
Copyright © , 2002 by James W Cooper

Introduction to Design Patterns in C#

Copyright © 2002 by James W. Cooper

IBM T J Watson Research Center

February 1, 2002

Copyright © , 2002 by James W Cooper

2

1. What are Design Patterns? .. 21

Defining Design Patterns .. 23

The Learning Process.. 25

Studying Design Patterns .. 26

Notes on Object-Oriented Approaches ... 26

C# Design Patterns.. 27

How This Book Is Organized ... 28

2. Syntax of the C# Language .. 29

Data Types .. 30

Converting Between Numbers and Strings ... 32

Declaring Multiple Variables.. 32

Numeric Constants .. 32

Character Constants .. 33

Variables ... 33

Declaring Variables as You Use Them... 34

Multiple Equals Signs for Initialization.. 34

A Simple C# Program... 34

Compiling & Running This Program.. 36

Arithmetic Operators... 36

Increment and Decrement Operators .. 37

Combining Arithmetic and Assignment Statements 37

Making Decisions in C#.. 38

Comparison Operators .. 39

Copyright © , 2002 by James W Cooper

3

Combining Conditions .. 39

The Most Common Mistake ... 40

The switch Statement .. 41

C# Comments.. 41

The Ornery Ternary Operator ... 42

Looping Statements in C#... 42

The while Loop ... 42

The do-while Statement .. 43

The for Loop ... 43

Declaring Variables as Needed in For Loops 44

Commas in for Loop Statements... 44

How C# Differs From C ... 45

Summary... 46

3. Writing Windows C# Programs ... 47

Objects in C#... 47

Managed Languages and Garbage Collection 48

Classes and Namespaces in C# ... 48

Building a C# Application .. 49

The Simplest Window Program in C# .. 50

Windows Controls .. 54

Labels .. 55

TextBox... 55

CheckBox.. 56

Copyright © , 2002 by James W Cooper

4

Buttons .. 56

Radio buttons .. 56

Listboxes and Combo Boxes .. 57

The Items Collection... 57

Menus.. 58

ToolTips.. 58

Other Windows Controls .. 59

The Windows Controls Program .. 59

Summary... 61

Programs on the CD-ROM ... 47

4. Using Classes and Objects in C# .. 62

What Do We Use Classes For? ... 62

A Simple Temperature Conversion Program.. 62

Building a Temperature Class... 64

Converting to Kelvin... 67

Putting the Decisions into the Temperature Class 67

Using Classes for Format and Value Conversion................................. 68

Handling Unreasonable Values... 71

A String Tokenizer Class .. 71

Classes as Objects ... 73

Class Containment .. 75

Initialization.. 76

Classes and Properties... 77

Copyright © , 2002 by James W Cooper

5

Programming Style in C#.. 79

Summary... 80

Programs on the CD-ROM ... 62

5. Inheritance ... 81

Constructors .. 81

Drawing and Graphics in C#... 82

Using Inheritance .. 84

Namespaces... 85

Creating a Square From a Rectangle ... 86

Public, Private and Protected .. 88

Overloading... 89

Virtual and Override Keywords .. 89

Overriding Methods in Derived Classes ... 90

Replacing Methods Using New .. 91

Overriding Windows Controls .. 92

Interfaces ... 94

Abstract Classes .. 95

Comparing Interfaces and Abstract Classes.. 97

Summary... 99

Programs on the CD-ROM ... 99

6. UML Diagrams .. 100

Inheritance... 102

Interfaces ... 103

Copyright © , 2002 by James W Cooper

6

Composition.. 103

Annotation... 105

WithClass UML Diagrams ... 106

C# Project Files ... 106

7. Arrays, Files and Exceptions in C# ... 107

Arrays.. 107

Collection Objects... 108

ArrayLists.. 108

Hashtables ... 109

SortedLists .. 110

Exceptions ... 110

Multiple Exceptions .. 112

Throwing Exceptions .. 113

File Handling... 113

The File Object.. 113

Reading Text File... 114

Writing a Text File .. 114

Exceptions in File Handling.. 114

Testing for End of File .. 115

A csFile Class.. 116

8. The Simple Factory Pattern... 121

How a Simple Factory Works ... 121

Sample Code ... 122

Copyright © , 2002 by James W Cooper

7

The Two Derived Classes ... 122

Building the Simple Factory... 123

Using the Factory.. 124

Factory Patterns in Math Computation... 125

Programs on the CD-ROM ... 128

Thought Questions .. 128

9. The Factory Method ... 129

The Swimmer Class .. 132

The Events Classes.. 132

Straight Seeding .. 133

Circle Seeding ... 134

Our Seeding Program.. 134

Other Factories .. 135

When to Use a Factory Method .. 136

Thought Question.. 136

Programs on the CD-ROM ... 136

10. The Abstract Factory Pattern.. 137

A GardenMaker Factory ... 137

The PictureBox ... 141

Handling the RadioButton and Button Events 142

Adding More Classes.. 143

Consequences of Abstract Factory.. 144

Thought Question.. 144

Copyright © , 2002 by James W Cooper

8

Programs on the CD-ROM ... 144

11. The Singleton Pattern ... 145

Creating Singleton Using a Static Method.. 145

Exceptions and Instances .. 146

Throwing the Exception.. 147

Creating an Instance of the Class .. 147

Providing a Global Point of Access to a Singleton............................. 148

Other Consequences of the Singleton Pattern..................................... 149

Programs on Your CD-ROM.. 149

12. The Builder Pattern .. 150

An Investment Tracker.. 151

The Stock Factory... 154

The CheckChoice Class .. 155

The ListboxChoice Class .. 156

Using the Items Collection in the ListBox Control 157

Plotting the Data.. 158

The Final Choice ... 159

Consequences of the Builder Pattern.. 160

Thought Questions .. 161

Programs on the CD-ROM ... 161

13. The Prototype Pattern .. 162

Cloning in C# .. 163

Using the Prototype... 163

Copyright © , 2002 by James W Cooper

9

Cloning the Class .. 167

Using the Prototype Pattern .. 170

Dissimilar Classes with the Same Interface 172

Prototype Managers .. 176

Consequences of the Prototype Pattern... 176

Thought Question.. 177

Programs on the CD-ROM ... 177

Summary of Creational Patterns ... 178

14. The Adapter Pattern... 180

Moving Data Between Lists.. 180

Making an Adapter.. 182

Using the DataGrid ... 183

Detecting Row Selection... 186

Using a TreeView ... 186

The Class Adapter ... 188

Two-Way Adapters... 190

Object Versus Class Adapters in C# ... 190

Pluggable Adapters ... 191

Thought Question.. 191

Programs on the CD-ROM ... 191

15. The Bridge Pattern.. 192

The VisList Classes... 195

The Class Diagram.. 196

Copyright © , 2002 by James W Cooper

10

Extending the Bridge .. 197

Windows Forms as Bridges .. 201

Consequences of the Bridge Pattern ... 202

Thought Question.. 203

Programs on the CD-ROM ... 203

16. The Composite Pattern... 204

An Implementation of a Composite .. 205

Computing Salaries... 206

The Employee Classes .. 206

The Boss Class.. 209

Building the Employee Tree ... 210

Self-Promotion.. 213

Doubly Linked Lists ... 213

Consequences of the Composite Pattern... 215

A Simple Composite ... 215

Composites in .NET.. 216

Other Implementation Issues .. 216

Thought Questions .. 216

Programs on the CD-ROM ... 217

17. The Decorator Pattern.. 218

Decorating a CoolButton .. 218

Handling events in a Decorator... 220

Layout Considerations .. 221

Copyright © , 2002 by James W Cooper

11

Control Size and Position.. 221

Multiple Decorators .. 222

Nonvisual Decorators.. 225

Decorators, Adapters, and Composites ... 226

Consequences of the Decorator Pattern.. 226

Thought Questions .. 226

Programs on the CD-ROM ... 227

18. The Façade Pattern... 228

What Is a Database? .. 228

Getting Data Out of Databases.. 230

Kinds of Databases.. 231

ODBC.. 232

Database Structure .. 232

Using ADO.NET... 233

Connecting to a Database.. 233

Reading Data from a Database Table ... 234

dtable = dset.Tables [0];.. 235

Executing a Query... 235

Deleting the Contents of a Table ... 235

Adding Rows to Database Tables Using ADO.NET 236

Building the Façade Classes ... 237

Building the Price Query... 239

Making the ADO.NET Façade.. 239

Copyright © , 2002 by James W Cooper

12

The DBTable class.. 242

Creating Classes for Each Table ... 244

Building the Price Table ... 246

Loading the Database Tables .. 249

The Final Application ... 251

What Constitutes the Façade? ... 252

Consequences of the Façade ... 253

Thought Question.. 253

Programs on the CD-ROM ... 253

19. The Flyweight Pattern .. 254

Discussion... 255

Example Code ... 256

The Class Diagram.. 261

Selecting a Folder.. 261

Handling the Mouse and Paint Events .. 263

Flyweight Uses in C#.. 264

Sharable Objects ... 265

Copy-on-Write Objects... 265

Thought Question.. 266

Programs on the CD-ROM ... 266

20. The Proxy Pattern... 267

Sample Code ... 268

Proxies in C# ... 270

Copyright © , 2002 by James W Cooper

13

Copy-on-Write .. 271

Comparison with Related Patterns .. 271

Thought Question.. 271

Programs on the CD-ROM ... 271

21. Chain of Responsibility... 274

Applicability.. 275

Sample Code ... 276

The List Boxes .. 280

Programming a Help System.. 282

Receiving the Help Command .. 286

A Chain or a Tree? .. 287

Kinds of Requests ... 289

Examples in C# ... 289

Consequences of the Chain of Responsibility 290

Thought Question.. 290

Programs on the CD-ROM ... 291

22. The Command Pattern ... 292

Motivation... 292

Command Objects... 293

Building Command Objects.. 294

Consequences of the Command Pattern ... 297

The CommandHolder Interface .. 297

Providing Undo ... 301

Copyright © , 2002 by James W Cooper

14

Thought Questions .. 309

Programs on the CD-ROM ... 310

23. The Interpreter Pattern.. 311

Motivation... 311

Applicability.. 311

A Simple Report Example .. 312

Interpreting the Language ... 314

Objects Used in Parsing .. 315

Reducing the Parsed Stack .. 319

Implementing the Interpreter Pattern.. 321

The Syntax Tree .. 322

Consequences of the Interpreter Pattern ... 326

Thought Question.. 327

Programs on the CD-ROM ... 327

24. The Iterator Pattern.. 328

Motivation... 328

Sample Iterator Code .. 329

Fetching an Iterator ... 330

Filtered Iterators .. 331

The Filtered Iterator .. 331

Keeping Track of the Clubs .. 334

Consequences of the Iterator Pattern .. 335

Programs on the CD-ROM ... 336

Copyright © , 2002 by James W Cooper

15

25. The Mediator Pattern ... 337

An Example System.. 337

Interactions Between Controls .. 339

Sample Code ... 341

Initialization of the System... 345

Mediators and Command Objects... 345

Consequences of the Mediator Pattern.. 347

Single Interface Mediators.. 348

Implementation Issues... 349

Programs on the CD-ROM ... 349

26. The Memento Pattern... 350

Motivation... 350

Implementation ... 351

Sample Code ... 351

A Cautionary Note .. 358

Command Objects in the User Interface ... 358

Handling Mouse and Paint Events .. 360

Consequences of the Memento ... 361

Thought Question.. 361

Programs on the CD-ROM ... 362

27. The Observer Pattern ... 363

Watching Colors Change .. 364

The Message to the Media .. 367

Copyright © , 2002 by James W Cooper

16

Consequences of the Observer Pattern.. 368

Programs on the CD-ROM ... 369

28. The State Pattern .. 370

Sample Code ... 370

Switching Between States ... 376

How the Mediator Interacts with the State Manager 377

The ComdToolBarButton ... 378

Handling the Fill State .. 381

Handling the Undo List... 382

The VisRectangle and VisCircle Classes.. 385

Mediators and the God Class .. 387

Consequences of the State Pattern.. 388

State Transitions .. 388

Thought Questions .. 389

Programs on the CD-ROM ... 389

29. The Strategy Pattern... 390

Motivation... 390

Sample Code ... 391

The Context... 392

The Program Commands .. 393

The Line and Bar Graph Strategies... 394

Drawing Plots in C#.. 394

Making Bar Plots .. 395

Copyright © , 2002 by James W Cooper

17

Making Line Plots ... 396

Consequences of the Strategy Pattern... 398

Programs on the CD-ROM ... 398

30. The Template Method Pattern .. 399

Motivation... 399

Kinds of Methods in a Template Class ... 401

Sample Code ... 402

Drawing a Standard Triangle .. 404

Drawing an Isosceles Triangle .. 404

The Triangle Drawing Program.. 405

Templates and Callbacks .. 406

Summary and Consequences .. 407

Programs on the CD-ROM ... 408

31. The Visitor Pattern ... 409

Motivation... 409

When to Use the Visitor Pattern ... 411

Sample Code ... 411

Visiting the Classes ... 413

Visiting Several Classes.. 414

Bosses Are Employees, Too ... 416

Catch-All Operations with Visitors .. 417

Double Dispatching... 419

Why Are We Doing This? .. 419

Copyright © , 2002 by James W Cooper

18

Traversing a Series of Classes .. 419

Consequences of the Visitor Pattern... 420

Thought Question.. 420

Programs on the CD-ROM ... 421

32. Bibliography .. 422

Copyright © , 2002 by James W Cooper

19

Preface
This is a practical book that tells you how to write C# programs using
some of the most common design patterns. It also serves as a quick
introduction to programming in the new C# language. The pattern
discussions are structured as a series of short chapters, each describing a
design pattern and giving one or more complete working, visual example
programs that use that pattern. Each chapter also includes UML diagrams
illustrating how the classes interact.

This book is not a "companion" book to the well-known Design Patterns
text. by the "Gang of Four." Instead, it is a tutorial for people who want to
learn what design patterns are about and how to use them in their work.
You do not have to have read Design Patterns to read this book, but when
you are done here you may well want to read or reread it to gain additional
insights.

In this book, you will learn that design patterns are frequently used ways
of organizing objects in your programs to make them easier to write and
modify. You’ll also see that by familiarizing yourself with them, you’ve
gained some valuable vocabulary for discussing how your programs are
constructed.

People come to appreciate design patterns in different ways—from the
highly theoretical to the intensely practical—and when they finally see the
great power of these patterns, an “Aha!” moment occurs. Usually this
moment means that you suddenly have an internal picture of how that
pattern can help you in your work.

In this book, we try to help you form that conceptual idea, or gestalt, by
describing the pattern in as many ways as possible. The book is organized
into six main sections: an introductory description, an introduction to C#,
and descriptions of patterns, grouped as creational, structural, and
behavioral.

Copyright © , 2002 by James W Cooper

20

For each pattern, we start with a brief verbal description and then build
simple example programs. Each of these examples is a visual program that
you can run and examine to make the pattern as concrete a concept as
possible. All of the example programs and their variations are on the
companion CD-ROM, where you run them, change them, and see how the
variations you create work.

Since each of the examples consists of a number of C# files for each of the
classes we use in that example, we provide a C# project file for each
example and place each example in a separate subdirectory to prevent any
confusion. This book is based on the Beta-2 release of Visual Studio.Net.
Any changes between this version and the final product will probably not
be great. Consult the Addison-Wesley website for updates to any example
code.

If you leaf through the book, you’ll see screen shots of the programs we
developed to illustrate the design patterns, providing yet another way to
reinforce your learning of these patterns. In addition, you’ll see UML
diagrams of these programs, illustrating the interactions between classes in
yet another way. UML diagrams are just simple box and arrow
illustrations of classes and their inheritance structure, where arrows point
to parent classes, and dotted arrows point to interfaces. And if you’re not
yet familiar with UML, we provide a simple introduction in the second
chapter.

When you finish this book, you’ll be comfortable with the basics of design
patterns and will be able to start using them in your day-to-day C#
programming work.

James W. Cooper

Nantucket, MA

Wilton, CT

Kona, HI

Copyright © , 2002 by James W Cooper

21

1. What are Design Patterns?

Sitting at your desk in front of your workstation, you stare into space,
trying to figure out how to write a new program feature. You know
intuitively what must be done, what data and what objects come into play,
but you have this underlying feeling that there is a more elegant and
general way to write this program.

In fact, you probably don’t write any code until you can build a picture in
your mind of what the code does and how the pieces of the code interact.
The more that you can picture this “organic whole,” or gestalt, the more
likely you are to feel comfortable that you have developed the best
solution to the problem. If you don’t grasp this whole right away, you may
keep staring out the window for a time, even though the basic solution to
the problem is quite obvious.

In one sense you feel that the more elegant solution will be more reusable
and more maintainable, but even if you are the sole likely programmer,
you feel reassured once you have designed a solution that is relatively
elegant and that doesn’t expose too many internal inelegancies.

One of the main reasons that computer science researchers began to
recognize design patterns is to satisfy this need for elegant, but simple,
reusable solutions. The term “design patterns” sounds a bit formal to the
uninitiated and can be somewhat offputting when you first encounter it.
But, in fact, design patterns are just convenient ways of reusing object-
oriented code between projects and between programmers. The idea
behind design patterns is simple—write down and catalog common
interactions between objects that programmers have frequently found
useful.

One of the frequently cited patterns from early literature on programming
frameworks is the Model-View-Controller framework for Smalltalk
(Krasner and Pope 1988), which divided the user interface problem into
three parts, as shown in Figure 1-1. The parts were referred to as a data

Copyright © , 2002 by James W Cooper

22

model, which contains the computational parts of the program; the view,
which presented the user interface; and the controller, which interacted
between the user and the view.

ViewController

Data Model

Figure 1-1 – The Model-View-Controller framework

Each of these aspects of the problem is a separate object, and each has its
own rules for managing its data. Communication among the user, the GUI,
and the data should be carefully controlled, and this separation of
functions accomplished that very nicely. Three objects talking to each
other using this restrained set of connections is an example of a powerful
design pattern.

In other words, design patterns describe how objects communicate without
become entangled in each other’s data models and methods. Keeping this
separation has always been an objective of good OO programming, and if
you have been trying to keep objects minding their own business, you are
probably using some of the common design patterns already.

Design patterns began to be recognized more formally in the early 1990s
by Erich Gamma (1992), who described patterns incorporated in the GUI
application framework, ET++. The culmination of these discussions and a
number of technical meetings was the publication of the parent book in
this series, Design Patterns—Elements of Reusable Software, by Gamma,
Helm, Johnson, and Vlissides (1995). This book, commonly referred to as
the Gang of Four, or “GoF,” book, has had a powerful impact on those
seeking to understand how to use design patterns and has become an all-

Copyright © , 2002 by James W Cooper

23

time bestseller. It describes 23 commonly occurring and generally useful
patterns and comments on how and when you might apply them. We will
refer to this groundbreaking book as Design Patterns throughout this
book.

Since the publication of the original Design Patterns text, there have been
a number of other useful books published. One closely related book is The
Design Patterns Smalltalk Companion (Alpert, Brown, and Woolf 1998),
which covers the same 23 patterns from the Smalltalk point of view. We’ll
refer to this book throughout as the Smalltalk Companion. Finally, we
recently published Java Design Patterns: a Tutorial, and Visual Basic
Design Patterns, which illustrate all of these patterns in those languages.

Defining Design Patterns
We all talk about the way we do things in our jobs, hobbies, and home life,
and we recognize repeating patterns all the time.

• Sticky buns are like dinner rolls, but I add brown sugar and nut filling
to them.

• Her front garden is like mine, but I grow astilbe in my garden.

• This end table is constructed like that one, but in this one, there are
doors instead of drawers.

We see the same thing in programming when we tell a colleague how we
accomplished a tricky bit of programming so he doesn’t have to recreate it
from scratch. We simply recognize effective ways for objects to
communicate while maintaining their own separate existences.

Some useful definitions of design patterns have emerged as the literature
in this field has expanded.

• “Design patterns are recurring solutions to design problems you see
over and over.” (The Smalltalk Companion)

Copyright © , 2002 by James W Cooper

24

• “Design patterns constitute a set of rules describing how to accomplish
certain tasks in the realm of software development.” (Pree 1994)

• “Design patterns focus more on reuse of recurring architectural design
themes, while frameworks focus on detailed design and
implementation.” (Coplien and Schmidt 1995)

• “A pattern addresses a recurring design problem that arises in specific
design situations and presents a solution to it.” (Buschmann et al.
1996)

• “Patterns identify and specify abstractions that are above the level of
single classes and instances, or of components.” (Gamma et al., 1993)

But while it is helpful to draw analogies to architecture, cabinet making,
and logic, design patterns are not just about the design of objects but about
the interaction between objects. One possible view of some of these
patterns is to consider them as communication patterns.

Some other patterns deal not just with object communication but with
strategies for object inheritance and containment. It is the design of
simple, but elegant, methods of interaction that makes many design
patterns so important.

Design patterns can exist at many levels from very low-level specific
solutions to broadly generalized system issues. There are now hundreds of
patterns in the literature. They have been discussed in articles and at
conferences of all levels of granularity. Some are examples that apply
widely, and a few writers have ascribed pattern behavior to class
groupings that apply to just a single problem (Kurata 1998).

It has become apparent that you don’t just write a design pattern off the
top of your head. In fact, most such patterns are discovered rather than
written. The process of looking for these patterns is called “pattern
mining,” and it is worthy of a book of its own.

The 23 design patterns selected for inclusion in the original Design
Patterns book were those that had several known applications and that

Copyright © , 2002 by James W Cooper

25

were on a middle level of generality, where they could easily cross
application areas and encompass several objects.

The authors divided these patterns into three types: creational, structural,
and behavioral.

• Creational patterns create objects for you rather than having you
instantiate objects directly. This gives your program more flexibility in
deciding which objects need to be created for a given case.

• Structural patterns help you compose groups of objects into larger
structures, such as complex user interfaces or accounting data.

• Behavioral patterns help you define the communication between
objects in your system and how the flow is controlled in a complex
program.

We’ll be looking at C# versions of these patterns in the chapters that
follow, and we will provide at least one complete C# program for each of
the 23 patterns. This way you can examine the code snippets we provide
and also run, edit, and modify the complete working programs on the
accompanying CD-ROM. You’ll find a list of all the programs on the CD-
ROM at the end of each pattern description.

The Learning Process
We have found that regardless of the language, learning design patterns is
a multiple-step process.

1. Acceptance

2. Recognition

3. Internalization

First, you accept the premise that design patterns are important in your
work. Then, you recognize that you need to read about design patterns in
order to know when you might use them. Finally, you internalize the

Copyright © , 2002 by James W Cooper

26

patterns in sufficient detail that you know which ones might help you
solve a given design problem.

For some lucky people, design patterns are obvious tools, and these people
can grasp their essential utility just by reading summaries of the patterns.
For many of the rest of us, there is a slow induction period after we’ve
read about a pattern followed by the proverbial “Aha!” when we see how
we can apply them in our work. This book helps to take you to that final
stage of internalization by providing complete, working programs that you
can try out for yourself.

The examples in Design Patterns are brief and are in C++ or, in some
cases, Smalltalk. If you are working in another language, it is helpful to
have the pattern examples in your language of choice. This book attempts
to fill that need for C# programmers.

Studying Design Patterns
There are several alternate ways to become familiar with these patterns. In
each approach, you should read this book and the parent Design Patterns
book in one order or the other. We also strongly urge you to read the
Smalltalk Companion for completeness, since it provides alternative
descriptions of each of the patterns. Finally, there are a number of Web
sites on learning and discussing design patterns for you to peruse.

Notes on Object-Oriented Approaches
The fundamental reason for using design patterns is to keep classes
separated and prevent them from having to know too much about one
another. Equally important, using these patterns helps you avoid
reinventing the wheel and allows you to describe your programming
approach succinctly in terms other programmers can easily understand.

There are a number of strategies that OO programmers use to achieve this
separation, among them encapsulation and inheritance. Nearly all
languages that have OO capabilities support inheritance. A class that
inherits from a parent class has access to all of the methods of that parent

Copyright © , 2002 by James W Cooper

27

class. It also has access to all of its nonprivate variables. However, by
starting your inheritance hierarchy with a complete, working class, you
may be unduly restricting yourself as well as carrying along specific
method implementation baggage. Instead, Design Patterns suggests that
you always

Program to an interface and not to an implementation.

Putting this more succinctly, you should define the top of any class
hierarchy with an abstract class or an interface, which implements no
methods but simply defines the methods that class will support. Then in all
of your derived classes you have more freedom to implement these
methods as most suits your purposes. And since C#6 only supports
interfaces and does not support inheritance, this is obviously very good
advice in the C# context.

The other major concept you should recognize is that of object
composition. This is simply the construction of objects that contain others:
encapsulation of several objects inside another one. While many beginning
OO programmers use inheritance to solve every problem, as you begin to
write more elaborate programs, you will begin to appreciate the merits of
object composition.Your new object can have the interface that is best for
what you want to accomplish without having all the methods of the parent
classes. Thus, the second major precept suggested by Design Patterns is

Favor object composition over inheritance.

C# Design Patterns
Each of the 23 patterns in Design Patterns is discussed, at least one
working program example for that pattern is supplied. All of the programs
have some sort of visual interface to make them that much more
immediate to you. All of them also use class, interfaces, and object
composition, but the programs themselves are of necessity quite simple so
that the coding doesn’t obscure the fundamental elegance of the patterns
we are describing.

Copyright © , 2002 by James W Cooper

28

However, even though C# is our target language, this isn’t specifically a
book on the C# language. There are lots of features in C# that we don’t
cover, but we do cover most of what is central to C#. You will find,
however, that this is a fairly useful tutorial in object-oriented
programming in C# and provides good overview of how to program in
C#.NET.

How This Book Is Organized
We take up each of the 23 patterns, grouped into the general categories of
creational, structural, and behavioral patterns. Many of the patterns stand
more or less independently, but we do take advantage of already discussed
patterns from time to time. For example, we use the Factory and
Command patterns extensively after introducing them, and we use the
Mediator pattern several times after we introduce it. We use the Memento
again in the State pattern, the Chain of Responsibility in the Interpreter
pattern discussion, and the Singleton pattern in the Flyweight pattern
discussion. In no case do we use a pattern before we have introduced it
formally.

We also take some advantage of the sophistication of later patterns to
introduce new features of C#. For example, the Listbox, DataGrid, and
TreeView are introduced in the Adapter and Bridge patterns. We show
how to paint graphics objects in the Abstract Factory, We introduce the
Enumeration interface in the Iterator and in the Composite, where we also
take up formatting. We use exceptions in the Singleton pattern and discuss
ADO.NET database connections in the Façade pattern. And we show how
to use C# timers in the Proxy pattern.

The overall .NET system is designed for fairly elaborate web-based client-
server interactions. However, in this book, concentrate on object-oriented
programming issues in general rather than how to write Web-based
systems. We cover the core issues of C# programming and show simple
examples of how Design Patterns can help write better programs.

Copyright © , 2002 by James W Cooper

29

2. Syntax of the C# Language

C# has all the features of any powerful, modern language. If you are
familiar with Java, C or C++, you’ll find most of C#’s syntax very
familiar. If you have been working in Visual Basic or related areas, you
should read this chapter to see how C# differs from VB. You’ll quickly
see that every major operation you can carry out in Visual Basic.NET has
a similar operation in C#.

The two major differences between C# and Visual Basic are that C# is
case sensitive (most of its syntax is written in lowercase) and that every
statement in C# is terminated with a semicolon (;). Thus C# statements are
not constrained to a single line and there is no line continuation character.

In Visual Basic, we could write:
y = m * x + b ‘compute y for given x

or we could write:
Y = M * X + b ‘compute y for given x
and both would be treated as the same. The variables Y, M, and X are the
same whether written in upper- or lowercase. In C#, however, case is
significant, and if we write:
y = m * x + b; //all lowercase
or:
Y = m * x + b; //Y differs from y
we mean two different variables: Y and y. While this may seem awkward
at first, having the ability to use case to make distinctions is sometimes
very useful. For example, programmers often capitalize symbols referring
to constants:
Const PI = 3.1416 As Single ‘ in VB
const float PI = 3.1416; // in C#

Copyright © , 2002 by James W Cooper

30

The const modifier in C# means that the named value is a constant and
cannot be modified.

Programmers also sometimes define data types using mixed case and
variables of that data type in lowercase:
class Temperature { //begin definition of
 //new data type
Temperature temp; //temp is of this new type

We’ll classes in much more detail in the chapters that follow.

Data Types
The major data types in C# are shown in Table 2-1.

Table 2-1 - Data types in C#

bool true or false
byte unsigned 8-bit value
short 16-bit integer
int 32-bit integer
long 64-bit integer
float 32-bit floating point
double 64-bit floating point
char 16-bit character
string 16-bit characters

Note that the lengths of these basic types are irrespective of the computer
type or operating system. Characters and strings in C# are always 16 bits
wide: to allow for representation of characters in non-Latin languages. It
uses a character coding system called Unicode, in which thousands of
characters for most major written languages have been defined. You can
convert between variable types in the usual simple ways:

Copyright © , 2002 by James W Cooper

31

• Any wider data type can have a narrower data type (having fewer
bytes) assigned directly to it, and the promotion to the new type will
occur automatically. If y is of type float and j is of type int, then you
can write:

float y = 7.0f; //y is of type float
int j; //j is of type int
y = j; //convert int to float

to promote an integer to a float.

• You can reduce a wider type (more bytes) to a narrower type by
casting it. You do this by putting the data type name in parentheses
and putting it in front of the value you wish to convert:

 j = (int)y; //convert float to integer
You can also write legal statements that contain casts that might fail, such
as
float x = 1.0E45;
int k = (int) x;

If the cast fails, an exception error will occur when the program is
executed.

Boolean variables can only take on the values represented by the reserved
words true and false. Boolean variables also commonly receive values as a
result of comparisons and other logical operations:
int k;
boolean gtnum;

gtnum = (k > 6); //true if k is greater than 6

Unlike C or C++, you cannot assign numeric values to a boolean variable
and you cannot convert between boolean and any other type.

Copyright © , 2002 by James W Cooper

32

Converting Between Numbers and Strings
To make a string from a number or a number from a string, you can use
the Convert methods. You can usually find the right one by simply typing
Convert and a dot in the development enviroment, and the system will
provide you with a list of likely methods.
string s = Convert.ToString (x);
float y = Convert.ToSingle (s);

Note that “Single” means a single-precision floating point number.

Numeric objects also provide various kinds of formatting options to
specify the number of decimal places:
float x = 12.341514325f;

string s =x.ToString ("###.###"); //gives 12.342

Declaring Multiple Variables
You should note that in C#, you can declare a number of variables of the
same type in a single statement:
int i, j;
float x, y, z;

This is unlike VB6, where you had to specify the type of each variable as
you declare it:
Dim i As Integer, j As Integer
Dim x As Single, y As Single, z As Single

Numeric Constants
Any number you type into your program is automatically of type int if it
has no fractional part or type double if it does. If you want to indicate that
it is a different type, you can use various suffix and prefix characters:
float loan = 1.23f; //float
long pig = 45L; //long
int color = 0x12345; //hexadecimal

Copyright © , 2002 by James W Cooper

33

C# also has three reserved word constants: true, false, and null, where null
means an object variable that does not yet refer to any object. We’ll learn
more about objects in the following chapters

Character Constants
You can represent individual characters by enclosing them in single
quotes:
char c = ‘q’;

C# follows the C convention that the white space characters (non printing
characters that cause the printing position to change) can be represented
by preceding special characters with a backslash, as shown in Table 2-2.
Since the backslash itself is thus a special character, it can be represented
by using a double backslash

‘\n’ newline (line feed)
‘\r’ carriage return
‘\t’ tab character
‘\b’ backspace
‘\f’ form feed
‘\0’ null character
‘\”’ double quote
‘\’’ single quote
‘\\’ backslash

Table 2-2 Representations of white space and special characters.

Variables
Variable names in C# can be of any length and can be of any combination
of upper- and lowercase letters and numbers, but like VB, the first
character must be a letter. Note that since case is significant in C#, the
following variable names all refer to different variables:
temperature

Copyright © , 2002 by James W Cooper

34

Temperature
TEMPERATURE
You must declare all C# variables that you use in a program before you
use them:
int j;
float temperature;
boolean quit;

Declaring Variables as You Use Them
C# also allows you to declare variables just as you need them rather than
requiring that they be declared at the top of a procedure:
int k = 5;
float x = k + 3 * y;

This is very common in the object-oriented programming style, where we
might declare a variable inside a loop that has no existence or scope
outside that local spot in the program.

Multiple Equals Signs for Initialization
C#, like C, allows you to initialize a series of variables to the same value
in a single statement
i = j = k = 0;
This can be confusing, so don’t overuse this feature. The compiler will
generate the same code for:
i = 0; j = 0; k = 0;
whether the statements are on the same or successive lines.

A Simple C# Program
Now let’s look at a very simple C# program for adding two numbers
together. This program is a stand-alone program, or application.
using System;
class add2
 {

Copyright © , 2002 by James W Cooper

35

 static void Main(string[] args)
 {
 double a, b, c; //declare variables
 a = 1.75; //assign values
 b = 3.46;
 c = a + b; //add together
 //print out sum
 Console.WriteLine ("sum = " + c);
 }
 }
This is a complete program as it stands, and if you compile it with the C#
compiler and run it, it will print out the result:
sum = 5.21

Let’s see what observations we can make about this simple program: This
is the way I want it.

1. You must use the using statement to define libraries of C# code
that you want to use in your program. This is similar to the imports
statement in VB, and similar to the C and C++ #include directive.

2. The program starts from a function called main and it must have
exactly the form shown here:

 static void Main(string[] args)
3. Every program module must contain one or more classes.

4. The class and each function within the class is surrounded by
braces { }.

5. Every variable must be declared by type before or by the time it is
used. You could just as well have written:

double a = 1.75;
double b = 3.46;
double c = a + b;

Copyright © , 2002 by James W Cooper

36

6. Every statement must terminate with a semicolon. Statements can
go on for several lines but they must terminate with the semicolon.

7. Comments start with // and terminate at the end of the line.

8. Like most other languages (except Pascal), the equals sign is used
to represent assignment of data.

9. You can use the + sign to combine two strings. The string “sum =”
is concatenated with the string automatically converted from the
double precision variable c.

10. The writeLine function, which is a member of the Console class in
the System namespace, can be used to print values on the screen.

Compiling & Running This Program
This simple program is called add2.cs. You can compile and execute it by
in the development enviroment by just pressing F5.

Arithmetic Operators
The fundamental operators in C# are much the same as they are in most
other modern languages. Table 2-3 lists the fundamental operators in C#

+ addition
- subtraction, unary minus
* multiplication
/ division
% modulo (remainder after integer division)

Table 2-3: C# arithmetic operators

The bitwise and logical operators are derived from C rather (see Table
2-4). Bitwise operators operate on individual bits of two words, producing
a result based on an AND, OR or NOT operation. These are distinct from
the Boolean operators, because they operate on a logical condition which
evaluates to true or false.

Copyright © , 2002 by James W Cooper

37

& bitwise And
| bitwise Or
^ bitwise exclusive Or
~ one’s complement
>> n right shift n places
<< n left shift n places

Table 2-4 Logical Operators in C#

Increment and Decrement Operators
Like Java and C/C++ , C# allows you to express incrementing and
decrementing of integer variables using the ++and -- operators. You can
apply these to the variable before or after you use it:
i = 5;
j = 10;
x = i++; //x = 5, then i = 6
y = --j; //y = 9 and j = 9
z = ++i; //z = 7 and i = 7

Combining Arithmetic and Assignment Statements
C# allows you to combine addition, subtraction, multiplication, and
division with the assignment of the result to a new variable:
x = x + 3; //can also be written as:
x += 3; //add 3 to x; store result in x

//also with the other basic operations:
temp *= 1.80; //mult temp by 1.80
z -= 7; //subtract 7 from z
y /= 1.3; //divide y by 1.3

This is used primarily to save typing; it is unlikely to generate any
different code. Of course, these compound operators (as well as the ++
and – operators) cannot have spaces between them.

Copyright © , 2002 by James W Cooper

38

Making Decisions in C#
The familiar if-then-else of Visual Basic, Pascal and Fortran has its analog
in C#. Note that in C#, however, we do not use the then keyword:
if (y > 0)
 z = x / y;
Parentheses around the condition are required in C#. This format can be
somewhat deceptive; as written, only the single statement following the if
is operated on by the if statement. If you want to have several statements
as part of the condition, you must enclose them in braces:
if (y > 0)
 {
 z = x / y;
 Console.writeLine(“z = “ + z);
 }
By contrast, if you write:
if (y > 0)
 z = x / y;
 Console.writeLine(“z = “ + z);

the C# program will always print out z= and some number, because the if
clause only operates on the single statement that follows. As you can see,
indenting does not affect the program; it does what you say, not what you
mean.

If you want to carry out either one set of statements or another depending
on a single condition, you should use the else clause along with the if
statement:
if (y > 0)
 z = x / y;
else
 z = 0;

and if the else clause contains multiple statements, they must be enclosed
in braces, as in the code above.

Copyright © , 2002 by James W Cooper

39

There are two or more accepted indentation styles for braces in C#
programs:
if (y >0)

{
 z = x / y;
 }
The other style, popular among C programmers, places the brace at the
end of the if statement and the ending brace directly under the if:
if (y > 0) {
 z = x / y;
 Console.writeLine(“z=” + z);
}
You will see both styles widely used, and of course, they compile to
produce the same result.

Comparison Operators
Above, we used the > operator to mean “greater than.” Most of these
operators are the same in C# as they are in C and other languages. In Table
2-5, note particularly that “is equal to” requires two equal signs and that
“not equal” is different than in FORTRAN or VB.

> greater than
< less than
== is equal to
!= is not equal to
>= greater than or equal to
<= less than or equal to

Table 2-5: Comparison Operators in C#

Combining Conditions
When you need to combine two or more conditions in a single if or other
logical statement, you use the symbols for the logical and, or, and not
operators (see Table 3-6). These are totally different than any other

Copyright © , 2002 by James W Cooper

40

languages except C/C++ and are confusingly like the bitwise operators
shown in Table 2-6.

&& logical And
|| logical Or
~ logical Not

Table 2-6 Boolean operators in C#

So, while in VB.Net we would write:
If (0 < x) And (x <= 24) Then
 Console.writeLine (“Time is up”)

in C# we would write:
if ((0 < x) && (x <= 24))
 Console.writeLine(“Time is up”);

The Most Common Mistake
Since the is equal to operator is == and the assignment operator is = they
can easily be misused. If you write
if (x = 0)
 Console.writeLine(“x is zero”);
instead of:
if (x == 0)
 Console.writeLine(“x is zero”);
you will get the confusing compilation error, “Cannot implcitly convert
double to bool,” because the result of the fragment:
 (x = 0)

is the double precision number 0, rather than a Boolean true or false. Of
course, the result of the fragment:
(x == 0)
is indeed a Boolean quantity and the compiler does not print any error
message.

Copyright © , 2002 by James W Cooper

41

The switch Statement
The switch statement allows you to provide a list of possible values for a
variable and code to execute if each is true. In C#, however, the variable
you compare in a switch statement must be either an integer or a character
type and must be enclosed in parentheses:

switch (j) {
 case 12:
 System.out.println(“Noon”);
 break;
 case 13:
 System.out.println(“1 PM”); ”
 break;
 default:
 System.out.println(“some other time...”);
}
Note particularly that a break statement must follow each case in the
switch statement. This is very important, as it says “go to the end of the
switch statement.” If you leave out the break statement, the code in the
next case statement is executed as well.

C# Comments
As you have already seen, comments in C# start with a double forward
slash and continue to the end of the current line. C# also recognizes C-
style comments which begin with /* and continue through any number of
lines until the */ symbols are found.
//C# single-line comment
/*other C# comment style*/
/* also can go on
for any number of lines*/

You can’t nest C# comments; once a comment begins in one style it
continues until that style concludes.

Your initial reaction as you are learning a new language may be to ignore
comments, but they are just as important at the outset as they are later. A
program never gets commented at all unless you do it as you write it, and

Copyright © , 2002 by James W Cooper

42

if you ever want to use that code again, you’ll find it very helpful to have
some comments to help you in deciphering what you meant for it to do.
For this reason, many programming instructors refuse to accept programs
that are not thoroughly commented.

The Ornery Ternary Operator
C# has unfortunately inherited one of C/C++ and Java’s most opaque
constructions, the ternary operator. The statement:
if (a > b)
 z = a;
else
 z = b;
can be written extremely compactly as:
z = (a > b) ? a : b;
The reason for the original introduction of this statement into the C
language was, like the post- increment operators, to give hints to the
compiler to allow it to produce more efficient code, and to reduce typing
when terminals were very slow. Today, modern compilers produce
identical code for both forms given above, and the necessity for this
turgidity is long gone. Some C programmers coming to C# find this an
“elegant” abbreviation, but we don’t agree and will not be using it in this
book.

Looping Statements in C#
C# has four looping statements: while, do-while, for and foreach. Each of
them provides ways for you to specify that a group of statements should
be executed until some condition is satisfied.

The while Loop
The while loop is easy to understand. All of the statements inside the
braces are executed repeated as long as the condition is true.
i = 0;
while (i < 100)

Copyright © , 2002 by James W Cooper

43

 {
 x = x + i++;
 }
Since the loop is executed as long as the condition is true, it is possible
that such a loop may never be executed at all, and of course, if you are not
careful, that such a while loop will never be completed.

The do-while Statement
The C# do-while statement is quite analogous, except that in this case the
loop must always be executed at least once, since the test is at the bottom
of the loop:
i = 0;
do {
 x += i++;
}
while (i < 100);

The for Loop
The for loop is the most structured. It has three parts: an initializer, a
condition, and an operation that takes place each time through the loop.
Each of these sections are separated by semicolons:
for (i = 0; i< 100; i++) {
 x += i;
 }
Let’s take this statement apart:
for (i = 0; //initialize i to 0
 i < 100 ; //continue as long as i < 100
 i++) //increment i after every pass

In the loop above, i starts the first pass through the loop set to zero. A test
is made to make sure that i is less than 100 and then the loop is executed.
After the execution of the loop, the program returns to the top, increments
i and again tests to see if it is less than 100. If it is, the loop is again
executed.

Copyright © , 2002 by James W Cooper

44

Note that this for loop carries out exactly the same operations as the while
loop illustrated above. It may never be executed and it is possible to write
a for loop that never exits.

Declaring Variables as Needed in For Loops
One very common place to declare variables on the spot is when you need
an iterator variable for a for loop. You can simply declare that variable
right in the for statement, as follows:
for (int i = 0; i < 100; i++)

Such a loop variable exists or has scope only within the loop. It vanishes
once the loop is complete. This is important because any attempt to
reference such a variable once the loop is complete will lead to a compiler
error message. The following code is incorrect:
for (int i =0; i< 5; i++) {
 x[i] = i;
}

//the following statement is in error
//because i is now out of scope
System.out.println(“i=” + i);

Commas in for Loop Statements
You can initialize more than one variable in the initializer section of the
C# for statement, and you can carry out more than one operation in the
operation section of the statement. You separate these statements with
commas:
for (x=0, y= 0, i =0; i < 100; i++, y +=2)
 {
 x = i + y;
 }
It has no effect on the loop’s efficiency, and it is far clearer to write:
x = 0;
y = 0;
for (i = 0; i < 100; i++)
 {

Copyright © , 2002 by James W Cooper

45

 x = i + y;
 y += 2;
 }
It is possible to write entire programs inside an overstuffed for statement
using these comma operators, but this is only a way of obfuscating the
intent of your program.

How C# Differs From C
If you have been exposed to C, or if you are an experienced C
programmer, you might be interested in the main differences between C#
and C:

1. C# does not usually make use of pointers. You can only increment,
or decrement a variable as if it were an actual memory pointer
inside a special unsafe block.

2. You can declare variables anywhere inside a method you want to;
they don’t have to be at the beginning of the method.

3. You don’t have to declare an object before you use it; you can
define it just as you need it.

4. C# has a somewhat different definition of the struct types, and does
not support the idea of a union at all.

5. C# has enumerated types, which allow a series of named values,
such as colors or day names, to be assigned sequential numbers, but
the syntax is rather different.

6. C# does not have bitfields: variables that take up less than a byte of
storage.

7. C# does not allow variable length argument lists. You have to
define a method for each number and type of argument. However

Copyright © , 2002 by James W Cooper

46

C# allows for the last argument of a function to be a variable
parameter array.

Summary
In this brief chapter, we have seen the fundamental syntax elements of the
C# language. Now that we understand the tools, we need to see how to use
them. In the chapters that follow, we’ll take up objects and show how to
use them and how powerful they can be.

Copyright © , 2002 by James W Cooper

47

3. Writing Windows C# Programs

The C# language has its roots in C++, Visual Basic and Java. Both C# and
VB.Net utilize the same libraries and compile to the same underlying
code. Both are managed languages with garbage collection of unused
variable space and both can be used interchangeably. Both also use classes
with method names that are very similar to those in Java, so if you are
familiar with Java, you will have no trouble with C#.

Objects in C#
In C#, everything is treated as an object. Objects contain data and have
methods that operate on them. For example, strings are now objects. They
have methods such as
Substring
ToLowerCase
ToUpperCase
IndexOf
Insert
and so forth.

Integers, float and double variables are also objects, and have methods.
string s;
float x;
x = 12.3;
s = x.ToString();

Note that conversion from numerical types is done using these methods
rather than external functions. If you want to format a number as a
particular kind of string, each numeric type has a Format method.

Copyright © , 2002 by James W Cooper

48

Managed Languages and Garbage Collection
C# and VB.Net are both managed languages. This has two major
implications. First, both are compiled to an intermediate low-level
language, and a common language runtime (CLR) is used to execute this
compiled code, perhaps compiling it further first. So, not only do C# and
VB.Net share the same runtime libraries, they are to a large degree two
sides of the same coin and two aspects of the same language system. The
differences are that VB7 is more Visual Basic like and a bit easier for VB
programmers to learn and use. C# on the other hand is more C++ and
Java- like, and may appeal more to programmers already experienced in
those languages.

The other major implication is that managed languages are garbage-
collected. Garbage collected languages take care of releasing unused
memory: you never have to be concerned with this. As soon as the garbage
collection system detects that there are no more active references to a
variable, array or object, the memory is released back to the system. So
you no longer need to worry as much about running out of memory
because you allocated memory and never released it. Of course, it is still
possible to write memory-eating code, but for the most part you do not
have to worry about memory allocation and release problems.

Classes and Namespaces in C#
All C# programs are composed entirely of classes. Visual windows forms
are a type of class, as we will see that all the program features we’ll write
are composed of classes. Since everything is a class, the number of names
of class objects can get to be pretty overwhelming. They have therefore
been grouped into various functional libraries that you must specifically
mention in order to use the functions in these libraries.

Under the covers these libraries are each individual DLLs. However, you
need only refer to them by their base names using the using statement, and
the functions in that library are available to you.
using System;

Copyright © , 2002 by James W Cooper

49

using System.Drawing;
using System.Collections;

Logically, each of these libraries represents a different namespace. Each
namespace is a separate group of class and method names which the
compiler will recognize after you declare that name space. You can use
namespaces that contain identically named classes or methods, but you
will only be notified of a conflict if you try to use a class or method that is
duplicated in more than one namespace.

The most common namespace is the System namespace, and it is imported
by default without your needing to declare it. It contains many of the most
fundamental classes and methods that C# uses for access to basic classes
such as Application, Array, Console, Exceptions, Objects, and standard
objects such as byte, bool, string. In the simplest C# program we can
simply write a message out to the console without ever bringing up a
window or form:
class Hello {
 static void Main(string[] args) {
 Console.WriteLine ("Hello C# World");
 }
}
This program just writes the text “Hello C# World” to a command (DOS)
window. The entry point of any program must be a Main method, and it
must be declared as static.

Building a C# Application
Let’s start by creating a simple console application: that is, one without
any windows, that just runs from the command line. Start the Visual
Studio.NET program, and select File |New Project. From the selection
box, choose C# Console application as shown in Figure 3-1.

Copyright © , 2002 by James W Cooper

50

Figure 3-1 – The New Project selection window. Selecting a console application.

This will bring up a module, with Main already filled in. You can type in
the rest of the code as follows:
 Console.WriteLine ("Hello C# World");

You can compile this and run it by pressing F5.

When you compile and run the program by pressing F5, a DOS window
will appear and print out the message “Hello C# World” and exit.

The Simplest Window Program in C#
C# makes it very easy to create Windows GUI programs. In fact, you can
create most of it using the Windows Designer. To do this, start Visual
Studio.NET and select File|New project, and select C# Windows
Application. The default name (and filename) is WindowsApplication1,
but you can change this before you close the New dialog box. This brings
up a single form project, initially called Form1.cs. You can then use the
Toolbox to insert controls, just as you can in Visual Basic.

Copyright © , 2002 by James W Cooper

51

The Windows Designer for a simple form with one text field and one
button is shown in Figure 3-2.

Figure 3-2 – The Windows designer in Visual Studio.NET

You can draw the controls on the form by selecting the TextBox from the
Toolbox and dragging it onto the form, and then doing the same with the
button. Then to create program code, we need only double click on the
controls. In this simple form, we want to click on the “Hello” button and
it copies the text from the text field to the textbox we called txHi, and
clears the text field. So, in the designer, we double click on that button and
the code below is automatically generated:
private void btHello_Click(object sender, EventArgs e) {
txHi.Text ="Hello there";
}

Note that the Click routine passes in a sender object and an event object
that you can query for further information. Under the covers, it also
connects the event to this method. The running program is shown in
Figure 3-3.

Copyright © , 2002 by James W Cooper

52

Figure 3-3 – The SimpleHello form after clicking the Say Hello button.

While we only had to write one line of code inside the above subroutine, it
is instructive to see how different the rest of the code is for this program.
We first see that several libraries of classes are imported so the program
can use them:
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

Most significant is the Windows.Forms library, which is common to all
the .Net languages.

