls from the toolbox on the form. Using the following
table as a reference, add the necessary controls to MainForm:

Control
Type

Control Name Text Anchor

TreeView treeViewFolders Top, Bottom, Left

ListView listViewReports Top, Botton, Left,
Right

MainMenu mainMenu1

Label labelServerAddress Server Address: Top, Left

TextBox textBoxServerPath http://localhost/ReportServer Top, Left, Right

Button buttonGo Go Top, Right

Button buttonClose Close Bottom, Right

207

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 207

We are working under the assumption that Reporting Services is installed on the local development
machine. If you are running Reporting Services on a remote machine you may want to replace localhost
in the text of the TextBox with the name of your server or a placeholder such as <ServerName> to
remind you that you need to specify the server.

With all the controls you need on the form you now need to do some fine-tuning of the ListView and the
MainMenu controls. Right click on the ListView control and select Properties. For the View property select
Details from the drop-down list of choices. You need four columns in the ListView to display information
about items in a folder. Click the Columns property in the property window and click the button with
three dots to the right of (Collection), as shown in Figure 7-3:

Figure 7-3

Figure 7-4

Using the ColumnHeader Collection Editor (shown in Figure 7-4), add four columns and set their
properties as shown in the following table:

Name Text TextAlign Width

columnHeader1 Name Left 210

columnHeader2 Type Left 66

columnHeader3 Size Left 66

columnHeader4 Date Modified Left 135

208

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 208

The final task required to make your form work is to add menu items to the MainMenu control you
assigned to the form. The menu editor in Visual Studio .NET is intuitive and easy to use; just type where
you are prompted to add menu items as shown in Figure 7-5:

Figure 7-5

The name of a menu item can be changed from the properties window. Using the Menu Editor and the
properties window build the menu structure as outlined in the following table:

Menu Item Name Text Parent

menuItemFile File

menuItemEdit Edit

menuItemHelp Help

menuItemFileNew New menuItemFile

menuItemFileNewFolder Folder menuItemFileNew

menuItemFileNewDataSource Data Source menuItemFileNew

menuItemFileImport Import Report menuItemFile

menuItemFileExit Exit menuItemFile

menuItemEditDelete Delete menuItemEdit

menuItemSecurity Security

menuItemSecurityRoles Roles menuItemSecurity

menuItemSecuritySystemRoles System Roles menuItemSecurity

menuItemSecurityAssignments Role Assignments menuItemSecurity

menuItemSecuritySystemAssignments System Role Assignments menuItemSecurity

menuItemHelpAbout About menuItemHelp

209

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 209

This completes the look and basic construction of the main form of your application. Your MainForm
should look similar to Figure 7-6:

Figure 7-6

Adding a Reference to the Web Service
Although the form looks correct, it is only a lifeless shell of what it needs to be. So like Gene Wilder in
Young Doctor Frankenstein it is time to "…give my creation LIFE!"

In the Solution Explorer, right click on the Web Reference folder and select Add Web Reference from the
menu and click the hyperlink Web services on the local machine as in Figure 7-7:

Figure 7-7

To use Reporting Services from a remote machine, you will need to enter the URL of the service in the
URL textbox. The URL should be of the form http://machineName/ReportServer/ReportService.asmx.

210

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 210

From the list of web services on the machine, select ReportService as shown in Figure 7-8:

Figure 7-8

Change the web reference name to ReportingWebService and click the Add Reference button. The Web
References folder should now look like Figure 7-9:

Figure 7-9

The process of adding the web reference to the project has created a proxy class in the project that is
named Reference.cs. You can view the contents of this file by opening the Solution Explorer, clicking
the Show All Files button as shown in Figure 7-10, and fully expanding the ReportingWebService. The
proxy class does not contain the actual methods of the web service; it only has a template of the methods
and the URL where the real methods can be found. When you use the web reference in design and
during compilation you will be using the proxy class to assist with proper method syntax and
parameters. The proxy class will then pass the information to the service at runtime.

Figure 7-10

211

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 211

Consuming the Web Service
Actually using the web service is where you begin to write some code for your application. First, add
some namespaces and change the namespace for the form. Namespaces are the first lines of code in any
class file. Namespace declarations appear above the line that declares the class.

C#
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Web.Services.Protocols;
using Wrox.Professional.ReportingServices.ReportingWebService;

VB.NET
Imports System.Web.Services.Protocols
Imports Wrox.Professional.ReportingServices.ReportingWebService

Go back to the form Design View of MainForm and double click on the Go button. This will add an event
handler for the click event of the button and take you to the code window with the new event handler in
the window.

C#
private void buttonGo_Click(object sender, System.EventArgs e)
{

ConnectToServer();
}

VB.NET
Private Sub buttonGo_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles buttonGo.Click
ConnectToServer()

End Sub

The ConnectToServer method will be where you perform the connection to the web service. A call to
this method could have been placed immediately after the call to InitializeComponent in the
constructor of MainForm but there are a couple of reasons for not doing that:

❑ Reporting Services is a .NET assembly. If the web service has not been called for a while, it takes
time to load the assembly and run it through the JIT compiler. This will make your application
slow to load. If you delay the connection until the form has loaded, your application will
appear to be more responsive and you can show an hourglass to let the user know that
something is happening while he waits for the service to respond.

❑ By waiting to connect until you explicitly call the connection method, you can put the name of
any computer running the web service into your server address textbox and connect to the
service on that computer upon clicking GO.

212

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 212

Create a private variable to hold a reference to the web service. You will use this private variable to call
the methods of the service and to pass the connected web service to dialog forms for creating or editing
items in the database.

C#
/// <summary>
/// Required designer variable.
/// </summary>
private System.ComponentModel.Container components = null;
// User defined private variables
private ReportingService rs;

VB.NET
Public Class MainForm

Inherits System.Windows.Forms.Form
' User defined private variables
Private rs As ReportingService

Next add the ConnectToServer method to perform the actual connection. The meat of the work is done
by setting your private variable to a new ReportingService object and setting the URL of the service
to the URL you have entered in the server address text box.

C#
private void ConnectToServer()
{

string serverPath = textBoxServerPath.Text + "/ReportService.asmx";
try
{

Cursor.Current = Cursors.WaitCursor;
// Connect to Report Server
rs = new ReportingService();
// A production application would perform a complete check of
//the url path
rs.Url = serverPath;

}
catch (Exception ex)
{

RSUtilities.ErrorHandler(ex);
}
finally
{

Cursor.Current = Cursors.Default;
}

}

VB.NET
Private Sub ConnectToServer()

Dim serverPath As String = textBoxServerPath.Text + "/ReportService.asmx"
Try

Cursor.Current = Cursors.WaitCursor
' Connect to Report Server

213

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 213

rs = New ReportingService()
' A production application would perform a complete check of
' the url path
rs.Url = serverPath

Catch ex As Exception
RSUtilities.ErrorHandler(ex)

Finally
Cursor.Current = Cursors.Default

End Try
End Sub

Error handling is always a vital function of an application. As you are building a demonstration
application and learning some new technology, a simple error handler for your application can help you
debug problems as they occur. The web service you are consuming will throw SOAP exceptions if you
try and call its methods improperly, so you should look specifically for a SoapException in your error
handler.

Add a new class to the project and name it RSUtilities. You need to create a class with some static
methods that you can call throughout the application to perform some common tasks associated with
creating and modifying objects in the Reporting Services database.

Add the System.IO and Wrox.Professional.ReportingServices.ReportingWebService
namespaces to the class file. As the class will be comprised of static methods, you won’t actually need an
instance of the class to use the methods; you will only need to reference its name. If you are writing your
code in C#, you should delete the default constructor for the class. The default constructor is the section
with the grey background in the following code:

public class RSUtilities
{
public RSUtilities()
{
//
// TODO: Add constructor logic here
//

}
}

Enter the following procedure to the RSUtilities class:

C#
private static void ErrorHandler(Exception ex)
{
string exceptionText;
// Find out if the exception is a SOAP exception and make
// use of the SOAP exception Detail property.
if (ex is SoapException)
{

exceptionText = ((SoapException)ex).Detail["Message"].InnerXml;
}
else
{

exceptionText = ex.Message;

214

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 214

}
MessageBox.Show("An exception has occurred: " + exceptionText,

"Application Error");
}

VB.NET
Private Shared Sub ErrorHandler(ByVal ex As Exception)

Dim exceptionText As String
' Find out if the exception is a SOAP exception and make
' use of the SOAP exception Detail property.
If TypeOf ex Is SoapException Then

exceptionText = (CType(ex, SoapException)).Message
Else

exceptionText = ex.Message
End If
MessageBox.Show("An exception has occurred: " + exceptionText,

"Application Error")
End Sub

Filling the Treeview
You can show the virtual folders in the Reporting Services database using TreeView similar to the way
file system folders are shown in Windows Explorer. To accomplish this, open the code for MainForm and
enter the following procedure.

C#
private void GetServerFolders()
{

this.treeViewFolders.Nodes.Clear();

CatalogItem[] items = null;
try
{

items = rs.ListChildren("/", true);
}
catch (SoapException ex)
{

RSUtilities.ErrorHandler(ex);
}
TreeNode rootNode = new TreeNode("Report Server Folders");
rootNode.Tag = "/";
this.treeViewFolders.Nodes.Add(rootNode);
foreach (CatalogItem item in items)
{

if (item.Type == ReportingWebService.ItemTypeEnum.Folder)
{
TreeNode newNode = new TreeNode(item.Name);
newNode.Tag = item.Path.ToString() + "/";
string parentPath =

item.Path.ToString().Replace(item.Name.ToString(), "");

215

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 215

AddNodeToTree(parentPath, newNode, rootNode);
}

}
}

VB.NET
Private Sub GetServerFolders()

Me.treeViewFolders.Nodes.Clear()

Dim items() As CatalogItem = Nothing
Try

items = rs.ListChildren("/", True)
Catch ex As SoapException

RSUtilities.ErrorHandler(ex)
End Try
Dim rootNode As TreeNode = New TreeNode("Report Server Folders")
rootNode.Tag = "/"
Me.treeViewFolders.Nodes.Add(rootNode)
Dim item As CatalogItem
For Each item In items

If item.Type = ReportingWebService.ItemTypeEnum.Folder Then
Dim NewNode As TreeNode = New TreeNode(item.Name)
NewNode.Tag = item.Path.ToString() + "/"
Dim parentPath As String =

item.Path.ToString().Replace(item.Name.ToString(), "")
AddNodeToTree(parentPath, NewNode, rootNode)

End If
Next

End Sub

Objects that can be contained in folders in a Reporting Services database are defined as objects of type
CatalogItem. A CatalogItem can be a folder, report, resource (such as a graphic image), linked report,
or a data source. Every CatalogItem has a number of standard properties:

❑ CreatedBy

❑ CreationDate

❑ ModifiedBy

❑ ModifiedData

❑ Name

❑ Path

❑ Size

These properties can be returned directly from the item. For a complete list of the properties of a
CatalogItem and their purposes, refer to the Reporting Services Books Online.

The GetServerFolders procedure will clear all the nodes from the TreeView and call the web method
ListChildren that gets an array of all the CatalogItems that are in the Reporting Services database.
Then call the ListChildren method with rs.ListChildren (/, true). The first argument is a string

216

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 216

indicating the path of the folder you want as the source for your list. You can use the root folder, which
always has a value of /. The boolean argument indicates if you want the list to be recursive, meaning
you want to see not only the children of an item, but also any grand children, great grand children and
so on. To show all the folders in the database pass true for this argument.

The array of CatalogItems is, in essence, a read-only list of the items that the current user has
permission to see in the database. New objects of type CatalogItem cannot be added directly to
Reporting Services. To add items to the database it is necessary to create an object of the type you wish to
add and then call the add method specific to that object type. Adding objects will be covered when we
discuss adding folders and data sources.

With an array of every item that is in the database you then need to loop through the array one item at a
time to find which items are folders and then add them to the tree.

The actual addition of a node to the TreeView is done with the AddNodeToTree procedure shown below.
The TreeView control in the .NET Framework has a very rigid hierarchy. The TreeView itself only holds
the nodes that are at the root level. All the other nodes are contained by their parent node. The result of
this structure is that you need to use a recursive routine to traverse all the nodes and find where any
given new node should be added. You are storing the path of where a node belongs in the tree into the
Tag property for each node. The routine can then examine the contents of the Tag property of any node
to see if it matches the destination path of the node to be added. When a match is found, the new node is
added to the collection of child nodes of the tree node, which is being examined.

C#
private void AddNodeToTree(string parentPath, TreeNode childNode, TreeNode
searchNode)
{

if (parentPath == searchNode.Tag.ToString())
{

searchNode.Nodes.Add(childNode);
}
else
{

TreeNodeCollection treeNodes = searchNode.Nodes;
foreach(TreeNode node in treeNodes)
{

if (node.Tag.ToString() == parentPath.ToString())
{

node.Nodes.Add(childNode);
}
else
{

if (node.Nodes.Count > 0)
{

AddNodeToTree(parentPath, childNode, node);
}

}
}

}
return;

}

217

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 217

VB.NET
Private Sub AddNodeToTree(ByVal parentPath As String, ByVal childNode As TreeNode,

ByVal searchNode As TreeNode)
If parentPath = searchNode.Tag.ToString() Then

searchNode.Nodes.Add(childNode)
Else

Dim treeNodes As TreeNodeCollection = searchNode.Nodes
Dim node As TreeNode
For Each node In treeNodes

If node.Tag.ToString() = parentPath.ToString() Then
node.Nodes.Add(childNode)

Else
If node.Nodes.Count > 0 Then

AddNodeToTree(parentPath, childNode, node)
End If

End If
Next

End If
Return

End Sub

Make a change to the ConnectToServer procedure you created earlier so that after you connect to the
server the TreeView will automatically be filled.

C#
private void ConnectToServer()
{

string serverPath = textBoxServerPath.Text + "/ReportService.asmx";
try
{

Cursor.Current = Cursors.WaitCursor;
// Connect to Report Server
rs = new ReportingService();
// A production application would perform a complete check of
//the url path
rs.Url = serverPath;
GetServerFolders();

}
catch (Exception ex)
{

RSUtilities.ErrorHandler(ex);
}
finally
{

Cursor.Current = Cursors.Default;
}

}

VB.NET
Private Sub ConnectToServer()

Dim serverPath As String = textBoxServerPath.Text + /ReportService.asmx"
Try

218

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 218

Cursor.Current = Cursors.WaitCursor
' Connect to Report Server
rs = New ReportingService
' A production application would perform a complete check of
'the url path
rs.Url = serverPath
GetServerFolders()

Catch ex As Exception
RSUtilities.ErrorHandler(ex)

Finally
Cursor.Current = Cursors.Default

End Try
End Sub

After saving the project, start the project to see what happens. After the project starts, click the Go button
to fill the TreeView. Figure 7-11 shows the result of trying to call the web service without the proper
credentials:

Figure 7-11

Credentials
This actually was not a mistake. When you created the ConnectToServer procedure you ignored an
important item and this error gives us an opportunity to discuss it. By default when Reporting Services
is installed the virtual web folder is created with Anonymous access disabled and authentication is set to
Integrated Windows authentication. Why would this be? Remember from the previous chapter that you can
set security on any object in the server. If Anonymous access was enabled you would have everyone
trying to access the service identified as IUSER_<computerName> and granting or denying an individual
user access would be problematic. Using integrated security permits the service to capture the identity
of a user from the browser header information.

So to use the web service properly you need to tell the service who you are. The .NET Framework
provides a whole set of classes to handle identity and credential issues.

Add the following namespace to the header of the MainForm code file:

C#
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

219

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 219

using System.Net;
using System.Web.Services.Protocols;
using Wrox.Professional.ReportingServices.ReportingWebService;

VB.NET
Imports System.Net
Imports System.Web.Services.Protocols
Imports Wrox.Professional.ReportingServices.ReportingWebService

Then change the ConnectToServer procedure as shown in the following code:

C#
private void ConnectToServer()
{

string serverPath = textBoxServerPath.Text + "/ReportService.asmx";
try
{

Cursor.Current = Cursors.WaitCursor;
// Connect to Report Server
rs = new ReportingService();
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
// A production application would perform a complete check of
//the url path
rs.Url = serverPath;
GetServerFolders();

}
catch (Exception ex)
{

RSUtilities.ErrorHandler(ex);
}
finally
{

Cursor.Current = Cursors.Default;
}

}

VB.NET
Private Sub ConnectToServer()

Dim serverPath As String = textBoxServerPath.Text +"/ReportService.asmx"
Try

Cursor.Current = Cursors.WaitCursor
' Connect to Report Server
rs = New ReportingService
rs.Credentials = System.Net.CredentialCache.DefaultCredentials
' A production application would perform a complete check of
'the url path
rs.Url = serverPath
GetServerFolders()

Catch ex As Exception
RSUtilities.ErrorHandler(ex)

Finally
Cursor.Current = Cursors.Default

End Try
End Sub

220

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 220

The effect of this new line of code is to take the credentials of the current user and pass them to the web
service. You could also do some error trapping around this new line of code to see if the default
credentials have access to the service. If the default credential fails, you could create a form to prompt
the user for valid credentials. Of course it is also possible to not supply any credentials as done before,
but you should provide a method to demand credentials from the user before the service can be used.
For more information on .NET authentication and authorization refer to the .NET Framework and Visual
Studio documentation on the System.Net namespace.

After adding your credentials to the to the ConnectToServer procedure you should be able to run the
application and see any folders that have been added to the service.

Displaying the Folder Contents
This would also be a good time to add some code to display the child items of a folder in the ListView
control.

Add the following procedure to the code file of MainForm:

C#
private void DisplayFolderContents(string path)
{

if (path != "/")
{

path = path.Substring(0, path.Length -1);
}
CatalogItem[] catalogItems = null;
Cursor.Current = Cursors.WaitCursor;
listViewReports.Items.Clear();
catalogItems = rs.ListChildren(path, false);
try
{

// Main part of method
if (catalogItems != null)
{

foreach (CatalogItem item in catalogItems)
{

// Create a ListView item containing a CatalogItem
ListViewItem newItem = new ListViewItem(item.Name);
newItem.Tag = item.Path.ToString();
newItem.SubItems.Add(item.Type.ToString());
newItem.SubItems.Add(item.Size.ToString());
newItem.SubItems.Add(item.ModifiedDate.ToShortDateString()

+ " " + item.ModifiedDate.ToShortTimeString());
listViewReports.Items.Add(newItem);

}
}

}
catch (Exception ex)
{

RSUtilities.ErrorHandler(ex);

221

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 221

}
finally
{

Cursor.Current = Cursors.Default;
}

}

VB.NET
Private Sub DisplayFolderContents(ByVal path As String)

If path <> "/" Then
path = path.Substring(0, path.Length - 1)

End If
Dim catalogItems() As CatalogItem = Nothing
Cursor.Current = Cursors.WaitCursor
listViewReports.Items.Clear()
catalogItems = rs.ListChildren(path, False)
Try

' Main part of method
If Not catalogItems Is Nothing Then

Dim item As CatalogItem
For Each item In catalogItems

' Create a ListView item containing a CatalogItem
Dim NewItem As ListViewItem = New ListViewItem(item.Name)
NewItem.Tag = item.Path.ToString()
NewItem.SubItems.Add(item.Type.ToString())
NewItem.SubItems.Add(item.Size.ToString())
NewItem.SubItems.Add(item.ModifiedDate.ToShortDateString() + " " +

item.ModifiedDate.ToShortTimeString())
listViewReports.Items.Add(NewItem)

Next
End If

Catch ex As Exception
RSUtilities.ErrorHandler(ex)

Finally
Cursor.Current = Cursors.Default

End Try
End Sub

The key to display the contents of a folder is the call to the web method ListChildren. Make this call
with the code rs.ListChildren(path, false). The path argument is the path of the folder that you
want to work with. For the boolean argument pass the value of false. When you filled the TreeView you
wanted the method to give you a list of all child generations in the database. For the ListView you only
need to see the direct children of the folder you have selected. The code also examines some of the
properties of each CatalogItem (Name, Type, Size, and ModifiedDate) and uses the property values
to fill the ListView information.

To call this procedure you need to create an event handler for the TreeView control. Open the Design View
of MainForm and double click on the TreeView control. This will open the code for the form and give you
an empty event handler for the treeViewFolders_AferSelect event.

Insert the following code into the event handler:

222

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 222

C#
private void treeViewFolders_AfterSelect(object sender,

System.Windows.Forms.TreeViewEventArgs e)
{

TreeNode node = treeViewFolders.SelectedNode;
string path = node.Tag.ToString();
DisplayFolderContents(path);

}

VB.NET
Private Sub treeViewFolders_AfterSelect(ByVal sender As System.Object,

ByVal e As System.Windows.Forms.TreeViewEventArgs)
Handles treeViewFolders.AfterSelect

Dim node As TreeNode = treeViewFolders.SelectedNode
Dim path As String = node.Tag.ToString()
DisplayFolderContents(path)

End Sub

The first line you added grabs a reference to the currently selected node in the tree. From this node you
get the Reporting Services path from where it has been stored in the tag property. Finally call the
DispalyFolderContents procedure you created above to show the contents of the selected folder. Run
the application and click on the Go button to fill the TreeView. When the TreeView shows the folder
structure select any folder and the ListView will display the contents of the folder as in Figure 7-12:

Figure 7-12

Adding/Updating Folders
While this looks good, it will currently only show you what already exists in the Reporting Services
database. To really make this application useful for managing Reporting Services, you need to be able to
add, edit, or delete objects in the database. With this in mind let's make changes to the application to
make it more powerful.

Add the following code to the RSUtilities class:

223

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 223

C#
public enum EditModeEnum
{

add,
edit

}

public static Property CreateProperty(string Name, string Value)
{

Property property = new Property();
property.Name = Name;
property.Value = Value;
return property;

}

public static Property[] CreatePropertyArray(int MemberCount)
{

Property[] properties = new Property[MemberCount];
return properties;

}
public static void SetProperty(string Name, string Value, Property[] properties)
{

foreach (Property property in Properties)
{

if (property.Name == Name)
{

property.Value = Value;
return;

}
}
return;

}

VB.NET
Public Enum EditModeEnum

add
edit

End Enum

Public Shared Function CreateProperty(ByVal Name As String,
ByVal Value As String) As ReportingWebService.Property

Dim prop As ReportingWebService.Property = New ReportingWebService.Property
prop.Name = Name
prop.Value = Value
Return prop

End Function

Public Shared Function CreatePropertyArray(ByVal MemberCount As Integer)
As ReportingWebService.Property()

Dim properties(MemberCount - 1) As ReportingWebService.Property
Return properties

End Function

Public Shared Sub SetProperty(ByVal Name As String, ByVal Value As String,

224

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 224

ByVal properties() As ReportingWebService.Property)
Dim prop As ReportingWebService.Property
For Each prop In properties

If prop.Name = Name Then
prop.Value = Value

Return
End If

Next
Return

End Sub

You can use the EditModeEnum enumeration to set the mode for forms. This way you should be able to
use the same form to add a new folder or update the information in an existing folder.

Reporting Services uses a properties collection to hold and manage information about objects in the
database. While a CatalogItem has a description property, it cannot be set directly. To set the
description property of an object, you must do the following:

1. Create a properties array.

2. Set the description property in the array.

3. Assign the properties array back to the item you want to work with.

You will need to do a lot of work with the properties array of an item. The three methods you will be
using to manage item properties are as follows:

❑ SetProperty

❑ CreateProperty

❑ CreatePropertyArray

Folder Form
Add a new form to the application and name it FolderForm. Add two label controls, two textbox
controls, and two button controls to the form and arrange the controls as in Figure 7-13:

Figure 7-13

Name the textboxes textBoxName and textBoxDesctiption. Name the buttons buttonOK and
buttonCancel. Be sure to set the multiline property of textBoxDescription to true.

225

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 225

To pass information to the FolderForm, you are going to create some public properties of the form. To
hold the property information you need to declare some private variables.

Open the code file for the form and add the following code above the default constructor of the form:

C#
// Private form variables
private string folderPath = "";
private string folderName = "";
private ReportingService rsWebService = null;
private RSUtilities.EditModeEnum mode;

VB.NET
Imports Wrox.Professional.ReportingServices.ReportingWebService

Public Class FolderForm
Inherits System.Windows.Forms.Form
' Private form variables
Private mFolderPath As String = ""
Private mFolderName As String = ""
Private mRsWebService As ReportingService
Private mMode As RSUtilities.EditModeEnum

These private variables will be used by the property routines to hold the state of each property. Now add
the following property procedures to the class below the constructor and the Dispose procedure.

C#
public ReportingService RsWebService
{

set
{

rsWebService = value;
}

}

public string FolderPath
{

get
{

return folderPath;
}
set
{

string path = value.Substring(0, value.Length - 1);
if (path == String.Empty)
{

path = "/";
}
folderPath = path;

}
}

226

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 226

public string FolderName
{

get
{

return this.textBoxName.Text;
}
set
{

folderName = value;
this.textBoxName.Text = folderName;
this.textBoxName.Tag = folderName;

}
}
public RSUtilities.EditModeEnum Mode
{

get
{

return mode;
}
set
{

mode = value;
string label = "";
switch (value)
{

case RSUtilities.EditModeEnum.add:
label = "Add";
break;

case RSUtilities.EditModeEnum.edit:
label = "Update";
break;

}
this.buttonOK.Text = label;

}
}

VB.NET
Public WriteOnly Property RsWebService() As ReportingService

Set(ByVal Value As ReportingService)
mRsWebService = Value
End Set

End Property

Public Property FolderPath() As String
Get

Return mFolderPath
End Get
Set(ByVal Value As String)

Dim path As String = Value.Substring(0, Value.Length - 1)
If path = String.Empty Then

path = "/"
End If

227

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 227

mFolderPath = path
End Set

End Property

Public Property FolderName() As String
Get

Return Me.textBoxName.Text
End Get
Set(ByVal Value As String)

mFolderName = Value
Me.textBoxName.Text = mFolderName
Me.textBoxName.Tag = mFolderName

End Set
End Property
Public Property Mode() As RSUtilities.EditModeEnum

Get
Return mMode

End Get
Set(ByVal Value As RSUtilities.EditModeEnum)

mMode = value
Dim label As String = ""
Select Case value

Case RSUtilities.EditModeEnum.add
label = "Add"
Exit Property

Case RSUtilities.EditModeEnum.edit
label = "Update"
Exit Property

End Select
Me.buttonOK.Text = label

End Set
End Property

The OK button will look at the mode of the form to determine if the information the form contains
relates to a new folder or to a folder that already exists in the Reporting Services database.

C#
private void buttonOK_Click(object sender, System.EventArgs e)
{

if (this.textBoxName.Text == String.Empty ||
this.FolderPath == String.Empty)

{
throw new ArgumentException("Invalid input parameter");

}
else if (this.rsWebService == null)
{

throw new Exception("Web Service reference not set");
}
else
{

if (this.mode == RSUtilities.EditModeEnum.add)
{

AddFolder();

228

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 228

}
else
{

UpdateFolder();
}
this.Close();

}
}

VB.NET
Private Sub buttonOK_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles buttonOK.Click
If (Me.textBoxName.Text = String.Empty Or Me.FolderPath = String.Empty) Then

Throw New ArgumentException("Invalid input parameter")
ElseIf mRsWebService Is Nothing Then

Throw New Exception("Web Service reference not set")
Else

If Me.Mode = RSUtilities.EditModeEnum.add Then
AddFolder()

Else
UpdateFolder()

End If
Me.Close()

End If
End Sub

C#
private void AddFolder()
{

try
{

//Create Property array for description
Property[] rsProperties = RSUtilities.CreatePropertyArray(1);
rsProperties[0] = RSUtilities.CreateProperty("Description",

this.textBoxDescription.Text);

//Call RS CreateFolder() base method
rsWebService.CreateFolder(this.textBoxName.Text,

this.FolderPath, rsProperties);
}
catch (Exception)
{

throw new ApplicationException("Add operation failed");
}
return;

}

VB.NET
Private Sub AddFolder()

Try
'Create Property array for description
Dim rsProperties() As ReportingWebService.Property =

229

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 229

RSUtilities.CreatePropertyArray(1)
rsProperties(0) = RSUtilities.CreateProperty("Description",

Me.textBoxDescription.Text)

'Call RS CreateFolder() base method
mRsWebService.CreateFolder(Me.textBoxName.Text, Me.FolderPath,

rsProperties)
Catch

Throw New ApplicationException("Add operation failed")
End Try
Return

End Sub

The AddFolder method calls the web service CreateFolder method. CreateFolder takes the name of
the folder, its path and properties as arguments. Since you need to set the description property of the
folder you have to use the property methods of RSUtilities first to create an array of properties and
then to add a Description property to the array.

C#
private void UpdateFolder()
{

Property[] properties = RSUtilities.CreatePropertyArray(1);
properties[0] = RSUtilities.CreateProperty("Description",
this.textBoxDescription.Text);
try
{

string oldPath = folderPath + "/" +
this.textBoxName.Tag.ToString();

string newPath = folderPath + "/" +
this.FolderName;

// Rename Item and Create new Properties based on old properties
// Create batch header
BatchHeader batchHeader = new BatchHeader();
// Set EditItem batch id and top BatchHeaderValue
batchHeader.BatchID = rsWebService.CreateBatch();
rsWebService.BatchHeaderValue = batchHeader;
// update the folder info inside a transaction
rsWebService.MoveItem(oldPath, newPath);
rsWebService.SetProperties(newPath, properties);

// Rollback transaction if either method fails
rsWebService.ExecuteBatch();
rsWebService.BatchHeaderValue = null;

}
catch (Exception)
{

throw new ApplicationException("Update operation failed");
}

}

VB.NET
Private Sub UpdateFolder()

Dim properties() As ReportingWebService.Property =

230

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 230

RSUtilities.CreatePropertyArray(1)
properties(0) = RSUtilities.CreateProperty("Description",

Me.textBoxDescription.Text)
Try

Dim oldPath As String = Me.FolderPath + "/" +
Me.textBoxName.Tag.ToString()

Dim newPath As String = Me.FolderPath + "/" + Me.FolderName
' Rename Item and Create new Properties based on old properties
' Create batch header
Dim batchHeader As batchHeader = New batchHeader
' Set EditItem batch id and top BatchHeaderValue
batchHeader.BatchID = mRsWebService.CreateBatch()
mRsWebService.BatchHeaderValue = batchHeader
' update the folder info inside a transaction
mRsWebService.MoveItem(oldPath, newPath)
mRsWebService.SetProperties(newPath, properties)
' Rollback transaction if either method fails
mRsWebService.ExecuteBatch()
mRsWebService.BatchHeaderValue = Nothing

Catch
Throw New ApplicationException("Update operation failed")

End Try
End Sub

The UpdateFolder method introduces the Reporting Services concept of a batch and transaction. Let's
take a step back for a moment to discuss transactions.

Imagine that you are going to lunch at your favorite restaurant and you need cash. There is an ATM on
the way to the restaurant at which you stop to get some money from your checking account. You enter
your PIN and indicate that you want to withdraw $100 from your checking account. Hitting the enter
button begins a series of individual tasks (verifying that you have money in your account, debiting your
account for the amount being withdrawn, crediting the ATM machine that amount and dispensing your
cash) which are treated as a single transaction. Immediately after you hit the enter button a truck coming
down the street loses control and crashes into the ATM machine. You saw the truck coming out of the
corner of your eye and were able to jump out of the way, but the ATM was not so lucky. The ATM has
been ripped from its base and now appears to be dead. What happened to your money? This is the time
you are really grateful that your bank uses the concept of a transaction when handling electronic funds.
If any part of the transaction fails to complete (in this case the ATM dispensing money to you) each
element of the transaction cancelled or rolled back.

Reporting Services information is stored in a database. Good practice dictates that all updates or
deletions to data in a database should be wrapped in a transaction to make sure that no data is lost in the
event that something interrupts the process. Reporting Services uses a Batch object to contain all of the
changes to be made to the database. Remember that you are not directly manipulating the information
in the database, but asking some remote object to make these changes for you. Transmitting the
transaction information to the web service in the batch object gives the service all the information it
needs so that the change can all be wrapped in a SQL Server transaction.

The folder form is almost complete. You'll be using this form to add new folders to Reporting Services as
well as update existing folders. You already created a property of the form that you named Mode to
indicate if the form is new or an existing item that you are editing. To complete the form you need to get

231

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 231

all the information you know about the folder and load it into the controls of the form. You are going to
load the form as a modal dialog box, which will not relinquish focus until the form is closed. This allows
you to use the activated event, which fires when the form is first visible on the screen, to see if the form
is in the edit mode. If the form is in the edit mode you can get information about the folder from
Reporting Services and load it into the form.

Open the Windows Form Designer generated code region of FolderForm and find the section labeled //
FolderForm and add the following line of code after the last line in the section.

C#
this.Activated += new EventHandler(FolderForm_Activated);

Adding an event handler in VB.NET is much easier and more intuitive than in C#. From the code
window for FolderForm just below the title bar select FolderForm Events in the left hand combo box. In
the right hand combo box select the event you want to trap. Figure 7-14 is an example of how the event
handler is created for the FolderForm.Activated event:

Figure 7-14

This will declare the event handler for the form Activated event. You also need to add the event handler
using the following code:

C#
private void FolderForm_Activated(object sender, EventArgs e)
{

// look to see in the form has been placed in the edit mode
if (this.Mode == RSUtilities.EditModeEnum.edit)
{

string path = this.folderPath + "/" + this.folderName;
Property[] properties = rsWebService.GetProperties(path, null);
foreach (Property property in properties)
{

if (property.Name == "Description")
{

if (property.Value != null)
this.textBoxDescription.Text = property.Value.ToString();

}
}

}
}

VB.NET
Private Sub FolderForm_Activated(ByVal sender As Object,

ByVal e As System.EventArgs)
Handles MyBase.Activated

232

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 232

' look to see in the form has been placed in the edit mode
If mMode = RSUtilities.EditModeEnum.edit Then

Dim path As String = Me.FolderPath + "/" + Me.FolderName
Dim properties() As ReportingWebService.Property =

mRsWebService.GetProperties(path, Nothing)
Dim prop As ReportingWebService.Property
For Each prop In properties

If prop.Name = "Description" Then
If Not prop.Value Is Nothing Then

Me.textBoxDescription.Text = prop.Value.ToString()
End If

End If
Next

End If
End Sub

The event handler is pretty straightforward. First it looks to see if the form has been placed in the edit
mode; if not, the entire routine is skipped. If the edit mode has been set, you then get the path of the
parent folder, append the separator and the name of the folder to it, and call the GetProperties
method of the web service to retrieve the properties of the folder. This form is pretty simple and you are
only setting the Description property of the folder, so you loop through all the properties until you
find this property and then place its value of the Description property into the description text box.

Now you have a fully functional folder form but no way to call it. Open the Design View of MainForm
and click on the File menu to expand its members. Click on the New menu item and double click on the
Folder menu item. This declares a menuItemFileNewFolder event and creates a procedure named
menuItemFileNewFolder_Click to handle this event. Add the following code to the new event
handler:

C#
private void menuItemFileNewFolder_Click(object sender, System.EventArgs e)
{

FolderForm dialogForm = new FolderForm();
string path = this.treeViewFolders.SelectedNode.Tag.ToString();
dialogForm.FolderPath = path;
dialogForm.RsWebService = rs;
dialogForm.ShowDialog(this);
// folder has been added show it in the tree
string folderName = dialogForm.FolderName;
TreeNode newFolder = new TreeNode(folderName);
newFolder.Tag = path + folderName + "/";
TreeNode parentFolder = this.treeViewFolders.SelectedNode;
parentFolder.Nodes.Add(newFolder);

// refresh the tree to show the new folder
this.treeViewFolders.Refresh();
// refresh the listview
DisplayFolderContents(path);

// dispose of the local form variable
dialogForm.Dispose();

}

233

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 233

VB.NET
Private Sub menuItemFileNewFolder_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles menuItemFileNewFolder.Click
Dim dialogForm As FolderForm = New FolderForm
Dim path As String = Me.treeViewFolders.SelectedNode.Tag.ToString()
dialogForm.FolderPath = path
dialogForm.RsWebService = rs
dialogForm.ShowDialog(Me)
' folder has been added show it in the tree
Dim folderName As String = dialogForm.FolderName
Dim NewFolder As TreeNode = New TreeNode(folderName)
NewFolder.Tag = path + folderName + "/"
Dim parentFolder As TreeNode = Me.treeViewFolders.SelectedNode
parentFolder.Nodes.Add(NewFolder)

' refresh the tree to show the new folder
Me.treeViewFolders.Refresh()
' refresh the listview
DisplayFolderContents(path)

' dispose of the local form variable
dialogForm.Dispose()

End Sub

The menuItemFileNewFolder_Click event handler perfoms the following actions:

1. Declare dialogForm as a new instance of the FolderForm class

2. Get the path of the selected TreeView node from its Tag property

3. Assign the path to the FolderPath property of the dialogForm

4. Assign the local instance of the web service to the RsWebService property of dialogForm

5. Open dialogForm as a modal dialog box

After the dialog box has closed, the data from the form will be used to create a new TreeView node,
which represents this new folder. Finally the TreeView and ListView will both be refreshed.

You also need a way to initiate an edit session of existing item in a folder. In Windows Explorer you expect
to double click on an item to open it, so let's implement similar functionality into our application. In
order to do this you need to open the code region labeled Windows Form Designer generated code. After
expanding this code region, go to the area labeled listViewReports and add an event handler for the
double click event as shown:

C#
//
// listViewReports
//
this.listViewReports.Anchor =
((System.Windows.Forms.AnchorStyles)((((System.Windows.Forms.AnchorStyles.Top
System.Windows.Forms.AnchorStyles.Bottom)
System.Windows.Forms.AnchorStyles.Left)

234

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 234

System.Windows.Forms.AnchorStyles.Right)));
this.listViewReports.Columns.AddRange(new System.Windows.Forms.ColumnHeader[] {

this.columnHeader1,
this.columnHeader2,
this.columnHeader3,
this.columnHeader4});

this.listViewReports.Location = new System.Drawing.Point(288, 40);
this.listViewReports.Name = "listViewReports";
this.listViewReports.Size = new System.Drawing.Size(480, 288);
this.listViewReports.TabIndex = 1;
this.listViewReports.View = System.Windows.Forms.View.Details;
this.listViewReports.DoubleClick += new EventHandler(listViewReports_DoubleClick

) ;
//
// columnHeader1

Again adding this event handler in VB.NET is much easier and more intuitive than in C#. In the
MainForm code window select listViewReports in the left combo box and double click in the right combo
box.

You now need to create the event handler for the double click event. As this event handler will handle
the double click event for any items in the ListView, you need to examine what type of item you have
selected and then deal with each possible item type. Add the following code to the MainForm:

C#
private void listViewReports_DoubleClick(object sender, EventArgs e)
{

string path = this.treeViewFolders.SelectedNode.Tag.ToString();
ListViewItem item = this.listViewReports.SelectedItems[0];
string itemType = item.SubItems[1].Text.ToString();
switch (itemType)
{

case "Folder":
OpenFolder(path, item.Text);
break;

case "DataSource":
OpenDataSource(path, item.Text);
break;

case "Report":
OpenReport(path, item.Text);
break;

}
return;

}

VB.NET
Private Sub listViewReports_DoubleClick(ByVal sender As Object,

ByVal e As System.EventArgs) Handles
listViewReports.DoubleClick

Dim path As String = Me.treeViewFolders.SelectedNode.Tag.ToString()
Dim item As ListViewItem = Me.listViewReports.SelectedItems(0)
Dim itemType As String = item.SubItems(1).Text.ToString()

235

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 235

Select Case itemType
Case "Folder"

OpenFolder(path, item.Text)
Exit Sub

Case "DataSource"
OpenDataSource(path, item.Text)
Exit Sub

Case "Report"
OpenReport(path, item.Text)
Exit Sub

End Select
Return

End Sub

Now you will create the methods to handle each of the item types. The OpenFolder method will be the
only one with code for the moment. Creating the stubs to handle reports and data sources will now
allow the application to run and you can fill in the details of these methods, as required.

C#
private void OpenFolder(string Path, string FolderName)
{

FolderForm frm = new FolderForm();
// set the form properties to set the folder that we
// will be working with.
frm.FolderPath = Path;
frm.FolderName = FolderName;
frm.RsWebService = this.rs;
// set the edit mode of the form
frm.Mode = RSUtilities.EditModeEnum.edit;
// show the form that now has now had all properties set.
frm.ShowDialog(this);
// refresh the contents of the list view after the dialog closes.
DisplayFolderContents(
this.treeViewFolders.SelectedNode.Tag.ToString());

}

private void OpenDataSource(string Path, string DataSourceName)
{

return;
}

private void OpenReport(string Path, string ReportName)
{

return;
}

VB.NET
Private Sub OpenFolder(ByVal Path As String, ByVal FolderName As String)

Dim frm As FolderForm = New FolderForm
' set the form properties to set the folder that we
' will be working with.
frm.FolderPath = Path

236

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 236

frm.FolderName = FolderName
frm.RsWebService = Me.rs
' set the edit mode of the form
frm.Mode = RSUtilities.EditModeEnum.edit
' show the form that now has now had all properties set.
frm.ShowDialog(Me)
' refresh the contents of the list view after the dialog closes.
DisplayFolderContents(Me.treeViewFolders.SelectedNode.Tag.ToString())

End Sub

Private Sub OpenDataSource(ByVal Path As String, ByVal DataSourceName As String)
Return

End Sub

Private Sub OpenReport(ByVal Path As String, ByVal ReportName As String)
Return

End Sub

You are finally ready to try out your code to add a new folder. Run the application and click the Go
button to fill the TreeView with the folders in Reporting Services. Expand the tree and click on the
Professional SQL Reporting Services folder. From the File menu select New Folder. Enter your information
for the folder you are creating and click the Add button as shown in Figure 7-15:

Figure 7-15

The main form should now show your new folder in the ListView and the TreeView will have a + sign in
front of Professional SQL Reporting Services indicating that there is a child folder below it. You could also
launch the Report Manager web application and see the new folder from that tool. Be sure to double
click on the newly created folder to open it in the edit mode and modify either its name or description to
verify that the edit procedures work, as in Figure 7-16:

Figure 7-16

237

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 237

Deleting an Item from a Folder
Before moving on to items other than folders you should investigate how folders as well as other items
can be deleted from Reporting Services. Open MainForm in the Design View, expand the Edit menu, and
double click on Delete menu item. This will create an event handler for the click event of this menu item.
Into the newly created menuItemEditDelete_Click method, add the following code:

C#
private void menuItemEditDelete_Click(object sender, System.EventArgs e)
{

DeleteServerItems();
}

VB.NET
Private Sub menuItemEditDelete_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles menuItemEditDelete.Click

DeleteServerItems()
End Sub

Now add the method to perform the actual deletion of the item:

C#
private void DeleteServerItems()
{

if (this.listViewReports.SelectedItems.Count > 0)
{

bool wasFolder = false;
string message =

"Are you certain you want to delete the selected item(s)?";
DialogResult result = MessageBox.Show(

this, message, "PSRS_Manager",
MessageBoxButtons.YesNo, MessageBoxIcon.Question);

if (result == DialogResult.Yes)
{

Cursor.Current = Cursors.WaitCursor;
string path = this.treeViewFolders.SelectedNode.Tag.ToString();
try
{

// Set up a reporting services batch to handle the
//deletes as a transaction
BatchHeader batchHeader = new BatchHeader();
batchHeader.BatchID = this.rs.CreateBatch();
this.rs.BatchHeaderValue = batchHeader;
// Call the delete items
foreach (ListViewItem item in

this.listViewReports.SelectedItems)
{

if (item.SubItems[1].Text == "Folder")
{

wasFolder = true;
}

238

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 238

string itemName = path + item.Text;
this.rs.DeleteItem(itemName);

}
// all the items have been marked for deletion.
// Execute the batch.
this.rs.ExecuteBatch();
this.rs.BatchHeaderValue = null;

}
catch (Exception exp)
{

RSUtilities.ErrorHandler(exp);
}
finally
{

Cursor.Current = Cursors.Default;
}
if (wasFolder)
{

this.GetServerFolders();
this.listViewReports.Items.Clear();

}
else
{

// refill the list view with the current list of
// items
DisplayFolderContents(

this.treeViewFolders.SelectedNode.Tag.ToString());
}

}
}
else
{

MessageBox.Show("Select an item in the list view to delete.");
return;

}
}

VB.NET
Private Sub DeleteServerItems()

If Me.listViewReports.SelectedItems.Count > 0 Then
Dim wasFolder As Boolean = False
Dim message As String
Dim result As DialogResult
message = "Are you certain you want to delete the selected item(s)?"
result = MessageBox.Show(Me, message, "PSRS_Manager", _

MessageBoxButtons.YesNo, MessageBoxIcon.Question)
If result = DialogResult.Yes Then

Cursor.Current = Cursors.WaitCursor
Dim path As String = Me.treeViewFolders.SelectedNode.Tag.ToString()
Try

' Set up a reporting services batch to handle the
' deletes as a transaction
Dim batchHeader As BatchHeader = New BatchHeader

239

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 239

batchHeader.BatchID = Me.rs.CreateBatch()
Me.rs.BatchHeaderValue = batchHeader
' Call the delete items
Dim item As ListViewItem
For Each item In Me.listViewReports.SelectedItems

If item.SubItems(1).Text = "Folder" Then
wasFolder = True

End If
Dim itemName As String = path + item.Text
Me.rs.DeleteItem(itemName)

Next
' all the items have been marked for deletion.
' Execute the batch.
Me.rs.ExecuteBatch()
Me.rs.BatchHeaderValue = Nothing

Catch exp As Exception
RSUtilities.ErrorHandler(exp)

Finally
Cursor.Current = Cursors.Default

End Try
If wasFolder Then

Me.GetServerFolders()
Me.listViewReports.Items.Clear()

Else
' refill the list view with the current list of
' items
DisplayFolderContents(_

Me.treeViewFolders.SelectedNode.Tag.ToString())
End If

End If
Else

MessageBox.Show("Select an item in the list view to delete.")
Return

End If
End Sub

You will remember the discussion of transactions from when you were working on adding folders to
Reporting Services. Here we again use a Batch to make sure that all the items you have marked for
deletion are indeed removed from the database. After removing the item from the database, check to see
if the item you removed was a folder; if so refresh the TreeView as well as the ListView.

Importing Report Definition Files
From the chapters about designing reports you will remember that a report file is a specially formatted
XML document, which contains the complete definition for a report. The report definition is stored in
the database in binary format. In order to save the data, a binary definition is read from a file stream into
an array of Bytes. You will begin this section by adding a new namespace reference to the MainForm
code file.

C#
using System.IO;

240

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 240

VB.NET
Imports System.IO

Open MainForm Design View and add an OpenFileDialog control from the toolbox. Change the name of
the dialog control to open ReportDialog. While still in the design mode, open the File menu and double
click on the Import Report menu item. Add the following code to the new event handler that you have
just created for the click event of the menu item.

C#
private void menuItemFileImport_Click(object sender, System.EventArgs e)
{

Stream fileStream;
System.Byte[] reportDefinition;
string[] filePath = null;
// gather the path to put the report in from the selected node
// in the treeview
string path = this.treeViewFolders.SelectedNode.Tag.ToString();
// be sure to remove the trailing seperator
if (path.Length > 1)
{

path = path.Substring(0, path.Length -1);
}
openReportDialog = new OpenFileDialog();
if (openReportDialog.ShowDialog() == DialogResult.OK)
{

// get the name of the file and its extension from the dialog box
string delimiterString = @"\";
char [] delimiter = delimiterString.ToCharArray();
filePath = openReportDialog.FileName.Split(delimiter);
// get the name of the report from the path
string reportName = filePath[filePath.Length - 1];
string reportExt = reportName.Substring(reportName.Length - 3, 3);
reportName = reportName.Substring(0, reportName.Length - 4);
// make sure that the stream is not null.
// also make sure that the file extension is rdl indicating that
// the file is a report definition.
if ((fileStream = openReportDialog.OpenFile())!= null &&

reportExt == "rdl")
{

//Now read the file stream to get the report definition
try
{

Cursor.Current = Cursors.WaitCursor;
reportDefinition = new Byte[fileStream.Length];
// read the report definition from the file stream.
fileStream.Read(reportDefinition, 0,

(int) fileStream.Length);
fileStream.Close();
// the necessary information has been gathered.
// Create the report
this.rs.CreateReport(reportName, path, false,

reportDefinition, null);
}

241

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 241

catch (Exception)
{

MessageBox.Show(
"This report is associated with a shared data source. " + "/" +
"Please import the shared data source, " + "/" +
"before importing this report.",
"Exception");

Cursor.Current = Cursors.Default;
}
finally
{

DisplayFolderContents(
this.treeViewFolders.SelectedNode.Tag.ToString());
Cursor.Current = Cursors.Default;
string message = "Report " + reportName +

" imported sucessfully";
MessageBox.Show(message);

}
}
else
{

MessageBox.Show("Not a report format or report file is empty");
}

}

VB.NET
Private Sub menuItemFileImport_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles menuItemFileImport.Click
Dim fileStream As Stream
Dim reportDefinition() As System.Byte
Dim filePath() As String = Nothing
' gather the path to put the report in from the selected node
' in the treeview
Dim path As String = Me.treeViewFolders.SelectedNode.Tag.ToString()
' be sure to remove the trailing seperator
If path.Length > 1 Then

path = path.Substring(0, path.Length - 1)
End If
If openReportDialog.ShowDialog() = DialogResult.OK Then

' get the name of the file and its extension from the dialog box
Dim delimiterString As String = "\"
Dim delimiter() As Char = delimiterString.ToCharArray()
filePath = openReportDialog.FileName.Split(delimiter)
' get the name of the report from the path
Dim reportName As String = filePath(filePath.Length - 1)
Dim reportExt As String = reportName.Substring(reportName.Length - 3, 3)
reportName = reportName.Substring(0, reportName.Length - 4)
' make sure that the stream is not null.
' also make sure that the file extension is rdl indicating that
' the file is a report definition.
fileStream = openReportDialog.OpenFile()
If (Not (fileStream Is Nothing) And reportExt = "rdl") Then

'Now read the file stream to get the report definition

242

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 242

Try
Cursor.Current = Cursors.WaitCursor
ReDim reportDefinition(fileStream.Length)
' read the report definition from the file stream.
fileStream.Read(reportDefinition, 0, fileStream.Length)
fileStream.Close()
' the necessary information has been gathered.
' Create the report
Me.rs.CreateReport(reportName, path, False,

reportDefinition, Nothing)
Catch

MessageBox.Show(_
"This report is associated with a shared data source. " + "/" +
"Please import the shared data source, " + "/" + _
"before importing this report.", _
"Exception")

Cursor.Current = Cursors.Default
Finally

DisplayFolderContents(_
Me.treeViewFolders.SelectedNode.Tag.ToString())

Cursor.Current = Cursors.Default
Dim message As String = "Report " + reportName + _

" imported sucessfully"
MessageBox.Show(message)

End Try
Else

MessageBox.Show("Not a report format or report file is empty")
End If

End If
End Sub

The purpose of reading the definition into the database is to locate the file to be imported with the
OpenFileDialog. Before trying to read the file make sure that a file was actually selected and that its
extension is .rdl. Once you are certain that the file does exist and is the correct type, declare the Byte
array to the length of the stream and read the stream into the array. Finally, call the web method
CreateReport and pass the following:

❑ Name of the report

❑ Path of the parent folder

❑ Boolean value that indicates if an existing report should be overwritten

❑ Definition in a Byte array

❑ Properties array for the report (since you have not set the Properties array this is set to null
or nothing)

The most common error that you might encounter in saving the report is the condition where a report is
using a shared data source that is not already in the database. If saving the report creates an exception, it
is assumed that the shared data source is missing and the user must be prompted to import it.

243

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 243

Managing Security
The next topic that you will learn about for the PSRS_Manager application is security. Reporting Services
has a rich security model where permissions can be assigned to folders and individual objects contained
in folders. The object model used for the securing Reporting Services items is different from those used
by other Windows security models, so a bit of explanation is in order.

Tasks
At the lowest level of the model is the task. A task represents a particular job or action that can be done
with Reporting Services, such as viewing a folder or creating a report. The list of tasks is fixed and
cannot be modified. There are two distinct types of tasks:

❑ System tasks: This task applies to the Reporting Services as a whole.

❑ User tasks: This set applies to folders and their contents on a server.

Roles
A level up from the task is the role. Each role has an array of tasks, with at least one element, assigned to
them. Roles can be created and deleted. There are pre-defined system roles that have been assigned
system tasks. Users are strongly discouraged from deleting any of the system roles and those created
during the installation process. User roles are assigned user tasks and can be created and deleted as
needed. A role cannot be assigned both system and user tasks. The roles included in a Reporting Services
installation include:

❑ Browser

❑ Content Manager

❑ Publisher

Policies
The highest level in the security model is the policy. In other security models this would usually be
referred to as a user and indeed a security policy is given to a user or a group. A policy has an array of
roles, with at least one element, assigned to it. A single policy cannot have both system and user security
roles. The user/group account to which a security policy is applied can be either a local computer
account or a domain account.

Building the Security Forms
To illustrate how the security model in Reporting Services works you will be adding four forms to your
application. Although the model has been presented to you in a bottom up fashion, you will be building
the application starting at the top level so you can test it as you go along. Let's get started by looking at
how to program Reporting Service policies.

Policy Form
Add a new form to your application and name it PoliciesForm and add the following controls:

244

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 244

Set the View property of the list view control to Details. Using the ColumnHeader Collection Editor
add two columns and set their properties as shown in the following table:

Arrange the controls on the form so that it looks similar to Figure 7-17:

Figure 7-17

The forms you create to manage security use public properties. These are similar to those used by the
FolderForm to pass the path of the folder and a reference to the connected web service.

The code bundle for Chapter 7 will contain the complete code for these properties.

It is always a good practice to reuse code rather than duplicate code. You will use the same form to
manage policies for system and user security. To do this it will be necessary to create a property to
indicate if you are intending to work on system or user security.

When you create the forms for managing roles and tasks you will be using similar properties to indicate
whether you want to work on user or system security objects.

Name Text TextAlign Width

columnHeader1 User/Group Name Left 130

columnHeader2 Roles Left 200

Control Type Control Name Text

ListView listViewPolicies

Button buttonAdd Add

Button buttonEdit Edit

Button buttonDelete Delete

Button buttonOk OK

245

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 245

Open the code window for PoliciesForm (as shown in the Figure 7-17) and add the following private
variable to the class.

C#
//Private form variables
private string itemPath = "";
private string itemName = "";
private ReportingService rsWebService = null;
private RSUtilities.EditModeEnum mode;
private bool systemPolicies = false;

VB.NET
'Private form variables
Private mItemPath As String = ""
Private mItemName As String = ""
Private mRSWebService As ReportingService = Nothing
Private mMode As RSUtilities.EditModeEnum
Private mSystemPolicies As Boolean = False

Add a public property to indicate if the form is to work on system security or object security.

C#
public bool SystemPolicies
{

get
{
return systemPolicies;

}
set
{
systemPolicies = value;

}
}

VB.NET
Public Property SystemPolicies() As Boolean

Get
Return mSystemPolicies

End Get
Set(ByVal Value As Boolean)

mSystemPolicies = Value
End Set

End Property

Now add the following method to get an array of policy objects for either an item or the system. The
item can be a folder or an object contained in a folder.

C#
private Policy[] GetItemPolicies()
{

ReportingWebService.Policy[] policies;

246

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 246

bool inheritParent;
if (! systemPolicies)
{
policies = this.rsWebService.GetPolicies(itemPath, out inheritParent);

}
else
{
policies = rsWebService.GetSystemPolicies();

}
return policies;

}

VB.NET
Private Function GetItemPolicies() As Policy()

Dim policies() As ReportingWebService.Policy
Dim inheritParent As Boolean
If Not mSystemPolicies Then

policies = mRSWebService.GetPolicies(mItemPath, inheritParent)
Else

policies = mRSWebService.GetSystemPolicies()
End If
Return policies

End Function

The web service methods that return the array of policy objects are:

❑ GetPolicies: This method takes the path of the item you want to work on and a Boolean
output parameter as arguments. The inheritParent output parameter indicates if the item
inherits its permission set from its parent.

❑ GetSystemPolicies: This method takes no arguments.

Now that you have a way to get the policies from the web service, you need to show the policies in the
list view control. Enter the following procedure in the code for PoliciesForm.

C#
private void FillPolicyListView()
{

this.listViewPolicies.Items.Clear();
ReportingWebService.Policy[] policies = GetItemPolicies();
foreach(ReportingWebService.Policy policy in policies)
{
ListViewItem item = new ListViewItem(policy.GroupUserName.ToString());
string rolesCollection = "";
foreach(ReportingWebService.Role role in policy.Roles)
{

rolesCollection += "," + role.Name.ToString();
}
rolesCollection = rolesCollection.Substring(1, rolesCollection.Length - 1);
item.SubItems.Add(rolesCollection);
this.listViewPolicies.Items.Add(item);

}
}

247

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 247

VB.NET
Private Sub FillPolicyListView()

Me.listViewPolicies.Items.Clear()
Dim policies() As ReportingWebService.Policy = GetItemPolicies()
Dim policy As ReportingWebService.Policy
For Each policy In policies
Dim item As ListViewItem = New ListViewItem(policy.GroupUserName.ToString())
Dim rolesCollection As String = ""
Dim role As ReportingWebService.Role
For Each role In policy.Roles

rolesCollection += "," + role.Name.ToString()
Next
rolesCollection = rolesCollection.Substring(1, rolesCollection.Length - 1)
item.SubItems.Add(rolesCollection)
Me.listViewPolicies.Items.Add(item)

Next
Return

End Sub

In this code, you are looping through the array of policy objects and adding the information from each
policy to the list view. Each policy object contains an array of roles that the policy object has assigned to
it. The code above concatenates the names of the roles assigned to a policy into the variable
rolesCollection so they can be displayed in the list view. This should be somewhat familiar from the
code you wrote to show the contents of folders, earlier in this chapter.

In order to show the security policies for an item you need to call the FillPolicyListView method.
Add an event handler for the form Load event of PoliciesForm, as shown in the following code:

C#
private void PolicyForm_Load(object sender, System.EventArgs e)
{

FillPolicyListView();
}

VB.NET
Private Sub PolicyForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

FillPolicyListView()
End Sub

Now you only need a way to call the form in order to see some security policies. Open MainForm in the
Design View and create an event handler by double clicking on the System | Role Assignments menu item.
Into this new event handler enter the following code:

C#
private void menuItemSecurityAssignments_Click(object sender, System.EventArgse)
{
if (this.treeViewFolders.SelectedNode != null)
{
PolicyForm dialogForm = new PolicyForm();

248

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 248

dialogForm.ItemPath = this.treeViewFolders.SelectedNode.Tag.ToString();
dialogForm.ItemName = this.treeViewFolders.SelectedNode.Text.ToString();
dialogForm.RsWebService = rs;
dialogForm.ShowDialog(this);

}
else
{
MessageBox.Show("Select a folder you want to view policies for");

}
}

VB.NET
Private Sub menuItemSecurityAssignments_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles menuItemSecurityAssignments.Click

If Not (Me.treeViewFolders.SelectedNode Is Nothing) Then
Dim dialogForm As PolicyForm = New PolicyForm
dialogForm.ItemPath = Me.treeViewFolders.SelectedNode.Tag.ToString()
dialogForm.ItemName = Me.treeViewFolders.SelectedNode.Text.ToString()
dialogForm.RsWebService = rs
dialogForm.ShowDialog(Me)

Else
MessageBox.Show("Select a folder you want to view policies for")

End If
End Sub

This code is very similar to the code you entered when working with folders. You declare a variable as a
new PoliciesForm, set the form properties for the path and name of the folder, pass the reference to the
web service and show the form as a modal dialog. Now is a good time to add the code for viewing the
system policies. Add an event handler for the Security | System Role Assignments menu selection and add
the following code to the event handler:

C#
private void menuItemSecuritySystemAssignments_Click(object sender,

System.EventArgs e)
{

PolicyForm dialogForm = new PolicyForm();
dialogForm.ItemPath = "/";
dialogForm.ItemName = "Site Settings";
dialogForm.RsWebService = rs;
dialogForm.SystemPolicies = true;
dialogForm.ShowDialog(this);

}

VB.NET
Private Sub menuItemSecuritySystemAssignments_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles menuItemSecuritySystemAssignments.Click

Dim dialogForm As PolicyForm = New PolicyForm
dialogForm.ItemPath = "/"
dialogForm.ItemName = "Site Settings"
dialogForm.RsWebService = rs
dialogForm.SystemPolicies = True
dialogForm.ShowDialog(Me)

End Sub

249

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 249

The only interesting difference between these event handlers and the event handlers for user objects is
that here you set the path to the root path \, and the SystemPolicies property is set to true.

Save your changes and run the application. Click the Go button to load the folder tree and select the
Professional SQL Reporting Services folder from the tree. Then select the Security | Role Assignments
menu item. You should see the policy form as shown in Figure 7-18:

Figure 7-18

Adding, Editing, and Deleting Security Policies
Being able to view a list of policies is useful, but to manage Reporting Services you need to be able to
make changes to the policies. Add a new form to your application and name it UserPolicyForm. Add
the following controls to the form:

Set the DialogResult property of buttonCancel to Cancel and the DialogResult property of
buttonOk to OK. Arrange the controls on the form as shown in Figure 7-19:

Control Type Control Name Text

Label labelItemName Item name

Label label1 User/Group Name

TextBox textBoxUserGroupName

CheckedListBox checkedListBoxRoles

Button buttonCancel Cancel

Button buttonOk OK

250

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 250

Figure 7-19

Again we will be using properties and private member variables to hold information about the object
name, object path, and a reference to the web service. Add the following private variables and properties
to the form.

C#
// Private form variables
private string itemPath = "";
private string itemName = "";
private RSUtilities.EditModeEnum mode;
private ReportingService rsWebService = null;
private bool systemRoles = false;
private ReportingWebService.Policy userPolicy = null;
private Role[] itemRoles = null;
public bool SystemRoles
{

get
{
return systemRoles;

}
set
{
systemRoles = value;

}
}

public Policy UserPolicy
{

get
{
return userPolicy;

}
set
{
userPolicy = value;
this.textBoxUserGroupName.Text = userPolicy.GroupUserName.ToString();

}
}

251

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 251

VB.NET
'Private form variables
Private mItemPath As String = ""
Private mItemName As String = ""
Private mRSWebService As ReportingService = Nothing
Private mMode As RSUtilities.EditModeEnum
Private mSystemRoles As Boolean = False
Private mUserPolicy As ReportingWebService.Policy = Nothing
Private itemRoles() As Role = Nothing

Public Property SystemRoles() As Boolean
Get

Return mSystemRoles
End Get
Set(ByVal Value As Boolean)

mSystemRoles = Value
End Set

End Property

Public Property UserPolicy() As Policy
Get

Return mUserPolicy
End Get
Set(ByVal Value As Policy)

mUserPolicy = Value
Me.textBoxUserGroupName.Text = userPolicy.GroupUserName.ToString()

End Set
End Property

The UserPolicy property is used to pass a policy object to the form so it can be edited and return the
new or modified policy to the calling form.

The work of this form will take place in the event handlers for the two buttons and the form load event.
Create these event handlers and add the following code.

C#
private void UserForm_Load(object sender, System.EventArgs e)
{

if (systemRoles)
{
itemRoles = this.rsWebService.ListSystemRoles();

}
else
{
itemRoles = this.rsWebService.ListRoles();

}
foreach (ReportingWebService.Role role in itemRoles)
{

bool checkRole = false;
if (this.userPolicy != null)
{

foreach(ReportingWebService.Role userRole in userPolicy.Roles)

252

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 252

{
if (userRole.Name == role.Name)
{
checkRole = true;
break;

}
}

}
this.checkedListBoxRoles.Items.Add(role.Name.ToString(),checkRole);

}
}

VB.NET
Private Sub UserPolicyForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

If (mSystemRoles) Then
itemRoles = Me.mRSWebService.ListSystemRoles()

Else
itemRoles = Me.mRSWebService.ListRoles()

End If
Dim objRole As ReportingWebService.Role
For Each objRole In itemRoles

Dim checkRole As Boolean = False
If Not (mUserPolicy Is Nothing) Then

Dim userRole As ReportingWebService.Role
For Each userRole In UserPolicy.Roles

If (userRole.Name = objRole.Name) Then
checkRole = True
Exit For

End If
Next

End If
Me.checkedListBoxRoles.Items.Add(objRole.Name.ToString(), checkRole)

Next
End Sub

The UserPolicyForm_Load method shown here first determines whether or not you want to work with
system or user policies by evaluating the systemRoles variable. The existing system and user roles are
loaded into the itemRoles variable with either the ListSystemRoles or ListRoles methods of the
web service. The itemRoles variable has form level scope so it can be initialized as part of the form load
event but still is available when the roles are needed again when you process any changes at the time
when the form is closed. The list of roles is created by looping through the array or roles found in the
itemRoles variable. If the UserPolicy property has been set, you loop through the array of roles
associated with the policy and compare the name property to the name property of the role from
itemRoles to determine if the check box of an item should be checked.

The event handler for the click event of buttonOK either assigns an array of roles to a new policy or
assignes a new array of roles to the existing policy. Add the following code into the buttonOK_Click
and buttonCancel_Click event handlers:

253

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 253

C#
private void buttonOK_Click(object sender, System.EventArgs e)
{

int roleCount = this.checkedListBoxRoles.CheckedItems.Count;
if (this.mode == RSUtilities.EditModeEnum.add)
{
this.userPolicy = new Policy();
userPolicy.GroupUserName = this.textBoxUserGroupName.Text.ToString();

}
Role[] userRoles = new Role[roleCount];
for (int i = 0; i < this.checkedListBoxRoles.CheckedItems.Count; i++)
{
foreach(Role role in itemRoles)
{
if (role.Name == this.checkedListBoxRoles.CheckedItems[i].ToString())
{
userRoles[i] = role;
break;

}
}

}
userPolicy.Roles = userRoles;
this.Close();

}
private void buttonCancel_Click(object sender, System.EventArgs e)
{

this.Close();
}

VB.NET
Private Sub buttonOK_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles buttonOK.Click
Dim roleCount As Integer = Me.checkedListBoxRoles.CheckedItems.Count
If mMode = RSUtilities.EditModeEnum.add Then

mUserPolicy = New Policy
mUserPolicy.GroupUserName = Me.textBoxUserGroupName.Text.ToString()

End If
Dim userRoles(roleCount - 1) As ReportingWebService.Role
Dim i As Integer
For i = 0 To Me.checkedListBoxRoles.CheckedItems.Count - 1 Step 1

Dim objRole As ReportingWebService.Role
For Each objRole In itemRoles

If objRole.Name = Me.checkedListBoxRoles.CheckedItems(i).ToString() Then
userRoles(i) = objRole
Exit For

End If
Next

Next
mUserPolicy.Roles = userRoles
Me.Close()

End Sub

254

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 254

Private Sub buttonCancel_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles buttonCancel.Click

Me.Close()
End Sub

The code behind the buttonOK click event checks the UserPolicy property. If a policy has not been
assigned to the property, a new policy is created. A new variable, userRoles, is then declared as a array
of roles. The number of elements in userRoles will be the number of checked items in the checked list
box. The elements of userRoles are added from the itemRoles array by comparing the text property
of the checked items in the checked list box to the Name property of the elements of the itemRoles array.
The last step before closing the form is to assign the userRoles array to the Roles property of the
policy held by the UserPolicy property of the form.

