

Course Number: 2124A

Released: 03/2001

Workbook

Introduction to C# Programming
for the Microsoft® .NET Platform
(Prerelease)

Part Number: X08-16666

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, BizTalk, IntelliSense, JScript, MSDN, MS-DOS, PowerPoint,
Visual Basic, Visual C++, Visual C#, Visual Studio, Windows, Windows NT, and Windows
Media are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A.
and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Course Number: 2124A
Part Number: X08-16666
Released: 03/2001

 Introduction to C# Programming for the Microsoft® .NET Platform (Prerelease) iii

Contents

Introduction
Course Materials..2
Prerequisites..3
Course Outline4
Course Outline (continued) ...5
Course Outline (continued) ...6
Microsoft Certified Professional Program ...7
Facilities... 9
Module 1: Overview of the Microsoft .NET Platform
Overview................................ 1
Introduction to the .NET Platform.. 2
Overview of the .NET Framework ... 4
Benefits of the .NET Framework ... 5
The .NET Framework Components ..7
Languages in the .NET Framework.. 13
Review ... 14
Module 2: Overview of C#
Overview................................ 1
Structure of a C# Program... 2
Basic Input/Output Operations...9
Recommended Practices ... 15
Compiling, Running, and Debugging.. 22
Lab 2: Creating a Simple C# Program... 36
Review ... 45
Module 3: Using Value-Type Variables
Overview................................ 1
Common Type System ...2
Naming Variables ..9
Using Built- in Data Types... 15
Compound Assignment .. 18
Increment and Decrement... 20
Creating User-Defined Data Types... 24
Converting Data Types ... 28
Lab 3: Creating and Using Types ... 32
Review ... 36
Module 4: Statements and Exceptions
Overview................................ 1
Introduction to Statements................................ 2
Using Selection Statements ...6
Using Iteration Statements 17
Using Jump Statements... 29
Lab 4.1: Using Statements 32
Handling Basic Exceptions ... 41
Raising Exceptions .. 51

iv Introduction to C# Programming for the Microsoft® .NET Platform (Prerelease)

Lab 4.2: Using Exceptions 62
Review ... 72
Module 5: Methods and Parameters
Overview................................ 1
Using Methods2
Using Parameters... 16
Using Overloaded Methods ... 30
Lab 5: Creating and Using Methods ... 38
Review ... 50
Module 6: Arrays
Overview................................ 1
Overview of Arrays..2
Creating Arrays ... 11
Using Arrays ... 18
Lab 6: Creating and Using Arrays .. 31
Review ... 42
Module 7: Essentials of Object-Oriented Programming
Overview................................ 1
Classes and Objects..2
Using Encapsulation... 10
C# and Object Orientation... 21
Lab 7: Creating and Using Classes ... 39
Defining Object-Oriented Systems... 53
Review ... 62
Module 8: Using Reference-Type Variables
Overview................................ 1
Using Reference-Type Variables................................ 2
Using Common Reference Types ... 15
The Object Hierarchy ... 23
Namespaces in the .NET Framework.. 29
Lab 8.1: Defining And Using Reference-Type Variables 35
Data Conversions... 43
Multimedia: Type-Safe Casting ... 56
Lab 8.2 Converting Data... 57
Review ... 63
Module 9: Creating and Destroying Objects
Overview................................ 1
Using Constructors ..2
Initializing Data ... 13
Lab 9.1: Creating Objects ... 31
Objects and Memory................................ 39
Using Destructors.. 45
Lab 9.2: Destroying Objects.. 60
Review ... 65
Module 10: Inheritance in C#
Overview................................ 1
Deriving Classes..2
Implementing Methods ... 10

 Introduction to C# Programming for the Microsoft® .NET Platform (Prerelease) v

Using Sealed Classes................................ 26
Using Interfaces... 28
Using Abstract Classes ... 42
Lab 10: Using Inheritance to Implement an Interface...................................... 53
Review ... 71
Module 11: Aggregation, Namespaces, and Advanced Scope
Overview................................ 1
Using Internal Classes, Methods, and Data..2
Using Aggregation ... 11
Lab 11.1: Specifying Internal Access.. 22
Using Namespaces ... 28
Using Modules and Assemblies ... 49
Lab 11.2: Using Namespaces and Assemblies.. 63
Review ... 69
Module 12: Operators, Delegates, and Events
Overview................................ 1
Introduction to Operators ..2
Operator Overloading ...8
Lab 12.1: Defining Operators .. 21
Creating and Using Delegates .. 40
Defining and Using Events................................ 50
Demonstration: Handling Events................................ 56
Lab 12.2: Defining and Using Events ... 57
Module 13: Properties and Indexers
Overview................................ 1
Using Properties ..2
Using Indexers 17
Lab 13: Using Properties and Indexers................................ 33
Review ... 42
Module 14: Attributes
Overview................................ 1
Overview of Attributes ...2
Defining Custom Attributes ... 13
Retrieving Attribute Values ... 22
Lab 14: Defining and Using Attributes ... 26
Review ... 34
Appendix A: Resources for Further Study
Resources for C# ...1

 Introduction to C# Programming for the Microsoft® .NET Platform (Prerelease) vii

About This Course
This section provides you with a brief description of the course, audience,
suggested prerequisites, and course objectives.

Description
This five-day instructor-led course provides students with the knowledge and
skills needed to develop C# applications for the Microsoft® .NET platform. The
course focuses on C# program structure, language syntax, and implementation
details.

Audience
This course is intended for experienced developers who already have
programming experience in C, C++, Microsoft Visual Basic ®, or Java. These
developers will be likely to develop enterprise business solutions.

Student Prerequisites
This course requires that students meet the following prerequisites:

n Experience programming in C, C++, Visual Basic, Java, or another
programming language

n Familiarity with Microsoft’s .NET strategy as described on
Microsoft’s .NET Web site: http://www.microsoft.com/net/

n Familiarity with the .NET Framework as described in Microsoft MSDN®
Magazine:
http://msdn.microsoft.com/msdnmag/issues/0900/Framework/
Framework. asp

and

http://msdn.microsoft.com/msdnmag/issues/1000/Framework2/
Framework2.asp

viii Introduction to C# Programming for the Microsoft® .NET Platform (Prerelease)

Course Objectives
After completing this course, the student will be able to:

n List the major elements of the .NET Framew ork and explain how C# fits
into the .NET platform.

n Analyze the basic structure of a C# application and be able to debug,
compile, and run a simple application.

n Create, name, and assign values to variables.

n Use common statements to implement flow control, looping, and exception
handling.

n Create methods (functions and subroutines) that can return values and take
parameters.

n Create, initialize, and use arrays.

n Explain the basic concepts and terminology of object-oriented programming.

n Use common objects and references types.

n Create, initialize, and destroy objects in a C# application.

n Build new C# classes from existing classes.

n Create self-contained classes and frameworks in a C# application.

n Define operators and add event specifications.

n Implement properties and indexers.

n Use predefined and custom attributes.

 Introduction to C# Programming for the Microsoft® .NET Platform (Prerelease) ix

Student Materials Compact Disc Contents
The Student Materials compact disc contains the following files and folders:

n Autorun.exe. When the CD is inserted into the CD-ROM drive, or when you
double-click the autorun.exe file, this file opens the CD and allows you to
browse the Student Materials CD or install Internet Explorer.

n Default.htm. This file opens the Student Materials Web page. It provides
you with resources pertaining to this course, including add itional reading,
review and lab answers, lab files, multimedia presentations, and course-
related Web sites.

n Readme.txt. This file contains a description of the compact disc contents and
setup instructions in ASCII format (non-Microsoft Word document).

n 2124a_sg.doc. This file is the Classroom Setup Guide. It contains a
description of classroom requirements, classroom setup instructions, and the
classroom configuration.

n AddRead. This folder contains additional reading pertaining to this course.
If there are no additional reading files, this folder does not appear.

n Appendix. This folder contains appendix files for this course. If there are no
appendix files, this folder does not appear.

n Democode. This folder contains demonstration code. If there is no
demonstration code, the Democode folder does not appear.

n Fonts. This folder contains fonts that are required to view the PowerPoint
presentation and Web-based materials.

n Ie5. This folder contains Microsoft Internet Explorer 5.5.

n Labs. This folder contains files that are used in the hands-on labs. These
files may be used to prepare the student computers for the hands-on labs.

n Media. This folder contains files that are used in multimedia presentations
for this course. If this course does not include any multimedia presentations,
this folder does not appear.

n Menu. This folder contains elements for autorun.exe.

n Mplayer. This folder contains files that are required to install Windows
Media Player.

n Practices. This folder contains files that are used in the hands-on practices.
If there are no practices, the Practices folder does not appear.

n Sampapps. This folder contains the sample applications associated with this
course. If there are no associated sample applications, the Sampapps folder
does not appear.

n Sampcode. This folder contains sample code that is accessible through the
Web pages on the Student Materials CD. If there is no sample code, the
Sampcode folder does not appear.

n Sampsite. This folder contains files that create the sample site associated
with this course. I f there is no sample site, the Sampsite folder does not
appear.

n Setup. This folder contains additional files that may be required for lab setup.
If no additional files are required, the Setup folder does not appear.

x Introduction to C# Programming for the Microsoft® .NET Platform (Prerelease)

n Webfiles. This folder contains the files that are required to view the course
Web page. To open the Web page, open Windows Explorer, and in the root
directory of the compact disc, double-click Default.htm or Autorun.exe.

n Wordview. This folder contains the Word Viewer that is used to view any
Word document (.doc) files that are included on the compact disc. If no
Word documents are included, this folder does not appear.

 Introduction to C# Programming for the Microsoft® .NET Platform (Prerelease) xi

Document Conventions
The following conventions are used in course materials to distinguish elements
of the text.

Convention Use

u Indicates an introductory page. This symbol appears next

to a topic heading when additional information on the topic
is covered on the page or pages that follow it.

bold Represents commands, command options, and syntax that
must be typed exactly as shown. It also indicates
commands on menus and buttons, dialog box titles and
options, and icon and menu names.

italic In syntax statements or descriptive text, indicates argument
names or placeholders for variable information.

Title Capitals Indicate d omain names, user names, computer names,
directory names, and folder and file names, except when
specifically referring to case-sensitive names. Unless
otherwise indicated, you can use lowercase letters when
you type a directory name or file name in a dialog box or
at a command prompt.

ALL CAPITALS Indicate the names of keys, key sequences, and key
combinations — for example, ALT+SPACEBAR.

monospace Represents code samples or examples of screen text.

[] In syntax statements, enclose optional items. For example,
[filename] in command syntax indicates that you can
choose to type a file name with the command. Type only
the information within the brackets, not the brackets
themselves.

{ } In syntax statements, enclose required items. Type only the
information within the braces, not the braces themselves.

| In syntax statements, separates an either/or choice.

å Indicates a procedure with sequential steps.

... In syntax statements, specifies that the preceding item may
be repeated.

.

.

.

Represents an omitted portion of a code sample.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Introduction 1

Course Materials 2
Prerequisites 3

Course Outline 4

Microsoft Certified Professional Program 7

Facilities 9

Introduction

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Introduction 1

Introduction

n Name

n Company Affiliation

n Title/Function

n Job Responsibility

n Programming Experience

n C, C++, Visual Basic, or Java Experience

n Expectations for the Course

2 Introduction

Course Materials

n Name Card

n Student Workbook

n Student Materials Compact Disc

n Course Evaluation

The following materials are included with your kit:

n Name card. Write your name on both sides of the name card.

n Student workbook. The student workbook contains the material covered in
class, in addition to the hands-on lab exercises.

n Student Materials compact disc. The Student Materials compact disc
contains the Web page that provides you with links to resources pertaining
to this course, including additional readings, review and lab answers, lab
files, multimedia presentations, and course-related Web sites.

To open the Web page, insert the Student Materials compact disc into
the CD-ROM drive, and then in the root directory of the compact disc,
double-click Autorun.exe or Default.htm.

n Course evaluation. At the conclusion of this course, please complete the
course evaluation to provide feedback on the instructor, course, and
software product. Your comments will help us improve future courses.

To provide additional comments or inquire about the Microsoft Certified
Professional program, send e-mail to mcp@msprograms.com.

Note

 Introduction 3

Prerequisites

n Experience Programming in C, C++, Visual Basic or
Java

n Familiarity with Microsoft’s .NET Strategy

n Familiarity with the Microsoft .NET Framework

This course requires that you meet the following prerequisites:

n Experience programming in C, C++, Microsoft Visual Basic ®, Java, or
another programming language

n Familiarity with Microsoft’s .NET strategy as described on
Microsoft’s .NET Web site (http://www.microsoft.com/net/)

n Familiarity with the .NET Frameworks as described in MSDN® Magazine
(http://msdn.microsoft.com/msdnmag/issues/0900/Framework/
Framework.asp and
http://msdn.microsoft.com/msdnmag/issues/1000/Framework2/
Framework2.asp)

4 Introduction

Course Outline

n Module 1: Overview of the Microsoft .NET Platform

n Module 2: Overview of C#

n Module 3: Using Value-Type Variables

n Module 4: Statements and Exceptions

n Module 5: Methods and Parameters

Module 1, “Overview of the Microsoft .NET Platform,” describes the rationale
and features that provide the foundation for the .NET platform, including
the .NET components. The purpose of this module is to build an understanding
of the .NET platform for which you will be developing C# code. After
completing this module, you will be able to describe the components of
the .NET platform.

Module 2, “Overview of C#,” describes the basic structure of a C# application.
This module provides a simple working example for you to analyze to learn
how to use the Console class to perform some basic input and output operations
and to learn best practices for handling errors and documenting your code.
After completing this module, you will be able to compile, run, and debug a C#
application.

Module 3, “Using Value-Type Variables,” describes how to use value-type
variables in C#. This module explains how to specify the type of data that
variables will hold, how to name variables according to standard naming
conventions, how to assign values to variables, and how to convert existing
variables from one data type to another. After completing this module, you will
be able to use value-type variables in C#.

Module 4, “Statements and Exceptions,” explains how to use some common
statements in C#. This module also describes how to implement exception
handling in C#. After completing this module, you will be able to throw and
catch errors.

Module 5, “Methods and Parameters,” describes how to create static methods
that take parameters and return values, how to pass parameters to methods in
different ways, and how to declare and use overloaded methods. After
completing this module, you will be able to use methods and parameters.

 Introduction 5

Course Outline (continued)

n Module 6: Arrays

n Module 7: Essentials of Object-Oriented Programming

n Module 8: Using Reference-Type Variables

n Module 9: Creating and Destroying Objects

n Module 10: Inheritance in C#

Module 6, “Arrays,” explains how to group data into arrays. After completing
this module, you will be able to create, initialize, and use arrays.

Module 7, “Essentials of Object-Oriented Programming,” explains the
terminology and concepts required to create and use classes in C#. This module
also explains abstraction, encapsulation, inheritance, and polymorphism. After
completing this module, you will be able to explain some of the common
concepts of object-oriented programming.

Module 8, “Using Reference-Type Variables,” describes how to use reference-
type variables in C#. This module explains a number of reference types, such as
string, that are built into the C# language and the Common Language Runtime.
After completing this module, you will be able to use reference-type variables
in C#.

Module 9, “Creating and Destroying Objects,” explains what happens in the
language runtime when an object is created and how to use constructors to
initialize objects. This module also explains what happens when an object is
destroyed and how the garbage collector reclaims memory. After completing
this module, you will be able to create and destroy objects in C#.

Module 10, “Inheritance in C#,” explains how to derive a class from a base
class. This module also explains how to implement methods in a derived class
by defining them as virtual methods in the base class and overriding or hiding
them in the derived class, as required. This module explains how to seal a class
so that it cannot be derived from and how to implement interfaces and abstract
classes. After completing this module, you will be able to use inheritance in C#
to derive classes and to define virtual methods.

6 Introduction

Course Outline (continued)

n Module 11: Aggregation, Namespaces, and Advanced
Scope

n Module 12: Operators, Delegates, and Events

n Module 13: Properties and Indexers

n Module 14: Attributes

Module 11, “Aggregation, Namespaces, and Advanced Scope,” describes how
to group classes together into larger, higher-level classes and how to use
namespaces to group classes together inside named spaces and to create logical
program structures beyond individual classes. This module also explains how to
use assemblies to group collaborating source files together into a reusable,
versionable, and deployable unit. After completing this module, you will be
able to make code accessible at the component or assembly level.

Module 12, “Operators, Delegates, and Events,” explains how to define
operators and how to use delegates to decouple a method call from a method
implementation. It also explains how to add event specifications to a class.
After completing this module, you will be able to implement operators,
delegates, and events.

Module 13, “Properties and Indexers,” explains how to create properties to
encapsulate data within a class and how to define indexers to gain access to
classes by using array-like notation. After completing this module, you will be
able to use properties to enable field- like access and indexers to enable array-
like access.

Module 14, “Attributes,” describes the purpose of attributes and the role they
play in C# applications. This module explains attribute syntax and how to use
some predefined attributes in the .NET environment. After completing this
module, you will be able to create custom user-defined attributes and use these
custom attributes to query attribute information at run time.
Appendix A, “Resources for Further Study,” serves as a reference that you can use after attending the course for further study and to help
y ou locate the latest news and information about C# and the .NET Framework.

The information in this course is based on the Beta 1 prerelease version
of Microsoft Visual Studio.NET.

Note

 Introduction 7

Microsoft Certified Professional Program

http://www.microsoft.com/trainingandservices/

The Microsoft Certified Professional program includes the following
certifications:

n Microsoft Certified Systems Engineer + Internet (MCSE + Internet)

n Microsoft Certified Systems Engineer (MCSE)

n Microsoft Certified Database Administrator (MCDBA)

n Microsoft Certified Solution Developer (MCSD)

n Microsoft Certified Professional + Site Building (MCP + Site Building)

n Microsoft Certified Professional + Internet (MCP + Internet)

n Microsoft Certified Professional (MCP)

n Microsoft Certified Trainer (MCT)

See the “Certification” section of the Web page provided
on the compact disc or the Microsoft Training and Certification Web site at
http://www.microsoft.com/trainingandservices/

You can also send e-mail to mcp@msprograms.com if you have specific
certification questions.

For More Information

8 Introduction

Exam Preparation Guides
To help prepare for the MCP exams, you can use the preparation guides that are
available for each exam. Each Exam Preparation Guide contains exam-specific
information, such as a list of the topics on which you will be tested. These
guides are available on the Microsoft Certified Professional Web site at
http://www.microsoft.com/trainingandservices/

MSDN Training curriculum helps you to prepare for Microsoft
Certified Professional (MCP) exams. However, no one-to-one correlation exists
between MSDN Training courses and MCP exams. Passing MCP exams
requires real-world experience with the products— MSDN Training courses
help get you started.

Important

 Introduction 9

Facilities

Building Hours

Parking

Rest Rooms

Meals

Phones

Messages

Smoking

Recycling

Class Hours

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Introduction to the .NET Platform 2

Overview of the .NET Framework 4

Benefits of the .NET Framework 5
The .NET Framework Components 7

Languages in the .NET Framework 13

Review 14

Module 1: Overview of
the Microsoft .NET
Platform

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1 version
of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 1: Overview of the Microsoft .NET Platform 1

Overview

n Introduction to the .NET Platform

n Overview of the .NET Framework

n Benefits of the .NET Framework

n The .NET Framework Components

n Languages in the .NET Framework

The Microsoft® .NET platform provides all of the tools and technologies that
you need to build distributed Web applications. It exposes a language-
independent, consistent programming model across all tiers of an application
while providing seamless interoperability with, and easy migration from,
existing technologies. The .NET platform fully supports the Internet’s platform-
neutral, standards-based technologies, including HTTP, Extensible Markup
Language (XML), and Simple Object Access Protocol (SOAP).

C# is a new language specifically designed for building applications in
the .NET environment. As a developer, you will find it useful to understand the
rationale and features that provide the foundation for the .NET platform before
you start writing C# code.

After completing this module, you will be able to:

n Describe the .NET platform.

n List the main elements of the .NET platform.

n Explain the language support in the .NET Framework.

n Describe the .NET Framework and its components.

2 Module 1: Overview of the Microsoft .NET Platform

Introduction to the .NET Platform

.NET.NET
Framework Framework

InternetInternet

COM+COM+

OrchestrationOrchestration

Windows

.NET
Enterprise

Servers

BuildingBuilding
BlockBlock

ServicesServices

Visual Studio.NET

With .NETWith .NET
EnhancementsEnhancements

NewNew
CapabilitiesCapabilities

AvailableAvailable
TodayToday

InternetInternet

The .NET platform is made up of several core technologies as shown on the
slide. These technologies are described in the following topics.

The .NET Framework
The .NET Framework is based on a new Common Language Runtime. The
Common Language Runtime provides a common set of services for projects
built in Microsoft Visual Studio.NET, regardless of the language. These
services provide key building blocks for applications of any type, across all
application tiers.

Microsoft Visual Basic ®, Microsoft Visual C++®, and other Microsoft
programming languages have been enhanced to take advantage of these services.
Third-party languages that are written for the .NET platform also have access to
the same services. The .NET Framework is explained in greater detail later in
this module.

The .NET Building Block Services
The .NET building block services are distributed programmable services that
are available both online and offline. A service can be invoked on a stand-alone
computer not connected to the Internet, provided by a local server running
inside a company, or accessed by means of the Internet. Microsoft .NET
building block services can be used from any platform that supports SOAP.
Microsoft Windows-based clients are optimized to distribute Web Services to
every kind of device. Services include identity, notification and messaging,
personalization, schematized storage, calendar, directory, search, and software
delivery.

 Module 1: Overview of the Microsoft .NET Platform 3

The .NET Enterprise Servers
The .NET Enterprise Servers provide scalability, reliability, management,
integration within and across organizations, and many other features, as
described in the following table.

Server Description

Microsoft SQL Server™
2000

Includes rich XML functionality, support for Worldwide Web Consortium (W3C)
standards, the ability to manipulate XML data by using Transact SQL (T-SQL), flexible
and powerful Web-based analysis, and secure access to your data over the Web by using
HTTP.

Microsoft BizTalk™
Server 2000

Provides enterprise application integration (EAI), business-to-business integration, and
the advanced BizTalk Orchestration technology to build dynamic business processes
that span applications, platforms , and organizations over the Internet.

Microsoft Host Integration
Server 2000

Provides the best way to embrace Internet, intranet, and client/server technologies while
preserving investments in existing earlier systems.

Microsoft Exchange 2000
Enterprise Server

Builds on the powerful Exchange messaging and collaboration technology by
introducing several important new features, and further increasing the reliability,
scalability, and performance of its core architecture. Other features enhance the
integration of Exchange 2000 with Microsoft Windows 2000, Microsoft Office 2000,
and the Internet.

Microsoft Application
Center 2000

Provides a deployment and management tool for high-availability Web applications.

Microsoft Internet Security
and Acceleration Server
2000

Provides secure, fast, and manageable Internet connectivity. Internet Security and
Acceleration Server integrate an extensible, multilayer enterprise firewall and a scalable
high-performance Web cache. It builds on Windows 2000 security and directory for
policy-based security, acceleration, and management of internetworking.

Microsoft Commerce
Server 2000

Provides an application framework, sophisticated feedback mechanisms, and analytical
capabilities.

Visual Studio.NET
Visual Studio.NET provides a high-level development environment for building
applications on the .NET Framework. It provides key enabling technologies to
simplify the creation, deployment, and ongoing evolution of secure, scalable,
highly available Web applications and Web Servic es.

Windows
The next generation of Microsoft Windows® will provide the foundation for
developers who want to create new .NET applications and services.

4 Module 1: Overview of the Microsoft .NET Platform

Overview of the .NET Framework

Visual Studio.NET
Visual Studio.NET

Common Language SpecificationCommon Language Specification

Visual Visual
BasicBasic C++C++ C#C# JScript®JScript® ……

.NET Framework.NET Framework

Before COM, applications were completely separate entities with little or no
integration. By using COM, you can integrate components within and across
applications by exposing common interfaces. However, as a developer, you
must still write the code to wrap, manage, and clean up after components and
objects.

Building Components in the .NET Framework
In the .NET Framework, components are built on a common foundation. You
no longer need to write the code to allow objects to interact directly with each
other. In addition, you no longer need to write component wrappers in the .NET
environment, because components do not use wrappers. The .NET Framework
can interpret the constructs that developers are accustomed to using in object-
oriented languages. The .NET Framework fully supports class, inheritance,
methods, properties, events, polymorphism, constructors, and other object-
oriented constructs.

The Common Language Specification
The Common Language Specification (CLS) defines the common standards to
which languages and developers must adhere if they want their components and
applications to be widely useable by other .NET languages.

Visual Studio.NET
In the .NET Framework, Visual Studio.NET provides the tools you can use for
rapid application development.

 Module 1: Overview of the Microsoft .NET Platform 5

Benefits of the .NET Framework

n Based on Web Standards and Practices

n Designed Using Unified Application Models

n Easy for Developers to Use

n Extensible Classes

In this topic, you will learn about some of the benefits of the .NET Framework.
The NET Framework was designed to meet the following goals.

n Based on Web standards and practices

The .NET Framework fully supports the existing Internet technologies
including Hypertext Markup Language (HTML), XML, SOAP,
Extensible Stylesheet Language for Transformations (XSLT), Xpath, and
other Web standards. The .NET Framework favors loosely connected,
stateless Web services.

n Designed using unified application models

A .NET class’s functionality is available from any .NET language or
programming model.

MFC/ATL

Windows API

ASP Visual Basic
Forms

.NET
Framework

6 Module 1: Overview of the Microsoft .NET Platform

n Easy for developers to use

In the .NET Framework, code is organized into hierarchical namespaces and
classes. The Framework provides a common type system, referred to as the
unified type system, that is used by any .NET language. In the unified type
system, all languages elements are objects. There are no variant types, there
is only one string type, and all string data is Unicode. The unified type
system is described in more detail in later modules.

n Extensible classes

The hierarchy of the .NET Framework is not hidden from the developer.
You can access and extend .NET classes (unless they are sealed) through
inheritance. You can also implement cross-language inheritance.

 Module 1: Overview of the Microsoft .NET Platform 7

u The .NET Framework Components

.NET.NET
Framework Framework

InternetInternet

COM+COM+

OrchestrationOrchestration

Windows

.NET
Enterprise

Servers

BuildingBuilding
BlockBlock

ServicesServices

Visual Studio.NET

Base Class LibraryBase Class Library

ADO.NET: Data & XMLADO.NET: Data & XML

UserUser
InterfaceInterface

Common Language RuntimeCommon Language Runtime

WebWeb
ServicesServices

In this section, you will learn about Microsoft’s .NET Framework. The .NET
Framework is a set of technologies that form an integral part of the
Microsoft .NET platform. It provides the basic building blocks for developing
Web applications and Web services.

This section includes the following topics:

n Common Language Runtime

n Base Class Library

n ADO.NET: Data and XML

n Web Forms and Services

n User Interface

8 Module 1: Overview of the Microsoft .NET Platform

Common Language Runtime

Base Class Library SupportBase Class Library Support

Thread SupportThread Support COM MarshalerCOM Marshaler

Type CheckerType Checker Exception ManagerException Manager

MSIL to NativeMSIL to Native
CompilersCompilers

CodeCode
ManagerManager

GarbageGarbage
CollectorCollector

Security EngineSecurity Engine Debug EngineDebug Engine

Class LoaderClass Loader

The Common Language Runtime simplifies application development, provides
a robust and secure execution environment, supports multiple languages, and
simplifies application deployment and management. The environment is also
referred to as a managed environment, one in which common services, such as
garbage collection and security, are automatically provided. The Common
Language Runtime features are described in the following table.

Component Description

Class loader Manages metadata, as well as the loading and layout of classes.

Microsoft intermediate language
(MSIL) to native compiler

Converts MSIL to native code (Just-in-Time).

Code manager Manages code execution.

Garbage collector (GC) Provides automatic lifetime management of all of your objects. This is a
multiprocessor, scalable garbage collector.

Security engine Provides evidence-based security, based on the origin of the code in addition to
the user.

Debug engine Allows you to debug your application and trace the execution of code.

Type checker Will not allow unsafe casts or uninitialized variables. MSIL can be verified to
guarantee type safety.

Exception manager Provides structured exception handling, which is integrated with Windows
Structured Exception Handling (SEH). Error reporting has been improved.

Thread support Provides classes and interfaces that enable multithreaded programming.

COM marshaller Provides marshalling to and from COM.

Base Class Library (BCL) support Integrates code with the runtime that supports the BCL.

 Module 1: Overview of the Microsoft .NET Platform 9

Base Class Library

Base Class LibraryBase Class Library

System System

GlobalizationGlobalization

DiagnosticsDiagnostics

ConfigurationConfiguration

CollectionsCollections

ResourcesResources

ReflectionReflection

NetNet

IOIO

ThreadingThreading

TextText

SecuritySecurity RuntimeRuntime

The Base Class Library (BCL) exposes features of the runtime and provides
other high-level services that every programmer needs through namespaces. For
example, the System.IO namespace contains input/output (I/O) services.

In the System.IO namespace, all of the base data types, such as int and float,
are defined for the platform. Inside the System.IO namespace, there are other
namespaces that provide various runtime features. The Collections namespace
provides sorted lists, hash tables, and other ways to group data. The IO
namespace provides file I/O, streams, and so on. The Net namespace provides
Transmission Control Protoc ol/Internet Protocol (TCP/IP) and sockets support.
For more information about namespaces, search for “namespaces” in the .NET
Framework SDK Help documents.

10 Module 1: Overview of the Microsoft .NET Platform

ADO.NET: Data and XML

ADO.NET: Data & XMLADO.NET: Data & XML

ADOADO SQLSQL

DesignDesign SQLTypesSQLTypes

System.DataSystem.Data

XSLTXSLT
SerializationSerialization

XPathXPath

System.XMLSystem.XML

ADO.NET is the next generation of ActiveX® Data Object (ADO) technology.
ADO.NET provides improved support for the disconnected programming
model. It also provides rich XML support.

System.Data Namespace
The System.Data namespace consists of classes that constitute the ADO.NET
object model. At a high level, the ADO.NET object model is divided into two
layers: the connected layer and the disconnected layer.

The System.Data namespace includes the DataSet class, which represents
multiple tables and their relations. These DataSets are completely self-
contained data structures that can be populated from a variety of data sources.
One data source could be XML, another could be OLEDB, and a third data
source could be the direct adapter for SQL Server.

System.Xml Namespace
The System.Xml namespace provides support for XML. It includes an XML
parser and a writer, which are both W3C-compliant. The Extensible Stylesheet
Language (XSL) transformation is provided by the XSLT namespace. The
implementation of XPath allows data graph navigation in XML. The
Serialization namespace provides the entire core infrastructure for Web
Services, including features such as moving back and forth from objects to an
XML representation.

 Module 1: Overview of the Microsoft .NET Platform 11

Web Forms and Services

ASP.NETASP.NET
System.WebSystem.Web

ConfigurationConfiguration SessionStateSessionState

CachingCaching SecuritySecurity

ServicesServices

DescriptionDescription

DiscoveryDiscovery

ProtocolsProtocols

UIUI

HtmlControlsHtmlControls

WebControlsWebControls

Microsoft ASP.NET is a programming framework built on the Common
Language Runtime that can be used on a server to build powerful Web
Applications. ASP.NET Web Forms provide an easy and powerful way to build
dynamic Web user interfaces (UIs). ASP.NET Web Services provide the
building blocks for constructing distributed Web-based applications. Web
Services are based on open Internet standards, such as HTTP and XML.

The Common Language Runtime provides built-in support for creating and
exposing Web Services by using a programming abstraction that is consistent
and familiar to both ASP Web Forms and Visual Basic developers. The
resulting model is both scalable and extensible. This model is based on open
Internet standards (HTTP, XML, SOAP, SDL) so that it can be accessed and
interpreted by any client or Internet-enabled device. Some of the more common
ASP.NET classes are described in this topic as follows:

System.Web
In the System.Web namespace, there are lower-level services such as caching,
security, configuration, and others that are shared between Web Services and
Web user interface (UI).

System.Web.Services
The System.Web.Services classes handle Web services such as protocols and
discovery.

System.Web.UI
The System.Web.UI namespace provides two classes of controls: HTML
controls and Web controls. The HTMLControls give you direct mapping of
HTML tags, such as input. There are also WebControls that allow you to
structure controls with templates (for example, a grid control).

12 Module 1: Overview of the Microsoft .NET Platform

User Interface for Windows

System.DrawingSystem.Drawing

ImagingImaging

Drawing2DDrawing2D

TextText

PrintingPrinting

System.WinFormsSystem.WinForms

DesignDesign ComponentModelComponentModel

System.WinForms Classes
You can use the System.WinForms classes to build the client user interface
(UI). This class lets you implement the standards Windows UI in your .NET
applications.

System.Drawing Classes
You can use the System.Drawing class to access the new GDI+ features. This
class provides support for the next generation of Graphics Device Interface
(GDI) two-dimensional graphics. It also provides native support for Graphics
Interchange Format (GIF), Tagged Image File Format (TIFF), and other formats.

 Module 1: Overview of the Microsoft .NET Platform 13

Languages in the .NET Framework

n C# – Designed for .NET

New component-oriented language

n Managed Extensions to C++

Enhanced to provide more power and control

n Visual Basic.NET

New version of Visual Basic with substantial language innovations

n JScript.NET

New version of JScript that provides improved performance and

productivity

n Third-party Languages

The .NET Framework provides support for several programming languages. C#
is the programming language specifically designed for the .NET platform, but
C++ and Visual Basic have also been upgraded to fully support the .NET
Framework.

Language Description

C# C# was designed for the .NET platform and is the first modern component–oriented

language in the C and C++ family. It can be embedded in ASP.NET pages. Some of the
key features of this language include classes, interfaces, delegates, boxing and
unboxing, namespaces, properties, indexers, events, operator overloading, versioning,
attributes, unsafe code, and XML documentation generation. No header or Interface
Definition Language (IDL) files are needed.

Managed Extensions to
C++

The managed C++ is a minimal extension to the C++ language. This extension provides
access to the .NET Framework that includes garbage collection, single-implementation
inheritance, and multiple-interface inheritance. This upgrade also eliminates the need to
write “plumbing” code for components. It offers low-level access where useful.

Visual Basic.NET Visual Basic.NET provides substantial language innovations over previous versions of
Visual Basic. Visual Basic.NET supports inherit ance, constructors, polymorphism,
constructor overloading, structured exceptions, stricter type checking, free threading,
and many other features. There is only one form of assignment? no Let or Set methods.
There are new Rapid Application Development (RAD) features such as XML Designer,
Server Explorer, and Web Forms designer available from Visual Studio.NET to Visual
Basic. With this release, Visual Basic Scripting Edition provides full Visual Basic
functionality.

Microsoft JScript.NET JScript.NET is rewritten to be fully .NET aware. It includes support for classes,
inheritance, types, and compilation. It provides improved performance and productivity
features. JScript.NET is also integrated with Visual Studio.NET. You can take
advantage of any .NET Framework class in JScript.NET.

Third-party languages Several third-party languages are supporting the .NET platform. These languages
include APL, COBOL, Pascal, Eiffel, Haskell, ML, Oberon, Perl, Python, Scheme, and
SmallTalk.

14 Module 1: Overview of the Microsoft .NET Platform

Review

n Introduction to the .NET Platform

n Overview of the .NET Framework

n Benefits of the .NET Framework

n The .NET Framework Components

n Languages in the .NET Framework

1. What is the .NET platform?

2. What are the core technologies in the .NET platform?

3. List the components of the .NET Framework.

4. What is the purpose of Common Language Runtime?

 Module 1: Overview of the Microsoft .NET Platform 15

5. What is the purpose of Common Language Specification?

6. What is a Web Service?

7. What is a managed environment?

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Structure of a C# Program 2

Basic Input/Output Operations 9

Recommended Practices 15
Compiling, Running, and Debugging 22

Lab 2: Creating a Simple C# Program 36

Review 45

Module 2: Overview of
C#

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 2: Overview of C# 1

Overview

n Structure of a C# Program

n Basic Input/Output Operations

n Recommended Practices

n Compiling, Running, and Debugging

In this module, you will learn about the basic structure of a C# program by
analyzing a simple working example. You will learn how to use the Console
class to perform some basic input and output operations. You will also learn
about some best practices for handling errors and documenting your code.
Finally, you will compile, run, and debug a C# program.

After completing this module, you will be able to:

n Explain the structure of a simple C# program.

n Use the Console class of the System namespace to perform basic
input/output operations.

n Handle exceptions in a C# program.

n Generate Extensible Markup Language (XML) documentation for a C#
program.

n Compile and execute a C# program.

n Use the debugger to trace program execution.

2 Module 2: Overview of C#

u Structure of a C# Program

n Hello, World

n The Class

n The Main Method

n The using Directive and the System Namespace

n Demonstration: Using Visual Studio to Create
a C# Program

In this section, you will learn about the basic structure of a C# program. You
will analyze a simple program that contains all of the essential features. You
will also learn how to use Microsoft® Visual Studio® to create and edit a C#
program.

 Module 2: Overview of C# 3

Hello, World

using System;

class Hello
{

public static int Main()
{
Console.WriteLine("Hello, World");
return 0;

}
}

using System;

class Hello
{

public static int Main()
{

Console.WriteLine("Hello, World");
return 0;

}
}

The first program most people write when learning a new language is the
inevitable Hello, World. In this module, you will get a chance to examine the
C# version of this traditional first program.

The example code on the slide contains all of the essential elements of a C#
program, and it is easy to test! When executed from the command line, it
simply displays the following:

Hello, World

In the following topics, you will analyze this simple program to learn more
about the building blocks of a C# program.

4 Module 2: Overview of C#

The Class

n A C# Application Is a Collection of Classes, Structures,
and Types

n A Class Is a Set of Data and Methods

n Syntax

n A C# Application Can Consist of Many Files

n A Class Cannot Span Multiple Files

class name
{

...
}

class name
{

...
}

In C#, an application is a collection of one or more classes, data structures, and
other types. In this module, a class is defined as a set of data combined with
methods (or functions) that can manipulate that data. In later modules, you will
learn more about classes and all that they offer to the C# programmer.

When you look at the code for the Hello, World application, you will see that
there is a single class called Hello. This class is introduced by using the
keyword class. Following the class name is an open brace ({). Everything up to
the corresponding closing brace (}) is part of the class.

You can spread the classes for a C# application across one or more files. You
can put multiple classes in a file, but you cannot span a single class across
multiple files.

The name of the application file does not need to be
the same as the name of the class.

C# does not distinguish between the definition and the
implementation of a class in the same way that C++ does. There is no concept
of a definition (.hpp) file. All code for the class is written in one file.

Note for Java developers

Note for C++ developers

 Module 2: Overview of C# 5

The Main Method

n When Writing Main, You Should:

l Use an uppercase “M,” as in “Main”

l Designate one Main as the entry point to the program

l Declare Main as public static int Main

n Multiple Classes Can Have a Main

n When Main Finishes, or Returns, the Application Quits

Every application must start somewhere. When a C# application is run,
execution starts at the method called Main. If you are used to programming in
C, C++, or even Java, you are already familiar with this concept.

The C# language is case sensitive. Main must be spelled with an
uppercase "M" and with the rest of the name in lowercase.

Although there can be many classes in a C# application, there can only be one
entry point. It is possible to have multiple classes each with Main in the same
application, but only one Main will be executed. You need to specify which
one should be used when the application is compiled.

The signature of Main is important too. If you use Visual Studio, it will be
created automatically as public static int. (You will learn what these mean later
in the course.) Unless you have a good reason, you should not change the
signature.

You can change the signature to some extent, but it must always be static,
otherwise it might not be recognized as the application’s entry point by the
compiler.

The application runs either until the end of Main is reached or until a return
statement is executed by Main.

Important

Tip

6 Module 2: Overview of C#

The using Directive and the System Namespace

n The .NET Framework Provides Many Utility Classes

l Organized into namespaces

n System Is the Most Commonly Used Namespace

n Refer to Classes by Their Namespace

n The using Directive

System.Console.WriteLine("Hello, World");System.Console.WriteLine("Hello, World");

using System;
…
Console.WriteLine("Hello, World");

using System;
…
Console.WriteLine("Hello, World");

As part of the Microsoft .NET Framework, C# is supplied with many utility
classes that perform a range of useful operations. These classes are organized
into namespaces. A namespace is a set of related classes. A namespace may
also contain other namespaces.

The .NET Framework is made up of many namespaces, the most im portant of
which is called System . The System namespace contains the classes that most
applications use for interacting with the operating system. The most commonly
used classes handle input and output (I/O). As with many other languages, C#
has no I/O capability of its own and therefore depends on the operating system
to provide a C# compatible interface.

You can refer to objects in namespaces by prefixing them explicitly with the
identifier of the namespace. For example, the System namespace contains the
Console class, which provides several methods, including WriteLine. You can
access the WriteLine method of the Console class as follows:

System.Console.WriteLine("Hello, World");

However, using a fully qualified name to refer to objects can be unwieldy and
error prone. To ease this burden, you can specify a namespace by placing a
using directive at the beginning of your application before the first class is
defined. A using directive specifies a namespace that will be examined if a
class is not explicitly defined in the application. You can put more than one
using directive in the source file, but they must all be placed at the beginning of
the file.

 Module 2: Overview of C# 7

With the using directive, you can rewrite the previous code as follows:

using System;
...
Console.WriteLine("Hello, World");

In the Hello, World application, the Console class is not explicitly defined.
When the Hello, World application is compiled, the compiler searches for
Console and finds it in the System namespace instead. The compiler generates
code that refers to the fully qualified name System.Console.

The classes of the System namespace, and the other core functions
accessed at run time, reside in an assembly called mscorlib.dll. This assembly is
used by default. You can refer to classes in other assemblies, but you will need
to specify the locations and names of those assemblies when the application is
compiled.

Note

8 Module 2: Overview of C#

Demonstration: Using Visual Studio to Create a C# Program

In this demonstration, you will learn how to use Visual Studio to create and edit
C# programs.

 Module 2: Overview of C# 9

u Basic Input/Output Operations

n The Console Class

n Write and WriteLine Methods

n Read and ReadLine Methods

In this section, you will learn how to perform command-based input/output
operations in C# by using the Console class. You will learn how to display
information by using the Write and WriteLine methods, and how to gather
input information from the keyboard by using the Read and ReadLine methods.

10 Module 2: Overview of C#

The Console Class

n Provides Access to the Standard Input, Standard
Output, and Standard Error Streams

n Only Meaningful for Console Applications

l Standard input – keyboard

l Standard output – screen

l Standard error – screen

n All Streams May Be Redirected

The Console class provides a C# application with access to the standard input,
standard output, and standard error streams.

Standard input is normally associated with the keyboard— anything that the user
types on the keyboard can be read from the standard input stream. Similarly, the
standard output stream is usually directed to the screen, as is the standard error
stream.

These streams and the Console class are only meaningful to console
applications. These are applications that run in a Command window.

You can direct any of the three streams (standard input, standard output,
standard error) to a file or device. You can do this programmatically, or the user
can do this when running the application.

Note

 Module 2: Overview of C# 11

Write and WriteLine Methods

n Console.Write and Console.WriteLine Display
Information on the Console Screen

l WriteLine outputs a line feed/carriage return

n Both Methods Are Overloaded

n A Format String and Parameters Can Be Used

l Text formatting

l Numeric formatting

You can use the Console.Write and Console.WriteLine methods to display
information on the console screen. These two methods are very similar; the
main difference is that WriteLine appends a new line/carriage return pair to the
end of the output, and Write does not.

Both methods are overloaded. You can call them with variable numbers and
types of parameters. For example, you can use the following code to write “99”
to the screen:

Console.WriteLine(99);

You can use the following code to write the message “Hello, World” to the
screen:

Console.WriteLine("Hello, World");

Text Formatting
You can use more powerful forms of Write and WriteLine that take a format
string and additional parameters. The format string specifies how the data is
output, and it can contain markers, which are replaced in order by the
parameters that follow. For example, you can use the following code to display
the message “The sum of 100 and 130 is 230”:

Console.WriteLine("The sum of {0} and {1} is {2}", 100, 130,
100+130);

The first parameter that follows the format string is referred to as
parameter zero: {0}.

Important

12 Module 2: Overview of C#

You can use the format string parameter to specify field widths and whether
values should be left or right justified in these fields, as shown in the following
code:

Console.WriteLine("Left justified in a field of width 10: {0,-
Ê10}", 99);
Console.WriteLine("Right justified in a field of width 10:
Ê{0,10}", 99);

This will display the following on the console:

“Left justified in a field of width 10: 99 ”

“Right justified in a field of width 10: 99”

You can use the backward slash (\) character in a format string to turn off
the special meaning of the character that follows it. For example, "\{" will cause
a literal "{" to be displayed, and "\\" will display a literal "\". You can use the at
sign (@) character to represent an entire string verbatim. For example,
"@\\server\share" will be processed as "\\server\share."

Numeric Formatting
You can also use the format string to specify how numeric data is to be
formatted. The full syntax for the format string is {N,M:FormatString},
where N is the parameter number, M is the field width and justification, and
FormatString specifies how numeric data should be displayed. The table
below summarizes the items that may appear in FormatString. In all of these
formats, the number of digits to be displayed, or rounded to, can optionally be
specified.

Item Meaning

C Display the number as currency, using the local currency symbol and

conventions.

D Display the number as a decimal integer.

E Display the number by using exponential (scientific) notation.

F Display the number as a fixed-point value.

G Display the number as either fixed point or integer, depending on which
format is the most compact.

N Display the number with embedded commas.

X Display the number by using hexadecimal notation.

Note

 Module 2: Overview of C# 13

The following code shows some examples of how to use numeric formatting:

Console.WriteLine("Currency formatting - {0:C} {1:C4}", 88.8,
Ê-888.8);
Console.WriteLine("Integer formatting - {0:D5}", 88);
Console.WriteLine("Exponential formatting - {0:E}", 888.8);
Console.WriteLine("Fixed-point formatting - {0:F3}",
Ê888.8888);
Console.WriteLine("General formatting - {0:G}", 888.8888);
Console.WriteLine("Number formatting - {0:N}", 8888888.8);
Console.WriteLine("Hexadecimal formatting - {0:X4}", 88);

When the previous code is run, it displays the following:

Currency formatting - $88.80 ($888.8000)
Integer formatting - 00088
Exponential formatting - 8.888000E+002
Fixed-point formatting - 888.889
General formatting - 888.8888
Number formatting - 8,888,888.80
Hexadecimal formatting – 0058

Custom format specifiers are available for dates and times. There are also
custom format specifiers that allow you to create your own user-defined
formats.

Note

14 Module 2: Overview of C#

Read and ReadLine Methods

n Console.Read and Console.ReadLine Read User Input

l Read reads the next character

l ReadLine reads the entire input line

You can obtain user input from the keyboard by using the Console.Read and
Console.ReadLine methods.

The Read Method
Read reads the next character from the keyboard. It returns the int value –1 if
there is no more input available. Otherwise it returns an int representing the
character read.

The ReadLine Method
ReadLine reads all characters up to the end of the input line (the carriage return
character). The input is returned as a string of character s. You can use the
following code to read a line of text from the keyboard and display it to the
screen:

string input = Console.ReadLine();
Console.WriteLine("{0}", input);

 Module 2: Overview of C# 15

u Recommended Practices

n Commenting Applications

n Generating XML Documentation

n Demonstration: Generating and Viewing XML
Documentation

n Exception Handling

In this section, you will learn some recommended practices to use when writing
C# applications. You will be shown how to comment applications to aid
readability and maintainability. You will also learn how to handle the errors
that can occur when an application is run.

16 Module 2: Overview of C#

Commenting Applications

n Comments Are Important

l A well-commented application permits a developer to
fully understand the structure of the application

n Single-Line Comments

n Multiple-Line Comments

/* Find the higher root of the
quadratic equation */

x = (-b + Math.Sqrt(b * b – 4 * a * c))/(2 * a);

/* Find the higher root of the
quadratic equation */

x = (-b + Math.Sqrt(b * b – 4 * a * c))/(2 * a);

// Get the user’s name
Console.WriteLine("What is your name? ");
name = Console.ReadLine();

// Get the user’s name
Console.WriteLine("What is your name? ");
name = Console.ReadLine();

It is important to provide adequate documentation for all of your applications.
Provide enough comments to enable a developer who was not involved in
creating the original application to follow and understand how the application
works. Use thorough and meaningful comments. Good comments add
information that cannot be expressed easily by the code statements alone— they
explain the “why” rather than the “what.” If your organization has standards for
commenting code, then follow them.

C# provides several mechanisms for adding comments to application code:
single- line comments, multiple-line comments, and XML-generated
documentation.

You can add a single- line comment by using the forward slash characters –(//).
When you run your application, everything following these two characters until
the end of the line is ignored.

You can also use block comments that span multiple lines. A block comment
starts with the /* character pair and continues until a matching */ character pair
is reached. You cannot nest block comments.

 Module 2: Overview of C# 17

Generating XML Documentation

/// <summary> The Hello class prints a greeting
/// on the screen
/// </summary>
class Hello
{
/// <remarks> We use console-based I/O.
/// For more information about WriteLine, see
/// <seealso cref="System.Console.WriteLine"/>
/// </remarks>
public static void Main()
{

Console.WriteLine("Hello, World");
}

}

/// <summary> The Hello class prints a greeting
/// on the screen
/// </summary>
class Hello
{

/// <remarks> We use console-based I/O.
/// For more information about WriteLine, see
/// <seealso cref="System.Console.WriteLine"/>
/// </remarks>
public static void Main()
{
Console.WriteLine("Hello, World");

}
}

You can use C# comments to generate XML documentation for your
applications.

Documentation comments begin with three forward slashes (///) followed by an
XML documentation tag. For examples, see the slide.

There are a number of suggested XML tags that you can use. (You can also
create your own.) The following table shows some XML tags and their uses.

Tag Purpose

<summary> … </summary> To provide a brief description. Use the <remarks>

tag for a longer description.

<remarks> … </remarks> To provide a detailed description. This tag can
contain nested paragraphs, lists, and other types of
tags.

<para> … </para> To add structure to the description in a <remarks>
tag. This tag allows paragraphs to be delineated.

<list type="…"> … </list> To add a structured list to a detailed description.
The types of lists supported are “bullet,” “number,”
and “table.” Additional tags (<term> … </term>
and <description> … </description>) are used
inside the list to further define the structure.

<example> … </example> To provide an example of how a method, property,
or other library member should be used. It often
involves the use of a nested <code> tag.

<code> … </code> To indicate that the enclosed text is application
code.

18 Module 2: Overview of C#

(continued)
Tag Purpose

<c> … </c> To indicate that the enclosed text is application

code. The <code> tag is used for lines of code that
must be separated from any enclosing description;
the <c> tag is used for code that is embedded
within an enclosing description.

<see cref=" member"/> To indicate a reference to another member or field.
The compiler checks that “member” actually
exists.

<seealso cref="member"/> To indicate a reference to another member or field.
The compiler checks that “member” actually
exists. The difference between <see> and
<seealso> depends upon the processor that
manipulates the XML once it has been generated.
The processor must be able to generate See and
See Also sections for these two tags to be
distinguished in a meaningful way.

<exception> … </exception> To provide a description for an exception class.

<permission> … </permission> To document the accessibility of a member.

<param name="name"> …
</param>

To provide a description for a method parameter.

<returns> … </returns> To document the return value and type of a
method.

<value> … </value> To describe a property.

You can compile the XML tags and documentation into an XML file by using
the C# compiler with the /doc option:

csc myprogram.cs /doc:mycomments.xml

If there are no errors, you can view the XML file that is generated by using a
tool such as Internet Explorer.

The purpose of the /doc option is only to generate an XML file. To
render the file, you will need another processor. Internet Explorer displays a
simple rendition that shows the structure of the file and allows tags to be
expanded or collapsed, but it will not, for example, display the
<list type="bullet"> tag as a bullet.

Note

 Module 2: Overview of C# 19

Demonstration: Generating and Viewing XML Documentation

In this demonstration, you will see how to compile the XML comments that are
embedded in a C# application into an XML file. You will also learn how to
view the documentation file that is generated.

20 Module 2: Overview of C#

Exception Handling

using System;
public class Hello
{

public static int Main(string[] args)
{

try {
Console.WriteLine(args[0]);

} catch (Exception e) {
Console.WriteLine("Exception at
Ê{0}", e.StackTrace);

}
return 0;

}
}

using System;
public class Hello
{

public static int Main(string[] args)
{

try {
Console.WriteLine(args[0]);

} catch (Exception e) {
Console.WriteLine("Exception at
Ê{0}", e.StackTrace);

}
return 0;

}
}

A robust C# application must be able to handle the unexpected. No matter how
much error checking you add to your code, there is inevitably something that
can go wrong. Perhaps the user will type an unexpected response to a prompt,
or will try to write to a file in a folder that has been deleted. The possibilities
are endless.

When a run-time error occurs in a C# application, the operating system throws
an exception. Trap exceptions by using a try-catch construct as shown on the
slide. If any of the statements in the try part of the application cause an
exception to be raised, execution will be transferred to the catch block.

You can find out information about the exception that occurred by using the
StackTrace, Message , and Source properties of the Exception object. You
will learn more about handling exceptions in a later module.

If you print out an exception, by using Console.WriteLine for example,
the exception will format itself automatically and display the StackTrace ,
Message, and Source properties.

Note

 Module 2: Overview of C# 21

It is far easier to design exception handling into your C# applications from
the start than it is to try to add it later.

If you do not use exception handling, a run-time exception will occur. If you
want to debug your program using Just-in-time debugging instead, you need to
enable it first. If you have enabled Just-in-time debugging, depending upon
which environment and tools are installed, Just-in-time debugging will prompt
you for a debugger to be used.

To enable Just-in-time debugging, perform the following steps:

1. On the Tools menu, click Options.

2. In the Options dialog box, click the Debugging folder.

3. In the Debugging folder, click General.

4. Click the Settings button.

5. Enable or disable Just-in-time (JIT) debugging for specific program types
(for example, Win32 applications) in the JIT Debugging Settings dialog
box, and then click Close.

6. Click OK.

You will learn more about the debugger later in this module.

Tip

22 Module 2: Overview of C#

u Compiling, Running, and Debugging

n Invoking the Compiler

n Running the Application

n Demonstration: Compiling and Running
a C# Program

n Debugging

n Multimedia: Using the Visual Studio Debugger

n The SDK Tools

n Demonstration: Using ILDASM

In this section, you will learn how to compile and debug C# programs. You will
see the compiler executed from the command line and from within the Visual
Studio environment. You will learn some common compiler options. You will
be introduced to the Visual Studio Debugger. Finally, you will learn how to use
some of the other tools that are supplied with the Microsoft .NET Framework
software development kit (SDK).

 Module 2: Overview of C# 23

Invoking the Compiler

n Common Compiler Switches

n Compiling from the Command Line

n Compiling from Visual Studio

n Locating Errors

Before you execute a C# application, you must compile it. The compiler
converts the source code that you write into machine code that the computer
understands. You can invoke the C# compiler from the command line or from
Visual Studio.

Strictly speaking, C# applications are compiled into Microsoft
intermediate language (MSIL) rather than native machine code. The MSIL code
is itself compiled into machine code by the Just-in-time (JIT) compiler when
the application is run. However, it is also possible to compile directly to
machine code and bypass the JIT compiler if required.

Common Compiler Switches
You can specify a number of switches for the C# compiler by using the csc
command. The following table describes the most common switches.

Switch Meaning

/?, /help Displays the compiler options on the standard output.

/out Specifies the name of the executable.

/main Specifies the class that contains the Main method (if more than one
class in the application includes a Main method).

/optimize Enables and disables the code optimizer.

/warn Sets the warning level of the compiler.

/warnaserror Treats all warnings as errors that abort the compilation.

/target Specifies the type of application generated.

Note

24 Module 2: Overview of C#

(continued)
Switch Meaning

/checked Indicates whether arithmetic overflow will generate a run-time

exception.

/doc Processes documentation comments to produce an XML file.

/debug Generates debugging information.

Compiling from the Command Line
To compile a C# application from the command line, use the csc command. For
example, to compile the Hello, World application (Hello.cs) from the command
line, generating debug information and creating an executable called Greet.exe,
the command is:

csc /debug+ /out:Greet.exe Hello.cs

Ensure that the output file containing the compiled code is specified
with an .exe suffix. If it is omitted, you will need to rename the file before you
can run it.

Compiling f rom Visual Studio
To compile a C# application by using Visual Studio, open the project
containing the C# application, and click Build on the Build menu.

By default, Visual Studio opens the debug configuration for projects.
This means that a debug version of the application will be compiled. To
compile a release build that contains no debug information, change the solution
configuration to release.

You can change the options used by the compiler by updating the project
configuration:

1. In Solution Explorer, right-click the project icon.

2. Click Properties.

3. In the Property Pages dialog box, click Configuration Properties, and
then click Build.

4. Specify the required compiler options, and then click OK.

Important

Note

 Module 2: Overview of C# 25

Locating Errors
If the C# compiler detects any syntactic or semantic errors, it will report them.

If the compiler was invoked from the command line, it will display messages
indicating the line numbers and the character position for each line in which it
found errors.

If the compiler was invoked from Visual Studio, the Task List window will
display all lines that include errors. Double-clicking each line in this window
will take you to the respective error in the application.

It is common for a single programming mistake to generate a number of
compiler errors. It is best to work through errors by starting with the first ones
found because correcting an early error may automatically fix a number of later
errors.

Tip

26 Module 2: Overview of C#

Running the Application

n Running from the Command Line

l Type the name of the application

n Running from Visual Studio

l Click Start Without Debugging on the Debug menu

You can run a C# application from the command line or from within the
Visual Studio environment.

Running from the Command Line
If the application is compiled successfully, an executable file (a file with
an .exe suffix) will be generated. To run it from the command line, type the
name of the application (with or without the .exe suffix).

Running from Within Visual Studio
To run the application from Visual Studio, click Start Without Debugging on
the Debug menu, or press CTRL+F5. If the application is a Console
Application, a console window will appear automatically, and the application
will run. When the application has finished, you will be prompted to press any
key to continue, and the console window will close.

 Module 2: Overview of C# 27

Demonstration: Compiling and Running a C# Program

In this demonstration, you will see how to compile and run a C# program by
using Visual Studio. You will also see how to locate and correct compile-time
errors.

28 Module 2: Overview of C#

Debugging

n Exceptions and JIT Debugging

n The Visual Studio Debugger

l Setting breakpoints and watches

l Stepping through code

l Examining and modifying variables

Exceptions and JIT Debugging
If your application throws an exception and you have not written any code that
can handle it, Common Language Runtime will instigate JIT debugging. (Do
not confuse JIT debugging with the JIT compiler.)

Assuming that you have installed Visual Studio, a dialog box will appear giving
you the choice of debugging the application by using the Visual Studio
Debugger (Microsoft Development Env ironment), or the debugger provided
with the .NET Framework SDK.

If you have Visual Studio available, it is recommended that you select the
Microsoft Development Environment debugger.

The .NET Framework SDK provides another debugger: cordbg.exe. This
is a command-line debugger. It includes most of the facilities offered by the
Microsoft Development Environment, except for the graphical user interface. It
will not be discussed further in this course.

Note

 Module 2: Overview of C# 29

Setting Breakpoints and Watches in Visual Studio
You can use the Visual Studio Debugger to set breakpoints in your code and
examine the values of variables.

To bring up a menu with many useful options, right-click a line of code. Click
Insert Breakpoint to insert a breakpoint at that line. You can also insert a
breakpoint by clicking in the left margin. Click again to remove the breakpoint.
When you run the application in debug mode, execution will stop at this line
and you can examine the contents of variables.

The Watch window is useful for monitoring the values of selected variables
while the application runs. If you type the name of a variable in the Name
column, its value will be displayed in the Value column. As the application
runs, you will see any changes made to the value. You can also modify the
value of a watched variable by typing over it.

To use the debugger, ensure that you have selected the Debug
solution configuration rather than Release.

Stepping Through Code
Once you have set any breakpoints that you need, you can run your application
by clicking Start on the Debug menu, or by pressing F5. When the first
breakpoint is reached, execution will halt.

You can continue running the application by clicking Continue on the Debug
menu, or you can use any of the single-stepping options on the Debug menu to
step through your code one line at a time. You can use Set Next Statement on
the Debug menu to jump backward or forward in your application and continue
running from that point.

The breakpoint, stepping, and watch variable options are also available on
the Debug toolbar.

Examining and Modifying Variables
You can view the variables defined in the current method by clicking Locals on
the Debug toolbar or by using the Watch window. You can change the values
of variables by typing over them (as you can in the Watch window).

Important

Tip

30 Module 2: Overview of C#

Multimedia: Using the Visual Studio Debugger

This multimedia demonstration will show you how to use the Visual Studio
Debugger to set breakpoints and watches. It will also show you how to step
through code and how to examine and modify the values of variables.

 Module 2: Overview of C# 31

The SDK Tools

n General Tools and Utilities

n Win Forms Design Tools and Utilities

n Security Tools and Utilities

n Configuration and Deployment Tools and Utilities

The .NET Framework SDK is supplied with a number of tools that provide
additional functionality for developing, configuring, and deploying applications.
These tools can be run from the command line.

General Tools and Utilities
You may find some of the following general-purpose tools useful.

Tool name Command Description

NGWS Runtime Debugger cordbg.exe The command-line debugger.

MSIL Assembler ilasm.exe An assembler that takes MSIL as input
and generates an executable file.

MSIL Disassembler ildasm.exe A disassembler that can be used to
inspect the MSIL and metadata in an
executable file.

PEVerify peverify.exe Validates the type safety of code and
metadata prior to release.

Win Forms Class Viewer wincv.exe Locates managed classes and displays
information about them.

32 Module 2: Overview of C#

Win Forms Design Tools and Utilities
You can use the following tools to manage and convert ActiveX® controls and
Win Forms controls.

Tool name Command Description

Win Forms ActiveX
Control Importer

aximp.exe Generates a wrapper from an ActiveX
control type library that allows the
control to be hosted by a Win Forms
form.

License Compiler lc.exe Produces a binary .licenses file for
managed code from files containing
licensing information.

Resource File
Generation Utility

ResGen.exe Produces a binary .resources file for
managed code from text files that
describe the resources.

ResX Resource
Compiler

ResXToResources.exe Produces a binary .resources file for
managed code from .ResX (XML-
based resource format) files that
describe the resources.

Win Forms Designer
Test Container

windes.exe A tool for testing Win Forms controls.

 Module 2: Overview of C# 33

Security Tools and Utilities
You can use the following tools to provide security and encryption features
for .NET managed assemblies and classes.

Tool name Command Description

Code Access Security
Policy Utility

caspol.exe Maintains machine and user code security
policies.

Software Publisher
Certificate Test Utility

cert2spc.exe Creates a Software Publisher’s Certificate
from an X.509 certificate. This tool is
used only for testing purposes.

Certificate Creation
Utility

makecert.exe An enhanced version of cert2spc.exe. It is
also used only for testing purposes.

Certificate Manager
Utility

certmgr.exe Maintains certificates, certificate trust
lists, and certificate revocation lists.

Certificate Verification
Utility

chktrust.exe Verifies the validity of a signed file.

Permissions View
Utility

permview.exe Views the permissions requested for an
assembly.

Secutil Utility SecUtil.exe Locates public key or certificate
information in an assembly.

Set Registry Utility setreg.exe Modifies registry settings related to public
key cryptography.

File Signing Utility signcode.exe Signs an executable file or assembly with
a digital signature.

Strong Name Utility Sn.exe Helps create assemblies that have strong
names. It guarantees name uniqueness and
provides some integrity. It also allows
assemblies to be signed.

34 Module 2: Overview of C#

Configuration and Deployment Tools and Utilities
Many of the following tools are specialized tools that you will use only if you
are integrating .NET managed code and COM classes.

Tool name Command Description

Assembly
Generation Utility

al.exe Generates an assembly manifest from
MSIL and resource files.

Assembly
Registration Tool

RegAsm.exe Enables .NET managed classes to be
called transparently by COM components.

Services
Registration Tool

RegSvcs.exe Makes managed classes available as COM
components by loading and registering the
assembly and by generating and installing
a COM+ type library and application.

Assembly Cache
Viewer

shfusion .dll Views the contents of the global cache. It
is a shell extension used by Microsoft
Windows ® Explorer.

Isolated Storage
Utility

storeadm.exe Manages isolated storage for the user that
is currently logged on.

Type Library
Exporter

TlbExp.exe Converts a .NET assembly into a COM
type library.

Type Library
Importer

Tlbimp.exe Converts COM type library definitions
into the equivalent metadata format for use
by .NET.

Web Service
Utility

WebServiceUtil.exe Installs and uninstalls managed code Web
services.

NGWS Runtime
XML Schema
Definition Tool

xsd.exe Used for defining schemas that follow the
World Wide Web Consortium (W3C)
XML Schema Definition language.

 Module 2: Overview of C# 35

Demonstration: Using ILDASM

In this demonstration, you will learn how to use Microsoft Intermediate
Language (MSIL) Disassembler (ildasm.exe) to examine the manifest and
MSIL code in a class.

36 Module 2: Overview of C#

Lab 2: Creating a Simple C# Program

Objectives
After completing this lab, you will be able to:

n Create a C# program.

n Compile and run a C# program.

n Use the Visual Studio Debugger.

n Add exception handling to a C# program.

Estimated time to complete this lab: 60 minutes

 Module 2: Overview of C# 37

Exercise 1
Creating a Simple C# Program

In this exercise, you will use Visual Studio to write a C# program. The program
will ask for your name and will then greet you by name.

å To create a new C# console application
1. Start Microsoft Visual Studio.NET.

2. On the File menu, point to New, and then click Project.

3. Click Visual C# Projects in the Project Types box.

4. Click Console Application in the Templates box.

5. Type Greetings in the Name box.

6. Type install folder\Labs\Lab02 in the Location box and click OK.

7. Type an appropriate comment for the summary.

8. Change the name of the class to Greeter.

9. Select and delete the public Greeter() method.

10. Save the project by clicking Save All on the File menu.

å To write statements that prompt and greet the user

1. In the Main method, before the return statement, insert the following line:

string myName;

2. Write a statement that prompts users for their name.

3. Write another statement that reads the user’s response from the keyboard
and assigns it to the myName string.

4. Add one more statement that prints “Hello myName” to the screen (where
myName is the name the user typed in).

5. When completed, the Main method should contain the following:

public static int Main(string[] args)
{
 string myName;

 Console.WriteLine("Please enter your name");
 myName = Console.ReadLine();
 Console.WriteLine("Hello {0}", myName);
 return 0;
}

6. Save your work.

38 Module 2: Overview of C#

å To compile and run the program

1. On the Build menu, click Build (or press CTRL+SHIFT+B).

2. Correct any compilation errors and build again if necessary.

3. On the Debug menu, click Start Without Debugging (or press CTRL+F5).

4. In the console window that appears, type your name when prompted and
press ENTER.

5. After the hello message is displayed, press a key at the “Press any key to
continue” prompt.

 Module 2: Overview of C# 39

Exercise 2
Compiling and Running the C# Program from the Command Line

In this exercise, you will compile and run your program from the command line.

å To compile and run the application from the command line

1. Open a Command window.

2. Go to the install folder\Labs\Lab02\Greetings folder.

3. Compile the program by using the following command:

csc /out:Greet.exe Class1.cs

4. Run the program by entering the following:

Greet

5. Close the Command window.

40 Module 2: Overview of C#

Exercise 3
Using the Debugger

In this exercise, you will use the Visual Studio Debugger to single-step through
your program and examine the value of a variable.

å To set a breakpoint and start debugging by using Visual Studio
1. Start Visual Studio.NET if it is not already running.

2. On the File menu, point to Open and then click Project.

3. Open the Greetings.sln project in the install folder\Labs\Lab02\Greetings
folder.

4. Click in the left margin on the line containing the first occurrence of
Console.WriteLine in the class Greeter.

A breakpoint (a large red dot) will appear in the margin.

5. On the Debug menu, click Start (or press F5).

The program will start running, a console window will appear, and the
program will then halt at the breakpoint.

å To watch the value of a variable
1. On the Debug menu, point to Windows, and then click Watch.

2. In the Watch window, add the variable myName to the list of watched
variables.

3. The myName variable will appear in the Watch window with a value of null.

å To single-step through code

1. On the Debug menu, click Step Over (or press F10) to run the first
Console.WriteLine statement.

2. Bring the console window to the foreground.

The prompt will appear.

3. Return to Visual Studio and single-step the next line containing the
Console.ReadLine statement by pressing F10.

4. Return to the console window and type your name, and then press the
RETURN key.

You will automatically be returned to Visual Studio. The value of myName
in the Watch window will be your name.

5. Single-step the next line containing the Console.WriteLine statement by
pressing F10.

 Module 2: Overview of C# 41

6. Bring the console window to the foreground.

The greeting will appear.

7. Return to Visual Studio. On the Debug menu, click Continue (or press F5)
to run the program to completion.

If you try to modify the value of myName in the Watch window, it will
not change. This is because strings in C# are immutable and are handled
differently than other types of variables, such as integers or other numerics
(which would change as expected).

Note

42 Module 2: Overview of C#

Exercise 4
Adding Exception Handling to a C# Program

In this exercise, you will write a program that uses exception handling to trap
unexpected run-time errors. The program will prompt the user for two integer
values. It will divide the first integer by the second and display the result.

å To create a new C#program

1. Start Visual Studio.NET if it is not already running.

2. On the File menu, point to New, and then click Project.

3. Click Visual C# Projects in the Project Types box.

4. Click Console Application in the Templates box.

5. Type Divider in the Name box.

6. Type install folder\Labs\Lab02 in the Location box and click OK.

7. Type an appropriate comment for the summary.

8. Change the name of the class to DivideIt.

9. Select and delete the public DivideIt() method.

10. Save the project by clicking Save All on the File menu.

å To write statements that prompt the user for two integers

1. In the Main method, before the return statement, insert the following lines:

int i, j;
string temp;

2. Write a statement that prompts the user for the first integer.

3. Write another statement that reads the user’s response from the keyboard
and assigns it to the temp string.

4. Add a statement to convert the string value in temp to an integer and to store
the result in i as follows:

i = Int32.Parse(temp);

5. Add statements to your code to:

a. Prompt the user for the second integer.

b. Read the user’s response from the keyboard and assign it to temp.

c. Convert the value in temp to an integer and store the result in j.

 Module 2: Overview of C# 43

Your code should look similar to the following:

int i, j;
string temp;

Console.WriteLine("Please enter the first integer");
temp = Console.ReadLine();
i = Int32.Parse(temp);

Console.WriteLine("Please enter the second integer");
temp = Console.ReadLine();
j = Int32.Parse(temp);

6. Save your work.

å To divide the first integer by the second and display the result

1. Write code to create a new integer variable k that is given the value resulting
from the division of i by j, and insert it at the end of the previous procedure.
Your code should look like the following:

int k = i / j;

2. Add a statement that displays the value of k.

3. Save your work.

å To test the program
1. On the Debug menu, click Start Without Debugging (or press CTRL+F5).

2. Type 10 for the first integer value and press ENTER.

3. Type 5 for the second integer value and press ENTER.

4. Check that the value displayed for k is 2.

5. Run the program again by pressing CTRL+F5.

6. Type 10 for the first integer value and press ENTER.

7. Type 0 for the second integer value and press ENTER.

8. The program causes an exception to be thrown (divide by zero).

44 Module 2: Overview of C#

å To add exception handling to the program

1. Place the code in the Main method inside a try block as follows:

try {
 int i, j;
 string temp;
 ...
 int k = i / j;
 Console.WriteLine(...);
}

2. Add a catch statement to Main, before the return statement. The catch
statement should print a short message, as is shown in the following code:

catch(Exception e) {
 Console.WriteLine("An exception was thrown: {0}" , e);
}
return 0;
...

3. Save your work.

4. The completed Main method should look similar to the following:

public static int Main(string[] args)
{
 try {
 int i, j;

 string temp;

 Console.WriteLine ("Please enter the first integer");
 temp = Console.ReadLine();
 i = Int32.Parse(temp);

 Console.WriteLine ("Please enter the second integer");
 temp = Console.ReadLine();
 j = Int32.Parse(temp);

 int k = i / j;
 Console.WriteLine("The result of dividing {0} by {1}
 Êis {2}", i, j, k);
 } catch(Exception e) {
 Console.WriteLine("An exception was thrown: {0}", e);
 }

 return 0;
}

å To test the exception-handling code

1. Run the program again by pressing CTRL+F5.

2. Type 10 for the first integer value and press ENTER.

3. Type 0 for the second integer value and press ENTER.

The program still causes an exception to be thrown (divide by zero), but this
time the error is caught and your message appears.

 Module 2: Overview of C# 45

Review

n Structure of a C# Program

n Basic Input/Output Operations

n Recommended Practices

n Compiling, Running, and Debugging

1. Where does execution start in a C# application?

2. When does application execution finish?

3. How many classes can a C# application contain?

4. How many Main methods can an application contain?

46 Module 2: Overview of C#

5. How do you read user input from the keyboard in a C# application?

6. What namespace is the Console class in?

7. What happens if your C# application causes an exception to be thrown that
it is not prepared to catch?

Contents

Overview 1

Common Type System 2

Naming Variables 9

Using Built-in Data Types 15
Compound Assignment 18

Increment and Decrement 20

Creating User-Defined Data Types 24
Converting Data Types 28

Lab 3: Creating and Using Types 32

Review 36

Module 3: Using Value-
Type Variables

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 3: Using Value-Type Variables 1

Overview

n Common Type System

n Naming Variables

n Using Built-in Data Types

n Creating User-Defined Data Types

n Converting Data Types

All applications manipulate data in some way. As a C# developer, you need to
understand how to store and process data in your applications. Whenever your
application needs to store data temporarily for use during execution, you store
that data in a variable. Before you use a variable, you must define it. When you
define a variable, you reserve some storage for that variable by identifying its
data type and giving it a name. After a variable is defined, you can assign
values to that variable.

In this module, you will learn how to use value-type variables in C#. You will
learn how to specify the type of data that variables will hold, how to name
variables according to standard naming conventions, and how to assign values
to variables. You also will learn how to convert existing variables from one data
type to another and how to create your own variables.

After completing this module, you will be able to:

n Describe the types of variables that you can use in C# applications.

n Name your variables according to standard C# naming conventions.

n Declare a variable by using built-in data types.

n Assign values to variables.

n Convert existing variables from one data type to another.

n Create and use your own data types.

2 Module 3: Using Value-Type Variables

u Common Type System

n Overview of CTS

n Comparing Value and Reference Types

n Determining Base Types

n Comparing Built-in and User-Defined Value Types

n Simple Types

Every variable has a data type that determines what values can be stored in the
variable. C# is a type-safe language, meaning that the C# compiler guarantees
that values stored in variables are always of the appropriate type.

The Common Language Runtime includes a Common Type System (CTS) that
defines a set of built-in data types that you can use to define your variables. In
this section, you will learn how the CTS works so that you can choose the
appropriate data types for your variables. You also will see examples of value-
type variables, including simple data types.

 Module 3: Using Value-Type Variables 3

Overview of CTS

n CTS Supports Object-Oriented and Procedural
Languages

n CTS Supports Both Value and Reference Types

Reference TypeReference Type

TypeType

Value TypeValue Type

When you define a variable, you need to choose the right data type for your
variable. The data type determines the allowable values for that variable, which,
in turn, determine the operations that can be performed on that variable.

CTS
CTS is an integral part of the Common Language Runtime. The compilers,
tools, and the runtime itself share CTS. It is the model that defines the rules that
the runtime follows when declaring, using, and managing types. CTS
establishes a framework that enables cross-language integration, type safety,
and high-performance code execution.

C# defines several categories of variables. In this module, you will learn about
two kinds:

n Value-type variables

n Reference-type variables

4 Module 3: Using Value-Type Variables

Comparing Value and Reference Types

n Value Types:

n Directly contain their
data

n Each has its own
copy of data

n Operations on one
cannot affect another

n Reference Types:

n Store references to their
data (known as objects)

n Two reference variables
can reference same object

n Operations on one can
affect another

Value Types
Value-type variables directly contain their data. Each value-type variable has its
own copy of the data, so it is not possible for operations on one variable to
affect another variable.

Reference Types
Reference-type variables contain references to their data. The data for
reference-type variables is stored in an instance. It is possible for two reference-
type variables to reference the same object, so it is possible for operations on
one reference variable to affect the object referenced by another reference
variable.

For more information about reference types, see Module 8, “Using Reference-
Type Variables,” in Course 2124A, Introduction to C# Programming for the
Microsoft .NET Platform (Prerelease).

 Module 3: Using Value-Type Variables 5

Determining Base Types

n All Types Are Ultimately Derived from System.Object

n Value Types Are Derived from System.ValueType

n To Determine the Base Type of a Variable x, Use:

x.GetType().BaseTypex.GetType().BaseType

All of the base data types are defined in the System namespace for C#. All
types are ultimately derived from System.Object.

To determine the base data type of variable x, you can use the following code:

x.GetType().BaseType

6 Module 3: Using Value-Type Variables

Comparing Built-in and User-Defined Value Types

n Examples of
Built-in Value Types:

n int

n float

n Examples of User-Defined
Value Types:

n enum

n struct

User-DefinedUser-Defined

Value TypesValue Types

Built-in TypeBuilt-in Type

Value types include built-in and user-defined data types. The difference
between built-in and user-defined types in C# is minimal because user-defined
types can be used in the same way as built-in ones. The only real difference
between built-in data types and user-defined data types is that you can write
literal values for the built-in types. All value types directly contain data, and
they cannot be null.

You will learn how to create user-defined data types such as enumeration and
structure types in this module.

 Module 3: Using Value-Type Variables 7

Simple Types

n Identified Through Reserved Words

l int // Reserved keyword

- or -

l System.Int32

Built- in value types are also referred to as basic data types or simple types.
Simple types are identified by means of reserved keywords. These reserved
keywords are aliases for predefined structure types.

A simple type and the struct type it aliases are completely indistinguishable. In
your code, you can use the reserved keyword or you can use the struct type. The
following examples show both:

byte // Reserved keyword
--Or--
System.Byte // Struct type

int // Reserved keyword
--Or--
System.Int32 // Struct type

For more information about the sizes and ranges of built-in value types, search
for “Value Types” in the Microsoft® Visual Studio.NET Help documents.

8 Module 3: Using Value-Type Variables

The following table lists common reserved keywords and their equivalent
aliased struct type.

Reserved keywords Alias for struct type

sbyte System.SByte
byte System.Byte
short System.Int16
ushort System.UInt16
int System.Int32
uint System.UInt32
long System.Int64
ulong System.UInt64
char System.Char
float System.Single
double System.Double
bool System.Boolean
decimal System.Decimal

 Module 3: Using Value-Type Variables 9

u Naming Variables

n Rules and Recommendations for Naming Variables

n C# Keywords

n Quiz: Can You Spot Disallowed Variable Names?

f

To use a variable, you first choose a meaningful and appropriate name for the
variable. Each variable has a name that is also referred to as the variable
identifier.

When naming variables, follow the standard naming conventions recommended
for C#. You also need to be aware of the C# reserved keywords that you cannot
use for variable names.

In this section, you will learn how to name your variables by following standard
naming rules and recommendations.

10 Module 3: Using Value-Type Variables

Rules and Recommendations for Naming Variables

n Rules

l Use letters, the underscore,
and digits

n Recommendations

l Avoid using all uppercase
letters

l Avoid starting with an
underscore

l Avoid using abbreviations

l Use PascalCasing naming
in multiple-word names

different
Different
different
Different

Answer42
42Answer
Answer42
42Answer

üüüü

ûû
üü

BADSTYLE
_poorstyle
BestStyle

BADSTYLE
_poorstyle
BestStyle

ûû
üüûû

Msg
Message
Msg
Message üüûû

When naming variables, observe the following rules and recommendations.

Rules
The following are the naming rules for C# variables:

n Start each variable name with a letter or underscore character.

n After the first character, use letters, digits, or the underscore character.

n Do not use reserved keywords.

n If you use a disallowed variable name, you will get a compile-time error.

Recommendations
It is recommended that you follow these recommendations when naming your
variables:

n Avoid using all uppercase letters.

n Avoid starting with an underscore.

n Avoid using abbreviations.

n Use PascalCasing naming in multiple-word names.

 Module 3: Using Value-Type Variables 11

PascalCasing Naming Convention
To use the PascalCasing naming convention, capitalize the first character of
each word. Use PascalCasing for classes, methods, properties, enums, interfaces,
fields, namespaces, and properties, as shown in the following example:

void InitializeData();

camelCasing Naming Convention
To use the camelCasing naming convention, capitalize the first character of
each word except for the first word. Use camelCasing for variables that define
fields and parameters, as shown in the following example:

int loopCountMax;

For more information about naming conventions, see “Naming Guidelines” in
the .NET Framework SDK Help documents.

12 Module 3: Using Value-Type Variables

C# Keywords

n Keywords Are Reserved Identifiers

n Do Not Use Keywords As Variable Names

l Results in a compile-time error

n Avoid Using Keywords by Changing Their Case
Sensitivity

abstract, base, bool, default, if, finallyabstract, base, bool, default, if, finally

int INT; // Poor styleint INT; // Poor style

Keywords are reserved, which means that you cannot use any keywords as
variable names in C#. Using a keyword as a variable name will result in a
compile-time error.

Keywords in C#
The following is a list of keywords in C#. Remember, you cannot use any of
these words as variable names.

abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float for foreach goto
if implicit in int interface
internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return sbyte sealed
short sizeof stackalloc static string
struct switch this throw true
try typeof uint ulong unchecked
unsafe ushort using virtual void
while

 Module 3: Using Value-Type Variables 13

Quiz: Can You Spot the Disallowed Variable Names?

char $diskPrice;char $diskPrice;

char middleInitial;char middleInitial;

int 12count;int 12count;

float this;float this;

222

333

444

111

int __identifier;int __identifier;555

14 Module 3: Using Value-Type Variables

Quiz Answers
1. Disallowed. Variable names cannot begin with a digit.

2. Disallowed. Variable names must start with a letter or an underscore.

3. Allowed. Variable names can start with a letter.

4. Disallowed. Keywords (this) cannot be used to name variables.

5. Allowed. Variable names can start with an underscore.

 Module 3: Using Value-Type Variables 15

u Using Built-in Data Types

n Declaring Local Variables

n Assigning Values to Variables

n Compound Assignment

n Common Operators

n Increment and Decrement

n Operator Precedence

To create a variable, you must choose a variable name, declare your variable,
and assign a value to your variable, unless it has already been automatically
assigned a value by C#.

In this section, you will learn how to create a local variable by using built- in
data types. You will also learn which variables are initialized, which variables
are not initialized, how to use operators to assign values to variables, and how
to define readonly variables and constants.

16 Module 3: Using Value-Type Variables

Declaring Local Variables

n Usually Declared by Data Type and Variable Name:

n Possible to Declare Multiple Variables in One
Declaration:

--or--

int itemCount;int itemCount;

int itemCount, employeeNumber;int itemCount, employeeNumber;

int itemCount,
employeeNumber;

int itemCount,
employeeNumber;

Variables that are declared in methods, properties, or indexers are called local
variables. Generally, you declare a local variable by specifying the data type
followed by the variable name, as shown in the following example:

int itemCount;

You can declare multiple variables in a single declaration by using a comma
separator, as shown in the following example:

int itemCount, employeeNumber;

In C#, you cannot use uninitialized variables. The following code will result in
a compile-time error because the loopCount variable has not been assigned an
initial value:

int loopCount;
Console.WriteLine ("{0}", loopCount);

 Module 3: Using Value-Type Variables 17

Assigning Values to Variables

n Assign Values to Variables That Are Already Declared:

n Initialize a Variable When You Declare It:

n You Can Also Initialize Character Values:

int employeeNumber;

employeeNumber = 23;

int employeeNumber;

employeeNumber = 23;

int employeeNumber = 23;int employeeNumber = 23;

char middleInitial = 'J';char middleInitial = 'J';

You use assignment operators to assign a new value to a variable. To assign a
value to a variable that is already declared, use the assignment operator (=), as
shown in the following example:

int employeeNumber;
employeeNumber = 23;

You can also initialize a variable when you declare it, as shown in the following
example:

int employeeNumber = 23;

You can use the assignment operator to assign values to character type variables,
as shown in the following example:

char middleInitial = 'J';

18 Module 3: Using Value-Type Variables

Compound Assignment

n Adding a Value to a Variable Is Very Common

n There Is a Convenient Shorthand

n This Shorthand Works for All Arithmetic Operators

itemCount = itemCount + 40;itemCount = itemCount + 40;

itemCount += 40;itemCount += 40;

itemCount -= 24; itemCount -= 24;

Adding a Value to a Variable Is Very Common
The following code declares an int variable called itemCount, assigns it the
value 2, and then increments it by 40:

int itemCount;
itemCount = 2;
itemCount = itemCount + 40;

There Is a Convenient Shorthand
The code to increment a variable works, but it is slightly cumbersome. You
need to write the identifier that is being incremented twice. For simple
identifiers this is rarely a problem, unless you have many identifiers with very
similar names. However, you can use expressions of arbitrary complexity to
designate the value being incremented, as in the following example:

items[(index + 1) % 32] = items[(index + 1) % 32] + 40;

In these cases, if you needed to write the same expression twice you could
easily introduce a subtle bug. Fortunately, there is a shorthand form that avoids
the duplication:

itemCount += 40;
items[(index + 1) % 32] += 40;

This Shorthand Works for All Arithmetic Operators
var += expression; // var = var + expression
var -= expression; // var = var - expression
var *= expression; // var = var * expression
var /= expression; // var = var / expression
var %= expression; // var = var % expression

 Module 3: Using Value-Type Variables 19

Common Operators

== !=

< > <= >= is

&& || ?:

++

- -

+ - * / %

= *= /= %= += -= <<=
>>= &= ^= |=

• Equality operators

• Relational operators

• Conditional operators

• Increment operator

• Decrement operator

• Arithmetic operators

• Assignment operators

ExampleCommon Operators

Expressions are constructed from operands and operators. The operators of an
expression indicate which operations to apply to the operands.

Examples of operators include the concatenation and addition operator (+), the
subtraction operator (-), the multiplication operator (*), and the division
operator (/). Examples of operands include literals, fields, local variables, and
expressions.

Common Operators
Some of the most common operators used in C# are described in the following
table.

Type Description

Assignment operators Assign values to variables by using a simple assignment.

For the assignment to succeed, the value on the right side
of the assignment must be a type that can be implicitly
converted to the type of the variable on the left side of
the assignment.

Relational logical operators Compare two values.

Logical operators Perform bitwise operations on values.

Conditional operator Selects between two expressions, depending on a
Boolean value.

Increment operator Increases the value of the variable by one.

Decrement operator Decreases the value of the variable by one.

Arithmetic operators Performs standard arithmetic operations.

For more information about the operators available in C#, see “Expressions” in
the C# Language Specification in the Visual Studio.NET Help documents.

20 Module 3: Using Value-Type Variables

Increment and Decrement

n Changing a Value by One Is Very Common

n There Is a Convenient Shorthand

n This Shorthand Exists in Two Forms

itemCount += 1;
itemCount -= 1;
itemCount += 1;
itemCount -= 1;

itemCount++;
itemCount--;
itemCount++;
itemCount--;

++itemCount;
--itemCount;
++itemCount;
--itemCount;

Changing a Value by One is Very Common
You often want to write a statement that increments or decrements a value by
one. You could do this as follows:

itemCount = itemCount + 1;
itemCount = itemCount – 1;

However, as just explained, there is a convenient shorthand for this:

itemCount += 1;
itemCount -= 1;

This shorthand form is the preferred idiomatic way for C# programmers to
increment or decrement a value.

Convenient Shorthand
Incrementing or decrementing a value by one is so common, that this shorthand
method has an even shorter shorthand form!

itemCount++; // itemCount += 1;
itemCount--; // itemCount -= 1;

The ++ operator is called the increment operator and the – operator is called the
decrement operator. You can think of ++ as an operator that changes a value to
its successor and – as an operator that changes a value to its predecessor.

Once again, this shorthand is the preferred idiomatic way for C# programmers
to increment or decrement a value by one.

C++ is called C++ because it was the successor to C!

Note

 Module 3: Using Value-Type Variables 21

This Shorthand Exists in Two Forms
You can use the ++ and – operators in two forms.

1. You can place the operator symbol before the identifier, as shown in the
following examples. This is called the prefix notation.

++itemCount;
--itemCount;

2. You can place the operator symbol after the identifier, as shown in the
following examples. This is called the postfix notation.

itemCount++;
itemCount--;

In both cases, the itemCount is incremented (for ++) or decremented (for --) by
one. So why have two notations? To answer this question, you first need to
understand assignment in more detail:

An important feature of C# is that assignment is an operator. This means that
besides assigning a value to a variable, an assignment expression itself has a
value, or outcome, which is the value of the variable after the assignment has
taken place. In most statements the value of the assignment expression is
discarded, but it can be used in a larger expression, as in the following example:

int itemCount = 0;
Console.WriteLine(itemCount = 2); // Prints 2
Console.WriteLine(itemCount = itemCount + 40); // Prints 42

Compound assignment is also an assignment. This means that a compound
assignment expression, besides assigning a value to a variable, also has a
value— an outcome itself. Again, in most statements the value of the compound
assignment expression is discarded, but it can be used in a larger expression, as
in the following example:

int itemCount = 0;
Console.WriteLine(itemCount += 2); // Prints 2
Console.WriteLine(itemCount -= 2); // Prints 0

Increment and decrement are also assignments. This means, for example, that
an increment expression, besides incrementing a variable by one, also has a
value, an outcome itself. Again, in most statements the value of the increment
expression is discarded, but again it can be used in a larger expression, as in the
following example:

int itemCount = 42;
int prefixValue = ++itemCount; // prefixValue == 42
int postfixValue = itemCount++; // postfixValue = 44

The value of the increment expression differs depending on whether you are
using the prefix or postfix version. In both cases itemCount is incremented.
That is not the issue. The issue is what is the value of the increment expression.
The value of a prefix increment/decrement is the value of the variable before
the increment/decrement takes place. The value of a postfix
increment/decrement is the value of the variable after the increment/decrement
takes place.