The code the designer generates for the controls is illuminating. And it is
right there in the open for you to change if you want. Essentially, each
control is declared as a variable and added to a container. Here are the
control declarations. Note the event handler added to the btHello.Click
event.
private System.Windows.Forms.TextBox txHi;
private System.Windows.Forms.Button btHello;

private void InitializeComponent() {
 this.btHello = new System.Windows.Forms.Button();
 this.txHi = new System.Windows.Forms.TextBox();

Copyright © , 2002 by James W Cooper

53

 this.SuspendLayout();
 //
 // btHello
 //
 this.btHello.Location = new System.Drawing.Point(80,
112);
 this.btHello.Name = "btHello";
 this.btHello.Size = new System.Drawing.Size(64, 24);
 this.btHello.TabIndex = 1;
 this.btHello.Text = "Hello";
 this.btHello.Click += new
EventHandler(this.btHello_Click);
 //
 // txHi
 //
 this.txHi.Location = new System.Drawing.Point(64,
48);
 this.txHi.Name = "txHi";
 this.txHi.Size = new System.Drawing.Size(104, 20);
 this.txHi.TabIndex = 0;
 this.txHi.Text = "";
 //
 // Form1
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5,
13);
 this.ClientSize = new System.Drawing.Size(240, 213);
 this.Controls.AddRange(

new System.Windows.Forms.Control[] {
 this.btHello,

 this.txHi});
 this.Name = "Form1";
 this.Text = "Hello window";
 this.ResumeLayout(false);

 }
If you change this code manually instead of using the property page, the
window designer may not work any more. We’ll look more at the power
of this system after we discuss objects and classes in the following
chapter.

Copyright © , 2002 by James W Cooper

54

Windows Controls
All of the basic Windows controls work in much the same way as the
TextBox and Button we have used so far. Many of the more common ones
are shown in the Windows Controls program in Figure 3-4.

Figure 3-4 – A selection of basic Windows controls.

Each of these controls has properties such as Name, Text, Font, Forecolor
and Borderstyle that you can change most conveniently using the
properties window shown at the right of Figure 3-2. You can also change
these properties in your program code as well. The Windows Form class
that the designer generates always creates a Form1 constructor that calls
an InitializeComponent method like the one above. One that method has
been called, the rest of the controls have been created and you can change
their properties in code. Generally, we will create a private init() method
that is called right after the InitializeComponent method, in which we add
any such additional initialization code.

Copyright © , 2002 by James W Cooper

55

Labels
A label is a field on the window form that simply displays text. Usually
programmers use this to label the purpose of text boxes next to them. You
can’t click on a label or tab to it so it obtains the focus. However, if you
want, you can change the major properties in Table 3-1 either in the
designer or at runtime.

Property Value
Name At design time only
BackColor A Color object
BorderStyle None, FixedSingle or Fixed3D
Enabled true or false. If false , grayed out.
Font Set to a new Font object
ForeColor A Color object
Image An image to be displayed within the label
ImageAlign Where in the label to place the image
Text Text of the label
Visible true or false

Table 3-1 –Properties for the Label Control

TextBox
The TextBox is a single line or multiline editable control. You can set or
get the contents of that box using its Text property:
TextBox tbox = new TextBox();
tbox.Text = "Hello there";
In addition to the properties in Table 3-1, the TextBox also supports the
properties in Table 3-2.

Property Value
Lines An array of strings, one per line
Locked If true, you can’t type into the text box
Multiline true or false
ReadOnly Same as locked. If true, you can still

select the text and copy it, or set values
from within code.

Copyright © , 2002 by James W Cooper

56

from within code.
WordWrap true or false

Table 3-2 – TextBox properties

CheckBox
A CheckBox can either be checked or not, depending on the value of the
Checked property. You can set or interrogate this property in code as well
as in the designer. You can create an event handler to catch the event
when the box is checked or unchecked, by double clicking on the
checkbox in the design mode.

CheckBoxes have a Appearance property which can be set to
Appearance.Normal or Appearance.Button. When the appearance is set to
the Button value, the control appears acts like a toggle button that stays
depressed when you click on it and becomes raised when you click on it
again. All the properties in Table 3-1 apply as well.

Buttons
A Button is usually used to send a command to a program. When you
click on it, it causes an event that you usually catch with an event handler.
Like the CheckBox, you create this event handler by double clicking on
the button in the designer. All of the properties in Table 3-1 can be used as
well.

Buttons are also frequently shown with images on them. You can set the
button image in the designer or at run time. The images can be in bmp, gif,
jpeg or icon files.

Radio buttons
Radio buttons or option buttons are round buttons that can be selected by
clicking on them. Only one of a group of radio buttons can be selected at a
time. If there is more than one group of radio buttons on a window form,
you should put each set of buttons inside a Group box as we did in the
program in Figure 3-1. As with checkboxes and buttons, you can attach

Copyright © , 2002 by James W Cooper

57

events to clicking on these buttons by double clicking on them in the
designer. Radio buttons do not always have events associated with them.
Instead, programmers check the Checked property of radio buttons when
some other event, like an OK button click occurs.

Listboxes and Combo Boxes
Both list boxes and Combo boxes contain an Items array of the elements
in that list. A ComboBox is a single line drop-down, that programmers use
to save space when selections are changed less frequently. ListBoxes
allow you to ser properties that allow multiple selections, but
ComboBoxes do not. Some of their properties include those in Table 3-3.

Property Value
Items A collection of items in the list
MultiColumn If true, the ColumnWidth property

describes the width of each column.
SelectionMode One, MultiSimple or MultiExtended. If

set to MultiSimple, you can select or
deselect multiple items with a mouse
click. If set to MultiExtended, you can
select groups of adjacent items with a
mouse.

SelectedIndex Index of selected item
SelectedIndices Returns collection of selections when

list box selection mode is multiple.
SelectedItem Returns the item selected

Table 3-3 –The ListBox and ComboBox properties. SelectionMode and
MultiColumn do not apply to combo boxes.

The Items Collection
You use the Items collection in the ListBox and ComboBox to add and
remove elements in the displayed list. It is essentially an ArrayList, as we
discuss in Chapter 8. The basic methods are shown in Table 3-4.

Method Value

Copyright © , 2002 by James W Cooper

58

Add Add object to list
Count Number in list
Item[i] Element in collection
RemoveAt(i) Remove element i

Table 3-4 – Methods for the Items Collection

If you set a ListBox to a multiple selection mode, you can obtain a
collection of the selected items or the selected indexes by
ListBox.SelectedIndexCollection it =

new ListBox.SelectedIndexCollection (lsCommands);
ListBox.SelectedObjectCollection so =

new ListBox.SelectedObjectCollection (lsCommands);

where lsCommands is the list box name.

Menus
You add menus to a window by adding a MainMenu controls to the
window form. Then, you can the menu control and edit its drop-down
names and new main item entries as you see in Figure 3-5.

Figure 3-5 – Adding a menu to a form.

As with other clickable controls, double clicking on one in the designer
creates an event whose code you can fill in.

ToolTips
A ToolTip is a box that appears when your mouse pointer hovers over a
control in a window. This feature is activated by adding an (invisible)
ToolTip control to the form, and then adding specific tool tips control and

Copyright © , 2002 by James W Cooper

59

text combinations to the control. In our example in Figure 3-4, we add
tooltips text to the button and list box using the tips control we have added
to the window.
tips.SetToolTip (btPush, "Press to add text to list box");
tips.SetToolTip (lsCommands, "Click to copy to text box");

This is illustrated in Figure 3-6.

Figure 3-6 – A ToolTip over a button.

Other Windows Controls
We discuss how to use the Datagr id and TreeList in the Adapter and
Bridge pattern chapters, and the Toolbar in the State and Strategey pattern
chapters.

The Windows Controls Program
This program, shown in Figure 3-4, has the following features. The text in
the label changes whenever you change the

• Font size from the combo box

• Font color from the radio buttons

• Font bold from the check box.

For the check box, we create a new font which is either bold or not
depending on the state of the check box:
private void ckBold_CheckedChanged(object sender, EventArgs e) {
 if (ckBold.Checked) {
 lbText.Font =new Font ("Arial",

fontSize,FontStyle.Bold);
 }

Copyright © , 2002 by James W Cooper

60

 else {
 lbText.Font = new Font ("Arial", fontSize);
 }
}
When we create the form, we add the list of font sizes to the combo box:
private void init() {
 fontSize = 12;
 cbFont.Items.Add ("8");
 cbFont.Items.Add ("10");
 cbFont.Items.Add ("12");
 cbFont.Items.Add ("14");
 cbFont.Items.Add ("18");
 lbText.Text ="Greetings";
 tips.SetToolTip (btPush, "Press to add text to list box");
 tips.SetToolTip (lsCommands, "Click to copy to text box");
}

When someone clicks on a font size in the combo box, we convert that
text to a number and create a font of that size. Note that we just call the
check box changing code so we don’t have to duplicate anything.
private void cbFont_SelectedIndexChanged(

object sender, EventArgs e) {
 fontSize= Convert.ToInt16 (cbFont.SelectedItem);
 ckBold_CheckedChanged(null, null);
}
For each radio button, we click on it and insert color-changing code:
private void opGreen_CheckedChanged(object sender, EventArgs e) {
 lbText.ForeColor =Color.Green;
}

private void opRed_CheckedChanged(object sender, EventArgs e) {
 lbText.ForeColor =Color.Red ;
}

private void opBlack_CheckedChanged(object sender, EventArgs e) {
 lbText.ForeColor =Color.Black ;
}

When you click on the ListBox, it copies that text into the text box, by
getting the selected item as an object and converting it to a string.

Copyright © , 2002 by James W Cooper

61

private void lsCommands_SelectedIndexChanged(
object sender, EventArgs e) {

 txBox.Text = lsCommands.SelectedItem.ToString () ;
}

Finally, when you click on the File | Exit menu item, it closes the form,
and hence the program:
private void menuItem2_Click(object sender, EventArgs e) {
 this.Close ();
}

Summary
Now that we’ve seen the basics of how you write programs in C#, we are
ready to talk more about objects and OO programming in the chapters that
follow.

Programs on the CD-ROM

Console Hello \IntroCSharp\Hello

Windows hello \IntroCSharp\SayHello

Windows controls \IntroCSharp\WinControls

Copyright © , 2002 by James W Cooper

62

4. Using Classes and Objects in C#

What Do We Use Classes For?
All C# programs are composed of classes. The Windows forms we have
just seen are classes, derived from the basic Form class and all the other
programs we will be writing are made up exclusively of classes. C# does
not have the concept of global data modules or shared data that is not part
of classes.

Simply put, a class is a set of public and private methods and private data
grouped inside named logical units. Usually, we write each class in a
separate file, although this is not a hard and fast rule. We have already
seen that these Windows forms are classes, and we will see how we can
create other useful classes in this chapter.

When you create a class, it is not a single entity, but a master you can
create copies or instances of, using the new keyword. When we create
these instances, we pass some initializing data into the class using its
constructor. A constructor is a method that has the same name as the class
name, has no return type and can have zero or more parameters that get
passed into each instance of the class. We refer to each of these instances
as objects.

In the sections that follow we’ll create some simple programs and use
some instances of classes to simplify them.

A Simple Temperature Conversion Program
Suppose we wanted to write a visual program to convert temperatures
between the Celsius and Fahrenheit temperature scales. You may
remember that water freezes at zero on the Celsius scale and boils at 100
degrees, while on the Fahrenheit scale, water freezes at 32 and boils at
212. From these numbers you can quickly deduce the conversion formula
that you may have forgotten.

Copyright © , 2002 by James W Cooper

63

The difference between freezing and boiling on once scale is 100 and on
the other 180 degrees or 100/180 or 5/9. The Fahrenheit scale is “offset”
by 32, since water freezes at 32 on its scale. Thus,

C = (F – 32)* 5/9

and

F = 9/5 * C + 32

In our visual program, we’ll allow the user to enter a temperature and
select the scale to convert it to as we see in Figure 4-1.

Figure 4-1– Converting 35 Celsius to 95 Fahrenheit with our visual interface.

Using the visual builder provided in Visual Studio.NET, we can draw the
user interface in a few seconds and simply implement routines to be called
when the two buttons are pressed. If we double click on the Convert
button, the program generates the btConvert_Click method. You can fill it
in to have it convert the values between temperature scales:
private void btCompute_Click(object sender,

System.EventArgs e) {
 float temp, newTemp;
 //convert string to input value

Copyright © , 2002 by James W Cooper

64

 temp = Convert.ToSingle (txEntry.Text);
 //see which scale to convert to
 if(opFahr.Checked)
 newTemp = 9*temp/5 + 32;
 else
 newTemp = 5*(temp-32)/9;
 //put result in label text
 lbResult.Text =newTemp.ToString ();
 txEntry.Text =""; //clear entry field
}

The above program is extremely straightforward and easy to understand,
and is typical of how some simple C# programs operate. However, it has
some disadvantages that we might want to improve on.

The most significant problem is that the user interface and the data
handling are combined in a single program module, rather than being
handled separately. It is usually a good idea to keep the data manipulation
and the interface manipulation separate so that changing interface logic
doesn’t impact the computation logic and vice-versa.

Building a Temperature Class
A class in C# is a module that can contain both public and private
functions and subroutines, and can hold private data values as well. These
functions and subroutines in a class are frequently referred to collectively
as methods.

Class modules allow you to keep a set of data values in a single named
place and fetch those values using get and set functions, which we then
refer to as accessor methods.

You create a class module from the C# integrated development
environment (IDE) using the menu item Project | Add class module. When
you specify a filename for each new class, the IDE assigns this name as
the class name as well and generates an empty class with an empty
constructor. For example, if we wanted to create a Temperature class, the
IDE would generate the following code for us:

Copyright © , 2002 by James W Cooper

65

namespace CalcTemp
{

/// <summary>
/// Summary description for Temperatur.
/// </summary>
public class Temperature
{

 public Temperature()
 {

 //
 // TODO: Add constructor logic here

 //
 }

}
}
If you fill in the “summary description” special comment, that text will
appear whenever your mouse hovers over an instance of that class. Note
that the system generates the class and a blank constructor. If your class
needs a constructor with parameters, you can just edit the code.

Now, what we want to do is with this class is to move all of the
computation and conversion between temperature scales into this new
Temperature class. One way to design this class is to rewrite the calling
programs that will use the class module first. In the code sample below,
we create an instance of the Temperature class and use it to do whatever
conversions are needed:
private void btCompute_Click(object sender, System.EventArgs e) {
 string newTemp;
 //use input value to create instance of class
 Temperature temp = new Temperature (txEntry.Text);
 //use radio button to decide which conversion
 newTemp = temp.getConvTemp (opCels.Checked);

 //get result and put in label text
 lbResult.Text =newTemp.ToString ();
 txEntry.Text =""; //clear entry field
}

The actual class is shown below. Note that we put the string value of the
input temperature into the class in the constructor, and that inside the class
it gets converted to a float. We do not need to know how the data are

Copyright © , 2002 by James W Cooper

66

represented internally, and we could change that internal representation at
any time.
public class Temperature {
 private float temp, newTemp;
 //-------------
 //constructor for class
 public Temperature(string thisTemp) {
 temp = Convert.ToSingle(thisTemp);
 }
 //-------------
 public string getConvTemp(bool celsius){
 if (celsius)
 return getCels();
 else
 return getFahr();
 }
 //-------------
 private string getCels() {
 newTemp= 5*(temp-32)/9;
 return newTemp.ToString() ;
 }
 //-------------
 private string getFahr() {
 newTemp = 9*temp/5 + 32;
 return Convert.ToString(newTemp) ;
 }
}
Note that the temperature variable temp is declared as private, so it cannot
be “seen” or accessed from outside the class. You can only put data into
the class and get it back out using the constructor and the getConvTemp
method. The main point to this code rearrangement is that the outer calling
program does not have to know how the data are stored and how they are
retrieved: that is only known inside the class.

The other important feature of the class is that it actually holds data. You
can put data into it and it will return it at any later time. This class only
holds the one temperature value, but classes can contain quite complex
sets of data values.

Copyright © , 2002 by James W Cooper

67

We could easily modify this class to get temperature values out in other
scales without still ever requiring that the user of the class know anything
about how the data are stored, or how the conversions are performed

Converting to Kelvin
Absolute zero on the Celsius scale is defined as –273.16 degrees. This is
the coldest possible temperature, since it is the point at which all
molecular motion stops. The Kelvin scale is based on absolute zero, but
the degrees are the same size as Celsius degrees. We can add a function
public string getKelvin() {
 newTemp = Convert.ToString (getCels() + 273.16)
}
What would the setKelvin method look like?

Putting the Decisions into the Temperature Class
Now we are still making decisions within the user interface about which
methods of the temperature class. It would be even better if all that
complexity could disappear into the Temperature class. It would be nice if
we just could write our Conversion button click method as
private void btCompute_Click(object sender, System.EventArgs e) {

Temperature temper =
new Temperature(txEntry.Text , opCels.Checked);

//put result in label text
 lbResult.Text = temper.getConvTemp();
 txEntry.Text =""; //clear entry field
}
This removes the decision making process to the temperature class and
reduces the calling interface program to just two lines of code.

The class that handles all this becomes somewhat more complex, however,
but it then keeps track of what data as been passed in and what conversion
must be done. We pass in the data and the state of the radio button in the
constructor:
public Temperature(string sTemp, bool toCels) {
 temp = Convert.ToSingle (sTemp);
 celsius = toCels;

Copyright © , 2002 by James W Cooper

68

}

Now, the celsius boolean tells the class whether to convert or not and
whether conversion is required on fetching the temperature value. The
output routine is simply
public string getConvTemp(){

if (celsius)
 return getCels();
 else
 return getFahr();
}
//-------------
private string getCels() {
 newTemp= 5*(temp-32)/9;
 return newTemp.ToString() ;
}
//-------------
private string getFahr() {
 newTemp = 9*temp/5 + 32;
 return Convert.ToString(newTemp) ;
}
In this class we have both public and private methods. The public ones are
callable from other modules, such as the user interface form module. The
private ones, getCels and getFahr, are used internally and operate on the
temperature variable.

Note that we now also have the opportunity to return the output
temperature as either a string or a single floating point value, and could
thus vary the output format as needed.

Using Classes for Format and Value Conversion
It is convenient in many cases to have a method for converting between
formats and representations of data. You can use a class to handle and hide
the details of such conversions. For example, you might design a program
where you can enter an elapsed time in minutes and seconds with or
without the colon:
315.20
3:15.20

Copyright © , 2002 by James W Cooper

69

315.2

and so forth. Since all styles are likely, you’d like a class to parse the legal
possibilities and keep the data in a standard format within. Figure 4-2
shows how the entries “112” and “102.3” are parsed.

Figure 4-2 – A simple parsing program that uses the Times class.

Much of the parsing work takes place in the constructor for the class.
Parsing depends primarily on looking for a colon. If there is no colon, then
values greater than 99 are treated as minutes.
public FormatTime(string entry) {
errflag = false;
if (! testCharVals(entry)) {
 int i = entry.IndexOf (":");
 if (i >= 0) {

 mins = Convert.ToInt32 (entry.Substring (0, i));
 secs = Convert.ToSingle (entry.Substring (i+1));
 if(secs >= 60.0F) {
 errflag = true;
 t = NT;
 }
 t = mins *100 + secs;
 }
 else {
 float fmins = Convert.ToSingle (entry) / 100;
 mins = (int)fmins;

Copyright © , 2002 by James W Cooper

70

 secs = Convert.ToSingle (entry) - 100 * mins;
 if (secs >= 60) {

 errflag = true;
 t = NT;
 }
 else
 t = Convert.ToSingle(entry);
 }

}
}

Since illegal time values might also be entered, we test for cases like 89.22
and set an error flag.

Depending on the kind of time measurements these represent, you might
also have some non-numeric entries such as NT for no time or in the case
of athletic times, SC for scratch or DQ for disqualified. All of these are
best managed inside the class. Thus, you never need to know what
numeric representations of these values are used internally.

static public int NT = 10000;
static public int DQ = 20000;

Some of these are processed in the code represented by Figure 4-3.

b

Copyright © , 2002 by James W Cooper

71

Figure 4-3 – The time entry interface, showing the parsing of symbols for Scratch,
Disqualification and No Time.

Handling Unreasonable Values
A class is also a good place to encapsulate error handling. For example, it
might be that times greater than some threshold value are unlikely and
might actually be times that were entered without a decimal point. If large
times are unlikely, then a number such as 123473 could be assumed to be
12:34.73”
public void setSingle(float tm) {
 t = tm;
 if((tm > minVal) && (tm < NT)) {
 t = tm / 100.0f;
 }
}
The cutoff value minVal may vary with the domain of times being
considered and thus should be a variable. You can also use the class
constructor to set up default values for variables.
public class FormatTime {
 public FormatTime(string entry) {
 errflag = false;
 minVal = 1000;
 t = 0;

A String Tokenizer Class
A number of languages provide a simple method for taking strings apart
into tokens, separated by a specified character. While C# does not exactly
provide a class for this feature, we can write one quite easily us ing the
Split method of the string class. The goal of the Tokenizer class will be to
pass in a string and obtain the successive string tokens back one at a time.
For example, if we had the simple string
Now is the time
our tokenizer should return four tokens:
Now

Copyright © , 2002 by James W Cooper

72

is
the
time

The critical part of this class is that it holds the initial string and
remembers which token is to be returned next.

We use the Split function, which approximates the Tokenizer but returns
an array of substrings instead of having an object interface. The class we
want to write will have a nextToken method that returns string tokens or a
zero length string when we reach the end of the series of tokens.

The whole class is shown below.
//String Tokenizer class
public class StringTokenizer {
 private string data, delimiter;
 private string[] tokens; //token array
 private int index; //index to next token
//----------
public StringTokenizer(string dataLine) {
 init(dataLine, " ");
}
//----------
//sets up initial values and splits string
private void init(String dataLine, string delim) {
 delimiter = delim;
 data = dataLine;
 tokens = data.Split (delimiter.ToCharArray());
 index = 0;
}
//----------
public StringTokenizer(string dataLine, string delim) {
 init(dataLine, delim);
}
//----------
public bool hasMoreElements() {
 return (index < (tokens.Length));
}
//----------
public string nextElement() {
 //get the next token
 if(index < tokens.Length)
 return tokens[index++];

Copyright © , 2002 by James W Cooper

73

 else
 return ""; //or none

}
}
The class is illustrated in use in Figure 4-4.

Figure 4-4– The tokenizer in use.

The code that uses the Tokenizer class is just:
//call tokenizer when button is clicked
private void btToken_Click(object sender,

System.EventArgs e) {
StringTokenizer tok =

new StringTokenizer (txEntry.Text);
 while(tok.hasMoreElements ()) {
 lsTokens.Items.Add (tok.nextElement());
 }
 }

Classes as Objects
The primary difference between ordinary procedural programming and
object-oriented (OO) programming is the presence of classes. A class is
just a module as we have shown above, which has both public and private
methods and which can contain data. However, classes are also unique in
that there can be any number of instances of a class, each containing

Copyright © , 2002 by James W Cooper

74

different data. We frequently refer to these instances as objects. We’ll see
some examples of single and multiple instances below.

Suppose as have a file of results from a swimming event stored in a text
data file. Such a file might look, in part, like this:
1 Emily Fenn 17 WRAT 4:59.54
2 Kathryn Miller 16 WYW 5:01.35
3 Melissa Sckolnik 17 WYW 5:01.58
4 Sarah Bowman 16 CDEV 5:02.44
5 Caitlin Klick 17 MBM 5:02.59
6 Caitlin Healey 16 MBM 5:03.62

where the columns represent place, names, age, club and time. If we wrote
a program to display these swimmers and their times, we’d need to read in
and parse this file. For each swimmer, we’d have a first and last name, an
age, a club and a time. An efficient way to keep the data for each swimmer
grouped together is to design a Swimmer class and create an instance for
each swimmer.

Here is how we read the file and create these instances. As each instance is
created we add it into an ArrayList object:
private void init() {
 ar = new ArrayList (); //create array list
 csFile fl = new csFile ("500free.txt");
 //read in liens
 string s = fl.readLine ();
 while (s != null) {
 //convert to tokens in swimmer object
 Swimmer swm = new Swimmer(s);
 ar.Add (swm);
 s= fl.readLine ();
 }
 fl.close();
 //add names to list box
 for(int i=0; i < ar.Count ; i++) {
 Swimmer swm = (Swimmer)ar[i];
 lsSwimmers.Items.Add (swm.getName ());
 }
}

Copyright © , 2002 by James W Cooper

75

The Swimmer class itself parses each line of data from the file and stores
it for retrieval using getXXX accessor functions:
public class Swimmer {

private string frName, lName;
 private string club;
 private int age;
 private int place;
 private FormatTime tms;
//-----------
 public Swimmer(String dataLine) {

StringTokenizer tok = new StringTokenizer (dataLine);
place = Convert.ToInt32 (tok.nextElement());
frName = tok.nextElement ();
lName = tok.nextElement ();

 string s = tok.nextElement ();
 age = Convert.ToInt32 (s);
 club = tok.nextElement ();
 tms = new FormatTime (tok.nextElement ());

 }
//-----------
 public string getName() {
 return frName+" "+lName;
 }
//-----------
public string getTime() {
 return tms.getTime();
 }
}

Class Containment
Each instance of the Swimmer class contains an instance of the
StringTokenizer class that it uses to parse the input string and an instance
of the Times class we wrote above to parse the time and return it in
formatted form to the calling program. Having a class contain other
classes is a very common ploy in OO programming and is one of the main
ways we can build up more complicated programs from rather simple
components.

The program that displays these swimmers is shown in Figure 4-5.

Copyright © , 2002 by James W Cooper

76

Figure 4-5 –A list of swimmers and their times, using containment.

When you click on any swimmer, her time is shown in the box on the
right. The code for showing that time is extremely easy to write since all
the data are in the swimmer class:
private void lsSwimmers_SelectedIndexChanged(

object sender, System.EventArgs e) {
 //get index of selected swimmer

int i = lsSwimmers.SelectedIndex ;
 //get that swimmer
 Swimmer swm = (Swimmer)ar[i];
 //display her time
 txTime.Text =swm.getTime ();
}

Initialization
In our Swimmer class above, note that the constructor in turn calls the
constructor of the StringTokenizer class:
public Swimmer(String dataLine) {
 StringTokenizer tok =

new StringTokenizer (dataLine);

Copyright © , 2002 by James W Cooper

77

Classes and Properties
Classes in C# can have Property methods as well as public and private
functions and subs. These correspond to the kinds of properties you
associate with Forms, but they can store and fetch any kinds of values you
care to use. For example, rather than having methods called getAge and
setAge, you could have a single age property which then corresponds to a
get and a set method:
private int Age;
//age property
public int age {

 get {
 return Age;
 }
 set {

 Age = value;
 }

}
Note that a property declaration does not contain parentheses after the
property name, and that the special keyword value is used to obtain the
data to be stored.

To use these properties, you refer to the age property on the left side of an
equals sign to set the value, and refer to the age property on the right side
to get the value back.
age = sw.Age; //Get this swimmer’s age
sw.Age = 12; //Set a new age for this swimmer

Properties are somewhat vestigial, since they originally applied more to
Forms in the Vb language, but many programmers find them quite useful.
They do not provide any features not already available using get and set
methods and both generate equally efficient code.

In the revised version of our SwimmerTimes display program, we convert
all of the get and set methods to properties, and then allow users to vary
the times of each swimmer by typing in new ones. Here is the Swimmer
class

Copyright © , 2002 by James W Cooper

78

public class Swimmer
{
 private string frName, lName;
 private string club;
 private int Age;
 private int place;
 private FormatTime tms;
//-----------
public Swimmer(String dataLine) {
 StringTokenizer tok = new StringTokenizer (dataLine);
 place = Convert.ToInt32 (tok.nextElement());
 frName = tok.nextElement ();
 lName = tok.nextElement ();
 string s = tok.nextElement ();
 Age = Convert.ToInt32 (s);
 club = tok.nextElement ();

tms = new FormatTime (tok.nextElement ());
}
//-----------
public string name {
 get{
 return frName+" "+lName;
 }
}
//-----------
public string time {
 get{
 return tms.getTime();
 }
 set {
 tms = new FormatTime (value);
 }
}
//-------------------
//age property
public int age {
 get {
 return Age;
 }
 set {
 Age = value;
 }
}
 }
}

Copyright © , 2002 by James W Cooper

79

Then we can type a new time in for any swimmer, and when the txTime
text entry field loses focus, we can store a new time as follows:
private void txTime_OnLostFocus(

object sender, System.EventArgs e) {
 //get index of selected swimmer
 int i = lsSwimmers.SelectedIndex ;
 //get that swimmer
 Swimmer swm = (Swimmer)ar[i];
 swm.time =txTime.Text ;
}

Programming Style in C#
You can develop any of a number of readable programming styles for C#.
The one we use here is partly influenced by Microsoft’s Hungarian
notation (named after its originator, Charles Simonyi) and partly on styles
developed for Java.

We favor using names for C# controls such as buttons and list boxes that
have prefixes that make their purpose clear, and will use them whenever
there is more than one of them on a single form:

Control name Prefix Example
Buttons bt btCompute
List boxes ls lsSwimmers
Radio (option buttons) op opFSex
Combo boxes cb cbCountry
Menus mnu mnuFile
Text boxes tx txTime

We will not generally create new names for labels, frames and forms when
they are never referred to directly in the code. We will begin class names
with capital letters and instances of classes with lowercase letters. We will
also spell instances and classes with a mixture of lowercase and capital
letters to make their purpose clearer:
swimmerTime

Copyright © , 2002 by James W Cooper

80

Summary
In this chapter, we’ve introduced C# classes and shown how they can
contain public and private methods and can contain data. Each class can
have many instances and each could contain different data values. Classes
can also have Property methods for setting and fetching data. These
Property methods provide a simpler syntax over the usual getXXX and
setXX accessor methods but have no other substantial advantages.m

Programs on the CD-ROM

Termperature conversion \UsingClasses\CalcTemp

Temperature conversion using classes \UsingClasses\ClsCalcTemp

Temperature conversion using classes \UsingClasses\AllClsCalcTemp

Time conversion \UsingClasses\Formatvalue

String tokenizer \UsingClasses\TokenDemo

Swimmer times \UsingClasses\SwimmerTokenizer

Copyright © , 2002 by James W Cooper

81

5. Inheritance

Now we will take up the most important feature of OO languages like C#
(and VB.NET): inheritance. When we create a Windows form, such as our
Hello form, the IDE (VS.NET Integrated Development Environment)
creates a declaration of the following type:
public class Form1 : System.Windows.Forms.Form

This says that the form we create is a child class of the Form class, rather
than being an instance of it. This has some very powerful implications.
You can create visual objects and override some of their properties so that
each behaves a little differently. We’ll see some examples of this below.

 Constructors
All classes have specific constructors that are called when you create an
instance of a class. These constructors always have the same name as the
class. This applies to form classes as well as non-visual classes. Here is
the constructor the system generates for our simple hello window in the
class Form1:
public class Form1 {

public Form1(){ //constructor
 InitializeComponent();

}
When you create your own classes, you must create constructor methods
to initialize them, and can pass arguments into the class to initialize class
parameters to specific values. If you do not specifically include a
constructor in any class you write, a constructor having no arguments is
generated for you under the covers.

The InitializeComponent method is generated by the IDE as well, and
contains code that creates and positions all the visual controls in that
window. If we need to set up additional code as part of the initialization of

Copyright © , 2002 by James W Cooper

82

a Form class, we will always write a private init method that we call after
the InitializeComponent method call.
public Form1(){
 InitializeComponent();
 init();
}

private void init() {
 x = 12.5f; //set initial value of x
}

Drawing and Graphics in C#
In out first example, we’ll write a program to draw a rectangle in a
PictureBox on a form. In C#, controls are repainted by the Windows
system and you can connect to the paint event to do your own drawing
whenever a paint event occurs. Such a paint event occurs whenever the
window is resize, uncovered or refreshed. To illustrate this, we’ll create a
Form containing a PictureBox, as shown in Figure 5-1.

Copyright © , 2002 by James W Cooper

83

Figure 5-1 – Inserting a PictureBox on a Form

Then, we’ll select the PictureBox in the designer, and select the Events
button (with the lightning icon) in the Properties window. This brings up a
list of all the events that can occur on a PictureBox as shown in Figure
5-2.

Figure 5-2 – Selecting the Paint Event for the PictureBox window.

Double clicking on the Paint event creates the following empty method in
the Form’s code:
private void pic_Paint(object sender, PaintEventArgs e) {
}
It also generates code that connects this method to the Paint event for that
picture box, inside the InitializeComponents method.
this.pic.Paint += new PaintEventHandler(this.pic_Paint);

The PaintEventArgs object is passed into the subroutine by the underlying
system, and you can obtain the graphics surface to draw on from that
object. To do drawing, you must create an instance of a Pen object and
define its color and, optionally its width. This is illustrated below for a
black pen with a default width of 1.

Copyright © , 2002 by James W Cooper

84

private void pic_Paint(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics; //get Graphics surface
 Pen rpen = new Pen(Color.Black); //create a Pen
 g.drawLine(rpen, 10,20,70,80); //draw the line
}
In this example, we show the Pen object being created each time a paint
event occurs. We might also create the pen once in the window’s
constructor or in the init method we usually call from within it.

Using Inheritance
Inheritance in C# gives us the ability to create classes which are derived
from existing classes. In new derived classes, we only have to specify the
methods that are new or changed. All the others are provided
automatically from the base class we inherit from. To see how this works,
lets consider writing a simple Rectangle class that draws itself on a form
window. This class has only two methods, the constructor and the draw
method.
namespace CsharpPats
{
public class Rectangle {
 private int x, y, w, h;
 protected Pen rpen;
 public Rectangle(int x_, int y_, int w_, int h_)
 {
 x = x_; //save coordinates
 y = y_;
 w = w_;
 h = h_;

//create a pen
 rpen = new Pen(Color.Black);
 }
 //-----------------
 public void draw(Graphics g) {
 //draw the rectangle

g.DrawRectangle (rpen, x, y, w, h);
}

 }
}

Copyright © , 2002 by James W Cooper

85

Namespaces
We mentioned the System namespaces above. Visual Studio.Net also
creates a namespace for each project equal to the name of the project
itself. You can change this namespace on the property page, or make it
blank so that the project is not in a namespace. However, you can create
namespaces of your own, and the Rectangle class provides a good
example of a reason for doing so. The System.Drawing namespace that
this program requires to use the Graphics object also contains a Rectangle
class. Rather than renaming our new Rectangle class to avoid this name
overlap or “collision,” we can just put the whole Rectangle class in its own
namespace as we show above.

Then, when we declare the variable in the main Form window, we can
declare it as a member of that namespace.
CsharpPats.Rectangle rec;

In this main Form window, we create an instance of our Rectangle class.
private void init() {
 rect = new CsharpPats.Rectangle (10, 20, 70, 100);
}
//---------------
public Form1() {

InitializeComponent();
 init();
}

Then we add the drawing code to our Paint event handler to do the
drawing and pass the graphics surface on to the Rectangle instance.
private void pic_Paint(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics;
 rect.draw (g);
}
This gives us the display we see in Figure 5-3.

Copyright © , 2002 by James W Cooper

86

Figure 5-3 The Rectangle drawing program.

Creating a Square From a Rectangle
A square is just a special case of a rectangle, and we can derive a square
class from the rectangle class without writing much new code. Here is the
entire class:
namespace CsharpPats {
 public class Square : Rectangle {
 public Square(int x, int y, int w):base(x, y, w, w) {
 }
 }
}

This Square class contains only a constructor, which passes the square
dimensions on to the underlying Rectangle class by calling the constructor
of the parent Rectangle class as part of the Square constructor.
base(x, y, w, w)

Copyright © , 2002 by James W Cooper

87

Note the unusual syntax: the call to the parent class’s constructor follows a
colon and is before the opening brace of the constructor itself.

The Rectangle class creates the pen and does the actual drawing. Note that
there is no draw method at all for the Square class. If you don’t specify a
new method the parent class’s method is used automatically, and this is
what we want to have happen, here.

The program that draws both a rectangle and a square has a simple
constructor where instances of these objects are created:
private void init() {
 rect = new Rectangle (10, 20, 70, 100);
 sq = new Square (150,100,70);
}

and a paint routine where they are drawn.
private void pic_Paint(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics;
 rect.draw (g);
 sq.draw (g);
}
The display is shown in Figure 5-4 for the square and rectangle:

Copyright © , 2002 by James W Cooper

88

Figure 5-4 – The rectangle class and the square class derived from it.

Public, Private and Protected
In C#, you can declare both variables and class methods as public, private
or protected. A public method is accessible from other classes and a
private method is accessible only inside that class. Usually, you make all
class variables private and write getXxx and seXxx accessor functions to
set or obtain their values. It is generally a bad idea to allow variables
inside a class to be accessed directly from outside the class, since this
violates the principle of encapsulation. In other words, the class is the only
place where the actual data representation should be known, and you
should be able to change the algorithms inside a class without anyone
outside the class being any the wiser.

C# introduces the protected keyword as well. Both variables and methods
can be protected. Protected variables can be accessed within the class and
from any subclasses you derive from it. Similarly, protected methods are
only accessible from that class and its derived classes. They are not

Copyright © , 2002 by James W Cooper

89

publicly accessible from outside the class. If you do not declare any level
of accessibility, private accessibility is assumed.

Overloading
In C# as well as other object oriented languages, you can have several
class methods with the same name as long as they have different calling
arguments or signatures. For example we might want to create an instance
of a StringTokenizer class where we define both the string and the
separator.
tok = new StringTokenizer("apples, pears", ",");

By declaring constructors with different numbers of arguments we say we
are overloading the constructor. Here are the two constructors.
public StringTokenizer(string dataLine) {
 init(dataLine, " ");
}
//----------
public StringTokenizer(string dataLine, string delim) {
 init(dataLine, delim);
}
private void init(string data, string delim) {

//…
}
Of course C# allows us to overload any method as long as we provide
arguments that allow the compiler can distinguish between the various
overloaded (or polymorphic) methods.

Virtual and Override Keywords
If you have a method in a base class that you want to allow derived classes
to override, you must declare it as virtual. This means that a method of the
same name and argument signature in a derived class will be called rather
than the one in the base class. Then, you must declare the method in the
derived class using the override keyword.

Copyright © , 2002 by James W Cooper

90

If you use the override keyword in a derived class without declaring the
base class’s method as virtual the compiler will flag this as an error. If you
create a method in a derived class that is identical in name and argument
signature to one in the base class and do not declare it as overload, this
also is an error. If you create a method in the derived class and do not
declare it as override and also do not declare the base class’s method as
virtual the code will compile with a warning but will work correctly, with
the derived class’s method called as you intended.

Overriding Methods in Derived Classes
Suppose we want to derive a new class called DoubleRect from Rectangle,
which draws a rectangle in two colors offset by a few pixels. We must
declare the base class draw method as virtual:

public virtual void draw(Graphics g) {
 g.DrawRectangle (rpen, x, y, w, h);
 }
In the derived DoubleRect constructor, we will create a red pen in the
constructor for doing the additional drawing:
public class DoubleRect:Rectangle {
private Pen rdPen;
public DoubleRect(int x, int y, int w, int h):

base(x,y,w,h) {
 rdPen = new Pen (Color.Red, 2);
}

This means that our new class DoubleRect will have to have its own draw
method. However, this draw method will use the parent class’s draw
method but add more drawing of its own.
public override void draw(Graphics g) {
 base.draw (g); //draw one rectangle using parent class
 g.DrawRectangle (rdPen, x +5, y+5, w, h);
}
Note that we want to use the coordinates and size of the rectangle that was
specified in the constructor. We could keep our own copy of these parameters in
the DoubleRect class, or we could change the protection mode of these variables
in the base Rectangle class to protected from private.

Copyright © , 2002 by James W Cooper

91

protected int x, y, w, h;

The final rectangle drawing window is shown in Figure 5-5.

Figure 5-5 - The DoubleRect classes.

Replacing Methods Using New
Another way to replace a method in a base class when you cannot declare
the base class method as virtual is to use the new keyword in declaring the
method in the derived class. If you do this, it effectively hides any
methods of that name (regardless of signature) in the base class. In that
case, you cannot make calls to the base method of that name from the
derived class, and must put all the code in the replacement method.

public new void draw(Graphics g) {
 g.DrawRectangle (rpen, x, y, w, h);
 g.DrawRectangle (rdPen, x +5, y+5, w, h);

Copyright © , 2002 by James W Cooper

92

 }

Overriding Windows Controls
In C# we can easily make new Windows controls based on existing ones
using inheritance. We’ll create a Textbox control that highlights all the
text when you tab into it. In C#, we can create that new control by just
deriving a new class from the Textbox class.

We’ll start by using the Windows Designer to create a window with two
text boxes on it. Then we’ll go to the Project|Add User Control menu and
add an object called HiTextBox. We’ll change this to inherit from
TextBox instead of UserControl.
public class HiTextBox : Textbox {
Then, before we make further changes, we compile the program. The new
HiTextBox control will appear at the bottom of the Toolbox on the left of
the development environment. You can create visual instances of the
HtextBox on any windows form you create. This is shown in Figure 5-6.

Figure 5-6 -The Toolbox, showing the new control we created and an
instance of the HiTextBox on the Windows Designer pane of a new
form.

Now we can modify this class and insert the code to do the highlighting.
public class HiTextBox : System.Windows.Forms.TextBox
{

Copyright © , 2002 by James W Cooper

93

private Container components = null;
//-------------
private void init() {
 //add event handler to Enter event
 this.Enter += new System.EventHandler (highlight);
}
//-------------
//event handler for highlight event
private void highlight(object obj, System.EventArgs e) {
 this.SelectionStart =0;
 this.SelectionLength =this.Text.Length ;
}
//-------------
public HiTextBox() {
 InitializeComponent();
 init();
}

And that’s the whole process. We have derived a new Windows control in
about 10 lines of code. That’s pretty powerful. You can see the resulting
program in Figure Figure 5-6. If you run this program, you might at first
think that the ordinary TextBox and the HiTextBox behave the same,
because tabbing between them makes them both highlight. This is the
“autohighlight” feature of the C# textbox. However, if you click inside the
Textbox and the HiTextBox and tab back and forth, you will see in Figure
5-7 that only our derived HiTextBox continues to highlight.

Copyright © , 2002 by James W Cooper

94

Figure 5-7 A new derive d HiTextbox control and a regular Textbox control.

Interfaces
An interface is a declaration that a class will contain a specific set of
methods with specific arguments. If a class has those methods, it is said to
implement that interface. It is essentially a contract or promise that a class
will contain all the methods described by that interface. Interfaces declare
the signatures of public methods, but do not contain method bodies.

If a class implements an interface called Xyz, you can refer to that class as
if it was of type Xyz as well as by its own type. Since C# only allows a
single tree of inheritance, this is the only way for a class to be a member
of two or more base classes.

Let’s take the example of a class that provides an interface to a multiple
select list like a list box or a series of check boxes.
//an interface to any group of components
//that can return zero or more selected items
//the names are returned in an Arraylist
 public interface Multisel {
 void clear();
 ArrayList getSelected();
 Panel getWindow();
 }

When you implement the methods of an interface in concrete classes, you
must declare that the class uses that interface, and, you must provide an
implementation of each method in that interface as well, as we illustrate
below.
/// ListSel class implements MultiSel interface
 public class ListSel : Multisel {
 public ListSel() {
 }
 public void clear() {
 }
 public ArrayList getSelected() {
 return new ArrayList ();
 }

Copyright © , 2002 by James W Cooper

95

 public Panel getWindow() {
 return new Panel ();
 }
 }

We’ll show how to use this interface when we discuss the Builder pattern.

Abstract Classes
An abstract class declares one or more methods but leaves them
unimplemented. If you declare a method as abstract, you must also declare
the class as abstract. Suppose, for example, that we define a base class
called Shape. It will save some parameters and create a Pen object to draw
with. However, we’ll leave the actual draw method unimplemented, since
every different kind of shape will need a different kind of drawing
procedure:
 public abstract class Shape {
 protected int height, width;
 protected int xpos, ypos;
 protected Pen bPen;
 //-----
 public Shape(int x, int y, int h, int w) {
 width = w;
 height = h;
 xpos = x;
 ypos = y;
 bPen = new Pen(Color.Black);
 }
 //-----
 public abstract void draw(Graphics g);
 //-----
 public virtual float getArea() {
 return height * width;
 }
 }
Note that we declare the draw method as abstract and end it with a
semicolon rather than including any code between braces. We also declare
the overall class as abstract.

Copyright © , 2002 by James W Cooper

96

You can’t create an instance of an abstract class like Shape, though. You
can only create instances of derived classes in which the abstract methods
are filled in. So, lets create a Rectangle class that does just that:
public class Rectangle:Shape {
 public Rectangle(int x, int y,int h, int w):

base(x,y,h,w) {}
 //-----
 public override void draw(Graphics g) {
 g.DrawRectangle (bPen, xpos, ypos, width, height);
 }
}
This is a complete class that you can instantiate. It has a real draw method.

In the same way, we could create a Circle class which has its own draw
method:
public class Circle :Shape {
 public Circle(int x, int y, int r):
 base(x,y,r,r) { }
 //-----
 public override void draw(Graphics g) {
 g.DrawEllipse (bPen, xpos, ypos, width, height);
 }
}
Now, if we want to draw the circle and rectangle, we just create instances
of them in the init method we call from our constructor. Note that since
they are both of base type Shape we can treat them as Shape objects:
public class Form1 : System.Windows.Forms.Form {
 private PictureBox pictureBox1;
 private Container components = null;
 private Shape rect, circ;
 //-----
 public Form1() {
 InitializeComponent();
 init();
 }
 //-----
 private void init() {
 rect = new CsharpPats.Rectangle (50, 60, 70, 100);
 circ = new Circle (100,60, 50);
 }

Copyright © , 2002 by James W Cooper

97

Finally, we draw the two objects by calling their draw methods from the
paint event handler we create as we did above:
private void pictureBox1_Paint(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics ;
 rect.draw (g);
 circ.draw (g);
}

We see this program executing in Figure 5-8

Figure 5-8 – An abstract class system drawing a Rectangle and Circle

Comparing Interfaces and Abstract Classes
When you create an interface, you are creating a set of one or more
method definitions that you must write in each class that implements that
interface. There is no default method code generated: you must include it
yourself. The advantage of interfaces is that they provide a way for a class
to appear to be part of two classes: one inheritance hierarchy and one from

Copyright © , 2002 by James W Cooper

98

the interface. If you leave an interface method out of a class that is
supposed to implement that interface, the compiler will generate an error.

When you create an abstract class, you are creating a base class that might
have one or more complete, working methods, but at least one that is left
unimplemented, and declared abstract. You can’t instantiate an abstract
class, but must derive classes from it that do contain implementations of
the abstract methods. If all the methods of an abstract class are
unimplemented in the base class, it is essentially the same as an interface,
but with the restriction that you can’t make a class inherit from it as well
as from another class hierarchy as you could with an interface. The
purpose of abstract classes is to provide a base class definition for how a
set of derived classes will work, and then allow the programmer to fill
these implementations in differently in the various derived classes.

Another related approach is to create base classes with empty methods.
These guarantee that all the derived classes will compile, but that the
default action for each event is to do nothing at all. Here is a Shape class
like that:
public class NullShape {
 protected int height, width;
 protected int xpos, ypos;
 protected Pen bPen;
 //-----
 public Shape(int x, int y, int h, int w) {
 width = w;
 height = h;
 xpos = x;
 ypos = y;
 bPen = new Pen(Color.Black);
 }
 //-----
 public void draw(Graphics g){}
 //-----
 public virtual float getArea() {
 return height * width;
 }
 }

Copyright © , 2002 by James W Cooper

99

Note that the draw method is now an empty method. Derived classes will
compile without error, but they won’t do anything much. And there will be
no hint what method you are supposed to override, as you would get from
using an abstract class.

Summary
We’ve seen the shape of most of the important features in C# in this
chapter. C# provides inheritance, constructors and the ability to overload
methods to provide alternate versions. This leads to the ability to create
new derived versions even of Windows controls. In the chapters that
follow, we’ll show you how you can write design patterns in C#.

Programs on the CD-ROM
\Inheritance\RectDraw Rectangle and Square
\Inheritance\DoubleRect DoubleRect
\Inhertance\Hitext A highlighted textbox
\Inheritance\abstract Abstract Shape

Copyright © , 2002 by James W Cooper

100

6. UML Diagrams

We have illustrated the patterns in this book with diagrams drawn using
Unified Modeling Language (UML). This simple diagramming style was
developed from work done by Grady Booch, James Rumbaugh, and Ivar
Jacobson, which resulted in a merging of ideas into a single specification
and, eventually, a standard. You can read details of how to use UML in
any number of books such as those by Booch et al. (1998), Fowler and
Scott (1997), and Grand (1998). We’ll outline the basics you’ll need in
this introduction.

Basic UML diagrams consist of boxes representing classes. Let’s consider
the following class (which has very little actual function).
public class Person {
 private string name;
 private int age;
 //-----
 public Person(string nm, int ag) {
 name = nm;
 age = ag;
 }
 public string makeJob() {
 return "hired";
 }
 public int getAge() {
 return age;
 }
 public void splitNames() {
 }
}

We can represent this class in UML, as shown in Figure 6-1.

Copyright © , 2002 by James W Cooper

101

Figure 6-1– The Person class, showing private, protected, and public variables, and
static and abstract methods

The top part of the box contains the class name and package name (if any).
The second compartment lists the class’s variables, and the bottom
compartment lists its methods. The symbols in front of the names indicate
that member’s visibility, where “+” means public, “-” means private, and
“#” means protected. Static methods are shown underlined. Abstract
methods may be shown in italics or, as shown in Figure Figure 6-1, with
an “{abstract}” label.

You can also show all of the type information in a UML diagram where
that is helpful, as illustrated in Figure 6-2a.

a b

Figure 6-2 - The Person class UML diagram shown both with and without the
method types

UML does not require that you show all of the attributes of a class, and it
is usual only to show the ones of interest to the discussion at hand. For
example, in Figure 6-2 b, we have omitted some of the method details.

Copyright © , 2002 by James W Cooper

102

Inheritance
Let’s consider a version of Person that has public, protected, and private
variables and methods, and an Employee class derived from it. We will
also make the getJob method abstract in the base Person class, which
means we indicate it with the MustOverride keyword.
public abstract class Person {
 protected string name;
 private int age;
 //-----
 public Person(string nm, int ag) {
 name = nm;
 age = ag;
 }
 public string makeJob() {
 return "hired";
 }
 public int getAge() {
 return age;
 }
 public void splitNames() {
 }
 public abstract string getJob(); //must override
 }
We now derive the Employee class from it, and fill in some code for the
getJob method.
public class Employee : Person {
 public Employee(string nm, int ag):base(nm, ag){
 }
 public override string getJob() {
 return "Worker";
 }
}
You represent inheritance using a solid line and a hollow triangular arrow.
For the simple Employee class that is a subclass of Person, we represent
this in UML, as shown in Figure 6-3

Copyright © , 2002 by James W Cooper

103

Figure 6-3 – The UML diagram showing Employee derived from Person

Note that the name of the Employee class is not in italics because it is now
a concrete class and because it includes a concrete method for the formerly
abstract getJob method. While it has been conventional to show the
inheritance with the arrow pointing up to the superclass, UML does not
require this, and sometimes a different layout is clearer or uses space more
efficiently.