Although the code presented here has created a new policy or modified an existing one, this policy has
not been applied to either the system or an item in a Reporting Services folder. The assignment of the
policy takes place after form closes and control is returned to the calling form. To complete the policy
assignment you need to create a couple of methods in the code of PolicyForm. Open the code window
of PolicyForm and enter the following code:

C#
private void SetItemPolicies(Policy[] NewPolicy)
{

try
{

// Create the batch to handle the transaction
BatchHeader batchHeader = new BatchHeader();
batchHeader.BatchID = rsWebService.CreateBatch();
rsWebService.BatchHeaderValue = batchHeader;
// set the policies for the item to the new policy
// array passed to the procedure
rsWebService.SetPolicies(this.itemPath, NewPolicy);
// execute the batch
this.rsWebService.ExecuteBatch();
this.rsWebService.BatchHeaderValue = null;

}
catch(Exception exp)
{

RSUtilities.ErrorHandler(exp);
}

}

VB.NET
Private Sub SetItemPolicies(ByVal NewPolicy() As Policy)

Try
' Create the batch to handle the transaction
Dim batchHeader As batchHeader = New batchHeader
batchHeader.BatchID = mRSWebService.CreateBatch()
mRSWebService.BatchHeaderValue = batchHeader
' set the policies for the item to the new policy
' array passed to the procedure
mRSWebService.SetPolicies(mItemPath, NewPolicy)
' execute the batch
mRSWebService.ExecuteBatch()

255

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 255

mRSWebService.BatchHeaderValue = Nothing
Catch exp As Exception

RSUtilities.ErrorHandler(exp)
End Try
Return

End Sub

The SetPolicies method of the web service is used to associate a policy that you have created with an
item in the Report Server. SetPolicies method takes a path to an item and an array of policy objects as
arguments in the Reporting Services database. Any time changes are made to database objects and
setting the policies for an item makes changes to the existing policies, so it is vital that these changes be
wrapped in a transaction. You will remember from the code used to create new folders, that the
Reporting Services object for supporting transactions is a batch. The SetItemPolicies method uses the
batch header and batch objects to make sure that all the database updates are completed successfully or
rolled back entirely.

Adding a New Policy

Now that you have a form to create a new policy and a method to assign a policy array to an object in
the database, you need methods to call the form, set its properties, and do something with the returned
user policy. Create an event handler for the click event of buttonAdd of PolicyForm and add the
following code:

C#
private void buttonAdd_Click(object sender, System.EventArgs e)
{

UserPolicyForm dialogForm = new UserPolicyForm();
dialogForm.RsWebService = rsWebService;
dialogForm.ItemName = this.itemName;
dialogForm.ItemPath = this.ItemPath;
dialogForm.SystemRoles = this.systemPolicies;
dialogForm.Mode = RSUtilities.EditModeEnum.add;
dialogForm.ShowDialog(this);
if (dialogForm.DialogResult == DialogResult.OK)
{
Policy newPolicy = dialogForm.UserPolicy;
if (newPolicy != null)
{
Policy[] currentPolicies = GetItemPolicies();
Policy[] newPolicies = new Policy[currentPolicies.Length + 1];
for (int i = 0; i < currentPolicies.Length; i++)
{
newPolicies[i] = currentPolicies[i];

}
newPolicies[currentPolicies.Length] = newPolicy;
SetItemPolicies(newPolicies);
FillPolicyListView();

}
}

}

256

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 256

VB.NET
Private Sub buttonAdd_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles buttonAdd.Click
Dim dialogForm As UserPolicyForm = New UserPolicyForm
dialogForm.RsWebService = mRSWebService
dialogForm.ItemName = mItemName
dialogForm.ItemPath = mItemPath
dialogForm.SystemRoles = mSystemPolicies
dialogForm.Mode = RSUtilities.EditModeEnum.add
dialogForm.ShowDialog(Me)
If dialogForm.DialogResult = DialogResult.OK Then

Dim newPolicy As Policy = dialogForm.UserPolicy
If Not newPolicy Is Nothing Then

Dim currentPolicies() As Policy = GetItemPolicies()
Dim NewPolicies(currentPolicies.Length) As Policy
Dim i As Integer
For i = 0 To currentPolicies.Length - 1 Step 1

NewPolicies(i) = currentPolicies(i)
Next
NewPolicies(currentPolicies.Length) = newPolicy
SetItemPolicies(NewPolicies)
FillPolicyListView()

End If
End If
Return

End Sub

Instantiating a new form variable, setting properties, and displaying it as a modal dialog should look
very familiar. When you created the buttons on UserPolicyForm you had set the DialogResult
property for each button. The event handler checks to make sure that the OK button was used to close
the form and that the dialog's UserPolicy property returns a valid policy. If these two conditions are
met then the UserPolicy from the dialog form is added to the existing policies of the database object in
a new array of policies. The last step is to set the policies of the database object to the new array of
policies with the SetItemPolicies method.

Editing an Existing Policy

Another important task that PSRS_Manager should be able to do is to modify the roles of an existing
user. Create an event handler for the click event of buttonEdit on PolicyForm and insert the following
code:

C#
private void buttonEdit_Click(object sender, System.EventArgs e)
{

if (this.listViewPolicies.SelectedItems.Count == 0)
{
MessageBox.Show("Select a user for which to edit roles.");
return;

}
Policy[] currentPolicies = GetItemPolicies();
Policy userPolicy = null;
foreach (Policy policy in currentPolicies)

257

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 257

{
if (policy.GroupUserName == this.listViewPolicies.SelectedItems[0].Text.

ToString())
{
userPolicy = policy;
break;

}
}
UserPolicyForm dialogForm = new UserPolicyForm();
dialogForm.RsWebService = rsWebService;
dialogForm.ItemName = this.itemName;
dialogForm.ItemPath = this.itemPath;
dialogForm.UserPolicy = userPolicy;
dialogForm.SystemRoles = this.systemPolicies;
dialogForm.Mode = RSUtilities.EditModeEnum.edit;
dialogForm.ShowDialog(this);
if (dialogForm.DialogResult == DialogResult.Ok)
{
userPolicy = dialogForm.UserPolicy;
Policy[] newPolicies = new Policy[currentPolicies.Length];
for (int i = 0; i < currentPolicies.Length; i++)
{
if (userPolicy.GroupUserName == currentPolicies[i].GroupUserName)
{
newPolicies[i] = userPolicy;

}
else
{
newPolicies[i] = currentPolicies[i];

}
}
SetItemPolicies(newPolicies);
FillPolicyListView();

}
return;

}

VB.NET
Private Sub buttonEdit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles buttonEdit.Click
If Me.listViewPolicies.SelectedItems.Count = 0 Then

MessageBox.Show("Select a user for which to edit roles.")
Return

End If
Dim currentPolicies() As ReportingWebService.Policy = GetItemPolicies()
Dim userPolicy As ReportingWebService.Policy = Nothing
Dim objPolicy As ReportingWebService.Policy
For Each objPolicy In currentPolicies
If objPolicy.GroupUserName = Me.listViewPolicies.SelectedItems(0).Text.

ToString() Then
userPolicy = objPolicy
Exit For

End If

258

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 258

Next
Dim dialogForm As UserPolicyForm = New UserPolicyForm
dialogForm.RsWebService = mRSWebService
dialogForm.ItemName = mItemName
dialogForm.ItemPath = mItemPath
dialogForm.UserPolicy = userPolicy
dialogForm.SystemRoles = mSystemPolicies
dialogForm.Mode = RSUtilities.EditModeEnum.edit
dialogForm.ShowDialog(Me)
If dialogForm.DialogResult = DialogResult.OK Then

userPolicy = dialogForm.UserPolicy
Dim newPolicies(currentPolicies.Length - 1) As Policy
Dim i As Integer
For i = 0 To currentPolicies.Length - 1 Step 1

If userPolicy.GroupUserName = currentPolicies(i).GroupUserName Then
newPolicies(i) = userPolicy

Else
newPolicies(i) = currentPolicies(i)

End If
Next
SetItemPolicies(newPolicies)
FillPolicyListView()

End If
Return

End Sub

The code here is very similar to the code to add a new policy. The UserPolicy of the dialog form is set
to the policy selected with the list view. Rather than creating a new policy and adding it to the existing
policy array, the modified policy replaces the original in the array before the SetItemPolicies method
is called.

Deleting a Policy

Change is a constant in any organization. It is likely that it will be necessary to revoke user privileges as
the structure of your organization changes over time. PolicyForm has a delete button and now would
be a good time to make it functional. Create an event handler for the click event of buttonDelete and
enter the following code:

C#
private void buttonDelete_Click(object sender, System.EventArgs e)
{

if (this.listViewPolicies.SelectedItems.Count == 0)
{
MessageBox.Show("Select a user/group to delete.");
return;

}
DialogResult result = MessageBox.Show("Are you sure you want to delete this

policy?",
"Delete Policy",MessageBoxButtons.YesNo,
MessageBoxIcon.Question);

if (result == DialogResult.Yes)
{
string userName = this.listViewPolicies.SelectedItems[0].Text;

259

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 259

Policy[] currentPolicies = GetItemPolicies();
Policy[] newPolicies = new Policy[currentPolicies.Length -1];
int i = 0;
foreach (Policy policy in currentPolicies)
{
if (policy.GroupUserName != userName)
{
newPolicies[i] = policy;
i++;

}
}
SetItemPolicies(newPolicies);
FillPolicyListView();

}
return;

}

VB.NET
Private Sub buttonDelete_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles buttonDelete.Click

If Me.listViewPolicies.SelectedItems.Count = 0 Then
MessageBox.Show("Select a user/group to delete.")
Return

End If
Dim result As DialogResult
result = MessageBox.Show("Are you sure you want to delete this policy?", _

"Delete Policy", MessageBoxButtons.YesNo, _
MessageBoxIcon.Question)

If result = DialogResult.Yes Then
Dim userName As String = Me.listViewPolicies.SelectedItems(0).Text
Dim currentPolicies() As ReportingWebService.Policy = GetItemPolicies()
Dim NewPolicies(currentPolicies.Length - 2) As ReportingWebService.Policy
Dim i As Integer = 0
Dim objPolicy As ReportingWebService.Policy
For Each objPolicy In currentPolicies

If objPolicy.GroupUserName <> userName Then
NewPolicies(i) = objPolicy
i = i + 1

End If
Next
SetItemPolicies(NewPolicies)
FillPolicyListView()

End If
Return

End Sub

This is very similar to the way you edited the array of policies for the edit routine; instead of performing
a replacement, the policy selected for deletion is eliminated from the new array of policies sent to the
SetItemPolicies method.

It's about time to check if all this code actually works. Save all your changes and run the application.
After clicking Go, select the Security | Role Assignments menu item and click the Add button on the policy

260

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 260

form to display the form for adding a new user policy. Enter a valid user or group name and assign the
user some roles, similar to Figure 7-20:

Figure 7-20

After clicking the Add button the policy form should show the new policy in the list view similar to
Figure 7-21:

Figure 7-21

Adding, Editing, and Deleting Security Roles
With the ability to create and modify policies, it is now time to look at how roles are created and
modified. As mentioned at the beginning of this section you learned that the installation of Reporting
Services creates a number of user and system roles. For most users the roles created during the
installation provide all the options necessary to manage an installation. You may encounter a need to
create a special purpose role so lets dive into how that is done.

RoleForm
Add a new form to your application and name it RoleForm. From the toolbox add the following controls
to RoleForm:

261

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 261

Set the View property of the list view control to Details. Using the ColumnHeader Collection Editor
add two columns and set their properties as shown in the following table:

Arrange the controls on the form so it looks similar to Figure 7-22:

Figure 7-22

Open the code for RoleForm and add the following private form variables to hold form property values.

C#
// Private form variables
private Role[] roles = null;
private bool systemRoles = false;
private ReportingService rsWebService = null;

Name Text TextAlign Width

columnHeader1 Role Name Left 130

columnHeader2 Description Left 500

Control Type Control Name Text

Label labelRoleName Role name

ListView listViewRoles

Button buttonAdd Add

Button buttonEdit Edit

Button buttonDelete Delete

Button buttonOk OK

262

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 262

VB.NET
'Private form variables
Private mRoles() As Role = Nothing
Private mSystemRoles As Boolean = False
Private mRSWebService As ReportingService = Nothing

Now add the following property methods shown to the form.

C#
public bool SystemRoles
{

get
{
return systemRoles;

}
set
{
systemRoles = value;

}
}
public ReportingService RsWebService
{
set
{
rsWebService = value;

}
}

VB.NET
Public Property SystemRoles() As Boolean

Get
Return mSystemRoles

End Get
Set(ByVal Value As Boolean)

mSystemRoles = Value
End Set

End Property
Public WriteOnly Property RsWebService() As ReportingService

Set(ByVal Value As ReportingService)
mRSWebService = Value

End Set
End Property

Very similar to the way you displayed the policies for a folder, you will also need a method to fill the list
view with role information. Enter the following method into the code window for RoleForm:

C#
private void FillRoleListView()
{

this.listViewRoles.Items.Clear();
if (systemRoles)

263

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 263

{
roles = rsWebService.ListSystemRoles();
this.labelRoleName.Text = "System Roles";

}
else
{
roles = rsWebService.ListRoles();
this.labelRoleName.Text = "User Item Roles";

}
foreach (Role role in roles)
{
ListViewItem item = new ListViewItem();
item.Text = role.Name.ToString();
item.SubItems.Add(role.Description.ToString());
this.listViewRoles.Items.Add(item);

}
}

VB.NET
Private Sub FillRoleListView()

Me.listViewRoles.Items.Clear()
If (systemRoles) Then

mRoles = mRSWebService.ListSystemRoles()
Me.labelRoleName.Text = "System Roles"

Else
mRoles = mRSWebService.ListRoles()
Me.labelRoleName.Text = "User Item Roles"

End If
Dim role As ReportingWebService.Role
For Each role In mRoles

Dim item As ListViewItem = New ListViewItem
item.Text = role.Name.ToString()
item.SubItems.Add(role.Description.ToString())
Me.listViewRoles.Items.Add(item)

Next
Return

End Sub

The web service methods ListRoles and ListSystemRoles each return an array of role objects. The
array or role objects returned from the calls to the web methods is used to fill the list view with
information. To call the FillRoleListView method, create an event handler for the form load event
and enter this code.

C#
private void RoleForm_Load(object sender, System.EventArgs e)
{

FillRoleListView();
}

VB.NET
Private Sub RoleForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

FillRoleListView()
End Sub

264

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 264

Go back to MainForm and enter event handlers for the menu items menuItemSecurityRoles and
menuItemSecuritySystemRoles. Insert the following code into the new event handlers.

C#
private void menuItemSecurityRoles_Click(object sender, System.EventArgs e)
{

RoleForm dialogForm = new RoleForm();
dialogForm.RsWebService = rs;
dialogForm.ShowDialog(this);

}

private void menuItemSecuritySystemRoles_Click(object sender,
System.EventArgs e)

{
RoleForm dialogForm = new RoleForm();
dialogForm.RsWebService = rs;
dialogForm.SystemRoles = true;
dialogForm.ShowDialog(this);

}

VB.NET
Private Sub menuItemSecurityRoles_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles menuItemSecurityRoles.Click

Dim dialogForm As RoleForm = New RoleForm
dialogForm.RsWebService = rs
dialogForm.ShowDialog(Me)

End Sub

Private Sub menuItemSecuritySystemRoles_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles menuItemSecuritySystemRoles.Click

Dim dialogForm As RoleForm = New RoleForm
dialogForm.RsWebService = rs
dialogForm.SystemRoles = True
dialogForm.ShowDialog(Me)

End Sub

Save the changes you have made and run the application. When MainForm is displayed click Go and
then select then Security | Roles menu item. You should see the RoleForm displayed looking similar to
Figure 7- 23. These are roles that exist on the Reporting Services server.

Figure 7-23

265

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 265

Adding, Editing, and Deleting Roles
Now that you can show the list of roles, let's add, edit, and delete roles.

Role Task Form
Add a new form to your application and name it RoleTaskForm. From the toolbox add the following
controls to RoleTaskForm:

Arrange the controls on the form as shown in Figure 7-24:

Figure 7-24

Add the following private variables to the code window of RoleTaskForm.

C#
// Private form variables
private ReportingService rsWebService = null;
private RSUtilities.EditModeEnum mode;
private bool isSystemRole = false;
private ReportingWebService.Role userRole = null;
private Task[] itemTasks = null;

Control Type Control Name Text

Label label1 Role name

Label label2 Description

TextBox textBoxRoleName

TextBox textBoxDescription

CheckedListBox checkedListBoxTasks

Button buttonCancel Cancel

Button buttonOk OK

266

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 266

VB.NET
' Private form variables
Private mRsWebService As ReportingService = Nothing
Private mMode As RSUtilities.EditModeEnum
Private mIsSystemRole As Boolean = False
Private mUserRole As ReportingWebService.Role = Nothing
Private mItemTasks() As Task = Nothing

In addition to the standard Mode and RsWebService properties that you have used with previous
forms, add the following properties to your RoleTaskForm:

C#
public bool IsSystemRole
{

get
{
return isSystemRole;

}
set
{
isSystemRole = value;

}
}

public Role UserRole
{

get
{
return userRole;

}
set
{
userRole = value;
this.textBoxRoleName.Text = userRole.Name.ToString();
this.textBoxDescription.Text = userRole.Description.ToString();

}
}

VB.NET
Public Property IsSystemRole() As Boolean

Get
Return mIsSystemRole

End Get
Set(ByVal Value As Boolean)

mIsSystemRole = Value
End Set

End Property
Public Property UserRole() As ReportingWebService.Role

Get
Return mUserRole

End Get
Set(ByVal Value As ReportingWebService.Role)

267

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 267

mUserRole = Value
Me.textBoxRoleName.Text = mUserRole.Name.ToString()
Me.textBoxDescription.Text = mUserRole.Description.ToString()

End Set
End Property

Add an event handler for the form load event and enter the following code.

C#
private void RoleTaskForm_Load(object sender, System.EventArgs e)
{

string description = "";
Task[] userRoleTasks = null;
if (isSystemRole)
{
itemTasks = this.rsWebService.ListSystemTasks();

}
else
{
itemTasks = this.rsWebService.ListTasks();

}
if (userRole != null)
{
userRoleTasks = rsWebService.GetRoleProperties(userRole.Name.ToString(), out

description);
}
foreach (ReportingWebService.Task task in itemTasks)
{
bool checkTask = false;
if (this.userRole != null)
{
foreach(ReportingWebService.Task userTask in userRoleTasks)
{
if (userTask.TaskID == task.TaskID)
{
checkTask = true;
break;

}
}

}
this.checkedListBoxTasks.Items.Add(task.Name, checkTask);

}
}

VB.NET
Private Sub RoleTaskForm_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load
Dim description As String = ""
Dim userRoleTasks() As ReportingWebService.Task = Nothing
If (mIsSystemRole) Then

mItemTasks = mRsWebService.ListSystemTasks()
Else

mItemTasks = mRsWebService.ListTasks()

268

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 268

End If
If Not (mUserRole Is Nothing) Then

userRoleTasks = mRsWebService.GetRoleProperties(UserRole.Name.ToString(),
description)

End If
Dim sysTask As ReportingWebService.Task
For Each sysTask In mItemTasks

Dim checkTask As Boolean = False
If Not (mUserRole Is Nothing) Then

Dim userTask As ReportingWebService.Task
For Each userTask In userRoleTasks

If (userTask.TaskID = sysTask.TaskID) Then
checkTask = True
Exit For

End If
Next

End If
Me.checkedListBoxTasks.Items.Add(sysTask.Name, checkTask)

Next
Return

End Sub

The RoleTaskForm_Load method uses the ListSystemTasks or the ListTasks web service method to
fill a local array variable with a list of tasks. This variable has a wide scope so it can be used to evaluate
selections when the OK button is clicked without going back to the web service to reload the values. If
you are editing an existing role, the tasks for the role are returned from the GetRoleProperites web
service method, which takes the role name and description (output parameter). Another interesting
feature of tasks has to do with the name property. If you have an array of tasks from an existing role, the
name property exists but will always return an empty string and is not useful for comparing to one of
the built in tasks. Instead you will need to compare TaskID property of the role tasks to the TaskID
property of the built in tasks. The RoleTaskForm_Load method uses this technique to determine if a
task is already part of a role and thus its check box should be checked.

Add an event handler to the click event of buttonOK and buttonCancel and enter the following code:

C#
private void buttonOK_Click(object sender, System.EventArgs e)
{

int taskCount = this.checkedListBoxTasks.CheckedItems.Count;
Task[] roleTasks = new Task[taskCount];
for (int i = 0; i < taskCount; i++)
{
string taskName = this.checkedListBoxTasks.CheckedItems[i].ToString();
foreach(Task task in itemTasks)
{
if(taskName == task.Name)
{
roleTasks[i] = task;
break;

}
}

}

269

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 269

try
{
BatchHeader batchHeader = new BatchHeader();
batchHeader.BatchID = rsWebService.CreateBatch();
rsWebService.BatchHeaderValue = batchHeader;
if (mode == RSUtilities.EditModeEnum.edit)
{

rsWebService.SetRoleProperties(this.textBoxRoleName.Text.ToString(),
this.textBoxDescription.Text.ToString(),
roleTasks);

}
else
{

rsWebService.CreateRole(this.textBoxRoleName.Text.ToString(),
this.textBoxDescription.Text.ToString(),
roleTasks);

}
this.rsWebService.ExecuteBatch();
this.rsWebService.BatchHeaderValue = null;

}
catch (Exception exp)
{
RSUtilities.ErrorHandler(exp);

}
this.Close();

}
private void buttonCancel_Click(object sender, System.EventArgs e)
{

this.Close();
}

VB.NET
Private Sub buttonOK_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles buttonOK.Click
Dim taskCount As Integer = Me.checkedListBoxTasks.CheckedItems.Count
Dim roleTasks(taskCount - 1) As ReportingWebService.Task
Dim i As Integer
For i = 0 To taskCount - 1 Step 1

Dim taskName As String = Me.checkedListBoxTasks.CheckedItems(i).ToString()
Dim sysTask As ReportingWebService.Task
For Each sysTask In mItemTasks

If taskName = sysTask.Name Then
roleTasks(i) = sysTask
Exit For

End If
Next

Next
Try

Dim objBatchHeader As BatchHeader = New BatchHeader
objBatchHeader.BatchID = mRsWebService.CreateBatch()
mRsWebService.BatchHeaderValue = objBatchHeader
If Mode = RSUtilities.EditModeEnum.edit Then

mRsWebService.SetRoleProperties(_
Me.textBoxRoleName.Text.ToString, _

270

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 270

Me.textBoxDescription.Text.ToString,
roleTasks)

Else
mRsWebService.CreateRole(Me.textBoxRoleName.Text.ToString, _

Me.textBoxDescription.Text.ToString,_
roleTasks)

End If
mRsWebService.ExecuteBatch()
mRsWebService.BatchHeaderValue = Nothing

Catch exp As Exception
RSUtilities.ErrorHandler(exp)

End Try
Me.Close()

End Sub
Private Sub buttonCancel_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles buttonCancel.Click

Me.Close()
End Sub

The web methods needed for working with role objects are:

❑ CreateRole: This method is used to create a new role. It takes a name, a description, and an
array of tasks as arguments.

❑ SetRoleProperties: This method is used for modifications of an existing role. It takes the
same arguments as the CreateRole method.

In keeping with the other times that you have made modifications to the buttonOk_Click method, also
makes use of the batch objects to make sure the changes are wrapped in a transaction.To call the
RoleTaskForm add event handlers for click events of buttonAdd and buttonEdit buttons in the
RoleForm and enter the following code into the event handlers:

C#
private void buttonAdd_Click(object sender, System.EventArgs e)
{

RoleTaskForm dialogForm = new RoleTaskForm();
dialogForm.IsSystemRole = systemRoles;
dialogForm.RsWebService = rsWebService;
dialogForm.Mode = RSUtilities.EditModeEnum.add;
dialogForm.ShowDialog(this);
FillRoleListView();
return;

}
private void buttonEdit_Click(object sender, System.EventArgs e)
{

if (this.listViewRoles.SelectedItems.Count == 0)
{
MessageBox.Show("Select a role to edit.");
return;

}
Role workingRole = null;
string roleName = this.listViewRoles.SelectedItems[0].Text;
foreach(Role role in roles)

271

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 271

{
if(role.Name == roleName)
{
workingRole = role;
break;

}
}
RoleTaskForm dialogForm = new RoleTaskForm();
dialogForm.IsSystemRole = systemRoles;
dialogForm.UserRole = workingRole;
dialogForm.RsWebService = rsWebService;
dialogForm.Mode = RSUtilities.EditModeEnum.edit;
dialogForm.ShowDialog(this);
return;

}

VB.NET
Private Sub buttonAdd_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles buttonAdd.Click
Dim dialogForm As RoleTaskForm = New RoleTaskForm
dialogForm.IsSystemRole = mSystemRoles
dialogForm.RsWebService = mRSWebService
dialogForm.Mode = RSUtilities.EditModeEnum.add
dialogForm.ShowDialog(Me)
FillRoleListView()
Return

End Sub
Private Sub buttonEdit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles buttonEdit.Click
If Me.listViewRoles.SelectedItems.Count = 0 Then

MessageBox.Show("Select a role to edit.")
Return

End If
Dim workingRole As ReportingWebService.Role = Nothing
Dim roleName As String = Me.listViewRoles.SelectedItems(0).Text
Dim role As ReportingWebService.Role
For Each role In mRoles

If role.Name = roleName Then
workingRole = role
Exit For

End If
Next
Dim dialogForm As RoleTaskForm = New RoleTaskForm
dialogForm.IsSystemRole = mSystemRoles
dialogForm.UserRole = workingRole
dialogForm.RsWebService = mRSWebService
dialogForm.Mode = RSUtilities.EditModeEnum.edit
dialogForm.ShowDialog(Me)
Return

End Sub

Now add an event handler for the click event of buttonDelete on RoleForm and enter the following
code.

272

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 272

C#
private void buttonDelete_Click(object sender, System.EventArgs e)
{

if (this.listViewRoles.SelectedItems.Count == 0)
{
MessageBox.Show("Select a role to delete.");
return;

}
DialogResult result = MessageBox.Show("Are you sure you want to delete this

role?", "Delete
Role",MessageBoxButtons.YesNo,
MessageBoxIcon.Question);

if (result == DialogResult.Yes)
{
string roleName = this.listViewRoles.SelectedItems[0].Text;
try
{
// Create the batch to handle the transaction
BatchHeader batchHeader = new BatchHeader();
batchHeader.BatchID = rsWebService.CreateBatch();
rsWebService.BatchHeaderValue = batchHeader;
// delete the role
rsWebService.DeleteRole(roleName);
// execute the batch
this.rsWebService.ExecuteBatch();
this.rsWebService.BatchHeaderValue = null;

}
catch(Exception exp)
{
RSUtilities.ErrorHandler(exp);

}
FillRoleListView();

}
return;

}

VB.NET
Private Sub buttonDelete_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles buttonDelete.Click
If Me.listViewRoles.SelectedItems.Count = 0 Then

MessageBox.Show("Select a role to delete.")
Return

End If
Dim result As DialogResult
result = MessageBox.Show("Are you sure you want to delete this role?", _

"Delete Role", MessageBoxButtons.YesNo, _
MessageBoxIcon.Question)

If result = DialogResult.Yes Then
Dim roleName As String = Me.listViewRoles.SelectedItems(0).Text
Try

' Create the batch to handle the transaction
Dim objBatchHeader As ReportingWebService.BatchHeader =

New Reporting WebService.BatchHeader

273

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 273

objBatchHeader.BatchID = mRSWebService.CreateBatch()
mRSWebService.BatchHeaderValue = objBatchHeader
' delete the role
mRSWebService.DeleteRole(roleName)
' execute the batch
mRSWebService.ExecuteBatch()
mRSWebService.BatchHeaderValue = Nothing

Catch exp As Exception
RSUtilities.ErrorHandler(exp)

End Try
FillRoleListView()

End If
Return

End Sub

The final web method that you will be using is DeleteRole. It will delete a role from the database; it
takes the name of the role as its only argument. Again the batch is used to wrap the changes in a
transaction. Save your code changes and run the application. Click the Go button to get a reference to the
web service then choose the Security | Roles menu item to display the RoleForm. Click the Add button on
the RoleForm to add a new role. Your RoleTaskForm should look similar to Figure 7-25. Add a name and
description for your new role, assign some tasks and click the OK button.

Figure 7-25

The RoleTaskForm shown in Figure 7-25 presents a list of tasks a role may have permissions to perform.
Enter a Role Name, Description for the role, and then check the appropriate Tasks as in Figure 7-26:

Figure 7-26

274

Chapter 7

68787_ch07.qxp 26/03/2004 6:24 PM Page 274

Clicking the OK button adds the new role to the list of user item roles in the RoleForm shown in
Figure 7-27:

Figure 7-27

Click the OK button to close the RoleForm dialog.

Summary
In this chapter you learned how to consume the Reporting Services Web Service with a Windows
application. The code throughout the application with the exception of the interface code would work
just in the same way for a web application. You should now have a better understanding of the web
service, its objects, and methods. The content of this chapter could be expanded to fill an entire volume
by itself. In later chapters we will cover rendering reports, creating and maintaining subscriptions using
program code. It is hoped that the material presented here will give you confidence to explore the web
service and expand this application for your own needs.

275

Managing Reports Using Program Code

68787_ch07.qxp 26/03/2004 6:24 PM Page 275

68787_ch07.qxp 26/03/2004 6:24 PM Page 276

Report Scripting

Many repetitive tasks on Report Server administration and management can be automated using
script files. You can copy reports from one server to another and schedule the script to run when
network traffic is low. By using scripts, the security configuration can be updated on a remote
machine or the settings of a single report can be copied to multiple reports on a server. Other
practical uses of scripting include:

❑ Creating a new report subscription for a role

❑ Listing the contents of a particular folder

❑ Adding a new member to a role

❑ Updating a shared data source

❑ Listing all the reports that are visible to a role

In this chapter, you'll step through a script that replicates reports and their properties from a
source machine to a target machine. The script loops through a Report Server for report items and
copies them to a target location just before logging the action in an XML log file. The file toggles
easily between the development environment and the production environment by changing a
single Boolean value.

Scripting is a powerful tool that will be increasingly used to execute common Windows and
Report Server management tasks. Before getting started on the code, let's take a look at the various
command line utilities available in Reporting Services.

Command Line Utilities
Reporting Services provides several utility applications that can ease the process of server
management. The four main command line utilities are outlined in the following table:

888

68787_ch08.qxp 26/03/2004 3:54 PM Page 277

Chapter 8

278

Let’s briefly look at each of these useful tools.

rsconfig
Report Server keeps credentials and connection information encrypted in the ReportServer database.
The rsconfig utility is used to manage the encrypted connection settings for a Report Server installation.
For example, you can use this utility to change the username and password that Report Server uses to
connect to a SQL Server database. The utility uses Windows Management Instrumentation (WMI) to write
changes to the target machine and you must have administrator privileges to perform the actions. For
reports that use data from a remote server, you can use this utility to configure the credentials used
when the report runs.

Arguments passed to the rsconfig utility include username, password, server name, and
authentication method.

For more information on this utility and its capabilities, refer to the rsconfig utility topic in Reporting Services
Books Online.

rskeymgmt
Although encrypting data is a terrific way to secure it, the process has a weakness—the storing of
encryption key values for later use. In reality, encrypted data is only as secure as the keys that are used
to encrypt and decrypt it. Once the keys are compromised, data is no longer secure. Reporting Services
securely stores encryption keys in its database.

Reporting Services documentation indicates that it uses both a public key and a symmetric key to
encrypt data. Symmetric encryption is used because the data to be secured is usually private and the
process is relatively quick. Symmetric encryption involves the use of a single key value for both
encryption and decryption. For example, if you need to repair account information in a Report Server
instance, you can use the encryption key to recover the encrypted data and restore the account. If the key
is not available, the encrypted data cannot be recovered and you'll need to manually enter the account
information to make the account operational again.

Reporting Services creates encryption keys during the setup process. It's important that you make a copy
of the key value and store it in a secure location. The rskeymgmt utility is the tool used to retrieve the
encryption key-set and write it to a file. By default the rskeymgmt executable is located in the

Utility Function

rsconfig Manages the encrypted connection settings on a server

rskeymgmt Retrieves the server encryption key-set and writes it to a file

rsactivate Creates the encryption key to activate a server

rs Automates common server management tasks

68787_ch08.qxp 26/03/2004 3:54 PM Page 278

C:\Program Files\Microsoft SQL Server\80\Tools\Binn directory. The key values written to the
file are encrypted using another key built from the password used when creating the file. The same
password must then be used to later retrieve the decrypted keys from the storage file.

Creating a backup copy of the encryption key is straightforward. The rskeymgmt application must be
run on the same machine as the Report Server installation. Use the –e (extract) argument to pull the key
value from Reporting Services and the –f (file) argument to specify the fully qualified file name. You'll
also need to supply a password using the –p argument. The completed command line syntax reads as
follows:

rskeymgmt -e –f a:\ReportServerDBKey.txt –p P@ssw0rd

This line extracts the key value, creates a text file on a floppy disk called ReportServerDBKey.txt, and
encrypts the key value using the password indicated.

The rskeymgmt utility can be used to perform other encryption key management functions as well. For
example, it can be used to delete encrypted content that is no longer in use.

rsactivate
While the rsconfig utility can be used to add a Report Server instance to a web farm, the server
instance is not considered activated until it can encrypt and decrypt data in the Report Server database.
The process of activation creates the symmetric key used in the encryption process and is performed
using either the rsactivate utility or the Reporting Services WMI provider.

rs
In this chapter we refer to this utility as the RS utility. This utility provides developers and
administrators the ability to automate common, repetitive server management tasks. These scripted
operations allow a wide range of tasks to be performed, such as finding all the reports being delivered to
a particular user or updating the security settings on a server instance. The bulk of this chapter covers a
script that performs the commonly requested task of deploying reports from one server to another.

Automating Server and Report Management
Reporting Services provides a WMI interface to the configuration files for the Report Server instance and
the Report Manager application. Much like the command line utilities, these classes provide a way to
programmatically perform application management. For example, you can change the credential values
and authentication mechanisms that the Report Server uses to connect to the database. The same classes
can be used to perform actions on remote machines. These application configuration files are XML files.

The next time the application runs, the CLR will apply the new values. The Report Server configuration
file is accessed through the MSReportServer_ConfigurationSetting class and the Report Manager
Interface web application configuration file is available through the

279

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 279

MSReportServerReportManager_ConfigurationSetting class. Both classes are accessed through
the WMI interface.

Repetitive tasks can be automated using scripts and the RS utility. Common tasks that can be scripted
include duplicating environment settings from one server to another or deploying resources, reports,
and other database content from one environment to another. For example, migrating content from the
development environment to the testing and production environments.

The file that contains the automation code is a Unicode or UTF-8 text file with an .rss file extension.
The code itself is written in Visual Basic .NET.

Reporting Services RS Utility
The RS utility is an application that hosts scripts for execution by a scripting engine. The RS utility
compiles the user-supplied script and creates instances of the objects required to run it. If the script does
not compile, errors are returned to help debug the file. If the compilation is successful, execution of the
script begins. The RS utility can run scripts against a local or remote sever installation.

As a script developer, you are provided access to several namespaces in the .NET Framework class
library. You also have full access to the Reporting Services Web Service interface. One of the most
important functions of the RS utility is the creation of a proxy class for use by the hosted script. When
the RS utility is run, an argument is provided, which is the URL of the Reporting Service instance to
work with. The RS utility then invokes the wsdl.exe utility internally, creating a proxy class that acts as
the local script interface to the Reporting Services Web Service. The variable name for the web service
reference is called rs, and is available globally to your script. All of the Reporting Service Web Service
methods are available through the rs proxy. For this chapter, the rs proxy is referred to as the rs object.

RS Utility Command Line Syntax
Let's take a look at the RS utility command line syntax. At the command prompt, type rs /?. This will
invoke the RS utility Help displaying the utility syntax and command line arguments as in Figure 8-1:

Figure 8-1

280

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 280

Invoking the RS utility is as simple as typing rs or rs.exe at the command prompt, and supplying the
required values. The two required values are the script to run (/i argument), and the server to run the
script against (/s argument).

The syntax for using the RS utility is as follows:

rs /i <inputFile> /s <serverURL> [/u <username>] [/p <password>] [/l <timeout>]
[/b] [/v <var=value>] [/t]

The arguments (parameters) can be indicated by using the / or – symbols. For example, the input file
value can be provided using –i or /i and the filename. It's a matter of personal preference and in some
cases company style guide. The arguments themselves are case insensitive except for the password
value. You can have as many spaces as you want between the argument indicator and the value you're
providing.

The script file must be a fully qualified path to the .rss file. For example, let's say that your scripts are
located in the C:\ReportServer\Scripts directory. If you navigate to that location in the command
window, the path value that you'll provide to the RS utility will be as simple as the filename itself.

The serverURL value is made up of the protocol, server, and virtual directory to execute the script. By
default, the RS utility will attempt to connect to the resource using https. If you specify http, the RS
utility will only use http. If you specify https and it's not supported on the server, the RS utility will
return an error.

By default, the RS utility will authenticate against the target Report Server instance using the credentials
provided by the user running the script. Both the username and password arguments are optional
arguments and can be used to provide different credentials. The script itself can provide credential
values through the rs object, but hardcoded credentials are a security threat. It's better to have the script
authenticate credentials passed by the user at runtime; the username must include the domain name and
user account.

The timeout value is an optional argument and is used to specify the number of seconds before the
connection to the server times out. The default value is eight seconds. Providing a value of zero means
the connection never times out.

If you want your script to run as a batch, you can indicate that by using the optional /b argument.
Batches are particularly useful when you need to be sure that the same action is performed on multiple
machines; for example, when running a script against multiple machines in a server farm. A batch runs
as a type of mini transaction where failure of commands within the script causes the batch to roll back.
This argument doesn't take any values. The RS utility default bahaviour is to run scripts without
creating a batch.

Your VB.NET script can also contain variables with user-provided values. These variables are not
declared in the script and are available globally to any member within the script. The values are
supplied using /v arguments for each variable, which are provided as name=value pairs. The following
code shows an example:

rs /i DeployReports.rss /s http://localhost/reportserver/reportservice.asmx /v
targetURL= http://localhost/reportserver/reportservice.asmx

281

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 281

Quotes around the value are optional unless the value contains spaces. The /v argument is optional
unless your script uses a variable value that's not declared in the script. If the script takes an argument
that the user doesn't supply, the script will not compile.

The /t argument is also optional; it turns on tracing to view request processing and capture information
about returned errors.

When your script runs, the RS utility creates an instance of the scripting engine to run it. The VB.NET
scripting engine uses the same code base as VB.NET, so you have access to standard VB.NET
functionality from within your script. You'll take a closer look at the hosting environment capabilities
and limitations throughout the rest of this chapter.

RS Utility Errors
It will be helpful to be aware of the errors that the RS utility can return. Knowing the exceptions can help
you avoid raising them. Briefly, the RS utility errors include:

❑ CompilerFailed: If the RS utility is unable to compile your script it will return an error to
indicate what the problem was.

❑ ConnectionFailed: The utility could not connect to the server.

❑ DuplicateCommandLineOption: Command line arguments provided more than once, except
for the /v argument.

❑ DuplicateVariable: Same variable provided more than once.

❑ InvalidAuthorizationMethod: The server doesn't recognize your authorization method.

❑ InvalidCommandLineOption: Check the syntax by running /?. Usually it's the result of a
typing error.

❑ InvalidTimeoutValue: The value for this argument must be a positive integer.

❑ InvalidVariableName: The variable name doesn't match what the script is expecting.

❑ InvalidVariableSpecification: Variables must be provided using the name=value syntax.
Use quotes if the variable value contains spaces.

❑ MissingOptionValue: You specified the argument, but forgot the value (or it's in a form the
compiler doesn't recognize).

❑ MissingRequiredOption: Input file and server URL are required.

❑ MissingSomeAuthorizationValues: Username and password are optional but paired.

❑ ScriptException: The script lets an unhandled exception fall off the Main method. You need
to investigate the error and consider adding some additional exception handling.

If the Reporting Service returns an exception, it will be a SoapException containing the specific error
message. As you'll see in the next section, there is no way to catch a SoapException in the script, so
you'll need to configure a generic catch block to catch these exceptions.

282

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 282

Now that you have an understanding of how the RS utility works, let's take a look at configuring a
development environment and building a script to deploy content.

Script Development
Before you begin creating an effective development harness, it's important to know the elements you
have to work with. A Reporting Service script file is simply a Unicode or UTF-8 text file which is a 16-bit
character-encoding standard supported by many languages. It simplifies the localization of text and
data, providing a data exchange format by defining code values for each character. The latest Microsoft
operating systems use it for character and string manipulation.

The script project that follows is done using Visual Studio .NET. Let's take a look at the requirements for
the script.

Script Format Requirements
The file must contain a Main method .The Main method is used by the script host as the entry point into
your code. For this environment, the Main method can take no parameters. When the Main method
completes, your script is done. You can make calls to methods outside of the Main method. For the script
to compile, it needs to contain at least this code:

Public Sub Main()
'code to process server content goes here

End Sub

The script file can contain user-defined variables and methods. The variables can be module-level, which
means they're available to all members in the file. User-defined variables (those provided by the user at
runtime) are not declared in the code.

The host environment doesn't understand overloaded methods so you can't use them in your code. The
script file does not contain Imports statements, which would otherwise indicate namespaces that are in
use.

Namespaces Available
Not all namespaces in the .NET Framework base class library are available for use in your scripts. The
RS hosting utility provides access to the Reporting Services Web Service interface as well as to classes
contained in four namespaces described in the following sections.

System
Most of the classes in this namespace reside in the mscorlib assembly. This namespace is home to data
types, such as integer and string, as well as to utility classes, such as the Array, Console, and Convert
classes.

283

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 283

System.IO
Classes in this namespace provide access to the file system. Several encapsulate static or instance
methods for performing file and directory manipulation. Streams and different types of readers and
writers belong to this namespace. Although a few classes in this namespace are in the System assembly,
most of them are located in mscorlib.

System.Xml
The System.Xml namespace is primarily located in the System.Xml assembly. This namespace provides
access to most of the classes needed to create and read XML documents including:

❑ XmlDocument

❑ XmlElement

❑ XmlTextReader

❑ XmlTextWriter

❑ XmlValidatingReader

This namespace does not provide access to the following classes:

❑ XmlSchema

❑ XPathDocument

❑ XslTransform

System.Web.Services
This namespace contains relatively few classes, primarily the WebMethodAttribute and
WebServiceAttribute. These attribute classes are applied to classes and methods, enabling them to be
exposed as web services and web methods.

Reporting Services Web Service
Access to the Reporting Services Web Service interface is made through the RS utility script host. The RS
utility proxy provides full access to the Web Service members.

It may be helpful to note the namespaces that are not available:

❑ Microsoft.VisualBasic

❑ System.Text

❑ System.Web.Services.Protocols

The Microsoft.VisualBasic namespace contains global functions that many VB users rely upon. The
System.Text is home to the StringBuilder and encoding classes, and
System.Web.Services.Protocols is where the SoapException class lives.

284

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 284

Building a Script Development Harness
The process of creating and maintaining a management script file can be cumbersome. Frequently,
scripts are written using a text editor or other scripting tools. Depending on the developer, the file may
then be ported to Visual Studio for testing. Once the code is stable, the extra Visual Studio bits are
removed or commented out to create a proper script file once again.

Personally, I think the typical process of running a file in Visual Studio to check it and then commenting
out the extra code to make it work as a dedicated script is basically a hack. There are better ways of
making a script file work in both the development and production environments.

The technique outlined in this chapter uses the conditional compilation capabilities of the .NET
compilers that are used when a script runs. By using conditional compilation, a script file simply toggles
from one environment to the other. It's ideal for development because the developer has the support of
code completion and IntelliSense. The development environment provides sophisticated debugging
capabilities, and the file can be managed as part of a VS.NET project. The conditional compilation
approach enables scripting projects to be managed like every other project in the production
development environment while providing a completely suitable code file for the script host at runtime.

Although the script file contains VB.NET code, an .rss script file, as it is, will not compile in the Visual
Studio development environment. But that's not the only confusing aspect of the script file. For example,
although the file acts as a VB.NET module, it doesn't contain module statements. To help matters, the
script can contain undeclared variables and runs against an unseen web service proxy class. Having a
good development harness can go a long way in creating an efficient environment for script
development.

Creating the Console Project
Visual Studio is a robust development tool that's familiar to most .NET developers. Its IntelliSense, code
completion, and debugging capabilities help ease the development of .rss scripts as well. If you plan
on creating multiple scripts for the RS utility, it can be helpful to group them under a single solution. For
this, start with a blank solution and add script projects as needed.

In Visual Studio, select File | New | Blank Solution from the menu bar. This will open the New Project
dialog box as shown in Figure 8-2:

285

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 285

Figure 8-2

Name the blank solution rsUtility and click OK to create the solution. You now have a container for all
your RS utility script projects. To add the first project, right click the solution in the Solution Explorer and
select Add | New Project to open another New Project dialog box. This time select Visual Basic Projects in
the Project Types pane. You'll see the various pre-built project templates in the right pane. Choose the
Console Application template and give the project an appropriate name, in this case, DeployReports as
shown in Figure 8-3:

Figure 8-3

When the project is added to the solution, the Module1.vb file opens in the code window. Notice that
the file already includes the Main method contained in a module called Module1. Rename the
Module1.vb file to DeployReports.vb in the Solution Explorer.

Now that the rough framework is in place, let's further define the environment you'll be working in.

286

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 286

Adding Imports Statements
Remember, you only have access to certain namespaces from within the .rss script. The RS hosting
utility provides the namespace access. The script file itself does not contain any Imports statements.
The console application template includes several Imports statements already, and you'll need to
modify those to suit the project.

To do this, right click the DeployReports project in the Solution Explorer and select Properties. That will
bring up the DeployReports Property Pages box. In the Common Properties folder in the left pane, click the
Imports group. Notice that in the Project imports box, five namespaces are already listed:

❑ Microsoft.VisualBasic

❑ System

❑ System.Collections

❑ System.Data

❑ System.Diagnostics

Select and remove all but the System and System.Diagnostics namespaces. The System.Diagnostics
namespace is included for debugging purposes. Then, add System.IO, System.Web.Services, and
System.Xml. Your new imports list will include:

❑ System

❑ System.Diagnostics

❑ System.IO

❑ System.Web.Services

❑ System.Xml

The completed property page will be similar to Figure 8-4:

Figure 8-4

287

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 287

Adding References
Now you'll need to modify the assembly references for the project. First, remove the references that are
not needed. In the Solution Explorer, open the References folder to view the current assembly references.
Remove the System.Data reference by right clicking it and selecting Remove from the context menu.
Then right click the References folder and select Add Reference.

In the Add Reference dialog box, ensure that you're viewing the .NET tab. Select the System.Web.Services
assembly by clicking the component name, and then click the Select button. That will add the
component to the list of Selected Components in the bottom list box. Click OK to add the reference to
your project.

For development, you'll also need to reference the Reporting Services Web Service. To do that, right click
the References folder in the Solution Explorer and select Add Web Reference to bring up the Add Web
Reference dialog box. This form contains a browser pane, an address bar, and a couple of other items. In
the address bar, type the URL of the Report Server you want to code against. The default URL is
http<s>://<servername>/reportserver/reportservice.asmx.

If you've pointed at a valid web service, the Add Reference button will be enabled. Before you click it,
however, give the web reference a name; in this case, the reference is called ReportServer. Figure 8-5
shows a completed web reference dialog box:

Figure 8-5

Clicking the Add Reference button invokes the wsdl.exe utility. The wsdl.exe checks the WSDL
document for the web service and creates a proxy class that acts as your local interface to the remote web
service. You're creating a web service proxy in the same way that the RS utility creates it for your hosted
script. Now you can code against that web service as if it were a local object, because in proxy form, it is
a local object.

288

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 288

The completed solution and project hierarchy is shown in Figure 8-6. Note that the reference to the
System.Data assembly has been deleted. The RS utility host doesn't provide access to its content, so the
reference is deleted from the development environment.

Figure 8-6

Now, let's start working with the code. In the code editor, change the name of the module to
DeployReports. Although it isn't required, it's a good practice to add a section of commented lines
containing information about the file. Make some space above the module declaration to add a file
summary:

#Region ' File Summary'
'===
' Development File: DeployReports.vb
' Production File: DeployReports.rss
'
' Description:
' This module is an approach to building Reporting
' Service scripts hosted by the RS utility.
' The devEnvironment bool value allows toggling the
' file between development (.vb) and production (.rss).
'
' The DeployReports script iterates through the Report
' Server items on a source machine, deploying the .rdl
' report definitions and properties to a target machine.
' Actions and results are logged to an XML file.
'
' Required Variable:
' This value must be provided at runtime when hosted by
' the rs utility (using the /v parameter).
'
' Name: targetURL
' Value: http(s) URL of the target Reporting Service machine.
' Must have same folder structure as source machine.
' Must use same credentials as the source machine.
'
'---
' SQL Reporting Services Beta 2
' .NET Framework 1.1
' Visual Studio .NET 2003
' Jan 2004; James Counihan; Seattle USA
'//===
#End Region

289

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 289

The commented section is wrapped by a conditional compilation directive. The #Region directive
allows the wrapped section to be closed (collapsed) while working in other regions of the file. It's a
sample use of a conditional compilation directive. The next step is to structure the code to work in both
development and runtime environments, which is done by using other conditional compilation
directives.

Using Conditional Compilation
The file you're creating is meant to work in both the Visual Studio development environment and the
hosted RS utility production environment. To save development time, it would be nice to have a single
place to toggle the file for use in each of the environments. Conditional compilation enables you to do
that.

Conditional compilation involves the use of compiler directives. For the DeployReports project you'll use
two directives: a constant definition and statements to compile different blocks of code depending on the
constant value. Conditional directives are indicated using the # symbol at the start of the code statement.
You may recognize the #Region and #End Region directives that wrap generated code sections in a
Windows form or a web form application.

In the DeployReports.vb file, make some space above the module DeployReports statement. In that
area at the top of the file, enter the following statements:

#Region ' Dev/Prod Toggle '

'Set value to True if hosted by Visual Studio;
'Set value to False if hosted by the rs utility.
#Const devEnvironment = True

#End Region

A data type declaration is not part of the statement. There's a Visual Basic .NET background compiler
that will check syntax as you code, based on the value you've toggled devEnvironmentto. As part of
your imperative code statements you'll use #If…Then…#Else statements to block code based on the
environment. Configuring the file for hosting by the RS utility then becomes a matter of setting the
devEnvironment value to False and giving the file an .rss extension.

In fact, the Module statement itself needs the conditional compilation block applied to it. The Module
statement isn't used in the hosted RS utility environment so you'll need to wrap it with the conditional
check. If this is a development environment, compile the embedded statement into the assembly, if not,
skip it.

#If devEnvironment Then
Module DeployReports
#End If

The RS utility compiles the script file when it's first invoked and the compiler in that hosted
environment understands the conditional compilation statements.

290

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 290

The next section of code is an area for global variable declaration. Three string variables are declared:
m_logFile, m_logDir, and m_logPath. They contain values for the file name, directory path, and
concatenated path of where you want the log file to be saved.

#Region ' Global Vars '

'Name of the log file. This code creates xml output.
Dim m_logFile As String = 'EventLog.xml'
'Directory to save the log to.
Dim m_logDir As String = '/Report Deployment Log'
'Full path
Dim m_logPath As String = m_logDir & '/' & m_logFile

'Not a user-defined value
Dim m_errFlag As Boolean = False

#End Region

This code writes XML output to the EventLog.xml file in the Report Deployment Log directory of the
current drive. If the file does not exist, it will be created. The m_errFlag Boolean value is used for error
handling to determine whether to throw the exception or handle it internally. Now you're ready to go in
and start adding code to the Main method.

Accessing Server Items
The Main method is the host entry point to your application. In the RS utility environment the Main
method takes no arguments. Runtime variable values can be passed to your script but you use a
different technique to do that. You'll read about using that technique later in this chapter. Before that,
let's add some code to the file.

In the code body of the Main method, declare the traceMessage and timeStamp string variables and
the reportCount integer field. These are used to display processing information in the console window
and to write nodes to the XML log file.

#Region ' Main()'

Sub Main()

Dim traceMessage, timeStamp As String
Dim reportCount As Integer

In the development environment, you'll need to connect to the ReportServer instance to begin
performing actions on it but as the RS utility hosting environment provides the connection, this step isn't
necessary.

Creating the Proxy Instance
Because you need to create your own web service connection in one environment and not in the other,
conditional compilation is an ideal solution. Additionally, how you qualify the classes you're working

291

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 291

with in code is different for each environment. For example, previously you added a web reference to
the project. The reference was named ReportServer. Through the reference you have access to the types
and methods it defines.

Dim catItems(), catItem As ReportServer.CatalogItem

However, the web service is available globally in the hosted RS utility environment. Qualifying classes
uses a different syntax:

Dim catItems(), catItem As CatalogItem

Both of these statements do the same thing that is declaring variables representing an array of
CatalogItems and a single CatalogItem. The ReportServer.CatalogItem statement compiles in
Visual Studio, the other compiles in the RS utility environment.

Additionally, you need to create an instance of the web service proxy class that was created locally by
the wsdl.exe utility when you added the web reference:

'create an instance of the Report Server
' Web service proxy
Dim rs As New ReportServer.ReportingService

As in the RS utiltiy environment, the reference is called rs. This chapter will continue to refer to the rs
reference as the rs object. The New keyword allocates memory on the managed heap and then the
ReportingService constructor is invoked to instantiate it. This statement is not needed in the RS
utility environment. The complete conditional code block is as follows:

#If devEnvironment Then
Dim catItems(), catItem As ReportServer.CatalogItem

'create an instance of the Report Server
' Web service proxy
Dim rs As New ReportServer.ReportingService

'var value supplied by the user at runtime;
' set here for development to deploy the
' reports right back to the source machine.
Dim targetURL As String = rs.Url 'development value

#Else
Dim catItems(), catItem As CatalogItem

#End If

The (devEnvironment = true) embedded statements include a string variable declaration:

Dim targetURL As String = rs.Url 'development value

This statement allows you to set a targetURL value at design time rather than retrieving one from the
user at runtime. For development, this value is set equal to the URL property value of the rs object web
service reference. This will allow the script to run and it will overwrite the existing content on the
development machine. For the production environment, it would be better to allow the user to provide
the targetURL value.

292

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 292

Passing Variable Values to the Script
The targetURL value is used in the script regardless of which environment the code runs in. When
hosted by the RS utility though, the variable is never declared in the code. The RS utility will expect the
variable value to be set when the utility is invoked. The RS utility syntax provides an optional /v
argument, which is used to set values for the undeclared variables. In this case, the user will need to
provide the targetURL value in order for the script to compile. When the script is completed, the
variable value will be passed as follows:

rs /i DeployReports.rss /s http://localhost/reportserver/reportservice.asmx /v
targetURL= http://localhost/reportserver/reportservice.asmx

To read more about running this file, see the Running the Script section later in this chapter.

Retrieving Items
Before you can perform any actions on the Report Server instance, your code must be authenticated. The
Report Server won't allow any methods to be invoked without authenticating the user tied to the request
and authorizing that the user has permission to perform the request. You could use credential values
provided by the user at runtime, but for ease, the code uses the identity of the user currently logged in.
The following lines show the credentials property of the rs object being assigned the value of the
shared DefaultCredentials property of the CredentialCache object:

'set credentials, so we'll be let through
rs.Credentials = System.Net.CredentialCache.DefaultCredentials

The authentication mechanisms you implement should be based on your security policy. Be sure to
modify this code to support your chosen security policy.

In this script, you'll be looking at each of the items in the source server to find reports to deploy. The
Reporting Service ListChildren web method returns an array of catalog items that can be iterated
through:

'get array of server catalog items
catItems = rs.ListChildren("/", True)

The returned results are available in the catItems array.

Building Message Content
The next Report Server actions involve processing the returned CatalogItems. Before proceeding, this
is a good time to start logging the initial actions and displaying feedback to the user.

In the production environment, it is preferable to have the username and password
values supplied by the user at runtime.

293

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 293

There are two places to output messages, the console and XML log file. The console will display
messages regarding general actions; the log file will contain those messages in addition to actions and
warnings about each item deployed.

The RS utility-provided namespaces do not give us access to the StringBuilder class. To increase the
usability in the console window, creating the message content is done in two operations. In the initial
stages of the process, the current date and time are converted to a string and then formatted:

'write to log & console.
'For usability in the console and xml file,
'two approaches are taken.
'Note we have no access to the stringbuilder class.
timeStamp = DateTime.Now.ToString("G")

The display message is then built in chunks for display in the console. The message text is built using
the properties of the rs object reference and the catItems array. The chunks are split in the way you
want the content to be displayed in the console:

'build message elements
Dim temp(6) As String
temp(0) = "** DeployReports script for Reporting Services ** "
temp(1) = "Copying report definitions and properties from"
temp(2) = "(source URL) " & rs.Url & " to"
temp(3) = "(target URL) " & targetURL & "; "
temp(4) = "Total server items to process: " & catItems.Length & "; "
temp(5) = "Start date/time: " & timeStamp & "."

Once the message content is built, it writes values to the console:

'for readability in the console, display in chunks
Console.WriteLine()
Console.WriteLine(temp(0))
Console.WriteLine()
Console.WriteLine(temp(1))
Console.WriteLine(temp(2))
Console.WriteLine(temp(3))
Console.WriteLine()
Console.WriteLine(temp(4))
Console.WriteLine(temp(5))
Console.WriteLine("Logging to: " & m_logPath)
Console.WriteLine()

Then concatenate the message chunks to create the string written to the XML log. Because the chunks are
array elements, a For … Next loop works:

'concatenate the values to create the log entry
Dim i As Integer
For i = 0 To temp.Length - 1

traceMessage &= temp(i)
Next

294

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 294

Finally, the concatenated traceMessage value is passed to a method for logging. The traceMessage
variable will be used again later in the code, so once the message is logged, it's cleared to make it ready
for the next use:

'write to the log
LogComment(traceMessage)
traceMessage = ""

It would be nice to have access to the System.Text namespace where the StringBuilder class is
located. During informal testing, we've found that the StringBuilder class is about 300% faster at
string concatenation than the String class. This is a relatively short operation though, so the
performance penalty is reasonable.

With the status displayed and the first actions logged, it's time to start processing the items in the
database.

Retrieving Reports
The content in a Report Server database includes folders, data sources, reports, and so on. Now that you
have a listing of each item in the Report Server database, you'll need to loop through them to identify
the reports to be deployed.

Retrieving Report Items
The items returned from the ListChildren method are available in the array of CatalogItems,
catItems. The catItems variable is an instance of System.Array, which provides the ability to iterate
through each of the elements contained in it. There are different ways to perform the iteration, but for
this purpose using a For … Each loop is clean and efficient:

'process catalog items
For Each catItem In catItems

Perform a test on each item to determine the item type. The Report Server exposes an ItemTypeEnum
enumeration. It has six values that you can compare the current array element with:

❑ DataSource

❑ Folder

❑ LinkedReport

❑ Report

❑ Resource

❑ Unknown

This script tests each array element to see if it's a report. If the CatalogItem is a report, then it performs
additional processing on it. How the ItemType enumeration is qualified will be different for each of the
development and production environments. That calls for a second conditional compilation code block.

295

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 295

#If devEnvironment Then
If catItem.Type = ReportServer.ItemTypeEnum.Report Then

Dim warnings() As ReportServer.Warning
#Else

If catItem.Type = ItemTypeEnum.Report Then
Dim warnings() As Warning

#End If

The array of warnings holds information about the processing of the report item. You'll also need
information about the location of the report item later, so a variable is declared and its value set using
the Path property of the current report CatalogItem:

Dim itemPath As String = catItem.Path

Getting Report Definitions
The next section of the script file is where actions performed on the Report Server could raise exceptions.
.NET introduced the use of structured exception handling using Try … Catch blocks. The code that may
raise an exception is wrapped in a Try block, and then a Catch block is configured to catch any
exceptions that are raised in the Try block:

'process report
Try

The Catch and End Try statements can be entered now and then space can be created between them to
add more logic.

The report definition is an .rdl file in the Report Server database. The Reporting Service Web Service
exposes a GetReportDefinition method, which can be used to get the definition. The method returns
a Byte array, so a variable is created to hold the returned result:

'get report definition
Dim reportDefinition() As Byte = _

rs.GetReportDefinition(itemPath)

Later in the code, you'll need to pass a string value that the parent directory of the report. To get that
value, the Substring method of the itemPath string variable is invoked. The parameters passed
narrow down the resulting string to the parent directory name without any "/" characters:

Dim parentDir As String = itemPath.Substring(0,
(itemPath.Length - catItem.Name.Length) - 1)

Once you've got the report definition, you can change non-protected (non read-only) report property
values. You can also deploy the report to another machine.

296

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 296

Deploying Reports
While you've got the current report definition, you can toggle the URL property of the rs object Report
Server reference to point to the target machine. That value will come from the user-provided targetURL
variable:

'deploy to target machine
rs.Url = targetURL

Now that the code is pointed at the targetURL, you can deploy the report.

The CreateReport Method
The Reporting Service CreateReport method writes a report definition to a target address. This method
takes parameters to indicate the name of the report to create, the directory to create it in, a Boolean value
indicating whether to overwrite an existing definition, a byte array which is the report definition, and an
array of property items for report properties that you might want to change.

For testing purposes, the parent directory parameter of the CreateReport method can be set to a value
other than the current location of the source report. For example, a parent directory value of / will cause
the reports to be written to the root directory of the Reporting Service. You can then open Report
Manager and view the newly deployed reports in the Home directory:

warnings = rs.CreateReport(catItem.Name, parentDir, True,
reportDefinition, Nothing)

If there's something to know about the report creation process, the CreateReport method will return an
array of warning objects. Each array element contains information about a specific warning that was
raised while creating the report. Warnings will not prevent the report from being created. You'll have to
write warnings to the log file, along with information about the deployed report. For readability in the
log file the, deployment is logged first followed by any warnings:

'for readability: log the deployment, then any warnings
LogEvent(catItem)
If Not (warnings Is Nothing) Then

#If devEnvironment Then
Dim warning As ReportServer.Warning
#Else
Dim warning As Warning
#End If
traceMessage = warnings.Length.ToString & _
' deployment warning(s) for the " & catItem.Name & "

report: "
For Each warning In warnings
traceMessage &= warning.Message & " "

Next warning
LogComment(traceMessage)
traceMessage = ""

End If

reportCount += 1

297

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 297

A conditional compilation block is used to separate how the Warning class is qualified as a data type for
the warning variable. The warning variable is used to represent each element in the warnings array to
build a string containing each element value, so that the completed string can be written to the log.

That completes the Try block and the processing of this report item. A reportCount variable value is
incremented, which will be used in the building of a final message for display and logging. The next step
in the process is configuring the Catch block.

Error Handling
In this script, error handling is limited to logging errors returned while retrieving or creating the report.
If a script error occurs, the exception is written to the console:

Catch ex As Exception
If errFlag Then

Console.WriteLine("Error processing: " & ex.ToString)
Else

LogError(ex, catItem)
End If
'reportCount = 0

End Try
End If

Next 'catalogItem

Exceptions caught by the RS utility host will cause execution to stop.

Logging Events
The script logs general information on the script run, actions performed on report items, and exceptions.
Each log entry is an XML node, which can either be an element or a comment. Elements are used for
recording report item actions and errors, while comments are used for general information and report
deployment warnings.

The #Region … #End Region directive wraps this group of utility methods, which are used for writing to
the log. Each of the methods invokes a utility that checks for the existence of the log file.

Opening the File
The GetLogFile is invoked even before the logging methods attempt to write any content to the XML
file. This function checks for the existence of the m_logDir and m_logFile values and creates them if
they don't exist. The System.Xml namespace contains the XmlDocument class used here:

Public Function GetLogFile() As XmlDocument
Dim xmlDoc As XmlDocument

If the XML file exists, it is opened. The Load method of the XmlDocument opens the existing file so that
the contents can be appended:

298

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 298

If File.Exists(m_logPath) Then
xmlDoc = New XmlDocument
xmlDoc.Load(m_logPath)

If a new XML file is created, the XML declarations and root element are added to the document. This
code block uses the shared (static in C#) CreateDirectory method of the Directory class, which is
in the System.IO namespace. As the member is shared, it's invoked on the class rather than as an
instance of the class. Additionally, the LoadXml method of the XmlDocument is invoked so a string can
be passed defining the foundation of the XML content:

Else
If Not (Directory.Exists(m_logDir)) Then
Directory.CreateDirectory(m_logDir)
'create the new xml doc
xmlDoc = New XmlDocument
xmlDoc.LoadXml('<?xml version='1.0' encoding='utf-8' ?>

<events> </events>')
End If

In both cases, a reference to the XmlDocument is returned for the logging methods to work with:

Return xmlDoc
End Function

Now that the document has been returned, the logging members can write to it.

Writing XML Nodes
There are three logging members in the script:

❑ LogEvent

❑ LogComment

❑ LogError

The methods are invoked depending on which node type is needed. The LogEvent code is walked
through here; the other methods work in almost the same way but with different data types passed as
parameters. This would typically be a situation for overloaded versions of the same method but that's
not an option in the RS utility environment. Because the different parameter data types are qualified
differently in each environment, this is also a case for using conditional compilation. In this case, the
method signatures are blocked using the #If…Then…#Else directive:

#If devEnvironment Then
Public Sub LogEvent(ByVal reportItem As ReportServer.CatalogItem) 'Report
Server.

#Else
Public Sub LogEvent(ByVal reportItem As CatalogItem)

#End If

299

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 299

The method body begins with declaring a string to hold a timestamp value for the log entry. Then the
GetLogFile method is called to retrieve the XmlDocument to log to:

Dim timeStamp As String
Try

Dim logDoc As XmlDocument = GetLogFile()

Each event is logged as separate event elements. The elements are empty and contain their data as
attribute values. In this code, the CreateElement method of the XmlDocument is invoked and passed a
parameter, which is the name of the element to create:

Dim elem As XmlElement = logDoc.CreateElement("event")

The timeStamp variable is assigned a formatted value. Attributes are given values using the
SetAttribute method of the XmlElement. Two parameters are passed to the method, the name of the
attribute and its value:

timeStamp = DateTime.Now.ToString("T")
With elem

.SetAttribute("eventType", "deployment")

.SetAttribute("reportItem", reportItem.Path)

.SetAttribute("sizeBytes", reportItem.Size)

.SetAttribute("timeStamp", timeStamp)
End With

The newly created element is then added as a child element to the root node and the file changes are
saved. If an error occurs while processing the entry, you write the details to the log and continue:

logDoc.DocumentElement.AppendChild(elem)
logDoc.Save(m_logPath)

Catch ex As Exception
LogError(ex, reportItem)

End Try
End Sub

This code will output an XML element format as:

<event eventType="deployment" reportItem="/RSExplorer/Company Sales"
sizeBytes="17274" timeStamp="8:41:35 PM" />

The LogError method also logs event elements, but the eventType attribute value is error. The error
Message property is written to the log. The method code is presented here for completeness:

#If devEnvironment Then
Public Sub LogError(ByVal err As System.Exception, ByVal reportItem As

ReportServer.CatalogItem) 'ReportServer.
#Else

Public Sub LogError(ByVal err As System.Exception, ByVal reportItem As
CatalogItem)

#End If
Dim timeStamp As String

300

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 300

Try
Dim logDoc As XmlDocument = GetLogFile()
Dim elem As XmlElement = logDoc.CreateElement("event")
timeStamp = DateTime.Now.ToString("T")

With elem
.SetAttribute("eventType", "error")
If Not (reportItem Is Nothing) Then
.SetAttribute("itemToProcess", reportItem.Name)
.SetAttribute("errorMessage", err.Message)
.SetAttribute("timeStamp", timeStamp)

End With
logDoc.DocumentElement.AppendChild(elem)
logDoc.Save(m_logPath)

Catch ex As Exception
m_errFlag = True
Throw ex

End Try
End Sub

The LogComment method takes a string parameter and writes it to the file as an XML comment. Because
this method takes a String data type parameter the method signature doesn't have to be wrapped in a
conditional compilation block. Again, this method code is provided for completeness. The code bundle
is also downloadable from www.wrox.com.

Public Sub LogComment(ByVal comment As String)
Try

Dim logDoc As XmlDocument = GetLogFile()
Dim node As XmlComment = logDoc.CreateComment(comment)
logDoc.DocumentElement.AppendChild(node)
logDoc.Save(m_logPath)

Catch ex As Exception
LogError(ex, Nothing)

End Try

End Sub

With the addition of the four logging members, the DeployReports script file is complete and ready to
run.

