msdn training msdn

Introduction to C# Programming

for the Microsoft. .NET Platform
(Prerelease)

Workbook

Course Number: 2124A

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this

prerelease version. All labsin the course are to be completed with the Beta 1 version of
Visual Sudio .NET.

Part Number: X08-16666

[,
eeeeeee : 03/2001 mcmﬂ

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.

Microsoft,ActiveX, BackOffice, BizTalk, IntelliSense, JScript, MSDN, MSDOS, PowerPoint,
Visual Basic, Visual C++, Visual C#, Visua Studio, Windows, Windows NT, and Windows
Media are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A.
and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Course Number: 2124A
Part Number: X08-16666
Released: 03/2001

Introduction to C# Programming for the Microsofti .NET Platform (Prerelease) iii

Contents

Introduction

COUrSE MELEITAIS. ..ot 2
L = =0 TS] == SRR 3
(001N 6> X @ 11 11 1701 TSRS 4
Course Outline (CONLINUE)cooviiiiiiiiiiiiiiir e 5
Course Outling (CONLINUET)coeuuurureeeeeeiiir e e ee e e e e e e e e e e e e e aaer e eens 6
Microsoft Certified Professional Programcooovvvvviiiiiiiiiiiiiiinneeeee e 7
L o 1] 1= TSP 9
Module 1: Overview of the Microsoft .NET Platform

OVEIVIBIW ..ottt e e 1
Introduction to the .NET Platform............coovviiiiiiiiiiiiiiieeeeeeeeeeiien 2
Overview of the .NET Framework ...t 4
Benefits of the NET Frameworkouuuuuuiiiiiiiiiiee e 5
The .NET Framework COmMPONENS...........covviiiiiiiiiiiiiiiiiinnnineeeeeeeeeeeeeeeeeeennennns 7
Languages in the .NET FramewWorK............ooiiiiiieeeiiiiiieeieeeeeiiiiiiiiiiine s 13
REVIBI . aaaan 14
Module 2: Overview of C#

OVEIVIBIW ..ottt e e s 1
Structure of @ CH# PrOgram..........oevuuiiiiiiiee it 2
Basic INPUt/OULPUE OPEIaLIONS.cceiiiieeeeeii ittt e e 9
Recommended PraCtiCeS.........ouuvuuuiiiiiiiiiniie e 15
Compiling, Running, and DebUggING..........ccvvvviiiiiimiiiiiiiieeeeeee e 22
Lab 2: Creating a Simple C# Program.............eeeueeeeeeeieeeeemiiisineeeeeeeeeeeaaaeeaens 36
REVIBI .t e e 45
Module 3: Using Value-Type Variables

OVEIVIBIW ..ottt e e s 1
COMMON TYPE SYSIEIM ..ttt e e e e e e eaa e e aeees 2
Naming VariableScoooiiiii 9
USiNg BUIlt-1N Dala TYPES ..evvvieeieeiie e e e e e e e e e e e eaans 15
CompPOoUNd ASSIGNIMENLvvvvreeiieiiiiaes e e e e e e e e e e e e e e e eeeaaaaaaaaeeees 18
Increment and DECIEMENL.........ooiieiiii bbb 20
Creating User-Defined Data TYPES.uoiiiiiiieeeeeeeeeeeeeeeii e 24
1000 01V/= (1ol DT = T N/ 0= T 28
Lab 3: Creating and USING TYPESovvvvieeiieiiiiiiiiiiiaesssee e e e e e e eseeeeeeeesessennnnnnnnns 32
REVIBI .t e e 36
Module 4: Statements and Exceptions

OVEIVIBIW ...ttt e e s 1
INtroduction t0 SEALEMENES.uueeieiiiiiiiiiiiiitiiie crree e eeerreaenn 2
USiNg SElection SEAEMENESooeii ittt 6
Using [teration StatemMeNtS........uuui i i et e e e eaaans 17
USING JUMP SEEEEIMENES ...ttt 29
Lah 4.1: USING SEAtEMENES......uuuuiiiiiiiiieeeesee eeviinibeeeeeeaaeeeaeeeeneenen seennnnnas 32
Handling BasiC EXCEPLIONScoooiiiiiiiiiiiiiieeeeeee e 41

RaISING EXCEPLIONS ...coveeeeiiie et e e e e e e 51

iv Introduction to C# Programming for the Microsofti .NET Platform (Prerelease)

Lab 4.2 USING EXCEPLIONSvvvvviiiiiiiiiiiiiiiiiiriis veeeeeeeeeeeeeeeeeeeeeeeeeeenees seeeennnes 62
REVIEI ...ttt e e e e e e e e e e e 72
Module 5: Methods and Parameters

OVEIVIBIW ...ttt e e 1
USING MEINOOS......ceiiiiiiiiiiiiiiieiet e e 2
USING PalraMELENS. ...ttt ettt e e et e e e e e e e as 16
Using Overloaded MethOOScooviiiiiiiiiiiiiiiiceeeeeee e 30
Lab 5: Creating and Using MethodsSuoviiiiiiiiiiieccccics e 38
REVIEI ..t e e e e e e e e e e et 50
Module 6: Arrays

OVEIVIBIW ...ttt e e 1
OVEIVIBW OF ATTAYS. . euutiieeeieeeiie s et e e e e s e e e e et e e e e e et e e e e e e eaan e e eeeeenes 2
(7= 1] To [1 £ Y SRS 11
USING ATTAYS .o ettttteeeeee ettt ettt e e e e e e e e e e et bbb bbb e e e et e e e e e e e s s e anebbbbeeeeeeaaaas 18
Lab 6: Creating and USING ATTAYScoooiiiiiiiiieiiiiiiiiiiiee e e e e e e e e e eeeeeeenennees 31
REVIEI ... 42
Module 7: Essentials of Object-Oriented Programming

OVEBIVIBIN ...ttt ettt e e e e e et £ e e e e s et bbbt e e e e e e e s aaabbbaee eeas 1
Classes AN ODJECISevviiiiiiiiiiir e e e 2
USING ENCAPSUIBEION.ceeeeiie e et e e e e e e et e e e e aae e e e et e e e e enanas 10
CH# and ObJECt OrieNntatioN.........cuvvvriiiiiee et 21
Lab 7: Creating and USiNG ClaSseS........uuvriiiiiiiiiiiaaeeees ittt e e e e 39
Defining Object-Oriented SYyStEMS.......covvvvieiiieiieece e 53
REVIEI .ot e e e e 62
Module 8: Using Reference-Type Variables

OVEBIVIBIN ...ttt ettt e e e e e e be £ e e e e s et bbbt e e e e e e s s s nnbbbaee eeas 1
Using Reference-Type Variables...........ovii i e e 2
Using Common REFErENCE TYPES.....cvvvveeiiiiiiiiiiiiiiasnaee e e e e e e e e e eeeeeeeeeeeeennens 15
The Object HIErarChyocevvvuiiiiiiiiiiiie e 23
Namespaces in the .NET Framework...........coooiiiieiiiiiiiiiiiiieeeiiiiiiiies 29
Lab 8.1: Defining And Using Reference Type Variables.........c.occovvvveiniinnenn, 35
DAla CONVEISIONS. ...evvtittiieeiiee e e e e e e e e e e e ettt eeeeetbbbbbea s s st e e e eeeeaeaeeeeeeeeeeensssrnnees 43
Multimedia: Type-Saf@ Castinguuuuuruurrurrmeeeeeeiiirreeereenseeeeeeeeeeeeeeeeeeae 56
Labh 8.2 CONVEING DAA.eeeiiiiieeeeiiieiieiiiiiiiieee e 57
REVIEI ..t 63
Module 9: Creating and Destroying Objects

OVEBIVIBIN ...ttt ettt e e e e e e e £ e e e e s s abb bbb e e e e e e e e s e annbbaee eeas 1
USING CONSITUCTONSceiiiiiiiiiiieiiiie ettt e e e e e e e e e e e e 2
T TN] o D - 13
Lab 9.1: Creating ODJECLS. ...uvuuuiiii e ittt e e e e e e eari e e e eeeeees 31
ObJECLS ANA MEIMOIY......vviiiiieeeiiiiiiie et ittt bbb eees 39
USING DESLIUCTOIS. ... eeeeeiiie e e ee et e e et s e e e e e s s e e e e et s e e e e eetrnr e e e e e eenennn s 45
Lab 9.2: Destroying ObJECES.ccvvuiiiie e et eee e e e e e e e e e e e eaaans 60
REVIBI ... e e e e e e e e e e e 65
Module 10: Inheritance in C#

OVEIVIBIW ...ttt e e 1
DENVING CIaSSES. ...cevvivtetiiiiiias it e ettt e e e e e e e e e e e eeeeaabaaa s 2

Implementing MethOdS...........oooeeiiiii e 10

Introduction to C# Programming for the Microsofti .NET Platform (Prerelease) %

USNQG SEAIEU ClaSSES.....uuuuveeuiiereeiriittieinins veeeeeeeeeeeeeeeseeseresaeseeees eeeersnrnnenn 26
USING INEEITACES. ..ttt 28
USING ADSITECE ClASSES ... uvvveeeiiiiiiiee ettt ee e e 42
Lab 10: Using Inheritance to Implement an Interface............ocoovvveieeieviennnnnnn. 53
REVIBIW ... 71
Module 11: Aggregation, Namespaces, and Advanced Scope

OVBIVIBIN ...ttt ettt e e e e e e ee £ e e e e s et bbb e e e e e e e s s aabbbaee eeas 1
Using Internal Classes, Methods, and Data..............ccccvvieeeiiiiiiiin e, 2
(WS 7o I o = o= 1o o H P 11
Lab 11.1: Specifying INternal ACCESS.......oovveeeeiiiiiiieieieeii s 22
USING NAIMESPECEScceiiiiiiiiiieiiiiiitiie ettt 28
Using Modules and ASSEMBIIESuoiiiieiiiii e 49
Lab 11.2: Using Namespaces and ASSEMBIIES.......cooovvveeeiiiiiiiieiiiiiiiiiii 63
REVIBIW ...t e e 69
Module 12: Operators, Delegates, and Events

OVEIVIBIW ...t et e e e e e e e e s e e e e e e e s s eeas 1
INtrodUCLION t0 OPEraLOrS......ciiiieeieeeiiiiiiiiiies s e et et 2
Operator OVErlOBaINGuuuviiiiiiiiieee e 8
Lah 12.1: Defining OPEIralOrS.cuuuururrreiiariaaeeeeeeeeeeeeeeeeeaneniiiei e 21
Creating and USiNg DElEQAES.........ccoviuiiiieeiieiie e 40
Defining and USING EVENLS........uuuuiiiiiiieiiesee i e 50
Demonstration: Handling EVENLS...........ccoiiiiiiiiiiiiies it 56
Lab 12.2: Defining and USiNg EVENES......cooovviiiiiiiii e 57
Module 13: Properties and Indexers

OVEBIVIBIN ...ttt ettt e e e e e e et ee £ e e e e s e bbb b e e e e e e e s s annbbnes 2eas 1
USING PrOPEIES ...ttt 2
USING INAEXENS ... et e e e e e e e e e e e e e et eeeeeeanas 17
Lab 13: Using Properties and INAEXEXS...........oovviiiiiiiiiiiiiiiie e 33
REVIBI ...t e e e e e 42
Module 14: Attributes

OVEIVIEIW ...t ettt e e et e e e e e s e e e e e e e e ee s 1
OVerview Of AtITDULESevviiiiiieiiiiiee e 2
Defining Custom AHDULES..........oooi i 13
Retrieving AtribUte VAIUESoooiiiiiiiiiiiiee e 22
Lab 14: Defining and Using AtrbULEScovviieiiiiiiii e, 26
REVIBIW ... 34

Appendix A: Resources for Further Study
RESOUICES FOr CH ..t e e e e e e e e e e eeeee 1

Introduction to C# Programming for the Microsofti .NET Platform (Prerelease) vii

About This Course

This section provides you with a brief description of the course, audience,
suggested prerequisites, and course objectives.

Description

This five-day instructor-led course provides students with the knowledge and
skills needed to develop C# applications for the Microsofte .NET platform. The

course focuses on C# program structure, language syntax, and implementation
details.

Audience

This course is intended for experienced devel opers who already have
programming experience in C, C++, Microsoft Visual Basice, or Java. These
developers will be likely to develop enterprise business solutions.

Student Prerequisites

This course requires that students meet the following prerequisites:

m Experience programming in C, C++, Visua Basic, Java, or another
programming language

m Familiarity with Microsoft’s .NET strategy as described on
Microsoft's .NET Web site: http://www.microsoft.com/net/

= Familiarity with the .NET Framework as described in Microsoft MSDNe
Magazine:
http://msdn.microsoft.com/msdnmag/issues/0900/Framework/
Framework. asp

and

http://msdn.microsoft.com/msdnmag/issues/1000/Framework?2/
Framework?2.asp

viii Introduction to C# Programming for the Microsoft! .NET Platform (Prerelease)

Course Objectives
After completing this course, the student will be able to:

List the magjor elements of the .NET Framew ork and explain how C# fits
into the .NET platform.

Analyze the basic structure of a C# application and be able to debug,
compile, and run a simple application.

Create, name, and assign values to variables.

Use common statements to implement flow control, looping, and exception
handling.

Create methods (functions and subroutines) that can return values and take
parameters.

Create, initialize, and use arrays.

Explain the basic concepts and terminology of object-oriented programming.
Use common objects and references types.

Create, initidize, and destroy objects in a C# application.

Build new C# classes from existing classes.

Create self-contained classes and frameworks in a C# application.

Define operators and add event specifications.

Implement properties and indexers.

Use predefined and custom attributes.

Introduction to C# Programming forthe Microsofti .NET Platform (Prerelease) ix

Student Materials Compact Disc Contents

The Student Materials compact disc contains the following files and folders:

Autorun.exe. When the CD is inserted into the CD-ROM drive, or when you
double-click the autorun.exe file, this file opens the CD and allows you to
browse the Student Materials CD or install Internet Explorer.

Default.htm This file opens the Student Materials Web page. It provides
you with resources pertaining to this course, including additional reading,
review and lab answers, lab files, multimedia presentations, and course-
related Web sites.

Readme.txt. This file contains a description of the compact disc contents and
setup instructions in ASCII format (non-Microsoft Word document).

21243 sg.doc. Thisfileis the Classroom Setup Guide. It contains a
description of classroom requirements, classroom setup instructions, and the
classroom configuration.

AddRead. This folder contains additional reading pertaining to this course.
If there are no additiona reading files, this folder does not appear.

Appendix. This folder contains appendix files for this course. If there are no
appendix files, this folder does not appear.

Democode. This folder contains demonstration code. If thereisno
demonstration code, the Democode folder does not appear.

Fonts This folder contains fonts that are required to view the PowerPoint
presentation and Web-based materials.

Ieb. Thisfolder contains Microsoft Internet Explorer 5.5.

Labs. Thisfolder contains files tha are used in the hands-on labs. These
files may be used to prepare the student computers for the hands-on labs.

Media. Thisfolder contains files that are used in multimedia presentations
for this course. If this course does not include any multimedia presentations,
this folder does not appear.

Menu. Thisfolder contains e ements for autorun.exe.

Mplayer. This folder contains files that are required to install Windows
Media Player.

Practices. This folder contains files that are used in the hands-on practices.
If there are no practices, the Practices folder does not appear.

Sampapps. This folder contains the sample applications associated with this
course. If there are no associated sample applications, the Sampapps folder
does not appear.

Sampcode. This folder contains sample code that is accessible through the

Web pages on the Student Materials CD. If there is no sample code, the
Sampcode folder does not appear.

Sampsite. This folder contains files that create the sample site associated
with thiscourse. | f there is no sample site, the Sampsite folder does not

appear.

Setup. This folder contains additional files that may be required for lab setup.
If no additional files are required, the Setup folder does not appear.

X Introduction to C# Programming for the Microsoft! .NET Platform (Prerelease)

Webfiles. Thisfolder contains the files that are required to view the course
Web page. To open the Web page, open Windows Explorer, and in the root
directory of the compact disc, double-click Default.ntm or Autorun.exe.

Wordview. This folder contains the Word Viewer that is used to view any
Word document (.doc) files that are included on the compact disc. If no
Word documents are included, this folder does not appear.

Introduction to C# Programming for the Microsofti .NET Platform (Prerelease) Xi

Document Conventions

The following conventions are used in course materials to distinguish elements

of the text.

Convention

Use

L 2

bold

italic

Title Capitals

ALL CAPITALS

monospace

[]

{}

Indicates an introductory page. This symbol appears next
to atopic heading when additional information on the topic
iscovered on the page or pagesthat follow it.

Represents commands, command options, and syntax that
must betyped exactly as shown. It aso indicates
commands on menus and buttons, dialog box titlesand
options, and icon and menu names.

In syntax statements or descriptive text, indicates argument
names or placeholders for variable information.

Indicated omain names, user names, computer names,
directory names, and folder and file names, except when
specifically referring to casesensitive names. Unless
otherwise indicated, you can use lowercase letters when
you type adirectory name or file namein adialog box or

at acommand prompt.

Indicate the names of keys, key sequences, and key
combinations—for example, ALT+SPACEBAR.

Represents code samples or examplesof screentext.

In syntax statements, enclose optional items. For example,
[filename] in command syntax indicatesthat you can
choose to type afile name with the command. Type only
the information within the brackets, not the brackets
themselves.

In syntax statements, enclose required items. Type only the
informationwithin the braces, not the braces themselves.

In syntax statements, separates an either/or choice.
Indicates a procedure with sequential steps.

In syntax statements, specifiesthat the preceding item may
be repeated.

Representsan omitted portion of acode sample.

msdn training

Introduction

Contents

Introduction

Course Materials

Prerequisites

Course Outline

Microsoft Certified Professional Program
Facilities

© N A WN P

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.

Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Sudio .NET.

Microsoft

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright lawns is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.
Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual

Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Introduction

Introduction

= Name

= Company Affiliation

m Title/Function

= Job Responsibility

= Programming Experience

m C, C++, Visual Basic, or Java Experience

m Expectations for the Course

2 Introduction

Course Materials

= Name Card
= Student Workbook
m Student Materials Compact Disc

m Course Evaluation

The following materias are included with your kit:

Name card. Write your name on both sides of the name card.

Sudent workbook. The student workbook contains the material covered in
class, in addition to the hands-on lab exercises.

Sudent Materials compact disc. The Student Materials compact disc
contains the Web page that provides you with links to resources pertaining

to this course, including additional readings, review and lab answers, lab
files, multimedia presentations, and course related Web sites.

Note To open the Web page, insert the Student Materials compact disc into
the CD-ROM drive, and then in the root directory of the compact disc,
double-click Autorun.exe or Default.htm.

Course evaluation. At the conclusion of this course, please complete the
course evaluation to provide feedback on the instructor, course, and
software product. Y our comments will help us improve future courses.

To provide additional comments or inquire about the Microsoft Certified
Professional program, send e mail to mcp@msprograms.com.

Introduction

Prerequisites

m Experience Programming in C, C++, Visual Basic or
Java

m Familiarity with Microsoft’s .NET Strategy

m Familiarity with the Microsoft .NET Framework

This course requires that you meet the following prerequisites:

Experience programming in C, C++, Microsoft Visual Basice, Java, or
another programming language

Familiarity with Microsoft’s .NET strategy as described on
Microsoft's .NET Web site (http://www.microsoft.com/net/)

Familiarity with the .NET Frameworks as described in MSDNe Magazine
(http://msdn.microsoft.com/msdnmag/i ssues/0900/Framework/
Framework.asp and
http://msdn.microsoft.com/msdnmag/issues/1000/Framework2/
Framework2.asp)

4

Introduction

Course Outline

m Module 1: Overview of the Microsoft .NET Platform
= Module 2: Overview of C#

= Module 3: Using Value-Type Variables

= Module 4: Statements and Exceptions

= Module 5: Methods and Parameters

Module 1, “Overview of the Microsoft .NET Platform,” describes the rationale
and features that provide the foundation for the .NET platform, including

the .NET components. The purpose of this module is to build an understanding
of the .NET platform for which you will be developing C# code. After
completing this module, you will be able to describe the components of

the .NET platform.

Module 2, “Overview of C#,” describes the basic structure of a C# application.
This module provides a simple working example for you to analyze to learn
how to use the Console class to perform some basic input and output operations
and to learn best practices for handling errors and documenting your code.

After completing this module, you wil be able to compile, run, and debug a C#
application.

Module 3, “ Usng Vaue Type Variables,” describes how to use value-type
variables in C#. This module explains how to specify the type of data that
variables will hold, how to name variables according to standard naming
conventions, how to assign values to variables, and how to convert existing
variables from one data type to another. After completing this module, you will
be able to use valuetype variables in C#.

Module 4, “ Statements and Exceptions,” explains how to use some common
statements in C#. This module also describes how to implement exception
handling in C#. After completing this module, you will be able to throw and
catch errors.

Module 5, “Methods and Parameters,” describes how to create static methods
that take parameters and return values, how to pass parameters to methods in

different ways, and how to declare and use overloaded methods. After
completing this module, you will be able to use methods and parameters.

Introduction 5

Course Outline (continued)

= Module 6: Arrays

= Module 7: Essentials of Object-Oriented Programming
= Module 8: Using Reference-Type Variables

= Module 9: Creating and Destroying Objects

m Module 10: Inheritance in C#

Module 6, “ Arrays” explains how to group data into arrays. After completing
this module, you will be able to create, initialize, and use arrays.

Module 7, “Essentials of ObjectOriented Programming,” explainsthe
terminology and concepts required to create and use classes in C#. This module
also explains abstraction, encapsulation, inheritance, and polymorphism. After
completing this module, you will be able to explain some of the common
concepts of object-oriented programming.

Module 8, * Using Reference Type Variables,” describes how to use reference
type variablesin C#. This module explains a number of reference types, such as
string, that are built into the C# language and the Common Language Runtime.

After completing this module, you will be able to use reference-type variables
in C#.

Module 9, “Creating and Destroying Objects,” explains what happens in the
language runtime when an object is created and how to use constructors to
initialize objects. This module also explains what happens when an object is

destroyed and how the garbage collector reclaims memory. After completing
this module, you will be able to create and destroy objects in C#.

Module 10, “Inheritance in C#,” explains how to derive a class from a base
class. This module also explains how to implement methods in a derived class
by defining them as virtual methods in the base class and overriding or hiding
them in the derived class, as required. This module explains how to seal a class
so that it cannot be derived from and how to implement interfaces and abstract

classes. After completing this module, you will be able to use inheritance in C#
to derive classes and to define virtual methods.

6

Introduction

Course Outline (continued)

= Module 11: Aggregation, Namespaces, and Advanced
Scope

= Module 12: Operators, Delegates, and Events
= Module 13: Properties and Indexers
= Module 14: Attributes

Module 11, “ Aggregation, Namespaces, and Advanced Scope,” describes how
to group classes together into larger, higher-level classes and how to use
namespaces to group classes together inside named spaces and to create logical
program structures beyond individual classes. This module aso explains how to
use assemblies to group collaborating source files together into a reusable,
versionable, and deployable unit. After completing this module, you will be
able to make code accessible at the component or assembly level.

Module 12, “ Operators, Delegates, and Events,” explains how to define
operators and how to use delegates to decouple a method call from a method
implementation. It aso explains how to add event specifications to a class.
After completing this module, you will be able to implement operators,
delegates, and events.

Module 13, “Properties and Indexers,” explains how to create properties to
encapsulate data within a class and how to define indexers to gain access to
classes by using array-like notation. After completing this module, you will be
able to use properties to enable field- like access and indexers to enable array-
like access.

Module 14, “ Attributes” describes the purpose of attributes and the role they
play in C# applications. This module explains attribute syntax and how to use
some predefined attributes in the .NET environment. After completing this
module, you will be able to create custom user-defined attributes and use these
custom attributes to query attribute information at run time.

Note Theinformation in this course is based on the Beta 1 prerelease version
of Microsoft Visual Studio.NET.

Introduction

Microsoft Certified Professional Program

Microsoft =il

Professional

http://www.microsoft.com/trainingandservices/

The Microsoft Certified Professional program includes the following
certifications:

Microsoft Certified Systems Engineer + Internet (MCSE + Internet)
Microsoft Certified Systems Engineer (MCSE)

Microsoft Certified Database Administrator (MCDBA)

Microsoft Certified Solution Developer (MCSD)

Microsoft Certified Professiona + Site Building (MCP + Site Building)
Microsoft Certified Professional + Internet (MCP + Internet)

Microsoft Certified Prof essional (MCP)

Microsoft Certified Trainer (MCT)

For More Information Seethe* Cetification” section of the Web page provided
on the compact disc or the Microsoft Training and Certification Web site at
http://www.microsoft.com/trai ningandservices/

You can aso send email to mcp@msprograms.com if you have specific
certification questions.

8

Introduction

Exam Preparation Guides

To help prepare for the MCP exams, you can use the preparation guides that are
available for each exam. Each Exam Preparation Guide contains exam-specific
information, such as alist of the topics on which you will be tested. These
guides are available on the Microsoft Certified Professional Web site at
http://www.microsoft.com/trai ningandservices/

Important MSDN Training curriculum helps you to prepare for Microsoft
Certified Professional (MCP) exams. However, no one-to-one correlation exists
between MSDN Training courses and MCP exams. Passing MCP exams
requires real-world experience with the products—M SDN Training courses
help get you started.

Introduction 9

Facilities

Class Hours

@)

Building Hours I Phones

Parking I Messages E] I
Rest Rooms@@l Smoking @ I
Meals m] I Recycling @ I

msdn training

Module 1: Overview of
the Microsoft .NET
Platform

Contents

Overview

Introduction to the .NET Platform
Overview of the .NET Framework
Benefits of the .NET Framework
The .NET Framework Components

~No AN PR

Languages in the .NET Framework 13
Review 14

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.

Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1 version
of Visual Studio .NET.

Microsoft

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.
Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual

Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Module 1: Overview of the Microsoft .NET Platform 1

Overview

= Introduction to the .NET Platform
m Overview of the .NET Framework
m Benefits of the .NET Framework

m The .NET Framework Components

m Languages in the .NET Framework

The Microsofte .NET platform provides al of the tools and technologies that
you need to build distributed Web applications. It exposes a language-
independent, consistent programming model across all tiers of an application
while providing seamless interoperability with, and easy migration from,
existing technologies. The .NET platform fully supports the Internet’s platform-
neutral, standards-based technologies, including HTTP, Extensible Markup
Language (XML), and Simple Object AccessProtocol (SOAP).

C# is anew language specifically designed for building applications in

the .NET environment. As a developer, you will find it useful to understand the
rationale and features that provide the foundation for the .NET platform before
you start writing C# code.

After completing this module, you will be able to:
m Describe the .NET platform.
m List the main elements of the .NET platform.

= Explain the language support in the .NET Framework.
m Describe the NET Framework and its components.

2

Module 1: Overview of the Microsoft .NET Platform

Introduction to the .NET Platform

Internet | NET Building

i
5 :
5 :
i

i
: i:N =l K Enterprise Block [
| Framewor COM¥* Servers Services §
i
‘ 1
1 1

| Windows
Available With .NET New
Today Enhancements Capabilities

The .NET platform is made up of several core technologies as shown on the
dide. These technologies are described in the following topics.

The .NET Framework

The .NET Framework is based on a new Common Language Runtime. The
Common Language Runtime provides a common set of services for projects
built in Microsoft Visual Studio.NET, regardless of the language. These
services provide key building blocks for applications of any type, across all
application tiers.

Microsoft Visual Basice, Microsoft Visual C++e, and other Microsoft
programming languages have been enhanced to take advantage of these services.
Third-party languages that are written for the .NET platform aso have access to

the same services. The .NET Framework is explained in greater detail later in
this module.

The .NET Building Block Services

The .NET building block services are distributed programmable services that
are available both online and offline. A service can be invoked on a stand-aone
computer not connected to the Internet, provided by alocal server running
inside a company, or accessed by means of the Internet. Microsoft .NET
building block services can be used from any platform that supports SOAP.
Microsoft Windows-based clients are optimized to distribute Web Servicesto
every kind of device. Services include identity, notification and messaging,

personalization, schematized storage, calendar, directory, search, and software
delivery.

Module 1: Overview of the Microsoft .NET Platform 3

Server

The .NET Enterprise Servers

The .NET Enterprise Servers provide sca ability, reliability, management,
integration within and across organizations, and many other features, as
described in the following table.

Description

Microsoft SQL Server™
2000

Microsoft BizTak™
Server 2000

Microsoft Host Integration
Server 2000

Microsoft Exchange 2000
Enterprise Server

Microsoft Application
Center 2000

Microsoft Internet Security
and Acceleration Server
2000

Microsoft Commerce
Server 2000

Includes rich XML functionality, support for Worldwide Web Consortium (W3C)
standards, the ability to manipulate XML data by using Transact SQL (T-SQL), flexible
and powerful Web-based analysis, and secure access to your dataover the Web by using
HTTP.

Provides enterprise application integration (EAI), business-to-business integration, and
the advanced BizTak Orchestration technology to build dynamic business processes
that span applications, platforms, and organizations over the Internet.

Provides the best way to embrace Internet, intranet, and client/server technologies while
preserving investmentsin existing earlier systems.

Builds on the powerful Exchange messaging and collaboration technology by
introducing several important new features, and further increasing the reliability,
scalability, and performance of its core architecture. Other features enhance the
integration of Exchange 2000 with Microsoft Windows 2000, Microsoft Office 2000,
and the Internet.

Provides a deployment and management tool for high-availability Web applications.

Provides secure, fast, and manageable Internet connectivity. Internet Security and
Acceleration Server integrate an extensible, multilayer enterprise firewall and a scalable
hi ghperformance Web cache. It builds on Windows 2000 security and directory for
policy-based security, accel eration, and management of internetworking.

Provides an application framework, sophisticated feedback mechanisms, and analytical
capabilities.

Visual Studio.NET

Visual Studio.NET provides a high-level development environment for building
applications on the .NET Framework. It provides key enabling technologies to

simplify the creation, deployment, and ongoing evolution of secure, scalable,
highly available Web applications and Web Services.

Windows

The next generation of Microsoft Windowse will provide the foundation for
devel opers who want to create new .NET applications and services.

4 Module 1: Overview of the Microsoft .NET Platform

Overview of the .NET Framework

Vst

Ees - C# JSehpt

CommonitanguagerSpeciiicatian

NET Eramework

Before COM, applications were completely separate entities with little or no
integration. By using COM, you can integrate components within and across
applications by exposing common interfaces. However, as a devel oper, you
mbust till write the code to wrap, manage, and clean up after components and
objects.

Building Components in the .NET Framework

In the .NET Framework, components are built on a common foundation. Y ou
no longer need to write the code to allow objects to interact directly with each
other. In addition, you no longer need to write component wrappersin the NET
environment, because components do not use wrappers. The .NET Framework
can interpret the constructs that devel opers are accustomed to using in object-
oriented languages. The .NET Framework fully supports class, inheritance,
methods, properties, events, polymorphism, constructors, and other object-
oriented constructs.

The Common Language Specification

The Common Language Specification (CLS) defines the common standards to

which languages and developers must adhere if they want their components and
applications to be widely useable by other .NET languages.

Visual Studio.NET

Inthe NET Framework, Visua Studio.NET provides the tools you can use for
rapid application development.

Module 1: Overview of the Microsoft .NET Platform

5

Benefits of the .NET Framework

m Based on Web Standards and Practices
m Designed Using Unified Application Models
m Easy for Developers to Use

m Extensible Classes

In this topic, you will learn about some of the benefits of the .NET Framework.

The NET Framework was designed to meet the following goals.

Based on Web standards and practices

The .NET Framework fully supports the existing Internet technologies
including Hypertext Markup Language (HTML), XML, SOAP,
Extensible Stylesheet Language for Transformations (XSLT), Xpath, and

other Web standards. The .NET Framework favors loosely connected,
stateless Web services.

Designed using unified application models

A .NET class's functionality is available from any .NET language or
programming model.

NET
Framework
Visual Basic MFC/ATL ASP
Forms

N/

Windows API

6

Module 1: Overview of the Microsoft .NET Platform

Easy for developersto use

In the .NET Framework, code is organized into hierarchical namespaces and
classes. The Framework provides a common type system, referred to as the
unified type system, that is used by any .NET language. In the unified type
system, all languages elements are objects. There are no variant types, there
isonly one string type, and al string data is Unicode. The unified type
system is described in more detail in later modules.

Extensible classes

The hierarchy of the .NET Framework is not hidden from the developer.
You can access and extend .NET classes (unless they are sealed) through
inheritance. Y ou can also implement cross-language inheritance.

Module 1: Overview of the Microsoft .NET Platform

€ The .NET Framework Components

Nigriace

geERUATImE

algua
FNET V Enterprise Block
ramework Sorvra paloal

Windows
In this section, you will learn about Microsoft’s .NET Framework. The .NET
Framework is a set of technologies that form an integral part of the
Microsoft .NET platform. It provides the basic building blocks for developing
Web applications and Web services.

This section includes the following topics:
= Common Language Runtime

m BaseClassLibrary

m ADO.NET: Data and XML

= Web Forms and Services

m User Interface

8 Module 1: Overview of the Microsoft .NET Platform

Common Language Runtime

Base Class Library/Support

COMiIMarshaler:
ExceptionManager
Debug Engine

Thread Support
Type:Checker
Security’Engine

MSIL to Native
Compilers

Code
Manager

Ganbage
Collector;

Class |lLoader:

The Common Language Runtime simplifies application development, provides
arobust and secure execution environment, supports multiple languages, and
simplifies application deployment and management. The environment is also
referred to as a managed environment, one in which common services, such as
garbage collection and security, are automatically provided. The Common
Language Runtime features are described in the following table.

Component

Description

Class |oader

Microsoft intermediate language
(MSIL) to native compiler

Code manager
Garbage collector (GC)

Security engine

Debug engine
Type checker

Exception manager

Thread support
COM marshaller
Base Class Library (BCL) support

Manages metadata, aswell asthe loading and layout of classes.
Converts M SIL to native code (Just-in-Time).

Manages code execution.

Provides automatic lifetime management of all of your objects. Thisisa
multiprocessor, scalable garbage collector.

Provides evidence-based security, based on the origin of the code in addition to
the user.

Allowsyou to debug your application and trace theexecution of code.

Will not alow unsafe casts or uninitialized variables. MSIL can be verified to
guaranteetype safety.

Provides structured exception handling, which isintegrated with Windows
Structured Exception Handling (SEH). Error reporting has been improved.

Provides classes and interfaces that enable multithreaded programming.
Provides marshalling to and from COM.
Integrates code with the runtime that supportsthe BCL.

Module 1: Overview of the Microsoft .NET Platform 9

Base Class Library

Sysigim

Collections 10 Runtime

Configuration

Diagnosties Reflection Text
Globalization Resources Threading

The Base Class Library (BCL) exposes features of the runtime and provides

other high-level services that every programmer needs through namespaces. For
example, the System.l O namespace contains input/output (1/0) services.

In the System.lO namespace, all of the base data types, such as int and float,
are defined for the platform. Inside the System.l O namespace, there are other
namespaces that provide various runtime features. The Collections namespace
provides sorted lists, hash tables, and other ways to group data. The 10
namespace provides file |/O, streams, and so on. The Net namespace provides
Transmission Control Protoc ol/Internet Protocol (TCP/IP) and sockets support.
For more information about namespaces, search for “ namespaces’ in the .NET
Framework SDK Help documents.

10 Module 1: Overview of the Microsoft .NET Platform

ADO.NET: Data and XML

y 4
ADGNETE Pave & XN
Sy/Siemipate SystemmiiLE

ADO SQL
Serialization

Design SQLTypes

ADO.NET is the next generation of ActiveXe Data Object (ADO) technology.

ADO.NET provides improved support for the disconnected programming
model. It also provides rich XML support.

System.Data Namespace

The System.Data namespace consists of classes that constitute the ADO.NET
object model. At a high level, the ADO.NET object model is divided into two
layers: the connected layer and the disconnected layer.

The System.Data namespace includes the DataSet class, which represents
multiple tables and their relations. These DataSets are completely self-
contained data structures that can be populated from a variety of data sources.
One data source could be XML, another could be OLEDB, and a third data
source could be the direct adapter for SQL Server.

System.Xml Namespace

The System.Xml namespace provides support for XML. It includes an XML
parser and awriter, which are both W3C-compliant. The Extensible Stylesheet
Language (XSL) transformation is provided by the XSL T namespace. The
implementation of XPath alows data graph navigation in XML. The
Serialization namespace provides the entire core infrastructure for Web
Services, including features such as moving back and forth from objects to an
XML representation.

Module 1: Overview of the Microsoft .NET Platform 11

Web Forms and Services

A
ASPNET

SystemNED!

Caching Security

Configuration SessionState

Microsoft ASP.NET is a programming framework built on the Common
Language Runtime that can be used on a server to build powerful Web
Applications. ASP.NET Web Forms provide an easy and powerful way to build
dynamic Web user interfaces (Uls). ASP.NET Web Services provide the
building blocks for constructing distributed Web-based applications. Web
Services are based on open Internet standards, such as HTTP and XML.

The Common Language Runtime provides built-in support for creating and
exposing Web Services by using a programming abstraction that is consistent
and familiar to both ASP Web Forms and Visua Basic developers. The
resulting model is both scalable and extensible. This model is based on open
Internet standards (HTTP, XML, SOAP, SDL) so that it can be accessed and
interpreted by any client or Internet-enabled device. Some of the more common
ASP.NET classes are described in this topic as follows:

System.Web

In the System.W eb namespace, there are lower-level services such as caching,

security, configuration, and others that are shared between Web Services and
Web user interface (Ul).

System.Web.Services

The System.Web.Services classes handle Web services such as protocols and
discovery.

System.Web.UI

The System.Web.Ul namespace provides two classes of controls: HTML
controls and Web controls. The HTML Controls give you direct mapping of
HTML tags, such asinput. There are also WebControls that allow you to
structure controls with templates (for example, agrid control).

12 Module 1: Overview of the Microsoft .NET Platform

User Interface for Windows

System.WinlForms

CompenentModel

y = 4

SYstai,Liewing

Drawing2D. Printing
Imaging Text

System.WinForms Classes

Y ou can use the System.WinForms classes to build the client user interface

(UI). This class lets you implement the standards Windows Ul in your .NET
applications.

System.Drawing Classes

You can use the System.Drawing class to access the new GDI+ features. This
class provides support for the next generation of Graphics Device Interface
(GDI) two-dimensional graphics. It aso provides native support for Graphics
Interchange Format (GIF), Tagged Image File Format (TIFF), and other formats.

Module 1: Overview of the Microsoft .NET Platform 13

Languages in the .NET Framework

m C#- Designed for NET
New component-oriented language
= Managed Extensions to C++
Enhanced to provide more power and control
= Visual Basic.NET
New version of Visual Basic with substantial language innovations
= JScript.NET
New version of JScript that provides improved performance and
productivity
= Third-party Languages

Language

The .NET Framework provides support for several programming languages. C#
is the programming language specifically designed for the .NET platform, but
C++ and Visua Basic have aso been upgraded to fully support the NET
Framework.