22 Module 3: Using Value-Type Variables

Operator Precedence

n Operator Precedence and Associativity

l Except for assignment operators, all binary operators are
left-associative

l Assignment operators and conditional operators are
right-associative

Operator Precedence
When an expression contains multiple operators, the precedence of the
operators controls the order in which the individual operators are evaluated. For
example, the expression x + y * z is evaluated as x + (y * z) because the
multiplicative operator has higher prec edence than the additive operator. For
example, an additive-expression consists of a sequence of multiplicative-
expressions separated by + or - operators, thus giving the + and - operators
lower precedence than the *, /, and % operators.

Associativity
When an expression contains the same operator many times, the associativity
controls the order in which the operators are performed. For example, x + y + z
is evaluated as (x + y) + z. This is particularly important for assignment
operators. For example, x = y = z is evaluated as x = (y = z).

n Except for the assignment operators, all binary operators are left-associative,
meaning that operations are performed from left to right.

n The assignment operators and the conditional operator (?:) are right-
associative, meaning that operations are performed from right to left.

You can control precedence and associativity by using parentheses. For
example, x + y * z first multiplies y by z and then adds the result to x, but
(x + y) * z first adds x and y and then multiplies the result by z.

 Module 3: Using Value-Type Variables 23

The following table summarizes operators in order of precedence, from highest
to lowest.

Category Operators

Primary (x) x.y f(x) a[x] x++ x-- new

typeof sizeof checked unchecked

Unary + - ! ~ ++x --x (T)x

Multiplicative * / %

Additive + -

Shift << >>

Relational < > <= >= is

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment = *= /= %= += -= <<= >>= &= ^= |=

24 Module 3: Using Value-Type Variables

u Creating User-Defined Data Types

n Enumeration Types

n Structure Types

In this section, you will learn how to create user-defined enumeration (enum)
and structure (struct) data types.

 Module 3: Using Value-Type Variables 25

Enumeration Types

n Defining an Enumeration Type

n Using an Enumeration Type

n Displaying an Enumeration Variable

enum Color { Red, Green, Blue }enum Color { Red, Green, Blue }

Color colorPalette = Color.Red; Color colorPalette = Color.Red;

Console.WriteLine(“{0}”,colorPalette); // Displays Red Console.WriteLine(“{0}”,colorPalette); // Displays Red

Enumerators are useful when a variable can only have a specific set of values.

Defining an Enumeration Type
To declare an enumeration, use the enum keyword followed by the enum
variable name and initial values. For example, the following enumeration
defines three integer constants, called enumerator values.

enum Color { Red, Green, Blue }

By default, enumerator values start from 0. In the preceding example, Red has a
value of 0, Green has a value of 1, and Blue has a value of 2.

You can initialize an enumeration by specifying integer literals.

26 Module 3: Using Value-Type Variables

Using an Enumeration Type
You can declare a variable colorPalette of Color type by using the following
syntax:

Color colorPalette; // Declare the variable
colorPalette = Color.Red; // Set value

- Or -

colorPalette = (Color)0; // Type casting int to Color

Displaying an Enumeration Value
To display an enumeration value in readable format, use the following
statement:

Console.WriteLine(“{0}”,colorPalette);

Alternatively, you can use the format method as shown in the following
example:

 Console.WriteLine(colorPalette.Format());

 Module 3: Using Value-Type Variables 27

Structure Types

n Defining a Structure Type

n Using a Structure Type

Employee companyEmployee;
companyEmployee.firstName = "Joe";
companyEmployee.age = 23;

Employee companyEmployee;
companyEmployee.firstName = "Joe";
companyEmployee.age = 23;

public struct Employee
{

string firstName;
int age;

}

public struct Employee
{

string firstName;
int age;

}

You can use structures to create objects that behave like built- in value types.
Because structs are stored inline and are not heap allocated, there is less
garbage collection pressure on the system than there is with classes.

In the .NET Framework, simple data types such as int, float, and double are all
built-in structures.

Defining a Structure Type
You can use a structure to group together several arbitrary types, as shown in
the following example:

public struct Employee
{
 string firstName;
 int age;
}

This code defines a new type called Employee that consists of two elements:
first name and age.

Using a Structure Type
To access elements inside the struct, use the following syntax:

Employee companyEmployee; // Declare variable
companyEmployee.firstName = "Joe" // Set value
companyEmployee.age = 23;

28 Module 3: Using Value-Type Variables

u Converting Data Types

n Implicit Data Type Conversion

n Explicit Data Type Conversion

In C#, there are two types of conversion:

n Implicit data type conversion

n Explicit data type conversion

You will see examples of how to perform both implicit and explicit data
conversion in this section.

 Module 3: Using Value-Type Variables 29

Implicit Data Type Conversion

n To Convert Int to Long:

n Implicit Conversions Cannot Fail

l May lose precision, but not magnitude

using System;
class Test
{

static void Main()
{

int intValue = 123;
long longValue = intValue;
Console.WriteLine("(long) {0} = {1}", intValue,

ÊlongValue);
}

}

using System;
class Test
{

static void Main()
{

int intValue = 123;
long longValue = intValue;
Console.WriteLine("(long) {0} = {1}", intValue,

ÊlongValue);
}

}

Converting from an int data type to a long data type is implicit. This conversion
always succeeds, and it never results in a loss of information. The following
example shows how to convert the variable intValue from an int to a long:

using System;
class Test
{
 static void Main()
 {
 int intValue = 123;
 long longValue = intValue;
 Console.WriteLine("(long) {0} = {1}", intValue,
ÊlongValue);
 }
}

30 Module 3: Using Value-Type Variables

Explicit Data Type Conversion

n To Do Explicit Conversions, Use a Cast Expression:

using System;
class Test
{

static void Main()
{

long longValue = Int64.MaxValue;
int intValue = (int) longValue;
Console.WriteLine("(int) {0} = {1}", longValue,

ÊintValue);
}

}

using System;
class Test
{

static void Main()
{

long longValue = Int64.MaxValue;
int intValue = (int) longValue;
Console.WriteLine("(int) {0} = {1}", longValue,

ÊintValue);
}

}

You can convert variable types explicitly by using a cast expression. The
following example shows how to convert the variable longValue from a long
data type to an int data type by using a cast expression:

using System;
class Test
{
 static void Main()
 {
 long longValue = Int64.MaxValue;
 int intValue = (int) longValue;
 Console.WriteLine("(int) {0} = {1}", longValue,
ÊintValue);
 }
}

Because an overflow occurs in this example, the output is as follows:

(int) 9223372036854775807 = -1

 Module 3: Using Value-Type Variables 31

To avoid such a situation, you can use the checked statement to raise an
exception when a conversion fails, as follows:

using System;
class Test
{
 static void Main()
 {
 checked
 {
 long longValue = Int64.MaxValue;
 int intValue = (int) longValue;
 Console.WriteLine("(int) {0} = {1}", longValue,
ÊintValue);
 }
 }
}

32 Module 3: Using Value-Type Variables

Lab 3: Creating and Using Types

Objectives
After completing this lab, you will be able to:

n Create new data types.

n Define and use variables.

Prerequisites
Before working on this lab, you should be familiar with the following:

n The Common Type System

n Value-type variables in C#

Scenario
In Exercise 1, you will write a program that creates a simple enum type and
then sets and prints the values by us ing the Console.WriteLine statement.

In Exercise 2, you will write a program that uses the enum type declared in
Exercise 1 in a struct .

If time permits, you will add input/output functionality to the program you
wrote in Exercise 2.

Starter and Solution Files
There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab03\Starter folder and the solution files are in the
install folder\Labs\Lab03\Solution folder.

Estimated time to complete this lab: 60 minutes

 Module 3: Using Value-Type Variables 33

Exercise 1
Creating an enum Type

In this exercise, you will create an enumerated type for representing different
types of bank accounts (checking and savings). You will create two variables
by using this enum type, and set the values of the variables to Checking and
Deposit. You will then print the values of the variables by using the
System.Console.WriteLine function.

å To create an enum type

1. Open the Enum.cs file in the install folder\Labs\Lab03\Starter\BankAccount
folder.

2. Add an enum called AccountType before the class definition as follows:

public enum AccountType { Checking, Deposit }

This enum will contain Checking and Deposit types.

3. Declare two variables of type AccountType in Main as follows:

AccountType goldAccount;
AccountType platinumAccount;

4. Set the value of the first variable to Checking and the value of the other
variable to Deposit as follows:

goldAccount = AccountType.Checking;
platinumAccount = AccountType.Deposit;

5. Add two Console.WriteLine statements to print the value of each variable
as follows:

Console.WriteLine("The Customer Account Type is
{0}",goldAccount);
Console.WriteLine("The Customer Account Type is
{0}",platinumAccount);

6. Compile and run the program.

34 Module 3: Using Value-Type Variables

Exercise 2
Creating and Using a Struct Type

In this exercise, you will define a struct that can be used to represent a bank
account. You will use variables to hold the account number (a long), the
account balance (a decimal), and the account type (the enum that you created
in Exercise 1). You will create a struct type variable, populate the struct with
some sample data, and print the result.

å To create a struct type

1. Open the Struct.cs file in the install folder\Labs\Lab03\Starter\StructType
folder.

2. Add a public struct called BankAccount that contains the following fields.

Type Variable

public long

public decimal

public AccountType

accNo

accBal

accType

3. Declare a variable goldAccount of type BankAccount in Main.

BankAccount goldAccount;

4. Set the accType, accBal, and accNo fields of the variable goldAccount.

goldAccount.accType = AccountType.Checking;
goldAccount.accBal = (decimal)3200.00;
goldAccount.accNo = 123;

5. Add Console.WriteLine statements to print the value of each element in the
struct variable.

Console.WriteLine("Acct Number {0}", goldAccount.accNo);
Console.WriteLine("Acct Type {0}", goldAccount.accType);
Console.WriteLine("Acct Balance ${0}",goldAccount.accBal);

6. Compile and run the program.

 Module 3: Using Value-Type Variables 35

If Time Permits
Adding Input/Output functionality

In this exercise, you will modify the code written in Exercise 2. Instead of using
the account number 123, you will prompt the user to enter the account number.
You will use this number to print the account summary.

å To add input/output functionality

1. Open the StructType.cs file in the install folder\Labs\Lab03\Starter\Optional
folder.

2. Add a Console.Write statement to prompt the user to enter the account
number.

Console.Write("Enter account number: ");

3. Read the account number by using a Console.ReadLine statement. Assign
this value to goldAccount.accNo.

goldAccount.accNo = long.Parse(Console.ReadLine());

You need to use the long.Parse method to convert the string read by
the Console.ReadLine statement into a decimal value before assigning it to
goldAccount.accNo.

4. Compile and run the program.

THIS PAGE INTENTIONALLY LEFT BLANK

Note

36 Module 3: Using Value-Type Variables

Review

n Common Type System

n Naming Variables

n Using Built-in Data Types

n Creating User-Defined Data Types

n Converting Data Types

1. What is the Common Type System?

2. Can a value type be null?

3. Can you use uninitialized variables in C#? Why?

4. Can there be loss of magnitude as a result of an implicit conversion?

Contents

Overview 1

Introduction to Statements 2

Using Selection Statements 6

Using Iteration Statements 17

Using Jump Statements 29
Lab 4.1: Using Statements 32

Handling Basic Exceptions 41

Raising Exceptions 51
Lab 4.2: Using Exceptions 62

Review 72

Module 4: Statements
and Exceptions

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1 version
of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 4: Statements and Exceptions 1

Overview

n Introduction to Statements

n Using Selection Statements

n Using Iteration Statements

n Using Jump Statements

n Handling Basic Exceptions

n Raising Exceptions

One of the fundamental skills required to use a programming language is the
ability to write the statements that form the logic of a program in that language.
This module explains how to use some common statements in C#. It also
describes how to implement exception handling in C#.

In particular, this module shows how to throw errors as well as catch them, and
how to use try-finally statement blocks to ensure that an exception does not
cause the program to abort before cleaning up.

After completing this module, you will be able to:

n Describe the different types of control statements.

n Use jump statements.

n Use selection statements.

n Use iteration statements.

n Handle and raise exceptions.

2 Module 4: Statements and Exceptions

u Introduction to Statements

n Statement Blocks

n Types of Statements

A program consists of a sequence of statements. At run time, these statements
are executed one after the other, as they appear in the program, from left to
right and from top to bottom. In this section, you will learn how to group a set
of statements together in C#. You will also learn about the different types of
statements that are available in the C# language.

 Module 4: Statements and Exceptions 3

Statement Blocks

n Use Braces As Block Delimiters

n A Block and Its Parent
Block Cannot Have a
Variable with the Same
Name

n Sibling Blocks Can Have
Variables with the Same
Name

{

// code

}

{

// code

}
{

int i;

...

{

int i;

...

}

}

{

int i;

...

{

int i;

...

}

}

{

int i;

...

}

...

{

int i;

...

}

{

int i;

...

}

...

{

int i;

...

}

When developing C# applications, you need to group statements together just as
you do in other programming languages. To do so, you use the syntax of
languages such as C, C++, and Java, which means that you enclose groups of
statements in braces: { and }. Yo u do not use keyword matched delimiters such
as the If ... End If of Microsoft® Visual Basic ® for grouping statements.

Grouping Statements into Blocks
A group of statements enclosed between braces is referred to as a block. A
block can contain a single statement or another block that is nested within it.

Each block defines a scope. A variable that is declared in a block is called a
local variable. The scope of a local variable extends from its declaration to the
right brace that ends its enclosing block. It is good practice to declare a variable
in the innermost block possible because the restricted visibility of the variable
helps to make the program clearer.

4 Module 4: Statements and Exceptions

Using Variables in Statement Blocks
In C#, you cannot declare a variable in an inner block with the same name as a
variable in an outer block. For example, the following code is not allowed:

int i;
{
 int i; // Error: i already declared in parent block
 ...
}

However, you can declare variables with the same name in sibling blocks.
Sibling blocks are blocks that are enclosed by the same parent block and are
nested at the same level. The following is an example:

{
 int i;
 ...
}
...
{
 int i;
 ...
}

You can declare variables anywhere in a statement block. Given this freedom,
you can easily follow the recommendation of initializing a variable at the point
of declaration.

 Module 4: Statements and Exceptions 5

Types of Statements

Selection Statements
The if and switch statements

Selection Statements
The if and switch statements

Iteration Statements
The while, do, for, and foreach statements

Iteration Statements
The while, do, for, and foreach statements

Jump Statements
The goto, break, and continue statements

Jump Statements
The goto, break, and continue statements

As the complexity of the problem being solved by a program increases, so does
the complexity of the logic of the program. Consequently, the program requires
structured flow control, which you can achieve by using higher-level constructs
or statements. These statements can be grouped into the following categories:

n Selection statements

The if and switch statements are known as selection statements. They make
choices based on the value of expressions and selectively execute statements
based on those choices.

n Iteration statements

The while, do, for, and foreach statements execute repeatedly while a
specific condition is true. They are also known as looping statements. Each
of these statements is appropriate for a certain style of iteration.

n Jump statements

The goto, break, and continue statements are used to unconditionally
transfer control to another statement.

6 Module 4: Statements and Exceptions

u Using Selection Statements

n The if Statement

n Cascading if Statements

n The switch Statement

n Quiz: Spot the Bugs

The if and switch statements are known as selection statements. They make
choices based on the value of expressions and selectively execute statements
based on those choices. In this section, you will learn how to use selection
statements in C# programs.

 Module 4: Statements and Exceptions 7

The if Statement

n Syntax:

n No Implicit Conversion from int to bool

int x;
...
if (x) ... // Must be if (x != 0) in C#
if (x = 0) ... // Must be if (x == 0) in C#

int x;
...
if (x) ... // Must be if (x != 0) in C#
if (x = 0) ... // Must be if (x == 0) in C#

if (Boolean-expression)
first-embedded-statement

else
second-embedded-statement

if (Boolean-expression)
first-embedded-statement

else
second-embedded-statement

The if statement is the primary decision-making statement. It can be coupled
with an optional else clause, as shown:

if (Boolean-expression)
 first-embedded-statement
else
 second-embedded-statement

The if statement evaluates a Boolean expression to determine the course of
action to follow. If the Boolean expression evaluates to true, the control is
transferred to the first embedded statement. If the Boolean expression evaluates
to false, and there is an else clause, the control is transferred to the second
embedded statement.

8 Module 4: Statements and Exceptions

Examples
You can use a simple embedded if statement such as the following:

if (number % 2 == 0)
 Console.WriteLine("even");

Although braces are not required in embedded statements, many style guides
recommend using them because they make your code less error prone and
easier to maintain. You can rewrite the previous example with braces as follows:

if (number % 2 == 0) {
 Console.WriteLine("even");
}

You can also use an if statement block such as the following:

if (minute == 60) {
 minute = 0;
 hour++;
}

Converting Integers to Boolean Values
Implicit conversion from an integer to a Boolean value is a potential source of
bugs. To avoid such conversion-related bugs, C# does not support integer to
Boolean value conversion. This is a significant difference between C# and other
similar languages.

For example, the following statements, which at worst generate warnings in
C and C++, result in compilation errors in C#:

int x;
...
if (x) ... // Must be x != 0 in C#
if (x = 0) ... // Must be x == 0 in C#

 Module 4: Statements and Exceptions 9

Cascading if Statements

enum Suit { Clubs, Hearts, Diamonds, Spades };
Suit trumps = Suit.Hearts;
if (trumps == Suit.Clubs)

color = "Black";
else if (trumps == Suit.Hearts)

color = "Red";
else if (trumps == Suit.Diamonds)

color = "Red";
else

color = "Black";

enum Suit { Clubs, Hearts, Diamonds, Spades };
Suit trumps = Suit.Hearts;
if (trumps == Suit.Clubs)

color = "Black";
else if (trumps == Suit.Hearts)

color = "Red";
else if (trumps == Suit.Diamonds)

color = "Red";
else

color = "Black";

You can handle cascading if statements by using an else if statement. C# does
not support the else if statement but forms an else if-type statement from an else
clause and an if statement, as in C and C++. Languages such as Visual Basic
support cascading if statements by using an else if statement between the initial
if statement and the final else statement.

By using the else if construct, you can have any number of branches. However,
the statements controlled by a cascading if statement are mutually exclusive, so
that only one statement from the set of else if constructs is executed.

Nesting if Statements
Nesting one if statement within another if statement creates a potential
ambiguity called a dangling else, as shown in the following example:

if (percent >= 0 && percent <= 100)
 if (percent > 50)
 Console.WriteLine("Pass");
else
 Console.WriteLine("Error: out of range");

10 Module 4: Statements and Exceptions

The else is indented to the same column as the first if. When you read the code,
it appears that the else does not associate with the second if. This is dangerously
misleading. Regardless of the layout, the compiler binds an else clause to its
nearest if statement. This means that the compiler will interpret the above code
as follows:

if (percent >= 0 && percent <= 100)
{
 if (percent > 50)
 Console.WriteLine("Pass");
 else
 Console.WriteLine("Error: out of range");
}

One way you can make the else associate with the first if is to use a block, as
follows:

if (percent >= 0 && percent <= 100) {
 if (percent > 50)
 Console.WriteLine("Pass");
} else {
 Console.WriteLine("Error: out of range");
}

It is best to format cascading if statements with proper indentation;
otherwise, long decisions quickly become unreadable and trail off the right
margin of the page or screen.

Tip

 Module 4: Statements and Exceptions 11

The switch Statement

n Use switch Statements for Multiple Case Blocks

n Use break Statements to Ensure That No Fall Through
Occurs

switch (trumps) {
case Suit.Clubs :
case Suit.Spades :

color = "Black"; break;
case Suit.Hearts :
case Suit.Diamonds :

color = "Red"; break;
default:

color = "ERROR"; break;
}

switch (trumps) {
case Suit.Clubs :
case Suit.Spades :

color = "Black"; break;
case Suit.Hearts :
case Suit.Diamonds :

color = "Red"; break;
default:

color = "ERROR"; break;
}

The switch statement provides an elegant mechanism for handling complex
conditions that would otherwise require nested if statements. It consists of
multiple case blocks, each of which specifies a single constant and an
associated case label. You cannot group a collection of constants together in a
single case label. Each constant must have its own case label.

A switch block can contain declarations. The scope of a local variable or
constant that is declared in a switch block extends from its declaration to the
end of the switch block, as is shown in the example on the slide.

Execution of switch Statements
A switch statement is executed as follows:

1. If one of the constants specified in a case label is equal to the value of the
switch expression, control is transferred to the statement list following the
matched case label.

2. If no case label constant is equal to the value of the switch expression, and
the switch statement contains a default label, control is transferred to the
statement list following the default label.

3. If no case label constant is equal to the value of the switch expression, and
the switch statement does not contain a default label, control is transferred
to the end of the switch statement.

12 Module 4: Statements and Exceptions

You can use a switch statement to evaluate only the following types of
expressions: any integer type, a char, an enum, or a string. You can also
evaluate other expression types by using the switch statement, as long as there
is exactly one user-defined explicit conversion from the disallowed type to one
of the allowed types.

Unlike in Java, C, or C++, the governing type of a switch statement in
C# can be a string. With a string expression, the value null is permitted as a
case label constant.

For more information about conversion operators, search for “conversion
operators” in the .NET Framework SDK Help documents.

Grouping Constants
To group several constants together, repeat the keyword case for each constant,
as shown in the following example:

enum MonthName { January, February, ..., December };
MonthName current;
int monthDays;
...
switch (current) {
case MonthName.February :
 monthDays = 28;
 break;
case MonthName.April :
case MonthName.June :
case MonthName.September :
case MonthName.November :
 monthDays = 30;
 break;
default :
 monthDays = 31;
 break;
}

You use the case and default labels only to provide entry points for the control
flow of the program based on the value of the switch expression. They do not
alter the control flow of the program.

The values of the case label constants must be unique. This means that you
cannot have two constants that have the same value. For example, the following
example will generate a compile-time error:

switch (trumps) {
case Suit.Clubs :
case Suit.Clubs : // Error: duplicate label
 ...
default :
default : // Error: duplicate label again
}

Note

 Module 4: Statements and Exceptions 13

Using break in switch Statements
Unlike in Java, C, or C++, C# statements associated with one or more case
labels cannot silently fall through or continue to the next case label. A silent fall
through occurs when execution proceeds without generating an error. In other
words, you must ensure that the last statement associated with a set of case
labels does not allow the control flow to reach the next set of case labels.

Statements that help you to fulfill this requirement, known as the no fall
through rule, are the break statement (probably the most common), the goto
statement (very rare), the return statement, the throw statement, and an infinite
loop.

The following example will generate a compile-time error because it breaks the
no fall through rule:

switch (days % 10) {
case 1 :
 if (days / 10 != 1) {
 suffix = "st";
 break;
 }
 // Error: fall through here
case 2 :
 if (days / 10 != 1) {
 suffix = "nd";
 break;
 }
 // Error: fall through here
case 3 :
 if (days / 10 != 1) {
 suffix = "rd";
 break;
 }
 // Error: fall through here
default :
 suffix = "th";
 // Error: fall through here
}

14 Module 4: Statements and Exceptions

You can fix the error in this example by rewriting the code as follows:

switch (days % 10) {
case 1 :
 suffix = (days / 10 == 1) ? "th" : "st";
 break;
case 2 :
 suffix = (days / 10 == 1) ? "th" : "nd";
 break;
case 3 :
 suffix = (days / 10 == 1) ? "th" : "rd";
 break;
default :
 suffix = "th";
 break;
}

Using goto in switch Statements
In C#, unlike in Java, C, or C++, you can use a case label and a default label as
the destination of a goto statement. You can use a goto statement this way to
achieve the fall through effect, if necessary. For example, the following code
will compile without any problem:

switch (days % 10) {
case 1 :
 if (days / 10 != 1) {
 suffix = "st";
 break;
 }
 goto case 2;
case 2 :
 if (days / 10 != 1) {
 suffix = "nd";
 break;
 }
 goto case 3;
case 3 :
 if (days / 10 != 1) {
 suffix = "rd";
 break;
 }
 goto default;
default :
 suffix = "th";
 break;
}

Because of the no fall through rule, you can rearrange sections of a switch
statement without affecting the overall behavior of the switch statement.

 Module 4: Statements and Exceptions 15

Quiz: Spot the Bugs

if number % 2 == 0 ...if number % 2 == 0 ...

if (percent < 0) || (percent > 100) ...if (percent < 0) || (percent > 100) ...

if (minute == 60);
minute = 0;

if (minute == 60);
minute = 0;

switch (trumps) {
case Suit.Clubs, Suit.Spades :

color = "Black";
case Suit.Hearts, Suit.Diamonds :

color = "Red";
default :

...
}

switch (trumps) {
case Suit.Clubs, Suit.Spades :

color = "Black";
case Suit.Hearts, Suit.Diamonds :

color = "Red";
default :

...
}

222

333

444

111

In this quiz, you can work with a partner to spot the bugs in the code on the
slide. To see the answers to this quiz, turn the page.

16 Module 4: Statements and Exceptions

Answers
1. The if statement is not in parentheses. The C# compiler traps this bug as a

compile-time error. The corrected code is as follows:

if (number % 2 == 0) ...

2. The if statement as a whole is not fully parenthesized. The C# compiler
traps this bug as a compile-time error. The corrected code is as follows:

if ((percent < 0) || (percent > 100)) ...

3. The if statement has a single semicolon as its embedded statement. A single
semicolon is called an empty statement in the C# Language Reference
document and a null statement in the C# compiler diagnostic messages. It
does nothing, but it is allowed. The layout of the statements does not affect
how the compiler parses the syntax of the code. Hence, the compiler reads
the code as:

if (minute == 60)
 ;
minute = 0;

The C# compiler traps this bug as a compile-time warning.

4. The following errors are present:

a. There is more than one constant in the same case label. The C# compiler
traps this bug as a compile-time error.

b. The statements associated with each case fall through to the next case.
The C# compiler traps this bug as a compile-time error.

c. The keyword default has been misspelled. Unfortunately, this is still
allowable code, as it creates a simple identifier label. The C# compiler
traps this bug as two compile-time warnings: one indicating unreachable
code, and another indicating that the default: label has not been used.

 Module 4: Statements and Exceptions 17

u Using Iteration Statements

n The while Statement

n The do Statement

n The for Statement

n The foreach Statement

n Quiz: Spot the Bugs

The while , do, for, and foreach statements are known as iteration statements.
You use them to perform operations while a specific condition is true. In this
section, you will learn how to use iteration statements in C# programs.

18 Module 4: Statements and Exceptions

The while Statement

n Execute Embedded Statements Based on Boolean Value

n Evaluate Boolean Expression at Beginning of Loop

n Execute Embedded Statements While Boolean Value Is
True

int i = 0;
while (i < 10) {

Console.WriteLine(i);
i++;

}

int i = 0;
while (i < 10) {

Console.WriteLine(i);
i++;

}

0 1 2 3 4 5 6 7 8 9

The while statement is the simplest of all iteration statements. It repeatedly
executes an embedded statement while a Boolean expression is true. Note that
the expression that the while statement evaluates must be Boolean, since C#
does not support implicit conversion fr om an integer to a Boolean value.

Flow of Execution
A while statement is executed as follows:

1. The Boolean expression controlling the while statement is evaluated.

2. If the Boolean expression yields true, control is transferred to the embedded
statement. When control reaches the end of the embedded statement, control
is implicitly transferred to the beginning of the while statement, and the
Boolean expression is re-evaluated.

3. If the Boolean expression yields false, control is transferred to the end of the
while statement. Therefore, while the controlling Boolean expression is true,
the program repeatedly executes the embedded statement.

The Boolean expression is tested at the start of the while loop. Therefore, it is
possible that the embedded statement may never be executed at all.

 Module 4: Statements and Exceptions 19

Examples
You can use a simple embedded statement as shown in the following example:

while (i < 10)
 Console.WriteLine(i++);

When using embedded statements, you do not need to use braces. Nevertheless,
many style guides recommend using them because they simplify maintenance.
You can rewrite the previous example with braces as follows:

while (i < 10) {
 Console.WriteLine(i++);
}
You can also use a while statement block as shown in the following example:

while (i < 10) {
 Console.WriteLine(i);
 i++;
}

Despite being the simplest iteration statement, the while statement poses
potential problems for developers who are not careful. The classic syntax of a
while statement is as follows:

initializer
while (Boolean-expression) {
 embedded-statement
 update
}

It is easy to forget the update part of the while block, particularly if your
attention is focused on the Boolean expression.

Tip

20 Module 4: Statements and Exceptions

The do Statement

n Execute Embedded Statements Based on Boolean Value

n Evaluate Boolean Expression at End of Loop

n Execute Embedded Statements While Boolean Value Is
True

int i = 0;
do {

Console.WriteLine(i);
i++;

} while (i < 10);

int i = 0;
do {

Console.WriteLine(i);
i++;

} while (i < 10);

0 1 2 3 4 5 6 7 8 9

A do statement is always coupled with a while statement. It is similar to a while
statement, except that the Boolean expression that determines whether to
continue or exit the loop is evaluated at the end of the loop rather than at the
start. This means that, unlike a while statement, which iterates zero or more
times, a do statement iterates one or more times.

Therefore, a do statement always executes its embedded statement at least once.
This behavior is particularly useful when you need to validate input before
allowing program execution to proceed.

Flow of Execution
A do statement is executed as follows:

1. Control is transferred to the embedded statement.

2. When control reaches the end of the embedded statement, the Boolean
expression is evaluated.

3. If the Boolean expression yields true, control is transferred to the beginning
of the do statement.

4. If the Boolean expression yields false, control is transferred to the end of the
do statement.

 Module 4: Statements and Exceptions 21

Examples
You can use a simple embedded do statement as shown in the following
example:

do
 Console.WriteLine(i++);
while (i < 10);

Just as with the if and while statements, you do not need to use braces in
embedded do statements, but it is a good practice to use them.

You can also use a do statement block as follows:

do {
 Console.WriteLine(i);
 i++;
} while (i < 10);

In all cases, you must end a do statement with a semicolon, as follows:

do {
 Console.WriteLine(i++);
} while (i < 10) // Error if no ; here

22 Module 4: Statements and Exceptions

The for Statement

n Place Update Information at the Start of the Loop

n Variables in a for Block are Scoped Only Within the Block

n A for Loop Can Iterate Over Several Values

for (int i = 0; i < 10; i++) {
Console.WriteLine(i); }

for (int i = 0; i < 10; i++) {
Console.WriteLine(i); }

0 1 2 3 4 5 6 7 8 9

for (int i = 0; i < 10; i++)
Console.WriteLine(i);

Console.WriteLine(i); // Error: i is no longer in scope

for (int i = 0; i < 10; i++)
Console.WriteLine(i);

Console.WriteLine(i); // Error: i is no longer in scope

for (int i = 0, j = 0; ... ; i++, j++)for (int i = 0, j = 0; ... ; i++, j++)

When using while statements, developers often forget to update the control
variable. The following code provides an example of this mistake:

int i = 0;
while (i < 10)
 Console.WriteLine(i); // Mistake: no i++

This mistake occurs because the developer’s attention is focused on the body of
the while statement and not on the update. Also, the while keyword and the
update code may be very far apart.

You can minimize these errors by using the for statement. The for statement
overcomes the problem of omitted updates by moving the update code to the
beginning of the loop, where it is harder to overlook. The syntax of the for
statement is as follows:

for (initializer ; condition ; update)
 embedded-statement

In a for statement, the update code precedes the embedded
statement. Nevertheless, the update code is executed by the runtime after the
embedded statement.

Important

 Module 4: Statements and Exceptions 23

The syntax of the for statement is essentially identical to that of the while
statement, as shown in the following example:

initializer
while (condition) {
 embedded-statement
 update
}

As with all iteration statements, the condition in a for block must be a Boolean
expression that serves as a continuation condition and not a termination
condition.

Examples
The initializer, condition, and update components of a for statement are
optional. However, an empty condition is considered implicitly true and can
easily cause an infinite loop. The following code provides an example:

for (;;) {
 Console.WriteLine("Help ");
 ...
}

As with the while and do statements, you can use a simple embedded statement
as shown in the following example:

for (int i = 0; i < 10; i++)
 Console.WriteLine(i);

You can also use a for statement block:

for (int i = 0; i < 10; i++) {
 Console.WriteLine(i);
 Console.WriteLine(10 – i);
}

24 Module 4: Statements and Exceptions

Declaring Variables
One subtle difference between the while statement and the for statement is that
a variable declared in the initializer code of a for statement is scoped only
within the for block. For example, the following code generates a compile-time
error:

for (int i = 0; i < 10; i++)
 Console.WriteLine(i);
Console.WriteLine(i); // Error: i is no longer in scope

In conjunction with this rule, it is important to note that you cannot declare a
variable in a for block with the same name as a variable in an outer block. This
rule also applies to variables declared in the initializer code of a for statement.
For example, the following code generates a compile-time error:

int i;
for (int i = 0; i < 10; i++) ...

However, the following code is allowed:

for (int i = 0; i < 10; i++) ...
for (int i = 0; i < 20; i++) ...

Further, you can initialize two or more variables in the initializer code of a for
statement, as follows:

for (int i = 0, j = 0; ... ; ...)

However, the variables must be of the same type. Therefore, the following is
not permitted:

for (int i = 0, long j = 0; i < 10; i++)
 ...

You can also use two or more expression statements separated by a comma or
commas in the update code of a for statement, as follows:

for (int i = 0, j = 0; ... ; i++, j++)

The for statement is best suited to situations in which the number of iterations
is known. They are particularly well suited to modifying each element of an
array.

 Module 4: Statements and Exceptions 25

The foreach Statement

n Choose the Type and Name of the Iteration Variable

n Execute Embedded Statements for Each Element of the
Collection Class

ArrayList numbers = new ArrayList();
for (int i = 0; i < 10; i++) {

numbers.Add(i);
}

foreach (int number in numbers) {
Console.WriteLine(number);

}

ArrayList numbers = new ArrayList();
for (int i = 0; i < 10; i++) {

numbers.Add(i);
}

foreach (int number in numbers) {
Console.WriteLine(number);

}

0 1 2 3 4 5 6 7 8 9

Collections are software entities whose purpose is to collect other software
entities, much as a ledger can be thought of as a collection of bank accounts or
a house as a collection of rooms.

The Microsoft .NET Framework provides a simple collection class called
ArrayList. You can use ArrayList to create a collection variable and add
elements to the collection. For example, consider the following code:

Using System.Collection;
...
ArrayList numbers = new ArrayList();
for (int i = 0; i < 10; i++) {
 numbers.Add(i);
}

You can write a for statement that accesses and prints each collection element
from this collection class in turn:

for (int i = 0; i < numbers.Count; i++) {
 int number = (int)numbers[i];
 Console.WriteLine(number);
}

This for statement contains many individual statements that in combination
implement the mechanism used to iterate through each collection element of
numbers. However, this solution is not easy to implement and is prone to error.

To address this problem, C# provides the foreach statement, which allows you
to iterate through a collection without using multiple statements. Rather than
explicitly extracting each element from a collection by using syntax specific to
the particular collection, you use the foreach statement to approach the problem
in the opposite way. You effectively instruct the collection to present its
elements one at a time. Instead of taking the embedded statement to the
collection, the collection is taken to the embedded statement.

26 Module 4: Statements and Exceptions

By using the foreach statement, you can rewrite the previous for statement as
follows:

foreach (int number in numbers)
 Console.WriteLine(number);

The foreach statement executes the embedded statement for each element of
the collection class numbers. You only need to choose the type and name of the
iteration variable, which in this case are int and number, respectively.

You cannot modify the elements in a collection by using a foreach statement
because the iteration variable is implicitly readonly. For example:

foreach (int number in numbers) {
 number++; // Compile-time error
 Console.WriteLine(number);
}

You can use a foreach statement to iter ate through the values of an
enumerator by using the Enum.GetValues() method, which returns an array of
objects.

It is important to be cautious when deciding the type of the foreach iteration
variable. In some circumstances, a wrong iteration variable type might not be
detected until run time. This would cause an error.

Tip

 Module 4: Statements and Exceptions 27

Quiz: Spot the Bugs

for (int i = 0, i < 10, i++)
Console.WriteLine(i);

for (int i = 0, i < 10, i++)
Console.WriteLine(i);

int i = 0;
while (i < 10)

Console.WriteLine(i);

int i = 0;
while (i < 10)

Console.WriteLine(i);

for (int i = 0; i >= 10; i++)
Console.WriteLine(i);

for (int i = 0; i >= 10; i++)
Console.WriteLine(i);

do
...
string s = Console.ReadLine();
guess = int.Parse(s);

while (guess != answer);

do
...
string s = Console.ReadLine();
guess = int.Parse(s);

while (guess != answer);

222

333

444

111

In this quiz, you can work with a partner to spot the bugs in the code on the
slide. To see the answers to this quiz, turn the page.

28 Module 4: Statements and Exceptions

Answers
1. The for statement elements are separated by commas rather than semicolons.

The C# compiler traps this bug as a compile-time error. The corrected code
is as follows:

for (int i = 0; i < 10; i++)
 ...

2. The while statement does not update the continuation expression. It will
loop forever. This bug does not generate a warning or an error at compile
time. The corrected code is as follows:

int i = 0;
while (i < 10) {
 Console.WriteLine(i);
 i++;
}

3. The for statement has a termination rather than a continuation condition. It
will never loop at all. This bug does not generate a warning or an error at
compile time. The corrected code is as follows:

for (int i = 0; i < 10; i++)
 ...

4. The statements between do and while must be grouped together in a block.
The C# compiler traps this bug as a compile-time error. The corrected code
is as follows:

do {
 ...
 string s = Console.ReadLine();
 guess = int.Parse(s);
} while (guess != answer);

 Module 4: Statements and Exceptions 29

u Using Jump Statements

n The goto Statement

n The break and continue Statements

The goto, break , and continue statements are known as jump statements. You
use them to transfer control from one point in the program to another, at any
time. In this section, you will learn how to use jump statements in C# programs.

30 Module 4: Statements and Exceptions

The goto Statement

n Flow of Control Transferred to a Labeled Statement

n Can Easily Result in Obscure “Spaghetti” Code

if (number % 2 == 0) goto Even;
Console.WriteLine("odd");
goto End;
Even:
Console.WriteLine("even");
End:

if (number % 2 == 0) goto Even;
Console.WriteLine("odd");
goto End;
Even:
Console.WriteLine("even");
End:

The goto statement is the most primitive C# jump statement. It transfers control
to a labeled statement. The label must exist and must be in the scope of the goto
statement. More than one goto statement can transfer control to the same label.

The goto statement can transfer control out of a block, but it can never transfer
control into a block. The purpose of this restriction is to avoid the possibility of
jumping past an initialization. The same rule exists in C++ and other languages
as well.

The goto statement and the targeted label statement can be very far apart in the
code. This distance can easily obscure the control-flow logic and is the reason
that most programming guidelines recommend that you do not use goto
statements.

The only situations in which goto statements are recommended are in
switch statements or to transfer control to the outside of a nested loop.

Note

 Module 4: Statements and Exceptions 31

The break and continue Statements

n The break Statement Jumps out of an Iteration

n The continue Statement Jumps to the Next Iteration

int i = 0;
while (true) {

Console.WriteLine(i);
i++;
if (i < 10)

continue;
else

break;
}

int i = 0;
while (true) {

Console.WriteLine(i);
i++;
if (i < 10)

continue;
else

break;
}

A break statement exits the nearest enclosing switch, while, do, for, or
foreach statement. A continue statement starts a new iteration of the nearest
enclosing while, do, for, or foreach statement.

The break and continue statements are not very different from a goto
statement, whose use can easily obscure control-flow logic. For example, you
can rewrite the while statement that is displayed on the slide without using
break or continue as follows:

int i = 0;
while (i < 10) {
 Console.WriteLine(numbers[i]);
 i++;
}

Preferably, you can rewrite the previous code by using a for statement, as
follows:

for (int i = 0; i < 10; i++) {
 Console.WriteLine(numbers[i]);
}

32 Module 4: Statements and Exceptions

Lab 4.1: Using Statements

Objectives
After completing this lab, you will be able to:

n Use statements to control the flow of execution.

n Use looping statements.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Creating variables in C#

n Using common operators in C#

n Creating enum types in C#

Estimated time to complete this lab: 30 minutes

 Module 4: Statements and Exceptions 33

Exercise 1
Converting a Day of the Year into a Month and Day Pair

In this exercise, you will write a program that reads an integer day number
(between 1 and 365) from the console and stores it in an integer variable. The
program will convert this number into a month and a day of the month and then
print the result to the console. For example, entering 40 should result in
“February 9” being displayed. (In this exercise, the complications associated
with leap years are ignored.)

å To read the day number from the console

1. Open the WhatDay1.csproj project in the install folder\
Labs\Lab04\Starter\WhatDay1 folder. The WhatDay class contains a
variable that contains the number of days in each month stored in a
collection. For now, you do not need to understand how this works.

2. Add a System.Console.Write statement to WhatDay.Main that writes a
prompt to the console asking the user to enter a day number between 1 and
365.

3. Add a statement to Main that declares a string variable called line and
initializes it with a line read from the console by the
System.Console.ReadLine method.

4. Add a statement to Main that declares an int variable called dayNum and
initializes it with the integer returned from the int.Parse method.

The complete code should be as follows:

using System;

class WhatDay
{
 static void Main()
 {
 Console.Write("Please enter a day number between 1
Êand 365: ");
 string line = Console.ReadLine();
 int dayNum = int.Parse(line);

 //
 // To do: add code here
 //

 }
 ...
}

5. Save your work.

6. Compile the WhatDay1.cs program and correct any errors. Run the program.

34 Module 4: Statements and Exceptions

å To calculate the month and day pair from a day number

1. Add a statement to Main that declares an int variable called monthNum and
initializes it to zero.

2. An if statement for each month from January to October has been provided
for you. Add similar if statements for the months November and December
to Main.

3. Add an identifier label called End to Main after the last if statement.

4. Add a statement after the End label that declares an uninitialized string
variable called monthName.

5. A switch statement has been partially provided for you after the End label.
The case labels for the months January to October are already present. Add
to the switch statement similar case labels and their contents for the months
November and December. Add a default label to the switch statement. Add
a statement to the default label that assigns the string literal “not done yet”
to the variable monthName.

6. The completed program should be as follows:

using System;

class WhatDay
{
 static void Main()
 {
 Console.Write("Please enter a day number between 1
Êand 365: ");
 string line = Console.ReadLine();
 int dayNum = int.Parse(line);

 int monthNum = 0;

 if (dayNum <= 31) { // January
 goto End;
 } else {
 dayNum -= 31;
 monthNum++;
 }

 if (dayNum <= 28) { // February
 goto End;
 } else {
 dayNum -= 28;
 monthNum++;
 }

 if (dayNum <= 31) { // March
 goto End;
 } else {
 dayNum -= 31;
 monthNum++;
 }

(Code continued on following page.)

 Module 4: Statements and Exceptions 35

 if (dayNum <= 30) { // April
 goto End;
 } else {
 dayNum -= 30;
 monthNum++;
 }

 if (dayNum <= 31) { // May
 goto End;
 } else {
 dayNum -= 31;
 monthNum++;
 }

 if (dayNum <= 30) { // June
 goto End;
 } else {
 dayNum -= 30;
 monthNum++;
 }

 if (dayNum <= 31) { // July
 goto End;
 } else {
 dayNum -= 31;
 monthNum++;
 }

 if (dayNum <= 31) { // August
 goto End;
 } else {
 dayNum -= 31;
 monthNum++;
 }

 if (dayNum <= 30) { // September
 goto End;
 } else {
 dayNum -= 30;
 monthNum++;
 }

 if (dayNum <= 31) { // October
 goto End;
 } else {
 dayNum -= 31;
 monthNum++;
 }

 if (dayNum <= 30) { // November
 goto End;
 } else {
 dayNum -= 30;
 monthNum++;
 }

(Code continued on following page.)

36 Module 4: Statements and Exceptions

 if (dayNum <= 31) { // December
 goto End;
 } else {
 dayNum -= 31;
 monthNum++;
 }

 End:
 string monthName;

 switch (monthNum) {
 case O :
 monthName = "January"; break;
 case 1 :
 monthName = "February"; break;
 case 2 :
 monthName = "March"; break;
 case 3 :
 monthName = "April"; break;
 case 4 :
 monthName = "May"; break;
 case 5 :
 monthName = "June"; break;
 case 6 :
 monthName = "July"; break;
 case 7 :
 monthName = "August"; break;
 case 8 :
 monthName = "September"; break;
 case 9 :
 monthName = "October"; break;
 case 1O :
 monthName = "November"; break;
 case 11 :
 monthName = "December"; break;
 default:
 monthName = "not done yet"; break;
 }

 Console.WriteLine("{0} {1}", dayNum, monthName);
 }
 ...
}

7. Save your work.

 Module 4: Statements and Exceptions 37

8. Compile the WhatDay1.cs program and correct any errors. Run the program.
Verify that the program is working correctly by using the following data.

Day number Month and day

32 February 1

60 March 1

91 April 1

186 July 5

304 October 31

309 November 5

327 November 23

359 December 25

å To calculate the name of the month by using an enum

1. You will now replace the switch statement that determines the month name
from a month number with a more compact mechanism. Declare an enum
type called MonthName and populate it with the names of the twelve
months, starting with January and ending with December.

2. Comment out the entire switch statement.

3. In place of the switch statement, add a statement that declares an enum
MonthName variable called temp. Initialize temp from the monthNum int
variable. You will need the following cast expression:
(MonthName)monthNum

4. Replace the initialization of monthName with the expression
temp.Format()

38 Module 4: Statements and Exceptions

5. The completed program should be as follows:

using System;

enum MonthName
{
 January,
 February,
 March,
 April,
 May,
 June,
 July,
 August,
 September,
 October,
 November,
 December
}

class WhatDay
{
 static void Main()
 {
 Console.Write("Please enter a day number between 1
Êand 365: ");
 string line = Console.ReadLine();
 int dayNum = int.Parse(line);

 int monthNum = 0;

 // 12 if statements, as above

 End:

 MonthName temp = (MonthName)monthNum;
 string monthName = temp.Format();

 Console.WriteLine("{0} {1}", dayNum, monthName);
 }
 ...
}

6. Save your work.

7. Compile the WhatDay1.cs program and correct any errors. Run the program.
Use the preceding table of data to verify that the program is still working
correctly.

 Module 4: Statements and Exceptions 39

å To replace the 12 if statements with one foreach statement

1. You will now replace the 12 statements that calculate the day and month
pairs with one foreach statement. Comment out all 12 if statements. You
will replace these statements in the next steps.

2. Write a foreach statement that iterates through the provided DaysInMonths
collection. To do this, add the following statement:

foreach (int daysInMonth in DaysInMonths) ...

3. Add a block statement as the body of the foreach statement. The contents of
this block will be very similar to an individual commented-out if statement
except that the daysInMonth variable is used instead of the various integer
literals.

4. Comment out the End label above the commented-out switch statement.
Replace the goto statement in the foreach statement with a break statement.

5. The completed program should be as follows:

using System;

enum MonthName { ... }

class WhatDay
{
 static void Main()
 {
 Console.Write("Please enter a day number between 1
Êand 365: ");
 string line = Console.ReadLine();
 int dayNum = int.Parse(line);

 int monthNum = 0;

 foreach (int daysInMonth in DaysInMonths) {
 if (dayNum <= daysInMonth)
 {
 break;
 } else
 {
 dayNum -= daysInMonth;
 monthNum++;
 }
 }
 MonthName temp = (MonthName)monthNum;
 string monthName = temp.Format();

 Console.WriteLine("{0} {1}", dayNum, monthName);
 }
 ...
}

40 Module 4: Statements and Exceptions

6. Save your work.

7. Compile the WhatDay1.cs program and correct any errors. Run the program.
Use the preceding table of data to verify that the program is still working
correctly.

8. Run the program, entering day numbers less than 1 and greater than 365, to
see what happens.

 Module 4: Statements and Exceptions 41

u Handling Basic Exceptions

n Why Use Exceptions?

n Exception Objects

n Using try and catch Blocks

n Multiple catch Blocks

As a developer, you sometimes seem to spend more time checking for errors
and handling them than you do on the core logic of the actual program. You can
address this issue by using system exceptions that are designed for the purpose
of handling errors. In this section, you will learn how to catch and handle
exceptions in C#.

42 Module 4: Statements and Exceptions

Why Use Exceptions?

n Traditional Procedural Error Handling Is Cumbersome

int errorCode;
File source = new File("code.cs");
if (errorCode == -1) goto Failed;
int length = (int)source.Length;
if (errorCode == -2) goto Failed;
char[] contents = new char[length];
if (errorCode == -3) goto Failed;
// Succeeded ...
Failed: ...

int errorCode;
File source = new File("code.cs");
if (errorCode == -1) goto Failed;
int length = (int)source.Length;
if (errorCode == -2) goto Failed;
char[] contents = new char[length];
if (errorCode == -3) goto Failed;
// Succeeded ...
Failed: ...

Error handlingError handling

Core program logicCore program logic

Planning for the unexpected, and recovering if it does happen, is the mark of a
good, robust program. Errors can happen at almost any time during the
compilation or execution of a program.

The core program logic from the slide is as follows:

File source = new File("code.cs");
int length = (int)source.Length;
char[] contents = new char[length];
...

Unfortunately, these core statements are lost in a confusing mass of intrusive
error-handling code. This error-handling code obscures the logic of the program
in a number of ways:

n Program logic and error -handling code become intermixed.

The core program statements lose their conceptual wholeness as they
become intermixed with alternating error-handling code. The program is
then difficult to understand.

n All error code looks alike.

All of the error-checking statements are similar. All of them test the same
error code by using if statements. Also, there is a lot of duplicate code,
which is always a warning sign.

n Error codes are not inherently meaningful.

In this code, a number such as –1 does not have an explicit meaning. It
could represent “Security error: no read permission,” but only the
documentation can tell you what –1 represents. Therefore, integer error
codes are very “programmatic”; they do not describe the errors they
represent.

 Module 4: Statements and Exceptions 43

n Error codes are defined at the method level.

Every method reports its error by setting the error code to a specific value
unique to it. No two methods can use the same value. This means that every
method is coupled to every other method. You can clearly see this coupling
in effect when the integer error codes are replaced by an enumeration, as in
the following code:

enum ErrorCode {
 SecurityError = -1,
 IOError = -2,
 OutOfMemoryError = -3,
 ...
}

This code is better: An identifier such as FileNotFound is certainly more
descriptive than –1. However, when a new named error is added to the
enum, every method that names its errors in the enum will be affected. In
C++, this can easily lead to significant recompilation delays since there is
extremely tight coupling.

n Simple integers have limited descriptive power.

For example, –1 might be documented to mean “Security error: no read
permission,” but –1 cannot also provide the name of the file that you do not
have permission to read.

n Error codes are too easy to ignore.

For example, C programmers almost never check the int returned by the
printf function. A printf is unlikely to fail, but if it does, it returns a
negative integer value (usually –1).

As you can see, you need an alternative to the traditional approach of handling
errors. Exceptions provide an alternative that is more flexible, requires less
overhead, and produces meaningful error messages.

44 Module 4: Statements and Exceptions

Exception Objects

CoreExceptionCoreException

Represents non-fatal
run-time errors

Represents fatal
run-time errors

ExceptionException

SystemExceptionSystemException

OutOfMemoryExceptionOutOfMemoryException

IOExceptionIOException

OverflowExceptionOverflowException

NullReferenceExceptionNullReferenceException

The programmatic error codes used in procedural error-handling code look
similar to the following:

enum ErrorCode {
 SecurityError = -1,
 IOError = -2,
 OutOfMemoryError = -3,
 ...
}

The use of such error codes makes it difficult to supply information that you
can use to recover from the error. For example, if an IOError is generated, you
do not get information about what kind of error it is. Is it an attempt to write to
a read-only file or a non-existent file, or is it a corrupt disk? Additionally, what
file is being read from or written to?

To overcome this problem of lack of information about the generated error,
the .NET Framework has defined a range of system-defined exception classes
that store information about the exception being thrown.

 Module 4: Statements and Exceptions 45

All C# exceptions derive from the class named Exception, which is a part of
the Common Language Runtime. The hierarchy between these exceptions is
displayed on the slide. The exception classes provide the following benefits:

n Error messages are no longer represented by integer values or enums.

The programmatic integer values such as -3 disappear. In their place, you
use specific exception classes such as OutOfMemoryException. Each
exception class can reside inside its own source file and is decoupled from
all other exception classes.

n Meaningful error messages are generated.

Each exception class is descriptive, clearly and obviously representing a
specific error. Instead of a –3, you use a class called
OutOfMemoryException. Each exception class can also contain
information specific to itself. For example, a FileNotFoundException class
could contain the name of the file that was not found.

To use exceptions effectively, you need to maintain a balance between
exception classes that are too vague and those that are too precise. If the
exception class is too vague, you will not be able to write a useful catch block.
On the other hand, do not create an exception class that is so precise that it
leaks implementation details and breaks encapsulation.

Tip

46 Module 4: Statements and Exceptions

Using try and catch Blocks

n Object-Oriented Solution to Error Handling

l Put the normal code in a try block

l Handle the exceptions in a separate catch block

try {
File source = new File("code.cs");
int length = (int)source.Length;
char[] contents = new char[length];
...

}
catch (System.Exception caught) {

Console.WriteLine(caught);
}

try {
File source = new File("code.cs");
int length = (int)source.Length;
char[] contents = new char[length];
...

}
catch (System.Exception caught) {

Console.WriteLine(caught);
}

Error handlingError handling

Core program logicCore program logic

Object orientation offers a structured solution to error-handling problems in the
form of try and catch blocks. The idea is to physically separate the core
program statements that handle the normal flow of control from the error-
handling statements. Therefore, the sections of code that might throw
exceptions are placed in a try block, and the code for handling exceptions in the
try block is placed in a catch block.

The syntax of a catch block is as follows:

catch (class-type identifier) { ... }

The class type must be System.Exception or a type derived from
System.Exception.

The identifier, which is optional, is a read-only local variable in the scope of the
catch block.

catch (Exception caught) {
 ...
}
Console.WriteLine(caught); // Compile-time error:
 // caught is no longer in scope

 Module 4: Statements and Exceptions 47

The example in the slide shows how to use try and catch statements. The try
block encloses an expression that will generate the exception known as
SystemException. When the exception takes place, the runtime stops executing
and starts searching for a catch block that can catch the pending exception
(based on its type). If an appropriate catch block is not found in the immediate
function, the runtime will unwind the call stack searching for the calling
function. If an appropriate catch block is not found there, it will search for the
function that called the calling function, and so on, until it finds a catch block.
(Or until it reaches the end of Main. If this happens, the program will shut
down.) If it finds a catch block, the exception is considered to have been caught,
and normal execution starts again, beginning with the body of the catch block
(which in the slide writes out the message that is contained within the exception
object SystemException).

Therefore, if you use try and catch blocks, the error-handling statements no
longer intermix themselves with the core logic statements, and this makes the
program easier to understand.

48 Module 4: Statements and Exceptions

Multiple catch Blocks

n Each catch Block Catches One Class of Exception

n A try Block Can Have One General Catch Block

n A try Block Is Not Allowed to Catch a Class That Is
Derived from a Class Caught in an Earlier catch Block

try {
File source = new File("code.cs");
int length = (int)source.Length;
char[] contents = new char[length];
...

}
catch (SecurityException caught) { ... }
catch (IOException caught) { ... }
catch (OutOfMemoryException caught) { ... }

try {
File source = new File("code.cs");
int length = (int)source.Length;
char[] contents = new char[length];
...

}
catch (SecurityException caught) { ... }
catch (IOException caught) { ... }
catch (OutOfMemoryException caught) { ... }

A block of code inside a try construct can contain many statements. Each
statement could raise one or more different classes of exception. Since there are
many different exception classes, it is acceptable to have many catch blocks,
each catching a specific kind of exception.

An exception is caught solely based on its type. The runtime automatically
catches exception objects of a particular type in a catch block for that type.

To get a better understanding of what is happening in a multiple try-catch
block, consider the following code:

1. try {
2. File source = new File("code.cs");
3. int length = (int)source.Length;
4. char[] contents = new char[length];
5. ...
6. }
7. catch (SecurityException caught) { ... }
8. catch (IOException caught) { ... }
9. catch (OutOfMemoryException caught) { ... }
10. ...

Line 2 creates a new File object. This can throw an exception object of class
SecurityException. If it does, then line 3 is not executed. Normal sequential
execution is suspended, and control transfers to the first catch block that can
catch that exception. In this example, this catch block is line 7. After control is
transferred to this statement, it executes to its closing brace, and transfers
control to line 10.

 Module 4: Statements and Exceptions 49

On the other hand, line 2 may not throw an exception. In this case, sequential
execution will proceed normally to line 3. This line might throw an exception
object of class IOException. If it does, then control flow jumps to the catch
block at line 8, this catch block executes normally, and control then transfers to
line 10.

If none of the statements in the try block throw an exception, then the control
flow reaches the end of the try block and transfers to line 10. Note that the
control flow enters a catch block only if an exception is thrown.

You can write the statements in a try block without being concerned about
whether an earlier statement in the try block will fail. If an earlier statement
does throw an exception, the control flow will not physically reach the
statements that follow it in the try block.

If the control flow fails to find a suitable catch block, it will terminate the
current method call and resume its search at the statement from which the
method call was invoked. It will continue its search, unwinding the call stack all
the way back to Main if necessary. If this causes Main itself to be terminated,
the thread or process that invoked Main is terminated in an implementation-
defined fashion.

General catch Block
A general catch block, also known as a general catch clause, can catch any
exception regardless of its class and is often used to trap any exceptions that
might fall through because of the lack of an appropriate handler.

There are two ways to write a general catch block. You can write a simple
catch statement as shown:

catch { ... }

You can also write the following:

catch (System.Exception) { ... }

A try block can have only one general catch block. For example, the following
code will generate an error:

try {
 ...
}
catch { ... }
catch { ... } // Error

50 Module 4: Statements and Exceptions

If a general catch block is present, it must be the last catch block in the
program, as follows:

try {
}
catch { ... } // Error
catch (OutOfMemoryException caught) { ... }

You will generate an error if you catch the same class twice, as in the following
example:

catch (OutOfMemoryException caught) { ... }
catch (OutOfMemoryException caught) { ... } // Error

You will also generate an error if you try to catch a class that is derived from a
class caught in an earlier catch block, as follows:

catch (Exception caught) { ... }
catch (OutOfMemoryException caught) { ... }

This code results in an error because the OutOfMemoryException class is
derived from the SystemException class, which is in turn derived from the
Exception class.

 Module 4: Statements and Exceptions 51

u Raising Exceptions

n The throw Statement

n The finally Clause

n Checking for Arithmetic Overflow

n Guidelines for Handling Exceptions

C# provides the throw statement and the finally clause so that programmers
can raise exceptions if required and handle them as appropriate. In this section,
you will learn how to raise your own exceptions. You will also learn how to
enable checking for arithmetic overflow as appropriate for your programs.

52 Module 4: Statements and Exceptions

The throw Statement

n Throw an Appropriate Exception

n Give the Exception a Meaningful Message

throw expression ;throw expression ;

if (minute < 1 || minute > 59) {
throw new InvalidTimeException(minute +

"is not a valid minute");
// !! Not reached !!

}

if (minute < 1 || minute > 59) {
throw new InvalidTimeException(minute +

"is not a valid minute");
// !! Not reached !!

}

The try and catch blocks are used to trap errors that are raised by a C# program.
You have seen that instead of signaling an error by returning a special value, or
assigning it to a global error variable, C# causes execution to be transferred to
the appropriate catch clause.

System-Defined Exceptions
When it needs to raise an exception, the runtime executes a throw statement
and raises a system-defined exception. This immediately suspends the normal
sequential execution of the program and transfers control to the first catch
block that can handle the exception based on its class.

 Module 4: Statements and Exceptions 53

Raising Your Own Exceptions
You can use the throw statement to raise your own exceptions, as shown in the
following example:

if (minute < 1 || minute >= 60) {
 string fault = minute + "is not a valid minute";
 throw new InvalidTimeException(fault);
 // !!Not reached!!
}

In this example, the throw statement is used to raise a user-defined exception,
InvalidTimeException, if the time being parsed does not constitute a valid time.

Exceptions typically expect a meaningful message string as a parameter when
they are created. This message can be displayed or logged when the exception
is caught. It is also good practice to throw an appropriate class of exception.

C++ programmers will be accustomed to creating and throwing an
exception object with a single statement, as shown in the following code:

throw out_of_range("type: index out of bounds");

The syntax in C# is very similar but requires the new keyword, as follows:

throw new FileNotFoundException("...");

Throwing Objects
You can only throw an object if the type of that object is directly or indirectly
derived from System.Exception. This is different from C++, in which objects
of any type can be thrown, such as in the following code:

throw 42; // Allowed in C++, but not in C#

You can use a throw statement in a catch block to rethrow the current
exception object, as in the following example:

catch (Exception caught) {
 ...
 throw caught;
}

You can also throw a new exception object of a different type:

catch (FileIOException caught) {
 ...
 throw new FileNotFoundException(filename);
}

Caution

54 Module 4: Statements and Exceptions

In the preceding example, notice that the FileIOException object, and any
information it contains, is lost when the exception is converted into a
FileNotFoundException object. A better idea is to wrap the exception, adding
new information but retaining existing information as shown in the following
code:

catch (FileIOException caught) {
 ...
 throw new FileNotFoundException(filename, caught);
}

This ability to map an exception object is particularly useful at the boundaries
of a layered system architecture.

A throw statement with no expression can be used, but only in a catch block. It
rethrows the exception that is currently being handled. This action is called a
rethrow in C++ as well. Therefore, the following two lines of code produce
identical results:

catch (OutOfMemoryException caught) { throw caught; }
...
catch (OutOfMemoryException) { throw ; }

You can use a rethrow in a general catch block to implement partial recovery:

StreamReader reader = new StreamReader(filename);
try {
 ...
}
catch {
 reader.Close();
 throw;
}

 Module 4: Statements and Exceptions 55

The finally Clause

n All of the Statements in a finally Block Are Always
Executed

CriticalSection.Enter(x);
try {

...
}
finally {

CriticalSection.Exit(x);
}

CriticalSection.Enter(x);
try {

...
}
finally {

CriticalSection.Exit(x);
}

Any catch blocks are optionalAny catch blocks are optional

C# provides the finally clause to enclose a set of statements that need to be
executed regardless of the course of control flow. Therefore, if control leaves a
try block as a result of normal execution because the control flow reaches the
end of the try block, the statements of the finally block are executed. Also, if
control leaves a try block as a result of a throw statement or a jump statement
such as break , continue, or goto, the statements of the finally block are
executed.

The finally block is useful in two situations: to avoid duplication of statements
and to release resources after an exception has been thrown.

Avoiding Duplication of Statements
If the statements at the end of a try block are duplicated in a general catch
block, the duplication can be avoided by moving the statements into a finally
block. Consider the following example:

try {
 ...
 statement
}
catch {
 ...
 statement
}

56 Module 4: Statements and Exceptions

You can simplify the preceding code by rewriting it as follows:

try {
 ...
}
catch {
 ...
}
finally {
 statement
}

Releasing Resources
If a statement in a try block acquires a resource such as a file handle, the
corresponding statement that releases the resource can be placed in a finally
block. This ensures that the resource will be released even if an exception arises
from the try block. The following code provides an example:

StreamReader reader = null;
try {
 File source = new File(filename);
 reader = source.OpenText();
 ...
}
finally {
 if (reader != null) {
 reader.Close();
 }
}

It is an error for a break, continue , or goto statement to transfer control out of
a finally block. They can be used only if the target of the jump is within the
same finally block. However, it is always an error for a return statement to
occur in a finally block, even if the return statement is the last statement in the
block.

 Module 4: Statements and Exceptions 57

If an exception is thrown during the execution of a finally block, it is
propagated to the next enclosing try block, as shown:

try {
 try {
 ...
 }
 catch {
 // ExampleException is not caught here
 }
 finally {
 throw new ExampleException("who will catch me?");
 }
}
catch {
 // ExampleException is caught here
}

If an exception is thrown during the execution of a finally block, and another
exception was in the process of being propagated, then the original exception is
lost, as shown:

try {
 throw ExampleException("Will be lost");
}
finally {
 throw ExampleException("Might be found and caught");
}

58 Module 4: Statements and Exceptions

Checking for Arithmetic Overflow

n By Default, Arithmetic Overflow Is Not Checked

l A checked statement turns overflow checking on

checked {
int number = int.MaxValue;
Console.WriteLine(++number);

}

checked {
int number = int.MaxValue;
Console.WriteLine(++number);

}

unchecked {
int number = int.MaxValue;
Console.WriteLine(++number);

}

unchecked {
int number = int.MaxValue;
Console.WriteLine(++number);

} -2147483648

OverflowExceptionOverflowException

Exception object is thrown.
WriteLine is not executed.

MaxValue + 1 is negative?

By default, a C# program will not check arithmetic for overflow. The following
code provides an example:

// example.cs
class Example
{
 static void Main()
 {
 int number = int.MaxValue();
 Console.WriteLine(++number);
 }
}

In the preceding code, number is initialized to the maximum value for an int.
The expression ++number increments number to –2147483648, the largest
negative int value, which is then written to the console. No error message is
generated.

 Module 4: Statements and Exceptions 59

Controlling Arithmetic Overflow Checking
When compiling a C# program, you can globally turn on arithmetic overflow
checking by using the /checked+ command line option, as follows:

c:\ csc /checked+ example.cs

The resulting executable program will cause an exception of class
System.OverflowException.

Similarly, you can turn off global arithmetic overflow checking by using the
/checked- command line option, as follows:

c:\ csc /checked- example.cs

The resulting executable program will silently wrap the int value back to zero
and will not cause an exception of class System.OverflowException.

Creating Checked and Unchecked Statements
You can use the checked and unchecked keywords to create statements that are
explicitly checked or unchecked statements:

checked { statement-list }
unchecked { statement-list }

Regardless of the compile-time /checked setting, the statements inside a
checked statement list are always checked for arithmetic overflow. Similarly,
regardless of the compile-time /checked setting, the statements inside an
unchecked statement list are never checked for arithmetic overflow.

Creating Checked and Unchecked Expressions
You can also use the checked and unchecked keywords to create checked and
unchecked expressions:

checked (expression)
unchecked (expression)

A checked expression is checked for arithmetic overflow; an unchecked
expression is not. For example, the following code will generate a
System.OverflowException.

// example.cs
class Example
{
 static void Main()
 {
 int number = int.MaxValue();
 Console.WriteLine(checked(++number));
 }
}

60 Module 4: Statements and Exceptions

Guidelines for Handling Exceptions

n Throwing

l Avoid exceptions for normal or expected cases

l Never create and throw objects of class Exception

l Include a description string in an Exception object

l Throw objects of the most specific class possible

n Catching

l Arrange catch blocks from specific to general

l Do not let exceptions drop off Main

Use the following guidelines for handling exceptions:

n Avoid exceptions for normal or expected cases.

In general, do not throw exceptions in normal or common cases. For
example, it is relatively common to fail to open a named file, so the
File.Open method returns null to signify that the file could not be found
rather than throwing an exception.

n Never create or throw objects of class Exception.

Create exception classes that are derived directly or indirectly from
SystemException (and never from the root Exception class). The following
code provides an example:

class SyntaxException : SystemException
{
 ...
}

n Include a description string in an Exception object.

Always include a useful description string in an exception object, as shown:

string description =
 String.Format("{0}({1}): newline in string constant",
filename, linenumber);
throw new SyntaxException(description);

n Throw objects of the most specific class possible.

Throw the most specific exception possible when the user might be able to
use this specific information. For example, throw a
FileNotFoundException rather than a more general FileIOException.

 Module 4: Statements and Exceptions 61

n Arrange catch blocks from specific to general.

Arrange your catch blocks from the most specific exception to the most
general exception, as shown:

catch (Exception caught) { ... } // Do not do this
catch (SyntaxException caught) { ... }

catch (SyntaxException caught) { ... } // Do this
catch (Exception caught) { ... }

n Do not let exceptions drop off Main.

Put a general catch clause in Main to ensure that exceptions never drop off
the end of the program.

static void Main()
{
 try {
 ...
 }
 catch (Exception caught) {
 ...
 }
}

62 Module 4: Statements and Exceptions

Lab 4.2: Using Exceptions

Objectives
After completing this lab, you will be able to:

n Throw and catch exceptions.

n Display error messages.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Creating variables in C#

n Using common operators in C#

n Creating enum types in C#

Esti mated time to complete this lab: 30 minutes

 Module 4: Statements and Exceptions 63

Exercise 1
Validating the Day Number

In this exercise, you will add functionality to the program that you created in
Exercise 1. The program will examine the initial day number that is entered by
the user. If it is less than 1 or greater than 365, the program will throw an
InvalidArgument exception (“Day out of range”). The program will trap this
exception in a catch clause and display a diagnostic message on the console.

å To validate the day number

1. Open the project WhatDay2.csproj in the install folder\
Labs\Lab04\Starter\WhatDay2 folder.

2. Enclose the entire contents of WhatDay.Main in a try block.

3. After the try block, add a catch clause that catches exceptions of type
System.Exception and name them caught. In the catch block, add a
WriteLine statement to write the exception caught to the console.

4. Add an if statement after the declaration of the dayNum variable. The if
statement will throw a new exception object of type
System.ArgumentOutOfRangeException if dayNum is less than 1 or
greater than 365. Use the string literal “Day out of range” to create the
exception object.

64 Module 4: Statements and Exceptions

5. The completed program should be as follows:

using System;

enum MonthName { ... }

class WhatDay
{
 static void Main()
 {
 try {
 Console.Write("Please enter a day number
Êbetween 1 and 365: ");
 string line = Console.ReadLine();
 int dayNum = int.Parse(line);

 if (dayNum < 1 || dayNum > 365) {
 throw new ArgumentOutOfRangeException("Day
Êout of range");
 }

 int monthNum = 0;

 foreach (int daysInMonth in DaysInMonths) {
 if (dayNum <= daysInMonth) {
 break;
 } else {
 dayNum -= daysInMonth;
 monthNum++;
 }
 }
 MonthName temp = (MonthName)monthNum;
 string monthName = temp.Format();

 Console.WriteLine("{0} {1}", dayNum,
ÊmonthName);
 }
 catch (Exception caught) {
 Console.WriteLine(caught);
 }
 }
 ...
}

6. Save your work.

7. Compile the WhatDay2.cs program and correct any errors. Run the program.
Use the table of data provided in Lab4.1 (Exercise 1) to verify that the
program is still working correctly.

8. Run the program, entering day numbers less than 1 and greater than 365.
Verify that invalid input is safely trapped and that the exception object is
thrown, caught, and displayed.

 Module 4: Statements and Exceptions 65

Exercise 2
Handling Leap Years

In this exercise, you will add functionality to the program that you worked on in
Exercise 1. After you complete this exercise, the program will prompt the user
for a year in addition to a day number. The program will detect whether the
specified year is a leap year. It will validate whether the day number is between
1 and 366 if the year is a leap year, or whether it is between 1 and 365 if the
year is not a leap year. Finally, it will use a new foreach statement to correctly
calculate the month and day pair for leap years.

å To enter the year from the console

1. Open the WhatDay3.csproj project in the install folder\
Labs\Lab04\Starter\WhatDay3 folder.

2. Add to the beginning of WhatDay.Main a System.Console.Write
statement that writes a prompt to the console asking the user to enter a year.

3. Change the declaration and initialization of the string line to an assignment.

Change string line = Console.ReadLine(); to
line = Console.ReadLine();.

4. Add a statement to Main that declares a string variable called line and
initializes it with a line read from the console by the
System.Console.ReadLine method.

5. Add a statement to Main that declares an int variable called yearNum and
initializes it with the integer returned by the int.Parse method.

66 Module 4: Statements and Exceptions

6. The completed program should be as follows:

using System;

enum MonthName { ... }

class WhatDay
{
 static void Main()
 {
 try {
 Console.Write("Please enter the year: ");
 string line = Console.ReadLine();
 int yearNum = int.Parse(line);

 Console.Write("Please enter a day number
Êbetween 1 and 365: ");
 line = Console.ReadLine();
 int dayNum = int.Parse(line);

 // As before....
 }
 catch (Exception caught) {
 Console.WriteLine(caught);
 }
 }
 ...
}

7. Save your work.

8. Compile the WhatDay3.cs program and correct any errors.

å To determine whether the year is a leap year

1. Add a statement immediately after the declaration of yearNum that declares
a bool variable called isLeapYear. Initialize this variable with a Boolean
expression that determines whether yearNum is a leap year. A year is a leap
year if the following two statements are both true:

• It is divisible by 4.

• It is either not divisible by 100, or it is divisible by 400.

2. Add an if statement immediately after the declaration of isLeapYear. In the
if statement, write the string “ IS a leap year” or “ is NOT a leap year” to the
console, depending on the value of isLeapyear. You will use this if
statement to verify that the Boolean leap year determination is correct.

 Module 4: Statements and Exceptions 67

3. The completed program should be as follows:

using System;

enum MonthName { ... }

class WhatDay
{
 static void Main()
 {
 try
 {
 Console.Write("Please enter the year: ");
 string line = Console.ReadLine();
 int yearNum = int.Parse(line);

 bool isLeapYear = (yearNum % 4 == 0)
 && (yearNum % 100 != 0
 || yearNum % 400 == 0);

 if (isLeapYear)
 {
 Console.WriteLine(" IS a leap year");
 } else
 {
 Console.WriteLine(" is NOT a leap year");
 }

 Console.Write("Please enter a day number
Êbetween 1 and 365: ");
 line = Console.ReadLine();
 int dayNum = int.Parse(line);

 // As before...
 }
 catch (Exception caught)
 {
 Console.WriteLine(caught);
 }
 }
 ...
}

4. Save your work.

5. Compile the WhatDay3.cs program and correct any errors. Use the
following table to verify that the Boolean leap year determination is correct.

A leap year Not a leap year

1996 1999

2000 1900

2004 2001

6. Comment out the if statement that you added in step 2.

68 Module 4: Statements and Exceptions

å To validate the day number against 365 or 366

1. Immediately after the declaration of isLeapYear, add a declaration of an int
variable called maxDayNum. Initialize maxDayNum with either 366 or 365,
depending on whether isLeapYear is true or false, respectively.

2. Change the WriteLine statement that prompts the user for the day number.
It should display the range 1 to 366 if a leap year was entered and 1 to 365 if
a non–leap year was entered.

3. Compile the WhatDay3.cs program and correct any errors. Run the program
and verify that you have implemented the previous step correctly.

4. Change the if statement that validates the value of dayNum to use the
variable maxDayNum instead of the literal 365.

5. The completed program should be as follows:

using System;

enum MonthName { ... }

class WhatDay
{
 static void Main()
 {
 try
 {
 Console.Write("Please enter the year: ");
 string line = Console.ReadLine();
 int yearNum = int.Parse(line);

 bool isLeapYear = (yearNum % 4 == 0)
 && (yearNum % 100 != 0
 || yearNum % 400 == 0);

 int maxDayNum = isLeapYear ? 366 : 365;

 Console.Write("Please enter a day number
Êbetween 1 and {0}: ", maxDayNum);
 line = Console.ReadLine();
 int dayNum = int.Parse(line);

 if (dayNum < 1 || dayNum > maxDayNum) {
 throw new ArgumentOutOfRangeException("Day
Êout of range");
 }
 // As before....
 }
 catch (Exception caught)
 {
 Console.WriteLine(caught);
 }
 }
 ...
}

 Module 4: Statements and Exceptions 69

6. Save your work.

7. Compile the WhatDay3.cs program and correct any errors. Run the program
and verify that you have implemented the previous step correctly.

å To correctly calculate the month and day pair for leap years

1. After the if statement that validates the day number and the declaration of
the monthNum integer, add an if-else statement. The Boolean expression
used in this if-else statement will be the variable isLeapYear.

2. Move the foreach statement so it becomes the embedded statement in the if-
else statement in both the true and the false cases. After this step, your code
should be as follows:

if (isLeapYear)
{
 foreach (int daysInMonth in DaysInMonths) {
 ...
 }
} else
{
 foreach (int daysInMonth in DaysInMonths) {
 ...
 }
}

3. Save your work.

4. Compile the WhatDay3.cs program and correct any errors. Run the program
and verify that day numbers in non–leap years are still handled correctly.

5. The next step will use the DaysInLeapMonths collection that has been
provided. This is a collection of int values like DaysInMonths, except that
the second value in the collection (the number of days in February) is 29
rather than 28.

6. Use DaysInLeapMonths instead of DaysInMonth in the true part of the
if-else statement.

70 Module 4: Statements and Exceptions

7. The completed program should be as follows:

using System;

enum MonthName { ... }

class WhatDay
{
 static void Main()
 {
 try {
 Console.Write("Please enter the year: ");
 string line = Console.ReadLine();
 int yearNum = int.Parse(line);

 bool (isLeapYear = yearNum % 4 == 0)
 && (yearNum % 100 != 0
 || yearNum % 400 == 0);

 int maxDayNum = isLeapYear ? 366 : 365;

 Console.Write("Please enter a day number
Êbetween 1 and {0}: ", maxDayNum);
 line = Console.ReadLine();
 int dayNum = int.Parse(line);

 if (dayNum < 1 || dayNum > maxDayNum) {
 throw new ArgumentOutOfRangeException("Day
Êout of range");
 }

 int monthNum = 0;

 if (isLeapYear) {
 foreach (int daysInMonth in
ÊDaysInLeapMonths) {
 if (dayNum <= daysInMonth) {
 break;
 } else {
 dayNum -= daysInMonth;
 monthNum++;
 }
 }
 } else {
 foreach (int daysInMonth in DaysInMonths) {
 if (dayNum <= daysInMonth) {
 break;
 } else {
 dayNum -= daysInMonth;
 monthNum++;
 }
 }
 }
(Code continued on following page.)

 Module 4: Statements and Exceptions 71

 MonthName temp = (MonthName)monthNum;
 string monthName = temp.Format();
 Console.WriteLine("{0} {1}", dayNum,
ÊmonthName);
 }
 catch (Exception caught) {
 Console.WriteLine(caught);
 }
 }
 ...
}

8. Save your work.

9. Compile the WhatDay3.cs program and correct any errors. Run the program,
using the data in the following table to verify that the program is working
correctly.

Year Day Number Month-Day Pair

1999 32 February 1

2000 32 February 1

1999 60 March 1

2000 60 February 29

1999 91 April 1

2000 91 March 31

1999 186 July 5

2000 186 July 4

1999 304 October 31

2000 304 October 30

1999 309 November 5

2000 309 November 4

1999 327 November 23

2000 327 November 22

1999 359 December 25

2000 359 December 24

72 Module 4: Statements and Exceptions

Review

n Introduction to Statements

n Using Selection Statements

n Using Iteration Statements

n Using Jump Statements

n Handling Basic Exceptions

n Raising Exceptions

s

1. Write an if statement that tests whether an int variable called hour is greater
than or equal to zero and less than 24. If it is not, reset hour to zero.

2. Write a do-while statement, the body of which reads an integer from the
console and stores it in an int called hour. Write the loop so that the loop
will exit only when hour has a value between 1 and 23 (inclusive).

 Module 4: Statements and Exceptions 73

3. Write a for statement that meets all of the conditions of the preceding
question and only allows five attempts to input a valid value for hour. Do
not use break or continue statements.

4. Rewrite the code that you wrote for question 3, but this time use a break
statement.

5. Write a statement that throws an exception of type
ArgumentOutOfRangeException if the variable percent is less than zero
or greater than 100.

74 Module 4: Statements and Exceptions

6. The following code is meant to read from a file by using a StreamReader
resource. It carefully closes the StreamReader resource by calling its Close
method. Explain why this code is not exception safe and loses resources
when exceptions are thrown. Use a try-finally block to fix the problem.

File source = new File("code.cs");
StreamReader reader = source.OpenText();
//... Use reader
reader.Close();

Contents

Overview 1

Using Methods 2
Using Parameters 16

Using Overloaded Methods 30

Lab 5: Creating and Using Methods 38

Review 50

Module 5: Methods and
Parameters

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, Windows NT, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other
countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 5: Methods and Parameters 1

Overview

n Using Methods

n Using Parameters

n Using Overloaded Methods

In designing most applications, you divide the application into functional units.
This is a central principle of application design because small sections of code
are easier to understand, design, develop, and debug. Dividing the application
into functional units also allows you to reuse functional components throughout
the application.

In C#, you structure your application into classes that contain named blocks of
code; these are called methods. A method is a member of a class that performs
an action or computes a value.

After completing this module, you will be able to:

n Create static methods that accept parameters and return values.

n Pass parameters to methods in different ways.

n Declare and use overloaded methods.

2 Module 5: Methods and Parameters

u Using Methods

n Defining Methods

n Calling Methods

n Using the return Statement

n Using Local Variables

n Returning Values

In this section, you will learn how to use methods in C#. Methods are important
mechanisms for struc turing program code. You will learn how to create
methods and how to call them from within a single class and from one class to
another.

You will learn how to use local variables, as well as how to allocate and
destroy them.

You will also learn how to return a value from a method, and how to use
parameters to transfer data into and out of a method.

 Module 5: Methods and Parameters 3

Defining Methods

n Main Is a Method

l Use the same syntax for defining your own methods

using System;

class ExampleClass
{

static void ExampleMethod()
{

Console.WriteLine("Example method");
}
static void Main()
{

// ...
}

}

using System;

class ExampleClass
{

static void ExampleMethod()
{

Console.WriteLine("Example method");
}
static void Main()
{

// ...
}

}

A method is group of C# statements that have been brought together and given
a name. Most modern programming languages have a similar concept; you can
think of a method as being like a function, a subroutine, a procedure or a
subprogram.

Examples of Methods
The code on the slide contains three methods:

n The Main method

n The WriteLine method

n The ExampleMethod method

The Main method is the entry point of the application. The WriteLine method
is part of the Microsoft® .NET Framework. It can be called from within your
program. The WriteLine method is a static method of the class
System.Console. The ExampleMethod method belongs to ExampleClass.
This method calls the WriteLine method.

In C#, all methods belong to a class. This is unlike programming languages
such as C, C++, and Microsoft Visual Basic®, which allow global subroutines
and functions.

4 Module 5: Methods and Parameters

Creating Methods
When creating a method, you must specify the following:

n Name

You cannot give a method the same name as a variable, a constant, or any
other non-method item declared in the class. The method name can be any
allowable C# identifier, and it is case sensitive.

n Parameter list

The method name is followed by a parameter list for the method. This is
enclosed between parentheses. The parentheses must be supplied even if
there are no parameters, as is shown in the examples on the slide.

n Body of the method

Following the parentheses is the body of the method. You must enclose the
method body within braces ({ and }), even if there is only one statement.

Syntax for Defining Methods
To create a method, use the following syntax:

static void MethodName()
{
 method body
}

The following example shows how to create a method named ExampleMethod
in the ExampleClass class:

using System;
class ExampleClass
{
 static void ExampleMethod()
 {
 Console.WriteLine("Example method");
 }

 static void Main()
 {
 Console.WriteLine("Main method");
 }
}

Method names in C# are case-sensitive. Therefore, you can declare and
use methods with names that differ only in case. For example, you can declare
methods called print and PRINT in the same class. However, the Common
Language Runtime requires that method names within a class differ in ways
other than case alone, to ensure compatibility with languages in which method
names are case-insensitive. This is important if you want your application to
interact with applications written in languages other than C#.

Note

 Module 5: Methods and Parameters 5

Calling Methods

n After You Define a Method, You Can:

l Call a method from within the same class
Use method’s name followed by a parameter list in
parentheses

l Call a method that is in a different class
You must indicate to the compiler which class contains
the method to call
The called method must be declared with the public
keyword

l Use nested calls
Methods can call methods, which can call other
methods, and so on

After you define a method, you can call it from within the same class and from
other classes.

Calling Methods
To call a method, use the name of the method followed by a parameter list in
parentheses. The parentheses are required even if the method that you call has
no parameters, as shown in the following example.

MethodName();

There is no Call statement Parentheses are
required for all method calls.

Note to Visual Basic Developers

6 Module 5: Methods and Parameters

In the following example, the program begins at the start of the Main method
of ExampleClass. The first statement displays “The program is starting.” The
second statement in Main is the call to ExampleMethod. Control flow passes
to the first statement within ExampleMethod, and “Hello, world” appears. At
the end of the method, control passes to the statement immediately following
the method call, which is the statement that displays “The program is ending.”

using System;

class ExampleClass
{
 static void ExampleMethod()
 {
 Console.WriteLine("Hello, world");
 }

 static void Main()
 {
 Console.WriteLine("The program is starting");
 ExampleMethod();
 Console.WriteLine("The program is ending");
 }
}

Calling Methods from Other Classes
To allow methods in one class to call methods in another class, you must:

n Specify which class contains the method you want to call.

To specify which class contains the method, use the following syntax:

ClassName.MethodName();

n Declare the method that is called with the public keyword.

The following example shows how to call the method TestMethod, which is
defined in class A, from Main in class B:

using System;

class A
{
 public static void TestMethod()
 {
 Console.WriteLine("This is TestMethod in class A");
 }
}

class B
{
 static void Main()
 {
 A.TestMethod();
 }
}

 Module 5: Methods and Parameters 7

If, in the example above, the class name were removed, the compiler would
search for a method called TestMethod in class B. Since there is no method of
that name in that class, the compiler will display the following error: “The name
‘TestMethod’ does not exist in the class or namespace ‘B.’”

If you do not declare a method as public, it becomes private to the class by
default. For example, if you omit the public keyword from the definition of
TestMethod, the compiler will display the following error: “A.TestMethod() is
inaccessible due to its protection level.”

You can also use the private keyword to specify that the method can only be
called from inside the class. The following two lines of code have exactly the
same effect because methods are private by default:

private static void MyMethod();
static void MyMethod();

The public and private keywords shown above specify the accessibility of the
method. These keywords control whether a method can be called from outside
of the class in which it is defined.

Nesting Method Calls
You can also call methods from within methods. The following example shows
how to nest method calls:

using System;
class NestExample
{
 static void Method1()
 {
 Console.WriteLine("Method1")
 }
 static void Method2()
 {
 Method1();
 Console.WriteLine("Method2")
 Method1();
 }
 static void Main()
 {
 Method2();
 Method1();
 }
}

8 Module 5: Methods and Pa rameters

The output from this program is as follows:

Method1
Method2
Method1
Method1

You can call an unlimited number of methods by nesting. There is no
predefined limit to the nesting level. However, the run-time environment might
impose limits, usually because of the amount of RAM available to perform the
process. Each method call needs memory to store return addresses and other
information.

As a general rule, if you are running out of memory for nested method calls,
you probably have a class design problem.

 Module 5: Methods and Parameters 9

Using the return Statement

n Immediate Return

n Return with a Conditional Statement

static void ExampleMethod()
{

int numBeans;
//...

Console.WriteLine("Hello");
if (numBeans < 10)

return;
Console.WriteLine("World");

}

static void ExampleMethod()
{

int numBeans;
//...

Console.WriteLine("Hello");
if (numBeans < 10)

return;
Console.WriteLine("World");

}

You can use the return statement to make a method return immediately to the
caller. Without a return statement, execution usually returns to the caller when
the last statement in the method is reached.

Immediate Return
By default, a method returns to its caller when the end of the last statement in
the code block is reached. If you want a method to return immediately to the
caller, use the return statement.

In the following example, the method will display “Hello,” and then
immediately return to its caller:

static void ExampleMethod()
{
 Console.WriteLine("Hello");
 return;
 Console.WriteLine("World");
}

Using the return statement like this is not very useful because the final call to
Console.WriteLine is never executed. If you have enabled the C# compiler
warnings at level 2 or higher, the compiler will display the following message:
“Unreachable code detected.”

10 Module 5: Methods and Parameters

Return with a Conditional Statement
It is more common, and much more useful, to use the return statement as part
of a conditional statement such as if or switch. This allows a method to return
to the caller if a given condition is met.

In the following example, the method will return if the variable numBeans is
less than 10; otherwise, execution will continue within this method.

static void ExampleMethod()
{
 int numBeans;
 //...
 Console.WriteLine("Hello");
 if (numBeans < 10)
 return;
 Console.WriteLine("World");
}

It is generally regarded as good programming style for a method to have
one entry point and one exit point. The design of C# ensures that all methods
begin execution at the first statement. A method with no return statements has
one exit point, at the end of the code block. A method with multiple return
statements has multiple exit points, which can make the method difficult to
understand and maintain in some cases.

Return with a Value
If a method is defined with a data type rather than void, the return mechanism is
used to assign a value to the function. This will be discussed later in this
module.

Tip

 Module 5: Methods and Parameters 11

Using Local Variables

n Local Variables

l Created when method begins

l Private to the method

l Destroyed on exit

n Shared Variables

l Class variables are used for sharing

n Scope Conflicts

l Compiler will not warn if local and class names clash

Each method has its own set of local variables. You can use these variables
only inside the method in which they are declared. Local variables are not
accessible from elsewhere in the application.

Local Variables
You can include local variables in the body of a method, as shown in the
following example:

static void MethodWithLocals()
{
 int x = 1; // Variable with initial value
 ulong y;
 string z;
}

You can assign local variables an initial value. (For an example, see variable x
in the preceding code.) If you do not assign a value or provide an initial
expression to determine a value, the variable will not be initialized.

The variables that are declared in one method are completely separate from
variables that are declared in other methods, even if they have the same names.

Memory for local variables is allocated each time the method is called and
released when the method terminates. Therefore, any values stored in these
variables will not be retained from one method call to the next.