Running the Script
Running the script in the development environment is simply a matter of pressing F5 on your keyboard.
This will compile the assembly just before the CLR steps into the Main method. The script can be
debugged using techniques such as setting breakpoints and stepping through code. In the production
environment the script will be run at the command prompt as part of a scheduled batch file, which itself
is a script file.

301

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 301

Once the code is clean and bug-free in the development environment, it's ready to be toggled so it can be
hosted by the RS utility. Simply set the devEnvironment value to False and change the file extension to
.rss. The script file is now ready for running in the RS utility environment.

To run the script, open the command prompt and navigate to the directory containing the script file.
Navigating in the console is easily done by typing cd and a space at the command prompt. Then open
Windows Explorer and navigate to the directory containing the script file. Enable the Show full path in
address bar setting of Windows Explorer. Drag the folder icon in the Windows Explorer address bar into
the console window. The console window will be activated and the directory path added; press Enter to
have the console navigate to that directory.

Then invoke the RS utility by typing rs at the command prompt and supply values for the needed
arguments. For this script, the RS utility will need to know the URL of the source Report Server instance,
the name of the script file, and a value for the targetURL variable within the script.

A sample command would be as follows:

rs /i DeployReports.rss /s http://localhost/reportserver/reportservice.asmx
/v targetURL= http://localhost/reportserver/reportservice.asmx

This syntax invokes the RS utility to have it run the DeployReports.rss input file against the server
URL http://localhost/reportserver/reportservice.asmx (the default Report Server location
on the local machine). The targetURL variable value has been set to the same URL as the source
machine. This is suitable for development and testing as this will cause the script to write the deployed
report definitions back over the reports on the source machine.

In a production environment, the targetURL value would be different from the source. Ideally, the
script would also run by itself.

Scheduling the Script
A frequently heard request is how to automate the running of a microsoft script according to a schedule.
Invoking the RS utility can be done using the Task Scheduler. In Microsoft Windows XP, go to Control
Panel and select Scheduled Tasks.

That will open a window listing of any tasks already scheduled along with the option to Add Scheduled
Task. Double click that item to open the Schedule Task Wizard. Click Next to start the process of
scheduling your script run.

The first step is to choose which program to run as shown in Figure 8-7:

302

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 302

Figure 8-7

Click the Browse button to browse to the rs.exe utility. It is located in C:\Program Files\Microsoft
SQL Server\80\Tools\Binn.

Select the rs.exe program and click Open. That will bring you to the next step in the wizard where you
can give the task a descriptive name and indicate how often you want the task to run. For this
demonstration, the One time only option is selected as shown in Figure 8-8:

Figure 8-8

Clicking the Next button will bring you to a form where you can set the time for the task to run. The
options for configuring the run time vary depending on the time interval you've chosen. Choose a time
that's appropriate for you and click Next.

The next form is an opportunity to provide the credentials that you want the request to be performed
under. Enter appropriate values and click Next as shown in Figure 8-9:

303

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 303

Figure 8-9

At the next form, check the box to access advanced properties, as shown in Figure 8-10:

Figure 8-10

Clicking Finish will open the property pages dialog box for the task as shown in Figure 8-11:

Figure 8-11

304

Chapter 8

68787_ch08.qxp 26/03/2004 3:54 PM Page 304

On the Task tab, the Run textbox is where you provide the command line arguments that the RS utility
needs to run. For example, the input file, Report Server URL, and so on are added as arguments to the
command listed in the Run textbox.

You can also access this dialog box by opening the task again after completing the Schedule Task Wizard
process. Note that you can access the schedule and other settings for this task by using the tabs.

Summary
Scripting is a tool that allows you to automate the administration and management of a Report Server
instance, its content, and metadata. The WMI-flavored interface exposed by Reporting Services and
other Microsoft application servers is powerful and flexible.

Reporting Services provides several command line utilities including the RS utility. This utility runs
scripts written in Visual Basic .NET code contained in files with a particular structure. Note that the RS
utility provides access to a limited number of base class library namespaces.

In this chapter, you've read about the capabilities and limitations of scripts written for hosting by the RS
utility. A structure for the script file was presented, which uses the conditional compilation capabilities
of both Visual Studio .NET and the RS utility runtime environment. The script deploys report definitions
from a source machine to a target machine while logging actions to an XML file. Creating scripts in
Visual Studio .NET provides a rich, familiar development environment. Conditional compilation creates
a file that easily toggles between development and production environments.

Scripting is but one of the features of Reporting Services. The next chapter describes how to
programmatically render reports including accessing reports using HTTP requests and submitting
parameters to reports using query strings.

305

Report Scripting

68787_ch08.qxp 26/03/2004 3:54 PM Page 305

68787_ch08.qxp 26/03/2004 3:54 PM Page 306

URL Access and
Programmatic Rendering

The main focus of Reporting Services is to be a flexible reporting tool that can be easily
incorporated in different applications. There are a number of scenarios where the Report Viewer
provided by Reporting Services will not meet report delivery needs. For example, many
organizations maintain corporate reporting portals. In these situations, developers might need a
way to display numerous reports in a web environment. Reporting Services can also be embedded
into any line of business applications. Developers might want to use Reporting Services to create
invoices or purchase orders directly from their applications. For other organizations, the default
Report Viewer might not provide a broad security architecture.

All of these issues can be solved with the features available in Reporting Services. In this chapter,
you will take a look at the two methods for rendering reports in Reporting Services. They are:

❑ Using URLs to access reports

❑ Using the Reporting Services Web Service to programmatically render reports

URL access allows you to quickly incorporate Reporting Services reports in applications such as
web portals. Programmatic rendering allows for creating custom interfaces. Developers can do
anything from implementing their own security architecture around Reporting Services to creating
their own parameter interface.

By the end of this chapter, you will know about:

❑ The syntax and structure for accessing Reporting Services through the URL

❑ The reporting items that can be accessed through the URL

❑ The parameter options that can be passed to the URL to control report output

❑ Creating a Windows application that renders reports to the file system

❑ Creating a web application that returns rendered reports to the browser

999

68787_ch09.qxp 26/03/2004 6:25 PM Page 307

Chapter 9

308

URL Access
Reporting Service's main means for accessing reports is through HTTP requests. These requests can be
made through URLs in a web browser or a custom application. By passing parameters in the URL, you
can specify the report item, set the output format, and perform a number of other tasks. In the next few
sections, you will look at the features available through URL requests, URL syntax, passing parameters,
and setting the output format.

URL Syntax
The basic URL syntax is as follows:

http://server/virtualroot?[/pathinfo]&[prefix:]param=value[&[prefix:]param=value]...n]

Here is a quick look at retrieving the list of items under the Professional SQL Reporting Services folder:

The parameters in the syntax are as follows:

❑ server: Specifies the instance of Report Server you would like to access. To access your local
machine, you can either type the machine name or use the localhost alias.

❑ virtualroot: Specifies the IIS virtual directory you specified during the setup. When installing
Reporting Services, you must enter two virtual directories: one for the Report Manager and one
for the Reporting Services Web Service. By default, the virtual directory you would access is
reportserver.

❑ pathinfo: After specifying the server and virtual directory to the Reporting Services Web Service,
you can pass a number of parameters to access report objects. The first parameter you pass is
pathinfo, which specifies the path to the resource you want to access. To access the root of the
Report Server, you can simply place a single forward slash ().

Once you have listed the path, you can pass various parameters. These parameters will depend on the
type of object you are referencing. Reports will have a number of parameters to specify properties such
as the rendering format. Each parameter is separated by an ampersand (&) and contains a name=value
pair for the parameter.

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services&rs:Command=ListChildren

Now that you've taken a look at the basic URL syntax, let's see how it is implemented in each of the
Reporting Services objects.

Accessing Reporting Services Objects
URL requests are not limited to just reports. You can access a number of Reporting Services items. These
include:

❑ Folders

❑ Data Sources

68787_ch09.qxp 26/03/2004 6:25 PM Page 308

❑ Resources

❑ Reports

In this section, you will look at accessing each of the items listed above. You will go through sample
URLs and look at items provided in the Professional SQL Reporting Services project.

Folders
Accessing folders will be your starting point for looking at URL requests. Let's take a look at the simplest
URL request you can make:

http://localhost/reportserver

With this request, you can see a listing of all reports, data sources, resources, and folders in the root
directory of the Reporting Server as shown in Figure 9-1. To access another server, simply replace
localhost with the name of the server.

Figure 9-1

To see how other folder URL requests work, simply click on any of the <dir> links. Clicking the
Professional SQL Reporting Services link will give you the following URL:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services&rs:Command=ListChildren

This URL contains the following items:

❑ Path to the report: %2fProfessional+SQL+Reporting+Services

❑ Command to list the contents of the directory: rs:Command=ListChildren

You'll take a closer look at the URL parameters in the Reporting Services URL Parameters section later in
the chapter.

Data Sources
Through URL requests, you can also view the contents of data sources. Let's again take a look at the
Professional SQL Reporting Services folder. Enter the following URL to view the contents of this folder:

309

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 309

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services&rs:Command=ListChildren

You should see the listing of items as shown in Figure 9-2:

Figure 9-2

You will notice that one of the items listed is AdventureWorks2000. This item is a data source by the <ds>
tag next to the item name. If you follow the AdventureWorks2000 link, you will be able to view the
contents of that data source. Figure 9-3 shows the AdventureWorks2000 data source contents:

Figure 9-3

Let's take a look at the URL used to view the AdventureWorks2000 data source:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services%2fAdventureWorks2000&rs:Comman
d=GetDataSourceContents

This URL contains the following items:

❑ Path to the data source: %2fProfessional+SQL+Reporting+Services%2fAdventureWorks2000

❑ Command to view the data source content: rs:Command=GetDataSourceContents

310

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 310

Viewing the data source allows you to quickly see how your data source is configured. Notice that this
information is returned in XML format. This allows you to easily work with the data source information.
If you have your own reporting application that shares a single connection, you could use this URL to
dynamically load this data source information. This information could then be used to make other
database connections in your application.

Resources
Resources are items that you use in your reports like images or additional resources that have been
added to your Report Server folder, such as Word and Excel documents. You can use URLs to access
resources stored in the Report Server. Depending on the type of resources you reference, you will either
be prompted to open or save a file, such as a Word or Excel document, or the resource will be rendered
directly in the browser. In the Professional SQL Reporting Services folder, a resource for the Adventure
Works logo is added. This image can be directly rendered in your browser. Let's take a look at the
following URL:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services%2fAdventure+Works+Logo&rs:Comm
and=GetResourceContents

See Figure 9-4 for the output:

Figure 9-4

The URL contains the following contents:

❑ Path to the resource: %2fProfessional+SQL+Reporting+Services%2fAdventure+Works+Logo

❑ Command to retrieve the resource content: rs:Command=GetResourceContent

You can use this information in other applications. If you want to reference the Adventure Works logo
from a web page, you could simply set the src attribute of an image tag () to reference the earlier
URL .

Resources can also be incredibly handy for storing documents. In your reporting solution, you might
want to store readme files to accompany your reports. You can store these documents as resources on the
Report Server and then apply different properties to them, such as security. Your application could then
point to the resource URL to allow downloading of the document.

311

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 311

Reports
The most important objects you can access through the URL are your reports. This section provides a
quick look at the syntax for accessing reports. Later we'll discuss the various parameters you can pass to
change things such as report parameters, output formats, and other items.

The basic syntax for accessing a report is very similar to accessing all of your other resources. You should
first specify a path to the report and then provide the commands for its output. Let's look at the basic
URL for accessing your Customer Product Sales Pivot report:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services%2fCustomer_Product_Sales_Pivot1&
rs:Command=Render

View the Customer Product Sales Pivot report as in Figure 9-5:

Figure 9-5

The URL contains the following contents:

❑ Path to the resource:
%2fProfessional+SQL+Reporting+Services%2fCustomer_Product_Sales_Pivot1

❑ Command to retrieve the resource content: rs:Command=Render

Using URLs is the easiest and most convenient way to embed Reporting Services reports in your
applications. You can simply create your own links that point to the various report URLs. You are
probably asking yourself, ''That's nice! I can access a report, but how do I pass parameters and change
the output format?'' In the next section, you'll take a look at all the possible parameters you can pass
through the URL including setting report parameters and output format.

Reporting Services URL Parameters
Now that you have seen the basics of obtaining items from your Report Server using URLs, let's take a
look at passing some parameters. The next few sections will move through how parameters are passed

312

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 312

to Reporting Services and the available values for these parameters. The majority of the parameter
functionality will be focused on report rendering, but some items will also apply to your data source,
resources, and folder.

Parameter Prefixes
The first thing you need to take a look at is the different parameter prefixes in Reporting Services. There
are four main parameter prefixes in Reporting Services: rs, rc, dsp, and dsu. The following sections will
take a look at these prefixes in detail.

rs Prefix

In the earlier examples, you saw the parameter rs:Command. This parameter contains the prefix rs. The rs
prefix is used to send commands to the Report Server. The following URL shows an example of the rs
prefix being used to call the Command parameter and pass the ListChildren argument to it:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services&rs:Command=ListChildren

rc Prefix

The second main parameter prefix in Reporting Services is the rc prefix. This prefix is used to interact
with the given report output format. For example, if you are outputting your report as HTML, you can
control the HTML viewer. You can use this prefix to pass parameters that do things such as hide toolbars
or control the initial state of toggle items. The following URL calls the Product Sales Pivot report and
turns off the parameter inputs:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services%2fCustomer_Product_Sales_Pivot1&
rs:Command=Render&rc:Parameters=False

Figure 9-6 shows how rc:Parameters is used to hide parameters in the HTML viewer:

Figure 9-6

Notice that the parameter dialog is not visible in the HTML viewer.

313

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 313

dsu and dsp Prefixes

Parameter prefixes can also be used to send database credentials. Use the dsu prefix to pass the data
source username and dsp to pass the data source password. In any Reporting Services report, you could
incorporate multiple data sources. So, you need a way to specify which data source the credentials
should be passed to. That's where the prefixes come in. The full syntax to use these prefixes is as follows:

[dsu | dsp]:datasourcename=value

If you want to pass the user name guest with a password guestPass to your AdventureWorks2000 data
source, you will use the following URL parameters:

&dsu:AdventureWorks2000=guest&dsp:AdventureWorks2000=guestPass

Now that you have seen the different parameter prefixes in Reporting Services, we'll move on to the
available parameters that can be used with the rs and rc prefixes.

Parameters
First, let's take a look at the parameters that can be used with the rs prefix. The following table lists the
three available values and their uses:

Now that you have seen the different rs parameters, let's take a look at some of their available values.

Parameter Use

Command The Command parameter is used to send instructions to the Report Server about the
item being retrieved. Available values return the report item and set session
timeout information.

Format The Format parameter is used when rendering reports. Any rendering formats
available on the report server can be passed using this parameter.

Snapshot The Snapshot parameter is used to retrieve historical report snapshots. Once a
report has been stored in snapshot history, it is assigned a time/date stamp to
uniquely identify that report. Passing this time/date stamp will return the
appropriate report.

You should be aware that these credentials will be passed as clear text over the
Internet and will be visible to the end user. You can encrypt the URL using the Secure
Sockets Layer (SSL) on your web server. This will prevent the information from being
sent as clear text over the Internet, but will not prevent the end user from viewing the
credentials that you use. Make sure you consider these factors in your reporting
solution architecture.

314

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 314

Command Parameter

The Command parameter is your main parameter for setting the output of a given report item. It can also
be used for resetting a user's session information, which guarantees that a report is not rendered from
the session cache. Here is a listing of the possible values that can be passed to the Command parameter:

Format Parameter

The Format parameter is the main parameter for controlling the report output. The available values for
this parameter are determined by the different rendering extensions available on your Report Server.
The following table shows the output formats available with the default installation of Reporting
Services:

Table continued on following page

Value Output

Web Formats

HTML3.2 HTML version 3.2 output. This format is used for older browser versions.

HTML4.0 HTML version 4.0 output. This format supports newer browser versions such as
Internet Explorer 4.0 and above.

Value Use

GetDataSourceContents The GetDataSourceContents command can be used to return data
source information in an XML format. You can use this parameter on
shared data source items.

GetResourceContents The GetResourceContents command will return the binary of your
Reporting Services resources. You can use this to retrieve report
resources, such as images, via the URL.

ListChildren The ListChildren command is used in combination with a Reporting
Services folder. This value allows us to view a list of all items in a
given folder.

Render The Render command is probably the most commonly used command
value. It allows you to render your report via the URL.

ResetSessionTimeout The ResetSessionTimeout command can be used to refresh a user's
session cache. Because Reporting Services works via HTTP, it is
crucial for the server to maintain state information about the user.
However, if you want to ensure that a report is executed each time the
user views a report, this state information needs to be refreshed. Use
this parameter to reset the user's sessions and remove any session
cache information.

315

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 315

When you set the rendering formats via the URL, the report will either be rendered directly in the
browser or you will be prompted to save the output file. Let's take a look at rendering the Customer
Product Sales Pivot report in PDF format. Enter the following URL using the rs:Format=PDF parameter:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services%2fCustomer_Product_Sales_Pivot1&
rs:Command=Render&rs:Format=PDF

Value Output

Web Formats (continued)

MHTML MHTML standard output. This output format is used for sending HTML documents
in email. Using this format will embed all resources, such as images, into the
MHTML document instead of referencing external URLs.

Print Formats

IMAGE The IMAGE format allows you to render your reports to a number of different
Graphics Device Interfaces (GDI) such as BMP, PNG, GIF, or TIFF.

PDF The Portable Document Format (PDF) can also be used for viewing and printing
documents.

Data Formats

EXCEL Excel XP and Excel 2003 output. Users can use this format to further manipulate
report information.

CSV Comma Separated Value (CSV) format. CSV output is handy for consuming report
data through applications that work with CSV files.

XML Extensible Markup Language (XML) format. XML can be used by numerous
applications to consume report data.

Control Format

NULL The NULL provider allows you to execute reports without rendering. This can be
very useful when working with reports that have cached instances. You can use the
NULL format to execute the report for the first time and thereby storing the cached
instance.

316

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 316

Figure 9-7 shows the output:

Figure 9-7

Notice that the browser will now prompt you to save the rendered report. This can be easily
incorporated into your own custom applications or portals. You can simply give your users a link
containing the rs:Format parameter and automatically output the correct format.

Setting Device Information

Now that you have seen the various output formats available in Reporting Services, you need to take a
look at the different device information settings for the various formats. The Format parameter allows
you to specify the type of format you want, but each format has specific settings that can be useful to
you. For example, if you specify the IMAGE format, you get an output in TIFF. What if you wanted a
Bitmap or JPEG image? Well, to output in a different image format, all you need to do is to just specify
device information when passing the URL. Let's take a look at outputting your Customer Product Sales
Pivot report in JPEG format using the following URL (Figure 9-8 shows the output):

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services%2fCustomer_Product_Sales_Pivot1&
rs:Command=Render&rs:Format=IMAGE&rc:OutputFormat=JPEG

Figure 9-8

317

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 317

Notice that the file type sent back to you is a JPEG image. There are numerous device information
settings you can use for each of the rendering extensions. Each device information setting is prefixed
using the rc prefix. The following syntax can be used for passing device information:

http://server/virtualroot?/pathinfo&rs:Format=format&rc:param=value[&rc:param=value...n]

Now that you have seen the different output formats and commands you can pass to Reporting Services,
let's take a look at passing information to your individual reports.

Passing Report Information through the URL
The previous sections illustrated how a URL can be used to control report rendering In the next section,
you will look at how a URL can be used to control report execution. This section starts with an
explanation of passing report parameters. These are the parameters that you define while authoring
your report. Finally, you'll see how historical snapshots can be rendered using the URL.

Report Parameters
Many of your reports have parameters to control all kinds of behavior. You can use parameters to alter
your query, filter datasets and tables, and even change the appearance of your reports. Reporting
Services allows you to pass this information directly via a URL request. In the earlier section, you saw a
lot about the parameter prefixes and the available values that can be sent to the Reporting Services. With
report parameters, you simply need to remove the prefix and directly call the parameter name.

Your Customer Product Sales Pivot report accepts two parameters: OrderDateFrom and OrderDateTo. You
might want to allow your users to update these parameters through a custom interface you define.
When you call the report, you will need to provide these parameters in the URL as shown here:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services%2fCustomer_Product_Sales_Pivot1&
rs:Command=Render&OrderDateFrom=12/1/2003&OrderDateTo=12/31/2003

Let's take a look at calling the report with an OrderDateFrom value of 12/1/2003 and OrderDateTo value of
12/31/2003 (see Figure 9-9):

Figure 9-9

318

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 318

Notice that by passing the parameters in your URL, the HTML viewer updates to reflect the values. The
parameter name that you use in the URL is defined in the report definition. Since your Report
Parameters are called OrderDateFrom and OrderDateTo, these names are used in your URL.

Now that you have seen how to pass report parameters to the URL, let's look at passing snapshot IDs to
render historical execution snapshots.

Rendering Snapshot History
One of the major features of Reporting Services is the ability to create execution snapshots of reports. Say
you have a report where the data updates on a monthly basis. Once the data is updated, it does not
change for another month. A perfect example of this would be monthly financial statements. If your data
only changes once a month, there is no reason to query your database every time you need a report. So,
you can use execution snapshots to store this information after the query has been executed. Going
along the same lines as a monthly report, what should happen when your data updates from say
January to February? You don't want to lose the January snapshot once the February information is
available. That is where historical snapshots come into play. When you create the February snapshot,
you go and add January to the snapshot history and so on for each subsequent month.

Now that you have execution snapshots stored in history you need some way to access them. Reporting
Services gives you a very easy way to do this. As you have already seen, each report has a report path
that can be used to render the report. To render a historical snapshot, you simply need to add a
parameter for the historical snapshot ID.

The syntax to pass your snapshot ID is as follows:

http://server/virtualroot?[/pathinfo]&rs:Snapshot=snapshotid

The snapshot ID for your historical snapshot will be the time and date stamp of when the report was
added to the history. The time is adjusted to GMT based on the time zone where the historical snapshot
was added.

URL Rendering Summary
Through URL rendering, you have seen the various commands that can be passed to Reporting Services
that can be used to control the report item display, the format to use, and snapshot information using the
rs prefix. Once you have created your commands for the Report Server, you can pass parameters specific
to the output format. Using the rc prefix and the device information parameters, you can specify things
such as encoding and what items to display in the HTML viewer. After you have specified the report
item, you need to know how to output it. You can pass parameters to your report by simply passing the
parameter name and value combination.

In the next section, let's take a look at the second part of rendering Reporting Service reports. You can
use URLs for simple web applications and web portals, but sometimes you need finer control over
report access and rendering. To achieve this, we'll use the Reporting Service Web Service to
programmatically render your reports.

319

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 319

Programmatic Rendering
Reporting Services gives you two main methods for rendering your reports. Rendering using a URL is
very handy and easy to implement in many situations, but it does have its limitations. When rendering
from the URL, you have to make sure that you use the security infrastructure provided with Reporting
Services. For some applications, such as public web sites, you might want to implement your own
security. In that case, rendering from the URL will not provide the functionality you need. In this section,
you will take a look at rendering reports using the Reporting Services Web Service.

You'll connect to the Reporting Services Web Service, return a list of available reports, retrieve their
parameters, and finally render the report. Let's take a look at two implementations of programmatic
rendering. The first implementation is using a Windows form to render reports to a file. This will help
you to understand the basic principles without a lot of interface work. The second implementation will
take you through rendering through an ASP.NET page. You'll see some of the items that need to be
considered when working through a web application.

Common Scenarios
Before you look at the actual programming code for rendering reports, it is important to understand a
couple of scenarios where it is reasonable to do so. There are two scenarios that are commonly
experienced while working with clients. They do not represent the only scenarios where you would
write your own rendering code, but do illustrate how and when custom code can be used. Let's look at
each of these scenarios.

Custom Security
Probably the biggest question I get when working with clients is, "How do I use Reporting Services if I
don't want to implement their security infrastructure?'' Reporting Services requires you to connect to
reports using a Windows identity. In many organizations, this is just not possible. They have mixed
environments or non-trusted domains that do not allow for identification to the Report Server. Some
clients also have largescale authentication and authorization infrastructures already implemented.

You can still use Reporting Services in these situations. Using your own security infrastructure involves
creating both authentication and authorization code in your environment. After you have determined
that a user can access a report, a Windows identity that you define can be used to connect to reports. To
hide this security implementation, the Reporting Services Web Service can be employed. You can render
reports directly to a browser or file without passing the original user identity to the Report Server.

Server-Side Parameters
While URL rendering is by far the easiest way to incorporate Reporting Services in your applications, it
does have some limitations. When you send information via a URL, it is very easy for a user to change
that URL or see what it is that you pass.

By using the Reporting Services Web Service you can easily hide the details of how you retrieve report
information. Parameters are passed through your code instead of the URL. This gives you complete
control over how that information is retrieved without exposing it to the users. Let's take a look at your
first rendering application.

320

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 320

Rendering through Windows
In this section, we'll take a look at the mechanics of rendering using the Reporting Service Web Service.
We are going to build a simple Windows application that returns a list of reports from the Report Server.
Once we have the list of reports, we'll use the web service to return a list of report parameters. After
entering any report parameters, we'll render the report to a file. These steps will illustrate the main
components of rendering through program code.

Building the Application Interface
To start, you need to build your application interface. Let's start by building a simple Windows form;
Figure 9-10 shows the design view of your form:

Figure 9-10

This form will allow you to query a given Report Server to return a list of reports. Once it has returned
the reports, you can use it to access a list of parameters for the reports. Finally, you'll need to render the
report to a given folder location.

Setting Up the Reporting Service Web Service
Before you can get into rendering reports, you need to first set up a reference to the Reporting Service
Web Service. Once you have created your web reference, you can start to develop the application. The
next few figures show you how to create a reference to the web service. Start by adding a web reference
to your project.

Open the Solution Explorer and right click on the Reference folder. Click the Add Web Reference menu
item to open the Add Web Reference dialog as in Figure 9-11:

Figure 9-11

321

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 321

In the Add Web Reference dialog, enter the location of web service in the URL dialog. This URL will
depend on the Report Server name and the installed location of the Report Server virtual directory. By
default, the Report Server virtual directory is located under the root as /reportserver. For the default
virtual directory on a local machine, enter the following URL:
http://localhost/reportserver/reportservice.asmx?wsdl.

Once you have entered the URL, hit Enter to view a description of the web service. Enter a name for the
new web reference and hit Add Reference. The dialog should look like Figure 9-12 when filled in:

Figure 9-12

Now that you have referenced the web service, you are ready to start writing your code. The first thing
you can do is add a using (C#) or Imports VB.(VB.NET) statements to your code. The first part of the
using statement will be the application name followed by the web reference name. I have called my C#
project Rendering and my VB.NET project RenderingVB.

C#
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using Rendering.RSService;

VB.NET
Imports System
Imports System.Drawing
Imports System.Collections
Imports System.ComponentModel
Imports System.Windows.Forms
Imports RenderingVB.RSService

322

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 322

After you have added the using or Imports statement, you need to create an instance of the
ReportingService object. This is the main object that will be used to retrieve a list of reports and their
associated parameters, and then render the report. At the top of the Windows form class code, create the
declarations shown in the following sections.

C#
private ReportingService _rs = new ReportingService();

VB.NET
Private _rs As New ReportingService

Next, you need to set the security credentials that will be used by Reporting Services. In your code, pass
the credentials of the currently logged on user. If you already have your own custom authentication and
authorization method in place, you could pass a system identification you define instead of the current
user.

Open the Form Load event in the windows form, this is a suitable place for setting the credentials. Inside
this event, set the ReportingService object's Credentials property to
System.Net.CredentialCache.DefaultCredentials. This will give the web service the credentials
of the currently logged-on user.

C#
_rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

VB.NET
_rs.Credentials = System.Net.CredentialCache.DefaultCredentials

The final piece you need to add to the Form Load event is the code to populate your drop-down list. This
code will add all the format names to the list along with appropriate extensions for each. Let's begin by
creating a small class that helps you populate the drop-down.

C#
/* Helper class for format extensions. */
private class Format
{

private string _name;
private string _extension;

public Format(string name, string extension)
{

_name = name;
_extension = extension;

}

public string Name
{

get{return _name;}
}

323

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 323

public string Extension
{

get{return _extension;}
}

}

VB.NET
' Helper class for format extensions.
Private Class Format

Private _name As String
Private _extension As String

Public Sub New(ByVal name As String, ByVal extension As String)
name = name
extension = extension

End Sub

Public ReadOnly Property Name() As String
Get

Return _name
End Get

End Property

Public ReadOnly Property Extension() As String
Get

Return _extension
End Get

End Property
End Class

With these classes you can finish off your FormLoad event code. Add the few last lines of code to
populate your format combo box.

C#
private void frmMain_Load(object sender, System.EventArgs e)
{

rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
//load the format values
Format[] formats = new Format[7];
formats[0] = new Format("Excel", ".xls");
formats[1] = new Format("HTML3.2", ".html");
formats[2] = new Format("HTML4.0", ".html");
formats[3] = new Format("XML", ".xml");
formats[4] = new Format("CSV", ".csv");
formats[5] = new Format("PDF", ".pdf");
formats[6] = new Format("IMAGE", ".tif");

cboFormat.DataSource = formats;
cboFormat.DisplayMember = "Name";
cboFormat.ValueMember = "Name";

}

324

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 324

VB.NET
Private Sub frmMain_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

rs.Credentials = System.Net.CredentialCache.DefaultCredentials
'load the format values
Dim formats(6) As Format
formats(0) = New Format("Excel", ".xls")
formats(1) = New Format("HTML3.2", ".html")
formats(2) = New Format("HTML4.0", ".html")
formats(3) = New Format("XML", ".xml")
formats(4) = New Format("CSV", ".csv")
formats(5) = New Format("PDF", ".pdf")
formats(6) = New Format("IMAGE", ".tif")

cboFormat.DataSource = formats
cboFormat.DisplayMember = "Name"
cboFormat.ValueMember = "Name"

End Sub

You have now created an instance of the ReportingService object, passed the logged-on user's
credentials to it, and populated the format drop-down list. In the next section, we'll take a look at
connecting to the Report Server and retrieving a list of available reports.

Retrieving Report Information
Now that you have set up the Reporting Service Web Service, you need to retrieve your list of reports. To
do this, specify the Report Server you want to query and then call the ListChildren method of the
ReportingService object. ListChildren returns a list of all items including data sources, resources,
and reports. Once you have retrieved the list, you will need to pull out only report items. Finally, you
will add the report items to the drop-down.

Let's start by setting the URL to your Report Server. Open the click event of the Get Items button to start
your code.

C#
_rs.Url = txtServer.Text + "/ReportService.asmx";

VB.NET
_rs.Url = txtServer.Text & "/ReportService.asmx"

The preceding code uses the server location specified in the Server Address textbox concatenated with
the reference to the Reporting Service Web Service.

Once the URL for the web service is set, you can get the list of reports. Create an array of CatalogItem
objects and then call the ListChildren method. This method takes two parameters, the folder path on
the Report Server and a Boolean value indicating whether or not to recur the directory.

325

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 325

C#
CatalogItem[] items;
items = _rs.ListChildren("/", true);

VB.NET
Dim items() As CatalogItem
items = _rs.ListChildren("/", True)

The last step is to loop through the returned list of items and add them to a drop-down list. Similar to
how the formats were loaded, create a class to help data-bind the report items. Let's take a look at the
code for this class.

C#
private class ReportItem
{

private string _name;
private string _path;

public ReportItem(string name, string path)
{

name = name;
path = path;

}

public string Name
{

get{return _name;}
}

public string Path
{

get{return _path;}
}

}

VB.NET
Private Class ReportItem

Private _name As String
Private _path As String

Public Sub New(ByVal name As String, ByVal path As String)
_name = name
_path = path

End Sub

Public ReadOnly Property Name() As String
Get

Return _name
End Get

End Property

326

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 326

Public ReadOnly Property Path() As String
Get

Return _path
End Get

End Property
End Class

Using the ReportItem class just created, you can now add the report catalog items to the combo box.
The following code is for the GetItems button click event including populating the report drop-down.

C#

private void btnGetItems_Click(object sender, System.EventArgs e)

{

//set the path to the report server

_rs.Url = txtServer.Text + "/ReportService.asmx";

//return a list of items from the report server

CatalogItem[] items;

items = _rs.ListChildren("/", true);

//populate your report combo box
cboReports.Items.Clear();
foreach(CatalogItem item in items)
{

if(item.Type == ItemTypeEnum.Report)
{

cboReports.Items.Add(new ReportItem(item.Name, item.Path));
}

}

cboReports.DisplayMember = "Name";
cboReports.ValueMember = "Path";

}

VB.NET

Private Sub btnGetItems_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnGetItems.Click

'set the path to the report server

_rs.Url = txtServer.Text & "/ReportService.asmx"

'return a list of items from the report server

Dim items() As CatalogItem

items = _rs.ListChildren("/", True)
'populate your report combo box
cboReports.Items.Clear()
Dim item As CatalogItem
For Each item In items

If item.Type = ItemTypeEnum.Report Then
cboReports.Items.Add(New ReportItem(item.Name, item.Path))

End If
Next item

327

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 327

cboReports.DisplayMember = "Name"
cboReports.ValueMember = "Path"

End Sub

You will now be able to open your form and return a list of report items. In the next section you will look
at retrieving the parameters for a report.

Retrieving Report Parameters
The next area of programmatic rendering consists of retrieving a list of parameters for your report. This
bit of code can be used in a number of scenarios. The parameter interface that is provided by Reporting
Services works well for simple parameters. However, it does not handle many thing, like multi-select
parameters or more advanced interfaces such as calendar controls. Being able to return a list of
parameters allows you to create your own dynamic interface.

In the following example, we will create a simple list of parameters. For each parameter, we will
dynamically add a label control and textbox to your form. This example will also include the
GetParameters click event to run your code. First thing you need to do is identify the report that is
selected in your report drop-down list.

C#

ReportItem reportItem = (ReportItem)cboReports.SelectedItem;

VB.NET

Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)

This creates a new ReportItem variable using the selected item of your combo box. The ReportItem
class created in the previous section contains a Name and Path property. You can use this Path property
to retrieve your list of parameters.

To return your list of parameters, call the GetReportParameters method or the ReportingService
object. This method has two functions. It returns a list of parameters and can validate parameters against
the available values defined when creating the report. Let's take a look at the arguments of the
GetReportParameters method:

❑ Report: This is the path to the report you want to retrieve.

❑ HistoryID: The ID used to identify any historical snapshots of your report.

❑ ForRendering: This Boolean argument can be used to retrieve the parameters that were set
when the report was executed. For example, you might create a snapshot of your report or
receive it in an email subscription. In both cases, the report is executed before the user views it.
By setting the ForRendering property to true, you can retrieve these values and use them in
your own custom interface.

❑ ParameterValues: The ParameterValues argument can be used to validate the values
assigned to a parameter. This can be useful in guaranteeing that the parameter values you pass
to your report match the parameter values accepted by the report.

❑ Credentials: The database credentials to use when validating your query based parameters.

328

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 328

Since you are not working with historical reports or validating values, a number of the properties will
not be set. The following code can be used for calling the GetReportParameters method.

C#
ReportParameter[] parameters;
parameters = _rs.GetReportParameters(reportItem.Path, null, false, null, null);

VB.NET
Dim parameters() As ReportParameter

parameters = _rs.GetReportParameters(reportItem.Path, Nothing, False,
Nothing, Nothing)

The last piece of work to do is to create a user interface for your parameters. The ReportParameter
objects returned by Reporting Services contain information useful for creating a custom interface. Some
of the key properties include the parameter data type, prompt, and valid values. All of these can be used
to define your own interface. Finish your code by simply adding a label and textbox to your form for
each ReportParameter. Following is the completed GetParameter click event code.

C#

private void btnParameters_Click(object sender, System.EventArgs e)

{

//return the list of parameters for the report item

ReportItem reportItem = (ReportItem)cboReports.SelectedItem;

ReportParameter[] parameters;

parameters = _rs.GetReportParameters(reportItem.Path, null, false, null,

null);
//add the parameters to the parameter list UI
int left = 10;
int top = 20;
foreach(ReportParameter parameter in parameters)
{

Label label = new Label();
TextBox textBox = new TextBox();

label.Text = parameter.Prompt;
label.Left = left;
label.Top = top;

textBox.Name = parameter.Name;
textBox.Text = parameter.DefaultValues[0];
textBox.Left = left + 150;
textBox.Top = top;
top +=25;

grpParamInfo.Controls.Add(label);
grpParamInfo.Controls.Add(textBox);

}
}

329

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 329

VB.NET

Private Sub btnParameters_Click(ByVal sender As Object, ByVal e As _

System.EventArgs) Handles btnParameters.Click

'return the list of parameters for the report item

Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)

Dim parameters() As ReportParameter

parameters = _rs.GetReportParameters(reportItem.Path, Nothing,

False, _Nothing, Nothing)
'add the parameters to the parameter list UI
Dim left As Integer = 10
Dim top As Integer = 20
Dim parameter As ReportParameter
For Each parameter In parameters

Dim label As New Label
Dim textBox As New TextBox
label.Text = parameter.Prompt
label.Left = left
label.Top = top

textBox.Name = parameter.Name
textBox.Text = parameter.DefaultValues(0)
textBox.Left = left + 150
textBox.Top = top
top += 25

grpParamInfo.Controls.Add(label)
grpParamInfo.Controls.Add(textBox)

Next parameter
End Sub

Now that you have retrieved your list of reports and built a parameter list, let's take a look at outputting
the report to a file.

Rendering a Report to a File System
In this section, you'll take a look at rendering your report to a file. Using the ReportingService object's
Render method, you can retrieve a byte array that contains the final report. This byte array can be used
in a number of different ways. In this example, you will write the byte array to a file using the file
system object. Later you will take a look at another example that writes the byte array to the HTTP
Response object.

Before you get into the rendering code, let's look at the different parameters of the Render method:

330

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 330

Parameter Data Type Description

Report String Path to the report in Reporting Services.

Format String Output format of the report: HTML3.2,
HTML4.0, MHTML, IMAGE, PDF,
EXCEL, CSV, XML, NULL.

HistoryID
(optional)

String History ID used to render historical
snapshots.

DeviceInfo String Information used by a specified rendering
format. For example, specifying the image
type (.gif,.jpeg) with the IMAGE
format.

Parameters ParameterValue Array Input parameter value array used to
render the report.

Credentials DataSourceCredentials
Array

Array of data source credentials used to
connect to the data sources for a report.
These credentials contain the username,
login password, and data source name.

ShowHideToggle String Changes initial toggle state of the report.

Encoding (out) String Output returned from Reporting Services
containing the encoding of the report. The
encoding parameter is used to correctly
decode the returned byte array.

MimeType (out) String Output returned from Reporting Services
containing the MIME type of the
underlying report. Useful when rendering
a report to the web. The MIME type can
be passed to the Response object to
ensure that the browser correctly handles
the document returned.

ParametersUsed
(out)

ParameterValue Array Output of parameter values used to
execute the report. Can include query
parameters used for the creation of an
execution snapshot. Important when
developing the application user interface.

Warnings (out) Warning Array Output of any warnings from Reporting
Services.

StreamIds (out) String Array Output of stream IDs that can be used
with the Render Stream method.

331

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 331

The parameters of the Render method are similar to the values that can be passed using URL rendering.
In your Windows application, you will be mostly interested in the Report, Format, and Encoding
parameters. These parameters allow you to correctly return your report and stream it to the file system.

Now that you have seen the basics around the Render method, let's take a look at the code you need to
write for your Render button click event. The first thing you need to do in your code is retrieve the
selected report and output format. Use the Format and ReportItem classes created earlier to retrieve
the selected items in your drop-downs.

C#
Format format = (Format)cboFormat.SelectedItem;
ReportItem reportItem = (ReportItem)cboReports.SelectedItem;

VB.NET
Dim format As Format = CType(cboFormat.SelectedItem, Format)
Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)

You need to retrieve the input parameters specified by the user. Then, you need to create a new function
that loops through the textboxes you've created earlier to retrieve their values and return an array of
ParameterValue objects.

C#
private ParameterValue[] GetParameters()
{

ArrayList controls = new ArrayList();

//get the values from the parameter controls
int len = grpParamInfo.Controls.Count;
for(int i=0;i<len;i++)
{

if(grpParamInfo.Controls[i] is TextBox)
{

controls.Add(grpParamInfo.Controls[i]);
}

}

//add the control information to parameter info objects
len = controls.Count;
ParameterValue[] returnValues = new ParameterValue[len];
for(int i=0;i<len;i++)
{

returnValues[i] = new ParameterValue();
returnValues[i].Name = ((TextBox)controls[i]).Name;
returnValues[i].Value = ((TextBox)controls[i]).Text;

}

return returnValues;
}

332

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 332

VB.NET
Private Function GetParameters() As ParameterValue()

Dim controls As New ArrayList

'get the values from the parameter controls
Dim len As Integer = grpParamInfo.Controls.Count
Dim i As Integer
For i = 0 To len - 1

If TypeOf grpParamInfo.Controls(i) Is TextBox Then
controls.Add(grpParamInfo.Controls(i))

End If
Next i

'add the control information to parameter info objects
len = controls.Count - 1
Dim returnValues(len) As ParameterValue

For i = 0 To len
returnValues(i) = New ParameterValue
returnValues(i).Name = CType(controls(i), TextBox).Name
returnValues(i).Value = CType(controls(i), TextBox).Text

Next i

Return returnValues
End Function

You can now use the GetParameter function to build an array of input parameters. You can add the
following code to your Render click event to retrieve the input parameters.

C#
ParameterValue[] parameters = GetParameters();

VB.NET
Dim parameters As ParameterValue() = GetParameters()

Now that you have your list of input parameters, you are almost ready to call the Render method. For
this, you need to declare variables that will be used for the MIME type, encoding, output parameters,
warnings, and stream IDs. These are all output parameters of the Render method. This step is necessary
when working in C#, but can be avoided in VB.NET by passing Nothing into the unused parameters.
The final variable you will need for the Render method is an array of bytes. This byte array can then be
written to the file system.

C#
string encoding;
string mimeType;
ParameterValue[] parametersUsed;
Warning[] warnings;
string[] streamIds;

//render the report
byte[] data;

333

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 333

data = _rs.Render(reportItem.Path, format.Name,
null, null, parameters, null, null, out encoding, out mimeType,
out parametersUsed, out warnings, out streamIds);

VB.NET
Dim encoding As String
Dim mimeType As String
Dim parametersUsed() As ParameterValue
Dim warnings() As Warning
Dim streamIds() As String

'render the report
Dim data() As Byte
data = _rs.Render(reportItem.Path, format.Name, Nothing, Nothing, _

parameters, Nothing, Nothing, encoding, mimeType, _
parametersUsed, warnings, streamIds)

Finally, you need to take the byte array returned from the Render method and write it to the file system.
Use the output path specified in the output textbox along with the report name and format file extension
to open a file stream. Following is the entire Render button click event along with the final piece of code
for writing the file to the file system.

C#
private void btnRender_Click(object sender, System.EventArgs e)
{

//get the format and report item from the comboboxes
Format format = (Format)cboFormat.SelectedItem;
ReportItem reportItem = (ReportItem)cboReports.SelectedItem;

//set up variables needed to call render method
ParameterValue[] parameters = GetParameters();

string encoding;
string mimeType;
ParameterValue[] parametersUsed;
Warning[] warnings;
string[] streamIds;

//render the report
byte[] data;
data = _rs.Render(reportItem.Path, format.Name,

null, null, parameters, null, null, out encoding, out mimeType,
out parametersUsed, out warnings, out streamIds);

//create a file stream to write the output
string fileName = txtOutputLocation.Text + "\\" +
reportItem.Name + format.Extension;

System.IO.FileStream fs = new System.IO.FileStream(fileName, System.IO.FileMode
.OpenOrCreate);

System.IO.BinaryWriter writer = new System.IO.BinaryWriter(fs);
writer.Write(data, 0, data.Length);

334

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 334

writer.Close();
fs.Close();
MessageBox.Show("File written to: " + fileName);

}

VB.NET
Private Sub btnRender_Click(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles btnRender.Click

'get the format and report item from the comboboxes
Dim format As Format = CType(cboFormat.SelectedItem, Format)
Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)
'set up variables needed to call render method
Dim parameters As ParameterValue() = GetParameters()
Dim encoding As String
Dim mimeType As String
Dim parametersUsed() As ParameterValue
Dim warnings() As Warning
Dim streamIds() As String

'render the report
Dim data() As Byte
data = _rs.Render(reportItem.Path, format.Name, Nothing, Nothing, _

parameters, Nothing, Nothing, encoding, mimeType, _
parametersUsed, warnings, streamIds)

'create a file stream to write the output
Dim fileName As String = txtOutputLocation.Text & "\" & reportItem.Name & _

format.Extension

Dim fs As New System.IO.FileStream(fileName, System.IO.FileMode.OpenOrCreate)

Dim writer As New System.IO.BinaryWriter(fs)
writer.Write(data, 0, data.Length)
writer.Close()
fs.Close()
MessageBox.Show(("File written to: " + fileName))

End Sub

Now that you have completed the code for rendering the application, let's try it out. You need to build
and run the project. When the form opens, enter your server information in the Server Address textbox
and click the Get Items button that you can see in Figure 9-13:

Figure 9-13

335

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 335

You can select the Customer_Product_Sales_Pivot1 report from the report list (Figure 9-14) and click the
Get Parameters button. This will give you two parameters, Order Date To and Order Date From.

Figure 9-14

Finally, enter the Output Folder (C:) and the rendering Format as PDF. Once these items have been
specified you can click the Render button to render your report. When the rendering is complete, you
will receive a message box letting you know that the file has been written to the specified location as
shown in Figure 9-15:

Figure 9-15

You can now search for and open the file Customer_Product_Sales_Pivot1.pdf in Adobe Acrobat.

336

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 336

Rendering a Report to the File System Summary
In this section, you learnt the basic steps of rendering a report to the file system:

❑ Using the ReportingService object's ListChildren method to return a list of reports.

❑ Using the ReportingService object's GetReportParameters method to return a list of report
parameters.

❑ Using the Render method of the ReportingService object to output your report in a given
format.

These basic steps can be used in numerous applications to render a report. Using these methods, users
can create their own custom list of reports, customer report parameter pages, and output the report
using the returned byte array. In the next section, you will use some of these same steps to render a
report to the web via the Response object.

Rendering to the Web
In the preceding section, you saw the mechanics of rendering to a file system. However, most of today's
applications are written for the web. Along with URL requests, you can also use the Reporting Services
Web Service to render reports programmatically to the web.

While doing this, most of your steps will be identical to rendering to the file system; you simply change
the interface. Using the ListChildren method, developers can easily bind reports to an ASP.NET data
grid or create a tree view of available reports. Likewise, developers could also use the GetParameters
method to create their own parameter interface.

Since you have seen both the ListChilden and GetParameters methods, in this section, you will work
more with the specifics around developing ASP.NET applications. You'll look at changes that can be
made to the web.config file to pass credential information to Reporting Services. Then you will look at
the mechanics of rendering to the ASP.NET Response object.

Using Integrated Authentication
There are two main components to every security model, authentication and authorization. In Reporting
Services, you can use Windows Integrated Security within an ASP.NET application to authenticate users.

After creating a new ASP.NET web application, you need to open IIS and change some settings of the
virtual directory.

In the sample created for this chapter, the virtual directory created in IIS is called WebRenderingCS and
WebRenderingVB for the C# and Visual Basic .NET projects respectively. To set the virtual directories to
use integrated authentication, you need to check their settings in IIS. In Figure 9-16, the appropriate IIS
settings are shown.

Before you start your example, you need to ensure that your application is configured
to use Integrated Security.

337

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 337

Figure 9-16

Using Integrated Authentication in an ASP.NET web application is the easiest way to take advantage of
the security features in Reporting Services. Using this method allows developers to concentrate on other
areas of an application without having to build their own authentication mechanism. It also allows for
taking full advantage of the Reporting Services role-based security model.

After updating the IIS settings to use Integrated Authentication, you will have to make some
modifications to your ASP.NET web application.

Modifying the web.config File
In the web application created for this demonstration, you want to pass the user's security credentials to
the Reporting Services Web Service. To accomplish this, you have to allow your ASP.NET application to
impersonate the currently logged on user. Setting up impersonation requires adding the following line of
code to the web.config file; place this line after the authorization tag in the file:

<identity impersonate="true" />

Make sure that the Anonymous access has been turned off and Integrated Windows
authentication has been turned on.

338

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 338

Setting Up the Reporting Service Web Service
Just like in any Windows application, you need to set a reference to the Reporting Services Web Service.
The details for creating the reference are identical to those found in the Rendering Through Windows
section, so we will not go into the details here.

For this example, we have added a web reference to http://localhost/reportserver/reportservice.asmx?wsdl
and named it RSService.

Rendering to the Response Object
Now that you have set up Integrated Authentication and modified the web.config file, you're ready to
write some code. In this application, you will have one page that takes in a report path and format from
the URL. You'll use this information to call the Render method of the Reporting Services object and
write that information back to the response stream.

This sample will use one ASP.NET page called Render.aspx. Place your code sample in the Page_Load
event of the page. This would be a logical approach when developing an application around Reporting
Services. It allows you to have one point of entry to the Report Server. The page could then be referenced
from other areas of an application.

Let's add some code to the pages Page_Load event to retrieve the report path and format from the HTTP
Request.

C#
string path = Request.Params["Path"];
string format = Request.Params["Format"];

VB.NET
Dim path As String = Request.Params("Path")
Dim format As String = Request.Params("Format")

Now that you have the report path and format, you can start setting up the ReportingService object.
Like you did with the Windows application, you will create an instance of the ReportingService
object and then set the credentials to the credentials of the currently logged-on user.

C#
//create the ReportingService object
ReportingService rs = new ReportingService();

//set the credentials to be passed to Reporting Services
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

VB.NET
'create the ReportingService object
Dim rs As New ReportingService

'set the credentials to be passed to Reporting Services
rs.Credentials = System.Net.CredentialCache.DefaultCredentials

339

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 339

Once the Reporting Service object has been created and your credentials set, you can go ahead and
render the report. You will create variables to pass any report parameters (none in this example) and
capture the reports encoding, MIME type, parameters used, warnings, and stream IDs. The key output
parameter, which you'll render your report through, is the MIME type. This parameter will tell the HTTP
Response what type of document is being passed back. The following code renders your report to the
web application. You should notice that it is identical to the code used in the Windows application.

C#
ParameterValue[] parameters = new ParameterValue[0];
string encoding;
string mimeType;
ParameterValue[] parametersUsed;
Warning[] warnings;
string[] streamIds;

//render the report
byte[] data;
data = rs.Render(path, format, null, null, parameters, null, null,

out encoding, out mimeType, out parametersUsed,
out warnings, out streamIds);

VB.NET
Dim parameters As ParameterValue()
Dim encoding As String
Dim mimeType As String
Dim parametersUsed As ParameterValue()
Dim warnings As Warning()
Dim streamIds As String()

'render the report
Dim data As Byte()
data = rs.Render(path, format, Nothing, Nothing, parameters, _

Nothing, Nothing, encoding, mimeType, parametersUsed, _
warnings, streamIds)

The Render method of the ReportingService object passes back a byte array that can be used in a
number of ways. For the web, you will write this information directly back to the HTTP Response

object. Before you write back the data though, you need to set some information about the report,
namely, the report MIME type and a file name. You will start by assembling a file name for the report. To
do this, you use the name of the report followed by an extension that you determine using the value
returned in the MIME type parameter. Following is a sample function for determining a file extension
based on the MIME type. There are a number of MIME types that can be passed back from Reporting
Services that are not shown here, so you might want to add more code to this function for your
application needs.

C#
string GetExtension(string mimeType)
{

string retVal="";

switch(mimeType)

340

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 340

{
case "text/html": //HTML3.2, HTML4.0

retVal = "html";
break;

case "multipart/related": //MHTML
retVal = "html";
break;

case "text/xml": //XML
retVal = "xml";
break;

case "text/plain": //CSV
retVal = "csv";
break;

case "image/tiff": //IMAGE
retVal = "tif";
break;

case "application/pdf": //PDF
retVal = "pdf";
break;

case "application/vnd.ms-excel": //EXCEL
retVal = "xls";
break;

}

VB.NET
Public Function GetExtension(ByVal mimeType As String) As String

Dim retVal As String

Select Case mimeType
Case "text/html" 'HTML3.2, HTML4.0

retVal = "html"
Case "multipart/related" 'MHTML

retVal = "html"
Case "text/xml" 'XML

retVal = "xml"
Case "text/plain" 'CSV

retVal = "csv"
Case "image/tiff" 'IMAGE

retVal = "tif"
Case "application/pdf" 'PDF

retVal = "pdf"
Case "application/vnd.ms-excel" 'EXCEL

retVal = "xls"
End Select

Return retVal
End Function

Now that you have a function to return the appropriate file extension, you can construct a complete file
name. Following is the code to use the report path information long with the MIME type to create the
file name.

341

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 341

C#
string extension = GetExtension(mimeType);
string reportName = path.Substring(path.LastIndexOf("/") + 1);
string fileName = reportName + "." + extension;

VB.NET
Dim extension As String = GetExtension(mimeType)
Dim reportName As String = path.Substring(path.LastIndexOf("/") + 1)
Dim fileName As String = reportName & "." & extension

Finally, you need to put it all together by writing the data and file information back to the Response
object. For this, you:

❑ Start by clearing out any information that is already in the response buffer.

❑ Set the content type of the response equal to the MIME type of your rendered report.

❑ If your report is in a format other than HTML, make sure to attach your file name information
to the response.

❑ Finally, use the BinaryWrite method to write the rendered report byte array directly to the
Response object.

Following is the completed code for the Page_Load event.

C#
private void Page_Load(object sender, System.EventArgs e)
{

//get the path and output format from the query string
string path = Request.Params["Path"];
string format = Request.Params["Format"];

//create the ReportingService object
ReportingService rs = new ReportingService();

//set the credentials to be passed to Reporting Services
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

ParameterValue[] parameters = new ParameterValue[0];
string encoding;
string mimeType;
ParameterValue[] parametersUsed;
Warning[] warnings;
string[] streamIds;

//render the report
byte[] data;
data = rs.Render(path, format, null, null, parameters, null, null,

out encoding, out mimeType, out parametersUsed,
out warnings, out streamIds);

//determine if format is rendered to the web or a file.
string extension = GetExtension(mimeType);

342

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 342

string reportName = path.Substring(path.LastIndexOf("/") + 1);
string fileName = reportName + "." + extension;

//write the report back to the Response object
Response.Clear();
Response.ContentType = mimeType;
//add the file name to the response if it is not a web browser format.
if(mimeType!="text/html")

Response.AddHeader("Content-Disposition", "attachment; filename=" +
fileName);

Response.BinaryWrite(data);
}

VB.NET
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)_

Handles MyBase.Load

'get the path and output format from the query string
Dim path As String = Request.Params("Path")
Dim format As String = Request.Params("Format")

'create the ReportingService object
Dim rs As New ReportingService

'set the credentials to be passed to Reporting Services
rs.Credentials = System.Net.CredentialCache.DefaultCredentials

Dim parameters As ParameterValue()
Dim encoding As String
Dim mimeType As String
Dim parametersUsed As ParameterValue()
Dim warnings As Warning()
Dim streamIds As String()

'render the report
Dim data As Byte()
data = rs.Render(path, format, Nothing, Nothing, parameters, _

Nothing, Nothing, encoding, mimeType, parametersUsed, _
warnings, streamIds)

'determine if format is rendered to the web or a file.
Dim extension As String = GetExtension(mimeType)
Dim reportName As String = path.Substring(path.LastIndexOf("/") + 1)
Dim fileName As String = reportName & "." & extension

'write the report back to the Response object
Response.Clear()
Response.ContentType = mimeType
'add the file name to the response if it is not a web browser format.
If mimeType <> "text/html" Then

Response.AddHeader("Content-Disposition", "attachment; filename=" &
fileName)

End If

343

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 343

Response.BinaryWrite(data)
End Sub

This example quickly demonstrates some of the key pieces of code that can be used to to render reports
to the web. You first need to set the security context for the application by configuring Windows
Integrated authentication and allowing impersonation from your application. Next, you retrieve a report
from Reporting Services by specifying the report path and format. Finally, you use the rendered report
data along with its associated MIME type to render the report using the HTTP Response object.

Now that the code for your web application is complete, let's take a look at using your Render.aspx
page. You can use a simple query string to render your report. A sample query string that renders the
Employee List report from the Professional Reporting Services sample reports in HTML 4.0 format is as
follows:

http://localhost/WebRenderingCS/Render.aspx?Path=%2fProfessional+SQL+Reporting+Services%2fEmployee
_List&Format=HTML4.0

This URL does the following:

❑ It calls the Render.aspx page from your C# project.

❑ It passes in the required parameters, the path (Professional SQL Reporting Services/Employee
List) and the Format (HTML 4.0).

If you place this URL in the Internet Explorer, you'll get the following HTML output as shown in
Figure 9-17:

Figure 9-17

344

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 344

Notice that when you enter HTML 4.0 as the output format, the report data is rendered directly in the
browser. In your code, set the MIME type of your HTTP Response to text/html in this scenario. When
the browser receives the response, it recognizes the MIME type and renders it directly to the browser.

Let's take a quick look at rendering in a format that does not go directly to the browser. Use the
following URL to render the same Employee List report, but in the EXCEL format:

http://localhost/WebRenderingCS/Render.aspx?Path=%2fProfessional+SQL+Reporting+Services%2fEmployee
_List&Format=EXCEL

Figure 9-18 shows the result:

Figure 9-18

Notice this time that when you set the format to EXCEL, you are prompted to save to the file system. In
this case, the MIME type needs to be set to application/vnd.ms-excel. You also need to add header
information to the Response object that contains the file name Employee_List.xls. The MIME type
notifies Internet Explorer that you are sending a file and the added header gives it the appropriate file
name.

Rendering to the Web Summary
In this section, you saw some of the base mechanics around rendering a report using an ASP.NET
application. To start with, you need to pass the currently logged on user's credentials. This is
accomplished by setting the application virtual directory to use Integrated Windows authentication, and
then modifying the web.config file for the application to use impersonation. In the code, you need to
call the Reporting Services Web Service to retrieve the report along with content information such as

345

URL Access and Programmatic Rendering

68787_ch09.qxp 26/03/2004 6:25 PM Page 345

MIME type. Once you have the binary report data, you can write that information directly back to the
Response object.

Rendering reports directly through an ASP.NET application can be very helpful. It allows developers to
create their own interface for items such as parameters. A key point to remember is that Report Manager
uses the same Reporting Services Web Service that we used here. So, anything that you can do from the
Report Manager, can also be done through your own code. This adds an incredible amount of flexibility
for developers of custom applications.

Summary
In this chapter, we saw the two main ways to render reports from Reporting Services. The first part of
the chapter focused on rendering reports via URL requests. The second part looked at rendering reports
programmatically through the Reporting Services Web Service.

URL rendering gives you a quick way to add Reporting Services reports to your own applications. You
can add Reporting Services reports to custom portals or create your own custom report links in other
applications.

Programmatic rendering of reports gives developers the greatest amount of flexibility. Since the
Reporting Services API is implemented as a web service, you can call it from a number of different types
of applications including .NET Windows applications, ASP.NET web applications, and .NET console
applications. You can even use this web service from Visual Basic 6.0 or VBA applications using
Microsoft's SOAP library. This flexibility allows for the creation of a number of applications including
those that use custom security or pass parameter information stored in other application databases.

With URL rendering and the Reporting Services Web Service, developers can quickly and easily
incorporate Reporting Services into their own custom-built applications.

346

Chapter 9

68787_ch09.qxp 26/03/2004 6:25 PM Page 346

Report Caching and
Subscriptions

This chapter will deal with some of the most compelling and exciting capabilities of Reporting
Services. If used appropriately, report caching, snapshots, and history provide an efficient, scalable
solution for delivering reports to thousands of users without unnecessarily taxing server
resources. Subscriptions give users reports delivered in any format when they need them. You will
use the Report Manager interface to create and manage subscriptions and then take a look at using
.NET code and script to create custom solutions for programmers and administrators.

Report Delivery
Reports may be delivered to users in different ways. Using the Report Manager interface, you've
primarily seen reports delivered on-demand. This means that when a user requests a report, a query
is executed, parameters are used to filter data, and the report is rendered in real-time. Although
on-demand delivery has the advantage of presenting the most timely report data, it may not
always be the most optimal method and best use of system resources if a report is to be viewed
multiple times. Two other delivery methods, caching and subscriptions, give users additional
options to make reports available immediately when needed.

Caching can be used to conserve system resources by rendering reports less often while serving
more users. There are three different ways to cache reports that affect the ability to revisit a report
snapshot stored in history or to apply client-side filtering without retrieving additional data from
a data source.

Caching
It's important that you differentiate between the general concept of caching and a specific type of
report caching that is referred to as the cached instance of a report. In general terms, report caching

101100

68787_ch10.qxp 26/03/2004 6:05 PM Page 347

Chapter 10

348

means that a copy of an executed report (and possibly a copy of its data) is held on the Report Server in
memory and/or in the Report Server database. Before you try to differentiate between cached instances,
snapshots, and snapshot history, we need to discuss some of the details about what goes on when reports
are rendered on the server. In their infinite wisdom, our good friends at Microsoft devised an intelligent
method for managing report delivery. The result is a mechanism that balances efficiency and flexibility.
It is a three-phased approach that encompasses the server-side report definition, an intermediate
rendering of a report independent from any specific rendering format and a cache of its data, and then
the final rendering in a specified format.

Figure 10-1

After a report is deployed to the Report Server, its definition is stored in the Report Server Database.
Before the final rendered report is outputted, an image of the report and its data is produced on the
server in an intermediate report format. The intermediate report format describes the placement of data,
items, regions, and pages before it is rendered to a specific output format.

The intermediate rendering format is the foundation of report caching. For reports that are rendered on
demand in real time, the intermediate format is held in memory on the Report Server. When a report is
cached, the intermediate format image is written to disk in the ReportServerTempDB database (one of
the two databases that comprise the Report Server). This enables the report data and definition to be
retrieved once and outputted in different rendering formats or multiple times in the same rendering
format. This way, the retrieval of report data which is typically the most time consuming process, is
performed once and reused multiple times, thus dramatically improving performance. This also makes
it possible for a single cached instance to produce different outputs based on report parameters that
filter data on the cached data store. The final rendering is performed against the intermediate format
using a designated rendering extension.

In order to set up any implementation of caching, security credentials must be provided for the data
source of a report. If you are using shared data sources, this only needs to be set up once on the shared
data source.

68787_ch10.qxp 26/03/2004 6:05 PM Page 348

Cached Instances
If a report is configured to cache report instances when a user first requests the report with a unique
combination of parameter values (assuming the report takes parameters), the intermediate form of the
report and its data are stored in the Report Server database. Each unique combination of parameters
may produce a separate cached instance. A significant difference between a cached instance and a
snapshot is that a cached instance is rendered the first time a user requests the report with unique
parameters. Cached reports are configured to expire after a specific period or on a schedule, after which
the report cache is flushed and the report is cached again on the next request. The cache will also be
flushed automatically when a report definition is modified and redeployed, caching options are
changed, or the report is deleted.

If the report is rendered from a cached instance, this means that data presented in the report could
potentially be out of date without the user's knowledge. For this reason it may be a good idea to update
cached instances frequently, especially for a transactional database where data changes often. In the case
of a data warehouse, it might make sense to synchronize cached report updates with batch data updates
to the warehouse database.

Snapshots
A snapshot is a static, cached copy of a rendered report. Snapshots are created before users request
reports and are usually created and refreshed on a prescribed schedule. Because snapshots are rendered
beforehand, users cannot interactively supply parameter values. Reports that require parameters must
be configured with these values ahead of time.

Often, a particular report needs to be generated at a predetermined interval, for example, a monthly
sales report. So if the report were created at the end of January, users would want to see the January
report throughout February. They do not expect the February data to be seen in the January report.
These types of reports are best created upfront, without waiting for the first user to request it, because
the report is expected to be available at the end of January. Therefore, you can now instruct Reporting
Services to create the report pro-actively and keep it ready for users.

History
Report snapshots may be placed into history. This means that when another snapshot is created for a
report, it doesn't overwrite the previous snapshot. Any of these individual snapshots for the same report
may be retrieved from history until the history is cleared or reaches its maximum size. Reports may
manually or automatically be placed into history based on a schedule when a snapshot is created.

The following table compares the features of various types of cached reports:

Keep in mind when using cached instances that users viewing a report will have no
indication that the report is rendered from a cached instance and will not see new
data entered since the report was cached.

349

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 349

Storing Parameters
Since report snapshots and subscriptions are executed without the user's interaction, all parameter
values must be supplied in the report configuration so they may be presented to the rendering engine at
the time of unattended report execution. Although defaults can be set for parameters, reports configured
to execute as a cached instance can be interactive and, therefore, do not require parameter values to be
stored. You can look at some examples of the configuration pages in Report Manager in the following
section.

Parameterized Filters
In Chapter 3, we discussed a number of query and filter techniques. In brief, these included using
parameterized queries in the database (by using either ad hoc SQL statements or stored procedures),
filtering data in the report, or a combination of the two.

You will recall that report parameters that are derived from query parameters cause data to be filtered at
the data source. Additional report parameters may be added to filter data on the report server using
filter expressions. Unlike query parameters that will cause multiple report instances to be cached (each
instance for a different combination of parameters), filter parameters in a cached instance simply filter
the data stored with the cached report. Filter expressions are applied to the cached data and will not
cause additional instances to be cached.

Cached Instance Snapshot History

Creation Created with the first
user request using a
unique combination of
parameters.

Created on a schedule
before the first user
requests a report.

Like a standard
snapshot; history entries
can be created on a
schedule or snapshots
may be added to history
manually by users.

Lifespan Cache automatically
expires after a
designated time has
elapsed or based on a
designated schedule.

A Report snapshot is
overwritten when the
next scheduled snapshot
is created.

History entries don't
typically expire but may
be overwritten when a
designated number of
history entries has been
reached.

Typical
Scenarios

To optimize
performance and
conserve resources
when users use different
parameter values.

For static reports that do
not require user
interaction, a snapshot
can be created with
pre-selected parameter
values. It's not optimal if
reports have several
parameter options.

Preserves snapshots for
archival and future
reference. Appropriate
for keeping a static view
of data that changes.

350

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 350

Configuring Credentials for Data Sources
If you have created reports where data sources use Windows Integrated security or don't store
credentials in the connection string, you will need to make a configuration change before you can enable
caching or add subscriptions for these reports. Some types of cached reports are executed before a user
actually views the report. For this reason, the security credentials needed to retrieve data from the data
source must be stored to execute the report ahead of time.

Storing Credentials
Data sources used by cached reports (either cached instances or report snapshots) must use stored
credentials. This information is stored in encrypted form with the shared data source or the report
definition in the Report Server database. If this is not set up prior to attempting to create a cached report
or subscription, a warning will be displayed similar to the Figure 10-2:

Figure 10-2

This is easily remedied. Shared data sources make it much easier to configure caching for multiple
reports. In Report Manager, open the folder containing the reports and data sources. Data sources appear
different from reports and are shown with a small globe icon. Click a data source link to open the
Properties page. You can view properties for the AdventureWorks2000 data source as shown in
Figure 10-3:

351

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 351

Figure 10-3

If you are not using a shared data source, you can get the same settings in the Data Sources tab on the
Properties page of a specific report.

In the data source Properties page, select Connect Using: Credentials stored securely in the report server.
Enter a username and password to authenticate to the data source as shown in Figure 10-4. This
information is stored as an encrypted string in the Report Server database. With this setting in place, you
will be able to configure caching and create subscriptions.

Figure 10-4

352

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 352

Depending on how the database or database server is configured, different options on this page may be
appropriate. If you are using SQL Server and authenticating with Windows Integrated Security, check
the box labeled Use as Windows credentials when connecting to the data source. These settings should be
sufficient to enable caching and subscriptions. Click Apply to save your settings.