Description

Managed Extensions to
C+H

Visud Basic.NET

Microsoft JScript. NET

Third-party languages

C# was designed for the .NET platform and is the first modern component—oriented
language in the C and C++ family. It can be embedded inASP.NET pages. Some of the
key features of thislanguage include classes, interfaces, delegates, boxing and
unboxing, namespaces, properties, indexers, events, operator overloading, versioning,
attributes, unsafe code, and XML documentation generation. No header or Interface
Definition Language (IDL) files are needed.

The managed C++ isaminimal extension to the C++ language. This extension provides
accessto the NET Framework that includes garbage collection, single-implementation
inheritance, and multiple-interface inheritance. Thisupgrade also eliminates the need to
write* plumbing” code for components. It offerslow-level access where useful.

Visua Basic.NET provides substantial language innhovations over previous versions of
Visua Basic. Visua Basic.NET supportsinheritance, constructors, polymorphism,
constructor overloading, structured exceptions, stricter type checking, freethreading,
and many other features. Thereisonly one form of assignment? no L et or Set methods.
There are new Rapid Application Development (RAD) features such as XML Designer,
Server Explorer, and Web Forms designer available from Visua Studio.NET to Visua
Basic. With thisrelease, Visua Basic Scripting Edition providesfull Visua Basic
functionality.

JScript.NET isrewritten to befully .NET aware. It includes suppott for classes,
inheritance, types, and compilation. It providesimproved performance and productivity
features. JScript.NET is also integrated with Visual Studio.NET. Y ou can take
advantage of any .NET Framework classin JScript.NET.

Severd third-party languages are supporting the .NET platform. These languages

include APL, COBOL, Pascal, Eiffel, Haskell, ML, Oberon, Perl, Python, Scheme, and
SmalTak.

14 Module 1: Overview of the Microsoft .NET Platform

Review

= Introduction to the .NET Platform
m Overview of the .NET Framework
m Benefits of the .NET Framework

m The .NET Framework Components

m Languages in the .NET Framework

. What is the .NET platform?

. What are the core technologies in the .NET platform?

. List the components of the NET Framework.

. What is the purpose of Common Language Runtime?

Module 1: Overview of the Microsoft .NET Platform 15

5. What is the purpose of Common Language Specification?

6. What is a Web Service?

7. What is a managed environment?

msdn training

Contents

Overview

Structure of a C# Program

Basic Input/Output Operations
Recommended Practices

Compiling, Running, and Debugging
Lab 2: Creating a Simple C# Program
Review

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.

Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1

version of Visual Sudio .NET.

Microsoft

Module 2: Overview of
C#

N

15
22
36
45

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event,unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.
Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual

Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Module 2: Overview of C#

1

Overview

m Structure of a C# Program
m Basic Input/Output Operations
= Recommended Practices

m Compiling, Running, and Debugging

In this module, you will learn about the basic structure of a C# program by
analyzing a simple working example. Y ou will learn how to use the Console
class to perform some basic input and output operations. You will also learn
about some best practices for handling errors and documenting your code.
Findly, you will compile, run, and debug a C# program.

After completing this module, you will be able to:

Explain the structure of a simple C# program.

Use the Console class of the System namespace to perform basic
input/output operations.

Handle exceptions in a C# program.

Generate Extensible Markup Language (XML) documentation for a C#
program.

Compile and execute a C# program.
Use the debugger to trace program execution.

2 Module 2: Overview of C#

€ Structure of a C# Program

= Hello, World
m The Class
m The Main Method

m The using Directive and the System Namespace

m Demonstration: Using Visual Studio to Create
a C# Program

In this section, you will learn about the basic structure of a C# program. Y ou
will analyze a simple program that contains all of the essential features. Y ou
will also learn how to use Microsofte Visual Studioe to create and edit a C#

program.

Module 2: Overview of C#

3

Hello, World

usi ng System

class Hello

{
public static int Miin()
{
Consol e.WiteLine("Hello, Wrld");
return O;
}

The first program most people write when learning a new language is the
inevitable Hello, World. In this module, you will get a chance to examine the
C# version of this traditional first program.

The example code on the dide contains all of the essential elements of a C#
program, and it is easy to test! When executed from the command line, it
simply displays the following:

Hello, World

In the following topics, you will analyze this smple program to learn more
about the building blocks of a C# program.

4 Module 2: Overview of C#

The Class

m A C# Application Is a Collection of Classes, Structures,

and Types
m A Class Is a Set of Data and Methods
m Syntax
cl ass name
{
}

m A C# Application Can Consist of Many Files
m A Class Cannot Span Multiple Files

In C#, an application is a collection of one or more classes, data structures, and
other types. In thismodule, a classis defined as a set of data combined with
methods (or functions) that can manipulate that data. In later modules, you will
learn more about classes and al that they offer to the C# programmer.

When you look at the code for the Hello, World application, you will see that
thereis asingle class called Hello. This classisintroduced by using the
keyword class Following the class name is an open brace ({). Everything up to
the corresponding closing brace (}) is part of the class.

Y ou can spread the classes for a C# application across one or more files. You
can put multiple classes in afile, but you cannot span a single class across
multiplefiles.

Note for Java developers The name of the application file does not need to be
the same as the name of the class.

Note for C++ developers C# does not distinguish between the definition and the
implementation of a classin the same way that C++ does. There is no concept
of adefinition (.hpp) file. All code for the class is written in onefile.

Module 2: Overview of C# 5

The Main Method

= When Writing Main, You Should:
e Use an uppercase “M," as in “Main”
e Designate one Main as the entry point to the program
e Declare Main as public static int Main

m Multiple Classes Can Have a Main

= When Main Finishes, or Returns, the Application Quits

Every application must start somewhere. When a C# application is run,

execution starts at the method called Main. If you are used to programming in
C, C++, or even Java, you are already familiar with this concept.

Important The C# language is case sensitive. Main must be spelled with an
uppercase "M" and with the rest of the name in lowercase.

Although there can be many classes in a C# application, there can only be one
entry point. It is possible to have multiple classes each with M ain in the same
application, but only one Main will be executed. Y ou need to specify which
one should be used when the application is compiled.

The signature of Main is important too. If you use Visua Studio, it will be
created automatically as public static int. (You will learn what these mean later
in the course.) Unless you have a good reason, you should not change the
signature.

Tip You can change the signature to some extent, but it must always be static,
otherwise it might not be recognized as the application’ s entry point by the
compiler.

The application runs either until the end of Main is reached or until a return
statement is executed by Main.

6 Module 2: Overview of C#

The using Directive and the System Namespace

m The .NET Framework Provides Many Utility Classes
e Organized into namespaces
m System Is the Most Commonly Used Namespace

m Refer to Classes by Their Namespace

System Consol e. WiteLine("Hello, Wrld");

m The using Directive

usi ng System

Consol e. WiteLine("Hello, Wrld");
[

As part of the Microsoft .NET Framework, C# is supplied with many utility
classes that perform arange of useful operations. These classes are organized
into namespaces. A namespace is a set of related classes. A namespace may
also contain other namespaces.

The .NET Framework is made up of many namespaces, the most im portant of
whichiscalled System . The System namespace contains the classes that most
applications use for interacting with the operating system. The most commonly
used classes handle input and output (1/0). As with many other languages, C#

has no /O capability of its own and therefore depends on the operating system
to provide a C# compatible interface.

Y ou can refer to objects in namespaces by prefixing them explicitly with the
identifier of the namespace. For example, the System namespace contains the

Console class, which provides several methods, including WriteLine. You can
access the WritelLine method of the Console class as follows:

System._Console_WriteLine("'Hello, World™);

However, using a fully qualified name to refer to objects can be unwieldy and
error prone. To ease this burden, you can specify a namespace by placing a
using directive at the beginning of your application before the first classis
defined. A using directive specifies a namespace that will be examined if a
classis not explicitly defined in the application. Y ou can put more than one

using directive in the source file, but they must all be placed at the beginning of
thefile.

Module 2: Overview of C# 7

With the using directive, you can rewrite the previous code as follows:
using System;
Console_WriteLine("'Hello, World™);

In the Hello, World application, the Console class is hot explicitly defined.
When the Hello, World application is compiled, the compiler searches for

Console and findsit in the System namespace instead. The compiler generates
code that refers to the fully qualified name System.Console.

Note The classes of the System namespace, and the other core functions
accessed at run time, reside in an assembly called mscorlib.dil. This assembly is
used by default. You can refer to classes in other assemblies, but you will need
to specify the locations and names of those assemblies when the application is
compiled.

8 Module 2: Overview of C#

Demonstration: Using Visual Studio to Create a C# Program

In this demonstration, you will learn how to use Visua Studio to create and edit
C# programs.

Module 2: Overview of C# 9

€ Basic Input/Output Operations

m The Console Class

m Write and WriteLine Methods
m Read and ReadLine Methods

In this section, you will learn how to perform command-based input/output
operations in C# by using the Consoleclass. You will learn how to display
information by using the Writeand WriteLine methods, and how to gather
input information from the keyboard by using the Read and ReadL ine methods.

10 Module 2: Overview of C#

The Console Class

m Provides Access to the Standard Input, Standard
Output, and Standard Error Streams

= Only Meaningful for Console Applications
e Standard input- keyboard
e Standard output - screen
e Standard error - screen

m All Streams May Be Redirected

The Console class provides a C# application with access to the standard input,
standard output, and standard error streams.

Standard input is normally associated with the keyboard—anything that the user
types on the keyboard can be read from the standard input stream. Similarly, the

standard output stream is usually directed to the screen, asis the standard error
stream.

Note These streams and the Console classare only meaningful to console
applications. These are applications that run in a Command window.

You can direct any of the three streams (standard input, standard output,
standard error) to afile or device. Y ou can do this programmaticaly, or the user
can do this when running the application.

Module 2: Overview of C# 11

Write and WriteLine Methods

m Console.Write and Console WriteLine Display
Information on the Console Screen

e WriteLine outputs a line feed/carriage return
= Both Methods Are Overloaded
= A Format String and Parameters Can Be Used
o Text formatting

e Numeric formatting

Y ou can use the Console Write and Console Writel ine methods to display
information on the console screen. These two methods are very similar; the
main difference is that WriteLine appends a new line/carriage return pair to the
end of the output, and Write does not.

Both methods are overloaded. Y ou can call them with variable numbers and
types of parameters. For example, you can use the following code to write “ 99"
to the screen:

Console.WriteLine(99);

You can use the following code to write the message “Hello, World” to the
screen:

Console_WriteLine(""Hello, World");

Text Formatting

Y ou can use more powerful forms of Write and Writel ine that take aformat
string and additional parameters. The format string specifies how the datais
output, and it can contain markers, which are replaced in order by the
parameters that follow. For example, you can use the following code to display
the message “The sum of 100 and 130 is 230":

Console_WriteLine(*'The sum of {0} and {1} is {2}, 100, 130,
100+130);

Important The first parameter that follows the format string is referred to as
parameter zero: {0}.

12 Module 2: Overview of C#

Y ou can use the format string parameter to specify field widths and whether
values should be left or right justified in these fields, as shown in the following
code;

Console _WriteLine('Left justified in a field of width 10: {0,
=10}, 99);

Console._WriteLine("'Right justified in a field of width 10:
={0,10}", 99);

This will display the following on the console:
“Left justified in afield of width 10: 99 ”
“Right justified in afield of width 10: 99"

Note You can use the backward dash (\) character in a format string to turn off
the specia meaning of the character that follows it. For example, "\{" will cause
aliteral "{" to be displayed, and "\\" will display aliteral '\". You can use the at
sign (@) character to represent an entire string verbatim. For example,
"@\server\share' will be processed as "\\server\share."

Numeric Formatting

Y ou can aso use the format string to specify how numeric datais to be
formatted. The full syntax for the format string is {N,M:FormatString},
where N is the parameter number, M is the field width and justification, and
FormatString specifies how numeric data should be displayed. The table
below summarizes the items that may appear in FormatString. In al of these
formats, the number of digits to be displayed, or rounded to, can optionaly be

specified.

Item Meaning

C Display the number as currency, using the local currency symbol and
conventions.

D Display the number asadecimal integer.

E Display the number by using exponential (scientific) notation.

F Display the number as afixed-point value.

G Display the number as either fixed point or integer, depending on which
format isthe most compact.

N Display the number with embedded commas.

X Display the number by using hexadecimal notation.

Module 2: Overview of C# 13

The following code shows some examples of how to use numeric formatting:

Console_WriteLine(*"Currency formatting - {0:C} {1:C4}", 88.8,
--888.8);

Console_WriteLine("Integer formatting - {0:D5}", 88);
Console.WriteLine(""Exponential formatting - {0:E}", 888.8);
Console._WriteLine("Fixed-point formatting - {0:F3}",

= 888.8888) ;

Console._WriteLine("'General formatting - {0:G}", 888.8888);
Console _WriteLine("Number formatting - {O:N}", 8888888.8);
Console._WriteLine("'Hexadecimal formatting - {0:X4}", 88);

When the previous code is run, it displays the following:

Currency formatting - $88.80 ($888.8000)
Integer formatting - 00088

Exponential formatting - 8.888000E+002
Fixed-point formatting - 888.889

General formatting - 888.8888

Number formatting - 8,888,888.80
Hexadecimal formatting — 0058

Note Custom format specifiers are available for dates and times. There are a'so
custom format specifiers that alow you to create your own user-defined
formats.

14 Module 2: Overview of C#

Read and ReadLine Methods

m Console.Read and Console.ReadLine Read User Input

e Read reads the next character

e ReadLine reads the entire input line

Y ou can obtain user input from the keyboard by using the Console.Read and
Console.ReadL ine methods.

The Read Method

Read reads the next character from the keyboard. It returns the intvalue -1 if
there is no more input available. Otherwise it returns an int representing the
character read.

The ReadLine Method

ReadLine reads all characters up to the end of the input line (the carriage return
character). The input is returned as a string of character s. Y ou can use the
following code to read aline of text from the keyboard and display it to the
screen:

string input = Console_ReadLine();
Console.WriteLine(""{0}", input);

Module 2: Overview of C# 15

€ Recommended Practices

= Commenting Applications
m Generating XML Documentation

m Demonstration: Generating and Viewing XML
Documentation

m Exception Handling

In this section, you will learn some recommended practices to use when writing
C# applications. Y ou will be shown how to comment applications to aid
readability and maintainability. Y ou will also learn how to handle the errors
that can occur when an application is run.

16

Module 2: Overview of C#

Commenting Applications

m Comments Are Important

e Awell-commented application permits a developer to
fully understand the structure of the application

= Single-Line Comments

/1l Get the user’s nane
Consol e.WiteLine("Wat is your nanme? ");
name = Consol e. ReadLi ne();

= Multiple-Line Comments

/* Find the higher root of the
quadratic equation */
Xx = (-b + Math.Sgrt(b * b -4 * a* ¢))/(2 * a);

It isimportant to provide adequate documentation for al of your applications.
Provide enough comments to enable a developer who was not involved in
creating the original application to follow and understand how the application
works. Use thorough and meaningful comments. Good comments add
information that cannot be expressed easily by the code statements alone—they
explain the “why” rather than the “what.” If your organization has standards for
commenting code, then follow them.

C# provides several mechanisms for adding comments to application code:
single-line comments, multiple-line comments, and XML -generated
documentation.

Y ou can add asingle-line comment by using the forward slash characters —(//).
When you run your application, everything following these two characters until
the end of the line is ignored.

Y ou can aso use block comments that span multiple lines. A block comment
starts with the /* character pair and continues until a matching */ character pair
is reached. You cannot nest block comments.

Module 2: Overview of C# 17

Generating XML Documentation

/1l <summary> The Hell o class prints a greeting

/1] <remarks> W use consol e-based |/ 0O
/1] For nore informati on about WitelLine, see
/1l <seeal so cref="System Consol e. WiteLine"/>

Consol e. WitelLine("Hello, Wrld");

/1] on the screen
1] </summary>
class Hello
{
/1] </remar ks>
public static void Main()
{
}
}

You can use C# comments to generate XML documentation for your

applications.

Documentation comments begin with three forward slashes (///) followed by an
XML documentation tag. For examples, see the dide.

There are a number of suggested XML tags that you can use. (You can aso
create your own.) The following table shows some XML tags and their uses.

Tag

Purpose

<summary> ... </summary>

<remarks> ...</remarks>

<para> ...</para>

<list type=".."> ...</list>

<example> ...</example>

<code> ...</code>

To provide a brief description. Use the <remarks>
tag for alonger description.

To provide adetailed description. Thistag can
contain nested paragraphs, lists, and other types of
tags.

To add structure to the description in a<remarks>
tag. Thistag allows paragraphs to be delineated.
To add astructured list to adetail ed description.
Thetypesof listssupported are“bullet,” “number,”
and“ table” Additiond tags (<term> ...</term>
and <description> ...</description>) are used
insidethelist to further define the structure.

To provide an example of how a method, property,
or other library member should be used. It often
involvesthe use of anested <code> tag.

Toindicate that the enclosed text is application
code.

18 Module 2: Overview of C#

(continued)
Tag Purpose
<c>...</c> To indicate that the enclosed text is application

<see cref=" member"' />

<seealso cref="memrber" />

<exception> ...</exception>
<permission> ...</permission>

<param name="name"'> ...
</param>
<returns> ...</returns>

<value> ...</value>

code. The <code> tag is used for lines of code that
must be separated from any enclosing description;
the <c> tag is used for code that is embedded
within an enclosing description.

To indicate a reference to another member or field.

The compiler checksthat “ member” actually
exists.

To indicate areference to another member or field.
The compiler checksthat “ member” actually
exists. The difference between <see> and

<seeal so> depends upon the processor that
manipulatesthe XML onceit has been generated.
The processor must be ableto generate See and
See Also sections for these two tagsto be
distinguished in ameaningful way.

To provide adescription for an exception class.
To document the accessibility of a member.

To provide adescription for amethod parameter.

To document the return value and type of a
method.

To describe a property.

Y ou can compile the XML tags and documentation into an XML file by using
the C# compiler with the /doc option:

csc myprogram.cs /doc:mycomments.xml

If there are no errors, you can view the XML file that is generated by using a

tool such as Internet Explorer.

Note The purpose of the /doc option is only to generate an XML file. To
render the file, you will need another processor. Internet Explorer displays a
simple rendition that shows the structure of the file and alows tags to be
expanded or collapsed, but it will not, for example, display the

<list type="bullet"> tag as a bullet.

Module 2: Overview of C# 19

Demonstration: Generating and Viewing XML Documentation

In this demonstration, you will see how to compile the XML comments that are
embedded in a C# application into an XML file. You will aso learn how to
view the documentation file that is generated.

20

Module 2: Overview of C#

Exception Handling

usi hg System
public class Hello

public static int Main(string[] args)

try {
Consol e. WiteLine(args[O0]);

} catch (Exception e)
Consol e. WiteLi ne("Exception at
={0}", e.StackTrace);

return O;

A robust C# application must be able to handle the unexpected. No matter how
much error checking you add to your code, there is inevitably something that
can go wrong. Perhaps the user will type an unexpected response to a prompt,

or will try to writeto afile in afolder that has been deleted. The possibilities
areendless.

When a run-time error occurs in a C# application, the operating system throws
an exception. Trap exceptions by using a try-catch construct as shown on the
dide. If any of the statementsin the try part of the application cause an
exception to be raised, execution will be transferred to the catch block.

You can find out information about the exception that occurred by using the
StackTrace, Message, and Sour ce properties of the Exception object. You
will learn more about handling exceptions in a later module.

Note If you print out an exception, by using Console WriteLine for example,
the exception will format itself automatically and display the StackTrace,
M essage, and Sour ce properties.

Module 2: Overview of C# 21

Tip Itisfar easier to design exception handling into your C# applications from
the start than it isto try to add it | ater.

If you do not use exception handling, a run-time exception will occur. If you
want to debug your program using Just-in-time debugging instead, you need to
enableit first. If you have enabled Just-in-time debugging, depending upon

which environment and tools are installed, Just-in-time debugging will prompt
you for a debugger to be used.

Just-In-Time Debugging |

An exception "System, DivideByZeroException’ has occurred in
Z:\Testapplicationbint Debug), TestApplication. exe.

— Possible Debuagers:

Microsoft Development Environment: TestApplication - Microsoft Yisual
Mew inskance of Microsaft Development Environmenk
Mew instance of Microsoft URT Debugger

[Set the currently selected debugger as the defaulk,

Do you want ko debug using the selected debugger?

Yes Mo

To enable Just-in-time debugging, perform the following steps:

1. Onthe Tools menu, click Options

2. Inthe Options diaog box, click the Debugging folder.

3. Inthe Debugging folder, click General.

4. Click the Settings button.

5. Enable or disable Just-in-time (JIT) debugging for specific program types
(for example, Win32 applications) in the JIT Debugging Settings didog
box, and then click Close.

6. Click OK.

You will learn more about the debugger later in this module.

22 Module 2: Overview of Gt

€ Compiling, Running, and Debugging

m Invoking the Compiler
= Running the Application

m Demonstration: Compiling and Running
a C# Program

= Debugging
= Multimedia: Using the Visual Studio Debugger
m The SDK Tools

m Demonstration: Using ILDASM

In this section, you will learn how to compile and debug C# programs. Y ou will
see the compiler executed from the command line and from within the Visual
Studio environment. Y ou will learn some common compiler options. Y ou will
be introduced to the Visua Studio Debugger. Finaly, you will learn how to use
some of the other tools that are supplied with the Microsoft .NET Framework
software development kit (SDK).

Module 2: Overview of C# 23

Invoking the Compiler

m Common Compiler Switches
m Compiling from the Command Line
m Compiling from Visual Studio

m Locating Errors

Before you execute a C# application, you must compile it. The compiler
converts the source code that you write into machine code that the computer
understands. Y ou can invoke the C# compiler from the command line or from
Visua Studio.

Note Strictly speaking, C# applications are compiled into Microsoft
intermediate language (M SIL) rather than native machine code. The MSIL code
isitsalf compiled into machine code by the Just-in-time (JIT) compiler when
the application is run. However, it is also possible to compile directly to
machine code and bypassthe JIT compiler if required.

Common Compiler Switches

Y ou can specify a number of switches for the C# compiler by using the csc
command. The following table describes the most common switches.

Switch Meaning

12, Ihelp Displaysthe compiler options on the standard outpuit.

/out Specifies the name of the executable.

/main Specifiesthe class that contains theM ain method (if more than one
classin the application includes aMain method).

/optimize Enablesand disablesthe code optimizer.

/warn Setsthewarning level of the compiler.

/warnaserror Treatsall warnings as errorsthat abort the compilation.
target Specifies the type of application generated.

24

Module 2: Overview of C#

(continued)

Switch Meaning

/checked Indicates whether arithmetic overflow will generate arun-time
exception.

/doc Processes documentation commentsto produce an XML file.

/debug Generates debugging information.

Compiling from the Command Line

To compile a C# application from the command line, use the csccommand. For
example, to compile the Hello, World application (Hello.cs) from the command
line, generating debug information and creating an executable called Greet.exe,
the command is:

csc /debug+ /out:Greet.exe Hello.cs

Important Ensure that the output file containing the compiled code is specified
with an .exe suffix. If it is omitted, you will need to rename the file before you
can run it.

Compiling from Visual Studio

To compile a C# application by using Visual Studio, open the project
containing the C# application, and click Build on the Build menu.

Note By default, Visual Studio opens the debug configuration for projects.
This means that a debug version of the application will be compiled. To
compile arelease build that contains no debug information, change the solution
configuration to release.

Y ou can change the options used by the compiler by updating the project
configuration:;

1. In Solution Explorer, right-click the project icon.
2. Click Properties

3. Inthe Property Pages dialog box, click Configuration Properties and
then click Build.

4. Specify the required compiler options, and then click OK.

Module 2: Overview of C# 25

Locating Errors
If the C# compiler detects any syntactic or semantic errors, it will report them.

If the compiler was invoked from the command line, it will display messages
indicating the line numbers and the character position for each line in which it
found errors.

If the compiler was invoked from Visua Studio, the Task List window will
display dl lines that include errors. Double-clicking each line in this window
will take you to the respective error in the application.

Tip It iscommon for a single programming mistake to generate a number of
compiler errors. It is best to work through errors by starting with the first ones

found because correcting an early error may automatically fix a number of later
errors.

26

Module 2: Overview of C#

Running the Application

= Running from the Command Line
e Type the name of the application
= Running from Visual Studio

e Click Start Without Debugging on the Debug menu

You can run a C# application from the command line or from within the
Visual Studio environment.

Running from the Command Line

If the application is compiled successfully, an executable file (afile with
an .exe suffix) will be generated. To run it from the command line, type the
name of the application (with or without the .exe suffix).

Running from Within Visual Studio

To run the application from Visual Studio, click Start Without Debugging on
the Debug menu, or press CTRL+F5. If the application is a Console
Application, a console window will appear automatically, and the application

will run. When the application has finished, you will be prompted to press any
key to continue, and the console window will close.

Module 2: Overview of C# 27

Demonstration: Compiling and Running a C# Program

In this demonstration, you will see how to compile and run a C# program by
using Visual Studio. You will also see how to locate and correct compile-time
errors.

28 Module 2: Overview of C#

Debugging

m Exceptions and JIT Debugging
= The Visual Studio Debugger
e Setting breakpoints and watches
e Stepping through code
e Examining and modifying variables

Exceptions and JIT Debugging

If your application throws an exception and you have not written any code that

can handle it, Common Language Runtime will instigate J T debugging. (Do
not confuse JIT debugging with the JIT compiler.)

Assuming that you have installed Visua Studio, a dialog box will appear giving
you the choice of debugging the application by using the Visua Studio
Debugger (Microsoft Development Environment), or the debugger provided
with the .NET Framework SDK.

If you have Visua Studio available, it is recommended that you select the
Microsoft Development Environment debugger.

Note The .NET Framework SDK provides another debugger: cordbg.exe. This
is a command-ine debugger. It includes most of the facilities offered by the
Microsoft Development Environment, except for the graphical user interface. It
will not be discussed further in this course.

Module 2: Overview of C# 29

Setting Breakpoints and Watches in Visual Studio

You can use the Visual Studio Debugger to set breakpoints in your code and
examine the values of variables.

To bring up a menu with many useful options, right-click aline of code. Click
Insert Breakpoint to insert a breakpoint at that line. You can dso insert a
breakpoint by clicking in the left margin. Click again to remove the breakpoint.

When you run the application in debug mode, execution will stop at this line
and you can examine the contents of variables.

The Watch window is useful for monitoring the values of selected variables
while the application runs. If you type the name of avariable in the Name
column, its value will be displayed in the Value column. As the application
runs, you will see any changes made to the value. Y ou can aso modify the
value of awatched variable by typing over it.

Important To use the debugger, ensure that you have selected the Debug
solution configuration rather than Release.

Stepping Through Code

Once you have set any breakpoints that you need, you can run your application
by clicking Start on the Debug menu, or by pressing F5. When the first
breakpoint is reached, execution will halt.

Y ou can continue running the application by clicking Continue on the Debug
menu, or you can use any of the single-stepping options on the Debug menu to
step through your code one line at atime. You can use Set Next Statement on
the Debug menu to jump backward or forward in your application and continue
running from that point.

Tip The breakpoint, stepping, and watch variable options are also available on
the Debug toolbar.

Examining and Modifying Variables

Y ou can view the variables defined in the current method by clicking L ocals on

the Debug toolbar or by using the Watch window. Y ou can change the values
of variables by typing over them (as you can in the Watch window).

30 Module 2: Overview of C#

Multimedia: Using the Visual Studio Debugger

This multimedia demonstration will show you how to use the Visual Studio

Debugger to set breakpoints and watches. It will aso show you how to step
through code and how to examine and modify the values of variables.

Module 2: Overview of C# 31

The SDK Tools

m General Tools and Utilities
= Win Forms Design Tools and Utilities
m Security Tools and Utilities

m Configuration and Deployment Tools and Utilities

The .NET Framework SDK is supplied with a number of tools that provide

additional functionality for developing, configuring, and deploying applications.
These tools can be run from the command line.

General Tools and Utilities

Y ou may find some of the following general-purpose tools useful.

Tool name Command Description

NGWS Runtime Debugger cordbg.exe The command-line debugger.

MSIL Assembler ilasm.exe An assembler that takes M SIL asinput
and generates an executablefile.

MSIL Disassembler ildasm.exe A disassembler that can be used to
inspect the MSIL and metadatain an
executablefile.

PEVerify peverify.exe Validatesthe type safety of code and
metadata prior to release.

Win Forms Class Viewer wincv.exe L ocates managed classes and displays

information about them.

Module 2: Overview of C#

Win Forms DesignTools and Utilities
You can use the following tools to manage and convert ActiveXe controls and

Win Forms controls.

Tool name Command Description

Win FormsActiveX aximp.exe Generates awrapper from an ActiveX

Control Importer control type library that allows the
control to be hosted by a Win Forms
form.

License Compiler Icexe Producesabinary .licensesfilefor
managed code from files containing
licensinginformation.

Resource File ResGen.exe Producesabinary .resourcesfilefor

Generation Utility managed code from text files that
describe the resources.

ResX Resource ResXToResourcesexe Producesabinary .resourcesfilefor

Compiler managed code from .ResX (XML-
based resource format) files that
describe the resources.

Win FormsDesigner windes.exe A tool for testing Win Forms controls

Test Container

Module 2: Overview of C# 33

Security Tools and Utilities

You can use the following tools to provide security and encryption features
for .NET managed assemblies and classes.

Tool name Command Description

Code Access Security caspol.exe Maintains machine and user code security

Policy Utility policies.

Software Publisher cert2spe.exe Creates a Software Publisher’s Certificate

Certificate Test Utility from an X.509 certificate. Thistool is
used only for testing purposes.

Certificate Creation makecert.exe An enhanced version of cert2spc.exe. Itis

Utility also used only for testing purposes.

Certificate Manager certmgr.exe Maintains certificates, certificate trust

Utility lists, and certificate revocation lists.

CertificateVerification chktrust.exe Verifiesthevalidity of asignedfile.

Utility

Permissions View permview.exe Views the permissions requested for an

Utility assembly.

Secutil Utility SecUtil.exe Locates public key or certificate
information in an assembly.

Set Registry Utility setreg.exe Modifies registry settings related to public
key cryptography.

File Signing Utility sgncode.exe Signs an executable file or assembly with
adigital signature.

Strong Name Utility Snexe Helps create assembliesthat have strong

names. |t guarantees name uniqueness and
provides someintegrity. It also allows
assembliesto be signed.

Module 2: Overview of C#

Configuration and Deployment Tools and Utilities

Many of the following tools are specialized tools that you will use only if you
areintegrating .NET managed code and COM classes.

Tool name Command Description

Assembly d.exe Generates an assembly manifest from

Generation Utility MSIL and resourcefiles.

Assembly RegAsm.exe Enables .NET managed classesto be

Registration Tool called transparently by COM components.

Services RegSvcsexe Makes managed classes available as COM

Registration Tool components by loading and registering the
assembly and by generating and installing
aCOM+ typelibrary and application.

Assembly Cache shfusion.dll Viewsthe contents of the global cache. It

Viewer isashell extension used by Microsoft
Windowse Explorer.

Isolated Storage storeadm.exe Managesisolated storage for the user that

Utility iscurrently logged on.

Type Library TIbExp.exe Convertsa .NET assembly into aCOM

Exporter typelibrary.

Type Library Tlbimp.exe Converts COM typelibrary definitions

Importer into the equivalent metadata format for use
by .NET.

Web Service WebServiceUtil.exe Installs and uninstalls managed code Web

Utility services.

NGWS Runtime xsd.exe Used for defining schemasthat follow the

XML Schema World Wide Web Consortium (W3C)

Definition Tool XML Schema Definition language.

Module 2: Overview of C#

35

Demonstration: Using ILDASM

In this demonstration, you will learn how to use Microsoft Intermediate

Language (MSIL) Disassembler (ildasm.exe) to examine the manifest and
MSIL codein aclass.

36 Module 2: Overview of C#

Lab 2: Creating a Simple C# Program

o,
~

Objectives

After completing this lab, you will be able to:
m Create a C# program.

= Compile and run a C# program.

» Usethe Visual Studio Debugger.

= Add exception handling to a C# program.

Estimated time to complete this lab: 60 minutes

Module 2: Overview of C#

37

Exercise 1

Creating a Simple C# Program

In this exercise, you will use Visual Studio to write a C# program. The program
will ask for your name and will then greet you by name.

I To create a new C# console application

© © N o 0~ wDdPRE

Start Microsoft Visua Studio.NET.

On the File menu, point to New, and then click Project.

Click Visual C# Projectsin the Project Types box.

Click Console Application in the Templates box.

Type Greetingsin the Name box.

Typeinstall folder\Labs\L ab02 in the L ocation box and click OK.
Type an appropriate comment for the summary.

Change the name of the classto Greeter.

Select and delete the public Greeter () method.

10. Save the project by clicking Save All on the File menu.

£ To write statements that prompt and greet the user

1.

Inthe Main method, before the return statement, insert the following line:

string myName;

2. Write a statement that prompts users for their name.

3. Write another statement that reads the user’ s response from the keyboard

and assigns it to the myName string.

Add one more statement that prints “ Hedlo myNamé' to the screen (where
myName is the name the user typed in).

When completed, the M ain method should contain the following:

public static int Main(string[] args)
{

string myName;

Console_WriteLine("Please enter your name');
myName = Console.ReadLine();
Console._WriteLine(*"Hello {0}, myName);
return O;

}

Save your work.

38 Module 2: Overview of C#

£ To compile and run the program

On the Build menu, click Build (or press CTRL+SHIFT+B).

Correct any compilation errors and build again if necessary.

On the Debug menu, click Start Without Debugging (or press CTRL+F5).

A w D

In the console window that appears, type your name when prompted and
pressENTER.

5. After the hello message is displayed, press akey at the “ Press any key to
continug” prompt.

Module 2: Overview of C# 39

Exercise 2
Compiling and Running the C# Program from the Command Line

In this exercise, you will compile and run your program from the command line.

IZ To compile and run the application from the command line
1. Open a Command window.

2. Go to the install folder\Labs\Lab02\Greetings folder.

3. Compile the program by using the following command:

csc /out:Greet.exe Classl.cs

4. Run the program by entering the following:

Greet

5. Close the Command window.

40 Module 2: Overview of C#

Exercise 3

Using the Debugger

In this exercise, you will use the Visual Studio Debugger to single-step through
your program and examine the value of a variable.

I To set abreakpoint and start debugging by using Visual Studio
1. Start Visual Studio.NET if it is not already running.
2. On the File menu, point to Open and then click Prgect.

Open the Greetings.sln project in the install folder\L abs\L ab02Greetings
folder.

Click in the left margin on the line containing the first occurrence of
Console WriteLine in the class Greeter.

A breakpoint (alarge red dot) will appear in the margin.
On the Debug menu, click Start (or press F5).

The program will start running, a console window will appear, and the
program will then halt at the breakpoint.

£ To watch the value of a variable

1.
2.

On the Debug menu, point to Windows, and then click Watch.

In the Watch window, add the variable myName to the list of watched
variables.

The myName variable will appear in the Watch window with a value of null.

I To single-step through code

1

2.

On the Debug menu, click Step Over (or press F10) to run the first
Console Wr iteL ine statement.

Bring the console window to the foreground.

The prompt will appear.

Return to Visua Studio and single-step the next line containing the
Console.ReadL ine statement by pressing F10.

Return to the console window and type your name, and then press the
RETURN key.

Y ou will automatically be returned to Visua Studio. The value of myName
in the Watch window will be your name.

Single-step the next line containing the Console.WriteL ine statement by
pressing F10.

Module 2: Overview of C# 41

6. Bring the console window to the foreground.
The greeting will appear.

7. Returnto Visual Studio. On the Debug menu, click Continue (or press F5)
to run the program to compl etion.

Note If you try to modify the value of myName in the Watch window, it will
not change. This is because strings in C# are immutable and are handled
differently than other types of variables, such as integers or other numerics
(which would change as expected).

42 Module 2: Overview of C#

Exercise 4

Adding Exception Handling to a C# Program

In this exercise, you will write a program that uses exception handling to trap

unexpected run-time errors. The program will prompt the user for two integer
values. It will divide the first integer by the second and display the result.

I To create a new Ct#program

© N o g DN E

Start Visual Studio.NET if it is not aready running.

On the File menu, point to New, and then click Project.

Click Visual C# Projectsin the Project Types box.

Click Console Application in the Templates box.

Type Divider in the Name box.

Typeinstall folder\Labs\L ab02 in the L ocation box and click OK.
Type an appropriate comment for the summary.

Change the name of the class to Dividelt.

Select and delete the public Dividel t() method.

10. Save the project by clicking Save All on the File menu.

£ To write statements that prompt the user for two integers

1

In the Main method, before the return statement, insert the following lines:

int i, j;
string temp;

2. Write a statement that prompts the user for the first integer.

3. Write another statement that reads the user’ s response from the keyboard

and assignsiit to the temp string.

Add a statement to convert the string value in temp to an integer and to store
theresultin i asfollows:

i = Int32.Parse(temp);

Add statements to your code to:

a Prompt the user for the second integer.

b. Read the user's response from the keyboard and assign it to temp.
c. Convert the value in temp to an integer and store the result in j.

Module 2: Overview of C# 43

6.

Y our code should look similar to the following:

int i, j;

string temp;

Console._WriteLine(""Please enter the first integer');

temp = Console.ReadLine();
i = Int32.Parse(temp);

Console.WriteLine("'Please enter the second integer™);
temp = Console_ReadLine();
J = Int32_Parse(temp);

Save your work.

I Todivide thefirst integer by the second and display the result

1.

Write code to create a new integer variable k that is given the value resulting
from the division of i by j, and insert it at the end of the previous procedure.
Y our code should look like the following:

intk =i/ j;

Add a statement that displays the value of k.

. Saveyour work.

I To test the program

© N o 0~ wDdPRE

On the Debug menu, click Start Without Debugging (or press CTRL+F5).
Type 10 for the first integer value and press ENTER.

Type 5 for the second integer value and press ENTER.

Check that the value displayed for k is2.

Run the program again by pressing CTRL+F5.

Type 10 for the first integer value and press ENTER.

Type O for the second integer value and press ENTER.

The program causes an exception to be thrown (divide by zero).

44 Module 2: Overview of C#

I To add exception handling to the program

1

Place the code in the Main method inside a try block as follows:

try {
int i, j;
string temp;

intk=1/7j;
Console_WriteLine(...);

}

Add a catch statement to Main, before the return statement. The catch
statement should print a short message, asis shown in the following code:

catch(Exception e) {
Console._WriteLine(""An exception was thrown: {0}" , e);

}

return 0;

Save your work.
The completed Main method should look similar to the following:

public static int Main(string[] args)

{
try {
int i, j;
string temp;

Console.WriteLine (‘'Please enter the first integer');
temp = Console.ReadLine();
i = Int32._Parse(temp);

Console.WriteLine (Please enter the second integer');
temp = Console.ReadLine();
J = Int32_Parse(temp);

intk =17 j;
Console._WriteLine("The result of dividing {0} by {1}
=is {2}, i1, J, K);
} catch(Exception e) {
Console.WriteLine("An exception was thrown: {0}, e);

}

return O;

}

IZ Totest the exception-handling code

1.
2.
3.