Interfaces
An interface looks much like inheritance, except that the arrow has a
dotted line tail, as shown in Figure 6-4. The name <<interface>> may
also be shown, enclosed in double angle brackets, or guillamets.

Figure 6-4 – ExitCommand implements the Command interface.

Composition
Much of the time, a useful representation of a class hierarchy must include
how objects are contained in other objects. For example, a small company
might include one Employee and one Person (perhaps a contractor).

Copyright © , 2002 by James W Cooper

104

 public class Company {
 private Employee emp;
 private Person prs;
 public Company() {

 }
 }
We represent this in UML, as shown in Figure 6-5.

Figure 6-5 – Company contains instances of Person and Employee.

The lines between classes show that there can be 0 to 1 instances of Person
in Company and 0 to 1 instances of Employee in Company. The diamonds
indicate the aggregation of classes within Company.

If there can be many instances of a class inside another, such as the array
of Employees shown here

public class Company {
 private Employee[] emps;
 private Empoyee emp;
 private Person prs;
 public Company() {

 }
}

we represent that object composition as a single line with either a “*” on it
or “0, *” on it, as shown in Figure 6-6.

Copyright © , 2002 by James W Cooper

105

Figure 6-6 – Company contains any number of instances of Employee.

Some writers have used hollow and solid diamond arrowheads to indicate
containment of aggregates and circle arrowhead for single object
composition, but this is not required.

Annotation
You will also find it convenient to annotate your UML or insert comments
to explain which class calls a method in which other class. You can place
a comment anywhere you want in a UML diagram. Comments may be
enclosed in a box with a turned corner or just entered as text. Text
comments are usually shown along an arrow line, indicating the nature of
the method that is called, as shown in Figure 6-7.

Copyright © , 2002 by James W Cooper

106

Figure 6-7 – A comment is often shown in a box with a turned-down corner.

UML is quite a powerful way of representing object relationships in
programs, and there are more diagram features in the full specification.
However, the preceding brief discussion covers the markup methods we
use in this text.

WithClass UML Diagrams
All of the UML programs in this book were drawn using the WithClass
program from MicroGold. This program reads in the actual compiled
classes and generates the UML class diagrams we show here. We have
edited many of these class diagrams to show only the most important
methods and relationships. However, the complete WithClass diagram
files for each design pattern are stored in that pattern’s directory. Thus,
you can run your demo copy of WithClass on the enclosed CD and read in
and investigate the detailed UML diagram starting with the same drawings
you see here in the book.

C# Project Files
All of the programs in this book were written as projects using Visual
Studio.NET. Each subdirectory of the CD-ROM contains the project file
for that project so you can load the project and compile it as we did.

Copyright © , 2002 by James W Cooper

107

7. Arrays, Files and Exceptions in C#

C# makes handling arrays and files extremely easy and introduces
exceptions to simplify error handling.

Arrays
In C#, all arrays are zero based. If you declare an array as
int[] x = new int[10];

such arrays have 10 elements, numbered from 0 to 9. Thus, arrays are in
line with the style used in C, C++ and Java.
const int MAX = 10;
float[] xy = new float[MAX];
for (int i = 0; i < MAX; i++) {
 xy[i] = i;
}
You should get into the habit of looping through arrays to the array
bounds minus one as we did in the above example.

All array variables have a length property so you can find out how large
the array is:
float[] z = new float[20];
for (int j = 0; j< z.Length ; j++) {
 z[j] = j;
}
Arrays in C# are dynamic and space can be reallocated at any time. To
create a reference to an array and allocate it later within the class, use the
syntax:
float z[]; //declare here

z = new float[20]; //create later

Copyright © , 2002 by James W Cooper

108

Collection Objects
The System.Collections namespace contains a number of useful variable
length array objects you can use to add and obtain items in several ways.

ArrayLists
The ArrayList object is essentially a variable length array that you can add
items to as needed. The basic ArrayList methods allow you to add
elements to the array and fetch and change individual elements:

float[] z = {1.0f, 2.9f, 5.6f};
ArrayList arl = new ArrayList ();
for (int j = 0; j< z.Length ; j++) {

 arl.Add (z[j]);
 }

The ArrayList has a Count property you can use to find out how many
elements it contains. You can then move from 0 to that count minus one to
access these elements, treating the ArrayList just as if it were an array:

for (j = 0; j < arl.Count ; j++) {
 Console.WriteLine (arl[j]);

}

You can also access the members of ArrayList object sequentially using
the foreach looping construct without needing to create an index variable
or know the length of the ArrayList:
foreach (float a in arl) {
 Console.WriteLine (a);
}

You can also use the methods of the ArrayList shown in Table 7-1.
Clear Clears the contents of the

ArrayList
Contains(object) Returns true if the ArrayList

contains that value
CopyTo(array) Copies entire ArrayList into a

Copyright © , 2002 by James W Cooper

109

one-dimensional array.
IndexOf(object) Returns the first index of the value
Insert(index, object) Insert the element at the specified

index.
Remove(object) Remove element from list.
RemoveAt(index) Remove element from specified

position
Sort Sort ArrayList

Table 7-1- ArrayList methods

An object fetched from an ArrayList is always of type object. This means
you usually need to cast the object to the correct type before using it:
float x = (float) arl[j];

Hashtables
A Hashtable is a variable length array where every entry can be referred to
by a key value. Typically, keys are strings of some sort, but they can be
any sort of object. Each element must have a unique key, although the
elements themselves need not be unique. Hashtables are used to allow
rapid access to one of a large and unsorted set of entries, and can also be
used by reversing the key and the entry values to create a list where each
entry is guaranteed to be unique.

Hashtable hash = new Hashtable ();
 float freddy = 12.3f;
 hash.Add ("fred", freddy); //add to table
 //get this one back out
 float temp = (float)hash["fred"];

Copyright © , 2002 by James W Cooper

110

Note that like the ArrayList, we must cast the values we obtain from a
Hashtable to the correct type. Hashtables also have a count property and
you can obtain an enumeration of the keys or of the values.

SortedLists
The SortedList class maintains two internal arrays, so you can obtain the
elements either by zero-based index or by alphabetic key.

float sammy = 44.55f;
 SortedList slist = new SortedList ();
 slist.Add ("fred", freddy);
 slist.Add ("sam", sammy);
 //get by index
 float newFred = (float)slist.GetByIndex (0);
 //get by key
 float newSam = (float)slist["sam"];
You will also find the Stack and Queue objects in this namespace. They
behave much as you’d expect, and you can find their methods in the
system help documentation.

Exceptions
Error handling in C# is accomplished using exceptions instead of other
more awkward kinds of error checking. The thrust of exception handling is
that you enclose the statements that could cause errors in a try block and
then catch any errors using a catch statement.
try {
 //Statements
}
 catch (Exception e) {
 //do these if an error occurs
}
 finally {
 //do these anyway
}

Copyright © , 2002 by James W Cooper

111

Typically, you use this approach to test for errors around file handling
statements, although you can also catch array index out of range
statements and a large number of other error conditions. The way this
works is that the statements in the try block are executed and if there is no
error, control passes to the finally statements if any, and then on out of the
block. If errors occur, control passes to the catch statement, where you can
handle the errors, and then control passes on to the finally statements and
then on out of the block.

The following example shows testing for any exception. Since we are
moving one element beyond the end of the ArrayList, an error will occur:
try {

//note- one too many
 for(int i = 0; i <= arl.Count ; i++)
 Console.WriteLine (arl[i]);
}
catch(Exception e) {
 Console.WriteLine (e.Message);
}

This code prints out the error message and the calling locations in the
program and then goes on.
0123456789Index was out of range.
Must be non-negative and less than the size of the collection.
Parameter name: index
 at System.Collections.ArrayList.get_Item(Int32 index)
 at arr.Form1..ctor() in form1.cs:line 58

By contrast, if we do not catch the exception, we will get an error message
from the runtime system and the program will exit instead of going on.

Some of the more common exceptions are shown in Table 6-2.
AccessException Error in accessing a method or

field of a class.
ArgumentException Argument to a method is not

Copyright © , 2002 by James W Cooper

112

valid.
ArgumentNullException Argument is null
ArithmeticException Overflow or underflow
DivideByZeroException Division by zero
IndexOutOfRangeException Array index out of range
FileNotFoundException File not found
EndOfStreamException Access beyond end of input

stream (such as files)
DirectoryNotFoundException Directory not found
NullReferenceException The object variable has not been

initialized to a real value.

Multiple Exceptions
You can also catch a series of exceptions and handle them differently in a
series of catch blocks.
try {

for(int i =0; i<= arl.Count ; i++) {
 int k = (int)(float)arl[i];
 Console.Write(i + " "+ k / i);
 }
}
catch(DivideByZeroException e) {
 printZErr(e);
}
catch(IndexOutOfRangeException e) {
 printOErr(e);
}
catch(Exception e) {
 printErr(e);
}

This gives you the opportunity to recover from various errors in different
ways.

Copyright © , 2002 by James W Cooper

113

Throwing Exceptions
You don’t have to deal with exceptions exactly where they occur: you can
pass them back to the calling program using the Throw statement. This
causes the exception to be thrown in the calling program:
try {
//statements
}
catch(Exception e) {
 throw(e); //pass on to calling program
}
Note that C# does not support the Java syntax throws , that allows you to
declare that a method will throw an exception and that you therefore must
provide an exception handler for it.

File Handling
The file handling objects in C# provide you with some fairly flexible
methods of handling files.

The File Object
The File object represents a file, and has useful methods for testing for a
file’s existence as well as renaming and deleting a file. All of its methods
are static, which means that you do not (and cannot) create an instance of
File using the new operator. Instead, you use its methods directly.
if (File.Exists ("Foo.txt"))
 File.Delete ("foo.txt");

You can also use the File object to obtain a FileStream for reading and
writing file data:
//open text file for reading
 StreamReader ts = File.OpenText ("foo1.txt");

//open any type of file for reading
 FileStream fs = File.OpenRead ("foo2.any");
Some of the more useful File methods are shown in the table below:

Copyright © , 2002 by James W Cooper

114

Static method Meaning
File.FileExists(filename) true if file exists
File.Delete(filename) Delete the file
File.AppendText(String) Append text
File.Copy(fromFile, toFile) Copy a file
File.Move(fromTile, toFile) Move a file, deleting old

copy
File.GetExtension(filename) Return file extension
File.HasExtension(filename) true if file has an

extension.

Reading Text File
To read a text file, use the File object to obtain a StreamReader object.
Then use the text stream’s read methods:

StreamReader ts = File.OpenText ("foo1.txt");
String s =ts.ReadLine ();

Writing a Text File
To create and write a text file, use the CreateText method to get a
StreamWriter object.
//open for writing
 StreamWriter sw = File.CreateText ("foo3.txt");
 sw.WriteLine ("Hello file");
If you want to append to an existing file, you can create a StreamWriter
object directly with the Boolean argument for append set to true:
//append to text file
StreamWriter asw = new StreamWriter ("foo1.txt", true);

Exceptions in File Handling
A large number of the most commonly occurring exceptions occur in
handling file input and output. You can get exceptions for illegal
filenames, files that do not exist, directories that do not exist, illegal
filename arguments and file protection errors. Thus, the best way to

Copyright © , 2002 by James W Cooper

115

handle file input and output is to enclose file manipulation code in Try
blocks to assure yourself that all possible error conditions are caught, and
thus prevent embarrassing fatal errors. All of the methods of the various
file classes show in their documentation which methods they throw. You
can assure yourself that you catch all of them by just catching the general
Exception object, but if you need to take different actions for different
exceptions, you can test for them separately.

For example, you might open text files in the following manner:
try {
//open text file for reading
 StreamReader ts = File.OpenText ("foo1.txt");
 String s =ts.ReadLine ();
}
catch(Exception e) {
 Console.WriteLine (e.Message);
}

Testing for End of File
There are two useful ways of making sure that you do not pass the end of a
text file: looking for a null exception and looking for the end of a data
stream. When you read beyond then end of a text file, no error occurs and
no end of file exception is thrown. However, if you read a string after the
end of a file, it will return as a null value. You can use this to create an
end-of-file function in a file reading class:
private StreamReader rf;
private bool eof;
//------------
public String readLine () {
 String s = rf.ReadLine ();
 if(s == null)
 eof = true;
 return s;
}
//------------
public bool fEof() {
 return eof;
}

Copyright © , 2002 by James W Cooper

116

The other way for making sure you don’t read past then end of a file is to
peek ahead using the Stream’s Peek method. This returns the ASCII code
for the next character, or a –1 if no characters remain.
public String read_Line() {
 String s = ""
 if (rf.Peek() > 0) {
 s = rf.ReadLine ();
 }
 else
 eof=true;
 return s;
}

A csFile Class
It is sometimes convenient to wrap these file methods in a simpler class
with easy to use methods. We have done that here in the csFile class.
We’ll be using this convenience class in some of the examples in later
chapters.

Ee can include the filename and path in the constructor or we can pass it in
using the overloaded OpenForRead and OpenForWrite statements.
public class csFile
 {
 private string fileName;
 StreamReader ts;
 StreamWriter ws;
 private bool opened, writeOpened;
 //-----------
 public csFile() {
 init();
 }
 //-----------
 private void init() {
 opened = false;
 writeOpened = false;
 }
 //-----------
 public csFile(string file_name) {

Copyright © , 2002 by James W Cooper

117

 fileName = file_name;
 init();
 }
We can open a file for reading using either of two methods, once including
the filename and one which uses a filename in the argument.
public bool OpenForRead(string file_name){
 fileName = file_name;
 try {
 ts = new StreamReader (fileName);
 opened=true;
 }
 catch(FileNotFoundException e) {
 return false;
 }
 return true;
}
//-----------
public bool OpenForRead() {
 return OpenForRead(fileName);
}
You can then read data from the text file using a readLine method:
public string readLine() {
 return ts.ReadLine ();
}

Likewise, the following methods allow you to open a file for writing and
write lines of text to it.
public void writeLine(string s) {
 ws.WriteLine (s);
}
//-----------
public bool OpenForWrite() {
 return OpenForWrite(fileName);
}
//-----------
public bool OpenForWrite(string file_name) {
 try{
 ws = new StreamWriter (file_name);
 fileName = file_name;
 writeOpened = true;
 return true;

Copyright © , 2002 by James W Cooper

118

 }
 catch(FileNotFoundException e) {
 return false;
 }
}

We’ll use this simplified file method wrapper class in some of the
following chapters, whenever we need to read in a file.

Copyright © , 2002 by James W Cooper

119

Part 2. Creational Patterns
With the foregoing description of objects, inheritance, and interfaces in
hand, we are now ready to begin discussing design patterns in earnest.
Recall that these are merely recipes for writing better object-oriented
programs. We have divided them into the Gang of Four’s three groups:
creational, structural and behavioral. We’ll start out in this section with the
creational patterns.

All of the creational patterns deal with ways to create instances of objects.
This is important because your program should not depend on how objects
are created and arranged. In C#, of course, the simplest way to create an
instance of an object is by using the new operator.
Fred fred1 = new Fred(); //instance of Fred class

However, this really amounts to hard coding, depending on how you
create the object within your program. In many cases, the exact nature of
the object that is created could vary with the needs of the program, and
abstracting the creation process into a special “creator” class can make
your program more flexible and general.

The Factory Method pattern provides a simple decision-making class
that returns one of several possible subclasses of an abstract base class,
depending on the data that are provided. We’ll start with the Simple
Factory pattern as an introduction to factories and then introduce the
Factory Method Pattern as well.

The Abstract Factory pattern provides an interface to create and return
one of several families of related objects.

The Builder pattern separates the construction of a complex object from
its representation so that several different representations can be created,
depending on the needs of the program.

Copyright © , 2002 by James W Cooper

120

The Prototype pattern starts with an instantiated class and copies or
clones it to make new instances. These instances can then be further
tailored using their public methods.

The Singleton pattern is a class of which there can be no more than one
instance. It provides a single global point of access to that instance.

Copyright © , 2002 by James W Cooper

121

8. The Simple Factory Pattern

One type of pattern that we see again and again in OO programs is the
Simple Factory pattern. A Simple Factory pattern is one that returns an
instance of one of several possible classes, depending on the data
provided to it. Usually all of the classes it returns have a common
parent class and common methods, but each of them performs a task
differently and is optimized for different kinds of data. This Simple
Factory is not, in fact, one of the 23 GoF patterns, but it serves here as
an introduction to the somewhat more subtle Factory Method GoF
pattern we’ll discuss shortly.

How a Simple Factory Works
To understand the Simple Factory pattern, let’s look at the diagram in
Figure 8-1.

X

doIt()

XY

doIt()

XZ

doIt()

XFactory

+getClass(as Integer):X

Produces different instances of X

Figure 8-1– A Simple Factory pattern

In this figure, X is a base class, and classes XY and XZ are derived
from it. The XFactory class decides which of these subclasses to
return, depending on the arguments you give it. On the right, we define
a getClass method to be one that passes in some value abc and that
returns some instance of the class x. Which one it returns doesn't
matter to the programmer, since they all have the same methods but
different implementations. How it decides which one to return is

Copyright © , 2002 by James W Cooper

122

entirely up to the factory. It could be some very complex function, but
it is often quite simple.

Sample Code
Let's consider a simple C# case where we could use a Factory class.
Suppose we have an entry form and we want to allow the user to enter
his name either as “firstname lastname” or as “lastname, firstname.”
We’ll make the further simplifying assumption that we will always be
able to decide the name order by whether there is a comma between the
last and first name.

This is a pretty simple sort of decision to make, and you could make it
with a simple if statement in a single class, but let’s use it here to
illustrate how a factory works and what it can produce. We’ll start by
defining a simple class that takes the name string in using the
constructor and allows you to fetch the names back.
//Base class for getting split names
 public class Namer {
 //parts stored here
 protected string frName, lName;

 //return first name
 public string getFrname(){
 return frName;
 }
 //return last name
 public string getLname() {
 return lName;
 }
 }
Note that our base class has no constructor.

The Two Derived Classes
Now we can write two very simple derived classes that implement that
interface and split the name into two parts in the constructor. In the
FirstFirst class, we make the simplifying assumption that everything
before the last space is part of the first name.
public class FirstFirst : Namer {
 public FirstFirst(string name) {
 int i = name.IndexOf (" ");
 if(i > 0) {

 frName = name.Substring (0, i).Trim ();

Copyright © , 2002 by James W Cooper

123

 lName = name.Substring (i + 1).Trim ();
 }
 else {
 lName = name;
 frName = "";

 }
}

}
And in the LastFirst class, we assume that a comma delimits the last
name. In both classes, we also provide error recovery in case the space
or comma does not exist.
public class LastFirst : Namer {
 public LastFirst(string name) {
 int i = name.IndexOf (",");
 if(i > 0) {
 lName = name.Substring (0, i);
 frName = name.Substring (i + 1).Trim ();
 }
 else {
 lName = name;
 frName = "";
 }
 }
}
In both cases, we store the split name in the protected lName and
frName variables in the base Namer class. Note that we don’t even
need any getFrname or getLname methods, since we have already
written them in the base class.

Building the Simple Factory
Now our Simple Factory class is easy to write. We just test for the
existence of a comma and then return an instance of one class or the
other.
public class NameFactory {
 public NameFactory() {}

 public Namer getName(string name) {
 int i = name.IndexOf (",");
 if(i > 0)
 return new LastFirst (name);
 else
 return new FirstFirst (name);
 }
}

Copyright © , 2002 by James W Cooper

124

Using the Factory
Let’s see how we put this together. In response to the Compute button
click, we use an instance of the NameFactory to return the correct
derived class.
private void btCompute_Click(

object sender, System.EventArgs e) {
 Namer nm = nameFact.getName (txName.Text);
 txFirst.Text = nm.getFrname ();
 txLast.Text = nm.getLname ();
}
Then we call the getFrname and getLname methods to get the correct
splitting of the name. We don’t need to know which derived class this
is: the Factory has provided it for us, and all we need to know is that it
has the two get methods.

The complete class diagram is shown in Figure 8-2.

Figure 8-2– The Namer factory program

We have constructed a simple user interface that allows you to enter
the names in either order and see the two names separately displayed.
You can see this program in Figure 8-3.

Copyright © , 2002 by James W Cooper

125

Figure 8-3 –The Namer program executing

You type in a name and then click on the Get name button, and the
divided name appears in the text fields below. The crux of this program
is the compute method that fetches the text, obtains an instance of a
Namer class, and displays the results.

And that’s the fundamental principle of the Simple Factory pattern.
You create an abstraction that decides which of several possible classes
to return, and it returns one. Then you call the methods of that class
instance without ever knowing which subclass you are actually using.
This approach keeps the issues of data dependence separated from the
classes’ useful methods.

Factory Patterns in Math Computation
Most people who use Factory patterns tend to think of them as tools for
simplifying tangled programming classes. But it is perfectly possible to
use them in programs that simply perform mathematical computations.
For example, in the Fast Fourier Transform (FFT), you evaluate the
following four equations repeatedly for a large number of point pairs

Copyright © , 2002 by James W Cooper

126

over many passes through the array you are transforming. Because of
the way the graphs of these computations are drawn, the following four
equations constitute one instance of the FFT “butterfly.” These are
shown as Equations 1-4.

(1)

(2)

(3)

(4)

However, there are a number of times during each pass through the
data where the angle y is zero. In this case, your complex math
evaluation reduces to Equations (5-8).

(5)
(6)

(7)

(8)

We first define a class to hold complex numbers:
public class Complex {
 float real;
 float imag;
//---------------------------------
public Complex(float r, float i) {
 real = r; imag = i;
}
//---------------------------------
public void setReal(float r) { real = r;}
//---------------------------------
public void setImag(float i) {imag= i;}
//---------------------------------
public float getReal() {return real;}
//---------------------------------
public float getImag() {return imag;}
}
Our basic Buttefly class is an abstract class that can be filled in by one
of the implementations of the Execute command:
public abstract class Butterfly {

)cos()sin(
)cos()sin(
)sin()cos(
)sin()cos(

221
'
2

221
'
1

221
'
2

221
'
1

yIyRII
yIyRII
yIyRRR
yIyRRR

−−=
++=
+−=
−+=

21
'
2

21
'
1

21
'
2

21
'
1

III
III
RRR
RRR

−=
+=
−=
+=

Copyright © , 2002 by James W Cooper

127

 float y;
 public Butterfly() {
 }
 public Butterfly(float angle) {
 y = angle;
 }
 abstract public void Execute(Complex x, Complex y);
}

We can then make a simple addition Butterfly class which implements
the add and subtract methods of equations 5-8:
class addButterfly : Butterfly {
 float oldr1, oldi1;
 public addButterfly(float angle) {
 }
 public override void Execute(Complex xi, Complex xj) {
 oldr1 = xi.getReal();
 oldi1 = xi.getImag();
 xi.setReal(oldr1 + xj.getReal());
 xj.setReal(oldr1 - xj.getReal());
 xi.setImag(oldi1 + xj.getImag());
 xj.setImag(oldi1 - xj.getImag());
 }
}
The TrigButterfly class is analogous except that the Execute method
contains the actual trig functions of Equations 1-4:
public class TrigButterfly:Butterfly {
 float y, oldr1, oldi1;
 float cosy, siny;
 float r2cosy, r2siny, i2cosy, i2siny;

 public TrigButterfly(float angle) {
 y = angle;
 cosy = (float) Math.Cos(y);
 siny = (float)Math.Sin(y);
 }
 public override void Execute(Complex xi, Complex xj) {
 oldr1 = xi.getReal();
 oldi1 = xi.getImag();
 r2cosy = xj.getReal() * cosy;
 r2siny = xj.getReal() * siny;
 i2cosy = xj.getImag()*cosy;
 i2siny = xj.getImag()*siny;
 xi.setReal(oldr1 + r2cosy +i2siny);
 xi.setImag(oldi1 - r2siny +i2cosy);
 xj.setReal(oldr1 - r2cosy - i2siny);
 xj.setImag(oldi1 + r2siny - i2cosy);
 }

Copyright © , 2002 by James W Cooper

128

}
Then we can make a simple factory class that decides which class
instance to return. Since we are making Butterflies, we’ll call our
Factory a Cocoon. We never really need to instantiate Cocoon, so we
will make its one method static:
public class Cocoon {
 static public Butterfly getButterfly(float y) {
 if (y != 0)
 return new TrigButterfly(y);
 else
 return new addButterfly(y);
 }
}

Programs on the CD-ROM
\Factory\Namer The name factory
\Factory\FFT A FFT example

Thought Questions
1. Consider a personal checkbook management program like Quicken.

It manages several bank accounts and investments and can handle
your bill paying. Where could you use a Factory pattern in
designing a program like that?

2. Suppose you are writing a program to assist homeowners in
designing additions to their houses. What objects might a Factory
be used to produce?

Copyright © , 2002 by James W Cooper

129

9. The Factory Method

We’ve just seen a couple of examples of the simplest of factories. The
factory concept recurs all throughout object-oriented programming, and
we find a few examples embedded in C# itself and in other design patterns
(such as the Builder pattern). In these cases a single class acts as a traffic
cop and decides which subclass of a single hierarchy will be instantiated.

The Factory Method pattern is a clever but subtle extension of this idea,
where no single class makes the decision as to which subclass to
instantiate. Instead, the superclass defers the decision to each subclass.
This pattern does not actually have a decision point where one subclass is
directly selected over another class. Instead, programs written to this
pattern define an abstract class that creates objects but lets each subclass
decide which object to create.

We can draw a pretty simple example from the way that swimmers are
seeded into lanes in a swim meet. When swimmers compete in multiple
heats in a given event, they are sorted to compete from slowest in the early
heats to fastest in the last heat and arranged within a heat with the fastest
swimmers in the center lanes. This is referred to as straight seeding.

Now, when swimmers swim in championships, they frequently swim the
event twice. During preliminaries everyone competes, and the top 12 or 16
swimmers return to compete against each other at finals. In order to make
the preliminaries more equitable, the top heats are circle seeded: The
fastest three swimmers are in the center lane in the fastest three heats, the
second fastest three swimmers are in the next to center lane in the top
three heats, and so forth

So, how do we build some objects to implement this seeding scheme and
illustrate the Factory Method. First, let’s design an abstract Event class.
public abstract class Event {
 protected int numLanes;
 protected ArrayList swimmers;

Copyright © , 2002 by James W Cooper

130

 public Event(string filename, int lanes) {
 numLanes = lanes;
 swimmers = new ArrayList();
 //read in swimmers from file
 csFile f = new csFile(filename);
 f.OpenForRead ();
 string s = f.readLine();
 while (s != null) {
 Swimmer sw = new Swimmer(s);
 swimmers.Add (sw);
 s = f.readLine();
 }
 f.close();
 }
 public abstract Seeding getSeeding();
 public abstract bool isPrelim();
 public abstract bool isFinal();
 public abstract bool isTimedFinal();
}

Note that this class is not entirely without content. Since all the derived
classes will need to read data from a file, we put that code in the base
class.

These abstract methods simply show the rest of a complete
implementation of and Event class. Then we can implement concrete
classes from the Event class, called PrelimEvent and TimedFinalEvent.
The only difference between these classes is that one returns one kind of
seeding and the other returns a different kind of seeding.

We also define an abstract Seeding class with the following methods.

public abstract class Seeding {
 protected int numLanes;
 protected int[] lanes;
 public abstract IEnumerator getSwimmers();
 public abstract int getCount();
 public abstract int getHeats();
 protected abstract void seed();
 //--------------------------------
 protected void calcLaneOrder() {

 //complete code on CD

Copyright © , 2002 by James W Cooper

131

 }
 }
Note that we actually included code for the calcLaneOrder method but
omit the code here for simplicity. The derived classes then each create an
instance of the base Seeding class to call these functions.

We can then create two concrete seeding subclasses: StraightSeeding and
CircleSeeding. The PrelimEvent class will return an instance of
CircleSeeding, and the TimedFinalEvent class will return an instance of
StraightSeeding. Thus, we see that we have two hierarchies: one of Events
and one of Seedings.

Figure 9-1 –Seeding diagram showing Seeding interface and derived classes.

Copyright © , 2002 by James W Cooper

132

In the Events hierarchy, you will see that both derived Events classes
contain a getSeeding method. One of them returns an instance of
StraightSeeding and the other an instance of CircleSeeding. So you see,
there is no real factory decision point as we had in our simple example.
Instead, the decision as to which Event class to instantiate is the one that
determines which Seeding class will be instantiated.

While it looks like there is a one-to-one correspondence between the two
class hierarchies, there needn’t be. There could be many kinds of Events
and only a few kinds of Seeding used.

The Swimmer Class
We haven’t said much about the Swimmer class, except that it contains a
name, club age, seed time, and place to put the heat and lane after seeding.
The Event class reads in the Swimmers from some database (a file in our
example) and then passes that collection to the Seeding class when you
call the getSeeding method for that event.

The Events Classes
We have seen the previous abstract base Events class. In actual use, we
use it to read in the swimmer data and pass it on to instances of the
Swimmer class to parse.

The base Event class has empty methods for whether the event is a prelim,
final, or timed final event. We fill in the event in the derived classes.

Our PrelimEvent class just returns an instance of CircleSeeding.

public class PrelimEvent:Event {
 public PrelimEvent(string filename, int lanes):

base(filename,lanes) {}
 //return circle seeding
 public override Seeding getSeeding() {
 return new CircleSeeding(swimmers, numLanes);
 }
 public override bool isPrelim() {
 return true;

Copyright © , 2002 by James W Cooper

133

 }
 public override bool isFinal() {
 return false;
 }
 public override bool isTimedFinal() {
 return false;
 }
}
Our TimedFinalEvent class returns an instance of StraightSeeding.
public class TimedFinalEvent:Event {

 public TimedFinalEvent(string filename,

int lanes):base(filename, lanes) {}
 //return StraightSeeding class
 public override Seeding getSeeding() {
 return new StraightSeeding(swimmers, numLanes);
 }

public override bool isPrelim() {
 return false;
 }
 public override bool isFinal() {
 return false;
 }
 public override bool isTimedFinal() {
 return true;
 }
}

In both cases our events classes contain an instance of the base Events
class, which we use to read in the data files.

Straight Seeding
In actually writing this program, we’ll discover that most of the work is
done in straight seeding. The changes for circle seeding are pretty
minimal. So we instantiate our StraightSeeding class and copy in the
Collection of swimmers and the number of lanes.
protected override void seed() {
 //loads the swmrs array and sorts it
 sortUpwards();

Copyright © , 2002 by James W Cooper

134

 int lastHeat = count % numLanes;
 if (lastHeat < 3)
 lastHeat = 3; //last heat must have 3 or more
 int lastLanes = count - lastHeat;
 numHeats = count / numLanes;
 if (lastLanes > 0)
 numHeats++;
 int heats = numHeats;
 //place heat and lane in each swimmer's object
 //Add in last partial heat
 //copy from array back into ArrayList

//details on CDROM
}
This makes the entire array of seeded Swimmers available when you call
the getSwimmers method.

Circle Seeding
The CircleSeeding class is derived from StraightSeeding, so it starts by
calling the parent class’s seed method and then rearranges the top heats
protected override void seed() {
 int circle;
 base.seed(); //do straight seed as default
 if (numHeats >= 2) {
 if (numHeats >= 3)
 circle = 3;
 else
 circle = 2;
 int i = 0;
 for (int j = 0; j < numLanes; j++) {
 for (int k = 0; k < circle; k++) {
 swmrs[i].setLane(lanes[j]);
 swmrs[i++].setHeat(numHeats - k);
 }
 }
}

Our Seeding Program
In this example, we took a list of swimmers from the Web who competed
in the 500-yard freestyle and the 100-yard freestyle and used them to build

Copyright © , 2002 by James W Cooper

135

our TimedFinalEvent and PrelimEvent classes. You can see the results of
these two seedings in Figure 9-2. In the left box, the 500 Free event is
selected, and you can see that the swimmers are seeded in strainght seeing
from slowest to fastest. In the right box, the 100 Free event is selected and
is circle seeded, with the last 3 heats seeded in a rotating fashion.

Figure 9-2– Straight seeding of the 500 free and circle seeding of the 100 free

Other Factories
Now one issue that we have skipped over is how the program that reads in
the swimmer data decides which kind of event to generate. We finesse this
here by simply creating the correct type of event when we read in the data.
This code is in our init method of our form:
private void init() {
 //create array of events
 events = new ArrayList ();
 lsEvents.Items.Add ("500 Free");
 lsEvents.Items.Add ("100 Free");
 //and read in their data
 events.Add (new TimedFinalEvent ("500free.txt", 6));
 events.Add (new PrelimEvent ("100free.txt", 6));
}

Copyright © , 2002 by James W Cooper

136

Clearly, this is an instance where an EventFactory may be needed to
decide which kind of event to generate. This revisits the simple factory
with which we began the discussion.

When to Use a Factory Method
You should consider using a Factory method in the following situations.

• A class can’t anticipate which kind of class of objects it must create.

• A class uses its subclasses to specify which objects it creates.

• You want to localize the knowledge of which class gets created.

There are several variations on the factory pattern to recognize.

1. The base class is abstract and the pattern must return a complete
working class.

2. The base class contains default methods and these methods are called
unless the default methods are insufficient.

3. Parameters are passed to the factory telling it which of several class
types to return. In this case the classes may share the same method
names but may do something quite different.

Thought Question
Seeding in track is carried out from inside to outside lanes. What classes
would you need to develop to carry out tracklike seeding as well?

Programs on the CD-ROM
\FactoryMethod\Seeder Seeding program

Copyright © , 2002 by James W Cooper

137

10. The Abstract Factory Pattern

The Abstract Factory pattern is one level of abstraction higher than the
factory pattern. You can use this pattern when you want to return one of
several related classes of objects, each of which can return several
different objects on request. In other words, the Abstract Factory is a
factory object that returns one of several groups of classes. You might
even decide which class to return from that group using a Simple Factory.

Common thought experiment-style examples might inc lude automobile
factories. You would expect a Toyota factory to work exclusively with
Toyota parts and a Ford factory to use Ford parts. You can consider each
auto factory as an Abstract Factory and the parts the groups of related
classes.

A GardenMaker Factory
Let’s consider a practical example where you might want to use the
abstract factory in your application. Suppose you are writing a program to
plan the layout of gardens. These could be gardens consisting of annuals,
vegetables, or perennials. However, no matter which kind of garden you
are planning, you want to ask the same questions.

1. What are good border plants?

2. What are good center plants?

3.What plants do well in partial shade?

(And probably a lot more plant questions that we won’t get into here.)

We want a base C# Garden class that can answer these questions as class
methods.
public class Garden {
 protected Plant center, shade, border;
 protected bool showCenter, showShade, showBorder;
 //select which ones to display
 public void setCenter() {showCenter = true;}

Copyright © , 2002 by James W Cooper

138

 public void setBorder() {showBorder =true;}
 public void setShade() {showShade =true;}
 //draw each plant
 public void draw(Graphics g) {
 if (showCenter) center.draw (g, 100, 100);
 if (showShade) shade.draw (g, 10, 50);
 if (showBorder) border.draw (g, 50, 150);
 }
}

Our Plant object sets the name and draws itself when its draw method is
called.
public class Plant {
 private string name;
 private Brush br;
 private Font font;

 public Plant(string pname) {
 name = pname; //save name
 font = new Font ("Arial", 12);
 br = new SolidBrush (Color.Black);
 }
 //-------------
 public void draw(Graphics g, int x, int y) {
 g.DrawString (name, font, br, x, y);
 }
}
In Design Patterns terms, the Garden interface is the Abstract Factory. It
defines the methods of concrete class that can return one of several
classes. Here, we return central, border, and shade- loving plants as those
three classes. The abstract factory could also return more specific garden
information, such as soil pH or recommended moisture content.

In a real system, each type of garden would probably consult an elaborate
database of plant information. In our simple example we’ll return one kind
of each plant. So, for example, for the vegetable garden we simply write
the following.
public class VeggieGarden : Garden {
 public VeggieGarden() {
 shade = new Plant("Broccoli");
 border = new Plant ("Peas");

Copyright © , 2002 by James W Cooper

139

 center = new Plant ("Corn");
 }
}

In a similar way, we can create Garden classes for PerennialGarden and
AnnualGarden. Each of these concrete classes is known as a Concrete
Factory, since it implements the methods in the parent class. Now we have
a series of Garden objects, each of which creates one of several Plant
objects. This is illustrated in the class diagram in Figure 10-1.

Figure 10-1 – The major objects in the Gardener program

We can easily construct our Abstract Factory driver program to return one
of these Garden objects based on the radio button that a user selects, as
shown in the user interface in Figure 10-2.

Copyright © , 2002 by James W Cooper

140

Figure 10-2 – The user interface of the Gardener program

Each time upi se;ect a new garden type, the screen is cleared and the check
boxes unchecked. Then, as you select each checkbox, that plant type is
drawn in.

Remember, in C# you do not draw on the screen directly from your code.
Instead, the screen is updated when the next paint event occurs, and you
must tell the paint routine what objects to paint.

Since each garden (and Plant) knows how to draw itself, it should have a
draw method that draws the appropriate plant names on the garden screen.
And since we provided check boxes to draw each of the types of plants,
we set a Boolean that indicates that you can now draw each of these plant
types.

Our Garden object contains three set methods to indicate that you can
draw each plant.
public void setCenter() {showCenter = true;}
public void setBorder() {showBorder =true;}
public void setShade() {showShade =true;}

Copyright © , 2002 by James W Cooper

141

The PictureBox
We draw the circle representing the shady area inside the PictureBox and
draw the names of the plants inside this box as well. This is best
accomplished by deriving a new GardenPic class from PictureBox and
giving it the knowledge to draw the circle and the garden plant names,
Thus, we need to add a paint method not to the main GardenMaker
window class but to the PictureBox it contains. This thus overrides the
base OnPaint event of the underlying Control class.
public class GdPic : System.Windows.Forms.PictureBox {
 private Container components = null;
 private Brush br;
 private Garden gden;

//-----------
 private void init () {
 br = new SolidBrush (Color.LightGray);
 }

//-----------
 public GdPic() {
 InitializeComponent();
 init();
 }

//-----------
 public void setGarden(Garden garden) {
 gden = garden;
 }

//-----------
 protected override void OnPaint (PaintEventArgs pe){
 Graphics g = pe.Graphics;
 g.FillEllipse (br, 5, 5, 100, 100);
 if(gden != null)
 gden.draw (g);
 }

Note that we do not have to erase the plant name text each time because
OnPaint is only called when the whole picture needs to be repainted.

Copyright © , 2002 by James W Cooper

142

Handling the RadioButton and Button Events
When one of the three radio buttons is clicked, you create a new garden of
the correct type and pass it into the picture box class. You also clear all the
checkboxes.
private void opAnnual_CheckedChanged(

object sender, EventArgs e) {
 setGarden(new AnnualGarden ());
}
//-----
private void opVegetable_CheckedChanged(

object sender, EventArgs e) {
 setGarden(new VeggieGarden ());
}
//-----
private void opPerennial_CheckedChanged(

object sender, EventArgs e) {
 setGarden(new PerennialGarden ());
}
//-----
private void setGarden(Garden gd) {
 garden = gd; //save current garden
 gdPic1.setGarden (gd); //tell picture bos
 gdPic1.Refresh (); //repaint it
 ckCenter.Checked =false; //clear all
 ckBorder.Checked = false; //check
 ckShade.Checked = false; //boxes
}

When you click on one of the check boxes to show the plant names, you
simply call that garden’s method to set that plant name to be displayed and
then call the picture box’s Refresh method to cause it to repaint.
private void ckCenter_CheckedChanged(

object sender, System.EventArgs e) {
 garden.setCenter ();
 gdPic1.Refresh ();
}
//-----
private void ckBorder_CheckedChanged(

object sender, System.EventArgs e) {
 garden.setBorder();
 gdPic1.Refresh ();

Copyright © , 2002 by James W Cooper

143

}
//-----
private void ckShade_CheckedChanged(

object sender, System.EventArgs e) {
 garden.setShade ();
 gdPic1.Refresh ();
}
The final C# Gardener class UML diagram is shown in Figure 10-3.

Figure 10-3 – The UML diagram for the Gardener program.

Adding More Classes
One of the great strengths of the Abstract Factory is that you can add new
subclasses very easily. For example, if you needed a GrassGarden or a
WildFlowerGarden, you can subclass Garden and produce these classes.
The only real change you’d need to make in any existing code is to add
some way to choose these new kinds of gardens.

Copyright © , 2002 by James W Cooper

144

Consequences of Abstract Factory
One of the main purposes of the Abstract Factory is that it isolates the
concrete classes that are generated. The actual class names of these classes
are hidden in the factory and need not be known at the client level at all.

Because of the isolation of classes, you can change or interchange these
product class families freely. Further, since you generate only one kind of
concrete class, this system keeps you from inadvertently using classes
from different families of products. However, it is some effort to add new
class families, since you need to define new, unambiguous conditions that
cause such a new family of classes to be returned.

While all of the classes that the Abstract Factory generates have the same
base class, there is nothing to prevent some subclasses from having
additional methods that differ from the methods of other classes. For
example, a BonsaiGarden class might have a Height or
WateringFrequency method that is not in other classes. This presents the
same problem that occurs in any subclass: You don’t know whether you
can call a class method unless you know whether the subclass is one that
allows those methods. This problem has the same two solutions as in any
similar case: You can either define all of the methods in the base class,
even if they don’t always have an actual function, or, you can derive a new
base interface that contains all the methods you need and subclass that for
all of your garden types.

Thought Question
If you are writing a program to track investments, such as stocks, bonds,
metal futures, derivatives, and the like, how might you use an Abstract
Factory?

Programs on the CD-ROM
\AbstractFactory\GardenPlanner The Gardener program

Copyright © , 2002 by James W Cooper

145

11. The Singleton Pattern

The Singleton pattern is grouped with the other Creational patterns,
although it is to some extent a pattern that limits the creation of classes
rather than promoting such creation. Specifically, the Singleton assures
that there is one and only one instance of a class, and provides a global
point of access to it. There are any number of cases in programming
where you need to make sure that there can be one and only one
instance of a class. For example, your system can have only one
window manager or print spooler, or a single point of access to a
database engine. Your PC might have several serial ports but there can
only be one instance of “COM1.”

Creating Singleton Using a Static Method
The easiest way to make a class that can have only one instance is to
embed a static variable inside the class that we set on the first
instance and check for each time we enter the constructor. A static
variable is one for which there is only one instance, no matter how
many instances there are of the class. To prevent instantiating the class
more than once, we make the constructor private so an instance can
only be created from within the static method of the class. Then we
create a method called getSpooler that will return an instance of
Spooler, or null if the class has already been instantiated.
public class Spooler {
 private static bool instance_flag= false;
 private Spooler() {
 }
 public static Spooler getSpooler() {
 if (! instance_flag)

 return new Spooler ();
 else
 return null;
 }
}
One major advantage to this approach is that you don’t have to worry
about exception handling if the singleton already exists-- you simply
get a null return from the getSpooler method.

Spooler sp = Spooler.getSpooler();

Copyright © , 2002 by James W Cooper

146

if (sp != null)
 Console.WriteLine ("Got 1 spooler");
Spooler sp2 = Spooler.getSpooler ();
if (sp2 == null)
 Console.WriteLine ("Can\'t get spooler");
}
And, should you try to create instances of the Spooler class directly,
this will fail at compile time because the constructor has been declared
as private.
//fails at compiler time
Spooler sp3 = new Spooler ();

Finally, should you need to change the program to allow two or three
instances, this class is easily modified to allow this.

Exceptions and Instances
The above approach has the disadvantage that it requires the
programmer to check the getSpooler method return to make sure it is
not null. Assuming that programmers will always remember to check
errors is the beginning of a slippery slope that many prefer to avoid.

Instead, we can create a class that throws an Exception if you attempt
to instantiate it more than once. This requires the programmer to take
action and is thus a safer approach. Let’s create our own exception
class for this case:
public class SingletonException:Exception {
 //new exception type for singleton classes
 public SingletonException(string s):base(s) {
 }
}
Note that other than calling its parent classes through the base
constructor, this new exception type doesn’t do anything in particular.
However, it is convenient to have our own named exception type so
that the runtime system will warn us if this type of exception is thrown
when we attempt to create an instance of Spooler.

Copyright © , 2002 by James W Cooper

147

Throwing the Exception
Let’s write the skeleton of our PrintSpooler class-- we’ll omit all of the
printing methods and just concentrate on correctly implementing the
Singleton pattern:
public class Spooler {
 static bool instance_flag = false; //true if one instance
 public Spooler() {
 if (instance_flag)
 throw new SingletonException(

"Only one printer allowed");
 else {
 instance_flag = true; //set flag

 Console.WriteLine ("printer opened");
 }

 }
}

Creating an Instance of the Class
Now that we’ve created our simple Singleton pattern in the
PrintSpooler class, let’s see how we use it. Remember that we must
enclose every method that may throw an exception in a try - catch
block.
public class singleSpooler {
 static void Main(string[] args) {
 Spooler pr1, pr2;
 //open one printer--this should always work
 Console.WriteLine ("Opening one spooler");
 try {
 pr1 = new Spooler();
 }
 catch (SingletonException e) {
 Console.WriteLine (e.Message);
 }
 //try to open another printer --should fail
 Console.WriteLine ("Opening two spoolers");
 try {

 pr2 = new Spooler();
 }
 catch (SingletonException e) {
 Console.WriteLine (e.Message);
 }
}

Then, if we execute this program, we get the following results:

Copyright © , 2002 by James W Cooper

148

Opening one spooler
printer opened
Opening two spoolers
Only one spooler allowed

where the last line indicates than an exception was thrown as expected.

Providing a Global Point of Access to a Singleton
Since a Singleton is used to provide a single point of global access to a
class, your program design must provide for a way to reference the
Singleton throughout the program, even though there are no global
variables in C#.

One solution is to create such singletons at the beginning of the
program and pass them as arguments to the major classes that might
need to use them.
pr1 = iSpooler.Instance();
Customers cust = new Customers(pr1);

The disadvantage is that you might not need all the Singletons that you
create for a given program execution, and this could have performance
implications.

A more elaborate solution could be to create a regis try of all the
Singleton classes in the program and make the registry generally
available. Each time a Singleton is instantiated, it notes that in the
Registry. Then any part of the program can ask for the instance of any
singleton using an identifying string and get back that instance
variable.

The disadvantage of the registry approach is that type checking may be
reduced, since the table of singletons in the registry probably keeps all
of the singletons as Objects, for example in a Hashtable object. And, of
course, the registry itself is probably a Singleton and must be passed to
all parts of the program using the constructor or various set functions.

Probably the most common way to provide a global point of access is
by using static methods of a class. The class name is always available
and the static methods can only be called from the class and not from
its instances, so there is never more than one such instance no matter
how many places in your program call that method..

Copyright © , 2002 by James W Cooper

149

 Other Consequences of the Singleton Pattern
1. It can be difficult to subclass a Singleton, since this can only work

if the base Singleton class has not yet been instantiated.

2. You can easily change a Singleton to allow a small number of
instances where this is allowable and meaningful.

Programs on Your CD-ROM
\Singleton\SinglePrinter Shows how print spooler could be

written thowing exception

\Singleton\InstancePrinter Creates one instance or returns
null

Copyright © , 2002 by James W Cooper

150

12. The Builder Pattern

In this chapter we’ll consider how to use the Builder pattern to construct
objects from components. We have already seen that the Factory pattern
returns one of several different subclasses, depending on the data passed in
arguments to the creation methods. But suppose we don’t want just a
computing algorithm but a whole different user interface because of the
data we need to display. A typical example might be your e-mail address
book. You probably have both individual people and groups of people in
your address book, and you would expect the display for the address book
to change so that the People screen has places for first and last name,
company, e-mail address, and phone number.

On the other hand, if you were displaying a group address page, you’d like
to see the name of the group, its purpose, and a list of members and their
e-mail addresses. You click on a person and get one display and on a
group and get the other display. Let’s assume that all e-mail addresses are
kept in an object called an Address and that people and groups are derived
from this base class, as shown in Figure 12-1.

Address

Person Group

Figure 12-1 – Both Person and Group are derived from Address.

Depending on which type of Address object we click on, we’d like to see a
somewhat different display of that object’s properties. This is a little more
than just a Factory pattern because we aren’t returning objects that are

Copyright © , 2002 by James W Cooper

151

simple descendants of a base display object but totally different user
interfaces made up of different combinations of display objects. The
Builder pattern assembles a number of objects, such as display controls, in
various ways, depending on the data. Furthermore, by using cla sses to
represent the data and forms to represent the display, you can cleanly
separate the data from the display methods into simple objects.

An Investment Tracker
Let’s consider a somewhat simpler case where it would be useful to have a
class build our UI for us. Suppose we are going to write a program to keep
track of the performance of our investments. We might have stocks,
bonds, and mutual funds, and we’d like to display a list of our holdings in
each category so we can select one or more of the investments and plot
their comparative performance.

Even though we can’t predict in advance how many of each kind of
investment we might own at any given time, we’d like to have a display
that is easy to use for either a large number of funds (such as stocks) or a
small number of funds (such as mutual funds). In each case, we want some
sort of a multiple-choice display so that we can select one or more funds to
plot. If there are a large number of funds, we’ll use a multichoice list box,
and if there are three or fewer funds, we’ll use a set of check boxes. We
want our Builder class to generate an interface that depends on the number
of items to be displayed and yet have the same methods for returning the
results.

Our displays are shown in Figure 12-2. The top display contains a large
number of stocks, and the bottom contains a small number of bonds.

Copyright © , 2002 by James W Cooper

152

Figure 12-2- Stocks with the list interface and bonds with the check box interface

Copyright © , 2002 by James W Cooper

153

Now let’s consider how we can build the interface to carry out this
variable display. We’ll start with a multiChoice interface that defines the
methods we need to implement.
public interface MultiChoice
 {
 ArrayList getSelected();
 void clear();
 Panel getWindow();
 }

The getWindow method returns a Panel containing a multiple-choice
display. The two display panels we’re using here — a check box panel or
a list box panel — implement this interface.
public class CheckChoice:MultiChoice {
or
public class ListChoice:MultiChoice {

C# gives us considerable flexibility in designing Builder classes, since we
have direct access to the methods that allow us to construct a window
from basic components. For this example, we’ll let each builder construct
a Panel containing whatever components it needs. We can then add that
Panel to the form and position it. When the display changes, you remove
the old Panel and add a new one. In C#, a Panel is just a unbordered
container that can hold any number of Windows components. The two
implementations of the Panel must satisfy the MultiChoice interface.