Linked Reports
In Chapter 1, you were presented a once common scenario where slight variations in reporting
requirements would lead to the creation of several different reports. Rather than creating individual
reports that may be filtered on different criteria or use different security settings, you can use one report
and store a different set of settings to match each requirement. A linked report is a configuration profile
for a report that can store a separate set of configuration settings. Any number of linked reports can be
created for a base report.

For example, let's say that you have a sales summary report that presents data filtered on a country
parameter and an optional parameter to filter on more specific regions within the country. You want to
cache several versions of the region-specific reports (one for each region using supplied parameter
values) such that the data is current or within a range of three hours. The Sales Manager only runs the
report for the entire country once a week and wants to always see the latest, up-to-the-minute sales data.
In this case, you can create a linked report for each of the regions with default values provided for the
country and regional parameters.

In the sales summary report example, the Sales Manager's report is rendered live using interactive
parameter selections. Another copy of the report is saved without query-based parameters and is
configured as a cached instance. This report would serve as the base for linked reports that have the
country and regional parameter values provided.

Configuring Cached Reports
Caching options are configured for each report using settings on the Execution tab on the Properties page.
To begin, select the report in Report Manager. In this example, I've created a version of the Product Sales
by Location report without query-based parameters so you can specify default values and name this
modified report Product Sales By Location (cache). The new report has been deployed. Open it in Report
Manager and as you can see in Figure 10-5, the Order Date parameters are requested without drop-down
lists:

Default parameter values can only be specified for non-query-based parameters. In
cases where you would like to have an interactive version of the report with query-
based parameters and another version for caching, you should either use
subscriptions or save a separate copy of the report without query-based parameters.

353

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 353

Figure 10-5

Now select the Properties tab to create a linked report. On the Properties page, click the Create Linked
Report button to add the linked report as illustrated in Figure 10-6:

Figure 10-6

In the linked report page that you see in Figure 10-7, enter a name for the linked report and optionally, a
description. In this example, we create a linked report for our general purpose Product Sales report that
will be used to view sales summary data for the state of Arizona. I'm naming the linked report Product
Sales-Arizona.

354

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 354

Figure 10-7

The linked report can now be treated just like any other report with its own set of configuration settings.
Click the Parameters link on the left side of the Properties page.

Based on the specifications for this report, specify the default parameter values for the cached report as
you can see in Figure 10-8. The order date range was already given default values in the Report
Designer. Set the CountryRegionCode to US and the StateProvinceName to Arizona. It is necessary to select
the Has Default checkbox to enter a default value. If you want the user to be able to change a parameter
value from the default, leave the corresponding Prompt User checkbox checked. The Prompt String setting
simply modifies the label text for the parameter on the Report Manager page. Apply these settings when
completed.

Figure 10-8

355

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 355

Using the Execution link, you can specify caching options. As you can see in Figure 10-9, this page may
be used to create a snapshot, to enable snapshot history, or to configure a cached instance of the report.

To enable a cached instance to be generated the first time the report is rendered, select the radio button
labeled Render this report with the most recent data, and the second radio button in this group labeled
Cache a temporary copy of the report. Set this cached instance to expire after three hours by entering 180
minutes into the corresponding textbox in this setting as shown in Figure 10-9, and then apply these
settings when completed:

Figure 10-9

The cached report instance is created when a user views the report. In this case, since default parameter
values are provided, the report will be rendered immediately showing sales for the default range for the
state of Arizona. You can see the generated report in Figure 10-10:

356

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 356

Figure 10-10

After the first request, subsequent visits to this report within three hours should show the same content
very quickly as the report is rendered from the cached instance rather than the typical database query
execution and report rendering process.

Creating a snapshot is very similar to creating a cached instance. On the Execution tab, select options for
creating a snapshot rather than a cached instance. The snapshot is generated immediately or on a
specified schedule (without user interaction) rather than on the first user's request.

Subscriptions
What a useful and convenient feature this is! As a manager, you may need to do a bi-weekly status
report for your people. When you travel, you might like to have a current, up-to-date employee
directory on your PDA at all times. As new products are added to your line of products and pricing
information changes, you'd like the updated product catalog in front of your people so they're never
working with outdated information. Using subscriptions makes all of this possible, simply and easily.

When I began to use SQL Server Reporting Services in the first beta version, I was thoroughly impressed
with the many new features. The ability to output reports using different rendering formats was
compelling. The simple Report Manager interface was nice and the ability to program reports to
integrate them into my applications was cool. I thought the product team at Microsoft had done a terrific
job. But this feature is icing on the cake! When I started playing with subscriptions, I thought, "Wow, this
is just too good to be true!"

357

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 357

The subscription engine renders a report any time you want it. It renders it in the format you need and
delivers it using the method you choose – either by email or to a file in any folder.

Snapshot-Triggered Subscriptions
Subscriptions can be triggered when a snapshot gets updated rather than being directly tied to a
schedule. If the snapshot is refreshed on a schedule, this effectively will cause the subscription to deliver
a report on the schedule for the snapshot. Since snapshots can also be updated manually, using this
technique can guarantee that users receive updated reports regardless of the method used to refresh the
snapshot. For example, at the end of each month, after you bulk-load new data into your decision-
support database you update the related snapshots. Triggering subscriptions on the snapshot updates
brings the process into balance without concern for the coordination of scheduled events.

The option to create a snapshot-triggered subscription is only available when the report execution is
based on a subscription. After setting up a snapshot for your report, add a subscription. Figure 10-11
shows you how to set the appropriate report delivery options. Under the Subscription Processing Options,
select the radio button to run the subscription when the report content is refreshed.

Figure 10-11

358

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 358

Schedule-Triggered Subscriptions
The most common type of subscriptions will likely be based on a shared or an individual schedule. The
scheduling mechanism is based on the SQL Server Agent that fires and executes events at specific times.

Individual and Shared Schedules
There are advantages of using both the types of scheduling options. Creating a shared schedule makes it
easier to schedule multiple events to run at the same time and individual schedules don't have to be set
up for each event. This may be an appropriate solution when you need to run several reports during off-
peak hours when the server isn't busy with live user requests. Although this may be more convenient, a
significant penalty is realized when the server tries to run demanding jobs at the same time. For reports
that are long, perform complex calculations, or consume a lot of data, you may want to stagger the
schedules to prevent this condition.

To create a shared schedule, click the Site Settings link in the Report Manager. On the Site Settings page,
click Manage Shared Schedules (see Figure 10-12):

Figure 10-12

On the next page (shown in Figure 10-13), click New Schedule and fill out the details in the Scheduling
page. These options are similar to setting a recurring appointment in Microsoft Outlook.

359

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 359

Figure 10-13

As you can see in Figure 10-13, by default, the start date is set to the current date and no end date is
specified. If you would like the schedule to expire then you must set the end date. The start and end
dates can only be set by using the calendar controls. Click on the corresponding calendar icon to display
the calendar control (Figure 10-14) and then navigate to the date using the calendar's back (<) and
forward (>) buttons and then select the dates. To enable the end date, the Stop this schedule on checkbox
must be checked. Clicking the end date calendar icon will check this box for you. Click OK to accept the
new schedule. The shared schedule will now be available for selection in all pages that prompt for a
schedule.

360

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 360

Figure 10-14

Configuring Email Delivery
When Reporting Services is first installed, the setup wizard prompts for the mail server name and
address information. Launching the setup wizard again will not prompt for this information again. To
modify or set the email server information, you must edit the RSReportServer.config file. Email
options are set under the RSEMailDPConfiguration element in the Delivery section of this file. For
more information about modifying configuration settings, please refer to Chapter 1.

File Share Subscriptions
Specifying a file share subscription is very simple. On the Subscriptions link for a report, click Add
Subscription. On the Report Delivery Options page, under Delivered By, select Report Server File Share from
the drop-down list. See Figure 10-15:

361

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 361

Figure 10-15

You will typically want to specify credentials for a user and then assign this user write permissions on
the shared folder. The example in Figure 10-15 shows a user created specifically for our file subscriptions
called Subscription Writer. This user has been granted write permissions on the folder.

Enter a valid UNC file path into the Path text box. A local file system path is not acceptable input. If you
are entering a local path, follow these steps:

1. Using Windows Explorer, create a file share for the local path. This is easily done by right
clicking on the folder and selecting Sharing. Create the share using the Sharing tab.

2. Using the Permissions options on the Sharing tab, grant a user read and write access to this
shared folder.

3. Click OK on the Sharing Permissions dialog to accept the file share settings.

362

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 362

4. In Windows Explorer, navigate to My Network Places (or Network Neighborhood in Windows NT).
Continue to drill-down to the network share on the server. Typically, this will be under Entire
Network\ Microsoft Windows Network\ (your domain or workgroup name)\ (server name)\ (file share
name).

5. Copy the path from the address box in Windows Explorer and paste it into the Path textbox.

The Universal Naming Convention (UNC) path should be in the form \\server name\share name.
Although it usually is not recommended, you can use an administrative user's credentials to write the
subscription output file. In this case, you could use an administrative share (such as c$) rather than
create a new share. In any case, the system administrator should be involved in this decision.

Pocket PC Report File Updates
If you would like to have a subscription that updates file-based reports for a Pocket PC device, you can
output report files across the network to the synchronization folder for a device. When a mobile device
partnership is created using Microsoft ActiveSync on a user's personal computer, a folder is designated
for automatic file synchronization. Any files that are modified or written to this folder will be
automatically synchronized with the Pocket PC device. This folder is found under the user's My
Documents folder and is typically named (mobile device name) My Documents. For example, if your
device name were Freds Pocket PC, the synchronization folder would be named Freds Pocket PC My
Documents. Any subfolders are also synchronized so you could create a subfolder called Reports and
write report files to this location.

When creating file shares for machines across the network, the My Documents folder location can be
remapped by the user and is profile-specific. The default location for My Documents is C:\Documents and
Settings\(user profile name)\My Documents. Make sure that the user writing to the remote computer from
the Report Server has been granted write access to the output folder.

Data-Driven Subscriptions
A data-driven subscription is a subscription where the report recipient information is provided by a
query. In addition to the list of recipients, several subscription-specific properties can be based on values
returned by a query as well. This makes some very interesting and creative solutions possible.

Reporting Services doesn't provide a database by default so you do have to do a little work to prepare a
data-driven subscription, but it's actually quite simple. The data can be stored in practically any form as
long as the necessary values are available in columns returned by the query. At the very least, the only
requirement is a list of names or email addresses. Every property may use either a static value (assigned
when the subscription is created) or values from each row in the query. The query could return
information that can be used to customize a report; this implies that for every subscription recipient, a
report may be rendered in a different format, sent to a different file share, or sent using a different
subject line, priority flag, and so on.

Unlike the Report Designer, tools to assist with building expressions are not offered. If you are not
versed in the practice of creating a connection string or Transact SQL expressions, it is recommended
that you use the Report Designer to create these expressions as discussed in Chapters 2 and 3. The
connection string and query expressions may be copied from the respective designer tool and pasted
into these textboxes. File paths must also be typed into these pages as no browsing feature is offered.

363

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 363

The following properties are available for email subscriptions:

The following properties are available for file-share subscriptions:

Property Description

File name (required) File name without the path. Omit the extension if the File Extension
property is set to True.

File Extension (required) True/False – Generate file extension based on the Render Format.

Path UNC path not including the file name or trailing slash.

Render Format (required) Report rendering format for output file. Single file rendering format
is advised for subscriptions, such as MHTML rather than HTML.

Use Credentials (required) True/False – Use specified credentials or system process.

User Name Required if Use Credentials is True.

Password Required if Use Credentials is True.

Write Mode Auto increment to add an auto-incrementing number to file name.
Overwrite to replace existing file.

Property Description

To (required) Email address or alias of recipient

CC Carbon copy email address or alias

BCC Blind carbon copy email address or alias

Reply-To Address or alias for recipient to reply

Include Report True/False– Include report as embedded content (defaults to True)

Render Format
(required)

Report rendering format (defaults to web archive). A single file rendering
format is recommended for subscriptions, such as MHTML rather
than HTML

Priority Email message priority (defaults to Normal)

Subject Email subject line

Comment Text added to the message subject

Include Link True/False – Include report as linked file (defaults to True)

364

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 364

Managing Subscriptions
It is likely that the most significant subscription management task will be to verify if subscriptions are
running as scheduled. The outcome of subscription events is recorded in the server's Application Log
and more specific details are written to individual log files with the date/timestamp in each file name.
Over time, hundreds of these files may be produced and should be backed-up and/or deleted.

Events in the Application Log are recorded with the Source property value of Report Server and SQL
Server Reporting Service. There is no method to directly read or consolidate the individual log files.
However, Reporting Services ships with SQL script files, which will enable you to import this data into
tables for analysis using SQL Server DTS. These files are contained on the product CD in the Extras
folder.

For more information about importing and using log file information, search the Reporting Services
Books Online for the topic Querying and Reporting on Report Execution Log Data. Like other advanced
features, this can be a powerful tool for administrators but it's a little cumbersome to set up.

Now the good news. Simplified subscription log information is easy to obtain in the Report Manager. To
get information for a specific report, select the Subscription tab. The status for the last execution is
displayed for each subscription and snapshot. A summary view of all reports accessible to the current
user is also available on the My Subscriptions tab (see Figure 10-16). These execution summaries can be
used to diagnose subscription errors including service and permission related problems.

Figure 10-16

365

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 365

Using the Reporting Service Web Service
The ReportingService Web Service object exposes methods for managing subscriptions. The following
table lists these methods and associated arguments. Remember that webmethods (programmatic methods
for a webservice class) don't support overloaded calls or optional arguments. For arguments that don't
require a value, you can pass a Null (C#) or Nothing (VB).

Let's look at a few examples of some subscription management routines. To obtain a list of subscriptions
with associated properties for a report, you can use the ListSubscriptions method and use it by
passing in a report name. This returns a collection of Subscription objects.

Let's take a look at a sample application to view and create subscriptions. I'm not going to take you
through this example step-by-step, but I will give you enough information to reproduce the
subscription-related code. As you can see in Figure 10-17, I've added two ComboBoxes, two Buttons,
and a ListView control to a form in a Windows application project. The Panel and the other controls at
the bottom will be used later to create new subscriptions. The Panel is invisible and the New
Subscription button is disabled. The click event of the Get Subscription button enables the other button
because you create the ReportService object in this event.

Method Arguments

CreateDataDrivenSubscription Report, ExtensionSettings,
DataRetrievalPlan, Description,
EventType, MatchData, Parameters()

CreateSubscription Report, ExtensionSettings, Description,
EventType, MatchData, Parameters()

DeleteSubscription SubscriptionID

GetSubscriptionProperties SubscriptionID, ExtensionSettings,
Description, Active, Status, EventType,
MatchData, Parameters()

ListSchedules -

ListSubscriptions Report, Owner

ListSubscriptionsUsingDataSource DataSource

SetDataDrivenSubscriptionProperties DataDrivenSubscriptionID,
ExtentionSettings, DataRetrievalPlan,
Description, EventType, MatchData,
Parameters()

SetSubscriptionProperties SubscripionID, ExtensionSettings,
Description, EventType, MatchData,
Parameters()

366

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 366

The ListSubscriptions event takes two optional arguments. Now, if you were paying attention, you
would have caught that webmethods don't support optional arguments! In this sense, arguments that
don't have required values can accept the value Nothing (VB) or null (C#), making these methods
somewhat polymorphic (behaving differently under different conditions); this method behaves like this.
If you pass the path and report name for the Report argument, all subscriptions are returned. If you
pass the username for the Owner, subscriptions owned by this user are returned, and if you pass
nothing, all subscriptions on the server are returned. I've written some conditional statements that check
the two combo boxes and pass the appropriate values.

Figure 10-17

In the declaration section of the form class module, you declare an object variable for the web service
proxy class. The code to implement this in VB.NET is as follows:

Private rs As New localhost_RS.ReportingService

The code in C# is as follows:

private localhost_RS.ReportingService rs = new localhost_RS.ReportingService();

The Get Subscription button uses two object variables to hold the report pathname and/or owner name
supplied by the user. You use object type variables so you can pass the value Nothing (VB) or null (C#)
in case no values are provided.

After attaching the current user's security credentials to the web service proxy object, you use the
ListSubscriptions method to iterate through each subscription object and write associated properties
to list and view sub items. The ListView control will show each of these values in separate columns if
displayed in Detail mode. The last step is to enable the New Subscription button. This button will be
used in the next example. The code to implement this in VB.NET and C# follows.

VB.NET
Private Sub btnGetSubscriptions_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnGetSubscriptions.Click

Dim subscr As localhost_RS.Subscription
Dim strReport As String = IIf(Me.cboReport.Text <> "", Me.cboReport.Text,

Nothing)
Dim strOwner As String = IIf(Me.cboOwner.Text <> "", Me.cboOwner.Text, Nothing)

367

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 367

rs.Credentials = System.Net.CredentialCache.DefaultCredentials
'-- Loop through subscriptions collection, add to listview
For Each subscr In rs.ListSubscriptions(strReport, strOwner)

Dim ListItem As New ListViewItem
With ListItem

.Text = subscr.Description

.SubItems.Add(subscr.Owner)

.SubItems.Add(subscr.EventType)

.SubItems.Add(subscr.LastExecuted)

.SubItems.Add(subscr.Status)
End With
Me.lstvwSubscriptions.Items.Add(ListItem)

Next
'-- Enable new subscription button
Me.btnNewSubscription.Enabled = True

End Sub

C#
private void btnGetSubscriptions_Click(object sender, System.EventArgs e)
{

string strReport = null;
string strOwner = null;
if(this.cboReport.Text!= "")
{

strReport = this.cboReport.Text;
}
if(this.cboOwner.Text!= "")
{

strOwner = this.cboOwner.Text;
}
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

foreach (localhost_RS.Subscription subscr in rs.ListSubscriptions(strReport,
strOwner))

{
ListViewItem ListItem = new ListViewItem();
ListItem.Text = subscr.Description;
ListItem.SubItems.Add(subscr.Owner.ToString());
ListItem.SubItems.Add(subscr.EventType.ToString());
ListItem.SubItems.Add(subscr.LastExecuted.ToShortDateString());
ListItem.SubItems.Add(subscr.Status.ToString());
this.lstvwSubscriptions.Items.Add(ListItem);

}
this.btnNewSubscription.Enabled = true;

}

Figure 10-18 shows what the form looks like when the application is run and my computer\user name
is passed:

368

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 368

Figure 10-18

You can add a new subscription using the CreateSubscription method. Arguments passed to this
method are as follows:

1. ExtensionSettings: This argument is required and can be a little tricky. The
ExtensionSettings object contains two properties. The Extension property is a string
indicating the type of delivery extension. The ParameterValues property is an object of type
ParameterValueOrFieldReference that contains an array of ParameterValue objects. Each
element is a name/value pair. Depending on the subscription type, a different list of parameter
name/value pairs is passed using this array. These parameters correspond to the items
presented on the Report Delivery Options section of the Snapshot page in Report Manager.

2. EventType: This argument takes a string to set either TimedSubscription or
SnapshotUpdate.

3. MatchData: This argument accepts multiple types and values depending on the EventType
argument; these include the ScheduleID for a shared schedule or a string containing the XML
element content for the schedule. Shared schedule information may be obtained using the
ListSchedules method to enumerate the server's schedules.

4. Parameters: This argument is an array of ParameterValue objects. It is used to supply report
parameters as name/value pairs.

Now, let's put it all together in a sample application. Using the same form as the previous example, I've
placed two textboxes, two combo boxes, and a button on the Panel control at the bottom of the form as
seen in Figure 10-19:

Figure 10-19

369

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 369

At the top of this form, the New Subscription button was enabled at the end of the Get Subscriptions
button click event code. In the click event of this button, you set the Visible property of the panel to True
and get a list of shared subscriptions that have been created on the Report Server, adding the Description
for each schedule to the Schedule combo box. For the following code, you'll look at VB.NET and C#
language examples side-by-side.

VB.NET
Private Sub btnNewSubscription_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles btnNewSubscription.Click

Me.Panel1.Visible = True

Dim sched As localhost_RS.Schedule
For Each sched In rs.ListSchedules

Me.cboSchedules.Items.Add(sched.Description)
Next

End Sub

C#
private void btnNewSubscription_Click(object sender, System.EventArgs e)
{

this.Panel1.Visible = true;
foreach (localhost_RS.Schedule sched in rs.ListSchedules())
{

this.cboSchedules.Items.Add(sched.Description);
}

}

After a schedule is selected from the schedule combo box, the SelectedIndex value will correspond to
the index of the corresponding schedule. Let's use this to obtain the ScheduleID value and pass it to the
CreateSubscription method.

After entering a description, recipient email address, and selecting a rendering format, the user clicks the
Add Subscription button. In this click event, you set up the values and objects passed as arguments to the
CreateSubscription method. Let's see how to do this in the following sections.

The selected item in the Schedule combo box corresponds to a member of the Schedules collection
returned by the ListSchedules method. There is only one method to obtain these items, so you use a
loop to resolve the selection and exit when the counter variable matches the SelectedIndex property of
the combo box.

VB.NET
'-- Get selected schedule
Dim sched As localhost_RS.Schedule
Dim iSchedCounter As Int16
For Each sched In rs.ListSchedules

iSchedCounter += 1
If iSchedCounter = Me.cboSchedules.SelectedIndex() Then Exit For

Next

370

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 370

C#
//-- Get selected schedule
localhost_RS.Schedule scheduleItem = null;
Int16 iSchedCounter = 0;
foreach (localhost_RS.Schedule sched in rs.ListSchedules())
{

iSchedCounter += 1;
if (iSchedCounter == this.cboSchedules.SelectedIndex)
{

scheduleItem = sched;
break;

}
}

You can now obtain the ScheduleID property of the Schedule object using the sched variable.

Next, you create an ExtensionSettings object and set its Extension property to indicate that this
subscription will use the email delivery extension as follows.

VB.NET
Dim extset As New localhost_RS.ExtensionSettings
extset.Extension = "Report Server Email"

C#
localhost_RS.ExtensionSettings extset = new localhost_RS.ExtensionSettings();
extset.Extension = "Report Server Email";

Now for the extension-specific properties of the ExtensionSettings object. The ParameterValues
property is set to an object of type ParameterValueOrFieldReference and is a five-element array.
You also create five corresponding ParameterValue objects. For each of these objects, you set the Name
and Value properties and then add them to the array.

VB.NET
'-- Create Parameter Values array
Dim ParamVals(5) As localhost_RS.ParameterValueOrFieldReference
extset.ParameterValues = ParamVals

'-- Populate the Extension Parameters
Dim pvTo As New localhost_RS.ParameterValue
pvTo.Name = "TO"
pvTo.Value = Me.txtEMailTo.Text
extset.ParameterValues(0) = pvTo
Dim pvIncludeRpt As New localhost_RS.ParameterValue
pvIncludeRpt.Name = "IncludeReport"
pvIncludeRpt.Value = "True"
extset.ParameterValues(1) = pvIncludeRpt

Dim pvRenderFormat As New localhost_RS.ParameterValue
pvRenderFormat.Name = "RenderFormat"
pvRenderFormat.Value = Me.cboRenderFormat.Text
extset.ParameterValues(2) = pvRenderFormat

371

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 371

Dim pvPriority As New localhost_RS.ParameterValue
pvPriority.Name = "Priority"
pvPriority.Value = "NORMAL"
extset.ParameterValues(3) = pvPriority

Dim pvSubject As New localhost_RS.ParameterValue
pvSubject.Name = "Subject"
pvSubject.Value = "@ReportName was executed at @ExtensionTime"
extset.ParameterValues(4) = pvSubject

C#
//-- Create Parameter Values array
localhost_RS.ParameterValueOrFieldReference[] ParamVals = new

Subscriptions_CS.localhost_RS.ParameterValueOrFieldReference[5];
extset.ParameterValues = ParamVals;

//-- Populate the Extension Parameters
localhost_RS.ParameterValue pvTo = new localhost_RS.ParameterValue();
pvTo.Name = "TO";
pvTo.Value = this.txtEMailTo.Text;
extset.ParameterValues[0] = pvTo;

localhost_RS.ParameterValue pvIncludeRpt = new localhost_RS.ParameterValue();
pvIncludeRpt.Name = "IncludeReport";
pvIncludeRpt.Value = "true";
extset.ParameterValues[1] = pvIncludeRpt;

localhost_RS.ParameterValue pvRenderFormat = new
localhost_RS.ParameterValue();

pvRenderFormat.Name = "RenderFormat";
pvRenderFormat.Value = this.cboRenderFormat.Text;
extset.ParameterValues[2] = pvRenderFormat;

localhost_RS.ParameterValue pvPriority = new localhost_RS.ParameterValue();
pvPriority.Name = "Priority";
pvPriority.Value = "NORMAL";
extset.ParameterValues[3] = pvPriority;

localhost_RS.ParameterValue pvSubject = new localhost_RS.ParameterValue();
pvSubject.Name = "Subject";
pvSubject.Value = "@ReportName was executed at @ExtensionTime";
extset.ParameterValues[4] = pvSubject;

The report you are using doesn't require any parameters, so you have everything necessary to actually
create the subscription. Call this method by passing Nothing in place of a Parameters array.

VB.NET
'-- Create the Subscription (no report parameters in last arg)
rs.CreateSubscription(Me.cboReport.Text, _

extset, _
Me.txtDescription.Text, _
"TimedSubscription", _

372

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 372

sched.ScheduleID, _
Nothing)

C#
//-- Create the Subscription (no report parameters in last arg)
rs.CreateSubscription(this.cboReport.Text,

extset,
this.txtDescription.Text,
"TimedSubscription",
scheduleItem.ScheduleID,
null);

Now let's look at the entire routine put together. Here's all of the Add Subscription button click event code
in both VB.NET and C#.

VB.NET
Private Sub btnAddSubscription_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs)
Handles btnAddSubscription.Click

'-- Get selected schedule
Dim sched As localhost_RS.Schedule
Dim iSchedCounter As Int16
For Each sched In rs.ListSchedules

iSchedCounter += 1
If iSchedCounter = Me.cboSchedules.SelectedIndex() _

Then Exit For
Next

Dim extset As New localhost_RS.ExtensionSettings
extset.Extension = "Report Server Email"

'-- Create Parameter Values array
Dim ParamVals(5) As localhost_RS.ParameterValueOrFieldReference
extset.ParameterValues = ParamVals

'-- Populate the Extension Parameters
Dim pvTo As New localhost_RS.ParameterValue
pvTo.Name = "TO"
pvTo.Value = Me.txtEMailTo.Text
extset.ParameterValues(0) = pvTo
Dim pvIncludeRpt As New localhost_RS.ParameterValue
pvIncludeRpt.Name = "IncludeReport"
pvIncludeRpt.Value = "True"
extset.ParameterValues(1) = pvIncludeRpt

Dim pvRenderFormat As New localhost_RS.ParameterValue
pvRenderFormat.Name = "RenderFormat"
pvRenderFormat.Value = Me.cboRenderFormat.Text
extset.ParameterValues(2) = pvRenderFormat
Dim pvPriority As New localhost_RS.ParameterValue
pvPriority.Name = "Priority"
pvPriority.Value = "NORMAL"
extset.ParameterValues(3) = pvPriority

373

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 373

Dim pvSubject As New localhost_RS.ParameterValue
pvSubject.Name = "Subject"
pvSubject.Value = "@ReportName was executed at @ExtensionTime"
extset.ParameterValues(4) = pvSubject

'-- Create the Subscription (no report parameters in last arg)
rs.CreateSubscription(Me.cboReport.Text, _

extset, _
Me.txtDescription.Text, _
"TimedSubscription", _
sched.ScheduleID, _
Nothing)

End Sub

C#
private void btnAddSubscription_Click(object sender, System.EventArgs e)
{

//-- Get selected schedule
localhost_RS.Schedule scheduleItem = null;
Int16 iSchedCounter = 0;
foreach (localhost_RS.Schedule sched in rs.ListSchedules())
{

iSchedCounter += 1;
if (iSchedCounter == this.cboSchedules.SelectedIndex)
{
scheduleItem = sched;
break;
}

}
localhost_RS.ExtensionSettings extset = new localhost_RS.ExtensionSettings();
extset.Extension = "Report Server Email";

//-- Create Parameter Values array
localhost_RS.ParameterValueOrFieldReference[] ParamVals = new
Subscriptions_CS.localhost_RS.ParameterValueOrFieldReference[5];
extset.ParameterValues = ParamVals;

//-- Populate the Extension Parameters
localhost_RS.ParameterValue pvTo = new localhost_RS.ParameterValue();
pvTo.Name = "TO";
pvTo.Value = this.txtEMailTo.Text;
extset.ParameterValues[0] = pvTo;

localhost_RS.ParameterValue pvIncludeRpt = new localhost_RS.ParameterValue();
pvIncludeRpt.Name = "IncludeReport";
pvIncludeRpt.Value = "true";
extset.ParameterValues[1] = pvIncludeRpt;
localhost_RS.ParameterValue pvRenderFormat = new

localhost_RS.ParameterValue();
pvRenderFormat.Name = "RenderFormat";
pvRenderFormat.Value = this.cboRenderFormat.Text;
extset.ParameterValues[2] = pvRenderFormat;

localhost_RS.ParameterValue pvPriority = new localhost_RS.ParameterValue();

374

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 374

pvPriority.Name = "Priority";
pvPriority.Value = "NORMAL";
extset.ParameterValues[3] = pvPriority;

localhost_RS.ParameterValue pvSubject = new localhost_RS.ParameterValue();
pvSubject.Name = "Subject";
pvSubject.Value = "@ReportName was executed at @ExtensionTime";
extset.ParameterValues[4] = pvSubject;

//-- Create the Subscription (no report parameters in last arg)
rs.CreateSubscription(this.cboReport.Text,

extset,
this.txtDescription.Text,
"TimedSubscription",
scheduleItem.ScheduleID,
null);

}

Managing Subscriptions Using Script
Using script, you can perform almost any task in a .NET application but scripts are run at the command
line in text mode. As we discussed in Chapter 8, a Reporting Services script file is written using Visual
Basic .NET code and has nearly all the capabilities of a console application.

We will use the GetSubscriptions button code from the Subscription Manager application above.
However, there are some modifications for this to work in console mode rather than as a Windows
form. The VB Script code is saved in a file called List_Subscriptions.rss.

Sub Main()
Dim subscr as Subscription
Console.WriteLine()
Console.Write("Report: ")
Dim strReport as String = Console.ReadLine()
Console.Write("Owner: ")
Dim strOwner as String = Console.ReadLine()
rs.Credentials = System.Net.CredentialCache.DefaultCredentials
If sReport = "" Then strReport = Nothing
If sOwner = "" Then strOwner = Nothing

Console.WriteLine()
Console.WriteLine("***")
Console.WriteLine("Subscriptions for:")
Console.WriteLine("Report: " & sReport)
Console.WriteLine("Owner: " & sOwner)
Console.WriteLine("---")
For Each subscr In rs.ListSubscriptions(strReport, strOwner)

Console.WriteLine(subscr.Description)
Next
Console.WriteLine("---")

End Sub

Let's examine the code, grasp the logic, and then run the script.

375

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 375

In a Reporting Services script, the Reporting Service Web Service is invoked automatically and all
related classes are accessible without additional references. As you can see in this code, you declare a
Subscription object using the variable subscr.

Using the Console object, you use the ReadLine method to obtain a value from the user and the Write
and WriteLine methods to send text to the console (command line).

You can use two string variables, sReport and sOwner to capture input from the user and then convert
these values to object types using the variables oReport and oOwner. This is necessary so you can pass
the Nothing value to the ListSubscriptions method in case the user doesn't provide a value. Next,
you iterate through the Subscriptions collection and write out the list to the console.

Open a command window, change to the folder containing the report, and issue a command to execute
the script, which looks like Figure 10-20:

Figure 10-20

The result is a list of all subscriptions on the server for which I am the owner. By using scripts, you
should be able to apply almost any VB.NET code that is simplified to work in the console environment.

Summary
Reporting Services has several options for report delivery including on-demand reporting where the
data is queried and reports are generated upon request. Although this provides the most timely report
data, it may not be the most practical solution.

Caching report content gives us a range of scalable and extensible options. A cached instance can hold
both the report content and a portion of data in the report server database so the data can be filtered and
reports can be rendered to different formats after the cached report is created without taxing the data
source.

376

Chapter 10

68787_ch10.qxp 26/03/2004 6:05 PM Page 376

Snapshots are static, cached reports that can be generated before users need them and can be delivered
in a variety of ways that may include subscriptions and history.

Subscriptions deliver reports on a shared or individual schedule and can be sent via email or a shared
folder. Delivery extensions can also be written to provide additional delivery mechanisms. We've
explored some custom subscription management solutions. Using the Reporting Services Web Service or
scripting host provider, custom applications can be written to create and manage your own
subscriptions and report delivery solutions.

377

Report Caching and Subscriptions

68787_ch10.qxp 26/03/2004 6:05 PM Page 377

68787_ch10.qxp 26/03/2004 6:05 PM Page 378

Report Definition Language

In the previous chapters, we have demonstrated how reports can be created for SQL Server
Reporting Services using Visual Studio and the Report Designer tool. The goal of this chapter is to
give you a better understanding of how reports are built, what is happening in the background,
and how your reporting requirements are communicated to SQL Server Reporting Services using
Report Definition Language (RDL). We will discuss the technology that makes it all possible and
RDL itself. We will finish the chapter by demonstrating the creation of simple RDL tags using the
.NET Framework XML classes and by creating a full blown report using a freeware tool called
CodeSmith.

In short, this chapter covers:

❑ The underlying technology behind RDL and related definitions, such as XML naming
rules, elements, attributes, documents, namespaces, and schema.

❑ What is RDL?

❑ Creating RDL

RDL – Underlying Technology
Microsoft's RDL is a XML grammar that allows us to define reports. It is based on open standards
and designed to communicate your reporting needs to SQL Server Reporting Services, but can be
consumed by any tool that understands its structure. The Visual Studio Report Designer provides
a graphical user interface that allows you to design reports in a What You See Is What You Get
(WYSIWYG) type of environment. Behind the scenes, the Visual Designer is actually creating a
RDL document based on the following technologies that you can use to communicate your
reporting requirements to Reporting Services:

❑ XML

❑ XML Schema

111111

68787_ch11.qxp 26/03/2004 3:56 PM Page 379

Chapter 11

380

❑ RDL

❑ XML Web Services

What Is XML?
XML is an acronym that stands for Extensible Markup Language, a specification developed by the World
Wide Web Consortium (W3C). XML is a pared-down version of Standard Generalized MarkUp Language
(SGML), designed especially for web documents. It allows designers to create their own customized
tags, enabling the definition, transmission, validation, and interpretation of data between applications as
also between organizations.

XML has strong syntactical rules that facilitate its use in machine-to-machine as well as human
communication. These rules only define what constitutes an XML document, but do not define or limit
its use in any way. This means that you are in full control of the tags you use and the representation of
different data in your documents. In order to further discuss RDL, the structure and makeup of XML
must be more fully explored. The scenario for this discussion is an XML document that needs to be
created to represent the inventory for a hypothetical car dealership called Ali's Auto.

XML Naming Rules
The rules of XML naming are common among all of the pieces used to build an XML document and
should be first discussed because of this. There are no rules that govern what you name the pieces of
your document, but there are rules on how you name them:

❑ Names must start with letters or an underscore.

❑ Names cannot start with numbers.

❑ Names cannot contain spaces.

❑ Items cannot begin with "xml" as it is a reserved word.

There are many schools of thought on XML naming conventions, but the XML 1.0 specification only
addresses what characters may be used and where.

XML Elements
The basic building block of an XML document is the element. Examine the text below:

<Car>Pontiac Grand Prix</Car>

The text between the < and > characters is known as a XML tag. The <Car> tag above is known as the
start tag. The </Car> tag is its duplicate with the exception of the / character, which marks it as the end
tag. In XML, this matching is required. The text Pontiac Grand Prix is known as the element content.
These tags and everything within them together constitute a XML element. In cases where a tag has no
content, it is legal to add a / to the starting tag to indicate an empty tag:

<Car/>

68787_ch11.qxp 26/03/2004 3:56 PM Page 380

When creating XML elements, there are rules that must be followed:

❑ Elements must follow XML naming rules

❑ Every start tag must have a matching end tag

❑ Tags cannot overlap

XML is extensible in that it allows you to fully control all the tags that you use to describe your data. The
following XML fragment demonstrates changing the Car tag to provide information that is more
detailed:

<Car>
<Make>Pontiac</Make>
<Model>Grand Prix</Model>

</Car>

The <Make> and <Model> tags have been added to give you additional granularity when accessing your
Car data. Notice that they are nested within the <Car> tag. This indicates that they belong to or provide
additional information about the <Car> tag. Nesting is normally used to indicate relationships between
the data being represented in an XML Document.

XML Attributes
Another much used part of an XML document is the attribute. An attribute is typically used to provide
detailed information about an XML element although this is not a formal requirement. Attributes are
attached to the start tag of an XML element.

<Car Vin="BR549">

<Make>Pontiac</Make>

<Model>Grand Prix</Model>

</Car>

The above Car element has now been modified to provide more information about the car. In this
instance, a vehicle identification number attribute was added to the start tag of the Car element. Because
of the flexible nature of XML, a more attribute-centric version of the Car element could be created
without violating any XML rules:

<Car Vin="BR549" Make="Pontiac" Model="Grand Prix" />

Although the text of the last two code blocks is very different, they are functionally equivalent. Just like
elements, attributes also have rules that they must abide by:

❑ Attributes must be unique within their element.

❑ Attributes must have content.

❑ Attribute content must be enclosed with quotes.

The type of quotes that you use to enclose the contents of your attributes is not important, but you must
be consistent in their usage.

381

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 381

You might have to decide between using attributes and elements in your report design. Both can serve
the same purpose, but there are some tradeoffs you need to take into account. If you are in a situation
where you have limited bandwidth, you could use attribute-centric XML, otherwise use element-centric
XML. However, mixing the two is a bad design strategy.

XML Documents
XML documents are a mixture of elements and attributes organized to represent some data. In this
section, let's discuss how to declare your documents as an XML document, and how detailed
information and instructions can be sent to applications that will parse or use your XML data. The
concept of a 'well-formed' XML document will also be introduced.

An XML document is identified by the inclusion of an XML declaration similar to:

<?xml version="1.0" ?>

This XML declaration should be the first thing encountered in the document. It is used to identify the
document as an XML document, as well as to provide additional version or encoding information.
Currently, the version information is not really used as there is only one XML specification, but this
information is in place in case additional versions of the XML specification should ever occur. It would
indicate to the application that was reading or "parsing" the XML, which specification and rules to
enforce. Let's modify the above XML fragment example to provide it with an XML declaration.

<?xml version="1.0" encoding="utf-8" ?>
<Car Vin="BR549">

<Make>Pontiac</Make>
<Model>Grand Prix</Model>

</Car>

While the XML above allows you to represent a car, there is still a problem. The ability to represent more
than one car must be added. In order to do this, you need to create a common outer element that will be
the container for all the other elements in our document. This outermost element is known as the root or
document element. To prepare for the eventuality that other types of vehicles besides cars might need to
be represented, the outer element could be named Vehicles:

<?xml version="1.0" encoding="utf-8" ?>
<Vehicles>

<Car Vin="BR549">
<Make>Pontiac</Make>
<Model>Grand Prix</Model>

</Car>
</Vehicles>

The document designed to represent vehicles for Ali's Auto is almost complete. It now complies with all
the rules required for it to be considered "well formed" XML.

❑ The document has an XML declaration.

❑ It is composed of one or more elements.

382

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 382

❑ All document entities conform to the XML naming rules.

❑ All document entities meet rules for their type (elements, attributes, namespaces, and so on).

❑ The XML tags are properly nested (no overlapping tags).

A well formed XML document simply follows all the rules governing the creation of XML. These rules
provide and enforce a common standard for machine and program readability, which is one of the
primary purposes of XML. It is important to note that nowhere do these rules address what should be
contained in a document. This issue will be addressed in the XML Schema section that follows.

XML Namespaces
When using XML, you might need to combine XML documents. It is likely that names used by you
might have been used by others. This would be troublesome if not for the concept of namespaces. XML
namespaces allow developers to uniquely identify their element names and relationships. This allows
the developer to avoid name collisions with elements that have the same names but are defined in
different vocabularies. Typically developers use Uniform Resource Identifiers (URIs) as namespaces and
specifically Uniform Resource Locators (URLs), because the naming standards for Internet domains
guarantee that each domain name is unique. See the following example:

<?xml version="1.0" encoding="utf-8" ?>

<Vehicles xmlns="http://sqlreportservices.com/AliAuto">

<Car Vin="BR549">

<Make>Pontiac</Make>

<Model>Grand Prix</Model>

</Car>

</Vehicles>

This allows the multiple tags with the same name to maintain their individuality. A combined document
might look similar to the document that follows:

<?xml version="1.0" encoding="utf-8" ?>
<Vehicles xmlns="http://sqlreportservices.com/AliAuto"

xmlns:JJ="http://sqlreportservices.com/JanicesJalopies"
xmlns:LL="http://sqlreportservices.com/LeweysLemons">

<Car Vin="BR549">

<Make>Pontiac</Make>

<Model>Grand Prix</Model>

</Car>
<JJ:Car>
<JJ:Vin>BR549</JJ:Vin>
<JJ:Make>Pontiac</JJ:Make>
<JJ:Model>Grand Prix</JJ:Model>

</JJ:Car>
<LL:Car Vin="BR549" Make="Pontiac" Model="Grand Prix" />

</Vehicles>

Notice that the namespace declared for Ali's Auto has no prefix. It is the default namespace of the
document, and all entities will be processed in that context unless a prefix is specified. This leads us into
the next topic of discussion, XML Schema.

383

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 383

XML Schema
Ali's Auto has now identified the information that is important for their use, and come up with an XML
structure to represent that information. Next, they need to ensure that all of their XML documents match
this structure. The most recent and powerful way to perform this function is by using an XML Schema.

An XML Schema is a formal specification that defines how information is to be represented in an XML
document. It defines the structure of the document and the elements that are allowed. It defines the
relationships between elements, their order, and can also define their data types. An XML Schema
document is another example of the power and flexibility of XML, which is used to create the schema
itself.

Let's start out by creating our solution. The steps are as follows:

1. Create the solution by choosing File | New | Blank Solution. Change the name of the solution to
RDLSolution.

2. Add the language-specific project by choosing File | Add Project | New Project. Use the empty
project template.

3. Change the name of the project to XMLProject.

4. Add an XML document to the project by selecting File | Add New Item | File.

5. Select an XML file and change the name of the file to AliAuto.xml.

6. Edit the XML so that it matches the text in Figure 11-1:

Figure 11-1

Now that we have created our document using the facilities provided by Visual Studio, it is time to
make use of another tool that is available. We want to make a Schema to enforce the structure of our
XML document. Choose XML | Create Schema from the Visual Studio Menu as shown in Figure 11-2.
Ensure that the cursor is inside the document to make this choice visible.

Figure 11-2

This can have several effects on both the document and the project. If no namespace is identified in your
document, then Visual Studio creates a default namespace. Visual Studio will modify the Vehicle
element by adding an xmlns attribute with a value of http://tempuri.org/AliAuto.xsd. The value

384

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 384

that Visual Studio inserts into the tag is not actually unique; it is a place holder for your custom
namespace. Split "tempuri" and you literally have "temp" and "uri". The idea is to create a unique
namespace that identifies the elements from this particular XML document.

<Vehicle xmlns="http://tempuri.org/AliAuto.xsd">

Since we have already defined a namespace for the document, a new XML Schema document has been
added to our project but no namespace was specified. XML Schema documents have an .xsd file
extension; in the example described earlier, this file is called AliAuto.xsd. You can see that it has been
added to the XMLProject project in Figure 11-3:

Figure 11-3

An XML Schema document is used to verify that a particular document meets the structure, naming,
and type information required for a specific document. Open AliAuto.xsd and you should be able to see
something similar to Figure 11-4:

Figure 11-4

This image is the DataSet view provided by Visual Studio for working with Schema documents. It
displays the Car element as well as the other attributes and elements that should be nested within that
tag. The data types of the individual elements are also displayed and can be modified. Notice the toolbar
on the left. It contains the design objects for creating and working with all types of XML Schema
definitions. The DataSet view is a visual schema design surface that abstracts what is going on behind
the scenes. To see the actual XML that gets generated is used to enforce the structure of XML documents
for Ali's Auto, click on the XML tab at the bottom:

385

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 385

<?xml version="1.0" ?>
<xs:schema id="Vehicle" targetNamespace=":http://sqlreportservices.com/AliAuto"
xmlns="http://sqlreportservices.com/AliAuto"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified" elementFormDefault="qualified">
<xs:element name="Vehicle" >

<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Car">
<xs:complexType>
<xs:sequence>
<xs:element name="Make" type="xs:string" minOccurs="0" />
<xs:element name="Model" type="xs:string" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="Vin" form="unqualified" type="xs:string" />
</xs:complexType>

</xs:element>
</xs:choice>
</xs:complexType>

</xs:element>
</xs:schema>

This XML should be similar to what is generated by Visual Studio for your XML document. This version
has been edited to remove the Microsoft-specific namespaces so that it is more readable. The deletion of
these unused tags has no effect on the ability of this document to enforce the XML rules defined by Ali's
Auto.

After examining the document, you should notice that almost all of the tags are prefixed by xs. This
indicates that these tags are defined by the XML Schema definition maintained by the W3C:

<xs:schema id="Vehicle" targetNamespace="http://tempuri.org/AliAuto.xsd"

xmlns="http://sqlreportservices.com/AliAuto"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

attributeFormDefault="qualified" elementFormDefault="qualified">

For the most part, Schema documents are almost self explanatory. The <Vehicle> tag is a complex tag,
which means that it is composed of other tags. It is unlimited in the number of times that it can occur in
a document, which is indicated by the maxOccurs="unbounded" attribute tag:

<xs:element name="Vehicl"

<xs:complexType>

<xs:choice maxOccurs="unbounded">

After the schema has been created for Ali's Auto, you may validate the document by selecting XML|
Validate XML Data from the Visual Studio Menu. The results of the document are displayed in the status
window if there are no errors. See Figure 11-5:

386

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 386

Figure 11-5

To demonstrate both the effectiveness of an XML Schema and show what happens when the data is
invalid, the document needs to be modified. The schema document for Ali's Auto specifies the order of
the Make and Model elements. This is indicated by the elements being placed in the confines of the XML
Schema sequence element:

<xs:sequence>
<xs:element name="Make" type="xs:string" minOccurs="0" />
<xs:element name="Model" type="xs:string" minOccurs="0"/>

</xs:sequence>

Changing the order of the elements should cause the document to fail validation. Edit the XML
document to reverse the element order in the first <Car> tag as shown in Figure 11-6:

Figure 11-6

Because the schema document specifies the order that these tags should be in, the document now fails
validation. When errors occur, the error message is placed in the Task Pane of Visual Studio. Validating
with the reversed element order causes the message in Figure 11-7 to appear:

Figure 11-7

The ability to define the elements and structural relationships that are valid in a particular context vastly
increases the flexibility and functionality of XML in data processing. The combination of a standard
XML document format and a schema to validate that format combine to create what is commonly
known as an XML Vocabulary. XML Vocabularies allow you to define a standard mechanism for
machine-to-machine communication using XML and to validate that communication at both ends of the
transaction. There are several well known vocabularies in place today:

387

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 387

❑ Channel definition format: Used to ''push'' web pages

❑ XHTML: Attempt at structuring HTML

❑ XSL: XML stylesheets (XML transformation and formatting)

New XML vocabularies are being created at a frantic pace. They can be extremely useful for facilitating
communications between businesses and software. Many vertical industry vocabularies have and are
being developed.

What Is RDL?
RDL promotes interoperability of reporting tools by defining a common schema facilitating the exchange
of report definitions between most reporting tools. However, you need to be clear about the fact that
RDL is a schema definition and not a programming language, interface, or a protocol, nor does it specify
guidelines for report processing or the passing of report definitions between applications.

As mentioned earlier, RDL is the XML vocabulary that defines the communication of reporting
definitions to SQL Server Reporting Services. The purpose of the previous section on the XML
technology was to provide the insight you need to closely examine RDL.

Let's start by adding a new project to the existing RDLSolution. Select File | Add Project | New Project
from the Visual Studio menu. Next, select the Business Intelligence Project section and the Report Project
template. Change the name of the project to Master Detail as shown in Figure 11-8:

Figure 11-8

Figure 11-9 shows that a new reporting project has been added to the solution. The method used to
create this project is kind of convoluted because Microsoft, in trying to be helpful, has made it almost
difficult to create a blank report. The standard report creation mechanism is wizard-based, which is
helpful in a production environment, but does not facilitate the examination of RDL modifications. This
is needed to enable you to examine the underlying RDL as controls are added or data connection
settings are changed:

388

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 388

Figure 11-9

The next step is to add a report to the Master Detail Project. Highlight the Reports folder and right click to
bring up the context menu. Specifically avoid the Add New Report menu choice because it will start the
report wizard. Choose Add | Add New Item as shown in Figure 11-10:

Figure 11-10

This will bring up the Add New Item dialog box, where the Report object should be chosen as in Figure 11-
11. A blank report will then be created and added to the project:

Figure 11-11

After the blank report has been added, you will see a design surface like Figure 11-12. During this
walkthrough, the visual controls provided in the Report Designer toolbox will be added to the design
surface and the corresponding RDL examined.

389

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 389

Figure 11-12

Document RDL
In order to view the RDL that gets generated during the process of dragging and dropping the visual
controls, the file that contains the RDL must be selected. This is done in the Solution Explorer window. In
this window, right-click on the file to invoke the context menu as you can see in Figure 11-13. Select the
View Code option (this can also be done from the Visual Studio menu).

Figure 11-13

After the View Code option is chosen, there should be two views of the report open in Visual Studio. The
first view is the Visual Design view into which we will place our visual controls. The second is the XML
view of the report, which we will examine after placing controls on the design surface. The RDL for an
empty report is as follows:

<?xml version="1.0" encoding="utf-8"?>
<Report
xmlns="http://schemas.microsoft.com/sqlserver/reporting/2003/10/reportdefinition"
xmlns:rd="http://schemas.microsoft.com/SQLServer/reporting/reportdesigner">
<RightMargin>1in</RightMargin>

<Body>
<Style />
<Height>2in</Height>

</Body>

<TopMargin>1in</TopMargin>
<Width>5in</Width>
<LeftMargin>1in</LeftMargin>
<rd:SnapToGrid>true</rd:SnapToGrid>
<rd:DrawGrid>true</rd:DrawGrid>
<rd:ReportID>6d3a29b0-6216-4880-857f-1fd355497048</rd:ReportID>

390

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 390

<BottomMargin>1in</BottomMargin>
</Report>

Notice that there are two namespaces at the top of the document. The first namespace is used to define
the elements that belong to the report definition. This is also the default namespace of the document,
which means that any tags that do not contain a prefix are defined within the context of this namespace:

xmlns="http://schemas.microsoft.com/sqlserver/reporting/2003/10/reportdefinition"

The second namespace that you see is specific to the designer:

xmlns:rd="http://schemas.microsoft.com/SQLServer/reporting/reportdesigner">

The designer-specific tags are used to control the behavior of the Visual Studio Report Designer. All of
the tags that belong to the designer namespace will be prefixed with rd to resolve any name clashes,
should they occur.

<rd:SnapToGrid>true</rd:SnapToGrid>
<rd:DrawGrid>true</rd:DrawGrid>
<rd:ReportID>6d3a29b0-6216-4880-857f-1fd355497048</rd:ReportID>

These tags are represented in the Properties window for the document in the Design Section, and any
changes made to these properties will be reflected in the RDL itself. Change the SnapToGrid property to
False. See Figure 11-14:

Figure 11-14

The following snippet of RDL illustrates how changing properties in the design window changes the
RDL text in the document itself. It reflects the change in the value of the SnapToGrid property. This is true
not only for the document properties, but also for the data that you choose to use and every visual
control that you use in your report design:

<rd:SnapToGrid>false</rd:SnapToGrid>
<rd:DrawGrid>true</rd:DrawGrid>
<rd:ReportID>6d3a29b0-6216-4880-857f-1fd355497048</rd:ReportID>

391

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 391

Data RDL
In previous chapters, the AdventureWorks database has been used for all of the examples. To maintain
consistency, this section will also use this database. In order to create a simple report, you first need to
create the data definition that will be used to populate your report. Choose the Data tab of the report
designer and select New Dataset… from the drop-down list box as seen in Figure 11-15:

Figure 11-15

This will cause the Data Link Properties dialog to appear. Edit your connection settings to resemble those
shown in Figure 11-16:

Figure 11-16

After the connection to the database has been successfully made, the Query Designer window appears.
This window is very similar to that seen in Access or Visual Studio, so a detailed explanation is not
included here. Before you add any actual data to the report, examine the changes made to the RDL by
the addition of a valid database connection.

After examining the RDL, you will notice that two new sections have been added to the document by
the designer. The following RDL section is the <DataSources> section. This tag contains nested tags
that identify the data provider used as well as the connection string properties needed to connect to the
data store.

The content inside the <rd:DataSourceID> is a Globally Unique Identifier (GUID) that enables the
designer to track individual data sources. Reporting projects might contain several different data

392

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 392

sources, and it also supports the concept of a shared data source in which many different reports use the
same data connection. In fact, the data source is conceptually equivalent to the Connection object in
traditional ADO. If Integrated Security is used, a tag in the RDL indicates this:

<DataSources>
<DataSource Name="AdventureWorks2000">
<rd:DataSourceID>6740a68a-aaa7-42fb-8025-57eed884a359</rd:DataSourceID>
<ConnectionProperties>
<DataProvider>SQL</DataProvider>
<ConnectString>data source=(local);

initial catalog=AdventureWorks2000</ConnectString>
<IntegratedSecurity>true</IntegratedSecurity>

</ConnectionProperties>
</DataSource>

</DataSources>

The second section added to the report is the <DataSets> section. It contains tags to name the dataset,
relate the dataset to a specific query, and a <DataSourceName> tag that is used to link a particular
dataset to a data source:

<DataSets>
<DataSet Name="AdventureWorks2000">
<Query>
<DataSourceName>AdventureWorks2000</DataSourceName>
<CommandText />

</Query>
</DataSet>

</DataSets>

At this point, the <CommandText> tag in this code is empty, but that will soon change when you add
database content to your report. Click on the Add Table button on the Query Designer toolbar as shown in
Figure 11-17:

Figure 11-17

This will cause a table selection dialog box to be shown. For the purpose of this example, we will keep
the data access portion very simple by adding just the Contact table. After adding the table, check the
FirstName, MiddleName, and LastName boxes. As we add or delete tables and fields using Query Designer,
the SQL statement is created in the SQL window at the bottom. The result is shown in Figure 11-18:

393

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 393

Figure 11-18

You can now examine the results of the addition of data to your report by switching over to the XML
View of the report. The <DataSources> tag remains unmodified, but there have been significant
changes to the <DataSets> tag:

<DataSets>
<DataSet Name="AdventureWorks2000">
<Fields>
<Field Name="FirstName">
<DataField>FirstName</DataField>
<rd:TypeName>System.String</rd:TypeName>

</Field>
<Field Name="MiddleName">
<DataField>MiddleName</DataField>
<rd:TypeName>System.String</rd:TypeName>

</Field>
<Field Name="LastName">
<DataField>LastName</DataField>
<rd:TypeName>System.String</rd:TypeName>

</Field>
</Fields>
<Query>
<DataSourceName>AdventureWorks2000</DataSourceName>
<CommandText>SELECT FirstName, MiddleName, LastName FROM Contact
</CommandText>

</Query>
</DataSet>

</DataSets>

The first and most obvious change to the <DataSets> tag is the addition of a <Fields> tag with nested
<Field> elements within. The <Fields> tag represents the collection that is returned by querying the
data store:

<Field Name="FirstName">
<DataField>FirstName</DataField>
<rd:TypeName>System.String</rd:TypeName>

</Field>

394

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 394

Each <Field> tag has two additional nested elements, the <DataField> tag and the <rd:TypeName>
tag. The <DataField> tag is not required to be unique, and contains the information needed to access
the data or calculate its value. The <rd:TypeName> is used to provide design time support for working
with and editing the value contained in a <DataField> tag.

The Name attribute of the <Field> element must be unique among the elements. It is an alias that the
report uses to access the data. The SQL statement is modified to return a different field name if a name
collision occurs. This is demonstrated in the following code. To illustrate name collision, the tables and
selected field names have been temporarily modified to use related tables with identical field names.
Notice in the following code that the ProductSubCategory.ProductCategoryID is returned as Expr1
in the SQL statement and that the <Fields> collection has been modified to reflect that change:

<DataSets>

<DataSet Name="AdventureWorks2000">

<Fields>

<Field Name="ProductCategoryID">

<DataField>ProductCategoryID</DataField>

<rd:TypeName>System.Byte</rd:TypeName>

</Field>
<Field Name="Expr1">
<DataField>Expr1</DataField>
<rd:TypeName>System.Byte</rd:TypeName>

</Field>
</Fields>
<Query>
<DataSourceName>AdventureWorks2000</DataSourceName>
<CommandText>SELECT ProductCategory.ProductCategoryID,

ProductSubCategory.ProductCategoryID AS Expr1
FROM ProductSubCategory INNER JOIN ProductCategory ON
ProductSubCategory.ProductCategoryID =
ProductCategory.ProductCategoryID</CommandText>

</Query>

</DataSet>

</DataSets>

Each <Field> tag has two additional nested elements, the <DataField> tag and the <rd:TypeName>
tag. The <DataField> tag is not required to be unique and contains the information needed to access
the data or calculate its value. The Visual Design Controls support the use of the <Value> element and
extract the actual data values used during report processing with the following syntax:

<Value>=First(Fields!FullName.Value)</Value>

The statement is effectively requesting the first FullName field from the Fields collection for the
current result set. The <rd:TypeName> is used to provide design time support for working with and
editing the value contained in a data field. Now that you understand how data is modeled and extracted
based on RDL, let's move on to the Visual Design Controls that generate the RDL and help present data
to the user.

395

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 395

Control RDL
There are nine visual design controls that ship with Reporting Services. Figure 11-19 shows a Textbox
control added to report. They each generate RDL based on their purpose. After creating an empty report,
you can view the tags that each control generates by simply dragging and dropping them onto the
design surface. The corresponding RDL can be viewed through the View Code option.

Figure 11-19

In the following sections, we will study the RDL generated by these nine controls.

TextBox
The RDL generated by the Textbox control is displayed in the following code snippet. The Textbox is a
simple placeholder for information that needs to be displayed. The <Value> tag contains the formula or
expression that will be used to provide the needed data. The Textbox can be used as a standalone
control or contained within sophisticated controls that use it to output their results.

<Textbox Name="textbox1">
<Style>
<PaddingLeft>2pt</PaddingLeft>
<PaddingBottom>2pt</PaddingBottom>
<PaddingTop>2pt</PaddingTop>
<PaddingRight>2pt</PaddingRight>

</Style>
<Top>0.25in</Top>
<rd:DefaultName>textbox1</rd:DefaultName>
<Height>0.25in</Height>
<Width>1in</Width>
<CanGrow>true</CanGrow>
<Value />
<Left>0.375in</Left>

</Textbox>

The complex controls cause many pages of RDL to be added to the report, and in
those cases, only the skeleton of the RDL has been included here instead of using
actual default values.

396

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 396

Line
The Line control is used only for visual effect. The style, size, and position of the line can be modified in
the Visual Designer. It is primarily used to provide context separation within reports:

<Line Name="line1">
<Top>0.53125in</Top>
<Width>1in</Width>
<Height>1in</Height>
<Style>
<BorderStyle>
<Default>Solid</Default>

</BorderStyle>
</Style>
<Left>1.23958in</Left>

</Line>

Rectangle
A Rectangle is a container control. It is used to group other controls on a report so that they can be
presented or moved as one unit. It is the conceptual equivalent of a panel control in Windows
application development. The RDL below is generated by a Rectangle control that contains a Line:

<Rectangle Name="rectangle1">
<Top>1.39583in</Top>
<ReportItems>
<Line Name="line2">
<Top>0.11458in</Top>
<Height>1in</Height>
<Width>1in</Width>
<Style>
<BorderStyle>
<Default>Solid</Default>

</BorderStyle>
</Style>
<Left>0.3125in</Left>

</Line>
</ReportItems>
<Height>1.47917in</Height>
<Width>2in</Width>
<Left>1.34375in</Left>

</Rectangle>

Table
The Table control is used to group or relate repetitive data items. Dropping a Table control onto a
blank report causes four pages of RDL to be generated, which is too much to display here. The RDL
displayed below is a skeleton based on Reporting Services Books Online. A summary of the Table
control is that it creates a collection of rows and columns that can be sorted and grouped like the Data
Grid control used by developers. The combination of a row and column corresponds to a cell, which uses
a nested TextBox control to display the data.

<Table Name="table1">
<Style />

397

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 397

<Top />
<Left />
<ZIndex />
<Visibility />
<ToolTip />
<Label />
<Bookmark />
<Custom />
<KeepTogether />
<NoRows />
<DataSetName />
<PageBreakAtStart />
<PageBreakAtEnd />
<Filters />
<TableColumns />
<Header />
<TableGroups />
<Details />
<Footer />

</Table>

Matrix
The Matrix control is a two-axis grid with drill-down capability on both axes. It is very similar to the
Table control except for its dual axis capabilities. It is the Reporting Services equivalent of the Pivot
Table. The Matrix is composed of rows and columns that use the Textbox to render all of the results.
The following code snippet is a skeleton of the RDL generated by the Matrix control:

<Matrix Name="matrix1">
<Style />
<Top />
<Left />
<ZIndex />
<Visibility />
<ToolTip />
<Label />
<Bookmark />
<Custom />
<KeepTogether />
<NoRows />
<DataSetName />
<PageBreakAtStart/>
<PageBreakAtEnd />
<Filters />
<Corner />
<ColumnGroupings />
<RowGroupings />
<MatrixRows />
<MatrixColumns />
<LayoutDirection />
<GroupsBeforeRowHeaders />

</Matrix>

398

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 398

List
A List is a data region that is repeated with each group or row in a result set. It is used for repeating
records and allows simple grouping with nested tags being repeated for each record. The following
example list will group on each repetition of CustomerID from the NorthWind database:

<List Name="list1">
<Style />
<Height>1in</Height>
<Top>0.875in</Top>
<ZIndex>1</ZIndex>
<Grouping Name="CustomerGroup">
<GroupExpressions>
<GroupExpression>=Fields!CustomerID.Value</GroupExpression>

</GroupExpressions>
</Grouping>
<DataSetName>Northwind</DataSetName>
<Width>2in</Width>
<Left>0.375in</Left>

</List>

Image
The Image control is used to display images on a report. The images that you add to a report have three
storage options. The image may be embedded in the report, stored in the database, or added to the
project. The following example is that of an embedded image. Adding the Image control causes two tags
to be added. The first tag, <Image>, contains all of the display information:

<Image Name="ovals">
<Top>0.94792in</Top>
<Height>0.16667in</Height>
<Width>0.41667in</Width>
<Source>Embedded</Source>
<Style />
<Value>ovals</Value>
<Left>0.875in</Left>
<Sizing>AutoSize</Sizing>

</Image>

The second tag, <EmbeddedImages>, is a collection that contains the data for each image that is
embedded into the report. Inside the <EmbeddedImage> tag is located the MIME type of the image and
the encoded values that make up the image:

<EmbeddedImages>
<EmbeddedImage Name="ovals">
<MIMEType>image/gif</MIMEType>
<ImageData>R0lGODlhKAAQAOYAADMAAOe7b16p1eXw921DO72ppuvIjJHG55t+eFMhGebe3oW93r/c
7vLduYizwXlRSUAIAODX1u/Vp9LFwo5sZ8Oxrvz7+Gmv17GZlsu8uea/eWYzM920cPbnz/ju3NDm8uP
XzaJyRabQ50MNAG+03l8xJ+nEhL+dfKaMh/j29qHEz/HYrToBAE4bENbp8/Ht7NTKqsO7lu3n55HE4f
jiu67T6eu+hRZI4OHhJztC6NA2MCTX7dhBahTCMoReuCIc8uVz4O9fLxeEemwoaHAEixA7FD6zEaOh
wymFJiypaJGAEo3Pqqjw2C6IKkIFKNJjUQKEFXz5bDk5wBKgFEMZINAbwoLäJhM4oQUw4YQLFQH/oAp
cdAPAKxYtEGQRFMWcVw0Sfghy0euXgAUfEsmgsKHEDSIRHzhp4WGAx4pcgz7MyJHDBxRJk1L0UMQkEu
BJiBMjDgQAOw==</ImageData>

399

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 399

</EmbeddedImage>
</EmbeddedImages>

MIME stands for Multipart Internet Mail Extension. MIME types were originally designed so that
mail messages could contain nontext data like images and documents. They are used to identify the
specific encoding mechanism used to store or serialize data. When an embedded image is used, a binary
representation of the image is stored, and when rendered the appropriate MIME type is sent as part of
the stream payload to indicate how the binary data should be processed.

Subreport
The Subreport control emits RDL text that allows a report to be embedded within the body of the main
report. The Subreport can be parameterized and repeat with other data region controls.

<Subreport Name="subreport1">
<Style />
<Top>1.44792in</Top>
<ReportName />
<Width>3in</Width>
<Left>2.29167in</Left>

</Subreport>

Chart
The Chart control emits the RDL that allows Reporting Services to create a graphical representation of
data. The Chart control is able to represent two-dimensional data using nine chart types: Column, Bar,
Line, Pie, Scatter, Bubble, Area, Doughnut, and Stock.

<Chart Name="chart1">
<Style />
<Top />
<Left />
<Height />
<Width />
<ZIndex />
<Visibility />
<ToolTip />
<Label />
<Bookmark />
<Custom />
<KeepTogether />
<NoRows />
<DataSetName />
<PageBreakAtStart/>
<PageBreakAtEnd />
<Filters />
<Grouping />
<Sorting />
<ReportItems />
<Parameters />
<DataFields />
<ChartDefinition />

</Chart>

400

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 400

Creating RDL
Creating an RDL document is not a trivial task. It requires a detailed understanding of XML and
Reporting Services processing. In addition, you should expect a plethora of third party tools to emerge
that generate Reporting Services-compatible RDL. Although most developers use tools provided by
Microsoft or third parties to create report definitions, it is important to understand how you could, if
needed, create or modify an RDL document.

In this section, we will cover two methods to create RDL. We will use the XML classes within the .NET
framework to emit a simple RDL tag followed by a more practical example, where you begin with a
report template and modify the RDL based upon a different data source. The second example will use a
third party tool called CodeSmith.

RDL with .NET
Because a full blown discussion of XML programming in .NET is beyond the scope of this book, this
section will only demonstrate the creation of a simple RDL tag using the .NET Framework classes. The
following code snippets assume that you are familiar with Visual Studio and C#.

For a more detailed discussion of this topic, see XML Programming Bible by Wiley Press
(ISBN 0-7645-3829-2).