Run the program again by pressing CTRL+F5.
Type 10 for the first integer value and press ENTER.
Type 0 for the second integer value and press ENTER.

The program still causes an exception to be thrown (divide by zero), but this

time the error is caught and your message appears.

Module 2: Overview of C# 45

Review

m Structure of a C# Program
m Basic Input/Output Operations

m Recommended Practices

m Compiling, Running, and Debugging

1. Where does execution start in a C# application?

2. When does application execution finish?

3. How many classes can a C# application contain?

4. How many Main methods can an application contain?

46 Module 2: Overview of C#

5. How do you read user input from the keyboard in a C# application?

6. What namespaceisthe Console classin?

7. What happens if your C# application causes an exception to be thrown that
it is not prepared to catch?

msdn training

Module 3: Using Value-
Type Variables

Contents

Overview 1
Common Type System 2
Naming Variables 9
Using Built-in Data Types 15
Compound Assignment 18
Increment and Decrement 20
Creating User-Defined Data Types 24
Converting Data Types 28
Lab 3: Creating and Using Types 32
Review 36

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Microsoft

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.
Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual

Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Module 3: Using Value-Type Variables 1

Overview

= Common Type System

= Naming Variables

= Using Built-in Data Types

m Creating User-Defined Data Types

= Converting Data Types

All applications manipulate data in some way. As a C# developer, you need to
understand how to store and process data in your applications. Whenever your
application needs to store data temporarily for use during execution, you store
that datain a variable. Before you use a variable, you must define it. When you
define avariable, you reserve some storage for that variable by identifying its
data type and giving it a name. After avariable is defined, you can assign
values to that variable.

In this module, you will learn how to use value-type variables in C#. Y ou will
learn how to specify the type of data that variables will hold, how to name
variables according to standard naming conventions, and how to assign values
to variables. You aso will learn how to convert existing variables from one data
type to another and how to create your own variables.

After completing this module, you will be able to:

= Describe the types of variables that you can use in C# applications.
= Name your variables according to standard C# naming conventions.
m Declare avariable by using built-in data types.

m Assign valuesto variables.

m Convert existing variables from one data type to another.

m Create and use your own data types.

2 Module 3: Using Value-Type Variables

€ Common Type System

= Overview of CTS
= Comparing Value and Reference Types
m Determining Base Types

= Comparing Built-in and User-Defined Value Types

= Simple Types

Every variable has a data type that determines what values can be stored in the

variable. C# is atype safe language, meaning that the C# compiler guarantees
that values stored in variables are always of the gopropriate type.

The Common Language Runtime includes a Common Type System (CTS) that
defines a set of built-in data types that you can use to define your variables. In
this section, you will learn how the CTS works so that you can choose the

appropriate data types for your variables. You also will see examples of value
type variables, including simple data types.

Module 3: Using Value-Type Variables 3

Overview of CTS

m CTS Supports Object-Oriented and Procedural
Languages

m CTS Supports Both Value and Reference Types

Type

Value Type Reference Type

When you define a variable, you need to choose the right data type for your

variable. The data type determines the allowable values for that variable, which,
in turn, determine the operations that can be performed on that variable.

CTS

CTSisan integral part of the Common Language Runtime. The compilers,
tools, and the runtime itself share CTS. It is the model that defines the rules that
the runtime follows when declaring, using, and managing types. CTS
establishes a framework that enables crosslanguage integration, type safety,
and high-performance code execution.

C# defines severa categories of variables. In this module, you will learn about
two kinds:

n Vauetypevariables
= Referencetype variables

4 Module 3: Using Value-Type Variables

Comparing Value and Reference Types

= Value Types: m Reference Types:

= Directly contain their m Store references to their
data data (known as objects)

m Each has its own m Two reference variables
copy of data can reference same object

= Operations on one m Operations on one can
cannot affect another affect another

Value Types

Vaue-type variables directly contain their data. Each value-type variable has its

own copy of the data, so it is not possible for operations on one variable to
affect another variable.

Reference Types

Reference-type variables contain references to their data. The data for
referencetype variables is stored in an instance. It is possible for two reference-
type variables to reference the same object, so it is possible for operations on
one reference variable to affect the object referenced by another reference
variable.

For more information about reference types, see Module 8, “Using Reference
Type Variables,” in Course 2124A, Introduction to C# Programming for the
Microsoft .NET Platform (Prerelease).

Module 3: Using Value-Type Variables

Determining Base Types

= All Types Are Ultimately Derived from System.Object
m Value Types Are Derived from System.ValueType

= To Determine the Base Type of a Variable x, Use:

X. Get Type().BaseType

All of the base data types are defined in the System namespace for C#£. Al
types are ultimately derived from System.Object.

To determine the base data type of variable x, you can use the following code:

X.GetType().BaseType

6 Module 3: Using Value-Type Variables

Comparing Built-in and User-Defined Value Types

Value Types

Built-in Type User-Defined

m Examples of m Examples of User-Defined
Built-in Value Types: Value Types:
m int = enum
m float m struct

Vaue types include built-in and user-defined data types. The difference
between built-in and user-defined types in C# is minimal because user-defined
types can be used in the same way as built-in ones. The only real difference
between built-in data types and user-defined data types is that you can write
literal values for the built-in types. All value types directly contain data, and
they cannot be null.

You will learn how to create user-defined data types such as enumeration and
structure types in this module.

Module 3: Using Value-Type Variables 7

Simple Types

m Identified Through Reserved Words
e int // Reserved keyword

-0r-

e System.Int32

Built-in value types are aso referred to as basic data types or simple types.

Simple types are identified by means of reserved keywords. These reserved
keywords are aliases for predefined structure types.

A simple type and the struct type it aliases are completely indistinguishable. In

your code, you can use the reserved keyword or you can use the struct type. The
following examples show both:

byte // Reserved keyword
--Or--
System.Byte // Struct type

int // Reserved keyword
--Or--
System.Int32 // Struct type

For more information about the sizes and ranges of built-in value types, search
for“ Vaue Types’ in the Microsofte Visual Studio.NET Help documents.

Module 3: Using Value-Type Variables

The following table lists common reserved keywords and their equivalent
aliased struct type.

Reserved keywords Aliasfor struct type
shyte System.SByte
byte System.Byte
short System. Intl6
ushort System.UIntl6
int System. Int32
uint System.UInt32
long System. Int64
ulong System.UInt64
char System.Char
float System.Single
double System.Double
bool System.Boolean

decimal System.Decimal

Module 3: Using Value-Type Variables 9

€ Naming Variables

= Rules and Recommendations for Naming Variables

m C# Keywords

= Quiz: Can You Spot Disallowed Variable Names?

To use avariable, you first choose a meaningful and appropriate name for the
variable. Each variable has a name that is also referred to as the variable
identifier.

When naming variables, follow the standard naming conventions recommended

for C#. You also need to be aware of the C# reserved keywords that you cannot
use for variable names.

In this section, you will learn how to name your variables by following standard
naming rules and recommendations.

10 Module 3: Using Value-Type Variables

Rules and Recommendations for Naming Variables

= Rules
Answer 42 v
e Use letters, the underscore, 42Ansver X
and digits

= Recommendations different /]
o Different
o Avoid using all uppercase erent V|

letters
e Avoid starting with an BQEEPS({-; B §
underscore =

Best Styl e \/

e Avoid using abbreviations

e Use PascalCasing naming Msg
in multiple-word names Message v/

When naming variables, observe the following rules and recommendations.

Rules

The following are the naming rules for C# variables:

= Start each variable name with aletter or underscore character.

m After the first character, use letters, digits, or the underscore character.
= Do not use reserved keywords.

= |f you use adisalowed variable name, you will get a compile-time error.

Recommendations

It is recommended that you follow these recommendations when naming your
variables:

= Avoid using all uppercase letters.
= Avoid starting with an underscore.

= Avoid using abbreviations.
m Use PascalCasing naming in multiple-word names.

Module 3: Using Value-Type Variables 11

PascalCasing Naming Convention

To use the Pascal Casing naming convention, capitalize the first character of
each word. Use PascalCasing for classes, methods, properties, enums, interfaces,
fields, namespaces, and properties, as shown in the following example:

void InitializeData();

camelCasing Naming Convention

To use the camel Casing naming convention, capitalize the first character of

each word except for the first word. Use canel Casing for variables that define
fields and parameters, as shown in the following example:

int loopCountMax;

For more information about naming conventions, see “Naming Guidelines’ in
the .NET Framework SDK Help documents.

12 Module 3: Using Value-Type Variables

C# Keywords

m Keywords Are Reserved Identifiers

|abstract, base, bool, default, if, finally

m Do Not Use Keywords As Variable Names
e Results in a compile-time error

m Avoid Using Keywords by Changing Their Case
Sensitivity

|int INT, // Poor style|

Keywords are reserved, which means that you cannot use any keywords as
variable names in C#. Using a keyword as a variable name will result in a
compile-time error.

Keywords in C#

Thefollowing isalist of keywords in C#. Remember, you cannot use any of
these words as variable names.

abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float for foreach goto

if implicit in int interface
internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return sbyte sealed
short sizeof stackalloc static string
struct switch this throw true

try typeof uint ulong unchecked
unsafe ushort using virtual void

while

Module 3: Using Value-Type Variables 13

Quiz: Can You Spot the Disallowed Variable Names?

@ |int 12count; |
@ |char $di skPri ce; |
© [char magieinitial |
@ [float this; |
@ [int _identifier; |

14

Module 3: Using Value-Type Variables

Quiz Answers

1

a > D

Disallowed Variable names cannot begin with a digit.

Disallowed Variable names must start with a letter or an underscore.
Allowed. Variable names can start with aletter.

Disallowed Keywords (this) cannot be used to name variables.
Allowed. Variable names can start with an underscore.

Module 3: Using Value-Type Variables 15

€ Using Built-in Data Types

m Declaring Local Variables

m Assigning Values to Variables
= Compound Assignment

m Common Operators

= Increment and Decrement

= Operator Precedence

To create a variable, you must choose a variable name, declare your variable,
and assign a value to your variable, unless it has already been automatically
assigned a value by C#.

In this section, you will learn how to create alocal variable by using built-in
data types. You will also learn which variables are initialized, which variables
are not initialized, how to use operators to assign values to variables, and how
to define readonly variables and constants.

16 Module 3: Using Value-Type Variables

Declaring Local Variables

m Usually Declared by Data Type and Variable Name:

i nt itenmCount;

m Possible to Declare Multiple Variables in One
Declaration:

int itemCount, enployeeNunber;

o= |
int itemCount,
enpl oyeeNunber ;

Variables that are declared in methods, properties, or indexers are called local

variables. Generally, you declare alocal variable by specifying the data type
followed by the variable name, as shown in the following example:

int itemCount;

Y ou can declare multiple variables in a single declaration by using a comma
separator, as shown in the following example:

int itemCount, employeeNumber;

In C#, you cannot use uninitialized variables. The following code will result in

a compile-time error because the loopCount variable has not been assigned an
initial value:

int loopCount;
Console._WriteLine ('{0}", loopCount);

Module 3: Using Value-Type Variables 17

Assigning Values to Variables

m Assign Values to Variables That Are Already Declared:

i nt enpl oyeeNunber ;
enpl oyeeNunber = 23;

‘ m Initialize a Variable When You Declare It: ‘

i nt enpl oyeeNunber = 23;

‘ m You Can Also Initialize Character Values: ‘

char middlelnitial = 'J':

Y ou use assignment operators to assign anew vaue to avariable. To assign a
value to avariable that is aready declared, use the assignment operator (=), as
shown in the following example:

int employeeNumber;
employeeNumber = 23;

You can also initialize a variable when you declare it, as shown in the following
example:

int employeeNumber = 23;

Y ou can use the assignment operator to assign values to character type variables,
as shown in the following example:

char middlelnitial = "J°;

18 Module 3: Using Value-Type Variables

Compound Assignment

m Adding a Value to a Variable Is Very Common

itemCount = itenCount + 40;

m There Is a Convenient Shorthand

t enCount += 40;

m This Shorthand Works for All Arithmetic Operators

itenCount -= 24;

Adding a Value to a Variable Is Very Common

The following code declares an int variable called itemCount, assignsit the
value 2, and then increments it by 40:

int itemCount;
itemCount = 2;
itemCount = itemCount + 40;

There Is a Convenient Shorthand

The code to increment a variable works, but it is slightly cumbersome. Y ou
need to write the identifier that is being incremented twice. For simple
identifiers thisis rarely a problem, unless you have many identifiers with very

similar names. However, you can use expressions of arbitrary complexity to
designate the value being incremented, as in the following example:

items[(index + 1) % 32] = items[(index + 1) % 32] + 40;

In these cases, if you needed to write the same expression twice you could

easily introduce a subtle bug. Fortunately, there is a shorthand form that avoids
the duplication:

itemCount += 40;
items[(index + 1) % 32] += 40;

This Shorthand Works for All Arithmetic Operators

var += expression; // var = var + expression
var -= expression; // var = var - expression
var *= expression; // var = var * expression
var /= expression; // var = var / expression
var %= expression; // var = var % expression

Module 3: Using Value-Type Variables 19

Common Operators

Common Operators Example

« Equality operators ==0I=
+ Relational operators < > <= >= s
. Conditional operators

« Increment operator ++

« Decrement operator |- -
+ Arithmetic operators [+ - * | %
. Assignment operators |= *= /= %= += -= <<=

Expressions are constructed from operands and operators. The operators of an
expression indicate which operations to apply to the operands.

Examples of operators include the concatenation and addition operator (+), the
subtraction operator (-), the multiplication operator (*), and the division

operator (/). Examples of operands include literals, fields, local variables, and
expressions.

Common Operators

Some of the most common operators used in C# are described in the following
table.

Type Description

Assignment operators Assign valuesto variables by using asimple assignment.
For the assignment to succeed, the value on theright side
of the assignment must be atype that can be implicitly
converted to the type of the variable on theleft side of

the assignment.

Relationd logical operators
Logica operators
Conditional operator

Increment operator

Decrement operator
Arithmetic operators

Comparetwo values.
Perform bitwise operations on values.

Selects between two expressions, depending on a
Boolean value.

Increasesthevalue of the variable by one.
Decreasesthe value of the variable by one.
Performs standard arithmetic operations.

For more information about the operators available in C#, see “Expressions’ in
the C# Language Specification in the Visual Studio.NET Help documents.

20 Module 3: Using Value-Type Variables

Increment and Decrement

= Changing a Value by One Is Very Common

i temCount += 1;
i tenCount -= 1;

m There Is a Convenient Shorthand

i t emCount ++;
i tenCount--;

m This Shorthand Exists in Two Forms

++i t emCount ;
--itemCount ;

Changing a Value by One is Very Common

Y ou often want to write astatement that increments or decrements a value by
one. You could do this as follows:

itemCount
itemCount

itemCount + 1;
itemCount — 1;

However, as just explained, there is a convenient shorthand for this:

itemCount += 1;
itemCount -= 1;

This shorthand form is the preferred idiomatic way for C# programmers to
increment or decrement a value.

Convenient Shorthand

Incrementing or decrementing a value by one is so common, that this shorthand
method has an even shorter shorthand form!

itemCount++; // itemCount += 1;
itemCount--; // itemCount -= 1;

The ++ operator is called the increment operator and the — operator is called the

decrement operator. Y ou can think of ++ as an operator that changes a value to
its successor and — as an operator that changes a value to its predecessor.

Once again, this shorthand is the preferred idiomatic way for C# programmers
to increment or decrement a vaue by one.

Note C++ iscalled C++ because it was the successor to C!

Module 3: Using Value-Type Variables 21

This Shorthand Exists in Two Forms
Y ou can use the ++ and — operatorsin two forms.

1. You can place the operator symbol before the identifier, as shown in the
following examples. Thisis called the prefix notation.

++itemCount;
-—itemCount;

2. You can place the operator symbol after the identifier, as shown in the
following examples. Thisis called the postfix notation.

itemCount++;
itemCount--;

In both cases, the itemCount is incremented (for ++) or decremented (for --) by

one. So why have two notations? To answer this question, you first need to
understand assignment in more detail:

An important feature of C# is that assignment is an operator. This means that
besides assigning a value to a variable, an assignment expression itself has a
value, or outcome, which is the value of the variable after the assignment has

taken place. In most statements the value of the assignment expression is
discarded, but it can be used in alarger expression, asin the following example:

int itemCount = 0O;
Console.WriteLine(itemCount = 2); // Prints 2
Console_WriteLine(itemCount = itemCount + 40); // Prints 42

Compound assignment is also an assignment. This means that a compound
assignment expression, besides assigning avalue to avariable, a'so has a
vaue—an outcome itself. Again, in most statements the value of the compound
assignment expression is discarded, but it can be used in alarger expression, as
in the following example:

int itemCount = O;
Console _WriteLine(itemCount += 2); // Prints 2
Console._WriteLine(itemCount -= 2); // Prints O

Increment and decrement are also assignments. This means, for example, that
an increment expression, besides incrementing a variable by one, adso has a
value, an outcome itself. Again, in most statements the value of the increment
expression is discarded, but again it can be used in a larger expression, asin the
following example:

int itemCount = 42;
int prefixvValue = ++itemCount; // prefixvalue == 42
int postfixvValue = itemCount++; // postfixValue = 44

The value of the increment expression differs depending on whether you are
using the prefix or postfix version. In both cases itemCount is incremented.
That is not the issue. The issue is what is the value of the increment expression.
The value of a prefix increment/decrement is the value of the variable before
the increment/decrement takes place. The value of a postfix
increment/decrement is the value of the variable after the increment/decrement
takes place.

22

Module 3: Using Value-Type Variables

Operator Precedence

m Operator Precedence and Associativity

e Except for assignment operators, all binary operators are
left-associative

e Assignment operators and conditional operators are
right-associative

Operator Precedence

When an expression contains multiple operators, the precedence of the
operators controls the order in which the individual operators are evaluated. For
example, the expression x +y * zisevaluated as x + (y * z) because the
multiplicative operator has higher prec edence than the additive operator. For
example, an additive expression consists of a sequence of multiplicative
expressions separated by + or - operators, thus giving the + and - operators
lower precedence than the *, /, and % operators.

Associativity

When an expression contains the same operator many times, the associativity
controls the order in which the operators are performed. For example, x +y + z
isevaluated as (x +y) + z. Thisis particularly important for assignment
operators. For example, x =y =z isevaluated as x = (y = 2).

= Except for the assignment operators, all binary operators are left-associative,
meaning that operations are performed from left to right.

= The assignment operators and the conditional operator (?:) are right-
associative meaning that operations are performed from right to left.

Y ou can control precedence and associativity by using parentheses. For
example, x +y * z first multiplies y by z and then adds the result to x, but
(x +y) * zfirst adds x and y and then multiplies the result by z.

Module 3: Using Value-Type Variables

The following table summarizes operators in order of precedence, from highest

to lowest.

Category Operators

Primary (x) xy f(x) a[x] x++ x-- rew
typeof sizeof checked unchecked

Unary + -1~ +4x --x (T)X

Multiplicative * | %

Additive + -

Shift << >>

Relational <> <=>= s

Equality == I=

Logicad AND &

Logical XOR A

Logica OR |

Conditional AND &&

Conditional OR I

Conditional e

Assignment = *= [= U= += = <<= >>= &= "= |=

24 Module 3: Using Value-Type Variables

€ Creating User-Defined Data Types

= Enumeration Types

m Structure Types

In this section, you will learn how to create user-defined enumeration (enum)
and structure (struct) data types.

Module 3: Using Value-Type Variables 25

Enumeration Types

m Defining an Enumeration Type

enum Col or { Red, Green, Blue }

= Using an Enumeration Type

Col or col orPal ette = Col or. Red;

= Displaying an Enumeration Variable

Console. WiteLine(“{0}",colorPalette); // Displays Red

Enumerators are useful when a variable can only have a specific set of values.

Defining an Enumeration Type

To declare an enumeration, use the enum keyword followed by the enum
variable name and initial values. For example, the following enumeration
defines three integer constants, called enumerator values.

enum Color { Red, Green, Blue }

By default, enumerator values start from 0. In the preceding example, Red has a
value of 0, Green has avalue of 1, and Bluehas avalue of 2.

You can initialize an enumeration by specifying integer literals.

26

Module 3: Using Value-Type Variables

Using an Enumeration Type

Y ou can declare avariable colorPalette of Color type by using the following
syntax:

Color colorPalette; // Declare the variable
colorPalette = Color.Red; // Set value

-Or-

colorPalette = (Color)0; // Type casting int to Color

Displaying an Enumeration Value

To display an enumeration value in readable format, use the following
statement:

Console._WriteLine(*“{0}”,colorPalette);

Alternatively, you can use the format method as shown in the following
example:

Console.WriteLine(colorPalette.Format());

Module 3: Using Value-Type Variables 27

Structure Types

= Defining a Structure Type

public struct Enpl oyee
{

string firstNaneg;
i nt age;

m Using a Structure Type

Enmpl oyee conpanyEnpl oyee;
conpanyEnpl oyee. first Nanre = "Joe"
conpanyEnpl oyee. age = 23;

Y ou can use structuresto create objects that behave like built-in value types.

Because structs are stored inline and are not heap allocated, there is less
garbage collection pressure on the system than there is with classes.

In the .NET Framework, simple data types such as int, float, and double are all
built-in structures.

Defining a Structure Type

Y ou can use a structure to group together several arbitrary types, as shown in
the following example:

public struct Employee
{
string firstName;
int age;

}

This code defines a new type called Employee that consists of two elements:
first name and age.

Using a Structure Type

To access elements inside the struct, use the following syntax:
Employee companyEmployee; // Declare variable
companyEmployee.firstName = "Joe"™ // Set value

companyEmployee.age = 23;

28 Module 3: Using Value-Type Variables

€ Converting Data Types

= Implicit Data Type Conversion

= Explicit Data Type Conversion

In C#, there are two types of conversion:
= Implicit data type conversion

= Explicit data type conversion

You will see examples of how to perform both implicit and explicit data
conversion in this section.

Module 3: Using Value-Type Variables 29

Implicit Data Type Conversion

m To Convert Int to Long:

usi ng System

cl ass Test

{
static void Main()

{
int intValue = 123;

I ong | ongVal ue = i ntVal ue;
Console. WiteLine("(long) {0} = {1}", intValue,
=| ongVal ue) ;

}

= Implicit Conversions Cannot Fail

e May lose precision, but not magnitude

Converting from an int data type to along data type isimplicit. This conversion

always succeeds, and it never results in aloss of information. The following
example shows how to convert the variable intValue from an int to along:

using System;
class Test
{
static void Main()
{
int intvalue = 123;
long longValue = intvalue;
Console.WriteLine(""(long) {0} = {1}, intvValue,
= longValue);
}
}

30 Module 3: Using Value-Type Variables

Explicit Data Type Conversion

= To Do Explicit Conversions, Use a Cast Expression:

usi ng System
cl ass Test
{
static void Main()
{
I ong | ongVal ue = I nt 64. MaxVal ue;
int intValue = (int) |ongVal ue;
Consol e. WiteLine("(int) {0} = {1}", IongVal ue,
=i nt Val ue);
}
}

You can convert variable types explicitly by using a cast expression. The

following example shows how to convert the variable longValue from along
data type to an int data type by using a cast expression:

using System;
class Test
{
static void Main()
{
long longValue = Int64_MaxValue;
int intvalue = (int) longValue;
Console._WriteLine("(int) {0} = {1}", longvalue,
= intvalue);
}
}

Because an overflow occursin this example, the output is as follows:

(int) 9223372036854775807 = -1

Moduk 3: Using Value-Type Variables

31

To avoid such a situation, you can use the checked statement to raise an

exception when a conversion fails, as follows:

using System;
class Test
{
static void Main()
{
checked
{
long longValue = Int64.MaxValue;
int intvalue = (int) longValue;

Console._WriteLine(""(int) {0} = {1}",

= intvalue);
}
}
}

longvalue,

32

Module 3: Using Value-Type Variables

Lab 3: Creating and Using Types

Objectives
After completing this lab, you will be able to:

n Create new datatypes.
m Define and use variables.

Prerequisites
Before working on this lab, you should be familiar with the following:

= The Common Type System
s Vauetypevariablesin C#

Scenario

In Exercise 1, you will write a program that creates a smple enum type and
then sets and prints the values by using the Console WritelL ine statement.

In Exercise 2, you will write a program that uses the enum type declared in
Exerciselina sruct.

If time permits, you will add input/output functionality to the program you
wrote in Exercise 2.

Starter and Solution Files

There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab03\Starter folder and the solution files are in the
install folder\Labs\L ab03\Solution folder.

Estimated time to complete this lab: 60 minutes

Module 3: Using Value-Type Variables 33

Exercise 1

Creating an enum Type

In this exercise, you will create an enumerated type for representing different
types of bank accounts (checking and savings). Y ou will create two variables
by using thisenum type, and set the values of the variables to Checking and
Deposit. You will then print the values of the variables by using the
System.Console.WriteL ine function.

I Tocreate an enum type

1.

Open the Enum.csfilein the install folder\Labs\Lab03\Starter\Bank A ccount
folder.

Add an enum caled Account Type before the class definition as follows:
public enum AccountType { Checking, Deposit }

This enumwill contain Checking and Deposit types.

Declare two variables of type AccountType in Main asfollows:

AccountType goldAccount;
AccountType platinumAccount;

Set the vaue of the first variable to Checking and the value of the other
variable to Deposit as follows:

goldAccount = AccountType.Checking;
platinumAccount = AccountType.Deposit;

Add two ConsoleWriteline statements to print the value of each variable
as follows:

Console_WriteLine("'The Customer Account Type is
{0}"",goldAccount);

Console_WriteLine("'The Customer Account Type is
{0}"",platinumAccount);

Compile and run the program.

34 Module 3: Using Value-Type Variables

Exercise 2

Creating and Using a Struct Type

In this exercise, you will define a struct that can be used to represent a bank
account. You will use variables to hold the account number (a long), the
account balance (a decimal), and the account type (the enum that you created

in Exercise 1). You will create a struct type variable, populate the struct with
some sample data, and print the result.

I Tocreate a struct type

1.

Open the Struct.csfilein the install folder\Labs\Lab03\Starter\StructType
folder.

Add a public struct cdled BankAccount that contains the following fields.

Type Variable
public long accNo
public decimal accBal
public AccountType accType

Declare avariable goldAccount of type BankAccount in Main.

BankAccount goldAccount;

Set the accType, accBal, and accNo fields of the variable goldAccount.

goldAccount.accType = AccountType.Checking;
goldAccount.accBal = (decimal)3200.00;
goldAccount.accNo = 123;

. Add Console.WriteL ine statements to print the value of each element in the

struct variable.

Console.WriteLine(""Acct Number {0}, goldAccount.accNo);
Console._WriteLine(""Acct Type {0}, goldAccount.accType);
Console_WriteLine(""Acct Balance ${0}",goldAccount.accBal);

Compile and run the program.

Module 3: Using Value-Type Variables 35

If Time Permits

Adding Input/Output functionality

In this exercise, you will modify the code written in Exercise 2. Instead of using

the account number 123, you will prompt the user to enter the account number.
Y ou will use this number to print the account summary.

I To add input/output functionality

1

Open the StructType.csfile in the install folder\Labs\Lab03\Starter\Optional
folder.

. Adda Console.Write statement to prompt the user to enter the account

number.

Console_Write("Enter account number: ');

Read the account number by using a Console.ReadL ine statement. Assign
this value to goldAccount.accNo.

goldAccount.accNo = long.Parse(Console.ReadLine());

Note You need to use the long.Par se method to convert the string read by
the Console.ReadL ine statement into a decimal value before assigning it to
goldAccount.accNo.

Compile and run the program.

36 Module 3: Using Value-Type Variables

Review

= Common Type System

= Naming Variables

m Using Built-in Data Types

m Creating User-Defined Data Types

m Converting Data Types

. What is the Common Type System?

. Can avaue type be null?

. Can you use uninitialized variables in C#? Why?

. Can there be loss of magnitude as a result of an implicit conversion?

msdn training

Contents

Overview

Introduction to Statements
Using Selection Statements
Using Iteration Statements
Using Jump Statements
Lab 4.1: Using Statements
Handling Basic Exceptions
Raising Exceptions

Lab 4.2: Using Exceptions
Review

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.

Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1 version

of Visual Sudio .NET.

Microsoft

Module 4: Statements
and Exceptions

N

17
29
32
41
51
62
72

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
torepresent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.
Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual

Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Module 4: Statements and Exceptions

Overview

= Introduction to Statements

m Using Selection Statements
m Using Iteration Statements

m Using Jump Statements

= Handling Basic Exceptions

m Raising Exceptions

One of the fundamental skills required to use a programming language is the
ability to write the statements that form the logic of a program in that language.
This module explains how to use some common statements in C#. It also
describes how to implement exception handling in C#.

In particular, this module shows how to throw errors as well as catch them, and
how to use try-finally statement blocks to ensure that an exception does not
cause the program to abort before cleaning up.

After completing this module, you will be able to:

Describe the different types of control statements.
Use jump statements.

Use selection statements.

Use iteration statements.

Handle and raise exceptions.

2 Module 4: Statements and Exceptions

€ Introduction to Statements

m Statement Blocks

m Types of Statements

A program consists of a sequence of statements. At run time, these statements
are executed one after the other, as they appear in the program, from left to
right and from top to bottom. In this section, you will learn how to group a set

of statements together in C#. You will also learn about the different types of
statements that are available in the C# language.

Module 4: Statements and Exceptions 3

Statement Blocks

. /1 cod
m Use Braces As Block Delimiters code

{

m A Block and Its Parent b
Block Cannot Have a :
Variable with the Same | {
Name int i;

int i;

m Sibling Blocks Can Have
Variables with the Same {
Name int i;

When developing C# applications, you need to group statements together just as
you do in other programming languages. To do so, you use the syntax of
languages such as C, C++, and Java, which means that you enclose groups of

statements in braces: { and }. You do not use keyword matched delimiters such
asthelf... End If of Microsofte Visud Basice for grouping statements.

Grouping Statements into Blocks

A group of statements enclosed between braces is referred to as a block. A
block can contain a single statement or another block that is nested within it.

Each block defines a scope. A variable that is declared in ablock is called a
local variable. The scope of aloca variable extends from its declaration to the
right brace that ends its enclosing block. It is good practice to declare a variable

in the innermost block possible because the restricted visibility of the variable
helps to make the program clearer.

4

Module 4: Statements and Exceptions

Using Variables in Statement Blocks

In C#, you cannot declare avariable in an inner block with the same name as a
variable in an outer block. For example, the following code is not allowed:
int 1;

{

int i; // Error: i already declared in parent block

}

However, you can declare variables with the same name in sibling blocks.

Sibling blocks are blocks that are enclosed by the same parent block and are
nested at the same level. The following is an example:

{

int i;
h

int i;
H

Y ou can declare variables anywhere in a statement block. Given this freedom,
you can easily follow the recommendation of initializing a variable at the point
of declaration.

Module 4: Statements and Exceptions 5

Types of Statements

Selection Statements
The if and switch statements

[teration Statements
The while, do, for, and foreach statements

Jump Statements
The goto, break, and continue statements

As the complexity of the problem being solved by a program increases, so does
the complexity of the logic of the program. Consequently, the program requires
structured flow control, which you can achieve by using higher-level constructs
or statements. These statements can be grouped into the following categories:

m Sdection statements

The if and switch statements are known as selection statements. They make

choices based on the value of expressions and selectively execute statements
based on those choices.

= |teration statements

The while, do, for, and for each statements execute repeatedly while a
specific condition is true. They are also known as looping statements. Each
of these statements is appropriate for a certain style of iteration.

= Jump statements

The goto, break, and continue statements are used to unconditionally
transfer control to another statement.

6 Module 4: Statements and Exceptions

€ Using Selection Statements

m The if Statement
m Cascading if Statements

m The switch Statement

m Quiz: Spot the Bugs

The if and switch statements are known as selection statements. They make
choices based on the value of expressions and selectively execute statements
based on those choices. In this section, you will learn how to use selection
statements in C# programs.

Module 4: Statements and Exceptions

The if Statement

= Syntax:

if (Bool ean-expression)
first-enbedded- st at enent
el se
second- enbedded- st at enent

= No Implicit Conversion from int to bool ‘

i nt X;
if (x) ... /1 Must be if (x !'=0) in C#
if (x =0) ... /] Must beif (x ==0) in C#

The if statement is the primary decision-making statement. It can be coupled
with an optional else clause, as shown:

if (Boolean-expression)
Ffirst-embedded-statement

else
second-embedded-statement

The if statement evaluates a Boolean expression to determine the course of
action to follow. If the Boolean expression evaluates to true the control is
transferred to the first embedded statement. If the Boolean expression evaluates

to falsg and there is an dse clause, the control is transferred to the second
embedded statement.

8

Module 4: Statements and Exceptions

Examples
Y ou can use asimple embedded if statement such as the following:

it (number % 2 == 0)
Console._WriteLine("even™);

Although braces are not required in embedded statements, many style guides
recommend using them because they make your code less error prone and
easier to maintain. You can rewrite the previous example with braces as follows:

if (number % 2 == 0) {
Console._WriteLine("even™);

}

You can also use anif statement block such as the following:

if (minute == 60) {
minute = 0;
hour++;

}

Converting Integers to Boolean Values

Implicit conversion from an integer to a Boolean value is a potential source of
bugs. To avoid such conversion-related bugs, C# does not support integer to
Boolean value conversion. This is a significant difference between C# and other
similar languages.

For example, the following statements, which at worst generate warnings in
C and C++, result in compilation errorsin C#:

int x;

ifx ... // Must be x = 0 in C#
if X=0) ... // Must be x == in C#

Module 4: Statements and Exceptions 9

Cascading if Statements

enum Suit { Cubs, Hearts, Dianonds, Spades };
Suit trunps = Suit. Hearts;
if (trunmps == Suit.d ubs)

color = "Bl ack";
else if (trunps == Suit.Hearts)
color = "Red";

else if (trunps == Suit.D anonds)
color = "Red";

el se
color = "Bl ack";

Y ou can handle cascading if statements by using an else if statement. C# does
not support the elseif statement but forms an else if-type statement from an else
clause and an if statement, asin C and C++. Languages such as Visual Basic

support cascading if statements by using an else if statement between the initial
if statement and the final else statement.

By using the elseif construct, you can have any number of branches. However,

the statements controlled by a cascading if statement are mutually exclusive, so
that only one statement from the set of else if constructs is executed.

Nesting if Statements

Nesting one if statement within another if statement creates a potential
ambiguity called a dangling else as shown in the following example:

if (percent >= 0 && percent <= 100)
it (percent > 50)
Console.WriteLine("'Pass™);
else
Console.WriteLine("Error: out of range™);

10

Module 4: Statements and Exceptions

The else isindented to the same column as the first if. When you read the code,
it appears that the else does not associate with the second if. This is dangerously
misleading. Regardless of the layout, the compiler binds an else clause to its
nearest if statement. This means that the compiler will interpret the above code
as follows:

ifT (percent >= 0 && percent <= 100)

{
if (percent > 50)
Console._WriteLine("'Pass™);
else
Console _WriteLine("Error: out of range');
}

One way you can make the else associate with the first if is to use a block, as
follows:

if (percent >= 0 && percent <= 100) {
if (percent > 50)
Console._WriteLine('""Pass');
} else {
Console.WriteLine("Error: out of range');

}

Tip Itisbest to format cascading if statementswith proper indentation;
otherwise, long decisions quickly become unreadable and trail off the right
margin of the page or screen.

Module 4: Statements and Exceptions 11

The switch Statement

m Use switch Statements for Multiple Case Blocks

m Use break Statements to Ensure That No Fall Through
Occurs

switch (trunps) {
case Suit.C ubs :
case Suit. Spades :
color = "Bl ack"; break;
case Suit.Hearts :
case Suit.D anonds :
color = "Red"; break;
defaul t:
col or
}

"ERROR'; break;

The switch statement provides an elegant mechanism for handling complex
conditions that would otherwise require nested if statements. It consists of
multiple case blocks, each of which specifies a single constant and an

associated caselabel. You cannot group a collection of constants together in a
single case label. Each constant must have its own case labdl.

A switch block can contain declarations. The scope of alocal variable or

constant that is declared in a switch block extends from its declaration to the
end of the switch block, as is shown in the example on the dide.

Execution of switch Statements
A switch statement is executed as follows:

1. If one of the constants specified in a case label is equa to the value of the
switch expression, control is transferred to the statement list following the
matched case labd.

2. If no case label constant is equal to the value of the switch expression, and
the switch statement contains a default label, control is transferred to the
statement list following the default labd.

3. If no case label constant is equal to the value of the switch expression, and
the switch statement does not contain adefault label, control is transferred
to the end of the switch statement.

12

Module 4: Statements and Exceptions

Y ou can use a switch statement to evaluate only the following types of
expressions: any integer type, a char, anenum, or astring. You can aso
evaluate other expression types by using the switch statement, as long as there
is exactly one user-defined explicit conversion from the disallowed type to one
of the allowed types.

Note Unlike in Java, C, or C++, the governing type of a switch statement in

C# can be a string. With a string expression, the value null is permitted as a
case label constant.

For more information about conversion operators, search for “conversion
operators’ inthe .NET Framework SDK Help documents.

Grouping Constants

To group severa constants together, repeat the keyword casefor each constant,
as shown in the following example:

enum MonthName { January, February, ..., December };
MonthName current;
int monthDays;

switch (current) {

case MonthName.February :
monthDays = 28;
break;

case MonthName._April :

case MonthName.June :

case MonthName.September :

case MonthName._November :
monthDays = 30;
break;

default :
monthDays = 31;
break;

}

Y ou use the case and default labels only to provide entry points for the control
flow of the program based on the value of the switch expression. They do not
alter the control flow of the program.

The values of the case label constants must be unique. This means that you

cannot have two constants that have the same value. For example, the following
example will generate a compile-time error:

switch (trumps) {
case Suit.Clubs :
case Suit.Clubs : // Error: duplicate label

default :
default : // Error: duplicate label again
}

Module 4: Statements and Exceptions 13

Using break in switch Statements

Unlike in Java, C, or C++, C# statements associated with one or more case
labels cannot silently fall through or continue to the next case labd. A silent fall
through occurs when execution proceeds without generating an error. In other
words, you must ensure that the last statement associated with a set of case
labels does not allow the control flow to reach the next set of caselabels.

Statements that help you to fulfill this requirement, known as the no fall
through rule, are the bresk statement (probably the most common), the goto
statement (very rare), the retur n statement, the throw statement, and an infinite
loop.