We will create a base abstract class called Equities and derive the stocks,
bonds, and mutual funds from it.
public abstract class Equities {
 protected ArrayList array;
 public abstract string toString();
 //----------
 public ArrayList getNames() {
 return array;
 }
 //----------
 public int count() {

Copyright © , 2002 by James W Cooper

154

 return array.Count ;
 }
 }

Note the abstract toString method. We’ll use this to display each kind of
equity in the list box. Now our Stocks class will just contain the code to
load the ArrayList with the stock names.
public class Stocks:Equities {
 public Stocks() {
 array = new ArrayList();
 array.Add ("Cisco");
 array.Add ("Coca Cola");
 array.Add ("GE");
 array.Add ("Harley Davidson");
 array.Add ("IBM");
 array.Add ("Microsoft");
 }
 public override string toString() {
 return "Stocks";
 }
}

All the remaining code (getNames and count) is implemented in the base
Equities class. The Bonds and Mutuals classes are entirely analogous.

The Stock Factory
We need a little class to decide whether we want to return a check box
panel or a list box panel. We’ll call this class the StockFactory class.
However, we will never need more than one instance of this class, so we’ll
create the class so its one method is static.
public class StockFactory {
 public static MultiChoice getBuilder(Equities stocks) {
 if (stocks.count ()<=3) {
 return new CheckChoice (stocks);
 }
 else {
 return new ListChoice(stocks);
 }

}
}

Copyright © , 2002 by James W Cooper

155

We never need more than one instance of this class so we make the
getBuilder method static so we can call it directly without creating a class
instance. In the language of Design Patterns, this simple factory class is
called the Director, and the actual classes derived from multiChoice are
each Builders.

The CheckChoice Class
Our Check Box Builder constructs a panel containing 0 to 3 check boxes
and returns that panel to the calling program.
//returns a panel of 0 to 3 check boxes
public class CheckChoice:MultiChoice {
 private ArrayList stocks;
 private Panel panel;
 private ArrayList boxes;
//------
 public CheckChoice(Equities stks) {
 stocks = stks.getNames ();
 panel = new Panel ();
 boxes = new ArrayList ();
 //add the check boxes to the panel
 for (int i=0; i< stocks.Count; i++) {
 CheckBox ck = new CheckBox ();
 //position them
 ck.Location = new Point (8, 16 + i * 32);
 string stk = (string)stocks[i];
 ck.Text =stk;
 ck.Size = new Size (112, 24);
 ck.TabIndex =0;
 ck.TextAlign = ContentAlignment.MiddleLeft ;
 boxes.Add (ck);
 panel.Controls.Add (ck);
 }
}
}

The methods for returning the window and the list of selected names are
shown here. Note that we use the cast the object type returned by an
ArrayList to the Checkbox type the method actually requires.
//------
//uncheck all check boxes

Copyright © , 2002 by James W Cooper

156

public void clear() {
 for(int i=0; i< boxes.Count; i++) {
 CheckBox ck = (CheckBox)boxes[i];
 ck.Checked =false;
 }
}
//------
//return list of checked items
public ArrayList getSelected() {
 ArrayList sels = new ArrayList ();
 for(int i=0; i< boxes.Count ; i++) {
 CheckBox ck = (CheckBox)boxes[i];
 if (ck.Checked) {
 sels.Add (ck.Text);
 }
 }
 return sels;
}
//------
//return panel of checkboxes
public Panel getWindow() {
 return panel;
}

The ListboxChoice Class
This class creates a multiselect list box, inserts it into a Panel, and loads
the names into the list.
public class ListChoice:MultiChoice {
 private ArrayList stocks;
 private Panel panel;
 private ListBox list;
//------
//constructor creates and loads the list box
 public ListChoice(Equities stks) {
 stocks = stks.getNames ();
 panel = new Panel ();
 list = new ListBox ();
 list.Location = new Point (16, 0);
 list.Size = new Size (120, 160);
 list.SelectionMode =SelectionMode.MultiExtended ;
 list.TabIndex =0;
 panel.Controls.Add (list);

Copyright © , 2002 by James W Cooper

157

 for(int i=0; i< stocks.Count ; i++) {
 list.Items.Add (stocks[i]);
 }
 }
Since this is a multiselect list box, we can get all the selected items in a
single SelectedIndices collection. This method, however, only works for a
multiselect list box. It returns a –1 for a single-select list box. We use it to
load the array list of selected names as follows.
//returns the Panel
 //------
 public Panel getWindow() {
 return panel;
 }
 //returns an array of selected elements
 //------
 public ArrayList getSelected() {
 ArrayList sels = new ArrayList ();
 ListBox.SelectedObjectCollection

coll = list.SelectedItems ;
 for(int i=0; i< coll.Count; i++) {
 string item = (string)coll[i];
 sels.Add (item);
 }
 return sels;
 }
 //------
 //clear selected elements
 public void clear() {
 list.Items.Clear();
 }

Using the Items Collection in the ListBox Control
You are not limited to populating a list box with strings in C#. When you
add data to the Items collection, it can be any kind of object that has a
toString method.

Since we created our three Equities classes to have a toString method, we
can add these classes directly to the list box in our main program’s
constructor.
public class WealthBuilder : Form {

Copyright © , 2002 by James W Cooper

158

 private ListBox lsEquities;
 private Container components = null;
 private Button btPlot;
 private Panel pnl;
 private MultiChoice mchoice;
 private void init() {
 lsEquities.Items.Add (new Stocks());
 lsEquities.Items.Add (new Bonds());
 lsEquities.Items.Add (new Mutuals());
 }
 public WealthBuilder() {
 InitializeComponent();
 init();
 }

Whenever we click on a line of the list box, the click method obtains that
instance of an Equities class and passes it to the MultiCho ice factory,
which in turn produces a Panel containing the items in that class. It then
removes the old panel and adds the new one.
private void lsEquities_SelectedIndexChanged(object sender,

EventArgs e) {
 int i = lsEquities.SelectedIndex ;
 Equities eq = (Equities)lsEquities.Items[i];
 mchoice= StockFactory.getBuilder (eq);
 this.Controls.Remove (pnl);
 pnl = mchoice.getWindow ();
 setPanel();
}

Plotting the Data
We don’t really implement an actual plot in this example. However, we
did provide a getSelected method to return the names of stocks from either
MultiSelect implementation. The method returns an ArrayList of selected
items. In the Plot click method, we load these names into a message box
and display it:
private void btPlot_Click(object sender, EventArgs e) {
//display the selected items in a message box
 if(mchoice != null) {
 ArrayList ar = mchoice.getSelected ();

Copyright © , 2002 by James W Cooper

159

 string ans = "";
 for(int i=0; i< ar.Count ; i++) {
 ans += (string)ar[i] +" ";
 }
 MessageBox.Show (null, ans,

"Selected equities", MessageBoxButtons.OK);
 }
}

The Final Choice
Now that we have created all the needed classes, we can run the program.
It starts with a blank panel on the right side, so there will always be some
panel there to remove. Then each time we click on one of the names of the
Equities, that panel is removed and a new one is added in its place. We see
the three cases in Figure 12-3.

Copyright © , 2002 by James W Cooper

160

Figure 12-3- The WealthBuilder program, showing the list of equitites, the listbox,
the checkboxes and the plot panel.

You can see the relationships between the classes in the UML diagram in
Figure 12-4.

Figure 12-4 – The inheritance relationships in the Builder pattern

Consequences of the Builder Pattern
1. A Builder lets you vary the internal representation of the product it

builds. It also hides the details of how the product is assembled.

2. Each specific Builder is independent of the others and of the rest of the
program. This improves modularity and makes the addition of other
Builders relatively simple.

3. Because each Builder constructs the final product step by step,
depending on the data, you have more control over each final product
that a Builder constructs.

A Builder pattern is somewhat like an Abstract Factory pattern in that both
return classes made up of a number of methods and objects. The main
difference is that while the Abstract Factory returns a family of related
classes, the Builder constructs a complex object step by step, depending
on the data presented to it.

Copyright © , 2002 by James W Cooper

161

Thought Questions
1. Some word-processing and graphics programs construct menus

dynamically based on the context of the data being displayed. How
could you use a Builder effectively here?

2. Not all Builders must construct visual objects. What might you
construct with a Builder in the personal finance industry? Suppose you
were scoring a track meet, made up of five or six different events.
How can you use a Builder there?

Programs on the CD-ROM
\Builders\Stocks Basic equities Builder

Copyright © , 2002 by James W Cooper

162

13. The Prototype Pattern

The Prototype pattern is another tool you can use when you can specify
the general class needed in a program but need to defer the exact class
until execution time. It is similar to the Builder in that some class decides
what components or details make up the final class. However, it differs in
that the target classes are constructed by cloning one or more prototype
classes and then changing or filling in the details of the cloned class to
behave as desired.

Prototypes can be used whenever you need classes that differ only in the
type of processing they offer—for example, in parsing of strings
representing numbers in different radixes. In this sense, the prototype is
nearly the same as the Examplar pattern described by Coplien (1992).

Let’s consider the case of an extensive database where you need to make a
number of queries to construct an answer. Once you have this answer as
result set, you might like to manipulate it to produce other answers
without issuing additional queries.

In a case like the one we have been working on, we’ll consider a database
of a large number of swimmers in a league or statewide organization.
Each swimmer swims several strokes and distances throughout a season.
The “best times” for swimmers are tabulated by age group, and even
within a single four-month season many swimmers will pass their
birthdays and fall into new age groups. Thus, the query to determine
which swimmers did the best in their age group that season is dependent
on the date of each meet and on each swimmer’s birthday. The
computational cost of assembling this table of times is therefore fairly
high.

Once we have a class containing this table sorted by sex, we could
imagine wanting to examine this information sorted just by time or by
actual age rather than by age group. It would not be sensible to recompute

Copyright © , 2002 by James W Cooper

163

these data, and we don’t want to destroy the original data order, so some
sort of copy of the data object is desirable.

Cloning in C#
The idea of cloning a class (making an exact copy) is not a designed- in
feature of C#, but nothing actually stops you from carrying out such a
copy yourself. The only place the Clone method appears in C# is in ADO
DataSet manipulation. You can create a DataSet as a result of a database
query and move through it a row at a time. If for some reason you need to
keep references to two places in this DataSet, you would need two
“current rows.” The simplest way to handle this in C# is to clone the
DataSet.
 DataSet cloneSet;
 cloneSet = myDataSet.Clone();

Now this approach does not generate two copies of the data. It just
generates two sets of row pointers to use to move through the records
independently of each other. Any change you make in one clone of the
DataSet is immediately reflected in the other because there is in fact only
one data table. We discuss a similar problem in the following example.

Using the Prototype
Now let’s write a simple program that reads data from a database and then
clones the resulting object. In our example program, we just read these
data from a file, but the original data were derived from a large database,
as we discussed previously. That file has the following form.
Kristen Frost, 9, CAT, 26.31, F
Kimberly Watcke, 10, CDEV,27.37, F
Jaclyn Carey, 10, ARAC, 27.53, F
Megan Crapster, 10, LEHY, 27.68, F

We’ll use the csFile class we developed earlier.

Copyright © , 2002 by James W Cooper

164

First, we create a class called Swimmer that holds one name, club name,
sex, and time, and read them in using the csFile class.
public class Swimmer {
 private string name; //name
 private string lname, frname;//split names
 private int age; //age
 private string club; //club initials
 private float time; //time achieved
 private bool female; //sex
//---------
 public Swimmer(string line) {

 StringTokenizer tok = new StringTokenizer(line,",");
 splitName(tok);
 age = Convert.ToInt32 (tok.nextToken());
 club = tok.nextToken();
 time = Convert.ToSingle (tok.nextToken());
 string sx = tok.nextToken().ToUpper ();
 female = sx.Equals ("F");
 }
 //---------
 private void splitName(StringTokenizer tok) {
 name = tok.nextToken();
 int i = name.IndexOf (" ");
 if(i >0) {
 frname = name.Substring (0, i);
 lname = name.Substring (i+1).Trim ();
 }
 }
 //---------
 public bool isFemale() {
 return female;
 }
 //---------
 public int getAge() {
 return age;
 }
 //---------
 public float getTime() {
 return time;
 }
 //---------
 public string getName() {
 return name;
 }

Copyright © , 2002 by James W Cooper

165

 //---------
 public string getClub() {
 return club;
 }
}
Then we create a class called SwimData that maintains an ArrayList of the
Swimmers we read in from the database.
public class SwimData {
 protected ArrayList swdata;
 private int index;
 public SwimData(string filename) {
 swdata = new ArrayList ();
 csFile fl = new csFile(filename);
 fl.OpenForRead ();
 string s = fl.readLine ();
 while(s != null) {
 Swimmer sw = new Swimmer(s);
 swdata.Add (sw);
 s = fl.readLine ();
 }
 fl.close ();
 }
 //-----
 public void moveFirst() {
 index = 0;
 }
 //-----
 public bool hasMoreElements() {
 return (index < swdata.Count-1);
 }
 //-----
 public void sort() {
 }
 //-----
 public Swimmer getSwimmer() {
 if(index < swdata.Count)
 return (Swimmer)swdata[index++];
 else
 return null;
 }
 }
}

Copyright © , 2002 by James W Cooper

166

We can then use this class to read in the swimmer data and display it in a
list box.
private void init() {
 swdata = new SwimData ("swimmers.txt");
 reload();
}
//-----
private void reload() {
 lsKids.Items.Clear ();
 swdata.moveFirst ();
 while (swdata.hasMoreElements()) {
 Swimmer sw = swdata.getSwimmer ();
 lsKids.Items.Add (sw.getName());
 }
}
This is illustrated in Figure 13-1.

Figure 13-1 – A simple prototype program

When you click on the “à” button, we clone this class and sort the data
differently in the new class. Again, we clone the data because creating a
new class instance would be much slower, and we want to keep the data in
both forms.

Copyright © , 2002 by James W Cooper

167

private void btClone_Click(object sender, EventArgs e) {
 SwimData newSd = (SwimData)swdata.Clone ();
 newSd.sort ();
 while(newSd.hasMoreElements()) {
 Swimmer sw = (Swimmer)newSd.getSwimmer ();
 lsNewKids.Items.Add (sw.getName());
 }
}

We show the sorted results in Figure 13-2

Figure 13-2 – The sorted results of our Prototype program.

Cloning the Class
While it may not be strictly required, we can make the SwimData class
implement the ICloneable interface.
public class SwimData:ICloneable {

All this means is that the class must have a Clone method that returns an
object:
public object Clone() {

Copyright © , 2002 by James W Cooper

168

 SwimData newsd = new SwimData(swdata);
 return newsd;
}

Of course, using this interface implies that we must cast the object type
back to the SwimData type when we receive the clone:
SwimData newSd = (SwimData)swdata.Clone ();

as we did above.

Now, let’s click on the”ß” button to reload the left-hand list box from the
original data. The somewhat disconcerting result is shown in Figure 13-3.

Figure 13-3 – The Prototype showing the disconcertin re-sort of the left list box.

Why have the names in the left-hand list box also been re-sorted? Our sort
routine looks like this:
public void sort() {
 //sort using IComparable interface of Swimmer
 swdata.Sort (0,swdata.Count ,null);
}

Copyright © , 2002 by James W Cooper

169

Note that we are sorting the actual ArrayList in place. This sort method
assumes that each element of the ArrayList implements the IComparable
interface,
 public class Swimmer:IComparable {

All this means is that it must have an integer CompareTo method which
returns –1, 0 or 1 depending on whether the comparison between the two
objects returns less than, equal or greater than. In this case, we compare
the two last names using the string class’s CompareTo method and return
that:
public int CompareTo(object swo) {
 Swimmer sw = (Swimmer)swo;
 return lname.CompareTo (sw.getLName());
}
Now we can understand the unfortunate result in Figure 14-3. The original
array is resorted in the new class, and there is really only one copy of this
array. This occurs because the clone method is a shallow copy of the
original class. In other words, the references to the data objects are copies,
but they refer to the same underlying data. Thus, any operation we
perform on the copied data will also occur on the original data in the
Prototype class.

In some cases, this shallow copy may be acceptable, but if you want to
make a deep copy of the data, you must write a deep cloning routine of
your own as part of the class you want to clone. In this simple class, you
just create a new ArrayList and copy the elements of the old class’s
ArrayList into the new one.
public object Clone() {
 //create a new ArrayList
 ArrayList swd = new ArrayList ();
 //copy in swimmer objects
 for(int i = 0; i < swdata.Count ; i++)
 swd.Add (swdata[i]);
 //create new SwimData object with this array
 SwimData newsd = new SwimData (swd);
 return newsd;
}

Copyright © , 2002 by James W Cooper

170

Using the Prototype Pattern
You can use the Prototype pattern whenever any of a number of classes
might be created or when the classes are modified after being created. As
long as all the classes have the same interface, they can actually carry out
rather different operations.

Let’s consider a more elaborate example of the listing of swimmers we
just discussed. Instead of just sorting the swimmers, let’s create subclasses
that operate on that data, modifying it and presenting the result for display
in a list box. We start with the same basic class SwimData.

Then it becomes possible to write different derived SwimData classes,
depending on the application’s requirements. We always start with the
SwimData class and then clone it for various other displays. For example,
the SexSwimData class resorts the data by sex and displays only one sex.
This is shown in Figure 13-4.

Figure 13-4 – The OneSexSwimData class displays only one sex on the right.

In the SexSwimData class, we sort the data by name but return them for
display based on whether girls or boys are supposed to be displayed. This
class has this polymorphic sort method.

Copyright © , 2002 by James W Cooper

171

public void sort(bool isFemale) {
 ArrayList swd = new ArrayList();
 for (int i = 0; i < swdata.Count ; i++) {
 Swimmer sw =(Swimmer)swdata[i];
 if (isFemale == sw.isFemale()) {
 swd.Add (sw);
 }
 }
 swdata = swd;
}
Each time you click on the one of the sex option buttons, the class is given
the current state of these buttons.
private void btClone_Click(object sender, System.EventArgs e) {
 SexSwimData newSd = (SexSwimData)swdata.Clone ();
 newSd.sort (opFemale.Checked);
 lsNewKids.Items.Clear() ;
 while(newSd.hasMoreElements()) {
 Swimmer sw = (Swimmer)newSd.getSwimmer ();
 lsNewKids.Items.Add (sw.getName());
 }
}

Note that the btClone_Click event clones the general SexSwimdata class
instance swdata and casts the result to the type SexSwimData. This means
that the Clone method of SexSwimData must override the general
SwimData Clone method because it returns a different data type:
public object Clone() {
 //create a new ArrayList
 ArrayList swd = new ArrayList ();
 //copy in swimmer objects
 for(int i=0; i< swdata.Count ; i++)
 swd.Add (swdata[i]);
 //create new SwimData object with this array
 SexSwimData newsd = new SexSwimData (swd);
 return newsd;
}

This is not very satisfactory, if we must rewrite the Clone method each
time we derive a new highly similar class. A better solution is to do away
with implementing the ICloneable interface where each class has a Clone

Copyright © , 2002 by James W Cooper

172

method, and reverse the process where each receiving class clones the data
inside the sending class. Here we show a revised portion of the SwimData
class which contains the cloneMe method. It takes the data from another
instance of SwimData anc copies it into the ArrayList inside this instance
of the class:
 public class SwimData {
 protected ArrayList swdata;
 private int index;
 //-----
 public void cloneMe(SwimData swdat) {
 swdata = new ArrayList ();
 ArrayList swd=swdat.getData ();
 //copy in swimmer objects
 for(int i=0; i < swd.Count ; i++)
 swdata.Add (swd[i]);

 }
This approach then will work for all child classes of SwimData without
having to cast the data between subclass types.

Dissimilar Classes with the Same Interface
Classes, however, do not have to be even that similar. The AgeSwimData
class takes the cloned input data array and creates a simple histogram by
age. If you click on “F,” you see the girls’ age distribution and if you click
on “M,” you see the boys’ age distribution, as shown in Figure 13-5

Copyright © , 2002 by James W Cooper

173

Figure 13-5 – The AgeSwimData class displays an age distribution.

This is an interesting case where the AgeSwimData class inherits the
cloneMe method from the base SwimData class, but overrides the sort
method with one that creates a proto-swimmer with a name made up of the
number of kids in that age group.
public class AgeSwimData:SwimData {
 ArrayList swd;
 public AgeSwimData() {
 swdata = new ArrayList ();
 }
 //------
 public AgeSwimData(string filename):base(filename){}
 public AgeSwimData(ArrayList ssd):base(ssd){}
 //------
 public override void cloneMe(SwimData swdat) {
 swd = swdat.getData ();
 }
 //------
 public override void sort() {
 Swimmer[] sws = new Swimmer[swd.Count];
 //copy in swimmer objects
 for(int i=0; i < swd.Count ; i++) {
 sws[i] = (Swimmer)swd[i];
 }
 //sort into increasing order

Copyright © , 2002 by James W Cooper

174

 for(int i=0; i< sws.Length ; i++) {
 for (int j = i; j< sws.Length ; j++) {
 if (sws[i].getAge ()>sws[j].getAge ())

Swimmer sw = sws[i];
 sws[i]=sws[j];
 sws[j]=sw;
}

 }
 }
 int age = sws[0].getAge ();
 int agecount = 0;
 int k = 0;
 swdata = new ArrayList ();
 bool quit = false;

 while(k < sws.Length && ! quit) {
 while(sws[k].getAge() ==age && ! quit) {
 agecount++;
 if(k < sws.Length -1)
 k++;
 else
 quit= true;
 }
 //create a new Swimmer with a series of X's for a name
 //for each new age
 string name = "";
 for(int j = 0; j < agecount; j++)
 name +="X";
 Swimmer sw = new Swimmer(age.ToString() + " " +
 name + "," + age.ToString() +

",club,0,F");
 swdata.Add (sw);

 agecount = 0;
 if(quit)
 age = 0;
 else
 age = sws[k].getAge ();
 }
 }
}

Now, since our original classes display first and last names of selected
swimmers, note that we achieve this same display, returning Swimmer

Copyright © , 2002 by James W Cooper

175

objects with the first name set to the age string and the last name set to the
histogram.

SwimData

init
Clone
setData
sort
MoveFirst
hasMoreElements
getNextSwimmer

Swimmer

init
getTime
getSex
getName
getClub
getAgebb

TimeSwimData

SwimData_Clone
SwimData_getNextSwimmer
SwimData_hasMoreElements
SwimData_init
SwimData_MoveFirst
SwimData_setData
SwimData_sort

SexSwimData

SwimData_Clone
SwimData_getNextSwimmer
SwimData_hasMoreElements
SwimData_init
SwimData_MoveFirst
SwimData_setData
SwimData_sortb

1

1
sw

Figure 13-6 – The UML diagram for the various SwimData classes

The UML diagram in Figure 13-6 illustrates this system fairly clearly. The
SwimInfo class is the main GUI class. It keeps two instances of
SwimData but does not specify which ones. The TimeSwimData and
SexSwimData classes are concrete classes derived from the abstract

Copyright © , 2002 by James W Cooper

176

SwimData class, and the AgeSwimData class, which creates the
histograms, is derived from the SexSwimData class.

You should also note that you are not limited to the few subclasses we
demonstrated here. It would be quite simple to create additional concrete
classes and register them with whatever code selects the appropriate
concrete class. In our example program, the user is the deciding point or
factory because he or she simply clicks on one of several buttons. In a
more elaborate case, each concrete class could have an array of
characteristics, and the decision point could be a class registry or
prototype manager that examines these characteristics and selects the most
suitable class. You could also combine the Factory Method pattern with
the Prototype, where each of several concrete classes uses a different
concrete class from those available.

Prototype Managers
A prototype manager class can be used to decide which of several concrete
classes to return to the client. It can also manage several sets of prototypes
at once. For example, in addition to returning one of several classes of
swimmers, it could return different groups of swimmers who swam
different strokes and distances. It could also manage which of several
types of list boxes are returned in which to display them, including tables,
multicolumn lists, and graphical displays. It is best that whichever
subclass is returned, it not require conversion to a new class type to be
used in the program. In other words, the methods of the parent abstract or
base class should be sufficient, and the client should never need to know
which actual subclass it is dealing with.

Consequences of the Prototype Pattern
Using the Prototype pattern, you can add and remove classes at run time
by cloning them as needed. You can revise the internal data representation

Copyright © , 2002 by James W Cooper

177

of a class at run time, based on program conditions. You can also specify
new objects at run time without creating a proliferation of classes.

One difficulty in implementing the Prototype pattern in C# is that if the
classes already exist, you may not be able to change them to add the
required clone methods. In addition, classes that have circular references
to other classes cannot really be cloned.

Like the registry of Singletons discussed before, you can also create a
registry of Prototype classes that can be cloned and ask the registry object
for a list of possible prototypes. You may be able to clone an existing class
rather than writing one from scratch.

Note that every class that you might use as a prototype must itself be
instantiated (perhaps at some expense) in order for you to use a Prototype
Registry. This can be a performance drawback.

Finally, the idea of having prototype classes to copy implies that you have
sufficient access to the data or methods in these classes to change them
after cloning. This may require adding data access methods to these
prototype classes so that you can modify the data once you have cloned
the class.

Thought Question
An entertaining banner program shows a slogan starting at different places
on the screen at different times and in different fonts and sizes. Design the
program using a Prototype pattern.

Programs on the CD-ROM
\Prototype\Ageplot age plot
\Prototype\DeepProto deep prototype
\Prototype\OneSex display by sex
\Prototype\SimpleProto shallow copy

Copyright © , 2002 by James W Cooper

178

\Prototype\TwoclassAgePlot age and sex display

Summary of Creational Patterns
The Factory pattern is used to choose and return an instance of a class
from a number of similar classes, based on data you provide to the factory.

The Abstract Factory pattern is used to return one of several groups of
classes. In some cases, it actually returns a Factory for that group of
classes.

The Builder pattern assembles a number of objects to make a new object,
based on the data with which it is presented. Frequently, the choice of
which way the objects are assembled is achieved using a Factory.

The Prototype pattern copies or clones an existing class, rather than
creating a new instance, when creating new instances is more expensive.

The Singleton pattern is a pattern that ensures there is one and only one
instance of an object and that it is possible to obtain global access to that
one instance.

Copyright © , 2002 by James W Cooper

179

Part 3. Structural Patterns
Structural patterns describe how classes and objects can be combined to
form larger structures. The difference between class patterns and object
patterns is that class patterns describe how inheritance can be used to
provide more useful program interfaces. Object patterns, on the other
hand, describe how objects can be composed into larger structures using
object composition or the inclusion of objects within other objects.

For example, we’ll see that the Adapter pattern can be used to make one
class interface match another to make programming easier. We’ll also
look at a number of other structural patterns where we combine objects to
provide new functionality. The Composite, for instance, is exactly that—a
composition of objects, each of which may be either simple or itself a
composite object. The Proxy pattern is frequently a simple object that
takes the place of a more complex object that may be invoked later—for
example, when the program runs in a network environment.

The Flyweight pattern is a pattern for sharing objects, where each
instance does not contain its own state but stores it externally. This allows
efficient sharing of objects to save space when there are many instances
but only a few different types.

The Façade pattern is used to make a single class represent an entire
subsystem, and the Bridge pattern separates an object’s interface from its
implementation so you can vary them separately. Finally, we’ll look at the
Decorator pattern, which can be used to add respons ibilities to objects
dynamically.

You’ll see that there is some overlap among these patterns and even some
overlap with the behavioral patterns in the next chapter. We’ll summarize
these similarities after we describe the patterns.

Copyright © , 2002 by James W Cooper

180

14. The Adapter Pattern

The Adapter pattern is used to convert the programming interface of one
class into that of another. We use adapters whenever we want unrelated
classes to work together in a single program. The concept of an adapter is
thus pretty simple: We write a class that has the desired interface and then
make it communicate with the class that has a different interface.

There are two ways to do this: by inheritance and by object composition.
In the first case, we derive a new class from the nonconforming one and
add the methods we need to make the new derived class match the desired
interface. The other way is to include the original class inside the new one
and create the methods to translate calls within the new class. These two
approaches, called class adapters and object adapters, are both fairly easy
to implement.

Moving Data Between Lists
Let’s consider a simple program that allows you to select some names
from a list to be transferred to another list for a more detailed display of
the data associated with them. Our initial list consists of a team roster, and
the second list the names plus their times or scores.

In this simple program, shown in Figure 14-1, the program reads in the
names from a roster file during initialization. To move names to the right-
hand list box, you click on them and then click on the arrow button. To
remove a name from the right-hand list box, click on it and then on
Remove. This moves the name back to the left-hand list.

Copyright © , 2002 by James W Cooper

181

Figure 14-1 – A simple program to choose names for display

This is a very simple program to write in C#. It consists of the visual
layout and action routines for each of the button clicks. When we read in
the file of team roster data, we store each child’s name and score in a
Swimmer object and then store all of these objects in an ArrayList
collection called swdata. When you select one of the names to display in
expanded form, you simply obtain the list index of the selected child from
the left-hand list and get that child’s data to display in the right-hand list.
private void btClone_Click(object sender, EventArgs e) {
int i = lskids.SelectedIndex ();
 if(i >= 0) {

Swimmer sw = swdata.getSwimmer (i);
 lsnewKids.Item.Add (sw.getName() +"\t"+sw.getTime ());
 lskids.SelectedIndex = -1;

 }
}
In a similar fashion, if we want to remove a name from the right-hand list,
we just obtain the selected index and remove the name.
private void putBack_Click(object sender, EventArgs e) {

int i = lsnewKids.SelectedIndex ();
 if(i >= 0)

Copyright © , 2002 by James W Cooper

182

 lsNewKids.Items.RemoveAt (i);
}
Note that we obtain the column spacing between the two rows using the
tab character. This works fine as long as the names are more or less the
same length. However, if one name is much longer or shorter than the
others, the list may end up using a different tab column, which is what
happened for the third name in the list.

Making an Adapter
Now it is a little awkward to remember to use the Items collection of the
list box for some operations and not for others. For this reason, we might
prefer to have a class that hides some of these complexities and adapts the
interface to the simpler one we wish we had, rather like the list box
interface in VB6. We’ll create a simpler interface in a ListAdapter class
which then operates on an instance of the ListBox class:
public class ListAdapter {
 private ListBox listbox; //operates on this one
 public ListAdapter(ListBox lb) {
 listbox = lb;
 }
 //-----
 public void Add(string s) {
 listbox.Items.Add (s);
 }
 //-----
 public int SelectedIndex() {
 return listbox.SelectedIndex;
 }
 //-----
 public void Clear() {
 listbox.Items.Clear ();
 }
 //-----
 public void clearSelection() {
 int i = SelectedIndex();
 if(i >= 0) {
 listbox.SelectedIndex =-1;
 }
 }
}

Copyright © , 2002 by James W Cooper

183

Then we can make our program a little simpler:
private void btClone_Click(object sender, EventArgs e) {
 int i = lskids.SelectedIndex ();
 if(i >= 0) {
 Swimmer sw = swdata.getSwimmer (i);
 lsnewKids.Add (sw.getName() + "\t" + sw.getTime ());
 lskids.clearSelection ();
 }
}

Now, let’s recognize that if we are always adding swimmers and times
space apart like this, maybe there should be a method in our ListAdapter
that handles the Swimmer object directly:
public void Add(Swimmer sw) {
 listbox.Items.Add (sw.getName() + "\t" + sw.getTime());
}

This simplifies the click event handler even more:
private void btClone_Click(object sender, EventArgs e) {
 int i = lskids.SelectedIndex ();
 if(i >= 0) {
 Swimmer sw = swdata.getSwimmer (i);
 lsnewKids.Add (sw);
 lskids.clearSelection ();
 }
}

What we have done is create an Adapter class that contains a ListBox
class and simplifies how you use the ListBox. Next, we’ll see how we can
use the same approach to create adapters for two of the more complex
visual controls.

Using the DataGrid
To circumvent the problem with the tab columns in the simple list box, we
might turn to a grid display. The grid table that comes with Visual
Studio.NET is called the DataGrid. It can be bound to a database or to an

Copyright © , 2002 by James W Cooper

184

in-memory data array. To use the DataGrid without a database, you create
an instance of the DataTable class and add DataColumns to it.
DataColumns are by default of string type, but you can define them to be
of any type when you create them. Here is the general outline of how you
create a DataGrid using a DataTable:
DataTable dTable = new DataTable("Kids");
dTable.MinimumCapacity = 100;
dTable.CaseSensitive = false;

DataColumn column =
new DataColumn("Frname",System.Type.GetType("System.String"));
dTable.Columns.Add(column);
column = new DataColumn("Lname",

System.Type.GetType("System.String"));
dTable.Columns.Add(column);
column = new DataColumn("Age",

System.Type.GetType("System.Int16"));

dTable.Columns.Add(column);

dGrid.DataSource = dTable;
dGrid.CaptionVisible = false; //no caption
dGrid.RowHeadersVisible = false; //no row headers
dGrid.EndInit();

To add text to the DataTable, you ask the table for a row object and then
set the elements of the row object to the data for that row. If the types are
all String, then you copy the strings, but if one of the columns is of a
different type, such as the integer age column here, you must be sure to
use that type in setting that column’s data. Note that you can refer to the
columns by name or by index number:

 DataRow row = dTable.NewRow();
 row["Frname"] = sw.getFrname();
 row[1] = sw.getLName();
 row[2] = sw.getAge(); //This one is an integer
 dTable.Rows.Add(row);
 dTable.AcceptChanges();

Copyright © , 2002 by James W Cooper

185

However, we would like to be able to use the grid without changing our
code at all from what we used for the simple list box. We do this by
creating a GridAdapter which follows that same interface:
public interface LstAdapter {
 void Add(Swimmer sw) ;
 int SelectedIndex() ;
 void Clear() ;
 void clearSelection() ;
}
The GridAdapter class implements this interface and is instantiated with
an instance of the grid.

public class GridAdapter:LstAdapter {
 private DataGrid grid;
 private DataTable dTable;
 private int row;
 //-----
 public GridAdapter(DataGrid grd) {
 grid = grd;
 dTable = (DataTable)grid.DataSource;
 grid.MouseDown +=

new System.Windows.Forms.MouseEventHandler
(Grid_Click);

 row = -1;
 }
 //-----
 public void Add(Swimmer sw) {
 DataRow row = dTable.NewRow();
 row["Frname"] = sw.getFrname();
 row[1] = sw.getLName();
 row[2] = sw.getAge(); //This one is an integer
 dTable.Rows.Add(row);
 dTable.AcceptChanges();
 }
 //-----
 public int SelectedIndex() {
 return row;
 }
 //-----
 public void Clear() {
 int count = dTable.Rows.Count ;
 for(int i=0; i< count; i++) {

Copyright © , 2002 by James W Cooper

186

 dTable.Rows[i].Delete ();
 }
 }
 //-----
 public void clearSelection() {}
}

Detecting Row Selection
The DataGrid does not have a SelectedIndex property and the rows do not
have Selected properties. Instead, you must detect a MouseDown event
with a MouseEvent handler and then get the HitTest object and see if the
user has clicked on a cell:
public void Grid_Click(object sender, MouseEventArgs e) {
 DataGrid.HitTestInfo hti = grid.HitTest (e.X, e.Y);
 if(hti.Type == DataGrid.HitTestType.Cell){
 row = hti.Row ;
 }
}

Note that we can now simply call the GridAdapter class’s Add method
when we click on the “à” button, regardless of which display control we
are using.
private void btClone_Click(object sender, System.EventArgs e) {
 int i = lskids.SelectedIndex ();
 if(i >= 0) {
 Swimmer sw = swdata.getSwimmer (i);
 lsNewKids.Add (sw);
 lskids.clearSelection ();
 }
}

Using a TreeView
If, however, you choose to use a TreeView control to display the data you
select, you will find that there is no convenient interface that you can use
to keep your code from changing.

For each node you want to create, you create an instance of the TreeNode
class and add the root TreeNode collection to another node. In our

Copyright © , 2002 by James W Cooper

187

example version using the TreeView, we’ll add the swimmer’s name to
the root node collection and the swimmer’s time as a subsidiary node.
Here is the entire TreeAdapter class.

public class TreeAdapter:LstAdapter {
 private TreeView tree;
 //------
 public TreeAdapter(TreeView tr) {
 tree=tr;
 }
 //------
 public void Add(Swimmer sw) {
 TreeNode nod;
 //add a root node
 nod = tree.Nodes.Add(sw.getName());
 //add a child node to it
 nod.Nodes.Add(sw.getTime().ToString ());
 tree.ExpandAll ();
 }
 //------
 public int SelectedIndex() {
 return tree.SelectedNode.Index ;
 }
 //------
 public void Clear() {
 TreeNode nod;
 for (int i=0; i< tree.Nodes.Count ; i++) {
 nod = tree.Nodes [i];
 nod.Remove ();
 }

}
 //------
 public void clearSelection() {}
 }

The TreeDemo program is shown in Figure 14-2.

Copyright © , 2002 by James W Cooper

188

Figure 14-2 – The TreeDemo program.

The Class Adapter
In the class adapter approach, we derive a new class from Listbox (or the
grid or tree control) and add the desired methods to it. In this class adapter
example, we create a new class called MyList which is derived from the
Listbox class and which implements the following interface:
public interface ListAdapter {
 void Add(Swimmer sw) ;
 void Clear() ;
 void clearSelection() ;
}
The derived MyList class is
public class MyList : System.Windows.Forms.ListBox, ListAdapter {
 private System.ComponentModel.Container components = null;
 //-----
 public MyList() {
 InitializeComponent();
 }
 //-----
 public void Add(string s) {

Copyright © , 2002 by James W Cooper

189

 this.Items.Add (s);
 }
 //-----
 public void Add(Swimmer sw) {
 this.Items.Add (sw.getName() +
 "\t" + sw.getAge ().ToString ());
 }
 //-----
 public void Clear() {
 this.Items.Clear ();
 }
 //-----
 public void clearSelection() {
 this.SelectedIndex = -1;
 }

The class diagram is shown in Figure 14-3. The remaining code is much
the same as in the object adapter version.

Figure 14-3 – The class adapter approach to the list adapter

Copyright © , 2002 by James W Cooper

190

There are also some differences between the class and the object adapter
approaches, although they are less significant than in C++.

The class adapter

• Won’t work when we want to adapt a class and all of its
subclasses, since you define the class it derives from when you
create it.

• Lets the adapter change some of the adapted class’s methods
but still allows the others to be used unchanged.

An object adapter

• Could allow subclasses to be adapted by simply passing them
in as part of a constructor.

• Requires that you specifically bring any of the adapted object’s
methods to the surface that you wish to make available.

Two-Way Adapters
The two-way adapter is a clever concept that allows an object to be
viewed by different classes as being either of type ListBox or type
DataGrid. This is most easily carried out using a class adapter, since all of
the methods of the base class are automatically available to the derived
class. However, this can only work if you do not override any of the base
class’s methods with any that behave differently.

Object Versus Class Adapters in C#
The C# List, Tree, and Grid adapters we previously illustrated are all
object adapters. That is, they are all classes that contain the visual
component we are adapting. However, it is equally easy to write a List or
Tree Class adapter that is derived from the base class and contains the new
add method.

In the case of the DataGrid, this is probably not a good idea because we
would have to create instances of DataTables and Columns inside the

Copyright © , 2002 by James W Cooper

191

DataGrid class, which makes one large complex class with too much
knowledge of how other classes work.

Pluggable Adapters
A pluggable adapter is one that adapts dynamically to one of several
classes. Of course, the adapter can only adapt to classes it can recognize,
and usually the adapter decides which class it is adapting based on
differing constructors or setParameter methods.

Thought Question
How would you go about writing a class adapter to make the DataGrid
look like a two-column list box?

Programs on the CD-ROM
\Adapter\TreeAdapter Tree adapter
\Adapter\ListAdapter List adapter
\Adapter\GridAdapter Grid adapter
\Adapter\ClassAdapter Class-based list adapter

Copyright © , 2002 by James W Cooper

192

15. The Bridge Pattern

At first sight, the Bridge pattern looks much like the Adapter pattern in
that a class is used to convert one kind of interface to another. However,
the intent of the Adapter pattern is to make one or more classes’ interfaces
look the same as that of a particular class. The Bridge pattern is designed
to separate a class’s interface from its implementation so you can vary or
replace the implementation without changing the client code.

The participants in the Bridge pattern are the Abstraction, which defines
the class’s interface; the Refined Abstraction, which extends and
implements that interface; the Implementor, which defines the interface
for the implementation classes; and the ConcreteImplementors, which are
the implementation classes.

Suppose we have a program that displays a list of products in a window.
The simplest interface for that display is a simple Listbox. But once a
significant number of products have been sold, we may want to display the
products in a table along with their sales figures.

Since we have just discussed the adapter pattern, you might think
immediately of the class-based adapter, where we adapt the interface of
the Listbox to our simpler needs in this display. In simple programs, this
will work fine, but as we’ll see, there are limits to that approach.

Let’s further suppose that we need to produce two kinds of displays from
our product data: a customer view that is just the list of products we’ve
mentioned and an executive view that also shows the number of units
shipped. We’ll display the product list in an ordinary ListBox and the
executive view in an DataGrid table display. These two displays are the
implementations of the display classes, as shown in Figure 15-1.

Copyright © , 2002 by James W Cooper

193

Figure 15-1 – Two displays of the same information using a Bridge pattern

Now we want to define a single interface that remains the same regardless
of the type and complexity of the actual implementation classes. We’ll
start by defining a Bridger interface.
//Bridge interface to display list classes
 public interface Bridger {
 void addData(ArrayList col);
 }
This class just receives an ArrayList of data and passes it on to the display
classes.

We also define a Product class that holds the names and quantities and
parses the input string from the data file.
public class Product : IComparable {
 private string quantity;
 private string name;
 //-----
 public Product(string line) {
 int i = line.IndexOf ("--");
 name =line.Substring (0, i).Trim ();
 quantity = line.Substring (i+2).Trim ();

Copyright © , 2002 by James W Cooper

194

 }
 //-----
 public string getQuantity() {
 return quantity;
 }
 //-----
 public string getName() {
 return name;
 }
}

On the other side of the bridge are the implementation classes, which
usually have a more elaborate and somewhat lower-level interface. Here
we’ll have them add the data lines to the display one at a time.
public interface VisList {
 //add a line to the display
 void addLine(Product p);
 //remove a line from the display
 void removeLine(int num);
}
The bridge between the interface on the left and the implementation on the
right is the listBridge class, which instantiates one or the other of the list
display classes. Note that it implements the Bridger interface for use of the
application program.
public class ListBridge : Bridger {
 protected VisList vis;
 //------
 public ListBridge(VisList v) {
 vis = v;
 }
 //-----
 public virtual void addData(ArrayList ar) {
 for(int i=0; i< ar.Count ; i++) {
 Product p = (Product)ar[i];
 vis.addLine (p);
 }
 }
 }

Copyright © , 2002 by James W Cooper

195

Note that we make the VisList variable protected and the addData method
virtual so we can extend the class later. At the top programming level, we
just create instances of a table and a list using the listBridge class.
private void init() {
 products = new ArrayList ();
 readFile(products); //read in the data file
 //create the product list
 prodList = new ProductList(lsProd);
 //Bridge to product VisList
 Bridger lbr = new ListBridge (prodList);
 //put the data into the product list
 lbr.addData (products);
 //create the grid VisList
 gridList = new GridList(grdProd);
 //Bridge to the grid list
 Bridger gbr = new ListBridge (gridList);
 //put the data into the grid display
 gbr.addData (products);
}

The VisList Classes
The two VisList classes are really quite similar. The customer version
operates on a ListBox and adds the names to it.
//A VisList class for the ListBox
public class ProductList : VisList {
 private ListBox list;
 //-----
 public ProductList(ListBox lst) {
 list = lst;
 }
 //-----
 public void addLine(Product p) {
 list.Items.Add (p.getName());
 }
 //-----
 public void removeLine(int num) {
 if(num >=0 && num < list.Items.Count){
 list.Items.Remove (num);
 }
 }
}

Copyright © , 2002 by James W Cooper

196

The ProductTable version of the visList is quite similar except that it adds
both the product name and quantity to the two columns of the grid.
public class GridList:VisList {
 private DataGrid grid;
 private DataTable dtable;
 private GridAdapter gAdapter;
 //-----
 public GridList(DataGrid grd) {
 grid = grd;
 dtable = new DataTable("Products");
 DataColumn column = new DataColumn("ProdName");
 dtable.Columns.Add(column);
 column = new DataColumn("Qty");
 dtable.Columns.Add(column);
 grid.DataSource = dtable;
 gAdapter = new GridAdapter (grid);
 }
 //-----
 public void addLine(Product p) {
 gAdapter.Add (p);
 }

The Class Diagram
The UML diagram in Figure 15-2 for the Bridge class shows the
separation of the interface and the implementation quite clearly. The
Bridger class on the left is the Abstraction, and the listBridge class is the
implementation of that abstraction. The visList interface describes the
public interface to the list classes productList and productTable. The
visList interface defines the interface of the Implementor, and the Concrete
Implementors are the productList and productTable classes.

Note that these two concrete implementors are quite different in their
specifics even though they both support the visList interface.

Copyright © , 2002 by James W Cooper

197

ProductTable
gridList
tabVal
tabChar
visList_addLine
visList_init
visList_removeLine

ProductList
lst

visList_addLine
visList_init
visList_removeLine

ListBridge

Bridger_addData
Bridger_init

visList

addLine
removeLine
init

Bridger

addData
init

1

1visL

Figure 15-2 – The UML diagram for the Bridge pattern used in the two displays of
product information

Extending the Bridge
 Now suppose we need to make some changes in the way these lists
display the data. For example, maybe you want to have the products
displayed in alphabetical order. You might think you’d need to either
modify or subclass both the list and table classes. This can quickly get to
be a maintenance nightmare, especially if more than two such displays are
needed eventually. Instead, we simply derive a new SortBridge class
similar to the listBridge class.

Copyright © , 2002 by James W Cooper

198

In order to sort Product objects, we have the Product class implement the
IComparable interface which means it has a CompareTo method:
public class Product : IComparable {
 private string quantity;
 private string name;
 //-----
 public Product(string line) {
 int i = line.IndexOf ("--");
 name =line.Substring (0, i).Trim ();
 quantity = line.Substring (i+2).Trim ();
 }
 //-----
 public string getQuantity() {
 return quantity;
 }
 //-----
 public string getName() {
 return name;
 }
 //-----
 public int CompareTo(object p) {
 Product prod =(Product) p;
 return name.CompareTo (prod.getName ());
 }

With that change, sorting of the Product objects is much easier:
public class SortBridge:ListBridge {
 //-----
 public SortBridge(VisList v):base(v){
 }
 //-----
 public override void addData(ArrayList ar) {
 int max = ar.Count ;
 Product[] prod = new Product[max];
 for(int i=0; i< max ; i++) {
 prod[i] = (Product)ar[i];
 }
 for(int i=0; i < max ; i++) {
 for (int j=i; j < max; j++) {
 if(prod[i].CompareTo (prod[j])>0) {
 Product pt = prod[i];
 prod[i]= prod[j];
 prod[j] = pt;

Copyright © , 2002 by James W Cooper

199

 }
 }
 }
 for(int i = 0; i< max; i++) {
 vis.addLine (prod[i]);
 }
 }
 }

You can see the sorted result in Figure 15-3.

Figure 15-3 – The sorted list generated using SortBridge class

This clearly shows that you can vary the interface without changing the
implementation. The converse is also true. For example, you could create
another type of list display and replace one of the current list displays
without any other program changes as long as the new list also implements
the VisList interface. Here is the TreeList class:
public class TreeList:VisList {
 private TreeView tree;
 private TreeAdapter gAdapter;
 //-----
 public TreeList(TreeView tre) {
 tree = tre;

Copyright © , 2002 by James W Cooper

200

 gAdapter = new TreeAdapter (tree);
 }
 //-----
 public void addLine(Product p) {
 gAdapter.Add (p);
 }

Note that we take advantage of the TreeAdapter we wrote in the previous
chapter, modified to work on Product objects:
public class TreeAdapter {
 private TreeView tree;
 //------
 public TreeAdapter(TreeView tr) {
 tree=tr;
 }
 //------
 public void Add(Product p) {
 TreeNode nod;
 //add a root node
 nod = tree.Nodes.Add(p.getName());
 //add a child node to it
 nod.Nodes.Add(p.getQuantity ());
 tree.ExpandAll ();
 }

In Figure Figure 15-4, we have created a tree list component that
implements the VisList interface and replaced the ordinary list without any
change in the public interface to the classes.

Copyright © , 2002 by James W Cooper

201

Figure 15-4– Another display using a Bridge to a tree list

Windows Forms as Bridges
The .NET visual control is itself an ideal example of a Bridge pattern
implementation. A Control is a reusable software component that can be
manipulated visually in a builder tool. All of the C# controls support a
query interface that enables builder programs to enumerate their properties
and display them for easy modification. Figure 15-5 is a screen from
Visual Studio.NET displaying a panel with a text field and a check box.
The builder panel to the right shows how you can modify the properties of
either of those components using a simple visual interface.

Copyright © , 2002 by James W Cooper

202

Figure 15-5 – A screen from Visual Studio.NET showing a properties interface. The
property lists are effectively implemented using a Bridge pattern.

In other words, all ActiveX controls have the same interface used by the
Builder program, and you can substitute any control for any other and still
manipulate its properties using the same convenient interface. The actual
program you construct uses these classes in a conventional way, each
having its own rather different methods, but from the builder’s point of
view, they all appear to be the same.

Consequences of the Bridge Pattern
1. The Bridge pattern is intended to keep the interface to your client

program constant while allowing you to change the actual kind of class
you display or use. This can prevent you from recompiling a
complicated set of user interface modules and only require that you
recompile the bridge itself and the actual end display class.

2. You can extend the implementation class and the bridge class
separately, and usually without much interaction with each other.

Copyright © , 2002 by James W Cooper

203

3. You can hide implementation details from the client program much
more easily.

Thought Question
In plotting a stock’s performance, you usually display the price and price-
earnings ratio over time, whereas in plotting a mutual fund, you usually
show the price and the earnings per quarter. Suggest how you can use a
Bridge to do both.