The following code snippet is a simple console application. It has one static method that creates the XML
for a Textbox:

static void Main(string[] args)
{

CreateXML.GenerateRDL();
}
public static void GenerateRDL()
{

MemoryStream stream = new MemoryStream();
XmlTextWriter writer = new XmlTextWriter(stream,Encoding.UTF8);
writer.Formatting = Formatting.Indented;

writer.WriteStartElement("Textbox"); //begin textbox
writer.WriteAttributeString("Name","textbox1");

writer.WriteStartElement("Style"); // begin style
writer.WriteElementString("PaddingLeft","2pt");
writer.WriteElementString("PaddingBottom","2pt");
writer.WriteElementString("PaddingTop","2pt");
writer.WriteElementString("Paddingright","2pt");
writer.WriteEndElement();// end style

writer.WriteElementString("Top","0.25in");
writer.WriteElementString("rd:DefaultName","textbox1");
writer.WriteElementString("Height","0.25in");
writer.WriteElementString("Width","1in");
writer.WriteElementString("CanGrow","true");
writer.WriteElementString("Value","");

401

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 401

writer.WriteElementString("Left","0.375");
writer.WriteEndElement(); // end textbox

writer.Flush();
stream.Position=0;

StreamReader sr = new StreamReader(stream);

Console.WriteLine(sr.ReadToEnd());
sr.Close();

}

A more object-oriented approach could also be taken. One idea might be to create your own object
model for all of the RDL objects. You could create a Textbox object with properties that map to the RDL
tags and override the ToString method with code while replacing the values with those from the object.
The result of running this code is shown in Figure 11-20:

Figure 11-20

RDL with CodeSmith
Developers spend a significant amount of their time doing redundant work. The process is not only
boring, but also error prone. The idea behind automating the creation of repetitive code is to decrease
errors and increase maintainability. RDL is non-proprietary in nature, and hence, a third party tool can
also be used to create a report. The following criteria were used when selecting a tool for this
demonstration:

❑ Free

❑ Powerful

❑ Flexible

❑ Preferably created using .NET

❑ Not created specifically to illustrate this concept

CodeSmith, created by Eric J. Smith, is a free template-based code generator that meets all of these
criteria. It consists of four related tools, three of which are available at no cost:

402

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 402

❑ CodeSmith Console: It is a command line application that can be used to batch build
sophisticated projects using CodeSmith templates and XML property sets.

❑ CodeSmith Explorer: It is a graphical user interface to the generation engine. It allows
developers to browse templates, add and modify template properties, and view the results.

❑ CodeSmith Visual Studio Addin: It is an add-in to Visual Studio that allows the generation of
code from XML property sets from within Visual Studio. This paradigm is very similar to ASP
code-behind pages.

❑ CodeSmith Studio: It is a template development environment with syntax highlighting that
will soon be available for a minimal charge. CodeSmith's syntax is almost identical to ASP.NET,
and anyone who is familiar with that syntax should easily be able to produce code with it. It
even uses the compilers that ship with the .NET Framework to compile the template code,
resulting in the ability to write templates in any of the pure .NET-compatible languages: Visual
Basic .NET, C#, or J# CodeSmith enjoys strong support, both from the creator and a growing
community of active developers.

The scenario for the following example is that we have created a standard report format that needs to be
replicated with different data sources. The original report used for this example was created using Visual
Studio and is based upon a two-table join of related database tables. Retracing the steps to create a
common look and feel changing the data source and the control value tags is both time consuming and
error prone. Our design goal is that we should be able to pick two related tables from any data source,
choose the fields that we want displayed, and generate the appropriate report based on the new data
sources. Let's start by looking at the original report design (see Figure 11-21).

Figure 11-21

This report was designed using the NorthWind database that ships with SQL Server. It is a Master Detail
relationship report based on an inner join of the Customer and Order tables. The top two boxes in the
report are Textbox controls that contain the name of the database and the name of the report. The third
box from top is a List control. It has been set up to group on the primary key value from the Master
table. This will cause all controls and fields to be repeated for each row in the Customer table. The last
box on the report is a Table control. The Table control has been set up to group on the OrderID Field.
In the final report, a table will be output that contains the order information from that particular
customer. The report resembles Figure 11-22 when processed:

403

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 403

Figure 11-22

Now that the design of the report is done and it renders correctly, we need to make our efforts more
repeatable. A template needs to be created that will allow us to choose any Master and Detail table,
specify the fields that need to be displayed, and automatically have a new report generated. For the
purpose of this demonstration, we will be using the CodeSmith Explorer to set the report properties and
generate reports. There are five values that vary between the reports that will be generated, and we need
to create properties that will allow the user to edit and change those values. The values are:

❑ Master Table

❑ Master Table Display Columns

❑ Detail Table

❑ Detail Table Display Columns

❑ Report Name

Let's examine the key portions of the template and examine the generation of a Master Detail Report.
The template that we will use is called MasterDetail.cst. You need to install CodeSmith and then
click on the template provided with the book code samples to execute it. The following window shown
in Figure 11-23 will appear:

Figure 11-23

404

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 404

You can download the template used for the following example from
http://www.ericjsmith.net/codesmith/.

Notice that the window looks exactly like the property window used to set design time values in Visual
Studio and that there are five editable properties that map to the varying report values described earlier.
These properties are defined within the template and are used to dynamically generate our reports.The
property at the bottom of the form is the ReportName property and is used to set the name of the report.
The report name is stored in a variable called ReportName of type string. The default value is
Master/Detail Report and it is created using the following code:

<%@ Property Name="ReportName" Type="System.String" Default="Master/Detail Report"
Category="Summary" Description="The name of the report." %>

The default value inserted by this property directive for ReportName is acceptable, so you don't need to
modify it. Select the MasterTable property; this will cause the Table Picker window to appear
(see Figure 11-24):

Figure 11-24

CodeSmith would display any known data sources in the Data Source listbox above, but because this is
the first time that any data source is being accessed, a data source must be specified. This is done by
clicking on the ellipses displayed in the upper right hand corner (see Figure 11-24) which causes the Data
Source Manager window to appear, which you can see in Figure 11-25:

Figure 11-25

Click the Add button; this will cause the Data Source window to be displayed. Edit the Connection
properties for the data source connection as shown in Figure 11-26 to connect to your database:

Figure 11-26

405

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 405

The connection information is verified upon pressing the OK button. If your connection settings are
correct, the Data Source Manager window will now have an entry (see Figure 11-27):

Figure 11-27

Now, if you close the Data Source Manager window, it will cause the Table Picker window to be displayed
and it should be populated with the available tables as seen in Figure 11-28:

Figure 11-28

Choose the Customers table by clicking the Select button. This causes the Table Picker window to close,
and the report property window to come to the forefront as shown in Figure 11-29:

Figure 11-29

You can see from Figure 11-29 that the MasterTable property has been set to dbo.Customers and the fields
from that table have been copied into the MasterDisplayColumns property field. Next, you need to set the
table value for the Detail section of the report. Because you have a valid data source, the table list from
Figure 11-28 is displayed. Select the Orders table and the chart properties window will be displayed with
the information shown in Figure 11-30:

406

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 406

Figure 11-30

All that remains for generating a new report is to choose the fields that we want to display. These
properties have already been set from the code for our Master and Detail tables, but the default behavior
is all fields and we may want to change this.

Edit the Columns property for both the Master and Detail tables by clicking on those property fields. A
custom type editor has been associated with each property, which will cause the String Collection Editor
window to be displayed as in Figure 11-31:

Figure 11-31

Finally, you need to delete unwanted fields from the report. You can generate the report by pressing the
Generate button displayed at the bottom of Figure 11-30. This causes our template to use the properties
that we have set to generate the RDL, the results of which are shown in Figure 11-32:

407

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 407

Figure 11-32

The report created by this template matches the report shown in Figure 11-25. The main benefit it
provides is that the users of this template may create and use this reports with a common look and feel
based on different tables and fields with no additional effort. Our efforts to create a flexible, repeatable
solution have been successful.

Although a full-blown example of template creation is beyond the scope of this book, it is important to
display an example of how the RDL from the original report and the templated code work together. The
following code snippet illustrates the mixed ASP.NET-like code that generates the table cell headers for
the Detail records. Only the template code has been highlighted here:

<TableCells>
<% for (int i = 0; i < DetailDisplayColumns.Count; i++) {%>

<TableCell>
<ReportItems>
<Textbox Name="<%= DetailDisplayColumns[i] %> Header">
<Style>
<PaddingLeft>2pt</PaddingLeft>
<TextAlign>Left</TextAlign>
<PaddingBottom>2pt</PaddingBottom>
<PaddingTop>2pt</PaddingTop>
<PaddingRight>2pt</PaddingRight>
<FontWeight>700</FontWeight>
</Style>
<ZIndex>7</ZIndex>
<rd:DefaultName><%= DetailDisplayColumns[i]%> Header</rd:DefaultName>
<CanGrow>true</CanGrow>
<CanShrink>true</CanShrink>
<Value><%= DetailDisplayColumns[i] %></Value>
</Textbox>
</ReportItems>
</TableCell>

<% } %>

Notice that the code almost resembles the use of traditional ASP. CodeSmith uses a mixed text and tag
solution that generates dynamic output based on changing properties. Automatic or template-based

408

Chapter 11

68787_ch11.qxp 26/03/2004 3:56 PM Page 408

code generation cannot eliminate all of your coding but can be intelligently applied to improve quality
and reduce the effort involved in code maintenance.

There is, however, a small disadvantage associated with using a third party tool like CodeSmith. In case
of errors, you might need to examine three levels of code to determine the source: Reporting Services,
Visual Studio, and CodeSmith.

Summary
Microsoft's use of XML-based RDL is huge step forward toward common report definition formats. It
opens up a brand new revenue stream for tool vendors, and allows existing reporting solutions to export
their proprietary reports into an open extensible format for use by Reporting Services or any other future
tools that are able to emit or consume RDL. Our simple examples using both the .NET Framework
classes and CodeSmith illustrate this point. The ability to buy or build these tools give us that have been
sorely lacking in the reporting arena for years.

409

Report Definition Language

68787_ch11.qxp 26/03/2004 3:56 PM Page 409

68787_ch11.qxp 26/03/2004 3:56 PM Page 410

Extending Reporting
Services

Earlier chapters focused on building and managing reports and interfacing with Reporting
Services through the exposed Reporting Service Web Service. All of these topics are crucial to
using and understanding Report Services, but we also want to address those situations where the
built-in functionality provided by Reporting Services does not fully meet your needs.

In this chapter, you will learn about the extensibility of Reporting Services and the areas that
currently support customization. These include:

❑ Extensibility options

❑ Reasons for extending SQL Server Reporting Services

❑ How to create custom extensions

❑ How to install custom extensions

Overview
As you learned in Chapter 2, Reporting Services is a robust and scalable product for enterprise
report processing. In addition, Microsoft has built Reporting Services using a modular extensible
architecture that gives users the ability to customize, extend, and expand the product to support
their enterprise Business Intelligence (BI) reporting needs. Reporting Services currently supports
extending its behavior in the following areas:

❑ Data processing extensions: Custom data providers can allow you to access any type of
data store using a consistent programming model. Currently supported providers include
ODBC, OLEDB, Oracle, and SQL.

121122

ch68787_12.qxp 26/03/2004 3:56 PM Page 411

Chapter 12

412

❑ Delivery extensions: Delivery extensions allow you to deliver reports to users or groups of
users according to a schedule. Email and network file shares are the delivery mechanisms
currently built into the product.

❑ Delivery management extensions: Management extensions are user interface components that
allow a user to control the delivery of reports through Report Manager.

❑ Custom report objects: Custom report objects are .NET assemblies that allow you to add
custom functionality to report processing.

The Missing Pieces
Reporting Services supplies a good deal of extensibility out of the box. This is especially impressive
when you consider its status as a first release product. There are, however, key pieces of the product that
you would expect to be extensible where customization is blatantly absent.

Security Extensions
Reporting Services currently supports only Integrated Windows Security and SQL Server security. This
is a glaring omission by the designers of the product. Most companies have heterogeneous networks
with multiple operating systems (OS) and products. In a perfect world, all of our networks, applications,
and resources would support some form of single sign-on, or at least would allow us to build this
ourselves. By limiting Reporting Services to a Windows-only environment, Microsoft has severely
restricted its customer base.

Postings at the beta news groups indicate that they are aware of this issue and is actively working
towards resolution. There is an unimplemented placeholder interface called
IAuthorizationExtension in the Reporting Services Interface assembly. There are no guarantees,
however, that this functionality would make it into the Release to Market 1.0 version.

Rendering Extensions
Rendering extensions control the type of document that gets created when a report is processed.
Theoretically, you could have Report Services create any type of document given the ability to extend
the product in this area. Microsoft has indicated support for custom rendering in future versions but not
in the 1.0 release. Currently, Microsoft provides the following rendering extensions out of the box:

❑ HTML: The HTML extension will generate HTML 3.2 for use with older browsers and HTML
4.0 for browsers that support the dynamic HTML standard.

❑ MHTML: MHTML is another HTML standard created to allow disconnected viewing of HTML
documents. All the images in the page are encoded into the document, which increases its size,
but allows it to be viewed both online and offline.

❑ Excel: The Excel extension creates Microsoft Excel-specific MHTML.

❑ CSV: The Comma Separated Values extension emit data fields separated by commas. The first
row of the CSV result contains the field names for the data.

ch68787_12.qxp 26/03/2004 3:56 PM Page 412

❑ Image: The image extension allows you to export reports as images in the EMF, GIF, JPEG,
PNG, TIFF, and WMF formats.

❑ PDF: This extension allows the generation of reports in the PDF format.

Extensible Report Designer Classes
Microsoft's tool for creating Reports is the Report Designer. Report Designer is integrated into Visual
Studio .NET and uses a development paradigm that is very similar to building Windows forms. You
drag and drop controls onto the design template and set properties to change the behavior of the control.
Unlike Windows forms, the Report Designer classes are sealed, preventing programmers from extending
them and adding functionality.

Microsoft team members have indicated that decisions about the object model for Reporting Controls is
still ongoing and are not commiting to either timelines or functionality. There is, however, a placeholder
in the RDL object model called CustomReportItem that suggests that the capability to create custom
Report controls at some time in the future would be available. Since the Designer ultimately creates
XML, it is possible to overcome this limitation by creating your own object model to create RDL. In fact,
many third parties such as Proclarity and Sorfware Artisans are already extending their tools to emit
Reporting Services compatible RDL.

Business Opportunities
Microsoft has a long history of creating and fostering an ecosystem around their products. SQL Server
already has many third party products that can be used to enhance its capabilities, ease development,
and make managing the product easier. Searching the Internet revealed literally hundreds of products
built to enhance your SQL Server experience. Reporting Services will be no exception. This chapter
introduces you to most of the areas within Reporting Services that allow customization and offer
opportunities to create add-on products that provide value to customers. Some areas of opportunity
include creating:

❑ Delivery extensions that work with third party products like IBM MQSeries.

❑ Rendering extensions to support other presentation formats such as Macromedia Flash or
Microsoft PowerPoint.

❑ Custom security extensions to allow the use of Reporting Services in heterogeneous
environments.

❑ Entire Business Intelligence (BI) reporting solutions for various business products.

Common Extension Interfaces
Reporting Services uses common interfaces to allow expanding the product in a standard way. Most of
these interfaces are used to allow Reporting Services to interact with a variety of different objects
without any knowledge of their architecture or implementation. This is a commonly used way of

413

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 413

allowing product extension and standardizing object creation and interaction used in Object Oriented
Programming (OOP).

What Is an Interface?
Most C/C++ developers are intimately familiar with interfaces. The entire COM programming model is
based upon them. Visual Basic developers have used interfaces for years, but the VB programming
environment hid this from programmers. In fact, Reporting Services itself is exposed to developers
through a web service interface. In order to provide complete coverage of Extending Reporting Services,
a definition and explanation of interfaces is required. So what is an interface?

This sounds great, but what does it mean? In Reporting Services, the primary class of all extension
components must implement the IExtension interface. This is illustrated in the code snippets provided
in the following section.

IExtension
All developers who want to extend Reporting Services must build a method called SetConfiguration
into the initial class used in their components. This method matches the method signature in the
following code sample. They must also create a property called LocalizedName that returns the name
of the component based on the language being used for coding (Russian, German, Italian, and so on).
Once the programmers have met these requirements, they are said to have implemented the interface.

C#

The code in C# that extends the IExtension interface is as follows:

public interface IExtension
{

void SetConfiguration(string configuration);
string LocalizedName{ get; }

}

VB.NET

A Visual Basic example that implements the IExtension interface is shown here:

Imports Microsoft.ReportingServices.Interfaces
Public Class MyExtension Implements IExtension

Public ReadOnly Property LocalizedName() As String _
Implements IExtension.LocalizedName
Get
'write code to return the localized name of the component

End Get
End Property

An interface is a presepecified definition that forms a contract between software
components and defines how they communicate.

414

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 414

Public Sub SetConfiguration(ByVal configuration As String) _
Implements IExtension.SetConfiguration
'write code to configure your component to allow configuration

End Sub

End Class

IDisposable
The IDisposable interface is very common, although it is not a Reporting Services—specific interface.
It is commonly used throughout the .NET Framework. The purpose of the IDisposable interface is to
provide a common way of releasing references to non-memory resources such as a database connection.
Let's see the definition of IDisposable.

C#
public interface IDisposable
{

void Dispose();
}

VB.NET
Public Interface IDisposable

Sub Dispose()
End Interface

Many of the input/output related objects in the .NET Framework implement the IDisposable interface
due to their interaction with non-memory resources. The extensions we will create for Reporting
Services are no exception. A full discussion of resource management, however, is beyond the scope of
this book. Our code will not actually do anything in IDisposable, but will have an empty or NOOP
operation to meet the interface requirements of the specific object.

Interface Language Differences
There are differences in the way that VB.NET and C# require interface methods to be declared. C#
supports implicit interface definitions. If the method names and signatures match those of an interface
implemented by the class, then the class methods are automatically mapped to their associated interface
methods. VB.NET requires explicit interface implementation. In order to be mapped correctly, VB.NET
requires that you specify that the method is implementing a certain interface. This is done with the
Implements keyword as follows:

Public Sub Dispose() Implements IDataReader.Dispose
'Data Providers often work with non-memory resources. If this
'is the case implement the IDisposable Interface.

End Sub

415

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 415

Data Processing Extensions
Reporting Services allows you to access data from traditional data sources such as relational databases
using the existing .NET data providers. The following providers are supplied as part of the .NET
Framework supplied by Microsoft:

❑ ODBC

❑ OLEDB

❑ Oracle

❑ SQLClient

Data processing extensions are components that allow you to access data for use within Reporting
Services. If that implies a .NET data provider to you, then congratulations are in order. These two types
of data access objects are very similar and are based on a common set of interface definitions. If you have
already built a custom .NET data provider, you may use that provider with Reporting Services with no
modification. However, you also can extend your existing provider to provide additional functionality.

In this chapter, we will discuss the similarities and differences between a standard .NET data provider
and a Reporting Services Data Processing Extension. Let's start with some architectural information
about data providers in general, and then dive into the details of creating a custom data processing
extension. The .NET Framework has a data access object model that is very similar to that used in
traditional COM-based ADO. The ADO.NET object model is shown in Figure 12-1:

Figure 12-1

The RS data provider is essentially the same as the ADO data provider, except for the fact that it requires
wrappers around .NET providers to support the RS required interfaces. The programming paradigm is
very similar as well.

The basic steps for working with a data source are as follows:

❑ Make a connection to a data source.

❑ Issue a command to manipulate data.

❑ Retrieve the results of your query.

416

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 416

These actions map directly to the objects above, although a DataAdapter implementation is not needed
because Reporting Services only reads the data.

The following table summarizes the objects that are normally created in a data processing extension, and
provides a description of the object responsibilities:

Each of these objects contains implementation-specific code needed to create a connection, issue
commands, or read and update data. Microsoft has enforced a consistent data access mechanism by
basing these objects on a set of standard interfaces. Figure 12-2 shows the interfaces that may be
implemented when creating a data processing extension, although not all of them are required:

Figure 12-2

The following table indicates the interfaces that must be implemented to build a custom data processing
extension:

Table continued on following page

Interface Description

IDbConnection Unique session with a data source

IDbTransaction Local transaction (non-distributed)

IDbCommand Represents query command methods to be executed against a
data source

Object Description

Connection Establishes a connection to a specific data source.

Command Executes a command against a data source. Exposes a Parameters collection
and can execute within the scope of a transaction.

DataReader Provides access to data using a forward-only, read-only stream.

DataAdapter Responsible for retrieving data and for resolving updates with the data source.
This object is not required for a Reporting Services Data Processing Extension
because of the read-only nature of Reporting Services.

417

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 417

Creating a Custom Data Processing Extension
Creating a full blown data provider is no trivial task. The goal of this walkthrough is familiarize you
with the .NET data access mechanism, as well as help you create and install a custom Reporting Services
Data Extension. Our implementation is simplified in that it does not support transactions. It should also
be noted that an ODBC driver already exists that could be used for this task.

Let's look at the scenario for this walkthrough. You regularly receive student data from a third party
over which you have no control. The information is sent in a CSV file with a specific layout. There is an
immediate need to create a formatted hard copy of this data for use as a roster. After some research, you
realize the Reporting Services will meet your needs. You decided to make your efforts reusable by
creating a custom data extension.

Creating the Project
Let's start by creating our projectby choosing File | New | Project. Change the name of the Project to
CSVDataExtension. Use the Class Library template. The name of the assembly needs to change to reflect
our custom namespace. Choose Project | Properties and change the assembly name to
Wrox.Professional.ReportingServices.CSVDataExtension.

Most of the classes created for this project have common requirements. Most of them have empty default
constructors, and all of them require the use of some common namespaces. The code below is a skeleton
of how each class should look after you create it. Replace the ClassName with the name of the class you
are working on. This will allow you to concentrate only on the differences between the objects that will
be created in your data extension project.

C#
using System;
using Microsoft.ReportingServices.DataProcessing;

namespace Wrox.Professional.ReportingServices.CSVDataExtension
{

public class CSVClassName
{
}

}

Interface Description

IDataParameter Methods to support passing parameters to a Command object

IDataParameterCollection Collection of parameters

IDataReader Methods used to read a forward-only, read-only data stream

IExtension Reporting Services-specific interface that supports localization
and is implemented by all SRS extensions

418

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 418

VB.NET
Imports System;
Imports Microsoft.ReportingServices.DataProcessing;

Namespace Wrox.Professional.ReportingServices.CSVDataExtension
Public Class CSVClassName

End Class
End Namespace

Creating the CSVConnection Object
The Connection object is responsible for connecting to the data source and providing a mechanism for
accessing both the data processing extension—specific transaction and command objects. These
responsibilities are enforced through the IDbConnection interface.

To add the CSVConection class to the project, choose Project | Add Class from the menu. Change the
name of the class to CSVConnection. After the class definition, the IDisposable.Dispose method must
be added to this class. This was discussed earlier in the section on interfaces.

Namespaces are used to bring assemblies that you have referenced into scope. You will be using the
following namespaces in the CSVConnection class. Add the Interfaces namespace definition to the
top of your file.

C#
using System;
using Microsoft.ReportingServices.DataProcessing;
using Microsoft.ReportingServices.Interfaces;

VB.NET
Imports System
Imports Microsoft.ReportingServices.DataProcessing
Imports Microsoft.ReportingServices.Interfaces

Variable Declarations
The following variables are used later in the code. The m_connString variable holds the connection
string that will be used to connect to the data source. The m_state variable holds the value of the state
of the current connection. The System.Data.ConnectionState is an enumeration that represents all
the possible states of a connection.

C#
private string m_connString;
private System.Data.ConnectionState m_state = System.Data.ConnectionState.Closed;

VB.NET
Private m_connString As String
Private m_state As System.Data.ConnectionState = System.Data.ConnectionState.Closed

419

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 419

Constructors
The CSVConnection object has an empty default constructor, as well as an overloaded constructor that
allows the developer to create the object and initialize the connection string in one line of code.

C#
public CSVConnection(string connString)
{

//contructor with connection string
m_connString = connString;

}

VB.NET
Public Sub New(ByVal connString As String)

'contructor with connection string
m_connString = connString

End Sub

Implementing IDbConnection
The IDbConnection interface is the standard mechanism that data providers use to control the use of
the Connection object. These properties and methods help you make changes to the connection
settings, open and close the connection, and associate the connection with a valid transaction. Your
Connection object does not support transactions due to its read-only nature and because you are
working against a file system, which is not a resource manager.

C#
public interface IDbConnection : IDisposable, IExtension
{

IDbTransaction BeginTransaction();
IDbCommand CreateCommand();
void Open();
void Close();
string ConnectionString { get; set; }
int ConnectionTimeout { get; }

}

VB.NET
Public Interface IDbConnection

Inherits IDisposable, IExtension
Function BeginTransaction() As IDbTransaction
Function CreateCommand() As IDbCommand
Sub Open()
Sub Close()
Property ConnectionString() As String
Property ConnectionTimeout() As Integer

End Interface

420

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 420

Implementing IDisposable
The Connection object is also required to implement the IDisposable interface. Since it is the first
object of the extension that Reporting Services will create, the CSVConnection object must also
implement the IExtension interface that was discussed in the Common Extension Interfaces section of this
chapter. Add the following language-specific statements to your code to force the CVSConnection object
to implement these interfaces.

C#
namespace Wrox.Professional.ReportingServices.CSVDataExtension
{

public class CSVConnection: IDbConnection,IExtension
{

private string m_connString;

VB.NET
Namespace Wrox.Professional.ReportingServices.CSVDataExtension

Public Class CSVConnection
Implements IDbConnection
Implements IExtension
Private m_connString As String

BeginTransaction Function
The BeginTransaction function is primarily responsible for initiating a new transaction and returning
a reference to a valid, implementation-specific transaction object. The file system, which is our data
store, does not support transactions, but this method is required by the interface. You need to ensure that
the developer who will use your object in code is aware of that fact. This is done by throwing a
NotSupportedException.

C#
public IDbTransaction BeginTransaction()
{

//example doesn't support transactions
throw new NotSupportedException("Transactions not supported");

}

VB.NET
Public Function BeginTransaction() As IDbTransaction _

Implements IDbConnection.BeginTransaction
'example doesn't support transactions
Throw New NotSupportedException("Transactions not supported")

End Function

CreateCommand Function
The Createcommand function is responsible for creating and returning a reference to a valid
implementation-specific Command object. The method uses an overloaded constructor of the custom
Command object in order to pass that object a reference to the current connection.

421

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 421

C#
public IDbCommand CreateCommand()
{

// Return a new instance of the implementation-specific command object
return new CSVCommand(this);

}

VB.NET
Public Function CreateCommand() As IDbCommand _

Implements IDbConnection.CreateCommand
'Return a new instance of the implementation
'specific command object
Return New CSVCommand(Me)

End Function

Open Method
In a full data provider implementation, the Open method is used to make a data source—specific
connection. Your implementation does not actually support connections, but you can trick Reporting
Services into thinking that it does. You can do this by implementing the Open method and changing the
value of the ConnectionState property to indicate that the connection is valid and open. The current
value of the connection state is stored inside a private variable called m_state, which you can change to
indicate an open connection.

C#
public void Open()
{

// set the connection state to open and return
m_state = System.Data.ConnectionState.Open;
return;

}

VB.NET
Public Sub Open() Implements IDbConnection.Open

' set the connection state to open and return
m_state = System.Data.ConnectionState.Open
Return

End Sub

Close Method
The Close method is used to close your data source—specific connection. You trick Reporting Services
by creating the Close method and changing the value of the ConnectionState property to indicate
that the connection is closed. Your Close method is exactly the same as your Open method with the
exception that it sets the value of m_state to closed to indicate that the connection was closed
correctly.

C#
public void Close()
{

//set the connection state to close and return

422

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 422

m_state = System.Data.ConnectionState.Closed;
return;

}

VB.NET
Public Sub Close() Implements IDbConnection.Close

' set the connection state to close and return
m_state = System.Data.ConnectionState.Closed
Return

End Sub

ConnectionString Property
The ConnectionString property allows you to set the connection string through code. This property uses
a private variable to store the current connection string, which is used to provide the information needed
to connect to the data source. Most developers are familiar with this property because of its frequent use
in both traditional ADO and ADO.NET. The ConnectionString property is used to indicate the file that
you are going to parse. The user of your data processing extension should input the path to the file they
wish to parse into the connection string. We are storing the connection string in the m_connString
private member variable .

C#
public string ConnectionString
{

Get {return m_connString;}
Set {m_connString = value;}

}

VB.NET
Public Property ConnectionString() As String _

Implements IDbConnection.ConnectionString
Get

Return m_connString
End Get
Set(ByVal Value As String)

m_connString = Value
End Set

End Property

ConnectionTimeout Property
The ConnectionTimeout property allows you to set the timeout property of the connection. This is
used to control how long the interval for connecting to the source should be before an error is thrown.
Your class does not actually use this value, but it is implemented for consistency and due to interface
requirements. Returning a value of 0 indicates that there is an infinite timeout period.

C#
public int ConnectionTimeout
{

get
{

// Returns the connection time-out value.

423

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 423

// Zero indicates an indefinite time-out period.
return 0;

}
}

VB.NET
Public ReadOnly Property ConnectionTimeout() As Integer _

Implements IDbConnection.ConnectionTimeout
Get ' Returns the connection time-out value.

' Zero indicates an indefinite time-out period.
Return 0

End Get
End Property

Creating the CSVParameter Class
The CSVParameter class is not needed until the Command class is created, but because of that
dependency you do need to create it. The Parameter object is used to send parameters to the Command
object that can be used in executing commands against the data source. Despite the fact that this class is
not used to perform any work, the interface requirements of the Command class force you to create it.
This class also has interface requirements; it is required to support the IDataParameter interface defined
in the Reporting Services Data Processing Extension assembly.

To add the CSVParameter class to the project, choose Project | Add Class from the menu and change the
name to CSVParameter.

Declarations
The following declarations are used internally to hold both the value and the name of the parameter. The
name is stored in a string variable called m_paramName. Because the value variable might contain any
type of value, the m_value is declared as an Object type.

C#
String m_paramName;
Object m_value;

VB.NET
Dim m_paramName As String
Dim m_value As Object

Implementing IDataParameter
The IDataParameter interface enforces that your custom parameter class allow a programmer to get
and set the name and value of the current parameter.

C#
public interface IDataParameter
{

string ParameterName { get; set; }

424

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 424

object Value { get; set; }
}

VB.NET
Public Interface IDataParameter

Property ParameterName() As String
Property Value() As Object

End Interface

Modify the class code to force the CSVParameter class to implement IDataParameter.

C#
namespace Wrox.Professional.ReportingServices.CSVDataExtension
{

public class CSVDataParameter : IDataParameter
{

string m_paramName;

VB.NET
Namespace Wrox.Professional.ReportingServices.CSVDataExtension

Public Class CSVDataParameter
Implements IDataParameter
Dim m_paramName As String

ParameterName Property
The ParameterName property is used to store the name of the parameter in a string variable called
m_paramName. This field is typically used to map to parameters in stored procedures but is unused in
your implementation.

C#
public String ParameterName
{

get { return m_paramName; }
set { m_paramName = value; }

}

VB.NET
Public Property ParameterName() As String _

Implements IDataParameter.ParameterName
Get

Return m_paramName
End Get
Set(ByVal Value As String)

m_paramName = value
End Set

End Property

425

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 425

Value Property
The Value property is similar to the name created earlier in that it is not actually used. The value is
stored in an object variable called m_value.

C#
public object Value
{

get
{

return m_value;
}
set
{

m_value = value;
}

}

VB.NET
Public Property Value() As Object _

Implements IDataParameter.Value
Get

Return m_value
End Get
Set(ByVal Value As Object)

m_value = Value
End Set

End Property

Creating the CSVParameterCollection Class
The CSVParameterCollection class is simply a collection of Parameter objects. Although you could
have created a custom collection class that implements all of the required methods, an easier route exists.
The IDataParameterCollection interface is basically a subset of the IList interface used to define
other objects in the .NET Framework. By using an object already available, you reduce the required
coding effort considerably.

To add the CSVParameterCollection class to the project, choose Project | Add Class from the menu.
Change the name of the class to CSVParameterCollection.

There is no need to create custom constructors or member variables for use in your collection class. This
is because you can use the internal variables and constructors that exist inside the ArrayList base class
that this class inherits from. The properties that you create will be mapped directly to properties and
methods that exist in the ArrayList class.

Namespaces
The CSVParameterCollection class uses the standard namespaces discussed earlier. There is an
additional namespace that is needed because of the use of ArrayList. You must add the
System.Collections namespace.

426

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 426

C#
using System;
using Microsoft.ReportingServices.DataProcessing;
using System.Collections;

VB.NET
Imports System
Imports Microsoft.ReportingServices.DataProcessing
Imports System.Collections

Implementing IDataParameterCollection
The IDataParameterCollection interface defines a custom Add method as well as provides methods
to access the members of this collection through the IEnumerable interface. The ArrayList base class
implements this interface. Your class will use the parent class properties and methods to service its
needs.

C#
public interface IDataParameterCollection : IEnumerable
{

int Add(IDataParameter parameter);
}

VB.NET
Public Interface IDataParameterCollection

Inherits IEnumerable
Function Add(ByVal parameter As IDataParameter) As Integer

End Interface

You can modify the code to enforce the implementation of IDataParameterCollection as well as to
be able to gain the functionality inherited from the ArrayList class.

C#
namespace Wrox.Professional.ReportingServices.CSVDataExtension
{

public class CSVDataParameterCollection : ArrayList, IDataParameterCollection
{

VB.NET
Namespace Wrox.Professional.ReportingServices.CSVDataExtension

Public Class CSVDataParameterCollection
Inherits ArrayList
Implements IDataParameterCollection

Since most of the functionality of the CSVDataParameterCollection class exists in its parent class, all
that needs to be done is to create the custom Add method required by the IDataParameter interface.
This method is used by the custom collection to add parameters to an instance of the Collection object.

427

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 427

C#
public int Add(IDataParameter value)
{

if (((CSVDataParameter)value).ParameterName != null)
{

return base.Add(value);
}
else

throw new ArgumentException("parameter must be named");
}

VB.NET
Public Overloads Function Add(ByVal value As IDataParameter) As Integer _

Implements IDataParameterCollection.Add
If Not (CType(value, CSVDataParameter)).ParameterName Is Nothing Then

Return MyBase.Add(value)
Else

Throw New ArgumentException("parameter must be named")
End If

End Function

Creating the CSVCommand Class
The Command object is responsible for sending commands to the data source. This is enforced by making
the object implement the IDbCommand interface, which supplies a standard mechanism for passing in
commands to be executed against the data source as well as parameters that might be needed in the
process of executing these commands. It also defines a property that allows the developer to associate
the command with a transaction object. Your implementation is simplified in that it does not support
transactions.

To add the CSVCommand class to the project, choose Project | Add Class from the menu. Change the name
of the class to CSVCommand. Then go on declaring some variables.

C#
CSVConnection m_connection;
String m_cmdText;

VB.NET
Dim m_connection As CSVConnection
Dim m_cmdText As String

Constructors
You would want the users of your processing extension to be forced to create the Command object either
through the CreateCommand method of the IDbConnection interface or by passing in a valid
CSVConnection object as a parameter. The purpose of this is to ensure that you have access to the
connection string that is needed to locate the CSV file you intend to parse. This can be accomplished by
declaring the default constructor of your command object to be private. This prevents the developer
from creating the CSVCommand object without the correct initialization.

428

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 428

C#
private CSVCommand()
{

//force creation of the object through the IDBCommand
//interface or with a valid connection

}

public CSVCommand(CSVConnection connection)
{

//overloaded constructor to accept current Connection object
m_connection = connection;
this.m_cmdText = this.m_connection.ConnectionString;

}

VB.NET
Private Sub New()

End Sub

Public Sub New(ByVal connection As CSVConnection)
'overloaded constructor to accept current connection object
m_connection = connection
Me.CommandText = Me.m_connection.ConnectionString

End Sub

Implementing IDbCommand
The required interface for all Command objects is called IDbCommand. It consists of methods that allow the
developer to pass commands and parameters to the Command object. The most interesting method of this
object is the ExecuteReader method, which contains the object-specific code to read data from our CSV
data source.

C#
public interface IDbCommand : IDisposable
{

void Cancel();
IDataReader ExecuteReader(CommandBehavior behavior);
string CommandText { get; set; }
int CommandTimeout { get; set; }
CommandType CommandType { get; set; }
IDataParameter CreateParameter();
IDataParameterCollection Parameters { get; }
IDbTransaction Transaction { get; set; }

}

VB.NET
Public Interface IDbCommand

Inherits IDisposable
Sub Cancel()
Function ExecuteReader(ByVal behavior As CommandBehavior) As IDataReader
Property CommandText() As String

429

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 429

Property CommandTimeout() As Integer
Property CommandType() As CommandType
Function CreateParameter() As IDataParameter
Property Parameters() As IDataParameterCollection
Property Transaction() As IDbTransaction

End Interface

You need to add the following Implements statements to your code using language-specific syntax to
force the CVSCommand object to implement these interfaces.

C#
namespace Wrox.Professional.ReportingServices.CSVDataExtension
{

public class CSVCommand: IDbCommand
{

CSVConnection m_connection;

VB.NET
Namespace Wrox.Professional.ReportingServices.CSVDataExtension

Public Class CSVCommand
Implements IDbCommand
Dim m_connection As CSVConnection

Cancel Method
The Cancel method is typically used to cancel a method that has been queued. Most implementations of
data providers are multi-threaded and support the issue of multiple commands against the data store.
You have only created this method to support the IDbCommand interface requirements and should
inform the developer of your lack of support by throwing a NotSupportedException.

C#
public void Cancel()
{

// not supported
throw new NotSupportedException();

}

VB.NET
Public Sub Cancel()_

Implements IDbCommand.Cancel
' Not supported
Throw New NotSupportedException

End Sub

ExecuteReader Function
The ExecuteReader method returns an extension-specific reader object to the caller so they may loop
through and read the data. The CSVCommand object creates an instance of your custom reader object. An
internal method is then executed passing in the m_cmdText variable that you filled from the
CSVConnection.ConnectionString property. Your CSVReader implementation knows how to use

430

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 430

this information to gain a reference to the supplied CSV file. A reference to your custom data reader is
then returned.

C#
public IDataReader ExecuteReader()
{

//Verify a valid connnection
if (m_connection == null || m_connection.State !=

System.Data.ConnectionState.Open)
throw new InvalidOperationException("Connection must be valid and

open.");
// Execute the command and return a datareader

CSVDataReader reader = new CSVDataReader();
reader.GetFile();
// The getfile methods opens a stream to the file
// specified in the command text

return reader;
}

VB.NET
Public Function ExecuteReader() As IDataReader

'Verify a valid connnection
If m_connection Is Nothing Or m_connection.State <>

System.Data.ConnectionState.Open Then
Throw New InvalidOperationException("Connection must be valid and

open.")
End If
'Execute the command and return a datareader
Dim reader As CSVDataReader = New CSVDataReader()
reader.GetFile(m_cmdText)
'The getfile methods open a stream to the file
'Specified in the command text
Return reader

End Function

CommandText Property
Reporting Services does not manually create a separate Command object. It uses the CreateCommand
method of the IDBConnection interface to return an implementation-specific command object. This
object maps the ConnectionString property of the CSVConnection object to the CommandText of the
command object to provide the path to the file that you are going to parse using your custom data
extension. Due to this, you do need not allow the programmer to change the CommandText property
from code. You need to create this property as a read-only property, but are forced to make it read/write
based on interface requirements. Therefore, you need to create both the set and get methods, even
though the set method is effectively empty, (it contains a NOOP operation).

C#
public string CommandText
{

//string used to specify the filepath

431

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 431

get { return m_cmdText;}
set {//NOOP}

}

VB.NET
Public Property CommandText() As String _

Implements IDbCommand.CommandText
Get

Return m_cmdText
End Get
Set(ByVal Value As String)

'NOOP
End Set

End Property

CommandTimeout Property
The CommandTimeout property is used to specify how long the Command object should wait for the
results of an executed command before throwing an exception. You do not actually use this value, but it
must be implemented due to interface requirements. You don't allow the developer to actually set this
value through code, but return the default value of 30 seconds.

C#
public int CommandTimeout
{

// Implemented the Property for consistency but it is not used.
get {return 30;}
set {//NOOP}

}

VB.NET
Public Property CommandTimeout() As Integer _

Implements IDbCommand.CommandTimeout
Get

Return 30
End Get
Set(ByVal Value As Integer)
'NOOP

End Set
End Property

CommandType Property
Most data processing extensions allow the developer to pass in a command as text, or they can pass in a
fully initialized Command object for the Execute reader method to examine and use. The CSVCommand
class only accepts text, and any other type of will cause your component to throw a NotSupported
Exception.

C#
public CommandType CommandType
{

// supports only a text commandType

432

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 432

get {return CommandType.Text;}
set {if (value != CommandType.Text) throw new NotSupportedException();}

}

VB.NET
Public Property CommandType() As CommandType _

Implements IDbCommand.CommandType
Get

Return CommandType.Text
End Get
Set(ByVal Value As CommandType)

If Value <> CommandType.Text Then
Throw New NotSupportedException

End If
End Set

End Property

CreateParameter Function
The CreateParameter function returns an extension-specific parameter to the Command object. The
method must be supported due to the interface requirements, even though it is not actually used. The
CSVParameter object is a simple class that implements another interface called IdataParameter,
which allows it to be returned as an object of the interface type.

C#
public IDataParameter CreateParameter()
{

//return CSVDataParameter
return new CSVDataParameter();

}

VB.NET
Public Function CreateParameter() As IDataParameter _

Implements IDbCommand.CreateParameter
Return New CSVDataParameter

End Function

Parameters Property
The Parameters property returns a collection that implements the IDataParameterCollection
interface. Your custom collection class is the CSVParameterCollection and satisfies these
requirements. The Parameters property allows the developer to index into the Parameters collection
to set or get the parameter values.

C#
IDataParameterCollection IDbCommand.Parameters
{

//Indicate that our provider does not support parameters
get {throw new NotSupportedException("Parameters not supported");}

}

433

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 433

VB.NET
Public ReadOnly Property IDbCommandParameters() As IDataParameterCollection _

Implements IDbCommand.Parameters
Get 'indicate that parameters are not supported

Throw New NotImplementedException("Parameters are not supported")
End Get

End Property

Creating the DataReader Object
The data reader is the workhorse of your extension. Everything you have done to this point is to get to
your custom CVSDataReader object. The behavior of the data reader is enforced by the IDbDataReader
interface, which supplies methods to indicate the number, names, and types of the fields that will be
read. It also allows the object to actually access the data.

To add the CSVDataReader class to the project, choose Project | Add Class from the menu. Change the
name of the class to CSVDataReader. After adding the class, add the custom namespace and edit the
class definition.

Declarations
The variables of the CSVDataReader hold of all the information that you will use to build the properties
supported by the CSVDataReader class. The m_currentRow variable is used to store the value of the
current row as the data is being read from your CSV data file. The string array m_names contains the
names of the fields that will be read, while the m_types array provides access to the type of data that
will be read. As the data is read, it will be loaded into an array of the object type called m_cols. Data
from the file will be read by an internal StreamReader class called sr.

C#
internal int m_currentRow;
internal String[] m_names = {"Name","EmailAddress"};
internal Type[] m_types = {typeof(String),typeof(String)};
internal bject[] m_cols = new object[2];
internal int m_fieldCount = 2;
private StreamReader sr;

VB.NET
Friend m_currentRow As Integer
Friend m_names() As String = {"Name", "EmailAddress"}
Friend m_types() As Type = {Type.GetType("string"),Type.GetType("string")}
Friend m_cols() As Object = New Object(2) {}
Friend m_fieldCount As Integer = 2
Private sr As StreamReader

Implementing IDbDataReader
The IDbDataReader interface enforces consistency in working with data. It provides properties and
methods that allow you to examine the data and its types as well as the Read method that will actually
do the dirty work.

434

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 434

C#
public interface IDataReader : IDisposable
{

Type GetFieldType(int fieldIndex);
string GetName(int fieldIndex);
int GetOrdinal(string fieldName);
object GetValue(int fieldIndex);
bool Read();
int FieldCount {get;}

}

VB.NET
Public Interface IDataReader

Inherits IDisposable
Function GetFieldType(ByVal fieldIndex As Integer) As Type
Function GetName(ByVal fieldIndex As Integer) As String
Function GetOrdinal(ByVal fieldName As String) As Integer
Function GetValue(ByVal fieldIndex As Integer) As Object
Function Read() As Boolean
Property FieldCount() As Integer

End Interface

You need to modify your class definition to force the custom CSVDataReader class to support the
interface requirements.

C#
namespace Wrox.Professional.ReportingServices.CSVDataExtension
{

public class CSVDataReader : IDataReader
{

internal int m_currentRow;

VB.NET
Namespace Wrox.Professional.ReportingServices.CSVDataExtension

Public Class CSVDataReader
Implements IDataReader

GetFieldType Function
This property returns the type of data at a particular position within the stream that is being read. This
data is used to allow the developer to store the data being read in the correct datatype upon retrieval
from the data reader.

C#
public Type GetFieldType(int i)
{

// Return the actual Type class for the data type.
return m_types[i];

}

435

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 435

VB.NET
Public Function GetFieldType(ByVal i As Integer) As Type _

Implements IDataReader.GetFieldType
'Return the actual Type class for the data type.
Return m_types(i)

End Function

GetName Function
The GetName method allows the developer to retrieve a data field from the DataReader object by
passing in the name of the field to be read.

C#
public string GetName(int i)
{

Return m_names[i];
}

VB.NET
Public Function GetName(ByVal i As Integer) As String _

Implements IDataReader.GetName
' returns name of current column
Return m_names(i)

End Function

GetOrdinal Function
The GetName method allows the developer to index data based on its position within the DataReader
stream.

C#
public int GetOrdinal(string name)
{

// Look for the ordinal of the column with the same name and return it.
// Returns -1 if not found
return Array.IndexOf(m_names, name);

}

VB.NET
Public Function GetOrdinal(ByVal name As String) As Integer _

Implements IDataReader.GetOrdinal
' Look for the ordinal of the column with the same name and return it.
' Returns -1 if not found
Return Array.IndexOf(m_names, name)

End Function

GetValue Function
The GetValue function retrieves the actual value from the data stream. All of these methods are
typically used together. The developer pulls the type information from the stream, creates variables of
the correct type to hold this data, and gets the values of the data using the GetValue function.

436

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 436

C#
public Object GetValue(int i)
{

//returns column value
return m_cols[i];

}

VB.NET
Public Function GetValue(ByVal i As Integer) As Object _

Implements IDataReader.GetValue
'returns column value
Return m_cols(i)

End Function

Read Method
The Read method is the workhorse of the CSVDataReader class. The function loops through the CSV
data line by line. As each line is read, it is split into individual data fields and placed into the m_cols
object collection based on the delimiter field delimStr. If a line is successfully read, this is indicated to
the user of your extension by incrementing the row count variable m_currentRow and by returning a
Boolean value. As long as true is returned, data is successfully read. False is returned when the
internal StreamReader hits the end of the file.

C#
public bool Read()
{

//Implement the Methods to open the CSV File
string line;
string delimStr = ",";
char [] delimiter = delimStr.ToCharArray();

while ((line = sr.ReadLine()) != null)
{

m_currentRow++;
m_cols = line.Split(delimiter);
return true;

}
return false;

}

VB.NET
Public Function Read() As Boolean _

Implements IDataReader.Read
'Implement the Methods to open the CSV File
Dim line As String
Dim delimStr As String = ","
Dim delimiter() As Char = delimStr.ToCharArray()
Do

line = sr.ReadLine
If Not (line) Is Nothing Then

m_currentRow = m_currentRow + 1

437

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 437

m_cols = line.Split(delimiter)
Return True

Else
Return False

End If
Loop

End Function

FieldCount Property
The FieldCount property returns the number of fields or columns available in each row of data that the
Read method returns.

C#
public int FieldCount
{

// Return the count of the number of columns,
get { return m_fieldCount; }

}

VB.NET
Public ReadOnly Property FieldCount() As Integer _

Implements IDataReader.FieldCount
Get

Return m_fieldCount
End Get

End Property

Installing the CSVDataProcessing Extension
After creating your custom data processing extension, you must install it to enable access to it. The
installation process is actually pretty simple. Since your extension will be used by both the developer
and Reporting Services, it requires installation in more than one location.

Reporting Services has a standard location where extensions should be installed. This location is a
subdirectory below the installation directory of SQL Server itself. I will refer to the SQL Server
installation path as InstallPath. On my machine, this directory is C:\Program Files\Microsoft
SQL Server\MSSQL\.

The directory that you will install the extension into is the bin directory of the Report Server:
InstallPath\ Reporting Services\ReportServer\bin. Copy your custom data processing
extension assembly into this directory. The extension is now in the correct location, but we need to
inform Reporting Services of its presence. This is done by editing the configuration file that Reporting
Services uses for its settings. This file is called RSReportServer.config and is located in the
InstallPath\ Reporting Services\ directory. Open this file and look for the <Data> section. Within
this section, you should see entries similar to the following:

<Data>
<Permissions>

<PermissionSet class="System.Security.NamedPermissionSet" version="1"

438

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 438

Unrestricted="true" Name="FullTrust"
Description="Allows full access to all resources"/>

</Permissions>
<Extension Name="SQL"

Type="Microsoft.ReportingServices.DataExtensions.SqlConnectionWrapper,
Microsoft.ReportingServices.DataExtensions"/>

<Extension Name="OLEDB"
Type="Microsoft.ReportingServices.DataExtensions.OleDbConnectionWrapper,

Microsoft.ReportingServices.DataExtensions"/>
<Extension Name="ORACLE"

Type="Microsoft.ReportingServices.DataExtensions.OracleClient
ConnectionWrapper, Microsoft.ReportingServices.DataExtensions"/>

<Extension Name="ODBC"
Type="Microsoft.ReportingServices.DataExtensions.OdbcConnection

Wrapper,Microsoft.ReportingServices.DataExtensions"/>
<Extension Name="CSV"

Type="Wrox.Professional.ReportingServices.CSVDataExtension.CSVConnection,
Wrox.Professional.ReportingServices.CSVDataExtension"/>

</Data>

Add the CSV entry that you see in the highlighted code snippet. Save the file and your installation of the
CSV extension for the Report Server portion is complete.

The next task is installing the extension on your development machine so that you can use it in the
Report Designer. This is also done by copying the file to a specific directory of your development
machine and making an entry in the configuration file so that the Designer is aware of the extension.

Copy your extension to the InstallPath\80\Tools\Report Designer directory. The configuration
file of the Designer is in the same directory. It is called RSReportDesigner.config. Insert the same
information that you inserted at the server-side extension at the end of the <Data> section in this file.

<Data>

<Extension Name="ODBC"
Type="Microsoft.ReportingServices.DataExtensions.OdbcConnection

Wrapper, Microsoft.ReportingServices.DataExtensions"/>
<Extension Name="CSV"
Type="Wrox.Professional.ReportingServices.CSVDataExtension.CSVConnection,

Wrox.Professional.ReportingServices.CSVDataExtension"/>
</Data>

Testing the CSVDataExtension
In order to test the extension, a report that uses the custom extension must be created. You also need to
create a CSV file to contain your data or use the one provided in the sample code. The data needs to be
in a two column format as shown here:

Name, Email Address

Add a new project to your existing solution. Create the project by choosing File | Add Project | New
Project. Change the name of the project to TestReport. If the development environment is set up
correctly, you will see the Business Intelligence template folder. Choose the Report Library template.

439

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 439

After the project has been created, you need to add a report. Add the report by selecting File | Add New
Item | Report. Change the name of the report to Roster. There is no dataset associated with the report.
Create a new dataset by clicking on the drop-down list and select New Dataset as shown in Figure 12-3:

Figure 12-3

After the new dataset is created, the Data Source window will pop up. Edit the Name property displayed
in the text box to something like CSVDataSource and select the CSV type. If the CSV type is not
available, then review your installation of the extension. The result should look like the image shown in
Figure 12-4:

Figure 12-4

Next, we must set up the security. Select the Credentials tab and ensure that Windows Integrated Security is
selected as shown in Figure 12-5:

Figure 12-5

Select OK and now you can design the visual aspects of the report. Select the Toolbox tab of the tool box
window. Drag and drop a List Control onto the design surface. Next, select the Fields tab of the tool box
window. That should display the available field names for the report. There should be two fields: Name
and Email Address. Drag and drop the field names into the list box. The layout of the report should be
similar to that shown in Figure 12-6:

Figure 12-6

440

Chapter 12

ch68787_12.qxp 26/03/2004 3:56 PM Page 440

Now, select the Preview tab to view the results of your work. This should appear as shown in Figure 12-7.
This view will depend on the data in the file that you use:

Figure 12-7

Summary
In this section, we have learned about the extensibility options available in SQL Reporting Services and
some of the business opportunites created. Microsoft has created a flexible and powerful reporting
solution that allows us to modify its behavior by implementing the interfaces required by the particular
extension type. This functionality is sure to create a third party market for tools as well as allow the
enterprise developer to create custom solutions for the unque needs of their business.

We also discussed the data access methods used by the .NET Framework and specifically how to create a
custom data processing extension to work with non-relational data. Our example is very simple and
does not stand alone as an application, although it could be easily extended to provide additional
functionality, such as support for variable numbers of fields and field names. The primary purpose of
the example in this chapter was to familiarize the reader with the requirements for creating and
installing an extension. This type of extension was chosen because it is used on the server for report
processing and on the developer machine for report creation.

441

Extending Reporting Services

ch68787_12.qxp 26/03/2004 3:56 PM Page 441

ch68787_12.qxp 26/03/2004 3:56 PM Page 442

Deployment Strategies

It might seem that placing all the chapters about how to use Reporting Services before information
on how to design a solution and deploy it is a bit like putting the cart before the horse. We believe
that this work should first provide you with details and training on what Reporting Services can
do and how it can be accomplished. This should have revealed some horizons to you about what
you might be able to accomplish with this tool. Now with all the knowledge and skills you have
acquired, we would like to provide some direction for your solution and how to deploy it.

We will be reviewing some information that has already been presented so that we can build on
that. By the time we finish you should have sufficient information to deploy a solution in a variety
of scenarios.

Architecture Review
In the following section, we will review the different architectural components of Reporting
Services. Understanding the different components will help you understand how those
components can be deployed. Let's start by reviewing each of the major functional areas of
Reporting Services: the Report Server and Report Server database. The section will finish with a
look at three different deployment scenarios: small, medium/large, and enterprise. You should be
able to identify the appropriate deployment scenario for your organization.

Reporting Services Components
Before we cover deployment, you need to take a look at each of the components of Reporting
Services. Each component needs to be considered when deploying Reporting Services. The
components to consider can be grouped into three categories:

❑ Interfaces to Reporting Services

❑ Report Server

131133

ch68787_13.qxp 26/03/2004 3:56 PM Page 443

Chapter 13

444

❑ Report Server database

The interfaces you will look at include Report Manager and client applications. Both will use the
Reporting Services Web Service to communicate with Reporting Services. With these items you will need
to think about IIS deployment along with application authentication.

Deployment of the Report Server will affect processing of reports, scheduled execution, and connection
by clients. Here you will look at the major functions of Report Server and how they can be scaled out
and up to handle larger volumes of data.

Finally, you'll look at the Report Server database. All metadata for Reporting Services is stored in two
SQL databases. Our major considerations here are how the Report Server connects to these two
databases and how these databases can be scaled.

Report Manager
Report Manager is the primary tool for managing and configuring reports. You could break Report
Manager into three main areas:

❑ Report organization

❑ Report management

❑ Site management

Report Organization
It is the ability to logically group reports into a hierarchical structure. Through the use of folders,
Reporting Services users can organize reports based on their business requirements. Report folders give
you the ability to set properties such as description and security. Careful consideration should be given
to the logical organization of reports before starting with Reporting Services. Proper organization will
ensure that users can easily navigate folders to find reports as well as assist in setting up secure access to
data.

Report Management
As the name implies, report management allows you to manage individual reports. You can set
descriptions of reports, manage parameter default values and prompts, manage report data sources, set
executions properties, view report history, and set security on individual items. All of these areas are
crucial to successfully managing Reporting Services.

Site Management
The final area of report management is site management. From Report Manager, you can set various site
properties as well as define site-level and item-level security roles. Site management really has to do
mainly with managing the Report Server itself. You can set information such as report execution
timeouts, shared schedules, and whether or not to enable logging. Some of these items can also be set
through Reporting Services configuration files that will be covered in the Server Configuration Files
section later in this chapter.

Security is a major issue for any system. Reporting Services implements a role-based security model. This
model can be applied to both individual items such as reports and folders as well as the Report Manager

ch68787_13.qxp 26/03/2004 3:56 PM Page 444

site. Through Report Manager, system administrators can define site-level and item-level roles and
manage existing roles.

In order to prevent system lockouts, Reporting Services does not allow the BUILTIN\Administrator
group to be removed from the system administrator role assignment. This means that any member of
BUILTIN\Administrators group will have the ability to change their security settings on individual
reports. This should be taken into consideration when deciding which server to deploy Reporting
Services to.

Report Manager is an ASP.NET application built on top of the Reporting Services Web Service. Why is
this important? Well, anything that Microsoft has done in the Report Manager, you can do in your own
code. If you don't like the management interface or simply want to build enhancements, you can do that
by calling the web service.

Clients
The final components you'll look at in the architecture are Reporting Services clients. They are divided
into two categories:

❑ Report Designer

❑ Report Consumer

Each component will need to interact with Reporting Services and be considered in your final
deployment.

Report Designer
A Report Designer is any application that needs to publish report definitions to Reporting Services. You
will need to use Microsoft's Designer in Visual Studio .NET for this discussion, although the same
principles would apply to any third party design tool.

Through the Reporting Services Web Service, designers can publish Report Definition Language (RDL)
files. This process reads the report definition and stores it in the Report Server database. When
deploying Reporting Services, you must ensure that report design tools are able to connect to the
Reporting Services Web Service.

Report Consumer
Report Consumers can come in just about any form. They could be ASP.NET web applications, Windows
Forms applications, or just about anything that can consume web services. For this reason, it is much
more difficult to generalize how every consumer will connect to Reporting Services.

The key point to remember is that the application must communicate with Reporting Services through
the Reporting Services Web Service. For this reason, you will need a valid HTTP connection to the
Report Server. You will also need to pass the user's credentials to the Report Server. Depending on your
application's design, this could come in numerous forms.

445

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:56 PM Page 445

Consider a Report Consumer deployed over the Internet versus an Intranet. If you deploy your
consumer over the Internet, you will have to find some way to pass authentication to Reporting Services.
This could come through basic authentication over SSL, ASP.NET Forms authentication, or your own
custom security model. You will need to consider any consumer deployment of this type when
configuring Reporting Services.

Reporting Services Web Service
The Reporting Services Web Service is the main entry point into Reporting Services. Microsoft has taken
all of the API calls for Reporting Services and created a platform independent interface using web
services. The Reporting Services Web Service relies on the .NET Framework and IIS for implementation.
When you install Reporting Services, you will be required to have both of these components.

Because the interface to Reporting Services is hosted in IIS, you can take advantage of a number of its
features. To scale applications, you have one of the two options:

❑ Scale up

❑ Scale out

Scale Up
Scaling up requires adding additional powerful hardware to an existing server to increase output. This
can be very handy for small deployments and is often a less expensive approach. Purchasing hardware
can be cheaper than most software licenses.

Scale Out
Scaling out, on the other hand, means adding additional servers and then allowing them to work
together to increase output. This option is the most robust but often requires additional software
licenses. Deployment of Reporting Services in a web farm configuration will be outlined later in the
chapter.

The Reporting Services Web Service handles all communication with the Reporting Server. It allows for
cross-platform independence and gives us a deployment option that both scales up and scales out.

Report Server
The Report Server is the key component of Reporting Services. The Report Server component is
responsible for handling report processing, which includes data processing and rendering along with
handling security authorization, scheduled report execution, and delivery.

Report Server Databases
To perform all of its operations, Reporting Services must have a store for the services metadata. This
includes things such as user role assignments, report definitions and the Report Server's folder
hierarchy.

446

Chapter 13

ch68787_13.qxp 26/03/2004 3:56 PM Page 446

Microsoft has decided to store this metadata in Microsoft SQL Server. SQL Server is a robust and
well-established relational database management system (RDBMS). Storing data in SQL Server allows
Reporting Services to take advantage of features such as transaction logging, data page caching, and
sophisticated backup utilities.

Let's take a look at the two databases used by Reporting Services:

❑ ReportServer

❑ ReportServerTempDB

The use of these two databases is crucial to Reporting Services operation. It allows you to physically
separate the Report Server and its underlying metadata store.

ReportServer
The ReportServer database is the main metadata store for Reporting Services. This database contains
all report definitions, data source definitions, schedules, security assignments, snapshots, and snapshot
history. In order for Reporting Services to function properly, it must be able to establish a connection to
this database.

The ReportServer can reside on either the same machine or a different machine than the installation of
Reporting Services. This allows administrators to scale SQL Server resources separately from Report
Server resources. Later in the chapter, you will see how separating the Report Server from the
underlying metadata store can be used in larger deployments.

ReportServerTempDB
The ReportServerTempDB database is responsible for storing short-lived metadata such as the user's
session cache and cached instances. This database is also crucial to the operation of Reporting Services
and is installed on the same SQL Server as the ReportServer database.

Because the information in this database is temporary, it is not necessary to perform regular backups.
Backup strategies will be discussed later in the chapter.

Reporting Services Components Illustrated
Figure 13-1 is a diagram of the Reporting Services components. When looking at the diagram, you
should be aware of the different physical components involved. The two major components include the
Report Server and ReportServer database. Later in the chapter, you will see how these components can
be separated to meet large scale reporting needs.

447

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:56 PM Page 447

Figure 13-1

Reporting Services Deployment Scenarios
Now that you have reviewed the components of Reporting Services, let's take a look at different
deployment scenarios. The deployment scenarios are broken down into different size categories. You
will first look at small deployments. These deployments would consist of single-server setups for
smaller user groups. Then you will look at medium to large deployments. In this scenario, you'll look at
separating the report processing and Report Server metadata. Finally, you will go over enterprise size
deployments. Here you will see how Reporting Services can be scaled out using multiple web servers to
handle report processing.

In this section, we will illustrate how Reporting Services can be scaled out by adding more servers. In
certain scenarios, you might want to consider scaling up Reporting Services. By scaling up you are

448

Chapter 13

ch68787_13.qxp 26/03/2004 3:56 PM Page 448

adding additional resources to the current server instead of adding additional servers. This option does
not afford as much scalability as additional machines but can save considerable amount of money on
licensing and maintenance.

Small Deployment
For a small deployment of Reporting Services, it is acceptable to place both the Report Server and
ReportServer, database on one machine. This allows you to take advantage of an existing SQL Server
license. If a machine already has SQL Server 2000 installed, you can install Reporting Services on that
same machine with no additional licensing costs. A single server deployment is most commonly used in
departmental type reporting scenarios. This setup can easily support a user base of up to 50 users.

While installing Reporting Services, you need to specify the local SQL Server as the location for the
ReportServer and ReportServerTempDB. This server must be running IIS, SQL Server 2003 (SP3a)
and the .NET Framework. The installation will also install the Report Manager application along with
the Reporting Services Web Service. You will also need to specify an SMTP server when sending email
subscriptions.

Let's take a look at the deployment of Reporting Services on a single server. Figure 13-2 shows the
various components of Reporting Services (clients, Report Manager, Reporting Service, and Reporting
Service database):

Figure 13-2

449

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:56 PM Page 449

Medium/Large Deployment
The next type of deployment scenario you might consider is a medium to large-scale deployment. This
deployment would be suitable for supporting the reporting needs of a small organization, or taking
advantage of existing SQL Server resources.

In this scenario, Reporting Services is installed on one server containing IIS and the .NET Framework.
During the installation, you can point to a remote server to house the ReportServer and
ReportServerTempDB database. The installation server will contain the Report Manager, Report
Services Web Service, and Report Server.

The advantage to this architecture is the separation of report processing and metadata processing.
Multiple machines allows for allocating different resources for the two separate tasks. There are,
however, a couple of disadvantages to this setup. First, there will be increased network traffic between
the two servers. Installing additional or gigabit network adapters can overcome some of this. The second
disadvantage is licensing; when you install Reporting Services on a separate machine, you will be
required to have SQL licenses for both. Be sure to check the Microsoft web site for specific licensing
details.

Figure 13-3 illustrates deploying Reporting Services on multiple servers:

Figure 13-3

450

Chapter 13

ch68787_13.qxp 26/03/2004 3:56 PM Page 450

Enterprise Deployment
One key feature of Reporting Services is its ability to scale out for an enterprise environment. Its
web-based interface along with its integration with SQL Server allow for large-scale deployments.

In an enterprise deployment, you will start out by installing Reporting Services on one server containing
IIS and the .NET Framework. During installation, the Report Server database should be installed on a
remote SQL Server. For each additional machine, you need to install Reporting Services again and point
its database to the shared SQL Server. Once all of the machines have been configured, you can use
production scaling and clustering tools such as Microsoft Application Center, to maintain the web farm
environment. You can also take advantage of Network Load Balancing to improve the performance of
SQL Server.

This scenario takes advantage of available Microsoft technologies as well as multiple machines. The
upside is that processing power can now be distributed among numerous machines. However, the setup
and maintenance of a web farm environment will take considerably more resources. You will also have
to pay additional licensing fees for each installation of SQL Server and Reporting Services.

Figure 13-4 illustrates a web farm deployment with three web servers and two SQL Servers:

Figure 13-4

451

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 451

System Requirements and Prerequisites
Before deploying Reporting Services, there are some configuration aspects that need to be considered
and some key decisions made.

A Report Server installation consists of the following:

❑ A web server that hosts the server-side components, usually Microsoft IIS

❑ An instance of SQL Server to host the database on which Report Services is built

❑ User accounts with the necessary security permissions to create the database on the SQL Server
instance that will be hosting the Reporting Services database

❑ An SMTP server that will deliver reports via email

The prerequisites for each of these components are given in the following table. These elements are
required for the setup to run successfully.

Server Requirements
Operating system requirements for the server components are shown in the following table:

Operating System Operating System-Specific Requirements

Windows 2000 Server with Service Pack 4 (SP4)
or later

Windows 2000 Advanced Server with SP4
or later

Windows 2000 Datacenter Server with SP4
or later

Internet Information Services 5.0

SQL Server 2000a with Service Pack 3a

SQL Server Agent

Windows XP Professional with Service Pack 1
or later

Internet Information Services 5.0

SQL Server 2000a with Service Pack 3a

SQL Server Agent

Component System Requirements

Report Server IIS 5.0 or higher web server; ASP.NET

Report Manager IIS 5.0 or higher web server; ASP.NET

Report Server database Instance SQL Server 2000 SP3

Report Designer Workstation with any edition of Visual Studio .NET 2003

452

Chapter 13

ch68787_13.qxp 26/03/2004 3:57 PM Page 452

Prior to running setup, both Report Server and Report Manager require IIS to be installed and running.
When running the Reporting Services installation, a number of components will need to be updated for
the installation to run correctly. The following components may be updated:

❑ Windows Installer 2.0

❑ Windows .NET Framework version 1.1

❑ Microsoft SQL Server 2000 Reporting Services setup support files

By the yard stick of the hardware currently available in the market place today, the hardware
requirements for a Report Server installation are very ordinary. Minimum hardware requirements are
shown in the following table:

It cannot be emphasized enough that these represent minimum requirements. These requirements are
adequate for a development environment or even a small installation with a limited number of users.
However as the number of users of the system increases, a minimalist system can become bogged down.

In my experience, all of the Windows server operating systems outlined in the earlier table perform
better with more memory. "More is always better" may indeed be true when discussing server RAM. As
some vendors sell systems based on 2 GHz processors for less than $300 (without monitor), it would
make sense for a production system to use a processor substantially more powerful than a 500 MHz.

Component Hardware Requirement

Processor 500 MHz Pentium II – class processor required,
600-MHz Pentium III (or higher) – class processor recommended

Memory 256 MB minimum for server components, 512 MB recommended

Hard Disk 100 MB on the installation drive

Once installed, these components cannot be rolled back or uninstalled.

Operating System Operating System-Specific Requirements

Windows Server 2003, Standard Edition

Windows Server 2003, Enterprise Edition

Windows Server 2003, Datacenter Edition

Computer configured as an application
server

ASP.NET

SQL Server 2000a with Service Pack 3a

SQL Server Agent

453

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 453

Licenses
Reporting Services is licensed as a component of SQL Server 2000. A valid SQL Server license is required
for each machine on which Reporting Services or any of its components are installed. If your installation
uses a web farm to deliver reports, each server in the farm will need a license, even though SQL Server
itself may not be installed on these machines.

Report Server Database
All folders, report definitions, data sources, subscriptions, metadata, and so on are stored in a SQL
Server relational database. The setup process installs and configures the database on a machine already
running an instance of SQL Server 2000. The instance of SQL Server can be on the local machine or a
remote instance. Installing multiple instances of Reporting Services on a single server is not supported.