The following example will generate a compile-time error because it breaks the
no fall through rule:

switch (days % 10) {
case 1 :
if (days /7 10 1= 1) {
suffix = "st";
break;
T
// Error: fall through here
case 2 :
if (days 7 10 1= 1) {
suffix = ""nd";

break;
}
// Error: fall through here
case 3 :
if (days 7 10 1= 1) {
suffix = "'rd";
break;
}
// Error: fTall through here
default :

suffix = "th";
// Error: fall through here

14 Module 4: Statements and Exceptions

You can fix the error in this example by rewriting the code as follows:

switch (days % 10) {

case 1 :
suffix = (days /7 10 == 1) ? "th" - "st";
break;

case 2 :
suffix = (days /7 10 == 1) ? "th" : "nd";
break;

case 3 :
suffix = (days /7 10 == 1) ? "th" : "rd";
break;

default :
suffix = "th";
break;

3

Using goto in switch Statements

In C#, unlikein Java, C, or C++, you can use a case label and a default label as
the destination of a goto statement. Y ou can use a goto statement this way to
achieve the fall through effect, if necessary. For example, the following code
will compile without any problem:

switch (days % 10) {
case 1 :
if (days 7 10 1= 1) {
suffix = "st";
break;
H
goto case 2;
case 2 :
if (days 7 10 1= 1) {
suffix = "'nd";
break;
h
goto case 3;
case 3 :
if (days 7 10 '= 1) {
suffix = "rd";
break;
b
goto default;
default :
suffix = "th";
break;

}

Because of the no fall through rule, you can rearrange sections of a switch
statement without affecting the overall behavior of the switch statement.

Module 4: Statements and Exceptions 15

Quiz: Spot the Bugs

i f nunber %2 ==

|if (percent < 0) || (percent > 100)
I
if (mnute == 60);

m nute = O;

8

0900

switch (trunps) {
case Suit.C ubs, Suit. Spades :

col or = "Bl ack";

case Suit.Hearts, Suit.Dianonds : @
color = "Red";

def aul t

}

In this quiz, you can work with a partner to spot the bugs in the code on the
dide. To see the answers to this quiz, turn the page.

16

Module 4: Statements and Exceptions

Answers
1. The if statement is not in parentheses. The C# compiler traps this bug as a

compile-time error. The corrected code is as follows:

if (number % 2 == 0) ...

. The if statement as awhole is not fully parenthesized. The C# compiler

traps this bug as a compile-time error. The corrected code is as follows:
if ((percent < 0) || (percent > 100)) ...

. The if statement has a single semicolon as its embedded statement. A single

semicolon is called an empty statement in the C# Language Reference
document and a null statement in the C# compiler diagnostic messages. It
does nothing, but it is alowed. The layout of the statements does not affect
how the compiler parses the syntax of the code. Hence, the compiler reads
the code as.

if (minute == 60)
minute = 0;

The C# compiler traps this bug as a compile-time warning.

4. The following errors are present:

a There ismore than one constant in the same case label. The C# compiler
traps this bug as a compile-time error.

b. The statements associated with each case fall through to the next case.
The C# compiler traps this bug as acompile-time error.

c. The keyword default has been misspelled. Unfortunately, thisis still
allowable code, asit creates asimpleidentifier label. The C# compiler
traps this bug as two compile-time warnings. one indicating unreachable
code, and another indicating that the default: label has not been used.

Module 4: Statements and Exceptions

17

€ Using lteration Statements

m The while Statement
= The do Statement
m The for Statement

m The foreach Statement

m Quiz: Spot the Bugs

The while, do, for, and for each statements are known as iteration statements.
Y ou use them to perform operations while a specific condition is true. In this
section, you will learn how to use iteration statements in C# programs.

18 Module 4: Statements and Exceptions

The while Statement

m Execute Embedded Statements Based on Boolean Value
m Evaluate Boolean Expression at Beginning of Loop

m Execute Embedded Statements While Boolean Value Is
True

int i =0;

while (i < 10) {
Consol e. WiteLine(i);
i ++;

01234567829

The while statement is the simplest of all iteration statements. It repeatedly
executes an embedded statement while a Boolean expression is true. Note that
the expression that the while statement evaluates must be Boolean, since C#
does not support implicit conversion from an integer to a Boolean value.

Flow of Execution
A while statement is executed as follows:

1. The Boolean expression controlling the while statement is eval uated.

2. If the Boolean expression yields true, control is transferred to the embedded
statement. When control reaches the end of the embedded statement, control
isimplicitly transferred to the beginning of the while statement, and the
Boolean expression is re-evauated.

3. If the Boolean expression yields false, control is transferred to the end of the
while statement. Therefore, while the controlling Boolean expression istrue,
the program repestedly executes the embedded statement.

The Boolean expression is tested at the start of the while loop. Therefore, it is
possible that the embedded statement may never be executed at all.

Module 4: Statements and Exceptions 19

Examples
Y ou can use a simple embedded statement as shown in the following example:

while (i < 10)
Console_WriteLine(i++);

When using embedded statements, you do not need to use braces. Nevertheless,

many style guides recommend using them because they ssimplify maintenance.
Y ou can rewrite the previous example with braces as follows:

while (i < 10) {
Console_WriteLine(i++);

}
You can aso use a while statement block as shown in the following example:

while (i < 10) {
Console._WriteLine(i);
i++;

Tip Despite being the simplest iteration statement, the while statement poses

potentia problems for devel opers who are not careful. The classic syntax of a
while statement is as follows:

initializer

while (Boolean-expression) {
embedded-statement
update

}

It is easy to forget the update part of the while block, particularly if your
attention is focused on the Boolean expression.

20 Module 4: Statements and Exceptions

The do Statement

m Execute Embedded Statements Based on Boolean Value
m Evaluate Boolean Expression at End of Loop

m Execute Embedded Statements While Boolean Value Is

True

int i =0;

do {
Consol e. WiteLine(i);
i ++;

} while (i < 10);

01234567829

A do statement is always coupled with a while statement. It is similar to a while
statement, except that the Boolean expression that determines whether to
continue or exit the loop is evaluated at the end of the loop rather than at the

start. This means that, unlike a while statement, which iterates zero or more
times, a do statement iterates one or more times.

Therefore, a do statement always executes its embedded statement at least once.

This behavior is particularly useful when you need to vdidate input before
allowing program execution to proceed.

Flow of Execution
A do statement is executed as follows:

1.
2.

Control is transferred to the embedded statement.

When control reaches the end of the embedded statement, the Boolean
expression is evaluated.

If the Boolean expression yields true, control is transferred to the beginning
of the do statement.

If the Boolean expression yields false, control is transferred to the end of the
do statement.

Module 4: Statements and Exceptions

21

Examples

You can use asimple embedded do statement as shown in the following
example:

do
Console_WriteLine(i++);
while (i < 10);

Just aswith the if and while statements, you do not need to use bracesin
embedded do statements, but it is a good practice to use them.

Y ou can aso use a do statement block as follows:

do {
Console.WriteLine(i);
i++;

} while (i < 10);

In all cases, you must end a do statement with a semicolon, as follows:

do {
Console_WriteLine(i++);
} while (i < 10) // Error if no ; here

22

Module 4: Statements and Exceptions

The for Statement

= Place Update Information at the Start of the Loop

for (int i =0; i < 10; i++) {
Consol e.WiteLine(i);

0123456789

m Variables in a for Block are Scoped Only Within the Block

for (int i =0; i < 10; i++)
Consol e. WiteLine(i);
Consol e.WiteLine(i); // Error: i is no |longer in scope

= A for Loop Can lterate Over Several Values

for (int i =0, j =0; ... ; i++ |j++)

When using while statements, developers often forget to update the control
variable. The following code provides an example of this mistake:

int i = 0;
while (i < 10)
Console.WriteLine(i); // Mistake: no i++

This mistake occurs because the developer’s attention is focused on the body of
the while statement and not on the update. Also, the while keyword and the
update code may be very far apart.

Y ou can minimize these errors by using the for statement. The for statement
overcomes the problem of omitted updates by moving the update code to the
beginning of the loop, where it is harder to overlook. The syntax of the for
statement is as follows:

for (initializer ; condition ; update)
embedded-statement

Important Inafor statement, the update code precedes the embedded
statement. Nevertheless, the update code is executed by the runtime after the
embedded statement.

Module 4: Statements and Exceptions 23

The syntax of the for statement is essentially identical to that of the while
statement, as shown in the following example:

initializer

while (condition) {
embedded-statement
update

T

Aswith all iteration statements, the condition in a for block must be a Boolean
expression that serves as a continuation condition and not a termination
condition.

Examples

The initializer, condition, and update components of afor statement are
optional. However, an empty condition is considered implicitly true and can
easily cause an infinite loop. The following code provides an example:

for (G3) {
Console.WriteLine(''Help ");

}

Aswith the while and do statements, you can use a simple embedded statement
as shown in the following example:

for (int 1 = 0; 1 < 10; i++)
Console.WriteLine(i);

You can also use afor statement block:

for (int 1 = 0; 1 < 10; i++) {
Console.WriteLine(i);
Console_WriteLine(10 — i);

24

Module 4: Statements and Exceptions

Declaring Variables

One subtle difference between the while statement and the for statement is that
avariable declared in the initidizer code of a for statement is scoped only

within the for block. For example, the following code generates a compile-time
error:

for (int 1 = 0; 1 < 10; i++)
Console.WriteLine(i);
Console.WriteLine(i); // Error: i is no longer in scope

In conjunction with thisrule, it is important to note that you cannot declare a
variable in a for block with the same name as avariable in an outer block. This
rule also applies to variables declared in the initializer code of a for statement.
For example, the following code generates a compile-time error:

int i;
for (int 1 = 0; i1 < 10; i++) ...
However, the following code is allowed:

for (int i
for (int i

0; 1 < 10; i++) ...
0; 1 < 20; i++) ...

Further, you can initialize two or more variables in the initializer code of a for
statement, as follows:

for (int i =0, J =0; ... ; -..)

However, the variables must be of the same type. Therefore, the following is
not permitted:

for (int i =0, long j =0; i < 10; i++)

You can aso use two or more expression statements separated by acomma or
commas in the update code of a for statement, as follows:

for (int i =0, j =0; ... ; i++, j++)

The for statement is best suited to situations in which the number of iterations
is known. They are particularly well suited to modifying each element of an
array.

Module 4: Statements and Exceptions 25

The foreach Statement

= Choose the Type and Name of the Iteration Variable

= Execute Embedded Statements for Each Element of the
Collection Class

ArrayLi st nunmbers = new ArrayList();

for (int i =0; i <10; i++) {
nunbers. Add(i) ;

}

foreach (int nunmber in nunmbers) {
Consol e. Wit eLi ne(nunber);
}

0123456789 |

Collections are software entities whose purpose is to collect other software

entities, much as aledger can be thought of as a collection of bank accounts or
a house as a collection of rooms.

The Microsoft .NET Framework provides a simple collection class called

ArrayList. You can use ArrayL ist to create a collection variable and add
elements to the collection. For example, consider the following code:

Using System.Collection;

ArrayList numbers = new ArrayList();

for (int ¥ = 0; 1 < 10; i++) {
numbers_Add(i);

}

You canwritea for statement that accesses and prints each collection element
from this collection class in turn:

for (int 1 = 0; 1 < numbers.Count; i++) {
int number = (int)numbers[i];
Console._WriteLine(number);

}

Thisfor statement contains many individual statements that in combination

implement the mechanism used to iterate through each collection element of
numbers. However, this solution is not easy to implement and is prone to error.

To address this problem, C# provides the for each statement, which allows you
to iterate through a collection without using multiple statements. Rather than
explicitly extracting each element from a collection by using syntax specific to
the particular collection, you use the foreach statement to approach the problem
in the opposite way. Y ou effectively instruct the collection to present its

elements one at atime. Instead of taking the embedded statement to the
collection, the collection is taken to the embedded statement.

26

Module 4: Statements and Exceptions

By using the for each statement, you can rewrite the previousfor statement as
follows:

foreach (int number In numbers)
Console._WriteLine(number);

The foreach statement executes the embedded statement for each element of
the collection class numbers. You only need to choose the type and name of the
iteration variable, which in this case are int and number, respectively.

You cannot modify the elements in a collection by using a for each statement
because the iteration variable is implicitly readonly. For example:

foreach (int number in numbers) {
number++; // Compile-time error
Console.WriteLine(number);

Tip You can usea foreach statement to iter ate through the values of an

enumerator by using the Enum.GetValueg) method, which returns an array of
objects.

It isimportant to be cautious when deciding the type of the foreach iteration

variable. In some circumstances, a wrong iteration variable type might not be
detected until run time. This would cause an error.

Module 4: Statements and Exceptions 27

Quiz: Spot the Bugs

[1
for (int i =0, i <10, i++)
Consol e.WiteLine(i);

int i = 0;
while (i < 10)
Consol e. WiteLine(i);

for (int i =0; i >= 10; i++)
Consol e. WiteLine(i);

do

© 000

string s = Consol e. ReadLi ne();
guess = int.Parse(s);
whil e (guess != answer);

In this quiz, you can work with a partner to spot the bugs in the code on the
dide. To see the answers to this quiz, turn the page.

28

Module 4: Statements and Exceptions

Answers
1. The for statement elements are separated by commas rather than semicolons.

The C# compiler traps this bug as a compile-time error. The corrected code
is as follows:

for (int i1 = 0; 1 < 10; i++)

. The while statement does not update the continuation expression. It will

loop forever. This bug does not generate awarning or an error at compile
time. The corrected code is asfollows:

inti =0;

while (i < 10) {
Console_WriteLine(i);
i++;

}

. The for statement has a termination rather than a continuation condition. It

will never loop at al. This bug does not generate a warning or an error at
compile time. The corrected code is as follows:

for (int 1 = 0; 1 < 10; i++)

. The statements between do and while must be grouped together in a block.

The C# compiler traps this bug as a compile-time error. The corrected code
is as follows:

do {
string s = Console.ReadLine();

guess = int.Parse(s):
} while (guess != answer);

Module 4: Statements and Exceptions 29

€ Using Jump Statements

m The goto Statement

m The break and continue Statements

The gotg break, and continue statements are known as jump statements. Y ou

use them to transfer control from one point in the program to another, at any
time. In this section, you will learn how to use jJump statements in C# programs.

30

Module 4: Statements and Exceptions

The goto Statement

m Flow of Control Transferred to a Labeled Statement

m Can Easily Result in Obscure “Spaghetti’ Code

if (nunber %2 == 0) goto Even;
Consol e.WiteLine("odd");

got o End;

Even:

Consol e.WiteLine("even");
End:

The goto statement is the most primitive C# jump statement. It transfers control

to alabeled statement. The label must exist and must be in the scope of the goto
statement. More than one goto statement can transfer control to the same label.

The gotostatement can transfer control out of ablock, but it can never transfer
control into a block. The purpose of this restriction is to avoid the possibility of
jumping past an initialization. The same rule exists in C++ and other languages
aswell.

The goto statement and the targeted label statement can be very far apart in the
code. This distance can easily obscure the control-flow logic and is the reason
that most programming guidelines recommend that you do not use goto
statements.

Note The only situations in which goto statements are recommended are in
switch statements or to transfer control to the outside of a nested loop.

Module 4: Statements and Exceptions

31

The break and continue Statements

m The break Statement Jumps out of an Iteration

m The continue Statement Jumps to the Next Iteration

int i =0;
while (true) {
Consol e. WiteLine(i);
i ++;
if (i < 10)
conti nue
el se
br eak;

A break statement exits the nearest enclosing switch, while, do, for, or

foreach statement. A continue statement starts anew iteration of the nearest
enclosing while, do, for, or foreach statement.

The break and continue statements are not very different from a goto
statement, whose use can easily obscure control-flow logic. For example, you
can rewrite the while statement that is displayed on the slide without using
break or continue asfollows:

int i = 0;

while (i < 10) {
Console_WriteLine(numbers[i]);
i++;

}

Preferably, you can rewrite the previous code by using a for statement, as
follows:

for (int 1 = 0; 1 < 10; i++) {
Console._WriteLine(numbers[i]);

}

32

Module 4: Statements and Exceptions

Lab 4.1: Using Statements

Objectives
After completing this lab, you will be able to:

m Use statements to control the flow of execution.
= Uselooping statements.

Prerequisites
Before working on this lab, you should be familiar with the following:

m Credting variables in C#
= Using common operators in C#
= Creating enum typesin C#

Estimated time to complete this lab: 30 minutes

Module 4; Statements and Exceptions 33

Exercise 1

Converting a Day of the Year into a Month and Day Pair

In this exercise, you will write a program that reads an integer day number
(between 1 and 365) from the console and stores it in an integer variable. The
program will convert this number into a month and a day of the month and then
print the result to the console. For example, entering 40 should result in
“February 9" being displayed. (In this exercise, the complications associated
with leap years are ignored.)

I Toread the day number from the console

1.

Open the WhatDay1.csproj project in the install folder\
Labs\Lab04A\Starter\WhatDay1 folder. The WhatDay class containsa
variable that contains the number of days in each month stored in a
collection. For now, you do not need to understand how this works.

Add a System.Console.Write statement to WhatDay.Main that writes a
prompt to the console asking the user to enter a day number between 1 and
365.

Add a statement to Main that declares a string variable called line and

initializes it with aline read from the console by the
System.Console.ReadL ine method.

Add a statement to Main that declares an int variable caled dayNumand
initializes it with the integer returned from the int.Par se method.

The complete code should be as follows:

using System;

class WhatDay
{
static void Main()

{

Console.Write(''Please enter a day number between 1
=and 365: ");

string line = Console.ReadLine();

int dayNum = int.Parse(line);

//

// To do: add code here
//

}

5. Saveyour work.

Compile the WhatDay1.cs program and correct any errors. Run the program.

34 Module 4: Statements and Exceptions

I To calculate the month and day pair from a day number

1. Add astatement to Main that declares an int variable called monthNum and
initializes it to zero.

2. Anif statement for each month from January to October has been provided
for you. Add similar if statements for the months November and December
to Main.

3. Add anidentifier label called Endto Main after the last if statement.

4. Add a statement after the End label that declares an uninitialized string
variable called monthName.

5. A switch statement has been partialy provided for you after the End label.
The case labels for the months January to October are already present. Add
to the switch statement similar case labels and their contents for the months
November and December. Add a default label to the switch statement. Add
a statement to the default label that assigns the string literal “ not done yet”

to the variable monthName.
6. The completed program should be as follows:

using System;

class WhatDay
{

static void Main()

{
Console.Write("'Please enter a day number between 1
=and 365: ");
string line = Console.ReadLine();
int dayNum = int.Parse(line);

int monthNum = O;

it (dayNum <= 31) { // January

goto End;

} else {
dayNum -= 31;
monthNum++;

}

if (dayNum <= 28) { // February
goto End;

} else {
dayNum -= 28;
monthNum++;

}

if (dayNum <= 31) { // March
goto End;

} else {
dayNum -= 31;
monthNum++;

}
(Code continued on following page.)

Module 4: Statements and Exceptions

35

if (dayNum <= 30) { 7/ April

goto End;

} else {
dayNum -= 30;
monthNum++;

¥

if (dayNum <= 31) { // May
goto End;

} else {
dayNum -= 31;
monthNum++;

}

if (dayNum <= 30) { // June
goto End;

} else {
dayNum -= 30;
monthNum++;

¥

if (dayNum <= 31) { 7/ July
goto End;

} else {
dayNum -= 31;
monthNum++;

}

it (dayNum <= 31) { // August
goto End;

} else {
dayNum -= 31;
monthNum++;

¥

if (dayNum <= 30) { // September
goto End;

} else {
dayNum -= 30;
monthNum++;

}

if (dayNum <= 31) { // October
goto End;

} else {
dayNum -= 31;
monthNum++;

T

if (dayNum <= 30) { // November
goto End;

} else {
dayNum -= 30;
monthNum++;

}
(Code continued on following page.)

36

Module 4: Statements and Exceptions

if (dayNum <= 31) { // December

goto End;
} else {
dayNum -=

}

End:

31;
monthNum++;

string monthName;

switch (monthNum) {

case O :
monthName
case 1 :
monthName
case 2 :
monthName
case 3 :
monthName
case 4 :
monthName
case 5 :
monthName
case 6 :
monthName
case 7 :
monthName
case 8 :
monthName
case 9 :
monthName
case 10 :
monthName
case 11 :
monthName
default:
monthName

}

“January'; break;
"February"; break;
"March™; break;
“"April"; break;
"May"'; break;
"June'; break;
“"July"; break;
"August'; break;
"September™; break;
""October'; break;
"November"; break;
""December"; break;

"'not done yet'"; break;

Console._WriteLine("{0} {1}", dayNum, monthName);

7. Saveyour work.

Module 4: Statements and Exceptions 37

8. Compile the WhatDay1.cs program and correct any errors. Run the program.
Verify that the program is working correctly by using the following data.

Day number Month and day

32 February 1
60 March 1

91 April 1

186 July 5

304 October 31
309 November 5
327 November 23
359 December 25

I To calculate the name of the month by using an enum

1. You will now replace the switch statement that determines the month name
from a month number with a more compact mechanism. Declare anenum
type called MonthName and populate it with the names of the twelve
months, starting with January and ending with December.

2. Comment out the entire switch statement.

3. Inplace of the switch statement, add a statement that declares anenum
MonthName variable caled temp. Initialize temp from the monthNum int

variable. You will need the following cast expression:
(MonthName)monthNum

4. Replace theinitialization of monthName with the expression
temp.Format()

38

Module 4: Statements and Exceptions

5. The completed program should be as follows:

using System;

enum MonthName

{
January,
February,
March,
April,
May ,
June,
July,
August,
September,
October,
November,
December

}

class WhatDay
{

static void Main()

{

Console.Write("'Please enter a day number between 1
=and 365: ");

string line = Console.ReadLine();

int dayNum = int.Parse(line);

int monthNum = O;

// 12 if statements, as above

End:

MonthName temp = (MonthName)monthNum;
string monthName = temp.Format();

Console._WriteLine("{0} {1}", dayNum, monthName);

6. Saveyour work.
7. Compile the WhatDay1.cs program and correct any errors. Run the program.

Use the preceding table of data to verify that the program is still working
correctly.

Module 4: Statements and Exceptions 39

I Toreplacethe 12 if statements with one foreach statement

1.

Y ou will now replace the 12 statements that cal culate the day and month
pairs with one for each statement. Comment out all 12 if statements. You
will replace these statements in the next steps.

Write a foreach statement that iterates through the provided Daysl nM onths
collection. To do this, add the following statement:

foreach (int daysinMonth in DayslnMonths) ...

Add ablock statement as the body of the foreach statement. The contents of
this block will be very similar to an individual commented-out if statement
except that the dayslnMonth variable is used instead of the various integer
literals.

Comment out the End label above the commented-out switch statement.
Replace the goto statement in the foreach statement with a break statement.

The completed program should be as follows:

using System;
enum MonthName { ... }

class WhatDay
{

static void Main()

{

Console.Write("'Please enter a day number between 1
=and 365: ");

string line = Console.ReadLine();

int dayNum = int.Parse(line);

int monthNum = O;

foreach (int daysInMonth in DayslnMonths) {
if (dayNum <= dayslInMonth)

{
break;

} else

{
dayNum -= dayslInMonth;
monthNum++;

T

}
MonthName temp = (MonthName)monthNum;

string monthName = temp.Format();

Console._WriteLine("{0} {1}", dayNum, monthName);

40 Module 4: Statements and Exceptions

6. Saveyour work.

7. Compile the WhatDay1.cs program and correct any errors. Run the program.
Use the preceding table of data to verify that the program is still working
correctly.

8. Run the program, entering day numbers less than 1 and greater than 365, to
see what happens.

Module 4: Statements and Exceptions 41

€ Handling Basic Exceptions

= Why Use Exceptions?
m Exception Objects

m Using try and catch Blocks

= Multiple catch Blocks

As adeveloper, you sometimes seem to spend more time checking for errors
and handling them than you do on the core logic of the actual program. Y ou can
address this issue by using system exceptions that are designed for the purpose

of handling errors. In this section, you will learn how to catch and handle
exceptions in C#.

42

Module 4: Statements and Exceptions

Why Use Exceptions?

m Traditional Procedural Error Handling Is Cumbersome

Core program logic

int errorCode; <

File source = new File("code.cs"); <—]

if (errorCode == -1) goto Fail ed; <

int length = (int)source. Length; <+

if (errorCode == -2) goto Fail ed; <

char[] contents = new char[length]; <——

if (errorCode == -3) goto Fail ed; —

/'l Succeeded ..

Failed: ... < Error handling

Planning for the unexpected, and recovering if it does happen, is the mark of a

good, robust program. Errors can happen at aimost any time during the
compilation or execution of a program.

The core program logic from the dide is as follows:

File source = new File(*'code.cs™);
int length = (int)source.Length;
char[] contents = new char[length];

Unfortunately, these core statements are lost in a confusing mass of intrusive

error-handling code. This error-handling code obscures the logic of the program
in a number of ways:

= Program logic and error -handling code become intermixed.

The core program statements lose their conceptual wholeness as they
become intermixed with alternating error-handling code. The program is
then difficult to understand.

= All error code looks alike.

All of the error-checking statements are similar. All of them test the same
error code by using if statements. Also, thereis alot of duplicate code,
which is always awarning sign.

m Error codes are not inherently meaningful.

In this code, a number such as—1 does not have an explicit meaning. It
could represent “Security error: no read permission,” but only the
documentation can tell you what —1 represents. Therefore, integer error
codes are very “ programmatic”; they do not describe the errors they
represent.

Module 4: Statements and Exceptions 43

Error codes are defined at the method level.

Every method reports its error by setting the error code to a specific value
unique to it. No two methods can use the same vaue. This means that every
method is coupled to every other method. Y ou can clearly see this coupling
in effect when the integer error codes are replaced by an enumeration, asin
the following code:

enum ErrorCode {
SecurityError = -1,
I0Error = -2,
OutOfMemoryError = -3,

}

This code is better: An identifier such as FileNotFound is certainly more
descriptive than —1. However, when a new named error is added to the
enum, every method that names its errors in the enum will be affected. In
C++, this can easily lead to significant recompilation delays since there is
extremely tight coupling.

Simple integers have limited descriptive power.

For example, —1 might be documented to mean “ Security error: no read

permission,” but —1 cannot aso provide the name of the file that you do not
have permission to read.

Error codes are too easy to ignore.
For example, C programmers almost never check the int returned by the

printf function. A printf is unlikely to fail, but if it does, it returns a
negative integer value (usualy —1).

As you can see, you need an alternative to the traditional approach of handling

errors. Exceptions provide an aternative that is more flexible, requires less
overhead, and produces meaningful error messages.

44

Module 4: Statements and Exceptions

Exception Objects

A ,
| CExcepti on Represents non-fatal
/ run-time errors
—| Syst emExcept i on |
A—' CQut OF Menor yExcept i on|

—| Over f | owExcept i on|

Represents fatal

L CoreExcepti on |/ run-time errors

—|Nul | Ref er enceExcepti on

The programmatic error codes used in procedural error-handling code look
similar to the following:

enum ErrorCode {
SecurityError = -1,
I0Error = -2,
OutOfMemoryError = -3,

}

The use of such error codes makes it difficult to supply information that you
can use to recover from the error. For example, if anOError is generated, you
do not get information about what kind of error it is. Isit an attempt to write to
aread-only file or anon-existent file, or isit a corrupt disk? Additionaly, what
fileis being read from or written to?

To overcome this problem of lack of information about the generated error,
the .NET Framework has defined a range of system-defined exception classes
that store information about the exception being thrown.

Module 4: Statements and Exceptions

All C# exceptions derive from the class named Exception, which is a part of
the Common Language Runtime. The hierarchy between these exceptionsis
displayed on the dide. The exception classes provide the following benefits:

m Error messages are no longer represented by integer values or enums.

The programmatic integer values such as -3 disappear. In their place, you
use specific exception classes such as OutOfM emor yException. Each

exception class can reside inside its own source file and is decoupled from
al other exception classes.

= Meaningful error messages are generated.

Each exception class is descriptive, clearly and obvioudy representing a
specific error. Instead of a —3, you use aclass called
OutOfM emoryException. Each exception class can aso contain

information specific to itself. For example, a FileNotFoundException class
could contain the name of the file that was not found.

Tip To use exceptions effectively, you need to maintain a balance between
exception classes that are too vague and those that are too precise. If the
exception class is too vague, you will not be able to write a useful catch block.
On the other hand, do not create an exception class that is so precise that it
leaks implementation details and breaks encapsulation.

46

Module 4: Statements and Exceptions

Using try and catch Blocks

m Object-Oriented Solution to Error Handling
e Put the normal code in a try block

o Handle the exceptions in a separate catch block

try {
File source = new Fil e("code.cs");

int length = (int)source. Length;

char[] contents = new char[l ength];

}
catch (System Exception caught) {

Consol e. Wit eLi ne(caught)
}

Object orientation offers a structured solution to error-handling problems in the
form of try and catch blocks. The ideais to physicaly separate the core
program statements that handle the normal flow of control from the error-
handling statements. Therefore, the sections of code that might throw
exceptions are placed in atry block, and the code for handling exceptions in the
try block is placed in a catch block.

The syntax of a catch block is as follows:

catch (class-type identifier) { ... }

The class type must be System.Exception or atype derived from
System.Exception.

The identifier, which is optional, is a read-only local variable in the scope of the
catch block.

catch (Exception caught) {

}
Console_WriteLine(caught); // Compile-time error:
// caught is no longer in scope

Module 4: Statements and Exceptions 47

The example in the dide shows how to use try and catch statements. The try
block encloses an expression that will generate the exception known as
SystemException. When the exception takes place, the runtime stops executing
and starts searching for a catch block that can catch the pending exception
(based on its type). If an appropriate catch block is not found in the immediate
function, the runtime will unwind the call stack searching for the calling
function. If an appropriate catch block is not found there, it will search for the
function that called the calling function, and so on, until it finds a catch block.
(Or until it reaches the end of Main. If this happens, the program will shut
down.) If it finds a catch block, the exception is considered to have been caught,
and normal execution starts again, beginning with the body of the catch block
(which in the slide writes out the message that is contained within the exception
object SystemException).

Therefore, if you use try and catch blocks, the error-handling statements no
longer intermix themselves with the core logic statements, and this makes the
program easier to understand.

48

Module 4: Statements and Exceptions

Multiple catch Blocks

m Each catch Block Catches One Class of Exception
m A try Block Can Have One General Catch Block

m A try Block Is Not Allowed to Catch a Class That Is
Derived from a Class Caught in an Earlier catch Block

try {
File source = new File("code.cs");
int length = (int)source.Length
char[] contents = new char[length];

}
catch (SecurityException caught) { ... }

catch (I Oexception caught) { ... }
catch (CQut Of MenoryException caught) { ... }

A block of codeinside a try construct can contain many statements. Each
statement could raise one or more different classes of exception. Since there are
many different exception classes, it is acceptable to have many catch blocks,
each catching a specific kind of exception.

An exception is caught solely based on its type. The runtime automatically
catches exception objects of a particular type in a catchblock for that type.

To get a better understanding of what is happening in a multiple try-catch
block, consider the following code:

1. try {

2. File source = new File('"code.cs");

3. int length = (int)source.Length;

4. char[] contents = new char[length];

5.

6.}

7. catch (SecurityException caught) { ... }
8. catch (I0Exception caught) { ... }
9. catch (OutOfMemoryException caught) { ... }
10.

Line 2 creates a new File object. This can throw an exception object of class
SecurityException. If it does, then line 3 is not executed. Normal sequential
execution is suspended, and control transfers to the first catch block that can
catch that exception. In this example, this catch block isline 7. After control is

transferred to this statement, it executes to its closing brace, and transfers
control to line 10.

Module 4: Statements and Exceptions 49

On the other hand, line 2 may not throw an exception. In this case, sequential
execution will proceed normally to line 3. This line might throw an exception
object of classl OException. If it does, then control flow jumps to the catch
block at line 8, this catch block executes normally, and control then transfers to
line 10.

If none of the statements in the try block throw an exception, then the control
flow reaches the end of the try block and transfers to line 10. Note that the
control flow enters a catch block only if an exception is thrown.

Y ou can write the statementsin a try block without being concerned about
whether an earlier statement in the try block will fail. If an earlier statement

does throw an exception, the control flow will not physically reach the
statements that follow it in the try block.

If the control flow failsto find a suitable catch block, it will terminate the
current method call and resume its search at the statement from which the
method call was invoked. It will continue its search, unwinding the call stack all
the way back to Main if necessary. If this causes Main itself to be terminated,
the thread or process that invoked Main is terminated in an implementation-
defined fashion.

General catch Block

A generd catch block, aso known as a general catch clause, can catch any

exception regardless of its class and is often used to trap any exceptions that
might fall through because of the lack of an appropriate handler.

There are two waysto write ageneral catch block. Y ou can write asimple
catch statement as shown:

catch { ... }

Y ou can aso write the following:

catch (System.Exception) { ... }

A try block can have only one genera catch block. For example, the following
code will generate an error:

try {

}
catch { ... }

catch { ... } // Error

50

Module 4: Statements and Exceptions

If ageneral catch block is present, it must be the last catch block in the
program, as follows:

try {

}

catch { ... } // Error

catch (OutOfMemoryException caught) { ... }

You will generate an error if you catch the same class twice, asin the following
example:

catch (OutOfMemoryException caught) { ... }
catch (OutOfMemoryException caught) { ... } // Error

You will also generate an error if you try to catch a class that is derived from a
class caught in an earlier catch block, asfollows:

catch (Exception caught) { ... }
catch (OutOfMemoryException caught) { ... }

This code results in an error because the OutOfM emoryException classis
derived from the SystemException class, which isin turn derived from the
Exception class.

Module 4: Statements and Exceptions 51

€ Raising Exceptions

m The throw Statement
m The finally Clause

m Checking for Arithmetic Overflow

m Guidelines for Handling Exceptions

C# provides the throw statement and the finally clause so that programmers
can raise exceptions if required and handle them as appropriate. In this section,
you will learn how to raise your own exceptions. Y ou will also learn how to
enable checking for arithmetic overflow as appropriate for your programs.

52 Module 4: Statements and Exceptions

The throw Statement

= Throw an Appropriate Exception

m Give the Exception a Meaningful Message

t hrow expression ;

if (mnute <1 || mnute > 59) {
throw new I nvalidTi mneException(m nute +
"is not avalid mnute");
/1 11 Not reached !!

}

Thetry and catch blocks are used to trap errors that are raised by a C# program.
You have seen that instead of signaling an error by returning a specia value, or
assigning it to aglobal error variable, C# causes execution to be transferred to
the appropriate catch clause.

System-Defined Exceptions

When it needs to raise an exception, the runtime executes a thr ow statement
and raises a system-defined exception. Thisimmediately suspends the normal
sequential execution of the program and transfers control to the first catch
block that can handle the exception based on its class.

Module 4: Statements and Exceptions 53

Raising Your Own Exceptions

Y ou can use the throw statement to raise your own exceptions, as shown in the
following example:

it (minute < 1 || minute >= 60) {
string fault = minute + "is not a valid minute";
throw new InvalidTimeException(fault);
// '1INot reached!!

T

In this example, the throw statement is used to raise a user-defined exception,
InvalidTimeException, if the time being parsed does not congtitute a valid time.

Exceptions typically expect a meaningful message string as a parameter when
they are created. This message can be displayed or logged when the exception
is caught. It is aso good practice to throw an appropriate class of exception.

Caution C++ programmers will be accustomed to creating and throwing an
exception object with a single statement, as shown in the following code:

throw out_of_range(*'type: index out of bounds™);

The syntax in C# is very similar but requires the new keyword, as follows:

throw new FileNotFoundException('...");

Throwing Objects

Y ou can only throw an object if the type of that object is directly or indirectly
derived from System.Exception. Thisis different from C++, in which objects
of any type can be thrown, such as in the following code:

throw 42; // Allowed in C++, but not in C#

Y ou can use a thr ow statement in a catch block to rethrow the current
exception object, as in the following example:

catch (Exception caught) {

throw caught;

}
You can also throw a new exception object of a different type:

catch (FilelOException caught) {

throw new FileNotFoundException(filename);

}

54 Module 4: Statements and Exceptions

In the preceding example, notice that the Filel OException object, and any
information it contains, is lost when the exception is converted into a
FileNotFoundException object. A better ideais to wrap the exception, adding
new information but retaining existing information as shown in the following
code:

catch (FilelOException caught) {

throw new FileNotFoundException(filename, caught);

}

This ability to map an exception object is particularly useful at the boundaries
of alayered system architecture.

A throw statement with no expression can be used, but only in a catch block. It
rethrows the exception that is currently being handled. This action is caled a
rethrow in C++ as well. Therefore, the following two lines of code produce
identical results:

catch (OutOfMemoryException caught) { throw caught; }
catch (OutOfMemoryException) { throw ; }

You can use arethrow in ageneral catch block to implement partial recovery:

StreamReader reader = new StreamReader(filename);
try {

¥

catch {
reader.Close():
throw;

Module 4: Statements and Exceptions 55

The finally Clause

m All of the Statements in a finally Block Are Always
Executed

Critical Section. Enter(x);
try {

Any catch blocks are optional

}
finally {

Critical Section. Exit(x);
}

C# provides the finally clause to enclose a set of statements that need to be
executed regardless of the course of control flow. Therefore, if control leaves a
try block as aresult of normal execution because the control flow reachesthe
end of the try block, the statements of the finally block are executed. Also, if
control leavesa try block asaresult of athrow statement or ajump statement

such as break , continue, or goto, the statements of the finally block are
executed.

Thefinally block is useful in two situations:. to avoid duplication of statements
and to release resources after an exception has been thrown.

Avoiding Duplication of Statements

If the statements at the end of atry block are duplicated in a generd catch

block, the duplication can be avoided by moving the statements into a finally
block. Consider the following example:

try {
statement

b

catch {

statement

56

Module 4: Statements and Exceptions

Y ou can simplify the preceding code by rewriting it as follows:

try {

}
catch {

}
finally {
statement

}

Releasing Resources

If astatement in a try block acquires a resource such as afile handle, the
corresponding statement that rel eases the resource can be placed in a finally

block. This ensures that the resource will be released even if an exception arises
fromthe try block. The following code provides an example:

StreamReader reader = null;

try {
File source = new File(filename);
reader = source.OpenText();

3
finally {
if (reader 1= null) {
reader.Close();
s
H

It isan error for a break, continue, or goto statement to transfer control out of
afinally block. They can be used only if the target of the jump is within the
same finally block. However, it is always an error for a return statement to

occur in afinally block, even if the return statement is the last statement in the
block.