12 Module 5: Methods and Parameters

Shared Variables
Consider the following code, which attempts to count the number of times a
method has been called:

class CallCounter_Bad
{
 static void Init()
 {
 int nCount = 0;
 }
 static void CountCalls()
 {
 int nCount;
 ++nCount;
 Console.WriteLine("Method called {0} time(s)", nCount);
 }
 static void Main()
 {
 Init();
 CountCalls();
 CountCalls();
 }
}

This program cannot be compiled because of two important problems. The
variable nCount in Init is not the same as the variable nCount in CountCalls.
No matter how many times you call the method CountCalls, the value nCount
is lost each time CountCalls finishes.

The correct way to write this code is to use a class variable, as shown in the
following example:

class CallCounter_Good
{
 static int nCount;
 static void Init()
 {
 nCount = 0;
 }
 static void CountCalls()
 {
 ++nCount;
 Console.Write("Method called " + nCount + " time(s).");
 }
 static void Main()
 {
 Init();
 CountCalls();
 CountCalls();
 }
}

In this example, nCount is declared at the class level rather than at the method
level. Therefore, nCount is shared between all of the methods in the class.

 Module 5: Methods and Parameters 13

Scope Conflicts
In C#, you can declare a local variable that has the same name as a class
variable, but this can produce unexpected results. In the following example,
NumItems is declared as a variable of class ScopeDemo, and also declared as a
local variable in Method1. The two variables are completely different. In
Method1, numItems refers to the local variable. In Method2, numItems refers
to the class variable.

class ScopeDemo
{
 static int numItems = 0;
 static void Method1()
 {
 int numItems = 42;
 }
 static void Method2()
 {
 numItems = 61;
 }
}

Because the C# compiler will not warn you when local variables and class
variables have the same names, you can use a naming convention to distinguish
local variables from class variables.

Tip

14 Module 5: Methods and Parameters

Returning Values

n Declare the Method with Non-Void Type

n Add a return Statement with an Expression

l Sets the return value

l Returns to caller

n Non-void Methods Must Return a Value

static int TwoPlusTwo() {
int a,b;
a = 2;
b = 2;
return a + b;

}

static int TwoPlusTwo() {
int a,b;
a = 2;
b = 2;
return a + b;

}

int x;
x = TwoPlusTwo();
Console.WriteLine(x);

int x;
x = TwoPlusTwo();
Console.WriteLine(x);

You have learned how to use the return statement to immediately terminate a
method. You can also use the return statement to return a value from a method.
To return a value, you must:

1. Declare the method with the value type that you want to return.

2. Add a return statement inside the method.

3. Include the value that you want to return to the caller.

Declaring Methods with Non-Void Type
To declare a method so that it will return a value to the caller, replace the void
keyword with the type of the value that you want to return.

Adding return Statements
The return keyword followed by an expression terminates the method
immediately and returns the expression as the return value of the method.

 Module 5: Methods and Parameters 15

The following example shows how to declare a method named TwoPlusTwo
that will return a value of 4 to Main when TwoPlusTwo is called:

class ExampleReturningValue
{
 static int TwoPlusTwo()
 {
 int a,b;
 a = 2;
 b = 2;
 return a + b;
 }

 static void Main()
 {
 int x;
 x = TwoPlusTwo();
 Console.WriteLine(x);
 }
}

Note that the returned value is an int. This is because int is the return type of
the method. When the method is called, the value 4 is returned. In this example,
the value is stored in the local variable x in Main.

Non-Void Methods Must Return Values
If you declare a method with a non-void type, you must add at least one return
statement. The compiler attempts to check that each non-void method returns a
value to the calling method in all circumstances. If the compiler detects that a
non-void method has no return statement, it will display the following error
message: “Not all code paths return a value.” You will also see this error
message if the compiler detects that it is possible to execute a non-void method
without returning a value.

In the following example, you will get a valid return statement if the value in x
is less than two. If the value in x is greater than or equal to two, the compiler
will report an error because the return statement is not executed, and the
method execution will terminate after the if statement without returning a value.

static int BadReturn()
{
 // ...
 if (x < 2)
 return 5;
}

You can only use the return statement to return one value from each
method call. If you need to return more than one value from a method call, you
can use the ref or out parameters, which are discussed later in this module.
Alternatively, you can return a reference to an array or class, which can contain
multiple values. The general guideline that says to avoid using multiple return
statements in a single method applies equally to non-void methods.

Tip

16 Module 5: Methods and Parameters

u Using Parameters

n Declaring and Calling Parameters

n Mechanisms for Passing Parameters

n Pass by Value

n Pass by Reference

n Output Parameters

n Using Variable-Length Parameter Lists

n Guidelines for Passing Parameters

n Using Recursive Methods

In this section, you will learn how to declare parameters and how to call
methods with parameters. You will also learn how to pass parameters. Finally,
you will learn how C# supports recursive method calls.

In this section you will learn how to:

n Declare and call parameters.

n Pass parameters by using the following mechanisms:

• Pass by value

• Pass by reference

• Output parameters

n Use recursive method calls.

 Module 5: Methods and Parameters 17

Declaring and Calling Parameters

n Declaring Parameters

l Place between parentheses after method name

l Define type and name for each parameter

n Calling Methods with Parameters

l Supply a value for each parameter

static void MethodWithParameters(int n, string y)
{ ... }

MethodWithParameters(2, "Hello, world");

static void MethodWithParameters(int n, string y)
{ ... }

MethodWithParameters(2, "Hello, world");

Parameters allow information to be passed into and out of a method. When you
define a method, you can include a list of parameters in parentheses following
the method name. In the examples so far in this module, the parameter lists
have been empty.

Declaring Parameters
Each parameter has a type and a name. You declare parameters by placing the
parameter declarations inside the parentheses that follow the name of the
method. The syntax that is used to declare parameters is similar to the syntax
that is used to declare local variables, except that you separate each parameter
declaration with a comma instead of with a semicolon.

The following example shows how to declare a method with parameters:

static void MethodWithParameters(int n, string y)
{
 // ...
}

This example declares the MethodWithParameters method with two
parameters: n and y. The first parameter is of type int, and the second is of type
string. Note that commas separate each parameter in the parameter list.

18 Module 5: Methods and Parameters

Calling Methods with Parameters
The calling code must supply the parameter values when the method is called.

The following code shows two examples of how to call a method with
parameters. In each case, the values of the parameters are found and placed into
the parameters n and y at the start of the execution of MethodWithParameters.

MethodWithParameters(2, "Hello, world");

int p = 7;
string s = "Test message";

MethodWithParameters(p, s);

 Module 5: Methods and Parameters 19

Mechanisms for Passing Parameters

n Three Ways to Pass Parameters:

inin Pass by valuePass by value

in
out
in
out Pass by referencePass by reference

outout Output parametersOutput parameters

Parameters can be passed in three different ways:

n By value

Value parameters are sometimes called in parameters because data can be
transferred into the method but cannot be transferred out.

n By reference

Reference parameters are sometimes called in/out parameters because data
can be transfer red into the method and out again.

n By output

Output parameters are sometimes called out parameters because data can be
transferred out of the method but cannot be transferred in.

20 Module 5: Methods and Parameters

Pass by Value

n Default Mechanism For Passing Parameters:

l Parameter value is copied

l Variable can be changed inside the method

l Has no effect on value outside the method

l Parameter must be of the same type or compatible type

static void AddOne(int x)
{

x++; // Increment x
}
static void Main()
{

int k = 6;
AddOne(k);
Console.WriteLine(k); // Display the value 6, not 7

}

static void AddOne(int x)
{

x++; // Increment x
}
static void Main()
{

int k = 6;
AddOne(k);
Console.WriteLine(k); // Display the value 6, not 7

}

In most applications, most parameters are used for passing information into a
method but not out. Therefore, pass by value is the default mechanism for
passing parameters in C#.

Defining Value Parameters
The simplest definition of a parameter is a type name followed by a variable
name. This is known as a value parameter. When the method is called, a new
storage location is created for each value parameter, and the values of the
corresponding expressions are copied into them.

The expression supplied for each value parameter must be the same type as the
declaration of the value parameter, or a type that can be implicitly converted to
that type. Within the method, you can write code that changes the value of the
parameter. It will have no effect on any variables outside the method call.

In the following example, the variable x inside AddOne is completely separate
from the variable k in Main. The variable x can be changed in AddOne, but
this has no effect on k.

static void AddOne(int x)
{
 x++;
}
static void Main()
{
 int k = 6;
 AddOne(k);
 Console.WriteLine(k); // Display the value 6, not 7
}

 Module 5: Methods and Parameters 21

Pass by Reference

n What Are Reference Parameters?

l A reference to memory location

n Using Reference Parameters

l Use the ref keyword in method declaration and call

l Match types and variable values

l Changes made in the method affect the caller

l Assign parameter value before calling the method

What Are Reference Parameters?
A reference parameter is a reference to a memory location. Unlike a value
parameter, a reference parameter does not create a new storage location. Instead,
a reference parameter represents the same location in memory as the variable
that is supplied in the method call.

Declaring Reference Parameters
You can declare a reference parameter by using the ref keyword before the type
name, as shown in the following example:

static void ShowReference(ref int nVar, ref long nCount)
{
 // ...
}

Using Multiple Parameter Types
The ref keyword only applies to the parameter following it, not to the whole
parameter list. Consider the following method, in which refVar is passed by
reference but longVar is passed by value:

static void OneRefOneVal(ref int refVar, long longVar)
{
 // ...
}

22 Module 5: Methods and Parameters

Matching Parameter Types and Values
When calling the method, you supply reference parameters by using the ref
keyword followed by a variable. The value supplied in the call to the method
must exactly match the type in the method definition, and it must be a variable,
not a constant or calculated expression.

int x;
long q;
ShowReference(ref x, ref q);

If you omit the ref keyword, or if you supply a constant or calculated
expression, the compiler will reject the call, and you will receive an error
message similar to the following: “Cannot convert from ‘int’ to ‘ref int.’”

Changing Reference Parameter Values
If you change the value of a reference parameter, the variable supplied by the
caller is also changed, because they are both references to the same location in
memory. The following example shows how changing the reference parameter
also changes the variable:

static void AddOne(ref int x)
{
 x++;
}
static void Main()
{
 int k = 6;
 AddOne(ref k);
 Console.WriteLine(k); // Display the value 7
}

This works because when AddOne is called, its parameter x is set up to refer to
the same memory location as the variable k in Main. Therefore, incrementing x
will increment k.

 Module 5: Methods and Parameters 23

Assigning Parameters Before Calling the Method
A ref parameter must be definitively assigned at the point of call; that is, the
compiler must ensure that a value is assigned before the call is made. The
following example shows how you can initialize reference parameters before
calling the method:

static void AddOne(ref int x)
{
 x++;
}

static void Main()
{
 int k = 6;
 AddOne(ref k);
 Console.WriteLine(k); // 7
}

The following example shows what happens if a reference parameter k is not
initialized before its method AddOne is called:

int k;
AddOne(ref k);
Console.WriteLine(k);

The C# compiler will reject this code and display the following error message:
“Use of unassigned local variable ‘k.’”

24 Module 5: Methods and Parameters

Output Parameters

n What Are Output Parameters?

l Values are passed out but not in

n Using Output Parameters

l Like ref, but values are not passed into the method

l Use out keyword in method declaration and call

static void OutDemo(out int p)
{

// ...
}
int n;
OutDemo(out n);

static void OutDemo(out int p)
{

// ...
}
int n;
OutDemo(out n);

What Are Output Parameters?
Output parameters are like reference parameters, except that they transfer data
out of the method rather than into it. They are similar to reference parameters.
Like a reference parameter, an output parameter is a reference to a storage
location supplied by the caller. However, the variable that is supplied for the
out parameter does not need to be assigned a value before the call is made, and
the method will assume that the parameter has not been initialized on entry.

Output parameters are useful when you want to be able to return values from a
method by means of a parameter without assigning an initial value to the
parameter.

 Module 5: Methods and Parameters 25

Using Output Parameters
To declare an output parameter, use the keyword out before the type and name,
as shown in the following example:

static void OutDemo(out int p)
{
 // ...
}

As with the ref keyword, the out keyword only affects one parameter, and each
out parameter must be marked separately.

When calling a method with an out parameter, place the out keyword before
the variable to be passed, as in the following example.

int n;
OutDemo(out n);

In the body of the method being called, no initial assumptions are made about
the contents of the output parameter. It is treated just like an unassigned local
variable.

26 Module 5: Methods and Parameters

Using Variable-Length Parameter Lists

n Use the params Keyword

n Declare As an Array at the End of the Parameter List

n Always Pass by Value

static long AddList(params long[] v)
{

long total, i;
for (i = 0, total = 0; i < v.Length; i++)

total += v[i];
return total;

}
static void Main()
{

long x = AddList(63,21,84);
}

static long AddList(params long[] v)
{

long total, i;
for (i = 0, total = 0; i < v.Length; i++)

total += v[i];
return total;

}
static void Main()
{

long x = AddList(63,21,84);
}

C# provides a mechanism for passing variable- length parameter lists.

Declaring Variable-Length Parameters
It is sometimes useful to have a method that can accept a varying number of
parameters. In C#, you can use the params keyword to specify a variable-
length parameter list. When you declare a variable - length parameter, you must:

n Declare only one params parameter per method.

n Place the parameter at the end of the parameter list.

n Declare the parameter as a single-dimension array type.

The following example shows how to declare a variable-length parameter list:

static long AddList(params long[] v)
{
 long total;
 long i;
 for (i = 0, total = 0; i < v. Length; i++)
 total += v[i];
 return total;
}

Because a params parameter is always an array, all values must be the same
type.

 Module 5: Methods and Parameters 27

Passing Values
When you call a method with a variable-length parameter, you can pass values
to the params parameter in one of two ways:

n As a list of elements (the list can be empty)

n As an array

The following code shows both techniques. The two techniques are treated in
exactly the same way by the compiler.

static void Main()
{
 long x;
 x = AddList(63,21,84); // List
 x = AddList(new long[]{ 63, 21, 84 }); // Array
}

Regardless of which method you use to call the method, the params parameter
is treated like an array. You can use the Length property of the array to
determine how many parameters were passed to each call.

In a params parameter, a copy of the data is made, and although you can
modify the values inside the method, the values outside the method are
unchanged.

28 Module 5: Methods and Parameters

Guidelines for Passing Parameters

n Mechanisms

l Pass by value is most common

l Method return value is useful for single values

l Use ref and/or out for multiple return values

l Only use ref if data is transferred both ways

n Efficiency

l Pass by value is generally the most efficient

With so many options available for parameter passing, the most appropriate
choice might not be obvious. Two factors for you to consider when you choose
a way to pass parameters are the mechanism and its efficiency.

Mechanisms
Value parameters offer a limited form of protection against unintended
modification of parameter values, because any changes that are made inside the
method have no effect outside it. This suggests that you should use value
parameters unless you need to pass information out of a method.

If you need to pass data out of a method, you can use the return statement,
reference parameters, or output parameters. The return statement is easy to use,
but it can only return one result. If you need multiple values returned, you must
use the reference and output parameter types. Use ref if you need to transfer
data in both directions, and use out if you only need to transfer data out of the
method.

Efficiency
Generally, simple types such as int and long are most efficiently passed by
value.

These efficiency concerns are not built into the language, and you should not
rely on them. Although efficiency is sometimes a consideration in large,
resource-intensive applications, it is usually better to consider program
correctness, stability, and robustness before efficiency. Make good
programming practices a higher priority than efficiency.

 Module 5: Methods and Parameters 29

Using Recursive Methods

n A Method Can Call Itself

l Directly

l Indirectly

n Useful for Solving Certain Problems

n Example

A method can call itself. This technique is known as recursion. You can
address some types of problems with recursive solutions. Recursive methods
are often useful when manipulating more complex data structures such as lists
and trees.

Methods in C# can be mutually recursive. For example, a situation in which
method A can call method B, and method B can call method A, is allowable.

Example of a Recursive Method
The Fibonacci sequence occurs in several situations in mathematics and biology
(for example, the reproductive rate and population of rabbits). The nth member
of this sequence has the value 1 if n is 1 or 2; otherwise, it is equal to the sum of
the preceding two numbers in the sequence. Notice that when n is greater than
two the value of the nth member of the sequence is derived from the values of
two previous values of the sequence. When the definition of a method refers to
the method itself, recursion might be involved.

You can implement the Fibonacci method as follows:

static ulong Fibonacci(ulong n)
{
 if (n <= 2)
 return 1;
 else
 return Fibonacci(n-1) + Fibonacci(n-2);
}

Notice that two calls are made to the method from within the method itself.

A recursive method must have a terminating condition that ensures that it will
return without making further calls. In the case of the Fibonacci method, the
test for n <= 2 is the terminating condition.

30 Module 5: Methods and Parameters

u Using Overloaded Methods

n Declaring Overloaded Methods

n Method Signatures

n Using Overloaded Methods

Methods might not have the same name as other non-method items in a class.
However, it is possible for two or more methods in a class to share the same
name. Name sharing among methods is called overloading.

In this section, you will learn:

n How to declare overloaded methods.

n How C# uses signatures to distinguish methods that have the same name.

n When to use overloaded methods.

 Module 5: Methods and Parameters 31

Declaring Overloaded Methods

n Methods That Share a Name in a Class

l Distinguished by examining parameter lists

class OverloadingExample
{

static int Add(int a, int b)
{

return a + b;
}
static int Add(int a, int b, int c)
{

return a + b + c;
}
static void Main()
{

Console.WriteLine(Add(1,2) + Add(1,2,3));
}

}

class OverloadingExample
{

static int Add(int a, int b)
{

return a + b;
}
static int Add(int a, int b, int c)
{

return a + b + c;
}
static void Main()
{

Console.WriteLine(Add(1,2) + Add(1,2,3));
}

}

Overloaded methods are methods in a single class that have the same name. The
C# compiler distinguishes overloaded methods by comparing the parameter
lists.

Examples of Overloaded Methods
The following code shows how you can use different methods with the same
name in one class:

class OverloadingExample
{
 static int Add(int a, int b)
 {
 return a + b;
 }
 static int Add(int a, int b, int c)
 {
 return a + b + c;
 }
 static void Main()
 {
 Console.WriteLine(Add(1,2) + Add(3,4,5));
 }
}

32 Module 5: Methods and Parameters

The C# compiler finds two methods called Add in the class, and two method
calls to methods called Add within Main. Although the method names are the
same, the compiler can distinguish between the two Add methods by
comparing the parameter lists.

The first Add method takes two parameters, both of type int. The second Add
method takes three parameters, also of type int. Because the parameter lists are
different, the compiler allows both methods to be defined within the same class.

The first statement within Main includes a call to Add with two int parameters,
so the compiler translates this as a call to the first Add method. The second call
to Add takes three int parameters, so the compiler translates this as a call to the
second Add method.

You cannot share names among methods and variables, constants, or
enumerated types in the same class. The following code will not compile
because the name k has been used for both a method and a class variable:

class BadMethodNames
{
 static int k;
 static void k() {
 // ...
 }
}

 Module 5: Methods and Parameters 33

Method Signatures

n Method Signatures Must Be Unique Within a Class

n Signature Definition

n Name of method

n Parameter type

n Parameter modifier

n Name of method

n Parameter type

n Parameter modifier

Forms Signature
Definition

Forms SignatureForms Signature
DefinitionDefinition

n Name of parameter

n Return type of method

n Name of parameter

n Return type of method

No Effect on
Signature

No Effect onNo Effect on
SignatureSignature

The C# compiler uses signatures to distinguish between methods in a class. In
each class, the signature of each method must differ from the signatures of all
other methods that are declared in that class.

Signature Definition
The signature of a method consists of the name of the method, the number of
parameters that the method takes, and the type and modifier (such as out or ref)
of each parameter.

The following three methods have different signatures, so they can be declared
in the same class.

static int LastErrorCode()
{

}
static int LastErrorCode(int n)
{

}

static int LastErrorCode(int n, int p)
{

}

34 Module 5: Methods and Parameters

Elements That Do Not Affect the Signature
The method signature does not include the return type. The following two
methods have the same signatures, so they cannot be declared in the same class.

static int LastErrorCode(int n)
{
}
static string LastErrorCode(int n)
{
}

The method signature does not include the names of the parameters. The
following two methods have the same signature, even though the parameter
names are different.

static int LastErrorCode(int n)
{
}
static int LastErrorCode(int x)
{
}

 Module 5: Methods and Parameters 35

Using Overloaded Methods

n Consider Using Overloaded Methods When:

l You have similar methods that require different
parameters

l You want to add new functionality to existing code

n Do Not Overuse Because:

l Hard to debug

l Hard to maintain

Overloaded methods are useful when you have two similar methods that require
different numbers or types of parameters.

Similar Methods That Require Different Parameters
Imagine that you have a class containing a method that sends a greeting
message to the user. Sometimes the user name is known, and sometimes it is
not. You could define two different methods called Greet and GreetUser, as
shown in the following code:

class GreetDemo
{
 static void Greet()
 {
 Console.WriteLine("Hello");
 }
 static void GreetUser(string Name)
 {
 Console.WriteLine("Hello" + Name);
 }
 static void Main()
 {
 Greet();
 GreetUser("Alex");
 }
}

36 Module 5: Methods and Parameters

This will work, but now the class has two methods that perform almost exactly
the same task but that have different names. You can rewrite this class with
method overloading as shown in the following code:

class GreetDemo
{
 static void Greet()
 {
 Console.WriteLine("Hello");
 }
 static void Greet(string Name)
 {
 Console.WriteLine("Hello" + Name);
 }
 static void Main()
 {
 Greet();
 Greet("Alex");
 }
}

 Module 5: Methods and Parameters 37

Adding New Functionality to Existing Code
Method overloading is also useful when you want to add new features to an
existing application without making extensive changes to existing code. For
example, the previous code could be expanded by adding another method that
greets a user with a particular greeting, depending on the time of day, as shown
in the following code:

class GreetDemo
{
 enum TimeOfDay { Morning, Afternoon, Evening }

 static void Greet()
 {
 Console.WriteLine("Hello");
 }
 static void Greet(string Name)
 {
 Console.WriteLine("Hello" + Name);
 }
 static void Greet(string Name, TimeOfDay td)
 {
 string Message;

 switch(td)
 {
 case TimeOfDay.Morning:
 Message="Good morning";
 break;
 case TimeOfDay.Afternoon:
 Message="Good afternoon";
 break;
 case TimeOfDay.Evening:
 Message="Good evening";
 break;
 }
 Console.WriteLine(Message + " " + Name);
 }
 static void Main()
 {
 Greet();
 Greet("Alex");
 Greet("Sandra", TimeOfDay.Morning);
 }
}

Determining When to Use Overloading
Overuse of method overloading can make classes hard to maintain and debug.
In general, only overload methods that have very closely related functions but
differ in the amount or type of data that they need.

38 Module 5: Methods and Parameters

Lab 5: Creating and Using Methods

Objectives
After completing this lab, you will be able to:

n Create and call methods with and without parameters.

n Use various mechanisms for passing parameters.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Creating and using variables

n C# statements

Estimated time to complete this lab: 30 minutes

 Module 5: Methods and Parameters 39

Exercise 1
Using Parameters in Methods That Return Values

In this exercise, you will define and use input parameters in a method that
returns a value. You will also write a test framework to read two values from
the console and display the results.

You will create a class called Utils. In this class, you will create a method
called Greater. This method will take two integer parameters as input and will
return the value of the greater of the two.

To test the class, you will create another class called Test that prompts the user
for two numbers, then calls Utils.Greater to determine which number is the
greater of the two, and then prints the result.

å To create the Greater method

1. Open the Utils.sln project in the install folder\Labs\Lab05\Starter\Utility
folder.

This contains a namespace called Utils that contains a class also called Utils.
You will write the Greater method in this class.

2. Create the Greater method as follows:

a. Open the Utils class.

b. Add a public static method called Greater to the Utils class.

c. The method will take two int parameters, called a and b, which will be
passed by value. The method will return an int value representing the
greater of the two numbers.

40 Module 5: Methods and Parameters

The code for the Utils class should be as follows:

namespace Utils
{
 using System;

 class Utils
 {

 //
 // Return the greater of two integer values
 //

 public static int Greater(int a, int b)
 {
 if (a > b)
 return a;
 else
 return b;
 }
 }
}

å To test the Greater method

1. Open the Test class.

2. Within the Main method, write the following code.

a. Define two integer variables called x and y.

b. Add statements that read two integers from keyboard input and use them
to populate x and y. Use the Console.ReadLine and int.Parse methods
that were presented in earlier modules.

c. Define another integer called greater.

d. Test the Greater method by calling it, and assign the returned value to
the variable greater.

3. Write code to display the greater of the two integers by using
Console.WriteLine .

 Module 5: Methods and Parameters 41

The code for the Test class should be as follows:

namespace Utils
{
 using System;

 /// <summary>
 /// This the test harness
 /// </summary>

 public class Test
 {
 public static void Main()
 {
 int x; // Input value 1
 int y; // Input value 2
 int greater; // Result from Greater()

 // Get input numbers
 Console.WriteLine("Enter first number:");
 x = int.Parse(Console.ReadLine());
 Console.WriteLine("Enter second number:");
 y = int.Parse(Console.ReadLine());

 // Test the Greater() method
 greater = Utils.Greater(x,y);
 Console.WriteLine("The greater value is "+
Ê greater);

 }
 }
}

4. Save your work.

5. Compile the project and correct any errors. Run and test the program.

42 Module 5: Methods and Parameters

Exercise 2
Using Methods with Reference Parameters

In this exercise, you will write a method called Swap that will exchange the
values of its parameters. You will use parameters that are passed by reference.

å To create the Swap method

1. Open the Utils.sln project in the install folder\Labs\Lab05\Starter\Utility
folder, if it is not already open.

2. Add the Swap method to the Utils class as follows:

a. Add a public static void method called Swap.

b. Swap will take two int parameters called a and b, which will be passed
by reference.

c. Write statements inside the body of Swap that exchange the values of a
and b. You will need to create a local int variable in Swap to
temporarily hold one of the values during the exchange. Name this
variable temp.

The code for the Utils class should be as follows:

namespace Utils
{
 using System;

 public class Utils
 {

 ... existing code omitted for clarity ...

 //
 // Exchange two integers, passed by reference
 //

 public static void Swap(ref int a, ref int b)
 {
 int temp = a;
 a = b;
 b = temp;
 }

 }
}

 Module 5: Methods and Parameters 43

å To test the Swap method

1. Edit the Main method in the Test class by performing the following steps:

a. Populate integer variables x and y.

b. Call the Swap method, passing these values as parameters.

Display the new values of the two integers before and after exchanging
them. The code for the Test class should be as follows:

namespace Utils
{
 using System;

 public class Test
 {

 public static void Main()
 {
 ... existing code omitted for clarity ...

 // Test the Swap method
 Console.WriteLine("Before swap: " + x + "," + y);
 Utils.Swap(ref x,ref y);
 Console.WriteLine("After swap: " + x + "," + y);

 }

 }
}

2. Save your work.

3. Compile the project, correcting any errors you find. Run and test the
program.

If the parameters were not exchanged as you expected, check to ensure
that you passed them as ref parameters.

Tip

44 Module 5: Methods and Parameters

Exercise 3
Using Methods with Output Parameters

In this exercise, you will define and use a static method with an output
parameter.

You will write a new method called Factorial that takes an int value and
calculates its factorial. The factorial of a number is the product of all the
numbers between 1 and that number. The factorial of zero is defined to be 1.
The following are examples of factorials:

n Factorial(0) = 1

n Factorial(1) = 1

n Factorial(2) = 1 * 2 = 2

n Factorial(3) = 1 * 2 * 3 = 6

n Factorial(4) = 1 * 2 * 3 * 4 = 24

å To create the Factorial method

1. Open the Utils.sln project in the install folder\Labs\Lab05\Starter\Utility
folder, if it is not already open.

2. Add the Factorial method to the Utils class, as follows:

a. Add a new public static method called Factorial.

b. This method will take two parameters called n and answer. The first,
passed by value, is an int value for which the factorial is to be calculated.
The second parameter is an out int parameter that will be used to return
the result.

c. The Factorial method should return a bool value that indicates whether
the method succeeded. (It could overflow and raise an exception.)

3. Add functionality to the Factorial method.

The easiest way to calculate a factorial is by using a loop. Perform the
following steps to add functionality to the method:

a. Create an int variable called k in the Factorial method. This will be
used as a loop counter.

b. Create another int variable called f , which will be used as a working
value inside the loop. Initialize the working variable f with the value 1.

c. Use a for loop to perform the iteration. Start with a value of 2 for k, and
finish when k reaches the value of parameter n. Increment k each time
the loop is performed.

d. In the body of the loop, multiply f successively by each value of k,
storing the result in f.

e. Factorial results can be very large even for small input values, so ensure
that all the integer calculations are in a checked block, and that you have
caught exceptions such as arithmetic overflow.

f. Assign the result value in f to the out parameter answer.

g. Return true from the method if the calculation is successful, and false if
the calculation is not successful (that is, if an exception occurs).

 Module 5: Methods and Parameters 45

The code for the Utils class should be as follows:

namespace Utils
{
 using System;

 public class Utils
 {

 ... existing code omitted for clarity ...

 //
 // Calculate factorial
 // and return the result as an out parameter
 //

 public static bool Factorial(int n, out int answer)
 {
 int k; // Loop counter
 int f; // Working value
 bool ok=true; // True if okay, false if not

 // Check the input value

 if (n<0)
 ok = false;

 // Calculate the factorial value as the
 // product of all of the numbers from 2 to n

 try
 {
 checked
 {
 f = 1;
 for (k=2; k<=n; ++k)
 {
 f = f * k;
 }
 }
 }
 catch(Exception)
 {
 // If something goes wrong in the calculation,
 // catch it here. All exceptions
 // are handled the same way: set the result
 // to zero and return false.

 (Code continued on following page.)

46 Module 5: Methods and Parameters

 f = 0;
 ok = false;
 }

 // Assign result value
 answer = f;
 // Return to caller
 return ok;
 }

 }
}

 Module 5: Methods and Parameters 47

å To test the Factorial method

1. Edit the Test class as follows:

a. Declare a bool variable called ok to hold the true or false result.

b. Declare an int variable called f to hold the factorial result.

c. Request an integer from the user. Assign the input value to the int
variable x.

d. Call the Factorial method, passing x as the first parameter and f as the
second parameter. Return the result in ok.

e. If ok is true , display the values of x and f ; otherwise, display a message
indicating that an error has occurred.

The code for the Test class should be as follows:

namespace Utils
{
 public class Test
 {

 static void Main()
 {
 int f; // Factorial result
 bool ok; // Factorial success or failure

 ... existing code omitted for clarity ...

 // Get input for factorial

 Console.WriteLine("Number for factorial:");
 x = int.Parse(Console.ReadLine());

 // Test the factorial function
 ok = Utils.Factorial(x, out f);
 // Output factorial results
 if (ok)
 Console.WriteLine("Factorial(" + x + ") = " +
f);
 else
 Console.WriteLine("Cannot compute this
Êfactorial");
 }
 }
}

2. Save your work.

3. Compile the program, correct any errors, and then run and test the program.

48 Module 5: Methods and Parameters

If Time Permits
Implementing a Method by Using Recursion

In this exercise, you will re-implement the Factorial method that you created in
Exercise 3 by using recursion rather than a loop.

The factorial of a number can be defined recursively as follows: the factorial of
zero is 1, and you can find the factorial of any larger integer by multiplying that
integer with the factorial of the previous number. In summary:

If n=0, then Factorial(n) = 1; otherwise it is n * Factorial(n-1)

å To modify the existing Factorial method

1. Edit the Utils class and modify the existing Factorial method so that it uses
recursion rather than iteration.

The parameters and return types will be the same, but the internal
functionality of the method will be different. If you want to keep your
existing solution to Exercise 3, you will need to use another name for this
method.

2. Use the pseudocode shown above to implement the body of the Factorial
method. (You will need to convert it into C# syntax.)

3. Add code to the Test class to test your new method.

4. Save your work.

5. Compile the program, correct any errors, and then run and test the program.

 Module 5: Methods and Parameters 49

The recursive version of the Factorial method (RecursiveFactorial) is
shown below:

 //
 // Another way to solve the factorial problem,
 // this time as a recursive function
 //

 public static bool RecursiveFactorial(int n, out int f)
 {
 bool ok=true;

 // Trap negative inputs
 if (n<0)
 {
 f=0;
 ok = false;
 }

 if (n<=1)
 f=1;
 else
 {
 try
 {
 int pf;
 checked
 {
 ok = RecursiveFactorial(n-1,out pf);
 f = n * pf;
 }
 }
 catch(Exception)
 {
 // Something went wrong. Set error
 // flag and return zero.
 f=0;
 ok=false;
 }

 }

 return ok;
 }

50 Module 5: Methods and Parameters

Review

n Using Methods

n Using Parameters

n Using Overloaded Methods

1. Explain what methods are and why they are important.

2. List the three ways in which data can be passed in parameters, and the
associated C# keywords.

3. When are local variables created and destroyed?

4. What keyword should be added to a method definition if the method needs
to be called from another class?

 Module 5: Methods and Parameters 51

5. What parts of a method are used to form the signature?

6. Define the signature of a static method called Rotate that does not return a
value but that must “right rotate” its three integer parameters.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Overview of Arrays 2
Creating Arrays 11

Using Arrays 18

Lab 6: Creating and Using Arrays 31

Review 42

Module 6: Arrays

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1 version
of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, Windows NT, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other
countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 6: Arrays 1

Overview

n Overview of Arrays

n Creating Arrays

n Using Arrays

Arrays provide an important means for grouping data. To make the most of C#,
it is important to understand how to use and create arrays effectively.

After completing this module, you will be able to:

n Create, initialize, and use arrays of varying rank.

n Use command-line arguments in a C# program.

n Understand the relationship between an array variable and an array instance.

n Use arrays as parameters for methods.

n Return arrays from methods.

2 Module 6: Arrays

u Overview of Arrays

n What Is an Array?

n Array Notation in C#

n Array Rank

n Accessing Array Elements

n Checking Array Bounds

n Comparing Arrays to Collections

This section provides an overview of general array concepts, introduces the key
syntax used to declare arrays in C#, and describes basic array features such as
rank and elements. In the next section, you will learn how to define and use
arrays.

 Module 6: Arrays 3

What Is an Array?

n An Array Is a Sequence of Elements

l All elements in an array have the same type

l Structs can have elements of different types

l Individual elements are accessed using integer indexes

Integer index 0
(zero)

Integer index 4
(four)

There are two fundamental ways to group related data: structures (structs) and
arrays.

n Structures are groups of related data that have different types.

For example, a name (string), age (int), and gender (enum) naturally group
together in a struct that describes a person. You can access the individual
members of a struct by using their field names.

n Arrays are sequences of data of the same type.

For example, a sequence of houses naturally group together to form a street.
You can access an individual element of an array by using its integer
position, which is called an index.

Arrays allow random access. The elements of an array are located in contiguous
memory. This means a program can access all array elements equally quickly.

4 Module 6: Arrays

Array Notation in C#

n You Declare an Array Variable by Specifying:

l The element type of the array

l The rank of the array

l The name of the variable

This specifies the rank of the array

This specifies the name of the array variable

This specifies the element type of the array

type[] name;type[] name;

You use the same notation to declare an array that you would use to declare a
simple variable. First, specify the type, and then specify the name of the
variable followed by a semicolon. You declare the variable type as an array by
using square brackets. Many other programming languages, such as C and C++,
also use square brackets to declare an array. Other languages, like Microsoft®
Visual Basic®, use parentheses.

In C#, array notation is very similar to the notation used by C and C++,
although it differs in two subtle-but-important ways:

n You cannot write square brackets to the right of the name of the variable.

n You do not specify the size of the array when declaring an array variable.

The following are examples of allowed and disallowed notation in C#:

type[]name; // Allowed
type name[]; // Disallowed in C#
type[4] name; // Also disallowed in C#

 Module 6: Arrays 5

Array Rank

n Rank Is Also Known as the Array Dimension

n The Number of Indexes Associated with Each Element

Rank 1: One-dimensional
Single index associates with
each long element

Rank 2: Two-dimensional
Two indexes associate with
each int element

long[] row;long[] row; int[,] grid;int[,] grid;

To declare a one-dimensional array variable, you use unadorned square brackets
as shown on the slide. Such an array is also called an array of rank 1 because
one integer index associates with each element of the array.

To declare a two-dimensional array, you use a single comma inside the square
brackets, as shown on the slide. Such an array is called an array of rank 2
because two integer indexes associate with each element of the array. This
notation extends in the obvious way: each additional comma between the
square brackets increases the rank of the array by one.

You do not include the length of the dimensions in the declaration for an array
variable.

6 Module 6: Arrays

Accessing Array Elements

n Supply an Integer Index for Each Rank

l Indexes are zero-based

333
222

111

long[] row;
...
row[3];

long[] row;
...
row[3];

int[,] grid;
...
grid[1,2];

int[,] grid;
...
grid[1,2];

To access array elements, you use a syntax that is similar to the syntax you use
to declare array variables— both use square brackets. This visual similarity
(which is deliberate and follows a trend popularized by C and C++) can be
confusing if you are not familiar with it. Therefore, it is important for you to be
able to distinguish between an array variable declaration and an array element
access expression.

To access an element inside an array of rank 1, use one integer index. To access
an element inside an array of rank 2, use two integer indexes separated by a
comma. This notation extends in the same way as the notation for declaring
variables. To access an element inside an array of rank n, use n integer indexes
separated by commas. Notice again that the syntax used in an array element
access expression mirrors the syntax that is used to declare variables.

Array indexes (for all ranks) start from zero. To access the first element inside a
row, use the expression

row[0]

rather than the expression

row[1]

 Module 6: Arrays 7

Some programmers use the phrase “initial element” rather than “first element”
to try to avoid any potential confusion. Indexing from 0 means that the last
element of an array instance containing size elements is found at [size-1] and
not at [size]. Accidentally using [size] is a common off-by-one error, especially
for programmers used to a language that indexes from one, such as Visual Basic.

Although the technique is rarely used, it is possib le to create arrays that
have user-defined integer index lower bounds. For more information, search for
“Array.CreateInstance” in the.NET Framework SDK Help documents.

Note

8 Module 6: Arrays

Checking Array Bounds

n All Array Access Attempts Are Bounds Checked

l A bad index throws an IndexOutOfRangeException

l Use the Length property and the GetLength method

rowrow gridgrid

row.GetLength(0)==6row.GetLength(0)==6

row.Length==6row.Length==6

grid.GetLength(0)==2grid.GetLength(0)==2

grid.GetLength(1)==4grid.GetLength(1)==4

grid.Length==2*4grid.Length==2*4

In C#, an array element access expression is automatically checked to ensure
that the index is valid. This implicit bounds check cannot be turned off. Bounds
checking is one of the ways of ensuring that C# is a type-safe language.

Even though array bounds are automatically checked, you should still make
sure that integer indexes are always in bounds. To do this, you should manually
check the index bounds, often using a for statement termination condition, as
follows:

for (int i = 0; i < row.Length; i++) {
 Console.WriteLine(row[i]);
}

The Length property is the total length of the array, regardless of the rank of
the array. To determine the length of a specific dimension, you can use the
GetLength method, as follows:

for (int r = 0; r < grid.GetLength(0); r++) {
 for (int c = 0; c < grid.GetLength(1); c++) {
 Console.WriteLine(grid[r,c]);
 }
}

 Module 6: Arrays 9

Comparing Arrays to Collections

n An Array Cannot Resize Itself When Full

l A collection class, such as ArrayList, can resize

n An Array Is Intended to Store Elements of One Type

l A collection is designed to store elements of
different types

n Elements Of An Array Cannot Have Read-Only
Access

l A collection can have read-only access

n In General, Arrays Are Faster but Less Flexible

l Collections are slightly slower but more flexible

The size of an array instance and the type of its elements are permanently fixed
when the array is created. To create an array that always contains exactly 42
elements of type int, use the following syntax:

int[] rigid = new int [42];

The array will never shrink or expand, and it will never contain anything other
than ints. Collections are more flexible; they can expand or contract as elements
are removed and added. Arrays are intended to hold elements of a single type,
but collections were designed to contain elements of many different types. You
can achieve this flexibility by using boxing, as follows:

ArrayList flexible = new ArrayList();
flexible.Add("one"); // Add a string here
...
flexible.Add(99); // And an int here!

You cannot create an array instance with read-only elements. The following
code will not compile:

const int[] array = {0, 1, 2, 3};

The following code will compile, but will not result in read-only elements:

readonly int[] array = {4,2}; // Compiles :-)
array[0]++; // But so does this :-(

10 Module 6: Arrays

When you use the readonly keyword on an array variable declaration, it affects
the array variable itself (in this code, the array), and not the elements of the
array instance (in this code, array[0] and array[1]). In other words, using
readonly on an array variable declaration makes it impossible to reassign
another array instance to that array variable:

readonly int[] array = {4,2}; // Compiles
array = new int[2]{4,2} // Fails to compile

However, you can create a read-only collection as follows:

ArrayList flexible = new ArrayList();
...
ArrayList noWrite = ArrayList.ReadOnly(flexible);
noWrite[0] = 42; // Causes run-time exception

 Module 6: Arrays 11

u Creating Arrays

n Creating Array Instances

n Initializing Array Elements

n Initializing Multidimensional Array Elements

n Creating a Computed Size Array

n Copying Array Variables

In this section, you will learn how to create array instances, how to explicitly
initialize array instance elements, and how to copy array variables.

12 Module 6: Arrays

Creating Array Instances

n Declaring an Array Variable Does Not Create an Array!

l You must use new to explicitly create the array instance

l Array elements have an implicit default value of zero

row

0 0 0 0

grid
0 0 0
0 0 0

Variable Instance

long[] row = new long[4];long[] row = new long[4];

int[,] grid = new int[2,3];int[,] grid = new int[2,3];

Declaring an array variable does not actually create an array instance. This is
because arrays are reference types and not value types. You use the new
keyword to create an array instance, also referred to as an array creation
expression. You must specify the size of all rank lengths when creating an array
instance. The following code will result in a compile-time error:

long[] row = new long[]; // Not allowed
int[,] grid = new int[,]; // Not allowed

The C# compiler implicitly initializes each array element to a default value
dependent on the array element type: integer array elements are implicitly
initialized to 0, floating-point array elements are implicitly initialized to 0.0,
and Boolean array elements are implicitly initialized to False. In other words,
the C# code

long[] row = new long[4];

will execute the following code at run-time:

long[] row = new long[4];
row[0] = 0L;
row[1] = 0L;
row[2] = 0L;
row[3] = 0L;

 Module 6: Arrays 13

The compiler always allocates arrays in contiguous memory, regardless of the
base type of the array and the number of dimensions. If you create an array with
an expression such as new int[2,3,4], it is conceptually 2 x 3 x 4, but the
underlying memory allocation is a single block of memory large enough to
contain 2*3*4 elements.

It is also possible to create array instances whose elements that are arrays. Such
arrays are called ragged arrays (as opposed to rectangular arrays), and are
beyond the scope of this course. The following code shows how to create a
ragged array with three elements, each of which is an array of ints. (Each array
has a default value of null.)

int[][] table = new int[3][];

14 Module 6: Arrays

Initializing Array Elements

n The Elements of an Array Can Be Explicitly Initialized

l You can use a convenient shorthand

row
0 1 2 3

Equivalent

long[] row = new long[4] {0, 1, 2, 3};long[] row = new long[4] {0, 1, 2, 3};

long[] row = {0, 1, 2, 3};long[] row = {0, 1, 2, 3};

You can use an array initializer to initialize the values of the array instance
elements. An array initializer is a sequence of expressions enclosed by curly
braces and separated by commas. Array initializers are executed from left to
right and may include method calls and complex expressions, as in the
following example:

int[] data = new int[4]{a, b(), c*d, e()+f()};

You can also use array initializers to initialize arrays of structs:

struct Date { ... }
Date[] dates = new Date[2];

You can only use this convenient shorthand notation when you initialize an
array instance as part of an array variable declaration and not as part of an
ordinary assignment statement.

int[] data1 = new int[4]{0, 1, 2, 3}; // Allowed
int[] data2 = {0, 1, 2, 3}; // Allowed
data2 = new int[4]{0, 1, 2, 3}; // Allowed
data2 = {0, 1, 2, 4}; // Not allowed

When initializing arrays, you must explicitly initialize all array elements. It is
not possible to let trailing array elements revert back to their default value of
zero:

int[] data3 = new int[2]{}; // Not allowed
int[] data4 = new int[2]{42}; // Still not allowed
int[] data5 = new int[2]{42,42}; // Allowed

 Module 6: Arrays 15

Initializing Multidimensional Array Elements

n You Can Also Initialize Multidimensional Array Elements

l All elements must be specified

grid
5 4 3
2 1 0

Implicitly a new int[2,3] array

ûû

üü

int[,] grid = {
{5, 4, 3},
{2, 1, 0}

};

int[,] grid = {
{5, 4, 3},
{2, 1, 0}

};

int[,] grid = {
{5, 4, 3},
{2, 1 }

};

int[,] grid = {
{5, 4, 3},
{2, 1 }

};

You must explicitly initialize all array elements regardless of the array
dimension:

int[,] data = new int[2,3] { // Allowed
 {42, 42, 42},
 {42, 42, 42},
};

int[,] data = new int[2,3] { // Not allowed
 {42, 42},
 {42, 42, 42},
};

int[,] data = new int[2,3] { // Not allowed
 {42},
 {42, 42, 42},
};

16 Module 6: Arrays

Creating a Computed Size Array

n The Array Size Does Not Need to Be a Compile-Time
Constant

l Any valid integer expression will work

l Accessing elements is equally fast in all cases
Array size specified by compile-time integer constant:

Array size specified by run-time integer value:

long[] row = new long[4];long[] row = new long[4];

string s = Console.ReadLine();
int size = int.Parse(s);
long[] row = new long[size];

string s = Console.ReadLine();
int size = int.Parse(s);
long[] row = new long[size];

You can create multidimensional arrays by using run-time expressions for the
length of each dimension, as shown in the following code:

System.Console.WriteLine("Enter number of rows : ");
string s1 = System.Console.ReadLine();
int rows = int.Parse(s1);
System.Console.WriteLine("Enter number of columns: ");
string s2 = System.Console.ReadLine();
int cols = int.Parse(s2);
...
int[,] matrix = new int[rows,cols];

Alternatively, you can use a mixture of compile-time constants and run-time
expressions:

System.Console.WriteLine("Enter number of rows: ");
string s1 = System.Console.ReadLine();
int rows = int.Parse(s1);
...
int[,] matrix = new int[rows,4];

There is one minor restriction. You cannot use a run-time expression to specify
the size of an array in combination with array-initializers:

string s = System.Console.ReadLine();
int size = int.Parse(s);
int[] data = new int[size]{0,1,2,3}; // Not allowed

 Module 6: Arrays 17

Copying Array Variables

n Copying an Array Variable Copies Just the Array Variable

l It does not copy the array instance

l Two array variables can refer to the same array instance

copy

row
0 0 0 0

Variable Instance

long[] row = new long[4];
long[] copy = row;
...
row[0]++;
int value = copy[0];
Console.WriteLine(value);

long[] row = new long[4];
long[] copy = row;
...
row[0]++;
int value = copy[0];
Console.WriteLine(value);

When you copy an array variable, you do not get a full copy of the array
instance. Analyzing the code shown in the slide reveals what happens when an
array variable is copied.

The following statements declare array variables called copy and row that both
refer to the same array instance (of four longs).

long[] row = new long[4];
long[] copy = row;

The following statement increments the initial element of this array instance
from 0 to 1. Both array variables still refer to the same array instance, whose
initial element is now 1.

row[0]++;

The next statement initializes an int called value from copy[0], which is the
initial array element of the array instance referred to by copy.

int value = copy[0];

Since copy and row both refer to the same array instance, initializing the value
from row[0] has exactly the same effect.

The final statement writes out value (which is 1) to the console:

Console.WriteLine(value);

18 Module 6: Arrays

u Using Arrays

n Array Properties

n Array Methods

n Returning Arrays from Methods

n Passing Arrays as Parameters

n Command-Line Arguments

n Demonstration: Arguments for Main

n Using Arrays with foreach

n Quiz: Spot the Bugs

In this section, you will learn how to use arrays and how to pass arrays as
parameters to methods.

You will learn about the rules that govern the default values of array instance
elements. Arrays implicitly inherit from the System.Array class, which
provides many properties and methods. You will learn about some of the
commonly used properties and methods. You will also learn how to use the
foreach statement to iterate through arrays. Finally, you will learn how to avoid
some common pitfalls.

 Module 6: Arrays 19

Array Properties

row
0 0 0 0

grid
0 0 0
0 0 0

row.Rankrow.Rank

row.Lengthrow.Length

grid.Rankgrid.Rank

grid.Lengthgrid.Length

long[] row = new long[4];long[] row = new long[4];

int[,] grid = new int[2,3];int[,] grid = new int[2,3];
222

444
111

666

The Rank property is a read-only integer value that specifies the dimension of
the array instance. For example, given the code

int[] one = new int[a];
int[,] two = new int[a,b];
int[,,] three = new int[a,b,c];

the resulting rank values are as follows:

one.Rank == 1
two.Rank == 2
three.Rank == 3

The Length property is a read-only integer value that specifies the total length
of the array instance. For example, given the same three array declarations
above, the resulting length values are:

one.Length == a
two.Length == a * b
three.Length == a * b * c

20 Module 6: Arrays

Array Methods

n Commonly Used Methods

l Sort – sorts the elements in an array of rank 1

l Clear – sets a range of elements to zero or null

l Clone – creates a copy of the array

l GetLength – returns the length of a given dimension

l IndexOf – returns the index of the first occurrence of a
value

The System.Array class (a class that all arrays implicitly support) provides
many methods that you can use when working with arrays. This topic describes
some of the most commonly used methods.

n Sort method

This method performs an in-place sort on an array provided as an argument.
You can use this method to sort arrays of structures and classes as long as
they support the IComparable interface.

int[] data = {4,6,3,8,9,3}; // Unsorted
System.Array.Sort(data); // Now sorted

n Clear method

This method resets a range of array elements to zero (for value types) or
null (for reference types), as shown:

int[] data = {4,6,3,8,9,3};
System.Array.Clear(data, 0, data.Length);

 Module 6: Arrays 21

n Clone method

This method creates a new array instance whose elements are copies of the
elements of the cloned array. You can use this method to clone arrays of
user-defined structs and classes. Following is an example:

int[] data = {4,6,3,8,9,3};
int[] clone = (int [])data.Clone();

The Clone method performs a shallow copy. If the array being
copied contains references to objects, the references will be copied and not
the objects; both arrays will refer to the same objects.

n GetLength method

This method returns the length of a dimension provided as an integer
argument. You can use this method for bounds -checking multidimensional
arrays. Following is an example:

int[,] data = { {0, 1, 2, 3}, {4, 5, 6, 7} };
int dim0 = data.GetLength(0); // == 2
int dim1 = data.GetLength(1); // == 4

n IndexOf method

This method returns the integer index of the first occurrence of a value
provided as an argument, or –1 if the value is not present. You can only use
this method on one-dimensional arrays. Following is an example:

int[] data = {4,6,3,8,9,3};
int where = System.Array.IndexOf(data, 9); // == 4

Depending on the type of the elements in the array, the IndexOf
method may require that you override the Equals method for the element
type. You will learn more about this in a later module.

Caution

Note

22 Module 6: Arrays

Returning Arrays from Methods

n You Can Declare Methods to Return Arrays

l Use the syntax of the familiar type name pattern

class Example {
static void Main() {

int[] array = CreateArray(42);
...

}
static int[] CreateArray(int size) {

int[] created = new int[size];
return created;

}
}

class Example {
static void Main() {

int[] array = CreateArray(42);
...

}
static int[] CreateArray(int size) {

int[] created = new int[size];
return created;

}
}

To declare an array variable, use the syntax of the familiar type name pattern.
For example, to create an array of ints, you would specify the type, int, on the
left, and the name variable on the right. For example, you can use the following
syntax to declare a simple array variable of ints:

int[] variable;

The following variable has been declared as type int[], which is then combined
with the [0]++ to form the rest of the expression:

variable[0]++

You also use the syntax of the type name pattern to declare a method that
returns an array. In the following example, the type, in this case int is on the
left and the method name is on the right:

int[] method(){...}

In the following expression, method() has type int[], which is then combined
with the [0]++ to form the rest of the expression:

method()[0]++

In the slide, the CreateArray method is implemented by using two statements.
You can combine these two statements into one return statement as follows:

static int[] CreateArray(int size) {
 return new int[size];
}

 Module 6: Arrays 23

C++ programmers should note that in both cases the size of the array that is
returned is not specified. If you specify the array size, you will get a compile-
time error, as in this example:

// Compiler error
static int[4] CreateArray() {
 return new int[4];
}

You can also return arrays of rank greater than one, as shown in the following
example:

static int[,] CreateArray() {
 string s1 = System.Console.ReadLine();
 int rows = int.Parse(s1);
 string s2 = System.Console.ReadLine();
 int cols = int.Parse(s2);
 return new int[rows,cols];
}

24 Module 6: Arrays

Passing Arrays as Parameters

n An Array Parameter Is a Copy of the Array Variable

l Not a copy of the array instance

class Example2 {
static void Main() {

int[] arg = {10, 9, 8, 7};
Method(arg);
System.Console.WriteLine(arg[0]);

}
static void Method(int[] parameter) {

parameter[0]++;
}

}

class Example2 {
static void Main() {

int[] arg = {10, 9, 8, 7};
Method(arg);
System.Console.WriteLine(arg[0]);

}
static void Method(int[] parameter) {

parameter[0]++;
}

}

This method will modify
the original array

instance created in Main

This method will modify
the original array

instance created in Main

When you pass an array variable as an argument to a method, the method
parameter becomes a copy of the array variable argument. In other words, the
array parameter is initialized from the argument. You use the same syntax to
initialize the array parameter that you used to initialize an array variable, as
described earlier in the Copying Array Variables topic. The array argument and
the array parameter both refer to the same array instance.

In the code shown on the slide, arg is initialized with an array instance of
length 4 that contains the integers 10, 9, 8, and 7. Then arg is passed as the
argument to Method. Method accepts arg as a parameter, meaning that arg
and parameter both refer to the same array instance (the one used to initialize
arg). The expression parameter[0]++ inside Method then increments the
initial element in the same array instance from 10 to 11. (Since the initial
element of an array is accessed by specifying the index value 0 and not 1, it is
also referred to as the “zeroth” element.) Method then returns and Main writes
out the value of arg[0] to the console. The arg parameter still refers to the
same array instance, the zeroth element of which has just been incremented, so
11 is written to the console.

Because passing an array variable does not create a deep copy of the array
instance, passing an array as a parameter is very fast. If you want a method to
have write access to the argument’s array instance, this shallow copy behavior
is entirely appropriate.

The Array.Clone method is useful when you need to ensure that the called
method will not alter the array instance and you are willing to trade a longer
running time for this guarantee. You can also pass a newly created array as an
array parameter as follows:

Method(new int[4]{10, 9, 8, 7});

 Module 6: Arrays 25

Command-Line Arguments

n The Runtime Passes Command Line Arguments to Main

l Main can take an array of strings as a parameter

l The name of the program is not a member of the array

class Example3 {
static void Main(string[] args) {

for (int i = 0; i < args.Length; i++) {
System.Console.WriteLine(args[i]);

}
}

}

class Example3 {
static void Main(string[] args) {

for (int i = 0; i < args.Length; i++) {
System.Console.WriteLine(args[i]);

}
}

}

When you run console-based programs, you often pass extra arguments on the
command line. For example, if you run pkzip at a command prompt, you can
add extra arguments to control the creation of .zip files. The following
command recursively adds all *.cs code files into code.zip:

C:\> pkzip –add –rec –path=relative c:\code *.cs

If you had written the pkzip program using C#, you would capture these
command-line arguments as an array of strings that the runtime would pass to
Main :

class PKZip {
 static void Main(string[] args) {
 ...
 }
}

In this example, when you run the pkzip command, the runtime would
effectively execute the following code:

string[] args = {
 "-add",
 "-rec",
 "-path=relative",
 "c:\\code",
 "*.cs"
};
PKZip.Main(args);

Unlike in C and C++, the name of the program itself is not passed as
args[0] in C#.

Note

26 Module 6: Arrays

Demonstration: Arguments for Main

In this demonstration, you will see how to pass command-line arguments to a
C# program.

 Module 6: Arrays 27

Using Arrays with foreach

n The foreach Statement Abstracts Away Many Details of
Array Handling

class Example4 {
static void Main(string[] args) {

foreach (string arg in args) {
System.Console.WriteLine(arg);

}
}

}

class Example4 {
static void Main(string[] args) {

foreach (string arg in args) {
System.Console.WriteLine(arg);

}
}

}

When it is applicable, the foreach statement is useful because it abstracts the
mechanics of iterating through every element of an array. Without foreach, you
might write:

for (int i = 0; i < args.Length; i++) {
 System.Console.WriteLine(args[i]);
}

With foreach, you can write:

foreach (string arg in args) {
 System.Console.WriteLine(arg);
}

Notice that when you use the foreach statement, you do not need or use:

n An integer index (int i)

n An array bounds check (i < args.Length)

n An array access expression (args[i])

You can also use the foreach statement to iterate through the elements in an
array of rank 2 or higher. For example, the following foreach statement will
write out the values 0, 1, 2, 3, 4, and 5:

int[,] numbers = { {0,1,2}, {3,4,5} };
foreach (int number in numbers) {
 System.Console.WriteLine(number);
}

28 Module 6: Arrays

This page is intentionally blank.

 Module 6: Arrays 29

Quiz: Spot the Bugs

222

333

444

555

111 int [] array;
array = {0, 2, 4, 6};
int [] array;
array = {0, 2, 4, 6};

int [] array;
System.Console.WriteLine(array[0]);
int [] array;
System.Console.WriteLine(array[0]);

int [] array = new int[3];
System.Console.WriteLine(array[3]);
int [] array = new int[3];
System.Console.WriteLine(array[3]);

int [] array = new int[];int [] array = new int[];

int [] array = new int[3]{0, 1, 2, 3};int [] array = new int[3]{0, 1, 2, 3};

In this quiz, you can work with a partner to spot the bugs in the code on the
slide. To see the answers to this quiz, turn the page.

30 Module 6: Arrays

Answers
These are the bugs that the students should be able to find:

1. An array initializer is used in an assignment without an array creation
expression. The shortcut int[] array = { … }; is only possible in an
array declaration. This bug will result in a compile-time error.

2. The array variable has been declared, but there is no array creation
expression, and hence there is no array instance. This bug will also result in
a compile-time error.

3. A classic off-by-one out-of-bounds error. The array has length three,
making valid index values 0, 1, and 2. Remember, arrays are indexed from
zero in C#. This bug will cause a System.IndexOutOfRange run-time
exception.

4. The length of the array is not specified in the array creation expression. The
length of an array must be specified when an array instance is created.

5. The number of array elements is specified as 3 in new int[3] however,
there are four integer literals in the array initializer.

 Module 6: Arrays 31

Lab 6: Creating and Using Arrays

Objectives
After completing this lab, you will be able to:

n Create and use arrays of value types.

n Pass arguments to Main.

n Create and use computed size arrays.

n Use arrays of multiple rank.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Using C# programming statements.

n Writing and using methods in C#.

Estimated time to complete this lab: 60 minutes

32 Module 6: Arrays

Exercise 1
Working with an Array of Value Types

In this exercise, you will write a program that expects the name of a text file as
an argument to Main. The program will summarize the contents of the text file.
It will read the contents of the text file into an array of characters and then
iterate through the array, counting the number of vowels and consonants.
Finally, it will print the total number of characters, vowels, consonants, and
newlines to the console.

å To capture the name of the text file as a parameter to Main

1. Open the project FileDetails.sln. This project is in the install folder\
Labs\Lab06\Starter\FileDetails folder.

2. Add an array of strings called args as a parameter to the Main method of
the FileDetails class. This array will contain all of the command-line
arguments supplied when the program is run. This is how the runtime passes
command-line arguments to Main. In this exercise, the command-line
argument passed to Main will be the name of the text file.

3. Add a statement to Main that writes the length of args to the console. This
statement will verify that the length of args is zero when no command-line
arguments are passed to Main by the runtime.

4. Add a foreach statement to Main that writes each string in args to the
console. This statement will verify that Main receives the command-line
arguments from the runtime.

Your completed code should look as follows:

 static void Main(string[] args)
 {
 Console.WriteLine(args.Length);
 foreach (string arg in args) {
 Console.WriteLine(arg);
 }
 }

5. Compile the FileDetails.cs program and correct any errors. Run the program
from the command line, supplying no command-line arguments. Verify that
the length of args is zero.

To run the program from the command line, open the Command
window and go to the install folder\Labs\Lab06\Starter\FileDetails\bin\
Debug folder. The executable file will be located in this folder.

6. Run the program from the command line, supplying the name of the
install folder\Labs\Lab06\Solution\FileDetails\FileDetails.cs file. Verify
that the runtime passes the file name to Main.

7. Test the program by supplying a variety of other command-line arguments,
and verify that each command-line argument is written to the console as
expected. Comment out the statements that write to the console.

8. Add a statement to Main that declares a string variable called filename and
initialize it with args[0].

Tip

 Module 6: Arrays 33

å To read from the text file into an array

1. Remove the comment from the FileStream and StreamReader declaration
and initialization code.

2. Determine the length of the text file.

To locate an appropriate property of the Stream class, search for
“Stream class” in the .NET Framework SDK Help documents.

3. Add a statement to Main that declares a character array variable called
contents. Initialize contents with a new array instance whose length is equal
to the length of the text file, which you have just determined.

4. Add a for statement to Main. The body of the for statement will read a
single character from reader and add it to contents.

Use the Read method, which takes no parameters and returns an int.
Cast the result to a char before storing it in the array.

5. Add a foreach statement to Main that writes the whole character array to
the console character by character. This statement will verify that the text
file has been successfully read into the contents array.

Your completed code should look as follows:

 static void Main(string[] args)
 {

 string fileName = args[0];
 FileStream stream = new FileStream(fileName,
 Ê FileMode.Open);
 StreamReader reader = new StreamReader(stream);
 int size = (int)stream.Length;
 char[] contents = new char[size];
 for (int i = 0; i < size; i++) {
 contents[i] = (char)reader.Read();
 }
 foreach(char ch in contents) {
 Console.Write(ch); }

 Console.WriteLine(args.Length);
 foreach (string arg in args) {
 Console.WriteLine(arg);
 }
 }

6. Compile the program and correct any errors. Run the program, supplying
the name of the install folder\Labs\Lab06\Solution\FileDetails\
FileDetails.cs file as a command-line argument. Verify that the contents of
the file are correctly written to the console.

7. Comment out the foreach statement.

8. Close the Reader object by calling the appropriate StreamReader method.

Tip

Tip

34 Module 6: Arrays

å To classify and summarize the contents of the file

1. Declare a new static method called Summarize in the FileDetails class.
This method will not return anything and will expect a character array
parameter. Add a statement to Main that calls the Summarize method,
passing contents as the argument.

2. Add a foreach statement to Summarize that inspects each character in the
array argument. Count the number of vowel, consonant, and newline
characters that occur, storing the results in separate variables.

To determine whether a character is a vowel, create a string containing
all possible vowels and use the IndexOf method on that string to determine
whether the character exists in that string, as follows:

if ("AEIOUaeiou".IndexOf(myCharacter) != -1) {
 // myCharacter is a vowel
} else {
 // myCharacter is not a vowel
}

3. Write four lines to the console that display:

• The total number of characters in the file.

• The total number of vowels in the file.

• The total number of consonants in the file.

• The total number of lines in the file.

Your completed code should look as follows:

 static void Summarize(char[] contents)
 {
 int vowels = 0, consonants = 0, lines = 0;
 foreach (char current in contents) {
 if (Char.IsLetter(current)) {
 if ("AEIOUaeiou".IndexOf(current) != -1) {
 vowels++;
 } else {
 consonants++;
 }
 }
 else if (current == '\n') {
 lines++;
 }
 }
 Console.WriteLine("Total no of characters: {0}",
Êcontents.Length);
 Console.WriteLine("Total no of vowels : {0}",
Êvowels);
 Console.WriteLine("Total no of consonants: {0}",
Êconsonants);
 Console.WriteLine("Total no of lines : {0}",
Êlines);
 }

Tip

 Module 6: Arrays 35

4. Compile the program and correct any errors. Run the program from the
command line to summarize the contents of the solution file:
install folder\Labs\Lab06\Solution\FileDetails\FileDetails.cs. The correct
totals should be as follows:

• 1,401 characters

• 251 vowels

• 401 consonants

• 39 lines

36 Module 6: Arrays

Exercise 2
Multiplying Matrices

In this exercise, you will write a program that uses arrays to multiply matrices
together. The program will read four integer values from the console and store
them in a 2 x 2 integer matrix. It will then read another four integer values from
the console and store them in a second 2 x 2 integer matrix. The program will
then multiply the two matrices together, storing the result in a third 2 x 2 integer
matrix. Finally, it will print the resulting matrix to the console.

The formula for multiplying two matrices— A and B— together is as follows:

A1 A2 B1 B2 A1.B1 + A2.B3 A1.B2 + A2.B4

A3 A4 B3 B4 A3.B1 + A4.B3 A3.B2 + A4.B4

å To multiply two matrices together

1. Open the project MatrixMultiply.sln in the install folder\
Labs\Lab06\Starter\MatrixMultiply folder.

2. In the MatrixMultiply class, add a statement to Main that declares a 2 x 2
array of ints and names the array a. The final solution for the program will
read the values of a from the console. For now, initialize a with the integer
values in the following table. (This is to help verify that the multiplication is
performed correctly and that the subsequent refactoring retains the intended
behavior.)

1 2

3 4

3. Add a statement to Main that declares a 2 x 2 array of ints and names the
array b. The final solution for the program will read the values of b from the
console. For now, initialize b with the integer values shown in the following
table:

5 6

7 8

4. Add a statement to Main that declares a 2 x 2 array of ints and names the
array result. Initialize result by using the following cell formulae:

a[0,0] * b[0,0] + a[0,1] * b[1,0] a[0,0] * b[0,1] + a[0,1] * b[1,1]

a[1,0] * b[0,0] + a[1,1] * b[1,0] a[1,0] * b[0,1] + a[1,1] * b[1,1]

5. Add four statements to Main that write the four int values in result to the
console. These statements will help you to check that you have copied the
formulae correctly.

 Module 6: Arrays 37

Your completed code should look as follows:

static void Main()
{
 int[,] a = new int[2,2];
 a[0,0] = 1; a[0,1] = 2;
 a[1,0] = 3; a[1,1] = 4;

 int[,] b = new int[2,2];
 b[0,0] = 5; b[0,1] = 6;
 b[1,0] = 7; b[1,1] = 8;

 int[,] result = new int[2,2];
 result[0,0]=a[0,0]*b[0,0] + a[0,1]*b[1,0];
 result[0,1]=a[0,0]*b[0,1] + a[0,1]*b[1,1];
 result[1,0]=a[1,0]*b[0,0] + a[1,1]*b[1,0];
 result[1,1]=a[1,0]*b[0,1] + a[1,1]*b[1,1];

 Console.WriteLine(result[0,0]);
 Console.WriteLine(result[0,1]);
 Console.WriteLine(result[1,0]);
 Console.WriteLine(result[1,1]);
}

6. Compile the program and correct any errors. Run the program. Verify that
the four values in result are as follows:

19 22

43 50

å To output the result by using a method with an array parameter

1. Declare a new static method called Output in the MatrixMultiply class.
This method will not return anything and will expect an int array of rank 2
as a parameter called result.

2. Cut from Main the four statements that write the four values of result to the
console and paste them into Output.

3. Add a statement to Main that calls the Output method, passing result as
the argument. (This should replace the code that was cut in the previous
step.)

Your completed code should look as follows:

static void Output(int[,] result)
{
 Console.WriteLine(result[0,0]);
 Console.WriteLine(result[0,1]);
 Console.WriteLine(result[1,0]);
 Console.WriteLine(result[1,1]);
}

38 Module 6: Arrays

4. Compile the program and correct any errors. Run the program. Verify that
the four values written to the console are still as follows:

19 22

43 50

5. Refactor the Output method to use two nested for statements instead of
four WriteLine statements. Use the literal value 2 in both array bounds
checks.

Your completed code should look as follows:

 static void Output(int[,] result)
 {
 for (int r = 0; r < 2; r++) {
 for (int c = 0; c < 2; c++) {
 Console.Write("{0} ", result[r,c]);
 }
 Console.WriteLine();
 }
 }

6. Compile the program and correct any errors. Run the program. Verify that
the four values written to the console are still as follows:

19 22

43 50

7. Modify the Output method again, to make it more generic. Replace the
literal value 2 in the array bounds checks with calls to the GetLength
method of each.

Your completed code should look as follows:

 static void Output(int[,] result)
 {
 for (int r = 0; r < result.GetLength(0); r++) {
 for (int c = 0; c < result.GetLength(1); c++) {
 Console.Write("{0} ", result[r,c]);
 }
 Console.WriteLine();
 }
 }

8. Compile the program and correct any errors. Run the program. Verify that
the four values written to the console are still as follows:

19 22

43 50

 Module 6: Arrays 39

å To calculate result in a method and return it

1. Declare a new static method called Multiply inside the MatrixMultiply
class. This method will return an int array of rank 2 and will expect two int
arrays of rank 2, named a and b, as parameters.

2. Copy (but do not cut) the declaration and initialization of result from Main
into Multiply.

3. Add a return statement to Multiply that returns result.

4. Replace the initialization of result in Main with a call to Multiply, passing
a and b as arguments.

Your completed code should look as follows:

 static int[,] Multiply(int[,] a, int [,] b)
 {
 int[,] result = new int[2,2];
 result[0,0]=a[0,0]*b[0,0] + a[0,1]*b[1,0];
 result[0,1]=a[0,0]*b[0,1] + a[0,1]*b[1,1];
 result[1,0]=a[1,0]*b[0,0] + a[1,1]*b[1,0];
 result[1,1]=a[1,0]*b[0,1] + a[1,1]*b[1,1];
 return result;
 }

5. Compile the program, and correct any errors. Run the program. Verify that
the four values written to the console are still as follows:

19 22

43 50

å To calculate result in a method by using for statements

1. Replace the initialization of result in Multiply with a newly created 2 x 2
array of ints.

2. Add two nested for statements to Multiply. Use an integer called r in the
outer for statement to it erate through each index of the first dimension of
result . Use an integer called c in the inner for statement to iterate through
each index of the second dimension of result. Use the literal value 2 directly
in both array bounds checks. The body of the inner for statement will need
to calculate and set the value of result[r,c] by using the following
formula:

result[r,c] = a[r,0] * b[0,c]
 + a[r,1] * b[1,c]

Your completed code should look like this:

static int[,] Multiply(int[,] a, int [,] b)
{
 int[,] result = new int[2,2];
 for (int r = 0; r < 2; r++) {
 for (int c = 0; c < 2; c++) {
 result[r,c] += a[r,0] * b[0,c] + a[r,1] * b[1,c];
 }
 }
 return result;
}

40 Module 6: Arrays

3. Compile the program and correct any errors. Run the program. Verify that
the four values written to the console are still as follows:

19 22

43 50

å To input the first matrix from the console

1. Replace the initialization of a in Main with a newly created 2 x 2 array of
ints.

2. Add statements to Main that prompt the user and read four values into a
from the console. These statements should be placed before invoking the
Multiply method. The statements to read one value from the console are:

string s = Console.ReadLine();
a[0,0] = int.Parse(s);

3. Compile the program and correct any errors. Run the program, entering the
same four values for a from the console (that is, 1, 2, 3, and 4). Verify that
the four values written to the console are still as follows:

19 22

43 50

4. Declare a new static method called Input inside the MatrixMultiply class.
This method will not return anything and will expect an int array of rank 2
as a parameter called a.

5. Cut the statements that read four values into a from Main and paste them
into Input. Add a statement to Main that calls Input, passing in a as the
parameter. This should be placed before the call to Multiply.

6. Compile the program and correct any errors. Run the program, entering the
same four values for a from the console (that is, 1, 2, 3, and 4). Verify that
the four values written to the console are still as follows:

19 22

43 50

7. Change the Input method to use two nested for statements. Use the literal
value 2 directly in both array bounds checks. Include a Write statement
inside the Input method that prompts the user for each input.

 Module 6: Arrays 41

Your completed code should look as follows:

 static void Input(int[,] a)
 {
 for (int r = 0; r < 2; r++) {
 for (int c = 0; c < 2; c++) {
 Console.Write(
Ê"Enter value for [{0},{1}] : ", r, c);
 string s = Console.ReadLine();
 a[r,c] = int.Parse(s);
 }
 }
 Console.WriteLine();
 }

8. Compile the program and correct any errors. Run the program, entering the
same four values for a from the console (that is, 1, 2, 3, and 4). Verify that
the four values written to the console are still as follows:

19 22

43 50

å To input the second matrix from the console

1. Replace the initialization of b in Main with a newly created 2 x 2 array of
ints whose four values all default to zero.

2. Add a statement to Main that reads values into b from the console by
calling the Input method and passing b as the argument.

3. Compile the program and correct any errors. Run the program, entering the
same four values for a (1, 2, 3, and 4) and the same four values for b (5, 6, 7,
and 8). Verify that the four values written to the console are still as follows:

19 22

43 50

4. Run the program with different data. Collaborate with a fellow student to
see whether you get the same answer for the same input.

42 Module 6: Arrays

Review

n Overview of Arrays

n Creating Arrays

n Using Arrays

1. Declare an array of ints of rank 1 called evens, and initialize it with the first
five even numbers, starting with zero.

2. Write a statement that declares variable called crowd of type int , and
initialize it with the second element of evens. Remember, the second
element does not reside at index 2 because array indexes do not start at 1.

3. Write two statements. The first will declare an array of ints of rank 1 called
copy; the second will assign to copy from evens.

 Module 6: Arrays 43

4. Write a static method called Method that returns an array of ints of rank 2
and expects no arguments. The body of Method will contain a single return
statement. This statement returns a newly created array of rank 2 with
dimensions 3 and 5 whose 15 elements are all initialized to 42.

5. Write a static method called Parameter that returns nothing and expects a
two-dimensional array as its single argument. The body of the method will
contain two WriteLine statements that write the length of each dimension
to the console.

6. Write a foreach statement that iterates over a one-dimensional array of
strings called names, writing each name to the console.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Classes and Objects 2
Using Encapsulation 10

C# and Object Orientation 21

Lab 7: Creating and Using Classes 39

Defining Object-Oriented Systems 53

Review 62

Module 7: Essentials of
Object-Oriented
Programming

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwi se noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 7: Essentials of Object-Oriented Programming 1

Overview

n Classes and Objects

n Using Encapsulation

n C# and Object Orientation

n Defining Object-Oriented Systems

C# is an object-oriented programming language. In this section, you will learn
the terminology and concepts required to create and use classes in C#.

After completing this module, you will be able to:

n Define the terms object and class in the context of object-oriented
programming.

n Define the three core aspects of an object: identity, state, and behavior.

n Describe abstraction and how it helps you to create reusable classes that are
easy to maintain.

n Use encapsulation to combine methods and data in a single class.

n Explain the concepts of inheritance and polymorphism.

n Create and use classes in C#.

2 Module 7: Essentials of Object-Oriented Programming

u Classes and Objects

n What Is a Class?

n What Is an Object?

n Comparing Classes to Structs

n Abstraction

The whole structure of C# is based on the object-oriented programming model.
To make the most effective use of C# as a language, you need to understand the
nature of object-oriented programming.

In this section, you will learn about the basics of object-oriented programming.
You will examine classes and objects in the context of object-oriented
programming. You will then learn the how to apply the concept of abstraction.

 Module 7: Essentials of Object-Oriented Programming 3

What Is a Class?

n For the Philosopher…

l An artefact of human classification!

l Classify based on common behavior or attributes

l Agree on descriptions and names of useful classes

l Create vocabulary; we communicate; we think!

n For the Object-Oriented Programmer…

l A named syntactic construct that describes common
behavior and attributes

l A data structure that includes both data and functions

CAR?

The root word of classification is class. Forming classes is an act of
classification, and it is something that all human beings (not just programmers)
do. For example, all cars share common behavior (they can be steered, stopped,
and so on) and common attributes (they have four wheels, an engine, and so on).
You use the word car to refer to all of these common behaviors and properties.
Imagine what it would be like if you were not able to classify common
behaviors and properties into named concepts! Instead of saying car, you would
have to say all the things that car means. Sentences would be long and
cumbersome. In fact, communication would probably not be possible at all. As
long as everyone agrees what a word means, that is, as long as we all speak the
same language, communication works well— we can express complex but
precise ideas in a compact form. We then use these named concepts to form
higher-level concepts and to increase the expressive power of communication.

All programming languages can describe common data and common functions.
This ability to describe common features helps to avoid duplication. A key
motto in programming is “Don’t repeat yourself.” Duplicate code is
troublesome because it is more difficult to maintain. Code that does not repeat
itself is easier to maintain, partly because there is just less of it! Object-oriented
languages take this concept to the next level by allowing descriptions of classes
(sets of objects) that share structure and behavior. If done properly, this
paradigm works extremely well and fits naturally into the way people think and
communicate.

Classes are not restricted to classifying concrete objects (such as cars); they can
also be used to classify abstract concepts (such as time). However, when you
are classifying abstract concepts, the boundaries are less clear, and good design
becomes more important.

The only real requirement for a class is that it helps people communicate.

4 Module 7: Essentials of Object-Oriented Programming

What Is an Object?

n An Object Is an Instance of a Class

n Objects Exhibit

l Identity: Objects are distinguishable from one another

l Behavior: Objects can perform tasks

l State: Objects store information

The word car means different things in different contexts. Sometimes we use
the word car to refer to the general concept of a car: we speak of car as a class,
meaning the set of all cars, and do not have a specific car in mind. At other
times we use the word car to mean a specific car. Programmers use the term
object or instance to refer to a specific car. It is important to understand this
difference.

The three characteristics of identity, behavior, and state form a useful way to
think about and understand objects.

Identity
Identity is the characteristic that distinguishes one object from all other objects
of the same class. For example, imagine that two neighbors own a car of exactly
the same make, model, and color. Despite the obvious similarities, the
registration numbers are guaranteed to be unique and are an outward reflection
that cars exhibit identity. The law determines that it is necessary to distinguish
one car object from another. (How would car insurance work without car
identity?)

 Module 7: Essentials of Object-Oriented Programming 5

Behavior
Behavior is the characteristic that makes objects useful. Objects exist in order to
provide behavior. Most of the time you ignore the workings of the car and think
about its high-level behavior. Cars are useful because you can drive them. The
workings exist but are mostly inaccessible. It is the behavior of an object that is
accessible. The behavior of an object also most powerfully determines its
classification. Objects of the same class share the same behavior. A car is a car
because you can drive it; a pen is a pen because you can write with it.

State
State refers to the inner workings of an object that enable it to provide its
defining behavior. A well-designed object keeps its state inaccessible. This is
closely linked to the concepts of abstraction and encapsulation. You do not care
how an object does what it does; you just care that it does it. Two objects may
coincidentally contain the same state but nevertheless be two different objects.
For example, two identical twins contain exactly the same state (their DNA) but
are two distinct people.

6 Module 7: Essentials of Object-Oriented Programming

Comparing Classes to Structs

n A Struct Is a Blueprint for a Value

l No identity, accessible state, no added behavior

n A Class Is a Blueprint for an Object

l Identity, inaccessible state, added behavior

struct Time class BankAccount
{ {

public int hour; ...
public int minute; ...

} }

struct Time class BankAccount
{ {

public int hour; ...
public int minute; ...

} }

Structs
A struct, such as Time in the preceding code, has no identity. If you have two
Time variables both representing the time 12:30, the program will behave
exactly the same regardless of which one you use. Software entities with no
identity are called values. The built-in types described in Module 3, “Using
Value-Type Variables,” in Course 2124A: Introduction to C# Programming for
the Microsoft .NET Platform (Prerelease), such as int, bool, decimal, and all
struct types, are called value types in C#. Value types contain accessible state
and have no added behavior (no methods).

Variables of the struct type are allowed to contain methods, but it is
recommended that they do not. They should contain only data. However, it is
perfectly reasonable to define operators in structs. Operators are stylized
methods that do not add new behavior; they only provide a more concise syntax
for existing behavior.

 Module 7: Essentials of Object-Oriented Programming 7

Classes
A class, such as BankAccount in the preceding code, has identity. If you have
two BankAccount objects, the program will behave differently depending on
which one you use. Software entities that have identity are called objects.
(Variables of the struct type are also sometimes loosely called objects, but
strictly speaking they are values.) Types represented by classes are called
reference types in C#. In contrast to structs, nothing but methods should be
visible in a well-designed class. These methods add extra high-level behavior
beyond the primitive behavior present in the lower-level inaccessible data.

Value Types and Reference Types
Value types are the types found at the lowest level of a program. They are the
elements used to build larger softw are entities. Value types can be freely copied
and exist on the stack as local variables or as attributes inside the objects they
describe.

Reference types are the types found at the higher levels of a program. They are
built from smaller software entities. Reference types generally cannot be copied,
and they exist on the heap.

8 Module 7: Essentials of Object-Oriented Programming

Abstraction

n Abstraction Is Selective Ignorance

l Decide what is important and what is not

l Focus and depend on what is important

l Ignore and do not depend on what is unimportant

l Use encapsulation to enforce an abstraction

The purpose of abstraction is not to be vague, but to create a
new semantic level in which one can be absolutely precise.

Edsger Dijkstra

The purpose of abstraction is not to be vague, but to create a
new semantic level in which one can be absolutely precise.

Edsger Dijkstra

Abstraction is the tactic of stripping an idea or object of its unnecessary
accompaniments until you are left with its essential, minimal form. A good
abstraction clears away unimportant details and allows you to focus and
concentrate on the important details.

Abstraction is an important software principle. A well-designed class exposes a
minimal set of carefully considered methods that provide the essential behavior
of the class in an easy-to-use manner. Unfortunately, creating good software
abstractions is not easy. Finding good abstractions usually requires a deep
understanding of the problem and its context, great clarity of thought, and
plenty of experience.

Minimal Dependency
The best software abstractions make complex things simple. They do this by
ruthlessly hiding away unessential aspects of a class. These unessential aspects,
once truly hidden away, cannot then be seen, used, or depended upon in any
way.

It is this principle of minimal dependency that makes abstraction so important.
One of the few things guaranteed in software development is that the code will
need to be changed. Perfect understanding only comes at the end of the
development process, if it comes at all; early decisions will be made with an
incomplete understanding of the problem and will need to be revisited.
Specifications will also change when a clearer understanding of the problem is
reached. Future versions will require extra functionality. Change is normal in
software development. The best you can do is to minimize the impact of change
when it happens. And the less you depend on something, the less you are
affected when it changes.

 Module 7: Essentials of Object-Oriented Programming 9

Related Quotes
To illustrate the principle of minimal dependency that makes abstraction so
important, here are some related quotes:

The more perfect a machine becomes, the more they are invisible behind their
function. It seems that perfection is achieved not when there is nothing more to
add, but when there is nothing more to take away. At the climax of its evolution,
the machine conceals itself entirely.

— Antoine de Saint-Exupéry, Wind, Sand and Stars

The minimum could be defined as the perfection that an artifact achieves when
it is no longer possible to improve it by subtraction. This is the quality that an
object has when every component, every detail, and every junction has been
reduced or condensed to the essentials. It is the result of the omission of the
inessentials.

— John Pawson, Minimum

The main aim of communication is clarity and simplicity. Simplicity means
focused effort.

— Edward de Bono, Simplicity

10 Module 7: Essentials of Object-Oriented Programming

u Using Encapsulation

n Combining Data and Methods

n Controlling Access Visibility

n Why Encapsulate?

n Object Data

n Using Static Data

n Using Static Methods

In this section, you will learn how to combine data and methods in a single
capsule. You will learn how to use encapsulation within a class, and you will
also learn how to use static data methods in a class.

 Module 7: Essentials of Object-Oriented Programming 11

Combining Data and Methods

n Combine the Data and Methods in a Single Capsule

n The Capsule Boundary Forms an Inside and an Outside

Withdraw()

Deposit()

balance

Withdraw()

Deposit()

balance

BankAccount ?BankAccount ?

There are two important aspects to encapsulation:

n Combining data and functions in a single entity (covered in the slide)

n Controlling the accessibility of the entity members (covered in the next slide)

Procedural Programming
Traditional procedural programs written in languages such as C essentially
contain a lot of data and many functions. Every function can access every piece
of data. For a small program this highly coupled approach can work, but as the
program grows larger it becomes less feasible. Changing the data representation
causes havoc. All functions that use (and hence depend upon) the changed data
fail. As the program becomes larger, making any change becomes more
difficult. The program becomes more brittle and less stable. The separate data-
function approach does not scale. It does not facilitate change, and as all
software developers know, change is the only constant.

There is another serious problem with keeping the data separated from the
functions. This technique does not correspond to the way people naturally think,
in terms of high-level behavioral abstractions. Because people (the ones who
are programmers) write programs, it is much better to use a programming
model that approximates the way people think rather than the way computers
are currently built.

12 Module 7: Essentials of Object-Oriented Programming

Object-Oriented Programming
Object-oriented programming arose to alleviate these problems. Object-oriented
programming, if understood and used wisely, is really person-oriented
programming because people naturally think and work in terms of the high-
level behavior of objects.

The first and most important step away from procedural programming and
towards object-oriented programming is to combine the data and the functions
into a single entity.

 Module 7: Essentials of Object-Oriented Programming 13

Controlling Access Visibility

n Methods Are Public, Accessible from the Outside

n Data Is Private, Accessible Only from the Inside

Withdraw()

Deposit()

balance

BankAccount ?

Withdraw()

Deposit()

balance

BankAccount

ûû

In the graphic on the left, Withdraw, Deposit, and balance have been grouped
together inside a “capsule.” The slide suggests that the name of the capsule is
BankAccount. However, there is something wrong with this model of a bank
account: the balance data is accessible. (Imagine if real bank account balances
were directly accessible like this; you could increase your balance without
making any deposits!) This is not how bank accounts work: the problem and its
model have poor correspondence.

You can solve this problem by using encapsulation. Once data and functions are
combined into a single entity, the entit y itself forms a closed boundary,
naturally creating an inside and an outside. You can use this boundary to
selectively control the accessibility of the entities: some will be accessible only
from the inside; others will be accessible from both the inside and the outside.
Those members that are always accessible are public, and those that are only
accessible from the inside are private. It is not possible to have members that
are only accessible from the outside.

To make the model of a bank account closer to a real bank account, you can
make the Withdraw and Deposit methods public, and the balance private.
Now the only way to increase the account balance from the outside is to deposit
some money into the account. Note that Deposit can access the balance
because Deposit is on the inside.

14 Module 7: Essentials of Object-Oriented Programming

C#, like many other object-oriented programming languages, gives you
complete freedom when choosing whether to make members accessible. You
can, if you want, create public data. However, it is recommended that data
always be marked private. (Some programming languages enforce this
guideline.)

Types whose data representation is completely private are called abstract data
types (ADTs). They are abstract in the sense that you cannot access (and rely on)
the private data representation; you can only use the behavioral methods.

The built- in types such as int are, in their own way, ADTs. When you want to
add two integer variables together, you do not need to know the internal binary
representation of each integer value; you only need to know the name of the
method that performs addition: the addition operator (+).

When you make members accessible (public), you can create different views of
the same entity. The view from the outside is a subset of the view from the
inside. A restricted view relates closely to the idea of abstraction: stripping an
idea down to its essence.

A lot of design is related to the decision of whether to place a feature on the
inside or on the outside. The more features you can place on the inside (and still
retain usability) the better.

 Module 7: Essentials of Object-Oriented Programming 15

Why Encapsulate?

n It Allows Control

l Use of the object
is solely through the
public methods

n It Allows Change

l Use of the object
is unaffected if the
private data type
changes

Withdraw()

Deposit()

dollars 12

Withdraw()

Deposit()

balance 12.56

cents 56

ûû

Two reasons to encapsulate are:

n To control use.

n To minimize the impact of change.

Encapsulation Allows Control
The first reason to encapsulate is to control use. When you drive a car, you
think only about the act of driving, not about the internals of the car. When you
withdraw money from an account, you do not think about how the account is
represented. You can use encapsulation and behavioral methods to design
software objects so that they can only be used in the way you intend.

Encapsulation Allows Change
The second reason to encapsulate follows from the first. If an object’s
implementation detail is private, it can be changed and the changes will not
directly affect users of the object (who can only access the public methods). In
practice, this can be tremendously useful. The names of the methods typically
stabilize well before the implementation of the methods.

The ability to make internal changes links closely to abstraction. Given two
designs for a class, as a rule of thumb, use the one with fewer public methods.

In other words, if you have a choice about whether to make a method public or
private, make it private. A private method can be freely changed and perhaps
later promoted into a public method. But a public method cannot be demoted
into a private method without destroying client code.

16 Module 7: Essentials of Object-Oriented Programming

Object Data

n Object Data Describes Information for Individual
Objects

l For example, each bank account has its own balance. If
two accounts have the same balance, it is only a
coincidence.

Withdraw()

Deposit()

balance 12.56

owner "Bert"

Withdraw()

Deposit()

balance 12.56

owner "Fred"

Most items of data inside an object describe information about that individual
object. For example, each bank account has its own balance. It is, of course,
perfectly possible for many bank accounts to have the same balance. However,
this would only be a coincidence.

The data inside an object is held privately, and is accessible only to the object
methods. This encapsulation and separation means that an object is effectively
self-contained.

 Module 7: Essentials of Object-Oriented Programming 17

Using Static Data

n Static Data Describes Information for All Objects of a
Class

l For example, suppose all accounts share the same
interest rate. Storing the interest rate in every account
would be a bad idea. Why?