.NET Framework Requirement
Both Report Server and Report Manager require Microsoft .NET Framework version 1.1. If the .NET
Framework version 1.1 is not installed, the setup process for Reporting Services will install it. The setup
process will also register ASP.NET in IIS if it has not already been registered.

Configuring Windows Server 2003 Application Server
As a security measure, Windows Server 2003 is installed with nearly all services turned off. To configure
a Windows Server 2003 machine in preparation for installing Reporting Services, the server must be
configured as an IIS application server and have ASP.NET enabled. This is done using the Configure Your
Server Wizard or from the Add / Remove Programs tool in the control panel as in Figure 13-5.

To configure the application server using the wizard, start the wizard. If you are shown an information
screen, click Next. Select Application server as shown in Figure 13-5 and click Next:

To install Reporting Services on Windows Server 2003 you must manually enable
ASP.NET.

The Reporting Services database can only be installed on Developer, Standard, and
Enterprise editions of SQL Server 2000. It cannot be installed on the Personal edition
(also known as MSDE).

454

Chapter 13

ch68787_13.qxp 26/03/2004 3:57 PM Page 454

Figure 13-5

On page 2 of the wizard, be sure to check the checkbox marked Enable ASP.NET as shown in
Figure 13-6:

Figure 13-6

If you use the Add / Remove Programs tool in the Control Panel to configure your server, after starting the
tool, click on the large button on the left labeled Add/Remove Windows Components as shown in
Figure 13-7:

Figure 13-7

455

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 455

The Windows Components Wizard will then be displayed. Check the Application Server checkbox and then
click the Details button as in Figure 13-8:

Figure 13-8

Be sure to check the ASP.NET checkbox as in Figure 13-9. Click the OK button to close the Application
Server details dialog box. Finally click the Next button on the Windows Components Wizard to perform the
setup.

Figure 13-9

After IIS and ASP.NET have been configured, your server is ready to install Reporting Services. The
server that is to host the SQL Server database must, of course, have SQL Server installed before the
Reporting Services database can be installed.

Client Requirements
Consumers of Reporting Services reports generally view the output and manage the server through a
web browser. There are no operating system requirements for users to view published reports. The only
requirement is that the client workstation must have a browser that supports HTML 3.2.

Internet Explorer 6.0 with Service Pack 1 is required for client workstations that will access and manage
a report server using Report Manager. Additionally, scripting must be enabled when using Report

456

Chapter 13

ch68787_13.qxp 26/03/2004 3:57 PM Page 456

Manager. To enable scripting, you need to click on Tools in the Internet Explorer window and select
Internet Options. Then click on the Security tab and then on the Custom Level button. Scroll down to
Scripting settings and enable the Active scripting option.

Report Designer Requirements
The Report Designer will run on any version of the following operating systems as long as all the
current service packs have been applied:

❑ Windows 2000

❑ Windows XP

❑ Windows Server 2003

The tool requires Microsoft Visual Studio .NET 2003. Any edition of Visual Studio .NET 2003 can be used
for designing reports. However, Visual Studio .NET 2002 cannot be used for designing reports. For
developing applications that consume the Reporting Services Web Service, either Visual Studio .NET
2002 or Visual Studio .NET 2003 can be used.

If reports are to be rendered into formats other than HTML, such as PDF or XLS, appropriate software
tools (Adobe Acrobat Reader or Excel) will be required for viewing the output.

Accounts and Credentials
While running the Reporting Services setup, a number of pages will prompt you for credentials. Before
you run setup, this is a good time to understand what credentials are required and why.

Reporting Services components need credentials for:

❑ The ReportServer service needs a credential to operate as a Windows Service.

❑ The Report Server machine must connect to the Report Server SQL Server database at runtime,
as this is where all information about any item is stored.

❑ A computer being added to a web farm must have credentials to connect to a report server that
already exists in a web farm.

Installation
The user running setup on a server must be a member of the Administrators group on the target
installation system. One of the first screens encountered during the install asks you to select account
under which the Windows service will run.

While running setup, a credential must be provided to the SQL Server that has permissions to:

❑ Create the Report Server database

❑ Create logins

❑ Create roles

❑ Assign permissions to users

457

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 457

This set of installation credentials can use either SQL Server Authentication or Windows Authentication.
If it is undesirable for the user running setup to use their own credentials, then the command line setup
utility should be used where alternative credentials can be entered.

As all these credentials can be a bit confusing, so let's spend some time on the details of these accounts in
the installation walkthrough.

Ongoing Operations
For operating Reporting Services after installation has completed successfully, the Report Server will
need to be in the database owner role for the ReportServer database and have local system
administrator privileges to start the Report Server Windows service. This account can be a local system
account or a Windows domain account. While using a local account, remember that the account must be
a member of the local system administrators group.

Installation and Configuration
By far the easiest method of installing Reporting Services is to use the GUI setup program. The setup
program includes a wizard for specifying installation options. Setup prompts for login credentials,
virtual directory names, and other information depending on the components selected for installation.

All components are installed locally with the exception of the ReportServer database. The database
can be installed either on a local or remote SQL Server instance. The installation can install all
components or specific components selected at the start of the process. By far the simplest installation is
to install all the components on a single system.

It is also possible to install Reporting Services from a command prompt. For devout adherents to the
command line interface, refer to the setup help file. The help file also provides a great deal of detail on
using the wizard and the choices that need to be made during the installation.

Running Setup
Before running setup, an important item should be checked. The Distributed Transaction Coordinator
(DTC) service is required for setup to complete successfully. Before running setup, use the Services tool
in the Control Panel to make sure that the service is installed and that its Startup type is set to Automatic
or Manual. Setup will fail if the DTC service is disabled.

Let's go through the setup wizard in detail. Start the installation process by double clicking on
setup.exe or by inserting the product CD into your CD drive and selecting the option to install
Reporting Services. After you agree to the license for the product some support files will be installed on
your machine to allow setup to run. If you cancel or abort the setup process the support files will not be
uninstalled. Once the support files have been installed successfully click the Next button.

The next step is to evaluate your system and make sure that the prerequisites are installed. These are
things like .NET Framework 1.1 and ASP.NET; the process will also look for the existence of Visual
Studio .NET 2003 to determine if the design tools can be installed on your machine. Once your machine
has passed the prerequisites check, click the Next button.

458

Chapter 13

ch68787_13.qxp 26/03/2004 3:57 PM Page 458

You now finally come to the start screen for the install wizard. Click the Next button. Fill out the
registration information so you can get to where you actually have to make some decisions as in
Figure 13-10:

Figure 13-10

This is the screen where you indicate which parts of Reporting Services you want to have installed on
the target machine. If the prerequisite check found that Visual Studio .NET 2003 is installed on your
machine, then the option to install the Report Designer will be shown. Otherwise this screen will give
the option to install the server components, administrative tools, and documentation. For your
walkthrough, it does not matter if you choose to install the Report Designer. You will be focusing on the
server component installation.

The samples and the AdventureWorks database are good tools to explore the capabilities of Reporting
Services. However, some database administrators view sample or demonstration databases on a
production server as a potential security problem. Installation of these samples will likely depend on
your security policies and the intended use of this Reporting Services installation.

Figure 13-11

459

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 459

This page of the wizard, as shown in Figure 13-11, determines under which account the Windows
service will run. The choices are for a built-in system account or a Windows domain account. Under
most circumstances, you will want to run the service using a built-in account. For Windows 2000 and XP,
this will be the local system account. For Windows Server, you have the choice of using the local system
account or the NT AUTHORITY\NETWORK SERVICE account. If you choose to use a domain user account
to run the service, make sure that the account has permissions to logon as a service. It is recommended
that you use the local system account for Windows 2000 and XP and that the NETWORK SERVICE
account be used for Windows Server 2003. The Auto-start the service check box should be checked.

The names of the virtual directories are not important, but they can be specified to be something
different from the default values. The two checkboxes on the form are of some interest.

If you are setting up a server the primary function of which will be to deliver Reporting Services reports,
you may want to make the default web page for the server be the local Report Manager virtual directory.
To do this, check the box labeled Redirect the default Web site. This will cause the Report Manager
application to come up by using only the machine name in the URL of a browser.

If you are setting up Reporting Services to be exposed to the Internet you may want to use Secure Sockets
Layer (SSL) connections to the web service and Report Manager. This will ensure that any information
sent over the Internet to the server will be encrypted for security as in Figure 13-12:

Figure 13-12

You then come to the database settings as shown in Figure 13-13. The settings on this page determine
whether the configuration will be on a single server or multiple servers as part of the configuration.

460

Chapter 13

ch68787_13.qxp 26/03/2004 3:57 PM Page 460

Figure 13-13

SQL Server Instance
If SQL Server has already been installed on the machine the default value here will be the name of the
default SQL Server instance on your machine. If SQL Server has not been installed on the machine, you
will need to give the name of a SQL Server instance on another machine. Choosing an instance on a
different machine is necessary if you want keep the web service and the database separate or if you want
to install the service on a web farm.

Database Name
The default name of the database is ReportServer, however, any valid SQL Server database name can
be used. The name chosen for the database must be unique on the server where the database is to be
installed.

Database Credential
For this credential, you can specify a Windows domain account, a SQL Server login, or a service account.
Any of the three account types can be used, but some thought and care should go into the selection of
the account. The credential specified must have permission to create the database if it does not exist. If
you are using an existing database on a different server, this account must have database owner
permission to the ReportServer and ReportServerTempDB databases. If your SQL Server 2000
database server is a Windows Server 2003 machine, Reporting Services must use SQL Server
authentication to connect to the ReportServer database. If Windows authentication is used for a
Windows Server 2003 database server, schedules and subscriptions will fail with an internal error
(rsInternalError).

461

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 461

Finishing the Setup
The next step is to specify the email server name and the From address to be used for reports that are
sent to users via email. These are less critical to the operation of Reporting Services except when it comes
to the push delivery of reports. Be sure to use a valid server and address.The last step before the process
actually starts is to specify the license model and number of licenses. This is identical to SQL Server
licensing and in fact is just a duplicate of your SQL Server license. You should use the same license
model as your database server.

With any luck, the process will run to completion and announce that it was successful.

Scaling Up Reporting Services
To configure a multi-server Reporting Services environment or an enterprise-size web farm of Report
Servers, the same setup procedure is used. The only difference comes at the database configuration page.
If you enter the name of a SQL Server instance that is not on the local machine, the wizard page
immediately after the database setup will be shown as in Figure 13-14:

Figure 13-14

This page is used for all of the scaled up installations that separate the web server from the database
server.

Report Server
The name of a computer in a Windows domain must be specified here. If this is the first server that will
be running the web service only, you should enter the name of the machine on which you are running
the setup program. If you have already installed a report server and want to add another server to the

462

Chapter 13

ch68787_13.qxp 26/03/2004 3:57 PM Page 462

farm, then you should specify the name of a server that already is a member of the farm. All the
computers that make up a web farm must be in the same domain or in a trusted domain.

Credentials
The credential must be a Windows domain account with permission to administer the Report Server on
the web farm. This account should be a member of local administrators group on the machines in the
farm. This is simplified greatly if the account is a member of the domain administrators group.

Carefully choose the account you want to use here. This credential is not saved; it is only used for the
installation process. If you select an account with insufficient permissions, the process will fail.

Server Configuration Files
Reporting Services installs the following files that contain configuration settings for the Report Server
Web Service, Report Manager Web application, Reporting Services service, and Report Designer at the
locations described in the following table:

The .config files are XML files that can be edited with any XML editor. They are contained in the
physical directories where the web application and the web service are installed. The most interesting of
the files is RSReportServer.config.

RSReportServer.config contains information such as data connection strings, which are encrypted
for security reasons, values for SQL Server Agent jobs, and extensions that contains properties to control
the Report Server.

Configuration File Default Install Location

RSReportServer.config Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\ReportServer

RSWebApplication.config Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\ReportManager

ReportingServicesService.exe.config Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\ReportServer\bin

RSReportDesigner.config Program Files\Microsoft SQL
Server\80\Tools\Report Designer

463

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 463

These extensions can be modified and customized by programming the web service. The detailed format
of the RSReportServer.config file is detailed in Books Online.

The other configuration files take care of the other areas of Reporting Services.
RSWebApplication.config contains settings for the Report Manager interface.
ReportingServicesService.exe.config has information pertaining to the Reporting Services
Windows services. Most importantly, this file contains information for configuring the level of tracing
performed by the service. The final configuration file, RSReportDesigner.config, contains settings
that are used by Visual Studio .NET. These settings are similar to those found in
RSReportServer.config. In the next section, you'll look at working with the
RSReportServer.config file.

Configuring Using the Command Line Utility
Since RSReportServer.config is an XML file, it can be edited by any text editor. However, the data
connection information is encrypted for security reasons. In order to modify encrypted information, a
command line tool, rsconfig, which comes with Reporting Services must be used. If the database
connection information for the web service must be modified, Reporting Services could be uninstalled
and re-installed. However using rs.config to change the connection information is a much faster and
less complicated solution.

The syntax for rs.config is as follows:

rsconfig -s YourSQLServer -m YourComputerName -d ReportServerDatabaseName -a SQL
-u YourUserName -p YourPassword

The parameters for rs.config are as follows:

❑ -m computername: The name of the computer on which the report server is installed. This is
optional unless you are managing a remote computer.

❑ -s servername: The name of the SQL Server instance on which the Report Server database is
installed. Optional if the instance is on a local computer. The default value is the default SQL
Server instance installed on the computer that is specified by the computername argument.

❑ -d databasename: The name of the Report Server database.

Extension Properties

Data processing extension Child elements in the Data element

Rendering extension Child elements in the Render element

Delivery extension Child elements in the Delivery element

Delivery UI extension Child elements in the Delivery UI element

Event processing extension Child elements in the EventProcessing element

464

Chapter 13

ch68787_13.qxp 26/03/2004 3:57 PM Page 464

❑ -a authorization method: Allowable values are windows or sql. Use windows to specify that
the Report Server should use Windows credentials when connecting to the Report Server
database. Use sql to specify that the report server should use SQL Server credentials when
connecting to the Report Server database.

❑ -u [domain\]username: Specifies a user name. The value is case sensitive if you are using
Windows Authentication.

❑ -p password: Specifies the password to use with the username argument. You can set this
argument to a blank value if the account does not require a password.

A more detailed explanation of the parameters for rsconfig.exe is found in Books Online.

Administrative Issues
In this section, you will take a look at common administrative issues in Reporting Services. Let's start by
identifying disk space requirements for the Report Server database. Then we can move on to backup and
restore of the Report Server database along with the Report Server encryption key. You'll look at security
administration and demonstrate some of the common security tasks. Finally, you'll look at performance
monitoring and administration of Reporting Services log files.

Database Space Requirements
There is no set formula for calculating how much disk space Reporting Services will consume. However,
you will learn those factors that will significantly increase disk space along with the database tables that
should be monitored closely.

To understand how Reporting Services consumes disk space, you have to look back at some concepts
demonstrated earlier in the book. The major area you need to consider is report caching. When Reporting
Services caches reports, it caches both the report definition and data. This is why it is difficult to
definitively state how much disk space Reporting Services will consume. It is partly based on the
number of reports that are cached and the size of data returned in those reports. Following is a list of
factors that will contribute to increased disk space:

❑ Total number of reports

❑ Total number of active sessions

❑ Number of report cached instances

❑ Length of time reports are cached

❑ Total number of report snapshots

❑ Total number of report snapshots in history

❑ Amount of report data returned in individual reports

All of these factors will have a considerable impact on the size of the Report Server database. To monitor
this size, there are a couple of key tables to monitor. First, you should watch the size of the Catalog
table in the ReportServer database. This table contains all report definitions. The more the report
definitions, the larger the size of this table.

465

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 465

The second and most important table to monitor is the ChunkData table. You will find this table in both
the ReportServer and ReportServerTempDB databases. In the ReportServer database, the
ChunkData table contains all report snapshots. So, the number of report snapshots along with the size of
data in the snapshots will affect this table. The ChunkData table in the ReportServerTempDB contains
all temporary cache information. This includes individual session cache data and report cached
instances. The size of this table will increase with more active connections and long expire times on
cached instances. You can monitor the size of these tables through the task pad in SQL Server Enterprise
Manager.

Backup and Restore
The key effectively manage to any system is to take proper backup of application data. There are two
items that need to be backed up to ensure proper disaster recovery of Reporting Services. First you will
look at the backup of the ReportServer database. Then we will discuss how Reporting Services uses
encryption keys and why these keys need to be backed up.

Report Server Database Backup
We have discussed in this chapter that the metadata store for Reporting Services lies in Microsoft SQL
Server. The backup utilities in SQL Server can be used to backup both the ReportServer and
ReportServerTempDB database. However, it is not necessary to backup both databases.

Again, you need to recognize what data is stored in each of the two Report Server databases. The
ReportServer database contains crucial information that must be backed up. It contains all of the
report definitions, security role assignments, and report snapshots. ReportServerTempDB is less crucial
to backup. It contains temporary information such as session caches and cached instances. If the
database were to fail, the information in ReportServerTempDB would be restored as soon as operations
began again. However, if you had set up a specific schedule that populated cached instances, such as
scheduling delivery to the null provider, you would want to back this database up.

Encryption Key Backup
There are a number of items stored securely in each Report Server instance. This includes connection
information, credentials, and server accounts. This information is encrypted using an encryption key
that is created when Reporting Services is installed. There are a number of scenarios where you might
need to reinstall Reporting Services. If you reinstall Reporting Services, you will need to also restore this
encryption key. If it is not restored, data stored in the ReportServer database will not be property
retrieved.

After Reporting Services is installed, you should backup the encryption key. Microsoft has supplied a
utility called rskeymgmt that will copy the encryption key to the file system. This utility will also allow
you to remove any encrypted information in case your encryption key cannot be restored.

To backup the encryption key, you will have to use the following command line switches:

❑ -e: Does not take a value and tells the utility to extract the encryption key

❑ -f: Specifies where on the file system to store the encryption key

❑ –p: Specifies a password to be associated with the key file

This password will be needed later when restoring the encryption key file. Let's take a quick look at
backing up the Report Server key. See Figure 13-15:

466

Chapter 13

ch68787_13.qxp 26/03/2004 3:57 PM Page 466

Figure 13-15

You can see that the encryption key has been backed up to the file system. This file can then be moved to
another media for safe storage.

To restore the encryption key, you will use the rs.keymgmt utility. With the restore, you will use the –f
and –p switch as shown earlier, but instead of specifying the extract key, here you will specify the –a
(apply) key. Figure 13-16 shows a screenshot of restoring the encryption key:

Figure 13-16

Use the following command line to reactivate a local copy of report server:

rsactivate –c "C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\RSReportServer.config" –r

Security Administration
Reporting Services uses a role-based security model. This model combines Windows NT users and
groups and Reporting Services roles to set security on a securable object. In this section, you will look at
the different types of securable objects, the predefined roles for each, and creating role assignments.

In Reporting Services, there are two different types of securable objects:

❑ Report Server site

❑ Report Server items

Report Server Site
When defining roles for the Report Server site, you are defining how users can work with and
administer Reporting Services. Report Server items are the folders, data sources, connections, and

If you use the rs.keymgmt utility to restore your encryption key, you will have to
reactivate the instance of Report Server.

467

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 467

reports contained within a Report Server instance. Let's take a look at the roles that can be defined for
each.

For each securable object type, there is a certain set of tasks that can be defined. Role definitions are used
to represent a set of tasks that can be performed. Once a role definition has been created, it is associated
with a securable object and a Windows NT user or group to create a role assignment. Let's walk through
creating a role assignment for the Home folder.

Report Server Items
First, navigate to the properties of your Home folder using Report Manager. Enter the following URL into
your browser:

http://localhost/Reports/Pages/Folder.aspx?SelectedTabId=PropertiesTab

You can view the properties as shown in Figure 13-17:

Figure 13-17

You can see on the Home folder that there is one role assignment defined for the BUILTIN\Administrators
group. The role assigned is Content Manager. So, this is an associate between the Home folder (securable
object), BUILTIN\Administrators group (user/group), and Content Manager (role definition). Now let's add
a new role assignment for the guest account. You need the guest account to have browse permissions on
the Home folder. Click the New Role Assignment button to create the association.

Here enter the group you would like to give permissions to, Guests, and the role to associate them with,
Browser. Clicking OK will create the role assignment as shown in Figure 13-18:

468

Chapter 13

ch68787_13.qxp 26/03/2004 3:57 PM Page 468

Figure 13-18

You can see that you have defined two role assignments for the Home folder as in Figure 13-19:

Figure 13-19

The key to remember here is the relationship between a securable object, role definition, and Windows
user/group. The combination of these three items creates a role assignment and sets permissions in
Reporting Services.

Server Monitoring
Microsoft Reporting Services also comes equipped with a couple of server monitoring options. The first
option is log files. Log files capture information such as events sent to the application log, exceptions
from Reporting Services, and SOAP messages sent to and from the server. The second server monitoring

469

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 469

option is Windows Performance Counters. Reporting Services provides over 30 performance counters
including the number of active sessions, number of report executions, and cache hit ratios. These options
allow you to troubleshoot problems as well as monitor current resource utilization. Let's look in detail at
each monitoring option.

There are three main log files used by Reporting Services. The log files can be found under the SQL
Server install directory at <Instance (Default MSSQL)>\Reporting Services\Log Files. In this
folder, you will find trace log files that are created daily. The description of each of the three log files is as
follows:

There are numerous counters that can be viewed using Windows Performance Monitor. A few of the
main counters include Active Sessions, Report Requests, Total Reports Executed, and Total Requests.
There are also a number of counters that can be used to monitor report cache information. Using these
counters can help pinpoint bottlenecks in Reporting Services.

You can manage the amount of information that is stored in the trace logs through the
ReportingServicesService.exe.config configuration file. However, the logs files are not deleted.
You should make sure that you monitor the log files directory and remove files as appropriate.

Execution Log
You can also monitor Reporting Services through the Reporting Services Execution log. When reports
are executed, log entries are stored in the ReportServer database's ExecutionLog table. This table
includes information about which report is executed, the duration of execution and other metrics that
can be used to monitor performance. By default, Reporting Services maintains these entries for 60 days.
You can change this value through the Report Manager. To do this, go to the following link:

http://localhost/Reports/Pages/Settings.aspx

This opens Reporting Services Site Settings as shown in Figure 13-20:

Log File Description

ReportServerService_<timestamp>.log This log contains information about the
Reporting Service service.

ReportServerWebApp_<timestamp>.log This log contains information for the Report
Manager Web application.

ReportServer_<timestamp>.log This log contains information for the Report
Server processing engine.

470

Chapter 13

ch68787_13.qxp 26/03/2004 3:57 PM Page 470

Figure 13-20

Notice that at the bottom of the screen you can specify when to remove log entries along with turning on
and off execution logging.

Summary
In this chapter you have reviewed architecture, discussed installation planning, performed an
installation, and discussed administering a Reporting Services solution. This chapter should serve as a
foundation upon which you can build your level of skill with the product. A more detailed explanation
of the features is available through BOL that is included with Reporting Services. It is a good tool for
further investigation of the product.

This foundation will be sufficient to get you started in a productive installation.

471

Deployment Strategies

ch68787_13.qxp 26/03/2004 3:57 PM Page 471

ch68787_13.qxp 26/03/2004 3:57 PM Page 472

Designing
Business Intelligence

Reporting Solutions

It's time to change our vantage point once again. Now that you understand the many capabilities
of SQL Server Reporting Services, let us discuss how to apply these features to solve real
problems. We will take a look at some of the high-level business drivers, challenges, and the
climate of Business Intelligence (BI).

The objective of this chapter is not to give you all the details necessary to create an entire solution
but to discuss the considerations and high-level objectives for a complete BI or reporting solution.
We will show you some example solutions and discuss their components. It is said that you can
give a man a fish and feed him for a day but you can teach a man to fish and feed him for a
lifetime! In this chapter, we will talk about why… and how to fish.

Business decision-makers face many of the same questions now as in decades past. How to
increase revenue, identify and increase the profitability of key customers, and recognize market
trends are familiar questions to leaders and managers at all levels within a business organization.
One of the largest differences between today's decision-makers and those of twenty years ago is
that today's manager must be faster and more informed.

Even the process of identifying a company's most valuable customers can involve analyzing data
from multiple data sources and customer touch-points. For example, the information of a single
customer can be located in sales and marketing data stores, a web application database, and in
satellite offices closer to the customer's geographical location. Capturing the data to get an
aggregate view, enabling you to identify your most profitable customers is one example of how
businesses can increase performance through BI. The goal is being an agile company that's able to
compete more effectively in the marketplace, ultimately increasing profitability and reducing costs
while responding to changing market conditions with both speed and precision.

141144

68787_ch14.qxp 26/03/2004 3:57 PM Page 473

Chapter 14

474

In this chapter, you'll read about recommended approaches to BI solution design, as well as see how two
companies implement Reporting Services solutions in their own environments. The chapter concludes
with tips for enterprise development and an overall summary of how to approach your next Reporting
Services solution.

Approaching Solution Design
Reporting solutions often exhibit the kind of behavior seen in company web applications; they tend to
start small, and increase in size and complexity quickly. Allowing for this growth while maintaining
usability and manageability can be a significant challenge.

Define the Business Problem
Using the term solution suggests that something needs to be fixed. The natural conclusion of this line of
reasoning is that a problem exists! The fact is that not all business solutions are necessarily a fix for
something broken, however, a solution must have a clear purpose. The problem might simply be that we
recognize an opportunity that we would like to pursue. If our information tells us that customers will
need a product or service, the problem might be that we aren't currently selling that product or the
service. Whatever the case, the business need, opportunity or problem must drive the solution.

Business solutions are remedies for business problems. It's often easy to lose sight of this fundamental
truth as programmers and other technical professionals immerse themselves in designing applications.
Every element of the system must be designed for this purpose. From the login dialog to the browse lists
and reports—every feature exists for the sole purpose of meeting a stated business need and solving a
business problem. Business intelligence tools support the goal that business decision makers are
informed and empowered through visibility to important information.

Performance Gaps
A performance gap is a problem that stems for the inability to perform optimally. This might be a
measure of response time, profitability, quality, or the low-level of customer satisfaction. Performance
gaps must be in the form of measurable and quantifiable values.

Missed Opportunity Costs
Lost or missed opportunity costs can be difficult to quantify because the desired goal has not yet been
attained. It's imperative to fully understand and define the conditions and implications of seizing an
opportunity. The perceived goal must be clearly defined in terms or values that are both measurable and
specific enough to define. Setting goals such as improving performance and increasing production are too
ambiguous to either recognize or measure an acceptable degree of success.

Consider the classic case of the small, home-based, thriving business that grows and expands to the
small office. Suddenly the one-guy-company entrepreneur must contend with factors like rent, payroll
and labor laws (did I mention corporate taxes?). This scenario has stifled the energy of countless small
business owners. Moving from the small, one-person business to the moderate-sized office business
might open doors of opportunity, but this comes at an increased cost and management overhead.
Having visibility to lost opportunities, as well as our capacity to accommodate such opportunities, can
help business grow at the right time and in the right way.

68787_ch14.qxp 26/03/2004 3:57 PM Page 474

Another significant factor to consider in business is the cost of not seizing an opportunity. Often the
current state of business simply cannot be maintained. Take, for example, the thousands of businesses
over the past decade that were doing just fine selling their products exclusively through retail stores.
Some competitors recognized the opportunity to go on-line and sell offer products on the World Wide
Web. Since that time, markets have undergone drastic changes and latecomers have been forced to do
the same out of sheer survival.

Current State/Future State
Before we can understand where we are going, we have to understand where we are. In order to
accurately describe the intended state of a solution, it's important to fully understand the current
conditions and environment. Many times, replacing a system or implementing a new tool can introduce
new elements into an environment that can cause additional problems or affect other elements. The
better we can understand the current state, the better we may be able to define the desired future state of
the solution.

Business Goals and Objectives
Possibly one of the greatest challenges in developing a new solution is to fully understand its purpose.
It's easy to lose sight of the bigger picture. Users, customers, IT professionals, and business executives
have different goals and relatively different perspectives and requirements. No one perspective is
necessarily more important than the other (unless one is paying our salary, their needs are far more
important than those any others!).

What should ideally drive a business solution is, well, the business. The needs of the business keep it
alive. A healthy business is founded on goals and objectives that serve its customers, employees, and
shareholders. So, naturally, the ultimate purpose for a business solution is to meet the needs of the
business and everyone who makes the business work. This may sound a bit idealistic but it's a
fundamental principle that is all too often realized too late after expensive IT projects fail.

Direction
I just can't talk about IT project goals without telling one of my favorite stories.

Long ago, in the medieval times, a small kingdom had suffered many attacks from surrounding enemies.
The king sent out his knights, charged to strengthen his armies. A certain valiant knight rode into a
small, fortressed village in the kingdom. He looked up at the wooden fortress wall outside of the village
and noticed dozens of arrows that had been shot into the wall from the same direction. Each arrow was
shot directly into the bull's-eye of one of several different targets painted on the wall.

Figure 14-1

475

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 475

The knight asked a man passing by where the arrows had originated. The man told him that they were
shot into the wall from the vicinity of a small cottage, on the edge of the woods, across a large field from
the village wall. The knight was impressed and wanted to meet the person responsible for such an
impressive feat. He rode his steed across the field to the cottage and dismounted.

The knight knocked on the cottage door. A young boy of about fourteen years old opened the front door
and was startled to see, standing in his doorway, this towering knight in his armor, shield and sword.
The knight sternly spoke to the boy and asked to speak with the person responsible for the arrows in the
fortress wall. The boy sheepishly replied that he had done it and wanted to know if there would be a
punishment. The knight chuckled and told the boy he was impressed with his skill and wanted to see a
demonstration.

The boy quickly disappeared and zealously returned with his hand-carved bow and quiver full of arrows.
He nervously fumbled through the arrows and pulled the straightest arrow he could find from the quiver.
The boy excitedly explained that archery was his passion and that he lived for the bow. He spent long
hours practicing daily. Together they stood on the front porch as the boy drew back the arrow and let it
sail across the field in the direction of the fortress wall.

The knight and the boy walked together across the field to find the arrow and when they reached the wall,
the knight searched through all of the arrows, looking for the one that had most recently been thrust into
the wood. The knight didn't notice that the boy scrambled away and then quickly returned while he was
searching for the arrow. It didn't take the knight long to find the new arrow because it was nowhere near
a target. As the knight turned to the boy with a puzzled look (although the boy had run away and
returned), he was standing in the same place. The young man looked at the knight with a big grin on his
face—and a bucket of paint in his hands—that he used to paint a target around the arrow…

This is the standard operating procedure for many IT project teams. We reason that as long as we have a
general direction it ought to be good enough. However, the larger the project and the greater the impact
it will have on a business, the more important it is to define its scope and specific purpose. It is no longer
feasible to sketch out a rough project plan and then fill-in the gaps and details as the project
progresses—bolting on features and appendages here and there. This is what Doctor Frankenstein did
with his creation, and unless we would like to have similar results, we shouldn't do that same.

Solution Design
Nearly all business systems share some common attributes. We will briefly discuss these common
elements of design and then apply these principles to business intelligence and reporting solutions.

Successful solution design includes effectively addressing many areas within an organization. sales,
marketing, operations, manufacturing, and accounting department personnel and applications can all
provide data to and consume the data from Reporting Services. Start bringing in BizTalk Server,
SharePoint Portal Server, Commerce Server and Content Management Server into the solution mix and
you've got a rapidly escalating quantity of data and an equally escalating need to effectively manage it.
It's important that your reporting solution help users access the reports they need, rather than making it
difficult for them. Good reporting solutions address four key questions:

❑ Is it secure?

❑ Is it manageable?

476

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 476

❑ Is it available when needed?

❑ Is it scalable?

Reports must be available to users across an organization. Like any critical Web application, a Reporting
Services solution must satisfactorily address those questions to remain a viable solution as it matures.
Balance is important; an impregnable application that nobody wants to use fails to fulfill its purpose.

Security
Often addressed after the fact, security is a topic that should be addressed early—even as early as the
envisioning phase of the solution development process. It's important to implement multiple barriers or
layers of defense in your architecture. By having multiple layers of security in place that are configured
to work together, you create a defense-in-depth strategy that doesn't rely on any single point in the
infrastructure to secure it. When designing such a strategy, it's important to address three key aspects of
the solution:

❑ The network topology and host infrastructure: This includes the use of firewalls at the
perimeter and mechanisms like digital certificates to secure communication.

❑ The reporting solution architecture and design: This aspect of the solution includes
appropriate error handling (fail securely—and test it to be sure), input validation (never trust
user input), and content structure (based on permissions).

❑ The component-level interactions that are made: Here, interactions between the logical tiers of
the application architecture are examined to ensure that functions such as data access and
ASP.NET control processing are performed securely.

During the design phase, document all of the access requirements for your solution, including the
Report Server content structure. Define the Access Control Lists (ACLs) used to support the security
policy. The idea is to be explicit about who has access permission and who doesn't at each point in the
system, and configure each element in the structure to support the chosen policies.

In a simple extranet scenario, Figure 14-2 shows the use of a SSL connection between the client and the
ISA perimeter firewall, securing communication in transit. IIS is configured to use digital certificates,
and handles the task of authenticating users. Web applications are held in a DMZ, which is further
removed from the internal domain by another ISA firewall. IPSEC can be used internally, encrypting
communication in transit on the network if required. This is an example of breaking the network into
manageable sections, and using devices such as routers and firewalls to protect each section.

Figure 14-2

477

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 477

A well-known security doctrine says, "Run with just enough privileges to get the job done, and no
more." Allowing users or applications more privileges than required for the task exposes unnecessary
vulnerabilities and increases the security threat. Reporting Services functionality is exposed as a Web
Service, which is fundamentally an ASP.NET application running on IIS. Report Manager is an ASP.NET
application that provides a GUI interface to the Web service. Each application server in the overall
solution architecture has its own security mechanisms that can be configured to suit requirements. For
example, IIS can be configured to authenticate users, or the CLR can handle the task using its own
authentication mechanism. To make the most of the capabilities of each element in the solution, you'll
want to develop an overall security policy and then configure each element to support the policy. Use
the security mechanisms in each application server, so they don't have to rely entirely on the network
mechanisms for protection.

Manageability
Manageability refers to the ongoing operations required to keep the infrastructure, technologies, and
processes of the solution healthy. Ideally, operations are performed using a pro-active approach rather
than being forced to continually respond to whatever the current, urgent need is. The tasks typically
associated with system management include:

❑ Content management: The Report Server content must grow in a controlled fashion as
requirements change and the solution matures.

❑ System monitoring: Use performance monitors and logs to spot bottlenecks and flag elements
of the system that might not be running at full health.

❑ Remote server management: Report Server solutions are frequently deployed to multiple
servers at multiple end points. Using code to automate the deployment and management
process eases the maintenance workload.

Typically, there's a close relationship between manageability and the other goals you're trying to achieve.
Effective management tools and techniques are important to your ability to address the other areas of
the solution. For example, regular system monitoring can have a direct impact on application
availability. Frequently, decisions made in one area directly affect those made in other areas. For
example, the content structure you choose can affect both security and manageability.

Availability
Availability is the ability of the application to recover from component or infrastructure failures.
Typically the domain of IT operations, availability includes controlling how changes are made to the
system, isolating trouble spots, and implementing fallback policies in the event of a failure. Success in
this area requires planning for failure.

As with security, it's important to not rely on any one element in the system. For example, having a
single IIS instance to handle incoming HTTP requests means a critical single point failure in the system.
Increasing the number of servers creates redundancy in the system so that requests can be serviced even
in the event of a failure.

The front end of the system can be made redundant by using cloned, load-balanced servers in a Web
farm. Each server has instances of IIS, the Report Service, and Report Manager if that functionality is
also required. Availability can be increased yet again by having multiple server farms at alternate end
points. For example, the service can be deployed to server farms in multiple cities. Applications that

478

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 478

consume the web service content can be written to self-heal themselves if waiting for a response from a
service end point times out. Having Microsoft Windows Server 2003 available on your network provides
you the ability to do that, because of the Universal Description Discovery and Integration (UDDI)
service it provides.

UDDI is a standards-based store of Web service listings. The listing data is communicated to the store
using XML and HTTP, using the same mechanisms as regular web services. Each listing contains
information about the company exposing the service, a description of the service, and details about the
server end-points and protocols. In the event of a web service end point failure, the consuming
application can abort the original request and send a request to the UDDI server for a listing of available,
identical services. Once the collection of listings is received, the application sends a request to a selected
service and the application process continues. Figure 14-3 is a diagram of the resulting interactions:

Figure 14-3

The Reporting Services application scales well to different environments. The topology you select will
depend on the load you expect, or more specifically, the number of HTTP requests the server will be
expected to service. Use performance counters to monitor the CPU usage and number of cache hits as
requests are sent to the server. Aim for a high load of 80-85% of CPU capacity, to allow for spikes in
usage.

Back-end data stores can also use clustering for fail over protection. Like the front end, back end nodes
can be distributed across geographical locations to help ensure availability. In both cases, be sure you
have a program in place to manage and stay up-to-date on application updates and patches.

Scalability
Scalability is the ability of the application to handle an increasing user load. Reporting Service is a web
application, giving you the ability to use multiple mechanisms to support increasing user loads. Both
front-end web servers and back-end application servers can scale. There are two main ways to scale:
scaling up and scaling out.

479

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 479

Scaling up involves increasing the capacity of a component in the system. For example, you might scale
up the processor in a machine or increase the RAM.

Scaling out increases the number of components so they can handle increased load together. For
example, adding more machines to handle HTTP requests would result in creation of a web server farm.
There are significant performance capabilities when using multiple machines to share the workload.
Sharing the workload includes having separate machines for the Reporting Services application, the SQL
Server data store, and other application servers used in the system.

Each component in the solution may have its own techniques and tools for scaling. For example,
ASP.NET provides many scaling capabilities. Caching is an excellent way to increase the ability of your
servers to handle an increasing load. For example, you can cache the output for processing an HTTP
request so the next request for that resource is pulled straight from cache. The request is never processed
in the traditional sense. You can set the cache expiration value so that the cache gets refreshed
periodically.

Moving management applications off to separate machines, and implementing functionality like
Component Services are both techniques that can enable a solution to handle increased load. Web
servers benefit greatest from increases in processor power, while storage components benefit from
increases in disk space and I/O speed.

Transactional and Decision-Support Data
There are generally two categories of data storage systems used to manage business information. When
most people hear the term database system, they probably think of a Relational Database Management
Systems (RDBMS). This is by far the most common and most often used type of database for collecting,
managing, and providing reporting for transactional data. The other category, OLAP (On-Line
Analytical Processing), is more specialized and is used only for advanced reporting and decision-
support. We'll discuss some of the differences and design strategies for these two types of data storage.

On-line Transactional database systems (OLTP) are typically based on relational data stores that are
queried using structured query language (SQL). OLAP systems, typically based on multidimensional,
hierarchal structures, are queried using specialized languages such as multidimensional expressions
(MDX).

Back in the 1960s and early 1970s, computer systems made it feasible for large businesses to track large
volumes of information. They designed systems to keep track of customers, accounts, products,
inventory, invoices, vendors, shipments, manufacturing processes, measurements, quality control and
the like. A data revolution was underway. However, as the companies who provided these systems tried
to maintain them and interoperate with others, they quickly learned that there was more to information
management than just writing values out to a file.

In the 1970s, a mathematician named Edgar Codd, working for IBM, wrote a series of articles about
design principles for relational data stores. The point of his work was not so much as to how to build
products to manage data but how to design database systems for effective storage and retrieval—
whether implemented as tables in a client-server database product or as flat or delimited text files. The
eventual outcome was a generation of products designed for managing moderate to huge volumes of
data and making that data accessible to hundreds or thousands of users via current computer and
networking technologies. Dr. Codd's work (along with the efforts of Ray Boyce and Chris Date) has

480

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 480

driven the capabilities and features of modern relational database products, mainly patterned after the
work of Oracle and IBM. Boyce and Codd established the rules of Normal Form (BCNF), a short list of
rules for designing relationships and structures within databases.

Concurrency
One of the main goals for relational systems is typically to allow multiple users the ability to enter data,
make modifications, and access information all at the same time. A basic assumption in these systems is
that users will need access to data immediately after it is entered into the data store. Unfortunately this
ability can often expose data in a partial or inconsistent state. In some environments, it may only be
appropriate to make records available for reporting after an item (such as an invoice or order) has been
"closed" or completed.

For this and other reasons, decision-support systems are typically based on read-only databases. Using
either relational storage or special-purpose OLAP data sources, transactional data is loaded into these
data stores at regular, scheduled intervals using ETL (Extract/Transform/Load) tools.

Strategic Latency
Making this data visible for immediate reporting can adversely affect the accuracy of report data. In a
system where data will only be retrieved, these capabilities don't add value and require design elements
that may not support the purpose of the solution. Reporting and decision-support systems are usually
not updated in real-time. Depending on how important the most recent data is in management
decisions, regular load intervals may be scheduled daily, weekly, or monthly. This gives time in the
process for scrubbing data so it is presented in a reliable state and assuring that values are consistent
throughout the data store.

If users understand that weekly sales summaries are made available by Monday morning, reports can be
produced at the appropriate times with no question about the accuracy of the information they contain.
Using caching, snapshots and subscriptions; reports can be produced for thousands of users from a
moderate server. By coordinating the scheduled weekly data load, report cache refresh and subscription
delivery; everyone has accurate information in a well-coordinated fashion.

Why Be Normal?
The rules of normal form were specifically written to support concurrent, consistent, transactional data.
Most large-scale, transactional databases consist of scores of tables; some have hundreds. Most tables
may be used to store look-up values and to bridge multi-entity relationships so values aren't stored
redundantly throughout the database. All of this data organization can have an adverse effect for data
retrieval. The values describing our reporting facts are spread across many tables. This requires complex
queries to traverse joins between all of the tables.

The rules that govern transactional systems are often not applied (at least not strictly) to decision
support systems. For example, a product sales fact table in our decision-support database might contain
the product name and category name text values repeated many times across different records to avoid
joining it to a product table via a foreign key surrogate value. In a transactional system, this would be a
no-no! In the data warehouse, this isn't an issue due to the fact that the data can't be changed and,
therefore repeated values should be consistent.

481

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 481

Understanding Business Intelligence
As you have seen, we have many choices for data storage, query techniques, languages, and tools. One
of the greatest challenges for any business is to select a set of tools and products and integrate them into
long-term solutions. The essence of BI is to make appropriate selections to assemble an enterprise
architecture to provide these capabilities. A functional BI solution empowers business leaders to make
informed decisions that will carry a business to its goals. Whether this is increased sales, competitive
viability, improved processes or all of these, BI is the finger on the pulse of a business.

In terms of technology, a BI solution is the total integration of information gathering and data collection,
the effective storage of data, the extractions and collaboration of various business unit data silos, and
finally the aggregation of all this information into a consumable form. It should be simple and
uncomplicated yet encompass all important business processes and activities.

Possibly one of the greatest lessons I've learned from Microsoft's approach to building software is the
concept of zero-defect. Contrary to the name, this doesn't mean that a product must be perfect or even
better than anything else. The concept of zero-defect is that we define the quality of a product or service
in measurable terms before we build it, and then, throughout the construction of that product, we
continually monitor its quality against the specification. With rigid quality assurance practices in place,
we assure that our solution is good enough to meet the standard set at the beginning of the process.
Likewise, a business intelligence solution should be used to set thresholds and acceptance criteria—and
then to measure business performance against predefined marks.

Reporting information must be standardized, qualified, and comparative—it has consistent interval,
form, and is exposable to extractions and operations (aggregation, analysis, and data mining etc.)
Creating reports to guide business decisions is the primary driver for gathering and maintaining
information in our organization with the accuracy of these reports often determining the success or
failure of a business process, campaign, or the business itself.

BI Process Lifecycle
With BI, we do our best to simplify processes but business is not always simple. If your business was
easy, more people would be doing it. As a business consultant, I've entered many business environments
charged with simplifying processes and building reporting solutions to help ease complexity. As
outsiders, we tend to cut through the details and quickly define core processes. On many occasions, I
remember thinking, "what's wrong with these people. Don't they realize that their business is simple? Why
don't they just go from step A to Z rather than executing all of the convoluted steps in between?" Months later,
having worked along side people and just beginning to realize the complexity of an environment, did I
start to appreciate how delicate and complicated some business processes can be.

BI needs to deal with the complexities of, while providing a means to simplify the flow of critical
information through a business as much as possible. Like your business, the flow of information isn't
always linear. Our BI solution recognizes dependencies as well as the parallel nature of business
processes. The intelligence part comes from the dynamic, iterative nature of these processes.

Each process is aware of state (current information particular to its position in time and relative to the
whole business process.) The process is informed, dynamic, and intelligent. All processes roll up into

482

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 482

and depend on the business case. The business case, in turn, qualifies state and process through quality
assurance and control. State and processes have tolerance, extractions rules, storage and maintenance
rules, and operational requirements. BI is an iterative process with ongoing qualifying of information
through structure, context, and operations. BI's lifecycle completes as the Business Case changes,
proactively and intelligently.

Information Gathering
Business related information may be gathered at many points. Collecting or transacting information
applies to any point or process that acquires data that will reside within the BI solution. Whether it is an
internal or external source, the data comes into or back into the information pool accessible to BI
processes. Many companies have invested heavily in ERP (Enterprise Resource Planning) systems that
gather a tremendous volume of data but without effective aggregation and analysis tools, all of this
information becomes overwhelming.

Processes for gathering data fall into interactive or automated types. Data-quality is enforced by
applications that host these processes. Both types can depend upon diverse storage systems as
intermediate and/or final caching structures for a process. Often, it makes sense for data to exist in
duplicate—at least for a time—until archived records are removed from transactional systems and
summarized records are stored for reporting. Data marts and data warehouse solutions isolate reporting
from transactional data management, both to preserve integrity and conserve system resources.

Data Scrubbing and Consolidation
Data is collected as records that define informational context through association with other records.
Often, isolated values must be extrapolated into multiple tables with lookup keys and category codes to
support the context of these values. This is often one of the most cumbersome tasks; extracting from a
non-normalized, flat-structured or ad-hoc collection if informational facts, meaningful values that fit
neatly into our data store.

I recall a data warehouse consulting project in the mid nineties at the same paper mill I mentioned in
Chapter 1. The inventory management system was a special-purpose mainframe system that had been in
operation for decades. Most of its data was stored in a just a few flat text files. Critical values had been
hand-keyed into the green screen applications with no validation for product descriptions, production
lines and machines, inventory locations, product categories, status codes, etc. After we built a
normalized staging database, we automated the extraction and wrote scripts to scrub the data as it was
loaded. When a new lookup value (such as a location or product category was encountered), we added
this to our lookup tables to maintain referential integrity.

The result: hundreds of slight mis-spellings and abbreviations that represented duplicate values already
present in the lookup tables. Without validating data as it was input into the inventory system, we
continued to collect garbage in the data warehouse. Working with the mill workers who entered most of
the data, we could manually fix over 99% of the data but a certain percentage of the records simply had
to be tossed out.

483

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 483

Data Staging and Transformation
The process of decision-support data consolidation is often called ETL (Extract, Transform and Load). A
number of tools are offered to move and manipulate data as it is staged for loading into a data
warehouse. The SQL Server arsenal includes a very powerful tool for this purpose. Data Transformation
Services (DTS) can be used to "pump" large quantities of data from data sources to data destinations
with nearly limitless capabilities. Transformations may be performed using complex scripting and query
logic. A transformation package consists of steps that can execute queries, scripts, applications, import,
export, send email, and log events. Each transform moves data from one connection to another.

The selection is typically based on a SQL expression and each column may be validated, parsed,
combined or otherwise manipulated with a program script (using either VBScript of Jscript.)
Dependencies may be established between each step to create branching logic. Execution steps may be
performed based on a previous step's successful completion or failure.

The DTS designer offers simple drag-and-drop symbols and wizard dialogs to make this complex
process easy to perform. The DTS package depicted in Figure 14-4 illustrates the transformation and
loading of data from four regional data marts, importing a text file from the corporate mainframe,
running an external utility and three script files to scrub and validate data rows. The graphic nature of
DTS makes this package relatively simple to design and easy to follow its data-flow and logic.

Figure 14-4

Indexing Strategies
Adding indexes to a table can accelerate data retrieval, support joins and enforce record uniqueness. In a
transactional system, indexing can impede performance, as indexes must be updated as and when
records are inserted, deleted or modified. This is a classic trade-off between performance and
functionality. A typical OLTP database will have an index to enforce the primary key constraint on each

484

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 484

table. Additional indexes will support foreign-key relationships and columns most often used to for
sorting and selection should be indexed. Additionally, if data is most often retrieved or joined on one
particular column, building the tables using a clustered index will speed data retrieval without
significant impact on typical query performance. When designing the usual multi-purpose database, it is
necessary to strike an appropriate balance between optimal transaction processing and query
performance.

Since decision-support databases exist for the sole purpose of data retrieval, tables should typically be
heavily indexed. There is much to be considered and there are a number of variables. If some tables will
always have records sorted in a particular order, a clustered index will support this goal but can work
against additional queries on the same table. Typically, use multiple, non-clustered indexes on tables and
composite, multi-column indexes to support commonly used queries that sort by multiple columns.

Decision-Support
To remedy the issues of traditional relational database design, we simply break the rules! This is not
done in the transactional database but in a separate database designed exclusively for decision-support.
New data is loaded at regular intervals into the decision-support database. Often called a data
warehouse, this becomes a central repository for historical and relatively current data. A data warehouse
can be fed from many sources. In large organizations, data is often collected through departmental
systems that store data in separate stores. These databases are often referred to as data silos. Each may
be structured and designed to support its own process and user needs. Over time, data silos may exist
on different platforms and locations; it'll be virtually impossible to connect and share them in real time.

In this environment, the data warehouse becomes the central point for reliable and consistent reporting
information (see Figure 14-5). After data from various locations and sources has been scrubbed and
transformed, the information it represents should be accurate and results should be predictable.

Figure 14-5

Sometimes this data consolidation must be performed in stages. Take, for example, a large business with
several regional locations. Each location has several departments, each with their own disparate data
collection and storage systems. In this case, we recognize individual data silos at the department level.
Each night, data is collected into a site-specific data warehouse, called a data mart. At the end of the
week, the data marts are consolidated into a central data warehouse where the data is further
aggregated and made available at the corporate level.

485

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 485

Depending upon the disparity of these data structures, consolidation may require a staging database.
This provides an intermediate platform for collecting and transforming the data structure before it loads
into the data warehouse or any other final destination. In Figure 14-6, data marts feed a central data
warehouse but not all data analysis may be performed in a central location. Figure 14-7 shows data
marts that may also be fed from the central data warehouse as well as local silos. Reports may be
generated from the data marts as well as the central data warehouse.

Figure 14-6

Figure 14-7

486

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 486

Query Languages
Reporting Services supports practically any query language as long as there is a capable driver or data
provider for the product that can return a standard result set. The query language is passed directly to
the data source and it's the job of the driver and data source to parse and execute the query. This means
that if you are using an Oracle database, you would write your queries in PL/SQL. If you are using
Informix, MySQL, Sybase, Access, or any other database product, you simply write your queries in the
native dialect of SQL or any appropriate query language.

Multidimensional Expressions (MDX)
Microsoft Analysis Services and other OLAP data sources use MDX, a query expression language
specifically designed to query cube structures. Rather than addressing data using rows and columns,
cube structures are addressable using tuples and slices. By slicing cube data along different dimensions,
we resolve dimensional intersections that represent aggregated data points. MDX expressions convert
the multidimensional structure of a cube into flat row and column structures, which is why we can use
these expressions in Reporting Services.

OLAP and SQL Server Analysis Services
Decision support data stores are specifically designed for reporting. At some point, relational storage
and structured query language may no longer meet data warehouse requirements. When tables reach
millions of rows, a traditional database may not deliver acceptable performance or function at all! In
order to achieve acceptable performance, a data warehouse is typically designed with pre-aggregated
values so all of the functions and calculations don't have to be applied each time a query is processed.

OLAP databases are specifically engineered to support special data structures and associated query
languages for this purpose. Microsoft SQL Server Analysis Services defines cube structures as
multidimensional hierarchies supporting the concepts of facts and dimensions. Data can be stored in a
relational database, in a multidimensional storage structure, or parts of the data can be stored in both.

OLAP queries are designed to be interactive. This is where SQL and MDX differ significantly. In a SQL
query, a single result set is returned to the client. MDX queries are tightly coupled to the OLAP database
and provide continual drill-down and discovery into the cube structures using interactive tools. In SQL
Server 2000, Reporting Services doesn't support this capability. It only allows MDX queries to return a
flat result set—much like a SQL query. However, despite this limitation, reports using MDX expressions
against OLAP sources can still be far more efficient than using SQL to query the source databases.

SQL Server's relational store can effectively store hundreds of millions of data rows but lacks the tools to
deliver multidimensional cube data and drill-downs. Microsoft's data warehouse solution includes both
the relational storage engine and a multidimensional engine optimized to consolidate large volumes of
data and to build pre-aggregated results for multiple dimensions of values. Analysis Services simplifies
the complexities of transactional systems and provides a simple interface to create intricate cubes,
dimensions and calculated measures.

As the volume of data increases, different storage options may be appropriate. Cube data can be
maintained in the relational store using a method called Relational On-line Analytical Processing (ROLAP),
in a multidimensional structure (MOLAP), or a combination of the two. Let's take a look at a simple
OLAP report using MDX expressions. Figure 14-8 shows an OLAP cube in the SQL Server Analysis
Services Cube Editor. This cube is based on the AdventureWorksDW sample data warehouse database.

487

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 487

Figure 14-8

To create the report, we define two datasets using a shared data source. In Figure 14-9, the data source
uses the OLE DB Provider for OLAP Services:

Figure 14-9

488

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 488

Two datasets are used to represent the cube data. The first dataset is used to populate a parameter list
from our Time dimension. The following MDX query retrieves date values at several levels based on the
dimension definition in the cube including the year, quarter and month.

With
MEMBER Measures.DateKey as '[Time].CurrentMember.UniqueName'
MEMBER Measures.DateName as 'Space([Time].CurrentMember.Level.Ordinal*2) +

[Time].CurrentMember.Name'
Select

{Measures.DateKey, Measures.DateName} on Columns,
[Time].Members on Rows

FROM [Reseller Sales]

We'll define a parameter called TimePeriod in the report and set the source of this parameter to this
dataset in the designer. When the report is opened in Report Manager, the parameter list looks like this
(see Figure 14-10):

Figure 14-10

The report itself will be based on a dataset called DataDetail. This MDX expression is entered into the
generic query builder as a literal string preceded by an equal sign. Note that in order to insert line breaks
for improved readability, we must parse the string with double quotes and then concatenate it with
ampersands. The filtering criteria of this expression refers to the TimePeriod parameter in the WHERE
clause.

="SELECT NON EMPTY HIERARCHIZE({[Product].[Category].Members, "
& " [Product].[Sub Category].Members, "
& "[Product].[Product Name].Members}) ON ROWS, "
& "{[Sales Amount]} ON COLUMNS "
& "FROM [Reseller Sales] "
& "WHERE " & Parameters!TimePeriod.Value

The report uses a simple matrix data range to display values along two axes. The report will have
product category, subcategory, and product name groupings on the rows. A more sophisticated report
might also have column groupings and could support drill-down capabilities like the matrix report we
looked at in Chapter 3.

The end result (shown in Figure 14-11) is a report displaying product sales with automatic rollup
summaries on the category and subcategory rows:

489

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 489

Figure 14-11

Figure 14-11 shows this report executed for the month of August selected from the TimePeriod
parameter list. A textbox near the top of the report shows the parameter value. In this example, the
parameter value is [Time].[All Time].[2001].[Quarter 3].[August].

Architecting BI Solutions
In order to serve a large user base and, perhaps, use in various locations; multiple database servers are
often necessary. There are a number of options which we'll consider in the following sections.

Farms and Gardens
No, this is not a magazine title. Database servers, component application servers and web servers can
incorporate clustering technology to form scalable hosting platforms for large enterprise solutions. Web
page processing and report rendering can be very resource-intensive and a single server—regardless of
its processor speed or memory—may not have the capacity to manage all requests at a given time.

490

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 490

A web farm is a virtual server comprised of multiple physical servers that run in tandem sharing a single
IP address. As web requests are presented to the virtual server, the clustering service finds the most
available server in the cluster to handle the request. This technology allows banks of relatively
inexpensive PCs to provide the computing horsepower of midrange and small mainframe systems.
Smaller-scale operations can start at the fraction of the cost and add hardware, scaling-out as needed.
Clustering capabilities were first introduced in a stand-alone product (code-name WolfPack Server for
Windows NT 4.0) and then incorporated into Windows 2000 Advanced Server. Clustering is now a
standard feature of Windows Server 2003 Enterprise and Datacenter Editions.

A web garden is simply a web server residing on a scaled-up machine, consisting of multiple processors.
Individual processors may be assigned to specific services and processes or they can collectively service
processes in tandem.

Federating and Partitioning Data
Clustering and replication technology have made it possible and relatively easy to use multiple servers
to host enterprise-scale databases. One advantage of the Windows distributed network platform is that
we don't have to put all data on a single storage device or host it on the same server. Often times,
bottlenecks can be resolved by simply spreading data access across the network, either putting data
closer to users or sharing the workload. SQL Server can remotely access other database servers so that
data can be made available at different locations.

Partitioning data is a matter of placing the data for a single database on different storage media. Hard
drives and other storage hardware are usually the slowest part of the system. When data stored on three
different hard disks is accessed, queries may be able to run three times faster (assuming there are no
other bottlenecks).

The strategy of federating data is that multiple database servers will host supporting data. Through
linked servers that bridge the collective data, queries on one server can access the data on other servers.
This shares the resources of all servers. To support large volumes of data, very fast or dedicated network
connections may be required between the database servers.

Reporting Solution Design
An effective reporting solution addresses both the external network environment and the internal
structure of content in the Report Server.

System Environments
One size does not fit all—large organizations with sophisticated needs require more capable system
configurations than small operations. In Chapter 13, we had discussed specifics of server deployment
and configuration details. Now, we will take a brief look at some of the considerations that influence the
design and planning for appropriately sized business intelligence solutions.

491

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 491

Small Environments
Small businesses can realize the benefits of Reporting Services with a single server. Figure 14-12 shows
an example of a small-business architecture:

Figure 14-12

Many smaller businesses have IIS applications and SQL Server running on the same box. If the server
has sufficient resources, simply adding Report Server to the installed programs will work. Additional
data sources on other machines can be accessed as required.

Medium Environments
Medium-sized businesses are likely to place enough load on the reporting structure to warrant
spreading that load across multiple machines, as shown in Figure 14-13:

Figure 14-13

This architecture will allow the web server to handle more requests than in the smaller environment
reducing the need to scale out with more machines. Note that you can also scale up at this point by
increasing the capacity of the components in the server.

Large Environments
When the number of requests hitting the server becomes too many for a single machine, scaling out with
more machines is an effective way to handle increased load (Figure 14-14):

492

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 492

Figure 14-14

The Report Manager application isn't deployed to the front-end server farm. It's a level back on a
dedicated staging server, keeping the load-balanced servers focused on handling report requests. Report
Manager can run on a background machine. Updated Report Server content is then deployed to the
cloned farm machines using scheduled scripts.

Content Organization
Similar to the organic nature of intranet sites, Report Server content tends to grow with little central
management or control. Departments and teams create their own folders, and sometimes groups are
created to restrict access to the folder contents. Frequently, the folder structure mirrors the organizational
structure of the company. Although these approaches are often easier, they won't necessarily provide the
anticipated return.

Unplanned growth in the content structure can often result in a difficult-to-manage combination of
non-conventional folder names and mixed report content blended with checkerboard permissions. A
frequent cause of ad hoc designs is a reluctance of administrators to enforce the concept of running with
least privileges. Too many users with too many permissions leaves too many people deciding how best
to organize and secure the content. The server content and server environment can become difficult to
use and maintain. The larger your environment, the more crucial it is to use discipline. Remember how
intertwined security, manageability, availability, and scalability are. Here is where the pain of poor
choices can come back to haunt you.

Another more disciplined, systematic approach to develop a content structure is based on security.

Security-Based Content Structure
This is a design of solution based on how security is implemented using groups and users. This
approach allows you to take full advantage of the hierarchical structure of Reporting Services content
and leverage the inheritance of security policies by folder child items.

One of the most effective techniques to use when developing the Report Server content structure uses
security as its foundation. This approach works with the hierarchical structure of how the Report Server
organizes content. Each content folder in Report Server inherits the permissions of its parent folder,
along with the other report and resource items located there. Structure your content based on how you
want to control access, keeping more secure content in folders nested below a more permissive parent.

Consider, for example, a small manufacturing company with five hundred employees. The company
operates in a single location and is divided into organizational departments. Each department has report

493

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 493

needs based on work groups and users. The reports are needed primarily by department managers,
although some manufacturing team leads use reports to monitor production. In this case, the content
structure consisted of separate folders at the root for each department. Users within each department
were added to a group which had permission to that folder. Within each department folder, access to
more sensitive resources was further restricted by creating nested sub-folder. The restricted content was
moved to the nested folder, and permissions set accordingly. Figure 14-15 shows you an example of how
the content was structured:

Figure 14-15

Using this structure, generally available reports are at the Root or Home level. Operations-only reports
are in the Managers folder, with access permitted only to Operations department members. This is
duplicated for each department, with each nested content node typically restricting access further.

Solution Profiles
The following are two solutions that demonstrate implementations of Reporting Services in a real
business solution environment.

Linked Reports for Multiple Field Offices
A computer retailer based in New York has 150 outlets on the east coast of the United States. The stores
are grouped into ten regions. It's a moderate operation with each retail shop doing between $1-2 million
in sales per year. The parts for each computer are sourced and assembled at the home office, and
delivered to each storefront by truck. Retail performance goals are set by the main office. Each retail
shop has daily, weekly, and monthly sales goals for each item and system the company sells. The retail
stores use a mix of static and dynamic reports to track sales data for each period. Dynamic reports are

494

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 494

viewed via browser and secure Internet connection, while static reports are emailed to store managers
each morning. The set of reports used by the retail stores is consistent among all stores.

The main office uses reports to provide aggregate and detail views of retail sales. Additionally, separate
departments have their own reporting requirements. For example, the warehouse is continually
monitoring inventory levels and attempting to forecast demand. There, the staff is trying to keep enough
stock on hand for short-term production needs, without overbuying and ending up with an overstock of
outdated components.

Because each of the retail stores uses essentially the same report set, a strategy using linked reports is
employed. In the Report Server root, a folder was made for each region and the main office, along with a
Retail Master folder (Figure 14-16):

Figure 14-16

Each region folder has a child folder for every retail store in that region. The Retail Master folder contains
the actual reports that the retail stores use. The Master folder is locked down, preventing access to
anyone other than developers and report managers. The region-level and store-level folders have user
groups configured so only the users in that region or store have permission to access it. The retail stores
use linked reports to view the data, which allows additional control. For example, linked reports provide

495

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 495

a filtering capability. Each office gets the same set of reports, but users only have access to reports that
are rendered using the data for that office. Folder permissions for the main office work the same way,
with permissions granted by office user group. The structure of the content and report linking was
designed in the planning phase of the development process. Naming conventions were also established
for folders, reports, data sources, and schedules.

For this particular solution, one of the key features of Reporting Services is the ability to connect to
many different data stores. Because this company had invested in applications for different departments,
data is spread among SQL Server, OLE DB, ODBC, and IBM DB2 data stores. Implementing a Reporting
Services solution enables managers and key decision-makers to aggregate data from disparate stores
into a single, comprehensive report.

Scout-Master.com
Scout-Master.com allows Boy Scout leaders to manage their unit records online. See Figure 14-17.

Figure 14-17

The challenge facing these organizations is that every boy, parent, and leader has to keep track of dozens
of individual awards, requirements, and their goals, progress and status. Using a secure web-based
database solution has made this daunting task more manageable. Over the years, desktop software has

496

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 496

been developed for scout records management but this doesn't provide visibility to anyone but the unit
leader who has the program running on their home PC. The web-based solution connects everyone and
automatically sends email reminders for calendar events, goals, and award deadlines. Over the past two
years, hundreds of scout troops had signed-up to use the site to keep track of their membership,
contacts, calendar activities, meeting plans, and award progress.

The project started small when the Microsoft .NET Framework was in beta stage and eventually went
commercial. About a year ago, the first design was unplugged and the entire site was re-architected
using Visual Studio.NET. The web solution is a three-tier design built on SQL Server 2000, .NET business
classes, ASP.NET Web user controls, web forms and mobile web forms. A few months ago, the site was
moved from a commercial Internet service provider host to a dedicated server running Windows Server
2003 Web Server Edition.

Master.com are two-fold. Based on a user's position in the unit, they should have access to different
reports. Some reports will only provide detail information for a boy and will be available to the scout,
his parents, and award counselors. Other reports will be available only to certain unit members with
privileges based on their leadership position. Reports can be viewed in real time or may be saved on the
server for download or off-line viewing. Figure 14-18 shows a merit badge requirements report rendered
to a secondary browser window from a page within the ASP.NET web forms application:

Figure 14-18

497

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 497

Many scout leaders have hand-held PDA devices and would like to save membership rosters and
summary reports to files so they may be viewed when they aren't connected to the Internet
(unfortunately most scout summer camps don't have wireless Internet access.)

SQL Reporting Services has been easy to implement within the application. All reports are rendered
from code behind web user controls and the process is completely invisible from users. They simply see
a list of available reports. Custom web forms prompt users for report parameters and criteria and the
reports are simply delivered in the web browser as part of their application experience. Users are also
given the option to download report files in a variety of formats (including PDF and Excel) in a layout
suitable for their PDAs.

Some users have expressed concerns about keeping their unit records only on a commercial site rather
than having the data in their possession. Reporting Services provided an easy solution and is used to let
privileged users retrieve data backups. A set of reports was designed to return the bulk of unit
membership data, rendering these records in XML and CSV file formats. This gives subscribers the
ability to off-load their data for safe-keeping and to import records into their own spreadsheets or ad-
hoc databases. If nothing else, it gives users a safety blanket, knowing that their current data is in their
possession.

In all, the reporting solution has been rock solid since it was originally written using the beta 1 version
of Reporting Services. It was easy to program and offers all of the features needed to meet the system
requirements.

Reporting Solution Development Environment
Questions frequently come up about effective environments for team ASP.NET application development.
For example, it's surprising how many developers write code logged in an account that's a member of
the local Administrators group. It's also rare to see development computers configured with services
running as something other than the Administrator. The idea of managing the environment so as to help
users to run with least privileges applies to development as much as it does to users of the Report Server
content. Creating applications that don't need elevated privileges to run help create a safer environment
for everyone. There are a few more good practices that are worth mentioning, starting with the idea of
isolated development.

Isolated Development
There are several approaches that you can take when working on complex web applications in a team
environment. They differ mostly in where the code files are worked on and stored. Provisions include
making code files available to each member of the development team. Generally, the different
development environment models are referred to as isolated, semi-isolated, and non-isolated.

An isolated development environment is one where development work is done in isolation on your local
machine. The master source code files can be located on a file share or managed using a tool like Visual
Source Safe. In a semi-isolated environment, developers work on their files located on a common web
server. Debugging also takes place on that server. When debugging a web application, IIS is blocked—
which effectively prevents other developers from running their own code. A non-isolated environment
takes that one step further, by having all developers working with one set of files in a single virtual

498

Chapter 14

68787_ch14.qxp 26/03/2004 3:57 PM Page 498

folder on the server using Front Page extensions or by some technique that's similar to this. Don't do
that! It's too easy to mess stuff up.

In the development of an island that is your workstation, each developer works with separate local
copies of the application. Creation and debugging are done safely away from other developers and the
non-dev environments. With more than three or four developers, you'll also benefit from some type of
source control. Migrate your work to a server for building, testing, or staging and eventual deployment
to the production boxes.