Programs on the CD-ROM
\Bridge\BasicBridge bridge from list to grid
\Bridge\SortBridge sorted bridge

Copyright © , 2002 by James W Cooper

204

16. The Composite Pattern

Frequently programmers develop systems in which a component may be
either an individual object or a collection of objects. The Composite
pattern is designed to accommodate both cases. You can use the
Composite to build part-whole hierarchies or to construct data
representations of trees. In summary, a composite is a collection of
objects, any one of which may be either a composite or just a primitive
object. In tree nomenclature, some objects may be nodes with additional
branches and some may be leaves.

The problem that develops is the dichotomy between having a single,
simple interface to access all the objects in a composite and the ability to
distinguish between nodes and leaves. Nodes have children and can have
children added to them, whereas leaves do not at the moment have
children, and in some implementations they may be prevented from
having children added to them.

Some authors have suggested creating a separate interface for nodes and
leaves where a leaf could have the methods, such as the following.
public string getName();
public float getValue();

And a node could have the additional methods.
public ArrayList elements();
public Node getChild(string nodeName);
public void add(Object obj);
public void remove(Object obj);

This then leaves us with the programming problem of deciding which
elements will be which when we construct the composite. However,
Design Patterns suggests that each element should have the same
interface, whether it is a composite or a primitive element. This is easier to

Copyright © , 2002 by James W Cooper

205

accomplish, but we are left with the question of what the getChild
operation should accomplish when the object is actually a leaf.

C# can make this quite easy for us, since every node or leaf can return an
ArrayList of the child nodes. If there are no children, the count property
returns zero. Thus, if we simply obtain the ArrayList of child nodes from
each element, we can quickly determine whether it has any children by
checking the count property.

Just as difficult is the issue of adding or removing leaves from elements of
the composite. A nonleaf node can have child- leaves added to it, but a leaf
node cannot. However, we would like all of the components in the
composite to have the same interface. We must prevent attempts to add
children to a leaf node, and we can design the leaf node class to raise an
error if the program attempts to add to such a node.

An Implementation of a Composite
Let’s consider a small company. It may have started with a single person
who got the business going. He was, of course, the CEO, although he may
have been too busy to think about it at first. Then he hired a couple of
people to handle the marketing and manufacturing. Soon each of them
hired some additional assistants to help with advertising, shipping, and so
forth, and they became the company’s first two vice-presidents. As the
company’s success continued, the firm continued to grow until it has the
organizational chart in Figure 16-1.

Copyright © , 2002 by James W Cooper

206

Figure 16-1 – A typical organizational chart

Computing Salaries
If the company is successful, each of these company members receives a
salary, and we could at any time ask for the cost of the control span of any
employee to the company. We define this control cost as the salary of that
person and those of all subordinates. Here is an ideal example for a
composite.

• The cost of an individual employee is simply his or her salary (and
benefits).

• The cost of an employee who heads a department is his or her salary
plus those of subordinates.

We would like a single interface that will produce the salary totals
correctly whether the employee has subordinates or not.
float getSalaries(); //get salaries of all

At this point, we realize that the idea of all Composites having the same
standard method names in their interface is probably naïve. We’d prefer
that the public methods be related to the kind of class we are actually
developing. So rather than have generic methods like getValue, we’ll use
getSalaries.

The Employee Classes
We could now imagine representing the company as a Composite made up
of nodes: managers and employees. It would be possible to use a single
class to represent all employees, but since each level may have different
properties, it might be more useful to define at least two classes:
Employees and Bosses. Employees are leaf nodes and cannot have
employees under them. Bosses are nodes that may have employee nodes
under them.

Copyright © , 2002 by James W Cooper

207

We’ll start with the AbstractEmployee class and derive our concrete
employee classes from it.
public interface AbstractEmployee {
 float getSalary(); //get current salary
 string getName(); //get name
 bool isLeaf(); //true if leaf
 void add(string nm, float salary); //add subordinate
 void add(AbstractEmployee emp); //add subordinate
 IEnumerator getSubordinates(); //get subordinates
 AbstractEmployee getChild(); //get child
 float getSalaries(); //get sum of salaries
}

In C# we have a built- in enumeration interface called IEnumerator. This
interface consists of these methods.
bool MoveNext(); //False if no more left
object Current() //get current object
void Reset(); /move to first

So we can create an AbstractEmployee interface that returns an
Enumerator. You move through an enumeration, allowing for the fact that
it might be empty, using the following approach.
e.Reset();
while (e.MoveNext()) {
 Emp = (Employee)e.Current();
 //..do computation..
}

This Enumerator may, of course, be empty and can thus be used for both
nodes and leaves of the composite.

Our concrete Employee class will store the name and salary of each
employee and allow us to fetch them as needed.
public class Employee :AbstractEmployee {
 protected float salary;
 protected string name;
 protected ArrayList subordinates;
 //------

Copyright © , 2002 by James W Cooper

208

 public Employee(string nm, float salry) {
 subordinates = new ArrayList();
 name = nm;
 salary = salry;
 }
 //------
 public float getSalary() {
 return salary;
 }
 //------
 public string getName() {
 return name;
 }
 //------
 public bool isLeaf() {
 return subordinates.Count == 0;
 }
 //------
 public virtual AbstractEmployee getChild() {
 return null;
 }

The Employee class must have concrete implementations of the add,
remove, getChild, and subordinates classes. Since an Employee is a leaf,
all of these will return some sort of error indication. The subordinates
method could return a null, but programming will be more consistent if
subordinates returns an empty enumeration.
 public IEnumerator getSubordinates() {
 return subordinates.GetEnumerator ();
 }

The add and remove methods must generate errors, since members of the
basic Employee class cannot have subordinates. We throw an Exception if
you call these methods in the basic Employee class.
 public virtual void add(string nm, float salary) {
 throw new Exception(

"No subordinates in base employee class");
 }
 //------
 public virtual void add(AbstractEmployee emp) {

Copyright © , 2002 by James W Cooper

209

 throw new Exception(
"No subordinates in base employee class");

 }

The Boss Class
Our Boss class is a subclass of Employee and allows us to store
subordinate employees as well. We’ll store them in an ArrayList called
subordinates and return them through an enumeration. Thus, if a particular
Boss has temporarily run out of Employees, the enumeration will just be
empty.
public class Boss:Employee {
 public Boss(string name, float salary):base(name,salary) {}
 //------
 public override void add(string nm, float salary) {
 AbstractEmployee emp = new Employee(nm,salary);
 subordinates.Add (emp);
 }
 //------
 public override void add(AbstractEmployee emp){
 subordinates.Add(emp);
 }
 //------

If you want to get a list of employees of a given supervisor, you can obtain
an Enumeration of them directly from the ArrayList. Similarly, you can
use this same ArrayList to returns a sum of salaries for any employee and
his subordinates.
public float getSalaries() {
 float sum;
 AbstractEmployee esub;
 //get the salaries of the boss and subordinates
 sum = getSalary();
 IEnumerator enumSub = subordinates.GetEnumerator() ;
 while (enumSub.MoveNext()) {
 esub = (AbstractEmployee)enumSub.Current;
 sum += esub.getSalaries();
 }
 return sum;

Copyright © , 2002 by James W Cooper

210

}
Note that this method starts with the salary of the current Employee and
then calls the getSalaries() method on each subordinate. This is, of course,
recursive, and any employees who have subordinates will be included. A
diagram of these classes is shown in Figure 16-2.

Figure 16-2 – The AbstractEmployee class and how Employee and Boss are derived
from it

Building the Employee Tree
We start by creating a CEO Employee and then add his subordinates and
their subordinates, as follows.

private void buildEmployeeList() {

Copyright © , 2002 by James W Cooper

211

 prez = new Boss("CEO", 200000);
 marketVP = new Boss("Marketing VP", 100000);
 prez.add(marketVP);
 salesMgr = new Boss("Sales Mgr", 50000);
 advMgr = new Boss("Advt Mgr", 50000);
 marketVP.add(salesMgr);
 marketVP.add(advMgr);
 prodVP = new Boss("Production VP", 100000);
 prez.add(prodVP);
 advMgr.add("Secy", 20000);
 //add salesmen reporting to sales manager
 for (int i = 1; i<=5; i++){

salesMgr.add("Sales" + i.ToString(),
rand_sal(30000));

 }

 prodMgr = new Boss("Prod Mgr", 40000);
 shipMgr = new Boss("Ship Mgr", 35000);
 prodVP.add(prodMgr);
 prodVP.add(shipMgr);

 for (int i = 1; i<=3; i++){
 shipMgr.add("Ship" + i.ToString(), rand_sal(25000));
 }
 for (int i = 1; i<=4; i++){
 prodMgr.add("Manuf" + i.ToString(), rand_sal(20000));
 }
}

Once we have constructed this Composite structure, we can load a visual
TreeView list by starting at the top node and calling the addNode()
method recursively until all the leaves in each node are accessed.
private void buildTree() {
 EmpNode nod;
 nod = new EmpNode(prez);
 rootNode = nod;
 EmpTree.Nodes.Add(nod);
 addNodes(nod, prez);
}

To simplify the manipulation of the TreeNode objects, we derive an
EmpNode class which takes an instance of Employee as an argument:

Copyright © , 2002 by James W Cooper

212

public class EmpNode:TreeNode {
 private AbstractEmployee emp;
 public EmpNode(AbstractEmployee aemp):

base(aemp.getName ()) {
 emp = aemp;
 }
 //-----
 public AbstractEmployee getEmployee() {
 return emp;
 }
}

The final program display is shown in Figure 16-3.

Figure 16-3 – The corporate organization shown in a TreeView control

In this implementation, the cost (sum of salaries) is shown in the bottom
bar for any employee you click on. This simple computation calls the
getChild() method recursively to obtain all the subordinates of that
employee.
private void EmpTree_AfterSelect(object sender,

Copyright © , 2002 by James W Cooper

213

TreeViewEventArgs e) {
 EmpNode node;
 node = (EmpNode)EmpTree.SelectedNode;
 getNodeSum(node);
}
//------
private void getNodeSum(EmpNode node) {
 AbstractEmployee emp;
 float sum;

 emp = node.getEmployee();
 sum = emp.getSalaries();
 lbSalary.Text = sum.ToString ();
}

Self-Promotion
We can imagine cases where a simple Employee would stay in his current
job but have new subordinates. For example, a Salesman might be asked
to supervise sales trainees. For such a case, it is convenient to provide a
method in the Boss class that creates a Boss from an Employee. We just
provide an additional constructor that converts an employee into a boss:
public Boss(AbstractEmployee emp):

base(emp.getName() , emp.getSalary()) {
}

Doubly Linked Lists
In the preceding implementation, we keep a reference to each subordinate
in the Collection in each Boss class. This means that you can move down
the chain from the president to any employee, but there is no way to move
back up to find out who an employee’s supervisor is. This is easily
remedied by providing a constructor for each AbstractEmployee subclass
that includes a reference to the parent node.
public class Employee :AbstractEmployee {
 protected float salary;
 protected string name;
 protected AbstractEmployee parent;
 protected ArrayList subordinates;

Copyright © , 2002 by James W Cooper

214

 //------
 public Employee(AbstractEmployee parnt,

string nm, float salry) {
 subordinates = new ArrayList();
 name = nm;
 salary = salry;
 parent = parnt;
 }

Then you can quickly walk up the tree to produce a reporting chain.
private void btShowBoss_Click(object sender, System.EventArgs e) {
 EmpNode node;
 node = (EmpNode)EmpTree.SelectedNode;
 AbstractEmployee emp = node.getEmployee ();
 string bosses = "";
 while(emp != null) {
 bosses += emp.getName () +"\n";
 emp = emp.getBoss();
 }
 MessageBox.Show (null, bosses,"Reporting chain");
}

See Figure 16-4.

Copyright © , 2002 by James W Cooper

215

Figure 16-4– The tree list display of the composite with a display of the parent nodes
on the right

Consequences of the Composite Pattern
The Composite pattern allows you to define a class hierarchy of simple
objects and more complex composite objects so they appear to be the same
to the client program. Because of this simplicity, the client can be that
much simpler, since nodes and leaves are handled in the same way.

The Composite pattern also makes it easy for you to add new kinds of
components to your collection, as long as they support a similar
programming interface. On the other hand, this has the disadvantage of
making your system overly general. You might find it harder to restrict
certain classes where this would normally be desirable.

A Simple Composite
The intent of the Composite pattern is to allow you to construct a tree of
various related classes, even though some have different properties than
others and some are leaves that do not have children. However, for very
simple cases, you can sometimes use just a single class that exhibits both
parent and leaf behavior. In the SimpleComposite example, we create an
Employee class that always contains the ArrayList subordinates. This
collection of employees will either be empty or populated, and this
determines the nature of the values that you return from the getChild and
remove methods. In this simple case, we do not raise errors and always
allow leaf nodes to be promoted to have child nodes. In other words, we
always allow execution of the add method.

While you may not regard this automatic promotion as a disadvantage, in
systems where there are a very large number of leaves, it is wasteful to
keep a Collection initialized and unused in each leaf node. In cases where
there are relatively few leaf nodes, this is not a serious problem.

Copyright © , 2002 by James W Cooper

216

Composites in .NET
In .NET, you will note that the Node object class we use to populate the
TreeView is in fact just such a simple composite pattern. You will also
find that the Composite describes the hierarchy of Form, Frame, and
Controls in any user interface program. Similarly, toolbars are containers,
and each may contain any number of other containers.

Any container may then contain components such as Buttons,
Checkboxes, and TextBoxes, each of which is a leaf node that cannot have
further children. They may also contain ListBoxes and grids that may be
treated as leaf nodes or that may contain further graphical components.
You can walk down the Composite tree using the Controls collection.

Other Implementation Issues
Ordering components. In some programs, the order of the components
may be important. If that order is somehow different from the order in
which they were added to the parent, then the parent must do additional
work to return them in the correct order. For example, you might sort the
original collection alphabetically and return a new sorted collection.

Caching results. If you frequently ask for data that must be computed
from a series of child components, as we did here with salaries, it may be
advantageous to cache these computed results in the parent. However,
unless the computation is relatively intensive and you are quite certain that
the underlying data have not changed, this may not be worth the effort.

Thought Questions
1. A baseball team can be considered an aggregate of its individual

players. How could you use a composite to represent individual and
team performance?

2. The produce department of a supermarket needs to track its sales
performance by food item. Suggest how a composite might be helpful.

Copyright © , 2002 by James W Cooper

217

Programs on the CD-ROM

\Composite\Composite composite shows tree
\Composite\DlinkComposite composite that uses both child links

and parent links
\Composite\SimpleComposite Simple composite of same

employee tree that allows any
employee to move from leaf to
node.

Copyright © , 2002 by James W Cooper

218

17. The Decorator Pattern

The Decorator pattern provides us with a way to modify the behavior of
individual objects without having to create a new derived class. Suppose
we have a program that uses eight objects, but three of them need an
additional feature. You could create a derived class for each of these
objects, and in many cases this would be a perfectly acceptable solution.
However, if each of these three objects requires different features, this
would mean creating three derived classes. Further, if one of the classes
has features of both of the other classes, you begin to create complexity
that is both confusing and unnecessary.

For example, suppose we wanted to draw a special border around some of
the buttons in a toolbar. If we created a new derived button class, this
means that all of the buttons in this new class would always have this
same new border when this might not be our intent.

Instead, we create a Decorator class that decorates the buttons. Then we
derive any number of specific Decorators from the main Decorator class,
each of which performs a specific kind of decoration. In order to decorate
a button, the Decorator has to be an object derived from the visual
environment so it can receive paint method calls and forward calls to other
useful graphic methods to the object that it is decorating. This is another
case where object containment is favored over object inheritance. The
decorator is a graphical object, but it contains the object it is decorating. It
may intercept some graphical method calls, perform some additional
computation, and pass them on to the underlying object it is decorating.

Decorating a CoolButton
Recent Windows applications such as Internet Explorer and Netscape
Navigator have a row of flat, unbordered buttons that highlight themselves
with outline borders when you move your mouse over them. Some
Windows programmers call this toolbar a CoolBar and the buttons
CoolButtons. There is no analogous button behavior in C# controls, but

Copyright © , 2002 by James W Cooper

219

we can obtain that behavior by decorating a Panel and using it to contain a
button. In this case, we decorate it by drawing black and white border
lines to highlight the button, or gray lines to remove the button borders.

Let’s consider how to create this Decorator. Design Patterns suggests that
Decorators should be derived from some general visual component class
and then every message for the actual button should be forwarded from the
decorator. This is not all that practical in C#, but if we use containers as
decorators, all of the events are forwarded to the control being contained.

Design Patterns further suggests that classes such as Decorator should be
abstract classes and that you should derive all of your actual working (or
concrete) decorators from the Abstract class. In our implementation, we
define a Decorator interface that receives the mouse and paint events we
need to intercept.
public interface Decorator {
 void mouseMove(object sender, MouseEventArgs e);
 void mouseEnter(object sender, EventArgs e);
 void mouseLeave(object sender, EventArgs e);
 void paint(object sender, PaintEventArgs e);
}

For our actual implementation, we can derive a CoolDecorator from a
Panel class, and have it become the container which holds the button we
are going to decorate.

Now, let’s look at how we could implement a CoolButton. All we really
need to do is to draw the white and black lines around the button area
when it is highlighted and draw gray lines when it is not. When a
MouseMove is detected over the button, the next paint event should draw
the highlighted lines, and when the mouse leaves the button area, the next
paint event should draw outlines in gray. We do this by setting a
mouse_over flag and then forcing a repaint by calling the Refresh method.
public void mouseMove(object sender, MouseEventArgs e){
 mouse_over = true;
}
public void mouseEnter(object sender, EventArgs e){

Copyright © , 2002 by James W Cooper

220

 mouse_over = true;
 this.Refresh ();
}
public void mouseLeave(object sender, EventArgs e){
 mouse_over = false;
 this.Refresh ();
}

The actual paint event is the following:
public virtual void paint(object sender, PaintEventArgs e){
 //draw over button to change its outline
 Graphics g = e.Graphics;
 const int d = 1;
 //draw over everything in gray first
 g.DrawRectangle(gPen, 0, 0, x2 - 1, y2 - 1);
 //draw black and white boundaries
 //if the mouse is over
 if(mouse_over) {
 g.DrawLine(bPen, 0, 0, x2 - d, 0);
 g.DrawLine(bPen, 0, 0, 0, y2 - 1);
 g.DrawLine(wPen, 0, y2 - d, x2 - d, y2 - d);
 g.DrawLine(wPen, x2 - d, 0, x2 - d, y2 - d);
 }
}

Handling events in a Decorator
When we construct an actual decorator containing the mouse and paint
methods we show above, we have to connect the event handling system to
these methods. We do this in the constructor for the decorator by creating
an EventHandler class for the mouse enter and hover events and a
MouseEventHandler for the move and leave events. It is important to note
that the events we are catching are events on the contained button, rather
than on the surrounding Panel. So, the control we add the handlers to is the
button itself.
public CoolDecorator(Control c) {
contl = c; //copy in control
//mouse over, enter handler
EventHandler evh = new EventHandler(mouseEnter);

Copyright © , 2002 by James W Cooper

221

 c.MouseHover += evh;
 c.MouseEnter+= evh;
//mouse move handler
c.MouseMove += new MouseEventHandler(mouseMove);
c.MouseLeave += new EventHandler(mouseLeave);

Similarly, we create a PaintEventHandler for the paint event.

//paint handler catches button's paint
c.Paint += new PaintEventHandler(paint);

Layout Considerations
If you create a Windows form containing buttons, the GUI designer
automatically generates code to add that Control to the Controls array for
that Window. We want to change this by adding the button to the Controls
array for the new panel, adding the panel to the Controls array for the
Window, and removing the button from that array. Here is the code to add
the panel and remove the button in the Form initialization method:
//add outside decorator to the layout
//and remove the button from the layout
this.Controls.AddRange(new System.Windows.Forms.Control[] {cdec});
this.Controls.Remove (btButtonA);

and this is the code to add the button to the Decorator panel:
public CoolDecorator(Control c) {
 contl = c; //copy in control
 //add button to controls contained in panel
 this.Controls.AddRange(new Control[] {contl});

Control Size and Position
When we decorate the button by putting it in a Panel, we need to change
the coordinates and sizes so that the Panel has the size and coordinates of
the button and the button has a location of (0, 0) within the panel. This
also happens in the CoolDecorator constructor:
this.Location = p;

Copyright © , 2002 by James W Cooper

222

contl.Location =new Point(0,0);

this.Name = "deco"+contl.Name ;
this.Size = contl.Size;
x1 = c.Location.X - 1;
y1 = c.Location.Y - 1;
x2 = c.Size.Width;
y2 = c.Size.Height;

We also create instances of the Pens we will use in the Paint method in
this constructor:
//create the overwrite pens
gPen = new Pen(c.BackColor, 2); //gray pen overwrites borders
bPen = new Pen(Color.Black , 1);
wPen = new Pen(Color.White, 1);
Using a Decorator

This program is shown in Figure 17-1, with the mouse hovering over one
of the buttons.

Figure 17-1 – The A button and B button are CoolButtons, which are outlined when
a mouse hovers over them. Here the B button is outlined.

Multiple Decorators
Now that we see how a single decorator works, what about multiple
decorators? It could be that we’d like to decorate our CoolButtons with
another decoration— say, a diagona l red line.

Copyright © , 2002 by James W Cooper

223

This is only slightly more complicated, because we just need to enclose
the CoolDecorator inside yet another decorator panel for more decoration
to occur. The only real change is that we not only need the instance of the
panel we are wrapping in another, but also the central object (here a
button) being decorated, since we have to attached our paint routines to
that central object’s paint method.

So we need to create a constructor for our decorator that has both the
enclosing panel and the button as Controls.
public class CoolDecorator :Panel, Decorator {
 protected Control contl;
 protected Pen bPen, wPen, gPen;
 private bool mouse_over;
 protected float x1, y1, x2, y2;
//----------------------------------
 public CoolDecorator(Control c, Control baseC) {
 //the first control is the one layed out
 //the base control is the one whose paint method we extend
 //this allows for nesting of decorators
 contl = c;
 this.Controls.AddRange(new Control[] {contl});

Then, when we add the event handlers, the paint event handler must be
attached to the base control:
//paint handler catches button's paint
 baseC.Paint += new PaintEventHandler(paint);

We make the paint method virtual so we can override it as we see below.
public virtual void paint(object sender, PaintEventArgs e){
 //draw over button to change its outline
 Graphics g = e.Graphics;

It turns out that the easiest way to write our SlashDecorator, which draws
that diagonal red line, is to derive it from CoolDecorato directly. We can
reuse all the base methods and extend only the paint method from the
CoolDecorator and save a lot of effort.
public class SlashDeco:CoolDecorator {
 private Pen rPen;

Copyright © , 2002 by James W Cooper

224

 //----------------
 public SlashDeco(Control c, Control bc):base(c, bc) {
 rPen = new Pen(Color.Red , 2);
 }
 //----------------
 public override void paint(object sender,

PaintEventArgs e){

Graphics g = e.Graphics ;
 x1=0; y1=0;
 x2=this.Size.Width ;
 y2=this.Size.Height ;
 g.DrawLine (rPen, x1, y1, x2, y2);
 }
 }
This gives us a final program that displays the two buttons, as shown in
Figure Figure 17-2. The class diagram is shown in Figure 17-3

Figure 17-2 – The A CoolButton is also decorated with a SlashDecorator.

Copyright © , 2002 by James W Cooper

225

Figure 17-3 – The UML class diagram for Decorators and two specific Decorator
implementations

Nonvisual Decorators
Decorators, of course, are not limited to objects that enhance visual
classes. You can add or modify the methods of any object in a similar
fashion. In fact, nonvisual objects can be easier to decorate because there
may be fewer methods to intercept and forward. Whenever you put an
instance of a class inside another class and have the outer class operate on
it, you are essentially “decorating” that inner class. This is one of the most
common tools for programming available in Visual Studio.NET.

Copyright © , 2002 by James W Cooper

226

Decorators, Adapters, and Composites
As noted in Design Patterns, there is an essential similarity among these
classes that you may have recognized. Adapters also seem to “decorate”
an existing class. However, their function is to change the interface of one
or more classes to one that is more convenient for a particular program.
Decorators add methods to particular instances of classes rather than to all
of them. You could also imagine that a composite consisting of a single
item is essentially a decorator. Once again, however, the intent is different.

Consequences of the Decorator Pattern
The Decorator pattern provides a more flexible way to add responsibilities
to a class than by using inheritance, since it can add these responsibilities
to selected instances of the class. It also allows you to customize a class
without creating subclasses high in the inheritance hierarchy. Design
Patterns points out two disadvantages of the Decorator pattern. One is that
a Decorator and its enclosed component are not identical. Thus, tests for
object types will fail. The second is that Decorators can lead to a system
with “lots of little objects” that all look alike to the programmer trying to
maintain the code. This can be a maintenance headache.

Decorator and Façade evoke similar images in building architecture, but in
design pattern terminology, the Façade is a way of hiding a complex
system inside a simpler interface, whereas Decorator adds function by
wrapping a class. We’ll take up the Façade next.

Thought Questions
1. When someone enters an incorrect value in a cell of a grid, you might

want to change the color of the row to indicate the problem. Suggest
how you could use a Decorator.

2. A mutual fund is a collection of stocks. Each one consists of an array
or Collection of prices over time. Can you see how a Decorator can be
used to produce a report of stock performance for each stock and for
the whole fund?

Copyright © , 2002 by James W Cooper

227

Programs on the CD-ROM
\Decorator\Cooldecorator C#cool button decorator

\Decorator\Redecorator C# cool button and slash decorator

Copyright © , 2002 by James W Cooper

228

18. The Façade Pattern

The Façade pattern is used to wrap a set of complex classes into a simpler
enclosing interface. As your programs evolve and develop, they grow in
complexity. In fact, for all the excitement about using design patterns,
these patterns sometimes generate so many classes that it is difficult to
understand the program’s flow. Furthermore, there may be a number of
complicated subsystems, each of which has its own complex interface.

The Façade pattern allows you to simplify this complexity by providing a
simplified interface to these subsystems. This simplification may in some
cases reduce the flexibility of the underlying classes, but it usually
provides all the function needed for all but the most sophisticated users.
These users can still, of course, access the underlying classes and methods.

Fortunately, we don’t have to write a complex system to provide an
example of where a Façade can be useful. C# provides a set of classes that
connect to databases, using an interface called ADO.Net. You can connect
to any database for which the manufacturer has provided a ODBC
connection class—almost every database on the market. Let’s take a
minute and review how databases are used and a little about how they
work.

What Is a Database?
A database is a series of tables of information in some sort of file structure
that allows you to access these tables, select columns from them, sort
them, and select rows based on various criteria. Databases usually have
indexes associated with many of the columns in these tables, so we can
access them as rapidly as possible.

Databases are used more than any other kind of structure in computing.
You’ll find databases as central elements of employee records and payroll
systems, in travel scheduling systems, and all through product
manufacturing and marketing.

Copyright © , 2002 by James W Cooper

229

In the case of employee records, you could imagine a table of employee
names and addresses and of salaries, tax withholding, and benefits. Let’s
consider how these might be organized. You can imagine one table of
employee names, addresses, and phone numbers. Other information that
you might want to store would include salary, salary range, last raise, next
raise, employee performance ranking, and so forth.

Should this all be in one table? Almost certainly not. Salary ranges for
various employee types are probably invariant between employees, and
thus you would store only the employee type in the employee table and the
salary ranges in another table that is pointed to by the type number.
Consider the data in Table 18-1.

Key Lastname SalaryType SalaryType Min Max

1 Adams 2 1 30000 45000

2 Johnson 1 2 45000 60000

3 Smyth 3 3 60000 75000

4 Tully 1

5 Wolff 2

Table 18-1 – Employee Names and Salary Type Tables

The data in the SalaryType column refers to the second table. We could
imagine many such tables for things like state of residence and tax values
for each state, health plan withholding, and so forth. Each table will have a
primary key column like the ones at the left of each table and several more
columns of data. Building tables in a database has evolved to both an art
and a science. The structure of these tables is referred to by their normal
form. Tables are said to be in first, second, or third normal form,
abbreviated as 1NF, 2NF, or 3NF.

• First. Each cell in a table should have only one value (never an array
of values). (1NF)

Copyright © , 2002 by James W Cooper

230

• Second. 1NF and every non-key column is fully dependent on the key
column. This means there is a one-to-one relationship between the
primary key and the remaining cells in that row. (2NF)

• Third. 2NF and all non-key columns are mutually independent. This
means that there are no data columns containing values that can be
calculated from other columns’ data. (3NF)

Today, nearly all databases are constructed so that all tables are in third
normal form (3NF). This means that there are usually a fairly large
number of tables, each with relatively few columns of information.

Getting Data Out of Databases
Suppose we wanted to produce a table of employees and their salary
ranges for some planning exercise. This table doesn’t exist directly in the
database, but it can be constructed by issuing a query to the database.
We’d like to have a table that looked like the data in Table 18-2.

Name Min Max
Adams $45,000.00 $60,000.00
Johnson $30,000.00 $45,000.00
Smyth $60,000.00 $75,000.00
Tully $30,000.00 $45,000.00
Wolff $45,000.00 $60,000.00
Table 18-2 - Employee Salaries Sorted by Name

Maybe we want data sorted by increasing salary, as shown in Table 18-3.

Name Min Max
Tully $30,000.00 $45,000.00
Johnson $30,000.00 $45,000.00
Wolff $45,000.00 $60,000.00
Adams $45,000.00 $60,000.00
Smyth $60,000.00 $75,000.00
Table 18-3– Employee Salaries Sorted by Magnitude

Copyright © , 2002 by James W Cooper

231

We find that the query we issue to obtain these tables has this form.
SELECT DISTINCTROW Employees.Name, SalaryRanges.Min,
SalaryRanges.Max FROM Employees INNER JOIN SalaryRanges ON
Employees.SalaryKey = SalaryRanges.SalaryKey
ORDER BY SalaryRanges.Min;

This language is called Structured Query Language or SQL (often
pronounced “sequel”), and it is the language of virtua lly all databases
currently available. There have been several standards issued for SQL
over the years, and most PC databases support much of these ANSI
standards. The SQL-92 standard is considered the floor standard, and there
have been several updates since. However, none of these databases
support the later SQL versions perfectly, and most offer various kinds of
SQL extensions to exploit various features unique to their database.

Kinds of Databases
Since the PC became a major office tool, there have been a number of
popular databases developed that are intended to run by themselves on
PCs. These include elementary databases like Microsoft Works and more
sophisticated ones like Approach, dBase, Borland Paradox, Microsoft
Access, and FoxBase.

Another category of PC databases includes that databases intended to be
accessed from a server by a number of PC clients. These include IBM
DB/2, Microsoft SQL Server, Oracle, and Sybase. All of these database
products support various relatively similar dialects of SQL, and thus all of
them would appear at first to be relatively interchangeable. The reason
they are not interchangeable, of course, is that each was designed with
different performance characteristics involved and each with a different
user interface and programming interface. While you might think that
since they all support SQL, programming them would be similar, quite the
opposite is true. Each database has its own way of receiving the SQL
queries and its own way of returning the results. This is where the next
proposed level of standardization came about: ODBC.

Copyright © , 2002 by James W Cooper

232

ODBC
It would be nice if we could somehow write code that was independent of
the particular vendor’s database that would allow us to get the same results
from any of these databases without changing our calling program. If we
could only write some wrappers for all of these databases so that they all
appeared to have similar programming interfaces, this would be quite easy
to accomplish.

Microsoft first attempted this feat in 1992 when they released a
specification called Object Database Connectivity. It was supposed to be
the answer for connection to all databases under Windows. Like all first
software versions, this suffered some growing pains, and another version
was released in 1994 that was somewhat faster as well as more stable. It
also was the first 32-bit version. In addition, ODBC began to move to
platforms other than Windows and has by now become quite pervasive in
the PC and Workstation world. Nearly every major database vendor
provides ODBC drivers.

Database Structure
At the lowest level, then, a database consists of a series of tables, each
having several named columns, and some relationships between these
tables. This can get pretty complicated to keep track of, and we would like
to see some simplification of this in the code we use to manipulate
databases.

C# and all of VisualStudio.Net use a new database access model, called
ADO.NET, for ActiveX Data Objects. The design philosophy of
ADO.NET is one in which you define a connection between your program
and a database and use that connection sporadically, with much of the
computation actually taking place in disconnected objects on your local
machine. Further, ADO.NET uses XML for definition of the objects that
are transmitted between the database and the program, primarily under the
covers, although it is possible to access this data description using some of
the built- in ADO.NET classes.

Copyright © , 2002 by James W Cooper

233

Using ADO.NET
ADO.NET as implemented in C# consists of a fairly large variety of
interrelated objects. Since the operations we want to perform are still the
same relatively simple ones, the Façade pattern will be an ideal way to
manage them.

• OleDbConnection—This object represents the actual connection
to the database. You can keep an instance of this class available
but open and close the connection as needed. You must
specifically close it when you are done, before it is garbage
collected.

• OleDbCommand—This class represents a SQL command you
send to the database, which may or may not return results.

• OleDbDataAdapter—Provides a bridge for moving data between
a database and a local DataSet. You can specify an
OleDbCommand, a Dataset, and a connection.

• DataSet—A representation of one or more database tables or
results from a query on your local machine.

• DataTable—A single data table from a database or query

• DataRow—A single row in a DataTable.

Connecting to a Database
To connect to a database, you specify a connection string in the
constructor for the database you want to use. For example, for an Access
database, your connection string would be the following.
string connectionString =

"Provider=Microsoft.Jet.OLEDB.4.0;" +
"Data Source=" + dbName;

and the following makes the actual connection.
OleDbConnection conn =

new OleDbConnection(connectionString);

Copyright © , 2002 by James W Cooper

234

You actually open that connection by calling the open method. To make
sure that you don’t re-open an already open connection, you can check its
state first.
private void openConnection() {
 if (conn.State == ConnectionState.Closed){
 conn.Open ();
 }
}

Reading Data from a Database Table
To read data in from a database table, you create an ADOCommand with
the appropriate Select statement and connection.

public DataTable openTable (string tableName) {
 OleDbDataAdapter adapter = new OleDbDataAdapter ();
 DataTable dtable = null;
 string query = "Select * from " + tableName;
 adapter.SelectCommand = new OleDbCommand (query, conn);

Then, you create a dataset object into which to put the results.

DataSet dset = new DataSet ("mydata");

Then, you simply tell the command object to use the connection to fill the
dataset. You must specify the name of the table to fill in the FillDataSet
method, as we show here.
try {

openConnection();
 adapter.Fill (dset);
}
catch(Exception e) {
 Console.WriteLine (e.Message);
}

The dataset then contains at least one table, and you can obtain it by index
or by name and examine its contents.

Copyright © , 2002 by James W Cooper

235

 //get the table from the dataset

 dtable = dset.Tables [0];

Executing a Query
Executing a Select query is exactly identical to the preceding code, except
the query can be an SQL Select statement of any complexity. Here we
show the steps wrapped in a Try block in case there are SQL or other
database errors.
public DataTable openQuery(string query) {
 OleDbDataAdapter dsCmd = new OleDbDataAdapter ();
 DataSet dset = new DataSet ();
//create a dataset
 DataTable dtable = null; //declare a data table
 try {
 //create the command
 dsCmd.SelectCommand =

new OleDbCommand(query, conn);
//open the connection

 openConnection();
 //fill the dataset
 dsCmd.Fill(dset, "mine");
 //get the table
 dtable = dset.Tables[0];

//always close it
 closeConnection();

//and return it
 return dtable;

 }
 catch (Exception e) {
 Console.WriteLine (e.Message);
 return null;
 }
}

Deleting the Contents of a Table
You can delete the contents of a table using the “Delete * from Table”
SQL statement. However, since this is not a Select command, and there is

Copyright © , 2002 by James W Cooper

236

no local table to bridge to, you can simply use the ExecuteNonQuery
method of the OleDbCommand object.
public void delete() {
 //deletes entire table
 conn = db.getConnection();
 openConn();
 if (conn.State == ConnectionState.Open) {
 OleDbCommand adcmd =
 new OleDbCommand("Delete * from " + tableName, conn);
 try{
 adcmd.ExecuteNonQuery();
 closeConn();
 }
 catch (Exception e) {
 Console.WriteLine (e.Message);
 }
 }

Adding Rows to Database Tables Using ADO.NET
The process of adding data to a table is closely related. You generally start
by getting the current version of the table from the database. If it is very
large, you can get only the empty table by getting just its schema. We
follow these steps.

1. Create a DataTable with the name of the table in the database.

2. Add it to a dataset.

3. Fill the dataset from the database.

4. Get a new row object from the DataTable.

5. Fill in its columns.

6. Add the row to the table.

7. When you have added all the rows, update the database from the
modified DataTable object.

 The process looks like this.
DataSet dset = new DataSet(tableName); //create the data set

Copyright © , 2002 by James W Cooper

237

dtable = new DataTable(tableName); //and a datatable
dset.Tables.Add(dtable); //add to collection
conn = db.getConnection();
openConn(); //open the connection
OleDbDataAdapter adcmd = new OleDbDataAdapter();
//open the table
adcmd.SelectCommand =
 new OleDbCommand("Select * from " + tableName, conn);
OleDbCommandBuilder olecb = new OleDbCommandBuilder(adcmd);
adcmd.TableMappings.Add("Table", tableName);
//load current data into the local table copy
adcmd.Fill(dset, tableName);
//get the Enumerator from the Hashtable
IEnumerator ienum = names.Keys.GetEnumerator();
//move through the table, adding the names to new rows
while (ienum.MoveNext()) {
 string name = (string)ienum.Current;
 row = dtable.NewRow(); //get new rows
 row[columnName] = name;
 dtable.Rows.Add(row); //add into table
}
//Now update the database with this table
try {
 adcmd.Update(dset);
 closeConn();
 filled = true;
}
catch (Exception e) {
 Console.WriteLine (e.Message);
}

It is this table editing and update process that is central to the ADO style
of programming. You get the table, modify the table, and update the
changes back to the database. You use this same process to edit or delete
rows, and updating the database makes these changes as well.

Building the Façade Classes
This description is the beginning of the new Façade we are developing to
handle creating, connecting to, and using databases. In order to carry out
the rest, let’s consider Table 18-4, grocery prices at three local stores.

Copyright © , 2002 by James W Cooper

238

Stop and Shop, Apples, 0.27
Stop and Shop, Oranges, 0.36
Stop and Shop, Hamburger, 1.98
Stop and Shop, Butter, 2.39
Stop and Shop, Milk, 1.98
Stop and Shop, Cola, 2.65
Stop and Shop, Green beans, 2.29
Village Market, Apples, 0.29
Village Market, Oranges, 0.29
Village Market, Hamburger, 2.45
Village Market, Butter, 2.99
Village Market, Milk, 1.79
Village Market, Cola, 3.79
Village Market, Green beans, 2.19
Waldbaum's, Apples, 0.33
Waldbaum's, Oranges, 0.47
Waldbaum's, Hamburger, 2.29
Waldbaum's, Butter, 3.29
Waldbaum's, Milk, 1.89
Waldbaum's, Cola, 2.99
Waldbaum's, Green beans, 1.99

Table 18-4- Grocery Pricing Data

It would be nice if we had this information in a database so we could
easily answer the question “Which store has the lowest prices for
oranges?” Such a database should contain three tables: the supermarkets,
the foods, and the prices. We also need to keep the relations among the
three tables. One simple way to handle this is to create a Stores table with
StoreName and StoreKey, a Foods table with a FoodName and a
FoodKey, and a Price table with a PriceKey, a Price, and references to the
StoreKey and Foodkey.

In our Façade, we will make each of these three tables its own class and
have it take care of creating the actual tables. Since these three tables are
so similar, we’ll derive them all from the basic DBTable class.

Copyright © , 2002 by James W Cooper

239

Building the Price Query
For every food name, we’d like to get a report of which stores have the
cheapest prices. This means writing a simple SQL query against the
database. We can do this within the Price class and have it return a Dataset
with the store names and prices.

The final application simply fills one list box with the food names and
files the other list box with prices when you click on a food name, as
shown in Figure 18-1.

Figure 18-1 – The grocery program using a Façade pattern

Making the ADO.NET Façade
In the Façade we will make for our grocery database, we start with an
abstract DBase class that represents a connection to a database. This
encapsulates making the connection and opening a table and an SQL
query.
public abstract class DBase {
 protected OleDbConnection conn;

private void openConnection() {
 if (conn.State == ConnectionState.Closed){

Copyright © , 2002 by James W Cooper

240

 conn.Open ();
 }
}
//------
private void closeConnection() {
 if (conn.State == ConnectionState.Open){
 conn.Close ();
 }
}
//------
public DataTable openTable (string tableName) {
 OleDbDataAdapter adapter = new OleDbDataAdapter ();
 DataTable dtable = null;
 string query = "Select * from " + tableName;
 adapter.SelectCommand = new OleDbCommand (query, conn);
 DataSet dset = new DataSet ("mydata");
 try {
 openConnection();
 adapter.Fill (dset);
 dtable = dset.Tables [0];
 }
 catch(Exception e) {

 Console.WriteLine (e.Message);
 }

 return dtable;
}
//------
public DataTable openQuery(string query) {
 OleDbDataAdapter dsCmd = new OleDbDataAdapter ();
 DataSet dset = new DataSet (); //create a dataset
 DataTable dtable = null; //declare a data table
 try {
 //create the command
 dsCmd.SelectCommand = new OleDbCommand(query, conn);
 openConnection(); //open the connection
 //fill the dataset
 dsCmd.Fill(dset, "mine");
 //get the table
 dtable = dset.Tables[0];
 closeConnection(); //always close it

 return dtable; //and return it
 }
 catch (Exception e) {
 Console.WriteLine (e.Message);

Copyright © , 2002 by James W Cooper

241

 return null;
 }
}
//------
public void openConnection(string connectionString) {
 conn = new OleDbConnection(connectionString);
}
//------
public OleDbConnection getConnection() {
 return conn;
}
}

Note that this class is complete except for constructors. We’ll make
derived classes that create the connection strings for various databases.
We’ll make a version for Access:
public class AxsDatabase :Dbase {

public AxsDatabase(string dbName) {
string connectionString =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" +

dbName;
 openConnection(connectionString);
 }
}
and another for SQL Server.
public class SQLServerDatabase:DBase {
 string connectionString;
 //-----
public SQLServerDatabase(String dbName) {
 connectionString = "Persist Security Info = False;" +
 "Initial Catalog =" + dbName + ";" +
 "Data Source = myDataServer;User ID = myName;" +
 "password=";
 openConnection(connectionString);
}
//-----
public SQLServerDatabase(string dbName, string serverName,

string userid, string pwd) {
 connectionString = "Persist Security Info = False;" +
 "Initial Catalog =" + dbName + ";" +
 "Data Source =" + serverName + ";" +
 "User ID =" + userid + ";" +
 "password=" + pwd;

Copyright © , 2002 by James W Cooper

242

 openConnection(connectionString);
 }
}

The DBTable class
The other major class we will need is the DBTable class. It encapsulates
opening, loading, and updating a single database table. We will also use
this class in this example to add the single values. Then we can derive
food and store classes that do this addition for each class.
public class DBTable {

protected DBase db;
 protected string tableName;
 private bool filled, opened;
 private DataTable dtable;
 private int rowIndex;
 private Hashtable names;
 private string columnName;
 private DataRow row;
 private OleDbConnection conn;
 private int index;
//-----
public DBTable(DBase datab, string tb_Name) {
 db = datab;
 tableName = tb_Name;
 filled =false;
 opened = false;
 names = new Hashtable();
}
//-----
public void createTable() {
 try {

 dtable = new DataTable(tableName);
 dtable.Clear();
 }
 catch (Exception e) {
 Console.WriteLine (e.Message);
 }
}
//-----
public bool hasMoreElements() {
 if(opened)
 return (rowIndex < dtable.Rows.Count) ;
 else

Copyright © , 2002 by James W Cooper

243

 return false;
}
//-----
public int getKey(string nm, string keyname){

 DataRow row;
 int key;
 if(! filled)
 return (int)names[nm];
 else {
 string query = "select * from " + tableName + " where " +

 columnName + "=\'" + nm + "\'";
 dtable = db.openQuery(query);
 row = dtable.Rows[0];
 key = Convert.ToInt32 (row[keyname].ToString());
 return key;
 }
}
//-----
public virtual void makeTable(string cName) {
 //shown below
//-----
private void closeConn() {
 if(conn.State == ConnectionState.Open) {
 conn.Close();
 }
}
//-----
private void openConn() {
 if(conn.State == ConnectionState.Closed) {
 conn.Open();
 }
}
//-----
public void openTable() {
 dtable = db.openTable(tableName);
 rowIndex = 0;
 if(dtable != null)
 opened = true;
 }
//-----
 public void delete() {

//shown above
 }
}

Copyright © , 2002 by James W Cooper

244

Creating Classes for Each Table
We can derive the Store, Food, and Prices classes from DBTable and reuse
much of the code. When we parse the input file, both the Store and Food
classes will require that we create a table of unique names: store names in
one class and food names in the other.

C# provides a very convenient way to create these classes using the
Hashtable. A Hashtable is an unbounded array where each element is
identified with a unique key. One way people use Hashtables is to add
objects to the table with a short nickname as the key. Then you can fetch
the object from the table by using its nickname. The objects need not be
unique, but, of course, the keys must be unique.

The other place Hashtables are convenient is in making a list of unique
names. If we make the names the keys and some other number the
contents, then we can add names to the Hashtable and assure ourselves
that each will be unique. For them to be unique, the Hashtable must treat
attempts to add a duplicate key in a predictable way. For example, the
Java Hashtable simply replaces a previous entry having that key with the
new one. The C# implementation of the Hashtable, on the other hand,
throws an exception when we try to add a nonunique key value.

Now bearing in mind that we want to accumulate the entire list of names
before adding them into the database, we can use the following method to
add names to a Hashtable and make sure they are unique.
public void addTableValue(string nm) {
//accumulates names in hash table
 try {
 names.Add(nm, index++);
 }
 catch (ArgumentException) {}
 //do not allow duplicate names to be added
}

Copyright © , 2002 by James W Cooper

245

Then, once we have added all the names, we can add each of them to the
database table. Here we use the Enumerator property of the Hashtable to
iterate though all the names we have entered in the list.
public virtual void makeTable(string cName) {
 columnName = cName;
 //stores current hash table values in data table
 DataSet dset = new DataSet(tableName); //create dataset
 dtable = new DataTable(tableName); //and a datatable
 dset.Tables.Add(dtable); //add to collection
 conn = db.getConnection();
 openConn(); //open the connection
 OleDbDataAdapter adcmd = new OleDbDataAdapter();
 //open the table
 adcmd.SelectCommand =
 new OleDbCommand("Select * from " + tableName, conn);
 OleDbCommandBuilder olecb = new OleDbCommandBuilder(adcmd);
 adcmd.TableMappings.Add("Table", tableName);
 //load current data into the local table copy
 adcmd.Fill(dset, tableName);
 //get the Enumerator from the Hashtable
 IEnumerator ienum = names.Keys.GetEnumerator();
 //move through the table, adding the names to new rows
 while (ienum.MoveNext()) {
 string name = (string)ienum.Current;
 row = dtable.NewRow(); //get new rows
 row[columnName] = name;
 dtable.Rows.Add(row); //add into table
 }
 //Now update the database with this table
 try {
 adcmd.Update(dset);
 closeConn();
 filled = true;
 }
 catch (Exception e) {
 Console.WriteLine (e.Message);
 }
}

This simplifies our derived Stores table to just the following.
public class Stores :DBTable {
 public Stores(DBase db):base(db, "Stores"){
 }

Copyright © , 2002 by James W Cooper

246

 //-----
 public void makeTable() {
 base.makeTable ("Storename");

}
}

And it simplifies the Foods table to much the same thing.
public class Foods: DBTable {
 public Foods(DBase db):base(db, "Foods"){
 }
 //-----
 public void makeTable() {
 base.makeTable ("Foodname");
 }
 //-----
 public string getValue() {
 return base.getValue ("FoodName");
 }
}

The getValue method allows us to enumerate the list of names of Stores or
Foods, and we can put it in the base DBTable class.
public virtual string getValue(string cname) {
 //returns the next name in the table
 //assumes that openTable has already been called

if (opened) {
DataRow row = dtable.Rows[rowIndex++];

 return row[cname].ToString().Trim ();
}

 else
 return "";
 }
Note that we make this method virtual so we can override it where needed.

Building the Price Table
The Price table is a little more complicated because it contains keys from
the other two tables. When it is completed, it will look like Table 18-5.

Pricekey Foodkey StoreKey Price
1 1 1 0.27

Copyright © , 2002 by James W Cooper

247

2 2 1 0.36
3 3 1 1.98
4 4 1 2.39
5 5 1 1.98
6 6 1 2.65
7 7 1 2.29
8 1 2 0.29
9 2 2 0.29

10 3 2 2.45
11 4 2 2.99
12 5 2 1.79
13 6 2 3.79
14 7 2 2.19
15 1 3 0.33
16 2 3 0.47
17 3 3 2.29
18 4 3 3.29
19 5 3 1.89
20 6 3 2.99
21 7 3 1.99

Table 18-5 – The Price Table in the Grocery Database

To create it, we have to reread the file, finding the store and food names,
looking up their keys, and adding them to the Price table. The DBTable
interface doesn’t include this final method, but we can add additional
specific methods to the Price class that are not part of that interface.

The Prices class stores a series of StoreFoodPrice objects in an ArrayList
and then loads them all into the database at once. Note that we have
overloaded the classes of DBTable to take arguments for the store and
food key values as well as the price.