Module 4: Statements and Exceptions 57

If an exception is thrown during the execution of a finally block, it is
propagated to the next enclosing try block, as shown;

try {
try {
}
catch {
// ExampleException is not caught here
}
finally {
throw new ExampleException('who will catch me?');
}
}
catch {

// ExampleException is caught here

}

If an exception is thrown during the execution of a finally block, and another
exception was in the process of being propagated, then the original exception is
lost, as shown:

try {
throw ExampleException("Will be lost™);

}
finally {

throw ExampleException(*'Might be found and caught™);
}

58

Module 4: Statements and Exceptions

Checking for Arithmetic Overflow

= By Default, Arithmetic Overflow Is Not Checked

e A checked statement turns overflow checking on

CheCKEd {) |CNerromException
int nunber = int.MxVal ue;
Consol e. Wi teLi ne(++number) ; _f Exception object is thrown.
} WriteLine is not executed.

unchecked {
int nunber = int.MxVal ue; MaxValue + 1 is negative?
Consol e. Wi telLi ne(++nunber); — ¢

} - 2147483648

By default, a C# program will not check arithmetic for overflow. The following
code provides an example:

// example.cs
class Example

{
static void Main()
{
int number = int.MaxValue();
Console_WriteLine(++number);
}
}

In the preceding code, number isinitialized to the maximum vaue for an int.
The expression ++number increments number to —2147483648, the largest
negativeint value, which is then written to the console. No error message is
generated.

Module 4: Statements and Exceptions 59

Controlling Arithmetic Overflow Checking
When compiling a C# program, you can globally turn on arithmetic overflow
checking by using the /checked+ command line option, as follows:

c:\ csc /checked+ example.cs

The resulting executable program will cause an exception of class
System.Over flowException.

Similarly, you can turn off global arithmetic overflow checking by using the
/checked- command line option, as follows:

c:\ csc /checked- example.cs

The resulting executable program will silently wrap the int value back to zero
and will not cause an exception of class System.Over flowException.

Creating Checked and Unchecked Statements

Y ou can use the checked and unchecked keywords to create statements that are
explicitly checked or unchecked statements:

checked { statement-list }
unchecked { statement-list }

Regardless of the compile-time /checked setting, the statementsinside a
checked statement list are always checked for arithmetic overflow. Similarly,

regardless of the compile-time /checked setting, the statements inside an
unchecked statement list are never checked for arithmetic overflow.

Creating Checked and Unchecked Expressions

You can also usethe checked and unchecked keywords to create checked and
unchecked expressions:

checked (expression)
unchecked (expression)

A checked expression is checked for arithmetic overflow; an unchecked

expression is not. For example, the following code will generate a
System.Over flowException.

// example.cs
class Example

{
static void Main()
{
int number = int.MaxValue();
Console.WriteLine(checked(++number));
}

60 Module 4: Statements and Exceptions

Guidelines for Handling Exceptions

= Throwing
o Avoid exceptions for normal or expected cases
o Never create and throw objects of class Exception
e Include a description string in an Exception object
e Throw objects of the most specific class possible

= Catching
e Arrange catch blocks from specific to general

e Do not let exceptions drop off Main

Use the following guidelines for handling exceptions:

Avoid exceptions for normal or expected cases.

In general, do not throw exceptions in normal or common cases. For
example, it isrelatively common to fail to open a named file, so the
File.Openmethod returns null to signify that the file could not be found
rather than throwing an exception.

Never create or throw objects of class Exception.

Create exception classes that are derived directly or indirectly from
SystemException (and never from the root Exception class). The following
code provides an example:

class SyntaxException : SystemException

{
}

Include a description string in an Exception object.
Always include a useful description string in an exception object, as shown:

string description =

String.Format("'{0}({1}): newline in string constant",
filename, linenumber);
throw new SyntaxException(description);

Throw objects of the most specific class possible.

Throw the most specific exception possible when the user might be able to
use this specific information. For example, throw a
FileNotFoundException rather than a more general Filel OException.

Module 4: Statements and Exceptions 61

= Arrange catch blocks from specific to general.

Arrange your catch blocks from the most specific exception to the most
general exception, as shown:

catch (Exception caught) { ... } // Do not do this
catch (SyntaxException caught) { ... }

catch (SyntaxException caught) { ... } // Do this
catch (Exception caught) { ... }

= Do not let exceptions drop off Main.

Put ageneral catch clausein Main to ensure that exceptions never drop off
the end of the program.

static void Main()
{
try {

}
catch (Exception caught) {

}

62

Module 4: Statements and Exceptions

Lab 4.2: Using Exceptions

Objectives
After completing this lab, you will be able to:

= Throw and catch exceptions.
= Display error messages.

Prerequisites
Before working on this lab, you should be familiar with the following:

m Credting variables in C#
= Using common operators in C#
= Creating enum typesin C#

Esti mated time to complete this lab: 30 minutes

Module 4: Statements and Exceptions 63

Exercise 1
Validating the Day Number

In this exercise, you will add functionality to the program that you created in
Exercise 1. The program will examine the initial day number that is entered by
theuser. If it islessthan 1 or greater than 365, the program will throw an

InvalidArgument exception (“ Day out of range’). The program will trap this
exception in a catch clause and display a diagnostic message on the console.

I To validate the day number

1. Open the project WhatDay?2.csproj in the install folder\
Labs\L ab04\Starter\WhatDay?2 folder.

2. Enclose the entire contents of WhatDay.Main ina try block.

3. After the try block, add a catch clause that catches exceptions of type
System.Exception and name them caught. In the catch block, add a
Writel ine statement to write the exception caught to the console.

4. Add anif statement after the declaration of the dayNum variable. The if
statement will throw a new exception object of type
System.ArgumentOutOfRangeException if dayNum is less than 1 or
greater than 365. Use the string literal “Day out of range” to create the
exception object.

Module 4: Statements and Exceptions

5. The completed program should be as follows:

using System;
enum MonthName { ... }

class WhatDay
{

static void Main()

{

try {
Console_Write("'Please enter a day number

=petween 1 and 365: ");
string line = Console.ReadLine();
int dayNum = int.Parse(line);

if (dayNum < 1 || dayNum > 365) {
throw new ArgumentOutOfRangeException(*'Day
=out of range™);

}

int monthNum = O;

foreach (int daysinMonth in DayslnMonths) {
if (dayNum <= daysInMonth) {

break;

} else {
dayNum -= dayslinMonth;
monthNum++;

}

}
MonthName temp = (MonthName)monthNum;

string monthName = temp.Format();

Console._WriteLine("{0} {1}', dayNum,
=monthName) ;
}
catch (Exception caught) {
Console_WriteLine(caught);

}

}

6. Saveyour work.

7. Compile the WhatDay2.cs program and correct any errors. Run the program.
Use the table of data provided in Lab4.1 (Exercise 1) to verify that the
program is still working correctly.

8. Run the program, entering day numbers less than 1 and greater than 365.
Verify that invalid input is safely trapped and that the exception object is
thrown, caught, and displayed.

Module 4: Statements and Exceptions 65

Exercise 2

Handling Leap Years

In this exercise, you will add functionality to the program that you worked on in
Exercise 1. After you complete this exercise, the program will prompt the user
for ayear in addition to aday number. The program will detect whether the
specified year isa leap year. It will validate whether the day number is between
1 and 366 if the year is aleap year, or whether it is between 1 and 365 if the
year is not aleap year. Findly, it will use a newforeach statement to correctly
calculate the month and day pair for leap years.

K Toenter the year from the console

1.

Open the WhatDay3.csproj project in the install folder\
Labs\L ab04A\Starter\WhatDay3 folder.

Add to the beginning of WhatDay.Main a System.ConsoleWrite
statement that writes a prompt to the console asking the user to enter a year.

Change the declaration and initialization of the string line to an assignment.

Change string line = Console.ReadLine(); to
line = Console.ReadLine();.-

Add a statement to Main that declares a string variable called line and
initializes it with aline read from the console by the
System.Console.ReadL ine method.

Add a statement to Main that declares an int variable called yearNumand
initializes it with the integer returned by the int.Par se method.

66 Module 4: Statements and Exceptions

6. The completed program should be as follows:

using System;
enum MonthName { ... }

class WhatDay

{
static void Main()
{

try {
Console.Write("'Please enter the year: ");

string line = Console._ReadLine();
int yearNum = int.Parse(line);

Console.Write("'Please enter a day number
=between 1 and 365: ");

line = Console.ReadLine();

int dayNum = int.Parse(line);

// As before....

}
catch (Exception caught) {
Console_WriteLine(caught);

}

}
7. Saveyour work.

8. Compile the WhatDay3.cs program and correct any errors.

I To determine whether the year isa leap year

1. Add astatement immediately after the declaration of yearNum that declares
a booal variable caled isLeapYear. Initiaize this variable with a Boolean

expression that determines whether yearNum is aleap year. A year isaleap
year if the following two statements are both true:

Itisdivisible by 4.
It is either not divisible by 100, or it is divisible by 400.

2. Add anif statement immediately after the declaration of isLeapYear. In the
if statement, writethe string “ ISaleap year” or “ isNOT alegp year” tothe
console, depending on the value of isLeapyear. You will use thisif
statement to verify that the Boolean leap year determination is correct.

Module 4: Statements and Exceptions 67

3. The completed program should be as follows:

using System;
enum MonthName { ... }

class WhatDay

{
static void Main()
{
try
{

Console.Write("'Please enter the year: ');
string line = Console.ReadLine();
int yearNum = int.Parse(line);

bool isLeapYear = (yearNum % 4 == 0)
&& (yearNum % 100 = O
Il yearNum % 400 == 0);

if (isLeapYear)

{
Console.WriteLine(" IS a leap year™);
} else
{
Console.WriteLine(*" is NOT a leap year™);
}

Console.Write("'Please enter a day number
=between 1 and 365: ");

line = Console.ReadLine();

int dayNum = int.Parse(line);

// As before...

}
catch (Exception caught)
{
Console_WriteLine(caught);
}

}
4. Saveyour work.

5. Compile the WhatDay3.cs program and correct any errors. Use the
following table to verify that the Boolean leap year determination is correct.

A leap year Not aleap year

1996 1999
2000 1900
2004 2001

6. Comment out the if statement that you added in step 2.

68

Module 4: Statements and Exceptions

I To validate the day number against 365 or 366

1.

Immediately after the declaration of isLeapYear, add a declaration of an int
variable called maxDayNum Initialize maxDayNumwith either 366 or 365,
depending on whether isLeapYear is true or false, respectively.

Changethe WriteL ine statement that prompts the user for the day number.
It should display the range 1 to 366 if aleap year was entered and 1 to 365 if
a nor-leap year was entered.

Compile the WhatDay3.cs program and correct any errors. Run the progran
and verify that you have implemented the previous step correctly.

Changethe if statement that validates the value of dayNum to use the
variable maxDayNum instead of the literal 365.

The completed program should be as follows:

using System;
enum MonthName { ... }

class WhatDay

{
static void Main()
{
try
{

Console.Write(""Please enter the year: ");
string line = Console.ReadLine();
int yearNum = int.Parse(line);

bool isLeapYear = (yearNum % 4 == 0)
&& (yearNum % 100 !'= 0
Il yearNum % 400 == 0);

int maxDayNum = isLeapYear ? 366 : 365;

Console._Write("'Please enter a day number
=pbetween 1 and {0}: "', maxDayNum);

line = Console_.ReadLine();

int dayNum = int.Parse(line);

if (dayNum < 1 || dayNum > maxDayNum) {
throw new ArgumentOutOfRangeException(*'Day
=out of range™);

H
// As before....

}
catch (Exception caught)
{
Console_WriteLine(caught);
}

Module 4: Statements and Exceptions 69

6.
7.

Save your work.

Compile the WhatDay3.cs program and correct any errors. Run the program
and verify that you have implemented the previous step correctly.

K To correctly calculate the month and day pair for leap years

1.

After the if statement that validates the day number and the declaration of

the monthNum integer, add an if-else statement. The Boolean expression
used in this if-dse statement will be the variable isLeapYear.

Move the foreach statement so it becomes the embedded statement in the if-
else statement in both the true andthe false cases. After this step, your code
should be as follows:

if (isLeapYear)

{
foreach (int dayslInMonth in DaysinMonths) {
}

} else

{
foreach (int daysInMonth in DaysinMonths) {
}

}

3. Saveyour work.

4. Compile the WhatDay3.cs program and correct any errors. Run the program

and verify that day numbers in non—eap years are still handled correctly.

The next step will use the DayslnL eapM onths collection that has been
provided. Thisis a collection of int valueslike DayslnMonths except that

the second value in the collection (the number of daysin February) is 29
rather than 28.

Use Daysl nL eapM onths instead of DayslnMonth in the true part of the
if-el se statement.

70 Module 4: Statements and Exceptions

7. The completed program should be as follows:

using System;
enum MonthName { ... }

class WhatDay

{
static void Main()
{

try {
Console.Write("'Please enter the year: ");

string line = Console._ReadLine();
int yearNum = int.Parse(line);

bool (isLeapYear = yearNum % 4 == 0)
&& (yearNum % 100 !'= 0
Il yearNum % 400 == 0);

int maxDayNum = islLeapYear ? 366 : 365;

Console.Write("'Please enter a day number
=between 1 and {0}: ", maxDayNum);

line = Console.ReadLine();

int dayNum = int.Parse(line);

if (dayNum < 1 || dayNum > maxDayNum) {
throw new ArgumentOutOfRangeException(*'Day
=out of range™);

}

int monthNum = 0;

ifT (isLeapYear) {
foreach (int daysinMonth in
=DayslInLeapMonths) {
if (dayNum <= daysinMonth) {

break;
} else {
dayNum -= daysInMonth;
monthNum++;
}
}
} else {

foreach (int daysinMonth in DaysinMonths) {
if (dayNum <= daysInMonth) {
break;
} else {
dayNum -= dayslinMonth;
monthNum++;

}

}
(Code continued on following page.)

Module 4: Statements and Exceptions 71

MonthName temp = (MonthName)monthNum;
string monthName = temp.Format();
Console._WriteLine("{0} {1}", dayNum,

=monthName) ;

}

}

catch (Exception caught) {
Console._WriteLine(caught);

}

8. Saveyour work.

9. Compile the WhatDay3.cs program and correct any errors. Run the program,

using the datain the following table to verify that the program is working

correctly.

Y ear Day Number Month-Day Pair
1999 32 February 1
2000 32 February 1
1999 60 March 1
2000 60 February 29
1999 91 April 1

2000 91 March 31
1999 186 July 5

2000 186 July 4

1999 K07} October 31
2000 m October 30
1999 309 November 5
2000 3 November 4
1999 327 November 23
2000 327 November 22
1999 339 December 25
2000 339 December 24

72 Module 4: Statements and Exceptions

Review

= Introduction to Statements
m Using Selection Statements
m Using Iteration Statements
m Using Jump Statements

= Handling Basic Exceptions

= Raising Exceptions

1. Write an if statement that tests whether an int variable called hour is greater
than or equal to zero and less than 24. If it is not, reset hour to zero.

2. Write a do-while statement, the body of which reads an integer from the
console and stores it in an int called hour. Write the loop so that the loop
will exit only when hour has a value between 1 and 23 (inclusive).

Module 4: Statements and Exceptions 73

3. Writeafor statement that meets all of the conditions of the preceding
question and only allows five attempts to input a valid value for hour. Do
not use break or continue statements.

4. Rewrite the code that you wrote for question 3, but this time use a break
statement.

5. Write a statement that throws an exception of type
ArgumentOutOfRangeException if the variable percent is less than zero
or greater than 100.

74 Module 4: Statements and Exceptions

6. Thefollowing code is meant to read from afile by using a StreamReader
resource. It carefully closes the StreamReader resource by calling its Close
method. Explain why this code is not exception safe and loses resources
when exceptions are thrown. Use atry-finally block to fix the problem.

File source = new File(''code.cs™);
StreamReader reader = source.OpenText();
//... Use reader

reader.Close();

msdn training

Contents

Overview

Using Methods

Using Parameters

Using Overloaded Methods

Lab 5: Creating and Using Methods
Review

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1

version of Visual Sudio .NET.

Microsoft

Module 5: Methods and
Parameters

16
30
38
50

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of accessis electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.

Microsoft,ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visua C++, Visua C#, Visual Studio, Windows, Windows NT, and Windows Mediaare
either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other
countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Module 5: Methods and Parameters 1

Overview

m Using Methods

m Using Parameters

m Using Overloaded Methods

In designing most applications, you divide the application into functional units.
Thisisacentral principle of application design because small sections of code
are easier to understand, design, develop, and debug. Dividing the application
into functional units also allows you to reuse functional components throughout
the application.

In C#, you structure your application into classes that contain named bl ocks of
code; these are called methods. A method is a member of a class that performs
an action or computes a value.

After completing this module, you will be able to:
= Create static methods that accept parameters and return values.

m Pass parameters to methods in different ways.
m Declare and use overloaded methods.

2 Module 5: Methods and Parameters

€ Using Methods

m Defining Methods
= Calling Methods
m Using the return Statement

m Using Local Variables

= Returning Values

In this section, you will learn how to use methods in C#. Methods are important
mechanismsfor struc turing program code. Y ou will learn how to create
methods and how to call them from within a single class and from one class to
another.

You will learn how to use local variables, aswell as how to alocate and
destroy them.

You will aso learn how to return a value from a method, and how to use
parameters to transfer data into and out of a method.

Module 5: Methods and Parameters

Defining Methods

= Main Is a Method

e Use the same syntax for defining your own methods

usi ng System
cl ass Exanpl eC ass
static void Exanpl eMet hod()
Consol e. Wi teLi ne(" Exanpl e net hod") ;
static void Main()

Io...
}

A method is group of C# statements that have been brought together and given
aname. Most modern programming languages have a similar concept; you can
think of a method as being like a function, a subroutine, a procedure or a
subprogram.

Examples of Methods
The code on the dide contains three methods:

= The Main method
= The WriteL ine method
= The ExampleM ethod method

The Main method is the entry point of the application. The WriteL ine method
is part of the Microsofte .NET Framework. It can be called from within your
program. The WriteL ine method is a static method of the class
System.Console. The ExampleM ethod method belongs to ExampleClass
This method callsthe WriteLine method.

In C#, al methods belong to a class. Thisis unlike programming languages
such as C, C++, and Microsoft Visuad Basice, which allow global subroutines
and functions.

4

Module 5: Methods and Parameters

Creating Methods
When creating a method, you must specify the following:

= Name

Y ou cannot give a method the same name as a variable, a constant, or any
other non-method item declared in the class. The method name can be any
allowable C# identifier, and it is case sensitive.

m Parameter list

The method name is followed by a parameter list for the method. Thisis
enclosed between parentheses. The parentheses must be supplied even if
there are no parameters, as is shown in the examples on the dide.

= Body of the method

Following the parentheses is the body of the method. You must enclose the
method body within braces ({ and }), even if there is only one statement.

Syntax for Defining Methods

To create a method, use the following syntax:

static void MethodName ()

{
method body

}

The following example shows how to create a method named ExampleM ethod
in the ExampleClass class:

using System;
class ExampleClass

{
static void ExampleMethod()

{

Console_WriteLine(""Example method™);

}

static void Main()
{
Console . WriteLine("'"Main method™);
}
}

Note Method namesin C# are casesensitive. Therefore, you can declare and
use methods with names that differ only in case. For example, you can declare
methodscalled print and PRINT in the same class. However, the Common
Language Runtime requires that method names within a class differ in ways
other than case alone, to ensure compatibility with languages in which method
names are caseinsensitive. Thisisimportant if you want your application to
interact with applications written in languages other than C#.

Module 5: Methods and Parameters

Calling Methods

m After You Define a Method, You Can:

e Call a method from within the same class

Use method’s name followed by a parameter list in
parentheses

e Call a method that is in a different class

You must indicate to the compiler which class contains
the method to call

The called method must be declared with the public
keyword
e Use nested calls

Methods can call methods, which can call other
methods, and so on

After you define a method, you can call it from within the same class and from
other classes.

Calling Methods

To call amethod, use the name of the method followed by a parameter list in
parentheses. The parentheses are required even if the method that you call has
no parameters, as shown in the following example.

MethodName();

Note to Visual Basic Developers Thereis no Call statement Parenthesesare
required for al method calls.

6

Module 5: Methods and Parameters

In the following example, the program begins at the start of the Main method
of ExampleClass The first statement displays “ The program is starting.” The
second statement in Main is the call to ExampleM ethod. Control flow passes
to the first statement within ExampleM ethod, and “ Helo, world” appears. At
the end of the method, control passes to the statement immediately following
the method call, which is the statement that displays “ The program is ending.”

using System;

class ExampleClass

{ static void ExampleMethod()
{ Console._WriteLine(""Hello, world™);
}
static void Main()
{
Console_WriteLine('The program is starting);
ExampleMethod();
Console_WriteLine("The program is ending');
}
}

Calling Methods from Other Classes

To alow methods in one class to call methods in another class, you must:
= Specify which class contains the method you want to call.
To specify which class contains the method, use the following syntax:

ClassName .MethodName();

m Declare the method that is called with the public keyword.

The following example shows how to call the method TestM ethod, which is
defined in class A, from Main in class B:

using System;

class A

{
public static void TestMethod()

{
Console.WriteLine("This is TestMethod in class A™);
}
}

class B

{

static void Main()

{
A_TestMethod();
}
}

Module 5: Methods and Parameters 7

If, in the example above, the class name were removed, the compiler would
search for amethod called TestMethod in class B. Since there is no method of
that name in that class, the compiler will display the following error: “The name
‘TestMethod’ does not exist in the class or namespace ‘B."”

If you do not declare a method as public, it becomes private to the class by
default. For example, if you omit the public keyword from the definition of
TestMethod, the compiler will display the following error: “A.TestMethod() is
inaccessible due to its protection level.”

You can aso usethe private keyword to specify that the method can only be
caled from inside the class. The following two lines of code have exactly the
same effect because methods are private by default:

private static void MyMethod();
static void MyMethod();

The public and private keywords shown above specify the accessibility of the
method. These keywords control whether a method can be called from outside
of the classin which it is defined.

Nesting Method Calls

Y ou can aso cal methods from within methods. The following example shows
how to nest method calls:

using System;
class NestExample
{
static void Methodl()
{
Console.WriteLine('Methodl'™)
}
static void Method2()
{
Method1();
Console.WriteLine('Method2™)
Method1();
}
static void Main()
{
Method2();
Methodl1();
¥
T

8

Module 5: Methods and Parameters

The output from this program is as follows:

Methodl
Method2
Methodl
Method1l

You can call an unlimited number of methods by nesting. There is no
predefined limit to the nesting level. However, the run-time environment might
impose limits, usually because of the amount of RAM available to perform the

process. Each method call needs memory to store return addresses and other
information.

Asagenera rule, if you are running out of memory for nested method calls,
you probably have a class design problem.

Module 5: Methods and Parameters

9

Using the return Statement

= Immediate Return

m Return with a Conditional Statement

static voi d Exanpl eMet hod()
{

i nt nunBeans;
/...

if (nunmBeans < 10)
return;

Consol e. WiteLine("Hello");

Consol e. WiteLine("Wrld");

You can use the return statement to make a method return immediately to the
caler. Without a return statement, execution usually returns to the caller when

the last statement in the method is reached.

Immediate Return

By default, a method returns to its caller when the end of the last statement in
the code block is reached. If you want a method to return immediately to the

caller, use the r etur n statement.

In the following example, the method will display “ Hello,” and then

immediately return to its caller:

static void ExampleMethod()
{

Console._WriteLine(*"Hello");
return;
Console._WriteLine(*"World");

}

Using the return statement like thisis not very useful because the final call to
ConsoleWriteLine is never executed. If you have enabled the C# compiler
warnings a level 2 or higher, the compiler will display the following message:

“ Unreachable code detected.”

10

Module 5: Methods and Parameters

Return with a Conditional Statement

It is more common, and much more useful, to use the return statement as part
of aconditiona statement such asif or switch. This alows a method to return
to the cdler if a given condition is met.

In the following example, the method will return if the variable numBeans is
less than 10; otherwise, execution will continue within this method.

static void ExampleMethod()
{
int numBeans;
//. ..
Console._WriteLine('Hello");
if (humBeans < 10)
return;
Console._WriteLine("World"™);

Tip Itisgeneraly regarded as good programming style for a method to have
one entry point and one exit point. The design of C# ensures that all methods
begin execution at the first statement. A method with no retur n statements has
one exit point, at the end of the code block. A method with multiple return
statements has multiple exit points, which can make the method difficult to
understand and maintain in some cases.

Return with a Value

If amethod is defined with a data type rather than void, the return mechanism is
used to assign a value to the function. Thiswill be discussed later in this
module.

Module 5: Methods and Parameters 11

Using Local Variables

m Local Variables

o Created when method begins

e Private to the method

e Destroyed on exit
m Shared Variables

e Class variables are used for sharing
m Scope Conflicts

e Compiler will not warn if local and class names clash

Each method has its own set of loca variables. You can use these variables

only inside the method in which they are declared. Local variables are not
accessible from elsewhere in the application.

Local Variables

You can include local variables in the body of a method, as shown in the
following example:

static void MethodWithLocals()

{
int x = 1; // Variable with initial value
ulong vy;
string z;

3

You can assign local variables an initial value. (For an example, see variable x
in the preceding code.) If you do not assign a value or provide an initia
expression to determine a value, the variable will not be initialized.

The variables that are declared in one method are completely separate from
variables that are declared in other methods, even if they have the same names.

Memory for local variables is alocated each time the method is called and
released when the method terminates. Therefore, any values stored in these
variables will not be retained from one method call to the next.

12

Module 5: Methods and Parameters

Shared Variables

Consider the following code, which attempts to count the number of times a
method has been called:

class CallCounter_Bad

{
static void Init()
{
int nCount = O;
}
static void CountCalls()
{
int nCount;
++nCount;
Console _WriteLine("'"Method called {0} time(s)", nCount);
}
static void Main()
{
Init();
CountCalls();
CountCalls();
}
}

This program cannot be compiled because of two important problems. The
variable nCount in Init is not the same as the variable nCount in CountCalls.
No matter how many times you call the method CountCalls, the value nCount
is lost each time CountCallsfinishes.

The correct way to write this code is to use a class variable, as shown in the
following example:

class CallCounter_Good

{
static int nCount;
static void Init()
{
nCount = O;
}
static void CountCalls()
{
++nCount;
Console _Write('Method called " + nCount + ' time(s).");
}
static void Main()
{
Init();
CountCalls();
CountCalls();
}
}

In this example, nCount is declared at the class level rather than at the method
level. Therefore, nCount is shared between all of the methods in the class.

Module 5: Methods and Parameters 13

Scope Conflicts

In C#, you can declare aloca variable that has the same name as a class
variable, but this can produce unexpected results. In the following example,
Numltems is declared as a variable of class ScopeDemo, and aso declared as a
locd variable in Methodl. The two variables are completely different. In
Methodl, numitemsrefers to the local variable. In Method2, numitemsrefers
to the class variable.

class ScopeDemo

{
static int numltems = 0;
static void Methodl1()
{
int numltems = 42;
}
static void Method2()
{
numltems = 61;
}
1

Tip Because the C# compiler will not warn you when local variables and class
variables have the same names, you can use a naming convention to distinguish
local variablesfrom class variables.

14

Module 5: Methods and Parameters

Returning Values

m Declare the Method with Non-Void Type

m Add a return Statement with an Expression
e Sets the return value
e Returns to caller

= Non-void Methods Must Return a Value

static int TwoPlusTwo() { int x;
int a,b; X = TwoPl usTwo();
a = 2; Consol e. Wi teLine(x);
b = 2;

return a + b;

You have learned how to use the retur n statement to immediately terminate a

method. Y ou can also use the return statement to return a value from a method.
To return avalue, you must:

1. Declare the method with the value type that you want to return.
2. Addareturn statement inside the method.
3. Include the value that you want to return to the caler.

Declaring Methods with Non-Void Type

To declare amethod so that it will return a value to the caller, replace the void
keyword with the type of the value that you want to return.

Adding return Statements

The return keyword followed by an expression terminates the method
immediately and returns the expression as the return value of the method.

Module 5: Methods and Parameters 15

The following example shows how to declare a method named TwoPlusTwo
that will return avalue of 4 to Main when TwoPlusTwo is called:

class ExampleReturningValue

{
static int TwoPlusTwo()
{
int a,b;
a=2;
b = 2;
return a + b;
¥
static void Main()
{
int x;
X = TwoPlusTwo();
Console.WriteLine(x);
}
}

Note that the returned value is an int. Thisis because int is the return type of

the method. When the method is called, the value 4 is returned. In this example,
the value is stored in the local variable x in Main.

Non-Void Methods Must Return Values

If you declare a method with a non-void type, you must add at least one return
statement. The compiler attempts to check that each non-void method returns a
value to the calling method in al circumstances. If the compiler detectsthat a
norvoid method has no return statement, it will display the following error
message: “Not al code paths return avalue.” You will aso see this error
message if the compiler detects that it is possible to execute a nonvoid method
without returning a value.

In the following example, you will get avalid return statement if the value in x
isless than two. If the value in X is greater than or equd to two, the compiler

will report an error because the r etur n statement is not executed, and the
method execution will terminate after the if statement without returning a value.

static int BadReturn()

{
// .

if Xx<2)
return 5;

Tip You can only use the return statement to return one value from each
method call. If you need to return more than one value from a method call, you
can use the ref or out parameters, which are discussed later in this module.
Alternatively, you can return a reference to an array or class, which can contain
multiple values. The general guideline that says to avoid using multiple return
statements in a single method applies equally to non-void methods.

16 Module 5: Methods and Parameters

€ Using Parameters

m Declaring and Calling Parameters

m Mechanisms for Passing Parameters
m Pass by Value

m Pass by Reference

m Output Parameters

m Using Variable-Length Parameter Lists

m Guidelines for Passing Parameters

m Using Recursive Methods

In this section, you will learn how to declare parameters and how to call

methods with parameters. Y ou will also learn how to pass parameters. Finaly,
you will learn how C# supports recursive method calls.

In this section you will learn how to:

s Declare and call parameters.

m Pass parameters by using the following mechanisms:
Pass by value
Pass by reference
Output parameters

m Userecursive method calls.

Module 5: Methods and Parameters 17

Declaring and Calling Parameters

m Declaring Parameters
e Place between parentheses after method name
e Define type and name for each parameter

m Calling Methods with Parameters

e Supply a value for each parameter

static void MethodWthParameters(int n, string vy)
...}

Met hodW t hPar aneters(2, "Hello, world");

Parameters allow information to be passed into and out of a method. When you
define a method, you can include alist of parameters in parentheses following
the method name. In the examples so far in this module, the parameter lists
have been empty.

Declaring Parameters

Each parameter has a type and a name. Y ou declare parameters by placing the
parameter declarations inside the parentheses that follow the name of the
method. The syntax that is used to declare parametersis similar to the syntax
that is used to declare local variables, except that you separate each parameter
declaration with a comma instead of with a semicolon.

The following example shows how to declare a method with parameters:

static void MethodWithParameters(int n, string y)

{
/7 ..

}

This example declares the M ethodWithParameter s method with two
parameters: n and y. The first parameter is of type int, and the second is of type
string. Note that commas separate each parameter in the parameter list.

18 Module 5: Methods and Parameters

Calling Methods with Parameters
The calling code must supply the parameter values when the method is called.

The following code shows two examples of how to call amethod with
parameters. In each case, the values of the parameters are found and placed into
the parameters n and y at the start of the execution of M ethodWithParameters.

MethodWithParameters(2, "Hello, world™);

int p =7;
string s = "Test message";

MethodWithParameters(p, s);

Module 5: Methods and Parameters 19

Mechanisms for Passing Parameters

m Three Ways to Pass Parameters:

in | Pass by value

Pass by reference

out | Output parameters

Parameters can be passed in three different ways:

= By vaue

Value parameters are sometimes called in parameters because data can be
transferred into the method but cannot be transferred out.

= By reference

Reference parameters are sometimes called in/out parameters because data
can be transfer red into the method and out again.

= By output

Output parameters are sometimes called out parametersbecause data can be
transferred out of the method but cannot be transferred in.

20 Module 5: Methods and Parameters

Pass by Value

m Default Mechanism For Passing Parameters:
e Parameter value is copied
e Variable can be changed inside the method

e Has no effect on value outside the method

e Parameter must be of the same type or compatible type
?tatic voi d AddOne(i nt x)

x++; // Increnment x
}
static void Main()

int k =6

Addone(k)
Consol e. WiteLine(k); // Display the value 6, not 7

In most applications, most parameters are used for passing information into a
method but not out. Therefore, pass by vaue is the default mechanism for
passing parameters in C#.

Defining Value Parameters

The simplest definition of a parameter is a type name followed by a variable
name. Thisis known as a value parameter. When the method is called, a new
storage location is created for each value parameter, and the values of the
corresponding expressions are copied into them.

The expression supplied for each value parameter must be the same type as the
declaration of the value parameter, or atype that can be implicitly converted to
that type. Within the method, you can write code that changes the value of the
parameter. It will have no effect on any variables outside the method call.

In the following example, the variable x inside AddOne is completely separate
from the variable k in Main. The variable x can be changed in AddOne, but
this has no effect on k.

static void AddOne(int x)

{
X++3
}
static void Main()
{
int k = 6;
AddOne(k) ;

Console.WriteLine(k); // Display the value 6, not 7

Module 5: Methods and Parameters 21

Pass by Reference

= What Are Reference Parameters?
e A reference to memory location
m Using Reference Parameters
e Use the ref keyword in method declaration and call
e Match types and variable values
e Changes made in the method affect the caller

e Assign parameter value before calling the method

What Are Reference Parameters?

A reference parameter is a reference to a memory location. Unlike a value
parameter, a reference parameter does not create a new storage location. Instead,
areference parameter represents the same location in memory as the variable
that is supplied in the method call.

Declaring Reference Parameters

Y ou can declare a reference parameter by using the ref keyword before the type
name, as shown in the following example;

static void ShowReference(ref int nVar, ref long nCount)

{
/7 ...

}

Using Multiple Parameter Types

The ref keyword only applies to the parameter following it, not to the whole

parameter list. Consider the following method, in which refVar is passed by
reference but longVar is passed by value:

static void OneRefOneVal(ref int refVar, long longVar)

{
/7 ...

}

22

Module 5: Methods and Parameters

Matching Parameter Types and Values

When calling the method, you supply reference parameters by using the ref
keyword followed by a variable. The value supplied in the call to the method
must exactly match the type in the method definition, and it must be a variable,
not a constant or calculated expression.

int x;
long q;
ShowReference(ref x, ref q);

If you omit the ref keyword, or if you supply a constant or calculated
expression, the compiler will reject the call, and you will receive an error
message similar to the following: “ Cannot convert from “int’ to ‘ref int.””

Changing Reference Parameter Values

If you change the value of a reference parameter, the variable supplied by the
caler is adso changed, because they are both references to the same location in
memory. The following example shows how changing the reference parameter
also changes the variable:

static void AddOne(ref int x)

{
X++;
}
static void Main()
{
int k = 6;
AddOne(ref k);
Console_WriteLine(k); // Display the value 7
}

This works because when AddOne is caled, its parameter xis set up to refer to
the same memory location as the variable k in Main. Therefore, incrementing x
will increment k.

Module 5: Methods and Parameters 23

Assigning Parameters Before Calling the Method

A ref parameter must be definitively assigned at the point of call; that is, the
compiler must ensure that a value is assigned before the call is made. The

following example shows how you can initiaize reference parameters before
calling the method:

static void AddOne(ref iInt x)

{
X++;
}
static void Main()
{
int kK = 6;
AddOne(ref k);
Console WriteLine(k); 7/ 7
}

The following example shows what happens if a reference parameter k is not
initialized before its method AddOneis called:

int k;

AddOne(ref k);
Console_WriteLine(k);

The C# compiler will reject this code and display the following error message:
“ Use of unassigned local variable ‘k."”

24 Module 5: Methods and Parameters

Output Parameters

= What Are Output Parameters?
e Values are passed out but not in
m Using Output Parameters
e Like ref, but values are not passed into the method

e Use out keyword in method declaration and call

{static voi d CQut Demp(out int p)

/1
}
int n;
Cut Deno(out n);

What Are Output Parameters?

Output parameters are like reference parameters, except that they transfer data
out of the method rather than into it. They are similar to reference parameters.
Like areference parameter, an output parameter is a reference to a storage
location supplied by the caller. However, the variable that is supplied for the
out parameter does not need to be assigned a value before the call is made, and
the method will assume that the parameter has not been initialized on entry.

Output parameters are useful when you want to be able to return vaues from a
method by means of a parameter without assigning an initial value to the
parameter.

Module 5: Methods and Parameters 25

Using Output Parameters

To declare an output parameter, use the keyword out before the type and name,
as shown in the following example:

static void OutDemo(out int p)

{
/7 ...

}

Aswith the ref keyword, the out keyword only affects one parameter, and each
out parameter must be marked separately.

When calling a method with an out parameter, place the out keyword before
the variable to be passed, as in the following example.

int n;
OutDemo(out n);

In the body of the method being called, no initial assumptions are made about
the contents of the output parameter. It istreated just like an unassigned loca
variable.

26

Module 5: Methods and Parameters

Using Variable-Length Parameter Lists

m Use the params Keyword
m Declare As an Array at the End of the Parameter List

m Always Pass by Value

static | ong AddList(paranms long[] V)
long total, i;
for (i =0, total = 0; i < v.Length; i++)
total += v[i];
return total;
}
static void Main()

Il ong x = AddLi st (63, 21, 84);

C# provides a mechanism for passing variable-length parameter lists.

Declaring Variable-Length Parameters

It is sometimes useful to have a method that can accept a varying number of
parameters. In C#, you can use the paramskeyword to specify a variable-
length parameter list. When you declare a variable- length parameter, you must:

m Declare only one params parameter per method.
m Place the parameter at the end of the parameter list.
= Declare the parameter as a single-dimension array type.

The following example shows how to declare a variable-length parameter list:

static long AddList(params long[] v)

{
long total;
long i;
for (i = 0, total = 0; i < v. Length; i++)
total += Vv[i];
return total;
s

Because a params parameter is always an array, al vaues must be the same
type.

Module 5: Methods and Parameters 27

Passing Values

When you call amethod with a variable-length parameter, you can pass values
to the params parameter in one of two ways:

m Asalist of elements (the list can be empty)

= Asanarray

The following code shows both techniques. The two techniques are treated in
exactly the same way by the compiler.

static void Main()

{

long Xx;

x = AddList(63,21,84); // List

X = AddList(new long[1{ 63, 21, 84 }); // Array
3

Regardless of which method you use to call the method, the params parameter
is treated like an array. Y ou can use the L ength property of the array to
determine how many parameters were passed to each call.

Ina params parameter, a copy of the datais made, and although you can
modify the values inside the method, the values outside the method are
unchanged.

28 Module 5: Methods and Parameters

Guidelines for Passing Parameters

= Mechanisms

Pass by value is most common

Method return value is useful for single values
e Use ref and/or out for multiple return values
e Only use ref if data is transferred both ways

m Efficiency

e Pass by value is generally the most efficient

With so many options available for parameter passing, the most appropriate

choice might not be obvious. Two factors for you to consider when you choose
away to pass parameters are the mechanism and its efficiency.