Using Source Safe
Microsoft's Visual Source Safe (VSS) is a proven and effective tool for source control. It integrates with
Visual Studio .NET, enabling you to run. VSS also integrates with Visual Studio and Reporting Services
solutions. For example, you can check out a report definition .rdl file for development or testing. Be sure
to use the VSS hooks and menus in Visual Studio, rather than using the VSS Explorer interface. The VSS
menus in VS.NET provide easy access to code check-in & out, and utilities like WinDiff for comparing
two files for differences. Implementing source code control can really help make the development
process more efficient and easier to manage. Adding a build process will do the same.

Staging Reports
In an enterprise environment, reports should be staged to a server. There, they can be managed using
Report Manager and deployed to target machines using scripts. If the staging server is also used for
testing, its hardware and software configuration should mirror the production machines as closely as
possible.

One Reporting Service environment had report development work being done by individuals in
different departments of the company. The reports all ran on the same Report Server instance which
serviced the moderate reporting load. In that case, developers deployed their work to their My Reports
folder. Administrators have access permission to each users My Reports folder. It was a simple process
for the admin to move the reports from each My Reports folder to the staging machine. Once there, the
process of testing and managing continues.

Summary
Business intelligence solutions, like any business solutions, must be carefully planned and scoped to
avoid common pitfalls. Business solutions are created to solve business problems and to enable business
leaders to take advantage of the opportunities in a timely manner. Every feature should be traceable
back to a stated business requirement. Design considerations like scalability, available up-time, and
performance should be clearly defined before the system is designed and constructed.

Most small to mid-scale reporting solutions will likely be based on databases designed for transactional
data processing. Systems in this category often require design compromises data entry and query
performance.

Data warehouses are used to collect read-only data using storage optimized for data retrieval. SQL
Server Analysis Services stores data in hierarchal cube structures that are queried using
Multidimensional Expressions (MDX,) a query language optimized for complex pivots and data mining.
Reporting Services supports MDX queries through the OLE DB OLAP data provider.

499

Designing Business Intelligence Reporting Solutions

68787_ch14.qxp 26/03/2004 3:57 PM Page 499

68787_ch14.qxp 26/03/2004 3:57 PM Page 500

Troubleshooting

In any development project or system implementation, even code that cannot possibly break may
need to be fixed. Reporting Services is a tool written and used by people. As long as we continue
to have software written and used by people, we can expect that from time to time problems will
occur. Hopefully this appendix will be a useful tool in helping you navigate the bumps in the
Reporting Services deployment process.

Resources
Even though this is a new product, there are a number of resources available to help you work out
difficult problems with Reporting Services. Microsoft server products have generally been put into
production environments before they are available for retail sale. Reporting Services is no
different. A good place to start with is the Reporting Services web site:

http://www.microsoft.com/sql/reporting/default.asp

This site is a vital resource for articles, support, and downloads.

Reporting Services Books Online
All the documentation for Reporting Services is contained in the Books Online (BOL) help file.
While accurate, the information in BOL is sometimes too brief to be of much help. BOL does
provide authoritative information and should be one of the first resources used when in need of
help.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/RSPORTAL/HTM/
rs_gts_portal_3vqd .asp

AAA

68787_AppendixA.qxp 26/03/2004 3:57 PM Page 501

Appendix A

502

Microsoft Knowledge Base
Relevant knowledge base (KB) articles are linked to the details of error messages from BOL. The KB can
also be searched from http://support.microsoft.com. The KB contains the most recent information about
issues and problems associated with Microsoft products.

Microsoft Newsgroups
Microsoft provides many public newsgroups on a variety of topics for SQL Server. At the time of
writing, Reporting Services was still in beta testing stage and did not have a public newsgroup.
However, without the aid of the beta newsgroup for this product it would have been extremely difficult
to complete this book. Using a newsgroup gives you the advantage of hundreds of heads working
together on a difficult problem.

http://www.microsoft.com/sql/community/newsgroups/dgbrowser/en-us/default.mspx?dg=microsoft.public.
sqlserver.reportingsvcs

MSDN
MSDN provides a duplication of the development tools documentation. You can find links on MSDN to
other resources, such as articles from MSDN magazine and other publications as well at:

http://msdn.microsoft.com/

Tools
The Reporting Services Windows service and Web Service both keep log files of their processes and
errors. The log files are found in:

C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\LogFiles

The web service logs, by default, begin with ReportServer. The Windows service logs begin with
ReportServerService. The log files are text files that can be viewed with Notepad or any other text
editor. In the event of problems, this should be a source to see what is happening as the service runs.

The tracing level is controlled by the configuration file:

C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer\bin
\ReportingServicesService.exe.config

The tracing level can be adjusted by editing the value of DefaultTraceSwitch. Acceptable values for
this switch are described in the following table:

68787_AppendixA.qxp 26/03/2004 3:57 PM Page 502

The setup process sets the logging level to 3 by default. The tracing can be made more thorough or
turned off completely.

Installation Errors
For the writing of this book, particularly in trying to set up a web farm, a persistent error was the
problem in getting the Reporting Services Web Service to start:

Activation error 1603
Failure activating the web service

There are several reasons why the web service might bot start:

❑ ASP.NET on Windows Server 2003 does not run as a Network Service

❑ Report Server Windows service was not running during setup

❑ ASP.NET 1.1.4322 is not registered with Internet Information Services (IIS).

❑ The default web site is mapped to an IP address instead of being mapped to 'All Unassigned'

❑ Problem with the service public key

❑ Microsoft IIS configuration for the default web site includes settings that the setup program did
not expect

To resolve issues with the service failing to start, be sure to check the log files and look for specific errors
regarding the starting of the service. Try running the key management utility (rskeymgmt.exe) and
deleting any security keys, after which you will need to run rsConfig.exe and rsActivate.exe.

The last item in the list, like many Windows application errors from the past, may not be viewed as
especially helpful. This is rather a catch-all reason. If you have checked each of the other items in the list,
it might be time to uninstall IIS and reinstall it with the default parameters.

Value Description

0 Disables tracing

1 Exceptions and restarts

2 Exceptions, restarts, warnings

3 Exceptions, restarts, warnings, status messages (default)

4 Verbose mode

503

Troubleshooting

68787_AppendixA.qxp 26/03/2004 3:57 PM Page 503

Credentials Errors
Credentials always represent a potential source of problems. Make sure that the Windows service runs
under the proper account. For Windows Server 2003 it should run as a Network Service.

Make sure that the credential that connects to the ReportServer database has dbo permission on:

❑ ReportServer

❑ ReportServerTempDB

And public permission on:

❑ master

❑ tempdb

For reports that are to be distributed via subscription, make sure that the report uses a credential stored
securely on the server.

Changing Database Connection Information
The data source for Reporting Services may have to be moved to a different server or the credentials
might need to be changed. Any time the database connection information for the web service must be
modified, the rsconfig should be used.

The syntax for rsconfig is as follows:

rsconfig -sYourSQLServer -mYourComputerName -dReportServerDatabaseName
-aSQL -uYourUserName -pYourPassword

The complete syntax is found in BOL.

The following is a brief summary of some of the possible errors when using Reporting Services.

Service Errors
The errors listed below have to do with the Windows service and the web service. The log files can be
very helpful in figuring out the details of the problem.

Error Reasons

rsReportServerNotActivated The installation has not been activated. The rsActivate
utility will need to be run to start it.

rsReportServerDisabled The service is unable to encrypt or decrypt data
managed by the SQL Server.

rsReportServerDatabaseLogonFailed The logon used by the web service to connect to the
SQL database has failed.

504

Appendix A

68787_AppendixA.qxp 26/03/2004 3:57 PM Page 504

Data Access Errors

Errors in this section deal with the data used in reports and access to it.

Report Errors

The following errors deal with the rendering and delivery of reports.

Error Reasons

rsDataSourceDisabled A report cannot be processed because its data
source has been disabled.

rsDataSourceNotFound The report data source cannot be found by
the service.

rsInvalidDataSourceCredentialSetting Action cannot be completed because the
needed credentials are not stored on the server.

rsInvalidDataSourceReference Action cannot be completed because the data
source connection information has been deleted.

Error Reasons

rsServerBusy The server is too busy to process your request;
retry later.

rsServerConfigurationError Problems in the Report Server configuration files.
Check the details in the error logs.

rsInvalidReportServerDatabase The database used by the Report Server is either in a
format that is invalid, or it is corrupt and cannot be
read.

rsInternalError An internal error has occurred. Check the error log
for details and how to address it.

rsAccessDenied The user trying to perform an operation does not
have sufficient permission to perform the operation.

rsSecureConnectionRequired https (SSL) connection is required to perform the
operation you are trying to perform.

505

Troubleshooting

68787_AppendixA.qxp 26/03/2004 3:57 PM Page 505

Subscription Errors

Errors in this section deal with subscriptions.

Error Reasons

rsCannotActivateSubscription The subscription cannot be activated. The delivery
extension no longer exists.

rsCannotSubscribeToEvent The referenced event cannot be subscribed to.

Error Reasons

rsDeliveryExtensionNotFound The delivery extension is not registered with Report
Server.

rsInvalidReportLink The report link for a linked report is no longer valid.

rsInvalidSearchOperator The value entered for a search operator is not valid.

rsParameterTypeMismatch The value entered for a parameter does not match the
data type expected for the parameter.

rsReadOnlyReportParameter The parameter is read-only and may not be modified.

rsReportHistoryNotFound Snapshots for this report have not been saved, or the
snapshot being searched for was not saved.

rsReportMayNotBeScheduled A schedule for this report is not found. If it was
scheduled, check to make sure that the database
credentials are saved in the database.

rsReportNotReady The report is still being rendered and not yet ready
for viewing.

rsReportParameterTypeMismatch The value provided for a report parameter does not
match the expected parameter type.

rsReportParameterValueNotSet There is no default for the report parameter and the user
has not supplied a value.

rsReportTimeoutExpired The length of time allowed for the operation has been
exceeded. The operation has been cancelled.

rsUnknownReportParameter You have tried to set the value of an unknown
report parameter.

506

Appendix A

68787_AppendixA.qxp 26/03/2004 3:57 PM Page 506

Error Reasons

rsDeliveryExtensionNotFound The delivery extension, that which been attempted to be
used, is not defined on this report server.

rsJobWasCanceled The job has been cancelled by an administrator.

rsScheduleAlreadyExists You have attempted to create or rename a schedule that
already exists.

rsScheduleNotFound The referenced schedule cannot be found in the report
server database.

rsSchedulerNotResponding The scheduling engine has hung and is not responding.

rsSubscriptionNotFound The referenced subscription cannot be found in the report
server database.

rsTaskNotFound The references task does not exist or cannot be found.

507

Troubleshooting

68787_AppendixA.qxp 26/03/2004 3:57 PM Page 507

68787_AppendixA.qxp 26/03/2004 3:57 PM Page 508

Migrating Access Reports

The following Access report controls, property settings, and other report elements will be
converted to report items in SQL Server Reporting Services if supported.

Controls

Table continued on following page

Control Converted to Item

Label Textbox

Textbox Textbox

Option Group (unsupported)

Toggle Button (unsupported)

Option Button (unsupported)

Check Box (unsupported)

Combo Box (unsupported)

List Box (unsupported)

Command Button (unsupported)

Image Image

Unbound Object Frame (unsupported)

Bound Object Frame (unsupported)

BBB

68787_AppendixB.qxp 26/03/2004 3:58 PM Page 509

Appendix B

510

Property Settings
Property Supported

BackColor Yes

BackStyle Yes

BorderColor Yes

BorderStyle Yes

BorderWidth Yes

BottomMargin Yes

CanGrow (section) No

CanGrow (textbox) Yes

CanShrink (section) No

CanShrink (textbox) Yes

Caption Yes

DecimalPlaces No

FastLaserPrinting No

Filter No

FilterOn No

FontBold Yes

Control Converted to Item

Page Break (unsupported)

Tab Control (unsupported)

Sub form Subreport

Sub report Subreport

Line Line

Rectangle Rectangle

ActiveX Controls (unsupported)

68787_AppendixB.qxp 26/03/2004 3:58 PM Page 510

Table continued on following page

Property Supported

FontItalic Yes

FontName Yes

FontSize Yes

FontUnderline Yes

FontWeight Yes

ForceNewPage Yes

ForeColor Yes

Format No

FormatConditions No

GrpKeepTogether No

Height Yes

HideDuplicates Yes

Hyperlink Yes

IsHyperlink Yes

IsVisible Yes

KeepTogether (group) Yes

KeepTogether (section) No

Left Yes

LeftMargin Yes

LineSlant Yes

LineSpacing Yes

LinkChildFields Yes

LinkMasterFields Yes

NewRowOrCol Yes

NumeralShapes No

511

Migrating Access Reports

68787_AppendixB.qxp 26/03/2004 3:58 PM Page 511

Property Supported

Orientation No

PageFooter Yes

PageHeader Yes

Pages Yes

PaintPalette No

PaletteSource No

Picture Yes

PictureAlignment No

PicturePages No

PictureSizeMode No

PictureTiling (image) No

PictureTiling (report) Yes

ReadingOrder Yes

RepeatSection Yes

RightMargin Yes

RunningSum Yes

ScrollBars No

SizeMode Yes

SpecialEffect No

TextAlign Yes

Top Yes

TopMargin Yes

Vertical No

Width Yes

512

Appendix B

68787_AppendixB.qxp 26/03/2004 3:58 PM Page 512

Functions
Nearly all common expression functions (VBA and Access SQL) are supported by Reporting Services or
have Visual Basic .NET equivalents. The following domain aggregate functions are not supported and
do not have equivalent functionality. Equivalent aggregate functions exist in Transact SQL, but these
need to be applied within a query rather than on item properties.

Report Elements

Table continued on following page

Element Supported Comment

VBA Code Modules Yes

Events No

Parameterized queries Yes

Expression functions Yes Reporting Services supports most VBA or
Access SQL functions that are allowed in
Access property expressions. All supported
functions are converted to the Visual

Function Supported

DAvg No

DCount No

DFirst No

DLast No

DLookup No

DMax No

DMin No

DStDev No

DStDevP No

DSum No

DVar No

DVarP No

513

Migrating Access Reports

68787_AppendixB.qxp 26/03/2004 3:58 PM Page 513

Appendix B

514

During report conversion, the Access database or project is opened during the report conversion process.
Although the conversion engine handles most unsupported conversion issues gracefully, errors can
cause the process to stall under some conditions. In this case, the Access database may be left with open
locks on it and you won't be able to open the database. In this case, delete the corresponding ldb file
after closing Visual Studio. In extreme cases, you may need to reboot the computer first.

Element Supported Comment

Expression functions
(continued)

Basic .NET equivalents. The most significant
functions, commonly used in Access
expressions and not supported by Reporting
Services are the domain aggregate functions.

Access data source – Access
tables

Yes Connection string refers to the original Access
database.

Access data source – linked
tables

No Connection string refers to the original Access
database not the source of the linked tables.

Remote data source in
Access Data Project (ADP)

Partial ODBC and OLEDB sources are supported but
certain characters are not allowed in names
(';', '<', or '>').

Group section Yes Appropriate sorting and grouping properties
are applied to detail sections. Nested
groupings are created for additional group
sections.

Field names and variable Yes Names are converted according to Reporting
Services rules. Field names that are the same
as control/item names are modified and
names containing spaces are modified. Any
variable names that don't correspond to fields
are converted to report parameters.

Image formats Yes All image formats are converted to BMP and
stored as embedded images.

68787_AppendixB.qxp 26/03/2004 3:58 PM Page 514

Reporting Services Object
Model

Reporting Services exposes its Application Program Interface (API) through the Reporting Services
Web Service that interacts with the actual Reporting Server. This appendix is meant to be a quick
reference to the programmatic functionality that Reporting Services exposes through this web
service.

Relevant code for both C# and VB.NET has been provided in this chapter. Book formatting
constraints may cause the code lines to wrap. However, note that the VB.NET code lines should
reside on one line in the code editor, note that no underscore has been inserted in such cases.

CancelBatch
This method cancels a batch of commands that are created by using CreateBatch and associated
with a particular BatchID. The BatchID can be changed to a value equal to the BatchID
generated when the batch was created through the BatchHeaderValue property of the web
service. When CancelBatch is called, any calls associated with that BatchID value cannot be
executed.

C#

public void CancelBatch();

VB.NET

Public Sub CancelBatch()

CCC

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 515

Appendix C

516

CancelJob
A job is a task that a report server is actively processing. CancelJob cancels execution of a job by
passing in the JobID associated with that job.

C#
public bool CancelJob(string JobID);

VB.NET
Public Function CancelJob(ByVal JobID As String) As Boolean

CreateBatch
The CreateBatch method creates a batch that allows the execution of multiple methods within the
scope of a single transaction. Upon execution, this method returns a BatchID. This batch identifier is
used to group commands and can be accessed through the BatchHeaderValue property of the web
service.

C#
public string CreateBatch();

VB.NET
Public Function CreateBatch() As String

CreateDataDrivenSubscription
This method creates a data-driven subscription for a specified report. It requires passing in the extension
settings for the preferred delivery mechanism as well as the DataRetrievalPlan and event type that
will cause the report to be delivered. The return value is a unique identifier for the new subscription.

C#
public string CreateDataDrivenSubscription(string Report, ExtensionSettings
ExtensionSettings, DataRetrievalPlan DataRetrievalPlan, string Description,
string EventType, string MatchData, ParameterValueOrFieldReference[] Parameters);

VB.NET
Public Function CreateDataDrivenSubscription(ByVal Report As String, ByVal
ExtensionSettings As ExtensionSettings, ByVal DataRetrievalPlan As
DataRetrievalPlan, ByVal Description As String, ByVal EventType As String, ByVal
MatchData As String, ByVal Parameters As ParameterValueOrFieldReference()) As
String

CreateDataSource
This method creates a new data source in the Reporting Server database. It is sensitive because it
contains username and password information, and depending on the settings of the server, may require
that it be executed only over SSL.

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 516

C#
public void CreateDataSource(string DataSource, string Parent, bool Overwrite,
DataSourceDefinition Definition, Property[] Properties);

VB.NET
Public Sub CreateDataSource(ByVal DataSource As String, ByVal Parent As String,
ByVal Overwrite As Boolean, ByVal Definition As DataSourceDefinition, ByVal
Properties As Property())

CreateFolder
The CreateFolder method creates a logical folder on the Reporting Server in which items such as
reports or data sources may be placed. If you are creating a nested folder hierarchy, then you must pass
in the full path of the parent folder. In addition, you must pass a collection of custom properties for the
folder. These properties can be used to search by or provide detailed information about the folder.

C#
public void CreateFolder(string Folder, string Parent, Property[] Properties);

VB.NET
Public Sub CreateFolder(ByVal Folder As String, ByVal Parent As String, ByVal
Properties As Property())

CreateLinkedReport
A linked report is defined as a report that does not contain a full report definition in the Reporting
Server, and is primarily created for the purpose of being included in other reports. This method creates a
report and requires that you pass in the name of the linked report, the path of the report, the path to the
report definition upon which you are basing the report, and the report properties.

C#
public void CreateLinkedReport(string Report, string Parent, string Link,
Property[] Properties);

VB.NET
Public Sub CreateLinkedReport(ByVal Report As String, ByVal Parent As String,
ByVal Link As String, ByVal Properties As Property())

CreateReport
The CreateReport method adds a new report to the Reporting Server database. It requires that you
pass in the path where you want the report to be created, a Boolean value indicating whether you want
an existing report with the same name to be overridden, the report itself, and any custom properties that
you would like applied to the report.

517

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 517

C#
public Warnings[] CreateReport(string Report, string Parent, bool Overwrite,
byte[] Definition, Property[] Properties, [out] ref Warning[] Warnings);

VB.NET
Public Function CreateReport(ByVal Report As String, ByVal Parent As String, ByVal
Overwrite As Boolean, ByVal Definition As Byte(), ByVal Properties As Property())
As Warning()

CreateReportHistorySnapshot
A snapshot of a report is a view of that report frozen at a certain point in time. This method generates a
report history snapshot of a specified report. All the subreport items and parameters are also stored as
history. A string is returned which is a unique snapshot identifier.

C#
public string CreateReportHistorySnapshot(string Report,[out] ref Warning[]
Warnings);

VB.NET
Public Function CreateReportHistorySnapshot(ByVal Report As String, ByRef Warnings
As Warning()) As String

CreateResource
This method adds a new resource to the Reporting Server database. It requires that you pass in the
resource, the parent directory, a Boolean value indicating whether to overwrite an existing resource with
the same name, the MIME type of the resource, and any properties that you want to specify.

C#
public void CreateResource(string Resource, string Parent, bool Overwrite, byte[]
Contents, string MimeType, Property[] Properties);

VB.NET
Public Sub CreateResource(ByVal Resource As String, ByVal Parent As String, ByVal
Overwrite As Boolean, ByVal Contents As Byte(), ByVal MimeType As String, ByVal
Properties As Property())

518

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 518

CreateRole
This method creates a new security role in the Reporting Server database. The required fields are a string
role name, a description of the role, and a collection of tasks that you want the role to perform
represented by task IDs.

C#

public void CreateRole(string Name, string Description, Task[] Tasks);

VB.NET
Public Sub CreateRole(ByVal Name As String, ByVal Description As String, ByVal
Tasks As Task())

CreateSchedule
The CreateSchedule method allows the developer to create a shared schedule that can be used by a
subscription to deliver reports. The name of the schedule and a ScheduleDefinition object that
describes the schedule are the required parameters. The return value is a unique schedule ID that
identifies the newly created schedule.

C#

public string CreateSchedule(string Name, ScheduleDefinition ScheduleDefinition);

VB.NET
Public Function CreateSchedule(ByVal Name As String, ByVal ScheduleDefinition As
ScheduleDefinition) as String

CreateSubscription
Creates a subscription for a specified report in the Reporting Server database. The required parameters
are the name of the report, the delivery extension to use, a user friendly description, the event that will
cause the subscription to be run, and match data that is needed by the EventType object. This method
returns a unique subscription ID for the newly created subscription.

C#
public string CreateSubscription(string Report, ExtensionSettings
ExtensionSettings, string Description, string EventType, string MatchData,
ParameterValue[] Parameters);

519

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 519

VB.NET
Public Function CreateSubscription(ByVal Report As String, ByVal ExtensionSettings
As ExtensionSettings, ByVal Description As String, ByVal EventType As String,
ByVal MatchData As String, ByVal Parameters As ParameterValue()) As String

DeleteItem
The DeleteItem method deletes a specified item from the Reporting Server database as well as any
objects that are related to that item, such as properties, subscriptions, or snapshots. It takes the full path
to the item to be deleted as a string parameter.

C#

public void DeleteItem(string Item);

VB.NET

Public Sub DeleteItem(ByVal Item As String)

DeleteReportHistorySnapshot
This method deletes an individual report history snapshot for a specified report. It requires that you
pass in the path to the report and an identifier for the specific history to be removed.

C#

public void DeleteReportHistorySnapshot(string Report, string HistoryID);

VB.NET
Public Sub DeleteReportHistorySnapshot(ByVal Report As String, ByVal HistoryID As
String)

DeleteRole
It deletes a specified role from the Reporting Server database. In addition, all the policies associated with
this role are also deleted. It requires you to pass in the name of the role to be deleted.

C#

public void DeleteRole(string Name);

VB.NET

Public Sub DeleteRole(ByVal Name As String)

520

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 520

DeleteSchedule
The DeleteSchedule method deletes a specific schedule from the Reporting Server database. Any
reports that were scheduled to run based on this schedule will no longer be processed. It requires
passing in a string value representing the ID of the schedule.

C#

public void DeleteSchedule(string ScheduleID);

VB.NET

Public Sub DeleteSchedule(ByVal ScheduleID As String)

DeleteSubscription
This method allows the user to delete a subscription to a specified report. Executing the method requires
the subscription ID of the subscription to be deleted.

C#

public void DeleteSubscription(string SubscriptionID);

VB.NET

Public Sub DeleteSubscription(ByVal SubscriptionID As String)

DisableDataSource
This method allows the developer to disable a specific data source. Reports and subscriptions that use
the specified data source will not run. It requires passing in the name of the data source that is to be
disabled.

C#

public void DisableDataSource(string DataSource);

VB.NET

Public Sub DisableDataSource(ByVal DataSource As String)

EnableDataSource
This method enables a data source that was previously disabled.

521

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 521

C#

public void EnableDataSource(string DataSource);

VB.NET

Public Sub EnableDataSource(ByVal DataSource As String)

ExecuteBatch
A batch identifier is returned when the CreateBatch Method is used. To execute a batch, the developer
sets the BatchHeaderValue property of the web service proxy class to the appropriate batch ID. All
methods that are associated with this batch ID will execute within the scope of a single database
transaction.

C#

public void ExecuteBatch();

VB.NET

Public Sub ExecuteBatch()

FindItems
FindItems returns items that match the specified search criteria. The required parameters are the folder
to search, logical operators AND and OR, and a collection of search conditions. The return value is the
CatalogItem collection.

C#
public CatalogItem[] FindItems(string Folder, BooleanOperatorEnum BooleanOperator,
SearchCondition[] Conditions)

VB.NET
Public Function FindItems(ByVal Folder As String, ByVal BooleanOperator As
BooleanOperatorEnum, ByVal Conditions As SearchCondition())As CatalogItem())

FireEvent
FireEvent causes an event to be fired. Required parameters are the event to be fired and the data
required by the event.

C#

public void FireEvent(string EventType, string EventData);

522

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 522

VB.NET

Public Sub FireEvent(ByVal EventType As String, ByVal EventData As String)

FlushCache
FlushCache invalidates the cache for an individual report. The name of the report is the only parameter
passed to this method.

C#
public void FlushCache(string Report);

VB.NET
Public Sub FlushCache(ByVal Report As String)

GetCacheOptions
This method returns the cache configuration for a report and the ExpirationDefinition settings that
describe when the cached copy of the report expires. The return value is a Boolean value indicating
whether the report is in the cache or not.

C#
public bool GetCacheOptions(string Report, [out] ref ExpirationDefinition

Expiration);

VB.NET
Public Function GetCacheOptions(ByVal Report As String, [out] ByRef Expiration As
ExpirationDefinition) As Boolean

GetDataDrivenSubscriptionProperties
This method returns the properties of a data-driven subscription. The required parameter is the ID of the
subscription. The other parameters are declared but not initialized. They will be returned with valid
values representing the settings of the subscription. They are the extension settings, the data retrieval
plan, a description of the subscription, the current status of the subscription, the type of event that
causes the subscription to fire, and the match data for the event.

C#
public string GetDataDrivenSubscriptionProperties(string
DataDrivenSubscriptionID, [out] ref ExtensionSettings ExtensionSettings, [out]
ref DataRetrievalPlan DataRetrievalPlan, [out] ref string Description, [out] ref
ActiveState Active, [out] ref string Status, [out] ref string EventType, [out] ref
string MatchData, [out] ref ParameterValueOrFieldReference[] Parameters);

523

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 523

VB.NET
Public Function GetDataDrivenSubscriptionProperties(ByVal DataDrivenSubscriptionID
As String,[out] ByRef ExtensionSettings As ExtensionSettings, [out] ByRef
DataRetrievalPlan As DataRetrievalPlan, [out] ByRef Description As String, [out]
ByRef Active As ActiveState, [out] ByRef Status As String, [out] ByRef EventType
As String, [out] ByRef MatchData As String, [out] ByRef Parameters As
ParameterValueOr FieldReference())

GetDataSourceContents
GetDataSourceContents returns a DataSourceDefinition object representing the contents of a data
source. The required parameter is the name of the data source.

C#

public DataSourceDefinition GetDataSourceContents(string DataSource);

VB.NET
Public Function GetDataSourceContents(ByVal DataSource As String) As DataSource
Definition

GetExecutionOptions
This method returns the execution options and associated settings for an individual report. The required
parameters are the name of the report and an uninitialized ScheduleDefinition object. This object will
be returned with its properties set to the values for the report. The return value is an enum datatype that
indicates whether the report is based on live data or a snapshot.

C#
public ExecutionSettingEnum GetExecutionOptions(string Report, [out] ref
ExecutionSettingEnum ExecutionSetting, [out] ref ScheduleDefinitionOrReference
Schedule);

VB.NET
Public Function GetExecutionOptions(ByVal Report As String,[out] ByRef Schedule As
ScheduleDefinitionOrReference) As ExecutionSettingEnum

GetExtensionSettings
This method requires that you to pass in the name of an extension. The return value is an array of
known parameters for the specific extension.

524

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 524

C#

public ExtensionParameter[] GetExtensionSettings(string Extension);

VB.NET
Public Function GetExtensionSettings(ByVal Extension As String)As
ExtensionParameter())

GetItemType
It retrieves the type of an item, if it exists in the Reporting Server database. The required parameter is the
name of the object. The return value is an enumeration representing the type of object.

C#

public ItemTypeEnum GetItemType(string Item);

VB.NET

Public Function GetItemType(ByVal Item As String)

GetPermissions
GetPermissions returns a string array containing a list of user permissions that are associated with a
particular item in the Reporting Server database. The required input parameter is a string representing
the name of the item.

C#

public void GetPermissions(string Item, [out] ref string[] Permissions);

VB.NET
Public Sub GetPermissions(ByVal Item As String, [out] ByRef Permissions As _
String())

GetPolicies
GetPolicies returns an array of Policy objects that are associated with a particular item as well as a
Boolean value indicating whether the item inherits those policies from its parent.

C#
public Policy[] Policies, GetPolicies(string Item, [out] ref bool InheritParent);

525

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 525

VB.NET
Public Function GetPolicies(ByVal Item As String, [out] ByRef Policies As
Policy(), [out] ByRef InheritParent As Boolean)

GetProperties
GetProperties returns property values for a particular report object. You need to pass in an array of
Property objects with names initialized and the method returns those objects with their values set.

C#
public Property[] GetProperties(string Item, Property[] Properties);

VB.NET
Public Function GetProperties(ByVal Item As String, ByVal Properties As
Property()) As Property()

GetRenderResource
GetRenderResource returns the resource for a specified rendering extension format. It requires that
you pass in the format to use for processing device-specific information and the MIME type of the
resource. It returns the resource as a base-64 encoded byte array.

C#
public void GetRenderResource(string Format, string DeviceInfo, [out] ref byte[]
Result, [out] ref string MimeType);

VB.NET
Public Sub GetRenderResource(ByVal Format As String, ByVal DeviceInfo As String,
[out] ByRef Result As Byte(), [out] ByRef MimeType As String)

GetReportDataSourcePrompts
This method returns an array of DataSourcePrompt objects. These are used to present prompts to the
user for required connection values such as username and password. The only parameter is a string
representing the full path to the data resource.

C#

public DataSourcePrompt[] GetReportDataSourcePrompts(string Report)

VB.NET
Public Function GetReportDataSourcePrompts(ByVal Report As String) As
DataSourcePrompt()

526

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 526

GetReportDataSources
While using this method, a developer passes in the full path to a report and this method returns an array
of DataSource objects that are associated with that report.

C#

public DataSource[] GetReportDataSources(string Report);

VB.NET

Public Function GetReportDataSources(ByVal Report As String) As DataSource()

GetReportDefinition
This method retrieves the report definition for a report in base-64 encoded byte format. It can then be
converted into Report Definition Language (RDL) for use in tools such as Visual Studio.

C#
public byte[] GetReportDefinition(string Report);

VB.NET
Public Function GetReportDefinition(ByVal Report As String)As Byte()

GetReportHistoryLimit
This method returns an integer that indicates the number of snapshot history reports to maintain. The
required parameters are the name of the report, a Boolean value that will be altered in the method to
reflect whether the report has its own limit or uses the system limit, and an integer that will be returned
with the value of the current system limit.

C#
public int GetReportHistoryLimit(string Report, [out] ref bool IsSystem, [out] ref
int SystemLimit);

VB.NET
Public Function GetReportHistoryLimit(ByVal Report As String, , ByRef IsSystem As
Boolean, ByRef SystemLimit As Integer)

GetReportHistoryOptions
This method returns the report history snapshot options and properties that are generated for a report
by passing in the report name. The method returns a Boolean variable that indicates whether the report
allows the creation of manual snapshots. The property information is retrieved by output parameters,

527

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 527

which indicate whether snapshots have been kept and a schedule definition is associated with the
report.

C#
public bool GetReportHistoryOptions(string Report,[out] ref bool
KeepExecutionSnapshots, [out] ref ScheduleDefinitionOrReference Schedule);

VB.NET
Public Function GetReportHistoryOptions(ByVal Report As String,[out] ByRef
KeepExecutionSnapshots As Boolean, [out] ByRef Schedule As
ScheduleDefinitionOrReference) as Bool

GetReportLink
The GetReportLink method returns the full path of the report, the report definition of which is used for
the specified linked report. The only parameter is the name of the report referred for the report
definition.

C#

public string GetReportLink(string Report, [out] ref string Link);

VB.NET

Public Sub GetReportLink(ByVal Report As String) As String

GetReportParameters
This method returns report parameters for a specified report. The first parameter is the name of the
report. The next two parameters are used together. If a HistoryId is provided and the ForRendering
parameter is set to true, the returned properties belong to a snapshot of the provided report. The
ParameterValues argument can be used to verify valid parameters against a report. The Credentials
parameter returns the credentials to use to validate and check the parameters.

C#
public ReportParameter[] GetReportParameters(string Report, string HistoryID, bool
ForRendering, ParameterValue[] Values, DataSourceCredentials[] Credentials)
Parameters);

VB.NET
Public Function GetReportParameters(ByVal Report As String, ByVal HistoryID As
String, ByVal ForRendering As Boolean, ByVal Values As ParameterValue(), ByVal
Credentials As DataSourceCredentials()) As ReportParameter())

528

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 528

GetResourceContents
This method requires the developer to pass in the resource that needs retrieval. The method returns a
MIME type and the value of the resource as a base-64 encoded byte array.

C#

Public byte[] GetResourceContents(string Resource, [out] ref string MimeType);

VB.NET
Public Function GetResourceContents(ByVal Resource As String, ByRef MimeType As
String) As Byte()

GetRoleProperties
This method returns a collection of tasks associated with a given role. The description string argument
will contain the description for the role.

C#

public Task[] GetRoleProperties(string Name,[out] ref string Description);

VB.NET
Public Function GetRoleProperties(ByVal Name As String, ByRef Description As
String) as Task()

GetScheduleProperties
This method returns a Schedule object containing the schedule definition for a single shared schedule
by passing in a specific schedule ID.

C#

public Schedule GetScheduleProperties(string ScheduleID);

VB.NET

Public Function GetScheduleProperties(ByVal ScheduleID As String) As Schedule

529

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 529

GetServerDateTime
This method is described in the documentation but does not exist in the Beta version. It supposedly
returns the current date and time of the computer that is running the report server scheduler. It exists in
the internal Reporting Server classes but is not exposed through the WSDL-generated proxy class.

C#

public DateTime GetServerDateTime();

VB.NET

Public Function GetServerDateTime()

GetSubscriptionProperties
The GetSubscriptionProperties method returns a subscription and the associated information for a
specified report in the Reporting Server database. The required parameters are the name of the report, a
delivery extension object, a string to hold a user-friendly description, an Event object, and match data
that is needed by the EventType object. It also returns a string representing the owner of the
subscription. All of the parameters except the subscription have no initial value, but return the settings
for the subscription after the method executes.

C#
public string GetSubscriptionProperties(string SubscriptionID,[out] ref
ExtensionSettings ExtensionSettings, [out] ref string Description, [out] ref
ActiveState Active, [out] ref string Status, [out] ref string EventType, [out] ref
string MatchData, [out] ref ParameterValue[] Parameters);

VB.NET
Public Sub GetSubscriptionProperties(ByVal SubscriptionID As String,[out] ByRef
ExtensionSettings As ExtensionSettings, [out] ByRef Description As String, [out]
ByRef Active As ActiveState, [out] ByRef Status As String, [out] ByRef EventType
As String, [out] ByRef MatchData As String, [out] ByRef Parameters As
ParameterValue())

GetSystemPermissions
This retrieves a string array representing the system permissions of the current user. An example of a
valid permission is the Create Roles permission.

C#
public string[] GetSystemPermissions();

VB.NET
Public Function GetSystemPermissions() as String()

530

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 530

GetSystemPolicies
This method returns an array of Policy objects representing groups and associated roles.

C#
public Policy[] GetSystemPolicies();

VB.NET
Public Function GetSystemPolicies() As Policy()

GetSystemProperties
This method requires passing in an array of Property objects with names initialized to the properties
that you are interested in. The method returns this array of properties with their values from the system
indicating the system status.

C#
public Property[] GetSystemProperties(Property[] Properties, [out] ref Property[]
Values);

VB.NET

Public Function GetSystemProperties(ByVal Properties As Property()) As Property()

InheritParentSecurity
This method deletes all the policies associated with an item, thereby causing it to inherit policies from its
parent.

C#

public void InheritParentSecurity(string Item);

VB.NET

Public Sub InheritParentSecurity(ByVal Item As String)

ListChildren
This method returns a CatalogItem array when passed a string value representing a specified folder. A
Boolean value that indicates whether the search should be recursive and traverse the entire directory
structure of the path below the specified folder is also required.

531

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 531

C#

public CatalogItem[] ListChildren(string Item, bool Recursive);

VB.NET
Public Function ListChildren(ByVal Item As String, ByVal Recursive As Boolean) As
CatalogItem()

ListEvents
This method returns an array of events that are defined on the report server.

C#
Public Event[] ListEvents()

VB.NET
Public Function CancelBatch() As Event

ListExtensions
It returns a list of Extension objects that are configured for a given extension type such as delivery,
rendering, or data. The parameter is an enumeration representing all of the extension types.

C#
public Extension[] ListExtensions(ExtensionTypeEnum ExtensionType);

VB.NET
Public Sub ListExtensions(ByVal ExtensionType As ExtensionTypeEnum)As Extension()

ListJobs
This method returns an array of Jobs that represent information about currently running jobs on the
report server.

C#
public Jobs[] ListJobs();

VB.NET
Public Function ListJobs()As Job()

ListLinkedReports
The ListLinkedReports method returns an array of catalog items that are linked to the specified
report.

532

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 532

C#
public CatalogItem[] ListLinkedReports(string Report);

VB.NET

Public Function ListLinkedReports(ByVal Report As String) As CatalogItem()

ListReportHistory
This method returns an array of report history snapshots and their properties for a specified report.

C#

public ReportHistorySnapshot[] ListReportHistory(string Report)

VB.NET

Public Function ListReportHistory(ByVal Report As String)As ReportHistorySnapshot()

ListReportsUsingDataSource
This method returns an array of reports that are associated with a shared data source.

C#

public CatalogItem[] ListReportsUsingDataSource(string DataSource);

VB.NET
Public Function ListReportsUsingDataSource(ByVal DataSource As String)As
CatalogItem()

ListRoles
It returns an array of Roles defined on the report server from which their names and descriptions can
be extracted.

C#

public Roles[] ListRoles();

VB.NET

Public Function ListRoles() As Role()

LIstScheduledReports
This method returns an array of reports that are associated with a shared schedule.

533

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 533

C#

public CatalogItem[] ListScheduledReports(string ScheduleID);

VB.NET

Public Function ListScheduledReports(ByVal ScheduleID As String) As CatalogItem()

ListSchedules
This method returns an array containing all the shared schedules on the report server.

C#

public Schedule[] ListSchedules();

VB.NET

Public Function ListSchedules()As Schedule()

ListSecureMethods
It returns a string array of methods that require a secure connection when invoked.

C#

public string[] ListSecureMethods();

VB.NET

Public Function ListSecureMethods() As String()

ListSubscriptions
The ListSubscriptions method returns an array of Subscription objects that have been created for
a given report for a specific user. This array includes both standard and data-driven subscriptions.

C#

public Subscription[] ListSubscriptions(string Report, string Owner);

VB.NET
Public Function ListSubscriptions(ByVal Report As String, ByVal Owner As String)
As Subscription()

ListSubscriptionsUsingDataSource
This method returns a list of subscriptions associated with a given data source.

534

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 534

C#

public Subscription[] ListSubscriptionsUsingDataSource(string DataSource);

VB.NET
Public Function ListSubscriptionsUsingDataSource(ByVal DataSource As String) As
Subscription()

ListSystemRoles
It returns an array of Role objects from which the names and descriptions of system roles can be
extracted.

C#

public Role[] ListSystemRoles();

VB.NET

Public Sub ListSystemRoles() As Role()

ListSystemTasks
The ListSystemTasks method returns an array of Task objects from which system task information
can be extracted. System level tasks are specific to the Reporting Server, such as managing shared
schedules or server roles.

C#
public Task[] ListSystemTasks();

VB.NET
Public Function ListSystemTasks() As Task()

ListTasks
This method returns an array of Task objects from which item task information may be extracted. An
example of an item-level task is viewing a folder or a report.

C#
public Task[] ListTasks();

VB.NET
Public Function ListTasks() As Task()

535

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 535

MoveItem
The MoveItem method moves or renames an item in the Reporting Server database; required parameters
are the original location and the destination path.

C#
public void MoveItem(string Item, string Target);

VB.NET
Public Sub MoveItem(ByVal Item As String, ByVal Target As String)

PauseSchedule
This method pauses the execution of a given shared schedule. The required parameter is the associated
schedule ID.

C#
public void PauseSchedule(string ScheduleID);

VB.NET
Public Sub PauseSchedule(ByVal ScheduleID As String)

PrepareQuery
This method returns a dataset containing the fields retrieved by the delivery query for a data-driven
subscription. The parameters are the data source to be used, the data definition object, and a Boolean
value to indicate whether the data definition has changed.

C#
public DataSetDefinition PrepareQuery(DataSource datasource, DataSetDefinition
dataset,Boolean changed);

VB.NET
Public Sub PrepareQuery(ByVal DataSource As DataSource, ByVal DataSet As
DataSetDefinition, ByRef Changed As Boolean)

Render
The Render method processes a specified report and renders it in a specified format. The required
parameters are the report name, the report format (HTML, PDF, and so on), a history ID if a snapshot is
to be used, an XML string providing device-specific information, the report parameters, the credentials
used to access the data, a toggle to show or hide the ID, the encoding mechanism (UTF-8, UTF-16, and so
on), an array of parameters to be filled with the used parameters if the report is a snapshot, a Warning
collection to be filled with any warnings that occur, and a collection of streams representing any external
resources. The return value is an array of bytes representing the rendered stream.

536

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 536

C#
public byte Render(string Report, string Format, string HistoryID, string
DeviceInfo, ParameterValue[] Parameters, DataSourceCredentials[] Credentials,
string ShowHideToggle,[out] ref string Encoding, [out] ref string MimeType, [out]
ref ParameterValue[] ParametersUsed, [out] ref Warning[] Warnings, [out] ref
string[] StreamIds);

VB.NET
Public Function Render(ByVal Report As String, ByVal Format As String, ByVal
HistoryID As String, ByVal DeviceInfo As String, ByVal Parameters As
ParameterValue(), ByVal Credentials As DataSourceCredentials(), ByVal
ShowHideToggle As String,[out] ByRef Encoding As String, [out] ByRef MimeType As
String, [out] ByRef ParametersUsed As ParameterValue(), [out] ByRef Warnings As
Warning(), [out] ByRef StreamIds As String())

RenderStream
The RenderStream method returns a byte array of the requested stream associated with a rendered
report. This method is called to render a specific external resource, such as an image, within a report.

C#
public byte RenderStream(string Report, string Format, string StreamID, string
HistoryID, string DeviceInfo, ParameterValue[] Parameters,[out] ref string
Encoding, [out] ref string MimeType);

VB.NET
Public Sub RenderStream(ByVal Report As String, ByVal Format As String, ByVal
StreamID As String, ByVal HistoryID As String, ByVal DeviceInfo As String, ByVal
Parameters As ParameterValue(),ByRef Encoding As String, ByRef MimeType As
String)

ResumeSchedule
This method is used to resume from a shared schedule that has been paused.

C#
public void ResumeSchedule(string ScheduleID);

VB.NET
Public Sub ResumeSchedule(ByVal ScheduleID As String)

SetCacheOptions
This method configures caching options for a specified report. Parameters of the report, a Boolean value
that indicates whether to create a cache of the report, and an expiration definition or date that controls
how long the report is in the cache are passed to this function.

537

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 537

C#
public void SetCacheOptions(string Report, bool CacheReport, ExpirationDefinition
Expiration);

VB.NET
Public Sub SetCacheOptions(ByVal Report As String, ByVal CacheReport As Boolean,
ByVal Expiration As ExpirationDefinition)

SetDataDrivenSubscriptionProperties
This method sets the properties of a data-driven subscription.

C#
public void SetDataDrivenSubscriptionProperties(string DataDrivenSubscriptionID,
ExtensionSettings ExtensionSettings, DataRetrievalPlan DataRetrievalPlan, string
Description, string EventType, string MatchData, ParameterValueOrFieldReference[]
Parameters);

VB.NET
Public Sub SetDataDrivenSubscriptionProperties(ByVal DataDrivenSubscriptionID As
String, ByVal ExtensionSettings As ExtensionSettings, ByVal DataRetrievalPlan As
DataRetrievalPlan, ByVal Description As String, ByVal EventType As String, ByVal
MatchData As String, ByVal Parameters As ParameterValueOrFieldReference())

SetDataSourceContents
It replaces the contents of an existing data source. The parameters are the name of the source and a data
definition object defining all the source properties.

C#
public void SetDataSourceContents(string DataSource, DataSourceDefinition
Definition);

VB.NET
Public Sub SetDataSourceContents(ByVal DataSource As String, ByVal Definition As
DataSourceDefinition)

SetExecutionOptions
This method sets the execution options and the associated execution properties for an individual report.
The first parameter is the name of the report, followed by an enumeration indicating whether the report
should be excuted in real-time or scheduled. The third parameter, Schedule, is only used if the
execution is scheduled.

C#
public void SetExecutionOptions(string Report, ExecutionSettingEnum
ExecutionSetting, ScheduleDefinitionOrReference Schedule);

538

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 538

VB.NET
Public Sub SetExecutionOptions(ByVal Report As String, ByVal ExecutionSetting As
ExecutionSettingEnum, ByVal Schedule As ScheduleDefinitionOrReference)

SetPolicies
This method sets the policies that are associated with a specified item. The required parameters are the
item and an array of Policy objects to place on the specified item.

C#

public void SetPolicies(string Item, Policy[] Policies);

VB.NET

Public Sub SetPolicies(ByVal Item As String, ByVal Policies As Policy())

SetProperties
It sets the properties that are associated with a specified item. The required parameters are the item for
which you will set properties and an array of Property objects to place on the specified item.

C#

public void SetProperties(string Item, Property[] Properties);

VB.NET

Public Sub SetProperties(ByVal Item As String, ByVal Properties As Property())

SetReportDataSources
It sets the data sources that are associated with a specified item. The required parameters are the item in
question and an array of data source objects to place on the specified item.

C#

public void SetReportDataSources(string Report, DataSource[] DataSources);

VB.NET
Public Sub SetReportDataSources(ByVal Report As String, ByVal DataSources As
DataSource())

539

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 539

SetReportDefinition
The SetReportDefinition method is used to change a report definition for a specified report. The
required parameters are the name of the report, followed by an array of bytes that are the report
definition. The return value is an array of warnings informing the developer of problems that occur.

C#

public Warning[] SetReportDefinition(string Report, byte[] Definition);

VB.NET
Public Function SetReportDefinition(ByVal Report As String, ByVal Definition As
Byte()) As Warning()

SetReportHistoryLimit
This allows the developer to specify the number of snapshots of a report that the report server retains.
The required parameters are the name of the report, a Boolean value indicating whether the default
system limit should be used or a specific limit.

C#
public void SetReportHistoryLimit(string Report, bool UseSystem, int
HistoryLimit);

VB.NET
Public Sub SetReportHistoryLimit(ByVal Report As String, ByVal UseSystem As
Boolean, ByVal HistoryLimit As Integer)

SetReportHistoryOptions
This method allows the developer to sets report history options that control snapshot creation and
lifetime. The required parameters are the name of the report, a Boolean value that controls whether
manual snapshots can be created, and a Boolean value indicating whether snapshot histories should be
maintained. You also need to pass in the schedule the snapshot should be created against.

C#
public void SetReportHistoryOptions(string Report, bool
EnableManualSnapshotCreation, bool KeepExecutionSnapshots,
ScheduleDefinitionOrReference Schedule);

VB.NET
Public Sub SetReportHistoryOptions(ByVal Report As String, ByVal
EnableManualSnapshotCreation As Boolean, ByVal KeepExecutionSnapshots As
Boolean, ByVal Schedule As ScheduleDefinitionOrReference)

540

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 540

SetReportLink
A linked report does not contain a full report definition. This method allows you to specify the report
that contains the full definition for the report. A linked report may be linked to more than one report
definition.

C#

public void SetReportLink(string Report, string Link);

VB.NET

Public Sub SetReportLink(ByVal Report As String, ByVal Link As String)

SetReportParameters
This method allows the developer to specify parameters to a report that it needs in order to be
processed. The parameters are the name of the report and a collection of parameters, the names of which
much match those defined in the report.

C#

public void SetReportParameters(string Report, ReportParameter[] Parameters);

VB.NET
Public Sub SetReportParameters(ByVal Report As String, ByVal Parameters As
ReportParameter())

SetResourceContents
Resources such as images are stored as byte arrays. The SetResourceContents method allows the
developer to replace the contents of an existing resource by passing in a byte array representing the new
value. The required parameters are the resource to be accessed, the byte array that contains the value,
and the MIME type of the resource.

C#
public void SetResourceContents(string Resource, byte[] Contents, string
MimeType);

VB.NET
Public Sub SetResourceContents(ByVal Resource As String, ByVal Contents As Byte(),
ByVal MimeType As String)

541

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 541

SetRoleProperties
This method allows the developer to associate a group of tasks with a specified role. The required
parameters are the role name and the array of tasks to associate with the role.

C#

public void SetRoleProperties(string Name, string Description, Task[] Tasks);

VB.NET
Public Sub SetRoleProperties(ByVal Name As String, ByVal Description As String,
ByVal Tasks As Task())

SetScheduleProperties
This method allows the developer to sets the properties of a shared schedule. The required parameters
are the name of the report, the schedule ID, and a schedule definition object that contains the schedule
properties for the report.

C#
public void SetScheduleProperties(string Name, string ScheduleID,
ScheduleDefinition ScheduleDefinition);

VB.NET
Public Sub SetScheduleProperties(ByVal Name As String, ByVal ScheduleID As String,
ByVal ScheduleDefinition As ScheduleDefinition)

SetSubscriptionProperties
This method allows the developer to set the properties of a shared subscription. The required
parameters are the name of the report, the subscription ID, delivery-specific setting information, a
description of the subscription, the event that causes the subscription to run, match data used by the
specific type of event used, and the parameters for the report.

C#
public void SetSubscriptionProperties(string SubscriptionID, ExtensionSettings
ExtensionSettings, string Description, string EventType, string MatchData,
ParameterValue[] Parameters);

VB.NET
Public Sub SetSubscriptionProperties(ByVal SubscriptionID As String, ByVal
ExtensionSettings As ExtensionSettings, ByVal Description As String, ByVal
EventType As String, ByVal MatchData As String, ByVal Parameters As
ParameterValue())

542

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 542

SetSystemPolicies
This allows the developer to set system policies by passing in an array of Policy objects.

C#
public void SetSystemPolicies(Policy[] Policies);

VB.NET
Public Sub SetSystemPolicies(ByVal Policies As Policy())

SetSystemProperties
This method allows the developer to set system properties by passing in an array of Property objects.

C#
public void SetSystemProperties(Property[] Properties);

VB.NET

Public Sub SetSystemProperties(ByVal Properties As Property())

UpdateReportExecutionSnapshot
This method creates a report history snapshot for a specific report.

C#

public void UpdateReportExecutionSnapshot(string Report);

VB.NET

Public Sub UpdateReportExecutionSnapshot(ByVal Report As String)

ValidateExtensionSettings
This method allows the developer to validate the Reporting Services extension settings. The required
parameters are the name of the extension and an array of parameter values to verify. The method returns
an array of extension parameter objects with initialized values if they are valid and error messages if
they are not.

C#
public ExtensionParameter[] ValidateExtensionSettings(string Extension,
ParameterValueOrFieldReference[] ParameterValues);

543

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 543

VB.NET
Public Function ValidateExtensionSettings (ByVal Extension As String, ByVal
ParameterValues As ParameterValueOrFieldReference()) ParameterErrors As
ExtensionParameter())

The Reporting Services Web Service proxy class contains several properties that are used to control how
Reporting Services handles various requests. These properties and a description of their impact on
Reporting Services are discussed in the following sections.

BatchHeaderValue
This value is used to group multi-method operations against the Reporting Services Web Service.

C#
public BatchHeader BatchHeaderValue { get; set; }

VB.NET
Public Property BatchHeaderValue() As BatchHeader

ItemNamespaceHeaderValue
This value is used to retrieve properties for a specific item by setting either the ID or the name of the
property in the ItemNamespaceHeader.

C#
public ItemNamespaceHeader ItenNamespaceHeaderValue { get; set; }

VB.NET
Public Property BatchHeaderValue() As BatchHeader

ServerInfoHeaderValue
This property contains server-related information such as the edition of Reporting Services and the
version information.

C#
public ServerInfoHeader ServerInfoHeaderValue { get; set; }

VB.NET
Public Property ServerInfoHeaderValue() As ServerInfoHeader

SessionInfoHeaderValue
This property contains information about the current session such as the session ID and the session
expiration time.

544

Appendix C

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 544

C#
public SessionInfoHeader SessionInfoHeaderValue { get; set; }

VB.NET
Public Property SessionInfoHeaderValue() As SessionInfoHeader

545

Reporting Services Object Model

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 545

68787_AppendixC.qxp 26/03/2004 3:58 PM Page 546

Transact SQL Query
Functions and Expressions

Every organization should establish a standard for programming and database object naming
conventions. This appendix includes some suggested naming standards and a simplified reference
of common Transact SQL functions and statements for use in query expressions.

Naming Conventions
Although a universal, industry-wide naming convention doesn't exist, most experienced database
professionals agree on some basic conventions. Agreeing on a universal standard is not nearly as
important as an organization having a set of standards upon which they can agree upon, support,
and maintain. The following is a list of some of the common objects with some suggested naming
conventions.

Tables
Table names are not typically prefixed. Some database designers use the tbl prefix but this is less
common in client/server databases than in desktop databases like Access. Table names in SQL
Server can be in mixed case. Because older database systems have not had a history of supporting
mixed-case names, many tenured database professionals still do not use them. A long-standing
tradition has been to separate logical words in table names using underscores. You must not try to
use any other punctuation character. Although SQL Server supports spaces in names, many
professionals don't believe this is a good practice. If spaces are used in object names, the name
must be enclosed in square brackets. For example:

[Customer Orders].[Customer First Name]

In any case, keep names simple yet descriptive.

DDD

68787_AppendixD.qxp 26/03/2004 3:58 PM Page 547

Appendix D

548

Bear in mind that as a database grows in size and supporting tables are added, it is common for tables to
be added with names that will be very similar to others. For this reason, it is recommended that you be
more descriptive as you name tables. Many database professionals also have strong feelings about
pluralization of table names. Some argue that a table name describes a single instance of a data entity,
therefore the name should be singular. In either case just be consistent. Names may end with numbers
only with a good reason but should begin with a letter. Some examples are:

Customer_Order

CustomerOrder

ProductSupplier

Columns
Column naming rules (and variations) are similar to tables. Again, it's more important to be consistent
within your organization than to conform to a universal naming rule. You should be more concerned
about describing the purpose of a column in its name than keeping it short. Column names shouldn't
contain spaces and may contain underscores. No other punctuation should be used.

Views
Prefix views with v, vw, or vw_. Because views can represent complex queries it is important to describe
its purpose in the name. You could begin the name with the main table or entity name. For example:

vw_CustomerOrderDetailByProductCategory

Stored Procedures
Do not prefix stored procedures with sp_. This is reserved for system-stored procedures. There are two
schools of thought for stored procedure naming. The traditional convention is to use a prefix that
describes the type of operation a procedure will perform for a table or entity. For example:

Get_Customer
Ins_Customer
Upd_Customer
Del_Customer

The other idea is that if the procedure name begins with the name of the table, all of the related stored
procedures will be listed along with the table. For example:

Customer
Customer_Del
Customer_Get
Customer_Ins
Customer_Upd

68787_AppendixD.qxp 26/03/2004 3:58 PM Page 548

User-Defined Functions
Because user-defined functions have been offered only since the release of SQL Server 2000, there has
been little time for naming standards to evolve. A simple rule is to prefix all function names with fn_.
For example:

fn_FirstName()
fn_CustomersWithOrders()

When calling a stored procedure, you must use a two-part or multi-part name that identifies the owner.
For example, DBO.fn_CustomersWithOrders().

Multi-Part Names
All database objects can be identified using up to four name elements. When programming across
servers or multiple databases, it may be necessary to use more than just the object name to identify an
object. The complete object name has four parts separated by periods:

SERVER.DATABASE.OWNER.OBJECT

For example:

Production5.CompanySalesDB.DBO.CustomerOrder

Depending on the scope of the reference or code, only part of the name may be necessary:

CompanySalesDB.DBO.CustomerOrder
DBO.CustomerOrder
CustomerOrder

Functions
The following Transact SQL functions are grouped by category:

Numeric Manipulation

Table continued on following page

Function Name Description

CEILING (numeric_value) Converts numeric expressions to actual numeric values.
For example, a numeric expression with currency symbol
and thousand separator.

CEILING ($1,234.0)

Returns 1234.

COS (numeric value) Cosine of an angle.

COT (numeric value) Cotangent of an angle.

549

Transact SQL Query Functions and Expressions

68787_AppendixD.qxp 26/03/2004 3:58 PM Page 549

String Manipulation

Function Name Description

CHAR (Integer) Returns a character from the ASCII character code

CHAR (65)

Returns A

CHARINDEX (target value string,
whole_string string)

CHARINDEX (target value string,
whole_string string ,
start_position Integer)

Returns an integer indicating the starting position of the
first occurrence of the target value that is found
within the whole_string value. Often used to locate
delimiting characters within a column or static value.

DATALENGTH (string value) Returns the number of characters in a variable-length
string.

LEFT (string_value,
end_character_int)

Returns a string value that is the left-most characters
ending with the end_character.

LEN (string value) Returns an integer indicating the length of a string.

LOWER (string value) Converts all characters of a string to lower case.

Function Name Description

DEGREES (numeric) Converts radians to degrees.

EXP (float) Returns the exponent for a float value.

FLOOR (numeric) Used to round a numeric value to the largest integer not
greater than the value.

ISNUMERIC (value) Indicates whether a value can be converted to a number.
Returns 1 or 0.

LOG (Float) Returns the logarithm of a value.

LOG10 (Float) Returns the 10-based logarithm of a value.

PI () Returns the constant value of Pi.

POWER (value, exponent value) Calculates the exponent (value raised to the
exponent_value).

TAN (numeric value) Returns the tangent of a value.

550

Appendix D

68787_AppendixD.qxp 26/03/2004 3:58 PM Page 550

Table continued on following page

Function Name Description

LTRIM (string value) Trims spaces from the left side (leading) for a string.

NCHAR (character code) Returns a Unicode character for an integer character
code. Similar to CHAR but handles Unicode character
set.

PATINDEX (pattern_string,
value)

Returns the index (integer of the staring position) of a
search pattern string found within another string. The
pattern_string is any string with wild card
characters that could be passed to the LIKE operator.

QUOTENAME (string_value)

QUOTENAME (string_value,
quote_string)

Accepts a string with embedded quotes (', ", [or])
and returns a string with double instances of quote
characters to indicate that they are literal.

REPLACE (target_string,
replace_characters,
new_characters)

In the first string, replaces occurrences of the second
string with the third string.

REPLICATE (string_value,
repeat_int_value)

Returns a string that consists of the string_value
repeated a specified number of times.

REVERSE (string_value) Returns a string with characters of the input string in
reverse order.

RIGHT (string_value,
length_int)

Returns the right-most part of a string. Like the LEFT
function but reads from the right-most part of the
string.

RTRIM (string_value) Removes spaces from the right of a string (trailing).

SOUNDEX (string_value) Returns a four character string to represent a
comparative phonetic equivalent. Typically used for
sound-alike comparisons.

SPACE (repeat_int_value) Returns a string of spaces (one space repeated a
specified number of times).

STR (value) Converts a value to a string.

STUFF (string_value,
start_int, length_int,
replace_with_string)

Replaces characters in the string_value with
characters in the replace_with_string, starting at
start_int for a length or length_int.

STUFF ('abcdefghij', 2, 4, 'wxyz')

Returns abwxyzghij

551

Transact SQL Query Functions and Expressions

68787_AppendixD.qxp 26/03/2004 3:58 PM Page 551

Mathematical

Function Name Description

ABS (numeric_value) Absolute value for a number.

ACOS (numeric_value) Angle from a cosine.

ASIN (numeric_value) Angle from a sine.

ATAN (numeric_value) Angle from a tangent.

ATN2 (low_range, high_range) Angle from a range of two tangents.

RADIANS (numeric_value) Converts degrees to radians.

RAND (numeric_seed) Returns a fractional random number between 0 and 1

ROUND (numeric_value, length)

ROUND (numeric_value, length,
operation)

Rounds a number to a given length. Optionally
truncates if operation argument is greater than 0.

SIGN (numeric_value) Returns + or – for a positive or negative numeric value.

SIN (radians_numeric) Returns the sine of an angle.

SQUARE (numeric_value) Returns the square of a value.

SQRT (numeric_value) Returns the square root of a value.

Function Name Description

SUBSTRING (string_value,
start_int, length_int)

Returns part of a string from the start_int for a
length of length_int. To return all characters to the
right of the starting position, use a length value that is
equal to or greater than any possible value.

SUBSTRING ('abcdefghi', 3, 4)

Returns cdef

SUBSTRING ('abcdefghi', 3, 1000)

Returns cdefghi

UNICODE (single_character) Returns the Unicode character code for a string
character.

UPPER (string_value) Converts a string to upper case characters.

552

Appendix D

68787_AppendixD.qxp 26/03/2004 3:58 PM Page 552

Dates

Function Name Description

DATEADD (datepart,number,
date_value)

Returns a datetime value after adding or subtracting a
specified period to the input date_value. The datepart
is a named constant (Year, Month, Day). Number is an
integer (positive or negative) for the number of datepart
units to add to the date_value.

DATEADD (Month,3,'12/25/2003')

Returns 3/25/2004

DATEDIFF (datepart,
start_date,end_date)

Returns an integer for the number of datepart units that
separate the start_date from the end_date values.

DATEDIFF (Day,'12/25/2003','3/25/2004')

Returns 91

DATENAME (datepart,
date_value)

Returns the specified datepart value for a date as a
string.

DATENAME (Month,'1/7/2004')

Returns January

DATEPART (datepart,
date_value)

Returns the specified datepart value for a date as an
integer.

DATENAME (Month,'1/7/2004')

Returns January

DAY (date_value) Returns an integer for the Day datepart of the
date_value.

GETDATE () Returns the current date and time.

GETUTCDATE () Returns the current date and time of Universal or
Greenwich Mean Time.

ISDATE (value) Indicates whether a value can be converted to a date.
Returns 1 or 0

MONTH (date_value) Returns the month number for a date.

YEAR (date_value) Returns a four position–integer representing the year
part for a date.

553

Transact SQL Query Functions and Expressions

68787_AppendixD.qxp 26/03/2004 3:58 PM Page 553

Aggregate Functions

Grouping Variations

Function Returns

GROUP BY column_name

GROUP BY column_name,
column_name, …

Rolls up a result set by a column value or unique combination of
column values. All columns returned in the query must have
aggregate functions or be in the GROUP BY list.

GROUPING (column_name) An aggregate function that returns a bit value indicating whether
the row is the result of a ROLLUP or CUBE group summary.

SELECT ProdID, OrderID, GROUPING (OrderID), SUM (Amt)
FROM ProdSales
GROUP BY ProdID, OrderID

HAVING criteria Used to qualify an expression evaluated after GROUP BY and
aggregate functions have been applied to a result set.

SELECT ProdID, OrderID, SUM (Amt)
FROM ProdSales
GROUP BY ProdID, OrderID
HAVING SUM (Amt) > 500

Note that the SUM function is not actually performed again. This
is treated only as an expression to qualify rows returned.

Function Returns

AVG (value) Average for a group or range.

COUNT (column_name)

COUNT (*)

Aggregate count of rows not including nulls. Using * counts all
rows regardless of nulls.

COUNT_BIG (column_name)

COUNT_BIG (*)

Aggregate count of rows not including nulls. Using * counts
all rows regardless of nulls.

MAX (value) Aggregate function returns the highest value in the group or
range.

MIN (value) Smallest value in the group or range.

STDEV (value) Standard deviation of a group or range.

STDEVP (value) Standard deviation for a population of a group or range.

SUM (value) Sum of a group or range.

VAR (value) Variance of a group or range.

VARP (value) Variance of a population for a group or range.

554

Appendix D

68787_AppendixD.qxp 26/03/2004 3:58 PM Page 554

Type Conversion and Formatting

Logic

Query Criteria

Function Returns

CONTAINS (column_name, 'search
criteria')

CONTAINS (*, 'search criteria')

Valid only with full-text indexing enabled. Provides
more extensive search and criteria–matching
capabilities than the standard WHERE and LIKE
operators. Using * applies criteria to all full
text– indexed columns in the table.
Several optional rules and conditions can be applied to
use complex matching expressions. For example
WHERE CONTAINS (*,'apples')

Function Returns

COALESCE (expr, expr, expr, …) Returns the first non-null value from a list of any number
of expressions.

COALESCE (null, 'abc', 'def')

Returns abc

ISNULL (value) Indicates whether a value is null. Returns 1 or 0.

NULLIF (value1, value2) Returns null if two values are equal, otherwise returns the
first value.

Function Returns

CAST (value AS type) Converts a value (of any acceptable type) to an explicit data
type.

CAST (1234 AS VarChar(10))

This can also be achieved using the CONVERT function.

CONVERT (type, value)
CONVERT (type, value,
style)

Converts a value to an explicit data type. Optionally applies
a style (format) to values such as numbers and dates. Style is
an integer value—(found in MSDN Library & SQL Books On
Line).

CONVERT (VarChar(10), 1234)

CONVERT (VarChar(10), @DateValue,101)

Returns 1/7/2004

555

Transact SQL Query Functions and Expressions

68787_AppendixD.qxp 26/03/2004 3:58 PM Page 555

Function Returns

FREETEXT (column_name, 'search
criteria')

FREETEXT (*, 'search criteria')

Valid only with full-text indexing enabled. Provides
more extensive search and criteria matching capabilities
than the standard WHERE and LIKE operators. Performs
approximate text matching and can return a
comparative rating for the match.

Expressions may contain operators such as AND, OR and
NEAR.

Using * applies criteria to all full-text indexed columns
in the table.

IN (value, value, value, …) Used to match one set of criteria against a list of values.
Effectively replaces multiple OR statements.

SELECT * FROM Customers WHERE State IN ('WA',
'OR', 'CA')

556

Appendix D

68787_AppendixD.qxp 26/03/2004 3:58 PM Page 556

Configuration Files

Following the pattern set in .NET, configuration information is stored in XML files in SQL Server
Reporting Services. Configuration information is easy to modify and the file structures are easily
readable.

XML Basics
If you need to modify any settings in these files, it's important to understand the essentials of XML
document structure and form. XML data is organized into elements and attributes. Like in HTML,
an element is called a tag. Tags consist of opening tags and closing tags and can also contain
nested element tags. The following code snippet is a simplified example of an XML element
structure:

<FirstElement>First Element Value
<SecondElement>Second Element Value
</SecondElement>

</FirstElement>

Note that in XML, carriage returns, spaces, and tabs are ignored. These are added only to increase
human readability other than in element names and values.