Withdraw()

Deposit()

balance 12.56

interest 7%

Withdraw()

Deposit()

balance 99.12

interest 7%ûû ûû

Sometimes it does not make sense to store information inside every object. For
example, if all bank accounts always share the same interest rate, then storing
the rate inside every account object would be a bad idea for the following
reasons:

n It is a poor implementation of the problem as described: “All bank accounts
share the same interest rate.”

n It needlessly increases the size of each object, using extra memory resources
when the program is running and extra disk spac e when it is saved to disk.

n It makes it difficult to change the interest rate. You would need to change
the interest rate in every account object. If you needed to make the interest
rate change in each individual object, an interest rate change might make all
accounts inaccessible while the change took place.

n It increases the size of the class. The private interest rate data would require
public methods. The account class is starting to lose its cohesiveness. It is
no longer doing one thing and one thing well.

18 Module 7: Essentials of Object-Oriented Programming

To solve this problem, do not share information that is common between
objects at the object level. Instead of describing the interest rate many times at
the object level, describe the interest rate once at the class level. When you
define the interest rate at the class level, it effectively becomes global data.

However, global data, by definition, is not stored inside a class, and therefore
cannot be encapsulated. Because of this, many object-oriented programming
languages (including C#) do not allow global data. Instead, they allow data to
be described as static.

Declaring Static Data
Static data is physically declared inside a class (which is a static, compile -time
entity) and benefits from the encapsulation the class affords, but it is logically
associated with the class itself and not with each object. In other words, static
data is declared inside a class as a syntactic convenience and exists even if the
program never creates any objects of that class.

 Module 7: Essentials of Object-Oriented Programming 19

Using Static Methods

n Static Methods Can Only Access Static Data

l A static method is called on the class, not the object

InterestRate()

interest 7%

Withdraw()

Deposit()

balance 99.12

owner "Fred"

An account object
The account class

Classes contain static data and
static methods

Objects contain object data and
object methods

ûû

ûû
üü

You use static methods to encapsulate static data. In the example in the slide,
the interest rate belongs to the account class and not to an individual account
object. It therefore makes sense to provide methods at the class level that can be
used to access or modify the interest rate.

You can declare methods as static in the same way that you would declare data
as static. Static methods exist at the class level. You can control accessibility
for both static methods and static data can by using access modifiers such as
public and private. By choosing public static methods and private static data,
you can encapsulate static data in the same way that you can encapsulate object
data.

A static method exists at the class level and is called against the class and not
against an object. This means that a static method cannot use this, the operator
that implicitly refers to the object making an object method call. In other words,
a static method cannot access non-static data or non-static methods. The only
members of a class that a static method can access are static data and other
static methods.

20 Module 7: Essentials of Object-Oriented Programming

Static methods retain access to all private members of a class and can access
private non-static data by means of an object reference. The following code
provides an example:

class Time
{
 ...
 public static void Reset(Time t)
 {
 t.hours = 0; // Okay
 t.minutes = 0; // Okay
 hour = 0; // compile-time error
 minute = 0 // compile-time error
 }
 private int hour, minute;
}

 Module 7: Essentials of Object-Oriented Programming 21

u C# and Object Orientation

n Hello, World Revisited

n Defining Simple Classes

n Instantiating New Objects

n Using the this Operator

n Creating Nested Classes

n Accessing Nested Classes

In this section, you will re-examine the original Hello, World program.

The structure of the program will be explained from an object-oriented
perspective. You will then learn about the mechanisms that enable one object to
create another in C#. You will also learn how to define nested classes.

22 Module 7: Essentials of Object-Oriented Programming

Hello, World Revisited

using System;

class Hello
{

public static int Main()
{

Console.WriteLine("Hello, World");
return 0;

}
}

using System;

class Hello
{

public static int Main()
{

Console.WriteLine("Hello, World");
return 0;

}
}

The code for Hello, World is shown in the slide. There are some questions that
can be asked and answered:

n How does the runtime invoke a class?

n Why is Main static?

How Does the Runtime Invoke a Class?
If there is a single Main method, the compiler will automatically make it the
program entry point. The following code provides an example:

// OneEntrance.cs
class OneEntrance
{
 static void Main()
 {
 ...
 }
}
// end of file

c:\> csc OneEntrance.cs

The entry point of a C# program must be Main with a capital “M.”
The signature of Main is also important.

Warning

 Module 7: Essentials of Object-Oriented Programming 23

However, if there are several methods called Main, one of them must explicitly
be designated as the program entry point (and that Main must also be explicitly
public) The following code provides an example:

// TwoEntries.cs
using System;
class EntranceOne
{
 public static void Main()
 {
 Console.Write("EntranceOne.Main()");
 }
}
class EntranceTwo
{
 public static void Main()
 {
 Console.Write("EntranceTwo.Main()");
 }
}
// End of file

c:\> csc /main:EntranceOne TwoEntries.cs
c:\> twoentries.exe
EntranceOne.Main()
c:\> csc /main:EntranceTwo TwoEntries.cs
c:\> twoentries.exe
EntranceTwo.Main()
c:\>

Note that the command-line option is case sensitive. If the name of the class
containing Main is EntranceOne (with a capital E and a capital O) then the
following will not work:

c:\> csc /main:entranceone TwoEntries.cs

24 Module 7: Essentials of Object-Oriented Programming

If there is no Main method in the project, you cannot create an executable
program. However, you can create a dynamic -link library (DLL) as follows:

// NoEntrance.cs
class NoEntrance
{
 public static void NotMain()
 {
 Console.Write("NoEntrance.NotMain()");
 }
}
// End of file

c:\> csc /target:library NoEntrance.cs
c:\> dir
...
NoEntrance.dll
...

Why Is Main Static?
Making Main static allows it to be invoked without the runtime needing to
create an instance of the class.

Non-static methods can only be called on an object, as shown in the following
code:

class Example
{
 void NonStatic() { ... }
 static void Main()
 {
 Example eg = new Example();
 eg.NonStatic(); // Compiles
 NonStatic(); // compile-time error
 }
 ...
}

This means that if Main is non-static, as in the following code, the runtime
needs to create an object in order to call Main.

class Example
{
 void Main()
 {
 ...
 }
}

In other words, the runtime would effectively need to execute the following
code:

Example run = new Example();
run.Main();

 Module 7: Essentials of Object-Oriented Programming 25

Defining Simple Classes

n Data and Methods Together Inside a Class

n Methods Are Public, Data Is Private

class BankAccount
{

public void Withdraw(decimal amount)
{ ... }
public void Deposit(decimal amount)
{ ... }
private decimal balance;
private string name;

}

class BankAccount
{

public void Withdraw(decimal amount)
{ ... }
public void Deposit(decimal amount)
{ ... }
private decimal balance;
private string name;

}

Public methods
describe
accessible
behaviour

Public methods
describe
accessible
behaviour

Private fields
describe
inaccessible
state

Private fields
describe
inaccessible
state

Although classes and structs are semantically different, they do have syntactic
similarity. To define a class rather than a struct:

n Use the keyword class instead of struct.

n Declare your data inside the class exactly as you would for a struct.

n Declare your methods inside the class.

n Add access modifiers to the declarations of your data and methods. The
simplest two access modifiers are public and private. (The other three will
be covered later in this course.)

It is up to you to use public and private wisely to enforce encapsulation.
C# does not prevent you from creating public data.

The meaning of public is “access not limited.” The meaning of private is
“access limited to the containing type.” The following example clarifies this:

class BankAccount
{
 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 private decimal balance;
}

Note

26 Module 7: Essentials of Object-Oriented Programming

In this example, the Deposit method can access the private balance because
Deposit is a method of BankAccount (the type that contains balance). In other
words, Deposit is on the inside. From the outside, private members are always
inaccessible. In the following example, the expression underAttack.balance
will fail to compile.

class BankRobber
{
 public void StealFrom(BankAccount underAttack)
 {
 underAttack.balance -= 999999M;
 }
}

The expression underAttack.balance will fail to compile because the
expression is inside the StealFrom method of the BankRobber class. Only
methods of the BankAccount class can access private members of
BankAccount objects.

To declare static data, follow the pattern used by static methods (such as Main),
and prefix the data declaration with the keyword static. The following code
provides an example:

class BankAccount
{
 public void Deposit(decimal amount) { ... }
 public static void Main() { ... }
 ...
 private decimal balance;
 private static decimal interestRate;
}

 Module 7: Essentials of Object-Oriented Programming 27

If you do not specify an access modifier when declaring a class member, it will
default to private. In other words, the following two methods are semantically
identical:

class BankAccount
{
 ...
 decimal balance;
}

class BankAccount
{
 ...
 private decimal balance;
}

It is considered good style to explicitly write private even though it is not
strictly necessary.

The order in which members of a class are declared is not significant to the C#
compiler. However, it is considered good style to declare the public members
(methods) before the private members (data). This is because a class user only
has access to the public members anyway, and declaring public members before
private members naturally reflects this priority.

Tips

28 Module 7: Essentials of Object-Oriented Programming

Instantiating New Objects

n Declaring a Class Variable Does Not Create an Object

l Use the new operator to create an object

class Program
{

static void Main()
{

Time now;
now.hour = 11;
BankAccount yours = new BankAccount();
yours.Deposit(999999M);

}
}

class Program
{

static void Main()
{

Time now;
now.hour = 11;
BankAccount yours = new BankAccount();
yours.Deposit(999999M);

}
}

hour
minute

now

yours ...
...

new
BankAccount
object

Consider the following code examples:

struct Time
{
 public int hour, minute;
}
class Program
{
 static void Main()
 {
 Time now;
 now.hour = 11;
 now.minute = 59;
 ...
 }
}

Variables of the struct type are value types. This means that when you declare a
struct variable (such as now in Main), you create a value on the stack. In this
case, the Time struct contains two ints, so the declaration of now creates two
ints on the stack, one called now.hour and one called now.minute. These two
ints are not, repeat not, default initialized to zero. Hence the value of now.hour
or now.minute cannot be read until they have been assigned a definite value.
Values are scoped to the block in which they are declared. In this example, now
is scoped to Main. This means that when the control flow exits Main (either
through a normal return or because an exception has been thrown), now will go
out of scope; it will cease to exist.

 Module 7: Essentials of Object-Oriented Programming 29

Classes are completely different as shown in the following code:

class Time // NOTE: Time is now a class
{
 public int hour, minute;
}
class Program
{
 static void Main()
 {
 Time now;
 now.hour = 11;
 now.minute = 59;
 ...
 }
}

When you declare a class variable, you do not create an instance or object of
that class. In this case, the declaration of now does not create an object of the
Time class. Declaring a class variable creates a reference that is capable of
referring to an object of that class. This is why classes are called reference types.
This means that if the runtime were allowed to run the preceding code, it would
be trying to access the integers inside a non-existent Time object. Fortunately,
the compiler will warn you about this error. If you compile the preceding code,
you will get the following error message:

error CS0165: Use of possibly unassigned local variable 'now'

30 Module 7: Essentials of Object-Oriented Programming

To fix this error, you must create a Time object (using the new keyword) and
make the reference variable now actually refer to the newly created object, as in
the following code:

class Program
{
 static void Main()
 {
 Time now = new Time();
 now.hour = 11;
 now.minute = 59;
 ...
 }
}

Recall that when you create a local struct value on the stack, the fields are not,
repeat not, default initialized to zero. Classes are different: when you create an
object as an instance of a class, as above, the fields of the object are default
initialized to zero. Hence the following code compiles cleanly:

class Program
{
 static void Main()
 {
 Time now = new Time();
 Console.WriteLine(now.hour); // writes 0
 Console.WriteLine(now.minute); // writes 0
 ...
 }
}

 Module 7: Essentials of Object-Oriented Programming 31

Using the this Operator

n The this Operator Refers to the Object Used to Call the
Method

l Useful when identifiers from different scopes clash

class BankAccount
{

...
public void SetName(string name)
{

this.name = name;
}
private string name;

}

class BankAccount
{

...
public void SetName(string name)
{

this.name = name;
}
private string name;

}

If this statement were
name = name;

What would happen?

The this operator implicitly refers to the object that is making an object method
call.

In the following code, the statement name = name would have no effect at all.
This is because the identifier name on the left side of the assignment does not
resolve to the private BankAccount field called name. Both identifiers resolve
to the method parameter, which is also called name.

class BankAccount
{
 public void SetName(string name)
 {
 name = name;
 }
 private string name;
}

The C# compiler does not emit a warning for this bug.

Using the this Keyword
You can solve this reference problem by using the this keyword, as illustrated
on the slide. The this keyword refers to the current object for which the method
is called.

Static methods cannot use this as they are not called by using an object.

Warning

Note

32 Module 7: Essentials of Object-Oriented Programming

Changing the Parameter Name
You can also solve the reference problem by changing the name of the
parameter, as in the following example:

class BankAccount
{
 public void SetName(string newName)
 {
 name = newName;
 }
 private string name;
}

Using this when writing constructors is a common C# idiom. The
following code provides an example:

struct Time
{
 public Time(int hour, int minute)
 {
 this.hour = hour;
 this.minute = minute;
 }
 private int hour, minute;
}

Tip

 Module 7: Essentials of Object-Oriented Programming 33

The this operator is also used to implement call chaining. Notice in the
following class that both methods return the calling object:

class Book
{
 public Book SetAuthor(string author)
 {
 this.author = author;
 return this;
 }
 public Book SetTitle(string title)
 {
 this.title = title;
 return this;
 }
 private string author, title;
}

Returning this allows method calls to be chained together, as follows:

class Usage
{
 static void Chained(Book good)
 {
 good.SetAuthor(“Fowler”).SetTitle(“Refactoring”);
 }
 static void NotChained(Book good)
 {
 good.SetAuthor(“Fowler”);
 good.SetTitle(“Refactoring”);
 }
}

A static method exists at the class level and is called against the class and
not against an object. This means that a static method cannot use the this
operator.

Tip

Note

34 Module 7: Essentials of Object-Oriented Programming

Creating Nested Classes

n Classes Can Be Nested Inside Other Classes

class Program
{

static void Main()
{

Bank.Account yours = new Bank.Account();
}

}
class Bank
{

... class Account { ... }
}

class Program
{

static void Main()
{

Bank.Account yours = new Bank.Account();
}

}
class Bank
{

... class Account { ... }
}

The full name of the nested
class includes the name of
the outer class

The full name of the nested
class includes the name of
the outer class

There are five different kinds of types in C#:

n class

n struct

n interface

n enum

n delegate

You can nest all five of these inside a class or a struct.

You cannot nest a type inside an interface, an enum, or a delegate.

Note

 Module 7: Essentials of Object-Oriented Programming 35

In the code above, the Account class is nested inside the Bank class. The full
name of the nested class is Account . Bank, and this name must be used when
naming the nested type outside the scope of Bank. The following code provides
an example:

// Program.cs
class Program
{
 static void Main()
 {
 Account yours = new Account(); // compile-time error
 }
}
// end of file
c:\> csc Program.cs
error CS0234: The type...'Account' does not exist in the
class...'Program'

In contrast, just the name Account can be used from inside of Bank , as in the
following example:

class Bank
{
 class Account() { ... }

 Account OpenAccount()
 {
 return new Account();
 }
}

See the next topic for a more thorough examination of the example.

Nested classes offer several useful features:

n Nested classes can be declared with specific accessibility. This is covered in
the next topic.

n Using nested classes removes fewer names from the global scope or the
containing namespace.

n Nested classes allow extra structure to be expressed in the grammar of the
language. For example, the name of the class is Bank . Account (three
tokens) rather than BankAccount (one token).

Note

36 Module 7: Essentials of Object-Oriented Programming

Accessing Nested Classes

n Nested Classes Can Also Be Declared As Public or
Private

class Bank
{

public class Account { ... }
private class AccountNumberGenerator { ... }

}
class Program
{

static void Main()
{

Bank.Account accessible;
Bank.AccountNumberGenerator inaccessible;

}
}

class Bank
{

public class Account { ... }
private class AccountNumberGenerator { ... }

}
class Program
{

static void Main()
{

Bank.Account accessible;
Bank.AccountNumberGenerator inaccessible;

}
}

ûû
üü

You control the accessibility of data and methods by declaring them as public
or private. You control the accessibility of a nested class in exactly the same
way.

Public Nested Class
A public nested class has no access restrictions. It is declared to be publicly
accessible. The full name of a nested c lass must still be used when outside the
containing class.

Private Nested Class
A private nested class has exactly the same access restrictions as private data or
methods. A private nested class is inaccessible from outside the containing class,
as the following example shows:

class Bank
{
 private class AccountNumberGenerator()
 {
 ...
 }
}
class Program
{
 static void Main()
 {
 // Compile time error
 Bank.AccountNumberGenerator variable;
 }
}

 Module 7: Essentials of Object-Oriented Programming 37

In this example, Main cannot use Bank.AccountNumberGenerator because
Main is a method of Program and AccountNumberGenerator is private and
hence only accessible to its outer class, Bank .

A private nested class is accessible only to members of the containing class as
the following examples shows:

class Bank
{
 public class Account
 {
 public void Setup()
 {
 NumberSetter.Set(this);
 balance = 0M;
 }

 private class NumberSetter
 {
 public static void Set(Account a)
 {
 a.number = nextNumber++;
 }
 private static int nextNumber = 2311;
 }

 private int number;
 private decimal balance;
 }
}

In this code, note that the Account.Setup method can access the
NumberSetter class because, although NumberSetter is a private class, it is
private to Account, and Setup is a method of Account.

38 Module 7: Essentials of Object-Oriented Programming

Notice also that the Account.NumberSetter.Set method can access the private
balance field of the Account object a. This is because Set is a method of class
NumberSetter, which is nested inside Account. Hence NumberSetter (and its
methods) have access to the private members of Account.

The default accessibility of a nested class is private (as it is for data and
methods). In the following example, the Account class defaults to private:

class Bank
{
 class Account() { ... }

 public Account OpenPublicAccount()
 {
 Account opened = new Account();
 opened.Setup();
 return opened;
 }

 private Account OpenPrivateAccount()
 {
 Account opened = new Account();
 opened.Setup();
 return opened;
 }
}

The Account class is accessible to OpenPublicAccount and
OpenPrivateAccount because both methods are nested inside Bank. However,
the OpenPublicAccount method will not compile. The problem is that
OpenPublicAccount is a public method, usable as in the following code:

class Program
{
 static void Main()
 {
 Bank b = new Bank();
 Bank.Account opened = b.OpenPublicAccount();
 ...
 }
}

This code will not compile because Bank.Account is not accessible to
Program.Main, Bank.Account is private to Bank, and Main is not a method
of Bank . The following error message appears:

error CS0050: Inconsistent accessibility: return type
'Bank.Account' is less accessible than method
'Bank.OpenPublicAccount'

The accessibility rules for a top-level class (that is, a class that is not nested
inside another class) are not the same as those for a nested class. A top-level
class cannot be declared private and defaults to internal accessibility. (Internal
access is covered fully in a later module.)

 Module 7: Essentials of Object-Oriented Programming 39

Lab 7: Creating and Using Classes

Objectives
After completing this lab, you will be able to:

n Create classes and instantiate objects.

n Use non-static data and methods.

n Use static data and methods.

Prerequisites
Before working on this lab, you must be familiar with the following:

n Creating methods in C#

n Passing arguments as method parameters in C#

Estimated time to complete this lab: 45 minutes

40 Module 7: Essentials of Object-Oriented Programming

Exercise 1
Creating and Using a Class

In this exercise, you will take the bank account struct that you developed in a
previous module and convert it into a class. You will declare its data members
as private but provide non-static public methods for accessing the data. You
will build a test harness that creates an account object and populates it with an
account number and balance that is specified by the user. Finally, you will print
the data in the account.

å To change BankAccount from a struct to a class

1. Open the CreateAccount.sln project in the install folder\
Labs\Lab07\Starter\CreateAccount folder.

2. Study the program in the BankAccount.cs file. Notice that BankAccount is a
struct type.

3. Compile and run the program. You will be prompted to enter an account
number and an initial balance. Repeat this process to create another account.

4. Modify BankAccount in BankAccount.cs to make it a class rather than a
struct.

5. Compile the program. It will fail to compile. Open the CreateAccount.cs file
and view the CreateAccount class. The class will look as follows:

class CreateAccount
{
 ...
 static BankAccount NewBankAccount()
 {
 BankAccount created;
 ...
 created.accNo = number; // Error here

 ...
 }
 ...
}

6. The assignment to created.accNo compiled without error when
BankAccount was a struct. Now that it is a class, it does not compile! This
is because when BankAccount was a struct, the declaration of the created
variable created a BankAccount value (on the stack). Now that
BankAccount is a class, the declaration of the created variable does not
create a BankAccount value; it creates a BankAccount reference that does
not yet refer to a BankAccount object.

 Module 7: Essentials of Object-Oriented Programming 41

7. Change the declaration of created so that it is initialized with a newly
created BankAccount object, as shown:

class CreateAccount
{
 ...
 static BankAccount NewBankAccount()
 {
 BankAccount created = new BankAccount();
 ...
 created.accNo = number;

 ...
 }
 ...
}

8. Save your work.

9. Compile and run the program. Verify that the data entered at the console is
correctly read back and displayed in the CreateAccount.Write method.

å To encapsulate the BankAccount class

1. All the data members of the BankAccount class are currently public.
Modify them to make them private, as shown:

class BankAccount
{
 private long accNo;
 private decimal accBal;
 private AccountType accType;
}

2. Compile the program. It will fail to compile. The error occurs in the
CreateAccount class as shown::

class CreateAccount
{
 ...
 static BankAccount NewBankAccount()
 {
 BankAccount created = new BankAccount();
 ...
 created.accNo = number; // Error here again

 ...

 }
 ...
}

42 Module 7: Essentials of Object-Oriented Programming

3. The BankAccount data member assignments now fail to compile because
the data members are private. Only BankAccount methods can access the
private BankAccount data members. You need to write a public
BankAccount method to do the assignments for you. Perform the following
steps:

Add a non-static public method called Populate to BankAccount. This
method will return void and expect two parameters: a long (the bank
account number) and a decimal (the bank account balance). The body of this
method will assign the long parameter to the accNo field and the decimal
parameter to the accBal field. It will also set the accType field to
AccountType.Checking as shown:

class BankAccount
{
 public void Populate(long number, decimal balance)
 {
 accNo = number;
 accBal = balance;
 accType = AccountType.Checking;
 }

 private long accNo;
 private decimal accBal;
 private AccountType accType;
}

4. Comment out the three assignments to the created variable in the
CreateAccount.NewbankAccount method. In their place, add a statement
that calls the Populate method on the created variable, passing number and
balance as arguments. This will look as follows:

class CreateAccount
{
 ...
 static BankAccount NewBankAccount()
 {
 BankAccount created = new BankAccount();
 ...
 // created.accNo = number;
 // created.accBal = balance;
 // created.accType = AccountType.Checking;

 created.Populate(number, balance);

 ...
 }
 ...
}

5. Save your work.

 Module 7: Essentials of Object-Oriented Programming 43

6. Compile the program. It will fail to compile. There are still three statements
in the CreateAccount.Write method that attempt to directly access the
private BankAccount fields. You need to write three public BankAccount
methods that return the values of these three fields. Perform the following
steps:

a. Add a non-static public method to BankAccount called Number. This
method will return a long and expect no parameters. It will return the
value of the accNo field as shown:

class BankAccount
{
 public void Populate(...) ...

 public long Number()
 {
 return accNo;
 }
 ...
}

b. Add a non-static public method to BankAccount called Balance, as
shown in the following code. This method will return a decimal and
expect no parameters. It will return the value of the accBal field.

class BankAccount
{
 public void Populate(...) ...

 ...
 public decimal Balance()
 {
 return accBal;
 }
 ...
}

c. Add a non-static public method called Type to BankAccount, as shown
in the following code. This method will return an AccountType and
expect no parameters. It will return the value of the accType field.

class BankAccount
{
 public void Populate(...) ...

 ...
 public AccountType Type()
 {
 return accType;
 }
 ...
}

44 Module 7: Essentials of Object-Oriented Programming

d. Finally, replace the three statements in the CreateAccount.Write
method that attempt to directly access the private BankAccount fields
with calls to the three public methods you have just created, as shown:

class CreateAccount
{
 ...
 static void Write(BankAccount toWrite)
 {
 Console.WriteLine("Account number is {0}",
ÊtoWrite.Number());
 Console.WriteLine("Account balance is {0}",
ÊtoWrite.Balance());
 Console.WriteLine("Account type is {0}",
ÊtoWrite.Type().Format());
 }
}

7. Save your work.

8. Compile the program and correct any other errors. Run the program. Verify
that the data entered at the console and passed to the
BankAccount.Populate method is correctly read back and displayed in the
CreateAccount.Write method.

 Module 7: Essentials of Object-Oriented Programming 45

å To further encapsulate the BankAccount class

1. Change the BankAccount.Type method so that it returns the type of the
account as a string rather than as an AccountType enum, as shown:

class BankAccount
{
 ...
 public string Type()
 {
 return accType.Format();
 }
 ...
 private AccountType accType;
}

2. Change the last WriteLine statement in the CreateAccount.Write method
so that it no longer calls the Format method, as shown:

class CreateAccount
{
 ...
 static void Write(BankAccount acc)
 {
 Console.WriteLine("Account number is {0}",
Êacc.Number());
 Console.WriteLine("Account balance is {0}",
Êacc.Balance());
 Console.WriteLine("Account type is {0}",
Êacc.Type());
 }
}

3. Save your work.

4. Compile the program and correct any errors. Run the program. Verify that
the data entered at the console and passed to the BankAccount.Populate
method is correctly read back and displayed in the CreateAccount.Write
method.

46 Module 7: Essentials of Object-Oriented Programming

Exercise 2
Generating Account Numbers

In this exercise, you will modify the BankAccount class from Exercise 1 so
that it will generate unique account numbers. You will accomplish this by using
a static variable in the BankAccount class and a method that increments and
returns the value of this variable. When the test harness creates a new account,
it will call this method to generate the account number. It will then call the
method of the BankAccount class that sets the number for the account, passing
in this value as a parameter .

å To ensure that each BankAccount number is unique

1. Open the project UniqueNumbers.sln in the install folder\
Labs\Lab07\Starter\UniqueNumbers folder.

This project is the same as the completed CreateAccount project from
Exercise 1.

2. Add a private static long called nextAccNo to the BankAccount class, as
shown:

class BankAccount
{
 ...
 private long accNo;
 private decimal accBal;
 private AccountType accType;

 private static long nextAccNo;
}

3. Add a public static method called NextNumber to the BankAccount class,
as shown in the following code. This method will return a long and expect
no parameters. It will return the value of the nextAccNo field in addition to
incrementing this field.

class BankAccount
{
 ...
 public static long NextNumber()
 {
 return nextAccNo++;
 }

 private long accNo;
 private decimal accBal;
 private AccountType accType;

 private static long nextAccNo;
}

Note

 Module 7: Essentials of Object-Oriented Programming 47

4. Comment out the statement in the CreateAccount.NewBankAccount
method that writes a prompt to the console asking for the bank account
number, as shown:

 //Console.Write("Enter the account number: ");

5. Replace the initialization of number in the
CreateAccount.NewBankAccount method with a call to the
BankAccount.NextNumber method you have just created, as shown:

//long number = long.Parse(Console.ReadLine());
long number = BankAccount.NextNumber();

6. Save your work.

7. Compile the program and correct any errors. Run the program. Verify that
the two accounts have account numbers 0 and 1.

8. Currently, the BankAccount.nextAccNo static field has a default
initialization to zero. Explicitly initialize this field to 123.

9. Compile and run the program. Verify that the two accounts created have
account numbers 123 and 124.

48 Module 7: Essentials of Object-Oriented Programming

å To further encapsulate the BankAccount class

1. Change the BankAccount.Populate method so that it expects only one
parameter— the decimal balance. Inside the method, assign the accNo field
by using the BankAccount.NextNumber static method, as shown:

class BankAccount
{
 public void Populate(decimal balance)
 {
 accNo = NextNumber();
 accBal = balance;
 accType = AccountType.Checking;
 }
 ...
}

2. Change BankAccount.NextNumber into a private method, as shown:

class BankAccount
{
 ...
 private static long NextNumber() ...
}

3. Comment out the declaration and initialization of number in the
CreateAccount.NewBankAccount method. Change the created.Populate
method call so that it only passes a single parameter, as shown:

class CreateAccount
{
 ...
 static BankAccount NewBankAccount()
 {
 BankAccount created = new BankAccount();

 //long number = BankAccount.NextNumber();
 ...
 created.Populate(balance);
 ...
 }
 ...
}

4. Save your work.

5. Compile the program and correct any errors. Run the program. Verify that
the two accounts still have account numbers 123 and 124.

 Module 7: Essentials of Object-Oriented Programming 49

Exercise 3
Adding More Public Methods

In this exercise, you will add two methods to the Account class: Withdraw and
Deposit.

Withdraw will take a decimal parameter and will deduct the given amount
from the balance. However, it will check first to ensure that sufficient funds are
available, since accounts are not allowed to become overdrawn. It will return a
bool value indicating whether the withdrawal was successful.

Deposit will also take a decimal parameter whose value it will add to the
balance in the account. It will return the new value of the balance.

å To add a Deposit method to the BankAccount class

1. Open the project MoreMethods.sln in the install folder\
Labs\Lab07\Starter\MoreMethods folder.

This project is the same as the completed UniqueNumbers project
from Exercise 2.

2. Add a public non-static method called Deposit to the BankAccount class,
as shown in the following code. This method will also take a decimal
parameter whose value it will add to the balance in the account. It will
return the new value of the balance.

class BankAccount
{
 ...
 public decimal Deposit(decimal amount)
 {
 accBal += amount;
 return accBal;
 }
 ...
}

Note

50 Module 7: Essentials of Object-Oriented Programming

3. Add a public static method called TestDeposit to the CreateAccount class,
as shown in the following code. This method will return void and expect a
BankAccount parameter. The method will write a prompt to the console
prompting the user for the amount to deposit, capture the entered amount as
a decimal, and then call the Deposit method on the BankAccount
parameter, passing the amount as an argument.

class CreateAccount
{
 ...
 public static void TestDeposit(BankAccount acc)
 {
 Console.Write("Enter amount to deposit: ");
 decimal amount = decimal.Parse(Console.ReadLine());
 acc.Deposit(amount);
 }
 ...
}

4. Add to CreateAccount.Main statements that call the TestDeposit method
you have just created, as shown in the following code. Ensure that you call
TestDeposit for both account objects. Use the CreateAccount.Write
method to display the account after the deposit takes place.

class CreateAccount
{
 static void Main()
 {
 BankAccount berts = NewBankAccount();
 Write(berts);
 TestDeposit(berts);
 Write(berts);

 BankAccount freds = NewBankAccount();
 Write(freds);
 TestDeposit(freds);
 Write(freds);
 }
}

5. Save your work.

6. Compile the program and correct any errors. Run the program. Verify that
deposits work as expected.

If you have time, you might want to add a further check to Deposit to
ensure that the decimal parameter passed in is not negative.

Note

 Module 7: Essentials of Object-Oriented Programming 51

å To add a Withdraw method to the BankAccount class

1. Add a public non-static method called Withdraw to BankAccount, as
shown in the following code. This method will expect a decimal parameter
specifying the amount to withdraw. It will deduct the amount from the
balance only if sufficient funds are available, since accounts are not allowed
to become overdrawn. It will return a bool indicating whether the
withdrawal was successful.

class BankAccount
{
 ...
 public bool Withdraw(decimal amount)
 {
 bool sufficientFunds = accBal >= amount;
 if (sufficientFunds) {
 accBal -= amount;
 }
 return sufficientFunds;
 }
 ...
}

2. Add a public static method called TestWithdraw to the CreateAccount
class, as shown in the following code. This method will return void and will
expect a BankAccount parameter. The method will write a prompt to the
console prompting the user for the amount to withdraw, capture the entered
amount as a decimal, and then call the Withdraw method on the
BankAccount parameter, passing the amount as an argument. The method
will capture the bool result returned by Withdraw and write a message to
the console if the withdrawal failed.

class CreateAccount
{
 ...
 public static void TestWithdraw(BankAccount acc)
 {
 Console.Write("Enter amount to withdraw: ");
 decimal amount = decimal.Parse(Console.ReadLine());
 if (!acc.Withdraw(amount)) {
 Console.WriteLine("Insufficient funds.");
 }
 }
 ...
}

52 Module 7: Essentials of Object-Oriented Programming

3. Add to CreateAccount.Main statements that call the TestWithdraw
method you have just created, as shown in the following code. Ensure that
you call TestWithdraw for both account objects. Use the
CreateAccount.Write method to display the account after the withdrawal
takes place.

class CreateAccount
{
 static void Main()
 {
 BankAccount berts = NewBankAccount();
 Write(berts);
 TestDeposit(berts);
 Write(berts);
 TestWithdraw(berts);
 Write(berts);

 BankAccount freds = NewBankAccount();
 Write(freds);
 TestDeposit(freds);
 Write(freds);
 TestWithdraw(freds);
 Write(freds);
 }
 }

4. Save your work.

5. Compile the program and correct any errors. Run the program. Verify that
withdrawals work as expected. Test successful and unsuccessful
withdrawals.

 Module 7: Essentials of Object-Oriented Programming 53

u Defining Object-Oriented Systems

n Inheritance

n Class Hierarchies

n Single and Multiple Inheritance

n Polymorphism

n Abstract Base Classes

n Interfaces

n Early and Late Binding

In this section, you will learn about inheritance and polymorphism. You will
learn how to implement these concepts in C# in later modules.

54 Module 7: Essentials of Object-Oriented Programming

Inheritance

n Inheritance Specifies an “Is a Kind of" Relationship

l Inheritance is a class relationship

l New classes specialize existing classes

Musician

Violin
Player

Base class

Derived class

Generalization

Specialization Is this a good
example of
inheritance ?

Inheritance is a relationship that is specified at the class level. A new class can
be derived from an existing class. In the slide above, the ViolinPlayer class is
derived from the Musician class. The Musician class is called the base class
(or, less frequently, the parent class, or the superclass); the ViolinPlayer class
is called the derived class (or, less frequently, the child class, or subclass). The
inheritance is shown by using the Unified Modeling Language (UML) notation.
More UML notation will be covered in later slides.

Inheritance is a powerful relationship because a derived class inherits
everything from its base class. For example, if the base class Musician contains
a method called TuneYourInstrument, this method is automatically a member
of the derived ViolinPlayer class.

A base class can have any number of derived classes. For example, new classes
(such as FlutePlayer, or PianoPlayer) could all be derived from the Musician
class. These new derived classes would again automatically inherit the
TuneYourInstrument method from the Musician base class.

A change to a base class is automatically a change to all derived classes.
For example, if a field of type MusicalIntrument was added to the Musician
base class, then every derived class (ViolinPlayer, FlutePlayer, PianoPlayer,
and so on) would automatically acquire a field of type MusicalInstrument. If a
bug is introduced into a base class, it will automatically become a bug in every
derived class. (This is known as the fragile base class problem.)

Note

 Module 7: Essentials of Object-Oriented Programming 55

Understanding Inheritance in Object-Oriented
Programming
The graphic on the slide shows a man, a woman, and a small girl riding a
bicycle. If the man and the woman are the biological parents of the girl, then
she will inherit half of her genes from the man and half of her genes from the
woman.

But this is not an example of class inheritance. It is implementation mechanism!

The classes are Man and Woman. There are two instances of the Woman class
(one with an age attribute of less than 16) and one instance of the Man class.
There is no class inheritance. The only possible way there could be class
inheritance in this example is if the Man class and the Woman class share a
base class Person.

56 Module 7: Essentials of Object-Oriented Programming

Class Hierarchies

n Classes Related by Inheritance Form Class Hierarchies

Musician

???

String
Musician

Violin???

Musical
Instrument

plays

plays

playsViolin
Player

Stringed
Instrument

Classes that derive from base classes can themselves be derived from. For
example, in the slide the StringMusician class is derived from the Musician
class but is itself a base class for the further derived ViolinPlayer class. A
group of classes related by inheritance forms a structure known as a class
hierarchy. As you move up a hierarchy, the classes represent more general
concepts (generalization); as you move down a hierarchy the classes represent
more specialized concepts (specialization).

The depth of a class hierarchy is the number of levels of inheritance in the
hierarchy. Deeper class hierarchies are harder to use and harder to implement
than shallow class hierarchies. Most programming guidelines recommend that
the depth be limited to between five and seven classes.

The slide depicts two parallel class hierarchies: one for musicians and another
for musical instruments. Creating class hierarchies is not easy: classes need to
be designed as base classes from the start. Inheritance hierarchies are also the
dominant feature of frameworks— models of work that can be built on and
extended.

 Module 7: Essentials of Object-Oriented Programming 57

Single and Multiple Inheritance

n Single Inheritance: Deriving from One Base Class

n Multiple Inheritance: Deriving from Two or More Base
Classes

Stringed
Instrument

Violin

Musical
Instrument

Stringed
Instrument

Pluckable

Violin has a single direct
base class

Stringed Instrumenthas
two direct base classes

Single inheritance occurs when a class has a single direct base class. In the
example in the slide, the Violin class inherits from one class,
StringedInstrument, and is an example of single inheritance.
StringedInstrument derives from two classes, but that is not relevant to the
Violin class. Single inheritance can still be difficult to use wisely. It is well
known that inheritance is one of the most powerful software modeling tools,
and at the same time one of the most misunderstood and misused.

Multiple inheritance occurs when a class has two or more direct base classes. In
the example in the slide, the StringedInstrument class derives directly from
two classes, MusicalInstrument and Pluckable, and provides an example of
multiple inheritance. Multiple inheritance offers multiple opportunities to
misuse inheritance! C#, like most modern programming languages (but not
C++), restricts the use of multiple inheritance: you can inherit from as many
interfaces as you want, but you can only inherit from one non-interface (that is,
at most one abstract or concrete class). The terms interface, abstract class, and
concrete class are covered later in this module.

Notice that all forms of inheritance, but multiple inheritance in particular, offer
many views of the same object. For example, a Violin object could be used at
the Violin class level, but it could also be used at the StringedInstrument class
level.

58 Module 7: Essentials of Object-Oriented Programming

Polymorphism

n The Method Name Resides in the Base Class

n The Method Implementations Reside in the Derived
Classes

String Musician

TuneYourInstrument()

Guitar Player

TuneYourInstrument()

Violin Player

TuneYourInstrument()

A method with no
implementation is
called an operation

A method with no
implementation is
called an operation

Polymorphism literally means many forms or many shapes. It is the concept that
a method declared in a base class can be implemented in many different ways in
the different derived classes.

Consider the scenario of an orchestra of musicians all tuning their instruments
as they get ready for a concert. Without polymorphism, the conductor needs to
visit each musician in turn, seeing what kind of instrument the musician plays,
and giving detailed instructions about how to tune that particular kind of
instrument. With polymorphism, the conductor just tells each musician, “tune
your instrument.” The conductor does not need to know which particular
instrument each musician plays, just that each musician will respond to the
same request for behavior in a manner appropriate to their particular instrument.
Rather than the conductor being responsible for the knowledge of how to tune
all of the different kinds of instruments, the knowledge is partitioned across the
different kinds of musicians as appropriate: a guitar player knows how to tune a
guitar, a violin player knows how to tune a violin. In fact, the conductor does
not know how to tune any of the instruments. This decentralized allocation of
responsibilities also means that new derived classes (such as DrumPlayer) can
be added to the hierarchy without necessarily needing to modify existing
classes (such as the conductor).

There is one problem though. What is the body of the method at the base-class
level? Without knowing which particular kind of instrument a musician plays, it
is impossible to know how to tune the instrument. To manage this, only the
name of the method (and no body) can be declared in the base class. A method
name with no method body is called an operation. One of the ways of denoting
an operation in UML is to use italics, as is shown in the slide.

 Module 7: Essentials of Object-Oriented Programming 59

Abstract Base Classes

n Some Classes Exist Solely to Be Derived From

l It makes no sense to create instances of these classes

l These classes are abstract

Stringed Musician
{ abstract }

Guitar Player
« concrete »

Violin Player
« concrete »

You can create instances
of concrete classes

You can create instances
of concrete classes

You cannot create instances
of abstract classes

You cannot create instances
of abstract classes

In a typical class hierarchy, the operation (the name of a method) is declared in
the base class, and the method is implemented in different ways in the different
derived classes. The base class exists solely to introduce the name of the
method into the hierarchy. In particular, the base class operation does not
require an implementation. This makes it vital that the base class not be used as
a regular class. Most importantly, you must not be allowed to create instances
of the base class: if you could, what would happen if you called the operation
that had no implementation? A mechanism is required that makes it impossible
to create instances of these base classes: the base class needs to be marked
abstract.

In a UML design, you can constrain a class as abstract by writing the name of
the class in italics or by placing the word abstract within braces ({ and }). In
contrast, you can use the word concrete or class between guillemets (<< and >>)
as a stereotype to denote in UML a class that is not abstract, a class that can be
used to create instances. This is shown in the slide. All object-oriented
programming languages have grammatical constructs that implement an
abstract constraint. (Even C++ can use protected constructors.)

Sometimes the creation of an abstract base class is more retrospective: duplicate
common features in the derived classes are factored into a new base class.
However, once again, the base class should be marked abstract because its
purpose is to be derived from, and not to create instances.

60 Module 7: Essentials of Object-Oriented Programming

Interfaces

n Interfaces Contain Only Operations, Not Implementation

String Musician
{ abstract }

Violin Player
« concrete »

Musician
« interface »

Nothing but operations.
You cannot create instances of an
interface.

Nothing but operations.
You cannot create instances of an
interface.

May contain some implementation.
You cannot create instances of an
abstract class.

May contain some implementation.
You cannot create instances of an
abstract class.

Must implement all inherited
operations. You can create
instances of a concrete class.

Must implement all inherited
operations. You can create
instances of a concrete class.

Abstract classes and interfaces are alike in that neither can be used to instantiate
objec ts. However, they differ in that an abstract class may contain some
implementation whereas an interface contains no implementation of any kind;
an interface contains only operations (the names of methods). You could say
that an interface is even more abstract than an abstract class!

In UML, you can depict an interface by using the word interface between
guillemets (<< and >>). All object-oriented programming languages have
grammatical constructs that implement an interface.

Interfaces are important constructs in object-oriented programs. In UML,
interfaces have specific notation and terminology. When you derive from an
interface, it is said that you implement that interface. UML depicts this with a
dashed line called realization. When you derive from a non-interface (an
abstract class or a concrete class) it is said that you extend that class. UML
depicts this with a solid line called generalization/specialization.

Place your interfaces at the top of a class hierarchy. The idea is simple: if you
can program to an interface— that is, if you use only those features of an object
that are declared in its interface— your program loses all dependence on the
specific object and its concrete class. In other words, when you program to an
interface, many different objects of many different classes can be used
interchangeably. It is this ability to make changes with no impact that leads to
the object-oriented maxim, “Program to an interface and not to an
implementation.”

 Module 7: Essentials of Object-Oriented Programming 61

Early and Late Binding

n Normal Method Calls Are Resolved at Compile Time

n Polymorphic Method Calls Are Resolved at Run Time

TuneYourInstrument()

TuneYourInstrument()

Musician
« interface »

Violin Player
« concrete »

Late Binding

Early Binding

runtime

When you make a method call directly on an object, that is, not through a base
class operation, the method call is resolved at compile time. This is also known
as early binding or static binding.

When you make a method call indirectly on an object— that is, through a base
class operation— the method call is resolved at run time. This is also known as
late binding or dynamic binding.

An example of late binding occurs when a conductor tells all of the musicians
in an orchestra to tune their instruments. By working at the interface level, the
conductor does not need to know (and hence be dependent on) the specific
different kinds of concrete musicians (such as ViolinPlayer). The conductor is
also freed from needing to know when a new class is added to the hierarchy for
a new kind of musician (for example, HarpPlayer).

The flexibility of late binding comes with a physical price and a logical price:

n Physical price

Late bound calls are slightly slower than early bound calls. In effect, the
extra work that must be performed as a result of a late bound call is to
discover the class of the calling object. This is done in an efficient manner
(you would not be able to do it faster yourself), but it is extra work.

n Logical price

With late binding, derived classes can be substituted for their base classes.
An operation call can be made through an interface, and at run time the
derived class object will correctly have its method called. In other words, all
derived classes that implement an interface can act as substitutes for the
interface type. Newcomers to object-oriented programming often fail to
fully appreciate the substitutability aspect of inheritance.

62 Module 7: Essentials of Object-Oriented Programming

Review

n Classes and Objects

n Using Encapsulation

n C# and Object Orientation

n Defining Object-Oriented Systems

1. Explain the concept of abstraction and why it is important in software
engineering.

2. What are the two principles of encapsulation?

 Module 7: Essentials of Object-Oriented Programming 63

3. Describe inheritance in the context of object-oriented programming.

4. What is polymorphism? How is it related to early and late binding?

5. Describe the differences between interfaces, abstract classes, and concrete
classes.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Using Reference -Type Variables 2
Using Common Reference Types 15

The Object Hierarchy 23

Namespaces in the .NET Framework 29

Lab 8.1: Defining And Using Reference -
Variables 35

Data Conversions 43

Multimedia: Type-Safe Casting 56
Lab 8.2 Converting Data 57

Review 63

Module 8: Using
Reference-Type Variables

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 8: Using Reference-Type Variables 1

Overview

n Using Reference-Type Variables

n Using Common Reference Types

n The Object Hierarchy

n Namespaces in the .NET Framework

n Data Conversions

In this module, you will learn how to use reference types in C#. You will learn
about a number of reference types, such as string, that are built into the C#
language and run-time environment. These are discussed as examples of
reference types.

You will also learn about the C# object hierarchy and the object type in
particular, so you can understand how the various reference types are related to
each other and to the value types. You will learn how to convert data between
reference types by using explicit and implicit conversions. You will also learn
how boxing and unboxing conversions convert data between reference types
and value types.

After completing this module, you will be able to:

n Describe the important differences between reference types and value types.

n Use common reference types, such as string.

n Explain how the object type works and become familiar with the methods it
supplies.

n Describe common namespaces in the Microsoft® .NET Framework.

n Determine whether different types and objects are compatible.

n Explicitly and implicitly convert data types between reference types.

n Perform boxing and unboxing conversions between reference and value data.

2 Module 8: Using Reference-Type Variables

u Using Reference-Type Variables

n Comparing Value Types to Reference Types

n Declaring and Releasing Reference Variables

n Invalid References

n Comparing Values and Comparing References

n Multiple References to the Same Object

n Using References as Method Parameters

Reference types are important features of the C# language. They enable you to
write complex and powerful applications and effectively use the run-time
framework.

In this section, you will learn about reference-type variables and about how
they are different from value-type variables. You will learn how to use and
discard reference variables. You will also learn how to pass reference types as
method parameters.

 Module 8: Using Reference-Type Variables 3

Comparing Value Types to Reference Types

n Value Types

l The variable
contains the
value directly

l Examples:
char, int

4242

int mol;
mol = 42;
int mol;
mol = 42; ••

string mol;
mol = "Hello";
string mol;
mol = "Hello";

HelloHello

n Reference Types

l The variable contains a
reference to the data

l Data is stored in a
separate memory area

C# supports basic data types such as int, long and bool. These types are also
referred to as value types. C# also supports more complex and powerful data
types known as reference types.

Value Types
Value-type variables are the basic built- in data types such as char and int. Value
types are the simplest types in C#. Variables of value type directly contain their
data in the variable.

Reference Types
Reference-type variables contain a reference to the data, not the data itself. The
data itself is stored in a separate memory area.

You have already used several reference types in this course so far, perhaps
without realizing it. Arrays, strings, and exceptions are all reference types that
are built into the C# compiler and the .NET Framework. Classes, both built- in
and user-defined, are also a kind of reference type.

4 Module 8: Using Reference-Type Variables

Declaring and Releasing Reference Variables

n Declaring Reference Variables

coordinate c1;
c1 = new coordinate();
c1.x = 6.12;
c1.y = 4.2;

coordinate c1;
c1 = new coordinate();
c1.x = 6.12;
c1.y = 4.2;

•• 6.126.12 4.24.2

c1 = null;c1 = null;

•• 6.126.12 4.24.2

n Releasing Reference Variables

To use reference-type variables, you need to know how to declare and initialize
them and how to release them.

Declaring Reference Variables
You declare reference-type variables by using the same syntax that you use
when declaring value-type variables:

coordinate c1;

The preceding example declares a variable c1 that can hold a reference to an
object of type coordinate. However, this variable is not initialized to reference
any coordinate objects.

To initialize a coordinate object, use the new operator. This creates a new
object and returns an object reference that can be stored in the reference
variable.

coordinate c1;
c1 = new coordinate();

If you prefer, you can combine the new operator with the variable declaration
so that the variable is declared and initialized in one statement, as follows:

coordinate c1 = new coordinate();

After you have created an object in memory to which c1 refers, you can then
reference member variables of that object by using the dot operator as shown in
the following example:

c1.x = 6.12;
c1.y = 4.2;

 Module 8: Using Reference-Type Variables 5

Example of Declaring Reference Variables
Classes are reference types. The following example shows how to declare a
user -defined class called coordinate. For simplicity, this class has only two
public member variables: x and y.

class coordinate
{
 public double x = 0.0;
 public double y = 0.0;
}

This simple class will be used in later examples to demonstrate how reference
variables can be created, used, and destroyed.

Releasing Reference Variables
After you assign a reference to a new object, the reference variable will
continue to reference the object until it is assigned to refer to a different object.

C# defines a special value called null. A reference variable contains null when
it does not refer to any valid object. To release a reference, you can explicitly
assign the value null to a reference variable (or simply allow the reference to go
out of scope).

6 Module 8: Using Reference-Type Variables

Invalid References

n If You Have Invalid References

l You cannot access members or variables

n Invalid References at Compile Time

l Compiler detects use of uninitialized references

n Invalid References at Run Time

l System will generate an exception error

You can only access the members of an object through a reference variable if
the reference variable has been initialized to point to a valid reference. If a
reference is not valid, you cannot access member variables or methods.

The compiler can detect this problem in some cases. In other cases, the problem
must be detected and handled at run time.

Invalid References at Compile Time
The compiler is able to detect situations in which a reference variable is not
initialized prior to use.

For example, if a coordinate variable is declared but not assigned, you will
receive an error message similar to the following: “Use of unassigned local
variable c1.” The following code provides an example:

coordinate c1;
c1.x = 6.12; // Will fail: variable not assigned

 Module 8: Using Reference-Type Variables 7

Invalid References at Run Time
In general, it is not possible to determine at compile time when a variable
reference is not valid. Therefore, C# will check the value of a reference variable
before it is used, to ensure that it is not null.

If you try to use a reference variable that has the value null, the run-time system
will throw a NullReferenceException exception. If you want, you can check
for this condition by using try and catch. The following is an example:

try {
 c1.x = 45;
}
catch (NullReferenceException) {
 Console.WriteLine("c1 has a null value");
}

Alternatively, you can check for null explicitly, thereby avoiding exceptions.
The following example shows how to check that a reference variable contains a
non-null reference before trying to access its members:

if (c1 != null)
 c1.x = 45;
else
 Console.WriteLine("c1 has a null value");

8 Module 8: Using Reference-Type Variables

Comparing Values and Comparing References

n Comparing Value Types

l == and != compare values

n Comparing Reference Types

l == and != compare the references, not the values

•• 1.01.0 2.02.0

•• 1.01.0 2.02.0

Different

The equality (==) and inequality (!=) operators might not work in the way you
expect for reference variables.

Comparing Value Types
For value types, you can use the == and != operators to compare values.

Comparing Reference Types
For reference types, you can use the == and != operators to compare references.
When comparing references with the == operator, you are determining whether
the two reference variables are referring to the same object. You are not
comparing the contents of the objects to which the variables refer.

 Module 8: Using Reference-Type Variables 9

Consider the following example, in which two coordinate variables are created
and initialized to the same values:

coordinate c1= new coordinate();
coordinate c2= new coordinate();
c1.x = 1.0;
c1.y = 2.0;
c2.x = 1.0;
c2.y = 2.0;
if (c1 == c2)
 Console.WriteLine("Same");
else
 Console.WriteLine("Different");

The output from this code is “Different.” Even though the objects that c1 and c2
are referring to have the same values, they are references to different objects, so
== returns false .

You cannot use the other relational operators (<, >, <=, and >=) for references
because they are not defined in C#.

10 Module 8: Using Reference-Type Variables

Multiple References to the Same Object

n Two References Can Refer to the Same Object

l Two ways to access the same object for read/write

coordinate c1= new coordinate();
coordinate c2;
c1.x = 2.3; c1.y = 7.6;
c2 = c1;
Console.WriteLine(c1.x + " , " + c1.y);
Console.WriteLine(c2.x + " , " + c2.y);

coordinate c1= new coordinate();
coordinate c2;
c1.x = 2.3; c1.y = 7.6;
c2 = c1;
Console.WriteLine(c1.x + " , " + c1.y);
Console.WriteLine(c2.x + " , " + c2.y);

••
2.32.3 7.67.6

••

c1

c2

Two reference variables can refer to the same object because reference
variables hold a reference to the data. This means that you can write data
through one reference and read the same data through another reference.

Multiple References to the Same Object
In the following example, the variable c1 is initialized to point to a new
instance of the class, and its member variables x and y are initialized. Then c1 is
copied to c2. Finally, the values in the objects that c1 and c2 reference are
displayed.

coordinate c1 = new coordinate();
coordinate c2;
c1.x = 2.3;
c1.y = 7.6;
c2 = c1;
Console.WriteLine(c1.x + " , " + c1.y);
Console.WriteLine(c2.x + " , " + c2.y);

The output of this program is as follows:

2.3 , 7.6
2.3 , 7.6

Assigning c2 to c1 copies the reference so that both variables are referencing
the same instance. Therefore, the values printed for the member variables of c1
and c2 are the same.

 Module 8: Using Reference-Type Variables 11

Writing and Reading the Same Data Through Different
References
In the following example, an assignment has been added immediately before
the calls to Console.WriteLine.

coordinate c1 = new coordinate();
coordinate c2;
c1.x = 2.3;
c1.y = 7.6;
c2 = c1;
c1.x = 99; // This is the extra statement
Console.WriteLine(c1.x + " , " + c1.y);
Console.WriteLine(c2.x + " , " + c2.y);

The output of this program is as follows:

99 , 7.6
99 , 7.6

This shows that the assignment of 99 to c1.x has also changed c2.x. Because the
reference in c1 was previously assigned to c2, a program can write data through
one reference and read the same data through another reference.

12 Module 8: Using Reference-Type Variables

Using References as Method Parameters

n References Can Be Used as Parameters

l When passed by reference, data being referenced may
be changed

static void PassCoordinateByValue(coordinate c)
{

c.x++; c.y++;
}

static void PassCoordinateByValue(coordinate c)
{

c.x++; c.y++;
}

loc.x = 2; loc.y = 3;
PassCoordinateByValue(loc);
Console.WriteLine(loc.x + " , " + loc.y);

loc.x = 2; loc.y = 3;
PassCoordinateByValue(loc);
Console.WriteLine(loc.x + " , " + loc.y);

2 32 3 3 43 4

••

••

You can pass reference variables in and out of a method.

References and Methods
You can pass reference variables into methods as parameters by using any of
the three calling mechanisms:

n By value

n By reference

n Output parameters

The following example shows a method that passes three coordinate references.
The first is passed by value, the second is passed by reference, and the third is
an output parameter. The return value of the method is a coordinate reference.

static coordinate Example(
 coordinate ca,
 ref coordinate cb,
 out coordinate cc)
{
 // ...
}

 Module 8: Using Reference-Type Variables 13

Passing References by Value
When you use a reference variable as a value parameter, the method receives a
copy of the reference. This means that for the duration of the call there are two
references referencing the same object. It also means that any changes to the
method parameter cannot affect the calling reference. For example, the
following code displays the values 0 , 0:

static void PassCoordinateByValue(coordinate c)
{
 c = new coordinate();
 c.x = c.y = 22.22;
}
coordinate loc = new coordinate();
PassCoordinateByValue(loc);
Console.WriteLine(loc.x + " , " + loc.y);

Passing References by Reference
When you use a reference variable as a ref parameter, the method receives the
actual reference variable. In contrast to passing by value, in this case there is
only one reference. The method does not make its own copy. This means that
any changes to the method parameter will affect the calling reference. For
example, the following code displays the values 33.33 , 33.33:

static void PassCoordinateByRef(ref coordinate c)
{
 c = new coordinate();
 c.x = c.y = 33.33;
}
coordinate loc = new coordinate();
PassCoordinateByRef(ref loc);
Console.WriteLine(loc.x + "," + loc.y);

Passing References by Output
When you use a reference variable as an out parameter, the method receives the
actual reference variable. In contrast to passing by value, in this case there is
only one reference. The method does not make its own copy. Passing by out is
similar to passing by ref except that the method must assign to the out
parameter. For example, the following code displays the values 44.44 , 44.44:

static void PassCoordinateByOut(out coordinate c)
{
 c = new coordinate();
 c.x = c.y = 44.44;
}
coordinate loc = new coordinate();
PassCoordinateByOut(out loc);
Console.WriteLine(loc.x + "," + loc.y);

14 Module 8: Using Reference-Type Variables

Passing References into Methods
Variables of reference types do not hold the value directly, but hold a reference
to the value instead. This also applies to method parameters, and this means that
the pass-by-value mechanism can produce unexpected results.

Using the coordinate class as an example, consider the following method:

static void PassCoordinateByValue(coordinate c)
{
 c.x++;
 c.y++;
}

The coordinate parameter c is passed by value. In the method, both the x and y
member variables are incremented. Now consider the following code that calls
the PassCoordinateByValue method:

coordinate loc = new coordinate();
loc.x = 2;
loc.y = 3;
PassCoordinateByValue(loc);
Console.WriteLine(loc.x + " , " + loc.y);

The output of this code is the following:

3 , 4

This shows that the values referenced by loc have been changed by the method.
This might seem to be in conflict with the explanation of pass by value given
previously in the course, but in fact it is consistent. The reference variable loc is
copied into the parameter c and cannot be changed by the method, but the
memory to which it refers is not copied and is under no such restriction. The
variable loc still refers to the same area of memory, but that area of memory
now contains different data.

 Module 8: Using Reference-Type Variables 15

u Using Common Reference Types

n Exception Class

n String Class

n Common String Methods, Operators, and Properties

n String Comparisons

n String Comparison Operators

A number of reference-type classes are built in to the C# language. In this
section, you will review some familiar built-in classes and learn more about
how they work.

You can also use these built-in classes as models when creating your own
classes.

16 Module 8: Using Reference-Type Variables

Exception Class

n Exception Is a Class

n Exception Objects Are Used to Raise Exceptions

l Create an Exception object by using new

l Throw the object by using throw

n Exception Types Are Subclasses of Exception

You create and throw Exception objects to raise exceptions.

Exception Class.
Exception is the name of a class provided in the .NET Framework.

Exception Objects
Only objects of Exception type can be thrown with throw and caught with
catch. In other respects, the Exception class is like other reference types.

Exception Types
Exception represents a generic fault in an application. There are also specific
exception types (such as InvalidCastException). There are classes that inherit
from Exception that represent each of these specific exceptions.

 Module 8: Using Reference-Type Variables 17

String Class

n Multiple Character Unicode Data

n Shorthand for System.String

n Immutable

string s = "Hello";

s[0] = 'c'; // Compile-time error

string s = "Hello";

s[0] = 'c'; // Compile-time error

In C#, the string type is used for processing multiple character Unicode
character data. (The char type, by comparison, is a value type that handles
single characters.)

The type name string is a shortened name for the System.String class. The
compiler can process this shortened form; therefore string and System.String
can be used interchangeably.

The String class represents an immutable string of characters. An instance of
String is immutable: the text of a string cannot be modified once it has been
created. Methods that might appear at first sight to modify a string value
actually return a new instance of string that contains the modification.

The StringBuilder class is often used in partnership with the String class.
A StringBuilder builds an internally modifiable string that can be converted
into an immutable String when complete. StringBuilder removes the need to
repeatedly create temporary immutable Strings and can provide improved
performance.

The System.String class has many methods. This course will not provide a full
tutorial for string processing, but it will list some of the more useful methods.
For further details, consult the .NET Framework SDK Help documents.

Tip

18 Module 8: Using Reference-Type Variables

Common String Methods, Operators, and Properties

n Brackets

n Insert Method

n Length Property

n Copy Method

n Concat Method

n Trim Method

n ToUpper and ToLower Methods

Brackets []
You can extract a single character at a given position in a string by using the
string name followed by the index in brackets ([and]). This process is similar
to using an array. The first character in the string has an index of zero.

The following code provides an example:

string s = "Alphabet"
char firstchar = s[2]; // 'p'

Strings are immutable, so assigning a character by using brackets is not
permitted. Any attempt to assign a character to a string in this way will generate
a compile-time error, as shown:

s[2] = '*'; // Not valid

Insert Method
If you want to insert characters into a string variable, use the Insert instance
method to return a new string with a specified value inserted at a specified
position in this string. This method takes two parameters: the position of the
start of the insertion and the string to insert.

The following code provides an example:

string s = "C is great!";
s = s.Insert(2, "Sharp ");
Console.WriteLine(s); // C Sharp is great!

 Module 8: Using Reference-Type Variables 19

Length Property
The Length property returns the length of a string as an integer, as shown:

string msg = "Hello";
int slen = msg.Length; // 5

Copy Method
The Copy class method creates a new string by copying another string. The
Copy method makes a duplicate of a specified string.

The follow ing code provides an example:

string s1 = "Hello";
string s2 = String.Copy(s1);

Concat Method
The Concat class method creates a new string from one or more strings or
objects represented as strings.

The following code provides an example:

string s3 = String.Concat("a", "b", "c", "d", "e", "f", "g");

The + operator is overloaded for strings, so the example above can be re-written
as follows:

string s = "a" + "b" + "c" + "d" + "e" + "f" + "g";
Console.WriteLine(s);

Trim Method
The Trim instance method removes all of the specified characters or white
space from the beginning and end of a string.

The following code provides an example:

string s = " Hello ";
s = s.Trim();
Console.WriteLine(s); // "Hello"

ToUpper and ToLower Methods
The ToUpper and ToLowe r instance methods return a string with all
characters converted to uppercase and lowercase, respectively, as shown:

string sText = "How to Succeed ";
Console.WriteLine(sText.ToUpper()); // HOW TO SUCCEED
Console.WriteLine(sText.ToLower()); // how to succeed

20 Module 8: Using Reference-Type Variables

String Comparisons

n Equals Method

l Value comparison

n Compare Method

l More comparisons

l Case-insensitive option

l Dictionary ordering

n Locale-Specific Compare Options

You can use the == and != operators on string variables to compare string
contents.

Equals Method
The System.String class contains an instance method called Equals, which can
be used to compare two strings for equality. The method returns a bool value
that is true if the strings are the same and false otherwise. This method is
overloaded and can be used as an instance method or a static method. The
following example shows both forms.

string s1 = "Welcome";
string s2 = "Welcome";

if (s1.Equals(s2))
 Console.WriteLine("The strings are the same");

if (String.Equals(s1,s2))
 Console.WriteLine("The strings are the same");

 Module 8: Using Reference-Type Variables 21

Compare Method
The Compare method compares two strings lexically; that is, it compares the
strings according to their sort order. The return value from Compare is as
follows:

n A negative integer if the first string comes before the second

n 0 if the strings are the same

n A positive integer if the first string comes after the second

string s1 = "Tintinnabulation";
string s2 = "Velocipede";
int comp = String.Compare(s1,s2); // Negative return

By definition, any string, including an empty string, compares greater than a
null reference, and two null references compare equal to each other.

Compare is overloaded. There is a version with three parameters, the third of
which is a bool value that specifies whether the case should be ignored in the
comparison. The following example shows a case-insensitive comparison:

s1 = "cabbage";
s2 = "Cabbage";
comp = String.Compare(s1, s2, true); // Ignore case

Locale-Specific Compare Options
The Compare method has overloaded versions that allow string comparisons
based on language-specific sort orders. This can be useful when writing
applications for an international market. Further discussion of this feature is
beyond the scope of the course. For more information, search for
“System.Globalization namespace” and “CultureInfo class” in the .NET
Framework SDK Help documents.

22 Module 8: Using Reference-Type Variables

String Comparison Operators

n The == and != Operators Are Overloaded for Strings

n They Are Equivalent to String.Equals and !String.Equals

string a = "Test";
string b = "Test";
if (a == b) ... // Returns true

string a = "Test";
string b = "Test";
if (a == b) ... // Returns true

The == and != operators are overloaded for the String class. You can use these
operators to examine the contents of strings.

string a = "Test";
string b = "Test";
if (a == b) ... // Returns true

The following operators and methods are equivalent:

n The == operator is equivalent to the String.Equals method.

n The != operator is equivalent to the !String.Equals method.

The other relational operators (<, >, <=, and >=) are not overloaded for the
String class.

 Module 8: Using Reference-Type Variables 23

u The Object Hierarchy

n The object Type

n Common Methods

n Reflection

The C# classes are arranged in a hierarchy with the Object class at the top. The
object type therefore describes the common behavior for all reference types in
the C# language.

In this section, you will learn about the object type and how the object
hierarchy works.

24 Module 8: Using Reference-Type Variables

The object Type

n Synonym for System.Object

n Base Class for All Classes

Exception

InvalidCastException

MyClass

Object

String

The object type is the base class for all types in C#.

System.Object
The object keyword is a synonym for the System.Object class in the .NET
Framework. Anywhere the keyword object appears, the class name
System.Object can be substituted. Because of its convenience, the shorter form
is more common.

Base Class
All classes inherit from object either directly or indirectly. This includes the
classes you write in your application and those classes that are part of the
system framework. When you declare a class with no explicit parent, you are
actually inheriting from object.

 Module 8: Using Reference-Type Variables 25

Common Methods

n Common Methods for All Reference Types

l ToString method

l Equals method

l GetType method

l Finalize method

The object type has a number of common methods that are inherited by all
other reference types.

Common Methods for All Reference Types
The object type provides a number of common methods. Because every
reference type inherits from object, every other reference type in C# has these
methods too. These common methods include the following:

n ToString

n Equals

n GetType

n Finalize

26 Module 8: Using Reference-Type Variables

ToString Method
The ToString method returns a string that represents the current object.

The default implementation, as found in the Object class, returns the type name
of the class. The following example uses the coordinate example class defined
earlier:

coordinate c = new coordinate();
Console.WriteLine(c.ToString());

This example will display “coordinate” on the console.

However, you c an override the ToString method in class coordinate to render
objects of that type into something more meaningful, such as a string containing
the values held in the object.

Equals Method
The Equals method determines whether the specified object is the same
instance as the current object. The default implementation of Equals supports
reference equality only, as you have already seen.

Subclasses can override this method to support value equality instead.

GetType Method
This method allows extraction of run-time type information from an object. It is
discussed in more detail in the Data Conversions section later in this module.

Finalize Method
This method is called by the run-time system when memory allocated to a
reference is released.

 Module 8: Using Reference-Type Variables 27

Reflection

n You Can Query the Type of an Object

n System.Reflection Namespace

n The typeof Operator Returns a Type Object

l Compile-time classes only

n GetType Method in System.reflection

l Run-time class information

You can obtain information about the type of an object by using a mechanism
called reflection.

The reflection mechanism in C# is handled by the System.Reflection
namespace in the .NET Framework. This namespace contains classes and
interfaces that provide a view of types, methods, and fields.

The System.Type class provides methods for obtaining information about a
type declaration, such as the constructors, methods, fields, properties, and
events of a class. A Type object that represents a type is unique; that is, two
Type object references refer to the same object only if they represent the same
type. This allows comparison of Type objects through reference comparisons
(the == and != operators).

28 Module 8: Using Reference-Type Variables

The typeof Operator
At compile time, you can use the typeof operator to return the type information
from a given type name.

The following example retrieves run-time type information for the type byte,
and displays the type name to the console.

using System;
using System.Reflection;
Type t = typeof(byte);
Console.WriteLine("Type: {0}", t);

The following example displays more detailed information about a class.
Specifically, it lists the methods for that class.

using System;
using System.Reflection;
Type t = typeof(string); // Get type information
MethodInfo[] mi = t.GetMethods();
foreach (MethodInfo m in mi) {
 Console.WriteLine("Method: {0}", m);
}

GetType Method
The typeof operator only works on classes that exist at compile time. If you
need type information at run time, you can use the GetType method of the
Object class.

For more information about reflection, search for “System.Reflection” in
the .NET Framework SDK Help documents.

 Module 8: Using Reference-Type Variables 29

u Namespaces in the .NET Framework

n System.IO Namespace

n System.XML Namespace

n System.Data Namespace

n Other Useful Namespaces

The .NET Framework provides common language services to a variety of
application development tools. The classes in the framework provide an
interface to the Common Language Runtime, the operating system, and the
network.

In this section, you will learn how to use some of the common namespaces
within the framework. You are likely to use these namespaces on a regular basis,
so it is important to be familiar with them.

The .NET Framework is large and powerful, and full coverage of every feature
is beyond the scope of this course. For more detailed information, please
consult the Visual Studio.NET and .NET Framework SDK Help documents.

30 Module 8: Using Reference-Type Variables

System.IO Namespace

n Access to File System Input/Output

l File, Directory

l StreamReader, StreamWriter

l FileStream

l BinaryReader, BinaryWriter

The System.IO namespace is important because it contains many classes that
allow an application to perform input and output (I/O) operations in various
ways through the file system.

The System.IO namespace also provides classes that allow an application to
perform input and output operations on files and directories.

The System.IO namespace is large and cannot be explained in detail here.
However, the following list gives an indication of the facilities available:

n The File and Directory classes allow an application to create, delete, and
manipulate directories and files.

n The StreamReader and StreamWriter classes enable a program to access
file contents as a stream of bytes or characters.

n The FileStream class can be used to provide random access to files.

n The BinaryReader and BinaryWriter classes provide a way to save and
load objects to and from streams.

 Module 8: Using Reference-Type Variables 31

System.IO Example
A brief example follows, to show how a file can be opened and read as a stream.
The example is not meant to illustrate all of the possible ways in which the
System.IO namespace can be used, but does show how you can perform a
simple file copy operation.

using System;
using System.IO; // Use IO namespace
// ...
StreamReader reader = new StreamReader("infile.txt");
 // Text in from file
StreamWriter writer = new StreamWriter("outfile.txt");
 // Text out to file
string line;
while ((line = reader.ReadLine()) != null)
{
 writer.WriteLine(line);
}

reader.Close();
writer.Close();

To open a file for reading, the code in the example creates a new
StreamReader object and passes the name of the file that needs to be opened
in the constructor. Similarly, to open a file for writing, the example creates a
new StreamWriter object and passes the output file name in its constructor. In
the example, the file names are hard-coded, but they could also be string
variables.

The example program copies a file by reading one line at a time from the input
stream and writing that line to the output stream.

ReadLine and WriteLine might look familiar. The Console class has two
static methods of that name. In the example, the methods are instance methods
of the StreamReader and StreamWriter classes, respectively.

For more information about the System.IO namespace, search for “System.IO
namespace” in the .NET Framework SDK Help documents.

32 Module 8: Using Reference-Type Variables

System.XML Namespace

n XML Support

n Various XML-Related Standards

Applications that need to interact with Extensible Markup Language (XML)
can use the System.XML namespace, which provides standards-based support
for processing XML.

The System.XML namespace supports a number of XML-related standards,
including the following:

n XML 1.0 with document type definition (DTD) support

n XML namespaces

n XML schemas

n XPath expressions

n XSL/T transformations

n DOM Level 2 core

n Simple Object Access Protocol (SOAP) 1.1

The XMLDocument class is used to represent an entire XML document.
Elements and attributes in an XML document are represented in the
XMLElement and XMLAttribute classes.

A detailed discussion of XML namespaces is beyond the scope of this course.
For further information, search for “System.XML namespace” in the .NET
Framework SDK Help documents.

 Module 8: Using Reference-Type Variables 33

System.Data Namespace

n System.Data.SQL

l SQL Server specific

n System.Data.ADO

l Interact with OLEDB and ODBC

l Generic database drivers

The System.Data namespace contains classes that constitute the ADO.NET
architecture. The ADO.NET architecture enables you to build components that
efficiently manage data from multiple data sources. ADO.NET provides the
tools to request, update, and reconcile data in n-tier systems.

Within ADO.NET, you can use the DataSet class. In each DataSet, there are
DataTable objects, and each DataTable contains data from a single data
source, such as Microsoft SQL Server™ .

The System.Data.SQL namespace provides direct access to SQL Server. Note
that this namespace is specific to SQL Server.

For access to other relational databases and sources of structured data, there is
the System.Data.ADO namespace, which provides high-level access to the
OLEDB and Open Database Connectivity (ODBC) database drivers.

A detailed discussion of the System namespaces is not within the scope of this
course. For further information, search for “System.Data namespace” in
the .NET Framework SDK Help documents.

34 Module 8: Using Reference-Type Variables

Other Useful Namespaces

n System Namespace

n System.Net Namespace

n System.Net.Sockets Namespace

n System.Windows.Forms Namespace

There are many other useful namespaces and classes in the .NET Framework.
This course does not discuss them all at length, but the following information
might be helpful when you search the reference files and documentation:

n The System namespace contains classes that define commonly used value
and reference data types, events and event handlers, interfaces, attributes,
and processing exceptions. Other classes provide services that support data
type conversion, method parameter manipulation, mathematics, remote and
local program invocation, and application management.

n The System.Net namespace provides a simple programming interface to
many of the protocols found on the network today. The System.Net.Sockets
namespace provides an implementation of the Microsoft Windows® Sockets
interface for developers who need to low-level access to Transmission
Control Protocol/Internet Protocol (TCP/IP) network facilities.

n System.WinForms is the graphical user interface (GUI) framework for
Windows applications, and provides support for forms, controls, and event
handlers.

For more information about System namespaces, search for “System
namespace” in the .NET Framework SDK Help documents.

 Module 8: Using Reference-Type Variables 35

Lab 8.1: Defining And Using Reference-Type Variables

Objectives
After completing this lab, you will be able to:

n Create reference variables and pass them as method parameters.

n Use the system frameworks.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Creating and using classes

n Calling methods and passing parameters

n Using arrays

Estimated time to complete this lab: 45 minutes

36 Module 8: Using Reference-Type Variables

Exercise 1
Adding an Instance Method with Two Parameters

In Lab 7, you developed a BankAccount class.

In this exercise, you will re-use this class and add a new instance method, called
TransferFrom, which transfers money from a specified account into this one.
If you did not complete Lab 7, you can obtain a copy of the BankAccount class
in the install folder\Labs\Lab08\Starter folder.

å To create the TransferFrom method

1. Open the Bank.sln project in the install folder\Labs\Lab08\Starter\Bank
folder.

2. Edit the BankAccount class as follows:

a. Create a public instance method called TransferFrom in the
BankAccount class.

b. The first parameter is a reference to another BankAccount object, called
accFrom, from which the money is to be transferred.

c. The second parameter is a decimal value, c alled amount, passed by
value and indicating the amount to transfer.

d. The method has no return value.

3. In the body of TransferFrom, add two statements that perform the
following tasks:

a. Debit amount from the balance of accFrom (by using Withdraw).

b. Test to ensure that the withdrawal was successful. If it was, credit
amount to the balance of the current account (by using Deposit).

The BankAccount class should be as follows:

class BankAccount
{

 ... additional code omitted for clarity ...

 public void TransferFrom(BankAccount accFrom, decimal
Êamount)
 {
 if (accFrom.Withdraw(amount))
 this.Deposit(amount);
 }

}

4. Save and compile your code. Correct any errors.

 Module 8: Using Reference-Type Variables 37

å To test the TransferFrom method

1. Open the Test class. This is the test harness.

2. In the Main method, add code to create two BankAccount objects, each
having an initial balance of $100. (Use the Populate method.)

3. Add code to display the type, account number, and current balance of each
account.

4. Add code to call TransferFrom and move $10 from one account to the
other.

5. Add code to display the current balances after the transfer.

The Test class could be as follows:

static void Main()
{
 BankAccount b1 = new BankAccount();
 b1.Populate(100);

 BankAccount b2 = new BankAccount();
 b2.Populate(100);

 Console.WriteLine("Before transfer");
 Console.WriteLine("{0} {1} {2}",
 b1.Type(), b1.Number(), b1.Balance());
 Console.WriteLine("{0} {1} {2}",
 b2.Type(), b2.Number(), b2.Balance());

 b1.TransferFrom(b2, 10);

 Console.WriteLine("After transfer");
 Console.WriteLine("{0} {1} {2}",
 b1.Type(), b1.Number(), b1.Balance());
 Console.WriteLine("{0} {1} {2}",
 b2.Type(), b2.Number(), b2.Balance());
}

6. Save your work.

7. Compile the project and correct any errors. Run and test the program.

38 Module 8: Using Reference-Type Variables

Exercise 2
Reversing a String

In Module 5, you developed a Utils class that contained a variety of utility
methods.

In this exercise, you will add a new static method called Reverse to the Utils
class. This method takes a string and returns a new string with the characters in
reverse order.

å To create the Reverse method

1. Open the Utils.sln project in the install folder\Labs\Lab08\Starter\Utils
folder.

2. Add a public static method called Reverse to the Utils class, as follows:

a. It has a single parameter called s that is a reference to a string.

b. The method has a void return type.

3. In the Reverse method, create a string variable called sRev to hold the
returned string result. Initialize this string to "".

4. To create a reversed string:

a. Write a loop extracting one character at a time from s. Start at the end
(use the Length property), and work backwards to the start of the string.
You can use array notation ([]) to examine an individual character in a
string.

The last character in a string is at position Length – 1. The first
character is at position 0.

b. Append this character to the end of sRev.

Tip

 Module 8: Using Reference-Type Variables 39

The Utils class might contain the following:

class Utils
{

... additional methods omitted for clarity ...

 //
 // Reverse a string
 //

 public static void Reverse(ref string s)
 {
 int k;
 string sRev = "";

 for (k = s.Length – 1; k >= 0 ; k--)
 sRev = sRev + s[k];

 // Return result to caller
 s = sRev;
 }
}

å To test the Reverse method

1. Edit the Test class. This class contains the test harness.

2. In the Main method, create a string variable.

3. Read a value into the string variable by using Console.ReadLine.

4. Pass the string into Reverse. Do not forget the ref keyword.

5. Display the value returned by Reverse.

The Test class might contain the following:

static void Main()
{
 string message;

 // Get an input string
 Console.WriteLine("Enter string to reverse:");
 message = Console.ReadLine();

 // Reverse the string
 Utils.Reverse(ref message);

 // Display the result
 Console.WriteLine(message);
}

6. Save your work.

7. Compile the project and correct any errors. Run and test the program.

40 Module 8: Using Reference-Type Variables

Exercise 3
Making an Uppercase Copy of a File

In this exercise, you will write a program that prompts the user for the name of
a text file. The program will check that the file exists, displaying a message and
quitting if it does not. The file will be opened and copied to another file (prompt
the user for the file name), but with every character converted to uppercase.

Before you start, you might want to look briefly at the documentation for
System.IO in the .NET Framework SDK Help documents. In particular, look at
the documentation for the StreamReader and StreamWriter classes.

å To create the file -copying application

1. Open the CopyFileUpper.sln project in the install folder\
Labs\Lab08\Starter\CopyFileUpper folder.

2. Edit the CopyFileUpper class and add a using statement for the System.IO
namespace.

3. In the Main method, declare two string variables called sFrom and sTo to
hold the input and output file names.

4. Declare a variable of type StreamReader called srFrom. This variable will
hold the reference to the input file.

5. Declare a variable of type StreamWriter called swTo. This variable will
hold the reference to the output stream.

6. Prompt for the name of the input file, read the name, and store it in the
string variable sFrom.

7. Prompt for the name of the output file, read the name, and store it in the
string variable sTo.

8. The I/O operations that you will use can raise exceptions, so begin a try-
catch block that can catch FileNotFoundException (for non-existent files)
and Exception (for any other exceptions). Print out a meaningful message
for each exception.

9. In the try-catch block, create a new StreamReader object using the input
file name in sFrom, and store it in the StreamReader reference variable
srFrom.

10. Similarly, create a new StreamWriter object using the input file name in
sTo, and store it in the StreamWriter reference variable swTo.

11. Add a while loop that loops if the Peek method of the input stream does not
return -1. Within the loop:

a. Use the ReadLine method on the input stream to read the next line of
input into a string variable called sBuffer.

b. Perform the ToUpper method on sBuffer.

c. Use the WriteLine method to send sBuffer to the output stream.

12. After the loop has finished, close the input and output streams.

 Module 8: Using Reference-Type Variables 41

13. The CopyFileUpper.cs file should be as follows:

using System;
using System.IO;

class CopyFileUpper
{
 static void Main()
 {
 string sFrom, sTo;
 StreamReader srFrom;
 StreamWriter swTo;

 // Prompt for input file name
 Console.Write("Copy from:");
 sFrom = Console.ReadLine();

 // Prompt for output file name
 Console.Write("Copy to:");
 sTo = Console.ReadLine();

 Console.WriteLine("Copy from {0} to {1}", sFrom,
 ÊsTo);

 try
 {
 srFrom = new StreamReader(sFrom);
 swTo = new StreamWriter(sTo);

 while (srFrom.Peek()!=-1)
 {
 string sBuffer = srFrom.ReadLine();
 sBuffer = sBuffer.ToUpper();
 swTo.WriteLine(sBuffer);
 }
 swTo.Close();
 srFrom.Close();

 }
 catch (FileNotFoundException)
 {
 Console.WriteLine("Input file not found");
 }
 catch (Exception e)
 {
 Console.WriteLine("Unexpected exception");
 Console.WriteLine(e.ToString());
 }
 }
}

14. Save your work. Compile the project and correct any errors.

42 Module 8: Using Reference-Type Variables

å To test the program

1. Open a Command window and go to the install folder\
Labs\Lab08\Starter\CopyFileUpper \bin\debug folder.

2. Execute CopyFileUpper .

3. When prompted, specify a source file name of
drive:\path\CopyFileUpper.cs

(This is the source file you have just created.)

4. Specify a destination file of Test.cs

5. When the program is finished, use a text editor to examine the Test.cs file. It
should contain a copy of your source code in all uppercase letters.

 Module 8: Using Reference-Type Variables 43

u Data Conversions

n Converting Value Types

n Parent/Child Conversions

n The is Operator

n The as Operator

n Conversions and the object Type

n Conversions and Interfaces

n Boxing and Unboxing

This section explains how to perform data conversions between reference types
in C#. You can convert references from one type to another, but the reference
types must be related.

In this section, you will learn about:

n Permitted and prohibited conversions between reference types.

n Conversion mechanisms (casts, is, and as).

n Special considerations for conversion to and from the object type.

n The reflection mechanism, which allows examination of run-time type
information.

n Automatic conversions (boxing and unboxing) between value types and
reference types.

44 Module 8: Using Reference-Type Variables

Converting Value Types

n Implicit Conversions

n Explicit Conversions

l Cast operator

n Exceptions

n System.Convert Class

l Handles the conversions internally

C# supports implicit and explicit data conversions.

Implicit Conversions
For value types, you have learned about two ways to convert data: implicit
conversion and explicit conversion using the cast operator.

Implicit conversion occurs when a value of one type is assigned to another type.
C# only allows implicit conversion for certain combinations of types, typically
when the first value can be converted to the second without any data loss. The
following example shows how data is converted implicitly from int to long:

int a = 4;
long b;
b = a; // Implicit conversion of int to long

Explicit Conversions
You can explicitly convert value types by using the cast operator, as shown:

int a;
long b = 7;
a = (int) b;

 Module 8: Using Reference-Type Variables 45

Exceptions
When you use the cast operator, you should be aware that problems might occur
if the value cannot be held in the target variable. If a problem is detected during
an explicit conversion (such as trying to fit the value 9,999,999,999 into an int
variable), C# might raise an exception (in this case, the OverflowException). If
you want, you can catch this exception by using try and catch, as shown:

try {
 a = checked((int) b);
}
catch (Exception) {
 Console.WriteLine("Problem in cast");
}

For operations that involve integers, use the checked keyword or compile with
the appropriate compiler settings, otherwise checking will not be performed.

System.Convert Class
Conversions between the different base types (such as int, long, and bool) are
handled within the .NET Framework by the System.Convert class.

You do not usually need to make calls to methods of System.Convert. The
compiler handles these calls automatically.

46 Module 8: Using Reference-Type Variables

Parent/Child Conversions

n Conversion to Parent Class Reference

l Implicit or explicit

l Always succeeds

l Can always assign to object

n Conversion to Child Class Reference

l Explicit casting required

l Will check that the reference is of the correct type

l Will raise InvalidCastException if not

You can convert a reference to an object of a child class to an object of its
parent class, and vice versa, under certain conditions.

Conversion to Parent Class Reference
References to objects of one class type can be converted into references to
another type if one class inherits from the other, either directly or indirectly.

A reference to an object can always be converted to a reference to a parent class
object. This conversion can be performed implicitly (by assignment or as part
of an expression) or explicitly (by using the cast operator).

The following examples will use two classes: Animal and Bird. Animal is the
parent class of Bird, or, to put it another way, Bird inherits from Animal.

The following example declares a variable of type Animal and a variable of
type Bird:

Animal a;
Bird b;

Now consider the following assignment, in which the reference in b is copied to
a:

a = b;

The Bird class inherits from the Animal class. Therefore, a method that is
found in Animal is also found in Bird. (The Bird class might have overridden
some of the methods of Animal to create its own version of them, but an
implementation of the method will exist nonetheless.) Therefore, it is possible
for references to Bird objects to be assigned to variables containing references
to values of type Animal.

 Module 8: Using Reference-Type Variables 47

In this case, C# performs a type conversion from Bird to Animal. You can
explicitly convert Bird to Animal by using a cast operator, as shown:

a = (Animal) b;

The preceding code will produce exactly the same result.

Conversion to Child Class Reference
You can convert a reference to a child type, but you must explicitly specify the
conversion by using a cast. An explicit conversion is subject to run-time
checking to ensure that the types are compatible, as shown in the following
example:

Bird b = (Bird) a; // Okay

This code will compile successfully. At run time, the cast operator performs a
check to determine whether the value in the variable really is of type Bird. If it
is not, the run-time InvalidCastException is raised.

If you attempt to assign to a child type without a conversion operator, as in the
following code, the compiler will display an error message stating, “Cannot
convert implicitly type ‘Animal’ to type ‘Bird.’”

b = a; // Will not compile

You can trap a type conversion error by using try and catch, just like any other
exception, as shown in the following code:

try {
 b = (Bird) a;
}
catch (InvalidCastException) {
 Console.WriteLine("Not a bird");
}

48 Module 8: Using Reference-Type Variables

The is Operator

n Returns true If a Conversion Can Be Made

Bird b;
if (a is Bird)

b = (Bird) a; // Safe
else

Console.WriteLine("Not a Bird");

Bird b;
if (a is Bird)

b = (Bird) a; // Safe
else

Console.WriteLine("Not a Bird");

You can handle incompatible types by catching InvalidCastException, but
there are other ways of handling this problem, such as the is operator.

You can use the is operator to test the type of the object without performing a
conversion. The is operator returns true if the value on the left is not null and a
cast to the class on the right, if performed, would complete without throwing an
exception. Otherwise, is returns false.

if (a is Bird)
 b = (Bird) a; // Safe, because "a is Bird" returns true
else
 Console.WriteLine("Not a Bird");

You can think of the relationship between inherited classes as an “is a kind of”
relationship, as in “A bird is a kind of animal.” References in the variable a
must be references to Animal objects, and b is a kind of animal. Of course, b is
a bird as well, but a bird is just a special case of an animal. The converse is not
true. An animal is not a type of bird. Some animals are birds, but it is not true
that all animals are birds.

So the following expression can be read as “If a is a kind of bird,” or “If a is a
bird or a type derived from bird.”

if (a is bird)

 Module 8: Using Reference-Type Variables 49

The as Operator

n Converts Between Reference Types, Like Cast

n On Error

l Returns null

l Does not raise an exception

Bird b = a as Bird; // Convert

if (b == null)
Console.WriteLine("Not a bird");

Bird b = a as Bird; // Convert

if (b == null)
Console.WriteLine("Not a bird");

You can use the as operator to perform conversions between types.

Example
The following statement performs a conversion of the reference in a to a value
that references a class of type Bird, and the runtime automatically checks to
ensure that the conversion is acceptable.

b = a as Bird;

Error Handling
The as operator differs from the cast operator in the way it handles errors. If, in
the preceding example, the reference in variable a cannot be converted in a
reference to an object of class Bird, the value null is stored in b, and the
program continues. The as operator never raises an exception.

You can rewrite the previous code as follows to display an error message if the
conversion cannot be performed:

Bird b = a as Bird;
if (b == null)
 Console.WriteLine("Not a bird");

Although as never raises an exception, any attempt to access through the
converted value will raise a NullReferenceException if it is null. Therefore,
you should always chec k the return value from as.

50 Module 8: Using Reference-Type Variables

Conversions and the object Type

n The object Type Is the Base for All Classes

n Any Reference Can Be Assigned to object

n Any object Variable Can Be Assigned to Any Reference

l With appropriate type conversion and checks

n The object Type and is

object ox;
ox = a;
ox = (object) a;
ox = a as object;

object ox;
ox = a;
ox = (object) a;
ox = a as object;

b = (Bird) ox;
b = ox as Bird;
b = (Bird) ox;
b = ox as Bird;

All reference types are based on the object type. This means that any reference
can be stored in a variable of type object.

The object Type Is the Base for All Classes
The object type is the base for all reference types.