Mechanisms

Vaue parameters offer alimited form of protection against unintended
modification of parameter values, because any changes that are made inside the
method have no effect outside it. This suggests that you should use value
parameters unless you need to pass information out of a method.

If you need to pass data out of a method, you can use the return statement,
reference parameters, or output parameters. The return statement is easy to use,
but it can only return one result. If you need multiple values returned, you must
use the reference and output parameter types. Use ref if you need to transfer
data in both directions, and use out if you only need to transfer data out of the
method.

Efficiency

Generdly, simple types such as int and long are most efficiently passed by
vaue.

These efficiency concerns are not built into the language, and you should not
rely on them. Although efficiency is sometimes a consideration in large,
resourceintensive applications, it is usualy better to consider program
correctness, stability, and robustness before efficiency. Make good
programming practices a higher priority than efficiency.

Module 5: Methods and Parameters 29

Using Recursive Methods

m A Method Can Call Itself
e Directly
e Indirectly
m Useful for Solving Certain Problems

m Example

A method can call itself. This technique is known & recursion. You can
address some types of problems with recursive solutions. Recursive methods
are often useful when manipulating more complex data structures such aslists
and trees.

Methods in C# can be mutually recursive. For example, a situation in which
method A can call method B, and method B can call method A, is allowable.

Example of a Recursive Method

The Fibonacci sequence occursin severa situations in mathematics and biology
(for example, the reproductive rate and population of rabbits). The nth member
of this sequence has the value 1 if nis 1 or 2; otherwisg, it is equa to the sum of
the preceding two numbers in the sequence. Notice that when n is greater than
two the value of the nth member of the sequence is derived from the values of
two previous values of the sequence. When the definition of a method refers to
the method itself, recursion might be involved.

Y ou can implement the Fibonacci method as follows:

static ulong Fibonacci(ulong n)

{
if (n<=2)
return 1;
else
return Fibonacci(n-1) + Fibonacci(n-2);
b

Notice that two calls are made to the method from within the method itself.

A recursive method must have a terminating condition that ensures that it will
return without making further calls. In the case of the Fibonacci method, the
test for n <= 2isthe terminating condition.

30 Module 5: Methods and Parameters

€ Using Overloaded Methods

m Declaring Overloaded Methods

= Method Signatures

m Using Overloaded Methods

Methods might not have the same name as other non-method itemsin a class.
However, it is possible for two or more methods in a class to share the same
name. Name sharing among methods is called overloading.

In this section, you will learn:

= How to declare overloaded methods.
» How C# uses signatures to distinguish methods that have the same name.

= When to use overloaded methods.

Module 5: Methods and Parameters

31

Declaring Overloaded Methods

m Methods That Share a Name in a Class

e Distinguished by examining parameter lists

cl ass Overl oadi ngExanpl e
{

static int Add(int a, int b)

return a + b;

static int Add(int a, int b, int c)

return a + b + c;

}
static void Main()

Consol e. WitelLine(Add(1,2) + Add(1,2,3));

Overloaded methods are methods in a single class that have the same name. The

C# compiler distinguishes overloaded methods by comparing the parameter
lists.

Examples of Overloaded Methods

The following code shows how you can use different methods with the same

name in one class:

class OverloadingExample

{

static int Add(int a, int b)
{

return a + b;

}
static int Add(int a, int b, int ¢)

{

return a + b + c;

}
static void Main()
{
Console._WriteLine(Add(1,2) + Add(3,4.5)):
}

32

Module 5: Methods and Parameters

The C# compiler finds two methods called Add in the class, and two method
cals to methods called Add within Main. Although the method names are the
same, the compiler can distinguish between the two Add methods by
comparing the parameter lists.

The first Add method takes two parameters, both of type int. The second Add

method takes three parameters, also of type int. Because the parameter lists are
different, the compiler allows both methods to be defined within the same class.

The first statement withinMain includes a call to Addwith two int parameters,
so the compiler trandates this as a call to the first Add method. The second call
to Add takes three int parameters so the compiler trandates thisas acall to the
second Add method.

You cannot share names among methods and variables, constants, or
enumerated typesin the same class. The following code will not compile
because the name k has been used for both a method and a class variable:

class BadMethodNames
{
static iInt k;
static void k() {
// ...
3
3

Module 5: Methods and Parameters 33

Method Signatures

m Method Signatures Must Be Unique Within a Class

m Signature Definition

Forms Signature No Efect on i
Definition Signature

= Name of method = Name of parameter

m Parameter type m Return type of method

m Parameter modifier

The C# compiler uses signatures to distinguish between methodsin aclass. In

each class, the signature of each method must differ from the signatures of all
other methods that are declared in that class.

Signature Definition

The signature of a method consists of the name of the method, the number of
parameters that the method takes, and the type and modifier (such as out or ref)
of each parameter.

The following three methods have different signatures, so they can be declared
in the same class.

static int LastErrorCode()
{

}
static int LastErrorCode(int n)

{
}

static int LastErrorCode(int n, int p)
{

}

34 Module 5: Methods and Parameters

Elements That Do Not Affect the Signature

The method signature does not include the return type. The following two
methods have the same signatures, so they cannot be declared in the same class.

static iInt LastErrorCode(int n)

{
}
static string LastErrorCode(int n)
{
}

The method signature does not include the names of the parameters. The
following two methods have the same signature, even though the parameter
names are different.

static int LastErrorCode(int n)

{
}
static int LastErrorCode(int x)
{
}

Module 5: Methods and Parameters 35

Using Overloaded Methods

m Consider Using Overloaded Methods When:

e You have similar methods that require different
parameters

e You want to add new functionality to existing code
m Do Not Overuse Because:
e Hard to debug

e Hard to maintain

Overloaded methods are useful when you have two similar methods that reguire
different numbers or types of parameters.

Similar Methods That Require Different Parameters

Imagine that you have a class containing a method that sends a greeting
message to the user. Sometimes the user name is known, and sometimesit is
not. Y ou could define two different methods called Greet and GreetUser, as
shown in the following code:

class GreetDemo

{
static void Greet()
{
Console . WriteLine(""Hello™);
}
static void GreetUser(string Name)
{
Console.WriteLine("Hello" + Name);
}
static void Main()
{
Greet();
GreetUser('Alex™);
}

36 Module 5: Methods and Parameters

Thiswill work, but now the class has two methods that perform almost exactly
the same task but that have different names. Y ou can rewrite this class with
method overloading as shown in the following code:

class GreetDemo

{
static void Greet()
{
Console._WriteLine(""Hello™);
}
static void Greet(string Name)
{
Console._WriteLine("'Hello" + Name);
}
static void Main()
{
Greet();
Greet("'Alex™);
}

Module 5: Methods and Parameters

37

Adding New Functionality to Existing Code

Method overloading is aso useful when you want to add new features to an
existing application without making extensive changes to existing code. For
example, the previous code could be expanded by adding another method that
greets a user with a particular greeting, depending on the time of day, as shown
in the following code:

class GreetDemo

{

}

enum TimeOfDay { Morning, Afternoon, Evening }

static void Greet()

{
Console._WriteLine("'Hello™);
}
static void Greet(string Name)
{
Console _WriteLine(""Hello" + Name);
}

static void Greet(string Name, TimeOfDay td)

{

string Message;

switch(td)

{

case TimeOfDay.Morning:
Message=""Good morning";
break;

case TimeOfDay.Afternoon:
Message="'Good afternoon';
break;

case TimeOfDay.Evening:
Message=""Good evening";

break;

}

Console_WriteLine(Message + " " + Name);
}
static void Main()
{

Greet();

Greet(""Alex™);

Greet("'Sandra"™, TimeOfDay.Morning);
}

Determining When to Use Overloading

Overuse of method overloading can make classes hard to maintain and debug.
In general, only overload methods that have very closely related functions but
differ in the amount or type of data that they need.

38 Module 5: Methods and Parameters

Lab 5: Creating and Using Methods

o,
~

Objectives
After completing this lab, you will be able to:

= Create and call methods with and without parameters.
= Use various mechanisms for passing parameters.

Prerequisites
Before working on this lab, you should be familiar with the following:

m Creating and using variables
s C# statements

Estimated time to complete this lab: 30 minutes

Module 5: Methods and Parameters 39

Exercise 1
Using Parameters in Methods That Return Values

In this exercise, you will define and use input parameters in a method that

returns avalue. You will also write atest framework to read two values from
the console and display the results.

You will create aclass called Utils. In this class, you will create a method
caled Greater. This method will take two integer parameters as input and will
return the value of the greater of the two.

To test the class, you will create another class called Test that prompts the user
for two numbers, then calls Utils.Greater to determine which number isthe
greater of the two, and then prints the result.

£ To create the Greater method

1. Open the Utils.dn project in the install folder\L abs\Lab05\Starter\Utility
folder.

This contains a namespace called Utils that contains a class also called Utils.
You will write the Greater method in this class.

2. Create the Greater method as follows:
a Open the Utils class.
b. Add apublic static method called Gr eater to the Utils class.

c. Themethod will take two int parameters, called a and b, which will be

passed by value. The method will return an int value representing the
greater of the two numbers.

40 Module 5: Methods and Parameters

The code for the Utilsclass should be as follows:

namespace Utils

{

using System;

class Utils

{

/7/
// Return the greater of two integer values
//

public static int Greater(int a, int b)

{
if (a >b)
return a;
else
return b;

I To test the Greater method

1. Openthe Test class.

2. Within the Main method, write the following code.
a Define two integer variables called x and v.

b. Add statements that read two integers from keyboard input and use them
to populate x and y. Use the Console.ReadL ine and int.Par se methods
that were presented in earlier modules.

c. Define another integer called greater.

d. Testthe Greater method by caling it, and assign the returned value to
the variable greater.

3. Write code to display the greater of the two integers by using
ConsoleWriteLine.

Module 5: Methods and Parameters

The code for the Test class should be as follows:

namespace Utils

{

using System;

/// <summary>

/// This the test harness
/// </summary>

public class Test

{
public static void Main()
{
int x; // Input value 1
int y; // Input value 2
int greater; // Result from Greater()

// Get input numbers
Console._WriteLine("Enter first number:');
x = int.Parse(Console.ReadLine());
Console.WriteLine("Enter second number:');
y = int.Parse(Console.ReadLine());

// Test the Greater() method

greater = Utils.Greater(X,Yy);

Console_WriteLine("'The greater value is "+
= greater);

}
}

4. Saveyour work.

5. Compile the project and correct any errors. Run and test the program.

42 Module 5: Methods and Parameters

Exercise 2
Using Methods with Reference Parameters

In this exercise, you will write a method called Swap that will exchange the
values of its parameters. Y ou will use parameters that are passed by reference.

I To create the Swap method

1. Open the Utils.dn project in the install folder\L abs\Lab05\Starter\Utility
folder, if it is not aready open.

2. Add the Swap method to the Utilsclass as follows:
a Addapublic static void method called Swap.

b. Swap will take two int parameters called a and b, which will be passed
by reference.

c. Write statements inside the body of Swap that exchange the values of a
and b. You will need to create alocal int variable in Swapto
temporarily hold one of the values during the exchange. Name this
variable temp.

The code for the Utilsclass should be as follows:

namespace Utils

{

using System;

public class Utils

{

. existing code omitted for clarity ...
//
// Exchange two integers, passed by reference

//

public static void Swap(ref int a, ref int b)

{
int temp = a;
a = b;
b = temp;

T

T

Module 5: Methods and Parameters

43

I To test the Swap method

1. Edit the Main method in the Test class by performing the following steps:

a. Populate integer variables x and y.

b. Cdl the Swap method, passing these values as parameters.

Display the new values of the two integers before and after exchanging

them. The code for the Test class should be as follows:

namespace Utils

{
using System;
public class Test
{
public static void Main()
{
. existing code omitted for clarity ...
// Test the Swap method
Console._WriteLine("'Before swap: " + X
Utils_Swap(ref x,ref y);
Console_WriteLine("'After swap: ™ + x + ","
}
}
}

2. Saveyour work.

3. Compile the project, correcting any errors you find. Run and test the

program.

Tip If the parameters were not exchanged as you expected, check to ensure

that you passed them as ref parameters.

44 Module 5: Methods and Parameters

Exercise 3

Using Methods with Output Parameters

In this exercise, you will define and use a static method with an output
parameter.

Y ou will write a new method called Factorial that takes an int value and
calculates its factorial. The factorial of a number is the product of &l the
numbers between 1 and that number. The factorial of zero is defined to be 1.
The following are examples of factoridls:

Factorial(0) = 1

Factorial(1) = 1

Factoria(2) =1*2=2
Fectoria(3)=1*2* 3=6
Factorial(4) =1* 2* 3*4=24

£ To create the Factorial method

1. Open the Utils.dn project in the install folder\Labs\Lab05\Starter\Utility
folder, if it is not aready open.

Add the Factorial method to the Utilsclass, as follows:

2.

a

b.

Add a new public static method called Factorial .

This method will take two parameters called n and answer. The first,

passed by value, is an int value for which the factoria is to be calcul ated.
The second parameter is an out int parameter that will be used to return
the result.

The Factorial method should return a bool value that indicates whether
the method succeeded. (It could overflow and raise an exception.)

Add functionality to the Factorial method.

The easiest way to calculate afactorid is by using aloop. Perform the
following steps to add functionality to the method:

a

Create an int variable called k inthe Factorial method. Thiswill be
used as aloop counter.

Create another int variable called f, which will be used as aworking
value inside the loop. Initialize the working variable f with the value 1.

Useafor loop to perform the iteration. Start with avaue of 2 for k, and
finish when k reaches the value of parameter n. Increment k each time
the loop is performed.

In the body of the loop, multiply f successively by each value of k,
storing theresult in f.

Factorial results can be very large even for small input values, so ensure
that all the integer calculations are in a checked block, and that you have
caught exceptions such as arithmetic overflow.

Assign the result value in f to the out parameter answer.

Return true from the method if the calculation is successful, and false if
the calculation is not successful (that is, if an exception occurs).

Module 5: Methods and Parameters 45

The code for the Utilsclass should be as follows:

namespace Utils

{

using System;

public class Utils

{

... existing code omitted for clarity ...

//

// Calculate factorial

// and return the result as an out parameter
//

public static bool Factorial(int n, out int answer)

{
int k; // Loop counter
int T; // Working value
bool ok=true; // True if okay, false if not

// Check the input value

if (n<0)
ok = false;

// Calculate the factorial value as the
// product of all of the numbers from 2 to n

try
{
checked
{
f=1;
for (k=2; k<=n; ++k)
{
f=Ff*Kk;
}
}
}
catch(Exception)
{

// If something goes wrong in the calculation,
// catch it here. All exceptions

// are handled the same way: set the result
// to zero and return false.

(Code continued on following page.)

46 Module 5: Methods and Parameters

// Assign result value
answer = f;

// Return to caller
return ok;

Module 5: Methods and Parameters 47

£ To test the Factorial method
1. Edit the Test class asfollows:

a
b.

C.

Declare a bool variable called ok to hold the true or false result.
Declare an int variable called f to hold the factorial result.

Reguest an integer from the user. Assign the input value to the int
variable x.

Cadll the Factorial method, passing x as the first parameter and f asthe
second parameter. Return the result in ok.

If ok istrue, display the values of x and f; otherwise, display a message
indicating that an error has occurred.

The code for the Test class should be as follows:

namespace Utils

{

;

public class Test

static void Main()

int f; // Factorial result
bool ok; // Factorial success or failure

. existing code omitted for clarity ...
// Get input for factorial

Console_WriteLine(*'Number for factorial:");
X = int.Parse(Console.ReadLine());

// Test the factorial function
ok = Utils.Factorial(x, out f);
// Output factorial results
it (ok)
Console _WriteLine(Factorial("™ + x + ™) = " +

else
Console._WriteLine("'Cannot compute this

=factorial);

}

2. Saveyour work.

3. Compile the program, correct any errors, and then run and test the program.

48 Module 5: Methods and Parameters

If Time Permits
Implementing a Method by Using Recursion

In this exercise, you will re-implement the Factorial method that you created in
Exercise 3 by using recursion rather than aloop.

The factorial of a number can be defined recursively as follows: the factorial of

zerois 1, and you can find the factorial of any larger integer by multiplying that
integer with the factoria of the previous number. In summary:

If n=0, then Factoria(n) = 1; otherwise it isn* Factoria(n-1)

£ To modify the existing Factorial method

1. Edit the Utils class and modify the existing Factorial method so that it uses
recursion rather than iteration.

The parameters and return types will be the same, but the internal
functionality of the method will be different. If you want to keep your
existing solution to Exercise 3, you will need to use another name for this
method.

2. Use the pseudocode shown above to implement the body of the Factorial
method. (Y ou will need to convert it into C# syntax.)

3. Add code to the Test class to test your new method.
4. Saveyour work.
5. Compile the program, correct any errors, and then run and test the program.

Module 5: Methods and Parameters 49

The recursive version of the Factorial method (Recur siveFactorial) is
shown below:

//

// Another way to solve the factorial problem,
// this time as a recursive function

//

public static bool RecursiveFactorial(int n, out int f)
{

bool ok=true;

// Trap negative inputs

it (n<0)
{
=0;
ok = false;
¥
if (n<=1)
=1;
else
{
try
{
int pf;
checked
{
ok = RecursiveFactorial(n-1,out pf);
f =n * pf;
¥
T
catch(Exception)
{
// Something went wrong. Set error
// flag and return zero.
=0;
ok=false;
3
}
return ok;

50 Module 5: Methods and Parameters

Review

m Using Methods

m Using Parameters

m Using Overloaded Methods

. Explain what methods are and why they are important.

. List the three ways in which data can be passed in parameters, and the

associated C# keywords.

. When are local variables created and destroyed?

. What keyword should be added to a method definition if the method needs

to be called from another class?

Module 5: Methods and Parameters 51

5. What parts of a method are used to form the signature?

6. Define the signature of a static method called Rotate that does not return a
value but that must “right rotate” its three integer parameters.

msdn training

Module 6: Arrays

Contents

Overview 1
Overview of Arrays 2
Creating Arrays 11
Using Arrays 18
Lab 6: Creating and Using Arrays 31
Review 42

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.

Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1 version
of Visual Sudio .NET.

Microsoft

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.

Microsoft,ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visua C++, Visua C#, Visual Studio, Windows, Windows NT, and Windows Mediaare
either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other
countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Module 6: Arrays

1

Overview

m Overview of Arrays

m Creating Arrays

m Using Arrays

Arrays provide an important means for grouping data. To make the most of C#,

it is important to understand how to use and create arrays effectively.

After completing this module, you will be able to:

Create, initiadlize, and use arrays of varying rank.
Use command-line arguments in a C# program.

Understand the relationship between an array variable and an array instance.

Use arrays as parameters for methods.
Return arrays from methods.

2 Module 6: Arrays

€ Overview of Arrays

m What Is an Array?

= Array Notation in C#

m Array Rank

m Accessing Array Elements

m Checking Array Bounds

m Comparing Arrays to Collections

This section provides an overview of generd array concepts, introduces the key
syntax used to declare arrays in C#, and describes basic array features such as
rank and elements. In the next section, you will learn how to define and use
arrays.

Module 6: Arrays 3

What Is an Array?

m An Array Is a Sequence of Elements
e All elements in an array have the same type
e Structs can have elements of different types

e Individual elements are accessed using integer indexes

Integer index 0 Integer index 4
(zero) (four)

There are two fundamental ways to group related data: structures (structs) and
arrays.

m Structures are groups of related data that have different types.

For example, a name (string), age (int), and gender (enum) naturally group
together in a struct that describes a person. Y ou can access the individual
members of a struct by using their field names.

= Arrays are sequences of data of the same type.
For example, a sequence of houses naturally group together to form a strest.

Y ou can access an individua element of an array by using its integer
position, which is called an index.

Arrays allow random access. The elements of an array are located in contiguous
memory. This means a program can access all array elements equally quickly.

4 Module 6: Arrays

Array Notation in C#

= You Declare an Array Variable by Specifying:
e The element type of the array
e The rank of the array

e The name of the variable

|typ9[] name; |

.
t This specifies the name of the array variable
This specifies the rank of the array

This specifies the element type of the array

Y ou use the same notation to declare an array that you would use to declare a
simple variable. First, specify the type, and then specify the name of the
variable followed by a semicolon. Y ou declare the variable type as an array by
using square brackets. Many other programming languages, such as C and C++,
also use square brackets to declare an array. Other languages, like Microsofte
Visual Basice, use parentheses.

In C#, array notation is very similar to the notation used by C and C++,
although it differsin two subtle-but-important ways:

= You cannot write square brackets to the right of the name of the variable.
= You do not specify the size of the array when declaring an array variable.

The following are examples of allowed and disallowed notation in C#:

type[Jname; // Allowed
type name[]; // Disallowed in C#
type[4] name; // Also disallowed in C#

Module 6: Arrays

5

Array Rank

m Rank Is Also Known as the Array Dimension

m The Number of Indexes Associated with Each Element

|Iong[] row, |

Rank 1: One-dimensional
Single index associates with

int[,] grid; |

Rank 2: Two-dimensional
Two indexes associate with

each long element each int element
————
3 |
I

To declare a one-dimensiona array variable, you use unadorned sgquare brackets

as shown on the slide. Such an array is also called an array of rank 1 because
one integer index associates with each element of the array.

To declare atwo-dimensiona array, you use a single commainside the square
brackets, as shown on the slide. Such an array is called an array of rank 2
because two integer indexes associate with each element of the array. This

notation extends in the obvious way: each additional comma between the
square brackets increases the rank of the array by one.

Y ou do not include the length of the dimensions in the declaration for an array
variable.

6 Module 6: Arrays

Accessing Array Elements

= Supply an Integer Index for Each Rank

e Indexes are zero-based

long[] row int[,] grid,;

row 3] ; grid[1,2]:

D[Dg"r" o ET_

To access array elements, you use a syntax that is similar to the syntax you use
to declare array variables—both use square brackets. This visua similarity
(which is deliberate and follows a trend popularized by C and C++) can be
confusing if you are not familiar with it. Therefore, it isimportant for you to be
able to distinguish between an array variable declaration and an array element
access expression.

To access an element inside an array of rank 1, use one integer index. To access
an element inside an array of rank 2, use two integer indexes separated by a
comma. This notation extends in the same way as the notation for declaring
variables. To access an element inside an array of rank n, use n integer indexes

separated by commas. Notice again that the syntax used in an array element
access expression mirrors the syntax that is used to declare variables.

Array indexes (for all ranks) start from zero. To access the first element inside a
row, use the expression

row[O]
rather than the expression

row[1]

Module 6: Arrays 7

Some programmers use the phrase “ initid dement” rather than “first element”
to try to avoid any potential confusion. Indexing from 0 means that the last
element of an array instance containing size elements is found at [size-1] and

not at [§ze]. Accidentally using [size] is a common off-by-one error, especialy
for programmers used to a language that indexes from one, such as Visua Basic.

Note Although the technique is rarely used, it is possible to create arrays that

have user-defined integer index lower bounds. For more information, search for
“ Array.Createlnstance” in the NET Framework SDK Help documents.

8 Module 6: Arrays

Checking Array Bounds

m All Array Access Attempts Are Bounds Checked
o A bad index throws an IndexOutOfRangeException

e Use the Length property and the GetLength method

| gri d. Get Lengt h(0) ==2|

| row. Get Lengt h(0) ==6 |

| grid. GetLength(1) ::4|

| row. Lengt h==6 |

| grid. Lengt h==2*4 |

In C#, an array element access expression is automatically checked to ensure
that the index is valid. Thisimplicit bounds check cannot be turned off. Bounds
checking is one of the ways of ensuring that C# is a type-safe language.

Even though array bounds are automatically checked, you should still make
sure that integer indexes are aways in bounds. To do this, you should manually
check the index bounds, often using a for statement termination condition, as
follows:

for (int i = 0; i < row.Length; i++) {
Console_WriteLine(row[i]);

}

The Length property is the tota length of the array, regardless of the rank of
the array. To determine the length of a specific dimension, you can use the
GetL ength method, as follows:

for (int r = 0; r < grid.GetLength(0); r++) {
for (int ¢ = 0; ¢ < grid.GetLength(1); c++) {
Console.WriteLine(grid[r,c]);
}
}

Module 6: Arrays 9

Comparing Arrays to Collections

= An Array Cannot Resize Itself When Full
e A collection class, such as ArrayList, can resize
= An Array Is Intended to Store Elements of One Type

e A collection is designed to store elements of
different types

m Elements Of An Array Cannot Have Read-Only
Access

e A collection can have read-only access
= In General, Arrays Are Faster but Less Flexible
e Collections are slightly slower but more flexible

The size of an array instance and the type of its elements are permanently fixed

when the array is created. To create an array that always contains exactly 42
elements of type int, use the following syntax:

int[] rigid = new int [42];

The array will never shrink or expand, and it will never contain anything other
than ints. Collections are more flexible; they can expand or contract as elements
are removed and added. Arrays are intended to hold elements of a single type,

but collections were designed to contain elements of many different types. You
can achieve this flexibility by using boxing, as follows:

ArrayList flexible = new ArrayList();
flexible_Add(*'one'); // Add a string here

flexible_Add(99); // And an int here!

You cannot create an array instance with read-only elements The following
code will not compile:

const int[] array = {0, 1, 2, 3};
The following code will compile, but will not result in read-only elements:

readonly int[] array = {4,2}; // Compiles :-)
array[0]++; // But so does this :-(

10

Module 6: Arrays

When you use the readonly keyword on an array variable declaration, it affects
the array variable itself (in this code, the array), and not the elements of the
array instance (in this code, array[0] and array[1]). In other words, using
readonly on an array variable declaration makes it impossible to reassign
another array instance to that array variable:

readonly int[] array = {4,2}; // Compiles
array = new int[2]{4,2} // Fails to compile

However, you can create a read-only collection as follows:

ArrayList flexible = new ArrayList();

ArrayList noWrite = ArrayList.ReadOnly(Fflexible);
noWrite[0] = 42; // Causes run-time exception

Module 6: Arrays

11

€ Creating Arrays

m Creating Array Instances
m [nitializing Array Elements
= Initializing Multidimensional Array Elements

m Creating a Computed Size Array

m Copying Array Variables

In this section, you will learn how to create array instances, how to explicitly
initialize array instance elements, and how to copy array variables.

12

Module 6: Arrays

Creating Array Instances

m Declaring an Array Variable Does Not Create an Array!
e You must use new to explicitly create the array instance

e Array elements have an implicit default value of zero

row
new | ong[4] ; | mmmm
|Variab|e—|—>| Instance |
lint[,] grid = newint[2 31| [=3—[o]0]0

grid 0]0j0

|Iong[] row

Declaring an array variable does not actually create an array instance. Thisis
because arrays are reference types and not value types. Y ou use the new
keyword to create an array instance, also referred to as an array creation

expression. You must specify the sizeof all rank lengths when creating an array
instance. The following code will result in a compile-time error:

long[] row
int[,] grid

new long[J; // Not allowed
new int[,]; // Not allowed

The C# compiler implicitly initializes each array element to a default value
dependent on the array element type: integer array elements are implicitly
initialized to O, floating-point array elements are implicitly initialized to 0.0,
and Boolean array elements are implicitly initiaized to False. In other words,
the C# code

long[] row = new long[4];

will execute the following code at run-time:

long[] row = new long[4];

row[0] = OL;
row[1l] = OL;
row[2] = OL;
row[3] = OL;

Module 6: Arrays 13

The compiler always alocates arrays in contiguous memory, regardless of the
base type of the array and the number of dimensions. If you create an array with
an expression such as new int[2,3,4], itisconceptualy 2 x 3 x 4, but the
underlying memory allocation is a single block of memory large enough to
contain 2*3*4 elements.

It is also possible to create array instances whose elements that are arrays. Such
arrays are called ragged arrays (as opposed to rectangular arrays), and are
beyond the scope of this course. The following code shows how to create a
ragged array with three elements, each of which is an array of ints. (Each array
has a default value of null.)

int[J[] table = new int[3][1;

14

Module 6: Arrays

Initializing Array Elements

= The Elements of an Array Can Be Explicitly Initialized

e You can use a convenient shorthand

|Iong[] row = new long[4] {0, 1, 2, 3}; |

1
|Iong[] row= {0, 1, 2, 3}; L——Eqmvmem

+—[o]1]2]3]

row

You can use an array initiaizer to initialize the values of the array instance
elements. An array initializer is a sequence of expressions enclosed by curly
braces and separated by commas. Array initializers are executed from left to

right and may include method calls and complex expressions, asin the
following example:

int[] data = new int[4]{a, b(), c*d, e()+Ff()};
You can aso use array initializers to initialize arrays of structs:

struct Date { ... }
Date[] dates = new Date[2];

Y ou can only use this convenient shorthand notation when you initialize an

array instance as part of an array variable declaration and not as part of an
ordinary assignment statement.

int[] datal = new int[4]{0, 1, 2, 3}; // Allowed

int[] data2 = {0, 1, 2, 3}; // Allowed
data2 = new Int[4]{0, 1, 2, 3}; // Allowed
data2 = {0, 1, 2, 4}; // Not allowed

When initializing arrays, you must explicitly initialize al array elements. It is
not possible to let trailing array elements revert back to their default value of
zexo:

int[] data3
int[] datad
int[] data5

new int[2]1{}; // Not allowed
new int[2]{42}; // still not allowed
new int[2]{42,42}; // Allowed

Module 6: Arrays 15

Initializing Multidimensional Array Elements

= You Can Also Initialize Multidimensional Array Elements

e All elements must be specified

int[,] grid = {
{5, 4, 3},
oo | @l R
grid 21110

<+ Implicitly a new int[2,3] array

}s

int[,] grid = {
{5, 4, 3},
{2, 1} x

You must explicitly initialize all array elements regardless of the array
dimension:

int[,] data = new Int[2,3] { // Allowed
{42, 42, 42%,
{42, 42, 423%,

}:

int[,] data = new int[2,3] { // Not allowed
{42, 42},
{42, 42, 42}%,

};

int[,] data = new int[2,3] { // Not allowed

{42},
{42, 42, 423,

16

Module 6: Arrays

Creating a Computed Size Array

m The Array Size Does Not Need to Be a Compile-Time
Constant

e Any valid integer expression will work

e Accessing elements is equally fast in all cases
Array size specified by compile-time integer constant:

|Iong[] row = new | ong[4];

Array size specified by run-time integer value:

string s = Consol e. ReadLi ne();
int size = int.Parse(s);
long[] row = new |l ong[si ze];

Y ou can create multidimensional arrays by using run-time expressions for the
length of each dimension, as shown in the following code:

System.Console _WriteLine("'Enter number of rows : ');
string sl = System.Console.ReadLine();

int rows = int.Parse(sl);
System._Console_WriteLine("Enter number of columns: ");
string s2 = System.Console.ReadLine();

int cols = int.Parse(s2);

int[,] matrix = new int[rows,cols];

Alternatively, you can use a mixture of compile-time constants and runtime
expressions:

System.Console_WriteLine("'Enter number of rows: ');
string sl = System.Console.ReadLine();
int rows = int.Parse(sl);

int[,] matrix = new int[rows,4];

Thereis one minor restriction. Y ou cannot use a run-time expression to specify
the size of an array in combination with array-inttializers:

string s = System.Console.ReadLine();
int size = int.Parse(s);
int[] data = new int[size]{0,1,2,3}; // Not allowed

Module 6: Arrays 17

Copying Array Variables

= Copying an Array Variable Copies Just the Array Variable
e Itdoes not copy the array instance

e Two array variables can refer to the same array instance

long[] row = new | ong[4]; nmmn

long[] copy = row, r ow
rowf 0] ++;
int value = copy[0]; copy

Consol e. Wit eLi ne(val ue); |Variab|e{—.| |nstance|
|

When you copy an array variable, you do not get afull copy of the array
instance. Analyzing the code shown in the dlide reveals what happens when an
array variable is copied.

The following statements declare array variables called copy and row that both
refer to the same array instance (of four longs).

long[] row = new long[4]:;
long[] copy = row;

The following statement increments the initial element of this array instance
from 0 to 1. Both array variables still refer to the same array instance, whose
initial element is now 1.

row[0]++;

The next statement initializes an int caled value from copy[0], which isthe
initial array element of the array instance referred to by copy.

int value = copy[0];

Since copy and row bath refer to the same array instance, initializing the value
from row[0] has exactly the same effect.

The final statement writes out value (which is 1) to the console:

Console._WriteLine(value);

18 Module 6: Arrays

€ Using Arrays

m Array Properties

= Array Methods

Returning Arrays from Methods

Passing Arrays as Parameters

Command-Line Arguments

Demonstration: Arguments for Main

m Quiz: Spot the Bugs

Using Arrays with foreach

In this section, you will learn how to use arrays and how to pass arrays as
parameters to methods.

You will learn about the rules that govern the default values of array instance
elements. Arrays implicitly inherit from the System.Array class, which
provides many properties and methods. Y ou will learn about some of the
commonly used properties and methods. Y ou will aso learn how to use the
foreach statement to iterate through arrays. Finaly, you will learn how to avoid
some common pitfalls.

Module 6: Arrays 19

Array Properties

|Iong[] row = new | ong[4] ; |

- -

=+—[ololol0 O
row

| |

- ’ id - - 2 3]

int[,] gri new int[2, 3] @
=—[olo]0 o
grid

The Rank property is aread-only integer value that specifies the dimension of
the array instance. For example, given the code

int[] one = new int[a];
int[,] two = new int[a,b];
int[,,] three = new int[a,b,c];

the resulting rank values are as follows:

one.Rank == 1
two.Rank == 2
three.Rank == 3

The Length property is a read-only integer value that specifies the total length
of the array instance. For example, given the same three array declarations
above, the resulting length values are;

one.Length == a
two.Length == a * b
three_Length == a * b * c

20 Module 6: Arrays

Array Methods

= Commonly Used Methods
e Sort- sorts the elements in an array of rank 1

Clear - sets a range of elements to zero or null

Clone - creates a copy of the array

GetLength - returns the length of a given dimension

IndexOf- returns the index of the first occurrence of a
value

The System.Array class (aclassthat al arraysimplicitly support) provides

many methods that you can use when working with arrays. This topic describes
some of the most commonly used methods.

Sort method

This method performs an in-place sort on an array provided as an argument.
Y ou can use this method to sort arrays of structures and classes as long as
they support the | Comparable interface.

int[] data = {4,6,3,8,9,3}; // Unsorted
System.Array.Sort(data); // Now sorted
Clear method

This method resets a range of array elements to zero (for valuetypes) or
null (for reference types), as shown:

int[] data = {4,6,3,8,9,3};
System.Array.Clear(data, 0, data.Length);

Module 6: Arrays 21

Clone method

This method creates a new array instance whose elements are copies of the
elements of the cloned array. You can use this method to clone arrays of
user -defined structs and classes. Following is an example:

int[] data = {4,6,3,8,9,3};
int[] clone = (int [])data.Clone();

Caution The Clone method performs a shallow copy. If the array being

copied contains references to objects, the references will be copied and not
the objects; both arrays will refer to the same objects.

GetL ength method

This method returns the length of a dimension provided as an integer

argument. Y ou can use this method for bounds -checking multidimensional
arrays. Following is an example:

int[,] data = { {0, 1, 2, 3}, {4, 5, 6, 7} };
int dim0 = data.GetLength(0); // == 2
int diml = data.GetLength(1l); // ==

I ndexOf method

This method returns the integer index of the first occurrence of avaue
provided as an argument, or —1 if the value is not present. Y ou can only use
this method on one-dimensional arrays. Following is an example:

int[] data = {4,6,3,8,9,3};
int where = System.Array. IndexOf(data, 9); // ==

Note Depending on the type of the elementsin the array, the IndexOf

method may require that you override the Equals method for the element
type. You will learn more about thisin alater module.

22

Module 6: Arrays

Returning Arrays from Methods

m You Can Declare Methods to Return Arrays

e Use the syntax of the familiar type name pattern

cl ass Exanpl e {
static void Main() {
int[] array = CreateArray(42);

}
static int[] CreateArray(int size) {

int[] created = new int[size];
return created;

To declare an array variable, use the syntax of the familiar type name pattern.
For example, to create an array of ints, you would specify the type, int, onthe
left, and the name variable on the right. For example, you can use the following
syntax to declare a smple array variable of ints:

int[] variable;

The following variable has been declared as type int[], which is then combined
with the [0]++ to form the rest of the expression:

variable[0]++

Y ou also use the syntax of the type name pattern to declare a method that
returns an array. In the following example, the type, in this case int is on the
left and the method name is on the right:

int[] method(){---}

In the following expression, method() has type int[], which is then combined
with the [0]++ to form the rest of the expression:

method () [0]++

Inthe slide, the CreateArray method is implemented by using two statements.
Y ou can combine these two statements into one r etur n statement as follows:

static int[] CreateArray(int size) {
return new int[size];

}

Module 6: Arrays 23

C++ programmers should note that in both cases the size of the array that is
returned is not specified. If you specify the array size, you will get a compile-
time error, as in this example:

// Compiler error
static int[4] CreateArray() {
return new int[4];

}

You can also return arrays of rank greater than one, as shown in the following
example:

static int[,] CreateArray() {
string sl = System.Console.ReadLine();
int rows = int.Parse(sl);
string s2 = System.Console.ReadLine();
int cols = int.Parse(s2);
return new int[rows,cols];

24

Module 6: Arrays

Passing Arrays as Parameters

= An Array Parameter Is a Copy of the Array Variable

o Not a copy of the array instance

cl ass Exanpl e2 {

static void Main() {
int[] arg = {10, 9, 8, 7};
Met hod(arg);
Syst em Consol e. WiteLine(arg[O0]);

}

static void Method(int[] parameter) ({
par amet er [0] ++; This method will modify

} the original array
} instance created in Main

When you pass an array variable as an argument to a method, the method
parameter becomes a copy of the array variable argument. In other words, the
array parameter isinitialized from the argument. Y ou use the same syntax to
initialize the array parameter that you used to initialize an array variable, as
described earlier in the Copying Array Variablestopic. The array argument and
the array parameter both refer to the same array instance.

In the code shown on the slide, arg is initialized with an array instance of
length 4 that contains the integers 10, 9, 8, and 7. Then arg is passed asthe
argument to Method. M ethod accepts ar g as a parameter, meaning that arg
and parameter both refer to the same array instance (the one used to initialize
arg). The expression parameter[0]++ inside M ethod then increments the
initial element in the same array instance from 10 to 11. (Since the initia
element of an array is accessed by specifying the index value 0 and not 1, it is
aso referred to as the “zeroth” dement.) M ethod then returns and Main writes
out the value of arg[0] to the console. The arg parameter till refersto the
same array instance, the zeroth element of which has just been incremented, so
11 iswritten to the console.

Because passing an array variable does not create a deep copy of the array
instance, passing an array as a parameter is very fast. If you want a method to
have write access to the argument’ s array instance, this shallow copy behavior
is entirely appropriate.