In the first example, element values are sandwiched between opening and closing element tags.
Values can also be defined using attributes contained in the opening element tag. The following is
an example of values stored in an element's attributes:

<FirstElement Attribute1="Attribute 1 Value" Attrubute2="Attribute 2 Value">
<SecondElement Attribute1="Attribute 1 Value"></SecondElement>

</FirstElement>

EEE

68787_AppendixE.qxp 26/03/2004 3:58 PM Page 557

Appendix E

558

Attribute values are enclosed in double-quotes and element values are not. Element values can still be
used in combination with attributes. They are removed from the example for simplicity. Since the second
element is opened and closed with no element value or nested elements, an optional convention may be
used to open and close the element in a single tag using the format used for the <SecondElement>
element:

<FirstElement Attribute1="Attribute 1 Value" Attribute="Attribute 2 Value">
<SecondElement Attribute1="Attribute 1 Value" />

</FirstElement>

Configuration Files
Four files are used to manage various configuration settings for the server and design environment.
We've simplified the XML file layout for each of these configuration files below:

The RSReportServer.config File
All settings that apply to the report server, including connections, security,
caching, and subscription delivery options.

Default install path:
C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer

Settings:
Configuration
Dsn
ConnectionType
LogonUser
LogonDomain
LogonCred
InstanceId
InstallationID
SecureConnectionLevel
InstanceName
ProcessRecycleOptions
CleanupCycleMinutes
SqlCommandTimeoutSeconds
MaxActiveReqForOneUser
DatabaseQueryTimeout
RunningRequestsScavengerCycle
RunningRequestsDbCycle
RunningRequestsAge
MaxScheduleWait
DisplayErrorLink
ReportCodePermissions/Permissions
ReportExpressions/Permissions
CustomAssemblies/Permissions

Service
IsSchedulingService
IsNotificationService

68787_AppendixE.qxp 26/03/2004 3:58 PM Page 558

IsEventService
PollingInterval
MemoryLimit
RecycleTime
MaxAppDomainUnloadTime
MaxQueueThreads
UrlRoot
UnattendedExecutionAccount/UserName/Password/Domain

Extensions
Delivery/Configuration

RSEmailDPConfiguration
SMTPServer
SMTPServerPort
SMTPAccountName
SMTPConnectionTimeout
SMTPServerPickupDirectory
SMTPUseSSL
SendUsing
SMTPAuthenticate/From
EmbeddedRenderFormats/RenderingExtension
PrivilegedUserRenderFormats
ExcludedRenderFormats/RenderingExtension
SendEmailToUserAlias
DefaultHostName
PermittedHosts

Render
Permissions
Extension(s) (XML,NULL,CSV,IMAGE,PDF,HTML4.0,HTML3.2,MHTML,EXCEL,HTMLOWC)
Configuration
OWCConfiguration
OWCDownloadLocation (Languages)

Data
Permission
Extension(s) (SQL,OLEDB,ORACLE,ODBC)
Security
EventProcessing
Extension(s)/Type(s)(ReportHistorySnapshotCreated,

TimedSubscription,SnapshotUpdated)

The RSWebApplication.config File
Settings that apply the Report Manager web application. Most settings correspond to
options in the Report Manager application configuration pages.

Default install path:
C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportManager

Settings:
Configuration
UI
ReportServerUrl

Extensions
DeliveryUI

559

Configuration Files

68787_AppendixE.qxp 26/03/2004 3:58 PM Page 559

Extension
DefaultDeliveryExtension
Configuration
RSEmailDPConfiguration

DefaultRenderingExtension
Extension
Configuration
FileShare

DefaultRenderingExtension
MaxActiveReqForOneUser
DisplayErrorLink

The ReportingServicesService.exex.config File
Enables tracing and logging of certain server events that include restarts,
exceptions, warnings and status messages. Some settings are used to manage the
trace and log files and tracing output options.

Default install path:
C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer\bin

Settings:
Configuration
configSections

name
system.diagnostics
switches
DefaultTraceSwitch

RStrace
FileName
Prefix
TraceListeners
TraceFileMode
Components

The RSReportDesigner.config File
Used to manage and configure custom data processing and rendering extensions. Also
sets designer preview and rendering options.

Default install path:
C:\Program Files\Microsoft SQL Server\80\Tools\Report Designer

Settings:
Configuration
SecureConnectionLevel
InstanceName
KeepSnapshotsInMemory
SessionCookies
SessionTimeoutMinutes
ReportCodePermissions
ReportExpressions
CustomAssemblies
Default

560

Appendix E

68787_AppendixE.qxp 26/03/2004 3:58 PM Page 560

PermissionSet
IPermission/class

Extensions
Render

Permissions
PermissionSet/class/version/Unrestricted/Name/Description
Extension(s) (XML,CSV,IMAGE,PDF,HTML4.0,HTML3.2,MHTML,EXCEL,HTMLOWC)

Data
Permissions

PermissionSet/class/version/Unrestricted/Name/Description
Extension(s) (SQL,OLEDB,ORACLE,ODBC)

Designer
Extension(s) (SQL,OLEDB,ORACLE,ODBC)

561

Configuration Files

68787_AppendixE.qxp 26/03/2004 3:58 PM Page 561

68787_AppendixE.qxp 26/03/2004 3:58 PM Page 562

Index

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 563

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 564

3-D Column charts, 141

A
-a authorization method parameter, rs.config,

465
access control, data source

data source, 177
Access database, importing reports from, 69
Access SQL, 100
accessibility of reports, 478
accessing the Report Manager, 163

Internet Explorer, through, 164
Reporting Services, through, 163

Active Directory authentication, 190
ActiveSubscriptions function, Scheduling and

Report History table, 47
Add New Item dialog, Solution Explorer, 103
Add Web Reference dialog

programmatic access to report objects, 322
adding fields, drag-and-drop method, 125

adding/removing options, Reporting Services
installation

client components, 16
server components, 16

AddNodeToTree procedure, 217
Administrative table, ReportServer database, 47
administrative tools, installation options, 17, 465

backup and restore, 466
ADO.NET object model, 416
Advanced Textbox Properties dialog, 132
AdventureWorks2000 sample database, 17, 57

Employees table, 134
Product table, 150

aggregate functions, data grouping, 82, 111
ANSI SQL standard, 97
Area charts, 142
assigning a new security policy, PSRS_Manager

Application, 255
authentication settings, Reporting Services, 17
authentication, access to data source, 177
authoring interface, Visual Studio .NET, 11
authoring reports, 30
auto hide design element, 70
automated data gathering, 483
automated management of reports, 277
automated server management, 279

Index

A Guide to the Index
The index is arranged hierarchically, in alphabetical order, with symbols preceding the letter A.
Most second-level entries and many third-level entries also occur as first-level entries. This is to
ensure that users find the information they require however they choose to search for it.

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 565

B
backup of Report Server database, 466
Bar charts, 77
batch running of user-supplied script, 281
BCC property, email subscription delivery, 364
BeginTransaction function, data processing

extensions, 421
bi-directional encrypted streaming, 23
bookmarks, 132
Books Online, online documentation, 17, 87, 501
browser compatibility, a design consideration, 70
Browser role permissions, 179, 184
browser-based report delivery applications, 12
Bubble charts, 143
building a query with SQL statements, 107

SQL statements, with, 107, 114
Project Wizard, with, 59– 60

built-in security versus SSL, 22
Business Intelligence (BI) solutions, 8, 473
Business Intelligence Projects, Report Wizard, 56

C
cached instances, 35, 47, 349
cached reports

cached instance, 349
configuring, 353
default expiry time, 195
expiration time, setting of, 195, 349
performance enhancement or Report Server, 195
report history, creating, 199
snapshot reports compared, 199
snapshots, 349
types, comparison table of, 349

caching
cached instances, 35
security considerations, 348
session cache, 35
snapshot, 36

Cancel method, IDbCommand interface, 430
cascading parameters, 106

example using Solution Explorer, 106
Catalog function, Resources table, 46

566

backup of Report Server database

CatalogItem objects, 216
CC property, email subscription delivery, 364
central report storage, Report Server, 32
certificate authority, 23
certificate server, Report Server configured as, 190
Chart control, control RDL, 400
chart creation, an example

3-D effects, 148
AdventureWorks2000 database, 144
Chart Properties dialog, 146
gridlines, using, 147
preview chart image property, use of, 146
scale settings, 147
size settings, 147
SQL expressions, 144

Chart Report item, Toolbox tool, 77
charts, report type, 19, 139–143
ChunkData function, Snapshots and Snapshot His-

tory table, 46
client components, capabilities, 16
client-side processing of parameters, 112
Close method, creating data processing extensions,

423
clustering, database, 491
CodeSmith tool, 402
Collaborative Data Objects (CDO), email delivery, 18
color definition, Report Wizard, 63
Column charts, 77, 141
column placement and indentation, 125, 126
ColumnHeader Collection Editor, PSRS_Mangager

Application, 208
Command object, data processing extensions, 417
command-line options, installation options, 17
command-line utilities

rs, 278
rsactivate, 278
rsconfig, 278
rskeymgmt, 278

CommandText property, Command object, 431
CommandTimeout property, Command object, 432
CommandType property, Command object, 432
Comment property, email subscription delivery, 364
CompilerFailed error message, rs utility, 282
complex queries using query builder, 103
complex reports, 96

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 566

conditional compilation, 285, 290
conditional expressions, 150

example, 150
ConectionFailed error message, rs utility, 282
Configuration function, Administrative table, 47
configuration settings, Reporting Services, 17,

458
ReportingServicesService.exe.config file, 464
RSReportDesigner.config file, 464
RSReportServer.config file, 464
RSWebApplication.config file, 464

configuring cached reports, 353
configuring data sources, 175
configuring the report parameters, 109
Connection object, data processing extensions,

417
ConnectionString property, data processing

extensions, 423
ConnectionTimeout property, data processing

extensions, 423
ConnectToServer method, RSRS_Manager

Application, 213
consumer, 456

system requirements, 456
content manager, 161
Content Manager, predefined roles, 183
content organization, 493
control formats, Format parameter, 316
control RDL, 396–400

Chart control, generated by, 400
Image control, generated by, 399
Line control, generated by, 397
List control, generated by, 399
Matrix control, generated by, 398
Rectangle control, generated by, 397
Subreport control, generated by, 400
Table control, generated by, 397
TextBox control, generated by, 396

CreateCommand function, data processing
extensions, 421

CreateDataDrivenSubscriptions method,
ReportingService object, 366

CreatedBy property, CatalogItem objects, 216
CreateElement method, XmlDocument class, 300

567

creating data processing extensions

In
de

x

CreateProperty method, managing item
properties, 225

CreatePropertyArray method, managing item
properties, 225

CreateReport method, deploying reports, 297
CreateSubscription method, ReportingService

object, 366
EvenType argument, 369
ExtensionSettings argument, 369
MatchData argument, 369
Parameters argument, 369

creating data processing extensions
BeginTransaction function, 421
Close method, 423
code snippets

BeginTransaction function, 421
Cancel method, IDbCommand interface, 430
Close method, 423
CommandText property, Command object, 431
CommandTimeout property, Command object,

432
CommandType property, Command object, 432
ConnectionString property, 423
ConnectionTimeout property, 423
constructor, for creating objects, 420
constructors declaration, 428
create a project, 418
CreateCommand function, 421
CreateParameter function, IDataParamer

interface, 433
CSVCommand class, creating, 428
CSVConnection class, adding, 419
CSVParameterCollection class, 426
ExecuteReader method, 429
FieldCount property, Read method, 438
GetFieldType function, 435
GetName function, 436
GetOrdinal function, 436
GetValue function, 436
IDataParameter interface, implementing, 424
IDataParameterCollection interface,

implementing, 427
IDbCommand interface, implementing, 429
IDbConnetion, implementing, 420
IDbDatareader interface, implementing, 434
IDisposable interface, implementing, 421

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 567

creating data processing extensions (continued)
Open method, 422
parameter declarations, 424
ParameterName property, 425
Parameters property, IDataParamerCollection

interface, 433
Read method, CSVDataReader class, 437
Value property, 426
variables, declaring, 419

CommandText property, Command object, 431
CommandTimeout property, Command object,

432
CommandType property, Command object, 432
ConnectionString property, 423
CSVConnection object, 420
CSVDataProcessing extension, installing, 438
CSVDataReader object, creating, 434
CSVParameter class, creating, 424
GetFieldType function, 435
GetName function, 436
GetOrdinal function, 436
GetValue function, 436
IDataParameter interface, implementing, 424
IDataParameterCollection interface,

implementing, 427
IDbConnection interface, implementing, 420
IDbDatareader interface, implementing, 434
IDisposable interface, implementing, 421
Open method, 422
ParameterName property, 425
project, creating, 418
Read method, CSVDataReader class, 437
variable declarations, 419

creating folders, 171
creating RDL document, 401

.NET, with, 401
creating schedules, on-demand reports, 196
creating Subreports, 137
CreationDate property, CatalogItem objects, 216
credentials, 193, 463

configuring, 351
errors, related to, 504
see also security
storing, 351

Credentials parameter, Render method, 331

568

creating data processing extensions (continued)

Crystal Reports, 6
CSVCommand class, data processing extensions,

428
CSVDataProcessing extension, installing, 438
CSVDataReader object, creating, 434
CSVParameterCollection class, data processing

extensions, 426
Cube browser, SQL Server Analysis services, 100
cube structures, SQL Server Analysis services, 100
custom assembly, custom code, 151

disabled by default, 153
RSReportDesigner.config, 154
RSReportServer.config, 154

custom code, 151
custom extensions, rendering, 41
custom fields, 149
custom rendering extensions, lack of, Reporting

Services, 412
custom report parameters, 116
custom reporting extensions,

configuration files, 21
data processing, 21
delivery, 21
scripting, 22

custom reports design, RDL, 27
CustomReportItem placeholder, RDL, 413

D
data farms, 491
data formats, Format parameter

CSV, 316
EXCEL, 316
XML, 316

data gardens, 491
data gathering, automated, 483
data grouping

List controls, 80
matrix reports, 19, 81

Data Link Properties dialog, Report Wizard, 57
data management schematic, 485
data processing extensions

ADO.NET object model, 416
Command object, 417

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 568

common functions, 37
Connection object, 417
ConnectionString property, 423
ConnectionTimeout property, 423
CreateCommand function, 421
creating, 418
data providers, .NET-managed, 37
DataAdapter object, 417
DataReader object, 417
objects, normally created, 417
rendering extensions, 39–41, 348
Scheduling and Delivery Processor, 41

data RDL, 392
data sorting definition, Report Wizard, 62
data source, 95, 174

access control, 177
central source, 98
configuring shared data source, 175
Connection object, ADO, equivalent to, 393
connection string, defined as, 100
creating, 98
embedded within report definition, 175
errors, related to, 505
moving database to different machine, 175
private data source, 175
Project Add Template, creating with, 99
providers, 96
query languages, 100
Report Wizard, creating with, 98
security, 177
shared data source, 175
URL access to, 309

data source object reference, 95
data source sharing between reports, 58, 95
Data Transformation Service (DTS), 46
data warehouse

freezing data, 11
integrity of data, 11
query expressions, 11

DataAdapter object, data processing extensions,
417

database owner role, 458
data-driven subscriptions, 13, 42, 202, 363
<DataField> tag, data RDL, 395

569

design categories for reports

In
de

x

DataReader object, data processing extensions,
417

<DataSets> section, data RDL, 393
DataSet versus data set, 97
<DataSource> section, data RDL, 392
<DataSourceName> tag, data RDL, 393-d

databasename parameter, rs.config, 464
DataSources function, Resources table, 46
debugging installation, 18
debugging the user-supplied script, 301
decision-support databases, 20
Default security, Report Manager, 179
default settings, report history, 169
defining the report structure, Report Wizard, 62
DeleteSubscription method, ReportingService

object, 366
deleting existing security policy, PSRS_Manager

application, 259
delivering reports, 31
Delivery extensions, 45

custom extensions, 45
email report delivery, 45
file share report delivery, 45

delivery extensions, Reporting Services, 412
delivery management extensions, Reporting

Services, 412
deploying reports, 27

errors, related to, 505
deployment, 443

enterprise level, 451
medium scale, 450
small scale, 449
system requirements, 452

Deployment folder, 63
design categories for reports

charts, 19
data sources, 19
drill-through reports, 19
form reports, 18
groupings and drilldowns, 19
matrix, 19
multiple column reports, 19
queries, 19
tabular reports, 18

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 569

design considerations for reports
browser compatibility, 70
extensibility, 69
mobility, 156
multiple columns, 89
report items and data regions, 71

designing a reporting solution, 476
availability, 478
manageability, 478
scalability, 479
security, 477

Developer edition, SQL Server Reporting Services,
14

DeviceInfo parameter, Render method, 331
Distributed Transaction Coordination (DTC)

services, 14
document maps, 130

limitations of Excel and HTML formats, 130
selecting levels, 131

document RDL, 390
Donut charts, 78
drill-down design element, 70
drill-down reports, 79, 81, 128

hiding rows and columns, 128
interactive design, 128
managed at the grouping level, 129
page view of an interactive report, 130

drill-through reports, 19, 79, 132
example page view, 133
inter-report linkage, 132
parameters, passing to target reports, 132

dsp prefix, parameters passing, 314
dsu prefix, parameters passing, 314
DuplicateCommandLineOption error message,

rs utility, 282
DuplicateVariable error message, rs utility, 282

E
Edit Expression window, expression builder, 127
EditModeEnum constant, 225
email delivery, configuring, 361

properties, 364
email, subscription delivery, 361

570

design considerations for reports

embedded functions, custom code, 151
Employee table, example table

creating with Report Wizard, 59
Encoding(out) parameter, Render method, 331
encryption at client-side, security, 22
encryption at Report Server, security, 22
encryption key, 278
encryption key backup, Report Server database, 466
Enterprise edition, SQL Server Reporting Services,

14
error messages, rs utility

CompilerFailed, 282
ConnectionFailed, 282
data access errors, 505
DuplicateCommandLineOption, 282
DuplicateVariable, 282
IndividualAuthorizationMethod, 282
InvalidCommandLineOption, 282
InvalidTimeoutValue, 282
InvalidVariableName, 282
InvalidVariableSpecification, 282
MissingOptionValue, 282
MissingRequiredOption, 282
MissingSomeAuthorizationValues, 282
report errors, 506
ScriptException, 282
service errors, 504
subscription errors, 506

Evaluation edition, SQL Server Reporting Services,
14

ExecuteReader method, IDbCommand interface,
429–430

executing reports
linked reports, 191
main steps, 192
on-demand execution, 191
report parameters, 193

execution information, 48
execution log files, server monitoring, 470
Execution Time, global variable, 149
execution timeout settings, site settings, 169
ExecutionLog function, Administrative table, 47
Executive Information Services (EIS), 9
expanding and collapsing report sections, 128
expiration, cached reports, 349

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 570

explicit definitions, interfaces, VB.NET, 415
expression builder tool, 128
expressions used for data filtering, 116, 350
extending Reporting Services, 411

code snippets
IDisposable interface, 415
IExtension interface, 414

interfaces, common, 413
missing facilities, 412
opportunities for customization, 413

extensibility of reports
browser compatibility, 70
font type and size, HTML-rendered reports, 70
mobile device support, 71
offline viewing, 70
PDF rendering, 70

extension interfaces, common, 413, 464

F
federating data, 491
File Extensions property, file share subscriptions,

364
File Name property, file share subscriptions, 364
file share push deployment, report delivery, 33
file share subscriptions, 361

pocket PCs, delivery to, 363
properties, 364

FillPolicyListView method, PSRS_Manager
Application, 248

filtering techniques, data retrieval, 101
at the database level, 102
at the report server level, 116
expressions, 350
parameterized filters, 350
performance enhancement, 102

folder structure, Report Server
adding items to folders, 172
creating folders, 171
inheritance of properties, 171
moving items between folders, 172
parent role, 171
permissions, 171
security considerations, 172
setting properties, 174

571

In
de

x

folders, URL access to, 309
fonts definition, Report Wizard, 63
FoodMart2000 OLAP database, 100
form reports, 18
Format parameter, programmatic rendering

control formats, 316
data formats, 316
print formats, 316
Render method, parameter of, 331
setting device information, 317
web formats, 315

formatting of reports, 85
column placement and indentation, 125, 126
conditional formatting, 88
explicit formatting, 86
headers and footers, 126
merging columns, 125
multiple columns, 89
page breaks, 91–93
pagination, 90
paper sizes, 93

forms compared to report body, 71
freezing of data, 11

G
generic editor, Reporting Services, 97
GetDataSourceContents value, Command

parameter, 315
GetFieldType function, data processing

extensions, 435
GetName function, data processing extensions,

436
GetOrdinal function, data processing extensions,

436
GetReportDefinition method, Reporting Services

Web Service, 296
GetReportParameters method

Credential attribute, 328
ForRendering attribute, 328
HistoryID attribute, 328
ParameterValues attribute, 328
Report attribute, 328

GetResourceContents value, Command
parameter, 315

GetResourceContents value, Command parameter

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 571

GetSubscriptionProperties method,
ReportingService object, 366

GetValue function, data processing extensions,
436

global variables, 149
Globally Unique Identifier (GUID), 392
grid controls, tabular reports, for, 80
Grouping and Sorting Properties dialog, 123
grouping definition, Report Wizard, 62
grouping of data by data region, 80
grouping of reports, 19

H
headers and footers, 126
hiding rows and columns, 128
History function, Snapshots and SnapshotHistory

table, 46
HistoryID parameter, Render method, 331
HTML rendering format, report delivery, 13
HyperText Transfer Protocol (HTTP), 49

I
IDataParameter interface, data processing

extensions, 418
IDataParameter interface, implementing, 424
IDataParameterCollection interface, data

processing extensions, 418
IDataParameterCollection interface,

implementing, 427
standard formatting, 85

IDataReader interface, data processing
extensions, 418

IDbCommand interface, data processing
extensions, 417

IDbCommand interface, implementing, 429
IDbConnection interface, data processing

extensions, 417
IDbDatareader interface, implementing, 434
IDbTransaction interface, data processing

extensions, 417
IDisposable interface, Reporting Services, 415
IExtension interface, 414

572

GetSubscriptionProperties method, ReportingService object

IExtension interface, data processing extensions,
418

#If...Then...#Else directive, 299
Image control, control RDL, 399
Image Wizard, Toolbox tool, 74
implicit definitions, interfaces, support in C#, 415
importing items, PSRS_Manager Application, 241
importing reports, 68

MS Access, from, 69
RDL, 68

Include Link property, email subscription delivery,
364

Include Report property, email subscription delivery,
364

indexing of data, 484
information worker, 9
installation, Reporting Services, 15, 457

adding/removing options, 16
configuration files, 463
database credential, 461
Distributed Transaction Coordinator, 458
errors, 503
log files, 18
Report Server installation, 462
set-up options, 15
SQL Server instance, 461
SSL, internet exposure, 460
unattended installation, 18
Visual Studio .NET, use of, 458

Integrated Windows Security, 99, 177
intelligent data storage, 5
Intellisense tool, .NET compilers, 285
interactive data gathering, 483
interactive reports, 128
intermediate report format, report delivery, 35, 348
Internet Information Server (IIS), 48, 64
InvalidAuthorizationMethod error message, rs

utility, 282
InvalidCommandLineOption error message, rs utility,

282
InvalidTimeoutValue error message, rs utility, 282
InvalidVariableName error message, rs utility, 282
InvalidVariableSpecification error message, rs

utility, 282

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 572

isolated development, 498
item-level tasks, 181

L
Language support, data sources, 100
Language, global variable, 149
Line charts, 143
Line control, control RDL, 397
Line Report item, Toolbox tool, 73
linked reports, 191, 353
links, 132
List control, data grouping, 80, 399
ListChildren method, 216
ListChildren value, Command parameter, 315
ListRoles method, web service method, 264
ListSchedules method, ReportingService object,

366
ListSubscriptions method, ReportingService

object, 366
ListSubscriptions.res, Subscription Manager

application, 375
ListSubscriptionsUsingDataSource method,

ReportingService object, 366
ListSystemRoles method, web service method,

264
ListSystemTasks method, web service method,

269
ListTasks method, web service method, 269
LoadXml method, XmlDocument class, 299
LocalizeName property, IExtension interface, 414
log files, 502
LogComment method, XmlDocument class, 301
LogError method, XmlDocument class, 300

M
-m computername parameter, rs.config, 464
Main method, user-supplied script, rs utility, 283
Managing encrypted connections, 278
managing reports, 30, 444

reporting solutions, design aspects of, 478
site management, 444

managing subscriptions
ReportingService object, 366
webmethods methods, 366

573

My Reports, predefined roles

In
de

x

Matrix control, control RDL, 398
matrix reports, data grouping, 19, 81
matrix, report type, 19
Menu Editor, PSRS_Manger Application, 209
Merge Cells option, Grouping and Sorting

Properties
dialog

merging columns, 125
metadata, 174
method signature, 414
MHTML, browser-based delivery, 12
MimeType(out) parameter, Render method, 331
missing facilities in extensibility, Reporting

Services, 412
MissingOptionValue error message, rs utility, 282
MissingRequiredOption error message, rs utility,

282
MissingSomeAuthorizationValues error message,

rs
utility, 282

mobile devices, report capabilities, 156
ModifiedBy property, CatalogItem objects, 216
ModifiedData property, CatalogItem objects, 216
modular architecture, Reporting Services, 411
monitoring of servers

log files, 470
MS Access, use for report delivery, 13
MS Excel for report delivery, 12
MSReportServer_ConfigurationSetting class, 279
MSReportServerReportManager_

ConfigurationSetting class, 280
multi-column reports, 19
Multidimensional expressions (MDX), 100, 487
Multipart Internet Mail Extension (MIME), 400
multiple columns report layout, 89
multiple database servers, 490
multiple datasets, 96
multiple servers, working with, 31
multi-server Reporting Services, 462
multi-table relationships, 134
My Reports folder

locking, 170
managing users' own content, 170
My Reports role compared, 184
revoking access to, 190

My Reports, predefined roles, 184

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 573

N
Name property, CatalogItem objects, 216
namespaces

XML, 383
naming rules, XML, 380
need for reporting services, 8

business-to-business, 10
customers, 10
executive leadership, 9
information workers, 9
managers, 9

nesting of tags, XML documents, 381
.NET data providers versus data processing

extensions, 416
.NET Framework classes, for RDL documents

creating RDL document, 401
.NET Framework, support for reporting services,

21
IDisposable interface, 415

.NET tool kit, 6
network considerations, security

intranet and extranet, 190
item-level security, 190
My Reports, revoking access to, 190
system-level security, 190

network traffic, reduction in, 101
New data source radio button, Report Wizard, 57
New Subscription button, implementing, 367
Notifications function, Scheduling and Report

History table, 47
NotSupportedException exception, 430
NT AUTHORITY\NETWORK SERVICE ACCOUNT,

460

O
object creation, standardizing by interfaces

extension interfaces, common, 414
ODBC processing extension, 38
offline viewing of reports, 70
OLAP reports, 20, 487
OLEDB Provider, data provider, 37

574

Name property, CatalogItem objects

on-demand reports, 194
caching, 195
filtered reports, 195
schedules, 196
snapshot reports, 198
vary-by-parameter behavior, 195

Open method, data processing extensions, 422
Open standards, 48
opportunities for customization, Reporting Services,

413
optimizing reporting time, filtering techniques, 102
Oracle Provider, data provider, 37
organization of reports, 444
overriding report execution timeout settings, 169

P
-p password parameter, rs.config, 465
P/L SQL, 100
page breaks, formatting of reports, 91–93
Page Number, global variable, 149
pagination of reports, 90
paper size consideration, 93
parameterized filters, 350
parameterized stored procedures, 102
ParameterName property, data processing

extensions, 425
Parameters dialog, Advanced Textbox Properties

dialog, 133
Parameters parameter, Render method, 331
Parameters property, IDataParamerCollection

interface, 433
parameters, passing to target reports, drill-through,

132
parameters, URL access to objects

dsp prefix, 314
dsu prefix, 314
prefixes, 313
rc prefix, 313
rs prefix, 313

ParametersUsed(out) parameter, Render method,
331

Parent Security option, 189
parsing of XML documents, 382
Password property, file share subscriptions, 364

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 574

Path property, CatalogItem objects, 216
Path property, file share subscriptions, 364
pathinfo parameter, URL access to reports, 308
performance enhancement with cached reports,

195
performance enhancement with query filters, 101
Pie charts, 78, 143
pivot tables, 81
pocket PCs, subscription delivery to, 363
Policies function, Security table, 46
PolicyUserRole function, Security table, 46
populating parameters, 105
portability of queries between databases, 97
predefined roles

Browser role, 184
Content Manager, 183
My Reports, 184
Publisher, 184
System Administrator, 182
System User, 183

predefined roles, access security, 181
Principle of least privilege, security, 184
print formats, Format parameter

IMAGE, 316
PDF, 316

printing reports, Reporting Services, 93
Priority property, email subscription delivery, 364
private variables, creating, PSRS_Manager

Application, 213
processing parameters, server-side versus

client-side, 112
programmability, report delivery applications, 13
programmatic access to report objects

code snippets
adding report list to drop-down format, 326
custom credentials, security, 323
file extension retrieval, MIME type, 340
Format class, 332
GetParameters click event, 329
GetReportParameters method, 328, 329
ParameterValue objects, 332
populating Format Load event, 323
Render method, calling, 333
rendering reports, 340
report path retrieval, 339
ReportingService object, 339
ReportItem class, 332

575

Project Wizard, creating new projects with

In
de

x

response object, writing to, 342
retrieving report information, 325
retrieving the list of reports, 323
setting up the Reporting Services Web Service,

322
writing file to the file system, 334

Imports statement, VB.NET, 322
rendering a report to file system, 330
rendering to the Web

response object, rendering to, 339
Web Service, setting up, 339
web.config files, modifying, 338
writing file to the file system, 337

retrieving report information, 325
retrieving all objects, 325
retrieving report parameters, 328

using statement, C#, 322
programmatic rendering of reports, 307, 320

ASP.NET page, using, 320
common scenarios, 320
Windows form, using, 320
Windows forms, with

building an application interface, 321
setting up reference to web service, 321

Programming Interface tool, 34
full access, 34
open architecture, 34

Project Add Template, creating data source with,
99

Project Wizard, creating new projects with
adding security, 58
building a query, 59
Business Intelligence projects, 56
defining the report structure, 62
deployment of report, 63

Deployment folder, 64
Report Manager, 64
Report Server catalog database, 64

Employee table, example table, 59
establishing a data source, 57
example report, page view, 68
page settings, 65
scale units, regional settings, 65
see also Project Wizard
sharing data source between reports, 58
Transact SQL expression, 61
validating settings, 58

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 575

PSRS_Manager Application, 205
adding namespaces, 212
adding/updating folders, 223
batch and transactions concept, 231
building the visual interface, 207

Button control, 207
Label control, 207
ListView control, 207
MainMenu control, 207
TextBox control, 207
TreeView control, 207

code snippets, 212
adding folders, 226
adding namespaces, 212
AddNodeToTree procedure, 217
assigning a new policy, 255
calling a folder, 233
ConnectToServer, establishing connection, 213
deleting existing security policy, 259
deleting items from folders, 238
deleting items from Reporting Services, 238
displaying the child items, 221, 222
double click event, event handler, 235
editing existing items in folders, 234
event handler, adding, 212
existing security policy, editing, 257
folder status check, event handler, 228
importing items, 241
list new roles, 263
policy forms, 244
private variables, creating, 213
property procedures, adding, 226
role assignments, security, 249
roles, adding new, 262
RSUtilities class, 214
security credentials, adding, 219
system and individual roles, click event

handlers, 265
TreeView control, 215
UserForm_Load method, 252

ColumnHeader Collection Editor, 208
ConnectToServer method, 212
default namespace, setting, 206
deleting existing security policy, 259
deleting items from Reporting Services, 238
deploying on remote server, 208
displaying the child items, 221

576

PSRS_Manager Application

existing security policy, editing, 257
FolderForm.Activated event, 232
ListRoles method, web services method, 264
ListSystemRoles method, web services method,

264
ListSystemTasks method, web service method, 269
ListTasks method, web service method, 269
Menu Editor, 209
menuItemFileNewFolder event, 233
new security policy, adding, 256
OpenFolder method, 236
policies, adding, deleting, and editing, 250
proxy class, 211
Report definition Files, importing, 240
roles, adding, deleting, and editing, 266
RSUtilities class, 214
security, 244

creating a new policy, 255
ListView control, showing policies in, 247
policies, adding, deleting, and editing, 250
policies, roles, and tasks definitions, 244
private and public variables, 246
role assignments, 249
roles, adding, deleting, and editing, 261
system/user policies, 253

security credentials, adding, 219
SetItemPolicies method, 259
SetPolicies method, 256
Solution Explorer, 210
startup object, setting, 206
UpdateFolder method, 230
Web Service, adding a reference to, 210

Publisher, predefined roles, 184

Q
queries

creating, 97
hierarchical representation of data, difficulties with,

134
portability between databases, 97

Query Builder, Project Wizard, 60
Query Designer tool, VS.NET, 31
query editor, Reporting Services, 97
query expression, 95
query expressions, data warehouses, 11

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 576

query languages, 487
query parameters, filtering data with, 102

R
rc prefix, parameters passing, 313
Read method, CSVDataReader class, 437
real-world scenario, need for reporting services, 2
Rectangle control, control RDL, 397
Rectangle Report item, Toolbox tool, 74
recursive data, 134

Employee Organization chart example, page view,
136

queries, difficulty in using, 134
query builder, used for, 134

#Region...#End Region directive, 298
regular expressions, 85
relational data, reporting with, 10, 97
relational databases, 480
Relational Online Analytical processing (ROLAP),

487
Render Format property, email subscription deliv-

ery, 364
Render Format property, file share subscriptions,

364
Render method, programmatic rendering, 330

syntax for calling, 333
Render value, Command parameter, 315
rendering extensions, data processing

extensions, 39, 348
CSV, 40
custom extensions, 41
Excel, 39
HTML, 39
MHTML, 40
PDF, 39
TIFF, 40
XML, 40

rendering reports
programmatic rendering, 307

Reply-To property, email subscription delivery,
364

report body, 66
columns definition, 89
placing items on, 71

577

Report Designer

In
de

x

report connection strings, backup and
restoration, 17

Report Definition Language (RDL), 16, 26
.NET Framework classes, 401
CodeSmith, document creation, 402
control RDL, 396
creating RDL document, 401
custom reports design, 27
CustomReportItem placeholder, 413
data RDL, 392
deploying reports, 27
document RDL, 390
example of RDL file content, 69
importing reports, 69
interoperability of reporting tools, 388
non-proprietary nature, 402
open standards as base, 379
report design without VS.NET, 27
Report Designer objects, 68
third-party design tool, 27
XML, 379
XML document, 50
XML vocabulary, 388

report delivery, 12
basic architecture, 348
caching, 347
programmability, 13
Report Server, feature of, 33
scheduling feature of Report Server, 33
subscription, by, 13

report delivery application types, 12
MS Office applications, 12
programmability, 13
web browser, 12

Report Designer classes, lack of customization,
support for, 413

Report Designer, 32, 445
designer environmet, 1
Fields option, 65
page settings, 65– 66
page view of the tool, 65
RDL file, 50
Server Explorer feature, 65
Solution Explorer feature, 65
system requirements, 457

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 577

Report Designer (continued)
Tool Box feature, 65
Visual Studio .NET, incorporated into, 50
VS.NET IDE, component of, 65

report execution logs, 18
Report Folder, global variable, 149
report formats

CSV, 13
HTML rendering format, 13
multiple formats, support for, 35
XML, 13

report functionality
aggregation of data, 82
formatting, 85
grouping, 80
subtotals, 82

report history, creating, 199
report information, passing of, URL access to

objects, 318
name-value combination, passing values by, 319
report parameters, 318

no reed for prefixes, 318
snapshot history, rendering of, 319

report logging, 169
report management, automating

rs utility, 280
user-supplied scripts, 280

Report Manager, 23, 161, 444
accessing the interface

Internet Explorer, through, 164
Reporting Services, through, 163

basic archiecture, 162
configuring shared data source, 175
creating a schedule for report execution, 196
custom version, 162
data source security, 177
graphical user interface, 162
interface features, 163

breadcrumb trail tool, 166
Detail view, 167
global toolbar, 167
Help link, 168
navigating, 165
search function, folders and reports, 168

tabs and options toolbar, 166

578

Report Designer (continued)

item-level tasks, 181
managing subscriptions, 365
network considerations, security, 190
on-demand reports, 194
predefined roles, 181
report history, creating, 199
security, 178

Everyone group, 178
item-level, 179
role-based, 179
system-level, 179

system-level tasks, 181
users and permissions, 178
viewing reports, 191

Report Manager web applications settings, 21
Report Name, global variable, 149
Report parameter, Render method, 331
report parameters, 103

automatically generated, 103
cascading parameters, 106
datasets, relationship with, 105
example, creating parameters, 105
query parameters, 103, 105
selecting from data source, 105
setting values dynamically, 103

Report Parameters dialog, Solution Explorer, 103
report parameters, filtering techniques, 101
Report Processor features

caching, 35
report definition, 35
request handling, 35

Report Project Wizard template, Report Wizard, 56
report scripting, 277
Report Server, 446

central report storage, 32
certificate server, configured as, 190
delivery scheduling feature, 33
folder structure, 171
installation, 452
performance enhancement, caching on-demand

reports, 195
report delivery feature, 33
Report Processor, 34
Report Server items, 180
security, 32, 467

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 578

security administration, 468
settings, 21
system requirements, 452

Report Server database, 161, 348, 446
backup, 466
custom extensions, 46
encryption key backup, 466
ReportServer database, 46
ReportServerTempDB database, 46–47
viewing execution information, 48

Report Server settings, 21
Report Server URL, global variable, 149
report snapshots, creating, 41
report subscriptions, 200

automatic scheduling and rendering of reports,
200

standard subscriptions, 202
report types, 8
Report Viewer, 307
Report Wizard

AdventureWorks2000 sample database, 57
creating a new project, 56
defining the report structure, 62
establishing a data source, 57, 98

Data Link Properties dialog, 57
New Data source radio button, 57

Report Wizard Project template, client component
installation, 16

Report Wizard, Visual Studio .NET, 20, 24
reporting lifecycle, 30
reporting services (general)

basic architecture, 8
challenges, existing solutions, 6
data import, regular, 10
hurdles in development, 6
mobile devices, accessibility over, 7
need, 4, 8
report lifecycle, 11
security, 22
web, impact of, 7

Reporting Services (the MS tool)
.NET-based, 7
.NET Framework requirement, 454
architecture, 443
capabilities, 2, 7
clients, 445

579

Reporting Services Web Service

In
de

x

command-line utilities, 277
components, schematic diagram for, 448
custom rendering extensions, lack of customiza-

tion support for, 412
customization, 411
data processing extensions, 411
delivery extensions, 412
delivery management extensions, 412
designing reports, 18
editions, 14
email delivery, 18
encryption, built-in support, 22
extensibility, 411

missing facilities, 412
extension interfaces, common, 413
features, 29
formatting mechanics, 85
generic editor, 97
IDisposable interface, 415
installation, 15, 457
interfaces, 444
license requirement, 454
modular architecture, 411
monitoring of servers, 469
online documentation, 17
opportunities for customization, 413
printing considerations, 93
query editor, 97
rendering extensions, available, 412
rendering reports, 307
Report Designer classes, lack of customization

support, 413
Report Manager tool, 50
Report Server command-line utility, 51
Report Viewer, 307
scaling up, 462
security extensions, lack of, 412
SetConfiguration method, 414
system requirements, 13
troubleshooting, 501

Reporting Services Web Service, 48, 280, 446
available features, 49
errors, related to, 504
IIS, 48
open programming interface, 48
programmatic rendering of reports, used for, 307,

321

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 579

reporting solutions
availability of data, 478
content organization, 493
data consolidation, 483
decision-support strategies, 485
design considerations, 476
development environment, 498
examples, 494
indexing strategies, 484
information gathering, 483
requirements, defining, 474

existing and future states of business, 475
goals and direction, 475
lost opportunities, 474
performance gaps, 474

security considerations, 477
system environments, 491
transactional data, 480
UDDI, use of, 479

reporting solutions security, schematic of, 477
ReportingService object, 366
ReportingServices constructor, 292
ReportingServicesService.exe.config,

configuration files, 22
ReportParameters item, Report Wizard, 103
ReportSchedule function, Scheduling and Report

History table, 47
ReportServer database, 447

Administrative table, 47
Resources table, 46
Scheduling and Report History table, 47
Security table, 46
Snapshots and Snapshots History table, 46

ReportServer_<timestamp>.log, 470
ReportServerServices_<timestamp>.log, 470
ReportServerTempDB database, 46, 47, 348, 447
ReportServerWebApp_<timestamp>.log, 470
report-specific schedules, on-demand reports, 196
ResetSessionTimeout value, Command

parameter, 315
Resources table, ReportServer database, 46
resources, URL access to, 311
role definition

creating, 185
role assignments, creating, 187

580

reporting solutions

role assignments, understanding, 186
word of caution, 186

role definitions, security of Report Server, 33
role-based security model, 22, 179
row selector handles, 129
rs command, command-line installation options, 17
rs prefix, parameters passing, 313

Command parameter, 314
Format parameter, 314
Snapshot parameter, 314

rs proxy, 280
rs utility, 464

arguments not case sensitive, 281
error messages, 282
operating mechanism, 280
report management, automating, 280
syntax, 281
user authentication, 281

rs, command-line utility, 278
RS.EXE, command-line utility, 51
rsAccessDenied error message, 505
rsActivate command, command-line installation

options, 17
rsactivate, command-line utility, 278
rsCannotActivateSubscription error message, 506
rsCannotSubscribeToEvent error message, 506
rsConfig command, command-line installation

options, 17
rsconfig, command-line utility, 278
rsDataSourceDisabled error message, 505
rsDataSourceNotFound error message, 505
rsDeliveryExtensionNotFound error message, 506,

507
rsInternalError error message, 505
rsInvalidDataSourceCredentialSetting error

message, 505
rsInvalidDataSourceReference error message, 505
rsInvalidReportLink error message, 506
rsInvalidReportServerDatabase error message, 505
rsInvalidSearchOperator error message, 506
rsJobWasCanceled error message, 507
rsKeyMgmt command, command-line installation

options, 17
rskeymgmt, command-line utility, 278

error detection, 503
rsParameterTypeMismatch error message, 506
rsReadOnlyReportParameter error message, 506

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 580

RSReportDesigner.config, configuration files, 22
rsReportHistoryNotFound error message, 506
rsReportMayNotBeScheduled error message, 506
rsReportNotReady error message, 506
rsReportParameterValueNotSet error message,

506
RSReportServer.config file, 18, 23
RSReportServer.config, configuration files, 21
rsReportServerDatabaseLogonFailed error

message, 504
rsReportServerDisabled error message, 504
rsReportServerNotActivated error message, 504
rsReportTimeoutExpired error message, 506
rsReportTypeMismatch error message, 506
rsScheduleAlreadyExists error message, 507
rsScheduleNotFound error message, 507
rsScheduleNotResponsing error message, 507
rsSecureConnectionRequired error message, 505
rsServerBusy error message, 505
rsServerConfigurationError error message, 505
rsSubscriptionNotFound error message, 507
rsTaskNotFound error message, 507
rsUnknownReportParameter error message, 506
RSUtitlities class, PSRS_Manager Application,

214
RSWebApplication.config, configuration files, 21
running a report, 192
RunningJobs function, Scheduling and Report

History table, 47

S
-s servername parameter, rs.config, 464
scale units, regional settings for reports, 65
Scatter chart, 140
Schedule function, Scheduling and Report History

table, 47
Schedule Task Wizard, 302
schedule-triggered subscriptions, 359
Scheduling and Delivery processor

data-driven subscriptions, 42
delivery, 42
schedule-based events, 42
scheduling, 41

581

securable object, security of Report Server

In
de

x

snapshot update events, 43
standard subscriptions, 42

Scheduling and Delivery Processor, 41
Scheduling and Report History table,

ReportServer database, 47
scheduling reports

schedule-triggered subscriptions, 359
snapshot-triggered subscriptions, 358

scheduling the user-supplied script, 302
schemas, XML, 384
script development, 285

accessing server items through VS.NET, 291
debugging, 301
deploying reports, 297

CreateReport method, 297
error logging, 298
warning messages, 297

logging events, 298
#Region...#End Region directive, 298
GetLogFile function, 298

Main method, accessing server items, 291
building message content, 294
creating the proxy instance, 291
passing variables, 293
retrieving items, 293

managing subscriptions, 375
retrieving reports, 295

items, retrieving, 295
report definitions retrieval, 296

running the script, 301
#If...Then...#Else directive, 299
opening files, 298
writing XML notes, 299

scheduling the script, 302
VB.NET, used for, 285
VS.NET development environment, 285

adding Imports statements, 287
adding references, Solution Explorer, 288
conditional compilation, using, 290
creating console project, 285

ScriptException error message, rs utility, 282
search function, folders and reports, 168
securable object, security of Report Server, 33

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 581

security
.NET authentication, Internet security, 190
batch and transactions concept, 231
content management role definitions, 180
credentials, 193
credentials, changing programmatically, 279, 323
data source used for security, 95
data source, of, 99
default security in Report Manager, 179
hardcoding credentials versus runtime

authentication, 281
IIS authentication, Internet security, 190
item administration, Report Server, 468
item-level, 190
managing encrypted connections, 278
network considerations, 190
new projects, adding to, 58
Parent Security option, 189
predefined roles, 181
principle of least privilege, 184
programmatic rendering for custom security, 320
PSRS_Manager Application, 219
Report Manager, access to, 165
Report Server, 32, 46, 467
reporting solutions, of, 477
role creations, caution, 185
site administration, Report Server, 467
symmetric encryption, 278
system-level, 190

security extensions, lack of, Reporting Services,
412

security policies, adding, deleting, and editing,
PSRS_Manager Application, 250

security roles, adding, deleting, and editing,
PSRS_Manager Application, 261

Security table, ReportServer database, 46
Server Explorer tool, VS.NET, 31

creating stored procedures, 112
server management, Reporting Services, 17
server parameter, URL access to reports, 308
server-side processing of parameters, 112
session cache, 35
SetConfiguration method, Reporting Services,

414

582

security

SetDataDrivenSubscriptionProperties method,
ReportingService object, 366

SetPolicies method, security policies, 256
SetProperty method, 225
SetSubscriptionProperties method,

ReportingService object, 366
setting up the Reporting Services Web Service, 322
shared data sources, 98

configuring, 175
shared data source, in example, 106
shared schedules, on-demand reports, 196
shared versus report-specific schedules, 197
shared versus separate data source, 58
ShowHideToggle parameter, Render method, 331
Simple Mail Transfer Protocol (SMTP), email deliv-

ery, 18
Simple Object Access Protocol (SOAP), 49
Site settings, Report Manager interface, 168

default settings, report history, 169
execution timeout settings, 169
My Reports folder, 170
report logs, 169

Size property, CatalogItem objects, 216
snapshot reports, 198
SnapshotData function, Snapshots and Snapshot

History table, 46
snapshots, 36, 47

history, 349
not interactive, 349
rendered reports, static copy of, 349

Snapshots and Snapshots History table,
ReportServer database, 46

snapshot-triggered subscriptions, 358
Solution Explorer

Add Reference dialog, 288
Add Web Reference dialog, 288
new projects creation, 103
Imports statements, adding, 287

References, adding, 288
programmatic access to report objects, 321
PSRS_Manager Application, used for, 210
script development, 286
see also Project Wizard

SQL Agent, system requirements for SQL Server
Reporting Services, 14

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 582

SQL Server 2000, system requirements for SQL
Server Reporting Services, 14

SQL Server Agent, 41
SQL Server Analysis Services, 11, 487
SQL Server data types, 85
SQL Server Provider, data provider, 37
SQL Server security, data source creation, 99
SQL Server tables, caution against modifying, 48
stacked Column charts, 142
Standard edition, SQL Server Reporting Services,

14
Standard Generalized MarkUp Language (SGML),

380
standard samples, Reporting Services, 17
standard subscriptions, 202
Stock chart, 140
stored procedures for processing parameters, 112
storing credentials, 351

encrypted form, 351
shared data sources, 351

StreamIds(out) parameter, Render method, 331
StringBuilder class, 294
Structured Query language (SQL), 97
style definition, Report Wizard, 62
Subject property, email subscription delivery, 364
Subreport control, control RDL, 400
Subreport Report item, Toolbox tool, 76
Subreports, 137

linking to main reports, 137
subscription delivery, 12, 22, 41

file share subscriptions, 361
managing subscriptions, 365
schedule-triggered, 359
snapshot-triggered, 358

Subscription Manager application, managing
subscriptions, 375

Subscriptions function, Scheduling and Report
History table, 47

subscriptions, report delivery, 13, 357
errors, related to, 506
snapshot-triggered, 358

symmetric encryption, 278
System Administrator role permissions, 179
System Administrator, predefined roles, 182
System namespace, user-supplied script, 283
system requirements, Reporting Services

.NET Framework requirement, 452
consumer of report, requirements for, 456
Report Designer, 457
Report Server, 452

system requirements, SQL Server Reporting
Services, 13

System User, predefined roles, 183
System.Collections namespace,

CSVParameterCollection class, 426
System.IO namespace, user-supplied script, 284
System.Web.Services namespace, user-supplied

script, 284
System.XML namespace, user-supplied script,

284
system-level tasks, 181

T
Table control, control RDL, 397
table data region, 121
tabular reports, 18, 80

grouping by data regions, 80
temporary copies of reports, 194
TextBox control, control RDL, 396
Textbox Report item, Toolbox tool, 72
To property, email subscription delivery, 364
Toolbox design tool

Chart Report item, 77
Image Report item, 74
Line Report item, 73
page view, 71
Subreport Report item, 76
Textbox Report item, 72

Total Pages, global variable, 149
tracing settings, 22
Transact SQL expression, Query Builder, 61, 100
Transact SQL identifiers, queries, 102
transactional databases, 10, 480
TreeView control, PSRS_Manager Application,

215
AddNodeToTree procedure, 217
GetServerFolders procedure, clearing nodes, 216
ListChildren method, 216

TreeView control, PSRS_Manger Application
CatalogItem object, 216

TreeView control, PSRS_Manger Application

583

In
de

x

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 583

troubleshooting
resources available, 501

twinkling data, 11

U
-u [domain\] username parameter, rs.config, 465
UDDI, 479
unattended installation, Reporting Services, 18
URL access to reports, 307

access to Reporting Services items, 308
parameters, passing, 313
syntax, 308

pathinfo parameter, 308
server parameter, 308
virtualroot parameter, 308

Use Credentials property, file share subscriptions,
364

User ID, global variable, 149
User Name property, file share subscriptions, 364
user session information storage, Report-

ServerTempDB database, 47
Users function, Security table, 46
user-supplied script, automated report

management, 280
available namespaces, .NET Framework class

library, 283
batch, running as, 281
hardcoding credentials versus runtime authentica-

tion, 281
script development, 283, 285

V
validating data, 483
viewing reports, 191
virtualroot parameter, URL access to reports, 308
Visual Basic, use for report delivery, 12
visual design controls, control RDL

control RDL, 396
Visual Source Safe (VSS) development

environment, 499
Visual Source Safe tool, VS.NET, 32
Visual Studio .NET, 20, 49

design/build environment for reports, as, 20, 31
Query Designer tool, 31
Report Designer tool, 32
Server Explorer tool, 31
Visual Source Safe tool, 32

installation of Reporting Services, use in, 458
Report Wizard, 20, 56
user-supplied script development, rs utility, 283
XML documents, creating with, 384

VRML, Line Report item, 73

W
Warnings(out) parameter, Render method, 331
web formats, Format parameter

HTML 3.2, 315
HTML 4.0, 315
MHTML, 316

web-based management, Report Manager, 23
programmatic interface, 26
URL access to reports, 26

webmethods methods, 366
code snippets

Add Subscription event, full listing, 373
click event, New Subscription button, 370
creating subscription, 372
ExtensionSettings object, 371
New Subscription button, implementing, 367
Schedule combobox, 370
web services proxy class, 367

managing subscriptions, programmatic methods for,
366

well formed XML documents, 382
Windows forms, used for programmatic rendering

see Reporting Services Web Service, 321
Windows Integrated Security, 353
Windows Management Instrumentation (WMI), 278

server management interface, 279
Windows Server 2003 Application Server, 454
Windows Server 2003, Datacenter edition, 491
Windows users and groups, security of Report Server,

33
Write Mode property, file share subscriptions, 364

troubleshooting

584

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 584

X
XML, 380

RDL, role in, 379
XML attributes, 381
XML documents

attributes, 381
constitution, 382
elements, 380
flexibility of schemas, 384
naming rules, 380
nesting of tags, 381
syntactical features, 380
Visual Studio .NET, creating with, 384
well formed documents, 382

XML element, 380
XML namespaces, 383
XML schemas, 384
XML View, Visual Studio .NET, 390
XML vocabulary, 387
XmlDocument class, 298
xs prefix, XML tags, 386

xs prefix, XML tags

In
de

x

585

68787_Final_Index_14April.qxp 14/04/2004 11:32 AM Page 585

	Professional SQL Server Reporting Services
	Cover

	Contents
	Introduction
	Chapter 1: Getting Started with Reporting Services
	Who Is This Book for?
	Agility
	The Way We Were
	That Was Then, This Is Now
	Business Intelligence and Decision Support
	Automation to the Rescue ¨C A Scenario
	Challenges of Existing Reporting Solutions
	How Does SQL Server Reporting Services Meet This Challenge?
	Business Intelligence Solutions
	Who Uses Reports and Why?
	Executive Leadership
	Managers
	Information Workers
	Customers
	Vendors and Partners

	Reporting with Relational Data
	Reporting for Decision Support
	Data Warehouses
	The Reporting Lifecycle
	Report Delivery Application Types
	Web Browser
	Office Applications
	Programmability
	Subscriptions
	Report Formats
	Importing Data/Exchanging Data

	System Requirements
	Installing Reporting Services
	Setup Options
	Adding and Removing Options
	Server Components
	Client Components

	Books Online
	Reporting Services Samples
	AdventureWorks Database
	Administrative Tools
	Command Line and Unattended Installation
	Log Files

	Email Delivery

	Designing Reports
	Form Reports
	Tabular Reports
	Groupings and Drill-Down
	Drill-Through Reports
	Multi-Column Reports
	Matrix
	Charts
	Data Sources
	Queries
	OLAP Reporting

	Using Visual Studio .NET
	Report Wizard
	The .NET Framework

	Custom Reporting Extensions
	Data Processing Extensions
	Delivery Extensions
	Configuration Files
	Scripting

	Subscriptions
	Securing Reports
	The Report Manager
	Designing Reports
	URL Access to Reports
	Rendering Reports in Program Code

	Report Definition Language
	Deploying Reports
	Designing and Architecting Report Solutions

	Summary

	Chapter 2: Reporting Services Architecture
	The Reporting Lifecycle
	Authoring
	Management
	Delivery

	Reporting Services Features
	Visual Studio .NET 2003 Integration
	Query Designer
	Server Explorer
	Visual Source Safe
	Report Designer

	Report Server Features
	Central Report Storage
	Security
	Report Delivery
	Scheduling

	Programming Interface Features
	Open Architecture
	Complete Access

	Report Server Components
	Report Processor
	Report Request Handling
	Report Definition
	Intermediate Format
	Caching
	Session Cache
	Cached Instances
	Snapshots
	Report Processing Illustrated

	Data Processing Extensions
	Data Processing Defined
	Supported Providers
	SQL Server Provider
	Oracle Provider
	OLEDB Provider
	ODBC Processing Extension

	Data Processing Extensions and Data Providers
	Supported Rendering Extensions
	Excel
	PDF
	HTML
	Web Archive (MHTML)
	CSV
	TIFF
	XML

	Customized Extensions
	Scheduling and Delivery Processor
	Scheduling
	Delivery
	Scheduling and Delivery Processor Illustrated

	Email
	File Share
	Custom Extensions
	Report Server Databases

	ReportServer Database
	ReportServerTempDB Database
	Viewing Execution Information

	The Reporting Services Web Service
	Web Services
	Open Standards
	Visual Studio .NET Integration
	Available Features

	Report Designer
	Visual Studio .NET
	Report Definition Language (RDL)

	Reporting Services Tools
	Report Manager
	Report Server Command-Line Utility (RS.EXE)

	Reporting Services Illustrated
	Summary

	Chapter 3: Designing Reports
	Using the Report Wizard
	Establishing a Data Source
	Building a Query
	Define the Report Structure
	Specify the Deployment Location
	The Report Designer
	Scale Units

	Importing Reports
	Using RDL
	Importing Access Reports

	Plan for Extensibility
	Browser Compatibility
	Offline Viewing
	Mobile Device Support

	Report Items and Data Regions
	Textbox Report Item
	Line Report Item
	Rectangle Report Item
	Image Report Item
	Subreport Item
	Chart Report Item
	Drill-Down and Drill-Through Reports
	Tabular Reports
	Grouping Data
	Table Report Data Region
	List Report Data Region
	Matrix Report Data Region

	Subtotals
	Formatting
	Standard Formatting
	Explicit Formatting
	Conditional Formatting
	Multiple Columns

	Pagination Control
	Page Breaks for a Rectangle
	Page Breaks for a List
	Page Breaks for a Table
	Page Breaks for a Group
	Page Breaks for a Matrix
	Page Breaks for a Chart

	Printing Considerations
	Summary

	Chapter 4: Designing Data Access
	Reporting for Relational Data
	A Dataset Is Not a Dataset

	Query Basics
	Data Sources
	Creating a Data Source in the Report Wizard
	Creating a Data Source from the Project Add Item Template
	Creating a Data Source When Defining a Dataset

	Data Sources and Query Languages

	Filtering Techniques
	Filtering Data with Query Parameters
	Report Parameters
	Basing a Parameter on a Query
	Cascading Parameters
	Using Stored Procedures
	Filtering Data with Report Parameters

	Summary

	Chapter 5: Advanced Report Design
	Creating a Tabular Report Using a Table
	Column Placement and Indentation
	Headers and Footers
	Drill-Down Reports
	Creating a Document Map
	Links and Drill-Through Reports
	Bookmarks and Links
	Drill-Through

	Recursive Data
	Subreports
	Charting
	Column Charts
	3-D Column Charts
	Stacked Column Chart

	Area and Line Charts
	Pie Charts
	Bubble Charts
	A Charting Example

	Custom Fields
	Conditional Expressions
	Using Custom Code
	Using Custom Code in a Report
	Using a Custom Assembly

	Designing for Mobility
	Screen Size
	Offline Solutions

	Summary

	Chapter 6: Managing Reports Using the Report Manager
	Introduction to the Report Manager
	What Is Report Management?
	Understanding the Report Manager
	The Report Manager Interface
	Navigating the Report Manager Interface
	Navigation Tools
	Breadcrumb Trail
	Tabs and Options Toolbar
	Local Menu
	Global Toolbar and Details Button
	Searching for Folders and Reports
	The Report Manager Help

	About System Site Settings
	Report History Default Settings
	Report Execution Timeout
	Report Logging
	About My Reports

	Working with Folders and Reports
	Creating New Folders
	Moving Items into a Folder

	Working with Data Sources
	Configuring Shared Data Sources
	Data Source Credentials
	Credentials Supplied by the User
	Credentials Stored Securely

	Configuring Users and Permissions
	About Report Manager Security
	Understanding Role-Based Security
	Using Report Manager Default Security
	Understanding Roles
	Understanding Tasks
	System Tasks and Item Tasks
	Understanding the Predefined Roles
	System Administrator
	System User
	Content Manager
	Publisher
	My Reports
	The Browser Role

	Creating a New Role Definition
	Understanding Role Assignments
	Creating Role Assignments

	System Security and Network Considerations
	Revoking Access to My Reports
	Intranet and Extranet Considerations

	Viewing, Executing, and Scheduling Reports
	Viewing Reports
	Linked Reports
	On-Demand Reports and Subscriptions
	The Report Execution Process
	Providing Report Parameters and Credentials

	On-Demand Reports
	Caching the Report for Other Users
	Creating and Editing Schedules
	Snapshot Reports
	Creating a Report History

	Report Subscriptions
	Standard Subscriptions
	Data-Driven Subscriptions

	Summary

	Chapter 7: Managing Reports Using Program Code
	Professional SQL Reporting Services Manager
	Building the Visual Interface
	Adding a Reference to the Web Service
	Consuming the Web Service
	Filling the Treeview
	Credentials
	Displaying the Folder Contents
	Adding/Updating Folders
	Folder Form

	Deleting an Item from a Folder
	Importing Report Definition Files
	Managing Security
	Tasks
	Roles
	Policies
	Building the Security Forms
	Policy Form

	Adding, Editing, and Deleting Security Policies
	Adding, Editing, and Deleting Security Roles
	RoleForm

	Adding, Editing, and Deleting Roles
	Role Task Form

	Summary

	Chapter 8: Report Scripting
	Command Line Utilities
	rsconfig
	rskeymgmt
	rsactivate
	rs

	Automating Server and Report Management
	Reporting Services RS Utility
	RS Utility Command Line Syntax
	RS Utility Errors

	Script Development
	Script Format Requirements
	Namespaces Available
	System
	System.IO
	System.Xml
	System.Web.Services
	Reporting Services Web Service

	Building a Script Development Harness
	Creating the Console Project
	Adding Imports Statements
	Adding References
	Using Conditional Compilation

	Accessing Server Items
	Creating the Proxy Instance
	Passing Variable Values to the Script
	Retrieving Items
	Building Message Content

	Retrieving Reports
	Retrieving Report Items
	Getting Report Definitions

	Deploying Reports
	The CreateReport Method
	Error Handling

	Logging Events
	Opening the File
	Writing XML Nodes

	Running the Script
	Scheduling the Script
	Summary

	Chapter 9: URL Access and Programmatic Rendering
	URL Access
	URL Syntax
	Accessing Reporting Services Objects
	Folders
	Data Sources
	Resources
	Reports

	Reporting Services URL Parameters
	Parameter Prefixes
	Parameters

	Passing Report Information through the URL
	Report Parameters
	Rendering Snapshot History
	URL Rendering Summary

	Programmatic Rendering
	Common Scenarios
	Custom Security
	Server-Side Parameters

	Rendering through Windows
	Building the Application Interface
	Setting Up the Reporting Service Web Service
	Retrieving Report Information
	Retrieving Report Parameters
	Rendering a Report to a File System
	Rendering a Report to the File System Summary

	Rendering to the Web
	Using Integrated Authentication
	Modifying the web.config File
	Setting Up the Reporting Service Web Service
	Rendering to the Response Object
	Rendering to the Web Summary

	Summary

	Chapter 10: Report Caching and Subscriptions
	Report Delivery
	Caching
	Cached Instances
	Snapshots
	History
	Storing Parameters

	Parameterized Filters

	Configuring Credentials for Data Sources
	Storing Credentials
	Linked Reports

	Configuring Cached Reports
	Subscriptions
	Snapshot-Triggered Subscriptions
	Schedule-Triggered Subscriptions
	Individual and Shared Schedules

	Configuring Email Delivery
	File Share Subscriptions
	Pocket PC Report File Updates

	Data-Driven Subscriptions
	Managing Subscriptions
	Using the Reporting Service Web Service
	Managing Subscriptions Using Script
	Summary

	Chapter 11: Report Definition Language
	RDL ¨C Underlying Technology
	What Is XML?
	XML Naming Rules
	XML Elements
	XML Attributes
	XML Documents
	XML Namespaces
	XML Schema

	What Is RDL?
	Document RDL
	Data RDL
	Control RDL
	TextBox
	Line
	Rectangle
	Table
	Matrix
	List
	Image
	Subreport
	Chart

	Creating RDL
	RDL with .NET
	RDL with CodeSmith

	Summary

	Chapter 12: Extending Reporting Services
	Overview
	The Missing Pieces
	Security Extensions
	Rendering Extensions
	Extensible Report Designer Classes

	Business Opportunities
	Common Extension Interfaces
	What Is an Interface?
	IExtension
	IDisposable
	Interface Language Differences
	Data Processing Extensions

	Creating a Custom Data Processing Extension
	Creating the Project
	Creating the CSVConnection Object
	Variable Declarations
	Constructors
	Implementing IDbConnection
	Implementing IDisposable
	BeginTransaction Function
	CreateCommand Function
	Open Method
	Close Method
	ConnectionString Property
	ConnectionTimeout Property

	Creating the CSVParameter Class
	Declarations

	Implementing IDataParameter
	ParameterName Property
	Value Property

	Creating the CSVParameterCollection Class
	Namespaces
	Implementing IDataParameterCollection

	Creating the CSVCommand Class
	Constructors
	Implementing IDbCommand
	Cancel Method
	ExecuteReader Function
	CommandText Property
	CommandTimeout Property
	CommandType Property
	CreateParameter Function
	Parameters Property

	Creating the DataReader Object
	Declarations
	Implementing IDbDataReader
	GetFieldType Function
	GetName Function
	GetOrdinal Function
	GetValue Function
	Read Method
	FieldCount Property

	Installing the CSVDataProcessing Extension
	Testing the CSVDataExtension

	Summary

	Chapter 13: Deployment Strategies
	Architecture Review
	Reporting Services Components
	Report Manager
	Report Organization
	Report Management
	Site Management

	Clients
	Report Designer
	Report Consumer

	Reporting Services Web Service
	Scale Up
	Scale Out

	Report Server
	Report Server Databases
	ReportServer
	ReportServerTempDB

	Reporting Services Components Illustrated

	Reporting Services Deployment Scenarios
	Small Deployment
	Medium/Large Deployment
	Enterprise Deployment

	System Requirements and Prerequisites
	Server Requirements
	Licenses
	Report Server Database
	.NET Framework Requirement
	Configuring Windows Server 2003 Application Server

	Client Requirements
	Report Designer Requirements
	Accounts and Credentials
	Installation
	Ongoing Operations

	Installation and Configuration
	Running Setup
	SQL Server Instance
	Database Name
	Database Credential

	Finishing the Setup
	Scaling Up Reporting Services
	Report Server
	Credentials

	Server Configuration Files
	Configuring Using the Command Line Utility

	Administrative Issues
	Database Space Requirements
	Backup and Restore
	Report Server Database Backup
	Encryption Key Backup

	Security Administration
	Report Server Site
	Report Server Items

	Server Monitoring
	Execution Log

	Summary

	Chapter 14: Designing Business Intelligence Reporting Solutions
	Approaching Solution Design
	Define the Business Problem
	Performance Gaps
	Missed Opportunity Costs
	Current State/Future State
	Business Goals and Objectives

	Direction
	Solution Design
	Security
	Manageability
	Availability
	Scalability

	Transactional and Decision-Support Data
	Concurrency
	Strategic Latency
	Why Be Normal?

	Understanding Business Intelligence
	BI Process Lifecycle
	Information Gathering
	Data Scrubbing and Consolidation
	Data Staging and Transformation
	Indexing Strategies
	Decision-Support
	Query Languages
	Multidimensional Expressions (MDX)
	OLAP and SQL Server Analysis Services

	Architecting BI Solutions
	Farms and Gardens
	Federating and Partitioning Data

	Reporting Solution Design
	System Environments
	Small Environments
	Medium Environments
	Large Environments

	Content Organization
	Security-Based Content Structure

	Solution Profiles
	Linked Reports for Multiple Field Offices
	Scout-Master.com

	Reporting Solution Development Environment
	Isolated Development
	Using Source Safe
	Staging Reports

	Summary

	Appendix A: Troubleshooting
	Resources
	Reporting Services Books Online
	Microsoft Knowledge Base
	Microsoft Newsgroups
	MSDN

	Tools
	Installation Errors
	Credentials Errors
	Changing Database Connection Information
	Service Errors
	Data Access Errors
	Report Errors
	Subscription Errors
	Subscription Errors

	Appendix B: Migrating Access Reports
	Property Settings
	Functions
	Report Elements

	Appendix C: Reporting Services Object Model
	Appendix D: Transact SQL Query Functions and Expressions
	Naming Conventions
	Tables
	Columns
	Views
	Stored Procedures
	User-Defined Functions
	Multi-Part Names

	Functions
	Numeric Manipulation
	String Manipulation
	Mathematical
	Dates
	Aggregate Functions
	Grouping Variations
	Type Conversion and Formatting
	Logic
	Query Criteria

	Appendix E: Configuration Files
	XML Basics
	Configuration Files
	The RSReportServer.config File
	The RSWebApplication.config File
	The ReportingServicesService.exex.config File
	The RSReportDesigner.config File

	Team DDU