Any Reference Can Be Assigned to object
Because all classes are based directly or indirectly on the object type, you can
assign any reference to a variable of type object, either with an implicit
conversion or with a cast. The following code provides an example:

object ox;
ox = a;
ox = (object) a;
ox = a as object;

Any object Variable Can Be Assigned to Any Reference
You can assign a value of type object to any other object reference, if you cast
it correctly. Remember that the run-time system will perform a check to ensure
that the value being assigned is of the correct type. The following code provides
an example:

b = (Bird) ox;
b = ox as Bird;

 Module 8: Using Reference-Type Variables 51

The preceding examples can be written with full error checking as follows:

try {
 b = (Bird) ox;
}
catch (InvalidCastException) {
 Console.WriteLine("Cannot convert to Bird");
}
b = ox as Bird;
if (b == null)
 Console.WriteLine("Cannot convert to Bird");

The object Type and is
Because every value is derived ultimately from object, checking a value with
the is operator to see if it is an object will always return true.

if (a is object) // Always returns true

52 Module 8: Using Reference-Type Variables

Conversion and Interfaces

n An Interface Can Only Be Used to Access Its Own
Members

n Other Methods and Variables of the Class Are Not
Accessible Through the Interface

You can perform conversions by using the casting operators, as and is, when
working with interfaces.

For example, you can declare a variable of an interface type, as shown:

IHashCodeProvider hcp;

Converting a Reference to an Interface
You can use the cast operator to convert the object reference into a reference to
a given interface, as shown:

IHashCodeProvider hcp;
hcp = (IHashCodeProvider) x;

As with conversion between class references, the cast operator will raise an
InvalidCastException if the object provided does not implement the interface.
You should determine whether an object supports an interface before casting
the object, or use try and catch to trap the exception.

Determining Whether an Interface Is Implemented
You can use the is operator to determine whether an object supports an
interface. The syntax is the same as the syntax used for classes:

if (x is IHashCodeProvider) ...

 Module 8: Using Reference-Type Variables 53

Using the as Operator
You can also use the as operator as an alternative to casting, as shown:

IHashCodeProvider hcp;
hcp = x as IHashCodeProvider;

As with conversion between classes, if the reference that is being converted
does not support the interface, the as operator returns null.

After you have converted a reference to a class into a reference to an interface,
the new reference can only access members of that interface, and cannot access
the other public members of the class.

Example
Consider the following example to learn how converting references to
interfaces works. Suppose you have created an interface called IVisual that
specifies a method called Paint, as follows:

interface IVisual
{
 void Paint();
}

Suppose that you also have a Rectangle class that implements the IVisual
interface. It implements the Paint method, but it can also define its own
methods. In this example, Rectangle has defined an additional method called
Move that is not part of IVisual.

You can create a Rectangle , r, and use its Move and Paint methods, as you
would expect. You can even reference it through an IVisual variable, v.
However, despite the fact that v and r both refer to the same object in memory,
you cannot call the Move method by using v because it is not part of the
IVisual interface. The following code provides examples:

Rectangle r = new Rectangle();
r.Move(); // Okay
r.Paint(); // Okay
IVisual v = (IVisual) r;
v.Move(); // Not valid
v.Paint(); // Okay

54 Module 8: Using Reference-Type Variables

Boxing and Unboxing

n Unified Type System

n Boxing

n Unboxing

n Calling Object Methods on Value Types

int p = 123;
object box;
box = p;

int p = 123;
object box;
box = p;

•• 123123

123123 p = (int)box;p = (int)box;

C# can convert value types into object references and object references into
value types.

Unified Type System
C# has a unified type system that allows value types to be converted to
references of type object and object references to be converted into value types.
Value types can be converted into references of type object, and vice versa.

Values of types like int and bool can therefore be handled as simple values most
of the time. This is normally the most efficient technique because there is none
of the overhead that is associated with references. However, when you want to
use these values as if they were references, they can be temporarily boxed for
you to do so.

Boxing
Expressions of value types can also be converted to values of type object , and
back again. When a variable of value type needs to be converted to object type,
an object box is allocated to hold the value and the value is copied into the box.
This process is known as boxing.

int p = 123;
object box;
box = p; // Boxing (implicit)
box = (object) p; // Boxing (explicit)

The boxing operation can be done implicitly, or explicitly with a cast to an
object. Boxing occurs most typically when a value type is passed to a parameter
of type object.

 Module 8: Using Reference-Type Variables 55

Unboxing
When a value in an object is converted back into a value type, the value is
copied out of the box and into the appropriate storage location. This process is
known as unboxing.

p = (int) box; // Unboxing

You must perform unboxing with an explicit cast operator.

If the value in the reference is not the exact type of the cast, the cast will raise
an InvalidCastException.

Calling Object Methods on Value Types
Because boxing can take place implicitly, you can call methods of the object
type on any variable or expression, even those having value types. The
following code provides an example:

static void Show(object o)
{
 Console.WriteLine(o.ToString());
}
Show(42);

This works because the value 42 is implicitly boxed into an object parameter,
and the ToString method of this parameter is then called.

It produces the same result as the following code:

object o = (object) 42; // Box
Console.WriteLine(o.ToString());

Boxing does not occur when you call Object methods directly on a value.
For example, the expression 42.ToString() does not box 42 into an object .
This is because the compiler can statically determine the type and discerns
which method to call.

Note

56 Module 8: Using Reference-Type Variables

Multimedia: Type-Safe Casting

 Module 8: Using Reference-Type Variables 57

Lab 8.2 Converting Data

Objectives
After completing this lab, you will be able to:

n Convert values of one reference type to another.

n Test whether a reference variable supports a given interface.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Concepts of object-oriented programming

n Creating classes

n Defining methods

Estimated time to complete this lab: 30 minutes

58 Module 8: Using Reference-Type Variables

Exercise 1
Testing for the Implementation of an Interface

In this exercise, you will add a static method called IsItFormattable to the
Utils class that you created in Lab 5. If you did not complete that lab, you can
obtain a copy of the class in the install folder\Labs\Lab08\Starter folder.

The IsItFormattable method takes one parameter of type object and tests
whether that parameter implements the System.IFormattable interface. If the
object does have this interface, the method will return true. Otherwise, it will
return false.

A class implements the System.IFormattable interface to return a string
representation of an instance of that class. Base types such as int and ulong
implement this interface (after the value has been boxed). Many reference types,
for example string, do not. User-defined types can implement the interface if
the developer requires it. For more information about this interface, consult
the .NET Framework SDK Help documentation.

You will write test code that will call the Utils.IsItFormattable method with
arguments of different types and display the results on the screen.

å To create the IsItFormattable method

1. Open the InterfaceTest.sln project in the install folder\
Labs\Lab08\Starter\InterfaceTest folder.

2. Edit the Utils class as follows:

a. Create a public static method called IsItFormattable in the Utils class.

b. This method takes one parameter called x of type object that is passed
by value. The method returns a bool.

c. Use the is operator to determine whether the passed object s upports the
System.IFormattable interface. If it does, return true; otherwise return
false.

The completed method should be as follows:

using System;

...

class Utils
{
 public static bool IsItFormattable(object x)
 {
 // Use the is operator to test whether the
 // object has the IFormattable interface

 if (x is IFormattable)
 return true;
 else
 return false;

 }
}

 Module 8: Using Reference-Type Variables 59

å To test the IsItFormattable method

1. Edit the file Test class.

2. In the Main method, declare and initialize variables of types int, ulong, and
string.

3. Pass each variable to Utils.IsItFormattable(), and print the result from each
call.

4. The class Test might be as follows:

using System;
class Test
{
 static void Main()
 {
 int i=0;
 ulong ul=0;
 string s = "Test";

 Console.WriteLine("int: {0}",
ÊUtils.IsItFormattable(i));
 Console.WriteLine("ulong: {0}",
ÊUtils.IsItFormattable(ul));
 Console.WriteLine("String: {0}",
ÊUtils.IsItFormattable(s));
 }
}

5. Compile and test the code. You should see true for the int and ulong values,
and false for the string value.

60 Module 8: Using Reference-Type Variables

Exercise 2
Working with Interfaces

In this exercise, you will write a Display method that will use the as operator to
determine whether the object passed as a parameter supports a user-defined
interface called IPrintable and call a method of that interface if it is supported.

å To create the Display method

1. Open the TestDisplay.sln project in the install folder\
Labs\Lab08\Starter\TestDisplay folder.

The starter code includes the definition for an interface called IPrintable,
which contains a method called Print. A class that implements this interface
should use the Print method to display to the console the values held inside
the object. Also defined in the starter code files is a class called Coordinate
that implements the IPrintable interface.

A Coordinate object holds a pair of numbers that can define a position in
two-dimensional space. You do not need to understand how the Coordinate
class works (although you might want to look at it). All you need to know is
that it implements the IPrintable interface and that you can use the Print
method to display its contents.

2. Edit the Utils class as follows:

a. Add a public static void method called Display in the Utils class. This
method should take one parameter, an object passed by value, called
item.

b. In Display, declare an interface variable called ip of type IPrintable.

c. Convert the reference in the parameter item into a reference to the
IPrintable interface that uses the as operator. Store the result in ip.

d. If the value of ip is not null, use the IPrintable interface to call Print. If
it is null, the object does not support the interface. In this case, use
Console.WriteLine to display to results of the ToString method on the
parameter instead.

The completed method should be as follows:

public static void Display(object item)
{
 IPrintable ip;

 ip = (item as IPrintable);

 if (ip != null)
 ip.Print();
 else
 Console.WriteLine(item.ToString());
}

 Module 8: Using Reference-Type Variables 61

å To test the Display method

1. Within the Main method in the Test class, create a variable of type int, a
variable of type string, and a variable of type Coordinate. To initialize the
Coordinate variable, you can use the two-parameter constructor:

Coordinate c = new Coordinate(21.0, 68.0);

2. Pass these three variables, in turn, to Utils.Display to print them out.

3. The code should be as follows:

class Test
{
 static void Main()
 {
 int num = 65;
 string msg = "A String";
 Coordinate c = new Coordinate(21.0,68.0);

 Utils.Display(num);
 Utils.Display(msg);
 Utils.Display(c);
 }
}

4. Compile and test your application.

62 Module 8: Using Reference-Type Variables

If Time Permits
Testing the Method

If you want to try the IsItFormattable method that you created in Exercise 1
with a user -defined class, use the BankAccount class that you developed in a
previous lab.

Re-write the Display method from Exercise 2 by using the cast operator.
Remember to catch any InvalidCastException that C# might throw in response
to errors.

 Module 8: Using Reference-Type Variables 63

Review

n Using Reference-Type Variables

n Using Common Reference Types

n The Object Hierarchy

n Namespaces in the .NET Framework

n Data Conversions

1. Explain how a memory is allocated and de-allocated for a variable of
reference type.

2. What special value indicates that a reference variable does not contain a
reference to an object? What happens if you try to access a reference
variable with this value?

3. List the key features of the String class.

4. What type is the base type for all classes?

64 Module 8: Using Reference-Type Variables

5. Explain the difference between the cast operator and the as operator when
used to convert between class references.

6. List ways in which you can determine the type of an object.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Using Constructors 2

Initializing Data 13

Lab 9.1: Creating Objects 31
Objects and Memory 39

Using Destructors 45

Lab 9.2: Destroying Objects 60
Review 65

Module 9: Creating and
Destroying Objects

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDNPowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 9: Creating and Destroying Objects 1

Overview

n Using Constructors

n Initializing Data

n Objects and Memory

n Using Destructors

In this module, you will learn what happens when an object is created, how to
use constructors to initialize objects, and how to use destructors to destroy
objects. You will also learn what happens when an object is destroyed and how
garbage collection reclaims memory.

After completing this module, you will be able to:

n Use constructors to initialize objects.

n Create overloaded constructors that can accept varying parameters.

n Describe the lifetime of an object and what happens when it is destroyed.

n Create destructors and use Finalize methods.

2 Module 9: Creating and Destroying Objects

u Using Constructors

n Creating Objects

n Using the Default Constructor

n Overriding the Default Constructor

n Overloading Constructors

Constructors are special methods that you use to initialize objects when you
create them. Even if you do not write a constructor yourself, a default
constructor is provided for you whenever you create an object from a reference
type. In this section, you will learn how to use constructors to control what
happens when an object is created.

 Module 9: Creating and Destroying Objects 3

Creating Objects

n Step 1: Allocating Memory

l Use new operator to allocate memory from the heap

n Step 2: Initializing the Object with a Constructor

l Use the name of the class followed by parentheses

Date when = new Date();Date when = new Date();

s

The process of creating an object in C# involves two steps:

1. Use the new keyword to acquire and allocate memory for the object.

2. Write a constructor to turn the memory acquired by new into an object.

Even though there are two steps in this process, you must perform both steps in
one line of code. For example, if Date is the name of a class, use the following
syntax to allocate memory and initialize the object when.

Date when = new Date();

Step 1: Allocating Memory
The first step in creating an object is to allocate memory for the object. All
objects are created by using the new operator. There are no exceptions to this
rule. You can do this explicitly in your code, or the compiler will do it for you.

In the following table, you can see examples of code and what they represent.

Code example Represents

string s = "Hello"; string s = new string("Hello");

int[] array = {1,2,3,4}; int[] array = new int[4]{1,2,3,4};

4 Module 9: Creating and Destroying Objects

How new Affects Performance
Generally, there are only two functions of new that affect performance:

n A Boolean test

The heap is a contiguous block of memory of known size. A special pointer
marks the current position in the heap for memory allocation purposes. All
memory to one side of the position has already been allocated by new. All
memory to the other side of the position is still available. The Boolean test
simply uses the difference between this position and the end of the heap to
determine how many bytes of free memory are left in the heap. It then
compares this amount to the number of bytes requested by new.

n A pointer increment

If there are enough free bytes left in the heap, the special pointer is
incremented by the number of bytes requested, thus marking the memory as
allocated. The address of the allocated block is then returned.

This makes the dynamic allocation of heap memory essentially as fast as the
dynamic allocation of stack memory.

Strictly speaking, this is only true if there is only one variable. If there
are multiple variables, the stack-based variables will be allocated all at once,
but the heap variables will require multiple allocations.

Step 2: Initializing the Object with a Constructor
The second step in creating an object is to write a constructor. A constructor
turns the memory allocated by new into an object. There are two types of
constructors: instance constructors and static constructors. Instance constructors
are constructors that initialize objects. Static constructors are constructors that
initialize classes.

How new and Instance Constructors Collaborate
It is important to realize how closely new and instance constructors collaborate
to create objects. The only purpose of new is to acquire raw uninitialized
memory. The only purpose of an instance constructor is to initialize the
memory and convert it into an object that is ready to use. Specifically, new is
not involved with initialization in any way, and instance constructors are not
involved in acquiring memory in any way.

Although new and instance constructors perform separate tasks, as a
programmer you cannot use them separately. This is one way for C# to help
guarantee that memory is always definitely set to a valid value before it is read.
(This is called definite assignment.)

In C++, you can allocate memory and not initialize
it (by directly calling operator new). You can also initialize memory allocated
previously (by using placement new). This separation is not possible in C#.

Note

Note to C++ Programmers

 Module 9: Creating and Destroying Objects 5

Using the Default Constructor

n Features of a Default Constructor

l Public accessibility

l Same name as the class

l No return type— not even void

l Expects no arguments

l Initializes all fields to zero, false or null

n Constructor Syntax

class Date { public Date() { ... } }class Date { public Date() { ... } }

When you create an object, the C# compiler provides a default constructor if
you do not write one yourself. Consider the following example:

class Date
{
 private int ccyy, mm, dd;
}

class Test
{
 static void Main()
 {
 Date when = new Date();
 ...
 }
}

The statement inside Test.Main creates a Date object called when by using
new (which allocates memory from the heap) and by calling a special method
that has the same name as the class (the instance constructor). However, the
Date class does not declare an instance constructor. (It does not declare any
methods at all.) By default, the compiler automatically generates a default
instance constructor.

6 Module 9: Creating and Destroying Objects

Features of a Default Constructor
Conceptually, the instance constructor that the compiler generates for the Date
class looks like the following example:

class Date
{
 public Date()
 {
 ccyy = 0;
 mm = 0;
 dd = 0;
 }
 private int ccyy, mm, dd;
}

The constructor has the following features:

n Same name as the class name

By definition, an instance constructor is a method that has the same name as
its class. This is a natural and intuitive definition and matches the syntax
that you have already seen. Following is an example:

Date when = new Date();

n No return type

This is the second defining characteristic of a constructor. A constructor
never has a return type— not even void.

n No arguments required

It is possible to declare constructors that take arguments. However, the
default constructor generated by the compiler expects no arguments.

n All fields initialized to zero

This is important. The compiler-generated default constructor implicitly
initializes all non-static fields as follows:

• Numeric fields (such as int, double, and decimal) are initialized to zero.

• Fields of type bool are initialized to false.

• Reference types (covered in an earlier module) are initialized to null.

• Fields of type struct are initialized to contain zero values in all their
elements.

n Public accessibility

This allows new instances of the object to be created.

In Module 10, “Inheritance in C#,” in Course 2124A, Introduction to C#
Programming for the Microsoft .NET Platform (Prerelease), you will learn
about abstract classes. The compiler-generated default constructor for an
abstract class has protected access.

Note

 Module 9: Creating and Destroying Objects 7

Overriding the Default Constructor

n The Default Constructor Might Be Inappropriate

l If so, do not use it; write your own!

class Date
{

public Date()
{

ccyy = 1970;
mm = 1;
dd = 1;

}
private int ccyy, mm, dd;

}

class Date
{

public Date()
{

ccyy = 1970;
mm = 1;
dd = 1;

}
private int ccyy, mm, dd;

}

Sometimes it is not appropriate for you to use the compiler-generated default
constructor. In these cases, you can write your own constructor that contains
only the code to initialize fields to non-zero values. Any fields that you do not
initialize in your constructor will retain their default initialization of zero.

What If the Default Constructor Is Inappropriate?
There are several cases in which the compiler-generated default constructor
may be inappropriate:

n Public access is sometimes inappropriate.

The Factory Method pattern uses a non-public constructor. (The Factory
Method pattern is discussed in Design Patterns: Elements of Reusable
Object-Oriented Software, by E. Gamma, R. Helm, R. Johnson, and J.
Vlissides. It is covered in a later module.)

Procedural functions (such as Cos and Sin) often use private constructors.

The Singleton pattern typically uses a private constructor. (The Singleton
pattern is also covered in Design Patterns: Elements of Reusable Object-
Oriented Software and in a later topic in this section.)

n Zero initialization is sometimes inappropriate.

Consider the compiler-generated default constructor for the following Date
class:

class Date
{
 private int ccyy, mm, dd;
}

The default constructor will initialize the year field (ccyy) to zero, the month
field (mm) to zero, and the day field (dd) to zero. This might not be
appropriate if you want the date to default to a different value.

8 Module 9: Creating and Destroying Objects

n Invisible code is hard to maintain

You cannot see the default constructor code. This can occasionally be a
problem. For example, you cannot single -step through invisible code when
debugging. Additionally, if you choose to use the default initialization to
zero, how will developers who need to maintain the code know that this
choice was deliberate?

Writing Your Own Default Constructor
If the compiler-generated default constructor is inappropriate, you must write
your own default constructor. The C# language helps you to do this.

You can write a constructor that only contains the code to initialize fields to
non-zero values. All fields that are not initialized in your constructor retain their
default initialization to zero. The following code provides an example:

class DefaultInit
{
 public int a, b;
 public DefaultInit()
 {
 a = 42;
 // b retains default initialization to zero
 }
}
class Test
{
 static void Main()
 {
 DefaultInit di = new DefaultInit();
 Console.WriteLine(di.a); // Writes 42
 Console.WriteLine(di.b); // Writes zero
 }
}

You should be wary of doing more than simple initializations in your own
constructors. You must consider potential failure: the only sensible way you can
signal an initialization failure in a constructor is by throwing an exception.

The same is also true for operators. Operators are discus sed in Module 12,
“Operators, Delegates, and Events,” in Course 2124A, Introduction to C#
Programming for the Microsoft .NET Platform (Prerelease).

When initialization succeeds, you have an object that you can use. If
initialization fails, you do not have an object.

Note

 Module 9: Creating and Destroying Objects 9

Overloading Constructors

n Constructors Are Methods; They Can Be Overloaded

l Same scope, same name, different parameters

l Allows objects to be initialized in different ways

n WARNING

l If you write a constructor for a class, the compiler does
not create a default constructor

class Date
{

public Date() { ... }
public Date(int year, int month, int day) { ... }
...

}

class Date
{

public Date() { ... }
public Date(int year, int month, int day) { ... }
...

}

Constructors are special kinds of methods. Just as you can overload methods,
you can overload constructors.

What Is Overloading?
Overloading is the technical term for declaring two or more methods in the
same scope w ith the same name. The following code provides an example:

class Overload
{
 public void Method() { ... }
 public void Method(int x) { ... }
}
class Use
{
 static void Main()
 {
 Overload o = new Overload();
 o.Method();
 o.Method(42);
 }
}

In this code example, two methods called Method are declared in the scope of
the Overload class, and both are called in Use.Main. There is no ambiguity,
because the number and types of the arguments determine which method is
called.

10 Module 9: Creating and Destroying Objects

Initializing an Object in More Than One Way
The ability to initialize an object in different ways was one of the primary
motivations for allowing overloading. Constructors are special kinds of
methods, and they can be overloaded exactly like methods. This means you can
define different ways to initialize an object. The following code provides an
example:

class Overload
{
 private int data;
 public Overload() { this.data = -1; }
 public Overload(int x) { this.data = x; }
}

class Use
{
 static void Main()
 {
 Overload o1 = new Overload();
 Overload o2 = new Overload(42);
 ...
 }
}

Object o1 is created by using the constructor that takes no arguments, and the
private instance variable data is set to –1. Object o2 is created by using the
constructor that takes a single integer, and the instance variable data is set to 42.

Initializing Fields to Non-Default Values
You will find many cases in which fields cannot be sensibly initialized to zero.
In these cases, you can write your own constructor that requires one or more
parameters that are then used to initialize the fields. For example, consider the
following Date class:

class Date
{
 public Date(int year, int month, int day)
 {
 ccyy = year;
 mm = month;
 dd = day;
 }
 private int ccyy, mm, dd;
}

One problem with this constructor is that it is easy to get the order of the
arguments wrong. For example:

Date birthday = new Date(23, 11, 1968); // Error

 Module 9: Creating and Destroying Objects 11

The code should read new Date(1968,11,23). This error will not be
detected as a compile-time error because all three arguments are integers. One
way you could fix this would be to use the Whole Value pattern. You could turn
Year, Month, and Day into structs rather than int values, as follows:

struct Year
{
 public readonly int value;
 public Year(int value) { this.value = value; }
}

struct Month // Or as an enum
{
 public readonly int value;
 public Month(int value) { this.value = value; }
}
struct Day
{
 public readonly int value;
 public Day(int value) { this.value = value; }
}
class Date
{
 public Date(Year y, Month m, Day d)
 {
 ccyy = y.value;
 mm = m.value;
 dd = d.value;
 }
 private int ccyy, mm, dd;
}

Using structs or enums rather than classes for Day, Month, and Year
reduces the overhead when creating a Date object. This will be explained later
in this module.

The following code shows a simple change that would not only catch argument-
order errors but would also allow you to create overloaded Date constructors
for U.K. format, U.S. format, and ISO format:

class Date
{
 public Date(Year y, Month m, Day d) { ... } // ISO
 public Date(Month m, Day d, Year y) { ... } // US
 public Date(Day d, Month m, Year y) { ... } // UK
 ...
 private int ccyy, mm, dd;
}

Tip

12 Module 9: Creating and Destroying Objects

Overloading and the Default Constructor
If you declare a class with a constructor, the compiler does not generate the
default constructor. In the following example, the Date class is declared with a
constructor, so the expression new Date() will not compile:

class Date
{
 public Date(Year y, Month m, Day d) { ... }
 // No other constructor
 private int ccyy, mm, dd;
}
class Fails
{
 static void Main()
 {
 Date defaulted = new Date(); // Compile-time error
 }
}

This means that if you want to be able to create Date objects without supplying
any constructor arguments, you will need to explicitly declare an overloaded
default constructor, as in the following example:

class Date
{
 public Date() { ... }
 public Date(Year y, Month m, Day d) { ... }
 ...
 private int ccyy, mm, dd;
}
class Succeeds
{
 static void Main()
 {
 Date defaulted = new Date(); // Okay
 }
}

 Module 9: Creating and Destroying Objects 13

u Initializing Data

n Using Initializer Lists

n Declaring Readonly Variables and Constants

n Initializing Readonly Fields

n Declaring a Constructor for a Struct

n Using Private Constructors

n Using Static Constructors

You have seen the basic elements of constructors. Constructors also have a
number of additional features and uses. In this section you will learn how to
initialize the data in objects by using constructors.

14 Module 9: Creating and Destroying Objects

Using Initializer Lists

n Overloaded Constructors Might Contain Duplicate Code

l Refactor by making constructors call each other

l Use the this keyword in an initializer list

class Date
{

...
public Date() : this(1970, 1, 1) { }
public Date(int year, int month, int day) { ... }

}

class Date
{

...
public Date() : this(1970, 1, 1) { }
public Date(int year, int month, int day) { ... }

}

You can use special syntax called an initializer list to implement one
constructor by calling an overloaded constructor.

Avoiding Duplicate Initia lizations
The following code shows an example of overloaded constructors with
duplicated initialization code:

class Date
{
 public Date()
 {
 ccyy = 1970;
 mm = 1;
 dd = 1;
 }
 public Date(int year, int month, int day)
 {
 ccyy = year;
 mm = month;
 dd = day;
 }
 private int ccyy, mm, dd;
}

Notice the duplication of dd, mm, and ccyy on the left side of the three
initializations. This is not extensive duplication, but it is duplication nonetheless,
and you should avoid it if possible. For example, suppose you decided to
change the representation of a Date to one long field. You would need to
rewrite every Date constructor.

 Module 9: Creating and Destroying Objects 15

Refactoring Duplicate Initializations
A standard way to refactor duplic ate code is to extract the common code into its
own method. The following code provides an example:

class Date
{
 public Date()
 {
 Init(1970, 1, 1);
 }
 public Date(int year, int month, int day)
 {
 Init(day, month, year);
 }
 private void Init(int year, int month, int day)
 {
 ccyy = year;
 mm = month;
 dd = day;
 }
 private int ccyy, mm, dd;
}

This is better than the previous solution. Now if you changed the representation
of a Date to one long field, you would only need to modify Init. Unfortunately,
refactoring constructors in this way works some of the time but not all of the
time. For example, it will not work if you try to refactor the initialization of a
readonly field. (This is covered later in this module.) Object-oriented
programming languages provide mechanisms to help solve this known problem.
For example, in C++ you can use default values. In C# you use initializer lists.

Using an Initializer List
An initializer list allows you to write a constructor that calls another constructor
in the same class. You write the initializer list between the closing parenthesis
mark and the opening left brace of the constructor. An initializer list starts with
a colon and is followed by the keyword this and then any arguments between
parentheses. For example, in the following code, the default Date constructor
(the one with no arguments) uses an initializer list to call the second Date
constructor with three arguments: 1970, 1, and 1.

class Date
{
 public Date() : this(1970, 1, 1)
 {
 }
 public Date(int year, int month, int day)
 {
 ccyy = year;
 mm = month;
 dd = day;
 }
 private int ccyy, mm, dd;
}
This syntax is efficient, it always works, and if you use it you do not need to
create an extra Init method.

16 Module 9: Creating and Destroying Objects

Initializer List Restrictions
There are three restrictions you must observe when initializing constructors:

n You can only use initializer lists in constructors as shown in the following
example:

class Point
{
 public Point(int x, int y) { ... }
 // Compile-time error
 public void Init() : this(0, 0) { }
}

n You cannot write an initializer list that calls itself. The following code
provides an example:

class Point
{
 // Compile-time error
 public Point(int x, int y) : this(x, y) { }
}

n You cannot use the this keyword in an expression to create a constructor
argument. The following code provides an example:

class Point
{
 // Compile-time error
 public Point() : this(X(this), Y(this)) { }
 public Point(int x, int y) { ... }
 private static int X(Point p) { ... }
 private static int Y(Point p) { ... }
}

 Module 9: Creating and Destroying Objects 17

Declaring Readonly Variables and Constants

nValue of Constant Field
Is Obtained at Compile
Time

nValue of Readonly
Field Is Obtained at
Run Time

When using constructors, you need to know how to declare readonly variables
and constants.

Using Readonly Variables
You can qualify a field as readonly in its declaration, as follows:

readonly int nLoopCount = 10;

You will get an error if you attempt to change the value at run time.

Using Constant Variables
A constant variable represents a constant value that is computed at compile time.
Using constant variables, you can define variables whose values never change,
as shown in the following example:

const int speedLimit = 55;

Constants can depend on other constants within the same program as long as
the dependencies are not of a circular nature. The compiler automatically
evaluates the constant declarations in the appropriate order.

18 Module 9: Creating and Destroying Objects

Initializing Readonly Fields

n Readonly Fields Must Be Initialized

l Implicitly to zero, false or null

l Explicitly at their declaration in a variable initializer

l Explicitly inside an instance constructor

class SourceFile
{

private readonly ArrayList lines;
}

class SourceFile
{

private readonly ArrayList lines;
}

Fields that cannot be reassigned and that must be initialized are called readonly
fields. There are three ways to initialize a readonly field:

n Use the default initialization of a readonly field.

n Initialize a readonly field in a constructor.

n Initialize readonly fields by using a variable initializer.

Using the Default Initialization of a Readonly Field
The compiler-generated default constructor will initialize all fields (whether
they are readonly or not) to their default value of zero, false, or null. The
following code provides an example:

class SourceFile
{
 public readonly ArrayList lines;
}
class Test
{
 static void Main()
 {
 SourceFile src = new SourceFile();
 Console.WriteLine(src.lines == null); // True
 }
}

There is no SourceFile constructor, so the compiler writes a default constructor
for you, which will initialize lines to null. Hence the WriteLine statement in
the preceding example writes "True.”

 Module 9: Creating and Destroying Objects 19

If you declare your own constructor in a class and do not explicitly initialize a
readonly field, the compiler will still automatically initialize the field.
Following is an example:

class SourceFile
{
 public SourceFile() { }
 public readonly ArrayList lines;
}
class Test
{
 static void Main()
 {
 SourceFile src = new SourceFile();
 Console.WriteLine(src.lines == null); // Still true
 }
}

This is not very useful. In this case, the readonly field is initialized to null, and
it will remain null because you cannot reassign a readonly field.

Initializing a Readonly Field in a Constructor
You can explicitly initialize a readonly field in the body of a constructor.
Following is an example:

class SourceFile
{
 public SourceFile()
 {
 lines = new ArrayList();
 }
 private readonly ArrayList lines;
}

The statement inside the constructor looks syntactically like an assignment to
lines, which would not normally be allowed because lines is a readonly field.
However, the statement compiles because the compiler recognizes that the
assignment occurs inside a constructor body and so treats it as an initialization.

An advantage of initializing readonly fields like this is that you can use
constructor parameters in the new expression. Following is an example:

class SourceFile
{
 public SourceFile(int suggestedSize)
 {
 lines = new ArrayList(suggestedSize);
 }
 private readonly ArrayList lines;
}

20 Module 9: Creating and Destroying Objects

Initializing Readonly Fields Using a Variable Initializer
You can initialize a readonly field directly at its declaration by using a variable
initializer. Following is an example:

class SourceFile
{
 public SourceFile()
 {
 ...
 }
 private readonly ArrayList lines = new ArrayList();
}

This is really just convenient shorthand. The compiler conceptually rewrites a
variable initialization (whether it is readonly or not) into an assignment inside
all constructors. For example, the preceding class will conceptually be
converted into the following class:

class SourceFile
{
 public SourceFile()
 {
 lines = new ArrayList();
 ...
 }
 private readonly ArrayList lines;
}

 Module 9: Creating and Destroying Objects 21

Declaring a Constructor for a Struct

n The Compiler

l Always generates a default constructor. Default
constructors automatically initialize all fields to zero.

n The Programmer

l Can declare constructors with one or more arguments.
Declared constructors do not automatically initialize
fields to zero.

l Can never declare a default constructor.

l Can never declare a protected constructor.

The syntax you use to declare a constructor is the same for a struct as it is for a
class. For example, the following is a struct called Point that has a constructor:

struct Point
{
 public Point(int x, int y) { ... }
 ...
}

Struct Constructor Restrictions
Although the syntax for struct and class constructors is the same, there are some
additional restrictions that apply to struct constructors:

n The compiler always creates a default struct constructor.

n You cannot declare a default constructor in a struct.

n You cannot declare a protected constructor in a struct.

n You must initialize all fields.

22 Module 9: Creating and Destroying Objects

The Compiler Always Creates a Default Struct Constructor
The compiler always generates a default constructor, regardless of whether you
declare constructors yourself. (This is unlike the situation with classes, in which
the compiler-generated default constructor is only generated if you do not
declare any constructors yourself.) The compiler generated struct constructor
initializes all fie lds to zero, false, or null.

struct SPoint
{
 public SPoint(int x, int y) { ... }
 ...
 static void Main()
 {
 // Okay
 SPoint p = new SPoint();
 }
}
class CPoint
{
 public CPoint(int x, int y) { ... }
 ...
 static void Main()
 {
 // Compile-time error
 CPoint p = new CPoint();
 }
}

This means that a struct value created with

SPoint p = new SPoint();

creates a new struct value on the stack (using new to create a struct does not
acquire memory from the heap) and initializes the fields to zero. There is no
way to change this behavior.

However, a struct value created with

SPoint p;

 Module 9: Creating and Destroying Objects 23

still creates a struct value on the stack but does not initialize any of the fields
(so any field must be definitely assigned before it can be referenced). Following
is an example:

struct SPoint
{
 public int x, y;
 ...
 static void Main()
 {
 SPoint p1;
 Console.WriteLine(p1.x); // Compile-time error
 SPoint p2;
 p2.x = 0;
 Console.WriteLine(p2.x); // Okay
 }
}

Ensure that any struct type that you define is valid with all fields set to
zero.

You Cannot Declare a Default Constructor in a Struct
The reason for this restriction is that the compiler always creates a default
constructor in a struct (as just described) so you would end up with a duplicate
definition.

class CPoint
{
 // Okay because CPoint is a class
 public CPoint() { ... }
 ...
}
struct SPoint
{
 // Compile-time error because SPoint is a struct
 public SPoint() { ... }
 ...
}

You can declare a struct constructor as long as it expects at least one argument.
If you declare a struct constructor it will not automatically initialize any field to
a default value (unlike the compiler generated struct default constructor which
will).

struct SPoint
{
 public SPoint(int x, int y) { ... }
 ...
}

Tip

24 Module 9: Creating and Destroying Objects

You Cannot Declare a Protected Constructor in a Struct
The reason for this restriction is that you can never derive other classes or
structs from a struct, and so protected access would not make sense, as shown
in the following example:

class CPoint
{
 // Okay
 protected CPoint(int x, int y) { ... }
}
struct SPoint
{
 // Compile-time error
 protected SPoint(int x, int y) { ... }
}

You Must Initialize All Fields
If you declare a class constructor that fails to initialize a field, the compiler will
ensure that the field nevertheless retains its default zero initialization. The
following code provides an example:

class CPoint
{
 private int x, y;
 public CPoint(int x, int y) { /*nothing*/ }
 // Okay. Compiler ensures that x and y are initialized to
 // zero.
}

However, if you declare a struct constructor that fails to initialize a field, the
compiler will generate a compile-time error:

struct SPoint1 // Okay: initialized when declared
{
 private int x = 0, y = 0;
 public SPoint1(int x, int y) { }
}
struct SPoint2 // Okay: initialized in constructor
{
 private int x, y;
 public SPoint2(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}
struct SPoint3 // Compile-time error
{
 private int x, y;
 public SPoint3(int x, int y) { }
}

 Module 9: Creating and Destroying Objects 25

Using Private Constructors

n A Private Constructor Prevents Unwanted Objects from
Being Created

l Instance methods cannot be called

l Static methods can be called

l A useful way of implementing procedural functions

public class Math
{

public static double Cos(double x) { ... }
public static double Sin(double x) { ... }
private Math() { }

}

public class Math
{

public static double Cos(double x) { ... }
public static double Sin(double x) { ... }
private Math() { }

}

Math is part of the .NET SDK

So far, you have learned how to use public constructors. C# also provides
private constructors, which are useful in some applications.

Using Private Constructors for Procedural Functions
Object-oriented programming offers a powerful paradigm for structuring
software in many diverse domains. However, it is not a universally applicable
paradigm. For example, there is nothing object oriented about calculating the
sine or cosine of a double-precision floating-point number.

Declaring Functions
The most intuitive way to calculate a sine or cosine is to use global functions
defined outside an object, as follows:

double Cos(double x) { ... }
double Sin(double x) { ... }

The preceding code is not allowable in C#. Global functions are possible in
procedural languages such as C and in hybrid languages such as C++, but they
are not allowed in C#. In C#, functions must be declared inside a class or struct,
as follows:

class Math
{
 public double Cos(double x) { ... }
 public double Sin(double x) { ... }
}

26 Module 9: Creating and Destroying Objects

Declaring Static vs. Instance Methods
The problem with the technique in the preceding example is that, because Cos
and Sin are instance methods, you are forced to create a Math object from
which to invoke Sin or Cos , as shown in the following code:

class Cumbersome
{
 static void Main()
 {
 Math m = new Math();
 double answer;
 answer = m.Cos(42.0);
 // Or
 answer = new Math().Cos(42.0);
 }
}

However, you can easily solve this by declaring Cos and Sin as static methods,
as follows:

class Math
{
 public static double Cos(double x) { ... }
 public static double Sin(double x) { ... }
}
class LessCumbersome
{
 static void Main()
 {
 double answer = Math.Cos(42.0);
 }
}

 Module 9: Creating and Destroying Objects 27

Benefits of Static Methods
If you declare Cos as a static method, the syntax for using Cos becomes:

n Simpler

You have only one way to call Cos (by means of Math), whereas in the
previous example you had two ways (by means of m and by means of new
Math()).

n Faster

You no longer need to create a new Math object.

One slight problem remains. The compiler will generate a default constructor
with public access, allowing you to create Math objects. Such objects can serve
no purpose because the Math class contains static methods only. There are two
ways you can prevent Math objects from being created:

n Declare Math as an abstract class.

This is not a good idea. The purpose of abstract classes is to be derived from.

n Declare a private Math constructor.

This is a better solution. When you declare a constructor in the Math class,
you prevent the compiler from generating the default constructor, and if you
also declare the constructor as private, you stop Math objects from being
created. The private constructor also prevents Math from being used as a
base class.

The Singleton Pattern
The intent of the Singleton pattern (which is discussed in Design Patterns:
Elements of Reusable Object-Oriented Software) is to “ensure a class only has
one instance, and provide a global point of access to it.” The technique of
declaring a class by using a private constructor and static methods is sometimes
suggested as a way to implement the Singleton pattern.

A key aspect of the Singleton pattern is that a class has a single instance.
With a private constructor and static methods, there is no instance at all. The
canonical implementation of the Singleton pattern is to create a static method
that gives access to the single instance, and this instance is then used to call
instance methods.

Note

28 Module 9: Creating and Destroying Objects

Using Static Constructors

n Purpose

l Called by the class loader at run time

l Can be used to initialize static fields

l Guaranteed to be called before instance constructor

n Restrictions

l Cannot be called

l Cannot have an access modifier

l Must be parameterless

Just as an instance constructor guarantees that an object is in a well-defined
initial state before it is used, a static constructor guarantees that a class is in a
well-defined initial state before it is used.

Loading Classes at Run Time
C# is a dynamic language. When the Common Language Runtime is running a
Microsoft® .NET program, it often encounters code that uses a class that has not
yet been loaded. In these situations, execution is momentarily suspended, the
class is dynamically loaded, and then execution continues.

Initializing Classes at Load Time
C# ensures that a class is always initialized before it is used in code in any way.
This guarantee is achieved by using static constructors.

You can declare a static constructor like an instance constructor but prefix it
with the keyword static, as follows:

class Example
{
 static Example() { ... }
}

 Module 9: Creating and Destroying Objects 29

After the class loader loads a class that will soon be used, but before it
continues normal execution, it executes the static constructor for that class.
Because of this process, you are guaranteed that classes are always initialized
before they are used. The specific guarantees that the class loader provides are
as follows:

n The static constructor for a class is executed before any instances of the
class are created.

n The static constructor for a class is executed before any static member of the
class is referenced.

n The static constructor for a class is executed before the static constructor of
any of its derived classes is executed.

n The static constructor for a class never executes more than once.

Static Field Initializations and Static Constructors
The most common use for a static constructor is to initialize the static fields of a
class. This is because when you initialize a static field directly at its point of
declaration, the compiler conceptually converts the initialization into an
assignment inside the static constructor. In other words

class Example
{
 private static Wibble w = new Wibble();
}

is effectively converted by the compiler into

class Example
{
 static Example()
 {
 w = new Wibble();
 }
 private static Wibble w;
}

Static Constructor Restrictions
Understanding the following four restrictions on the syntax of static
constructors will help you understand how the Common Language Runtime
uses static constructors:

n You cannot call a static constructor.

n You cannot declare a static constructor with an access modifier.

n You cannot declare a static constructor with parameters.

n You cannot use the this keyword in a static constructor.

30 Module 9: Creating and Destroying Objects

You Cannot Call a Static Constructor
A static constructor must be called before any instances of the class are
referenced in code. If the responsibility for enforcing this rule were given to
programmers rather than the .NET runtime, eventually programmers would fail
to meet the responsibility. They would forget to make the call, or, perhaps
worse, they would call the static constructor more than once. The .NET runtime
avoids these potential problems by disallowing calls to static constructors in
code. Only the .NET runtime can call a static constructor.

class Point
{
 static Point() { ... }
 static void Main()
 {
 Point.Point(); // Compile-time error
 }
}

You Cannot Declare a Static Constructor with an Access Modifier
Because you cannot call a static constructor, declaring a static constructor with
an access modifier does not make sense and causes a compile -time error:

class Point
{
 public static Point() { ... } // Compile-time error
}

You Cannot Declare a Static Constructor with Parameters
Because you cannot call a static constructor, declaring a static constructor with
parameters does not make sense and causes a compile-time error. This also
means that you cannot declare overloaded static constructors. Following is an
example:

class Point
{
 static Point(int x) { ... } // Compile-time error
}

You Cannot Use the this Keyword in a Static Constructor
Because a static constructor initializes the class and not object instances, it does
not have an implicit this reference, so any attempt to use the this keyword
results in a compile-time error:

class Point
{
 private int x, y;
 static Point() : this(0,0) // Compile-time error
 {
 this.x = 0; // Compile-time error
 this.y = 0; // Compile-time error
 }
 ...
}

 Module 9: Creating and Destroying Objects 31

Lab 9.1: Creating Objects

Objectives
In this lab, you will modify the BankAccount class that you created in the
previous labs so that it uses constructors. You will also create a new class,
BankTransaction, and use it to store information about the transactions
(deposits and withdrawals) performed on an account.

After completing this lab, you will be able to:

n Override the default constructor.

n Create overloaded constructors.

n Initialize readonly data.

Prerequisites
Before working on this lab, you must be able to:

n Create classes and instantiate objects.

n Define and call methods.

You should also have completed Lab 8. If you did not complete Lab 8, you can
use the solution code provided.

Estimated time to complete this lab: 60 minutes

32 Module 9: Creating and Destroying Objects

Exercise 1
Implementing Constructors

In this exercise, you will modify the BankAccount class that you created in the
previous labs. You will remove the methods that populate the account number
and account type instance variables and replace them with a series of
constructors that can be used when a BankAccount is instantiated.

You will overrid e the default constructor to generate an account number (by
using the technique that you used earlier), set the account type to Checking,
and set the balance to zero.

You will also create three more constructors that take different combinations of
parameters:

n The first will take an AccountType . The constructor will generate an
account number, set the balance to zero, and set the account type to the
value passed in.

n The second will take a decimal. The constructor will generate an account
number, set the account type to Checking, and set the balance to the value
passed in.

n The third will take an AccountType and a decimal. The constructor will
generate an account number, set the account type to the value of the
AccountType parameter, and set the balance to the value of the decimal
parameter.

å To create the default constructor

1. Open the Constructors.sln project in the Lab Files\
Lab09\Starter\Constructors folder.

2. In the BankAccount class, delete the Populate method.

3. Create a default constructor, as follows:

a. The name is BankAccount.

b. It is public.

c. It takes no parameters.

d. It has no return type.

e. The body of the constructor should generate an account number by using
the NextNumber method, set the account type to
AccountType.Checking, and initialize the account balance to zero.

The completed constructor is as follows:

public BankAccount()
{
 accNo = NextNumber();
 accType = AccountType.Checking;
 accBal = 0;
}

 Module 9: Creating and Destroying Objects 33

å To create the remaining constructors

1. Add another constructor that takes a single AccountType parameter called
aType . The constructor should:

a. Generate an account number as before.

b. Set accType to aType .

c. Set accBal to zero.

2. Define another constructor that takes a single decimal parameter called
aBal. The constructor should:

a. Generate an account number.

b. Set accType to AccountType.Checking.

c. Set accBal to aBal.

3. Define a final constructor that takes two parameters: an AccountType
called aType and a decimal called aBal. The constructor should:

a. Generate an account number.

b. Set accType to aType .

c. Set accBal to aBal.

The completed code for all three constructors is as follows:

public BankAccount(AccountType aType)
{
 accNo = NextNumber();
 accType = aType;
 accBal = 0;
}

public BankAccount(decimal aBal)
{
 accNo = NextNumber();
 accType = AccountType.Checking;
 accBal = aBal;
}

public BankAccount(AccountType aType, decimal aBal)
{
 accNo = NextNumber();
 accType = aType;
 accBal = aBal;
}

34 Module 9: Creating and Destroying Objects

å To test the constructors

1. In the Main method of the CreateAccount class, define four BankAccount
variables called acc1, acc2, acc3, and acc4.

2. Instantiate acc1 by using the default constructor.

3. Instantiate acc2 by using the constructor that takes only an AccountType .
Set the type of acc2 to AccountType.Deposit.

4. Instantiate acc3 by using the constructor that takes only a decimal balance.
Set the balance of acc3 to 100.

5. Instantiate acc4 by using the constructor that takes an AccountType and a
decimal balance. Set the type of acc4 to AccountType.Deposit, and set the
balance to 500.

6. Use the Write method (supplied with the CreateAccount class) to display
the contents of each account one by one. The completed code is as follows:

static void Main()
{
 BankAccount acc1, acc2, acc3, acc4;

 acc1 = new BankAccount();
 acc2 = new BankAccount(AccountType.Deposit);
 acc3 = new BankAccount(100);
 acc4 = new BankAccount(AccountType.Deposit, 500);

 Write(acc1);
 Write(acc2);
 Write(acc3);
 Write(acc4);
}

7. Compile the project and correct any errors. Execute it, and check that the
output is as expected.

 Module 9: Creating and Destroying Objects 35

Exercise 2
Initializing readonly Data

In this exercise, you will create a new class called BankTransaction. It will
hold information about a deposit or withdrawal transaction that is performed on
an account.

Whenever the balance of an account is changed by means of the Deposit or
Withdraw method, a new BankTransaction object will be created. The
BankTransaction object will contain the current date and time (generated from
System.DateTime) and the amount added (positive) or deducted (negative)
from the account. Because transaction data cannot be changed once it is created,
this information will be stored in two readonly instance variables in the
BankTransaction object.

The constructor for BankTransaction will take a single decimal parameter,
which it will use to populate the transaction amount instance variable. The date
and time instance variable will be populated by DateTime.Now, a property of
System.DateTime that returns the current date and time.

You will modify the BankAccount class to create transactions in the Deposit
and Withdraw methods. You will store the transactions in an instance variable
in the BankAccount class of type System.Collections.Queue. A queue is a
data structure that holds an ordered list of objects. It provides methods for
adding elements to the queue and for iterating through the queue. (Using a
queue is better than using an array because a queue does not have a fixed size: it
will grow automatically as more transactions are added.)

å To create the BankTransaction class

1. Open the Constructors.sln project in the Lab Files\
Lab09\Starter\Constructors folder, if it is not already open.

2. Add a new class called BankTransaction.

3. In the BankTransaction class, remove the namespace directive together
with the first opening brace ({), and the final closing brace (}). (You will
learn more about namespaces in a later module.)

4. In the summary comment, add a brief description of the BankTransaction
class. Use the description above to help you.

5. Delete the default constructor created by Visual Studio.

6. Add the following two private readonly instance variables:

a. A decimal called amount.

b. A DateTime variable called when. The System.DateTime structure is
useful for holding dates and times, and contains a number of methods for
manipulating these values.

36 Module 9: Creating and Destroying Objects

7. Add two accessor methods, called Amount and When, that return the
values of the two instance variables:

private readonly decimal amount;
private readonly DateTime when;
...
public decimal Amount()
{
 return amount;
}

public DateTime When()
{
 return when;
}

å To create the constructor

1. Define a public constructor for the BankTransaction class. It will take a
decimal parameter called tranAmount that will be used to populate the
amount instance variable.

2. In the constructor, initialize when with DateTime.Now.

DateTime.Now is a property and not a method, so you do not need to
use parentheses.

The completed constructor is as follows:

public BankTransaction(decimal tranAmount)
{
 amount = tranAmount;
 when = DateTime.Now;
}

3. Compile the project and correct any errors.

å To create transactions

1. As described above, transactions will be created by the BankAccount class
and stored in a queue whenever the Deposit or Withdraw method is
invoked. Return to the BankAccount class.

2. Before the start of the BankAccount class, add the following using
directive:

using System.Collections;

3. Add a private instance variable call tranQueue to the BankAccount class.
Its data type should be Queue and it should be initialized with a new empty
queue:

private Queue tranQueue = new Queue();

Tip

 Module 9: Creating and Destroying Objects 37

4. In the Deposit method, before returning, create a new transaction using the
deposit amount as the parameter, and append it to the queue by using the
Enqueue method, as follows:

public decimal Deposit(decimal amount)
{
 accBal += amount;
 BankTransaction tran = new BankTransaction(amount);
 tranQueue.Enqueue(tran);
 return accBal;
}

5. In the Withdraw method, if there are sufficient funds, create a transaction
and append it to tranQueue as in the Deposit method, as follows:

public bool Withdraw(decimal amount)
{
 bool sufficientFunds = accBal >= amount;
 if (sufficientFunds) {
 accBal -= amount;
 BankTransaction tran = new BankTransaction(-amount);
 tranQueue.Enqueue(tran);
 }
 return sufficientFunds;
}

For the Withdraw method, the value passed to the constructor of the
BankTransaction should be the amount being withdrawn preceded by the
negative sign.

Note

38 Module 9: Creating and Destroying Objects

å To test transactions

1. For testing purposes, add a public method called Transactions to the
BankAccount class. Its return type should be Queue , and the method
should return tranQueue. You will use this method for displaying
transactions in the next step. The method will be as follows:

public Queue Transactions()
{
 return tranQueue;
}

2. In the CreateAccount class, modify the Write method to display the details
of transactions for each account. Queues implement the IEnumerable
interface, which means that you can use the foreach construct to iterate
through them.

3. In the body of the foreach loop, print out the date and time and the amount
for each transaction, by using the When and Amount methods, as follows:

static void Write(BankAccount acc)
{
 Console.WriteLine("Account number is {0}",
acc.Number());
 Console.WriteLine("Account balance is {0}",
acc.Balance());
 Console.WriteLine("Account type is {0}", acc.Type());
 Console.WriteLine("Transactions:");
 foreach (BankTransaction tran in acc.Transactions())
 {
 Console.WriteLine("Date/Time: {0}\tAmount: {1}",
Êtran.When(), tran.Amount());
 }
 Console.WriteLine();
}

4. In the Main method, add statements to deposit and w ithdraw money from
each of the four accounts (acc1, acc2, acc3, and acc4).

5. Compile the project and correct any errors.

6. Execute the project. Examine the output and check whether transactions are
displayed as expected.

 Module 9: Creating and Destroying Objects 39

u Objects and Memory

n Object Lifetime

n Objects and Scope

n Garbage Collection

In this section, you will learn what happens when an object, as opposed to a
value, goes out of scope or is destroyed and about the role of garbage collection
in this process.

40 Module 9: Creating and Destroying Objects

Object Lifetime

n Creating Objects

l You allocate memory by using new

l You initialize an object in that memory by using a
constructor

n Using Objects

l You call methods

n Destroying Objects

l The object is converted back into memory

l The memory is deallocated

In C#, destroying an object is a two-step process that corresponds to and
reverses the two-step object creation process.

Creating Objects
In the first section, you learned that creating a C# object for a reference type is
a two-step process, as follows:

1. Use the new keyword to acquire and allocate memory.

2. Call a constructor to turn the raw memory acquired by new into an object.

Destroying Objects
Destroying a C# object is also a tw o-step process:

1. De-initialize the object.

This converts the object back into raw memory. It is done by the destructor
or the Finalize method. This is the reverse of the initialization performed by
the constructor. You can control what happens in this step by writing your
own destructor or finalize method.

2. The raw memory is deallocated; that is, it is given back to the memory heap.

This is the reverse of the allocation performed by new. You cannot change
the behavior of this step in any way.

 Module 9: Creating and Destroying Objects 41

Objects and Scope

n The Lifetime of a Local Value Is Tied to the Scope in
Which It Is Declared

l Short lifetime (typically)

l Determinisitic creation and destruction

n The Lifetime of a Dynamic Object Is Not Tied to Its
Scope

l A longer lifetime

l A non-deterministic destruction

Unlike values such as ints and structs, which are allocated on the stack and are
destroyed at the end of their scope, objects are allocated on the heap and are not
destroyed at the end of their scope.

Values
The lifetime of a local value is tied to the scope in which it is declared. Local
values are variables that are allocated on the stack and not through the new
operator. This means that if you declare a variable whose type is one of the
primitives (such as int), enum, or struct, you cannot use it outside the scope in
which you declare it. For example, in the following code fragment, three values
are declared inside a for statement, and so go out of scope at the end of the for
statement:

struct Point { public int x, y; }
enum Season { Spring, Summer, Fall, Winter }
class Example
{
 void Method()
 {
 for (int i = 0; i < limit; i++) {
 int x = 42;
 Point p = new Point();
 Season s = Season.Winter;
 }
 x = 42; // Compile-time error
 p = new Point(); // Compile-time error
 s = Season.Winter; // Compile-time error
 }
}

42 Module 9: Creating and Destroying Objects

In the previous example, it appears as though a new Point is created.
However, because Point is a struct, new does not allocate memory from the
heap. The “new” Point is created on the stack.

This means that local values have the following characteristics:

n Deterministic creation and destruction

A local variable is created when you declare it, and is destroyed at the end
of the scope in which it is declared. The start point and the end point of the
value’s life are deterministic; that is, they occur at known, fixed times.

n Usually very short lifetimes

You declare a value somewhere in a method, and the value cannot exist
beyond the method call. When you return a value from a method, you return
a copy of the value.

Objects
The lifetime of an object is not tied to the scope in which it is created. Objects
are initialized in heap memory allocated through the new operator. For example,
in the following code, the reference variable eg is declared inside a for
statement. This means that eg goes out of scope at the end of the for statement
and is a local variable. However, eg is initialized with a new Example() object,
and this object does not go out of scope with eg. Remember: a reference
variable and the object it references are different things.

class Example
{
 void Method()
 {
 for (int i = 0; i < limit; i++) {
 Example eg = new Example();
 ...
 }
 // eg is out of scope
 // Does eg still exist?
 // Does the object still exist?
 }
}

This means that objects typically have the following characteristics:

n Non-deterministic destruction

An object is created when you create it, but, unlike a value, it is it not
destroyed at the end of the scope in which it is created. The creation of an
object is deterministic, but the destruction of an object is not. You cannot
control exactly when an object will be destroyed.

n Longer lifetimes

Because the life of an object is not tied to the method that creates it, an
object can exist well beyond a single method call.

Note

 Module 9: Creating and Destroying Objects 43

Garbage Collection

n You Cannot Destroy Objects in C#

l C# does not have an opposite of new (such as delete)

l This is because an explicit delete function is a prime
source of errors in other languages

n Garbage Collection Destroys Objects for You

l It finds unreachable objects and destroys them for you

l It finalizes them back to raw unused heap memory

l It typically does this when memory becomes low

So far, you have seen that you create objects in C# in exactly the same way that
you create objects in other languages, such as C++. You use the new keyword
to allocate memory from the heap, and you call a constructor to convert that
memory into an object. However, as far as the method for the destruction of
objects, there is no similarity between C# and its predecessors.

You Cannot Destroy Objects in C#
In many programming languages, you can explicitly control when an object will
be destroyed. For example, in C++ you can use a delete expression to de-
initialize (or finalize) the object (turn it back into raw memory) and then return
the memory to the heap. In C#, there is no way to explicitly destroy objects. In
many ways, this restriction is a useful one because programmers often misuse
the ability to explicitly destroy objects by:

n Forgetting to destroy objects.

If you had the responsibility for writing the code that destroyed an object,
you might sometimes forget to write the code. This can happen in C++ code,
and this is a problematic bug that causes the user’s computer to get slower
as the program uses more memory. This is known as memory leak. Often the
only way to reclaim the lost memory is to shut down and then restart the
offending program.

n Attempting to destroy the same object more than once.

You might sometimes accidentally attempt to destroy the same object more
than once. This can happen in C++ code, and it is a serious bug with
undefined consequences. The problem is that when you destroy the object
the first time, the memory is reclaimed and can be used to create a new
object, probably of a completely different class. When you then attempt to
destroy the object the second time, the memory refers to a completely
different object!

44 Module 9: Creating and Destroying Objects

n Destroying an active object.

You might sometimes destroy an object that was still being referred to in
another part of the program. This is also a serious bug known as the
dangling pointer problem, and it also has undefined consequences.

Garbage Collection Destroys Objects for You
In C#, you cannot destroy an object explicitly in code. Instead, C# has a
garbage collection, which destroys objects for you. Garbage collection is
completely automatic. It ensures that:

n Objects are destroyed.

However, garbage collection does not specify exactly when the object will
be destroyed.

n Objects are destroyed only once.

This means that you cannot get the undefined behavior of double deletion
that is possible in C++. This is important because it helps to ens ure that a C#
program always behaves in a well-defined way.

n Only unreachable objects are destroyed.

Garbage collection ensures that an object is never destroyed if another
object holds a reference to it. Garbage collection only destroys an object
when no other object holds a reference to it. The ability of one object to
reach another object through a reference variable is called reachability.
Only unreachable objects are destroyed. It is the function of garbage
collection to follow all of the object references to determine which objects
are reachable and hence, by a process of elimination, to find the remaining
unreachable objects. This can be a time-consuming operation, so garbage
collection only collects garbage to reclaim unused memory when memory
becomes low.

You can also invoke garbage collection explicitly in your code, but it is
not recommended. Let the .NET runtime manage memory for you.

Note

 Module 9: Creating and Destroying Objects 45

u Using Destructors

n The Finalize Method

n Writing Destructors

n Destructors and the Finalize Method

n Warnings About Destructor Timing

n GC.SuppressFinalize()

n Using the Disposal Design Pattern

n Using IDisposable

A destructor is a special method that you use to de-initialize an object. In this
section, you will learn how to use destructors and the Finalize method to
control the destruction of object.

This course is based on the Beta 1 version of Microsoft Visual
Studio.NET. In Beta 2 and subsequent versions of Visual Studio.NET,
destructors will always be executed, even if it is only at the end of the program.
This feature is not available in Beta 1.

Note

46 Module 9: Creating and Destroying Objects

The Finalize Method

n The Final Actions of Different Objects Will Be Different

l They cannot be determined by garbage collection

l You can write an optional Finalize method

l If present, garbage collection will call Finalize before
reclaiming the raw memory

l Finalize is the opposite of a constructor and must have
the following syntax:

protected override void Finalize() { }protected override void Finalize() { }

You have already seen that destroying an object is a two-step process. In the
first step, the object is converted back into raw memory. In the second step, the
raw memory is returned to the heap to be recycled. Garbage collection
completely automates the second step of this process for you.

However, the actions required to finalize a specific object back into raw
memory to clean it up will depend on the specific object. This means that
garbage collection cannot automate the first step for you. If there are any
specific statements that you want an object to execute as it is picked up by
garbage collection and just before its memory is reclaimed, you need to write
these statements yourself in a method called Finalize.

Finalization
When garbage collection is destroying an unreachable object, it will check
whether the class of the object has its own Finalize method. If the class has a
Finalize method, it will call the method before recycling the memory back to
the heap. The statements you write in the Finalize method will be specific to
the class, but the signature of the Finalize method must take a particular form:

n No arguments required

Remember, you do not call Finalize ; garbage collection does.
n void return type

The purpose of Finalize is not to return a result but to perform an action.
You might think it reasonable for Finalize to return a bool to indicate
whether the object was successfully finalized. The problem with this
approach is that it would not really help. When does garbage collection call
Finalize, and what would it return any value to?

 Module 9: Creating and Destroying Objects 47

n Use override modifier

All classes inherit from the Object class. The Object class has a virtual
method called Finalize. Your Finalize must override Object.Finalize . This
will become clearer after you have learned about inheritance and
polymorphism.

n Protected access

Finalize in the Object base class has protected access, and when you
override a method you are not allowed to change that method’s access. This
will become clearer after you have completed Module 10, “Inheritance in
C#.”

The following code shows an example of the SourceFile class with an
embedded StreamReader whose Finalize method closes the StreamReader:

class SourceFile
{
 public SourceFile(string name)
 {
 File src = new File(name);
 reader = src.OpenText();
 }
 ...
 protected override void Finalize()
 {
 reader.Close();
 }
 ...
 private StreamReader reader;
}

48 Module 9: Creating and Destroying Objects

Writing Destructors

n A Destructor Is an Alternative to Finalize

l It has its own syntax:
- no access modifier
- no return type, not even void
- same name as name of class with leading ~
- no parameters

class SourceFile
{

~SourceFile() { ... }
}

class SourceFile
{

~SourceFile() { ... }
}

You can write a destructor as an alternative to the Finalize method. The
relationship between Finalize and the destructor is extremely close and is
explained in detail in the next topic. The Finalize method and destructors share
the following features:

n No access modifier

You do not call the destructor; garbage collection does.

n No return type

The purpose of the destructor is not to return a value but to perform the
required clean-up actions.

n No parameters can be passed

Again, you do not call the destructor, so you cannot pass it any arguments.
Note that this means that the destructor cannot be overloaded.

 Module 9: Creating and Destroying Objects 49

Destructors and the Finalize Method

n The Compiler Will Automatically Convert a Destructor
into a Finalize Method

class SourceFile
{

~SourceFile() { Console.WriteLine("Dying"); }
public void Test() { Finalize(); }

}

class SourceFile
{

~SourceFile() { Console.WriteLine("Dying"); }
public void Test() { Finalize(); }

}

class SourceFile
{

~SourceFile() { }
protected void Finalize() { }

}

class SourceFile
{

~SourceFile() { }
protected void Finalize() { }

}

Will this compile without error?

What happens when you call Test?

When you write a destructor for a class, the compiler will automatically convert
that destructor into a Finalize method for that class. A Finalize method
generated from a destructor and a Finalize method that you have written
yourself are almost identical. In particular, garbage collection treats them the
same.

One important difference between them is that a destructor will be converted
into a Finalize method that automatically calls Finalize on its base class.

Question 1
Examine the following code. Will it compile without error?

class SourceFile
{
 ~SourceFile() { }
 protected void Finalize() { }
}

The code example will generate an error when compiled. The destructor is
converted into a Finalize method that has no arguments. This means that after
the compiler conversion has taken place, there will be two methods called
Finalize that expect no arguments. This is not allowed and will cause the
compiler to generate a “duplicate definition” diagnostic message.

50 Module 9: Creating and Destroying Objects

Question 2
Examine the following code. What will happen when you call Test?

class SourceFile
{
 ~SourceFile()
 {
 ...
 Console.WriteLine("Dying");
 }
 public void Test()
 {
 Finalize();
 }
}

To answer this question, remember that the compiler will convert the destructor
into a Finalize method. In other words, the above example will become the
following:

class SourceFile
{
 protected void override Finalize()
 {
 ...
 Console.WriteLine("Dying");
 }
 public void Test()
 {
 Finalize();
 }
}

This means that when you call Test, the Console.WriteLine statement inside
the destructor will be executed, writing “Dying” to the console.

This second question also shows that you can explicitly call the
Finalize method on an object. But remember, garbage collection will also call
the Finalize method on the object when the object is garbage collected, leading
to the same object being finalized more than once! The solution to this multiple
finalization problem is covered later in this section.

You cannot declare destructors or Finalize methods in structs.

Important

Note

 Module 9: Creating and Destroying Objects 51

Warnings About Destructor Timing

n You Cannot Rely on Destructors Being Called

l Garbage collection is only called if memory becomes low

l What if memory never becomes low?

n The Order of Destruction Is Undefined

l Not necessarily the reverse order of construction

You have seen that in C# garbage collection is responsible for destroying
objects when they are unreachable. This is unlike other languages such as C++,
in which the programmer is responsible for explicitly destroying objects.
Shifting the responsibility for destroying objects away from the programmer is
a good thing, but it you cannot control exactly when a C# object is destroyed.
This is sometimes referred to as non-deterministic finalization.

You Cannot Rely on Destructors Being Called
When garbage collection is called upon to destroy some objects, it must find the
objects that are unreachable, call their Finalize methods (if they have them),
and then recycle their memory back to the heap. This is a complicated process
(the details of which are beyond the scope of this course), and it takes a fair
amount of time. Consequently, garbage collection does not run unless it needs
to (and when it does it runs in its own thread).

The one time when garbage collection must run is when the heap runs out of
memory. But this means that if your program starts, runs, and then shuts down
without getting close to using the entire heap, your Finalize methods may never
get called, and if they do, it will only be when the program shuts down. In many
cases, this is perfectly acceptable. However, there are situations in which you
must ensure that your Finalize methods are called at known points in time. You
will learn how to deal with these situations later in this section.

52 Module 9: Creating and Destroying Objects

The Order of Destruction Is Undefined
In languages like C++, you can explicitly control when objects are created and
when objects are destroyed. In C#, you can control the order in which you
create objects but you cannot control the order in which they are destroyed.
This is because you do not destroy the objects at all— garbage collection does.

In C#, the order of the creation of objects does not determine the order of the
destruction of those objects. They can be destroyed in any order, and many
other objects might be destroyed in between. However, in practice this is rarely
a problem because garbage collection guarantees that an object will never be
destroyed if it is reachable. If one object holds a reference to a second object,
the second object is reachable from the first object. This means that the second
object will never be destroyed before the first object.

 Module 9: Creating and Destroying Objects 53

GC.SuppressFinalize()

n You Can Explicitly Call Finalize on an Object

l This can sometimes be useful

n If You Call Finalize, Garbage Collection Will Call It Again
When It Collects the Object

l To prevent this, suppress finalization if you explicitly call
Finalize

class GC
{

...
public static void SuppressFinalize(Object o)...

}

class GC
{

...
public static void SuppressFinalize(Object o)...

}

GC is part of the .NET SDK

You can explicitly call the Finalize method, but this creates a potential problem.
If an object has a Finalize method, garbage collection will see it and will also
call it when it destroys the object. The following code provides an example:

class DoubleFinalization
{
 ~DoubleFinalization()
 {
 ...
 }
 public void Dispose()
 {
 Finalize();
 }
 ...
}

54 Module 9: Creating and Destroying Objects

The problem with this example is that if you call Dispose, it will call Finalize
(generated from the destructor). Then, when the object is garbage collected,
Finalize will be called again.

To avoid duplicate finalization, you can call the SuppressFinalize method of
the GC class and pass in the object that already had its Finalize method called.
The following code provides an example:

class SingleFinalization
{
 ~SingleFinalization()
 {
 ...
 }
 public void Dispose()
 {
 Finalize();
 GC.SuppressFinalize(this);
 }
 ...
}

There are several more problems related to this technique. These
problems are explored in the next topic.

Note

 Module 9: Creating and Destroying Objects 55

Using the Disposal Design Pattern

n To Reclaim a Resource:

l Provide a public method (often called Dispose) that calls
Finalize and then suppresses finalization

l Ensure that calling Dispose more than once is benign

l Ensure that you do not try to use a reclaimed resource

If you need to reclaim a resource and you cannot wait for garbage collection to
call Finalize implicitly for you, you can provide a public method that calls
Finalize.

Memory Is Not the Only Resource
Memory is the most common resource that your programs use, and you can rely
on garbage collection to reclaim unreachable memory when the heap becomes
low. However, memory is not the only resource. Other fairly common resources
that your program might use include file handles and mutex locks. Often these
other kinds of resources are in much more limited supply than memory, or need
to be released quickly.

The Disposal Method Design Pattern
In these situations, you cannot rely on garbage collection to perform the release
by means of a Finalize method, because, as you have seen, you cannot know
when garbage collection will call Finalize. Instead, you should write a public
method that releases the resource, and then make sure to call this method at the
right point in the code. These methods are called Disposal Methods. (This is a
well-known pattern, but it is not in Design Patterns: Elements of Reusable
Object-Oriented Software.) In C#, there are three major points that you need to
remember when implementing a Disposal Method:

n Remember to call SuppressFinalize.

n Ensure that the Disposal Method can be called repeatedly.

n Avoid using a released resource.

56 Module 9: Creating and Destroying Objects

Calling SuppressFinalize
The following code shows how to call SuppressFinalize :

class Example
{
 ...
 ~Example()
 {
 rare.Dispose();
 }
 public void Dispose()
 {
 Finalize();
 GC.SuppressFinalize(this);
 }
 ...
 private Resource rare = new Resource();
}

Calling the Disposal Method Multiple Times
Remember, the Disposal Method is public, so it can be called repeatedly. The
easiest way to make sure multiple calls are possible is with a simple bool field.
The following code provides an example:

class Example
{
 ...
 ~Example()
 {
 disposed = true;
 rare.Dispose();
 }
 public void Dispose()
 {
 if (!disposed) {
 Finalize();
 GC.SuppressFinalize(this);
 }
 }
 ...
 private Resource rare = new Resource();
 private bool disposed = false;
}

 Module 9: Creating and Destroying Objects 57

Avoiding the Use of Released Resources
The easiest way to do avoid using released resources is to reset the reference to
null in Finalize and check for null in each method, as follows:

class Example
{
 ...
 ~Example()
 {
 rare.Dispose();
 rare = null;
 disposed = true;
 }

 public void Dispose()
 {
 if (!disposed) {
 Finalize();
 GC.SuppressFinalize(this);
 }
 }

 public void Use()
 {
 if (!disposed) {
 Wibble w = rare.Stuff();
 ...
 } else {
 throw new DisposedException();
 }
 }

 private Resource rare = new Resource();
 private bool disposed = false;
}

58 Module 9: Creating and Destroying Objects

Using IDisposable

n If Any Method Throws an Exception

l Subsequent statements may not be executed

l Resources may not be released by your code

n Use try-finally Blocks Carefully

n A Proposed Modification to C# Handles This By:

l Extending the using statement to indicate resource use

l Providing the IDisposable interface that declares a
Dispose method, for use by resource classes

When writing disposal code, it is important to be aware of the some of the
common programming errors. For example, there is a dispose method trap that
is quite common. Look at the following code, and decide whether reader.Close
(whic h is a Disposal Method that reclaims a scarce file handle) is called.

class SourceFile
{
 public SourceFile(string name)
 {
 File src = new File(name);
 contents = new char[(int)src.Length];
 StreamReader reader = src.OpenText();
 reader.ReadBlock(contents, 0, contents.Length);
 reader.Close();
 }
 ...
 private char[] contents;
}

 Module 9: Creating and Destroying Objects 59

The answer is that reader.Close is not guaranteed to be called. The problem is
that if a statement before the call to Close throws an exception, the flow of
control will bypass the call to Close. One way you can solve this problem is by
using a finally block, as follows:

class SourceFile
{
 public SourceFile(string name)
 {
 StreamReader reader = null;
 try {
 File src = new File(name);
 contents = new char[(int)src.Length];
 reader = src.OpenText();
 reader.ReadBlock(contents, 0, contents.Length);
 }
 finally {
 if (reader != null) {
 reader.Close();
 }
 }
 }
 ...
 private char[] contents;
}

This solution works, but it is not completely satisfactory because:

n You must reorder the declaration of the resource reference.

n You must remember to initialize the reference to null.

n You must remember to ensure that the reference is not null in the finally
block.

n It quickly becomes unwieldy if there is more than one resource to dispose of.

Proposed Modifications to C#
A proposed amendment to C# provides a solution that avoids all of these
problems. It uses an extension of the using statement (part of the C# language)
with the IDisposable interface (part of the C# .NET Framework SDK) to
implement resource classes.

These new enhancements are not available in Beta 1 and therefore are not
covered in this course.

60 Module 9: Creating and Destroying Objects

Lab 9.2: Destroying Objects

Objectives
In this lab, you will learn how to use finalizers to perform processing before
garbage collection destroys an object.

After completing this lab, you will be able to:

n Create a destructor.

n Make requests of garbage collection.

n Use the Disposal design pattern.

Prerequisites
Before working on this lab, you must be able to:

n Create classes and instantiate objects.

n Define and call methods.

n Define and use constructors.

n Use the StreamWriter class to write text to a file.

You should also have completed Lab 9.1. If you did not complete Lab 9.1, you
can use the solution code provided.

Estimated time to complete this lab: 15 minutes

 Module 9: Creating and Destroying Objects 61

Exercise 1
Creating a Destructor

In this exercise, you will create a finalizer for the BankTransaction class. The
finalizer will allow BankTransaction to persist its data to the end of the file
Transactions.dat in the current directory. The data will be written out in human-
readable form.

å To save transactions

1. Open the Finalizers.sln project in the Lab Files\Lab09\Starter\Finalizers
folder.

2. Add the following using directive to the start of the BankTransaction.cs file:

using System.IO;

3. In the BankTransaction class, add a destructor, as follows:

a. It should be called ~BankTransaction.

b. It should not have an access modifier.

c. It should not take any parameters.

d. It should not return a value.

4. In the body of the destructor, add statements to:

a. Create a new StreamWriter variable that opens the Transactions.dat file
in the current directory in append mode (that is, it writes data to the end
of the file if it already exists.) You can achieve this by using the
File.AppendText method. For information about this method, search for
“File.AppendText” in the .NET Framework SDK Help documents.

b. Write the contents of the transaction to this file. (Format so that it is
readable.)

c. Close the file:

~BankTransaction()
{
 StreamWriter swFile =
ÊFile.AppendText("Transactions.Dat");
 swFile.WriteLine(“Date/Time: {0}\tAmount {1}”, when,
Êamount);
 swFile.Close();
}

5. Compile your program and correct any errors.

62 Module 9: Creating and Destroying Objects

å To test the destructor

1. Review the CreateAccount.cs test harness. The test harness:

a. Creates an account (acc1).

b. Deposits money to and withdraws money from acc1.

c. Prints the contents of acc1 and its transactions.

When the Main method finishes, what will happen to the account acc1 and
the transactions?

2. Compile and execute the program. Verify that the information displayed is
as expected. Is the Transactions.dat file created as expected? (It should be in
the bin \debug folder in the project folder.) If not, why not?

You will find that the Transactions.dat file is not created because garbage
collection never needs to collect garbage in such a small program, so the
destructor is never executed. For a bank, this is not a good situation because the
bank is probably not allowed to lose records of transactions. You will fix this
problem in Exer cise 2 by using the Disposal pattern.

Note

 Module 9: Creating and Destroying Objects 63

Exercise 2
Using the Disposal Design Pattern

In this exercise, you will use the Disposal design pattern to ensure that a
BankTransaction’s data is saved on demand rather than when garbage
collection destroys the BankTransaction. You will also need to inform
garbage collection that the BankTransaction has already been disposed of and
suppress any attempt by garbage collection to destroy it again later.

You will add a Dispose method to the BankAccount and BankTransaction
classes. The Dispose method in BankAccount will iterate through all of the
transactions in its transaction queue, and call Dispose for each transaction.

å To make BankTransaction suitable for finalizing

1. In the BankTransaction class, add a public void method called Dispose
that only calls Finalize:

public void Dispose()
{
 Finalize();
}

2. Add to the end of the destructor a call to GC.SuppressFinalize(this).

Calling Finalize will invoke the destructor. You need to ensure that garbage
collection does not call the destructor again after you have used it.

64 Module 9: Creating and Destroying Objects

å To create a Dispose method for the BankAccount class

1. In the BankAccount class, add a using System directive.

2. Add a private bool instance variable called dead. Initialize it to false.

3. Add a public method called Dispose. It should take no parameters and have
a void return type.

4. In the Dispose method, add statements to:

a. Examine the value of dead. If it is true , return from the method and do
nothing else.

b. If dead is false, iterate through all of the BankTransaction objects in
tranQueue and call Dispose for each one. Use a foreach statement, as
you did in Lab 9.1.

c. Call GC.SuppressFinalize(this) to prevent garbage collection from
destroying the account again.

d. Set dead to true .

The completed code should be as follows:

public void Dispose()
{
 if (dead) return;
 foreach(BankTransaction tran in tranQueue)
 {
 tran.Dispose();
 }
 GC.SuppressFinalize(this);
 dead = true;
}

5. Compile the project and correct any errors.

å To test the destructor

1. Open the CreateAccount.cs test harness.

2. Add a statement to the end of Main that calls the Dispose method of acc1,
to ensure that it is saved correctly, as follows:

acc1.Dispose();

3. Compile the project and correct any errors.

4. Run the program. The same output as before should be displayed on the
screen. However, this time the Transactions.dat file should also be created.

 Module 9: Creating and Destroying Objects 65

Review

n Using Constructors

n Initializing Data

n Objects and Memory

n Using Destructors

1. Declare a class called Date with a public constructor that expects three int
parameters called year, month, and day.

2. Will the compiler generate a default constructor for the Date class that you
declared in question 1? What if Date were a struct with the same three-int
constructor?

66 Module 9: Creating and Destroying Objects

3. Which method does garbage collection call on the object just before it
recycles the object’s memory back to the heap? Declare a class called
SourceFile that contains this method.

4. What is wrong with the following code fragment?

class Example
{
 ~Example() { }
 protected void override Finalize() { }
}

Contents

Overview 1

Deriving Classes 2
Implementing Methods 10

Using Sealed Classes 26

Using Interfaces 28

Using Abstract Classes 42

Lab 10: Using Inheritance to Implement
an Interface 53

Review 71

Module 10: Inheritance
in C#

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 10: Inheritance in C# 1

Overview

n Deriving Classes

n Implementing Methods

n Using Sealed Classes

n Using Interfaces

n Using Abstract Classes

Inheritance, in an object-oriented system, is the ability of an object to inherit
data and functionality from its parent object. Therefore, a child object can
substitute for the parent object. Also, by using inheritance, you can create new
classes from existing classes instead of starting at the beginning and creating
them new. You can then write new code to add the features required in the new
class. The parent class on which the new class is based is know n as a base class,
and the child class is known as a derived class.

When you create a derived class, it is important to remember that a derived
class can substitute for the base class type. Therefore, inheritance is a type-
classification mechanism in addit ion to a code-reuse mechanism, and the
former is more important than the latter.

In this module, you will learn how to derive a class from a base class. You will
also learn how to implement methods in a derived class by defining them as
virtual methods in the base class and overriding or hiding them in the derived
class, as required. You will learn how to seal a class so that it cannot be derived
from. You will also learn how to implement interfaces and abstract classes,
which define the terms of a contract to which derived classes must adhere.

After completing this module, you will be able to:

n Derive a new class from a base class, and call members and constructors of
the base class from the derived class.

n Declare methods as virtual and override or hide them as required.

n Seal a class so that it cannot be derived from.

n Implement interfaces by using both the implicit as well as the explicit
methods.

n Describe the use of abstract classes and their implementation of interfaces.

2 Module 10: Inheritance in C#

u Deriving Classes

n Extending Base Classes

n Accessing Base Class Members

n Calling Base Class Constructors

You can only derive a class from a base class if the base class was designed to
enable inheritance. This is because objects must have the proper structure or
inheritance cannot work effectively. A base class that is designed for
inheritance should make this fact clear. If a new class is derived from a base
class that is not designed appropriately, then the base class might change at
some later time, and this would make the derived class inoperable.

In this section, you will learn how to derive a class from a base class, and how
to access the members and constructors of the base class from the derived class.

 Module 10: Inheritance in C# 3

Extending Base Classes

n Syntax for Deriving a Class from a Base Class

n A Derived Class Inherits Most Elements of Its Base Class

n A Derived Class Cannot Be More Accessible Than Its
Base Class

class Token
{

...
}
class CommentToken: Token
{

...
}

class Token
{

...
}
class CommentToken: Token
{

...
}

CommentToken
« concrete »

CommentToken
« concrete »

Token
« concrete »

Token
« concrete »Derived classDerived classDerived class Base classBase classBase class

ColonColonColon

Deriving a class from a base class is also known as extending the base class. A
C# class can extend at most one class.

Syntax for Deriving a Class
To specify that one class is derived from another, you use the following syntax:

class Derived: Base
{
 ...
}

The elements of this syntax are labeled on the slide. When you declare a
derived class, the base class is specified after a colon. The white space around
the colon is not significant. The recommended style for using this syntax is to
include no spaces before the colon and a single space after it.

Derived Class Inheritance
A derived class inherits everything from its base class except for the base class
constructors and destructors. It usually adds its own members to those that it
inherits from its base class. Public members of the base class are implicitly
public members of the derived class. Private members of the base class, though
inherited by the derived class, are accessible only to the members of the base
class.

4 Module 10: Inheritance in C#

Accessibility of a Derived Class
A derived class cannot be more accessible than its base class. For example, it is
not possible to derive a public class from a private class, as is shown in the
following code:

class Example
{
 private class NestedBase { }
 public class NestedDerived: NestedBase { } // Error
}

The C# syntax for deriving one class from another is also allowed in C++,
where it implicitly specifies a private inheritance relationship between the
derived and base classes. C# has no private inheritance; all inheritance is public.

 Module 10: Inheritance in C# 5

Accessing Base Class Members

n Inherited Protected Members Are Implicitly Protected in the Derived
Class

n Methods of a Derived Class Can Access Only Their Inherited Protected
Members

n Protected Access Modifiers Cannot Be Used in a Struct

class Token
{ ... class Outside

protected string name; {
} void Fails(Token t)
class CommentToken: Token {
{

public string Name() t.name
{ ...

return name; }
} }

}

class Token
{ ... class Outside

protected string name; {
} void Fails(Token t)
class CommentToken: Token {
{

public string Name() t.name
{ ...

return name; }
} }

}

ûû
üü

The meaning of the protected access modifier depends on the relationship
between the class that has the modifier and the class that seeks to access the
members that use the modifier.

Members of a derived class can access all of the protected members of their
base class. To a derived class, the protected keyword behaves like the public
keyword. Hence, in the code fragment shown on the slide, the Name method of
CommentToken can access the string name, which is protected inside Token.
It is protected inside Token because CommentToken has specified Token as
its base class.

However, between two classes that are not related by a derived-class and base-
class relationship, protected members of one class act like private members for
the other class. Hence, in the other code fragment shown on the slide, the Fails
method of Outside cannot access the string name, which is protected inside
Token because Outside does not specify Token as its base class.

6 Module 10: Inheritance in C#

Inherited Protected Members
When a derived class inherits a protected member, that member is also
implicitly a protected member of the derived class. This means that protected
members are accessible to all directly and indirectly derived classes of the base
class. This is shown in the following example:

class Base
{
 protected string name;
}

class Derived: Base
{
}

class FurtherDerived: Derived
{
 void Compiles()
 {
 Console.WriteLine(name); // Okay
 }
}

Protected Members and Methods
Methods of a derived class can only access their own inherited protected
members. They cannot access the protected members of the base class through
references to the base class. For example, the following code will generate an
error:

class CommentToken: Token
{
 void AlsoFails(Token t)
 {
 Console.WriteLine(t.name); // Compile-time error
 }
}

Many coding guidelines recommend keeping all data private and using
protected access only for methods.

Protected Members and structs
A struct does not support inheritance. Consequently, you cannot derive from a
struct , and, therefore, the protected access modifier cannot be used in a struct.
For example, the following code will generate an error:

struct Base
{
 protected string name; // Compile-time error
}

Tip

 Module 10: Inheritance in C# 7

Calling Base Class Constructors

n Constructor Declarations Must Use the base Keyword

n A Private Base Class Constructor Cannot Be Accessed by a
Derived Class

n Use the base Keyword to Qualify Identifier Scope

class Token
{

protected Token(string name) { ... }
...

}
class CommentToken: Token
{

public CommentToken(string name) : base(name) { }
...

}

class Token
{

protected Token(string name) { ... }
...

}
class CommentToken: Token
{

public CommentToken(string name) : base(name) { }
...

}

To call a base class constructor from the derived class constructor, use the
keyword base. The syntax for this keyword is as follows:

 C(...): base() {...}

The colon and the accompanying base class constructor call are together known
as the constructor initializer.

Constructor Declarations
If the derived class does not explicitly call a base class constructor, the C#
compiler will implicitly use a constructor initializer of the form :base().
This implies that a constructor declaration of the form

 C(...) {...}

is equivalent to

 C(...): base() {...}

Often this implicit behavior is perfectly adequate because:

n A class with no explicit base classes implicitly extends the System.Object
class, which contains a public parameterless constructor.

n If a class does not contain a constructor, the compiler will automatically
provide a public parameterless constructor called the default constructor.

8 Module 10: Inheritance in C#

If a class provides an explicit constructor of its own, the compiler will not
create a default constructor. However, if the specified constructor does not
match any constructor in the base class, the compiler will generate an error as
shown in the following code:

class Token
{
 protected Token(string name) { ... }
}

class CommentToken: Token
{
 public CommentToken(string name) { ... } // Error here
}

The error occurs because the CommentToken constructor implicitly contains
a :base() constructor initializer, but the base class Token does not contain a
parameterless constructor. You can fix this error by using the code shown on
the slide.

Constructor Access Rules
The access rules for a derived constructor to call a base class constructor are
exactly the same as those for regular methods. For example, if the base class
constructor is private, then the derived class cannot access it:

class NonDerivable
{
 private NonDerivable() { ... }
}

class Impossible: NonDerivable
{
 public Impossible() { ... } // Compile-time error
}

In this case, there is no way for a derived class to call the base class constructor.

 Module 10: Inheritance in C# 9

Scoping an Identifier
You can use the keyword base to also qualify the scope of an identifier. This
can be useful, since a derived class is permitted to declare members that have
the same names as base class members. The following code provides an
example:

class Token
{
 protected string name;
}
class CommentToken: Token
{
 public void Method(string name)
 {
 base.name = name;
 }
}

Unlike in C++, the name of the base class, such as Token in the example
in the slide, is not used. The keyword base unambiguously refers to the base
class because in C# a class can extend one base class at most.

Note

10 Module 10: Inheritance in C#

u Implementing Methods

n Defining Virtual Methods

n Working with Virtual Methods

n Overriding Methods

n Working with Override Methods

n Using new to Hide Methods

n Working with the new Keyword

n Practice: Implementing Methods

n Quiz: Spot the Bugs

You can redefine the methods of a base class in a derived class when the
methods of the base class have been designed for overriding. In this section,
you will learn how to use the virtual, override , and hide method types to
implement this functionality.

 Module 10: Inheritance in C# 11

Defining Virtual Methods

n Syntax: Declare as Virtual

n Virtual Methods Are Polymorphic

class Token
{

...
public int LineNumber()
{ ...
}
public virtual string Name()
{ ...
}

}

class Token
{

...
public int LineNumber()
{ ...
}
public virtual string Name()
{ ...
}

}

A virtual method specifies an implementation of a method that can be
polymorphically overridden in a derived class. Conversely, a non-virtual
method specifies the only implementation of a method. You cannot
polymorphically override a non-virtual method in a derived class.

In C#, whether a class contains a virtual method or not is a good
indication of whether the author designed it to be used as a base class.

Keyword Syntax
To declare a virtual method, you use the virtual keyword. The syntax for this
keyword is shown on the slide.

When you declare a virtual method, it must contain a method body. If it does
not contain a body, the compiler will generate an error, as shown:

class Token
{
 public virtual string Name(); // Compile-time error
}

Note

12 Module 10: Inheritance in C#

Working with Virtual Methods

n To Use Virtual Methods:

l You cannot declare virtual methods as static

l You cannot declare virtual methods as private

To use virtual methods effectively, you need to understand the following:

n You cannot declare virtual methods as static.

You cannot qualify virtual methods as static because static methods are
class methods and polymorphism works on objects, not on classes.

n You cannot declare virtual methods as private.

You cannot declare virtual methods as private because they cannot be
polymorphically overridden in a derived class. Following is an example:

class Token
{
 private virtual string Name() { ... }
 // Compile-time error
}

 Module 10: Inheritance in C# 13

Overriding Methods

n Syntax: Use the override Keyword

class Token
{ ...

public virtual string Name() { ... }
}
class CommentToken: Token
{ ...

public override string Name() { ... }
}

class Token
{ ...

public virtual string Name() { ... }
}
class CommentToken: Token
{ ...

public override string Name() { ... }
}

An override method specifies another implementation of a virtual method. You
define virtual methods in a base class, and they can be polymorphically
overridden in a derived class.

Keyword Syntax
You declare an override method by using the keyword override , as shown in
the following code:

class Token
{ ...
 public virtual string Name() { ... }
}
class CommentToken: Token
{ ...
 public override string Name() { ... }
}

As with a virtual method, you must include a method body in an override
method or the compiler generates an error. Following is an example:

class Token
{
 public virtual string Name() { ... }
}
class CommentToken: Token
{
 public override string Name(); // Compile-time error
}

14 Module 10: Inheritance in C#

Working with Override Methods

n You Can Only Override Identical Inherited Virtual Methods

n You Must Match an Override Method with Its Associated Virtual
Method

n You Can Override an Override Method

n You Cannot Explicitly Declare an Override Method As Virtual

n You Cannot Declare an Override Method As Static or Private

class Token
{ ...

public int LineNumber() { ... }
public virtual string Name() { ... }

}
class CommentToken: Token
{ ...

public override int LineNumber() { ... }
public override string Name() { ... }

}

class Token
{ ...

public int LineNumber() { ... }
public virtual string Name() { ... }

}
class CommentToken: Token
{ ...

public override int LineNumber() { ... }
public override string Name() { ... }

}
ûûüü

To use override methods effectively, you must understand a few important
restrictions:

n You can only override identical inherited virtual methods.

n You must match an override method with its associated virtual method.

n You can override an override method.

n You cannot implicitly declare an override method as virtual.

n You cannot declare an override method as static or private.