Each time we add a storekey, foodkey and price to the internal ArrayList
table, we create an instance of the StoreFoodPrice object and store it.
public class StoreFoodPrice {

Copyright © , 2002 by James W Cooper

248

 private int storeKey, foodKey;
 private float foodPrice;
 //-----
 public StoreFoodPrice(int sKey, int fKey, float fPrice) {
 storeKey = sKey;
 foodKey = fKey;
 foodPrice = fPrice;
 }
 //-----
 public int getStore() {
 return storeKey;
 }
 //-----
 public int getFood() {
 return foodKey;
 }
 //-----
 public float getPrice() {
 return foodPrice;
 }
}
Then, when we have them all, we create the actual database table:

public class Prices : DBTable {
 private ArrayList priceList;
 public Prices(DBase db) : base(db, "Prices") {
 priceList = new ArrayList ();
 }
 //-----
 public void makeTable() {
 //stores current array list values in data table
 OleDbConnection adc = new OleDbConnection();

 DataSet dset = new DataSet(tableName);
 DataTable dtable = new DataTable(tableName);

 dset.Tables.Add(dtable);
 adc = db.getConnection();
 if (adc.State == ConnectionState.Closed)
 adc.Open();
 OleDbDataAdapter adcmd = new OleDbDataAdapter();

 //fill in price table
 adcmd.SelectCommand =

Copyright © , 2002 by James W Cooper

249

 new OleDbCommand("Select * from " + tableName, adc);
 OleDbCommandBuilder custCB = new

OleDbCommandBuilder(adcmd);
 adcmd.TableMappings.Add("Table", tableName);
 adcmd.Fill(dset, tableName);
 IEnumerator ienum = priceList.GetEnumerator();
 //add new price entries
 while (ienum.MoveNext()) {
 StoreFoodPrice fprice =

(StoreFoodPrice)ienum.Current;
 DataRow row = dtable.NewRow();
 row["foodkey"] = fprice.getFood();
 row["storekey"] = fprice.getStore();
 row["price"] = fprice.getPrice();
 dtable.Rows.Add(row); //add to table
 }
 adcmd.Update(dset); //send back to database
 adc.Close();
 }
 //-----
 public DataTable getPrices(string food) {
 string query=
 "SELECT Stores.StoreName, " +

 "Foods.Foodname, Prices.Price " +
 "FROM (Prices INNER JOIN Foods ON " +

 "Prices.Foodkey = Foods.Foodkey) " +
 "INNER JOIN Stores ON " +

"Prices.StoreKey = Stores.StoreKey " +
 "WHERE(((Foods.Foodname) = \'" + food + "\')) " +

 "ORDER BY Prices.Price";
 return db.openQuery(query);
 }
 //-----
 public void addRow(int storeKey, int foodKey, float price)
 priceList.Add (

new StoreFoodPrice (storeKey,
foodKey, price));

 }
}

Loading the Database Tables
With all these classes derived, we can write a class to load the table from
the data file. It reads the file once and builds the Store and Food database

Copyright © , 2002 by James W Cooper

250

tables. Then it reads the file again and looks up the store and food keys
and adds them to the array list in the Price class. Finally, it creates the
Price table.
public class DataLoader {
 private csFile vfile;
 private Stores store;
 private Foods fods;
 private Prices price;
 private DBase db;
 //-----
 public DataLoader(DBase datab) {
 db = datab;
 store = new Stores(db);
 fods = new Foods (db);
 price = new Prices(db);
 }
 //-----
 public void load(string dataFile) {
 string sline;
 int storekey, foodkey;
 StringTokenizer tok;
 //delete current table contents

 store.delete();
 fods.delete();
 price.delete();
 //now read in new ones
 vfile = new csFile(dataFile);
 vfile.OpenForRead();
 sline = vfile.readLine();
 while (sline != null){
 tok = new StringTokenizer(sline, ",");
 store.addTableValue(tok.nextToken()); //store
 fods.addTableValue(tok.nextToken()); //food
 sline = vfile.readLine();
 }
 vfile.close();
 //construct store and food tables
 store.makeTable();
 fods.makeTable();
 vfile.OpenForRead();
 sline = vfile.readLine();
 while (sline != null) {
 //get the gets and add to storefoodprice objects
 tok = new StringTokenizer(sline, ",");

Copyright © , 2002 by James W Cooper

251

 storekey = store.getKey(tok.nextToken(), "Storekey");
 foodkey = fods.getKey(tok.nextToken(), "Foodkey");
 price.addRow(storekey, foodkey,

Convert.ToSingle (tok.neXtToken()));
 sline = vfile.readLine();
 }
 //add all to price table
 price.makeTable();
 vfile.close();
 }
}

The Final Application
The program loads a list of food prices into a list box on startup.
private void loadFoodTable() {
 Foods fods =new Foods(db);
 fods.openTable();
 while (fods.hasMoreElements()){
 lsFoods.Items.Add(fods.getValue());
 }
}
And it displays the prices of the selected food when you click on it.
private void lsFoods_SelectedIndexChanged(object sender,

System.EventArgs e) {
 string food = lsFoods.Text;
 DataTable dtable = prc.getPrices(food);

 lsPrices.Items.Clear();
 foreach (DataRow rw in dtable.Rows) {
 lsPrices.Items.Add(rw["StoreName"].ToString().Trim() +
 "\t" + rw["Price"].ToString());
 }
}

The final program is shown in Figure 18-2.

Copyright © , 2002 by James W Cooper

252

Figure 18-2– The C# grocery database program

If you click on the “load data” button, it clears the database and reloads it
from the text file.

What Constitutes the Façade?
The Facade in this case wraps the classes as follows.

• Dbase

—Contains ADOConnection, Database, DataTable,
ADOCommand, ADODatasetCommand

• DBTable

—Contains ADOCommand, Dataset, Datarow, Datatable,
ADODatasetCommand

You can quickly see the advantage of the Façade approach when dealing
with such complicated data objects.

Copyright © , 2002 by James W Cooper

253

Consequences of the Façade
The Façade pattern shields clients from complex subsystem components
and provides a simpler programming interface for the general user.
However, it does not prevent the advanced user from going to the deeper,
more complex classes when necessary.

In addition, the Façade allows you to make changes in the underlying
subsystems without requiring changes in the client code and reduces
compilation dependencies.

Thought Question
Suppose you had written a program with a File|Open menu, a text field,
and some buttons controlling font (bold and italic). Now suppose that you
need to have this program run from a line command with arguments.
Suggest how to use a Façade pattern.

Programs on the CD-ROM
\Façade\ C# database Façade classes

Copyright © , 2002 by James W Cooper

254

19. The Flyweight Pattern

The Flyweight pattern is used to avoid the overhead of large numbers of
very similar classes. There are cases in programming where it seems that
you need to generate a very large number of small class instances to
represent data. Sometimes you can greatly reduce the number of different
classes that you need to instantiate if you can recognize that the instances
are fundamentally the same except for a few parameters. If you can move
those variables outside the class instance and pass them in as part of a
method call, the number of separate instances can be greatly reduced by
sharing them.

The Flyweight design pattern provides an approach for handling such
classes. It refers to the instance’s intrinsic data that makes the instance
unique and the extrinsic data that is passed in as arguments. The Flyweight
is appropriate for small, fine-grained classes like individual characters or
icons on the screen. For example, you might be drawing a series of icons
on the screen in a window, where each represents a person or data file as a
folder, as shown in Figure 19-1.

Copyright © , 2002 by James W Cooper

255

Figure 19-1– A set of folders representing information about various people. Since
these are so similar, they are candidates for the Flyweight pattern.

In this case, it does not make sense to have an individual class instance for
each folder that remembers the person’s name and the icon’s screen
position. Typically, these icons are one of a few similar images, and the
position where they are drawn is calculated dynamically based on the
window’s size in any case.

In another example in Design Patterns, each character in a document is
represented as a single instance of a character class, but the positions
where the characters are drawn on the screen are kept as external data, so
there only has to be one instance of each character, rather than one for
each appearance of that character.

Discussion
Flyweights are sharable instances of a class. It might at first seem that
each class is a Singleton, but in fact there might be a small number of

Copyright © , 2002 by James W Cooper

256

instances, such as one for every character or one for every icon type. The
number of instances that are allocated must be decided as the class
instances are needed, and this is usua lly accomplished with a
FlyweightFactory class. This Factory class usually is a Singleton, since it
needs to keep track of whether a particular instance has been generated
yet. It then either returns a new instance or a reference to one it has
already generated.

To decide if some part of your program is a candidate for using
Flyweights, consider whether it is possible to remove some data from the
class and make it extrinsic. If this makes it possible to greatly reduce the
number of different class instances your program needs to maintain, this
might be a case where Flyweights will help.

Example Code
Suppose we want to draw a small folder icon with a name under it for each
person in an organization. If this is a large organization, there could be a
large number of such icons, but they are actually all the same graphical
image. Even if we have two icons—one for “is Selected” and one for “not
Selected”—the number of different icons is small. In such a system,
having an icon object for each person, with its own coordinates, name, and
selected state, is a waste of resources. We show two such icons in Figure
19-2.

Copyright © , 2002 by James W Cooper

257

Figure 19-2– The Flyweight display with one folder selected

Instead, we’ll create a FolderFactory that returns either the selected or the
unselected folder drawing class but does not create additional instances
once one of each has been created. Since this is such a simple case, we just
create them both at the outset and then return one or the other.
public class FolderFactory {
 private Folder selFolder, unselFolder;
 //-----
 public FolderFactory() {
 //create the two folders
 selFolder = new Folder(Color.Brown);
 unselFolder = new Folder(Color.Bisque);
 }
 //-----
 public Folder getFolder(bool selected) {
 if(selected)
 return selFolder;
 else
 return unselFolder;

Copyright © , 2002 by James W Cooper

258

 }
}

For cases where more instances could exist, the Factory could keep a table
of those it had already created and only create new ones if they weren’t
already in the table.

The unique thing about using Flyweights, however, is that we pass the
coordinates and the name to be drawn into the folder when we draw it.
These coordinates are the extrinsic data that allow us to share the folder
objects and, in this case, create only two instances. The complete folder
class shown here simply creates a folder instance with one background
color or the other and has a public draw method that draws the folder at
the point you specify.
public class Folder {
 //Draws a folder at the specified coordinates
 private const int w = 50;
 private const int h = 30;
 private Pen blackPen, whitePen;
 private Pen grayPen;

 private SolidBrush backBrush, blackBrush;
 private Font fnt;
 //------
 public Folder(Color col) {
 backBrush = new SolidBrush(col);
 blackBrush = new SolidBrush(Color.Black);
 blackPen = new Pen(Color.Black);
 whitePen = new Pen(Color.White);
 grayPen = new Pen(Color.Gray);
 fnt = new Font("Arial", 12);
 }
 //-----
 public void draw(Graphics g, int x, int y, string title) {
 //color folder
 g.FillRectangle(backBrush, x, y, w, h);
 //outline in black
 g.DrawRectangle(blackPen, x, y, w, h);
 //left 2 sides have white line
 g.DrawLine(whitePen, x + 1, y + 1, x + w - 1, y + 1);
 g.DrawLine(whitePen, x + 1, y, x + 1, y + h);

//draw tab

Copyright © , 2002 by James W Cooper

259

 g.DrawRectangle(blackPen, x + 5, y - 5, 15, 5);
 g.FillRectangle(backBrush, x + 6, y - 4, 13, 6);
 //gray line on right and bottom
 g.DrawLine(grayPen, x, y + h - 1, x + w, y + h - 1);

 g.DrawLine(grayPen, x + w - 1, y, x + w - 1,
 y + h - 1);

 g.DrawString(title, fnt, blackBrush, x, y + h + 5);
 }
}

To use a Flyweight class like this, your main program must calculate the
position of each folder as part of its paint routine and then pass the
coordinates to the folder instance. This is actually rather common, since
you need a different layout, depending on the window’s dimensions, and
you would not want to have to keep telling each instance where its new
location is going to be. Instead, we compute it dynamically during the
paint routine.

Here we note that we could have generated an ArrayList of folders at the
outset and simply scan through the array to draw each folder. Such an
array is not as wasteful as a series of different instances because it is
actually an array of references to one of only two folder instances.
However, since we want to display one folder as “selected,” and we would
like to be able to change which folder is selected dynamically, we just use
the FolderFactory itself to give us the correct instance each time.

There are two places in our display routine where we need to compute the
positions of folders: when we draw them, and when we check for a mouse
hovering over them. Thus, it is convenient to abstract out the positioning
code into a Positioner class:
public class Positioner {
 private const int pLeft = 30;
 private const int pTop = 30;
 private const int HSpace = 70;
 private const int VSpace = 80;
 private const int rowMax = 2;
 private int x, y, cnt;
 //-----

Copyright © , 2002 by James W Cooper

260

 public Positioner() {
 reset();
 }
 //-----
 public void reset() {
 x = pLeft;
 y = pTop;
 cnt = 0;
 }
 //-----
 public int nextX() {
 return x;
 }
 //-----
 public void incr() {
 cnt++;
 if (cnt > rowMax) { //reset to start new row
 cnt = 0;
 x = pLeft;
 y += VSpace;
 }
 else {
 x += HSpace;
 }
 }
 //-----
 public int nextY() {
 return y;
 }
}

Then we can write a much simpler paint routine:
private void picPaint(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics;
 posn.reset ();
 for(int i = 0; i < names.Count; i++) {
 fol = folFact.getFolder(selectedName.Equals(

(string)names[i]));
 fol.draw(g, posn.nextX() , posn.nextY (),

(string)names[i]);
 posn.incr();
 }
}

Copyright © , 2002 by James W Cooper

261

The Class Diagram
The diagram in Figure 19-3 shows how these classes interact.

Figure 19-3 – How Flyweights are generated

The FlyCanvas class is the main UI class, where the folders are arranged
and drawn. It contains one instance of the FolderFactory and one instance
of the Folder class. The FolderFactory class contains two instances of
Folder: selected and unselected. One or the other of these is returned to the
FlyCanvas by the FolderFactory.

Selecting a Folder
Since we have two folder instances, selected and unselected, we’d like to
be able to select folders by moving the mouse over them. In the previous
paint routine, we simply remember the name of the folder that was
selected and ask the factory to return a “selected’ folder for it. Since the
folders are not individual instances, we can’t listen for mouse motion
within each folder instance. In fact, even if we did listen within a folder,
we’d need a way to tell the other instances to deselect themselves.

Instead, we check for mouse motion at the Picturebox level, and if the
mouse is found to be within a Rectangle, we make that corresponding
name the selected name. We create a single instance of a Rectangle class

Copyright © , 2002 by James W Cooper

262

where the testing can be done as to whether a folder contains the mouse at
that instant. Note that we make this class part of the csPatterns namespace
to make sure it does not collide with the Rectangle class in the
System.Drawing namespace.

namespace csPatterns {
 public class Rectangle {
 private int x1, x2, y1, y2;
 private int w, h;
 public Rectangle() { }
 //-----
 public void init(int x, int y) {
 x1 = x;
 y1 = y;
 x2 = x1 + w;
 y2 = y1 + h;
 }
 //-----
 public void setSize(int w_, int h_) {
 w = w_;
 h = h_;
 }
 //-----
 public bool contains(int xp, int yp) {
 return (x1 <= xp) && (xp <= x2) &&
 (y1 <= yp) && (yp <= y2);
 }
 }
}

This allows us to just check each name when we redraw and create a
selected folder instance where it is needed.
private void Pic_MouseMove(object sender, MouseEventArgs e) {
 string oldname = selectedName; //save old name
 bool found = false;
 posn.reset ();
 int i = 0;
 selectedName = "";
 while (i < names.Count && ! found) {
 rect.init (posn.nextX() , posn.nextY ());
 //see if a rectangle contains the mouse
 if (rect.contains(e.X, e.Y)){

Copyright © , 2002 by James W Cooper

263

 selectedName = (string)names[i];
 found = true;
 }
 posn.incr ();
 i++;
 }
 //only refresh if mouse in new rectangle
 if(!oldname.Equals (selectedName)) {
 Pic.Refresh();
 }
}

Handling the Mouse and Paint Events
In C# we intercept the paint and mouse events by adding event handlers.
To do the painting of the folders, we add a paint event handler to the
picture box.
Pic.Paint += new PaintEventHandler (picPaint);

The picPaint handler we add draws the folders, as we showed above. We
added this code manually because we knew the signature of a paint
routine:
private void picPaint(object sender, PaintEventArgs e) {

While the mouse move event handler is very much analogous, we might
not remember its exact form. So, we use the Visual Studio IDE to generate
it for us. While displaying the form in design mode, we click on the
PictureBox and in the Properties window we click on the lightning bolt to
display the possible events for the PictureBox, as shown in Figure 19-4.

Copyright © , 2002 by James W Cooper

264

Figure 19-4 – Selecting the MouseMove event from the Properties window.

Then we double click on MouseMove, and it generates the correct code
for the mouse move event and adds the event handler automatically. The
generated empty method is just:
private void Pic_MouseMove(object sender, MouseEventArgs e) {
}

and the code generated to add the event handler is inside the Windows
Form Designer generated section. It amounts to
Pic.MouseMove += new MouseEventHandler(Pic_MouseMove);

Flyweight Uses in C#
Flyweights are not frequently used at the application level in C#. They are
more of a system resource management technique used at a lower level
than C#. However, there are a number of stateless objects tha t get created
in Internet programming that are somewhat analogous to Flyweights. It is
generally useful to recognize that this technique exists so you can use it if
you need it.

Some objects within the C# language could be implemented under the
covers as Flyweights. For example, if there are two instances of a String

Copyright © , 2002 by James W Cooper

265

constant with identical characters, they could refer to the same storage
location. Similarly, it might be that two integer or float constants that
contain the same value could be implemented as Flyweights, although
they probably are not.

Sharable Objects
The Smalltalk Companion points out that sharable objects are much like
Flyweights, although the purpose is somewhat different. When you have a
very large object containing a lot of complex data, such as tables or
bitmaps, you would want to minimize the number of instances of that
object. Instead, in such cases, you’d return one instance to every part of
the program that asked for it and avoid creating other instances.

A problem with such sharable objects occurs when one part of a program
wants to change some data in a shared object. You then must decide
whether to change the object for all users, prevent any change, or create a
new instance with the changed data. If you change the object for every
instance, you may have to notify them that the object has changed.

Sharable objects are also useful when you are referring to large data
systems outside of C#, such as databases. The DBase class we developed
previously in the Façade pattern could be a candidate for a sharable object.
We might not want a number of separate connections to the database from
different program modules, preferring that only one be instantiated.
However, should several modules in different threads decide to make
queries simultaneously, the Database class might have to queue the
queries or spawn extra connections.

Copy-on-Write Objects
The Flyweight pattern uses just a few object instances to represent many
different objects in a program. All of them normally have the same base
properties as intrinsic data and a few properties that represent extrinsic
data that vary with each manifestation of the class instance. However, it
could occur that some of these instances eventually take on new intrinsic

Copyright © , 2002 by James W Cooper

266

properties (such as shape or folder tab position) and require a new specific
instance of the class to represent them. Rather than creating these in
advance as special subclasses, it is possible to copy the class instance and
change its intrinsic properties when the program flow indicates that a new
separate instance is required. The class copies this itself when the change
becomes inevitable, changing those intrinsic properties in the new class.
We call this process “copy-on-write” and can build this into Flyweights as
well as a number of other classes, such as the Proxy, which we discuss
next.

Thought Question
If Buttons can appear on several different tabs of a TabDialog, but each of
them controls the same one or two tasks, is this an appropriate use for a
Flyweight?

Programs on the CD-ROM
\Flyweight C# folders

Copyright © , 2002 by James W Cooper

267

20. The Proxy Pattern

The Proxy pattern is used when you need to represent an object that is
complex or time consuming to create, by a simpler one. If creating an
object is expensive in time or computer resources, Proxy allows you to
postpone this creation until you need the actual object. A Proxy usually
has the same methods as the object it represents, and once the object is
loaded, it passes on the method calls from the Proxy to the actual object.

There are several cases where a Proxy can be useful.

1. An object, such as a large image, takes a long time to load.

2. The results of a computation take a long time to complete, and you
need to display intermediate results while the computation continues.

3. The object is on a remote machine, and loading it over the network
may be slow, especially during peak network load periods.

4. The object has limited access rights, and the proxy can validate the
access permissions for that user.

Proxies can also be used to distinguish between requesting an instance of
an object and the actual need to access it. For example, program
initialization may set up a number of objects that may not all be used right
away. In that case, the proxy can load the real object only when it is
needed.

Let’s consider the case of a large image that a program needs to load and
display. When the program starts, there must be some indication that an
image is to be displayed so that the screen lays out correctly, but the actual
image display can be postponed until the image is completely loaded. This
is particularly important in programs such as word processors and Web
browsers that lay out text around the images even before the images are
available.

Copyright © , 2002 by James W Cooper

268

An image proxy can note the image and begin loading it in the background
while drawing a simple rectangle or other symbol to represent the image’s
extent on the screen before it appears. The proxy can even delay loading
the image at all until it receives a paint request and only then begin the
process.

Sample Code
In this example, we create a simple program to display an image on a
Image control when it is loaded. Rather than loading the image directly,
we use a class we call ImageProxy to defer loading and draw a rectangle
until loading is completed.

 private void init() {
 imgProxy = new ImageProxy ();
 }
 //-----
 public Form1() {
 InitializeComponent();
 init();
 }
 //-----
 private void button1_Click(object sender, EventArgs e) {
 Pic.Image = imgProxy.getImage ();
 }

Note that we create the instance of the ImageProxy just as we would have
for an Image. The ImageProxy class sets up the image loading and creates
an Imager object to follow the loading process. It returns a class that
implements the Imager interface.
public interface Imager {
 Image getImage() ;
}

In this simple case, the ImageProxy class jus t delays five seconds and then
switches from the preliminary image to the final image. It does this using

Copyright © , 2002 by James W Cooper

269

an instance of the Timer class. Timers are handled using a TimerCallback
class that defines the method to be called when the timer ticks. This is
much the same as the way we add other event handlers. And this callback
method timerCall sets the done flag and turns off the timer.
public class ImageProxy {
 private bool done;
 private Timer timer;
 //-----
 public ImageProxy() {

//create a timer thread and start it
 timer = new Timer (

 new TimerCallback (timerCall), this, 5000, 0);
 }
 //-----

//called when timer completes
 private void timerCall(object obj) {
 done = true;
 timer.Dispose ();
 }
 //-----
 public Image getImage() {
 Imager img;
 if (done)
 img = new FinalImage ();
 else
 img = new QuickImage ();
 return img.getImage ();
 }
}

We implement the Imager interface in two tiny classes we called
QuickImage and FinalImage. One gets a small gif image and the other a
larger (and presumably slower) jpeg image. In C#, Image is an abstract
class, and the Bitmap, Cursor, Icon, and Metafile classes are derived from
it. So the actual class we will return is derived from Image. The
QuickImage class returns a Bitmap from a gif file, and the final image a
JPEG file.
public class QuickImage : Imager {
 public QuickImage() {}
 public Image getImage() {

Copyright © , 2002 by James W Cooper

270

 return new Bitmap ("Box.gif");
 }
}
//------------
public class FinalImage :Imager {
 public FinalImage() {}
 public Image getImage() {
 return new Bitmap("flowrtree.jpg");
 }
}

When you go to fetch an image, you initially get the quick image, and
after five seconds, if you call the method again, you get the final image.
The program’s two states are illustrated in Figure 20-1

Figure 20-1 – The proxy image display on the left is shown until the image loads as
shown on the right.

Proxies in C#
You see more proxy- like behavior in C# than in other languages, because
it is crafted for network and Internet use. For example, the ADO.Net
database connection classes are all effectively proxies.

Copyright © , 2002 by James W Cooper

271

Copy-on-Write
You can also use proxies is to keep copies of large objects that may or
may not change. If you create a second instance of an expensive object, a
Proxy can decide there is no reason to make a copy yet. It simply uses the
original object. Then, if the program makes a change in the new copy, the
Proxy can copy the original object and make the change in the new
instance. This can be a great time and space saver when objects do not
always change after they are instantiated.

Comparison with Related Patterns
Both the Adapter and the Proxy constitute a thin layer around an object.
However, the Adapter provides a different interface for an object, while
the Proxy provides the same interface for the object but interposes itself
where it can postpone processing or data transmission effort.

A Decorator also has the same interface as the object it surrounds, but its
purpose is to add additional (sometimes visual) function to the original
object. A proxy, by contrast, controls access to the contained class.

Thought Question
You have designed a server that connects to a database. If several clients
connect to your server at once, how might Proxies be of help?

Programs on the CD-ROM
\Proxy Image proxy

Copyright © , 2002 by James W Cooper

272

Summary of Structural Patterns
Part 3 covered the following structural patterns.

The Adapter pattern is used to change the interface of one class to that of
another one.

The Bridge pattern is designed to separate a class’s interface from its
implementation so you can vary or replace the implementation without
changing the client code.

The Composite pattern is a collection of objects, any one of which may be
either itself a Composite or just a leaf object.

The Decorator pattern, a class that surrounds a given class, adds new
capabilities to it and passes all the unchanged methods to the underlying
class.

The Façade pattern groups a complex set of objects and provides a new,
simpler interface to access those data.

The Flyweight pattern provides a way to limit the proliferation of small,
similar instances by moving some of the class data outside the class and
passing it in during various execution methods.

The Proxy pattern provides a simple placeholder object for a more
complex object that is in some way time consuming or expensive to
instantiate

Copyright © , 2002 by James W Cooper

273

Part 4. Behavioral Patterns
Behavioral patterns are most specifically concerned with communication
between objects. In Part 4, we examine the following.

The Chain of Responsibility allows a decoupling between objects by
passing a request from one object to the next in a chain until the request is
recognized.

The Command pattern utilizes simple objects to represent execution of
software commands and allows you to support logging and undoable
operations.

The Interpreter pattern provides a definition of how to include language
elements in a program.

The Iterator pattern formalizes the way we move through a list of data
within a class.

The Mediator pattern defines how communication between objects can
be simplified by using a separate object to keep all objects from having to
know about each other.

The Memento pattern defines how you might save the contents of an
instance of a class and restore it later.

The Observer pattern defines the way a number of objects can be
notified of a change,

The State pattern allows an object to modify its behavior when its
internal state changes.

The Strategy pattern encapsulates an algorithm inside a class.

The Template Method pattern provides an abstract definition of an
algorithm.

The Visitor pattern adds polymorphic functions to a class noninvasively.

Copyright © , 2002 by James W Cooper

274

21. Chain of Responsibility

The Chain of Responsibility pattern allows a number of classes to attempt
to handle a request without any of them knowing about the capabilities of
the other classes. It provides a loose coupling between these classes; the
only common link is the request that is passed between them. The request
is passed along until one of the classes can handle it.

One example of such a chain pattern is a Help system like the one shown
in Figure 21-1. This is a simple application where different kinds of help
could be useful, where every screen region of an application invites you to
seek help but in which there are window background areas where more
generic help is the only suitable result.

Figure 21-1 – A simple application where different kinds of help could be useful

When you select an area for help, that visual control forwards its ID or
name to the chain. Suppose you selected the “New” button. If the first
module can handle the New button, it displays the help message. If not, it
forwards the request to the next module. Eventually, the message is
forwarded to an “All buttons” class that can display a general message
about how buttons work. If there is no general button help, the message is
forwarded to the general help module that tells you how the system works

Copyright © , 2002 by James W Cooper

275

in general. If that doesn’t exist, the message is lost, and no information is
displayed. This is illustrated in Figure 21-2

File button All buttons

All controls General help

New button

Figure 21-2– A simple Chain of Responsibility

There are two significant points we can observe from this example: first,
the chain is organized from most specific to most general, and second,
there is no guarantee that the request will produce a response in all cases.
We will see shortly that you can use the Observer pattern to provide a way
for a number of classes to be notified of a change,

Applicability
The Chain of Responsibility is a good example of a pattern that helps keep
knowledge separate of what each object in a program can do. In other
words, it reduces the coupling between objects so that they can act
independently. This also applies to the object that constitutes the main
program and contains instances of the other objects. You will find this
pattern helpful in the following situations.

• There are several objects with similar methods that could be
appropriate for the action the program is requesting. However,
it is more appropriate for the objects to decide which one is to
carry out the action than it is for you to build this decision into
the calling code.

Copyright © , 2002 by James W Cooper

276

• One of the objects may be most suitable, but you don’t want to
build in a series of if-else or switch statements to select a
particular object.

• There might be new objects that you want to add to the
possible list of processing options while the program is
executing.

• There might be cases when more than one object will have to
act on a request, and you don’t want to build knowledge of
these interactions into the calling program.

Sample Code
The help system we just described is a little involved for a first example.
Instead, let’s start with a simple visual command-interpreter program
(Figure 21-3) that illustrates how the chain works. This program displays
the results of typed- in commands. While this first case is constrained to
keep the example code tractable, we’ll see that this Chain of
Responsibility pattern is commonly used for parsers and even compilers.

In this example, the commands can be any of the following.

• Image filenames

• General filenames

• Color names

• All other commands

In the first three cases, we can display a concrete result of the request, and
in the fourth case, we can only display the request text itself.

Copyright © , 2002 by James W Cooper

277

Figure 21-3– A simple visual command interpreter program that acts on one of four
panels, depending on the command you type in.

In the preceding example system, we do the following.

1. We type in “Mandrill” and see a display of the image Mandrill.jpg.

2. Then we type in “File,” and that filename is displayed in the center list
box.

3. Next, we type in “blue,” and that color is displayed in the lower center
panel.

Finally, if we type in anything that is ne ither a filename nor a color, that
text is displayed in the final, right-hand list box. This is shown in Figure
22-4.

Image
file

Color
name

File
name General Command

Copyright © , 2002 by James W Cooper

278

Figure 21-4 – How the command chain works for the program in Figure 20-3

To write this simple chain of responsibility program, we start with an
abstract Chain class.
public abstract class Chain {
 //describes how all chains work
 private bool hasLink;
 protected Chain chn;
 public Chain() {
 hasLink = false;
 }
 //you must implement this in derived classes
 public abstract void sendToChain(string mesg);
 //-----
 public void addToChain(Chain c) {
 //add new element to chain
 chn = c;
 hasLink = true; //flag existence
 }
 //-----
 public Chain getChain() {
 return chn; //get the chain link
 }
 //-----
 public bool hasChain() {
 return hasLink; //true if linked to another
 }
 //-----
 protected void sendChain(string mesg) {
 //send message on down the chain
 if(chn != null)
 chn.sendToChain (mesg);
 }
}

The addChain method adds another class to the chain of classes. The
getChain method returns the current class to which messages are being
forwarded. These two methods allow us to modify the chain dynamically
and add additional classes in the middle of an existing chain. The
sendToChain method forwards a message to the next object in the chain.
And the protected sendChain method only sends the message down the
chain if the next link is not null.

Copyright © , 2002 by James W Cooper

279

Our main program assembles the Chain classes and sets a reference to a
control into each of them. We start with the ImageChain class, which takes
the message string and looks for a .jpg file of that name. If it finds one, it
displays it in the Image control, and if not, it sends the command on to the
next element in the chain.
public class ImageChain :Chain {
 PictureBox picBox; //image goes here
 //-----
 public ImageChain(PictureBox pc) {
 picBox = pc; //save reference
 }
 //-----
 public override void sendToChain(string mesg) {
 //put image in picture box
 string fname = mesg + ".jpg";

//assume jpg filename
 csFile fl = new csFile(fname);
 if(fl.exists())
 picBox.Image = new Bitmap(fname);
 else{
 if (hasChain()){ //send off down chain
 chn.sendToChain(mesg);
 }
 }

 }
}

In a similar fashion, the ColorChain class simply interprets the message as
a color name and displays it if it can. This example only interprets three
colors, but you could implement any number. Note how we interpret the
color names by using them as keys to a Hashtable of color objects whee
the string names are thekeys.
public class ColorChain : Chain {
 private Hashtable colHash; //color list kept here
 private Panel panel; //color goes here
 //-----
 public ColorChain(Panel pnl) {
 panel = pnl; //save reference
 //create Hash table to correlate color names

Copyright © , 2002 by James W Cooper

280

 //with actual Color objects
 colHash = new Hashtable ();
 colHash.Add ("red", Color.Red);
 colHash.Add ("green", Color.Green);
 colHash.Add ("blue", Color.Blue);
 }
 //-----
 public override void sendToChain(string mesg) {
 mesg = mesg.ToLower ();
 try {
 Color c = (Color)colHash[mesg];
 //if this is a color, put it in the panel
 panel.BackColor =c;
 }
 catch (NullReferenceException e) {
 //send on if this doesn't work
 sendChain(mesg);
 }

 }
}

The List Boxes
Both the file list and the list of unrecognized commands are ListBoxes. If
the message matches part of a filename, the filename is displayed in the
fileList box, and if not, the message is sent on to the NoComd chain
element.
public override void sendToChain(string mesg) {
 //if the string matches any part of a filename
 //put those filenames in the file list box
 string[] files;
 string fname = mesg + "*.*";
 files = Directory.GetFiles(

Directory.GetCurrentDirectory(), fname);
 //add them all to the listbox
 if (files.Length > 0){
 for (int i = 0; i< files.Length; i++) {
 csFile vbf = new csFile(files[i]);
 flist.Items.Add(vbf.getRootName());
 }
 }
 else {

Copyright © , 2002 by James W Cooper

281

 if (hasChain()) {
 chn.sendToChain(mesg);

 }
}

}

The NoCmd Chain class is very similar. It, however, has no class to which
to send data.
public class NoCmd :Chain {
 private ListBox lsNocmd; //commands go here
 //-----
 public NoCmd(ListBox lb) {
 lsNocmd = lb; //copy reference
 }
 //-----
 public override void sendToChain(string mesg) {
 //adds unknown commands to list box
 lsNocmd.Items.Add (mesg);
 }
}

Finally, we link these classes together in the Form_Load routine to create
the Chain.
private void init() {
 //set up chains
 ColorChain clrChain = new ColorChain(pnlColor);
 FileChain flChain = new FileChain(lsFiles);
 NoCmd noChain = new NoCmd(lsNocmd);
 //create chain links
 chn = new ImageChain(picImage);
 chn.addToChain(clrChain);
 clrChain.addToChain(flChain);
 flChain.addToChain(noChain);
}

Finally, we kick off the chain by clicking on the Send button, which takes
the current message in the text box and sends it along the chain.
private void btSend_Click(object sender, EventArgs e) {
 chn.sendToChain (txCommand.Text);

Copyright © , 2002 by James W Cooper

282

}

You can see the relationship between these classes in the UML diagram in
Figure 21-5.

Figure 21-5– The class strcuture of the Chain of Responsibility program

The Sender class is the initial class that implements the Chain interface. It
receives the button clicks and obtains the text from the text field. It passes
the command on to the Imager class, the FileList class, the ColorImage
class, and finally to the NoCmd class.

Programming a Help System
As we noted at the beginning of this discussion, help systems provide
good examples of how the Chain of Responsibility pattern can be used.
Now that we’ve outlined a way to write such chains, we’ll consider a help

Copyright © , 2002 by James W Cooper

283

system for a window with several controls. The program (Figure 21-6)
pops up a help dialog message when the user presses the F1 (help) key.
The message depends on which control is selected when the F1 key is
pressed.

Figure 21-6 – A simple help demonstration

In the preceding example, the user has selected the Quit key, which does
not have a specific help message associated with it. Instead, the chain
forwards the help request to a general button help object that displays the
message shown on the right.

To write this help chain system, we begin with an abstract Chain class that
has handles Controls instead of messages. Note that no message is passed
into the sendToChain method, and that the current control is stored in the
class.
public abstract class Chain {
 //describes how all chains work
 private bool hasLink;
 protected Control control;
 protected Chain chn;
 protected string message;

 public Chain(Control c, string mesg) {
 hasLink = false;
 control = c; //save the control

Copyright © , 2002 by James W Cooper

284

 message = mesg;
 }

 public abstract void sendToChain();
 //-----
 public void addToChain(Chain c) {
 //add new element to chain
 chn = c;
 hasLink = true; //flag existence
 }
 //-----
 public Chain getChain() {
 return chn; //get the chain link
 }
 //-----
 public bool hasChain() {
 return hasLink; //true if linked to nother
 }
 //-----
 protected void sendChain() {
 //send message on down the chain
 if(chn != null)
 chn.sendToChain ();
 }
}
Then you might create specific classes for each of the help message
categories you want to produce. As we illustrated earlier, we want help
messages for the following.

• The New button

• The File button

• A general button

• A general visual control (covering the check boxes)

In C#, one control will always have the focus, and thus we don’t really
need a case for the Window itself. However, we’ll include one for
completeness. However, there is little to be gained by creating separate
classes for each message and assigning different controls to them. Instead,
we’ll create a general ControlChain class and pass in the control and the

Copyright © , 2002 by James W Cooper

285

message. Then, within the class it checks to see if that control has the
focus, and if it does, it issues the associated help message:
public class ControlChain:Chain {
 public ControlChain(Control c, string mesg):base(c, mesg)
 {}
 public override void sendToChain() {
 //if it has the focus display the message
 if (control.Focused) {
 MessageBox.Show (message);
 }
 else
 //otherwise pass on down the chain
 sendChain();
 }
}

Finally, we need one special case: the end of chain which will display a
message regardless of whether the control has the focus. This is the
EndChain class, and it is for completeness. Since one of the controls will
presumably always have the focus, it is unlikely ever to be called:
public class EndChain:Chain {
 public EndChain(Control c, string mesg):base(c, mesg){}

//default message display class
 public override void sendToChain() {
 MessageBox.Show (message);
 }
}

We construct the chain in the form initializer as follows:
chn = new ControlChain(btNew, "Create new files");
Chain fl =new ControlChain (btFile, "Select a file");
chn.addToChain (fl);
Chain bq = new ControlChain (btQuit, "Exit from program");
fl.addToChain (bq);
Chain cb =new ControlChain (ckBinary, "Use binary files");
bq.addToChain (cb);
Chain ct = new ControlChain (ckText, "Use text files");
cb.addToChain (ct);
Chain ce = new EndChain (this, "General message");
ct.addToChain (ce);

Copyright © , 2002 by James W Cooper

286

Receiving the Help Command
Now we need to assign keyboard listeners to look for the F1 keypress. At
first, you might think we need five such listeners—for the three buttons
and the two check boxes. However, we can simply make a single
KeyDown event listener and assign it to each of the controls:
KeyEventHandler keyev = new KeyEventHandler(Form1_KeyDown);
 btNew.KeyDown += keyev;
 btFile.KeyDown += keyev;
 btQuit.KeyDown += keyev;
 ckBinary.KeyDown += keyev;
 ckText.KeyDown += keyev;

Then, of course the key-down event launches the chain if the F1 key is
pressed:
private void Form1_KeyDown(object sender, KeyEventArgs e) {
 if(e.KeyCode == Keys.F1)
 chn.sendToChain ();
}

We show the complete class diagram for this help system in Figure 21-7.

Copyright © , 2002 by James W Cooper

287

Figure 21-7 – The class diagram for the Help system

A Chain or a Tree?
Of course, a Chain of Responsibility does not have to be linear. The
Smalltalk Companion suggests that it is more generally a tree structure
with a number of specific entry points all pointing upward to the most
general node, as shown in Figure 21-8..

Copyright © , 2002 by James W Cooper

288

General
help

Window
help

Button help Menu help List box
help

File NewOK Quit Files Colors

Figure 21-8– The chain of responsibility implemented as a tree structure

However, this sort of structure seems to imply that each button, or its
handler, knows where to enter the chain. This can complicate the design in
some cases and may preclude the need for the chain at all.

Another way of handling a tree-like structure is to have a single entry
point that branches to the specific button, menu, or other widget types and
then “unbranches,” as previously, to more general help cases. There is
little reason for that complexity—you could align the classes into a single
chain, starting at the bottom, and going left to right and up a row at a time
until the entire system had been traversed, as shown in Figure 21-9.

Copyright © , 2002 by James W Cooper

289

General
help

Window
help

Button help Menu help
List box

help

File NewOK Quit Files Colors

Figure 21-9 – The same chain of responsibility implemented as a linear chain

Kinds of Requests
The request or message passed along the Chain of Responsibility may well
be a great deal more complicated than just the string or Control that we
conveniently used on these examples. The information could include
various data types or a complete object with a number of methods. Since
various classes along the chain may use different properties of such a
request object, you might end up designing an abstract Request type and
any number of derived classes with additional methods.

Examples in C#
Under the covers, C# form windows receive various events, such as
MouseMove, and then forward them to the controls the form contains.
However, only the final control ever receives the message in C# whereas
in some other languages, each containing control does as well. This is a

Copyright © , 2002 by James W Cooper

290

clear implementation of Chain of Responsibility pattern. We could also
argue that, in general, the C# class inheritance structure itself exemplifies
this pattern. If you call for a method to be executed in a deeply derived
class, that method is passed up the inheritance chain until the first parent
class containing that method is found. The fact that further parents contain
other implementations of that method does not come into play.

We will also see that the Chain of Responsibility is ideal for implementing
Interpreters and use one in the Interpreter pattern we discuss later.

Consequences of the Chain of Responsibility
1. The main purpose for this pattern, like a number of others, is to reduce

coupling between objects. An object only needs to know how to
forward the request to other objects.

2. Each C# object in the chain is self-contained. It knows nothing of the
others and only need decide whether it can satisfy the request. This
makes both writing each one and cons tructing the chain very easy.

3. You can decide whether the final object in the chain handles all
requests it receives in some default fashion or just discards them.
However, you do have to know which object will be last in the chain
for this to be effective.

4. Finally, since C# cannot provide multiple inheritance, the basic Chain
class sometimes needs to be an interface rather than an abstract class
so the individual objects can inherit from another useful hierarchy, as
we did here by deriving them all from Control. This disadvantage of
this approach is that you often have to implement the linking, sending,
and forwarding code in each module separately or, as we did here, by
subclassing a concrete class that implements the Chain interface.

Thought Question
Suggest how you might use a Chain of Responsibility to implement an e-
mail filter.

Copyright © , 2002 by James W Cooper

291

Programs on the CD-ROM
\Chain\HelpChain program showing how a help

system can be implemented
\Chain\Chain chain of file and image displays

Copyright © , 2002 by James W Cooper

292

22. The Command Pattern

The Chain of Responsibility forwards requests along a chain of classes,
but the Command pattern forwards a request only to a specific object. It
encloses a request for a specific action inside an object and gives it a
known public interface. It lets you give the client the ability to make
requests without knowing anything about the actual action that will be
performed and allows you to change that action without affecting the
client program in any way.

Motivation
When you build a C# user interface, you provide menu items, buttons,
check boxes, and so forth to allow the user to tell the program what to do.
When a user selects one of these controls, the program receives a clicked
event, which it receives into a special routine in the user interface. Let's
suppose we build a very simple program that allows you to select the
menu items File | Open, and File | Exit, and click on a button marked Red
that turns the background of the window red. This program is shown in
Figure 22-1.

Figure 22-1 – A simple program that receives events from the button and menu
items

Copyright © , 2002 by James W Cooper

293

The program consists of the File Menu object with the mnuOpen, and
mnuExit MenuItems added to it. It also contains one button called btnRed.
During the design phase, clicking on any of these items creates a little
method in the Form class that gets called when the control is clicked.

As long as there are only a few menu items and buttons, this approach
works fine, but when you have dozens of menu items and several buttons,
the Form module code can get pretty unwieldy. In addition, we might
eventually like the red command to be carried out both from the button
and a menu item.

 Command Objects
One way to ensure that every object receives its own commands directly is
to use the Command pattern and create individual Command objects. A
Command object always has an Execute() method that is called when an
action occurs on that object. Most simply, a Command object implements
at least the following interface.
public interface Command {
 void Execute();
}

One objective of using this interface is to separate the user interface code
from the actions the program must carry out, as shown here.
private void commandClick(object sender, EventArgs e) {
 Command comd = (Command)sender;
 comd.Execute ();
}

This event can be connected to every single user interface element that can
be clicked, and each will contain its own implementation of the Execute
method, by simply deriving a new clas from Button and Menuitem that
supports this Command interface.

Then we can provide an Execute method for each object that carries out
the desired action, thus keeping the knowledge of what to do inside the

Copyright © , 2002 by James W Cooper

294

object where it belongs, instead of having another part of the program
make these decisions.

One important purpose of the Command pattern is to keep the program
and user interface objects completely separate from the actions that they
initiate. In other words, these program objects should be comple tely
separate from each other and should not have to know how other objects
work. The user interface receives a command and tells a Command object
to carry out whatever duties it has been instructed to do. The UI does not
and should not need to know what tasks will be executed. This decouples
the UI class from the execution of specific commands, making it possible
to modify or completely change the action code without changing the
classes containing the user interface.

The Command object can also be used when you need to tell the program
to execute the command when the resources are available rather than
immediately. In such cases, you are queuing commands to be executed
later. Finally, you can use Command objects to remember operations so
you can support Undo requests.

Building Command Objects
There are several ways to go about building Command objects for a
program like this, and each has some advantages. We'll start with the
simplest one: creating new classes and implementing the Command
interface in each. In the case of the button that turns the background red,
we derive a RedButton class from Button and include an Execute method,
satisfying the Command interface.
public class RedButton : System.Windows.Forms.Button, Command {
 //A Command button that turns the background red
 private System.ComponentModel.Container components = null;
 //-----
 public void Execute() {
 Control c = this.Parent;
 c.BackColor =Color.Red ;
 this.BackColor =Color.LightGray ;
 }

Copyright © , 2002 by James W Cooper

295

 public RedButton() {
 InitializeComponent();
 }
In this implementation, we can deduce the background window by asking
the button for its parent, and setting that background to red. We could just
as easily have passed the Form in as an argument to the constructor.

Remember, to create a class derived from Button that you can use in the
IDE environment, you create a user control, and change its inheritance
from UserControl to Button and compile it. This adds an icon to the
toolbox that you can drag onto the Form1 window.

To create a MenuItem that also implements the Command interface, you
could use the MainMenu control on the toolbar and name it MenuBar. The
designer is shown in Figure 22-2.

Figure 22-2– The menu designer interface

However, it is just as easy to create the MainMenu in code as we see
below.

We derive the OpenMenu and ExitMenu classes from the MenuItem class.
However, we have to add these in the program code, since there is no way
to add them in the Form Designer.
private void init() {
 //create a main menu and install it
 MainMenu main = new MainMenu();

Copyright © , 2002 by James W Cooper

296

 this.Menu =main;

 //create a click-event handler
 EventHandler evh = new EventHandler (commandClick);
 btRed.Click += evh; //add to existing red button

 //create a "File" top level entry
 MenuItem file = new MenuItem("File");

 //create File Open command
 FileOpen mnflo = new FileOpen ();
 mnflo.Click += evh; //add same handler
 main.MenuItems.Add (file);

 //create a File-Exit command
 FileExit fex = new FileExit(this);
 file.MenuItems.AddRange(new MenuItem[]{ mnflo, fex});
 fex.Click += evh; //add same handler
}
Here is an example of the FileExit class.
public class FileExit :MenuItem, Command {
 private Form form;
 //----------
 public FileExit(Form frm) :base ("Exit") {
 form = frm;
 }
 //----------
 public void Execute() {
 form.Close ();
 }
}

Then the File|Exit command will call it when you call that items Execute
method. This certainly lets us simplify the user interface code, but it does
require that we create and instantiate a new class for each action we want
to execute.

Classes that require specific parameters to work need to have those
parameters passed in the constructor or in a set method. For example, the
File| Exit command requires that you pass it an instance of the Form object
so it can close it.
//create a File-Exit command

Copyright © , 2002 by James W Cooper

297

 FileExit fex = new FileExit(this);

Consequences of the Command Pattern
The main disadvantage of the Command pattern seems to be a
proliferation of little classes that clutter up the program. However, even in
the case where we have separate click events, we usually call little private
methods to carry out the actual function. It turns out that these private
methods are just about as long as our little classes, so there is frequently
little difference in complexity between building the command classes and
just writing more methods. The main difference is that the Command
pattern produces little classes that are much more readable.

The CommandHolder Interface
Now, while it is advantageous to encapsulate the action in a Command
object, binding that object into the element that causes the action (such as
the menu item or button) is not exactly what the Command pattern is
about. Instead, the Command object really ought to be separate from the
invoking client so you can vary the invoking program and the details of
the command action separately. Rather than having the command be part
of the menu or button, we can make the menu and button classes
containers for a Command object that exists separately. We thus make
these UI elements implement a CommandHolder interface.
public interface CommandHolder {
 Command getCommand();
 void setCommand(Command cmd);
}

This simple interface says that there is a way to put a command object into
a class and a way to retrieve it to execute it. This is particularly important
where we have several ways of calling the same action, such as when we
have both a Red button and a Red menu item. In such a case, you would
certainly not want the same code to be executed inside both the MenuItem

Copyright © , 2002 by James W Cooper

298

and the Button classes. Instead, you should fetch references to the same
command object from both classes and execute that command.

Then we create CommandMenu class, which implements this interface.
public class CommandMenu : MenuItem, CommandHolder {
 private Command command;
 public CommandMenu(string name):base(name) {}
 //-----
 public void setCommand (Command comd) {
 command = comd;
 }
 //-----
 public Command getCommand () {
 return command;
 }
}

This actually simplifies our program. We don’t have to create a separate
menu class for each action we want to carry out. We just create instances
of the menu and pass them different labels and Command objects.

For example, our RedCommand object takes a Form in the constructor and
sets its background to red in the Execute method:
public class RedCommand : Command {
 private Control window;
 //-----
 public RedCommand(Control win) {
 window = win;
 }
 //-----
 void Command.Execute () {
 window.BackColor =Color.Red ;
 }
}
We can set an instance of this command into both the RedButton and the
red menu item objects, as we show below.
private void init() {
 //create a main menu and install it
 MainMenu main = new MainMenu();
 this.Menu =main;

Copyright © , 2002 by James W Cooper

299

 //create a click-event handler
 //note: btRed was added in the IDE
 EventHandler evh = new EventHandler (commandClick);
 btRed.Click += evh; //add to existing red button
 RedCommand cRed = new RedCommand (this);
 btRed.setCommand (cRed);
 //create a "File" top level entry
 MenuItem file = new CommandMenu("File");
 main.MenuItems.Add (file);
 //create File Open command
 CommandMenu mnuFlo = new CommandMenu("Open");
 mnuFlo.setCommand (new OpenCommand ());
 mnuFlo.Click += evh; //add same handler

 //create a Red menu item, too
 CommandMenu mnuRed = new CommandMenu("Red");
 mnuRed.setCommand(cRed);
 mnuRed.Click += evh; //add same handler

 //create a File-Exit command
 CommandMenu mnuFex = new CommandMenu("Exit");
 mnuFex.setCommand (new ExitCommand(this));
 file.MenuItems.AddRange(

new CommandMenu[]{ mnuFlo, mnuRed, mnuFex});
 mnuFex.Click += evh; //add same handler
}

In the CommandHolder approach, we still have to create separate
Command objects, but they are no longer part of the user interface classes.
For example, the OpenCommand class is just this.
public class OpenCommand :Command {
 public OpenCommand()
 {}
 public void Execute() {
 OpenFileDialog fd = new OpenFileDialog ();
 fd.ShowDialog ();
 }
}

Copyright © , 2002 by James W Cooper

300

Then our click event handler method needs to obtain the actual command
object from the UI object that caused the action and execute that
command.
private void commandClick(object sender, EventArgs e) {
 Command comd = ((CommandHolder)sender).getCommand ();
 comd.Execute ();
}

This is only slightly more complicated than our original routine and again
keeps the action separate from the user interface elements. We can see this
program in action in Figure 22-3:

Figure 22-3 – Menu part of Command pattern using CommandHolder interface.