The Array.Clone method is useful when you need to ensure that the called
method will not ater the array instance and you are willing to trade a longer

running time for this guarantee. Y ou can aso pass a newly created array as an
array parameter as follows:

Method(new int[4]{10, 9, 8, 7});

Module 6: Arrays

25

Command-Line Arguments

m The Runtime Passes Command Line Arguments to Main
e Main can take an array of strings as a parameter

e The name of the program is not a member of the array

cl ass Exanpl e3 {
static void Main(string[] args) {
for (int i = 0; i < args.Length; i++) {
System Consol e. WiteLine(args[i]);
}

When you run console-based programs, you often pass extra arguments on the
command line. For example, if you run pkzip at acommand prompt, you can
add extra arguments to control the creation of .zip files. The following
command recursively adds al *.cs code files into code.zip:

C:\> pkzip —add —-rec —path=relative c:\code *.cs

If you had written the pkzip program using C#, you would capture these
command-line arguments as an array of strings that the runtime would pass to
Main:

class PKZip {
static void Main(string[] args) {

}
3

In this example, when you run the pkzip command, the runtime would
effectively execute the following code:

string[] args = {
"-add",
"-rec",
"-path=relative",
"c:\\code",
™ cg™
}:
PKZip-Main(args);

Note Unlikein C and C++, the name of the program itself is not passed as
args[0] in C#

26 Module 6: Arrays

Demonstration: Arguments for Main

In this demonstration, you will see how to pass command-line argumentsto a
C# program.

Module 6: Arrays 27

Using Arrays with foreach

m The foreach Statement Abstracts Away Many Details of
Array Handling

cl ass Exanpl e4 {
static void Main(string[] args) {
foreach (string arg in args) {
System Consol e. Wi telLi ne(arg);
}

When it is applicable, the foreach statement is useful because it abstracts the
mechanics of iterating through every element of an array. Without for each, you
might write:

for (int i = 0; i1 < args.Length; i++) {
System.Console.WriteLine(args[i]);
}

With for each, you can write:

foreach (string arg in args) {
System.Console.WriteLine(arg);

}

Notice that when you use the for each statement, you do not need or use:
m Aninteger index (int i)

= Anarray bounds check(i < args.Length)

= Anarray access expression (args[i])

You can aso usethe foreach statement to iterate through the elementsin an

array of rank 2 or higher. For example, the following foreach statement will
write out the values 0, 1, 2, 3, 4, and 5:

int[,] numbers = { {0,1,2}, {3,4,5} };:
foreach (int number in numbers) {
System.Console._WriteLine(number);

}

28 Module 6: Arrays

This page isintentionally blank.

Module 6: Arrays 29

Quiz: Spot the Bugs

int [] array;
array = {0, 2, 4, 6};

int [] array;
System Consol e. Wi teLine(array[0]);

int [] array = newint[3];
System Consol e. WiteLine(array[3]);

new int[];

int [] array

©0 0 0 O

int [] array = newint[3]{0, 1, 2, 3};

In this quiz, you can work with a partner to spot the bugs in the code on the
dide. To see the answers to this quiz, turn the page.

30

Module 6: Arrays

Answers
These are the bugs that the students should be able to find:

1.

An array initializer is used in an assignment without an array creation
expression. The shortcut int[] array = { .. };isonly possiblein an
array declaration. This bug will result in a compile-time error.

The array variable has been declared, but there is no array creation

expression, and hence there is no array instance. This bug will also result in
a compile-time error.

A classic off-by-one out-of -bounds error. The array has length three,
making valid index values 0, 1, and 2. Remember, arrays are indexed from
zero in C#. This bug will cause a System.|ndexOutOfRange run-time
exception.

The length of the array is not specified in the array creation expression. The
length of an array must be specified when an array instance is created.

The number of array elementsis specified as 3 in new int[3] however,
there are four integer literals in the array initializer.

Module 6: Arrays 31

Lab 6: Creating and Using Arrays

/
v

Objectives

After completing this lab, you will be able to:
m Create and use arrays of value types.

= Pass arguments to Main.

» Create and use computed size arrays.

m Usearrays of multiple rank.

Prerequisites
Before working on this lab, you should be familiar with the following:

= Using C# programming statements.
= Writing and using methods in C#.

Estimated time to complete this lab: 60 minutes

32 Module 6: Arrays

Exercise 1

Working with an Array of Value Types

In this exercise, you will write a program that expects the name of atext file as
an argument to Main. The program will summarize the contents of the text file.
It will read the contents of the text file into an array of characters and then
iterate through the array, counting the number of vowels and consonants.
Finally, it will print the total number of characters, vowels, consonants, and
newlines to the console.

IZ To capture the name of the text file as a parameter to Main

1.

Open the project FileDetails.sln. This project isin the install folder\
Labs\Lab06\Starter\FileDetails folder.

. Add an array of strings called ar gs as a parameter to the M ain method of

the FileDetails class. This array will contain al of the command-line
arguments supplied when the program is run. Thisis how the runtime passes
command-line arguments to Main. In this exercise, the command-line
argument passed to Main will be the name of the text file.

Add a statement to Main that writes the length of argsto the console. This

statement will verify that the length of argsis zero when no command-line
arguments are passed to Main by the runtime.

Add a foreach statement to Main that writes each string in args to the
console. This statement will verify that Main receives the commandline
arguments from the runtime.

Y our completed code should look asfollows:

static void Main(string[] args)

{
Console._WriteLine(args.Length);
foreach (string arg in args) {
Console _WriteLine(arg);
}
}

. Compile the FileDetails.cs program and correct any errors. Run the program

from the command line, supplying no command-line arguments. Verify that
the length of args is zero.

Tip To run the program from the command line, open the Command

window and go to the install folder\Labs\Lab06\Starter\FileDetail s\bin\
Debug folder. The executable file will be located in this folder.

Run the program from the command line, supplying the name of the
install folder \Labs\Lab06\Solution\FileDetails\FileDetails.cs file. Verify
that the runtime passes the file name to Main.

Test the program by supplying a variety of other command-line arguments,

and verify that each command-line argument is written to the console as
expected. Comment out the statements that write to the console.

. Add a statement to Main that declares a string variable called filename and

initialize it with args[0].

Module 6: Arrays 33

I Toread from thetext fileinto an array

1. Remove the comment from the FileStream and StreamReader declaration
and initialization code.

2. Determine the length of the text file.

Tip To locate an appropriate property of the Stream class, search for
“Stream class” in the NET Framework SDK Help documents.

3. Add a statement to Main that declares a character array variable called
contents Initialize contentswith a new array instance whose length is equal
to the length of the text file, which you have just determined.

4. Addafor statement to Main. The body of the for statement will read a
single character from reader and add it to contents

Tip Usethe Read method, which takes no parameters and returns an int.
Cast the result to a char before storing it in the array.

5. Addaforeach statement to M ain that writes the whole character array to
the console character by character. This statement will verify that the text
file has been successfully read into the contentsarray.

Y our completed code should look as follows:

static void Main(string[] args)
{
string fileName = args[0];
FileStream stream = new FileStream(fileName,
- FileMode.Open);
StreamReader reader = new StreamReader(stream);
int size = (int)stream.Length;
char[] contents = new char[size];
for (int i = 0; 1 < size; i++) {
contents[i] = (char)reader.Read();
}
foreach(char ch in contents) {
Console._Write(ch); }

Console._WriteLine(args.Length);
foreach (string arg in args) {
Console._WriteLine(arg);
}
}

6. Compile the program and correct any errors. Run the program, supplying
the name of the install folder\Labs\Lab06\Sol ution\FileDetail s\
FileDetails.cs file as a command-line argument. Verify that the contents of
the file are correctly written to the console.

7. Comment out the foreach statement.
8. Closethe Reader object by calling the appropriate StreamReader method.

34 Module 6: Arrays

I To classify and summarize the contents of the file

1. Declare anew static method called Summarizein the FileDetails class.
This method will not return anything and will expect a character array
parameter. Add a statement to Main that calls the Summarize method,
passing contents as the argument.

2. Addaforeach statement to Summarize that inspects each character in the
array argument. Count the number of vowel, consonant, and newline
characters that occur, storing the results in separate variables.

Tip To determine whether a character is a vowel, creste a string containing

all possible vowels and use the IndexOf method on that string to determine
whether the character existsin that string, as follows:

if ("AEIOUaeiou'.IndexOf(myCharacter) != -1) {
// myCharacter is a vowel

} else {
// myCharacter is not a vowel

}

3. Write four lines to the console that display:
The total number of charactersin thefile.
The total number of vowelsin the file.
The total number of consonantsin the file.
The total number of linesin the file.
Y our completed code should look as follows:

static void Summarize(char[] contents)
{
int vowels = 0, consonants = 0, lines = 0;
foreach (char current in contents) {
if (Char.lIsLetter(current)) {
ifT ("AEIOUaeiou™. IndexOf(current) 1= -1) {

vowe ls++;
} else {
consonants++;
}
3
else if (current == "\n") {
lines++;
T

}

Console._WriteLine("Total no of characters: {0}",
=contents.Length);

Console.WriteLine(""Total no of vowels - {0},
=vowels);

Console._WriteLine("Total no of consonants: {0}",
=consonants);

Console._WriteLine("Total no of lines - {0},
=lines);

}

Module 6: Arrays 35

4. Compile the program and correct any errors. Run the program from the
command line to summarize the contents of the solution file:
install folder\Labs\L ab06\Solution\FileDetails\FileDetails.cs. The correct
totals should be as follows:

1,401 characters
251 vowels
401 consonants

39 lines

36 Module 6: Arrays

Exercise 2
Multiplying Matrices

In this exercise, you will write a program that uses arrays to multiply matrices
together. The program will read four integer values from the console and store
them in a2 x 2 integer matrix. It will then read another four integer values from
the console and store them in a second 2 x 2 integer matrix. The program will
then multiply the two matrices together, storing the result in athird 2 x 2 integer
matrix. Finaly, it will print the resulting matrix to the console.

The formula for multiplying two matrices—A and B—together is as follows:
Al A2 N4 Bl B2 | —(A1B1+A2B3 AlB2+A2B4
A3 Ad B3 B4 A3Bl1+A4B3 A3B2+A4B4

£ To multiply two matrices together

1. Open the project MatrixMultiply.sln in the install folder\
Labs\Lab06\Starter\MatrixMultiply folder.

2. Inthe MatrixMultiply class, add a statement to Main that declaresa2 x 2
array of ints and names the array a. The final solution for the program will
read the values of afrom the console. For now, initialize a with the integer
values in the following table. (Thisis to help verify that the multiplication is
performed correctly and that the subsequent refactoring retains the intended

behavior.)
1 2
3 4

3. Add a statement to Main that declaresa 2 x 2 array of ints and names the
array b. The final solution for the program will read the values of b from the

console. For now, initialize b with the integer values shown in the following

table:
5 6
7 8

4. Add a statement to Main that declaresa 2 x 2 array of ints and names the
array result. Initializer esult by using the following cell formulae:

a[0,0] * b[0,0] + 8[0,1] * b[1,0] &[0,0] * b[0,1] + &[0,1] * b[1,1]
a[1,0] * b[0,0] + 41,1 * b[1,0] &1,0] * b[0,1] + &[1,1] * b[1,1]

—J

5. Add four statementsto M ain that write the four int values in result to the

console. These statements will help you to check that you have copied the
formulae correctly.

Module 6: Arrays

37

6. Compile the program and correct any errors. Run the program. Verify that

I Tooutput the result by using a method with an array parameter
1

Y our completed code should look as follows:

static void Main()

{

}

int[,] a = new int[2,2];
a[0,0] = 1; a[0,1] = 2;
a[1,0] = 3; a[l1,1] = 4;
int[,] b = new int[2,2];

b[0,0] = 5; b[0,1] = 6;
b[1,0] = 7; b[1,1] = 8;

int[,] result = new int[2,2];
result[0,0]=a[0,0]*b[0,0] + a[0,1]*b[1,0];

result[0,1]=a[0,0]*b[0,1] + a[0,1]*b[1,1];
result[1,0]=a[1,0]*b[0,0] + a[1,1]*b[1,0];
result[1,1]=a[1,0]*b[0,1] + a[1,1]*b[1,1];

Console._WriteLine(result[0,0]);
Console._WriteLine(result[0,1]);
Console._WriteLine(result[1,0]);
Console_WriteLine(result[1,1]);

the four valuesin result are asfollows:

Declare anew static method called Output in the MatrixMultiply class.
This method will not return anything and will expect an int array of rank 2

19 2
43 50

as a parameter caled result.

Cut from Main the four statements that write the four values of result to the
console and paste them into Output.

Add a statement to Main that calls the Output method, passing result as
the argument. (This should replace the code that was cut in the previous

step.)

Y our completed code should look asfollows:

static void Output(int[,] result)

{

Console._WriteLine(result[0,0]);
Console._WriteLine(result[0,1]);
Console_WriteLine(result[1,0]);
Console_WriteLine(result[1,1]);

38 Module 6: Arrays

4. Compile the program and correct any errors. Run the program. Verify that
the four values written to the console are still as follows:

19 2
43 50

5. Refactor the Output method to use two nested for statements instead of

four WriteLine statements. Use the literal value 2 in both array bounds
checks.

Y our completed code should look as follows:

static void Output(int[,] result)

{
for (int r = 0; r < 2; r++) {
for (int ¢ = 0; ¢ < 2; c++) {
Console Write("{0} ", result[r,c]);
}
Console.WriteLine();
}
}

6. Compile the program and correct any errors. Run the program. Verify that
the four values written to the console are still as follows:

19 2
43 50
7. Modify the Output method again, to make it more generic. Replace the

literal value 2 in the array bounds checks with calls to the GetL ength
method of each.

Y our completed code should look as follows:
static void Output(int[,] result)

{
for (int r = 0; r < result.GetLength(0); r++) {
for (int c = 0; c < result.GetLength(1); c++) {
Console Write(''{0} ", result[r,c]);
}
Console._WriteLine();
}
}

8. Compile the program and correct any errors. Run the program. Verify that
the four values written to the console are still asfollows:

19 2
43 50

Module 6: Arrays 39

£ To calculate result in a method and return it

1. Declare anew static method called Multiply inside the MatrixMultiply
class. This method will return an int array of rank 2 and will expect two int
arrays of rank 2, named a and b, as parameters.

2. Copy (but do not cut) the declaration and initialization of result from Main
into Multiply.

3. Addareturn statement to Multiply that returns result.

4. Replace the initialization of resultin Main with acal to Multiply, passing
a and b as arguments.

Y our completed code should look as follows:

static int[,] Multiply(int[,] a, int [,] b)

{
int[,] result = new int[2,2];
result[0,0]=a[0,0]*b[0,0] + a[0,1]*b[1,0];
result[0,1]=a[0,0]*b[0,1] + a[0,1]*b[1,1];
result[1,0]=a[1,0]*b[0,0] + a[1,1]*b[1,0];
result[1,1]=a[1,0]*b[0,1] + a[1,1]*b[1,1];
return result;

}

5. Compile the program, and correct any errors. Run the program. Verify that
the four values written to the console are still as follows:

19 2
43 50

I To calculate result in a method by using for statements

1. Replace theinitialization of result in Multiply with a newly created 2 x 2
array of ints.

2. Addtwo nested for statements to Multiply. Use an integer called r in the
outer for statement to it erate through each index of the first dimension of
result. Use an integer called ¢ in the inner for statement to iterate through
each index of the second dimension of result. Use the literal value 2 directly
in both array bounds checks. The body of the inner for statement will need
to calculate and set the value of result[r,c] by using the following
formula

result[r,c] = a[r,0] * b[0,c]
+ a[r,1] * b[1,c]

Y our completed code should look like this:

static int[,] Multiply(int[,] a, int [,] b)
{
int[,] result = new int[2,2];
for (int r = 0; r < 2; r++) {
for (int ¢ = 0; ¢ < 2; c++) {
result[r,c] += a[r,0] * b[O,c] + a[r,1] * b[1l,c];
}
}

return result;

40

Module 6: Arrays

3. Compile the program and correct any errors. Run the program. Verify that
the four values written to the console are still as follows:

19 2
43 50

I Toinput the first matrix from the console

1. Replace theinitialization of a in Main with a newly created 2 x 2 array of
ints.

2. Add statements to Main that prompt the user and read four valuesinto a
from the console. These statements should be placed before invoking the
Multiply method. The statements to read onevalue from the console are:

string s = Console.ReadLine();
a[0,0] = int.Parse(s);

3. Compile the program and correct any errors. Run the program, entering the
same four values for afrom the console (that is, 1, 2, 3, and 4). Verify that
the four values written to the console are still as follows:

19 2
43 50

4. Declare anew static method called Input insdethe MatrixMultiply class.
This method will not return anything and will expect an int array of rank 2
as a parameter called a

5. Cut the statements that read four values into afrom Main and paste them

into Input. Add a statement to Main that calls | nput, passing in a asthe
parameter. This should be placed before the call to Multiply.

6. Compile the program and correct any errors. Run the program, entering the
same four values for afrom the console (that is, 1, 2, 3, and 4). Verify that
the four values written to the console are still as follows:

19 2
43 50
7. Changethe Input method to use two nested for statements. Use the litera

value 2 directly in both array bounds checks. Include a Write statement
inside the I nput method that prompts the user for each input.

Module 6: Arrays 41

Y our completed code should look as follows:

static void Input(int[,] a)
{
for (intr =0; r < 2; r++) {
for (int ¢ = 0; ¢ < 2; c++) {
Console._Write(
="Enter value for [{0},{1}] - ", r, C);
string s = Console.ReadLine();
a[r,c] = int_Parse(s);
3
}

Console_WriteLine();

}

8. Compile the program and correct any errors. Run the program, entering the

same four values for afrom the console (that is, 1, 2, 3, and 4). Verify that
the four values written to the console are still as follows:

19 2
43 50

I Toinput the second matrix from the console

1. Replace theinitialization of b in Main with a newly created 2 x 2 array of
ints whose four values al default to zero.

2. Add astatement to Main that reads values into b from the console by
calling the I nput method and passing b as the argument.
3. Compile the program and correct any errors. Run the program, entering the

same four values for a(1, 2, 3, and 4) and the same four values for b (5, 6, 7,
and 8). Verify that the four values written to the console are still as follows:

19 2

-)

4. Run the program with different data. Collaborate with a fellow student to
see whether you get the same answer for the same input.

42 Module 6: Arrays

Review

= Overview of Arrays

m Creating Arrays

m Using Arrays

1. Declarean array of intsof rank 1 called evens and initialize it with the first
five even numbers, starting with zero.

2. Write a statement that declares variable called crowd of type int, and
initialize it with the second element of evens. Remember, the second
element does not reside at index 2 because array indexes do not start at 1.

3. Write two statements. The first will declare an array of ints of rank 1 called
copy; the second will assign to copy from evens.

Module 6: Arrays 43

4. Write a static method called M ethod that returns an array of intsof rank 2
and expects no arguments. The body of M ethod will contain asingle return
statement. This statement returns a newly created array of rank 2 with
dimensions 3 and 5 whose 15 elements are all initialized to 42.

5. Write a static method called Par ameter that returns nothing and expects a
two-dimensional array as its single argument. The body of the method will
contain two WritelL ine statements that write the length of each dimension
to the console.

6. Write a foreach statement that iterates over a one-dimensiona array of
strings called names, writing each name to the console.

msdn training

Contents

Overview

Classes and Objects

Using Encapsulation

C# and Object Orientation

Lab 7: Creating and Using Classes
Defining Object-Oriented Systems
Review

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.

Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1

version of Visual Sudio .NET.

Microsoft

Module 7: Essentials of
Object-Oriented
Programming

10
21
39
53
62

Informationin this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwi se noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.
Microsoft,ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual

Basic, Visual C++, Visual C#, Visua Studio, Windows, and Windows Media are either registered
trademarks or trademarksof Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Module 7: Essentials of Object-Oriented Programming

Overview

m Classes and Objects
m Using Encapsulation
m C# and Object Orientation

m Defining Object-Oriented Systems

C# is an objectoriented programming language. In this section, you will learn
the terminology and concepts required to create and use classes in C#.

After completing this module, you will be able to:

m Definethe terms object and classin the context of object-oriented
programming.

= Define the three core aspects of an object: identity, state, and behavior.

m Describe abstraction and how it helps you to create reusable classes that are
easy to maintain.

= Use encapsulation to combine methods and datain asingle class.
= Explain the concepts of inheritance and polymorphism.
m Create and use classesin C#.

2 Module 7: Essentials of Object-Oriented Programming

@ Classes and Objects

= What Is a Class?
= What Is an Object?

m Comparing Classes to Structs

m Abstraction

The whole structure of C# is based on the object-oriented programming model.

To make the most effective use of C# as a language, you need to understand the
nature of object-oriented programming.

In this section, you will learn about the basics of object-oriented programming.
Y ou will examine classes and objects in the context of object-oriented
programming. Y ou will then learn the how to apply the concept of abstraction.

Module 7: Essentials of Object-Oriented Programming 3

What Is a Class?

’
L

m For the Philosopher.

| MY

e An artefact of human classification!
e Classify based on common behavior or attributes
e Agree on descriptions and names of useful classes
e Create vocabulary; we communicate; we think!

m For the Object-Oriented Programmer.

e A named syntactic construct that describes common
behavior and attributes

e A data structure that includes both data and functions

The root word of classification is class. Forming classes is an act of
classification, and it is something that all human beings (not just programmers)
do. For example, all cars share common behavior (they can be steered, stopped,
and so on) and common attributes (they have four wheels, an engine, and so on).
Y ou use the word car to refer to al of these common behaviors and properties.
Imagine what it would be like if you were not able to classify common
behaviors and properties into named concepts! Instead of saying car, you would
have to say al the things that car means. Sentences would be long and
cumbersome. In fact, communication would probably not be possible at all. As
long as everyone agrees what a word means, that is, as long as we all speak the
same language, communication works well—we can express complex but

precise ideas in a compact form. We then use these named concepts to form
higher-level concepts and to increase the expressive power of communication.

All programming languages can describe common data and common functions.
This ability to describe common features helps to avoid duplication. A key
motto in programming is “Don’t repeat yourself.” Duplicate codeis
troublesome because it is more difficult to maintain. Code that does not repeat
itself is easier to maintain, partly because there is just less of it! Object-oriented
languages take this concept to the next level by allowing descriptions of classes
(sets of objects) that share structure and behavior. If done properly, this

paradigm works extremely well and fits naturally into the way people think and
communicate.

Classes are not restricted to classifying concrete objects (such as cars); they can
also be used to classify abstract concepts (such as time). However, when you

are classifying abstract concepts, the boundaries are less clear, and good design
becomes more important.

The only real requirement for aclassisthat it helps people communicate.

4 Module 7: Essentials of Object-Oriented Programming

What Is an Object?

= An Object Is an Instance of a Class
m Objects Exhibit
o Identity: Objects are distinguishable from one another

e Behavior: Objects can perform tasks

e State: Objects store information

Theword car means different thingsin different contexts. Sometimes we use
the word car to refer to the general concept of a car: we speak of car asa class
meaning the set of all cars, and do not have a specific car in mind. At other
times we use the word car to mean a specific car. Programmers use the term
object or instance to refer to a specific car. It isimportant to understand this
difference.

The three characteristics of identity, behavior, and state form a useful way to
think about and understand objects.

|dentity

Identity is the characteristic that distinguishes one object from all other objects
of the same class. For example, imagine that two neighbors own a car of exactly
the same make, model, and color. Despite the obvious similarities, the
registration numbers are guaranteed to be unique and are an outward reflection
that cars exhibit identity. The law determines that it is necessary to distinguish
one car object from another. (How would car insurance work without car
identity?)

Module 7: Essentials of Object-Oriented Programming 5

Behavior

Behavior is the characteristic that makes objects useful. Objects exist in order to
provide behavior. Most of the time you ignore the workings of the car and think
about its high-level behavior. Cars are useful because you can drive them. The
workings exist but are mostly inaccessible. It is the behavior of an object that is
accessible. The behavior of an object also most powerfully determines its
classification. Objects of the same class share the same behavior. A carisacar
because you can drive it; a pen is a pen because you can write with it.

State

Sate refers to the inner workings of an object that enable it to provide its
defining behavior. A well-designed object keeps its state inaccessible. Thisis
closely linked to the concepts of abstraction and encapsulation. Y ou do not care
how an dbject does what it does; you just care that it does it. Two objects may
coincidentally contain the same state but nevertheless be two different objects.
For example, two identical twins contain exactly the same state (their DNA) but
are two distinct people.

6 Module 7: Essentials of Object-Oriented Programming

Comparing Classes to Structs

m A Struct Is a Blueprint for a Value
o No identity, accessible state, no added behavior
m A Class Is a Blueprint for an Object

e |dentity, inaccessible state, added behavior

struct Tine cl ass BankAccount
{ {

public int hour;

public int mnute;

Structs

A struct, such as Time in the preceding code, has no identity. If you have two
Time variables both representing the time 12:30, the program will behave
exactly the same regardless of which one you use. Software entities with no
identity are called values. The built-in types described in Module 3, * Usng
Vaue-Type Variables,” in Course 2124A: Introduction to C# Programming for
the Microsoft .NET Platform (Prerelease), such asint, bool, decimal, and all
struct types, are caled value types in C#. Vaue types contain accessible state
and have no added behavior (no methods).

Variables of the struct type are alowed to contain methods, but it is
recommended that they do not. They should contain only data. However, it is
perfectly reasonable to define operators in structs. Operators are stylized
methods that do not add new behavior; they only provide a more concise syntax
for existing behavior.

Module 7: Essentials of Object-Oriented Programming 7

Classes

A class, such as BankAccount in the preceding code, has identity. If you have
two BankAccount objects, the program will behave differently depending on
which one you use. Software entities that have identity are called objects
(Variables of the struct type are also sometimes loosely called objects, but
strictly speaking they are values) Types represented by classes are called
reference typesin C#. In contrast to structs, nothing but methods should be

visble in awedl-designed class. These methods add extra high-level behavior
beyond the primitive behavior present in the lower-level inaccessible data.

Value Types and Reference Types

Vaue types are the types found at the lowest level of a program. They are the
elements used to build larger softw are entities. Vaue types can be freely copied
and exist on the stack as local variables or as attributes inside the objects they
describe.

Reference types are the types found at the higher levels of a program. They are

built from smaller software entities. Reference types generally cannot be copied,
and they exist on the heap.

8 Module 7: Essentials of Object-Oriented Programming

Abstraction

m Abstraction Is Selective Ignorance

Decide what is important and what is not

Focus and depend on what is important

Ignore and do not depend on what is unimportant

Use encapsulation to enforce an abstraction

Abstraction is the tactic of stripping an idea or object of its unnecessary
accompaniments until you are left with its essential, minimal form. A good
abstraction clears away unimportant details and allows you to focus and
concentrate on the important details.

Abstraction is an important software principle. A well-designed class exposes a
minimal set of carefully considered methods that provide the essential behavior
of the class in an easy-to-use manner. Unfortunately, creating good software
abstractions is not easy. Finding good abstractions usually requires a deep
understanding of the problem and its context, great clarity of thought, and
plenty of experience.

Minimal Dependency

The best software abstractions make complex things smple. They do this by
ruthlessly hiding away unessential aspects of a class. These unessential aspects,
once truly hidden away, cannot then be seen, used, or depended upon in any
way.

It is this principle of minimal dependency that makes abstraction so important.
One of the few things guaranteed in software development is that the code will
need to be changed. Perfect understanding only comes at the end of the
development process, if it comes at al; early decisions will be made with an
incomplete understanding of the problem and will need to be revisited.
Specifications will also change when a clearer understanding of the problem is
reached. Future versions will require extra functionality. Change is normal in
software development. The best you can do isto minimize the impact of change
when it happens. And the less you depend on something, the less you are
affected when it changes.

Module 7: Essentials of Object-Oriented Programming 9

Related Quotes

To illustrate the principle of minimal dependency that makes abstraction so
important, here are some related quotes:

The more perfect a machine becomes, the more they are invisible behind their
function. It seemsthat perfection is achieved not when there is nothing more to
add, but when there is nothing more to take away. At the climax of its evolution,
the machine conceals itself entirely.

—Antoine de Saint-Exupé&y, Wind, Sand and Sars

The minimum could be defined as the perfection that an artifact achieves when
it is no longer possible to improve it by subtraction. This is the quality that an
object has when every component, every detail, and every junction has been
reduced or condensed to the essentials. It is the result of the omission of the
inessentials.

—John Pawson, Minimum
The main aim of communication is clarity and simplicity. Simplicity means
focused effort.
—Edward de Bono, Smplicity

10 Module 7: Essentials of ObjectOriented Programming

€ Using Encapsulation

= Combining Data and Methods
m Controlling Access Visibility
= Why Encapsulate?

= Object Data

m Using Static Data

m Using Static Methods

In this section, you will learn how to combine data and methods in asingle

capsule. You will learn how to use encapsulation within a class, and you will
also learn how to use static data methods in a class.

Module 7: Essentials of Object-Oriented Programming 11

Combining Data and Methods

m Combine the Data and Methods in a Single Capsule

m The Capsule Boundary Forms an Inside and an Outside

Wt hdraw() ‘ thdraw()
— | ‘ FETEReE
|

BankAccount ?

BankAccount ?

There are two important aspects to encapsulation:

m Combining data and functions in a single entity (covered in the dide)
= Controlling the accessibility of the entity members (covered in the next dide)

Procedural Programming

Traditional procedural programs written in languages such as C essentialy
contain alot of data and many functions. Every function can access every piece
of data. For a small program this highly coupled approach can work, but as the
program grows larger it becomes less feasible. Changing the data representation
causes havoc. All functions that use (and hence depend upon) the changed data
fail. As the program becomes larger, making any change becomesmore
difficult. The program becomes more brittle and less stable. The separate data
function approach does not scale. It does not facilitate change, and as all
software developers know, change isthe only constant.

There is another serious problem with keeping the data separated from the
functions. This technique does not correspond to the way people naturally think,
in terms of high-level behavioral abstractions. Because people (the ones who

are programmers) write programs, it is much better to use a programming

model that approximates the way people think rather than the way computers
are currently built.

12 Module 7: Essentials of ObjectOriented Programming

Object-Oriented Programming

Object-oriented programming arose to alleviate these problems. Object-oriented
programming, if understood and used wisely, is realy person-oriented

programming because people naturally think and work in terms of the high-
level behavior of objects.

The first and most important step away from procedural programming and

towards object-oriented programming is to combine the dataand the functions
into a single entity.

Module 7: Essentials of Object-Oriented Programming 13

Controlling Access Visibility

= Methods Are Public, Accessible from the Outside

m Data Is Private, Accessible Only from the Inside

— | R —"
‘
M) « -

BankAccount ? BankAccount

In the graphic on the left, Withdraw, Deposit, and balance have been grouped
together inside a“capsule.” The slide suggests that the name of the capsuleis
BankAccount. However, there is something wrong with this model of a bank
account: the balance datais accessible. (Imagine if real bank account balances
were directly accessible like this; you could increase your balance without

making any deposits!) Thisis not how bank accounts work: the problem and its
model have poor correspondence.

Y ou can solve this problem by using encapsulation. Once data and functions are
combined into a single entity, the entity itself forms a closed boundary,

naturally creating an inside and an outside. Y ou can use this boundary to
selectively control the accessibility of the entities: some will be accessible only
from the inside; others will be accessible from both the inside and the outside.
Those members that are always accessible are public, and those that are only
accessible from the inside are private It is not possible to have members that
are only accessible from the outside.

To make the model of a bank account closer to areal bank account, you can
make the Withdraw and Deposit methods public, and the balance private.
Now the only way to increase the account balance from the outside is to deposit

some money into the account. Note that Deposit can access the balance
because Deposit is on the inside.

14 Module 7: Essentials of ObjectOriented Programming

C#, like many other objectoriented programming languages, gives you
complete freedom when choosing whether to make members accessible. You
can, if you want, create public data. However, it is recommended that data
aways be marked private. (Some programming languages enforce this
guideline)

Types whose data representation is completely private are called abstract data
types (ADTS). They are abstract in the sense that you cannot access (and rely on)
the private data representation; you can only use the behavioral methods.

The built-in types such asint are, in their own way, ADTs. When you want to
add two integer variables together, you do not need to know the internal binary

representation of each integer value; you only need to know the name of the
method that performs addition: the addition operator (+).

When you make members accessible (public), you can create different views of
the same entity. The view from the outside is a subset of the view from the
inside. A restricted view relates closely to the idea of abstraction: stripping an
idea down to its essence.

A lot of design isrelated to the decision of whether to place a feature on the

inside or on the outside. The more features you can place on the inside (and still
retan usability) the better.

Module 7: Essentials of Object-Oriented Programming 15

Why Encapsulate?

T

Wt hdraw)

Deposit()
bal ance 12.56

= It Allows Control

e Use of the object
is solely through the X
public methods

= |t Allows Change

Wt hdraw)

e Use of the object ‘

is unaffected if the
private data type

changes
cents 56

Two reasons to encapsulate are:

= Tocontrol use.
= To minimize the impact of change.

Encapsulation Allows Control

The first reason to encapsulate is to control use. When you drive a car, you
think only about the act of driving, not about the internals of the car. When you
withdraw money from an account, you do not think about how the account is
represented. Y ou can use encapsulation and behavioral methods to design
software objects so that they can only be used in the way you intend.

Encapsulation Allows Change

The second reason to encapsulate follows from the first. If an object’s
implementation detail is private, it can be changed and the changes will not
directly affect users of the object (who can only access the public methods). In

practice, this can be tremendously useful. The names of the methods typically
stabilize well before the implementation of the methods.

The ability to make internal changes links closely to abstraction. Given two
designs for a class, as arule of thumb, use the one with fewer public methods.

In other words, if you have a choice about whether to make a method public or
private, make it private. A private method can be freely changed and perhaps
later promoted into a public method. But a public method cannot be demoted
into a private method without destroying client code.

16 Module 7: Essentials of ObjectOriented Programming

Object Data

m Object Data Describes Information for Individual
Objects

e For example, each bank account has its own balance. If
two accounts have the same balance, it is only a
coincidence.

] [

Deposit()
bal ance 12.56

Deposit()
bal ance 12. 56

Most items of datainside an object describe information about that individual
object. For example, each bank account has its own balance. It is, of course,
perfectly possible for many bank accounts to have the same balance. However,
this would only be a coincidence.

The data inside an object is held privately, and is accessible only to the object
methods. This encapsulation and separation means that an object is effectively
sdlf-contained.

Module 7: Essentials of Object-Oriented Programming 17

Using Static Data

= Static Data Describes Information for All Objects of a
Class

e For example, suppose all accounts share the same
interest rate. Storing the interest rate in every account
would be a bad idea. Why?

[[

W thdraw) Wt hdraw()
I [

Deposit() Deposit()
bal ance 12.56 bal ance 99.12

Vo \

interest 7% interest 7%

Sometimes it does not make sense to store information inside every object. For
example, if al bank accounts always share the same interest rate, then storing
the rate inside every account object would be a bad idea for the following
reasons:

It is a poor implementation of the problem as described: “All bank accounts
share the same interest rate.”

It needlessly increases the size of each object, using extra memory resources
when the program is running and extra disk space when it is saved to disk.

It makesit difficult to change the interest rate. Y ou would need to change
the interest rate in every account object. If you needed to make the interest

rate change in each individual object, an interest rate change might make dl
accounts inaccessible while the change took place.

It increases the size of the class. The private interest rate data would require

public methods. The account classis starting to lose its cohesiveness. It is
no longer doing one thing and one thing well.

18

Module 7: Essentials of ObjectOriented Programming

To solve this problem, do not share information that is common between
objects at the object level. Instead of describing the interest rate many times at
the object level, describe the interest rate once at the class level. When you
define the interest rate at the class levdl, it effectively becomes global data.

However, global data, by definition, is not stored inside a class, and therefore
cannot be encapsulated. Because of this, many object-oriented programming
languages (including C#) do not allow globa data. Instead, they allow datato
be described as static.

Declaring Static Data

Static data is physically declared inside a class (which is a static, compile-time
entity) and benefits from the encapsulation the class affords, but it is logically
associated with the class itself and not with each object. In other words, static
datais declared inside a class as a syntactic convenience and exists even if the
program never creates any objects of that class.

Module 7: Essentials of Object-Oriented Programming 19

Using Static Methods

m Static Methods Can Only Access Static Data

e A static method is called on the class, not the object

An account object
e

W t hdraw()

4 ‘ bal ance 99.12
wmes 7] |

The account class

InterestRate() ||

Classes contain static data and Objects contain object data and
static methods object methods

Y ou use static methods to encapsulate static data. In the examplein the dlide,
the interest rate belongs to the account class and not to an individual account
object. It therefore makes sense to provide methods at the class level that can be
used to access or modify the interest rate.

Y ou can declare methods as static in the same way that you would declare data
as dtatic. Static methods exist at the class level. Y ou can control accessibility
for both static methods and static data can by using access modifiers such as
public and private. By choosing public static methods and private static data,

you can encapsulate static data in the same way that you can encapsulate object
data

A static method exists at the class level and is called against the class and not
against an object. This means that a static method cannot use this, the operator
that implicitly refers to the object making an object method call. In other words,
a static method cannot access non-static data or non-static methods. The only

members of aclass that a static method can access are static data and other
static methods.

20 Module 7: Essentials of ObjectOriented Programming

Static methods retain access to al private members of a class and can access

private non-static data by means of an object reference. The following code
provides an example:

class Time

{
public static void Reset(Time t)
{
t.hours = 0; // Okay
t.minutes = 0; // Okay
hour = 0; // compile-time error
minute = O // compile-time error
}

private int hour, minute;

Module 7: Essentials of Object-Oriented Programming 21

€ C# and Object Orientation

= Hello, World Revisited

m Defining Simple Classes
= Instantiating New Objects
m Using the this Operator

m Creating Nested Classes

m Accessing Nested Classes

In this section, you will reexamine the original Hello, World program.

The structure of the program will be explained from an object-oriented
perspective. You will then learn about the mechanisms that enable one object to
create another in C#. You will aso learn how to define nested classes.

22

Module 7: Essentials of ObjectOriented Programming

Hello, World Revisited

usi ng System

class Hello

{
public static int Main()
{
Consol e. WiteLine("Hello, World");
return O;
}
}

The code for Hello, World is shown in the slide. There are some questions that
can be asked and answered:

= How does the runtime invoke a class?
s Whyis Main static?

How Does the Runtime Invoke a Class?

If thereisasingle Main method, the compiler will automatically make it the
program entry point. The following code provides an example:

// OneEntrance.cs
class OneEntrance

{
static void Main()
{
}

}

// end of file

c:\> csc OneEntrance.cs

Warning The entry point of a C# program must be M ain with a capital “M.”
The signature of Main is aso important.