Each of these restrictions is described in more detail as in the following topics.

You Can Only Override Identical Inherited Virtual
Methods
You can use an override method to override only an identical inherited virtual
method. In the code on the slide, the LineNumber method in the derived class
CommentToken causes a compile-time error because the inherited method
Token.LineNumber is not marked virtual.

You Must Match an Override Method with Its Associated
Virtual Method
An override declaration must be identical in every way to the virtual method it
overrides. They must have the same access level, the same return type, the same
name, and the same parameters.

 Module 10: Inheritance in C# 15

For example, the override in the following example fails because the access-
levels are different (protected as opposed to public), the return types are
different (string as opposed to void), and the parameters are different (none as
opposed to int):

class Token
{
 protected virtual string Name() { ... }
}
class CommentToken: Token
{
 public override void Name(int i) { ... } // Errors
}

You Can Override an Override Method
An override method is implicitly virtual, so you can override it. Following is an
example:

class Token
{
 public virtual string Name() { ... }
}
class CommentToken: Token
{
 public override string Name() { ... }
}
class OneLineCommentToken: CommentToken
{
 public override string Name() { ... } // Okay
}

You Cannot Explicitly Declare an Override Method As
Virtual
An override method is implicitly virtual but cannot be explicitly qualified as
virtual. Following is an example:

class Token
{
 public virtual string Name() { ... }
}
class CommentToken: Token
{
 public virtual override string Name() { ... } // Error
}

You Cannot Declare an Override Method As Static or
Private
An override method can never be qualified as static because static methods are
class methods and polymorphism works on objects rather than classes.

Also, an override method can never be private. This is because an override
method must override a virtual method, and a virtual method cannot be private.

16 Module 10: Inheritance in C#

Using new to Hide Methods

n Syntax: Use the new Keyword to Hide a Method

class Token
{ ...

public int LineNumber() { ... }
}
class CommentToken: Token
{ ...

new public int LineNumber() { ... }

}

class Token
{ ...

public int LineNumber() { ... }
}
class CommentToken: Token
{ ...

new public int LineNumber() { ... }

}

You can hide an identical inherited method by introducing a new method into
the class hierarchy. The old method that was inherited by the derived class from
the base class is then replaced by a completely different method.

Keyword Syntax
You use the new keyword to hide a method. The syntax for this keyword is as
follows:

class Token
{ ...
 public int LineNumber() { ... }

 }
class CommentToken: Token
{ ...
 new public int LineNumber() { ... }

}

 Module 10: Inheritance in C# 17

Working with the new Keyword

n Hide Both Virtual and Non-Virtual Methods

n Resolve Name Clashes in Code

n Hide Methods That Have Identical Signatures

class Token
{ ...

public int LineNumber() { ... }
public virtual string Name() { ... }

}
class CommentToken: Token
{ ...

new public int LineNumber() { ... }
public override string Name() { ... }

}

class Token
{ ...

public int LineNumber() { ... }
public virtual string Name() { ... }

}
class CommentToken: Token
{ ...

new public int LineNumber() { ... }
public override string Name() { ... }

}

By using the new keyword, you can do the following:

n Hide both virtual and non-virtual methods.

n Resolve name clashes in code.

n Hide methods that have identical signatures.

Each of these tasks is described in detail in the following subtopics.

Hide Both Virtual and Non-Virtual Methods
Using the new keyword to hide a method has implications if you use
polymorphism. For example, in the code on the slide,
CommentToken.LineNumber is a new method. It is not related to the
Token.LineNumber method at all. Even if Token.LineNumber was a virtual
method, CommentToken.LineNumber would still be a new unrelated method.

18 Module 10: Inheritance in C#

In this example, CommentToken.LineNumber is not virtual. This means that
a further derived class cannot override CommentToken.LineNumber.
However, the new CommentLineToken.LineNumber method could be
declared virtual, in which case further derived classes could override it, as
follows:

class CommentToken: Token
{
 ...
 new public virtual int LineNumber() { ... }
}
class OneLineCommentToken: CommentToken
{
 public override int LineNumber() { ... }
}

The recommended layout style for new virtual methods is

 new public virtual int LineNumber() { ... }
rather than
 public new virtual int LineNumber() { ... }

Resolve Name Clashes in Code
Name clashes often generate warnings during compilation. For example,
consider the following code:

class Token
{
 public virtual int LineNumber() { ... }
}
class CommentToken: Token
{
 public int LineNumber() { ... }
}

When you compile this code, you will receive a warning stating that
CommentToken.LineNumber hides Token.LineNumber. This warning
highlights the name clash. You then have three options to choose from:

1. Add an override qualifier to CommentToken.LineNumber.

2. Add a new qualifier to CommentToken.LineNumber. In this case, the
method still hides the identical method in the base class, but the explicit
new tells the compiler and the code maintenance personnel that the name
clash is not accidental.

3. Change the name of the method.

Tip

 Module 10: Inheritance in C# 19

Hide Methods That Have Identical Signatures
The new modifier is necessary only when a derived class method hides a visible
base class method that has an identical signature. In the following example, the
compiler warns that new is unnecessary bec ause the methods take different
parameters and so do not have identical signatures:

class Token
{
 public int LineNumber(short s) { ... }
}
class CommentToken: Token
{
 new public int LineNumber(int i) { ... } // Warning
}

Conversely, if two methods have identical signatures, then the compiler will
warn that new should be considered because the base class method is hidden. In
the following example, the two methods have identical signatures because
return types are not a part of a method’s signature:

class Token
{
 public virtual int LineNumber() { ... }
}
class CommentToken: Token
{
 public void LineNumber() { ... } // Warning
}

You can also use the new keyword to hide fields and nested classes.

Note

20 Module 10: Inheritance in C#

Practice: Implementing Methods

class A {
public virtual void M() { Console.Write("A"); }

}
class B: A {

public override void M() { Console.Write("B"); }
}
class C: B {

new public virtual void M() { Console.Write("C"); }
}
class D: C {

public override void M() { Console.Write("D"); }
static void Main() {

D d = new D(); C c = d; B b = c; A a = b;
d.M(); c.M(); b.M(); a.M();

}
}

class A {
public virtual void M() { Console.Write("A"); }

}
class B: A {

public override void M() { Console.Write("B"); }
}
class C: B {

new public virtual void M() { Console.Write("C"); }
}
class D: C {

public override void M() { Console.Write("D"); }
static void Main() {

D d = new D(); C c = d; B b = c; A a = b;
d.M(); c.M(); b.M(); a.M();

}
}

To practice the use of the virtual, override and new keywords, work through
the code displayed on this slide to figure out what the output of the code will be.

The Solution
After the program executes, it will display the result DDBB to the console.

Program Logic
There is only one object created by the program. This is the object of type D
created in the following declaration:

D d = new D();

The remaining declaration statements in Main declare variables of different
types that all refer to this one object:

n c is a C reference to d.

n b is a B reference to c, which is reference to d.

n a is an A reference to b, which is reference to c, which is reference to d.

Then come the four expression statements. The following text explains each
one individually.

The first statement is

d.M()

This is a call to D.M, which is declared override and hence is implicitly virtual.
This means that at run time the compiler calls the most derived implementation
of D.M in the object of type D. This implementation is D.M, which writes D to
the console.

 Module 10: Inheritance in C# 21

The second statement is

c.M()

This is a call to C.M, which is declared virtual. This means that at run time the
compiler calls the most derived implementation of C.M in the object of type D.
Since D.M overrides C.M, D.M is the most derived implementation, in this
case. Hence D.M is called, and it writes D to the console again.

The third statement is

b.M()

This is a call to B.M, which is declared override and hence is implicitly virtual.
This means that at run time the compiler calls the most derived implementation
of B.M in the object of type D. Since C.M does not override B.M but
introduces a new method that hides C.M, the most derived implementation of
B.M in the object of type D is B.M. Hence B.M is called, and it writes B to the
console.

The last statement is

a.M()

This is a call to A.M, which is declared virtual. This means that at run time the
compiler calls the most derived implementation of A.M in the object of type D.
B.M overrides A.M, but as before C.M does not override B.M. Hence the most
derived implementation of A.M in the object of type D is B.M. Hence B.M is
called, which writes B to the console again.

This is how the program generates the output DDBB and writes it to the console.

In this example, the C and D classes contain two virtual methods that have the
same signature: the one introduced by A and the one introduced by C. The
method introduced by C hides the method introduced by A. Thus, the override
declaration in D overrides the method introduced by C, and it is not possible for
D to override the method introduced by A.

22 Module 10: Inheritance in C#

This page intentionally left blank.

 Module 10: Inheritance in C# 23

Quiz: Spot the Bugs

class Base
{

public void Alpha() { ... }
public virtual void Beta() { ... }
public virtual void Gamma(int i) { ... }
public virtual void Delta() { ... }
private virtual void Epsilon() { ... }

}
class Derived: Base
{

public override void Alpha() { ... }
protected override void Beta() { ... }
public override void Gamma(double d) { ... }
public override int Delta() { ... }

}

class Base
{

public void Alpha() { ... }
public virtual void Beta() { ... }
public virtual void Gamma(int i) { ... }
public virtual void Delta() { ... }
private virtual void Epsilon() { ... }

}
class Derived: Base
{

public override void Alpha() { ... }
protected override void Beta() { ... }
public override void Gamma(double d) { ... }
public override int Delta() { ... }

}

In this quiz, you can work with a partner to spot the bugs in the code on the
slide. To see the answers to this quiz, turn the page.

24 Module 10: Inheritance in C#

Answers
The following errors occur in this code:

1. The Base class declares a private virtual method called Epsilon. Private
methods cannot be virtual. The C# compiler traps this bug as a compile-time
error. You can correct the code as follows:

class Base
{
 ...
 public virtual void Epsilon() { ... }
}

You can also correct the code in this manner:

class Base
{
 ...
 private void Epsilon() { ... } // Not virtual
}

2. The Derived class declares the Alpha method with the override modifier.
However, the Alpha method in the base class is not marked virtual. You can
only override a virtual method. The C# compiler traps this bug as a compile-
time error. You can correct the code as follows:

class Base
{
 public virtual void Alpha() { ... }
 ...
}

You can also correct the code in this manner:

class Derived: Base
{
 /*any*/ new void Alpha() { ... }
 ...
}

3. The Derived class declares a protected method called Beta with the
override modifier. However, the base class method Beta is public. When
overriding a method, you cannot change its access. The C# compiler traps
this bug as a compile-time error. You can correct the code as follows:

class Derived: Base
{
 ...
 public override void Beta() { ... }
 ...
}

 Module 10: Inheritance in C# 25

You can also correct the code in this manner:

class Derived: Base
{
 ...
 /* any access */ new void Beta() { ... }
 ...
}

4. The Derived class declares a public method called Gamma with the
override modifier. However, the base class method called Gamma and the
Derived class method called Gamma take different parameters. When
overriding a method, you cannot change the parameter types. The C#
compiler traps this bug as a compile-time error. You can correct the code as
follows:

class Derived: Base
{
 ...
 public virtual void Gamma(int i) { ... }
}

You can also correct the code in this manner:

class Derived: Base
{
 ...
 /* any access */ void Gamma(double d) { ... }
 ...
}

5. The Derived class declares a public method called Delta with the override
modifier. However, the base class method called Delta and the derived class
method called Delta return different types. When overriding a method, you
cannot change the return type. The C# compiler traps this bug as a compile-
time error. You can correct the code as follows:

class Derived: Base
{
 ...
 public override int Delta() { ... }
}

You can also correct the code in this manner:

class Derived: Base
{
 ...
 /* any access */ new int Delta() { ... }
 ...
}

26 Module 10: Inheritance in C#

Using Sealed Classes
n You Cannot Derive from a Sealed Class

n You Can Use Sealed Classes for Optimizing Operations
at Run Time

n Many .NET Classes Are Sealed: String, StringBuilder,
and so on

n Syntax: Use the sealed Keyword

namespace System
{

public sealed class String
{

...
}

}
namespace Mine
{

class FancyString: String { ... }
}

namespace System
{

public sealed class String
{

...
}

}
namespace Mine
{

class FancyString: String { ... }
} ûû

Creating a flexible inheritance hierarchy is not easy. Most classes are
standalone classes and are not designed to have other classes derived from them.
However, in terms of the syntax, deriving from a class is very easy and the
procedure involves only a few keystrokes. This ease of derivation creates a
dangerous opportunity for programmers to derive from a class that is not
designed to act as a base class.

To alleviate this problem and to better express the programmers’ intentions to
the compiler and to fellow programmers, C# allows a class to be declared
sealed. You cannot derive from a sealed class.

 Module 10: Inheritance in C# 27

Keyword Syntax
You can seal a class by using the sealed keyword. The syntax for this keyword
is as shown:

namespace System
{
 public sealed class String
 {
 ...
 }
}

There are many examples of sealed classes in the Microsoft® .NET Framework.
The slide shows the System.String class, where the keyword string is an alias
for this class. This class is sealed, and so you cannot derive from it.

Optimizing Operations at Run Time
The sealed modifier enables certain run-time optimizations. In particular,
because a sealed class is known to never have any derived classes, it is possible
to transform virtual function member calls on sealed class instances into non-
virtual function member calls.

28 Module 10: Inheritance in C#

u Using Interfaces

n Declaring Interfaces

n Implementing Multiple Interfaces

n Implementing Interface Methods

n Implementing Interface Methods Explicitly

n Quiz: Spot the Bugs

An interface specifies a syntactic and semantic contract that all derived classes
must adhere to. Specifically, an interface describes the what part of the contract
and the classes that implement the interface describe the how part of the
contract.

In this section, you will learn the syntax for declaring interfaces and the two
techniques for implementing interface methods in derived classes.

 Module 10: Inheritance in C# 29

Declaring Interfaces

n Syntax: Use the interface Keyword to Declare Methods

interface IToken
{

int LineNumber();
string Name();

}

interface IToken
{

int LineNumber();
string Name();

}

IToken
« interface »

IToken
« interface »

LineNumber()
Name()
LineNumber()
Name()

No method bodiesNo method bodiesNo method bodies

Interface names should
begin with a capital “I”

Interface names should Interface names should
begin with a capital “I”begin with a capital “I”

No access specifiersNo access specifiersNo access specifiers

An interface resembles a class without any code. You declare an interface in a
similar manner to the way in which you declare a class. To declare an interface
in C#, you use the keyword interface instead of class. The syntax for this
keyword is explained on the slide.

It is recommended that all interface names be prefixed with a capital "I."
For example, use IToken rather than Token.

Note

30 Module 10: Inheritance in C#

Features of Interfaces
The following are two important features of interfaces.

Interface Methods Are Implicitly Public
The methods declared in an interface are implicitly public. Therefore, explicit
public access modifiers are not allowed, as shown in the following example:

interface IToken
{
 public int LineNumber(); // Compile-time error
}

Interface Methods Do Not Contain Method Bodies
The methods declared in an interface are not allowed to contain method bodies.
For example, the following code is not allowed:

interface IToken
{
 int LineNumber() { ... } // Compile-time error
}

Strictly speaking, interfaces can contain interface property declarations, which
are declarations of properties with no body, interface event declarations, which
are declarations of events with no body, and interface indexer declarations,
which are declarations of indexers with no body.

 Module 10: Inheritance in C# 31

Implementing Multiple Interfaces

n A Class Can Implement Zero or More Interfaces

n An Interface Can Extend Zero or More Interfaces

n A Class Can Be More Accessible Than Its Base Interfaces

n An Interface Cannot Be More Accessible Than Its Base Interfaces

n A Class Must Implement All Inherited Interface Methods

interface IToken
{

string Name();
}
interface IVisitable
{

void Accept(IVisitor);
}
class Token: IToken, IVisitable
{ ...
}

interface IToken
{

string Name();
}
interface IVisitable
{

void Accept(IVisitor);
}
class Token: IToken, IVisitable
{ ...
}

IToken
« interface »

IToken
« interface »

IVisitable
« interface »
IVisitable

« interface »

Token
« concrete »

Token
« concrete »

Although C# permits only single inheritance, it allows you to implement
multiple interfaces in a single class. This topic discusses the differences
between a class and an interface with respect to implementation and extension
of interfaces, respectively, in addition to their accessibility in comparison to
their base interfaces.

Interface Implementation
A class can implement zero or more interfaces but can explicitly extend no
more than one class. An example of this feature is displayed on the slide.

Strictly speaking, a class always extends one class. If you do not specify
a base class, your class will implicitly inherit from object.

Note

32 Module 10: Inheritance in C#

In contrast, an interface can extend zero or more interfaces. For example, you
can rewrite the code on the slide as follows:

interface IToken { ... }
interface IVisitable { ... }
interface IVisitableToken: IVisitable, IToken { ... }
class Token: IVisitableToken { ... }

Accessibility
A class can be more accessible than its base interfaces. For example, you can
declare a public class that implements a private interface, as follows:

class Example
{
 private interface INested { }
 public class Nested: INested { } // Okay
}

However, an interface cannot be more accessible than any of its base interfaces.
It is an error to declare a public interface that extends a private interface, as
shown in the following example:

class Example
{
 private interface INested { }

 public interface IAlsoNested: INested { }
 // Compile-time error
}

Interface Methods
A class must implement all methods of any interfaces it extends, regardless of
whether the interfaces are inherited directly or indirectly.

 Module 10: Inheritance in C# 33

Implementing Interface Methods

n The Implementing Method Must Be the Same As the
Interface Method

n The Implementing Method Can Be virtual or Non-Virtual

class Token: IToken, IVisitable
{

public virtual string Name()
{ ...
}
public void Accept(IVisitor v)
{ ...
}

}

class Token: IToken, IVisitable
{

public virtual string Name()
{ ...
}
public void Accept(IVisitor v)
{ ...
}

}

Same access
Same return type
Same name
Same parameters

Same access Same access
Same return typeSame return type
Same nameSame name
Same parametersSame parameters

When a class implements an interface, it must implement every method
declared in that interface. This requirement is practical because interfaces
cannot define their own method bodies.

The method that the class implements must be identical to the interface method
in every way. It must have the same:

n Access

Since an interface method is implicitly public, this means that the
implementing method must be explicitly declared public. If the access
modifier is omitted, then the method defaults to being private.

n Return type

If the return type in the interface is declared as T, then the return type in
the implementing class cannot be declared as a type derived from T; it must
be T. In other words, return type covariance is not supported in C#.

n Name

Remember that names in C# are case sensitive.

n Parameter-type list

34 Module 10: Inheritance in C#

The following code meets all of these requirements:

interface IToken
{
 string Name();
}
interface IVisitable
{
 void Accept(IVisitor);
}
class Token: IToken, IVisitable
{
 public virtual string Name()
 { ...
 }
 public void Accept(IVisitor v)
 { ...
 }
}

The implementing method can be virtual, such as Name in the preceding code.
In this case, the method can be overridden in further derived classes. The
implementing method can also be non-virtual, such as Accept in the preceding
code. In the latter case, the method cannot be overridden in further derived
classes.

 Module 10: Inheritance in C# 35

Implementing Interface Methods Explicitly

n Use the Fully Qualified Interface Method Name

n Restrictions of Explicit Interface Method Implementation

l You can only access methods through the interface

l You cannot declare methods as virtual

l You cannot specify an access modifier

class Token: IToken, IVisitable
{

string IToken.Name()
{ ...
}
void IVisitable.Accept(IVisitor v)
{ ...
}

}

class Token: IToken, IVisitable
{

string IToken.Name()
{ ...
}
void IVisitable.Accept(IVisitor v)
{ ...
}

}

An alternative way for a class to implement a method inherited from an
interface is to use an explicit interface method implementation.

Use the Fully Qualified Interface Method Name
When using the explicit interface method implementation, you must use the
fully qualified name of the implementing method. This implies that the name of
the method must include the name of the interface as well, such as IToken in
IToken.Name.

An example of two interface methods implemented explicitly by the Token
class is displayed on the slide. Notice the differences between this
implementation and the earlier implementation.

36 Module 10: Inheritance in C#

Restrictions of Explicit Interface Method Implementation
When implementing explicit interfaces, you need to be aware of certain
restrictions.

You Can Only Access Methods Through the Interface
You cannot access an explicit interface method implementation from anywhere
except through the interface. This is shown in the following example:

class Token: IToken, IVisitable
{
 string IToken.Name()
 {
 ...
 }
 private void Example()
 {
 Name(); // Compile-time error

 ((IToken)this).Name(); // Okay
 }
}

You Cannot Declare Methods As Virtual
In particular, a further derived class cannot access an explicit interface method
implementation, and, as a result, no method can override it. This implies that an
explicit interfac e method implementation is not virtual and cannot be declared
virtual.

You Cannot Specify an Access Modifier
When defining an explicit interface method implementation, you cannot specify
an access modifier. This is because explicit interface member implementations
have different accessibility characteristics than other methods.

No Direct Access
An explicit interface method implementation is not directly accessible to clients
and in this sense is private. This is shown in the following code:

class InOneSensePrivate
{
 void Method(Token t)
 {
 t.Name(); // Compile-time error
 }
}

 Module 10: Inheritance in C# 37

Indirect Access Through Interface Variable
An explicit interface method implementation is indirectly accessible to clients
by means of an interface variable and polymorphism. In this sense, it is public.
This is shown in the following code:

class InAnotherSensePublic
{
 void Method(Token t)
 {
 ((IToken)t).Name(); // Okay
 }
}

Advantages of an Explicit Implementation
Explicit interface member implementations serve two primary purposes:

1. They allow interface implementations to be excluded from the public
interface of a class or struct. This is useful when a class or struct
implements an internal interface that is of no interest to the class or struct
user.

2. They allow a class or struct to provide different implementations for
interface methods that have the same signature. Following is an example:

interface IArtist
{
 void Draw();
}
interface ICowboy
{
 void Draw();
}
class ArtisticCowboy: IArtist, ICowboy
{
 void IArtist.Draw()
 {
 ...
 }
 void ICowboy.Draw()
 {
 ...
 }
}

38 Module 10: Inheritance in C#

This page intentionally left blank.

 Module 10: Inheritance in C# 39

Quiz: Spot the Bugs

interface IToken
{

string Name();
int LineNumber() { return 42; }
string name;

}

class Token
{

public string IToken.Name() { ... }
static void Main()
{

IToken t = new IToken();
}

}

interface IToken
{

string Name();
int LineNumber() { return 42; }
string name;

}

class Token
{

public string IToken.Name() { ... }
static void Main()
{

IToken t = new IToken();
}

}

In this quiz, you can work with a partner to spot the bugs in the code on the
slide. To see the answers to this quiz, turn the page.

40 Module 10: Inheritance in C#

Answers
The following bugs occur in the code on the slide:

1. The IToken interface declares a method called LineNumber that has a
body. An interface cannot contain any implementation. The C# compiler
traps this bug as a compile-time error. The corrected code is as follows:

interface IToken
{
 ...
 int LineNumber();
 ...
}

2. The IToken interface declares a field called name. An interface cannot
contain any implementation. The C# compiler traps this bug as a compile-
time error. The corrected code is as follows:

interface IToken
{
 string Name();
 int LineNumber();
 //string name; // Field now commented out
}

3. The Token class contains the explicit interface method implementation
IToken.Name() but the class does not specify IToken as a base interface.
The C# compiler traps this bug as a compile-time error. The corrected code
is as follows:

class Token: IToken
{
 ...
}

4. Now that Token specifies IToken as a base interface, it must implement
both methods declared in that interface. The C# compiler traps this bug as a
compile-time error. The corrected code is as follows:

class Token: IToken
{
 public string Name() { ... }
 public int LineNumber() { ... }
 ...
}

 Module 10: Inheritance in C# 41

5. The Token.Main method attempts to create an instance of the interface
IToken. However, you cannot create an instance of an interface. The C#
compiler traps this bug as a compile-time error. The corrected code is as
follows:

class Token: IToken
{
 ...
 static void Main()
 {
 IToken t = new Token();
 ...
 }
}

42 Module 10: Inheritance in C#

u Using Abstract Classes

n Declaring Abstract Classes

n Using Abstract Classes in a Class Hierarchy

n Comparing Abstract Classes to Interfaces

n Implementing Abstract Methods

n Working with Abstract Methods

n Quiz: Spot the Bugs

Abstract classes are used to provide partial class implementations that can be
completed by derived concrete classes. Abstract classes are particularly useful
for providing a partial implementation of an interface that can be reused by
multiple derived classes.

This section describes the syntax for declaring an abstract class, presents some
examples of how you can use abstract classes in a class hierarchy, and
introduces abstract methods.

 Module 10: Inheritance in C# 43

Declaring Abstract Classes

n Use the abstract Keyword

abstract class Token
{

...
}
class Test
{

static void Main()
{

new Token();
}

}

abstract class Token
{

...
}
class Test
{

static void Main()
{

new Token();
}

}

Token
{ abstract }

Token
{ abstract }

An abstract class cannot
be instantiated

An abstract class cannotAn abstract class cannot
be instantiatedbe instantiatedûû

You declare an abstract class by using the keyword abstract, as is shown on the
slide.

The rules governing the use of an abstract class are almost exactly the same as
those governing a non-abstract class. The only differences between using
abstract and non-abstract classes are:

n You cannot create an instance of an abstract class.

In this sense, abstract classes are like interfaces.

n You can create an abstract method in an abstract class.

An abstract class can declare an abstract method, but a non-abstract class
cannot.

Common features of abstract classes and non-abstract classes are:

n Limited extensibility

An abstract class can extend at most one other class or abstract class. Note
that an abstract class can extend a non-abstract class, whereas the converse
is not true.

n Multiple interfaces

An abstract class can implement multiple interfaces.

n Inherited interface methods

An abstract class must implement all inherited interface methods.

44 Module 10: Inheritance in C#

Using Abstract Classes in a Class Hierarchy

interface IToken
{

string Name();
}

abstract class Token: IToken
{

string IToken.Name()
{ ...
}
...

}

class CommentToken: Token
{ ...
}
class KeywordToken: Token
{ ...
}

interface IToken
{

string Name();
}

abstract class Token: IToken
{

string IToken.Name()
{ ...
}
...

}

class CommentToken: Token
{ ...
}
class KeywordToken: Token
{ ...
}

n Example 1

Token
{ abstract }

Token
{ abstract }

IToken
« interface »

IToken
« interface »

Comment
Token

« concrete »

Comment
Token

« concrete »

Keyword
Token

« concrete »

Keyword
Token

« concrete »

The role of abstract classes in a classic three-tier hierarchy, consisting of an
interface, an abstract class, and a concrete class, is to provide a complete or
partial implementation of an interface.

An Abstract Class Implementing an Interface
Consider Example 1, which appears on the slide. In this example, the abstract
class implements an interface. It is an explicit implementation of the interface
method. The explicit implementation is not virtual and therefore cannot be
overridden in the further derived classes, such as CommentToken.

However, it is possible for CommentToken to re-implement the IToken
interface as follows:

interface IToken
{
 string Name();
}

abstract class Token: IToken
{
 string IToken.Name() { ... }
}

class CommentToken: Token, IToken
{
 public virtual string Name() { ... }
}

Note that in this case it is not necessary to mark CommentToken.Name as a
new method. This is because a derived class method can hide only a visible
base class method, but the explicit implementation of Name in Token is not
directly visible in CommentToken.

 Module 10: Inheritance in C# 45

Using Abstract Classes in a Class Hierarchy (continued)

interface IToken
{

string Name();
}

abstract class Token
{

public virtual string Name()
{ ...
}
...

}

class CommentToken: Token, IToken
{ ...
}
class KeywordToken: Token, IToken
{ ...
}

interface IToken
{

string Name();
}

abstract class Token
{

public virtual string Name()
{ ...
}
...

}

class CommentToken: Token, IToken
{ ...
}
class KeywordToken: Token, IToken
{ ...
}

n Example 2

Token
{ abstract }

Token
{ abstract }

IToken
« interface »

IToken
« interface »

Comment
Token

« concrete »

Comment
Token

« concrete »

Keyword
Token

« concrete »

Keyword
Token

« concrete »

To continue the discussion of the role played by abstract classes in a classic
three-tier hierarchy, another example is presented in the slide.

An Abstract Class That Does Not Implement an Interface
Consider Example 2, which appears on the slide. In this example, the abstract
class does not implement the interface. This means that the only way it can
supply an interface implementation to a further derived concrete class is by
providing a public method. The method definition in the abstract class is
optionally virtual, so it can be overridden in the classes as shown in the
following code:

interface IToken
{
 string Name();
}
abstract class Token
{
 public virtual string Name() { ... }
}
class CommentToken: Token, IToken
{
 public override string Name() { ... } // Okay
}

This shows that a class can inherit its interface and its implementation of that
interface from separate branches of the inheritance.

46 Module 10: Inheritance in C#

Comparing Abstract Classes to Interfaces

n Similarities

l Neither can be instantiated

l Neither can be sealed

n Differences

l Interfaces cannot contain any implementation

l Interfaces cannot declare non-public members

l Interfaces cannot extend non-interfaces

Both abstract classes and interfaces exist to be derived from (or implemented).
However, a class can extend at most one abstract class, so you need to be more
careful when deriving from an abstract class than you need to be when deriving
from an interface. Reserve the use of abstract classes for implementing true “is
a” relationships.

The similarities between abstract classes and interfaces are that they:

n Cannot be instantiated.

This means that they cannot be used directly to create objects.

n Cannot be sealed.

This is acceptable because if an interface is sealed, it cannot not be
implemented.

The differences between abstract classes and interfaces are summarized in the
following table.

Interfaces Abstract classes

Cannot contain implementation Can contain implementation

Cannot declare non-public members Can declare non -public members

Can extend only other interfaces Can extend other classes, which can be
non-abstract

When comparing the similarities and differences between abstract classes and
interfaces, think of abstract classes as unfinished classes that contain plans for
what needs to be finished.

 Module 10: Inheritance in C# 47

Implementing Abstract Methods

n Syntax: Use the abstract Keyword

n Only Abstract Classes Can Declare Abstract Methods

n Abstract Methods Cannot Contain a Method Body

abstract class Token
{

public virtual string Name() { ... }
public abstract int Length();

}
class CommentToken: Token
{

public override string Name() { ... }
public override int Length() { ... }

}

abstract class Token
{

public virtual string Name() { ... }
public abstract int Length();

}
class CommentToken: Token
{

public override string Name() { ... }
public override int Length() { ... }

}

You declare an abstract method by adding the abstract modifier to the method
declaration. The syntax of the abstract modifier is displayed on the slide.

Only abstract classes can declare abstract methods. Following is an example:

interface IToken
{
 public abstract string Name(); // Compile-time error
}
class CommentToken
{
 public abstract string Name(); // Compile-time error
}

C++ developers can consider abstract methods to be the same as pure
virtual methods in C++.

Abstract Methods Cannot Contain a Method Body
Abstract methods cannot contain any implementation. This is highlighted in the
following code:

abstract class Token
{
 public abstract string Name() { ... }
 // Compile-time error
}

Note

48 Module 10: Inheritance in C#

Working with Abstract Methods

n Abstract Methods Are Virtual

n Override Methods Can Override Abstract Methods in
Further Derived Classes

n Abstract Methods Can Override Base Class Methods
Declared As Virtual

n Abstract Methods Can Override Base Class Methods
Declared As Override

When implementing abstract methods, you need to be aware of the following:

n Abstract methods are virtual.

n Override methods can override abstract methods in further derived classes.

n Abstract methods can override base class methods that are declared as
virtual.

n Abstract methods can override base class methods that are declared as
override.

Each of these is described in detail in the following topics.

Abstract Methods Are Virtual
Abstract methods are considered implicitly virtual but cannot be explicitly
marked as virtual, as shown in the following code:

abstract class Token
{
 public virtual abstract string Name() { ... }
 // Compile-time error
}

 Module 10: Inheritance in C# 49

Override Methods Can Override Abstract Methods in
Further Derived Classes
Because they are implicitly virtual, you can override abstract methods in
derived classes. Following is an example:

class CommentToken: Token
{
 public void override string Name();
}

Abstract Methods Can Override Base Class Methods
Declared As Virtual
Overriding a base class method declared as virtual forces a further derived class
to provide its own method implementation and makes the original
implementation of the method unavailable. Following is an example:

class Token
{
 public virtual string Name() { ... }
}
abstract class Force: Token
{
 public abstract override string Name();
}

Abstract Methods Can Override Base Class Methods
Declared As Override
Overriding a base class method declared as override forces a further derived
class to provide its own method implementation and makes the original
implementation of the method unavailable. Following is an example:

class Token
{
 public virtual string Name() { ... }
}
class AnotherToken: Token
{
 public override string Name() { ... }
}
abstract class Force: AnotherToken
{
 public abstract override string Name();
}

50 Module 10: Inheritance in C#

This page intentionally left blank.

 Module 10: Inheritance in C# 51

Quiz: Spot the Bugs

class First
{

public abstract void Method();
}

class First
{

public abstract void Method();
}

abstract class Second
{

public abstract void Method() { }
}

abstract class Second
{

public abstract void Method() { }
}

interface IThird
{

void Method();
}
abstract class Third: IThird
{
}

interface IThird
{

void Method();
}
abstract class Third: IThird
{
}

222

333

111

In this quiz, you can work with a partner to spot the bugs in the code on the
slide. To see the answers to this quiz, turn the page.

52 Module 10: Inheritance in C#

Answers
The following bugs occur in the code on the slide:

1. You can only declare an abstract method in an abstract class. The C#
compiler traps this bug as a compile-time error. You can fix the code by
rewriting it as follows:

abstract class First
{
 public abstract void Method();
}

2. An abstract method cannot declare a method body. The C# compiler traps
this bug as a compile-time error. You can fix the code by rewriting it as
follows:

abstract class Second
{
 public abstract void Method();
}

3. The C# compiler traps this as a compile-time error. An abstract class must
provide for the implementation of all methods in interfaces that it
implements in much the same way as a concrete class. The main difference
is that when you use an abstract class this can be achieved directly or
indirectly. You can fix the code by rewriting it as follows:

abstract class Third: IThird
{
 public virtual void Method() { ... }
}

Alternatively, if you do not want to implement the body of Method in an
abstract class, you can declare it abstract and thus ensure that a derived class
will implement it:

abstract class Third: IThird
{
 public abstract void Method();
}

 Module 10: Inheritance in C# 53

Lab 10: Using Inheritance to Implement an Interface

Objectives
After completing this lab, you will be able to:

n Define and use interfaces, abstract classes, and concrete classes.

n Implement an interface in a concrete class.

n Know how and when to use the virtual and override keywords.

n Define an abstract class and use it in a class hierarchy.

n Create sealed classes to prevent inheritance.

Prerequisites
Before working on this lab, you must be able to:

n Create classes in C#.

n Define methods for classes.

Estimated time to complete this lab: 75 minutes

54 Module 10: Inheritance in C#

Exercise 1
Converting a C# Source File into a Color Syntax HTML File

Frameworks are extremely useful because they provide an easy-to-use, flexible
body of code. Unlike a library, which you use by directly calling a method, you
use a framework by creating a new class that implements an interface. The
framework code can then polymorphically call the methods of your class by
means of the interface operations. Hence, a well-designed framework can be
used in many different ways, unlike a library method, which can only be used in
one way.

Scenario
This exercise uses a pre-written hierarchy of interfaces and classes that form a
miniature framework. The framework tokenizes a C# source file and stores the
different kinds of tokens in a collection held in the SourceFile class. An
ITokenVisitor interface with Visit operations is also provided, which in
combination with the Accept method of SourceFile allows every token of the
source file to be visited and processed in sequence. When you visit a token,
your class can perform whatever processing it requires by using that token.

An abstract class called NullTokenVisitor has been created that implements all
the Visit methods in ITokenVisitor by using empty methods. If you do not
want to implement every method in ITokenVisitor, you can derive a class from
NullTokenVisitor instead and override only the Visit methods that you want.

In this exercise, you will derive an HTMLTokenVisitor class from the
ITokenVisitor interface. You will implement each overloaded Visit method in
this derived clas s to output to the console the token bracketed by Hypertext
Markup Language (HTML) and markers. You will run
a simple batch file, which will run the created executable and redirect console
output to create an HTML page that uses a cascading style sheet. You will then
open the HTML page in Internet Explorer to see the original source file
displayed with color-coded syntax.

 Module 10: Inheritance in C# 55

å To familiarize yourself with the interfaces

1. Open the ColorTokeniser.sln project in the install folder\
Labs\Lab10\Starter\ColorTokeniser folder.

2. Study the classes and interfaces in the files Itoken.cs, Itoken_visitor.cs and
source_file.cs. These collaborate in the following hierarchy:

56 Module 10: Inheritance in C#

å To create an abstract NullTokenVisitor class

1. Open the null_token_visitor.cs file.

Notice that NullTokenVisitor is derived from the ITokenVisitor interface,
yet it does not implement any of the operations specified in the interface.
You will implement all of the inherited operations to be empty methods in
order to enable HTMLTokenVisitor to be built incrementally.

2. Add a public virtual method called Visit to the NullTokenVisitor class.
This method will return void and accept a single ILineStartToken
parameter. The body of the method will be empty. The method will look as
follows:

public class NullTokenVisitor : ITokenVisitor
{
 public virtual void Visit(ILineStartToken t) { }
 ...
}

3. Repeat step 2 for all other overloaded Visit methods declared in the
ITokenVisitor interface.

Implement all Visit methods in NullTokenVisitor as empty bodies.

4. Save your work.

5. Compile null_token_visitor.cs.

If you have implemented all of the Visit operations from the ITokenVisitor
interface, the compilation will be successful. If you have omitted any
operations, the compiler will issue an error message.

 Module 10: Inheritance in C# 57

6. Add a private static void method called Test to the NullTokenVisitor class.

This method will expect no parameters. The body of this method should
contain a single statement that creates a new NullTokenVisitor object. This
statement will verify that the NullTokenVisitor class has implemented all
of the Visit operations and that NullTokenVisitor instances can be created.
The code for this method will be as follows:

public class NullTokenVisitor : ITokenVisitor
{
 ...
 static void Test()
 {
 new NullTokenVisitor();
 }
}

7. Save your work.

8. Compile null_token_visitor.cs and correct any errors.

9. Change the definition of NullTokenVisitor.

Since the purpose of the NullTokenVisitor class is not to be instantiated but
to be derived from, you need to change the definition so that it is an abstract
class.

10. Compile null_token_visitor.cs again.

Also, verify that the new statement inside the Test method now causes an
error, as you cannot create instances of an abstract class.

11. Delete the Test method.

12. NullTokenVisitor should now look like this:

public abstract class NullTokenVisitor : ITokenVisitor
{
 public virtual void Visit(ILineStartToken t) { }
 public virtual void Visit(ILineEndToken t) { }

 public virtual void Visit(ICommentToken t) { }
 public virtual void Visit(IDirectiveToken t) { }
 public virtual void Visit(IIdentifierToken t) { }
 public virtual void Visit(IKeywordToken t) { }
 public virtual void Visit(IWhiteSpaceToken t) { }

 public virtual void Visit(IOtherToken t) { }
}

58 Module 10: Inheritance in C#

å To create an HTMLTokenVisitor class

1. Open the html_token_visitor.cs file.

2. Change the HTMLTokenVisitor class so that it derives from the
NullTokenVisitor abstract class.

3. Open the main.cs file, and add two statements to the static InnerMain
method.

a. The first statement will declare a variable called visitor of type
HTMLTokenVisitor and initialize it with a newly created
HTMLTokenVisitor object.

b. The second statement will pass visitor as the parameter to the Accept
method being called on the already declared source variable.

4. Save your work.

5. Compile the program and correct any errors.

Run the program from the command line, passing the name of a .cs source
file from the install folder\Labs\Lab10\Starter\ColorTokeniser\bin\debug
folder as the command-line argument.

Nothing will happen, because you have not yet defined any methods in
HTMLTokenVisitor class!

 Module 10: Inheritance in C# 59

6. Add a public non-static Visit method to the HTMLTokenVisitor class.
This method will return void and accept a single ILineStartToken
parameter called line .

Implement the body of the method as a single statement that calls Write
(not WriteLine), displaying the value of line.Number() to the console.
Note that Number is an operation declared in the ILineStartToken
interface. Do not qualify the method with a virtual or override keyword.
This is shown in the following code:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public void Visit(ILineStartToken line)
 {
 Console.Write(line.Number()); // Not WriteLine
 }
}

7. Save your work.

8. Compile the program.

Run the program again, as before. Nothing will happen, because the Visit
method in HTMLTokenVisitor is hiding the Visit method in the base class
NullTokenVisitor .

9. Change HTMLTokenVisitor.Visit(ILineStartToken) so that it overrides
Visit from its base class.

This will make HTMLTokenVisitor.Visit polymorphic, as shown in the
following code:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(ILineStartToken line)
 {
 Console.Write(line.Number());
 }
}

10. Save your work.

11. Compile the program and correct any errors.

Run the program as before. Output will be displayed. It will contain
ascending numbers with no intervening white space. (The numbers are
generated line numbers for the file that you specified.)

60 Module 10: Inheritance in C#

12. In HTMLTokenVisitor, define an overloaded public non-static Visit
method that returns void and accepts a single ILineEndToken parameter.

This revision adds a new line between lines of output tokens. Notice that
this operation is declared in the ITokenVisitor interface. Implement the
body of this method to print a single new line to the console, as shown.
(Note that this method uses WriteLine , not Write.)

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...

 public override void Visit(ILineEndToken t)
 {
 Console.WriteLine(); // Not Write
 }

}

13. Save your work.

14. Compile the program and correct any errors.

Run the program as before. This time each line number is terminated with a
separate line.

å To use HTMLTokenVisitor to display C# source file tokens

1. Add a public non-static Visit method to the HTMLTokenVisitor class.
This method will return void and accept a single IIdentifierToken
parameter called token. It should override the corresponding method in the
NullTokenVisitor base class.

2. Implement the body of the method as a single statement that calls Write,
displaying token to the console as a string. Open the IToken.cs file and
note that IIdentifierToken is derived from IToken and that IToken
declares a ToString method. This is shown in the following code:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 public override void Visit(IIdentifierToken token)
 {
 Console.Write(token.ToString());
 }
}

3. Save your work.

4. Compile the program and correct any errors.

Run the program as before. This time the output includes all of the
identifiers.

5. Repeat steps 1 through 3, adding four more overloaded Visit methods to
HTMLTokenVisitor.

Each of these will expect a single parameter of type ICommentToken,
IKeywordToken, IWhiteSpaceToken, and IOtherToken, respectively.
The bodies of these methods will all be exactly as described in step 2.

 Module 10: Inheritance in C# 61

å To convert a C# source file into an HTML file

1. In the install folder\Labs\Lab10\Starter\ColorTokeniser\bin\debug folder,
there is a batch script called generate.bat. This script executes the
ColorTokeniser program, using a command-line parameter that you pass to
it. It also performs some pre-processing and post-processing of the
tokenized file that is produced. It performs this processing by using a
cascading style sheet (code_style.css) to convert the output into HTML.

From the command prompt, run the program by using the generate batch file,
passing in token.cs file as a parameter. (This is actually a copy of part of the
source code for your program, but it will work as an example .cs file.)
Capture the output to another file that has an .html suffix. Following is an
example:

generate token.cs > token.html

2. Use Internet Explorer to display the .html file that you just created
(token.html in the example in the previous step). You can do this by typing
token.html at the command prompt.

The displayed result will not be pretty! Line numbers greater than 9 are all
indented differently from the lines with numbers less than 10. This is
because numbers less than 10 have a single digit, whereas numbers greater
than 9 have two digits. Notice also that the line numbers are in the same
color as the source file tokens, which is not helpful.

å To find and fix the line number and indentation problems

1. Change the definition of the Visit(ILineStartToken) method as follows to
add some output that fixes both of these problems. This is shown in the
following code:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(ILineStartToken line)
 {
 Console.Write("");
 Console.Write("{0,3}", line.Number());
 Console.Write("");
 }
 ...
}

2. Save your work.

3. Compile the program and correct any errors.

4. Re-create the token.html file from the token.cs source file from the
command line as before:

generate token.cs > token.html

62 Module 10: Inheritance in C#

5. Open token.html in Internet Explorer.

There is stil l a problem. Compare the appearance of token.html in Internet
Explorer to the original token.cs file. Notice that the first comment in
token.cs (/// <summary>) appears in the browser as “///”. The <summary>
has been lost. The problem is that in HTML some characters have a special
meaning. To display the left angle bracket (<), the HTML source must be
< and to display the right angle bracket (>) the HTML source must be
>. To display the ampersand (&), the HTML source must be &.

å To make the changes required to correctly display the angle bracket
and ampersand characters

1. Add to HTMLTokenVisitor a private non-static method called
FilteredWrite that returns void and expects a single parameter of type
IToken called token.

This method will create a string called dst from token and iterate through
each character in dst, applying the transformations described above. The
code will look as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 private void FilteredWrite(IToken token)
 {
 string src = token.ToString();
 for (int i = 0; i != src.Length; i++) {
 string dst;
 switch (src[i]) {
 case '<' :
 dst = "<"; break;
 case '>' :
 dst = ">"; break;
 case '&' :
 dst = "&"; break;
 default :
 dst = new string(src[i], 1); break;
 }
 Console.Write(dst);
 }
 }
}

2. Change the definition of HTMLTokenVisitor.Visit(ICommentToken) to
use the new FilteredWrite method instead of Console.Write, as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(ICommentToken token)
 {
 FilteredWrite(token);
 }
 ...
}

 Module 10: Inheritance in C# 63

3. Change the definition of HTMLTokenVisitor.Visit(IOtherToken) to use
the new FilteredWrite method instead of Console.Write, as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(IOtherToken token)
 {
 FilteredWrite(token);
 }
 ...
}

4. Save your work.

5. Compile the program and correct any errors.

6. Re-create the token.html file from the token.cs source file from the
command line as before:

generate token.cs > token.html

7. Open token.html in Internet Explorer and verify that the angle bracket and
ampersand characters are now displayed correctly.

å To add color comments to the HTML file

1. Use Notepad to open the code_style.css style sheet in the install folder\
Labs\Lab10\Starter\ColorTokeniser \bin\debug folder.

The cascading style sheet file called code_style.css will be used to add color
to the HTML file. This file has already been created for you. The following
is an example of its contents:

...
SPAN.LINE_NUMBER
{
 background-color: white;
 color: gray;
}
...
SPAN.COMMENT
{
 color: green;
 font-style: italic;
}

The HTMLTokenVisitor.Visit(ILineStartToken) method already uses
this style sheet:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(ILineStartToken line)
 {
 Console.Write("");
 Console.Write("{0,3}", line.Number());
 Console.Write("");
 }
 ...
}

64 Module 10: Inheritance in C#

Notice that this method writes the words “span” and “line_number,” and
that the style sheet contains an entry for SPAN.LINE_NUMBER.

2. Change the body of HTMLTokenVisitor.Visit(ICommentToken) so that
it takes the following pattern:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(ICommentToken token)
 {
 Console.Write("");
 FilteredWrite(token);
 Console.Write("");
 }
 ...
}

3. Save your work.

4. Compile the program and correct any errors.

5. Re-create the token.html file from the token.cs source file as before:

generate token.cs > token.html

6. Open token.html in Internet Explorer.

Verify that the source file comments are now green and are italicized.

 Module 10: Inheritance in C# 65

å To add color keywords to the HTML file

1. Notice that the code_style.css file contains the following entry:

...
SPAN.KEYWORD
{
 color: blue;
}
...

2. Change the body of HTMLTokenVisitor.Visit(IKeywordToken) to use
the style specified in the style sheet, as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(IKeywordToken token)
 {
 Console.Write("");
 FilteredWrite(token);
 Console.Write("");
 }
 ...
}

3. Save your work.

4. Compile the program and correct any errors.

5. Re-create the token.html file from the token.cs source file by using the
generate batch file as before:

generate token.cs > token.html

6. Open token.html in Internet Explorer and verify that the keywords are now
in blue.

66 Module 10: Inheritance in C#

å To refactor the Visit methods to eliminate duplication

1. Notice the duplication in the two Visit methods. That is, both methods write
span strings to the console.

You can refactor the Visit methods to avoid this duplication. Define a new
private non-static method called SpannedFilteredWrite that returns void
and expects two parameters, a string called spanName and an IToken
called token . The body of this method will contain three statements. The
first statement will write the span string to the console by using the
spanName parameter. The second statement will call the FilteredWrite
method, passing token as the argument. The third statement will write the
closing span string to the console. The code will look as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 private void SpannedFilteredWrite(string spanName,
ÊIToken token)
 {
 Console.Write("", spanName);
 FilteredWrite(token);
 Console.Write("");
 }
 ...
}

2. Change HTMLTokenVisitor.Visit(ICommentToken) to use this new
method, as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 public override void Visit(ICommentToken token)
 {
 SpannedFilteredWrite("comment", token);
 }
 ...
}

3. Change HTMLTokenVisitor.Visit(IKeywordToken) to use this new
method, as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 public override void Visit(IKeywordToken token)
 {
 SpannedFilteredWrite("keyword", token);
 }
 ...
}

 Module 10: Inheritance in C# 67

4. Change the HTMLTokenVisitor.Visit(IIdentifierToken) method body so
that it calls the SpannedFilteredWrite method. You must do this because
identifier tokens also have an entry in the code_style.css file:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 public override void Visit(IIdentifierToken token)
 {
 SpannedFilteredWrite("identifier", token);
 }
 ...
}

5. Save your work.

6. Compile the program and correct any errors.

7. Re-create the token.html file from the token.cs source file by using the
generate batch file as before:

generate token.cs > token.html

8. Open token.html in Internet Explorer.

Verify that the comments are still green and that the keywords are still blue.

å To implement HTMLTokenVisitor directly from ITokenVisitor
1. Open the html_token_visitor.cs file

2. Change the code so that the HTMLTokenVisitor class derives from the
ITokenVisitor interface. Because you have implemented nearly all of the
Visit methods in HTMLTokenVisitor, it no longer needs to inherit from
the NullTokenVisitor abstract class (which provides a default empty
implementation of every method in ITokenVisitor). It can be derived
directly from the ITokenVisitor interface.

68 Module 10: Inheritance in C#

The class should look as follows:

public class HTMLTokenVisitor : ITokenVisitor
{
 ...
}

3. Save your work.

4. Compile the program.

There will be many errors! The problem is that the Visit methods in
HTMLTokenVisitor are still qualified as override, but you cannot override
an operation in an interface.

5. Remove the keyword override from every Visit method definition.

6. Compile the program.

There will still be an error. The problem this time is that
HTMLTokenVisitor does not implement the Visit(IDirectiveToken)
operation inherited from its ITokenVisitor interface. Previously,
HTMLTokenVisitor inherited an empty implementation of this operation
from NullTokenVisitor.

7. In HTMLTokenVisitor, define a public non-static method called Visit that
returns void and expects a single parameter of type IDirectiveToken called
token. This will fix the implementation problem.

The body of this method will call the SpannedFilteredWrite method,
passing it two parameters: the string literal “directive” and the variable
token.

public class HTMLTokenVisitor : ITokenVisitor
{
 ...
 public void Visit(IDirectiveToken token)
 {
 SpannedFilteredWrite("directive", token);
 }
 ...
}

8. Save your work.

9. Compile the program and correct any errors.

10. Re-create the token.html file from the token.cs source file by using the
generate batch file as before:

generate token.cs > token.html

11. Open token.html in Internet Explorer.

Verify that the comments are still green and that the keywords are still blue.

 Module 10: Inheritance in C# 69

å To prevent the use of HTMLTokenVisitor as a base class

1. Declare HTMLTokenVisitor as a sealed class.

Given that the methods of HTMLTokenVisitor are no longer virtual, it
makes sense for HTMLTokenVisitor to be declared as a sealed class. This
is shown in the following code:

public sealed class HTMLTokenVisitor : ITokenVisitor
{
 ...
}

2. Compile the program and correct any errors.

3. Re-create the token.html file from the token.cs source file by using the
generate batch file as before:

generate token.cs > token.html

4. Open token.html in Internet Explorer, and verify that the comments are still
green and that the keywords are still blue.

70 Module 10: Inheritance in C#

Exercise 2
Converting a C# Source File into a Color Syntax HTML File

In this exercise, you will examine a second application that uses the same C#
tokenizer framework used in Exercise 1.

Scenario
In this application, the ColorTokenVisitor class derives from the
ITokenVisitor interface. The Visit methods of this class write colored tokens
to a RichTextBox inside a Microsoft Windows® Forms application. The
collaborating classes form the following hierarchy:

å To familiarize yourself with the interfaces

1. Open the ColorSyntaxApp.sln project in the install folder\
Labs\Lab10\Solution\ColourSyntaxApp folder.

2. Study the contents of the two .cs files. Notice that the ColorTokenVisitor
class is very similar to the HTMLTokenVisitor class that you created in
Exercise 1. The main difference is that ColorTokenVisitor writes the color
tokens to a RichTextBox form component rather than to the console.

3. Build the project.

4. Run the application.

a. Click Open File.

b. In the dialog box that appears, click a .cs source file.

c. Click Open.

The contents of the selected .cs source file will appear, in color.

 Module 10: Inheritance in C# 71

Review

n Deriving Classes

n Implementing Methods

n Using Sealed Classes

n Using Interfaces

n Using Abstract Classes

1. Create a class called Widget that declares two public methods. Create both
methods so that they return void and so that they do not use parameters. Call
the first method First, and declare it as virtual. Call the second method
Second, and do not declare it as virtual. Create a class called FancyWidget
that extends Widget, overriding the inherited First method and hiding the
inherited Second method.

72 Module 10: Inheritance in C#

2. Create an interface called IWidget that declares two methods. Create both
methods so that they return void and so that they do not use parameters. Call
the first method First, and call the second method Second. Create a class
called Widget that implements IWidget . Implement First as virtual, and
implement Second explicitly.

3. Create an abstract class called Widget that declares a protected abstract
method called First that returns void and does not use parameters. Create a
class called FancyWidget that extends Widget, overriding the inherited
First method.

 Module 10: Inheritance in C# 73

4. Create a sealed class called Widget that implements the IWidget interface
that you created in question 2. Create Widget so that it implements both
inherited methods explicitly.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Using Internal Classes, Methods, and Data 2
Using Aggregation 11

Lab 11.1: Specifying Internal Access 22

Using Namespaces 28

Using Modules and Assemblies 49

Lab 11.2: Using Namespaces and
Assemblies 63

Review 69

Module 11: Aggregation,
Namespaces, and
Advanced Scope

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any rea l individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN,
PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media
are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other
countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 11: Aggregation, Namespaces, and Advanced Scope 1

Overview

n Using Internal Classes, Methods, and Data

n Using Aggregation

n Using Namespaces

n Using Modules and Assemblies

In this module, you will learn how to use the internal access modifier to make
code accessible at the component or assembly level. Internal access enables you
to share access to classes and their members in a way that is similar to the
friendship concept in C++ and Microsoft® Visual Basic®. You can specify an
access level for a group of collaborating classes rather than for an individual
class.

Creating well-designed individual classes is an important part of object-oriented
programming, but projects of any size require you to create logical and physical
structures that are larger than individual classes. You will learn how to group
classes together into larger, higher-level classes. You will also learn how to use
namespaces to allow you to logically group classes together inside named
spaces and to help you to create logical program structures beyond individual
classes.

Finally, you will learn how to use assemblies to physically group collaborating
source files together into a reusable, versionable, and deployable unit.

After completing this module, you will be able to:

n Use internal access to allow classes to have privileged access to each other.

n Use aggregation to implement powerful patterns such as Factories.

n Use namespaces to organize classes.

n Create simple modules and assemblies.

2 Module 11: Aggregation, Namespaces, and Advanced Scope

u Using Internal Classes, Methods, and Data

n Why Use Internal Access?

n Internal Access

n Syntax

n Internal Access Example

Access modifiers define the level of access that certain code has to class
members such as methods and properties. You need to apply the desired access
modifier to each member, otherwise the default access type is implied. You can
apply one of four access modifiers, as shown in the following table.

Access modifier Description

public A public member is accessible from anywhere. This is the least

restrictive access modifier.

protected A protected member is accessible from within the class and all
derived classes. No access from the outside is permitted.

private A private member is accessible only from within the same class.
Not even derived classes can access it.

internal An internal member is accessible from within any part of the
same .NET assembly. You can think of it as public at the
assembly level and private from outside the assembly.

protected internal An internal protected member is accessible from within the
current assembly or from within types derived from the
containing class.

In this section, you will learn how to use internal access to specify accessibility
at the assembly level instead of at the class level. You will learn why internal
access is necessary, and you will learn how to declare internal classes, internal
methods, and internal data. Finally, you will see some examples that use
internal access.

 Module 11: Aggregation, Namespaces, and Advanced Scope 3

Why Use Internal Access?

n Small Objects Are Not Very Useful on Their Own

n Objects Need to Collaborate to Form Larger Objects

n Access Beyond the Individual Object Is Required

public
internal
private

Adding More Objects
Creating well-designed object-oriented programs is not easy. Creating large
well-designed object-oriented programs is harder still. The often-repeated
advice is to make each entity in the program do and be one thing and one thing
only, to make each entity small, focused, and easy to use.

However, if you follow that advice, you will create many classes instead of just
a few classes. It is this insight that helps to make sense of the initially confusing
advice from Grady Booch: “If your system is too complex, add more objects.”

Systems are complex if they are hard to understand. Large classes are harder to
understand than smaller classes. Breaking a large class into several smaller
classes helps to make the overall functionality easier to discern.

4 Module 11: Aggregation, Namespaces, and Advanced Scope

Using Object Relationships to Form Object Hierarchies
The power of object orientation is in the relationships between the objects, not
in the individual objects. Objects are built from other objects to form object
hierarchies. Collaborating objects form larger entities.

Limit Access to the Object Hierarchy?
There is, however, a potential problem. The public and private access
modifiers do not fit seamlessly into the object hierarchy model:

n Public access is unlimited.

You sometimes need to limit access to just those objects in the hierarchy.

n Private access is limited to the individual class.

You sometimes need to extend access to related classes.

You often need an access level that is somewhere in between these two
extremes to limit access to the various objects in a particular collaboration.
Protected access is not a sufficient answer because the protected modifier
specifies access at the class level in an inheritance hierarchy.

In a well-designed object-oriented project, object relationships should be much
more common than inheritance. You need a mechanism that restricts access to
the objects in a given object hierarchy.

 Module 11: Aggregation, Namespaces, and Advanced Scope 5

Internal Access

n Comparing Access Levels

l Public access is logical

l Private access is logical

l Internal access is physical

internal

Comparing Access Levels
It is important to realize that internal access is different from public or private
access:

n Public access is logical.

The physical deployment of a public class (or a public class member) does
not affect its accessibility. Regardless of how you deploy a public class, it
remains public.

n Private access is also logical.

The physical deployment of a private class (or a private class member) does
not affect its accessibility. Regardless of how you deploy a private class, it
remains private.

n Internal access is physical.

The physical deployment of an internal class (or an internal class member)
does affect its accessibility. You can deploy an internal class directly in an
executable file. In this case, the internal class is visible only to its containing
compilation unit. Alternatively, you can deploy an internal class in an
assembly, which you will learn about later in this module. You can share
this assembly between several executable files, but internal access is still
limited to the assembly. If an executable file uses several assemblies, each
assembly has its own internal access.

6 Module 11: Aggregation, Namespaces, and Advanced Scope

Comparing Internal Access to Friendship
In languages such as C++ and Visual Basic, you can use friendship to grant to
the private members of one class access to another class. If class A grants
friendship to class B, the methods of class B can access the private members of
class A. Such friendship creates a strong dependency from B to A. In some
ways, the dependency is even stronger than inheritance. After all, if B were
derived from A instead, it would not have access to the private members of A.
To counteract this strong dependency, friendship has a few built-in safety
restrictions:

n Friendship is closed.

If X needs to access the private members of Y, it cannot grant itself
friendship to Y. In this case, only Y can grant friendship to X.

n Friendship is not reflexive.

If X is a friend of Y, that does not mean that Y is automatically a friend of X.

Internal access is different from friendship:

n Internal access is open.

You can compile a C# class (in a source file) into a module and then add the
module to an assembly. In this way, a class can grant itself access to the
internals of the assembly that other classes have made available.

n Internal access is reflexive.

If X has access to the internals of Y, then Y has access to the internals of X.
Note also that X and Y must be in the same assembly.

 Module 11: Aggregation, Namespaces, and Advanced Scope 7

Syntax

internal class <outername>
{

internal class <nestedname> { ... }
internal <type> field;
internal <type> Method() { ... }

protected internal class <nestedname> { ... }
protected internal <type> field;
protected internal <type> Method() { ... }

}

internal class <outername>
{

internal class <nestedname> { ... }
internal <type> field;
internal <type> Method() { ... }

protected internal class <nestedname> { ... }
protected internal <type> field;
protected internal <type> Method() { ... }

}

protected internal means protected or internalprotected internal means protected or internal

When you define a class as internal, you can only access the class from the
current assembly. When you define a class as protected internal, you can access
the class from the current assembly or from types derived from the containing
class.

Non-Nested Types
You can declare types directly in the global scope or in a namespace as public
or internal but not as protected or private. The following code provides
examples:

public class Bank { ... } // Okay
internal class Bank { ... } // Okay
protected class Bank { ... } // Compile-time error
private class Bank { ... } // Compile-time error

namespace Banking
{
 public class Bank { ... } // Okay
 internal class Bank { ... } // Okay
 protected class Bank { ... } // Compile-time error
 private class Bank { ... } // Compile-time error
}

8 Module 11: Aggregation, Namespaces, and Advanced Scope

When you declare types in the global scope or in a namespace and do not
specify an access modifier, the access defaults to internal:

/*internal */ class Bank { ... }

namespace Banking
{
 /*internal*/ class Bank { ... }
 ...
}

Nested Types
When you nest classes inside other classes, you can declare them with any of
the five types of accessibility, as shown in the following code:

class Outer
{
 public class A { ... }
 protected class B { ... }
 protected internal class C { ... }
 internal class D { ... }
 private class E { ... }
}

You cannot declare any member of a struct with protected or protected internal
accessibility because deriving from a struct will produce a compile-time error.
The following code provides examples:

public struct S
{
 protected int x; // Compile-time error
 protected internal int y; // Compile-time error
}

When you declare a protected internal member, the order of the keywords
protected and internal is not significant. However, protected internal is
recommended. The following code provides an example:

class BankAccount
{
 // Both characters are allowed
 protected internal BankAccount();
 internal protected BankAccount(decimal openingBalance);
}

You cannot use access modifiers with destructors, so the following
example will produce a compile-time error:

class BankAccount
{
 internal ~BankAccount() { ... } // Compile-time-error
}

Tip

Note

 Module 11: Aggregation, Namespaces, and Advanced Scope 9

Internal Access Example

public interface IBankAccount { ... }

internal abstract class CommonBankAccount { ... }

internal class DepositAccount: CommonBankAccount,
IBankAccount { ... }

public class Bank
{

public IBankAccount OpenAccount()
{

return new DepositAccount();
}

}

public interface IBankAccount { ... }

internal abstract class CommonBankAccount { ... }

internal class DepositAccount: CommonBankAccount,
IBankAccount { ... }

public class Bank
{

public IBankAccount OpenAccount()
{

return new DepositAccount();
}

}

To learn how to use internal access, consider the following example.

Scenario
In the banking example on the previous slide, there are three classes and an
interface. The classes and interface are shown in the same source file for the
sake of illustration. They could easily be in four separate source files. These
four types would be physically compiled into a single assembly.

The IBankAccount interface and the Bank class are public and define how the
assembly is used from the outside. The CommonBankAccount class and the
DepositAccount class are implementation-only classes that are not intended to
be used from outside the assembly and hence are not public. (Note that
Bank.OpenAccount returns an IbankAccount.) However, they are not marked
as private.

Note that the CommonBankAccount abstract base class is marked internal
because the designer anticipates that new kinds of bank accounts might be
added to the assembly in the future, and these new classes might reuse this
abstract class. The following code provides an example:

internal class CheckingAccount:
 CommonBankAccount,
 IBankAccount
{
 ...
}

10 Module 11: Aggregation, Namespaces, and Advanced Scope

The DepositAccount class is slightly different. You can alternatively nest it
inside the Bank class and make it private, as follows:

public class Bank
{
 ...
 private class DepositAccount:
 CommonBankAccount,
 IBankAccount
 {
 ...
 }
}

In the code on the slide, the access for the DepositAccount class is marked as
internal, which is less restrictive than private access. You can achieve design
flexibility by making this slight compromise because internal access provides
the following:

n Logical separation

DepositAccount can now be declared as a separate non-nested class. This
logical separation makes both classes easier to read and understand.

n Physical separation

DepositAccount can now be placed in its own source file. This physical
separation means that DepositAccount maintenance will not affect other
classes and can be performed at the same time as maintenance to other
classes.

 Module 11: Aggregation, Namespaces, and Advanced Scope 11

u Using Aggregation

n Objects Within Objects

n Comparing Aggregation to Inheritance

n Factories

n Example Factory

In this section, you will learn how to use aggregation to group objects together
to form an object hierarchy. Aggregation specifies a relationship between
objects, not classes. Aggregation offers the potential for creating reusable object
configurations. Many of the most useful configurations have been documented
as patterns. You will learn how to use the Factory pattern.

12 Module 11: Aggregation, Namespaces, and Advanced Scope

Objects Within Objects

n Complex Objects Are Built from Simpler Objects

n Simpler Objects Are Parts of Complex Whole Objects

n This Is Called Aggregation

CarCarWholeWhole

PartPart EngineEngineChassisChassis WheelWheel

1 41

Aggregation represents a whole/part object relationship. You can see the
Unified Modeling Language (UML) notation for aggregation in the slide. The
diamond is placed on the “whole” class and a line links the whole to the “part”
class. You can also place on an aggregation relationship a number that specifies
the number of parts in the whole. For example, the slide depicts in UML that a
car has one chassis, one engine, and four wheels. Informally, aggregation
models the “has-a” relationship.

The words aggregation and composition are sometimes used as though they are
synonyms. In UML, composition has a more restrictive meaning than
aggregation:

n Aggregation

Use aggregation to specify a whole/part relationship in which the lifetimes
of the whole and the parts are not necessarily bound together, the parts can
be traded for new parts, and parts can be shared. Aggregation in this sense is
also known as aggregation by reference.

n Composition

Use composition to specify a whole/part relationship in which the lifetimes
of the whole and the parts is bound together, the parts cannot be traded for
new parts, and the parts cannot be shared. Composition is also known as
aggregation by value.

 Module 11: Aggregation, Namespaces, and Advanced Scope 13

In an aggregation, the “whole class” is really just a class that is used to group
and name the parts. In a sense, the whole class does not really exist at all. What
is car? It is just the name that you use to describe an aggregation of specific
parts that are arranged in a specific configuration. But it is much easier to just
say car! In other cases, the whole class is conceptual— a family is an
aggregation of people.

In programming, it is common for the whole class to simply forward the
method calls to the appropriate part. This is called delegation. Aggregated
objects form layered delegation hierarchies. Occasionally these hierarchies are
referred to as assemblies (but the word assemblies can also refer to a
Microsoft .NET physical assembly, as will be explained later in this module).

14 Module 11: Aggregation, Namespaces, and Advanced Scope

Comparing Aggregation to Inheritance

n Aggregation

l Specifies an object relationship

l A weak whole-to-part dependency

l Dynamically flexible

n Inheritance

l Specifies a class relationship

l A strong derived-to-base dependency

l Statically inflexible

PartPart

WholeWhole

BaseBase

DerivedDerived

Aggregation and inheritance both provide ways to create larger classes from
smaller classes, but they do this in completely different ways.

Aggregation
You can use aggregation with the following characteristics to create larger
classes from smaller classes:

n An object relationship

Aggregation specifies a relationship at the object level. The access control
of the part can be public or non-public. The multiplicity can vary for
different objects. For example, a computer is an aggregation of a monitor, a
keyboard, and a CPU. However, some computers have two monitors (for
remote debugging, for example). Some banks contain only a few bank
account objects. More successful banks contain many more bank account
objects. Aggregation can handle this variation at the object level because
aggregation is an object-level relationship.

n Weak dependency from the whole to the part

With aggregation, the methods of the part do not automatically become
methods of the whole. A change to the part does not automatically become a
change to the whole.

n Dynamically flexible

The number of bank accounts contained in a bank can increase and decrease
as bank accounts are opened and closed. If the whole object contains a
reference to a part object, then at run time the actual object that this
reference refers to can be derived from the part. The reference can even be
dynamically rebound to objects of different derived types. Aggregation is a
powerful and flexible structuring mechanism.

 Module 11: Aggregation, Namespaces, and Advanced Scope 15

Inheritance
You use inheritance to create new classes from existing classes. The
relationship between the existing class and the new class that extends it has the
following characteristics:

n A class relationship

Inheritance specifies a relationship at the class level. In C#, inheritance can
only be public. It is impossible to specify the multiplicity for an inheritance.
Multiplicity specifies the number of objects participating in an object
relationship. But inheritance is fixed at the class level. There is no variation
at the object level.

n Strong dependency from the derived class to the base class.

Inheritance creates a strong derived-to-base class dependency. The methods
of the base class do automatically become methods of the derived class. A
change to the base class does automatically become a change to all derived
classes.

n Statically inflexible

If a class is declared to have a particular base class, it always has that
particular base class (and can only specify the base class as a base cla ss
once). Compare this to aggregation, in which the part reference can be
dynamically rebound to objects of different derived classes. An object can
never change its type. This inflexibility can create problems. For instance,
consider a simple inheritance hierarchy with Employee as a base class and
Manager and Programmer as parallel derived classes:

class Employee { ... }
class Manager: Employee { ... }
class Programmer: Employee { ... }

In this example, a Programmer object cannot be promoted to a Manager
object!

16 Module 11: Aggregation, Namespaces, and Advanced Scope

Factories

n Creation Is Often Complex and Restricted

n Many Objects Are Made Only in Specialist Factories

n The Factory Encapsulates the Complex Creation

n Factories Are Useful Patterns When Modelling Software

Newcomers to object orientation often ask how to create virtual constructors.
The answer is that you cannot. A base class constructor is not inherited in a
derived class and so cannot be virtual.

Analogy
However, the goal of abstracting away the details and responsibility of creation
is a valid one. It happens in life all the time. For example, you cannot just create
a phone. Creating a phone is a complicated process that involves the acquisition
and configuration of all of the parts that make up a phone. Sometimes creation
is illegal: you are not allowed to create your own money, for example. In these
cases, the knowledge and responsibility for creation is delegated to another
object— a factory— whose main responsibility is to create the product objects.

 Module 11: Aggregation, Namespaces, and Advanced Scope 17

Encapsulating Construction
In software programs, you can also abstract away the details and responsibility
of creation by encapsulating the construction of objects. Instead of attempting
to create a virtual constructor in which delegation is automatic and moves down
the class hierarchy, you can use manual delegation across an object hierarchy:

class Product
{
 public void Use() { ... }
 ...
 internal Product() { ... }
}

class Factory
{
 public Product CreateProduct()
 {
 return new Product();

}

In this example, the CreateProduct method is known as a Factory Method
pattern. (This definition is from Design Patterns: Elements of Reusable Object-
Oriented Software, by E. Gamma, R. Helm, R. Johnson, and J. Vlissides.) It is a
method of a factory that creates a product.

Encapsulating Destruction
Abstracting away the details and responsibility of destroying an object is also
valid and useful. And again, it happens in real life. For example, if you open a
bank account at a bank, you cannot destroy the bank account yourself. Only the
bank can destroy the account. To provide another example, if a factory creates a
product, the environmentally responsible way to destroy the product is to return
it to the factory. The factory might be able to recycle some of the product’s
parts. The following code provides an example:

class Factory
{
 public Product CreateProduct() { ... }
 public void DestroyProduct(Product toDestroy) { ... }
 ...
}

In this example, the DestroyProduct method is known as a Disposal Method,
another design pattern.

Using the Problem Vocabulary
In the preceding example, the Factory Method is called CreateProduct, and the
Disposal Method is called DestroyProduct. In a real factory class, name these
methods to correspond to the vocabulary of the factory. For example, in a Bank
class (a factory for bank accounts), you might have a Factory Method called
OpenAccount and a Disposal Method called CloseAccount.

18 Module 11: Aggregation, Namespaces, and Advanced Scope

Factory Example

public class Bank
{

public BankAccount OpenAccount()
{

BankAccount opened = new BankAccount();
accounts[opened.Number()] = opened;
return opened;

}
private Hashtable accounts = new Hashtable();

}
public class BankAccount
{

internal BankAccount() { ... }
public long Number() { ... }
public void Deposit(decimal amount) { ... }

}

public class Bank
{

public BankAccount OpenAccount()
{

BankAccount opened = new BankAccount();
accounts[opened.Number()] = opened;
return opened;

}
private Hashtable accounts = new Hashtable();

}
public class BankAccount
{

internal BankAccount() { ... }
public long Number() { ... }
public void Deposit(decimal amount) { ... }

}

To learn how to use the Factory pattern, consider an example of publicly
useable, non-creatable objects being made and aggregated in a factory.

Scenario
In this example, the BankAccount class is public and has public methods. If
you could create a BankAccount object, you could use its public methods.
However, you cannot create a BankAccount object because its constructor is
not public. This is perfectly reasonable model. After all, you cannot just create a
real bank account object. If you want a bank account, you need to go to a bank
and ask a teller to open one. The bank creates the account for you.

This is exactly the model that the above code depicts. The Bank class has a
public method called OpenAccount, the body of which creates the
BankAccount object for you. In this case, the Bank and the BankAccount are
in the same source file, and so will inevitably become part of the same
assembly. Assemblies will be covered later in this module. However, even if
the Bank class and the BankAccount classes were in separate source files, they
could (and would) still be deployed in the same assembly, in which case the
Bank would still have access to the internal BankAccount constructor. Notice
also that the Bank aggregates the BankAccount objects that it creates. This is
very common.

 Module 11: Aggregation, Namespaces, and Advanced Scope 19

Design Alternatives
To restrict creation of BankAccount objects further, you can make
BankAccount a private nested class of Bank with a public interface. The
following code provides an example:

using System.Collections;

public interface IAccount
{
 long Number();
 void Deposit(decimal amount);
 ...
}

public class Bank
{
 public IAccount OpenAccount()
 {
 IAccount opened = new DepositAccount();
 accounts[opened.Number()] = opened;
 return opened;
 }

 private readonly Hashtable accounts = new Hashtable();

 private sealed class DepositAccount: IAccount
 {
 public long Number()
 {
 return number;
 }

 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 ...
 // Class state
 private static long NextNumber()
 {
 return nextNumber++;
 }
 private static long nextNumber = 123;

 // Object state
 private decimal balance = 0.0M;
 private readonly long number = NextNumber();
 }
}

20 Module 11: Aggregation, Namespaces, and Advanced Scope

Alternatively, you can make the entire BankAccount concept private, and
reveal only the bank account number, as shown in the following code:

using System.Collections;

public sealed class Bank
{
 public long OpenAccount()
 {
 IAccount opened = new DepositAccount();
 long number = opened.Number();
 accounts[number] = opened;
 return number;
 }

 public void Deposit(long accountNumber, decimal amount)
 {
 IAccount account = (IAccount)accounts[accountNumber];
 if (account != null) {
 account.Deposit(amount);
 }
 }

 //...

 public void CloseAccount(long accountNumber)
 {
 IAccount closing = (IAccount)accounts[accountNumber];
 if (closing != null) {
 accounts.Remove(accountNumber);
 closing.Dispose();
 }
 }

 private readonly Hashtable accounts = new Hashtable();

 private interface IAccount
 {
 long Number();
 void Deposit(decimal amount);
 void Dispose();
 //...
 }

 private sealed class DepositAccount: IAccount
 {
 public long Number()
 {
 return number;
 }

 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 (Code continued on following page.)

 Module 11: Aggregation, Namespaces, and Advanced Scope 21

 public void Dispose()
 {
 this.Finalize();
 System.GC.SuppressFinalize(this);
 }

 protected override void Finalize()
 {
 //...
 }

 private static long NextNumber()
 {
 return nextNumber++;
 }
 private static long nextNumber = 123;

 private decimal balance = 0.0M;
 private readonly long number = NextNumber();
 }
}

22 Module 11: Aggregation, Namespaces, and Advanced Scope

Lab 11.1: Specifying Internal Access

Objectives
After completing this lab, you will be able to:

n Specify internal access for classes.

n Specify internal access for methods.

Prerequisites
Before working on this lab, you must be able to:

n Create classes.

n Use constructors and destructors.

n Use private and public access modifiers.

Estimated time to complete this lab: 30 minutes

 Module 11: Aggregation, Namespaces, and Advanced Scope 23

Exercise 1
Creating a Bank

In this exercise, you will:

1. Create a new class called Bank that will act as the point of creation (a
factory) for BankAccount objects.

2. Change the BankAccount constructors so that they use internal access.

3. Add to the Bank class overloaded CreateAccount factory methods that the
customers can use to access accounts and to request the creation of accounts.

4. Make the Bank class “singleton-like” by making all of its methods static
(and public) and adding a private constructor to prevent instances of the
Bank class from being created accidentally.

5. Store BankAccounts in Bank by using a Hashtable
(System.Collections.Hashtable).

6. Use a simple harness to test the functionality of the Bank class.

å To create the Bank class

1. Open the Bank.sln project in the install folder\Labs\Lab11\
Exercise 1\Starter \Bank folder.

2. Review the four BankAccount constructors in the BankAccount.cs file.

You will create four overloaded CreateAccount methods in the Bank class
that will call each of these four constructors respectively.

3. Open the Bank.cs file and create a public non-static method of Bank called
CreateAccount that expects no parameters and returns a BankAccount.

The body of this method should return a newly created BankAccount object
by calling the BankAccount constructor that expects no parameters.

4. Add the following statements to Main in the CreateAccount.cs file. This
code tests your CreateAccount method.

Console.WriteLine("Sid's Account");
Bank bank = new Bank();
BankAccount sids = bank.CreateAccount();
TestDeposit(sids);
TestWithdraw(sids);
Write(sids);
sids.Dispose();

5. In BankAccount.cs, change the accessibility of the BankAccount
constructor that expects no parameters from public to internal.

6. Save your work.

7. Compile the program, correct any errors, and run the program.

Verify that Sid's bank account is created and that the deposit and withdrawal
appear in the transaction list if successful.

24 Module 11: Aggregation, Namespaces, and Advanced Scope

å To make the Bank responsible for closing accounts

Real bank accounts never leave their bank. Instead, bank accounts remain
internal to their bank, and customers gain access to their accounts by using their
unique bank account numbers. In the next few steps, you will modify the
Bank.CreateAccount method in Bank.cs to reflect this.

1. Add a private static field called accounts of type Hashtable to the Bank
class. Initialize it with a new Hashtable object. The Hashtable class is
located inside the System.Collections namespace, so you will need an
appropriate using-directive.

2. Modify the Bank.CreateAccount method so that it returns the
BankAccount number (a long) and not the BankAccount itself. Change the
body of the method so that it stores the newly created BankAccount object
in the accounts Hashtable, using the bank account number as the key.

3. Add a public non-static CloseAccount method to the Bank class.

This method will expect a single parameter of type long (the number of the
account being closed) and will return a bool. The body of this method will
access the BankAccount object from the accounts Hashtable, using the
account number parameter as an indexer. It will then remove the
BankAccount from the accounts Hashtable by calling the Remove method
of the Hashtable class, and then dispose of the closing account by calling
its Dispose method. The CloseAccount method will return true if the
account number parameter successfully accesses a BankAccount inside the
accounts Hashtable; otherwise it will return false.

At this point, the Bank class should look as follows:

using System.Collections;

public class Bank
{
 public long CreateAccount()
 {
 BankAccount newAcc = new BankAccount();
 long accNo = newAcc.Number();
 accounts[accNo] = newAcc;
 return accNo;
 }
 public bool CloseAccount(long accNo)
 {
 BankAccount closing = (BankAccount)accounts[accNo];
 if (closing != null) {
 accounts.Remove(accNo);
 closing.Dispose();
 return true;
 }
 else {
 return false;
 }
 }
 private Hashtable accounts = new Hashtable();
}

4. Change the BankAccount.Dispose method in BankAccount.cs so that it has
internal rather than public access.

 Module 11: Aggregation, Namespaces, and Advanced Scope 25

5. Save your work.

6. Compile the program.

It will not compile. The test harness in CreateAccount.Main now fails
because Bank.CreateAccount returns a long rather than a BankAccount.

7. Add a public non-static method called GetAccount to the Bank class.

It will expect a single parameter of type long that specifies a bank account
number. It will return the BankAccount object stored in the accounts
Hashtable that has this account number (or null if there is no account with
this number). The BankAccount object can be retrieved by using the
account number as an indexer parameter on ac counts as shown below:

public class Bank
{
 public BankAccount GetAccount(long accNo)
 {
 return (BankAccount)accounts[accNo];
 }
}

8. Change Main in the CreateAccount.cs test harness so that it uses the new
Bank methods, as follows:

public class CreateAccount
{
 static void Main ()
 {
 Console.WriteLine("Sid's Account");
 Bank bank = new Bank();
 long sidsAccNo = bank.CreateAccount();
 BankAccount sids = bank.GetAccount(sidsAccNo);
 TestDeposit(sids);
 TestWithdraw(sids);
 Write(sids);
 if (bank.CloseAccount(sidsAccNo)) {
 Console.WriteLine("Account closed");
 } else {
 Console.WriteLine("Something went wrong closing
Êthe account");
 }
}

9. Save your work.

10. Compile the program, correct any errors, and run the program. Verify that
Sid’s bank account is created and that the deposit and withdrawal appear in
the transaction list if they are successful.

26 Module 11: Aggregation, Namespaces, and Advanced Scope

å To make all BankAccount constructors internal

1. Find the BankAccount constructor that takes an AccountType and a
decimal as parameters. Change it so that its access is internal rather than
public.

2. Add another CreateAccount method to the Bank class.

It will be identical to the existing CreateAccount method except that it will
expect two parameters of type AccountType and decimal and will call the
BankAccount constructor that expects these two parameters.

3. Find the BankAccount constructor that expects a single AccountType
parameter. Change it so that its acc ess is internal rather than public.

4. Add a third CreateAccount method to the Bank class.

It will be identical to the two existing CreateAccount methods except that
it will expect one parameter of type AccountType and will call the
BankAccount constructor that expects this parameter.

5. Find the BankAccount constructor that expects a single decimal parameter.
Change it so that its access is internal rather than public.

6. Add a fourth CreateAccount method to the Bank class.

It will be identical to the three existing CreateAccount methods except that
it will expect one parameter of type decimal and will call the BankAccount
constructor that expects this parameter.

7. Save your work.

8. Compile the program and correct any errors.

 Module 11: Aggregation, Namespaces, and Advanced Scope 27

å To make the Bank class “singleton-like”

1. Change the four overloaded Bank.CreateAccount methods so that they are
static methods.

2. Change the Bank.CloseAccount method so that it is a static method.

3. Change the Bank.GetAccount method so that it is a static method.

4. Add a private Bank constructor to stop Bank objects from being created.

5. Modify CreateAccount.Main in CreateAccount.cs so that it uses the new
static methods and does not create a bank object, as shown in the following
code:

public class CreateAccount
{
 static void Main ()
 {
 Console.WriteLine("Sid's Account");
 long sidsAccNo = Bank.CreateAccount();
 BankAccount sids = Bank.GetAccount(sidsAccNo);
 TestDeposit(sids);
 TestWithdraw(sids);
 Write(sids);
 if (Bank.CloseAccount(sidsAccNo))
 Console.WriteLine("Account closed");
 else
 Console.WriteLine("Something went wrong closing the
Êaccount");
 }
}

6. Save your work.

7. Compile the program, correct any errors, and run the program. Verify that
Sid’s bank account is created and that the deposit and withdrawal appear in
the transaction list if they are successful.

8. Open a Command window and navigate to the install folder\
Labs\Lab11\Exercise 1\Starter\Bank folder. From the command prompt,
create the executable and run it by using the following code:

c:\> csc /out:createaccount.exe *.cs
c:\> dir
...
createaccount
...

9. From the command prompt, run the Intermediate Language Disassembler
(ILDASM), passing the name of the executable as a command-line
parameter, as follows:

c:\> ildasm createaccount.exe

10. Notice that the four classes and the enum are all listed.

11. Close ILDASM.

12. Close the Command window.

28 Module 11: Aggregation, Namespaces, and Advanced Scope

u Using Namespaces

n Scope Revisited

n Resolving Name Clashes

n Declaring Namespaces

n Fully Qualified Names

n Declaring using-namespace-directives

n Declaring using-alias-directives

n Guidelines for Naming Namespaces

In this section, you will learn about scope in the context of namespaces. You
will learn how to resolve name clashes by using namespaces. (Name clashes
occur when two or more classes in the same scope have the same name.) You
will learn how to declare and use namespaces. Finally, you will learn some
guidelines to follow when using namespaces.

 Module 11: Aggregation, Namespaces, and Advanced Scope 29

Scope Revisited

n The Scope of a Name Is the Region of Program Text in
Which You Can Refer to the Name Without Qualification

public class Bank
{

public class Account
{

public void Deposit(decimal amount)
{

balance += amount;
}
private decimal balance;

}
public Account OpenAccount() { ... }

}

public class Bank
{

public class Account
{

public void Deposit(decimal amount)
{

balance += amount;
}
private decimal balance;

}
public Account OpenAccount() { ... }

}

In the code in the slide, there are effectively four scopes:

n The global scope. Inside this scope there is a single member declaration: the
Bank class.

n The Bank class scope. Inside this scope there are two member declarations:
the nested class called Account and the method called OpenAccount. Note
that the return type of OpenAccount can be specified as Account and need
not be Bank.Account because OpenAccount is in the same scope as
Account.

n The Account class scope. Inside this scope there are two member
declarations: the method called Deposit and the field called balance.

n The body of the Account.Deposit method. This scope contains a single
declaration: the amount parameter.

30 Module 11: Aggregation, Namespaces, and Advanced Scope

When a name is not in scope, you cannot use it without qualification. This
usually happens because the scope in which the name was declared has ended.
However, it can also happen when the name is hidden. For example, a derived
class member can hide a base class member, as shown in the following code:

class Top
{
 public void M() { ... }
}
class Bottom: Top
{
 new public void M()
 {
 M(); // Recursion
 base.M(); // Needs qualification to avoid recursion
 ...
 }
}

A parameter name can hide a field name, as follows:

public struct Point
{
 public Point(int x, int y)
 {
 this.x = x; // Needs qualification
 this.y = y; // Needs qualification
 }
 private int x, y;
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 31

Resolving Name Clashes

n Consider a Large Project That Uses 1000s of Classes

n What If Two Classes Have the Same Name?

n Do Not Add Prefixes to All Class Names

// From Vendor A
public class Widget public class VendorAWidget
{ ... } { ... }

// From Vendor B
public class Widget public class VendorBWidget
{ ... } { ... }

// From Vendor A
public class Widget public class VendorAWidget
{ ... } { ... }

// From Vendor B
public class Widget public class VendorBWidget
{ ... } { ... }

ûû

How can you handle the potential problem of two classes in the same scope
having the same name? In C#, you can use namespaces to resolve name clashes.
C# namespaces are similar to C++ namespaces and Java packages. Internal
access is not dependent on namespaces.

32 Module 11: Aggregation, Namespaces, and Advanced Scope

Namespace Example
In the following example, the ability of each Method to call the internal Hello
method in the other class is determined solely by whether the classes (which are
located in different namespaces) are located in the same assembly.

// VendorA\Widget.cs file
namespace VendorA
{
 public class Widget
 {
 internal void Hello()
 {
 Console.WriteLine("Widget.Hello");
 }
 public void Method()
 {
 new VendorB.ProcessMessage().Hello();
 }
 }
}

// VendorB\ProcessMessage.cs file
namespace VendorB
{
 public class ProcessMessage
 {
 internal void Hello()
 {
 Console.WriteLine("ProcessMessage.Hello");
 }
 public void Method()
 {
 new VendorA.Widget().Hello();
 }
 }
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 33

What Happens If You Do Not Use Namespaces?
If you do not use namespaces, name clashes are likely to occur. For example, in
a large project that has many small classes, you can easily make the mistake of
giving two classes the same name.

Consider a large project that is split into a number of subsystems and that has
separate teams working on the separate subsystems. Suppose the subsystems
are divided according to architectural services, as follows:

n User services

A means of allowing users to interact with the system.

n Business services

Business logic used to retrieve, validate, and manipulate data according to
specific business rules.

n Data services

A data store of some type and the logic to manipulate the data.

In this multiple-team project, it is highly likely that name clashes will occur.
After all, the three teams are working on the same project.

Using Prefixes As a Solution
Prefixing each class with a subsystem qualifier is not a good idea because the
names become:

n Long and unmanageable.

The class names quickly become very long. Even if this works at the first
level of granularity, it cannot keep on working without class names
becoming truly unwieldy.

n Complex.

The class names simply become harder to read. Programs are a form of
writing. People read programs. The easier a program is to read and
comprehend, the easier it is to maintain.

34 Module 11: Aggregation, Namespaces, and Advanced Scope

Declaring Namespaces

namespace VendorA
{

public class Widget
{ ... }

}

namespace VendorA
{

public class Widget
{ ... }

}

namespace VendorB
{

public class Widget
{ ... }

}

namespace VendorB
{

public class Widget
{ ... }

}

namespace Microsoft
{

namespace Office
{

...
}

}

namespace Microsoft
{

namespace Office
{

...
}

}

namespace Microsoft.Office
{

}

namespace Microsoft.Office
{

}

shorthandshorthandshorthand

You can use namespaces to show the logical structure of classes in a way that
can be interpreted by the compiler.