We can see the relations between theses classes and interfaces clearly in
the UML diagram in Figure 22-4.

Copyright © , 2002 by James W Cooper

301

Figure 22-4 – Class diagram of CommandHolder appraoch

Providing Undo
Another of the main reasons for using Command design patterns is that
they provide a convenient way to store and execute an Undo function.
Each command object can remember what it just did and restore that state

Copyright © , 2002 by James W Cooper

302

when requested to do so if the computational and memory requirements
are not too overwhelming. At the top level, we simply redefine the
Command interface to have three methods.
public interface Command {
 void Execute();
 void Undo();
 bool isUndo();
}

Then we have to design each command object to keep a record of what it
last did so it can undo it. This can be a little more complicated than it first
appears, since having a number of interleaved Commands being executed
and then undone can lead to some hysteresis. In addition, each command
will need to store enough information about each execution of the
command that it can know what specifically has to be undone.

The problem of undoing commands is actually a multipart problem. First,
you must keep a list of the commands that have been executed, and
second, each command has to keep a list of its executions. To illustrate
how we use the Command pattern to carry out undo operations, let’s
consider the program shown in Figure 22-5 that draws successive red or
blue lines on the screen, using two buttons to draw a new instance of each
line. You can undo the last line you drew with the undo button.

Copyright © , 2002 by James W Cooper

303

Figure 22-5 – A program that draws red and blue lines each time you click the Red
and Blue buttons

If you click on Undo several times, you’d expect the last several lines to
disappear no matter what order the buttons were clicked in, as shown in
Figure 22-6.

Copyright © , 2002 by James W Cooper

304

Figure 22-6– The same program as in Figure 22-5 after the Undo button has been
clicked several times

Thus, any undoable program needs a single sequential list of all the
commands that have been executed. Each time we click on any button, we
add its corresponding command to the list.
private void commandClick(object sender, EventArgs e) {
 //get the command
 Command comd = ((CommandHolder)sender).getCommand ();
 undoC.add (comd); //add to undo list
 comd.Execute (); //and execute it
}

Further, the list to which we add the Command objects is maintained
inside the Undo command object so it can access that list conveniently.
public class UndoComd:Command {
 private ArrayList undoList;
 public UndoComd() {
 undoList = new ArrayList ();
 }
 //-----
 public void add(Command comd) {

Copyright © , 2002 by James W Cooper

305

 if(! comd.isUndo ()) {
 undoList.Add (comd);
 }
 }
 //-----
 public bool isUndo() {
 return true;
 }
 //-----
 public void Undo() { }
 //-----
 public void Execute() {
 int index = undoList.Count - 1;
 if (index >= 0) {
 Command cmd = (Command)undoList[index];
 cmd.Undo();
 undoList.RemoveAt(index);
 }
 }
}

The undoCommand object keeps a list of Commands, not a list of actual
data. Each command object has its unDo method called to execute the
actual undo operation. Note that since the undoCommand object
implements the Command interface, it, too, needs to have an unDo
method. However, the idea of undoing successive unDo operations is a
little complex for this simple example program. Consequently, you should
note that the add method adds all Commands to the list except the
undoCommand itself, since we have just defined undoing an unDo
command as doing nothing. For this reason, our new Command interface
includes an isUndo method that returns false for the RedCommand and
BlueCommand objects and true for the UndoCommand object.

The redCommand and blueCommand classes simply use different colors
and start at opposite sides of the window, although both implement the
revised Command interface. Each class keeps a list of lines to be drawn in
a Collection as a series of DrawData objects containing the coordinates of
each line. Undoing a line from either the red or the blue line list simply
means removing the last DrawData object from the drawList collection.

Copyright © , 2002 by James W Cooper

306

Then either command forces a repaint of the screen. Here is the
BlueCommand class.
public class BlueCommand :Command {
 protected Color color;
 private PictureBox pbox;
 private ArrayList drawList;
 protected int x, y, dx, dy;
//-----
 public BlueCommand(PictureBox pbx) {
 pbox = pbx;
 color = Color.Blue ;
 drawList = new ArrayList ();
 x = pbox.Width ;
 dx = -20;
 y = 0;
 dy = 0;
 }
 //-----
 public void Execute() {
 DrawData dl = new DrawData(x, y, dx, dy);
 drawList.Add(dl);
 x = x + dx;
 y = y + dy;
 pbox.Refresh();
 }
 //-----
 public bool isUndo() {
 return false;
 }
 //-----
 public void Undo() {
 DrawData dl;
 int index = drawList.Count - 1;
 if (index >= 0) {
 dl = (DrawData)drawList[index];
 drawList.RemoveAt(index);
 x = dl.getX();
 y = dl.getY();
 }
 pbox.Refresh();
 }
 //-----
 public void draw(Graphics g) {
 Pen rpen = new Pen(color, 1);

Copyright © , 2002 by James W Cooper

307

 int h = pbox.Height;
 int w = pbox.Width;
 for (int i = 0; i < drawList.Count ; i++) {
 DrawData dl = (DrawData)drawList[i];
 g.DrawLine(rpen, dl.getX(), dl.getY(),

dl.getX() + dx, dl.getDy() + h);
 }

 }
}
Note that the draw method in the drawCommand class redraws the entire
list of lines the command object has stored. These two draw methods are
called from the paint handler of the form.
public void paintHandler(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics ;
 blueC.draw(g);
 redC.draw (g);
}

We can create the RedCommand in just a few lines by deriving from the
BlueCommand:
public class RedCommand : BlueCommand {
 public RedCommand(PictureBox pict):base(pict) {
 color = Color.Red;
 x = 0;
 dx = 20;
 y = 0;
 dy = 0;
 }
}

The set of classes we use in this Undo program is shown in Figure 22-7

Copyright © , 2002 by James W Cooper

308

Figure 22-7– The classes used to implement Undo in a Command pattern
implementation

Copyright © , 2002 by James W Cooper

309

Figure 22-8– A class structure for three different objects that all implement the
Command interface and two that implement the CommandHolder interface

Thought Questions
1. Mouse clicks on list box items and on radio buttons also constitute

commands. Clicks on multiselect list boxes could also be represented
as commands. Design a program including these features.

2. A lottery system uses a random number generator constrained to
integers between 1 and 50. The selections are made at intervals
selected by a random timer. Each selection must be unique. Design
command patterns to choose the winning numbers each week.

Copyright © , 2002 by James W Cooper

310

Programs on the CD-ROM
\Command\ButtonMenu Buttons and menus using Command

pattern
\Command\UndoCommand C# program showing line drawing

and Undo
\Command\ComdHolder C# program showing

CommandHolder interface

Copyright © , 2002 by James W Cooper

311

23. The Interpreter Pattern

Some programs benefit from having a language to describe operations
they can perform. The Interpreter pattern generally describes defining a
grammar for that language and using that grammar to interpret statements
in that language.

Motivation
When a program presents a number of different but somewhat similar
cases it can deal with, it can be advantageous to use a simple language to
describe these cases and then have the program interpret that language.
Such cases can be as simple as the sort of Macro language recording
facilities a number of office suite programs provide or as complex as
Visual Basic for Applications (VBA). VBA is not only included in
Microsoft Office products, but it can be embedded in any number of third-
party products quite simply.

One of the problems we must deal with is how to recognize when a
language can be helpful. The Macro language recorder simply records
menu and keystroke operations for later playback and just barely qualifies
as a language; it may not actually have a written form or grammar.
Languages such as VBA, on the other hand, are quite complex, but they
are far beyond the capabilities of the individual application developer.
Further, embedding commercial languages usually require substantial
licensing fees, which makes them less attractive to all but the largest
developers.

Applicability
As the SmallTalk Companion notes, recognizing cases where an
Interpreter can be helpful is much of the problem, and programmers
without formal language/compiler training frequently overlook this

Copyright © , 2002 by James W Cooper

312

approach. There are not large numbers of such cases, but there are three
general places where languages are applicable.

1. When you need a command interpreter to parse user commands.
The user can type queries of various kinds and obtain a variety of
answers.

2. When the program must parse an algebraic string. This case is
fairly obvious. The program is asked to carry out its operations
based on a computation where the user enters an equation of some
sort. This frequently occurs in mathematical-graphics programs
where the program renders a curve or surface based on any
equation it can evaluate. Programs like Mathematica and graph
drawing packages such as Origin work in this way.

3. When the program must produce varying kinds of output. This case
is a little less obvious but far more useful. Consider a program that
can display columns of data in any order and sort them in various
ways. These programs are frequently referred to as Report
Generators, and while the underlying data may be stored in a
relational database, the user interface to the report program is
usually much simpler than the SQL language that the database
uses. In fact, in some cases, the simple report language may be
interpreted by the report program and translated into SQL.

A Simple Report Example
Let’s consider a simplified report generator that can operate on five
columns of data in a table and return various reports on these data.
Suppose we have the following results from a swimming competition.
Amanda McCarthy 12 WCA 29.28
Jamie Falco 12 HNHS 29.80
Meaghan O'Donnell 12 EDST 30.00
Greer Gibbs 12 CDEV 30.04
Rhiannon Jeffrey 11 WYW 30.04
Sophie Connolly 12 WAC 30.05
Dana Helyer 12 ARAC 30.18

Copyright © , 2002 by James W Cooper

313

The five columns are frname, lname, age, club and time. If we consider
the complete race results of 51 swimmers, we realize that it might be
convenient to sort these results by club, by last name, or by age. Since
there are a number of useful reports we could produce from these data in
which the order of the columns changes as well as the sorting, a language
is one useful way to handle these reports.

We’ll define a very simple nonrecursive grammar of this sort.
Print lname frname club time Sortby club Thenby time

For the purposes of this example, we define these three verbs.
Print
Sortby
Thenby

And we’ll define the five column names we listed earlier.
Frname
Lname
Age
Club
Time

For convenience, we’ll assume that the language is case insensitive. We’ll
also note that the simple grammar of this language is punctuation free and
amounts in brief to the following.

Print var[var] [sortby var [thenby var]]

Finally, there is only one main verb, and while each statement is a
declaration, there is no assignment statement or computational ability in
this grammar.

Copyright © , 2002 by James W Cooper

314

Interpreting the Language
Interpreting the language takes place in three steps.

1. Parsing the language symbols into tokens.

2. Reducing the tokens into actions.

3. Executing the actions.

We parse the language into tokens by simply scanning each statement with
a StringTokenizer and then substituting a number for each word. Usually
parsers push each parsed token onto a stack we will use that technique
here. We implement the Stack class using an Arraylist—where we have
push, pop, top, and nextTop methods to examine and manipulate the stack
contents.

After parsing, our stack could look like this.

Type Token

Var Time <-top of stack
Verb Thenby
Var Club
Verb Sortby
Var Time
Var Club
Var Frname
verb Lname

However, we quickly realize that the “verb” Thenby has no real meaning
other than clarification, and it is more likely that we’d parse the tokens and
skip the Thenby word altogether. Our initial stack then, looks like this.
Time
Club
Sortby
Time
Club
Frname

Copyright © , 2002 by James W Cooper

315

Lname
Print

Objects Used in Parsing
In this parsing procedure, we do not push just a numeric token onto the
stack but a ParseObject that has the both a type and a value property.
public class ParseObject {
 public const int VERB=1000;
 public const int VAR=1010;
 public const int MULTVAR=1020;
 protected int value, type;
 //-----
 public ParseObject(int val, int typ) {
 value = val;
 type = typ;
 }
 //-----
 public int getValue() {
 return value;
 }
 //-----
 public int getType() {
 return type;
 }
}
These objects can take on the type VERB or VAR. Then we extend this
object into ParseVerb and ParseVar objects, whose value fields can take
on PRINT or SORT for ParseVerb and FRNAME, LNAME, and so on for
ParseVar. For later use in reducing the parse list, we then derive Print and
Sort objects from ParseVerb.

This gives us a simple hierarchy shown in Figure 23-1

Copyright © , 2002 by James W Cooper

316

ParseObject

getValue
getType
init
addArg
setData

ParseVarb

init
isLegal

Command

Execute

Printit Sort

Execute

ParseVerb

init
getVerb
addArg
isLegal
getArgs

Figure 23-1– A simple parsing hierarchy for the Interpreter pattern

The parsing process is just the following simple code, using the
StringTokenizer and the parse objects. Part of the main Parser class is
shown here.
public class Parser {
 private Stack stk;
 private ArrayList actionList;
 private Data dat;
 private ListBox ptable;
 private Chain chn;
 //-----
 public Parser(string line, KidData kd, ListBox pt) {
 stk = new Stack ();
 //list of verbs accumulates here
 actionList = new ArrayList ();
 setData(kd, pt);
 buildStack(line); //create token stack
 buildChain(); //create chain of responsibility
 }

Copyright © , 2002 by James W Cooper

317

 //-----
 private void buildChain() {
 chn = new VarVarParse(); //start of chain
 VarMultvarParse vmvp = new VarMultvarParse();
 chn.addToChain(vmvp);
 MultVarVarParse mvvp = new MultVarVarParse();
 vmvp.addToChain(mvvp);
 VerbMultvarParse vrvp = new VerbMultvarParse();
 mvvp.addToChain(vrvp);
 VerbVarParse vvp = new VerbVarParse();
 vrvp.addToChain(vvp);
 VerbAction va = new VerbAction(actionList);
 vvp.addToChain(va);
 Nomatch nom = new Nomatch (); //error handler
 va.addToChain (nom);
 }
 //-----
 public void setData(KidData kd, ListBox pt) {
 dat = new Data(kd.getData ());
 ptable = pt;
 }
 //-----
 private void buildStack(string s) {
 StringTokenizer tok = new StringTokenizer (s);
 while(tok.hasMoreElements ()) {
 ParseObject token = tokenize(tok.nextToken));
 stk.push (token); }
 }
 //-----
 protected ParseObject tokenize(string s) {
 ParseObject obj;
 int type;
 try {
 obj = getVerb(s);
 type = obj.getType ();
 }
 catch(NullReferenceException) {
 obj = getVar(s);
 }
 return obj;
 }
 //-----
 protected ParseVerb getVerb(string s) {
 ParseVerb v = new ParseVerb (s, dat, ptable);
 if(v.isLegal ())

Copyright © , 2002 by James W Cooper

318

 return v.getVerb (s);
 else
 return null;
 }
 //-----
 protected ParseVar getVar(string s) {
 ParseVar v = new ParseVar (s);
 if(v.isLegal())
 return v;
 else
 return null;
 }
}

The ParseVerb and ParseVar classes return objects with isLegal set to true
if they recognize the word.
public class ParseVerb:ParseObject {
 protected const int PRINT = 100;
 protected const int SORT = 110;
 protected const int THENBY = 120;
 protected ArrayList args;
 protected Data kid;
 protected ListBox pt;
 protected ParseVerb pv;
 //-----
 public ParseVerb(string s, Data kd, ListBox ls):

base(-1, VERB) {
 args = new ArrayList ();
 kid = kd;
 pt = ls;
 if(s.ToLower().Equals ("print")) {
 value = PRINT;
 }
 if(s.ToLower().Equals ("sortby")) {
 value = SORT;
 }
 }
 //------
 public ParseVerb getVerb(string s) {
 pv = null;
 if(s.ToLower ().Equals ("print"))
 pv =new Print(s,kid, pt);
 if(s.ToLower ().Equals ("sortby"))
 pv = new Sort (s, kid, pt);

Copyright © , 2002 by James W Cooper

319

 return pv;
 }
 //-----
 public void addArgs(MultVar mv) {
 args = mv.getVector ();
 }

Reducing the Parsed Stack
The tokens on the stack have this form.
Var
Var
Verb
Var
Var
Var
Var
Verb

We reduce the stack a token at a time, folding successive Vars into a
MultVar class until the arguments are folded into the verb objects, as we
show in Figure 23-2

Copyright © , 2002 by James W Cooper

320

Verb
Time

Var
Club

Verb
SortBy

Var
Time

Var
Club

Var
Frname

Var
Lname

MultVar

Verb

MultVar

MultVar

Verb

Figure 23-2– How the stack is reduced during parsing

When the stack reduces to a verb, this verb and its arguments are placed in
an action list; when the stack is empty, the actions are executed.

Creating a Parser class that is a Command object and executing it when
the Go button is pressed on the user interface carries out this entire
process.
private void btCompute_Click(object sender, EventArgs e) {
 parse();
}
private void parse() {
 Parser par = new Parser (txCommand.Text ,kdata, lsResults);

Copyright © , 2002 by James W Cooper

321

 par.Execute ();
}

The parser itself just reduces the tokens, as the preceding shows. It checks
for various pairs of tokens on the stack and reduces each pair to a single
one for each of five different cases.

Implementing the Interpreter Pattern
It would certainly be possible to write a parser for this simple grammar as
just a series of if statements. For each of the six possible stack
configurations, reduce the stack until only a verb remains. Then, since we
have made the Print and Sort verb classes Command objects, we can just
Execute them one by one as the action list is enumerated.

However, the real advantage of the Interpreter pattern is its flexibility. By
making each parsing case an individual object, we can represent the parse
tree as a series of connected objects that reduce the stack successively.
Using this arrangement, we can easily change the parsing rules without
much in the way of program changes: We just create new objects and
insert them into the parse tree.

According to the Gang of Four, these are the names for the participating
objects in the Interpreter pattern.:

• AbstractExpression—declares the abstract Interpret operation.

• TerminalExpression—interprets expressions containing any of the
terminal tokens in the grammar.

• NonTerminalExpression—interprets all of the nonterminal
expressions in the grammar.

• Context—contains the global information that is part of the parser—in
this case, the token stack.

• Client—Builds the syntax tree from the preceding expression types
and invokes the Interpret operation.

Copyright © , 2002 by James W Cooper

322

 The Syntax Tree
The syntax tree we construct to carry out the parsing of the stack we just
showed can be quite simple. We just need to look for each of the stack
configurations we defined and reduce them to an executable form. In fact,
the best way to implement this tree is using a Chain of Responsibility,
which passes the stack configuration along between classes until one of
them recognizes that configuration and acts on it. You can decide whether
a successful stack reduction should end that pass or not. It is perfectly
possible to have several successive chain members work on the stack in a
single pass. The processing ends when the stack is empty. We see a
diagram of the individual parse chain elements in Figure 23-3.

Figure 23-3– How the classes that perform the parsing interact.

Copyright © , 2002 by James W Cooper

323

In this class structure, we start with the AbstractExpression interpreter
class InterpChain.
public abstract class InterpChain:Chain {
 private Chain nextChain;
 protected Stack stk;
 private bool hasChain;
 //-----
 public InterpChain() {
 stk = new Stack ();
 hasChain = false;
 }
 //-----
 public void addToChain(Chain c) {
 nextChain = c;
 hasChain = true;
 }
 //-----
 public abstract bool interpret();
 //-----
 public void sendToChain(Stack stack) {
 stk = stack;
 if(! interpret()) { //interpret stack
 nextChain.sendToChain (stk); //pass along
 }
 }
 //-----
 public bool topStack(int c1, int c2) {
 ParseObject p1, p2;
 p1 = stk.top ();
 p2 = stk.nextTop ();
 try{

 return (p1.getType() == c1 && p2.getType() == c2);
 }
 catch(NullReferenceException) {
 return false;
 }
 }
 //-----
 public void addArgsToVerb() {
 ParseObject p = (ParseObject) stk.pop();
 ParseVerb v = (ParseVerb) stk.pop();
 v.addArgs (p);
 stk.push (v);
 }

Copyright © , 2002 by James W Cooper

324

 //-----
 public Chain getChain() {
 return nextChain;
 }

This class also contains the methods for manipulating objects on the stack.
Each of the subclasses implements the interpret operation differently and
reduces the stack accordingly. For example, the complete VarVarParse
class reduces two variables on the stack in succession to a single MultVar
object.
public class VarVarParse : InterpChain {
 public override bool interpret() {
 if(topStack(ParseVar.VAR , ParseVar.VAR)) {
 //reduces VAR VAR to MULTVAR
 ParseVar v1 = (ParseVar) stk.pop();
 ParseVar v2 = (ParseVar) stk.pop();
 MultVar mv = new MultVar (v2, v1);
 stk.push (mv);
 return true;
 }
 else
 return false;
 }
}

Thus, in this implementation of the pattern, the stack constitutes the
Context participant. Each of the first five subclasses of InterpChain are
NonTerminalExpression participants, and the ActionVerb class that moves
the completed verb and action objects to the actionList constitutes the
TerminalExpression participant.

The client object is the Parser class that builds the stack object list from
the typed- in command text and constructs the Chain of Responsibility
from the various interpreter classes. We showed most of the Parser class
above already. However, it also implements the Command pattern and
sends the stack through the chain until it is empty and then executes the
verbs that have accumulated in the action list when its Execute method is
called.

Copyright © , 2002 by James W Cooper

325

 //executes parse and interpretation of command line
public void Execute() {
 while(stk.hasMoreElements ()) {
 chn.sendToChain (stk);
 }
 //now execute the verbs
 for(int i=0; i< actionList.Count ; i++) {
 Verb v = (Verb)actionList[i];
 v.setData (dat, ptable);
 v.Execute ();
 }
}

The final visual program is shown in Figure 23-4.

Figure 23-4 – The Interpreter pattern operating on the simple command in the text
field

Copyright © , 2002 by James W Cooper

326

Consequences of the Interpreter Pattern
Whenever you introduce an interpreter into a program, you need to
provide a simple way for the program user to enter commands in that
language. It can be as simple as the Macro record button we noted earlier,
or it can be an editable text field like the one in the preceding program.

However, introducing a language and its accompanying grammar also
requires fairly extensive error checking for misspelled terms or misplaced
grammatical elements. This can easily consume a great deal of
programming effort unless some template code is available for
implementing this checking. Further, effective methods for notifying the
users of these errors are not easy to design and implement.

In the preceding Interpreter example, the only error handling is that
keywords that are not recognized are not converted to ParseObjects and
pushed onto the stack. Thus, nothing will happen because the resulting
stack sequence probably cannot be parsed successfully, or if it can, the
item represented by the misspelled keyword will not be included.

You can also consider generating a language automatically from a user
interface of radio and command buttons and list boxes. While it may seem
that having such an interface obviates the necessity for a language at all,
the same requirements of sequence and computation still apply. When you
have to have a way to specify the order of sequential operations, a
language is a good way to do so, even if the language is generated from
the user interface.

The Interpreter pattern has the advantage that you can extend or revise the
grammar fairly easily once you have built the general parsing and
reduction tools. You can also add new verbs or variables easily once the
foundation is constructed. However, as the syntax of the grammar
becomes more complex, you run the risk of creating a hard-to-maintain
program.

Copyright © , 2002 by James W Cooper

327

While interpreters are not all that common in solving general
programming problems, the Iterator pattern we take up next is one of the
most common ones you’ll be using.

Thought Question
Design a system to compute the results of simple quadratic expressions
such as

4x^2 + 3x –4
where the user can enter x or a range of x’s and can type in the equation.

Programs on the CD-ROM
\Interpreter C# interpreter

Copyright © , 2002 by James W Cooper

328

24. The Iterator Pattern

The Iterator is one of the simplest and most frequently used of the design
patterns. The Iterator pattern allows you to move through a list or
collection of data using a standard interface without having to know the
details of the internal representations of that data. In addition, you can also
define special iterators that perform some special processing and return
only specified elements of the data collection.

Motivation
The Iterator is useful because it provides a defined way to move through a
set of data elements without exposing what is taking place inside the class.
Since the Iterator is an interface, you can implement it in any way that is
convenient for the data you are returning. Design Patterns suggests that a
suitable interface for an Iterator might be the following.
public interface Iterator {
 object First();
 object Next();
 bool isDone();
 object currentItem();
}
Here you can move to the top of the list, move through the list, find out if
there are more elements, and find the current list item. This interface is
easy to implement and it has certain advantages, but a number of other
similar interfaces are possible. For example, when we discussed the
Composite pattern, we introduced the getSubordinates method
IEnumerator getSubordinates(); //get subordinates

to provide a way to loop through all of the subordinates any employee
may have. The IEnumerator interface can be represented in C# as
bool MoveNext();
void Reset();
object Current {get;}

Copyright © , 2002 by James W Cooper

329

This also allows us to loop through a list of zero or more elements in some
internal list structure without our having to know how that list is organized
inside the class.

One disadvantage of this Enumeration over similar constructs in C++ and
Smalltalk is the strong typing of the C# language. This prevents the
Current() property from returning an object of the actual type of the data
in the collection. Instead, you must convert the returned object type to the
actual type of the data in the collection. Thus, while this IEnumerator
interface is intended to be polymorphic, this is not directly possible in C#.

Sample Iterator Code
Let’s reuse the list of swimmers, clubs, and times we described earlier,
and add some enumeration capabilities to the KidData class. This class is
essentially a collection of Kids, each with a name, club, and time, and
these Kid objects are stored in an ArrayList.
public class KidData :IEnumerator {
 private ArrayList kids;
 private int index;
 public KidData(string filename) {
 kids = new ArrayList ();
 csFile fl = new csFile (filename);
 fl.OpenForRead ();
 string line = fl.readLine ();
 while(line != null) {
 Kid kd = new Kid (line);
 kids.Add (kd);
 line = fl.readLine ();
 }
 fl.close ();
 index = 0;
 }
To obtain an enumeration of all the Kids in the collection, we simply use
the methods of the IEnumerator interface we just defined.
public bool MoveNext() {
 index++;
 return index < kids.Count ;
}

Copyright © , 2002 by James W Cooper

330

//------
public object Current {
 get {
 return kids[index];
 }
}
//------
public void Reset() {
 index = 0;
}

Reading in the data and displaying a list of names is quite easy. We
initialize the Kids class with the filename and have it build the collection
of kid objects. Then we treat the Kids class as an instance of IEnumerator
and move through it to get out the kids and display their names.
private void init() {
 kids = new KidData("50free.txt");
 while (kids.MoveNext ()) {
 Kid kd = (Kid)kids.Current ;

lsKids.Items.Add (kd.getFrname()+ " "+ kd.getLname ());
 }
}

Fetching an Iterator
Another slightly more flexible way to handle iterators in a class is to
provide the class with a getIterator method that returns instances of an
iterator for that class’s data. This is somewhat more flexible because you
can have any number of iterators active simultaneously on the same data.
Our KidIterator class can then be the one that implements our Iterator
interface.
public class KidIterator : IEnumerator {
 private ArrayList kids;
 private int index;
 public KidIterator(ArrayList kidz) {
 kids = kidz;
 index = 0;
 }
 //------
 public bool MoveNext() {

Copyright © , 2002 by James W Cooper

331

 index++;
 return index < kids.Count ;
 }
 //------
 public object Current {
 get {
 return kids[index];
 }
 }
 //------
 public void Reset() {
 index = 0;
 }
}

We can fetch iterators from the main KidList class by creating them as
needed.
public KidIterator getIterator() {
 return new KidIterator (kids);
}

Filtered Iterators
While having a clearly defined method of moving through a collection is
helpful, you can also define filtered Iterators that perform some
computation on the data before returning it. For example, you could return
the data ordered in some particular way or only those objects that match a
particular criterion. Then, rather than have a lot of very similar interfaces
for these filtered iterators, you simply provide a method that returns each
type of enumeration with each one of these enumerations having the same
methods.

The Filtered Iterator
Suppose, however, that we wanted to enumerate only those kids who
belonged to a certain club. This necessitates a special Iterator class that
has access to the data in the KidData class. This is very simple because the
methods we just defined give us that access. Then we only need to write
an Iterator that only returns kids belonging to a specified club.

Copyright © , 2002 by James W Cooper

332

public class FilteredIterator : IEnumerator {
 private ArrayList kids;
 private int index;
 private string club;
 public FilteredIterator(ArrayList kidz, string club) {
 kids = kidz;
 index = 0;
 this.club = club;
 }
 //------
 public bool MoveNext() {
 bool more = index < kids.Count-1 ;
 if(more) {
 Kid kd = (Kid)kids[++index];
 more = index < kids.Count;
 while(more && ! kd.getClub().Equals (club)) {
 kd = (Kid)kids[index++];
 more = index < kids.Count ;
 }
 }
 return more;
 }
 //------
 public object Current {
 get {
 return kids[index];
 }
 }
 //------
 public void Reset() {
 index = 0;
 }
}

All of the work is done in the MoveNext() method, which scans through
the collection for another kid belonging to the club specified in the
constructor. Then it returns either true or false.

Finally, we need to add a method to KidData to return this new filtered
Enumeration.
public FilteredIterator getFilteredIterator(string club) {
 return new FilteredIterator (kids, club);

Copyright © , 2002 by James W Cooper

333

}

This simple method passes the collection to the new Iterator class
FilteredIterator along with the club initials. A simple program is shown in
Figure 24-1 that displays all of the kids on the left side. It fills a combo
box with a list of the clubs and then allows the user to select a club and
fills the right-hand list box with those belonging to a single club. The class
diagram is shown in Figure 24-2. Note that the elements method in
KidData supplies an Enumeration and the kidClub class is in fact itself an
Enumeration class.

Figure 24-1 – A simple program-illustrated filtered enumeration

Copyright © , 2002 by James W Cooper

334

Figure 24-2– The classes used in the Filtered enumeration

Keeping Track of the Clubs
We need to obtain a unique list of the clubs to load the combo box in
Figure 25-1 with. As we read in each kid, we can do this by putting the
clubs in a Hashtable:
while(line != null) {
 Kid kd = new Kid (line);
 string club = kd.getClub ();
 if(! clubs.Contains (club)) {
 clubs.Add (club, club);
 }

Copyright © , 2002 by James W Cooper

335

 kids.Add (kd);
 line = fl.readLine ();
}

Then when we want to get the list of clubs, we can ask the Hashtable for
an iterator of its contents. The Hashtable class has a method
getEnumerator which should return this information. However, this
method returns an IdictionaryEnumerator, which is slightly different.
While it is derived from IEnumerator, it uses a Value method to return the
contents of the hash table. This, we load the combo box with the following
code:
IDictionaryEnumerator clubiter = kdata.getClubs ();
while(clubiter.MoveNext ()) {
 cbClubs.Items.Add ((string)clubiter.Value);
}

When we click on the combo box, it gets the selected club to generate a
filtered iterator and load the kidclub list box:
private void cbClubs_SelectedIndexChanged(object sender,

EventArgs e) {
string club = (String)cbClubs.SelectedItem ;

 FilteredIterator iter = kdata.getFilteredIterator (club);
 lsClubKids.Items.Clear ();
 while(iter.MoveNext()) {
 Kid kd = (Kid) iter.Current;
 lsClubKids.Items.Add (kd.getFrname() +" "+

kd.getLname ());
 }
}

 Consequences of the Iterator Pattern
1. Data modification. The most significant question iterators may raise is

the question of iterating through data while it is being changed. If your
code is wide ranging and only occasionally moves to the next element,
it is possible that an element might be added or deleted from the
underlying collection while you are moving through it. It is also

Copyright © , 2002 by James W Cooper

336

possible that another thread could change the collection. There are no
simple answers to this problem. If you want to move through a loop
using an Enumeration and delete certain items, you must be careful of
the consequences. Deleting or adding an element might mean that a
particular element is skipped or accessed twice, depending on the
storage mechanism you are using.

2. Privileged access. Enumeration classes may need to have some sort of
privileged access to the underlying data structures of the original
container class so they can move through the data. If the data is stored
in an Arraylist or Hashtable, this is pretty easy to accomplish, but if it
is in some other collection structure contained in a class, you probably
have to make that structure available through a get operation.
Alternatively, you could make the Iterator a derived class of the
containment class and access the data directly.

3. External versus Internal Iterators. The Design Patterns text describes
two types of iterators: external and internal. Thus far, we have only
described external iterators. Internal iterators are methods that move
through the entire collection, performing some operation on each
element directly without any specific requests from the user. These
are less common in C#, but you could imagine methods that
normalized a collection of data values to lie between 0 and 1 or
converted all of the strings to a particular case. In general, external
iterators give you more control because the calling program accesses
each element directly and can decide whether to perform an operation
on it.

Programs on the CD-ROM
\Iterator\SimpleIterator kid list using Iterator
\Iterator\FilteredIterator filtered iterator by team name

Copyright © , 2002 by James W Cooper

337

25. The Mediator Pattern

When a program is made up of a number of classes, the logic and
computation is divided logically among these classes. However, as more
of these isolated classes are developed in a program, the problem of
communication between these classes become more complex. The more
each class needs to know about the methods of another class, the more
tangled the class structure can become. This makes the program harder to
read and harder to maintain. Further, it can become difficult to change the
program, since any change may affect code in several other classes. The
Mediator pattern addresses this problem by promoting looser coupling
between these classes. Mediators accomplish this by being the only class
that has detailed knowledge of the methods of other classes. Classes
inform the Mediator when changes occur, and the Mediator passes on the
changes to any other classes that need to be informed.

An Example System
Let’s consider a program that has several buttons, two list boxes, and a
text entry field, as shown in Figure 25-1.

Copyright © , 2002 by James W Cooper

338

Figure 25-1– A simple program with two lists, two buttons, and a text field that will
interact

When the program starts, the Copy and Clear buttons are disabled.

1. When you select one of the names in the left-hand list box, it is copied
into the text field for editing, and the Copy button is enabled.

2. When you click on Copy, that text is added to the right-hand list box,
and the Clear button is enabled, as we see in Figure 25-2.

Copyright © , 2002 by James W Cooper

339

Figure 25-2 – When you select a name, the buttons are enabled, and when you click
on Copy, the name is copied to the right list box.

3. If you click on the Clear button, the right-hand list box and the text
field are cleared, the list box is deselected, and the two buttons are
again disabled.

User interfaces such as this one are commonly used to select lists of
people or products from longer lists. Further, they are usually even more
complicated than this one, involving insert, delete, and undo operations as
well.

Interactions Between Controls
The interactions between the visual controls are pretty complex, even in
this simple example. Each visual object needs to know about two or more
others, leading to quite a tangled relationship diagram, as shown in Figure
25-3.

Copyright © , 2002 by James W Cooper

340

name text Copy Clear

Kid list Picked list

Figure 25-3 – A tangled web of interactions between classes in the simple visual
interface we presented in and Figure 25-1 and Figure 25-2.

The Mediator pattern simplifies this system by being the only class that is
aware of the other classes in the system. Each of the controls with which
the Mediator communicates is called a Colleague. Each Colleague informs
the Mediator when it has received a user event, and the Mediator decides
which other classes should be informed of this event. This simpler
interaction scheme is illustrated in Figure 25-4.

Copyright © , 2002 by James W Cooper

341

name text Copy Clear

Kid list

Picked list

Mediator

Figure 25-4 – A Mediator class simplifies the interactions between classes.

The advantage of the Mediator is clear: It is the only class that knows of
the other classes and thus the only one that would need to be changed if
one of the other classes changes or if other interface control classes are
added.

Sample Code
Let’s consider this program in detail and decide how each control is
constructed. The main difference in writing a program using a Mediator
class is that each class needs to be aware of the existence of the Mediator.
You start by creating an instance of your Mediator class and then pass the
instance of the Mediator to each class in its constructor.

med = new Mediator (btCopy, btClear, lsKids, lsSelected);
btCopy.setMediator (med); //set mediator ref in each control
btClear.setMediator (med);
lsKids.setMediator (med);
med.setText (txName); //tell mediator about text
box

Copyright © , 2002 by James W Cooper

342

We derive our two button classes from the Button class, so they can also
implement the Command interface. These buttons are passed to the
Mediator in its constructor. Here is the CpyButton class.
public class CpyButton : System.Windows.Forms.Button, Command {
 private Container components = null;
 private Mediator med;
 //-----
 public CpyButton() {
 InitializeComponent();
 }
 //-----
 public void setMediator(Mediator md) {
 med = md;
 }
 //-----
 public void Execute() {
 med.copyClicked ();
 }

It’s Execute method simply tells the Mediator lass that it has been clicked,
and lets the Mediator decide what to do when this happens. The Clear
button is exactly analogous.

We derive the KidList class from the ListBox class and have it loaded
with names within the Mediator’s constructor.
public Mediator(CpyButton cp, ClrButton clr, KidList kl,

ListBox pk) {
 cpButton = cp; //copy in buttons
 clrButton = clr;
 klist = kl; //copy in list boxes
 pkList = pk;
 kds = new KidData ("50free.txt"); //create data list class
 clearClicked(); //clear all controls
 KidIterator kiter = kds.getIterator ();
 while(kiter.MoveNext ()) { //load list box
 Kid kd = (Kid) kiter.Current ;
 klist.Items .Add (kd.getFrname() +" "+

kd.getLname ());
}

}

Copyright © , 2002 by James W Cooper

343

We don’t have to do anything special to the text field, since all its activity
takes place within the Mediator; we just pass it to the Mediator using as
setText method as we illustrated above.

The only other important part of our initialization is creating a single event
handler for the two buttons and the list box. Rather than letting the
development environment generate these click events for us, we create a
single event and add it to the click handlers for the two buttons and the list
box’s SelectIndexChanged event. The intriguing thing about this event
handler is that all it needs to do is call each control’s Execute method and
let the Mediator methods called by those Execute methods do all the real
work.

The event handler for these click events is simply
//each control is a command object
public void clickHandler(object obj, EventArgs e) {
 Command comd = (Command)obj; //get command object
 comd.Execute (); //and execute command
}

We show the complete Form initialization method that creates this event
connections below:
private void init() {
 //set up mediator and pass in referencs to controls
 med = new Mediator (btCopy, btClear, lsKids, lsSelected);
 btCopy.setMediator (med); // mediator ref in each control
 btClear.setMediator (med);
 lsKids.setMediator (med);
 med.setText (txName); //tell mediator about text box

 //create event handler for all command objects
 EventHandler evh = new EventHandler (clickHandler);
 btClear.Click += evh;
 btCopy.Click += evh;
 lsKids.SelectedIndexChanged += evh;
}

Copyright © , 2002 by James W Cooper

344

The general point of all these classes is that each knows about the
Mediator and tells the Mediator of its existence so the Mediator can send
commands to it when appropriate.

The Mediator itself is very simple. It supports the Copy, Clear, and Select
methods and has a register method for the TextBox. The two buttons and
the ListBox are passed in in the Mediator’s constructor. Note that there is
no real reason to choose setXxx methods over constructor arguments for
passing in references to these controls. We simple illustrate both
approaches in this example.
public class Mediator {
 private CpyButton cpButton; //buttons
 private ClrButton clrButton;
 private TextBox txKids; //text box
 private ListBox pkList; //list boxes
 private KidList klist;
 private KidData kds; //list of data from file

 public Mediator(CpyButton cp, ClrButton clr,

KidList kl, ListBox pk) {
 cpButton = cp; //copy in buttons
 clrButton = clr;
 klist = kl; //copy in list boxes
 pkList = pk;
 kds = new KidData ("50free.txt"); //create data list
 clearClicked(); //clear all controls
 KidIterator kiter = kds.getIterator ();
 while(kiter.MoveNext ()) { //load list box
 Kid kd = (Kid) kiter.Current ;
 klist.Items .Add (kd.getFrname() +

" "+kd.getLname ());
 }
 }
 //-----
 //get text box reference
 public void setText(TextBox tx) {
 txKids = tx;
 }
 //-----
 //clear lists and set buttons to disabled
 public void clearClicked() {
 //disable buttons and clear list

Copyright © , 2002 by James W Cooper

345

 cpButton.Enabled = false;
 clrButton.Enabled = false;
 pkList.Items.Clear();
 }
 //-----
 //copy data from text box to list box
 public void copyClicked() {
 //copy name to picked list
 pkList.Items.Add(txKids.Text);
 //clear button enabled
 clrButton.Enabled = true;
 klist.SelectedIndex = -1;
 }
 //-----
 //copy selected kid to text box
 //enable copy button
 public void kidPicked() {
 //copy text from list to textbox
 txK ids.Text = klist.Text;
 //copy button enabled
 cpButton.Enabled = true;
 }
}

Initialization of the System
One further operation that is best delegated to the Mediator is the
initialization of all the controls to the desired state. When we launch the
program, each control must be in a known, default state, and since these
states may change as the program evolves, we simply carry out this
initialization in the Mediator’s constructor, which sets all the controls to
the desired state. In this case, that state is the same as the one achieved by
the Clear button, and we simply call that method this.
 clearClicked(); //clear all controls

Mediators and Command Objects
The two buttons in this program use command objects. Just as we noted
earlier, this makes processing of the button click events quite simple.

Copyright © , 2002 by James W Cooper

346

In either case, however, this represents the solution to one of the problems
we noted in the Command pattern chapter: Each button needed knowledge
of many of the other user interface classes in order to execute its
command. Here, we delegate that knowledge to the Mediator, so the
Command buttons do not need any knowledge of the methods of the other
visual objects. The class diagram for this program is shown in Figure
25-5, illustrating both the Mediator pattern and the use of the Command
pattern.

Figure 25-5 – The interactions between the Command objects and the Mediator
object

Copyright © , 2002 by James W Cooper

347

Figure 25-6 – The UML diagram for the C# Mediator pattern

Consequences of the Mediator Pattern
1. The Mediator pattern keeps classes from becoming entangled when

actions in one class need to be reflected in the state of another class.

2. Using a Mediator makes it easy to change a program’s behavior. For
many kinds of changes, you can merely change or subclass the
Mediator, leaving the rest of the program unchanged.

Copyright © , 2002 by James W Cooper

348

3. You can add new controls or other classes without changing anything
except the Mediator.

4. The Mediator solves the problem of each Command object needing to
know too much about the objects and methods in the rest of a user
interface.

5. The Mediator can become a “god class,” having too much knowledge
of the rest of the program. This can make it hard to change and
maintain. Sometimes you can improve this situation by putting more
of the function into the individual classes and less into the Mediator.
Each object should carry out its own tasks, and the Mediator should
only manage the interaction between objects.

6. Each Mediator is a custom-written class that has methods for each
Colleague to call and knows what methods each Colleague has
available. This makes it difficult to reuse Mediator code in different
projects. On the other hand, most Mediators are quite simple, and
writing this code is far easier than managing the complex object
interactions any other way.

Single Interface Mediators
The Mediator pattern described here acts as a kind of Observer pattern,
observing changes in each of the Colleague elements, with each element
having a custom interface to the Mediator. Another approach is to have a
single interface to your Mediator and pass to that method various objects
that tell the Mediator which operations to perform.

In this approach, we avoid registering the active components and create a
single action method with different polymorphic arguments for each of the
action elements.
public void action(MoveButton mv);
public void action(clrButton clr);
public void action(KidList klist);

Copyright © , 2002 by James W Cooper

349

Thus, we need not register the action objects, such as the buttons and
source list boxes, since we can pass them as part of generic action
methods.

In the same fashion, you can have a single Colleague interface that each
Colleague implements, and each Colleague then decides what operation it
is to carry out.

Implementation Issues
Mediators are not limited to use in visual interface programs; however, it
is their most common application. You can use them whenever you are
faced with the problem of complex intercommunication between a number
of objects.

Programs on the CD-ROM
\Mediator Mediator

Copyright © , 2002 by James W Cooper

350

26. The Memento Pattern

In this chapter, we discuss how to use the Memento pattern to save data
about an object so you can restore it later. For example, you might like
to save the color, size, pattern, or shape of objects in a drafting or
painting program. Ideally, it should be possible to save and restore this
state without making each object take care of this task and without
violating encapsulation. This is the purpose of the Memento pattern.

Motivation
Objects normally shouldn’t expose much of their internal state using
public methods, but you would still like to be able to save the entire
state of an object because you might need to restore it later. In some
cases, you could obtain enough information from the public interfaces
(such as the drawing position of graphical objects) to save and restore
that data. In other cases, the color, shading, angle, and connection
relationships to other graphical objects need to be saved, and this
information is not readily available. This sort of information saving
and restoration is common in systems that need to support Undo
commands.

If all of the information describing an object is available in public
variables, it is not that difficult to save them in some external store.
However, making these data public makes the entire system vulnerable
to change by external program code, when we usually expect data
inside an object to be private and encapsulated from the outside world.

The Memento pattern attempts to solve this problem in some languages
by having privileged access to the state of the object you want to save.
Other objects have only a more restricted access to the object, thus
preserving their encapsulation. In C#, however, there is only a limited
notion of privileged access, but we will make use of it in this example.

This pattern defines three roles for objects.

1. The Originator is the object whose state we want to save.

2. The Memento is another object that saves the state of the
Originator.

Copyright © , 2002 by James W Cooper

351

3. The Caretaker manages the timing of the saving of the state, saves
the Memento, and, if needed, uses the Memento to restore the state
of the Originator.

Implementation
Saving the state of an object without making all of its variables
publicly available is tricky and can be done with varying degrees of
success in various languages. Design Patterns suggests using the C++
friend construction to achieve this access, and the Smalltalk
Companion notes that it is not directly possible in Smalltalk. In Java,
this privileged access is possible using the package protected mode.
The internal keyword is available in C#, but all that means is that any
class method labeled as internal will only be accessible within the
project. If you make a library from such classes, the methods marked
as internal will not be exported and available. Instead, we will define a
property to fetch and store the important internal values and make use
of no other properties for any purpose in that class. For consistency,
we’ll use the internal keyword on these properties, but remember that
this linguistic use of internal is not very restrictive.

Sample Code
Let’s consider a simple prototype of a graphics drawing program that
creates rectangles and allows you to select them and move them around
by dragging them with the mouse. This program has a toolbar
containing three buttons—Rectangle, Undo, and Clear—as we see in
Figure 26-1

Copyright © , 2002 by James W Cooper

352

Figure 26-1 – A simple graphics drawing program that allows you to draw
rectangles, undo their drawing, and clear the screen

The Rectangle button is a toolbar ToggleButton that stays selected until
you click the mouse to draw a new rectangle. Once you have drawn the
rectangle, you can click in any rectangle to select it, as we see in Figure
26-2.

Figure 26-2– Selecting a rectangle causes “handles” to appear, indicating that it
is selected and can be moved.

Copyright © , 2002 by James W Cooper

353

Once it is selected, you can drag that rectangle to a new position, using
the mouse, as shown in Figure 26-3

Figure 26-3 – The same selected rectangle after dragging

The Undo button can undo a succession of operations. Specifically, it
can undo moving a rectangle, and it can undo the creation of each
rectangle. There are five actions we need to respond to in this program.

1. Rectangle button click

2. Undo button click

3. Clear button click

4. Mouse click

5. Mouse drag

The three buttons can be constructed as Command objects, and the
mouse click and drag can be treated as commands as well. Since we
have a number of visual objects that control the display of screen
objects, this suggests an opportunity to use the Mediator pattern, and
that is, in fact, the way this program is constructed.

We will create a Caretaker class to manage the Undo action list. It can
keep a list of the last n operations so they can be undone. The Mediator
maintains the list of drawing objects and communicates with the

Copyright © , 2002 by James W Cooper

354

Caretaker object as well. In fact, since there could be any number of
actions to save and undo in such a program, a Mediator is virtually
required so there is a single place to send these commands to the Undo
list in the Caretaker.

In this program, we save and undo only two actions: creating new
rectangles and changing the position of rectangles. Let’s start with our
visRectangle class, which actually draws each instance of the
rectangles.
 public class VisRectangle {
 private int x, y, w, h;
 private const int SIZE=30;
 private CsharpPats.Rectangle rect;
 private bool selected;
 private Pen bPen;
 private SolidBrush bBrush;
 //-----
 public VisRectangle(int xp, int yp) {
 x = xp; y = yp;
 w = SIZE; h = SIZE;
 saveAsRect();
 bPen = new Pen(Color.Black);
 bBrush = new SolidBrush(Color.Black);
 }
 //-----
 //used by Memento for saving and restoring state
 internal CsharpPats.Rectangle rects {
 get {
 return rect;
 }
 set {
 x=value.x;
 y=value.y;
 w=value.w;
 h=value.h;
 saveAsRect();
 }
 }
 //------
 public void setSelected(bool b) {
 selected = b;
 }
 //-----
 //move to new position
 public void move(int xp, int yp) {
 x = xp;
 y = yp;
 saveAsRect();

Copyright © , 2002 by James W Cooper

355

 }
 //-----
 public void draw(Graphics g) {
 //draw rectangle
 g.DrawRectangle(bPen, x, y, w, h);

 if (selected) { //draw handles
 g.FillRectangle(bBrush, x + w / 2, y - 2, , 4);
 g.FillRectangle(bBrush, x - 2, y + h / 2, 4, 4);
 g.FillRectangle(bBrush, x + (w / 2), y + h - 2, 4,);
 g.FillRectangle(bBrush, x + (w - 2),

y + (h / 2), 4, 4);
 }
 }
 //-----
 //return whether point is inside rectangle
 public bool contains(int x, int y) {
 return rect.contains (x, y);
 }
 //------
 //create Rectangle object from new position
 private void saveAsRect() {
 rect = new CsharpPats.Rectangle (x,y,w,h);
 }

We also use the same Rectangle class as we hace developed before,
that contains Get and Set properties for the x, y, w, and h values and a
contains method.

Drawing the rectangle is pretty straightforward. Now, let’s look at our
simple Memento class that we use to store the state of a rectangle.
public class Memento {
 private int x, y, w, h;
 private CsharpPats.Rectangle rect;
 private VisRectangle visRect;
 //------
 public Memento(VisRectangle vrect) {
 visRect = vrect;
 rect = visRect.rects ;
 x = rect.x ;
 y = rect.y;
 w = rect.w;
 h = rect.h;
 }
 //------
 public void restore() {
 rect.x = x;
 rect.y = y;

Copyright © , 2002 by James W Cooper

356

 rect.h = h;
 rect.w = w;
 visRect.rects = rect;
 }
}
When we create an instance of the Memento class, we pass it the
visRectangle instance we want to save, using the init method. It copies
the size and position parameters and saves a copy of the instance of the
visRectangle itself. Later, when we want to restore these parameters,
the Memento knows which instance to which it must restore them, and
it can do it directly, as we see in the restore() method.