Module 7: Essentials of Object-Oriented Programming 23

However, if there are several methods called Main, one of them must explicitly
be designated as the program entry point (and that Main must also be explicitly
public) The following code provides an example:

// TwoEntries.cs
using System;
class EntranceOne

{
public static void Main()
{
Console_Write(""EntranceOne.Main()");
}
}
class EntranceTwo
{
public static void Main()
{
Console_Write('EntranceTwo.Main()");
}
}

// End of file

c:\> csc /main:EntranceOne TwoEntries.cs
c:\> twoentries.exe

EntranceOne.Main()

c:\> csc /main:EntranceTwo TwoEntries.cs
c:\> twoentries.exe

EntranceTwo.Main()

c:\>

Note that the command-line option is case sensitive. If the name of the class
containing Main is EntranceOne (with a capital E and a capital O) then the
following will not work:

c:\> csc /main:entranceone TwoEntries.cs

24 Module 7: Essentials of ObjectOriented Programming

If there is no Main method in the project, you cannot create an executable
program. However, you can create a dynamic-link library (DLL) as follows:

// NoEntrance.cs
class NoEntrance

{
public static void NotMain()
{
Console._Write(""NoEntrance.NotMain()");
}
}

// End of file

c:\> csc /target:library NoEntrance.cs
c:\> dir

NoEntrance.dll

Why Is Main Static?

Making Main static allows it to be invoked without the runtime needing to
create an instance of the class.

Non-static methods can only be called on an object, as shown in the following
code;

class Example

{
void NonStatic() { --- }
static void Main()
{
Example eg = new Example();
eg-NonStatic(); // Compiles
NonStatic(); // compile-time error
}
}

This means that if Main is non-static, asin the following code, the runtime
needs to create an object in order to call Main.

class Example

{
void Main()

{

}
}

In other words, the runtime would effectively need to execute the following
code:

Example run = new Example():
run.Main();

Module 7: Essentials of Object-Oriented Programming 25

Defining Simple Classes

m Data and Methods Together Inside a Class

m Methods Are Public, Data Is Private

cl ass BankAccount

{

Public methods

public void Wthdraw(deci mal amount) | oot

{ ...} behaviour

public void Deposit(decimal anount)

{ ...} Private fields

private deci mal bal ance; describe

private string nane;

inaccessible
state

Although classes and structs are semantically different, they do have syntactic
similarity. To define a class rather than a struct:

Use the keyword class instead of struct.
Declare your data inside the class exactly as you would for a struct.
Declare your methods inside the class.

Add access modifiers to the declarations of your data and methods. The
simplest two access modifiers are public and private. (The other three will
be covered later in this course.)

Note Itisuptoyouto use public and private wisely to enforce encapsulation.
C# does not prevent you from creating public data.

The meaning of public is “access not limited.” The meaning of private is
“access limited to the containing type.” The following example clarifies this:

class BankAccount

{

public void Deposit(decimal amount)

{

balance += amount;

}

private decimal balance;

26

Module 7: Essentials of ObjectOriented Programming

In this example, the Deposit method can access the private balance because
Deposit is amethod of BankAccount (the type that contains balance). In other
words, Deposit is on the inside. From the outside, private members are dways
inaccessible. In the following example, the expression underAttack.balance
will fail to compile.

class BankRobber

{
public void StealFrom(BankAccount underAttack)
{
underAttack.balance -= 999999M;
}
¥

The expression underAttack.balance will fail to compile because the
expression is inside the Steal From method of the BankRobber class. Only

methods of the BankAccount class can access private members of
BankAccount objects.

To declare static data, follow the pattern used by static methods (such as Main),
and prefix the data declaration with the keyword static. The following code
provides an example:

class BankAccount

{
public void Deposit(decimal amount) { ... }

public static void Main(C) { --- }

private decimal balance;
private static decimal interestRate;

Module 7: Essentials of Object-Oriented Programming 27

If you do not specify an access modifier when declaring a class member, it will
default to private. In other words, the following two methods are semantically
identical:

class BankAccount

{
decimal balance;
b
class BankAccount
{
private decimal balance;
H

Tips Itisconsidered good style to explicitly write private even though it is not
strictly necessary.

The order in which members of a class are declared is not significant to the C#
compiler. However, it is considered good style to declare the public members
(methods) before the private members (data). Thisis because a class user only

has access to the public members anyway, and declaring public members before
private members naturally reflects this priority.

28

Module 7: Essentials of ObjectOriented Programming

Instantiating New Objects

m Declaring a Class Variable Does Not Create an Object

e Use the new operator to create an object

cl ass Program

{ NOW | hour
ninute
static void Main()
{ yours[F—— [| new
Ti me now, ... | BankAccount

object
now. hour = 11;)

BankAccount yours = new BankAccount();
your s. Deposi t (999999M ;

Consider the following code examples:

struct Time

{
public int hour, minute;
3
class Program
{
static void Main()
{
Time now;
now.hour = 11;
now.minute = 59;
}
T

Variables of the struct type are value types. This means that when you declare a
struct variable (such as now in Main), you create a value on the stack. Inthis
case, the Time struct contains two ints, so the declaration of now creates two
ints on the stack, one caled now.hour and one called now.minute. These two
ints are not, repeat not, default initialized to zero. Hence the value of now.hour
or now.minute cannot be read until they have been assigned a definite value.
Values are scoped to the block in which they are declared. In this example, now
is scoped to Main. This means that when the control flow exits Main (either
through a normal return or because an exception has been thrown), now will go
out of scope; it will ceaseto exist.

Module 7: Essentials of Object-Oriented Programming 29

Classes are completely different as shown in the following code:

class Time // NOTE: Time is now a class

{
public int hour, minute;
b
class Program
{
static void Main()
{
Time now;
now.hour = 11;
now.minute = 59;
H
H

When you declare a class variable, you do not create an instance or object of
that class. In this case, the declaration of now does not create an object of the
Time class. Declaring a class variable creates a reference that is capable of
referring to an object of that class. Thisiswhy classes are called reference types.
This means that if the runtime were allowed to run the preceding code, it would
be trying to access the integers inside a non-existent Time object. Fortunately,
the compiler will warn you about this error. If you compile the preceding code,
you will get the following error message:

error CS0165: Use of possibly unassigned local variable "now

30

Module 7: Essentials of ObjectOriented Programming

To fix this error, you must create a Time object (using the new keyword) and

make the reference variable now actually refer to the newly created object, asin
the following code:

class Program

{
static void Main()
{
Time now = new Time();
now.hour = 11;
now.minute = 59;
}
3

Recall that when you create alocal struct value on the stack, the fields are not,
repeat not, default initialized to zero. Classes are different; when you create an
object as an instance of a class, as above, the fields of the object are default
initialized to zero. Hence the following code compiles cleanly:

class Program

{
static void Main()
{
Time now = new Time();
Console.WriteLine(now.hour); // writes O
Console._WriteLine(now.minute); // writes O
}

Module 7: Essentials of Object-Oriented Programming 31

Using the this Operator

m The this Operator Refers to the Object Used to Call the

Method
o Useful when identifiers from different scopes clash
cl ass BankAccount
{
public void Set Nanme(string nane)
{ If this statement were
this.nane = nane; name = name,
} What would happen?
private string name;
}

The this operator implicitly refers to the object that is making an object method
cal.

In the following code, the statement name = name would have no effect at al.
This is because the identifier name on the left side of the assignment does not

resolve to the private BankAccount field caled name. Both identifiers resolve
to the method parameter, which is also called name.

class BankAccount

{
public void SetName(string name)
{
name = name;
}
private string name;
}

Warning The C# compiler does not emit awarning for this bug.

Using the this Keyword

Y ou can solve this reference problem by using the thiskeyword, asillustrated
on the dide. The thiskeyword refersto the current object for which the method
is called.

Note Static methods cannot use this asthey are not called by using an object.

32 Module 7: Essentials of ObjectOriented Programming

Changing the Parameter Name

You can aso solve the reference problem by changing the name of the
parameter, asin the following example:

class BankAccount

{
public void SetName(string newName)
{
name = newName;
}
private string name;
}

Tip Using thiswhen writing constructors is a common C# idiom. The
following code provides an example:

struct Time

{
public Time(int hour, int minute)
{
this.hour = hour;
this.minute = minute;
}

private int hour, minute;

Module 7: Essentials of Object-Oriented Programming

33

Tip Thethis operator is also used to implement call chaining. Notice in the
following class that both methods return the calling object:

class Book

{
public Book SetAuthor(string author)
{
this.author = author;
return this;
¥
public Book SetTitle(string title)
{
this.title = title;
return this;
}
private string author, title;
3

Returning this allows method calls to be chained together, as follows:

class Usage

{
static void Chained(Book good)
{
good.SetAuthor(“Fowler™) .SetTitle(“Refactoring™);
}
static void NotChained(Book good)
{
good.SetAuthor(“Fowler™);
good.SetTitle(*“Refactoring™);
}
¥

Note A static method exists at the class level and is called against the class and

not against an object. This means that a static method cannot use the this
operator.

34

Module 7: Essentials of ObjectOriented Programming

Creating Nested Classes

m Classes Can Be Nested Inside Other Classes

cl ass Program

{
static void Main()

{

Bank. Account yours = new Bank. Account ();

}
cl ass Bank

{ The full name of the nested
class includes the name of
cl ass Account { P the outer class
}

There are five different kinds of typesin C#

m class

= struct

= interface
= enum

n deegate

You can nest all five of these inside a class or a struct.

Note You cannot nest atype inside an interface, an enum, or a delegate.

Module 7: Essentials of Object-Oriented Programming 35

In the code above, the Account class is nested inside the Bank class. The full
name of the nested classis Account . Bank, and this name must be used when
naming the nested type outside the scope of Bank. The following code provides
an example:

// Program.cs
class Program

{
static void Main()
{
Account yours = new Account(); // compile-time error
¥
by

// end of file

c:\> csc Program.cs

error CS0234: The type..."Account”™ does not exist in the
class..."Program*”

In contrast, just the name Account can be used from inside of Bank, asin the
following example:

class Bank

{ class Account() { -.. }
Account OpenAccount()
{
return new Account();
}
}

Note See the next topic for a more thorough examination of the example.

Nested classes offer several useful features:

m Nested classes can be declared with specific accessibility. Thisis coveredin
the next topic.

m Using nested classes removes fewer names from the global scope or the
containing namespace.

m Nested classes allow extra structure to be expressed in the grammar of the
language. For example, the name of the classis Bank . Account (three
tokens) rather than Bank Account (one token).

36 Module 7: Essentials of ObjectOriented Programming

Accessing Nested Classes

m Nested Classes Can Also Be Declared As Public or
Private

cl ass Bank

public class Account o}
private class Account Nunber Generator { ... }

cl ass Program
static void Main()

Bank. Account ~ accessi bl e; v
Bank. Account Nunber Gener at or inaccessible; %

You control the accessibility of data and methods by declaring them as public
or private. You control the accessibility of a nested class in exactly the same
way.

Public Nested Class

A public nested class has no access restrictions. It is declared to be publicly
accessible. The full name of a nested class must till be used when outside the
containing class.

Private Nested Class

A private nested class has exactly the same access restrictions as private data or
methods. A private nested class is inaccessible from outside the containing class,
as the following example shows:

class Bank

{
private class AccountNumberGenerator()
{
}
T
class Program
{
static void Main()
{
// Compile time error
Bank.AccountNumberGenerator variable;
}

Module 7: Essentials of Object-Oriented Programming 37

In this example, Main cannot use Bank.AccountNumber Gener ator because
Main is amethod of Program and AccountNumber Generator is private and
hence only accessible to its outer class, Bank .

A private nested class is accessible only to members of the containing class as
thefollowing examples shows:

class Bank

{

public class Account

{
public void Setup()

{
NumberSetter.Set(this);

balance = OM;

}

private class NumberSetter

{
public static void Set(Account a)

{

a.number = nextNumber++;

}

private static int nextNumber = 2311;

}

private int number;
private decimal balance;

}

In this code, note that the Account.Setup method can access the

Number Setter class because, although Number Setter is a private class, it is
private to Account, and Setup isamethod of Account.

38

Module 7: Essentials of ObjectOriented Programming

Notice also that the Account.Number Setter.Set method can access the private
balance field of the Account object a Thisis because Set is a method of class
Number Setter, which is nested inside Account. Hence Number Setter (and its
methods) have access to the private members of Account.

The default accessibility of a nested classis private (asit is for dataand
methods). In the following example, the Account class defaults to private:

class Bank

{
class Account() { -.. }
public Account OpenPublicAccount()
{
Account opened = new Account();
opened.Setup();
return opened;
}
private Account OpenPrivateAccount()
{
Account opened = new Account();
opened.Setup();
return opened;
}
}

The Account class is accessible to OpenPublicAccount and
OpenPrivateAccount because both methods are nested inside Bank. However,
the OpenPublicAccount method will not compile. The problem is that
OpenPublicAccount is a public method, usable as in the following code:

class Program

{
static void Main()
{
Bank b = new Bank();
Bank.Account opened = b.OpenPublicAccount();
}
}

This code will not compile because Bank.Account is not accessible to
Program.Main, Bank.Account is private to Bank, and Main is not a method
of Bank . The following error message appears.

error CS0050: Inconsistent accessibility: return type
"Bank.Account® is less accessible than method
"Bank.OpenPublicAccount”

The accessibility rules for atop-level class (that is, aclass that is not nested
inside another class) are not the same as those for a nested class. A top-level
class cannot be declared private and defaults to internal accessibility. (Internal
accessis covered fully in alater module.)

Module 7: Essentials of Object-Oriented Programming 39

Lab 7: Creating and Using Classes

/
v

Objectives
After completing this lab, you will be able to:

m Create classes and instantiate objects.
» Use non-static data and methods.
» Use static data and methods.

Prerequisites
Before working on this lab, you must be familiar with the following:

m Creating methods in C#
= Passing arguments as method parameters in C#

Estimated time to complete this lab: 45 minutes

40 Module 7: Essentials of ObjectOriented Programming

Exercise 1

Creating and Using a Class

In this exercise, you will take the bank account struct that you developed in a
previous module and convert it into a class. You will declare its data members
as private but provide non-static public methods for accessing the data. You
will build a test harness that creates an account object and populates it with an
account number and balance that is specified by the user. Finally, you will print
the data in the account.

IZ To change BankAccount from a struct to a class

1.

Open the CreateAccount.sin project in the install folder\
Labs\L ab0AStarter\CreateA ccount folder.

Study the program in the BankAccount.cs file. Notice that BankAccount isa
struct type.

Compile and run the program. Y ou will be prompted to enter an account
number and an initial balance. Repeat this process to create another account.

Modify BankAccount in BankAccount.cs to make it a classrather than a
struct.

Compile the program. It will fail to compile. Open the CreateAccount.cs file
and view the CreateAccount class. The class will look as follows:

class CreateAccount

{
static BankAccount NewBankAccount()
{
BankAccount created;
created.accNo = number; // Error here
s
}

The assignment to created.accNo compiled without error when
BankAccount was a struct. Now that it is a class, it does not compile! This
is because when BankAccount was a struct, the declaration of the created
variable created a Bank Account value (on the stack). Now that
BankAccount is a class, the declaration of the created variable does not
create a BankAccount value; it creates a Bank Account reference that does
not yet refer to a BankAccount object.

Module 7: Essentials of Object-Oriented Programming 41

Change the declaration of created so that it is initialized with a newly
created Bank Account object, as shown:

class CreateAccount

{
static BankAccount NewBankAccount()
{
BankAccount created = new BankAccount();
created.accNo = number;
}
}

8. Saveyour work.

9. Compile and run the program. Verify that the data entered at the console is

correctly read back and displayed in the CreateAccount.W rite method.

I To encapsulate the BankAccount class

1.

All the data members of the BankAccount class are currently public.
Modify them to make them private, as shown:

class BankAccount

{
private long accNo;
private decimal accBal;
private AccountType accType;
}

Compile the program. It will fail to compile. The error occursin the
CreateAccount class as shown::

class CreateAccount

{
static BankAccount NewBankAccount()
{
BankAccount created = new BankAccount();
created.accNo = number; // Error here again

42

Module 7: Essentials of ObjectOriented Programming

3. The BankAccount data member assignments now fail to compile because

the data members are private. Only Bank Account methods can accessthe
private BankAccount data members. Y ou need to write a public
BankAccount method to do the assignments for you. Perform the following
steps:

Add a non-static public method called Populate to BankAccount. This
method will return void and expect two parameters: along (the bank
account number) and a decimd (the bank account balance). The body of this
method will assign the long parameter to the accNo field and the decimal

parameter to the accBal field. It will also set the accTypefield to
AccountType.Checking as shown:

class BankAccount

{

public void Populate(long number, decimal balance)
{

accNo = number;

accBal = balance;

accType = AccountType.Checking;

}

private long accNo;
private decimal accBal;
private AccountType accType;

}

. Comment out the three assignments to the created variable in the

CreateAccount.NewbankAccount method. In their place, add a statement

that calls the Populate method on the created variable, passing number and
balance as arguments. Thiswill look as follows:

class CreateAccount

{
;;Atic BankAccount NewBankAccount()
¢ BankAccount created = new BankAccount();
}}-created-acho = number;
// created.accBal = balance;
// created.accType = AccountType.Checking;
created.Populate(number, balance);
}
}

5. Saveyour work.

Module 7: Essentials of Object-Oriented Programming 43

6. Compile the program. It will fail to compile. There are till three statements
inthe CreateAccount.Write method that attempt to directly access the
private BankAccount fields. Y ou need to write three public BankAccount
methods that return the values of these three fields. Perform the following
steps:

a Add anon-static public method to BankAccount caled Number. This
method will return along and expect no parameters. It will return the
value of the accNo field as shown:

class BankAccount

{
public void Populate(...) ...
public long Number()
{
return accNo;
}
}

b. Add anon-static public method to BankAccount caled Balance, as
shown in the following code. This method will return a decimal and
expect no parameters. It will return the value of the accBal field.

class BankAccount

{
public void Populate(...) ...
public decimal Balance()
{
return accBal;
¥
¥

¢. Add anon-gtatic public method called Type to BankAccount, as shown
in the following code. This method will return an AccountType and
expect no parameters. It will return the value of the accType field.

class BankAccount

{
public void Populate(...) ...

public AccountType Type()
{

return accType;

}

44

Module 7: Essentials of ObjectOriented Programming

d. Finaly, replace the three statements in the CreateAccount.Write

method that attempt to directly access the private Bank Account fields
with calls to the three public methods you have just created, as shown:

class CreateAccount

{

static void Write(BankAccount toWrite)
{
Console.WriteLine(*'Account number is {0}",
=toWrite._Number());
Console_WriteLine("'Account balance is {0}",
=toWrite._Balance());
Console.WriteLine(""Account type is {0}",
=toWrite.Type().Format());
}
}

7. Saveyour work.

8. Compile the program and correct any other errors. Run the program. Verify
that the data entered at the console and passed to the
BankAccount.Populate method is correctly read back and displayed in the
CreateAccount.Write method.

Module 7: Essentials of Object-Oriented Programming 45

I To further encapsulate the BankAccount class

1. Changethe BankAccount.Type method so that it returns the type of the
account as a string rather than as an AccountType enum, & shown:

class BankAccount

{
él;t;lic string Type()
{ return accType.Format();
}
é;ivate AccountType accType;
}

2. Change the last WriteLine statement in the CreateAccount.Write method
so that it no longer cdlsthe For mat method, as shown:

class CreateAccount

{

static void Write(BankAccount acc)
{
Console _WriteLine("'Account number is {0}",
=acc.Number());
Console_WriteLine(*'Account balance is {0}",
=acc.Balance());
Console._WriteLine("*Account type is {0}",
=acc.Type());
}
}

3. Saveyour work.

4. Compile the program and correct any errors. Run the program. Verify that
the data entered at the console and passed to the BankAccount.Populate
method is correctly read back and displayed in the CreateAccount.Write
method.

46 Module 7: Essentials of ObjectOriented Programming

Exercise 2
Generating Account Numbers

In this exercise, you will modify the Bank Account class from Exercise 1 so
that it will generate unique account numbers. Y ou will accomplish this by using
a static variable in the Bank Account class and a method that increments and
returns the value of this variable. When the test harness creates a new account,
it will call this method to generate the account number. It will then call the

method of the BankAccount class tha sets the number for the account, passing
in this value as a parameter .

£ Toensurethat each BankAccount number is unique

1. Open the project UniqueNumbers.dln in the install folder\
Labs\Lab0AStarter\UniqueNumbers folder.

Note This project is the same as the completed CreateAccount project from
Exercise 1.

2. Add a private static long called nextAccNo to the BankAccount class, as

shown:
class BankAccount
{
private long accNo;
private decimal accBal;
private AccountType accType;
private static long nextAccNo;
}

3. Add a public static method called NextNumber to the BankAccount class,
as shown in the following code. This method will return along and expect
no parameters. It will return the value of the nextAccNo field in addition to
incrementing this field.

class BankAccount

{
public static long NextNumber()
{
return nextAccNo++;
}

private long accNo;
private decimal accBal;
private AccountType accType;

private static long nextAccNo;

Module 7: Essentials of Object-Oriented Programming 47

. Comment out the statement in the CreateAccount.NewBankA ccount

method that writes a prompt to the console asking for the bank account
number, as shown:

//Console.Write("Enter the account number: ');

. Replace the initialization of number in the
CreateAccount.NewBankAccount method with a call to the
BankAccount.NextNumber method you have just created, as shown:

//1ong number = long.Parse(Console_ReadLine());
long number = BankAccount._.NextNumber();

. Saveyour work.

7. Compile the program and correct any errors. Run the program. Verify that

the two accounts have account numbers 0 and 1.

. Currently, the BankAccount.nextAccNo static field has a default
initialization to zero. Explicitly initialize this field to 123.

. Compile and run the program. Verify that the two accounts created have
account numbers 123 and 124.

48 Module 7: Essentials of ObjectOriented Programming

I To further encapsulate the BankAccount class

1.

Change the Bank Account.Populate method so that it expects only one
parameter—the decima balance. Inside the method, assign the accNo fidd
by using the BankAccount.NextNumber static method, as shown:

class BankAccount

{
public void Populate(decimal balance)
{
accNo = NextNumber();
accBal = balance;
accType = AccountType.Checking;
3
}

Change BankAccount.NextNumber into a private method, as shown:
class BankAccount

{

private static long NextNumber() ...

}

Comment out the declaration and initialization of number in the
CreateAccount.NewBankAccount method. Change the created.Populate
method call so that it only passes a single parameter, as shown:

class CreateAccount

{

éiétic BankAccount NewBankAccount()

{ BankAccount created = new BankAccount();
//1ong number = BankAccount.NextNumber();
é;éated.Populate(balance);

}

, .-

4. Saveyour work.

5. Compile the program and correct any errors. Run the program. Verify that

the two accounts still have account numbers 123 and 124.

Module 7: Essentials of Object-Oriented Programming 49

Exercise 3
Adding More Public Methods

In this exercise, you will add two methods to the Account class: Withdraw and
Deposit.

Withdraw will take a decimal parameter and will deduct the given amount
from the balance. However, it will check first to ensure that sufficient funds are
available, since accounts are not allowed to become overdrawn. It will return a
bool value indicating whether the withdrawa was successful.

Deposit will also take adecimal parameter whose value it will add to the
baance in the account. It will return the new value of the balance.

I To add a Deposit method to the BankAccount class

1. Open the project MoreMethods.dln in the install folder\
Labs\Lab0AStarter\MoreM ethods fol der.

Note This project is the same as the completed UniqueNumbers project
from Exercise 2.

2. Add a public norstatic method called Deposit to the Bank Account class,
as shown in the following code. This method will also take a decimal
parameter whose value it will add to the balance in the account. It will
return the new vaue of the balance.

class BankAccount

{
public decimal Deposit(decimal amount)
{
accBal += amount;
return accBal;

50

Module 7: Essentials of ObjectOriented Programming

3. Add a public static method called TestDeposit to the CreateAccount class,

as shown in the following code. This method will return void and expect a
BankAccount parameter. The method will write a prompt to the console
prompting the user for the amount to deposit, capture the entered amount as
adecimal, and then call the Deposit method on the Bank Account
parameter, passing the amount as an argument.

class CreateAccount

{
public static void TestDeposit(BankAccount acc)
{
Console _Write("Enter amount to deposit: ');
decimal amount = decimal .Parse(Console_ReadLine());
acc.Deposit(amount);
}
}

. Add to CreateAccount.Main statements that call the TestDeposit method

you have just created, as shown in the following code. Ensure that you call
TestDeposit for both account objects. Use the CreateAccount.Write
method to display the account after the deposit takes place.

class CreateAccount

{

static void Main()
{
BankAccount berts = NewBankAccount();
Write(berts);
TestDeposit(berts);
Write(berts);

BankAccount freds = NewBankAccount();
Write(freds);

TestDeposit(freds);

Write(freds);

}

. Saveyour work.
6. Compile the program and correct any errors. Run the program. Verify that

deposits work as expected.

Note If you have time, you might want to add a further check to Deposit to
ensure that the decimal parameter passed in is not negative.

Module 7: Essentials of Object-Oriented Programming 51

£ To add a Withdraw method to the BankAccount class

1. Add apublic non-static method called Withdraw to BankAccount, as
shown in the following code. This method will expect a decimal parameter
specifying the amount to withdraw. It will deduct the amount from the
balance only if sufficient funds are available, since accounts are not allowed

to become overdrawn. It will return a bool indicating whether the
withdrawal was successful.

class BankAccount

{
public bool Withdraw(decimal amount)
{
bool sufficientFunds = accBal >= amount;
ifT (sufficientFunds) {
accBal -= amount;
3
return sufficientFunds;
3
¥

2. Add apublic static method called TestWithdraw to the CreateAccount
class, as shown in the following code. This method will returnvoid and will
expect a BankAccount parameter. The method will write a prompt to the
console prompting the user for the amount to withdraw, capture the entered
amount as a decmal, and then call the Withdraw method on the
BankAccount parameter, passing the amount as an argument. The method
will capture the bool result returned by Withdraw and write a message to
the console if the withdrawal failed.

class CreateAccount

{

public static void TestWithdraw(BankAccount acc)

{
Console._Write("Enter amount to withdraw: ');
decimal amount = decimal .Parse(Console.ReadLine());
if (Jacc.Withdraw(amount)) {

Console.WriteLine("Insufficient funds.");

}

}

52 Module 7: Essentials of ObjectOriented Programming

3. Addto CreateAccount.Main statements that call the TestWithdraw
method you have just created, as shown in the following code. Ensure that
you call TestWithdrawfor both account objects. Use the
CreateAccount.Write method to display the account after the withdrawal
takes place.

class CreateAccount
{
static void Main()
{
BankAccount berts = NewBankAccount();
Write(berts);
TestDeposit(berts);
Write(berts);
TestWithdraw(berts);
Write(berts);

BankAccount freds = NewBankAccount();
Write(freds);

TestDeposit(freds);

Write(freds);

TestWithdraw(freds);

Write(freds);

}
}

4. Saveyour work.

5. Compile the program and correct any errors. Run the program. Verify that

withdrawals work as expected. Test successful and unsuccessful
withdrawals.

Module 7: Essentials of Object-Oriented Programming 53

€ Defining Object-Oriented Systems

m Inheritance

m Class Hierarchies

= Single and Multiple Inheritance
= Polymorphism

m Abstract Base Classes

m Interfaces

m Early and Late Binding

In this section, you will learn about inheritance and polymorphism. Y ou will
learn how to implement these concepts in C# in later modules.

54 Module 7: Essentials of ObjectOriented Programming

Inheritance

m Inheritance Specifies an “Is a Kind of" Relationship
e Inheritance is a class relationship

e New classes specialize existing classes

Generalization Musician Base class
Zﬁ 2
Specialization Violin Derived class Is this a good
Player example of

inheritance ?

Inheritance is a relationship that is specified at the class level. A new class can
be derived from an existing class. In the dide above, the ViolinPlayer classis
derived from the Musician class. The Musician classis caled the base class

(or, less frequently, the parent class, or the superclass); the ViolinPlayer class
is called the derived class (or, less frequently, the child class, or subclass). The

inheritance is shown by using the Unified Modeling Language (UML) notation.
More UML notation will be covered in later dlides.

Inheritance is a powerful relationship because a derived class inherits
everything from its base class. For example, if the base class M usician contains
amethod called TuneY ourlnstrument, this method is automatically a member
of the derived ViolinPlayer class.

A base class can have any number of derived classes. For example, new classes
(such as FlutePlayer, or PianoPlayer) could all be derived from the M usician
class. These new derived classes would again automatically inherit the
TuneYour I nstrument method from the Musician base class.

Note A change to a base class is automatically a change to all derived classes.
For example, if afield of type Musicall ntrument was added to the Musician
base class, then every derived class (VidlinPlayer, FlutePlayer, PianoPlayer,
and so on) would automatically acquire afield of type Musicall nstrument. If a
bug is introduced into a base class, it will automatically become a bug in every
derived class. (Thisis known as the fragile base class problem.)

Module 7: Essentials of Object-Oriented Programming 55

Understanding Inheritance in Object-Oriented

Programming

The graphic on the dide shows a man, awoman, and asmall girl riding a
bicycle. If the man and the woman are the biological parents of the girl, then
she will inherit half of her genes from the man and half of her genes from the
woman.

But thisis not an example of class inheritance. It is implementation mechanism!

Theclassesare Man and Woman. There are two instances of the Woman class
(one with an age attribute of less than 16) and one instance of the Man class.
Thereis no classinheritance. The only possible way there could be class
inheritance in this example is if the Man class and the Woman class sharea
base class Person.

56 Module 7: Essentials of ObjectOriented Programming

Class Hierarchies

plays

m Classes Related by Inheritance Form Class Hierarchies

Musical

Musician

o

String

plays

Instrument

h

Stringed

Musician

Instrument

—=

Violin
Player

o

??7?

plays

Violin | i 2?2

Classes that derive from base classes can themselves be derived from. For
example, in the dide the StringM usician classis derived from the Musician
classbut isitself a base class for the further derived ViolinPlayer class. A
group of classes related by inheritance forms a structure known as a class
hierarchy. As you move up a hierarchy, the classes represent more genera
concepts (generalization); as you move down a hierarchy the classes represent
more specialized concepts (specialization).

The depth of a class hierarchy is the number of levels of inheritance in the
hierarchy. Deeper class hierarchies are harder to use and harder to implement
than shallow class hierarchies. Most programming guidelines recommend that

the depth be limited to between five and seven classes.

The slide depicts two parallel class hierarchies: one for musicians and another
for musical instruments. Creating class hierarchiesis not easy: classes need to
be designed as base classes from the start. Inheritance hierarchies are a so the
dominant feature of frameworks—models of work that can be built on and

extended.

Module 7: Essentials of Object-Oriented Programming 57

Single and Multiple Inheritance

m Single Inheritance: Deriving from One Base Class
= Multiple Inheritance: Deriving from Two or More Base
Classes
Stringed Musical Pluckable
Instrument Instrument
Violin Stringed
Instrument
Violin has a single direct Stringed Instrumenthas
base class two direct base classes

Single inheritance occurs when a class has a single direct base class. In the
example in the dide, the Violin classinherits from one class,
Stringedinstrument, and is an example of single inheritance.
Stringedinstrument derives from two classes, but that is not relevant to the
Violin class. Single inheritance can still be difficult to use wisaly. Itiswell

known that inheritance is one of the most powerful software modeling tools,
and at the same time one of the most misunderstood and misused.

Multiple inheritance occurs when a class has two or more direct base classes. In
the example in the dide, the Stringedl nstrument class derives directly from
two classes, M usicall nstrument and Pluckable, and provides an example of
multiple inheritance. Multiple inheritance offers multiple opportunities to
misuse inheritance! C#, like most modern programming languages (but not
C++), restricts the use of multiple inheritance: you can inherit from as many
interfaces as you want, but you can only inherit from one non-interface (that is,

at most one abstract or concrete class). The terms interface, abstract class, and
concrete class are covered later in this module.

Notice that all forms of inheritance, but multiple inheritance in particular, offer
many views of the same object. For example, a Violin object could be used at

the Violin class level, but it could aso be used at the Stringedl nstrument class
level.

58 Module 7: Essentials of ObjectOriented Programming

Polymorphism

m The Method Name Resides in the Base Class

= The Method Implementations Reside in the Derived
Classes

String Musician A method with no
implementation is
TuneYourlnstrument() called an operation

T

Guitar Player Violin Player

TuneYourlnstrument() TuneYourlnstrument()

Polymorphism literally means many forms or many shapes. It is the concept that

amethod declared in a base class can be implemented in many different waysin
the different derived classes.

Consider the scenario of an orchestra of musicians al tuning their instruments
as they get ready for a concert. Without polymorphism, the conductor needs to
visit each musician in turn, seeing what kind of instrument the musician plays,
and giving detailed instructions about how to tune that particular kind of
instrument. With polymorphism, the conductor just tells each musician, “tune
your instrument.” The conductor does not need to know which particular
instrument each musician plays, just that each musician will respond to the
same request for behavior in a manner appropriate to their particular instrument.
Rather than the conductor being responsible for the knowledge of how to tune
all of the different kinds of instruments, the knowledge is partitioned across the
different kinds of musicians as appropriate: a guitar player knows how to tune a
guitar, aviolin player knows how to tune avialin. In fact, the conductor does
not know how to tune anyof the instruments. This decentralized allocation of
responsibilities also means that new derived classes (such as DrumPlayer) can
be added to the hierarchy without necessarily needing to modify existing
classes (such as the conductor).

There is one problem though. What is the body of the method at the base-class
level? Without knowing which particular kind of instrument a musician plays, it
is impossible to know how to tune the instrument. To manage this, only the
name of the method (and no body) can be declared in the base class. A method
name with no method body is called an operation. One of the ways of denoting
an operation in UML isto useitdics, asis shown in the dide.

Module 7: Essentials of Object-Oriented Programming 59

Abstract Base Classes

m Some Classes Exist Solely to Be Derived From
e |t makes no sense to create instances of these classes

e These classes are abstract

You cannot create instances
Stringed Musician of abstract classes

{ abstract }
You can create instances
of concrete classes

I |

Guitar Player Violin Player
« concrete » « concrete »

il

In atypica class hierarchy, the operation (the name of a method) is declared in
the base class, and the method is implemented in different ways in the different
derived classes. The base class exists solely to introduce the name of the
method into the hierarchy. In particular, the base class operation does not
require an implementation. This makes it vital that the base class not be used as
aregular class. Most importantly, you must not be allowed to create instances
of the base class: if you could, what would happen if you called the operation
that had no implementation? A mechanism is required that makes it impossible
to create instances of these base classes: the base class needs to be marked
abstract.

InaUML design, you can constrain a class as abstract by writing the name of
the classin italics or by placing the word abstract within braces ({ and }). In
contrast, you can use the word concrete or class between guillemets (<< and >>)
as a stereotype to denote in UML aclass that is not abstract, a class that can be
used to create instances. Thisis shown in the dlide. All object-oriented
programming languages have grammatical constructs that implement an

abstract constraint. (Even C++ can use protected constructors.)

Sometimes the creation of an abstract base class is more retrospective: duplicate
common features in the derived classes are factored into a new base class.
However, once again, the base class should be marked abstract because its
purpose is to be derived from, and not to create instances.

60 Module 7: Essentials of ObjectOriented Programming

Interfaces

m Interfaces Contain Only Operations, Not Implementation

Musician Nothing but operations.
« interface » You cannot create instances of an

A interface.

May contain some implementation.

String Musician You cannot create instances of an

{ abstract } abstract class.
Z% Must implement all inherited
Violin Player operations. You can create
« concrete » instances of a concrete class.

Abstract classes and interfaces are alike in that neither can be used to instantiate
objects. However, they differ in that an abstract class may contain some
implementation whereas an interface contains no implementation of any kind;

an interface contains only operations (the names of methods). Y ou could say
that an interface is even more abstract than an abstract class!

In UML, you can depict an interface by using the word interface between
guillemets (<< and >>). All object-oriented programming languages have
grammatical constructs that implement an interface.

Interfaces are important constructs in object-oriented programs. In UML,
interfaces have specific notation and terminology. When you derive from an
interface, it is said that you implement that interface. UML depicts thiswith a
dashed line called realization. When you derive from a non-interface (an
abstract class or a concrete class) it is said that you extend that class. UML
depicts this with a solid line called generalization/specialization.

Place your interfaces at the top of a class hierarchy. The ideais simple: if you
can program to an interface—that is, if you use only those features of an object
that are declared in its interface—your program loses all dependence on the
specific object and its concrete class. In other words, when you program to an
interface, many different objects of many different classes can be used
interchangeably. It is this ability to make changes with no impact that leads to
the obj ect-oriented maxim, “Program to an interface and not to an
implementation.”

Module 7: Essentials of Object-Oriented Programming 61

Early and Late Binding

= Normal Method Calls Are Resolved at Compile Time

m Polymorphic Method Calls Are Resolved at Run Time

Musician
« interface»

— [TuneYourlnstrument() <-|— — — Late Binding

A

=
) I

runtime | i

: Violin Player
I

L—

« concrete »

> | TuneYourlnstrument() < Early Binding

When you make a method call directly on an object, that is, not through a base
class operation, the method call is resolved at compile time. Thisis also known
as early binding or static binding.

When you make a method call indirectly on an object—that is, through a base
class operation—the method call is resolved at run time. Thisis aso known as
late binding or dynamic binding

An example of late binding occurs when a conductor tells all of the musicians
in an orchestra to tune their instruments. By working at the interface level, the
conductor does not need to know (and hence be dependent on) the specific
different kinds of concrete musicians (such as ViolinPlayer). The conductor is

also freed from needing to know when a new class is added to the hierarchy for
anew kind of musician (for example, HarpPlayer).

The flexibility of late binding comes with a physical price and alogica price:
m Physical price

Late bound calls are dightly slower than early bound calls. In effect, the
extrawork that must be performed as a result of alate bound call isto
discover the class of the calling object. Thisis done in an efficient manner
(you would not be able to do it faster yourself), but it is extra work.

m Logical price

With late binding, derived classes can be substituted for their base classes.
An operation call can be made through an interface, and at run time the
derived class object will correctly have its method called. In other words, all
derived classes that implement an interface can act as substitutes for the
interface type. Newcomers to object-oriented programming often fail to
fully appreciate the substitutability aspect of inheritance.

62 Module 7: Essentials of ObjectOriented Programming

Review

m Classes and Objects
= Using Encapsulation
m C# and Object Orientation

m Defining Object-Oriented Systems

1. Explain the concept of abstraction and why it isimportant in software
engineering.

2. What are the two principles of encapsulation?

Module 7: Essentials of Object-Oriented Programming 63

. Describe inheritance in the context of object-oriented programming.

. What is polymorphism? How is it related to early and late binding?

. Describe the differences between interfaces, abstract classes, and concrete
classes.

msdn training

Module 8: Using
Reference-Type Variables

Contents

Overview 1
Using Reference -Type Variables 2
Using Common Reference Types 15
The Object Hierarchy 23
Namespaces in the .NET Framework 29
Lab 8.1: Defining And Using Reference -
Variables 35
Data Conversions 43
Multimedia: Type-Safe Casting 56
Lab 8.2 Converting Data 57
Review 63

This course is based on th