You need to specify the structure explicitly in the grammar of the language by
using namespaces. For example, instead of writing

public class VendorAWidget { ... }

you would write

namespace VendorA
{
 public class Widget { ... }
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 35

Namespace Scope
A namespace, unlike a class, is an open scope. In other words, when you close a
namespace, you are allowed to subsequently reopen it, even in a different
source file, as shown in the following code:

// widget.cs
namespace VendorA
{
 public class Widget { ... }
}

// ProcessMessage.cs
namespace VendorA
{
 public class ProcessMessage { ... }
}

There are two important consequences of this:

n Multiple source files

Collaborating classes that are located in a common namespace can still be
implemented across several physical source files (typically one source file
per class) rather than in one large source file. Compare this to nested classes,
for which the definition of all nested classes and the outer class must be in
the same physical source file.

n Extensible namespaces

A new class can be added to a namespace without affecting any of the
classes already inside the namespace. In contrast, adding a new method to
an existing class requires the whole class to be recompiled.

Nesting Namespaces
You can nest a namespace inside another namespace, thus reflecting multiple
levels of organization, as follows:

namespace Outer
{
 namespace Inner
 {
 class Widget { ... }
 }
}

This example is somewhat verbose, and takes a lot of white space, braces, and
indentation. In C++, this syntax must be used. In C#, you can simplify it as
follows:

namespace Outer.Inner
{
 class Widget { ... }
}

36 Module 11: Aggregation, Namespaces, and Advanced Scope

Access Levels for Namespaces
Namespaces are implicitly public. You cannot include any access modifiers
when you declare a namespace, as is shown on the following code:

namespace Microsoft.Office // Okay
{
 ...
}

public namespace Microsoft.Office // Compile-time error
{
 ...
}

private namespace Microsoft.Office // Compile-time error
{
 ...
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 37

Fully Qualified Names

n A Fully Qualified Class Name Includes Its Namespace

n Unqualified Class Names Can Only Be Used in Scope

namespace VendorA
{

public class Widget { ... }
...

}
class Application
{

static void Main()
{

Widget w = new Widget();
VendorA.Widget w = new VendorA.Widget();

}
}

namespace VendorA
{

public class Widget { ... }
...

}
class Application
{

static void Main()
{

Widget w = new Widget();
VendorA.Widget w = new VendorA.Widget();

}
}

ûû üü

When you use a class inside its namespace, you can use its short name, referred
to as its unqualified name. However, if you use a class outside its namespace, it
is out of scope and you must refer to it by its fully qualified name.

Fully Qualified Names
When you create a class that is located inside a namespace, you must use its
fully qualified name if you want to use that class outside its namespace. The
fully qualified name of a class includes the name of its namespace.

In the example on the slide, the class Widget is embedded inside the VendorA
namespace. This means that you cannot use the unqualified name Widget
outside the VendorA namespace. For example, the following code will not
compile if you place it inside Application.Main because Application.Main is
outside the VendorA namespace.

Widget w = new Widget();

You can fix this code by using the fully qualified name for the Widget class, as
follows:

VendorA.Widget w = new VendorA.Widget();

As you can see, using fully qualified names makes code long and difficult to
read. In the next topic, you will learn how to bring class names back into scope
with using-directives.

38 Module 11: Aggregation, Namespaces, and Advanced Scope

Unqualified Names
You can use unqualified names such as Widget only when they are in scope.
For example, the following code will compile successfully because the
Application class has been moved to the VendorA namespace.

namespace VendorA
{
 public class Widget { ... }
}
namespace VendorA
{
 class Application
 {
 static void Main()
 {
 Widget w = new Widget(); // Okay
 }
 }
}

Namespaces allow classes to be logically grouped together inside a
named space. The name of the enclosing space becomes part of the full name of
the class. However, there is no implicit relationship between a namespace and a
project or assembly. An assembly can contain classes from different
namespaces, and classes from the same namespace can be located in different
assemblies.

Important

 Module 11: Aggregation, Namespaces, and Advanced Scope 39

Declaring using-namespace-directives

n Effectively Brings Names Back into Scope

using VendorA.SuiteB;

class Application
{

static void Main()
{

Widget w = new Widget();
}

}

using VendorA.SuiteB;

class Application
{

static void Main()
{

Widget w = new Widget();
}

}

namespace VendorA.SuiteB;
{

public class Widget { ... }
}

namespace VendorA.SuiteB;
{

public class Widget { ... }
}

With namespace directives, you can use classes outside their namespaces
without using their fully qualified names. In other words, you can make long
names short again.

Using the Members of a Namespace
You use the using-namespace-directives to facilitate the use of namespaces and
types defined in other namespaces. For example, the following code from the
slide would not compile without the using-namespace-directive.

Widget w = new Widget();

The compiler will return an error that would rightly indicate that there is no
global class called Widget. However, with the using VendorA directive, the
compiler is able to resolve Widget because there is a class called Widget inside
the VendorA namespace.

40 Module 11: Aggregation, Namespaces, and Advanced Scope

Nested Namespaces
You can write a using-directive that uses a nested namespace. The following
code provides an example:

namespace VendorA.SuiteB
{
 public class Widget { ... }
}

//...new file...
using VendorA.SuiteB;

class Application
{
 static void Main()
 {
 Widget w = new Widget();
 ...
 }
}

Declaring using-namespace-directives at Global Scope
The using-namespace-directives must appear before any member declarations
when they are used in global scope, as follows:

//...new file...
class Widget
{
 ...
}
using VendorA;
// After class declaration: Compile-time error

//...new file...
namespace Microsoft.Office
{
 ...
}
using VendorA;
// After namespace declaration: Compile-time error

 Module 11: Aggregation, Namespaces, and Advanced Scope 41

Declaring using-directives Inside a Namespace
You can also declare using-directives inside a namespace before any member
declarations, as follows:

//...new file...
namespace Microsoft.Office
{
 using VendorA; // Okay

 public class Widget { ... }
}
namespace Microsoft.PowerPoint
{
 using VendorB; // Okay

 public class Widget { ... }
}
//...end of file...

When used like this, inside a namespace, the effect of a using-namespace-
directive is strictly limited to the namespace body in which it appears.

using-namespace-directives Are Not Recursive
A using-namespace-directive allows unqualified access to the types contained
in the given namespace, but specifically does not allow unqualified access to
nested namespaces. For example, the following code fails to compile:

namespace Microsoft.PowerPoint
{
 public class Widget { ... }
}
namespace VendorB
{
 using Microsoft; // but not Microsoft.PowerPoint

 class SpecialWidget: PowerPoint.Widget { ... }
 // Compile-time error
}

This code will not compile because the using-namespace-directive gives
unqualified access to the types contained in Microsoft, but not to the
namespaces nested in Microsoft. Thus, the reference to PowerPoint.Widget in
SpecialWidget is in error because no members named PowerPoint are
available.

42 Module 11: Aggregation, Namespaces, and Advanced Scope

Ambiguous Names
Consider the following example:

namespace VendorA
{
 public class Widget { ... }
}
namespace VendorB
{
 public class Widget { ... }
}
namespace Test
{
 using VendorA;
 using VendorB;

 class Application
 {
 static void Main()
 {
 Widget w = new Widget(); // Compile-time error
 ...
 }
 }
}

In this cas e, the compiler will return a compile-time error because it cannot
resolve Widget. The problem is that there is a Widget class inside both
namespaces, and both namespaces have using-directives. The compiler will not
select Widget from VendorA rather than VendorB because A comes before B
in the alphabet!

Note however, that the two Widget classes only clash when there is an attempt
to actually use the unqualified name Widget. You can resolve the problem by
using a fully qualified name for Widget, thus associating it with either
VendorA or VendorB. You can also rewrite the code without using the name
Widget at all, as follows, and there would be no error:

namespace Test
{
 using VendorA;
 using VendorB;

 // Okay. No error here.

 class Application
 {
 static void Main(String[] args)
 {
 Widget w = new VendorA.Widget();
 return 0;
 }
 }
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 43

Declaring using-alias-directives

n Creates an Alias for a Deeply Nested Namespace or
Type

using Widget = VendorA.SuiteB.Widget;

class Application
{

static void Main()
{

Widget w = new Widget();
}

}

using Widget = VendorA.SuiteB.Widget;

class Application
{

static void Main()
{

Widget w = new Widget();
}

}

namespace VendorA.SuiteB
{

public class Widget { ... }
}

namespace VendorA.SuiteB
{

public class Widget { ... }
}

The using-namespace-directive brings all the types inside the namespace into
scope.

Creating Aliases for Types
You can use a using-alias-directive to facilitate the use of a type that is defined
in another namespace. In the code on the slide, without the using-alias-directive,
the line

Widget w = new Widget();

would, once again, fail to compile. The compiler would rightly indicate that
there is no global class called Widget. However, with the using Widget
= ... directive, the compiler is able to resolve Widget because Widget is now
a name that is in scope. A using-alias-directive never creates a new type. It
simply creates an alias for an existing type. In other words, the following three
statements are identical:

Widget w = new Widget(); // 1
VendorA.SuiteB.Widget w = new Widget(); // 2
Widget w = new VendorA.SuiteB.Widget(); // 3

44 Module 11: Aggregation, Namespaces, and Advanced Scope

Creating Aliases for Namespaces
You can also use a using-alias-directive to facilitate the use of a namespace.
For example, the code on the slide could be reworked slightly as follows:

namespace VendorA.SuiteB
{
 public class Widget { ... }
}

//... new file ...
using Suite = VendorA.SuiteB;

class Application
{
 static void Main()
 {
 Suite.Widget w = new Suite.Widget();
 }
}

Declaring using-alias-directives at Global Scope
When declaring using-alias-directives at global scope, you must place them
before any member declarations. The following code provides an example:

//...new file...
public class Outer
{
 public class Inner
 {
 ...
 }
}
// After class declaration: Compile-time error
using Doppelganger = Outer.Inner;
...

//...new file...
namespace VendorA.SuiteB
{
 public class Outer
 {
 ...
 }
}
// After namespace declaration: Compile-time error
using Suite = VendorA.SuiteB;
...

 Module 11: Aggregation, Namespaces, and Advanced Scope 45

Declaring using-alias-directives Inside a Namespace
You can also place using-alias-directives inside a namespace before any
member declarations, as follows:

//...new file...
namespace Microsoft.Office
{
 using Suite = VendorA.SuiteB; // Okay

 public class SpecialWidget: Suite.Widget { ... }
}
...
namespace Microsoft.PowerPoint
{
 using Widget = VendorA.SuiteB.Widget; // Okay

 public class SpecialWidget: Widget { ... }
}
//...end of file...

When you declare a using-alias-directive inside a namespace, the effect is
strictly limited to the namespace body in which it appears. The following code
exemplifies this:

namespace N1.N2
{
 class A { }
}
namespace N3
{
 using R = N1.N2;
}
namespace N3
{
 class B: R.A { } // Compile-time error: R unknown here
}

46 Module 11: Aggregation, Namespaces, and Advanced Scope

Mixing using-directives
You can declare using-namespace-directives and using-alias-directives in any
order. However, using-directives never affect each other; they only affect the
member declarations that follow them, as is shown in the following code:

namespace VendorA.SuiteB
{
 using System;
 using TheConsole = Console; // Compile-time error

 class Test
 {
 static void Main()
 {
 Console.WriteLine("OK");
 }
 }
}

Here the use of Console in Test.Main is allowed because it is part of the Test
member declaration that follows the using-directives. However, the using-alias-
directive will not compile becaus e it is unaffected by the preceding using-
namespace-directive. In other words it is not true that

using System;
using TheConsole = Console;

is the same as

using System;
using TheConsole = System.Console;

Note that this means that the order in which you write using-directives is not
significant.

 Module 11: Aggregation, Namespaces, and Advanced Scope 47

Guidelines for Naming Namespaces

n Use PascalCasing to Separate Logical Components

l Example: VendorA.SuiteB

n Prefix Namespace Names with a Company Name or
Well-Established Brand

l Example: Microsoft.Office

n Use Plural Names When Appropriate

l Example: System.Collections

n Avoid Name Clashes Between Namespaces and Classes

The following are guidelines that you should follow when naming your
namespaces.

Using PascalCasing
Use PascalCasing rather than the camelCasing style when naming namespaces.
Namespaces are implicitly public, so this follows the general guideline that all
public names should use the PascalCas ing notation.

Using Global Prefixes
In addition to providing a logical grouping, namespaces can also decrease the
likelihood of name clashes. You can minimize the risk of name clashes by
choosing a unique top-level namespace that effectively acts as a global prefix.
The name of your company or organization is a good top-level namespace.
Within this namespace, you can include sublevel namespaces if you want. For
example, you could use the name of the project as a nested namespace within
the company-name namespace.

48 Module 11: Aggregation, Namespaces, and Advanced Scope

Using Plural Names When Appropriate
Although it almost never makes sense to name a class with a plural name, it
does sometimes make sense for a namespace. There is a namespace in the .NET
software development kit (SDK) framework called Collections (which is
located in the System namespace), for example. The name of a namespace
should reflect its purpose, which is to collect together a group of related classes.
Try to choose a name that corresponds to the collective task of these related
classes. It is easy to name a namespace when its classes collaborate to achieve a
clearly defined objective.

Avoiding Name Clashes
Avoid using namespaces and classes that have the same name. The following is
allowed but not a good idea:

namespace Wibble
{
 class Wibble
 {
 ...
 }
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 49

u Using Modules and Assemblies

n Using Modules

n Using Assemblies

n Creating Assemblies

n Comparing Namespaces to Assemblies

n Using Versioning

In this section, you will learn how to deploy C# assemblies. Source files can be
compiled directly into portable executable (PE) files. However, source files can
also be compiled into .NET dynamic -link library (DLL) modules. These DLL
modules can be combined into .NET assemblies. The assemblies are the top-
level units of deployment, and their constituent modules are the units of
download within an assembly.

You will learn about the differences between namespaces and assemblies.
Finally, you will learn how versioning works in .NET assemblies and how to
use versioning to resolve DLL conflicts.

50 Module 11: Aggregation, Namespaces, and Advanced Scope

Using Modules

n .cs Files Can Be Compiled into a .NET DLL Module

n .NET DLL Modules Are the Units of Dynamic Download

// Create an executable directly
csc /out:app.exe /t:exe bank.cs app.cs
// Create an executable directly
csc /out:app.exe /t:exe bank.cs app.cs

// Create a DLL module
csc /out:bank.mod /t:module bank.cs
// Create a DLL module
csc /out:bank.mod /t:module bank.cs

A .NET DLL is called a module and is the next evolution of a traditional DLL.

Creating an Executable
You can compile .cs source files directly into a PE file. You do this by using the
/target:exe switch (which can be abbreviated to /t:exe) on the CSC command-
line compiler. PE files contain the Microsoft intermediate language (MSIL)
code for the .cs source files.

When you create a PE file, the CSC compiler will add a command-line option
to reference the mscorlib.dll. In other words, the command line

c:\> csc /out:app.exe /t:exe bank.cs app.cs

is equivalent to

c:\> csc /out:app.exe /t:exe /r:mscorlib.dll bank.cs app.cs

The /r:mscorlib.dll is a shorthand form of /reference:mscorlib.dll. The
mscorlib.dll is the assembly that contains some of the essential .NET SDK
classes, such as System.Console.

The /out:app.exe switch is a command-line switch that controls the name of the
PE file that is being created. If you do not specify the /out option, the name of
the PE file will be based on the name of this first .cs file. For example, you can
use the following code to create an executable named bank.exe:

c:/> csc /t:exe bank.cs app.cs

The executable will be called bank.exe because bank.cs is named before app.cs
on the command line.

 Module 11: Aggregation, Namespaces, and Advanced Scope 51

Creating a DLL Module
You can also compile one or more .cs files into a DLL module. The following
command creates a DLL module file called bank.dll from a single source file
bank.cs:

c:\> csc /out:bank.dll /target:module bank.cs

Notice that in this case the option used on the /target switch is module rather
than exe . Modules and assemblies are both essentially DLL files. However,
there are important differences (which will be explained later in this module),
so it is a good idea to give your modules a different extension such as .mod.
(This will also prevent people from accidentally trying to execute them!)

c:\> csc /out:bank.mod /target:module bank.cs

If you do not use the /out switch, the name of the DLL module will be based on
the name of the first .cs file on the command line. For example, you can use the
following code to create a DLL module called bank.dll:

c:\> csc /target:module bank.cs bankaccount.cs

DLL modules must be self-contained. For example, if class A is defined in a.cs
and the definition of A uses class B, which is defined in b.cs, the following
code will fail:

c:\> csc /out:a.mod /target:module a.cs

Instead, you must use the following code:

c:\> csc /out:ab.mod /target:module a.cs b.cs

52 Module 11: Aggregation, Namespaces, and Advanced Scope

Using Assemblies

n Group of Collaborating Classes

l Reusable, versionable, and secure deployment unit

n Physical Access Control at Assembly Level

l Internal

an assembly
of four classes

public
internal
private

Executables can only use modules that have been added to an assembly.

What Is an Assembly?
You can physically deploy a group of collaborating classes in an assembly. You
can think of an assembly as a logical DLL. Classes that are located inside the
same assembly have access to each other’s internal members (and classes
located outside the assembly do not have access to these members).

An assembly is a reusable, versionable, secure, and self -describing deployment
unit for types and resources; it is the primary building block of a .NET
application. An assembly consists of two logical pieces: the set of types and
resources that form some logical unit of functionality, and metadata that
describes how these elements relate and what they depend on to work properly.
The metadata that describes an assembly is called a manifest. The following
information is captured in an assembly manifest:

n Identity. An assembly’s identity includes its simple textual name, a version
number, an optional culture if the assembly contains localized resources,
and an optional public key used to guarantee name uniqueness and to
protect the name from unwanted reuse.

n Contents. Assemblies contain types and resources. The manifest lists the
names of all of the types and resources that are visible outside the assembly,
and information about where they can be found in the assembly.

n Dependencies. Each assembly explicitly describes other assemblies that it is
dependent upon. Included in this dependency information is the version of
each dependency that was present when the manifest was built and tested. In
this way, you record a configuration that you know to be good, which you
can revert to in the event of failures because of version mismatches.

 Module 11: Aggregation, Namespaces, and Advanced Scope 53

In the simplest case, an assembly is a single DLL. This DLL contains the code,
resources, type metadata, and assembly metadata (manifest). In the more
general case, however, assemblies consist of a number of files. In this case, the
assembly manifest either exists as a standalone file or is contained in one of the
PE files that contain types, resources, or a combination of the two.

The types declared and implemented in individual components are exported for
use by other implementations by the assembly in which the component
participates. Effectively, assemblies establish a name scope for types.

54 Module 11: Aggregation, Namespaces, and Advanced Scope

Creating Assemblies

n .NET DLL Modules Must Be Added to a .NET Assembly

n Assembly = MSIL + (module*n1) + (resource*n2) +
manifest

n Assemblies Are the Unit of Deployment and Versioning

// Create an executable that references an assembly
csc /out:app.exe /t:exe /reference:bank.dll app.cs
// Create an executable that references an assembly
csc /out:app.exe /t:exe /reference:bank.dll app.cs

// Create an assembly from source files
csc /out:bank.dll /t:library bank.cs
// Create an assembly from source files
csc /out:bank.dll /t:library bank.cs

// Create an assembly from DLL modules using assembly linker
al /out:bank.dll /t:library bank.mod other.mod x
// Create an assembly from DLL modules using assembly linker
al /out:bank.dll /t:library bank.mod other.mod x

A .NET module cannot be directly used in an executable. Executables can only
use modules that have been added to an assembly.

Creating an Assembly from Source Files
You can create an assembly directly from one or more .cs source files, as
follows:

c:/> csc /out:bank.dll /target:library bank.cs

Note that the /target switch is library rather than exe or module. You can
inspect assembly files by using the Intermediate Language Disassembler
(ILDASM) tool, as shown in the following code:

c:/> ildasm bank.dll

In this case, the types declared in the .cs files are contained directly inside the
assembly.

 Module 11: Aggregation, Namespaces, and Advanced Scope 55

Creating an Assembly from DLL Modules
Suppose the AccountType, BankAccount, and BankTransaction types are
located in three separate source files and have each been compiled into
individual modules called at.mod, ba.mod, and bt.mod, respectively. You can
then create an assembly based on bank.cs, and at the same time add in the three
module files:

c:/> csc /out:bank.dll /target:library
 Ê/addmodule:at.mod;ba.mod;bt.mod bank.cs

If you run ILDASM on the resulting bank.dll assembly, you will see the
following:

56 Module 11: Aggregation, Namespaces, and Advanced Scope

Note that only the bank class (in the Banking namespace) from bank.cs is
directly contained in the assembly. The assembly contains the MSIL code for
the bank class directly. The three module files are only logically contained
inside the assembly. By opening the Manifest window, you can see what is
happening, as shown in the following example:

Notice that the .mod module files are held inside the assembly as named links
to the external .mod files.

.module extern 'at.mod'

Notice too that bank.dll itself is an assembly:

.assembly 'bank' as "bank"

You can also use the Assembly Linker utility (AL.exe) to create assemblies. For
example, suppose b.mod module was created from bank.cs. All four module
files could then be combined to create the bank.dll assembly:

c:\> al /out:bank.dll /t:library b.mod ba.mod bt.mod at.mod

 Module 11: Aggregation, Namespaces, and Advanced Scope 57

If you run ILDASM on the resulting bank.dll assembly, you will see the
contents of the assembly, as shown:

This time the assembly does not physically contain any types at all. The types
are all logically inside the assembly by being named as external modules in the
assembly:

Creating an Executable That References an Assembly
To create an executable file that uses an assembly, you must reference the
assembly by using the /reference switch (or its short form, /r), as shown in the
following code:

c:\> csc /out:app.exe /t:exe /r:bank.dll app.cs

You can then execute app.exe, and it will dynamically link in bank.dll and all of
the modules contained inside bank.dll on a load-on-demand basis. If you delete
the bank.dll assembly and try to run app.exe, the following exception will be
generated:

Exception occured: System.TypeLoadException: Could not load
Êclass ...

You can only reference assemblies, not modules.

58 Module 11: Aggregation, Namespaces, and Advanced Scope

Private Assemblies
The assemblies created so far have all been saved in the same folder as the
executing program that references them. Such assemblies are called private
assemblies and cannot be shared with other executing programs (unless those
programs are also saved in the same folder).

You can share an assembly by installing it in the Global Assembly Cache (GAC)
by using the /install option of the AL.exe utility. Details about shared
assemblies are beyond the scope of this course.

You can also install private assemblies in subfolders below the executables
folder. You can then create an XML-based configuration file that specifies the
name of this subfolder. Details about the configuration file are also beyond the
scope of this course.

 Module 11: Aggregation, Namespaces, and Advanced Scope 59

Comparing Namespaces to Assemblies

n Namespace: Logical Naming Mechanism

l Classes from one namespace can reside in
many assemblies

l Classes from many namespaces can reside in
one assembly

n Assembly: Physical Grouping Mechanism

l Assembly MSIL and manifest are contained directly

l Assembly modules and resources are external links

A namespace is a logical compile-time mechanism. Its purpose is to provide
logical structure to the names of source code entities. Namespaces are not run-
time entities.

An assembly is a physical run-time mechanism. Its purpose is to provide a
physical structure to the run-time components that make up an executable.

Comparing Namespaces to Assemblies
You can deploy classes that are located in the same namespace into different
assemblies. You can deploy classes that are located in different namespaces into
one assembly. However, it is a good idea to maintain as close a logical-physical
correspondence as possible.

Namespaces and assemblies are alike insofar as the physical locations of their
elements:

n The elements of a namespace do not need to physically reside in a single
source file. The elements of a namespace can (and, as a broad principle,
should) be maintained in separate source files.

n The element references by an assembly do not need to reside directly inside
the assembly. As you have seen, the modules inside a namespace are not
physically contained inside the assembly. Instead, the assembly records a
named link to the external module.

60 Module 11: Aggregation, Namespaces, and Advanced Scope

Using Versioning

n When Versioning Assemblies:

l Make sure all assemblies have a version number

l Remember that assemblies differing only by version can co-exist

l Never modify an existing assembly; instead create a new assembly
with a new version

Each assembly has a specific compatibility version number as part of its
identity. Because of this, two assemblies that differ by compatibility version are
completely different assemblies to the .Common Language Runtime class
loader.

Version Number Format
The compatibility version number is physically represented as a four-part
number with the following format:

<major version>.<minor version>.<revision>.<build number>

Each portion of this number has a specific meaning to the .NET runtime. As
shown on the slide, the .NET runtime can determine the following information
about an assembly from its version number:

n It is incompatible. A change has been made to the assembly that is known to
be incompatible with previous versions. A major new release of the product
would be an example of this.

n It might be compatible. A change has been made to the assembly that is
thought to be compatible and carries less risk than an incompatible change.
However, backwards compatibility is not guaranteed. A service pack or a
release of a new daily build would be an example of this.

n Quick Fix Engineering (QFE). This is an engineering fix to which
customers should upgrade. An emergency security fix would be an example
of this.

 Module 11: Aggregation, Namespaces, and Advanced Scope 61

Specifying a Version Number
When you create an assembly, you can specify the version number by using the
/a switch, as shown in the following code:

c:\> csc /out:bank.dll /t:library *.cs /a.version:2.0.6.19

This will cause the manifest to look as follows:

Notice that the bank assembly now has a version number specified as

.ver 2:0:6:19

Notice also that the external mscorlib.dll has a version number specified as

.ver 2000:14:1812:10

62 Module 11: Aggregation, Namespaces, and Advanced Scope

You can also inspect an assembly version number by viewing the assembly’s
properties, as shown in the following property sheet:

Resolving DLL Conflicts
In earlier versions of Microsoft Windows®, it was not possible to load two DLL
files that had the same name into a single process. This created a serious
problem for developers and users. A DLL upgrade was installed by overwriting
the existing DLL file and modifying the registry for each user. This could easily
introduce bugs into other applications that shared the original DLL. It is this
DLL upgrade problem rather than Windows itself that caused most user
problems. As a result, many developers avoid using shared DLLs in
applications.

Windows 2000 and Windows Millennium Edition can overcome DLL conflicts
because they are able to load two assemblies that have the same name but
different version numbers. This ability to load different versions of the same
assembly is called side-by-side execution. (Only shared assemblies can be
loaded side by side.)

This initiates a new model of development. An existing assembly should never
be modified. To fix bugs or add new features, create a new assembly that has
the same name but a later version number. Different versions of the assembly
can then exist side by side, and individual applications can be configured (using
text-based XML-base configuration files) to use assemblies with specific
version numbers. This is a revolutionary innovation. It means that new versions
of an assembly do not have to maintain backward compatibility. Assemblies are
write-once files.

 Module 11: Aggregation, Namespaces, and Advanced Scope 63

Lab 11.2: Using Namespaces and Assemblies

Objectives
After completing this lab, you will be able to:

n Use aggregation to group objects in a hierarchy.

n Organize classes into namespaces.

Prerequisites
Before working on this lab, you must be able to:

n Create classes.

n Use constructors and destructors.

n Use private and public access modifiers.

Estimated time to complete this lab: 30 minutes

64 Module 11: Aggregation, Namespaces, and Advanced Scope

Exercise 1
Organizing Classes

In this exercise, you will organize classes into a Banking namespace and create
and reference an assembly. To do this, you will:

1. Place the AccountType enum and the Bank , BankAccount, and
BankTransaction classes into the Banking namespace, and compile it as a
library.

2. Modify the test harness. Initially, it will refer to the classes by using fully
qualified names. You will then modify it with an appropriate using-directive.

3. Compile the test harness into an assembly that references the Banking
library.

4. Use the ILDASM tool to verify that the test harness .exe refers to the
Banking DLL and does not actually contain the Bank and BankAccount
classes itself.

å To place all of the classes into the Banking namespace

1. Open the Bank.sln project in the install folder\Labs\Lab11\
Exercise 2\Starter \Bank folder.

2. Edit the AccountType enum in AccountType.cs so that it is nested inside
the Banking namespace, as follows:

namespace Banking
{
 public enum AccountType { ... }
}

3. Edit the Bank class in Bank.cs so that it is nested inside the Banking
namespace, as follows:

namespace Banking
{
 public class Bank
{
 ...
}
}

4. Edit the BankAccount class in BankAccount.cs so that it is nested inside
the Banking namespace, as follows:

namespace Banking
{
 public class BankAccount
{
 ...
}
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 65

5. Edit the BankTransaction class in BankTransaction.cs so that it is nested
inside the Banking namespace, as follows:

namespace Banking
{
 public class BankTransaction
{
 ...
}
}

6. Save your work.

7. Compile the program. It will fail to compile. The references to Bank,
BankAccount, and BankTransaction in the CreateAccount.cs file cannot
be resolved because these classes are now located inside the Banking
namespace. Modify CreateAccount.Main to explicitly resolve all of these
references. For example,

static void write(BankAccount acc) { ... }

will become

static void write(Banking.BankAccount acc) { ... }

8. Save your work.

9. Compile the program and correct any errors. Verify that Sid’s bank account
is created and that the deposit and withdrawal appear in the transaction list if
they are successful.

10. Open a Command window, and navigate to the install folder\
Labs\Lab11\Exercise2\Starter \Bank folder. From the command prompt,
create the executable, as shown in the following code:

c:\> csc /out:createaccount.exe *.cs
c:\> dir
...
createaccount.exe
...

11. From the command prompt, run ILDASM, passing the name of the
executable as a command-line parameter, as follows:

c:\> ildasm createaccount.exe

12. Notice that the three classes and the enum are now listed inside the
Banking namespace and that the CreateAccount class is present.

13. Close ILDASM.

66 Module 11: Aggregation, Namespaces, and Advanced Scope

å To create and use a Banking library

1. Open a Command window, and navigate to the install folder\
Labs\Lab11\Exercise2\Starter \Bank folder. From the command prompt,
create the banking library as follows:

c:\> csc /target:library /out:bank.dll a*.cs b*.cs
c:\> dir
...
bank.dll
...

2. From the command prompt, run ILDASM, passing the name of the DLL as
a command-line parameter, as follows:

c:\> ildasm bank.dll

3. Notice that the three “Bank*” classes and the enum are still listed inside the
Banking namespace, but the CreateAccount class is no longer present.
Close ILDASM.

4. From the command prompt, compile the test harness inside
CreateAccount.cs into an assembly that references the Banking library
bank.dll, as follows:

c:\> csc /reference:bank.dll createaccount.cs
c:\> dir
...
createaccount.exe
...

5. From the command prompt, run ILDASM, passing the name of the
executable as a command-line parameter, as follows:

c:\> ildasm createaccount.exe

6. Notice that the four classes and the enum are no longer part of
createaccount.exe. Double-click the MANIFEST item in ILDASM to open
the Manifest window. Look at the manifest. Notice that the executable
references, but does not contain, the banking library:

.assembly extern bank

7. Close ILDASM.

 Module 11: Aggregation, Namespaces, and Advanced Scope 67

å To simplify the test harness with a using-directive

1. Edit CreateAccount.cs, and remove all occurrences of the Banking
namespace. For example,

 static void write(Banking.BankAccount acc) { ... }

will become

 static void write(BankAccount acc) { ... }

2. Save your work.

3. Attempt to compile the program. It will fail to compile. Bank,
BankAccount, and BankTransaction still cannot be found.

4. Add to the beginning of CreateAccount.cs a using-directive that uses
Banking, as follows:

using System;
using System.Collections;
using Banking;

5. Compile the program, correct any errors, and run the program. Verify that
Sid’s bank account is created and that the deposit and withdrawal appear in
the transaction list if they are successful.

68 Module 11: Aggregation, Namespaces, and Advanced Scope

å To investigate internal methods

1. Edit the Main method in the CreateAccount.cs test harness. Add a single
statement that creates a new BankTransaction object, as follows:

static void Main()
{
 new BankTransaction(0.0M);
 ...
}

2. Open a Command window, and navigate to the install folder\
Labs\Lab11\Exercise2\Starter \Bank folder. From the command prompt, use
the following line of code to verify that you can create an executable that
does not use the banking library:

c:\> csc /out:createaccount.exe *.cs

3. From the command prompt, verify that you can create an executable that
does use the banking library:

c:\> csc /target:library /out:bank.dll a*.cs b*.cs
c:\> csc /reference:bank.dll createaccount.cs

4. The extra statement in Main will not create problems in either case. This is
because the BankTransaction constructor in BankTransaction.cs is
currently public.

5. Edit the BankTransaction class in BankTransaction.cs so that its
constructor and Dispose method have internal access.

6. Save your work.

7. From the command prompt, verify that you can still create an executable
that does not use the banking library:

c:\> csc /out:createaccount.exe *.cs

8. From the command prompt, verify that you cannot create an executable that
does use the banking library:

c:\> csc /target:library /out:bank.dll a*.cs b*.cs
c:\> csc /reference:bank.dll createaccount.cs
....error: Banking.BankTransaction.BankTransaction(decimal)
is inaccessible because of its protection level

9. Remove from CreateAccount.Main the extra statement that creates a new
BankTransaction object.

10. Verify that you can once again compile the test harness into an assembly
that references the Banking library:

c:\> csc /target:library /out:bank.dll a*.cs b*.cs
c:\> csc /reference:bank.dll createaccount.cs

 Module 11: Aggregation, Namespaces, and Advanced Scope 69

Review

n Using Internal Classes, Methods, and Data

n Using Aggregation

n Using Namespaces

n Using Modules and Assemblies

1. Imagine that you have two .cs files. The alpha.cs file contains a class called
Alpha that contains an internal method called Method. The beta.cs file
contains a class called Beta that also contains an internal method called
Method. Can Alpha.Method be called from Beta.Method, and vice versa?

2. Is aggregation an object relationship or a class relationship?

70 Module 11: Aggregation, Namespaces, and Advanced Scope

3. Will the following code compile without error?

namespace Outer.Inner
{
 class Wibble { }
}
namespace Test
{
 using Outer.Inner;
 class SpecialWibble: Inner.Wibble { }
}

4. Can a .NET executable program directly reference a .NET DLL module?

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Introduction to Operators 2

Operator Overloading 8

Lab 12.1: Defining Operators 21
Creating and Using Delegates 40

Defining and Using Events 50

Demonstration: Handling Events 56
Lab 12.2: Defining and Using Events 57

Module 12: Operators,
Delegates, and Events

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applicat ions, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN,
PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media
are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other
countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 12: Operators, Delegates, and Events 1

Overview

n Introduction to Operators

n Operator Overloading

n Creating and Using Delegates

n Defining and Using Events

This module covers three areas of useful functionality that can be implemented
in a class or struct: operators, delegates, and events.

Operators are the basic components of a language. You use operators to
perform manipulations and comparisons between variables that may be logical,
relational, or conditional in nature.

Delegates specify a contract between an object that issues calls to a function
and an object that implements the called function.

Events provide the way for a class to notify its clients when a change occurs in
the state of any of its objects.

After completing this module, you will be able to:

n Define operators, to make a class or struct easier to use.

n Use delegates to decouple a method call from a method implementation.

n Add event specifications to a class to allow subscribing classes to be
notified of changes in object state.

2 Module 12: Operators, Delegates, and Events

u Introduction to Operators

n Operators and Methods

n Predefined C# Operators

n Conversion Operators

Operators are different from methods. They have special requirements that
enable them to function as expected. C# has a number of predefined operators
that you can use to manipulate the types and classes supplied with the
Microsoft® .NET Framework.

In this section, you will see why C#, like most languages, has operators. You
will be presented with the complete list of operators that C# supports. You will
learn to use operators to convert data from one type to another, and you will be
introduced to the concept of defining your own operators.

 Module 12: Operators, Delegates, and Events 3

Operators and Methods

n Using Methods

l Reduces clarity

l Increases risk of errors, both syntactic and semantic

n Using Operators

l Makes expressions clear

myIntVar1 = Int.Add(myIntVar2,
Int.Add(Int.Add(myIntVar3,

myIntVar4), 33));

myIntVar1 = Int.Add(myIntVar2,
Int.Add(Int.Add(myIntVar3,

myIntVar4), 33));

myIntVar1 = myIntVar2 + myIntVar3 + myIntVar4 + 33;myIntVar1 = myIntVar2 + myIntVar3 + myIntVar4 + 33;

The purpose of operators is to make expressions clear and easy to understand. It
would be possible to have a language with no operators, relying instead on
well-defined methods, but this would most likely have an adverse affect on the
clarity of the language.

Using Methods
For example, suppose the arithmetic addition operator was not present, and the
language instead provided an Add method of the Int class that took parameters
and returned a result. Then, to add two variables, you would write code similar
to the following:

myIntVar1 = Int.Add(myIntVar2, myIntVar3);
myIntvar2 = Int.Add(myIntVar2, 1);

4 Module 12: Operators, Delegates, and Events

Using Operators
By using the arithmetic addition operator, you can write the more concise lines
of code that follow:

myIntVar1 = myIntVar2 + myIntVar3;
myIntVar2 = myIntVar2 + 1;

Code would become almost indecipherable if you were to add a series of values
together by using the Add method, as in the following code:

myIntVar1 = Int.Add(myIntVar2, Int.Add(Int.Add(myIntVar3,
ÊmyIntVar4), 33));

If you use methods in this way, the likelihood of errors, both syntactic and
semantic, is enormous. Operators are actually implemented as methods by C#,
but their syntax is designed to make them easy to use. The C# compiler and
runtime automatically convert expressions with operators into the correct series
of method calls.

 Module 12: Operators, Delegates, and Events 5

Predefined C# Operators

Type informationAssignment

Indirection and addressOverflow exception control

Object creationRelational

Delegate concatenation and
removal

Shift

ConditionalIncrement and decrement

CastString concatenation

IndexingLogical (Boolean and
bitwise)

Member accessArithmetic

Operator Categories

The C# language provides a large set of predefined operators. Following is the
complete list.

Operator category Operators

Arithmetic +, -, *, /, %

Logical (Boolean and bitwise) &, |, ^, !, ~, &&, ||, true, false

String concatenation +

Increment and decrement ++, --

Shift <<, >>

Relational ==, !=, <, >, <=, >=

Assignment =, +=, -=, *=, /=, %=, &=, |=, <<=, >>=

Member access .

Indexing []

Cast ()

Conditional ? :

Delegate concatenation and remo val +, -

Object creation new

Type information is, sizeof, typeof

Overflow exception control checked, unchecked

Indirection and address *, ->, [], &

6 Module 12: Operators, Delegates, and Events

You use operators for building expressions. The function of most operators is
well understood. For example, the addition operator (+) in the expression
10 + 5 will perform arithmetic addition, and in this example the expression
will yield the value of 15.

Some of the operators may not be as familiar as others, and some are defined as
keywords rather than symbols, but their functionality with the data types and
classes supplied with the .NET Framework is completely defined.

Operators with Multiple Definitions
A confusing aspect of operators is that the same symbol may have several
different meanings. The + in the expression 10 + 5 is clearly the arithmetic
addition operator. You can determine the meaning by the context in which it is
used— no other meaning of + makes sense.

However, the following example uses the + operator to concatenate strings:

"Adam " + "Barr"

It is the function of the parser, when the program is compiled, to determine the
meaning of an operator in any given context.

 Module 12: Operators, Delegates, and Events 7

Conversion Operators

n Implicit Conversion Is Safe

n Explicit Conversion Requires a Cast

int intVar = 99;
float floatVar;
floatVar = intVar;

int intVar = 99;
float floatVar;
floatVar = intVar;

float floatVar = 99.9F;
int intVar;
intVar = (int)floatVar;

float floatVar = 99.9F;
int intVar;
intVar = (int)floatVar;

By using the predefined C# operators, you can convert data of one type to
another type. Data conversion can be implicit or explicit.

An implicit conversion is one that is guaranteed not to lose information. An
explicit conversion may lose information. An explicit conversion is specified
by using a cast, and it becomes the programmers’ responsibility to handle any
lost data.

Implicit Conversions
When an implicit conversion is performed, you may not even be aware that it
has happened. The following code provides an example:

int intVar = 99;
float floatVar;
floatVar = intVar; // Implicit conversion from int to float

In this example, the compiler generates code that automatically converts the
value in intVar into a floating-point value before storing the result in floatVar.
Converting from an int to a float is considered a safe conversion by C# because
there will be no loss of data.

Explicit Conversions
Some types of conversions are not considered to be safe by the compiler. For
example, converting from a float to an int is not safe:

float floatVar = 99.9F;
int intVar;
intVar = (int)floatVar; // Explicit – a cast is needed

In this case, you must use casting to perform explicit data conversion. The
conversion could result in some loss of data. In the preceding code, the value
stored in intVar will be 99 and the 0.9 will be lost. Without the cast, the
program will not compile.

8 Module 12: Operators, Delegates, and Events

u Operator Overloading

n Introduction to Operator Overloading

n Overloading Relational Operators

n Overloading Logical Operators

n Overloading Conversion Operators

n Overloading Operators Multiple Times

n Quiz: Spot the Bugs

Many predefined operators in C# perform well-defined functions on classes and
other data types. This clear definition widens the scope of expression for the
user. You can redefine some of the operators provided by C# and use them as
operators that work only with classes and structs that you have defined. In a
sense, this is the same as defining your own operators. This process is known as
operator overloading.

Not all predefined C# operators can be overloaded. The unary arithmetic and
logic operators can be overloaded freely, as can the binary arithmetic operators.
The assignment operators cannot be overloaded directly, but they are all
evaluated using the arithmetic, logical, and shift operators, which in turn can be
overloaded.

In this section, you will learn how to overload relational, logical, and
conversion operators. You will also learn how to overload an operator multiple
times.

 Module 12: Operators, Delegates, and Events 9

Introduction to Operator Overloading

n Operator Overloading

l Define your own operators only when appropriate

n Operator Syntax

l Operatorop, where op is the operator being overloaded

n Example

public static Time operator+(Time t1, Time t2)
{

int newHours = t1.hours + t2.hours;
int newMinutes = t1.minutes + t2.minutes;
return new Time(newHours, newMinutes);

}

public static Time operator+(Time t1, Time t2)
{

int newHours = t1.hours + t2.hours;
int newMinutes = t1.minutes + t2.minutes;
return new Time(newHours, newMinutes);

}

Though operators make expressions simpler, you should only define operators
when it makes sense to do so. Operators should only be overloaded when the
class or struct is a piece of data (like a number), and will be used in that way.
An operator should always be unambiguous in usage; there should be only one
possible interpretation of what it means. For example, you should not define an
increment operator (++) on an Employee class (emp1++;) because the
semantics of such an operation on an Employee are not clear. What does it
actually mean to “increment an employee”? Would you be likely to use this as
part of a larger expression? If by increment you mean “give the employee a
promotion,” define a Promote method instead (emp1.Promote();).

Syntax for Overloading Operators
All operators are public static methods and their names follow a particular
pattern. All operators are called operatorop, where op specifies exactly which
operator is being overloaded. For example, the method for overloading the
addition operator is operator+.

The parameters that the operator takes and the types of parameters it returns
must be well defined. All arithmetic operators return an instance of the class
and manipulate objects of the class.

Example
As an example, consider the Time struct shown in the following code. A Time
value consists of two parts: a number of hours and a number of minutes. The
code in bold shows how to implement the binary addition operator (+) for
adding two Times together, and the binary subtraction operator (-) for
subtracting one Time from another.

10 Module 12: Operators, Delegates, and Events

The unary increment (++) and decrement (--) operators are also shown. They
add or subtract one minute from a Time.

public struct Time
{

public Time(int minutes) : this(0, minutes)
{
}

public Time(int hours, int minutes)
{
 this.hours = hours;
 this.minutes = minutes;
 Normalize();
}

// Arithmetic

public static Time operator+(Time lhs, Time rhs)
{
 return new Time(lhs.hours + rhs.hours,
 lhs.minutes + rhs.minutes
);
}

public static Time operator-(Time lhs, Time rhs)
{
 return new Time(lhs.TotalMinutes()
 – rhs.TotalMinutes()
);
}

...

// Helper methods

private void Normalize()
{
 if (hours < 0 || minutes < 0) {
 throw new ArgumentException("Time too small");
 }
 hours += (minutes / 60);
 minutes %= 60;
}

private int TotalMinutes()
{
 return hours * 60 + minutes;
}

private int hours;
private int minutes;

}

 Module 12: Operators, Delegates, and Events 11

Overloading Relational Operators

n Relational Operators Must Be Paired

l < and >

l <= and >=

l == and !=

n Override the Equals Method If Overloading == and !=

n Override the GetHashCode Method If Overriding Equals
Method

You must overload the relational or comparison operators in pairs. Each
relational operator must be defined with its logical antonym. This means that if
you overload <, you must also overload >, and vice versa. Similarly, != must be
overloaded with ==, and <= must be overloaded with >=.

For consistency, create a Compare method first and define all the
relational operators by using Compare . The code example on the following
page shows you how to do this.

Overriding the Equals Method
If you overload == and !=, you should also override the Equals virtual method
that your class inherits from Object. This is to ensure consistency when two
objects of this class are compared, whether by == or the Equals method, so that
a situation in which == returns true and the Equals method returns false is
avoided.

Overriding the GetHashCode Method
The GetHashCode method (also inherited from Object) is used to identify an
instance of your class if it is stored in a hash table. Two instances of the same
class for which Equals returns true should also hash to the same integer value.
By default, this is not the case. Therefore, if you override the Equals method,
you should also override the GetHashCode method.

Tip

12 Module 12: Operators, Delegates, and Events

Example
The following code shows how to implement the relational operators, the
Equals method, and the GetHashCode method for the Time struct:

public struct Time
{

 ...

 // Equality

 public static bool operator==(Time lhs, Time rhs)
 {
 return lhs.Compare(rhs) == 0;
 }

 public static bool operator!=(Time lhs, Time rhs)
 {
 return lhs.Compare(rhs) != 0;
 }

 // Relational

 public static bool operator<(Time lhs, Time rhs)
 {
 return lhs.Compare(rhs) < 0;
 }

 public static bool operator>(Time lhs, Time rhs)
 {
 return lhs.Compare(rhs) > 0;
 }

 public static bool operator<=(Time lhs, Time rhs)
 {
 return lhs.Compare(rhs) <= 0;
 }

 public static bool operator>=(Time lhs, Time rhs)
 {
 return lhs.Compare(rhs) >= 0;
 }

(Code continued on following page.)

 Module 12: Operators, Delegates, and Events 13

 // Inherited virtual methods (from Object)

 public override bool Equals(object obj)
 {
 return obj is Time && Compare((Time)obj) == 0;
 }

 public override int GetHashCode()
 {
 return TotalMinutes();
 }

 private int Compare(Time other)
 {
 int lhs = TotalMinutes();
 int rhs = other.TotalMinutes();

 int result;
 if (lhs < rhs)
 result = -1;
 else if (lhs > rhs)
 result = +1;
 else
 result = 0;

 return result;
 }
 ...
}

14 Module 12: Operators, Delegates, and Events

Overloading Logical Operators

n Operators && and || Cannot Be Overloaded Directly

l They are evaluated in terms of &, |, true, and false,
which can be overloaded

l x && y is evaluated as T.false(x) ? x : T.&(x, y)

l x || y is evaluated as T.true(x) ? x : T.|(x, y)

You cannot overload the logical operators && and || directly. However, they
are evaluated in terms of the &, |, true , and false operators, which you can
overload.

If variables x and y are both of type T, the logical operators are evaluated as
follows:

n x && y is evaluated as T.false(x) ? x : T.&(x, y)

This expression translates as “if x is false as defined by the false operator of
T, the result is x; otherwise it is the result of using the & operator of T over
x and y.”

n x || y is evaluated as T.true(x) ? x : T.|(x, y)

This expression means “if x is true as defined by the true operator of T, the
result is x; otherwise it is the result of using the | operator of T over x and
y.”

 Module 12: Operators, Delegates, and Events 15

Overloading Conversion Operators

n Overloaded Conversion Operators

n If a Class Defines a String Conversion Operator

l The class should override ToString

public static explicit operator Time (float hours)
{ ... }
public static explicit operator float (Time t1)
{ ... }
public static implicit operator string (Time t1)
{ ... }

public static explicit operator Time (float hours)
{ ... }
public static explicit operator float (Time t1)
{ ... }
public static implicit operator string (Time t1)
{ ... }

You can define implicit and explicit conversion operators for your own classes
and create programmer-defined cast operators that can be used to convert data
from one type to another. Some examples of overloaded conversion operators
are:

n explicit operator Time (int minutes)

This operator converts an int into a Time. It is explicit because not all ints
can be converted; a negative argument results in an exception being thrown.

n explicit operator Time (float minutes)

This operator converts a float into a Time. Again, it is explicit because a
negative parameter causes an exception to be thrown.

n implicit operator int (Time t1)

This operator converts a Time into an int . It is implicit because all Time
values can safely be converted to int.

n explicit operator float (Time t1)

This operator converts a Time into a float. In this case the operator is
explicit because, although all Times can be converted to float, the floating-
point representation of some values may not be exact. (You always take this
risk with computations involving floating-point values.)

n implicit operator string (Time t1)

This operator converts a Time into a string. This is also implicit because
there is no danger of losing any information in the conversion.

Overriding the ToString Method
Design guidelines recommend that, for consistency, if a class has a string
conversion operator, it should override the ToString method, which should
perform the same function. Many classes and methods in the System
namespace – Console.WriteLine for example – use ToString to create a
printable version of an object.

16 Module 12: Operators, Delegates, and Events

Example
The following code shows how to implement the conversion operators. It also
shows one way to implement the ToString method. Note how the Time struct
overrides ToString, which is inherited from Object.

public struct Time
{
 ...

 // Conversion operators
 public static explicit operator Time (int minutes)
 {
 return new Time(0, minutes);
 }

 public static explicit operator Time (float minutes)
 {
 return new Time(0, (int)minutes);
 }

 public static implicit operator int (Time t1)
 {
 return t1.TotalMinutes();
 }

 public static explicit operator float (Time t1)
 {
 return t1.TotalMinutes();
 }

 public static implicit operator string (Time t1)
 {
 return t1.ToString();
 }

 // Inherited virtual methods (from Object)

 public override string ToString()
 {
 return String.Format("{0}:{1:00}", hours, minutes);
 }
 ...
}

If a conversion operator could throw an exception or return a partial result,
make it explicit. If a conversion is guaranteed to work without any loss of data,
you can make it implicit.

Tip

 Module 12: Operators, Delegates, and Events 17

Overloading Operators Multiple Times

n The Same Operator Can Be Overloaded Multiple Times

public static Time operator+(Time t1, int hours)
{...}

public static Time operator+(Time t1, float hours)
{...}

public static Time operator-(Time t1, int hours)
{...}

public static Time operator-(Time t1, float hours)
{...}

public static Time operator+(Time t1, int hours)
{...}

public static Time operator+(Time t1, float hours)
{...}

public static Time operator-(Time t1, int hours)
{...}

public static Time operator-(Time t1, float hours)
{...}

You can overload the same operator multiple times to provide alternative
implementations that take different types as parameters. At compile time, the
system establishes the method to be called depending upon the types of the
parameters being used to invoke the operator.

18 Module 12: Operators, Delegates, and Events

Example
The following code shows more examples of how to implement the + and –
operators for the Time struct. Both examples add or subtract a specified
number of hours from the supplied Time:

public struct Time
{
 ...
 public static Time operator+(Time t1, int hours)
 {
 return t1 + new Time(hours, 0);
 }

 public static Time operator+(Time t1, float hours)
 {
 return t1 + new Time((int)hours, 0);
 }

 public static Time operator-(Time t1, int hours)
 {
 return t1 – new Time(hours, 0);
 }

 public static Time operator-(Time t1, float hours)
 {
 return t1 – new Time((int)hours, 0);
 }
 ...
}

 Module 12: Operators, Delegates, and Events 19

Quiz: Spot the Bugs

public bool operator != (Time t1, Time t2)
{ ... }
public bool operator != (Time t1, Time t2)
{ ... } 11

public static operator float(Time t1) { ... }public static operator float(Time t1) { ... } 22

public static Time operator += (Time t1, Time t2)
{ ... }
public static Time operator += (Time t1, Time t2)
{ ... }

public static bool Equals(Object obj) { ... }public static bool Equals(Object obj) { ... }

33

44

public static int operator implicit(Time t1)
{ ...}
public static int operator implicit(Time t1)
{ ...} 55

In this quiz, you can work with a partner to spot the bugs in the code on the
slide. To see the answers to this quiz, turn the page.

20 Module 12: Operators, Delegates, and Events

Answers
1. Operators must be static because they belong to the class rather than an

object. The definition for the != operator should be:

public static bool operator != (Time t1, Time t2) { ... }

2. The “type” is missing. Conversion operators must either be implicit or
explicit. The code should be as follows:

public static implicit operator float (Time t1) { ... }

3. You cannot overload the += operator. However, += is evaluated by using
the + operator, which you can overload.

4. The Equals method should be an instance method rather than a class
method. However, if you remove the static keyword, this method will hide
the virtual method inherited from Object and not be invoked as expected, so
the code should use override instead, as follows:

public override bool Equals(Object obj) { ... }

5. The int and implicit keywords have been transposed. The name of the
operator should be int, and its type should be implicit, as follows:

public static implicit operator int(Time t1) { ... }

All the cases listed above will result in compile-time errors.

Note

 Module 12: Operators, Delegates, and Events 21

Lab 12.1: Defining Operators

Objectives
After completing this lab, you will be able to:

n Create operators for addition, subtraction, equality testing, multiplication,
division, and casting.

n Override the Equals, ToString, and GetHashCode methods.

Prerequisites
Before working on this lab, you must be familiar with the following:

n Using inheritance in C#

n Defining constructors and destructors

n Compiling and using assemblies

n Basic C# operators

Estimated time to complete this lab: 30 minutes

22 Module 12: Operators, Delegates, and Events

Exercise 1
Defining Operators for the BankAccount Class

In previous labs, you created classes for a banking system. The BankAccount
class holds customer bank account details, including the account number and
balance. You also created a Bank class that acts as a factory for creating and
managing BankAccount objects. The bank classes were wrapped in a single
class library: bank.dll. Completed code is supplied as part of this lab, in case
you did not finish the earlier labs.

In this exercise, you will define the == and != operators in the Bank Account
class. The default implementation of these operators, which is inherited from
Object, tests to check whether the references are the same. You will redefine
them to examine and compare the information in two accounts.

You will then override the Equals and ToString methods. The Equals method
is used by many parts of the runtime and should exhibit the same behavior as
the equality operators. Many classes in the .NET Framework use the ToString
method when they need a string representation of an object.

å To define the == and != operators

1. Open the Bank.sln project in the install folder\Labs\Lab12\Starter\Bank
folder.

2. Add the following method to the BankAccount class:

public static bool operator == (BankAccount acc1,
ÊBankAccount acc2)
{
 ...
}

3. In the body of operator ==, add statements to compare the two
BankAccount objects. If the account number, type, and balance of both
accounts are the same, return true; otherwise return false.

4. Compile the project. You will receive an error.

(Why will you receive an error when you compile the project?)
5. Add the following method to the BankAccount class:

public static bool operator != (BankAccount acc1,
ÊBankAccount acc2)
{
 ...
}

6. Add statements in the body of operator != to compare the contents of the
two BankAccount objects. If the account number, type, and balance of both
accounts are the same, return false; otherwise return true. You can achieve
this by calling operator == and inverting the result.

7. Save and compile the project. The project should now compile successfully.
The previous error was caused by having an unmatched operator ==
method. (If you define operator ==, you must also define operator !=, and
vice versa.)

 Module 12: Operators, Delegates, and Events 23

The complete code for both of the operators is as follows:

public class BankAccount
{
 ...
 public static bool operator == (BankAccount acc1,
ÊBankAccount acc2)

 {
 if ((acc1.accNo == acc2.accNo) &&
 (acc1.accType == acc2.accType) &&
 (acc1.accBal == acc2.accBal)) {
 return true;
 } else {
 return false;
 }
 }

 public static bool operator != (BankAccount acc1,
ÊBankAccount acc2)

 {
 return !(acc1 == acc2);
 }
 ...
}

24 Module 12: Operators, Delegates, and Events

å To test the operators

1. Open the TestHarness.sln project in the install folder\
Labs\Lab12\Starter\TestHarness folder.

2. Create a reference to the Bank component that you created in the previous
labs. To do this:

a. Expand the TestHarness project in Solution Explorer.

b. Right-click References, and click Add Reference .

c. Click Browse, and navigate to the install
folder\Labs\Lab12\Starter \Bank\bin\debug folder.

d. Click Bank.dll, and then click Open.

e. Click OK.

3. Create two BankAccount objects in the Main method of the
CreateAccount class. To do this:

a. Use Bank.CreateAccount(), and instantiate the BankAccount objects
with the same balance and account type.

b. Store the account numbers generated in two long variables called
accNo1 and accNo2.

4. Create two BankAccount variables called acc1 and acc2. Populate them
with the two accounts created in the previous step by calling
Bank.GetAccount() .

5. Compare acc1 and acc2 by using the == operator. This test should return
false because the two accounts will have different account numbers.

6. Compare acc1 and acc2 by using the != operator. This test should return
true.

7. Create a third BankAccount variable called acc3. Populate it with the
account that you used to populate acc1 by calling Bank.GetAccount(),
using accNo1 as the parameter.

8. Compare acc1 and acc3 by using the == operator. This test should return
true, because the two accounts will have the same data.

 Module 12: Operators, Delegates, and Events 25

9. Compare acc1 and acc3 by using the != operator. This test should return
false .

If you have problems, a utility function called Write is available that you
can use to display the contents of a BankAccount that is passed in as a
parameter.

Your completed code for the test harness should be as follows:

class CreateAccount
{
 static void Main()
 {

 // Create two bank accounts. Use Bank.CreateAccount(...)
 // with the same balance and type.
 // Store the numbers of these two accounts in long
 //variables accNo1 and accNo2long accNo1 =
 Ê Bank.CreateAccount(AccountType.Checking, 100);
 long accNo2 =
 Ê Bank.CreateAccount(AccountType.Checking, 100);

 // Create two BankAccount variables, acc1 and acc2.
 // Use Bank.GetAccount() to populate them with the
 // two accounts just created.
 BankAccount acc1 = Bank.GetAccount(accNo1);
 BankAccount acc2 = Bank.GetAccount(accNo2);

 // Compare acc1 and acc2 by using the == operator.
 // (Should be false because the account numbers will be
 // different.)
 if (acc1 == acc2) {
 Console.WriteLine(
 Ê "Both accounts are the same. They should not be!");
 } else {
 Console.WriteLine(
 Ê "The accounts are different. Good!");
 }

 // Compare acc1 and acc2 by using the != operator.
 // (Should be true because the account numbers will be
 // different.)
 if (acc1 != acc2) {
 Console.WriteLine(
 Ê "The accounts are different. Good!");
 } else {
 Console.WriteLine(
 Ê "Both accounts are the same. They should not be!");
 }
(Code continued on following page.)

26 Module 12: Operators, Delegates, and Events

 // Create a third BankAccount variable, acc3, and
 // populate it with the account whose
 // account number is in accNo1. Use Bank.GetAccount
 BankAccount acc3 = Bank.GetAccount(accNo1);
 if (acc1 == acc3) {
 Console.WriteLine(
 Ê "The accounts are the same. Good!");
 } else {
 Console.WriteLine(
 Ê "The accounts are different. They should not be!");
 }

 // Compare acc1 and acc3 by using the == operator.
 // (Should be true because all the data will be the
 // same.)
 // Compare acc1 and acc3 by using the != operator.
 // (Should be false.)
 if (acc1 != acc3) {
 Console.WriteLine(
 Ê "The accounts are different. They should not be!");
 } else {
 Console.WriteLine(
 Ê "The accounts are the same. Good!");
 }
 }
 ...
 }

10. Compile and run the test harness.

å To override the Equals, ToString, and GetHashCode methods

1. Open the Bank.sln project in the install folder\Labs\Lab12\Starter\Bank
folder.

2. Add the Equals method to the BankAccount class:

public override bool Equals(Object acc1)
{
 ...
}

The Equals method should perform the same function as the == operator,
except that it is an instance rather than a class method. Use the == operator
to compare this to acc1.

3. Add the ToString method as follows:

public override string ToString()
{
 ...
}

The body of the ToString method should return a string representation of
the instance.

 Module 12: Operators, Delegates, and Events 27

4. Add the GetHashCode method as follows:

public override int GetHashCode()
{
 ...
}

The GetHashCode method should return a unique value for each different
account, but different references to the same account should return the same
value. The easiest solution is to return the account number. (You will need
to cast it to an int first.)

5. The completed code for Equals, ToString, and GetHashCode is as follows:

public override bool Equals(Object acc1)
{
 return this == acc1;
}

public override string ToString()
{
 string retVal = "Number: " + this.accNo + "\tType: ";
 retVal += (this.accType == AccountType.Checking) ?
Ê"Checking" : "Deposit";
 retVal += "\tBalance: " + this.accBal;

 return retVal;
}

public override int GetHashCode()
{
 return (int)this.accNo;
}

6. Save and compile the project. Correct any errors.

28 Module 12: Operators, Delegates, and Events

å To test the Equals and ToString methods

1. Open the TestHarness.sln project in the install folder\
Labs\Lab12\Starter\TestHarness folder.

2. In the Main method of the CreateAccount class, replace the use of ==
and != with Equals, as follows:

if (acc1.Equals(acc2)) {
 ...
}

if (!acc1.Equals(acc2)) {
 ...
}

3. After the if statements, add three WriteLine statements that print the
contents of acc1, acc2, and acc3, as shown in the following code. The
WriteLine method uses ToString to format its arguments as strings.

Console.WriteLine("acc1 – {0}", acc1);
Console.WriteLine("acc2 – {0}", acc2);
Console.WriteLine("acc3 – {0}", acc3);

4. Compile and run the test harness. Check the results.

 Module 12: Operators, Delegates, and Events 29

Exercise 2
Handling Rational Numbers

In this exercise, you will create an entirely new class for handling rational
numbers. This is a brief respite from the world of banking.

A rational number is a number that can be written as a ratio of two integers.
(Examples of rational numbers include ½, ¾, and -17.) You will create a
Rational class, which will consist of a pair of private integer instance variables
(called dividend and divisor) and operators for performing calculations and
comparisons on them. The following operators and methods will be defined:

n Rational(int dividend)

This is a constructor that sets the dividend to the supplied value and the
divisor to 1.

n Rational(int dividend, int divisor)

This is a constructor that sets the dividend and the divisor.
n == and !=

These will perform comparisons based upon the calculated numeric value of
the two operands (for example, Rational(6, 8) == Rational(3, 4)).
You must override the Equals() methods to perform the same comparison.

n <, >, <=, >=

These will perform the appropriate relational comparisons between two
rational numbers (for example, Rational(6, 8) > Rational(1, 2)).

n binary + and –

These will add one rational number to or subtract one rational number from
another.

n ++ and --

These will increment and decrement the rational number.

30 Module 12: Operators, Delegates, and Events

å To create the constructors and the ToString method

1. Open the Rational.sln project in the install folder\
Labs\Lab12\Starter\Rational folder.

2. The Rational class contains two private instance variables called dividend
and divisor. They are initialized to 0 and 1, respectively. Add a constructor
that takes a single integer and uses it to set dividend, leaving divisor with the
value 1.

3. Add another constructor that takes two integers. The first is assigned to
dividend, and the second is assigned to divisor. Check to ensure that divisor
is not set to zero. Throw an exception if this occurs and raise
ArgumentOutOfRangeException.

4. Create a third constructor that takes a Rational as a parameter and copies the
values it contains.

C++ developers will recognize the third constructor as a copy
constructor. You will use this constructor later in this lab.

The completed code for all three constructors is as follows:

public Rational(int dividend)
{
 this.dividend = dividend;
 this.divisor = 1;
}

public Rational(int dividend, int divisor)
{
 if (divisor == 0) {
 throw new ArgumentOutOfRangeException(
 "Divisor cannot be zero");
 } else {
 this.dividend = dividend;
 this.divisor = divisor;
 }
}

public Rational(Rational r1)
{
 this.dividend = r1.dividend;
 this.divisor = r1.divisor;
}

5. Override the ToString method that returns a string version of the Rational,
as follows:

public override string ToString()
{
 return String.Format(“{0}/{1}”, dividend, divisor);
}

6. Compile the project and correct any errors.

Note

 Module 12: Operators, Delegates, and Events 31

å To define the relational operators

1. In the Rational class, create the == operator as follows:

public static bool operator == (Rational r1, Rational r2)
{
 ...
}

2. The == operator will:

a. Establish the decimal value of r1 by using the following formula.

decimalValue1 = r1.dividend / r1.divisor

b. Establish the decimal value of r2 by using a similar formula.

c. Compare the two decimal values and return true or false, as appropriate.
The completed code is as follows:

public static bool operator == (Rational r1, Rational
Êr2)
{
 decimal decimalValue1 =
 (decimal)r1.dividend / r1.divisor;
 decimal decimalValue2 =
 (decimal)r2.dividend / r2.divisor;
 return decimalValue1 == decimalValue2;
}

Why are the decimal casts necessary when performing the division?
3. Create and define the != operator by using the == operator, as follows:

public static bool operator != (Rational r1, Rational r2)
{
 return !(r1 == r2);
}

4. Override the Equals method. Use the == operator, as follows:

public override bool Equals(Object r1)
{
 return (this == r1);
}

5. Define the < operator. Use a strategy similar to that used for the == operator,
as follows:

public static bool operator < (Rational r1, Rational r2)
{
 return (r1.dividend * r2.divisor) < (r2.dividend *
Êr1.divisor);
}

32 Module 12: Operators, Delegates, and Events

6. Create the > operator, using == and <, as shown in the following code. Be
sure that you understand the Boolean logic used by the expression in the
return statement.

public static bool operator > (Rational r1, Rational r2)
{
 return !((r1 < r2) || (r1 == r2));
}

7. Define the <= and >= operators in terms of > and <, as shown in the
following code:

public static bool operator <= (Rational r1, Rational r2)
{
 return !(r1 > r2);
}

public static bool operator >= (Rational r1, Rational r2)
{
 return !(r1 < r2);
}

8. Compile the project and correct any errors.

å To test the constructors, the ToString method, and the relational
operators

1. In the Main method of the TestRational class of the Rational project, create
two Rational variables, r1 and r2, and instantiate them with the value pairs
(1,2) and (1,3), respectively.

2. Print them by using WriteLine to test the ToString method.

3. Perform the following comparisons, and print a message indicating the
results:

a. Is r1 > r2?

b. Is r1 <= r2?

c. Is r1 != r2?

4. Compile and run the program. Check the results.

5. Change r2 and instantiate it with the value pair (2,4).

6. Compile and run the program again. Check the results.

 Module 12: Operators, Delegates, and Events 33

å To create the binary additive operators

1. In the Rational class, create the binary + operator. Create two versions for:

a. Adding two Rationals together.

To add two rational numbers together, you need to establish a common
divisor. Unless both divisors are the same (if they are you can skip this step
and the next), do this by multiplying the divisors together. For example,
assume you want to add 1/4 to 2/3. The common divisor is 12 (4 * 3). The
next step is to multiply the dividend of each number by the divisor of the
other. Hence, 1/4 would become (1 * 3)/12, or 3/12, and 2/3 would become
(4 * 2)/12, or 8/12. Finally, you add the two dividends together and use the
common divisor. So 3/12 + 8/12 = 11/12, and hence 1/4 + 2/3 = 11/12.
If you use this algorithm, you will need to make copies of the parameters
passed in (using the copy constructor defined earlier) to the + operator. If
you modify the formal parameters, you will find that the actual parameters
will also be changed because of the way in which reference types are passed.

b. Adding a rational number and an integer.

To add an integer to a rational number, convert the integer to a rational
number that has the same divisor. For example, to add 2 and 3/8, convert 2
into 16/8, and then perform the addition.

Both versions should return a Rational. (Do not worry about producing a
normalized result.)

2. Create the binary – operator. Create two versions, one each for:

a. Subtracting one rational number from another.

b. Subtracting an integer from a rational number.

Tip

Tip

34 Module 12: Operators, Delegates, and Events

Both versions should return a Rational (non-normalized). The completed
code for the + and – operators is as follows:

public static Rational operator + (Rational r1, Rational
Êr2)
{
 // Make working copies of r1 and r2
 Rational tempR1 = new Rational(r1);
 Rational tempR2 = new Rational(r2);

 // Determine a common divisor.
 // That is, to add 1/4 and 2/3, convert to 3/12 and 8/12
 int commonDivisor;
 if (tempR1.divisor != tempR2.divisor) {
 commonDivisor = tempR1.divisor * tempR2.divisor;

 // Multiply out the dividends of each rational
 tempR1.dividend *= tempR2.divisor;
 tempR2.dividend *= tempR1.divisor;
 } else {
 commonDivisor = tempR1.divisor;
 }

 // Create a new Rational.
 // For example, 1/4 + 2/3 = 3/12 + 8/12 = 11/12.

 Rational result = new Rational(tempR1.dividend +
 tempR2.dividend, commonDivisor);
 return result;
}

public static Rational operator + (Rational r1, int i1)
{
 // Convert i1 into a Rational
 Rational r2 = new Rational(i1 * r1.divisor,
 r1.divisor);

 return r1 + r2;
}

(Code continued on following page.)

 Module 12: Operators, Delegates, and Events 35

 // Perform Rational addition
public static Rational operator - (Rational r1, Rational
Êr2)
{
 // Make working copies of r1 and r2
 Rational tempR1 = new Rational(r1);
 Rational tempR2 = new Rational(r2);

 // Determine a common divisor.
 // For example, to subtract 2/3 from 1/4,
 // convert to 8/12 and 3/12.
 int commonDivisor;
 if (tempR1.divisor != tempR2.divisor) {
 commonDivisor = tempR1.divisor * tempR2.divisor;

 // Multiply the dividends of each rational
 tempR1.dividend *= tempR2.divisor;
 tempR2.dividend *= tempR1.divisor;
 } else {
 commonDivisor = tempR1.divisor;
 }

 // Create a new Rational.
 // For example, 2/3 - 1/4 = 8/12 - 3/12 = 5/12.

 Rational result = new Rational(tempR1.dividend –
 tempR2.dividend, commonDivisor);
 return result;
}

public static Rational operator - (Rational r1, int i1)
{
 // Convert i1 into a Rational
 Rational r2 = new Rational(i1 * r1.divisor, r1.divisor);

 // Perform Rational subtraction
 return r1 - r2;
}

36 Module 12: Operators, Delegates, and Events

å To define the increment and decrement operators

1. In the Rational class, create the unary ++ operator.

Use the + operator that you defined earlier. Use it to add 1 to the
parameter passed to the ++ operator.

2. In the Rational class, create the unary -- operator. The completed code for
both operators is as follows:

 public static Rational operator ++ (Rational r1)
 {
 return r1 + 1;
 }

 public static Rational operator -- (Rational r1)
 {
 return r1 - 1;
 }

å To test the additive operators

1. In the Main method of the TestRational class, add statements to:

a. Add r2 to r1 and print the result.

b. Add 5 to r2 (use +=) and print the result.

c. Subtract r1 from r2 (use -=) and print the result.

d. Subtract 2 from r2 and print the result.

e. Increment r1 and print the result.

f. Decrement r2 and print the result.

2. Compile and run the program. Check the results.

Tip

 Module 12: Operators, Delegates, and Events 37

If Time Permits
Creating Additional Rational Number Operators

In this exercise, you will create the following additional operators for the
Rational class:

n Explicit and implicit casts

These casts are for conversion between Rational, float, and int types.

n *, /, %

These binary multiplicative operators are for multiplying, for dividing, and
for extracting the remainder after integer division of two rational numbers.

å To define the cast operators

1. Define an explicit cast operator for converting a rational number to a
floating-point number, as follows:

public static explicit operator float (Rational r1)
{
 ...
}

2. In the body of the of the float cast operator, return the result of dividing
dividend by divisor. Ensure that floating-point division is performed.

3. Create an explicit cast operator for converting a rational number to an
integer, as follows:

public static explicit operator int (Rational r1)
{
 ...
}

This operator is explicit because information loss is likely to occur.

4. In the body of the int cast operator, divide dividend by divisor. Ensure that
floating-point division is performed. Truncate the result to an int and return
it.

5. Create an implicit cast operator for converting an integer to a rational
number, as follows:

public static implicit operator Rational (int i1)
{
 ...
}

It is safe to make this operator implicit.

Note

Note

38 Module 12: Operators, Delegates, and Events

6. In the body of the Rational cast operator, create a new Rational with
dividend set to i1 and divisor set to 1. Return this Rational. The complete
code for all three cast operators is as follows:

public static implicit operator float (Rational r1)
{
 float temp = (float)r1.dividend / r1.divisor;
 return temp;
}

public static explicit operator int (Rational r1)
{
 float temp = (float)r1.dividend / r1.divisor;
 return (int) temp;
}

public static implicit operator Rational (int i1)
{
 Rational temp = new Rational(i1, 1);
 return temp;
}

7. Add statements to the test harness to test these operators.

å To define the multiplicative operators

1. Define the multiplication operator (*) to multiply two rational numbers, as
follows:

public static Rational operator * (Rational r1, Rational r2)
{
 ...
}

To multiply two rational numbers, you multiply the dividend and the
divisor of both rational numbers together.

2. Define the division operator (/) to divide one rational number by another, as
follows:

public static Rational operator / (Rational r1, Rational
Êr2)
{
 ...
}

To divide Rational r1 by Rational r2, multiply r1 by the reciprocal of
r2. In other words, exchange the dividend and divisor of r2, and then
perform multiplication. (1/3 / 2/5 is the same as 1/3 * 5/2.)

Tip

Tip

 Module 12: Operators, Delegates, and Events 39

3. Define the modulus operator (%). (The modulus is the remainder after
division.) It returns the remainder after dividing by an integer:

public static Rational operator % (Rational r1, int i1)
{
 ...
}

Convert r1 to an int called temp, and determine the difference between
r1 and temp, storing the result in a Rational called diff . Perform temp % i1,
and store the result in an int called remainder. Add diff and remainder
together.

4. Add statements to the test harness to test these operators. The completed
code for the operators is as follows:

public static Rational operator * (Rational r1, Rational r2)
{
 int dividend = r1.dividend * r2.dividend;
 int divisor = r1.divisor * r2.divisor;
 Rational temp = new Rational(dividend, divisor);
 return temp;
}

public static Rational operator / (Rational r1, Rational
Êr2)
{
 // Create the reciprocal of r2, and then multiply
 Rational temp = new Rational(r2.divisor, r2.dividend);
 return r1 * temp;
}

public static Rational operator % (Rational r1, int i1)
{
 // Convert r1 to an int
 int temp = (int)r1;

 // Compute the rounding difference between temp and r1
 Rational diff = r1 - temp;

 // Perform % on temp and i1
 int remainder = temp % i1;

 // Add remainder and diff together to get the
 // complete result
 diff += remainder;
 return diff;
}

Tip

40 Module 12: Operators, Delegates, and Events

u Creating and Using Delegates

n Scenario: Power Station

n Analyzing the Problem

n Creating Delegates

n Using Delegates

Delegates allow you to write code that can dynamically change the methods
that it calls. This is a flexible feature that allows a method to vary
independently of the code that invokes it.

In this section, you will analyze a power station scenario for which delegates
prove useful, and learn how to define and use delegates.

 Module 12: Operators, Delegates, and Events 41

Scenario: Power Station

n The Problem

l How to respond to temperature events in a power station

l Specifically, if the temperature of the reactor core rises
above a certain temperature, coolant pumps need to be
alerted and switched on

n Possible Solutions

l Should all coolant pumps monitor the core temperature?

l Should a component that monitors the core turn on the
appropriate pumps when the temperature changes?

To understand how to use delegates, consider a power station example for
which using a delegate is a good solution.

The Problem
In a power station, the temperature of the nuclear reactor must be kept below a
critical temperature. Probes inside the core constantly monitor the temperature.
If the temperature rises significantly, various pumps need to be started to
increase the flow of coolant throughout the core. The software controlling the
working of the nuclear reactor must start the appropriate pumps at the
appropriate time.

Possible Solutions
The controlling software could be designed in many ways that would meet
these criteria, two of which are listed below:

n The software driving the coolant pumps could constantly measure the
temperature of the nuclear core and increase the flow of coolant as the
temperature requires.

n The component monitoring the core temperature could start the appropriate
coolant pumps every time the temperature changes.

42 Module 12: Operators, Delegates, and Events

Both of these techniques have drawbacks. In the first technique, the frequency
with which the temperature must be measured needs to be determined.
Measuring too frequently could affect the operation of the pumps because the
software has to drive the pumps as well as monitor the core temperature.
Measuring infrequently could mean that a very rapid rise in temperature could
be missed until it is too late.

In the second technique, there may be many dozens of pumps and controllers
that need to be alerted about each temperature change. The programming
required to achieve this could be complex and difficult to maintain, especially if
there are different types of pumps in the system that need to be alerted in
different ways.

 Module 12: Operators, Delegates, and Events 43

Analyzing the Problem

n Existing Concerns

l There may be several types of pumps, supplied by
different manufacturers

l Each pump could have its own method for activation

n Future Concerns

l To add a new pump, the entire code will need to change

l A high overhead cost will result with every such addition

n A Solution

l Use delegates in your code

To start solving the problem, consider the dynamics involved in implementing a
solution in the power station scenario.

Existing Concerns
The major issue is that there could be several different types of pumps supplied
by different manufacturers, each with its own controlling software. The
component monitoring the core temperature will have to recognize, for each
type of pump, which method to call to turn the pump on.

For this example, suppose that there are two types of pumps: electric and
pneumatic. Each type of pump has its own software driver that contains a
method to switch the pump on, as follows:

public class ElectricPumpDriver
{
 ...
 public void StartElectricPumpRunning()
 {
 ...
 }
}

public class PneumaticPumpDriver
{
 ...
 public void SwitchOn()
 {
 ...
 }
}

44 Module 12: Operators, Delegates, and Events

The component monitoring the core temperature will switch the pumps on. The
following code shows the main part of this component, the CoreTempMonitor
class. It creates a number of pumps and stores them in an ArrayList, a
collection class that implements a variable-length array. The
SwitchOnAllPumps method iterates through the ArrayList, determines the
type of pump, and calls the appropriate method to turn the pump on:

public class CoreTempMonitor
{
 public void Add(object pump)
 {
 pumps.Add(pump);
 }

 public void SwitchOnAllPumps()
 {
 foreach (object pump in pumps) {
 if (pump is ElectricPumpDriver) {
 ((ElectricPumpDriver)pump).StartElectricPumpRunning();
 }
 if (pump is PneumaticPumpDriver) {
 ((PneumaticPumpDriver)pump).SwitchOn();
 }
 ...
 }
 ...
 private ArrayList pumps = new ArrayList();
}

public class ExampleOfUse
{
 public static void Main()
 {
 CoreTempMonitor ctm = new CoreTempMonitor();

 ElectricPumpDriver ed1 = new ElectricPumpDriver();
 ctm.Add(ed1);

 PneumaticPumpDriver pd1 = new PneumaticPumpDriver();
 ctm.Add(pd1);

 ctm.SwitchOnAllPumps();
 }
}

 Module 12: Operators, Delegates, and Events 45

Future Concerns
Using the structure as described has a serious drawback. If a new type of pump
is installed later, you will need to change the SwitchOnAllPumps method to
incorporate the new pump. This would also mean that the entire code would
need to be thoroughly retested, with all the associated downtime and costs,
since this is a crucial piece of software.

A Solution
To solve this problem, you can use a mechanism referred to as a delegate. The
SwitchOnAllPumps method can use the delegate to call the appropriate
method to turn on a pump without needing to determine the type of pump.

46 Module 12: Operators, Delegates, and Events

Creating Delegates

n A Delegate Allows a Method to Be Called Indirectly

l It contains a reference to a method

l All methods invoked by the same delegate must have
the same parameters and return value

MethodX
delegate ?

Method1()
{
...
}

Method2()
{
...
}

DoWork()
{
...
MethodX();
...
}

A delegate contains a reference to a method rather than the method name. By
using delegates, you can invoke a method without knowing its name. Calling
the delegate will actually execute the method referenced by the delegate.

In the power station example, rather than use an ArrayList to hold pump
objects, you can use it to hold delegates that refer to the methods required to
start each pump.

A delegate is a similar to an interface. It specifies a contract between a caller
and an implementer. A delegate associates a name with the specification of a
method. An implementation of the method can be attached to this name, and a
component can call the method by using this name. The primary requirement of
the implementing methods is that they must all have the same signature and
return the same type of parameters. In the case of the power station scenario,
the StartElectricPumpRunning and SwitchOn methods are both void, and
neither takes any parameters.

To use a delegate, you must first define it and then instantiate it.

 Module 12: Operators, Delegates, and Events 47

Defining Delegates
A delegate specifies the return type and parameters that each method must
provide. You use the following syntax to define a delegate:

public delegate void StartPumpCallback();

Note that the syntax for defining a delegate is similar to the syntax for defining
a method. In this example, you define the delegate StartPumpCallback as
being for a method that returns no value (void) and takes no parameters. This
matches the specifications of the methods StartElectricPumpRunning and
SwitchOn in the two pump driver classes.

Instantiating Delegates
After you define a delegate, you must instantiate it and make it refer to a
method. To instantiate a delegate, use the delegate constructor and supply the
object method it should invoke when it is called. In the following example, an
ElectricPumpDriver, ed1, is created, and then a delegate, callback, is
instantiated, referencing the StartElectricPumpRunning method of ed1 :

public delegate void StartPumpCallback();

void Example()
{
 ElectricPumpDriver ed1 = new ElectricPumpDriver();

 StartPumpCallback callback;
 callback =
 Ênew StartPumpCallback(ed1.StartElectricPumpRunning);
 ...
}

48 Module 12: Operators, Delegates, and Events

Using Delegates

n To Call a Delegate, Use Method Syntax

public delegate void StartPumpCallback();
...
StartPumpCallback callback;
...
callback = new
ÊStartPumpCallback(ed1.StartElectricPumpRunning);

...
callback();

public delegate void StartPumpCallback();
...
StartPumpCallback callback;
...
callback = new
ÊStartPumpCallback(ed1.StartElectricPumpRunning);

...
callback();

No Method BodyNo Method BodyNo Method Body

Call HereCall HereCall Here

No Call HereNo Call HereNo Call Here

A delegate is a variable that invokes a method. You call it in the same way you
would call a method, except that the delegate replaces the method name.

 Module 12: Operators, Delegates, and Events 49

Example
The following code shows how to define, create, and call delegates for use by
the power station. It populates an ArrayList named callbacks with instances of
delegates that refer to the methods used to start each pump. The
SwitchOnAllPumps method iterates through this ArrayList and calls each
delegate in turn. With delegates, the method need not perform type checking
and is much simpler than the previous solution.

public delegate void StartPumpCallback();

public class CoreTempMonitor2
{
 public void Add(StartPumpCallback callback)
 {
 callbacks.Add(callback);
 }

 public void SwitchOnAllPumps()
 {
 foreach(StartPumpCallback callback in callbacks)
 {
 callback();
 }
 }

 private ArrayList callbacks = new ArrayList();
}

class ExampleOfUse
{
 public static void Main()
 {
 CoreTempMonitor2 ctm = new CoreTempMonitor2();

 ElectricPumpDriver ed1 = new ElectricPumpDriver();
 ctm.Add(
 new StartPumpCallback(ed1.StartElectricPumpRunning)
);

 PneumaticPumpDriver pd1 = new PneumaticPumpDriver();
 ctm.Add(
 new StartPumpCallback(ed2.StartElectricPumpRunning)
);

 ctm.SwitchOnAllPumps();
 }
}

50 Module 12: Operators, Delegates, and Events

u Defining and Using Events

n How Events Work

n Defining Events

n Passing Event Parameters

n Demonstration: Handling Events

In the power station example, you learned how to use a delegate to solve the
problem of how to start different types of pumps in a generic manner. However,
the component that monitors the temperature of the reactor core is still
responsible for notifying each of the pumps in turn that they need to start. You
can address the issue of notification by using events.

Events allow an object to notify other objects that a change has occurred. The
other objects can register an interest in an event, and they will be notified when
the event occurs.

Events are very closely related to delegates. In this section, you will learn how
to define and handle events to address the remaining problems with the power
station.

 Module 12: Operators, Delegates, and Events 51

How Events Work

n Publisher

l Raises an event to alert all interested objects
(subscribers)

n Subscriber

l Provides a method to be called when the event is raised

Events allow objects to register an interest in changes to other objects. In other
words, events allow objects to register that they need to be notified about
changes to other objects. Events use the publisher and subscriber model.

Publisher
A publisher is an object that maintains its internal state. However, when its state
changes, it can raise an event to alert other interested objects about the change.

Subscriber
A subscriber is an object that registers an interest in an event. It is alerted when
a publisher raises the event. An event can have zero or more subscribers.

Events can be quite complex. To make them easier to understand and maintain,
there are guidelines that you should follow when using them.

52 Module 12: Operators, Delegates, and Events

Defining Events

n Defining an Event

n Subscribing to an Event

n Notifying Subscribers to an Event

public delegate void StartPumpCallback();
private event StartPumpCallback CoreOverheating;
public delegate void StartPumpCallback();
private event StartPumpCallback CoreOverheating;

PneumaticPumpDriver pd1 = new PneumaticPumpDriver();
...
CoreOverheating += new StartPumpCallback(pd1.SwitchOn);

PneumaticPumpDriver pd1 = new PneumaticPumpDriver();
...
CoreOverheating += new StartPumpCallback(pd1.SwitchOn);

public void SwitchOnAllPumps() {
if (CoreOverheating != null) {

CoreOverheating();
}

}

public void SwitchOnAllPumps() {
if (CoreOverheating != null) {

CoreOverheating();
}

}

Events in C# use delegates to call methods in subscribing objects. They are
multicast. This means that when a publisher raises an event, it may result in
many delegates being called. However, you cannot rely on the order in which
the delegates are invoked. If one of the delegates throws an exception, it could
halt the event processing altogether, resulting in the other delegates not being
called at all.

Defining an Event
To define an event, a publisher first defines a delegate and bases the event on it.
The following code defines a delegate named StartPumpCallback and an
event named CoreOverheating that invokes the StartPumpCallback delegate
when it is raised:

public delegate void StartPumpCallback();
private event StartPumpCallback CoreOverheating;

 Module 12: Operators, Delegates, and Events 53

Subscribing to an Event
Subscribing objects specify a method to be called when the event is raised. If
the event has not yet been instantiated, subscribing objects specify a delegate
that refers to the method when creating the event. If the event exists, then
subscribing objects add a delegate that calls a method when the event is raised.

For example, in the power station scenario, you could create two pump drivers
and have them both subscribe to the CoreOverheating event:

ElectricPumpDriver ed1 = new ElectricPumpDriver();
PneumaticPumpDriver pd1 = new PneumaticPumpDriver();
...
CoreOverheating = new
StartPumpCallback(Êed1.StartElectricPumpRunning);
CoreOverheating += new StartPumpCallback(pd1.SwitchOn);

You must declare delegates (and methods) that are used to subscribe to
an event as void. This restriction does not apply when a delegate is used
without an event.

Notifying Subscribers to an Event
To notify the subscribers, you must raise the event. The syntax you use is the
same as that for calling a method or a delegate. In the power station example,
the SwitchOnAllPumps method of the core-temperature monitoring
component no longer needs to iterate through a list of delegates:

public void SwitchOnAllPumps()
{
 if (CoreOverheating= null) {
 CoreOverheating();
 }
}

Executing the event in this way will cause all of the delegates to be invoked,
and, in this example, all of the pumps that subscribe to the event will be
activated. Notice that the code first checks that the event has at least one
subscribing delegate. Without this check, the code would throw an exception if
there were no subscribers.

For information about guidelines and best practices to follow when using events,
search for “event guidelines” in the .NET Framework SDK Help documents.

Note

54 Module 12: Operators, Delegates, and Events

Passing Event Parameters

n Parameters for Events Should Be Passed As EventArgs

l This is because of marshalling

l Define a class descended from EventArgs to act as a
container for event parameters

n The Same Subscribing Method May Be Called by
Several Events

l Always pass the event publisher (sender) as the first
parameter to the method

Because of the marshalling process that is used to call subscribing methods
when an event is raised, there are some guidelines to follow when defining the
methods, especially if they require parameters.

Event Parameter Guidelines
To pass parameters to a subscribing method, enclose the parameters in a single
class that supplies accessor methods to retrieve them. Derive this class from
System.EventArgs .

For example, in the power station scenario, assume that the methods that start
the pumps, StartElectricPumpRunning and SwitchOn, need the current core
temperature to determine the speed at which the pumps should run. To address
this issue, you create the following class to pass the core temperature from the
core-monitoring component to the pump objects:

public class CoreOverheatingEventArgs: EventArgs
{
 private readonly int temperature;

 public CoreOverheatingEventArgs(int temperature)
 {
 this.temperature = temperature;
 }

 public int GetTemperature()
 {
 return temperature;
 }
}

The CoreOverheatingEventArgs class contains an integer parameter. The
constructor stores the temperature internally, and you use the method
GetTemperature to retrieve it.

 Module 12: Operators, Delegates, and Events 55

The sender Object
An object may subscribe to more than one event from different publishers and
could use the same method in each case. Therefore, it is customary for an event
to pass information about the publisher that raised it to the subscribers. By
convention, this is the first parameter passed to the subscribing method, and it is
usually called sender. The following code shows the new versions of the
StartElectricPu mpRunning and SwitchOn methods, modified to expect
sender as the first parameter and the temperature as the second parameter:

public class ElectricPumpDriver
{
 ...

 public void StartElectricPumpRunning(object sender,
ÊCoreOverheatingEventArgs args)
 {
 // Examine the temperature
 int currentTemperature = args.GetTemperature();

 // Start the pump at the required speed for
 // this temperature
 ...
 }
 ...
}

public class PneumaticPumpDriver
{
 ...

 public void SwitchOn(object sender,
ÊCoreOverheatingEventArgs args)
 {
 // Examine the temperature
 int currentTemperature = args.GetTemperature();

 // Start the pump at the required speed for
 // this temperature
 ...
 }
 ...
}

You will also need to modify the delegate in the core-temperature
monitoring component. In the power station example, the delegate will become:

public delegate void StartPumpCallback(object sender,
ÊCoreOverheatingEventArgs args);

Note

56 Module 12: Operators, Delegates, and Events

Demonstration: Handling Events

In this demonstration, you will see an example of how you can use events to
communicate information between objects.

 Module 12: Operators, Delegates, and Events 57

Lab 12.2: Defining and Using Events

Objectives
After completing this lab, you will be able to:

n Publish events.

n Subscribe to events.

n Pass parameters to events.

Prerequisites
Before working on this lab, you must be familiar with the following:

n Creating classes in C#

n Defining constructors and destructors

n Compiling and using assemblies

Estimated time to complete this lab: 30 minutes

58 Module 12: Operators, Delegates, and Events

Exercise 1
Auditing Bank Transactions

This exercise extends the bank example used in Lab 12.1 and other earlier labs.
In this exercise, you will create a class called Audit. The purpose of this class is
to record the changes made to account balances in a text file. The account will
be notified of changes by an event published by the BankAccount class.

You will use the Deposit and Withdraw methods of the BankAccount class to
raise the event, called Auditing, which is subscribed to by an Audit object.

The Auditing event will take a parameter containing a BankTransaction
object. If you completed the earlier labs, you will recall that the
BankTransaction class contains the details of a transaction, such as the amount
of the transaction, the date it was created, and so on. A BankTransaction
object is created whenever a deposit or withdrawal is made by using a
BankAccount.

You will make full use of the event-handling guidelines discussed in the
module.

å To define the event parameter class

In this exercise, the event that will be raised will be passed a BankTransaction
object as a parameter. Event parameters should be derived from
System.EventArgs , so a new class will be created that contains a
BankTransaction.

1. Open the Audit.sln project in the install folder\Labs\Lab12\Starter\Audit
folder.

2. Create a new class by using Add New Item on the Project menu. Make
sure that you create a New C# Class, and name it AuditEventArgs.cs.

3. When the class has been created, add a comment that summarizes the
purpose of the AuditEventArgs class. Use the exercise description to help
you.

4. Change the namespace to Banking.

5. Change the definition of AuditEventArgs so that it is derived from
System.EventArgs , as follows:

public class AuditEventArgs : System.EventArgs
{
 ...
}

6. Create a private readonly BankTransaction variable called transData, and
initialize it to null, as follows:

private readonly BankTransaction transData = null;

 Module 12: Operators, Delegates, and Events 59

7. Create a constructor that takes a single BankTransaction parameter called
transaction and sets this.transData to this parameter. The code for the
constructor is as follows:

public AuditEventArgs(BankTransaction transaction)
{
 this.transData = transaction;
}

8. Provide a public accessor method called getTransaction that returns the
value of this.transData, as follows:

public BankTransaction getTransaction()
{
 return this.transData;
}

9. Compile the project and correct any errors.

å To define the Audit class

1. In the Audit project, create a new class by using Add New Item from the
Project menu. Make sure that you create a New C# Class, and name it
Audit.cs . This is the class that will subscribe to the Auditing event and
write details of transactions to a file on disk.

2. When the class has been created, add a comment that summarizes the
purpose of the Audit class. Use the exercise description to help you.

3. Change the namespace to Banking.

4. Add a using directive that refers to System.IO.

5. Add a private string variable called filename to the Audit class.

6. Add a private StreamWriter variable called auditFile to the Audit class.

A StreamWriter allows you to write data to a file. You used
StreamReader for reading from a file in Lab 6. In this exercise, you will
use the AppendText method of the StreamWriter class.

The AppendText method opens a named file to append text to that file. It
writes data to the end of the file. You use the WriteLine method to actually
write data to the file once it is open (just like the Console class).

7. Create a constructor in the Audit class that takes a single string parameter
called fileToUse. In the constructor:

• Set this.filename to fileToUse.

• Open this named file in AppendText mode and store the file descriptor
in auditFile.

Note

60 Module 12: Operators, Delegates, and Events

The completed code for the constructor is as follows:

private string filename;
private StreamWriter auditFile;

public Audit(string fileToUse)
{
 this.filename = fileToUse;
 this.auditFile = File.AppendText(fileToUse);
}

8. In the Audit class, add the method that will be used to subscribe to the
Auditing event of the BankTransaction class. It will be executed when a
BankTransaction object raises the event. This method should be public
void and called RecordTransaction. It will take two parameters: an object
called sender, and an AuditEventArgs parameter called eventData.

9. In the RecordTransaction method, add code to:

• Create a BankTransaction variable called tempTrans.

• Execute eventData.getTransaction() and assign the result to
tempTrans.

• If tempTrans is not null, use the WriteLine method of this.auditFile to
append the amount of tempTrans (use the Amount() method) and the
date created (use the When() method) to the end of the audit file. Do
not close the file.

The sender parameter is not used by this method, but by convention
all event-handling methods expect the sender of the event as the first
parameter.

The completed code for this method is as follows:

public void RecordTransaction(Object sender,
 AuditEventArgs eventData)
{
 BankTransaction tempTrans = eventData.getTransaction();
 if (tempTrans == null) {
 return;
 }

 this.auditFile.WriteLine("Amount: {0}\tDate: {1}",
 tempTrans.Amount(), tempTrans.When());
}

10. Add a destructor to the Audit class that closes this.auditFile.

Note

 Module 12: Operators, Delegates, and Events 61

11. In the Audit class, create a public void Dispose method that invokes the
destructor and suppresses any further garbage collection for this object. The
complete code for the destructor and the Finalize method is as follows:

~Audit()
{
 this.auditFile.Close();
}

public void Dispose()
{
 this.Finalize();
 GC.SuppressFinalize(this);
}

12. Compile the project and correct any errors.

å To test the Audit class

1. Open the AuditTestHarness.sln project in the install folder\
Labs\Lab12\Starter\AuditTestHarness folder.

2. Perform the following steps to add a reference to the library containing your
compiled Audit class. It will be in a dynamic-link library (DLL) called
Bank.dll in install folder\Labs\Lab12\Starter\Audit\Bin\Debug.

a. In Solution Explorer, expand the AuditTestHarness project tree.

b. Right-click References.

c. Click Add Reference.

d. Click Browse.

e. Navigate to install folder\Labs\Lab12\Starter\Audit\Bin\Debug.

f. Click Bank.dll.

g. Click Open, and then click OK.

3. In the Test class, review the Main method. This class:

a. Creates an instance of the Audit class, using the name AuditTrail.dat for
the file name in which it stores the audit information.

b. Creates a new BankTransaction object for an amount of 500 Dollars.

c. Creates an AuditEventArgs object that uses the BankTransaction
object.

d. Invokes the RecordTransaction method of the Audit object.

The test is repeated with a second transaction for –200 Martian Wombats.

After the second test, the Dispose method is called to ensure that audit
records are stored on the disk.

4. Compile the project.

5. Open a Command window and navigate to the folder install folder\
Labs\Lab12\Starter\AuditTestHarness\Bin\Debug. This folder will contain
the AuditTestHarness.exe and Bank.dll files. It will also contain the
AuditTestHarness.pdb file, which you can ignore.

62 Module 12: Operators, Delegates, and Events

6. Execute AuditTestHarness.

7. Using a text editor of your choice (Wordpad, for example), examine the
contents of the file AuditTrail.dat. It should contain the data for the two
transactions.

å To define the Auditing event

1. Open the Audit.sln project in the install folder\Labs\Lab12\Starter\Audit
folder.

2. In the BankAccount.cs file, above the BankAccount class, declare a public
delegate of type void that is called AuditEventHandler and takes two
parameters— an Object called sender and an AuditEventArgs called
data— as shown:

public delegate void AuditEventHandler(Object sender,
ÊAuditEventArgs data);

public class BankAccount
{
 ...
}

3. In the BankAccount class, declare a private event of type
AuditEventHandler called AuditingTransaction, and initialize it to null,
as follows:

public class BankAccount
{
 private event AuditEventHandler AuditingTransaction =
Ênull;
 ...
}

4. Add a public void method called AddOnAuditingTransaction. This
method will take a single AuditEventHa ndler parameter called handler.
The purpose of the method is to add handler to the list of delegates that
subscribe to the AuditingTransaction event. The method will look as
follows:

public void AddOnAuditingTransaction(AuditEventHandler
Êhandler)
{
 this.AuditingTransaction += handler;
}

5. Add another public void method called RemoveOnAuditingTransaction.
This method will also take a single AuditEventHandler parameter called
handler. The purpose of this method is to remove handler from the list of
delegates that subscribe to the AuditingTransaction event. The method
will look as follows:

public void RemoveOnAuditingTransaction(AuditEventHandler
Êhandler)
{
 this.AuditingTransaction -= handler;
}

 Module 12: Operators, Delegates, and Events 63

6. Add a third method that the BankAccount object will use to raise the event
and alert all subscribers. The method should be protected virtual void and
should be called OnAuditingTransaction. This method will take a
BankTransaction parameter called bankTrans. The method will examine
the event this.AuditingTransaction. If it contains any delegates, it will
create an AuditEventArgs object called auditTrans, which will be
constructed by using bankTrans. It will then cause the delegates to be
executed, passing itself in as the sender of the event along with the
auditTrans parameter as the data. The code for this method will look as
follows:

protected virtual void
ÊOnAuditingTransaction(BankTransaction bankTrans)
{
 if (this.AuditingTransaction != null) {
 AuditEventArgs auditTrans = new
 AuditEventArgs(bankTrans);
 this.AuditingTransaction(this, auditTrans);
 }
}

7. In the Withdraw method of BankAccount, add a statement that will call
OnAuditingTransaction. Pass in the transaction object created by the
Withdraw method. This statement should be placed just prior to the return
statement at the end of the method. The completed code for Withdraw is as
follows:

public bool Withdraw(decimal amount)
{
 bool sufficientFunds = accBal >= amount;
 if (sufficientFunds) {
 accBal -= amount;

 BankTransaction theTran = new BankTransaction(-
Êamount);

 tranQueue.Enqueue(theTran);
 this.OnAuditingTransaction(theTran);
 }
 return sufficientFunds;
}

8. Add a similar statement to the Deposit method. The completed code for
Deposit is as follows:

public decimal Deposit(decimal amount)
{
 accBal += amount;
 BankTransaction theTran = new BankTransaction(amount);
 tranQueue.Enqueue(theTran);
 this.OnAuditingTransaction(theTran);
 return accBal;
}

9. Compile the project and correct any errors.

64 Module 12: Operators, Delegates, and Events

å To subscribe to the Auditing event

1. The final stage is to create the Audit object that will subscribe to the
Auditing event. This Audit object will be part of the BankAccount class,
and will be created when the BankAccount is instantiated, so that each
account will get its own audit trail.

Define a private Audit variable called accountAudit in the BankAccount
class, as follows:

private Audit accountAudit;

2. Add a public void method to BankAccount called AuditTrail. This method
will create an Audit object and subscribe to the Auditing event. It will take
a string parameter, which will be the name of a file to use for the audit trail.
The method will:

• Instantiate accountAudit by using this string.

• Create an AuditEventHandler variable called doAuditing and
instantiate it by using the RecordTransaction method of accountAudit.

• Add doAuditing to the list of subscribers to the Auditing event. Use the
AddOnAuditingTransaction method, passing doAuditing as the
parameter.

The completed code for this method is as follows:

public void AuditTrail(string auditFileName)
{
 this.accountAudit = new Audit(auditFileName);
 AuditEventHandler doAuditing = new
ÊAuditEventHandler(this.accountAudit.RecordTransaction);
 this.AddOnAuditingTransaction(doAuditing);
}

3. In the destructor for the BankAccount class, add a statement that invokes
the Dispose method of the accountAudit object. (This is to ensure that all
audit records are correctly written to disk.)

4. Compile the project and correct any errors.

å To test the Auditing event

1. Open the EventTestHarness.sln project in the install folder\
Labs\Lab12\Starter\EventTestHarness folder.

2. Perform the following steps to add a reference to the DLL (Bank.dll)
containing your compiled Audit and BankAccount classes. The Bank.dll is
located in install folder\Labs\Lab12\Starter\Audit\Bin\Debug.

a. In Solution Explorer, expand the EventTestHarness project tree.

b. Right-click References.

c. Click Add Reference.

d. Click Browse.

e. Navigate to install folder\Labs\Lab12\Starter\Audit\Bin\Debug.

f. Click Bank.dll.

g. Click Open, and then click OK.

 Module 12: Operators, Delegates, and Events 65

3. In the Test class, review the Main method. This class:

a. Creates two bank accounts.

b. Uses the AuditTrail method to cause the embedded Audit objects in
each account to be created and to subscribe to the Auditing event.

c. Performs a number of deposits and withdrawals on each account.

d. Closes both accounts.

4. Compile the project and correct any errors.

5. Open a Command window and navigate to the install folder\
Labs\Lab12\Starter\EventTestHarness\Bin\Debug folder. This folder will
contain the EventTestHarness.exe and Bank.dll files. It will also contain the
EventTestHarness.pdb file, which you can ignore.

6. Execute EventTestHarness.

7. Using a text editor of your choice, examine the contents of the Account1.dat
and Account2.dat files. They should contain the data for the transactions
performed on the two accounts.

66 Module 12: Operators, Delegates, and Events

Review

n Introduction to Operators

n Operator Overloading

n Creating and Using Delegates

n Defining and Using Events

1. Can the arithmetic compound assignment operators (+=, -=, *=, /=, and %=)
be overloaded?

2. Under what circumstances should a conversion operator be explicit?

3. How are explicit conversion operators invoked?

4. What is a delegate?

5. How do you subscribe to an event?

6. In what order are the methods that subscribe to an event called? Will all
methods that subscribe to an event always be executed?

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Using Properties 2
Using Indexers 17

Lab 13: Using Properties and Indexers 33

Review 42

Module 13: Properties
and Indexers

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 13: Properties and Indexers 1

Overview

n Using Properties

n Using Indexers

You can expose the named attributes for a class by using either fields or
properties. Fields are implemented as member variables with public access. In
C#, properties appear to be fields to the user of a class, but they use methods to
get and set values.

C# provides an indexer feature that allows you to index the members of an
object (with an instance indexer) or a class (with a static indexer) as if they
were an array. As with properties, you use get or set methods to perform
indexing operations.

In this module, you will learn how to use properties and indexers. You will
learn how to use properties to enable field- like access and indexers to enable
array-like access.

After completing this module, you will be able to:

n Create properties to encapsulate data within a class.

n Define indexers to gain access to classes by using array-like notation.

2 Module 13: Properties and Indexers

u Using Properties

n Why Use Properties?

n Using Accessors

n Comparing Properties to Fields

n Comparing Properties to Methods

n Property Types

n Property Example

In this section, you will learn how to use properties to encapsulate and access
data in a class.

 Module 13: Properties and Indexers 3

Why Use Properties?

n Properties Provide:

l A useful way to encapsulate information inside a class

l Concise syntax

l Flexibility

Properties provide a useful way to encapsulate data within a class. Examples of
properties include the length of a string, the size of a font, the caption of a
window, the name of a customer, and so on.

Concise Syntax
C# adds properties as first-class elements of the language. Many existing
languages, such as Microsoft® Visual Basic®, already have properties as first-
class elements of the language. If you think of a property as a field, it can help
you to focus on the applic ation logic. Compare, for example, the following two
statements. The first statement does not use properties, whereas and the second
does use properties.

o.SetValue(o.GetValue() + 1);

o.Value++;

The statement that uses a property is certainly easier to understand and much
less error prone.

4 Module 13: Properties and Indexers

Flexibility
To read or write the value of a property, you use field-like syntax. (In particular,
you do not use parentheses.) However, the compiler translates this field-like
syntax into encapsulated method-like get and set accessors. For example, Value
could be a property of the object o in the expression o.Value, which will cause
the statements inside the get accessor “method” for the Value property to be
executed. This separation allows the statements inside the get and set accessors
of a property to be modified without affecting the use of the property, which
retains its field- like syntax. Because of this flexibility, you should use
properties instead of fields whenever possible.

When you expose state through a property, your code is potentially less
efficient than when you expose state directly through a field. However, when a
property contains only a small amount of code and is non-virtual (which is
frequently the case), the execution environment can replace calls to an accessor
with the actual code of the accessor. This process is known as inlining, and it
makes property access as efficient as field access, yet it preserves the increased
flexibility of properties.

 Module 13: Properties and Indexers 5

Using Accessors

n Properties Provide Field-like Access

l Use get accessor statements to provide read access

l Use set accessor statements to provide write access

class Button
{

public string Caption // Property
{

get { return caption; }
set { caption = value; }

}
private string caption; // Field

}

class Button
{

public string Caption // Property
{

get { return caption; }
set { caption = value; }

}
private string caption; // Field

}

A property is a class member that provides access to a field of an object. You
use a property to associate actions with the reading and writing of an object’s
attribute. A property declaration consists of a type and a name and has either
one or two pieces of code referred to as accessors. These accessors are as
follows:

n get accessor

n set accessor

Accessors have no parameters. A property does not need to have both a get
accessor and a set accessor. For example, a read-only property will provide
only a get accessor. You will learn more about read-only properties later in this
section.

Using the get Accessor
The get accessor of a property returns the value of the property. The following
code provides an example:

public string Caption
{
 get { return caption; }
 ...
}

6 Module 13: Properties and Indexers

You implicitly call a property’s get accessor when you use that property in a
read context. The following code provides an example:

Button myButton;
...
string cap = myButton.Caption; // Calls "Caption.get"

Notice that you do not use parentheses after the property name. In this example,
the statement return caption; returns a string. This string is returned
whenever the value of the Caption property is read.

Reading a property should not change the object’s data. When you invoke a get
accessor, it is conceptually equivalent to reading the value of a field. A get
accessor should not have observable side effects.

Using the set Accessor
The set accessor of a property modifies the value of a property.

public string Caption
{
 ...
 set { caption = value; }
}

You implicitly call a property’s set accessor when you use that property in a
write context— that is, when you use it in an assignment. The following code
provides an example:

Button myButton;
...
myButton.Caption = "OK"; // Calls "Caption.set"

Notice again that you do not use parentheses. The variable value contains the
value that you are assigning and is created automatically by the compiler. Inside
the set accessor for the Caption property, value can be thought of as a string
variable that contains the string “OK.” A set accessor cannot return a value.

Invoking a set accessor is syntactically identical to a simple assignment, so you
should limit its observable side effects. For example, it would be somewhat
unexpected for the following statement to change both the speed and the color
of the thing object.

thing.speed = 5;

However, sometimes set accessor side effects can be useful. For example, a
shopping basket object could update its total whenever the item count in the
basket is changed.

 Module 13: Properties and Indexers 7

Comparing Properties to Fields

n Properties Are “Logical Fields”

l The get accessor can return a computed value

n Similarities

l Syntax for creation and use is the same

n Differences

l Properties are not values; they have no address

l Properties cannot be used as ref or out parameters to
methods

As an experienced developer, you already know how to use fields. Because of
the similarities between fields and properties, it is useful to compare these two
programming elements.

Properties Are Logical Fields
You can use the get accessor of a property to calculate a value rather than return
the value of a field directly. Think of properties as logical fields— that is, fields
that do not necessarily have a direct physical implementation. For example, a
Person class might contain a field for the person’s date of birth and a property
for the person’s age that calculates the person’s age:

class Person
{
 public Person(DateTime born)
 {
 this.born = born;
 }

 public int Age
 {
 // Simplified...
 get { return DateTime.Now.Year – born.Year; }
 }
 ...
 private readonly DateTime born;
}

8 Module 13: Properties and Indexers

Similarities with Fields
Properties are a natural extension of fields. Like fields, they:

n Specify a name with an associated non-void type, as shown:

class Example
{
 int field;
 int Property { ... }
}

n Can be declared with any access modifier, as shown:

class Example
{
 private int field;
 public int Property { ... }
}

n Can be static, as shown:

class Example
{
 static private int field;
 static public int Property { ... }
}

n Can hide base class members of the same name, as shown:

class Base
{
 public int field;
 public int Property { ... }
}
class Example: Base
{
 new public int field;
 new public int Property { ... }
}

n Are assigned to or read from by means of field syntax, as shown:

Example o = new Example();
o.field = 42;
o.Property = 42;

 Module 13: Properties and Indexers 9

Differences from Fields
Unlike fields, properties do not correspond directly to storage locations. Even
though you use the same syntax to access a property that you would use to
access a field, a property is not classified as a variable. So you cannot pass a
property as a ref or out parameter without getting compile-time errors. The
following code provides an example:

class Example
{
 public string Property
 {
 get { ... }
 set { ... }
 }
 public string Field;
}
class Test
{
 static void Main()
 {
 Example eg = new Example();

 ByRef(ref eg.Property); // Compile-time error
 ByOut(out eg.Property); // Compile-time error

 ByRef(ref eg.Field); // Okay
 ByOut(out eg.Field); // Okay
 }
 static void ByRef(ref string name) { ... }
 static void ByOut(out string name) { ... }
}

10 Module 13: Properties and Indexers

Comparing Properties to Methods

n Similarities

l Both contain code to be executed

l Both can be used to hide implementation details

l Both can be virtual, abstract, or override

n Differences

l Syntactic – properties do not use parentheses

l Semantic – properties cannot be void or take arbitrary
parameters

Similarities with Methods
With both properties and methods, you can:

n Specify statements to be executed.

n Specify a return type that must be at least as accessible as the property itself.

n Mark them as virtual, abstract, or override.

n Introduce them in an interface.

n Provide a separation between an object’s internal state and its public
interface (which you cannot do with a field).

 Module 13: Properties and Indexers 11

This last point is perhaps the most important. You can change the
implementation of a property without affecting the syntax of how you use the
property. For example, in the following code, notice that the TopLeft property
of the Label class is implemented directly with a Point field.

struct Point
{
 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 public int x, y;
}
class Label
{
 ...
 public Point TopLeft
 {
 get { return topLeft; }
 set { topLeft = value; }
 }
 private Point topLeft;
}
class Use
{
 static void Main()
 {
 Label text = new Label(...);
 Point oldPosition = text.TopLeft;
 Point newPosition = new Point(10,10);
 text.TopLeft = newPosition;
 }
 ...
}

12 Module 13: Properties and Indexers

Because TopLeft is implemented as a property, you can also implement it
without changing the syntax of how you use the property, as shown in this
example, which uses two int fields named x and y instead of the Point field
named topLeft:

class Label
{
 public Point TopLeft
 {
 get { return new Point(x,y); }
 set { x = value.x; y = value.y; }
 }
 private int x, y;
}
class Use
{
 static void Main()
 {
 Label text = new Label(...);
 // Exactly the same
 Point oldPosition = text.TopLeft;
 Point newPosition = new Point(10,10);
 text.TopLeft = newPosition;
 ...
 }
}

Differences from Methods
Properties and methods dif fer in a few important ways, as summarized in the
following table.

Feature Properties Methods

Use parentheses No Yes

Specify arbitrary parameters No Yes

Use void type No Yes

Consider the following examples:

n Properties do not use parentheses, although methods do.

class Example
{
 public int Property { ... }
 public int Method() { ... }
}

 Module 13: Properties and Indexers 13

n Properties cannot specify arbitrary parameters, although methods can.

class Example
{
 public int Property { ... }
 public int Method(double d1, decimal d2) { ... }
}

n Properties cannot be of type void, although methods can.

class Example
{
 public void Property { ... } // Compile-time error
 public void Method() { ... } // Okay
}

14 Module 13: Properties and Indexers

Property Types

n Read/Write Properties

l Have both get and set accessors

n Read-Only Properties

l Have get accessor only

l Are not constants

n Write-Only Properties – Very Limited Use

l Have set accessor only

n Static Properties

l Apply to the class and can access only static data

When using properties, you can define which operations are allowed for each
property. The operations are defined as follows:

n Read/write properties

When you implement both get and set, you have both read and write access
to the property.

n Read-only properties

When you implement only get, you have read-only access to the property.

n Write-only properties

When you implement only set, you have write-only access to the property.

Using Read-Only Properties
Properties that only have a get accessor are called read-only properties. In the
example below, the BankAccount class has a Balance property with a get
accessor but no set accessor. Therefore, Balance is a read-only property.

class BankAccount
{
 private decimal balance;
 public decimal Balance
 {
 get { return balance; } // But no set
 }
}

 Module 13: Properties and Indexers 15

You cannot assign a value to a read-only property. For example, if you add the
statements below to the previous example, you will get a compile-time error.

BankAccount acc = new BankAccount();
acc.Balance = 1000000M;

A common mistake is to think that a read-only property specifies a constant
value. This is not the case. In the following example, the Balance property is
read-only, meaning you can only read the value of the balance. However, the
value of the balance can change over time. For example, the balance will
increase when a deposit is made.

class BankAccount
{
 private decimal balance;
 public decimal Balance
 {
 get { return balance; }
 }
 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 ...
}

Using Write-Only Properties
Properties that only have a set accessor are called write-only properties. In
general, you should avoid using write-only properties.

If a property does not have a get accessor, you cannot read its value; you can
only assign a value to it. If you attempt to read from a property that does not
have a get accessor, you will get a compile-time error.

Static Properties
A static property, like a static field and a static method, is associated with the
class and not with an object. Because a static property is not associated with a
specific instance, it can access only static data and cannot refer to this or
instance data. Following is an example:

class MyClass
{
 private int MyData = 0;

 public static int ClassData
 {
 get {
 return this.MyData; // Error
 }
 }
}

You cannot include a virtual, abstract , or override modifier on a static
property.

16 Module 13: Properties and Indexers

Property Example

public class Console
{

public static TextReader In
{

get {
if (reader == null) {

reader = new StreamReader(...);
}
return reader;

}
}
...
private static TextReader reader = null;

}

public class Console
{

public static TextReader In
{

get {
if (reader == null) {

reader = new StreamReader(...);
}
return reader;

}
}
...
private static TextReader reader = null;

}

Just-in-Time Creation
You can use properties to delay the initialization of a resource until the moment
it is first referenced. This technique is referred to as lazy creation, lazy
instantiation, or just-in-time creation. The following code shows an example
from the Microsoft .NET SDK Framework of just-in-time creation (simplified
and not thread-safe):

public class Console
{
 public static TextReader In
 {
 get {
 if (reader == null) {
 reader = new StreamReader(...);
 }
 return reader;
 }
 }
 ...
 private static TextReader reader = null;
}

In the code, notice that:

n The underlying field called reader is initialized to null.

n Only the first read access will execute the body of the if statement inside the
get accessor, thus creating the new StreamReader object. (StreamReader
is derived from TextReader.)

 Module 13: Properties and Indexers 17

u Using Indexers

n What Is an Indexer?

n Comparing Indexers to Arrays

n Comparing Indexers to Properties

n Using Parameters to Define Indexers

n String Example

n BitArray Example

An indexer is a member that enables an object to be indexed in the same way as
an array. Whereas you can use properties to enable field - like access to the data
in your class, you can use indexers to enable array-like access to the members
of your class.

In this section, you will learn how to define and use indexers.

18 Module 13: Properties and Indexers

What Is an Indexer?

n An Indexer Provides Array-like Access to an Object

l Useful if a property can have multiple values

n To Define an Indexer

l Create a property called this

l Specify the index type

n To Use an Indexer

l Use array notation to read or write the indexed property

An object is composed of a number of subitems. (For example, a list box is
composed of a number of strings.) Indexers allow you to access the subitems by
using array-like notation.

Defining Indexers
The following code shows how to implement an indexer that provides access to
an internal array of strings called list:

class StringList
{
 public string[] list;
 public string this[int index]
 {
 get { return list[index]; }
 set { list[index] = value; }
 }
 ...
 // Other code and constructors to initialize list
}

The indexer is a property called this and is denoted by square brackets
containing the type of index it uses. (Indexers must always be called this; they
never have names of their own. They are accessed by means of the object they
belong to.) In this case, the indexer requires that an int be supplied to identify
the value to be returned or modified by the accessors.

 Module 13: Properties and Indexers 19

Using Indexers
You can use the indexer of the StringList class to gain both read and write
access to the members of myList , as shown in the following code:

...
StringList myList = new StringList();
...
myList[3] = "Hello"; // Indexer write
...
string myString = myList[8]; // Indexer read
...

Notice that the syntax for reading or writing the indexer is very similar to the
syntax for using an array. Referencing myList with an int in square brackets
causes the indexer to be used. Either the get accessor or the set accessor will be
invoked, depending upon whether you are reading or writing the indexer.

20 Module 13: Properties and Indexers

Comparing Indexers to Arrays

n Similarities

l Both use array notation

n Differences

l Indexers can use non-integer subscripts

l Indexers can be overloaded— you can define several
indexers, each using a different index type

l Indexers are not variables, so they do not denote
storage locations— you cannot pass an indexer as a ref
or an out parameter

Although indexers use array notation, there are some important differences
between indexers and arrays.

Defining Index Types
The type of the index used to access an array must be integer. You can define
indexers to accept other types of indexes. For example, the following code
shows how to use a string indexer:

class NickNames
{
 public Hashtable names = new Hashtable();
 public string this[string realName]
 {
 get { return names[realName]; }
 set { names[realName] = value; }
 }
 ...
}

 Module 13: Properties and Indexers 21

In the following example, the NickNames class stores real name and nickname
pairs. You can store a nickname and associate it with a real name, and then later
request the nickname for a given real name.

...
NickNames myNames = new NickNames();
...
myNames["John"] = "Cuddles";
...
string myNickName = myNames["John"];
...

Overloading
A class can have multiple indexers, if they use different index types. You could
extend the NickNames class to create an indexer that takes an integer index.
The indexer could iterate through the Hashtable the specified number of times
and return the value found there. Following is an example:

class NickNames
{
 public Hashtable names = new Hashtable();
 public string this[string realName]
 {
 get { return names[realName]; }
 set { names[realName] = value; }
 }

 public string this[int nameNumber]
 {
 get
 {
 string nameFound;
 // Code that iterates through the Hashtable
 // and populates nameFound
 return nameFound;
 }
 }
 ...

}

22 Module 13: Properties and Indexers

Indexers Are Not Variables
Unlike arrays, indexers do not correspond directly to storage locations. Instead,
indexers have get and set accessors that specify the statements to execute in
order to read or write their values. This means that even though you use the
same syntax for accessing an indexer that you use to access an array (you use
square brackets in both cases), an indexer is not classified as a variable.

If you pass an indexer as a ref or out parameter, you will get compile-time
errors, as the following example shows:

class Example
{
 public string[] array;
 public string this[int index]
 {
 get { ... }
 set { ... }
 }
}

class Test
{
 static void Main()
 {
 Example eg = new Example();

 ByRef(ref eg[0]); // Compile-time error
 ByOut(out eg[0]); // Compile-time error

 ByRef(ref eg.array[0]); // Okay
 ByOut(out eg.array[0]); // Okay
 }
 static void ByRef(ref string name) { ... }
 static void ByOut(out string name) { ... }
}

 Module 13: Properties and Indexers 23

Comparing Indexers to Properties

n Similarities

l Both use get and set accessors

l Neither have an address

l Neither can be void

n Differences

l Indexers can be overloaded

l Indexers cannot be static

Indexers are based on properties, and indexers share many of the features of
properties. Indexers also differ from properties in certain ways. To understand
indexers fully, it is helpful to compare them to properties.

Similarities with Properties
Indexers are similar to properties in many ways:

n Both use get and set accessors.

n Neither denote physical storage locations; therefore neither can be used as
ref or out parameters.

class Dictionary
{
 public string this[string index]
 {
 get { ... }
 set { ... }
 }
}
Dictionary oed = new Dictionary();
...
Method(ref oed["life"]); // Compile-time error
Method(out oed["life"]); // Compile-time error

n Neither can specify a void type.

For example, in the code above, oed["life"] is an expression of type
string and could not be an expression of type void.

24 Module 13: Properties and Indexers

Differences from Properties
It is also important to understand how indexers and properties differ:

n Identification

A property is identified only by its name. An indexer is identified by its
signature; that is, by the square brackets and the type of the indexing
parameters.

n Overloading

Since a property is identified only by its name, it cannot be overloaded.
However, since an indexer’s signature includes the types of its parameters,
an indexer can be overloaded.

n Static or dynamic

A property can be a static member, whereas an indexer is always an instance
member.

 Module 13: Properties and Indexers 25

Using Parameters to Define Indexers

n When Defining Indexers

l Specify at least one indexer parameter

l Specify a value for each parameter you specify

l Do not use ref or out parameter modifiers

There are three rules that you must follow to define indexers:

n Specify at least one indexer parameter.

n Specify a value for each parameter.

n Do not use ref or out as parameter modifiers.

Syntax Rules for Indexer Parameters
When defining an indexer, you must specify at least one parameter (index) for
the indexer. You have seen examples of this already. There are some
restrictions on the storage class of the parameter. For example, you cannot use
ref and out parameter modifiers:

class BadParameter
{
 // Compile-time error
 public string this[ref int index] { ... }
 public string this[out string index] { ... }
}

26 Module 13: Properties and Indexers

Multiple Parameters
You can specify more than one parameter in an indexer. The following code
provides an example:

class MultipleParameters
{
 public string this[int one, int two]
 {
 get { ... }
 set { ... }
 }
 ...
}

To use the indexer of the MultipleParameters class, you must specify two
values, as shown in the following code:

...
MultipleParameters mp = new MultipleParameters();
string s = mp[2,3];
...

This is the indexer equivalent of a multidimensional array.

 Module 13: Properties and Indexers 27

String Example

n The String Class

l Is an immutable class

l Uses an indexer (get accessor but no set accessor)

class String
{

public char this[int index]
{

get {
if (index < 0 || index >= Length)

throw new ArgumentOutOfRangeException();
...

}
}
...

}

class String
{

public char this[int index]
{

get {
if (index < 0 || index >= Length)

throw new ArgumentOutOfRangeException();
...

}
}
...

}

The string type is a fundamental type in C#. It is a keyword that is an alias for
the System.String class in the same way that int is an alias for the
System.Int32 struct.

The String Class
The String class is an immutable, sealed class. This means that when you call a
method on a string object, you are guaranteed that the method will not change
that string object. If a string method returns a string, it will be a new string.

The Trim Method
To remove trailing white space from a string, use the Trim method:

public sealed class String {
 ...
 public String Trim() { ... }
 ...
}

The Trim method returns a new trimmed string, but the string used to call
Trim remains untrimmed. The following code provides an example:

string s = "Trim me ";
string t = s.Trim();
Console.WriteLine(s); // Writes "Trim me "
Console.WriteLine(t); // Writes "Trim me"

28 Module 13: Properties and Indexers

The String Class Indexer
No method of the String class ever changes the string used to call the method.
You define the value of a string when it is created, and the value never changes.

Because of this design decision, the String class has an indexer that is declared
with a get accessor but no set accessor, as shown in the following example:

class String
{
 public char this[int index]
 {
 get {
 if (index < 0 || index >= Length)
 throw new ArgumentOutOfRangeException();
 ...
 }
 }
 ...
}
If you attempt to use a string indexer to write to the string, you will get a
compile-time error:

string s = "Sharp";
Console.WriteLine(s[0]); // Okay
s[0] = 'S'; // Compile-time error
s[4] = 'k'; // Compile-time error

The String class has a companion class called StringBuilder that has a read-
write indexer.

 Module 13: Properties and Indexers 29

BitArray Example

class BitArray
{

public bool this[int index]
{

get {
BoundsCheck(index);
return (bits[index >> 5] & (1 << index)) != 0;

}
set {

BoundsCheck(index);
if (value) {

bits[index >> 5] |= (1 << index);
} else {

bits[index >> 5] &= ~(1 << index);
}

}
}
private int[] bits;

}

class BitArray
{

public bool this[int index]
{
get {

BoundsCheck(index);
return (bits[index >> 5] & (1 << index)) != 0;

}
set {

BoundsCheck(index);
if (value) {

bits[index >> 5] |= (1 << index);
} else {

bits[index >> 5] &= ~(1 << index);
}

}
}
private int[] bits;

}

This is a more complex example of indexers, based on the BitArray class from
the .NET Framework SDK. By implementing indexers, the BitArray class uses
less memory than the corresponding Boolean array.

Comparing the BitArray Class to a Boolean Array
The following example shows how to create an array of Boolean flags:

bool[] flags = new bool[32];
flags[12] = false;

This code works, but unfortunately it uses a single byte to store each bool. The
state of a Boolean flag (true or false) can be stored in a single bit, but a byte is
eight bits wide. Therefore, an array of bools uses eight times more memory than
it needs.

30 Module 13: Properties and Indexers

To address this memory issue, the .NET SDK provides the BitArray class,
which implements indexers and also uses less memory than the corresponding
bool array. Following is an example:

class BitArray
{
 public bool this[int index]
 {
 get {
 BoundsCheck(index);
 return (bits[index >> 5] & (1 << index)) != 0;
 }
 set {
 BoundsCheck(index);
 if (value) {
 bits[index >> 5] |= (1 << index);
 } else {
 bits[index >> 5] &= ~(1 << index);
 }
 }
 }
 private int[] bits;
}

 Module 13: Properties and Indexers 31

How BitArray Works
To learn how the BitArray class works, consider step-by-step what the code is
doing:

1. Store 32 bools in one int.

BitArray uses substantially less memory than a corresponding bool array
by storing the state for 32 bools in one int. (Remember that int is an alias
for Int32.)

2. Implement an indexer:

public bool this[int index]

The BitArray class contains an indexer to allow a BitArray object to be
used in an array-like manner. In fact, a BitArray can be used exactly like a
bool [].

BitArray flags = new BitArray(32);
flags[12] = false;

3. Extract the individual bits.

To extract the individual bits, you must shift the bits. For example, the
following expression appears frequently because shifting right by 5 bits is
equivalent to dividing by 32, because 2*2*2*2*2 == 2^5 == 32. Therefore,
the following shift expression locates the int that holds the bit at position
index:

index >> 5

4. Determine the value of the correct bit.

After the correct int is found, the individual bit (out of all 32) still needs to
be determined. You can do this by using the following expression:

1 << index

To understand how this works, you need to know that when you shift an int
left only the lowest 5 bits of the second argument are used. (Again, only 5
bits are used because the int being shifted has 32 bits.) In other words, the
above shift-left expression is semantically the same as the following:

1 << (index % 32)

32 Module 13: Properties and Indexers

More Details About BitArray
Following is the BitArray class in more detail:

class BitArray
{
 public BitArray(int length)
 {
 if (length < 0) throw new ArgumentException();
 bits = new int[((length - 1) >> 5) + 1];
 this.length = length;
 }

 public int Length
 {
 get { return length; }
 }

 public bool this[int index]
 {
 get {
 BoundsCheck(index);
 return (bits[index >> 5] & (1 << index)) != 0;
 }
 set {
 BoundsCheck(index);
 if (value) {
 bits[index >> 5] |= (1 << index);
 } else {
 bits[index >> 5] &= ~(1 << index);
 }
 }
 }

 private void BoundsCheck(int index)
 {
 if (index < 0 || index >= length) {
 throw new IndexOutOfRangeException();
 }
 }

 private int[] bits;
 private int length;
}

 Module 13: Properties and Indexers 33

Lab 13: Using Properties and Indexers

Objectives
After completing this lab, you will be able to:

n Create properties to encapsulate data within a class.

n Define indexers for accessing classes by using array-like notation.

Prerequisites
Before working on this lab, you must be able to:

n Create and use classes.

n Use arrays and collections.

Estimated time to complete this lab: 30 minutes

34 Module 13: Properties and Indexers

Exercise 1
Enhancing the Account Class

In this exercise, you will remove the bank account number and bank account
type methods from the BankAccount class (which you created in previous labs
and is provided here) and replace them with read-only properties. You will also
add to the BankAccount class a read/write string property for the account
holder’s name.

å To change the account number and type methods into read-only
properties

1. Open the Bank.sln project in the install folder\Labs\Lab13\
Exercise 1\Starter \Bank folder.

2. In the BankAccount class, replace the method called Number with a read-
only property (a property that has a get accessor but no set accessor). This is
shown in the following code:

public long Number
{
 get { return accNo; }
}

3. Compile the project.

You will receive error messages. This is because BankAccount.Number is
still being used as a method in the four overloaded Bank.CreateAccount
methods.

4. Change these four Bank.CreateAccount methods to access the bank
account number as a property.

For example , change

long accNo = newAcc.Number();

to

long accNo = newAcc.Number;

5. Save and compile the project.

6. In the BankAccount class, replace the method called Type with a read-only
property whose get accessor returns accType.Format.

7. Save and compile the project.

 Module 13: Properties and Indexers 35

å To add to the BankAccount class a read/write property for the account
holder

1. Add a private field called holder of type string to the BankAccount class.

2. Add a public read/write property called Holder (note the capital “H”) of
type string to the BankAccount class.

The get and set accessors of this property will use the holder string you
have just created:

public string Holder
{
 get { return this.holder; }
 set { holder = value; }
}

3. Save your work, compile the project, and correct any errors.

4. Modify the BankAccount.ToString method so that the string it returns
contains the account holder’s name in addition to the account number, type,
and balance.

å To test the properties

1. Open the TestHarness.sln test harness in the install folder\
Labs\Lab13\Exercise 1\Starter\TestHarness folder.

2. Add a reference to the Bank library (the DLL that contains the components
that you worked on in the previous two procedures) by performing the
following steps:

a. Expand the project in Solution Explorer.

b. Right-click References, and then click Add Reference .

c. Click Browse.

d. Navigate to the install folder\Labs\Lab13\Exercise
1\Starter \Bank\Bin\Debug folder.

e. Click Bank.dll, click Open, and then click OK.

3. Add two statements to the Main method of the CreateAccount class, as
follows:

• Set the name of the holder of acc1 to “Sid.”

• Set the name of the holder of acc2 to “Ted.”

4. Add statements that retrieve and print the number and type of each account.

5. Save your work, compile the project, and correct any errors.

6. Run the project and verify that the account numbers, the account types, and
the names “Sid” and “Ted” appear.

36 Module 13: Properties and Indexers

Exercise 2
Modifying the Transaction Class

In this exercise, you will modify the BankTransaction class (which you
developed in previous labs and which is provided here). As you may recall, the
BankTransaction class was created for holding information about a financial
transaction pertaining to a BankAccount object.

You will replace the methods When and Amount with a pair of read-only
properties. (When returns the date of the transaction, Amount returns the
transaction amount.)

å To change the When method into a read-only property

1. Open the Bank.sln project in the install folder\Labs\Lab13\
Exercise 2\Starter \Bank folder.

2. In the BankTransaction class, replace the method called When with a
read-only property of the same name.

3. Compile the project.

You will receive an error message. This is because
BankTransaction.When is still being used as a method in
Audit.RecordTransaction. (The Audit class records an audit trail of
transaction information, so it uses the When and Amount methods to find
the date and amount of each transaction.)

4. Change the Audit.RecordTransaction method so that it accesses the When
member as a property.

5. Save your work, compile the project, and correct any errors.

å To change Amount into a read-only property

1. In the BankTransaction class, replace the method called Amount with a
read-only property.

2. Compile the project.

You will receive error messages. This is because
BankTransaction.Amount is still being used as a method in
Audit.RecordTransaction.

3. Change the Audit.RecordTransaction method so that it accesses the
Amount member as a property.

4. Save your work, compile the project, and correct any errors.

 Module 13: Properties and Indexers 37

å To test the properties

1. Open the TestHarness.sln test harness in the install folder\
Labs\Lab13\Exercise 2\Starter\TestHarness folder.

2. Add a reference to the Bank library (the DLL that contains the components
that you worked on in the previous procedures) by performing the following
steps:

a. Expand the project in Solution Explorer.

b. Right-click References, and then click Add Reference .

c. Click Browse.

d. Navigate to the install folder\Labs\Lab13\
Exercise 2\Starter\Bank\Bin\Debug folder.

e. Click Bank.dll, click Open, and then click OK.

3. Add statements to the Main method of the CreateAccount class that will:

a. Deposit money into accounts acc1 and acc2. (Use the Deposit method,
and make up your own numbers.)

b. Withdraw money from accounts acc1 and acc2. (Use the Withdraw
method.)

c. Print the transaction history for each account. A method called Write
has been supplied at the end of the test harness. You pass it an account
whose transaction history you want to display. It uses and tests the
When and Amount properties of the BankTransaction class.
Following is an example:

Write(acc1);

4. Save your work, compile the project, and correct any errors.

5. Run the project, and verify that the transaction details appear as expected.

38 Module 13: Properties and Indexers

Exercise 3
Creating and Using an Indexer

In this exercise, you will add an indexer to the BankAccount class to provide
access to any of the BankTransaction objects cached in the internal array.

The transactions that belong to an account are accessible by means of a queue
(System.Collections.Queue) that is in the BankAccount object itself.

You will define an indexer on the BankAccount class that retrieves the
transaction at the specified point in the queue or returns null if no transaction
exists at that point. For example,

myAcc.AccountTransactions[2]

will return transaction number 2, the third one in the queue.

The GetEnumerator method of System.Collections.Queue will be useful in
this exercise.

å To declare a read-only BankAccount indexer

1. Open the Bank.sln project in the install folder\Labs\Lab13\
Exercise 3\Starter \Bank folder.

2. In the BankAccount class, declare a public indexer that returns a
BankTransaction and takes a single int parameter called index, as follows:

public BankTransaction this[int index]
{
 ...
}

3. Add a get accessor to the body of the indexer, and implement it with a
single
return new BankTransaction(99);
statement, as follows.

public BankTransaction this[int index]
{
 get { return new BankTransaction(99); }
}

The purpose of this step is only to test the syntax of the indexer. Later, you
will implement the indexer properly.

4. Save your work, compile the project, and correct any errors.

 Module 13: Properties and Indexers 39

å To create transactions

1. Open the TestHarness.sln test harness in the install folder\
Labs\Lab13\Exercise 3\Starter\TestHarness folder.

2. Add a reference to the Bank library (the DLL that contains the components
that you worked on in the previous stage) by performing the following steps:

a. Expand the project in Solution Explorer.

b. Right-click References, and then click Add Reference .

c. Click Browse.

d. Navigate to the install folder\Labs\Lab13\
Exercise 3\Starter\Bank\Bin\Debug folder.

e. Click Bank.dll, click Open, and then click OK.

3. Create some transactions by adding the following statements to the end of
the CreateAccount.Main method:

for (int i = 0; i < 5; i++) {
 acc1.Deposit(100);
 acc1.Withdraw(50);
}
Write(acc1);

The calls to Deposit and Withdraw create transactions.

4. Save your work, compile the project, and correct any errors.

Run the project, and verify that the Deposit and Withdraw transactions are
correctly displayed.

40 Module 13: Properties and Indexers

å To call the BankAccount indexer

1. The last few statements of the CreateAccount.Write method currently
display the transactions using by a foreach statement, as follows:

Queue tranQueue = acc.Transactions();
foreach (BankTransaction tran in tranQueue) {
 Console.WriteLine("Date: {0}\tAmount: {1}", tran.When,
Êtran.Amount);
}

2. Change the way transactions are displayed as follows:

a. Replace this foreach statement with a for statement that increments an
int variable called counter from zero to the value returned from
tranQueue.Count.

b. Inside the for statement, call the BankAccount indexer that you
declared in the previous procedure. Use counter as the subscript
parameter, and save the returned BankTransaction in a local variable
called tran.

c. Print the details from tran:

for (int counter = 0; counter < tranQueue.Count;
Êcounter++) {
 BankTransaction tran = acc[counter];
 Console.WriteLine("Date: {0}\tAmount: {1}", tran.When,
Êtran.Amount);
}

3. Save your work, compile the project, and correct any errors.

4. Run the project.

It will display a series of transactions with a value of 99 (the temporary test
value that you used earlier) because the indexer has not yet been fully
implemented.

å To complete the BankAccount indexer

1. Return to the Bank project (Bank.sln in the install folder\
Labs\Lab13\Exercise 3\Starter\Bank folder).

2. In the BankAccount class, delete the
return new BankTransaction(99);
statement from the body of the indexer.

3. The BankAccount transactions are held in a private field called tranQueue
of type System.Collections.Queue. This Queue class does not have an
indexer, so to access a given element you will need to manually iterate
through the class. The process for doing this is as follows:

a. Declare a variable of type IEnumerator and initialize it by using the
GetEnumerator method of tranQueue. (All queues provide an
enumerator to allow you to step through them.)

b. Iterate through the queue n times, using the MoveNext method of the
IEnumerator variable to move to the next item in the queue.

c. Return the BankTransaction found at the nth location.

 Module 13: Properties and Indexers 41

Your code should look as follows:

IEnumerator ie = tranQueue.GetEnumerator();
for (int i = 0; i <= index; i++) {
 ie.MoveNext();
}
BankTransaction tran = (BankTransaction)ie.Current;
return tran;

4. Check that the int parameter index is neither greater than tranQueue.Count
nor less than zero.

Check for this before iterating through tranQueue.

5. The complete code for the indexer should look as follows:

public BankTransaction this[int index]
{
 get
 {
 if (index < 0 || index >= tranQueue.Count)
 return null;

 IEnumerator ie = tranQueue.GetEnumerator();
 for (int i = 0; i <= index; i++) {
 ie.MoveNext();
 }
 BankTransaction tran = (BankTransaction)ie.Current;
 return tran;
 }
}

6. Save your work, compile the project, and correct any errors.

7. Return to TestHarness and execute it.

Verify that all ten transactions appear correctly.

42 Module 13: Properties and Indexers

Review

n Using Properties

n Using Indexers

1. Declare a Font class that contains a read-only property called Name of type
string.

 Module 13: Properties and Indexers 43

2. Declare a DialogBox class that contains a read/write property called
Caption of type string.

3. Declare a MutableString class that contains a read/write indexer of type
char that expects a single int parameter.

44 Module 13: Properties and Indexers

4. Declare a Graph class that contains a read-only indexer of type double that
expects a single parameter of type Point.

Contents

Overview 1

Overview of Attributes 2

Defining Custom Attributes 13

Retrieving Attribute Values 22
Lab 14: Defining and Using Attributes 26

Review 34

Module 14: Attributes

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 14: Attributes 1

Overview

n Overview of Attributes

n Defining Custom Attributes

n Retrieving Attribute Values

Attributes are a simple technique for adding metadata to classes. They can be
useful when you need to build components.

In this module, you will learn the purpose of attributes and the function that
they perform in C# applications. You will learn about attribute syntax and how
to use some of the predefined attributes in the Microsoft® .NET environment.
You will also learn to create custom user-defined attributes. Finally, you will
learn how classes and other object types can implement and use these custom
attributes to query attribute information at run time.

After completing this module, you will be able to:

n Use common predefined attributes.

n Create simple custom attributes.

n Query attribute information at run time.

2 Module 14: Attributes

u Overview of Attributes

n Introduction to Attributes

n Applying Attributes

n Common Predefined Attributes

n Using the Conditional Attribute

n Using the DllImport Attribute

n Using the Transaction Attribute

With the introduction of attributes, the C# language provides a convenient
technique that will help handle tasks such as changing the behavior of the
runtime, obtaining transaction information about an object, conveying
organizational information to a designer, and handling unmanaged code.

In this section you will learn what attributes are and which tasks you can
perform with them. You will learn the syntax for using attributes in your code,
and you will be introduced to some of the predefined attributes that are
available in the .NET Framework.

 Module 14: Attributes 3

Introduction to Attributes

n Attributes Are:

l Declarative tags that convey information to the runtime

l Stored with the metadata of the element

n .NET Framework Provides Predefined Attributes

l The runtime contains code to examine values of
attributes and act on them

The .NET Framework provides attributes so that you can extend the capabilities
of the C# language. An attribute is a declarative tag that you use to convey
information to the runtime about the behavior of programmatic elements such
as classes, data structures, enumerators, and assemblies.

You can think of attributes as annotations that your programs can store and use.
In most cases, you write the code that retrieves the values of an attribute in
addition to the code that performs a change in behavior at run time. In its
simplest form, an attribute is an extended way to document your code.

You can apply attributes to many elements of the source code. Information
about the attributes is stored with the metadata of the elements they are
associated with.

The .NET Framework is equipped with a number of predefined attributes. The
code to examine them and act upon the values they contain is also incorporated
as a part of the runtime and .NET Framework SDK.

4 Module 14: Attributes

Applying Attributes

n Syntax: Use Square Brackets to Specify an Attribute

n To Apply Multiple Attributes to an Element, You Can:

l Specify multiple attributes in separate square brackets

l Use a single square bracket and separate attributes with
commas

l For some elements such as assemblies, specify the
element name associated with the attribute explicitly

[attribute(positional_parameters,named_parameter=value, ...)]
element
[attribute(positional_parameters,named_parameter=value, ...)]
element

You can apply attributes to different kinds of programming elements. These
elements include assemblies, modules, classes, structs, enums, constructors,
methods, properties, fields, events, interfaces, parameters, return values, and
delegates.

Attribute Syntax
To specify an attribute and associate it with a programming element, use the
following general syntax:

[attribute(positional_parameters,name_parameter=value, ...)]
element

You specify an attribute name and its values within square brackets ([and])
before the programmatic element to which you want to apply the attribute. Most
attributes take one or more parameters, which can be either positional or named.

You specify a positional parameter in a defined position in the parameter list, as
you would specify parameters for methods. Any named parameter values
follow the positional parameters. Positional parameters are used to specify
essential information, whereas named parameters are used to convey optional
information in an attribute.

Before using an unfamiliar attribute, it is a good practice to check the
documentation for the attribute to find out which parameters are available and
whether they should be positional or named.

Tip

 Module 14: Attributes 5

Example
As an example of using attributes, consider the following code, in which the
DefaultEvent attribute is applied on a class by using a positional string
parameter, ShowResult:

[DefaultEvent("ShowResult")]
public class Calculator: System.WinForms.UserControl
{
 ...
}

Applying Multiple Attributes
You can apply more than one attribute to an element. You can enclose each
attribute in its own set of square brackets, although you can also enclose
multiple attributes, separated with commas, in the same set of square brackets.

In some circumstances, you must specify exactly which element an attribute is
associated with. For example, in the case of assembly attributes, place them
after any using clauses but before any code, and explicitly specify them as
attributes of the assembly.

The following example shows how to use the CLSCompliant assembly
attribute. This attribute indicates whether or not an assembly strictly conforms
to the Common Language Specification.

using System;
[assembly:CLSCompliant(true)]

class MyClass
{
 ...
}

6 Module 14: Attributes

Common Predefined Attributes

n .NET Provides Many Predefined Attributes

l General attributes

l COM interoperability attributes

l Transaction handling attributes

l Visual designer component building attributes

g

The capabilities of predefined attributes in the .NET Framework encompass a
wide range of areas, from interoperability with COM to compatibility with
visual design tools.

This topic describes some of the common predefined attributes that are
provided by the .NET Framework. However, it is not intended to be
comprehensive. For more information about predefined attributes, refer to the
Microsoft Visual Studio.NET Help documents.

General Attributes
The following list summarizes some of the general attributes that are provided
by the .NET Framework.

Attribute Applicable to Description

Conditional Method Tests to see whether a named symbol is

defined. If it is defined, any calls to the
method are executed normally. If the symbol
is not defined, the call is not generated.

DllImport Method Indicates that the method is implemented in
unmanaged code, in the specified DLL. It
causes the DLL to be loaded at run time and
the named method to execute.

 Module 14: Attributes 7

COM Interoperability Attributes
When using the attributes to provide interoperability with COM, the goal is to
ensure that using COM components from the managed .NET environment is as
seamless as possible. The .NET Framework has many attributes relating to
COM interoperability. Some of these are listed in the following table.

Attribute Applicable to Description

ComImport Class Indicates that a class or interface

definition was imported from a COM
type library.

ComRegisterFunction Assembly Specifies the method to be called when
a .NET assembly is registered for use
from COM.

ComUnregisterFunction Assembly Specifies the method to be called when
a .NET assembly is unregistered for use
from COM.

DispId Method,
property

Indicates which dispatch ID is to be used
for the method or property.

HasDefaultInterface Class Indicates that the class has an explicit
default COM interface.

In Field,
parameter

Indicates that the field or parameter is an
input parameter.

MarshalAs Field,
parameter

Specifies how data should be marshaled
between COM and the managed
environment.

ProgId Class Specifies which prog ID is to be used for
the class.

Out Field,
parameter

Indicates that data should be marshaled
out from the callee back to caller.

InterfaceType Interface Specifies whether a managed interface is
IDispatch, IUnknown, or dual when it is
exposed to COM.

For more information about COM interoperability, search for "Microsoft
ComServices" in the .NET Framework SDK Help documents.

Transaction Handling Attributes
Components running in a COM+ environment use transaction management.
The attribute you use for this purpose is shown in the following table.

Attribute Applicable to Description

Transaction Class Specifies whether the component supports

transactions, requires a transaction, should be
invoked in the context of a new transaction, or
whether transactions are ignored or
unsupported.

8 Module 14: Attributes

Visual Designer Component-Building Attributes
Developers who build components for a visual designer use the attributes listed
in the following table.

Attribute Applicable to Description

Bindable Property Specifies whether the property can be data-

bound.

DefaultProperty Class Specifies the default property for the
component.

DefaultValue Property Indicates that the property is the default value
for the component.

Localizable Property Specifies that this property should be persisted
to the resources file when forms are localized.

Persistable Property Indicates whether the property should be
persisted and how it should be persisted.

DefaultEvent Class Specifies the default event for the component.

Browseable Property,
event

Indicates whether the property or event should
be displayed in the property window of the
visual designer.

Category Property,
event

Specifies the category into which the visual
designer should place this property or event in
the property window.

Description Property,
event

Defines a brief piece of text to be displayed at
the bottom of the property window in the visual
designer when this property or event is selected.

 Module 14: Attributes 9

Using the Conditional Attribute

n Serves As a Debugging Tool

l Causes conditional compilation of method calls, depending on the
value of a programmer-defined symbol

l Does not cause conditional compilation of the method itself

n Restrictions on Methods

l Must have return type of void

l Must not be declared as override

l Must not be from an inherited interface

class MyClass
{

[Conditional ("DEBUGGING")]
public static void MyMethod()
{

...
}

}

class MyClass
{

[Conditional ("DEBUGGING")]
public static void MyMethod()
{

...
}

}

You can use the Conditional attribute as a debugging aid in your C# code. This
attribute causes conditional compilation of method calls, depending on the
value of a symbol that you define. It lets you invoke methods that, for example,
display the values of variables, while you test and debug code. After you have
debugged your program, you can “undefine” the symbol and recompile your
code without changing anything else. (Or you can simply remove the symbol
from the command line, and not change anything.)

Example
The following example shows how to use the Conditional attribute. In this
example, the MyMethod method in MyClass is tagged with the Conditional
attribute by the symbol DEBUGGING:

class MyClass
{
 [Conditional ("DEBUGGING")]
 public static void MyMethod()
 {
 ...
 }
}

10 Module 14: Attributes

The symbol DEBUGGING is defined as follows:

#define DEBUGGING

class AnotherClass
{
 public static void Test()
 {
 MyClass.MyMethod();
 }
}

As long as the symbol DEBUGGING remains defined when the method call is
compiled, the method call will operate normally. When DEBUGGING is
undefined, the compiler will omit calls to the method. Therefore, when you run
the program, it will be treated as though that line of code does not exist.

You can define the symbol in one of two ways. You can either add a #define
directive to the code as shown in the preceding example, or define the symbol
from the command line when you compile your program.

Restrictions on Methods
The methods to which you can apply a Conditional attribute are subject to a
number of restrictions. In particular, they must have a return type of void, they
must not be marked as override, and they must not be the implementation of a
method from an inherited interface.

The Conditional attribute does not cause conditional compilation of the
method itself. The attribute only determines the action that will occur when the
method is called. If you require conditional compilation of a method, then you
must use the #if and #endif directives in your code.

Note

 Module 14: Attributes 11

Using the DllImport Attribute

n With the DllImport Attribute, You Can:

l Invoke unmanaged code in DLLs from a C# environment

l Tag an external method to show that it resides in an
unmanaged DLL

[DllImport("MyDLL.dll", EntryPoint="MessageBox")]
public static extern int MyFunction(string param1);

public class MyClass()
{

...
int result = MyFunction("Hello Unmanaged Code");
...

}

[DllImport("MyDLL.dll", EntryPoint="MessageBox")]
public static extern int MyFunction(string param1);

public class MyClass()
{

...
int result = MyFunction("Hello Unmanaged Code");
...

}

You can use the DllImport attribute to invoke unmanaged code in your C#
programs. Unmanaged code is the term used for code that has been developed
outside the .NET environment (that is, standard C compiled into DLL files). By
using the DllImport attribute, you can invoke unmanaged code residing in
dynamic -link libraries (DLLs) from your managed C# environment.

Invoking Unmanaged Code
The DllImport attribute allows you to tag an extern method as residing in an
unmanaged DLL. When your code calls this method, the Common Language
Runtime locates the DLL, loads it into the memory of your process, marshals
parameters as necessary, and transfers control to the address at the beginning of
the unmanaged code. This is unlike a normal program, which does not have
direct access to the memory that is allocated to it. The following code provides
an example of how to invoke unmanaged code:

[DllImport("MyDLL.dll", EntryPoint="MessageBox")]
public static extern int MyFunction(string param1);

public class MyClass()
{
 ...
 int result = MyFunction("Hello Unmanaged Code");
 ...
}

12 Module 14: Attributes

Using the Transaction Attribute

n To Manage Transactions in COM+

l Specify that your component be included when a
transaction commit is requested

l Use a Transaction attribute on the class that implements
the component

[Transaction(TransactionOption.Required)]
public class MyTransactionalComponent
{

...
}

[Transaction(TransactionOption.Required)]
public class MyTransactionalComponent
{
...

}

It is likely that, as a Microsoft Visual Basic® or C++ developer working in a
Microsoft environment, you are familiar with technologies such as COM+. An
important feature of COM+ is that it allows you to develop components that can
participate in distributed transactions, which are transactions that can span
multiple databases, machines, and components.

Managing Transactions in COM+
Writing code to guarantee a correct transaction commit in a distributed
environment is difficult. However, if you use COM+, it takes care of managing
the transactional integrity of the system and coordinating events on the network.

In this case, you only need to specify that your component be included when an
application that uses your component requests a transaction commit. To make
this specification, you can use a Transaction attribute on the class that
implements the component, as follows:

[Transaction(TransactionOption.Required)]
public class MyTransactionalComponent
{
 ...
}

The Transaction attribute is one of the predefined .NET Framework attributes
that the .NET runtime interprets automatically.

 Module 14: Attributes 13

u Defining Custom Attributes

n Defining Custom Attribute Scope

n Defining an Attribute Class

n Processing a Custom Attribute

n Using Multiple Attributes

When you encounter a situation in which none of the predefined .NET
Framework attributes satisfy your requirements, you can create your own
attribute. Such a custom attribute will provide properties that allow you to store
and retrieve information from the attribute.

Like predefined attributes, custom attributes are objects that are associated with
one or more programmatic elements. They are stored with the metadata of their
associated elements, and they provide mechanisms for a program to retrieve
their values.

In this section, you will learn how to define and use your own custom attributes.

14 Module 14: Attributes

Defining Custom Attribute Scope

n Use the AttributeUsage Tag to Define Scope

l Example

n Use the Bitwise “ or” Operator (|) to Specify Multiple
Elements

l Example

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
public class MyAttribute: System.Attribute
{ ... }

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
public class MyAttribute: System.Attribute
{ ... }

[AttributeUsage(AttributeTargets.Method)]
public class MyAttribute: System.Attribute
{ ... }

[AttributeUsage(AttributeTargets.Method)]
public class MyAttribute: System.Attribute
{ ... }

As with some predefined attributes, you must explicitly specify the
programming element to which you want to apply a custom attribute. To do so,
you annotate your custom attribute with an AttributeUsage tag as shown in the
following example:

[AttributeUsage(target_elements)]
public class MyAttribute: System.Attribute
{ ... }

Defining Attribute Scope
The parameter to AttributeUsage contains values from the
System.AttributeTargets enumeration to specify how the custom attribute can
be used. The members of this enumeration are summarized in the following
table.

Member name Attribute can be applied to

Class class

Constructor constructor

Delegate delegate

Enum enum

Event event

Field field

Interface interface

Method method

Module module

 Module 14: Attributes 15

(continued)
Member name Attribute can be applied to

Parameter parameter

Property property

ReturnValue return value

Struct struct

Assembly assembly

ClassMembers class, struct, enum, constructor, method, property, field, event,
delegate, interface

All Any element

Example of Using Custom Attributes
To specify that the MyAttribute custom attribute can be applied only to
methods, use the following code:

[AttributeUsage(AttributeTargets.Method)]
public class MyAttribute: System.Attribute
{
...
}

Specifying Multiple Elements
If the attribute can be appli ed to more than one element type, use the bitwise
“or” operator (|) to specify multiple target types. For example, if MyAttribute
can also be applied to constructors, the earlier code will be modified as follows:

[AttributeUsage(AttributeTargets.Method |
ÊAttributeTargets.Constructor)]
public class MyAttribute: System.Attribute
{
...
}

If a developer attempts to use the MyAttribute in a context different from that
which is defined by AttributeUsage , the developer’s code will not compile.

16 Module 14: Attributes

Defining an Attribute Class

n Deriving an Attribute Class

l All attribute classes must derive from System.Attribute,
directly or indirectly

l Suffix name of attribute class with “Attribute”

n Components of an Attribute Class

l Define a single constructor for each attribute class by
using a positional parameter

l Use properties to set an optional value by using a
named parameter

After you define the scope of a custom attribute, you need to specify the way
you want the custom attribute to behave. For this purpose, you must define an
attribute class. Such a class will define the name of the attribute, how it can be
created, and the information that it will store.

The .NET Framework SDK provides a base class, System.Attribute, that you
must use to derive custom attribute classes and to access the values held in
custom attributes.

Deriving an Attribute Class
All custom attribute classes must derive from System.Attribute, either directly
or indirectly. The following code provides an example:

public class DeveloperInfoAttribute: System.Attribute
{
 ...
 public DeveloperInfoAtribute(string developer, string date)
 public(string Date)
 {
 get { ... }
 set { ... }
 }
}

It is a good practice to append the name of a custom attribute class with the
suffix “Attribute,” as in DeveloperInfoAttribute. This makes it easier to
distinguish the attribute classes from the non-attribute classes.

 Module 14: Attributes 17

Components of an Attribute Class
All attribute classes must have a constructor. For example, if the
DeveloperInfo attribute expects the name of the developer as a string
parameter, it must have a constructor that accepts a string parameter.

A custom attribute must define a single constructor that sets the mandatory
information. The positional parameter or parameters of the attribute pass this
information to the constructor. If an attribute has optional data, then it is
attempting to overload the constructor. This is not a good practice to adopt. Use
named parameters to provide optional data.

An attribute class can, however, provide properties to get and set data.
Therefore, you must use properties to set optional values, if required. Then a
developer can specify the optional values as named parameters when using the
attribute.

For example, the DeveloperInfoAttribute provides a Date property. You can
call the set method of the Date property to set the named parameter: Date. The
developer name, Bert , for example, is the positional parameter that is passed to
the constructor of the attribute:

[DeveloperInfoAttribute("Bert", Date="11-11-2000")]
public class MyClass
{
 ...
}

18 Module 14: Attributes

Processing a Custom Attribute

The Compilation Process

1. Searches for the Attribute Class

2. Checks the Scope of the Attribute

3. Checks for a Constructor in the Attribute

4. Creates an Instance of the Object

5. Checks for a Named Parameter

6. Sets Field or Property to Named Parameter Value

7. Saves Current State of Attribute Class

When the compiler encounters an attribute on a programming element, the
compiler uses the following process to determine how to apply the attribute:

1. Searches for the attribute class

2. Checks the scope of the attribute

3. Checks for a constructor in the attribute

4. Creates an instance of the object

5. Checks for a named parameter

6. Sets the field or property to a named parameter value

7. Saves the current state of the attribute class

To be completely accurate, the compiler actually verifies that it could apply the
attribute, and then stores the information to do so in the metadata. The compiler
does not create attribute instances at compile time.

 Module 14: Attributes 19

Example
To learn more about how the compiler handles attributes, consider the
following example:

[AttributeUsage(AttributeTargets.Class)]
public class DeveloperInfoAttribute: System.Attribute
{
 ...
}
.....
{
.....
}

[DeveloperInfo("Bert", Date="11-11-2000")]
public class MyClass
{
...
}

As is mentioned in the previous topic, it is a good practice to add the
suffix “Attribute” to the name of an attribute class. Strictly speaking, it is not
necessary to do so. Even if you omit the Attribute suffix as shown in the
example, your code will still compile correctly. However, without the Attribute
suffix there are potential issues concerning how the compiler searches for
classes. Always use the Attribute suffix.

The Compilation Process
In the preceding example, when MyClass is compiled, the compiler will search
for an attribute class called DevloperInfoAttribute. If the class cannot be
located, the compiler will then search for DeveloperInfo.

After it finds DeveloperInfo, the compiler will check whether the attribute is
allowed on a class. Then it will check for a constructor that matches the
parameters specified in the attribute use. If it finds one, it creates an instance of
the object by calling the constructor with the specified values.

If there is a named parameter, the compiler matches the name of the parameter
with a field or property in the attribute class, and then sets the field or property
to the specified value. Then the current state of the attribute class is saved to the
metadata for the program element on which it is applied.

Note

20 Module 14: Attributes

Using Multiple Attributes

n An Element Can Have More Than One Attribute

l Define both attributes separately

n An Element Can Have More Than One Instance of The
Same Attribute

l Use AllowMultiple = true

You can apply more than one attribute to a programming element, and you can
use multiple instances of the same attribute in an application.

Using Multiple Attributes
You can apply more than one attribute to a programming element. For example,
the following code shows how you can tag the FinancialComponent class, a
Microsoft Windows® control, with two attributes: Transaction and
DefaultProperty:

[Transaction(TransactionOption.Required)]
[DefaultProperty("Balance")]
public class FinancialComponent: System.WinForms.UserControl
{
 ...
 public long Balance
 {
 ...
 }
}

 Module 14: Attributes 21

Using the Same Attribute Multiple Times
The default behavior of a custom attribute does not permit multiple instances of
the attribute. However, under some circumstances it might make sense to allow
an attribute to be used on the same element more than once.

An example of this is the custom attribute DeveloperInfo. This attribute allows
you to record the name of the developer that wrote a class. If more than one
developer was involved in the development, you need to use the DeveloperInfo
attribute more than once. For an attribute to permit this, you mus t mark it as
AllowMultiple in the AttributeUsage attribute, as follows:

[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)]
public class DeveloperInfoAttribute: System.Attribute
{
 ...
}

22 Module 14: Attributes

u Retrieving Attribute Values

n Examining Class Metadata

n Querying for Attribute Information

After you have applied attributes to programming elements in your code, it is
useful to be able to determine the values of the attributes. In this section, you
will learn how to use reflection to examine the attribute metadata of a class and
query classes for attribute information.

 Module 14: Attributes 23

Examining Class Metadata

n To Query Class Metadata Information:

l Use the MemberInfo class in System.Reflection

l Populate a MemberInfo object by using System.Type

l Create a System.Type object by using the typeof
operator

n Example

System.Reflection.MemberInfo typeInfo;
typeInfo = typeof(MyClass);
System.Reflection.MemberInfo typeInfo;
typeInfo = typeof(MyClass);

The .NET runtime supplies a mechanism called reflection that allows you to
query information held in metadata. Metadata is where attribute information is
stored.

Using the MemberInfo Class
The .NET Framework provides a namespace named System.Reflection, which
contains classes that you can use for examining metadata. One particular class
in this namespace— the MemberInfo class— is very useful if you need to find
out about the attributes of a class.

To populate a MemberInfo array, you can use the GetMembers method of the
System.Type object. To create this object, you use the typeof operator with a
class or any other element, as shown in the following code:

System.Reflection.MemberInfo[] memberInfoArray;
memberInfoArray = typeof(MyClass).GetMembers();
...

Once created, the typeInfo variable can be queried for metadata information
about the class MyClass.

If you need more detailed information, for example, if you want to
discover the values of attributes that a method has, you can use a MethodInfo
object. In addition, there are other “Info” classes: ConstructorInfo, EventInfo,
FieldInfo, ParameterInfo, and PropertyInfo. Detailed information about how
to use these classes is beyond the scope of this course, but you can find out
more by searching for “System.Reflection namespace” in the .NET Framework
SDK Help documents.

MemberInfo is actually the abstract base class of the other “Info” types.

Tip

Note

24 Module 14: Attributes

Querying for Attribute Information

n To Retrieve Attribute Information:

l Use GetCustomAttributes to retrieve all attribute
information as an array

l Iterate through the array and examine the values of each
element in the array

l Use the IsDefined method to determine whether a
particular attribute has been defined for a class

System.Reflection.MemberInfo typeInfo;
typeInfo = typeof(MyClass);
object[] attrs = typeInfo.GetCustomAttributes();

System.Reflection.MemberInfo typeInfo;
typeInfo = typeof(MyClass);
object[] attrs = typeInfo.GetCustomAttributes();

After you create the typeInfo variable, you can query it to get information about
the attributes applied to its associated class.

Retrieving Attribute Information
The MemberInfo object has a method called GetCustomAttributes. This
method retrieves the information about all attributes of a class and stores it in an
array, as shown in the following code:

object [] attrs = typeInfo.GetCustomAttributes();

You can then iterate through the array to find the values of the attributes that
you are interested in.

 Module 14: Attributes 25

Iterating Through Attributes
You can iterate through the array of attributes and examine the value of each
one in turn. In the following code, the only attribute of interest is
DeveloperInfoAttribute, and all the others are ignored. For each
DeveloperInfoAttribute found, the values of the Developer and Date
properties are displayed as follows:

...
object [] attrs = typeInfo.GetCustomAttributes();
foreach(Attribute atr in attrs) {
 if (atr is DeveloperInfoAttribute) {
 DeveloperInfoAttribute dia = (DeveloperInfoAttribute)atr;
 Console.WriteLine("{0} {1}", dia.Developer, dia.Date);
 }
}
...

GetCustomAttributes is an overloaded method. If you only want values
for that one attribute type, you can invoke this method by passing the type of
the custom attribute you are looking for through it, as shown in the following
code:

object [] attrs =
typeInfo.GetCustomAttributes(typeof(DeveloperInfoAttribute));

Using the IsDefined Method
If there are no matching attributes for a class, GetCustomAttributes returns a
null object reference. However, to find out whether a particular attribute has
been defined for a class, you can use the IsDefined method of MemberInfo as
follows:

Type devInfoAttrType = typeof(DeveloperInfoAttribute);
if (typeInfo.IsDefined(devInfoAttrType) {
 Object [] attrs =
 typeInfo.GetCustomAttributes(devInfoAttrType);
 ...
}

You can use Intermediate Language Disassembler (ILDASM) to see
these attributes inside the assembly.

Tip

Note

26 Module 14: Attributes

Lab 14: Defining and Using Attributes

Objectives
After completing this lab, you will be able to:

n Use the predefined Conditional attribute.

n Create a custom attribute.

n Add a custom attribute value to a class.

n Use reflection to query attribute values.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Creating classes in C#

n Defining constructors and methods

n Using the typeof operator

n Using properties and indexers in C#

Estimated time to complete this lab: 45 minutes

 Module 14: Attributes 27

Exercise 1
Using the Conditional Attribute

In this exercise, you will use the predefined Conditional attribute to
conditionally execute your code.

Conditional execution is a useful technique if you want to incorporate testing or
debugging code into a project but do not want to edit the project and remove the
debugging code after the system is complete and functioning correctly.

During this exercise, you will add a method called DumpToScreen to the
BankAccount class (which was created in earlier labs). This method will
display the details of the account. You will use the Conditional attribute to
execute this method depending on the value of a symbol called
DEBUG_ACCOUNT.

å To apply the Conditional attribute

1. Open the Audit.sln project in the install folder\Labs\Lab14\Starter\Bank
folder.

2. In the BankAccount class, add a public void method called
DumpToScreen that takes no parameters.

The method must display the contents of the account: account number,
account holder, account type, and account balance. The following code
shows a possible example of the method:

public void DumpToScreen()
{
 Console.WriteLine("Debugging account {0}. Holder is {1}.
ÊType is {2}. Balance is {3}",
 this.accNo, this.holder, this.accType, this.accBal);
}

3. Make use of the method’s dependence on the DEBUG_ACCOUNT symbol.

Add the following Conditional attribute before the method as follows:

[conditional("DEBUG_ACCOUNT")]

4. Compile your code and correct any errors.

28 Module 14: Attributes

å To test the Conditional attribute

1. Open the TestHarness.sln project in the install folder\
Labs\Lab14\Starter\TestHarness folder.

2. Add a reference to the Bank library.

a. In Solution Explorer, expand the TestHarness tree.

b. Right-click References, and then click Add Reference .

c. Click Browse, and then navigate to install folder\
Labs\Lab14\Starter\Bank\Bin\Debug.

d. Click Bank.dll, click Open, and then click OK.

3. Review the Main method of the CreateAccount class. Notice that it creates
a new bank account.

4. Add the following line of code to Main to call the DumpToScreen method
of myAccount:

myAccount.DumpToScreen();

5. Save your work, compile the project, and correct any errors.

6. Run the test harness.

Notice that nothing happens. This is because the DumpToScreen method
has not been called.

7. Use the ILDASM utility (ildasm) from the command line to examine install
folder\Labs\Lab14\Starter\Bank\Bin\Debug\Bank.dll.

You will see that the DumpToScreen method is present in the
BankAccount class.

8. Double-click the DumpToScreen method to display the Microsoft
intermediate language (MSIL) code.

You will see the Conditional attribute at the beginning of the method. The
problem is in the test harness. Because of the Conditional attribute on
DumpToScreen, the runtime will effectively ignore calls made to that
method if the DEBUG_ACCOUNT symbol is not defined when the calling
program is compiled. The call is made, but because DEBUG_ACCOUNT
is not defined, the runtime finishes the call immediately.

9. Close ILDASM.

10. Return to the test harness. At the top of the CreateAccount.cs file, before the
first using directive, add the following code:

#define DEBUG_ACCOUNT

This defines the DEBUG_ACCOUNT symbol.

11. Save and compile the test harness, correcting any errors.

12. Run the test harness.

Notice that the DumpToScreen method displays the information from
myAccount.

 Module 14: Attributes 29

Exercise 2
Defining and Using a Custom Attribute

In this exercise, you will create a custom attribute called
DeveloperInfoAttribute. This attribute will allow the name of the developer
and, optionally, the creation date of a class to be stored in the metadata of that
class. This attribute will permit multiple use because more than one developer
might be involved in the coding of a class.

You will then write a method that retrieves and displays all of the
DevloperInfoAttribute values for a class.

å To define a custom attribute class

1. Using Visual Studio.NET, create a new Microsoft Visual C#™ project, using
the information shown in the following table.

Element Value

Project Type Visual C# Projects

Template Class Library

Name CustomAttribute

Location install folder\Labs\Lab14\Starter

2. Change the name and file name of class Class1 to DeveloperInfoAttribute.

Make sure that you also change the name of the constructor.

3. Specify that the DeveloperInfoAttribute class is derived from
System.Attribute .

This attribute will be applicable to classes, enums, and structs only. It will
also be allowed to occur more than once when it is used.

4. Add the following AttributesUsage attribute before the class definition:

[AttributeUsage(AttributeTargets.Class |
ÊAttributeTargets.Enum | AttributeTargets.Struct,
ÊAllowMultiple=true)]

5. Document your attribute with a meaningful summary (between the
<summary> tags). Use the exercise description to help you.

6. The AttributesUsage attribute requires the name of the developer of the
class as a mandatory parameter and takes the date that the class was written
as an optional string parameter. Add private instance variables to hold this
information, as follows:

private string developerName;
private string dateCreated;

7. Modify the constructor so that it takes a single string parameter that is also
called developerName, and add a line of code to the constructor that
assigns this parameter to this.developerName.

8. Add a public string read-only property called Developer that can be used to
get the value of developerName. Do not write a set method.

30 Module 14: Attributes

9. Add another public string property that is called Date. This property should
have a get method that reads dateCreated and a set method that writes
dateCreated.

10. Compile the class and correct any errors.

Because the class is in a class library, the compilation process will produce
a DLL (CustomAttribute.dll) rather than a stand-alone executable program.
The complete code for the DeveloperInfoAttribute class follows:

namespace CustomAttribute
{
 using System;
 /// <summary>
 /// This class is a custom attribute that allows
 /// the name of the developer of a class to be stored
 /// with the metadata of that class.
 /// </summary>
 [AttributeUsage(AttributeTargets.Class |
 ÊAttributeTargets.Enum | AttributeTargets.Struct,
 ÊAllowMultiple=true)]
 public class DeveloperInfoAttribute: System.Attribute

 {
 private string developerName;
 private string dateCreated;

 // Constructor. Developer name is the only
 // mandatory parameter for this attribute.
 public DeveloperInfoAttribute(string developerName)
 {
 this.developerName = developerName;
 }
 public string Developer
 {
 get
 {
 return developerName;
 }
 }

 // Optional parameter
 public string Date
 {
 get
 {
 return dateCreated;
 }
 set
 {
 dateCreated = value;
 }
 }
 }
}

 Module 14: Attributes 31

å To add a custom attribute to a class

1. You will now use the DeveloperInfo attribute to record the name of the
developer of the Rational number class. (This class was c reated in an earlier
lab, but it is provided here for your convenience.) Open the Rational.sln
project in the install folder\Labs\Lab14\Starter \Rational folder.

2. Perform the following steps to add a reference to the CustomAttribute
library that you created earlier:

a. In Solution Explorer, expand the Rational tree.

b. Right-click References, and then click Add Reference .

c. In the Add Reference dialog box, click Browse.

d. Navigate to the install folder\Labs\Lab14\Starter \
CustomAttribute\Bin\Debug folder, and click CustomAttribute.dll.

e. Click Open, and then click OK.

3. Add a CustomAttribute.DeveloperInfo attribute to the Rational class,
specifying your name as the developer and the current date as the optional
date parameter, as follows:

[CustomAttribute.DeveloperInfo("Your Name", ÊDate="Today")]

4. Add a second developer to the Rational class.

5. Compile the Rational project and correct any errors.

6. Open a Command window and navigate to the install folder\
Labs\Lab14\Starter\Rational\Bin\Debug folder.

This folder should contain your Rational.exe executable.
7. Run ILDASM and open Rational.exe.

8. Expand the Rational namespace in the tree view.

9. Expand the Rational class.

10. Near the top of the class, notice your custom attribute and the values that
you supplied.

11. Close ILDASM.

32 Module 14: Attributes

å To use reflection to query attribute values

Using ILDASM is only one way to examine attribute values. You can also
use reflection in C# programs. Return to Visual Studio, and edit the
TestRational class in the Rational project.

1. In the Main method, create a variable called attrInfo of type
System.Reflection.MemberInfo, as shown in the following code:

public static void Main()
{
 System.Reflection.MemberInfo attrInfo;
...

2. You can use a MemberInfo object to hold information about the members
of a class. Assign the Rational type to the MemberInfo object by using the
typeof operator, as follows:

 attrInfo = typeof(Rational);

3. The attributes of a class are held as part of the class information. You can
retrieve the attribute values by using the GetCustomAttributes method.
Create an object array called attrs, and use the GetCustomAttributes
method of attrInfo to find all of the custom attributes used by the Rational
class, as shown in the following code:

 object[] attrs = attrInfo.GetCustomAttributes();

4. Now you need to extract the attribute information that is stored in the attrs
array and print it. Create a variable called developerAttr of type
CustomAttribute.DeveloperInfo, and assign it the first element in the attrs
array, casting as appropriate, as shown in the following code:

 CustomAttribute.DeveloperInfoAttribute developerAttr;
 developerAttr =
 Ê(CustomAttribute.DeveloperInfoAttribute)attrs[0];

In production code, you would use reflection rather than a cast to
determine the type of the attribute.

5. Use the get methods of the DeveloperInfoAttribute attribute to retrieve the
Developer and Date attributes and print them out as follows:

 Console.WriteLine("Developer: {0}\tDate: {1}",
 ÊdeveloperAttr.Developer, developerAttr.Date);

6. Repeat steps 4 and 5 for element 1 of the attrs array.

You can use a loop if you want to be able to retrieve the values of more than
two attributes.

Note

 Module 14: Attributes 33

7. Compile the project and correct any errors.

The completed code for the Main method is shown in the following code:

namespace Rational
{
using System;

// Test harness
public class TestRational
{
 public static void Main()
 {
 System.Reflection.MemberInfo attrInfo;
 attrInfo = typeof(Rational);
 object [] attrs = attrInfo.GetCustomAttributes();
 CustomAttribute.DeveloperInfoAttribute developerAttr;
 developerAttr =
 Ê(CustomAttribute.DeveloperInfoAttribute)attrs[0];
 Console.WriteLine("Developer: {0}\tDate: {1}",
 ÊdeveloperAttr.Developer, developerAttr.Date);
 developerAttr =
 Ê(CustomAttribute.DeveloperInfoAttribute)attrs[1];
 Console.WriteLine("Developer: {0}\tDate: {1}",
 ÊdeveloperAttr.Developer, developerAttr.Date);
 }
}
}

Here is an alternative Main that uses a foreach loop:

 public static void Main()
 {
 System.Reflection.MemberInfo attrInfo;
 attrInfo = typeof(Rational);
 object[] attrs = attrInfo.GetCustomAttributes();

 foreach (CustomAttribute.DeveloperInfoAttribute
 Ê devAttr in attrs)
 {
 Console.WriteLine("Developer: {0}\tDate: {1}",
 ÊdevAttr.Developer, devAttr.Date);
 }
 }

8. When you run this program, it will display the names and dates that you
supplied as DeveloperInfoAttribute information to the Rational class.

34 Module 14: Attributes

Review

n Overview of Attributes

n Defining Custom Attributes

n Retrieving Attribute Values

1. Can you tag individual objects by using attributes?

2. Where are attribute values stored?

3. What mechanism is used to determine the value of an attribute at run time?

 Module 14: Attributes 35

4. Define an attribute class called CodeTestAttributes that is applicable only
to classes. It should have no positional parameters and two named
parameters called Reviewed and HasTestSuite. These parameters should be
of type bool and should be implemented by using read/write properties.

5. Define a class called Widget, and use CodeTestAttributes from the
previous question to mark that Widget has been reviewed but has no test
suite.

6. Suppose that Widget from the previous question had a method called
LogBug. Could CodeTestAttributes be used to mark only this method?

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Resources for C# 1

Appendix A: Resources
for Further Study

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Appendix A: Resources for Further Study 1

u Resources for C#

n Books About C# Programming

n C# Development Resources

n .NET Development Resources

You can use this appendix as a resource to help you locate the latest news and
information about C# and the Microsoft® .NET Framework. It provides you
with book titles and links to key locations of interest to developers:

n Books about C# programming

n C# development resources

n .NET development resources

2 Appendix A: Resources for Further Study

Books About C# Programming

n A Programmer’s Introduction to C#

n Inside C#

n C# Essentials

n C# Programming with the Public Beta

n Presenting C#

To learn more about programming in C#, try the following books:

n A Programmer’s Introduction to C#, by Eric Gunnerson, Apress, 2000.

n Inside C#, by Tom Archer, Microsoft Press®, 2001.

n C# Essentials, by Brad Merrill, Peter Drayton, and Ben Albahari, O’Reilly
and Associates, 2001.

n C# Programming with the Public Beta, by Burton Harvey, Simon Robinson,
Julian Templeman, and Karli Watson, Wrox Press, 2000.

n Presenting C#, by Christopher Wille, Sams Publishing, 2000.

To find information about other C# books and publications, visit:

n http://www.dotnetbooks.com

 Appendix A: Resources for Further Study 3

C# Development Resources

n http://www.dotnetwire.com

n http://discuss.develop.com

n http://www.csharphelp.com

n http://www.csharp-station.com

n http://www.csharpindex.com

n http://www.codehound.com/csharp

n http://www.c-sharpcorner.com

You can find valuable information about developing C# applications at the
following Web sites:

n To access Microsoft’s premier site for .NET news, visit
http://www.dotnetwire.com

n To access archives of developer discussions from DeveloperMentor, visit
http://discuss.develop.com

n To access articles, information, and feedback about C#, visit
http://www.csharphelp.com

n To access information about C# programming, visit
http://www.csharp-station.com

n To access reference information about C#, visit
http://www.csharpindex.com

n To access a C# search engine, visit
http://www.codehound.com/csharp

n To access a C# and .NET developer’s network, visit
http://www.c-sharpcorner.com

4 Appendix A: Resources for Further Study

.NET Development Resources

n Resources

l http://www.microsoft.com/net

l http://msdn.microsoft.com/net

n Articles

Information about developing solutions for the .NET Framework is available
from Microsoft’s Web sites. The following sites include information about the
C# programming language:

n http://www.microsoft.com/net/

n http://msdn.microsoft.com/net/

The following articles provide further insight into the .NET Framework and
related technologies:

n “Microsoft .NET: Realizing the Next Generation Internet,” at
http://www.microsoft.com/business/vision/netwhitepaper.asp

n “Microsoft .NET Framework FAQ,” at
http://msdn.microsoft.com/library/techart/faq111700.htm

n “The .NET Framework and COM,” at
http://www.microsoft.com/net/developer/framework_com.asp

n “C# Language Specification,” at
http://msdn.microsoft.com/vstudio/nextgen/technology/csharpdownload.asp

n “C# Introduction and Overview,” at
http://msdn.microsoft.com/vstudio/nextgen/technology/csharpintro.asp