The rest of the activity takes place in the Mediator class, where we
save the previous state of the list of drawings as an integer on the undo
list.
public void createRect(int x, int y) {
 unpick(); //make sure none is selected
 if (startRect) { //if rect button is depressed
 int count = drawings.Count;
 caretakr.Add(count); //Save list size

//create a rectangle
VisRectangle v = new VisRectangle(x, y);

 drawings.Add(v);//add element to list
 startRect = false; //done with rectangle
 rect.setSelected(false); //unclick button
 canvas.Refresh();
 }
 else

//if not pressed look for rect to select
 pickRect(x, y);

 }
}

On the other hand, if you click on the panel when the Rectangle button
has not been selected, you are trying to select an existing rectangle.
This is tested here.
public void pickRect(int x, int y) {
 //save current selected rectangle
 //to avoid double save of undo
 int lastPick = -1;
 if (selectedIndex >= 0) {
 lastPick = selectedIndex;
 }
 unpick(); //undo any selection

Copyright © , 2002 by James W Cooper

357

 //see if one is being selected
 for (int i = 0; i< drawings.Count; i++) {
 VisRectangle v = (VisRectangle)drawings[i];
 if (v.contains(x, y)) {

//did click inside a rectangle
 selectedIndex = i; //save it
 rectSelected = true;
 if (selectedIndex != lastPick) {

//but don't save twice
 caretakr.rememberPosition(v);
 }
 v.setSelected(true); //turn on handles
 repaint(); //and redraw
 }
 }
}

The Caretaker class remembers the previous position of the rectangle
in a Memento object and adds it to the undo list.
public void rememberPosition(VisRectangle vr) {
 Memento mem = new Memento (vr);
 undoList.Add (mem);
}

The Caretaker class manages the undo list. This list is a Collection of
integers and Memento objects. If the value is an integer, it represents
the number of drawings to be drawn at that instant. If it is a Memento,
it represents the previous state of a visRectangle that is to be restored.
In other words, the undo list can undo the adding of new rectangles and
the movement of existing rectangles.

Our undo method simply decides whether to reduce the drawing list by
one or to invoke the restore method of a Memento. Since the undo list
contains both integer objects and Memento objects, we cast the list
element to a Memento type, and if this fails, we catch the cast
exception and recognize that it will be a drawing list element to be
removed.
public void undo() {
 if(undoList.Count > 0) {
 int last = undoList.Count -1;
 object obj = undoList[last];
 try{
 Memento mem = (Memento)obj;
 remove(mem);
 }

Copyright © , 2002 by James W Cooper

358

 catch (Exception) {
 removeDrawing();
 }
 undoList.RemoveAt (last);
 }
}

The two remove methods either reduce the number of drawings or
restore the position of a rectangle.
public void removeDrawing() {
 drawings.RemoveAt (drawings.Count -1);
}
public void remove(Memento mem) {
 mem.restore ();
}

A Cautionary Note
While it is helpful in this example to call out the differences between a
Memento of a rectangle position and an integer specifying the addition
of a new drawing, this is in general an absolutely terrible example of
OO programming. You should never need to check the type of an
object to decide what to do with it. Instead, you should be able to call
the correct method on that object and have it do the right thing.

A more correct way to have written this example would be to have
both the drawing element and the Memento class both have their own
restore methods and have them both be members of a general Memento
class (or interface). We take this approach in the State example pattern
in the next chapter.

Command Objects in the User Interface
We can also use the Command pattern to help in simplifying the code
in the user interface. You can build a toolbar and create
ToolbarButtons in C# using the IDE, but if you do, it is difficult to
subclass them to make them into command objects. There are two
possible solutions. First, you can keep a parallel array of Command
objects for the RectButton, the UndoButton, and the Clear button and
call them in the toolbar click routine.

You should note, however, that the toolbar buttons do not have an
Index property, and you cannot just ask which one has been clicked by

Copyright © , 2002 by James W Cooper

359

its index and relate it to the command array. Instead, we can use the
GetHashCode property of each tool button to get a unique identifier for
that button and keep the corresponding command objects in a
Hashtable keyed off these button hash codes. We construct the
Hashtable as follows.
private void init() {
 med = new Mediator(pic); //create Mediator
 commands = new Hashtable(); //and Hash table
 //create the command objectsb
 RectButton rbutn = new RectButton(med, tbar.Buttons[0]);
 UndoButton ubutn = new UndoButton(med, tbar.Buttons[1]);
 ClrButton clrbutn = new ClrButton(med);
 med.registerRectButton (rbutn);
 //add them to the hashtable using the button hash values
 commands.Add(btRect.GetHashCode(), rbutn);
 commands.Add(btUndo.GetHashCode(), ubutn);
 commands.Add(btClear.GetHashCode(), clrbutn);
 pic.Paint += new PaintEventHandler (paintHandler);
}
Then the command interpretation devolves to just a few lines of code,
since all the buttons call the same click event already. We can use these
hash codes to get the right command object when the buttons are
clicked.
private void tbar_ButtonClick(object sender,

ToolBarButtonClickEventArgs e) {
 ToolBarButton tbutn = e.Button ;
 Command comd = (Command)commands[tbutn.GetHashCode ()];
 comd.Execute ();
}
Alternatively, you could create the toolbar under IDE control but add
the tool buttons to the collection programmatically and use derived
buttons with a Command interface instead. We illustrate this approach
in the State pattern.

The RectButton command class is where most of the activity takes
place.
public class RectButton : Command {
 private ToolBarButton bt;
 private Mediator med;
 //------
 public RectButton(Mediator md, ToolBarButton tb) {
 med = md;
 bt = tb;
 }

Copyright © , 2002 by James W Cooper

360

 //------
 public void setSelected(bool sel) {
 bt.Pushed = sel;
 }
 //------
 public void Execute() {
 if(bt.Pushed)
 med.startRectangle ();
 }
}

Handling Mouse and Paint Events
We also must catch the mouse down, up, and move events and pass
them on to the Mediator to handle.
private void pic_MouseDown(object sender, MouseEventArgs e) {
 mouse_down = true;
 med.createRect (e.X, e.Y);
}
//------
private void pic_MouseUp(object sender, MouseEventArgs e) {
 mouse_down = false;
}
//------
private void pic_MouseMove(object sender, MouseEventArgs e) {
 if(mouse_down)
 med.drag(e.X , e.Y);
}

Whenever the Mediator makes a change, it calls for a refresh of the
picture box, which in turn calls the Paint event. We then pass this back
to the Mediator to draw the rectangles in their new positions.

private void paintHandler(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics ;
 med.reDraw (g);
}

The complete class structure is diagrammed in Figure 26-4

Copyright © , 2002 by James W Cooper

361

Figure 26-4 – The UML diagram for the drawing program using a Memento

Consequences of the Memento
The Memento provides a way to preserve the state of an object while
preserving encapsulation in languages where this is possible. Thus,
data to which only the Originator class should have access effectively
remain private. It also preserves the simplicity of the Originator class
by delegating the saving and restoring of information to the Memento
class.

On the other hand, the amount of information that a Memento has to
save might be quite large, thus taking up fair amounts of storage. This
further has an effect on the Caretaker class that may have to design
strategies to limit the number of objects for which it saves state. In our
simple example, we impose no such limits. In cases where objects
change in a predictable manner, each Memento may be able to get by
with saving only incremental changes of an object’s state.

In our example code in this chapter, we have to use not only the
Memento but the Command and Mediator patterns as well. This
clustering of several patterns is very common, and the more you see of
good OO programs, the more you will see these pattern groupings.

Thought Question
Mementos can also be used to restore the state of an object when a
process fails. If a database update fails because of a dropped network

Copyright © , 2002 by James W Cooper

362

connection, you should be able to restore the data in your cached data
to their previous state. Rewrite the Database class in the Façade chapter
to allow for such failures.

Programs on the CD-ROM
\Memento Memento example

Copyright © , 2002 by James W Cooper

363

27. The Observer Pattern

In this chapter we discuss how you can use the Observer pattern to
present data in several forms at once. In our new, more sophisticated
windowing world, we often would like to display data in more than one
form at the same time and have all of the displays reflect any changes
in that data. For example, you might represent stock price changes both
as a graph and as a table or list box. Each time the price changes, we’d
expect both representations to change at once without any action on
our part.

We expect this sort of behavior because there are any number of
Windows applications, like Excel, where we see that behavior. Now
there is nothing inherent in Windows to allow this activity, and, as you
may know, programming directly in Windows in C or C++ is pretty
complicated. In C#, however, we can easily use the Observer Design
Pattern to make our program behave this way.

The Observer pattern assumes that the object containing the data is
separate from the objects that display the data and that these display
objects observe changes in that data. This is simple to illustrate, as we
see in Figure 27-1.

Graphic
Display

List
Display

Data

User

Figure 27-1– Data are displayed as a list and in some graphical mode.

Copyright © , 2002 by James W Cooper

364

When we implement the Observer pattern, we usually refer to the data
as the Subject and each of the displays as an Observer. Each of these
observers registers its interest in the data by calling a public method in
the Subject. Then each observer has a known interface that the subject
calls when the data change. We could define these interfaces as
follows.
public interface Observer {
 void sendNotify(string message);
//-----
public interface Subject {
 void registerInterest(Observer obs);
}

The advantages of defining these abstract interfaces is that you can
write any sort of class objects you want as long as they implement
these interfaces and that you can declare these objects to be of type
Subject and Observer no matter what else they do.

Watching Colors Change
Let’s write a simple program to illustrate how we can use this powerful
concept. Our program shows a display form containing three radio
buttons named Red, Blue, and Green, as shown in Figure 27-2.

Figure 27-2 – A simple control panel to create red, green, or blue “data”

Now our main form class implements the Subject interface. That
means that it must provide a public method for registering interest in
the data in this class. This method is the registerInterest method, which
just adds Observer objects to an ArrayList.

Copyright © , 2002 by James W Cooper

365

public void registerInterest(Observer obs) {
 observers.Add (obs);
}
Now we create two observers, one that displays the color (and its
name) and another that adds the current color to a list box. Each of
these is actually a Windows form that also implements the Observer
interface. When we create instances of these forms, we pass to them
the base or startup form as an argument. Since this startup form is
actually the Subject, they can register their interest in its events. So the
main form’s initialization creates these instances and passes them a
reference to itself.

ListObs lobs = new ListObs (this);
 lobs.Show ();
 ColObserver colObs = new ColObserver (this);
 colObs.Show();
Then, when we create our ListObs window, we register our interest in
the data in the main program.
public ListObs(Subject subj) {
 InitializeComponent();
 init(subj);
}
//------
public void init(Subject subj) {
 subj.registerInterest (this);
}

When it receives a sendNotify message from the main subject program,
all it has to do is to add the color name to the list.
public void sendNotify(string message){
 lsColors.Items.Add(message);
}

Our color window is also an observer, and it has to change the
background color of the picture box and paint the color name using a
brush. Note that we change the picture box’s background color in the
sendNotify event, and change the text in a paint event. The entire class
is shown here.
public class ColObserver : Form, Observer{
 private Container components = null;
 private Brush bBrush;
 private System.Windows.Forms.PictureBox pic;
 private Font fnt;

Copyright © , 2002 by James W Cooper

366

 private Hashtable colors;
 private string colName;
 //-----
 public ColObserver(Subject subj) {
 InitializeComponent();
 init(subj);
 }
 //-----
 private void init(Subject subj) {
 subj.registerInterest (this);
 fnt = new Font("arial", 18, FontStyle.Bold);
 bBrush = new SolidBrush(Color.Black);
 pic.Paint+= new PaintEventHandler (paintHandler);

//make Hashtable for converting color strings
 colors = new Hashtable ();

 colors.Add("red", Color.Red);
 colors.Add ("blue", Color.Blue);
 colors.Add ("green", Color.Green);
 colName = "";
 }
 //-----
 public void sendNotify(string message) {
 colName = message;
 message = message.ToLower ();

//convert color string to color object
 Color col = (Color)colors[message];
 pic.BackColor = col;
 }
 //-----
 private void paintHandler(object sender,

PaintEventArgs e) {
 Graphics g = e.Graphics ;
 g.DrawString(colName, fnt, bBrush, 20, 40)
 }

Note that our sendNotify event receives a string representing the color
name, and that we use a Hashtable to convert these strings to actual
Color objects.

Meanwhile, in our main program, every time someone clicks on one of
the radio buttons, it calls the sendNotify method of each Observer who
has registered interest in these changes by simply running through the
objects in the Observer’s Collection.
private void opButton_Click(object sender, EventArgs e) {
 RadioButton but = (RadioButton)sender;
 for(int i=0; i< observers.Count ; i++) {
 Observer obs = (Observer)observers[i];
 obs.sendNotify (but.Text);

Copyright © , 2002 by James W Cooper

367

 }
}
In the case of the ColorForm observer, the sendNotify method changes
the background color and the text string in the form Picturebox. In the
case of the ListForm observer, however, it just adds the name of the
new color to the list box. We see the final program running in Figure
27-3

Figure 27-3 – The data control panel generates data that is displayed
simultaneously as a colored panel and as a list box. This is a candidate for an
Observer pattern.

The Message to the Media
Now, what kind of notification should a subject send to its observers?
In this carefully circumscribed example, the notification message is the
string representing the color itself. When we click on one of the radio
buttons, we can get the caption for that button and send it to the
observers. This, of course, assumes that all the observers can handle
that string representation. In more realistic situations, this might not
always be the case, especially if the observers could also be used to
observe other data objects. Here we undertake two simple data
conversions.

Copyright © , 2002 by James W Cooper

368

1. We get the label from the radio button and send it to the
observers.

2. We convert the label to an actual color in the ColObserver.

In more complicated systems, we might have observers that demand
specific, but different, kinds of data. Rather than have each observer
convert the message to the right data type, we could use an
intermediate Adapter class to perform this conversion.

Another problem observers may have to deal with is the case where the
data of the central subject class can change in several ways. We could
delete points from a list of data, edit their values, or change the scale of
the data we are viewing. In these cases we either need to send different
change messages to the observers or send a single message and then
have the observer ask which sort of change has occurred.

Figure 28-4 – The Observer interface and Subject interface implementation of
the Observer pattern

Consequences of the Observer Pattern
Observers promote abstract coupling to Subjects. A subject doesn’t
know the details of any of its observers. However, this has the potential
disadvantage of successive or repeated updates to the Observers when
there are a series of incremental changes to the data. If the cost of these
updates is high, it may be necessary to introduce some sort of change
management so the Observers are not notified too soon or too
frequently.

Copyright © , 2002 by James W Cooper

369

When one client makes a change in the underlying data, you need to
decide which object will initiate the notification of the change to the
other observers. If the Subject notifies all the observers when it is
changed, each client is not responsible for remembering to initiate the
notification. On the other hand, this can result in a number of small
successive updates being triggered. If the clients tell the Subject when
to notify the other clients, this cascading notification can be avoided,
but the clients are left with the responsibility of telling the Subject
when to send the notifications. If one client “forgets,” the program
simply won’t work properly.

Finally, you can specify the kind of notification you choose to send by
defining a number of update methods for the Observers to receive,
depending on the type or scope of change. In some cases, the clients
will thus be able to ignore some of these notifications.

Programs on the CD-ROM
\Observer Observer example

Copyright © , 2002 by James W Cooper

370

28. The State Pattern

The State pattern is used when you want to have an object represent the
state of your application and switch application states by switching
objects. For example, you could have an enclosing class switch between a
number of related contained classes and pass method calls on to the
current contained class. Design Patterns suggests that the State pattern
switches between internal classes in such a way that the enclosing object
appears to change its class. In C#, at least, this is a bit of an exaggeration,
but the actual purpose to which the classes are applied can change
significantly.

Many programmers have had the experience of creating a class that
performs slightly different computations or displays different information
based on the arguments passed into the class. This frequently leads to
some types of select case or if-else statements inside the class that
determine which behavior to carry out. It is this inelegance that the State
pattern seeks to replace.

Sample Code
Let’s consider the case of a drawing program similar to the one we
developed for the Memento class. Our program will have toolbar buttons
for Select, Rectangle, Fill, Circle, and Clear. We show this program in
Figure 28-1

Copyright © , 2002 by James W Cooper

371

Figure 28-1 – A simple drawing program we will use for illustrating the State
pattern

Each one of the tool buttons does something rather different when it is
selected and you click or drag your mouse across the screen. Thus, the
state of the graphical editor affects the behavior the program should
exhibit. This suggests some sort of design using the State pattern.

Initially we might design our program like this, with a Mediator managing
the actions of five command buttons, as shown in Figure 28-2

Copyright © , 2002 by James W Cooper

372

Mediator

Pick

Rect

Fill

Circle

Clear

Screen

Mouse

Figure 28-2– One possible interaction between the classes needed to support the
simple drawing program

However, this initial design puts the entire burden of maintaining the state
of the program on the Mediator, and we know that the main purpose of a
Mediator is to coordinate activities between various controls, such as the
buttons. Keeping the state of the buttons and the desired mouse activity
inside the Mediator can make it unduly complicated, as well as leading to
a set of If or Select tests that make the program difficult to read and
maintain.

Further, this set of large, monolithic conditional statements might have to
be repeated for each action the Mediator interprets, such as mouseUp,
mouseDrag, rightClick, and so forth. This makes the program very hard to
read and maintain.

Instead, let’s analyze the expected behavior for each of the buttons.

1. If the Select button is selected, clicking inside a drawing
element should cause it to be highlighted or appear with

Copyright © , 2002 by James W Cooper

373

“handles.” If the mouse is dragged and a drawing element is
already selected, the element should move on the screen.

2. If the Rect button is selected, clicking on the screen should
cause a new rectangle drawing element to be created.

3. If the Fill button is selected and a drawing element is already
selected, that element should be filled with the current color. If
no drawing is selected, then clicking inside a drawing should
fill it with the current color.

4. If the Circle button is selected, clicking on the screen should
cause a new circle drawing element to be created.

5. If the Clear button is selected, all the drawing elements are
removed.

There are some common threads among several of these actions we should
explore. Four of them use the mouse click event to cause actions. One uses
the mouse drag event to cause an action. Thus, we really want to create a
system that can help us redirect these events based on which button is
currently selected.

Let’s consider creating a State object that handles mouse activities.
public class State {
 //keeps state of each button
 protected Mediator med;
 public State(Mediator md) {
 med = md; //save reference to mediator
 }
 public virtual void mouseDown(int x, int y) {}
 public virtual void mouseUp(int x, int y) { }
 public virtual void mouseDrag(int x, int y) {}
}
Note that we are creating an actual class here with empty methods, rather
than an interface. This allows us to derive new State objects from this
class and only have to fill in the mouse actions that actually do anything
for that case. Then we’ll create four derived State classes for Pick, Rect,
Circle, and Fill and put instances of all of them inside a StateManager

Copyright © , 2002 by James W Cooper

374

class that sets the current state and executes methods on that state object.
In Design Patterns, this StateManager class is referred to as a Context.
This object is illustrated in Figure 28-3.

StateManager

State

Pick Rect Fill Circle

currentState

Figure 28-3– A StateManager class that keeps track of the current state

A typical State object simply overrides those event methods that it must
handle specially. For example, this is the complete Rectangle state object.
Note that since it only needs to respond to the mouseDown event, we
don’t have to write any code at all for the other events.
public class RectState :State {
 public RectState(Mediator md):base (md) {}
 //-----
 public override void mouseDown(int x, int y) {
 VisRectangle vr = new VisRectangle(x, y);
 med.addDrawing (vr);

Copyright © , 2002 by James W Cooper

375

 }
}

The RectState object simply tells the Mediator to add a rectangle drawing
to the drawing list. Similarly, the Circle state object tells the Mediator to
add a circle to the drawing list.
public class CircleState : State {
 public CircleState(Mediator md):base (md){ }
 //-----
 public override void mouseDown(int x, int y) {
 VisCircle c = new VisCircle(x, y);
 med.addDrawing (c);
 }
}

The only tricky button is the Fill button because we have defined two
actions for it.

1. If an object is already selected, fill it.

2. If the mouse is clicked inside an object, fill that one.

In order to carry out these tasks, we need to add the selectOne method to
our base State interface. This method is called when each tool button is
selected.
public class State {
 //keeps state of each button
 protected Mediator med;
 public State(Mediator md) {
 med = md; //save reference to mediator
 }
 public virtual void mouseDown(int x, int y) {}
 public virtual void mouseUp(int x, int y) { }
 public virtual void mouseDrag(int x, int y) {}
 public virtual void selectOne(Drawing d) {}
}

The Drawing argument is either the currently selected Drawing or null if
none is selected. In this simple program, we have arbitrarily set the fill
color to red, so our Fill state class becomes the following.

Copyright © , 2002 by James W Cooper

376

public class FillState : State {
 public FillState(Mediator md): base(md) { }
 //-----
 public override void mouseDown(int x, int y) {
 //Fill drawing if you click inside one
 int i = med.findDrawing(x, y);
 if (i >= 0) {
 Drawing d = med.getDrawing(i);
 d.setFill(true); //fill drawing
 }
 }
 //-----
 public override void selectOne(Drawing d) {
 //fill drawing if selected
 d.setFill (true);
 }
}

Switching Between States
Now that we have defined how each state behaves when mouse events are
sent to it, we need to examine how the StateManager switches between
states. We create an instance of each state, and then we simply set the
currentState variable to the state indicated by the button that is selected.
public class StateManager {
 private State currentState;
 private RectState rState;
 private ArrowState aState;
 private CircleState cState;
 private FillState fState;

 public StateManager(Mediator med) {
 //create an instance of each state
 rState = new RectState(med);
 cState = new CircleState(med);
 aState = new ArrowState(med);
 fState = new FillState(med);
 //and initialize them
 //set default state
 currentState = aState;
 }

Copyright © , 2002 by James W Cooper

377

Note that in this version of the StateManager, we create an instance of
each state during the constructor and copy the correct one into the state
variable when the set methods are called. It would also be possible to
create these states on demand. This might be advisable if there are a large
number of states that each consume a fair number of resources.

The remainder of the state manager code simply calls the methods of
whichever state object is current. This is the critical piece—there is no
conditional testing. Instead, the correct state is already in place, and its
methods are ready to be called.
 public void mouseDown(int x, int y) {
 currentState.mouseDown (x, y);
 }
 public void mouseUp(int x, int y) {
 currentState.mouseUp (x, y);
 }
 public void mouseDrag(int x, int y) {
 currentState.mouseDrag (x, y);
 }
 public void selectOne(Drawing d) {
 currentState.selectOne (d);
 }

How the Mediator Interacts with the State Manager
We mentioned that it is clearer to separate the state management from the
Mediator’s button and mouse event management. The Mediator is the
critical class, however, since it tells the StateManager when the current
program state changes. The beginning part of the Mediator illustrates how
this state change takes place. Note that each button click calls one of these
methods and changes the state of the application. The remaining
statements in each method simply turn off the other toggle buttons so only
one button at a time can be depressed.
public class Mediator {
 private bool startRect;
 private int selectedIndex;

Copyright © , 2002 by James W Cooper

378

 private RectButton rectb;
 private bool dSelected;
 private ArrayList drawings;
 private ArrayList undoList;
 private RectButton rButton;
 private FillButton filButton;
 private CircleButton circButton;
 private PickButton arrowButton;
 private PictureBox canvas;
 private int selectedDrawing;
 private StateManager stMgr;
 //-----
 public Mediator(PictureBox pic) {
 startRect = false;
 dSelected = false;
 drawings = new ArrayList();
 undoList = new ArrayList();
 stMgr = new StateManager(this);
 canvas = pic;
 selectedDrawing = -1;
 }
 //-----
 public void startRectangle() {
 stMgr.setRect();
 arrowButton.setSelected(false);
 circButton.setSelected(false);
 filButton.setSelected(false);
 }
 //-----
 public void startCircle() {
 stMgr.setCircle();
 rectb.setSelected(false);
 arrowButton.setSelected(false);
 filButton.setSelected(false);
 }

The ComdToolBarButton
In the discussion of the Memento pattern, we created a series of button Command
objects paralleling the toolbar buttons and keep them in a Hashtable to be called
when the toolbar button click event occurs. However, a powerful alternative os to
create a ComdToolBarButton class which implements the Command interface as

Copyright © , 2002 by James W Cooper

379

well as being a ToolBarButton. Then, each button can have an Execute method
which defines its purpose. Here is the base class

public class ComdToolBarButton : ToolBarButton , Command {
 private System.ComponentModel.Container components = null;
 protected Mediator med;
 protected bool selected;
 public ComdToolBarButton(string caption, Mediator md)
 {
 InitializeComponent();
 med = md;
 this.Text =caption;
 }
 //------
 public void setSelected(bool b) {
 selected = b;
 if(!selected)
 this.Pushed =false;
 }
 //-----
 public virtual void Execute() {
 }

Note that the Execute method is empty in this base class, but is virtual so
we can override it in each derived class. In this case, we cannot use the
IDE to create the toolbar, but can simply add the buttons to the toolbar
programmatically:

private void init() {
 //create a Mediator
 med = new Mediator(pic);
 //create the buttons
 rctButton = new RectButton(med);
 arowButton = new PickButton(med);
 circButton = new CircleButton(med);
 flButton = new FillButton(med);
 undoB = new UndoButton(med);
 clrb = new ClearButton(med);
 //add the buttons into the toolbar
 tBar.Buttons.Add(arowButton);
 tBar.Buttons.Add(rctButton);
 tBar.Buttons.Add(circButton);
 tBar.Buttons.Add(flButton);
 //include a separator

Copyright © , 2002 by James W Cooper

380

 ToolBarButton sep =new ToolBarButton();
 sep.Style = ToolBarButtonStyle.Separator;
 tBar.Buttons.Add(sep);
 tBar.Buttons.Add(undoB);
 tBar.Buttons.Add(clrb);
 }

Then we can catch all the toolbar button click events in a single method and call
each button’s Execute method.
private void tBar_ButtonClick(object sender,

ToolBarButtonClickEventArgs e) {
 Command comd = (Command)e.Button ;
 comd.Execute ();
}

The class diagram for this program illustrating the State pattern in this
application is illustrated in two parts. The State section is shown in Figure
28-4

Figure 28-4 – The StateManager and the Mediator

Copyright © , 2002 by James W Cooper

381

The connection of the Mediator to the buttons is shown in Figure 28-5.

Figure 28-5 – Interaction between the buttons and the Mediator

Handling the Fill State
The Fill State object is only slightly more complex because we have to
handle two cases. The program will fill the currently selected object if one
exists or fill the next one that you click on. This means there are two State
methods we have to fill in for these two cases, as we see here.
public class FillState : State {
 public FillState(Mediator md): base(md) { }
 //-----
 public override void mouseDown(int x, int y) {
 //Fill drawing if you click inside one
 int i = med.findDrawing(x, y);
 if (i >= 0) {
 Drawing d = med.getDrawing(i);
 d.setFill(true); //fill drawing
 }

Copyright © , 2002 by James W Cooper

382

 }
 //-----
 public override void selectOne(Drawing d) {
 //fill drawing if selected
 d.setFill (true);
 }
}

Handling the Undo List
Now we should be able to undo each of the actions we carry out in this
drawing program, and this means that we keep them in an undo list of
some kind. These are the actions we can carry out and undo.

1. Creating a rectangle

2. Creating a circle

3. Moving a rectangle or circle

4. Filling a rectangle or circle

In our discussion of the Memento pattern, we indicated that we would use
a Memento object to store the state of the rectangle object and restore its
position from that Memento as needed. This is generally true for both
rectangles and circles, since we need to save and restore the same kind of
position information. However, the addition of rectangles or circles and
the filling of various figures are also activities we want to be able to undo.
And, as we indicated in the previous Memento discussion, the idea of
checking for the type of object in the undo list and performing the correct
undo operation is a really terrible idea.
 //really terrible programming approach
 object obj = undoList[last];
 try{
 Memento mem = (Memento)obj;
 remove(mem);
 }
 catch (Exception) {
 removeDrawing();
 }

Copyright © , 2002 by James W Cooper

383

Instead, let’s define the Memento as an interface.
public interface Memento {
 void restore();
}

Then all of the objects we add into the undo list will implement the
Memento interface and will have a restore method that performs some
operation. Some kinds of Mementos will save and restore the coordinates
of drawings, and others will simply remove drawings or undo fill states.

First, we will have both our circle and rectangle objects implement the
Drawing interface.
public interface Drawing {
 void setSelected(bool b);
 void draw(Graphics g);
 void move(int xpt, int ypt);
 bool contains(int x,int y);
 void setFill(bool b);
 CsharpPats.Rectangle getRects();
 void setRects(CsharpPats.Rectangle rect);
}

The Memento we will use for saving the state of a Drawing will be similar
to the one we used in the Memento chapter, except that we specifically
make it implement the Memento interface.
public class DrawMemento : Memento {
 private int x, y, w, h;
 private Rectangle rect;
 private Drawing visDraw;
 //------
 public DrawMemento(Drawing d) {
 visDraw = d;
 rect = visDraw.getRects ();
 x = rect.x;
 y = rect.y ;
 w = rect.w;
 h = rect.h;
 }
 //-----
 public void restore() {

Copyright © , 2002 by James W Cooper

384

 //restore the state of a drawing object
 rect.x = x;

 rect.y = y;
 rect.h = h;
 rect.w = w;
 visDraw.setRects(rect);
 }
 }

Now for the case where we just want to remove a drawing from the list to
be redrawn, we create a class to remember that index of that drawing and
remove it when its restore method is called.
public class DrawInstance :Memento {
 private int intg;
 private Mediator med;
 //-----
 public DrawInstance(int intg, Mediator md) {
 this.intg = intg;
 med = md;
 }
 //-----
 public int integ {
 get { return intg; }
 }
 //-----
 public void restore() {
 med.removeDrawing(intg);
 }
}
We handle the FillMemento in just the same way, except that its restore
method turns off the fill flag for that drawing element.
public class FillMemento : Memento {
 private int index;
 private Mediator med;
 //-----
 public FillMemento(int dindex, Mediator md) {
 index = dindex;
 med = md;
 }
 //-----
 public void restore() {

Copyright © , 2002 by James W Cooper

385

 Drawing d = med.getDrawing(index);
 d.setFill(false);
 }
}

The VisRectangle and VisCircle Classes
We can take some useful advantage of inheritance in designing our
visRectangle and visCircle classes. We make visRectangle implement the
Drawing interface and then have visCircle inherit from visRectangle. This
allows us to reuse the setSelected, setFill, and move methods and the rects
properties. In addition, we can split off the drawHandle method and use it
in both classes. Our new visRectangle class looks like this.
public class VisRectangle : Drawing {
 protected int x, y, w, h;
 private const int SIZE=30;
 private CsharpPats.Rectangle rect;
 protected bool selected;
 protected bool filled;
 protected Pen bPen;
 protected SolidBrush bBrush, rBrush;
 //-----
 public VisRectangle(int xp, int yp) {
 x = xp; y = yp;
 w = SIZE; h = SIZE;
 saveAsRect();
 bPen = new Pen(Color.Black);
 bBrush = new SolidBrush(Color.Black);
 rBrush = new SolidBrush (Color.Red);
 }
 //-----
 //used by Memento for saving and restoring state
 public CsharpPats.Rectangle getRects() {
 return rect;
 }
 //-----
 public void setRects(CsharpPats.Rectangle value) {
 x=value.x; y=value.y;
 w=value.w; h=value.h;
 saveAsRect();
 }

Copyright © , 2002 by James W Cooper

386

 //------
 public void setSelected(bool b) {
 selected = b;
 }
 //-----
 //move to new position
 public void move(int xp, int yp) {
 x = xp; y = yp;
 saveAsRect();
 }
 //-----
 public virtual void draw(Graphics g) {
 //draw rectangle
 g.DrawRectangle(bPen, x, y, w, h);
 if(filled)
 g.FillRectangle (rBrush, x,y,w,h);
 drawHandles(g);
 }
 //-----
 public void drawHandles(Graphics g) {
 if (selected) { //draw handles
 g.FillRectangle(bBrush, x + w / 2, y - 2, 4,);
 g.FillRectangle(bBrush, x - 2, y + h / 2, 4,);
 g.FillRectangle(bBrush, x + (w / 2),

y + h - 2, 4, 4);
 g.FillRectangle(bBrush, x + (w - 2),

y + (h / 2), 4, 4);
 }
 }
 //-----
 //return whether point is inside rectangle
 public bool contains(int x, int y) {
 return rect.contains (x, y);
 }
 //------
 //create Rectangle object from new position
 protected void saveAsRect() {
 rect = new CsharpPats.Rectangle (x,y,w,h);
 }
 public void setFill(bool b) {
 filled = b;
 }

Copyright © , 2002 by James W Cooper

387

However, our visCircle class only needs to override the draw method and
have a slightly different constructor.
public class VisCircle : VisRectangle {
 private int r;
 public VisCircle(int x, int y):base(x, y) {
 r = 15; w = 30; h = 30;
 saveAsRect();
 }
 //-----
 public override void draw(Graphics g) {
 if (filled) {
 g.FillEllipse(rBrush, x, y, w, h);
 }
 g.DrawEllipse(bPen, x, y, w, h);
 if (selected){
 drawHandles(g);
 }
 }
}
Note that since we have made the x, y, and filled variables Protected, we
can refer to them in the derived visCircle class without declaring them at
all.

Mediators and the God Class
One real problem with programs with this many objects interacting is
putting too much knowledge of the system into the Mediator so it becomes
a “god class.” In the preceding example, the Mediator communicates with
the six buttons, the drawing list, and the StateManager. We could write
this program another way so that the button Command objects
communicate with the StateManager and the Mediator only deals with the
buttons and the drawing list. Here, each button creates an instance of the
required state and sends it to the StateManager. This we will leave as an
exercise for the reader.

Copyright © , 2002 by James W Cooper

388

Consequences of the State Pattern
1. The State pattern creates a subclass of a basic State object for each

state an application can have and switches between them as the
application changes between states.

2. You don’t need to have a long set of conditional if or switch
statements associated with the various states, since each is
encapsulated in a class.

3. Since there is no variable anywhere that specifies which state a
program is in, this approach reduces errors caused by programmers
forgetting to test this state variable

4. You could share state objects between several parts of an application,
such as separate windows, as long as none of the state objects have
specific instance variables. In this example, only the FillState class has
an instance variable, and this could be easily rewritten to be an
argument passed in each time.

5. This approach generates a number of small class objects but in the
process simplifies and clarifies the program.

6. In C#, all of the States must implement a common interface, and they
must thus all have common methods, although some of those methods
can be empty. In other languages, the states can be implemented by
function pointers with much less type checking and, of course, greater
chance of error.

State Transitions
The transition between states can be specified internally or externally. In
our example, the Mediator tells the StateManager when to switch between
states. However, it is also possible that each state can decide automatically
what each successor state will be. For example, when a rectangle or circle
drawing object is created, the program could automatically switch back to
the Arrow-object State.

Copyright © , 2002 by James W Cooper

389

Thought Questions
1. Rewrite the StateManager to use a Factory pattern to produce

the states on demand.

2. While visual graphics programs provide obvious examples of
State patterns, server programs can benefit by this approach.
Outline a simple server that uses a state pattern.

Programs on the CD-ROM
\State state drawing program

Copyright © , 2002 by James W Cooper

390

29. The Strategy Pattern

The Strategy pattern is much like the State pattern in outline but a little
different in intent. The Strategy pattern consists of a number of related
algorithms encapsulated in a driver class called the Context. Your client
program can select one of these differing algorithms, or in some cases, the
Context might select the best one for you. The intent is to make these
algorithms interchangeable and provide a way to choose the most
appropriate one. The difference between State and Strategy is that the user
generally chooses which of several strategies to apply and that only one
strategy at a time is likely to be instantiated and active within the Context
class. By contrast, as we have seen, it is possible that all of the different
States will be active at once, and switching may occur frequently between
them. In addition, Strategy encapsulates several algorithms that do more or
less the same thing, whereas State encapsulates related classes that each do
something somewhat differently. Finally, the concept of transition
between different states is completely missing in the Strategy pattern.

Motivation
A program that requires a particular service or function and that has
several ways of carrying out that function is a candidate for the Strategy
pattern. Programs choose between these algorithms based on
computational efficiency or user choice. There can be any number of
strategies, more can be added, and any of them can be changed at any
time.

There are a number of cases in programs where we’d like to do the same
thing in several different ways. Some of these are listed in the Smalltalk
Companion.

• Save files in different formats.

• Compress files using different algorithms

Copyright © , 2002 by James W Cooper

391

• Capture video data using different compression schemes.

• Use different line-breaking strategies to display text data.

• Plot the same data in different formats: line graph, bar chart, or
pie chart.

In each case we could imagine the client program telling a driver module
(Context) which of these strategies to use and then asking it to carry out
the operation.

The idea behind Strategy is to encapsulate the various strategies in a single
module and provide a simple interface to allow choice between these
strategies. Each of them should have the same programming interface,
although they need not all be members of the same class hierarchy.
However, they do have to implement the same programming interface.

Sample Code
Let’s consider a simplified graphing program that can present data as a
line graph or a bar chart. We’ll start with an abstract PlotStrategy class and
derive the two plotting classes from it, as illustrated in Figure 29-1.

Plot
Strategy

LinePlot
Strategy

BarPlot
Strategy

Figure 29-1 – Two instance of a PlotStrategy class

Our base PlotStrategy class is an abstract class containing the plot routine
to be filled in in the derived strategy classes. It also contains the max and

Copyright © , 2002 by James W Cooper

392

min computation code, which we will use in the derived classes by
containing an instance of this class.
public abstract class PlotStrategy {
 public abstract void plot(float[] x, float[] y);
}
Then of the derived classes must implement a method called plot with two
float arrays as arguments. Each of these classes can do any kind of plot
that is appropriate.

The Context
The Context class is the traffic cop that decides which strategy is to be
called. The decision is usually based on a request from the client program,
and all that the Context needs to do is to set a variable to refer to one
concrete strategy or another.
public class Context {
 float[] x, y;
 PlotStrategy plts; //strategy selected goes here
 //-----
 public void plot() {
 readFile(); //read in data
 plts.plot (x, y);
 }
 //-----
 //select bar plot
 public void setBarPlot() {
 plts = new BarPlotStrategy ();
 }
 //-----
 //select line plot
 public void setLinePlot() {
 plts = new LinePlotStrategy();
 }
 //-----
 public void readFile() {
 //reads data in from data file

 }
}

Copyright © , 2002 by James W Cooper

393

The Context class is also responsible for handling the data. Either it
obtains the data from a file or database or it is passed in when the Context
is created. Depending on the magnitude of the data, it can either be passed
on to the plot strategies or the Context can pass an instance of itself into
the plot strategies and provide a public method to fetch the data.

The Program Commands
This simple program (Figure 29-2) is just a panel with two buttons that
call the two plots. Each of the buttons is a derived button class the
implements the Command interface. It selects the correct strategy and then
calls the Context’s plot routine. For example, here is the complete Line
graph command button class.

Figure 29-2 – A simple panel to call two different plots

public class LineButton : System.Windows.Forms.Button, Command
{
 private System.ComponentModel.Container components = null;
 private Context contxt;

 public LineButton() {
 InitializeComponent();
 this.Text = "Line plot";
 }
 public void setContext(Context ctx) {
 contxt = ctx;
 }
 public void Execute() {
 contxt.setLinePlot();
 contxt.plot();
 }

Copyright © , 2002 by James W Cooper

394

The Line and Bar Graph Strategies
The two strategy classes are pretty much the same: They set up the
window size for plotting and call a plot method specific for that display
panel. Here is the Line plot Strategy.
public class LinePlotStrategy : PlotStrategy {
 public override void plot(float[] x, float[] y) {
 LinePlot lplt = new LinePlot();
 lplt.Show ();
 lplt.plot (x, y);
 }
}
The BarPlotStrategy is more or less identical.

The plotting amounts to copying in a reference to the x and y arrays,
calling the scaling routine and then causing the Picturebox control to be
refreshed, which will then call the paint routine to paint the bars.
public void plot(float[] xp, float[] yp) {
 x = xp;
 y = yp;
 setPlotBounds(); //compute scaling factors
 hasData = true;
 pic.Refresh();
}

Drawing Plots in C#
Note that both the LinePlot and the BarPlot window have plot methods
that are called by the plot methods of the LinePlotStrategy and
BarPlotStrategy classes. Both plot windows have a setBounds method
that computes the scaling between the window coordinates and the x-y
coordinate scheme. Since they can use the same scaling function, we write
it once in the BarPlot window and derive the LinePlot window from it to
use the same methods.
public virtual void setPlotBounds() {

findBounds();
 //compute scaling factors
 h = pic.Height;
 w = pic.Width;

Copyright © , 2002 by James W Cooper

395

 xfactor = 0.8F * w / (xmax - xmin);
 xpmin = 0.05F * w;
 xpmax = w - xpmin;
 yfactor = 0.9F * h / (ymax - ymin);
 ypmin = 0.05F * h;
 ypmax = h - ypmin;
 //create array of colors for bars
 colors = new ArrayList();
 colors.Add(new SolidBrush(Color.Red));
 colors.Add(new SolidBrush(Color.Green));
 colors.Add(new SolidBrush(Color.Blue));
 colors.Add(new SolidBrush(Color.Magenta));
 colors.Add(new SolidBrush(Color.Yellow));
}
//-----
public int calcx(float xp) {
 int ix = (int)((xp - xmin) * xfactor + xpmin);
 return ix;
}
//-----
public int calcy(float yp) {
 yp = ((yp - ymin) * yfactor);
 int iy = h - (int)(ypmax - yp);
 return iy;
}

Making Bar Plots
The actual bar plot is drawn in a Paint routine that is called when a paint
event occurs.
protected virtual void pic_Paint(object sender, PaintEventArgs e)
{
 Graphics g = e.Graphics;
 if (hasData) {
 for (int i = 0; i< x.Length; i++){
 int ix = calcx(x[i]);
 int iy = calcy(y[i]);
 Brush br = (Brush)colors[i];

 g.FillRectangle(br, ix, h - iy, 20, iy);
 }
}

Copyright © , 2002 by James W Cooper

396

Making Line Plots
The LinePlot class is very simple, since we derive it from the BarPlot
class, and we need only write a new Paint method:
public class LinePlot :BarPlot {
 public LinePlot() {
 bPen = new Pen(Color.Black);
 this.Text = "Line Plot";
 }
 protected override void pic_Paint(object sender,

 PaintEventArgs e) {
 Graphics g= e.Graphics;
 if (hasData) {
 for (int i = 1; i< x.Length; i++) {
 int ix = calcx(x[i - 1]);
 int iy = calcy(y[i - 1]);
 int ix1 = calcx(x[i]);
 int iy1 = calcy(y[i]);
 g.DrawLine(bPen, ix, iy, ix1, iy1);
 }
 }
 }
}
The UML diagram showing these class relations is shown in Figure 29-3

Copyright © , 2002 by James W Cooper

397

Figure 29-3 – The UML Diagram for the Strategy pattern

The final two plots are shown in Figure 29-4.

Copyright © , 2002 by James W Cooper

398

Figure 29-4– The line graph (left) and the bar graph (right)

Consequences of the Strategy Pattern
Strategy allows you to select one of several algorithms dynamically. These
algorithms can be related in an inheritance hierarchy, or they can be
unrelated as long as they implement a common interface. Since the
Context switches between strategies at your request, you have more
flexibility than if you simply called the desired derived class. This
approach also avoids the sort of condition statements that can make code
hard to read and maintain.

On the other hand, strategies don’t hide everything. The client code is
usually aware that there are a number of alternative strategies, and it has
some criteria for choosing among them. This shifts an algorithmic
decision to the client programmer or the user.

Since there are a number of different parameters that you might pass to
different algorithms, you have to develop a Context interface and strategy
methods that are broad enough to allow for passing in parameters that are
not used by that particular algorithm. For example the setPenColor
method in our PlotStrategy is actually only used by the LineGraph
strategy. It is ignored by the BarGraph strategy, since it sets up its own list
of colors for the successive bars it draws.

Programs on the CD-ROM
\Strategy plot strategy

Copyright © , 2002 by James W Cooper

399

30. The Template Method Pattern

The Template Method pattern is a very simple pattern that you will find yourself
using frequently. Whenever you write a parent class where you leave one or more
of the methods to be implemented by derived classes, you are in essence using
the Template pattern. The Template pattern formalizes the idea of defining an
algorithm in a class but leaving some of the details to be implemented in
subclasses. In other words, if your base class is an abstract class, as often
happens in these design patterns, you are using a simple form of the Template
pattern.

Motivation
Templates are so fundamental, you have probably used them dozens of
times without even thinking about it. The idea behind the Template pattern
is that some parts of an algorithm are well defined and can be
implemented in the base class, whereas other parts may have several
implementations and are best left to derived classes. Another main theme
is recognizing that there are some basic parts of a class that can be
factored out and put in a base class so they do not need to be repeated in
several subclasses.

For example, in developing the BarPlot and LinePlot classes we used in
the Strategy pattern examples in the previous chapter, we discovered that
in plotting both line graphs and bar charts we needed similar code to scale
the data and compute the x and y pixel positions.
public abstract class PlotWindow : Form {
 protected float ymin, ymax, xfactor, yfactor;
 protected float xpmin, xpmax, ypmin, ypmax, xp, yp;
 private float xmin, xmax;
 protected int w, h;
 protected float[] x, y;
 protected Pen bPen;
 protected bool hasData;
 protected const float max = 1.0e38f;
 protected PictureBox pic;
 //-----

Copyright © , 2002 by James W Cooper

400

 protected virtual void init() {
 pic.Paint += new PaintEventHandler (pic_Paint);
 }
 //-----
 public void setPenColor(Color c){
 bPen = new Pen(c);
 }
 //-----
 public void plot(float[] xp, float[] yp) {
 x = xp;
 y = yp;
 setPlotBounds(); //compute scaling factors
 hasData = true;
 }
 //-----
 public void findBounds() {
 xmin = max;
 xmax = -max;
 ymin = max;
 ymax = -max;
 for (int i = 0; i< x.Length ; i++) {

 if (x[i] > xmax) xmax = x[i];
 if (x[i] < xmin) xmin = x[i];

 if (y[i] > ymax) ymax = y[i];
 if (y[i] < ymin) ymin = y[i];
 }
 }
 //-----
 public virtual void setPlotBounds() {
 findBounds();
 //compute scaling factors
 h = pic.Height;
 w = pic.Width;
 xfactor = 0.8F * w / (xmax - xmin);
 xpmin = 0.05F * w;
 xpmax = w - xpmin;
 yfactor = 0.9F * h / (ymax - ymin);
 ypmin = 0.05F * h;
 ypmax = h - ypmin;
 }
 //-----
 public int calcx(float xp) {
 int ix = (int)((xp - xmin) * xfactor + xpmin);
 return ix;
 }

Copyright © , 2002 by James W Cooper

401

 //-----
 public int calcy(float yp) {
 yp = ((yp - ymin) * yfactor);
 int iy = h - (int)(ypmax - yp);
 return iy;
 }
 //-----
 public abstract void repaint(Graphics g) ;
 //-----
 protected virtual void pic_Paint(object sender,

 PaintEvntArgs e) {
 Graphics g = e.Graphics;
 repaint(g);
 }
}

Thus, these methods all belong in a base PlotPanel class without any
actual plotting capabilities. Note that the pic_Paint event handler just calls
the abstract repaint method. The actual repaint method is deferred to the
derived classes. It is exactly this sort of extension to derived classes that
exemplifies the Template Method pattern.

Kinds of Methods in a Template Class
As discussed in Design Patterns, the Template Method pattern has four
kinds of methods that you can use in derived classes.

1. Complete methods that carry out some basic function that all the
subclasses will want to use, such as calcx and calcy in the preceding
example. These are called Concrete methods.

2. Methods that are not filled in at all and must be implemented in
derived classes. In C#, you would declare these as virtual methods.

3. Methods that contain a default implementation of some operations but
that may be overridden in derived classes. These are called Hook
methods. Of course, this is somewhat arbitrary because in C# you can
override any public or protected method in the derived class but Hook
methods, however, are intended to be overridden, whereas Concrete
methods are not.

Copyright © , 2002 by James W Cooper

402

4. Finally, a Template class may contain methods that themselves call
any combination of abstract, hook, and concrete methods. These
methods are not intended to be overridden but describe an algorithm
without actually implementing its details. Design Patterns refers to
these as Template methods.

Sample Code
Let’s consider a simple program for drawing triangles on a screen. We’ll
start with an abstract Triangle class and then derive some special triangle
types from it, as we see in Figure 30-1

Figure 30-1 – The abstract Triangle class and three of its subclasses

Our abstract Triangle class illustrates the Template pattern.

public abstract class Triangle {
 private Point p1, p2, p3;
 protected Pen pen;
 //-----
 public Triangle(Point a, Point b, Point c) {
 p1 = a;

Copyright © , 2002 by James W Cooper

403

 p2 = b;
 p3 = c;
 pen = new Pen(Color.Black , 1);
 }
 //-----
 public virtual void draw(Graphics g) {
 g.DrawLine (pen, p1, p2);
 Point c = draw2ndLine(g, p2, p3);
 closeTriangle(g, c);
 }
 //-----
 public abstract Point draw2ndLine(Graphics g,

Point a, Point b);
 //-----
 public void closeTriangle(Graphics g, Point c) {
 g.DrawLine (pen, c, p1);
 }
}

This Triangle class saves the coordinates of three lines, but the draw
routine draws only the first and the last lines. The all- important
draw2ndLine method that draws a line to the third point is left as an
abstract method. That way the derived class can move the third point to
create the kind of rectangle you wish to draw.

This is a general example of a class using the Template pattern. The draw
method calls two concrete base class methods and one abstract method
that must be overridden in any concrete class derived from Triangle.

Another very similar way to implement the triangle class is to include
default code for the draw2ndLine method.
public virtual void draw2ndLine(Graphics g,

Point a, Point b) {
 g.drawLine(a, b);
}

In this case, the draw2ndLine method becomes a Hook method that can be
overridden for other classes.

Copyright © , 2002 by James W Cooper

404

Drawing a Standard Triangle
To draw a general triangle with no restrictions on its shape, we simply
implement the draw2ndLine method in a derived stdTriangle class.
public class StdTriangle :Triangle {
 public StdTriangle(Point a, Point b, Point c)

: base(a, b, c) {}
 //------
 public override Point draw2ndLine(Graphics g,

Point a, Point b) {
 g.DrawLine (pen, a, b);
 return b;
 }
}

Drawing an Isosceles Triangle
This class computes a new third data point that will make the two sides
equal in length and saves that new point inside the class.
public class IsocelesTriangle : Triangle {
 private Point newc;
 private int newcx, newcy;
 //-----
 public IsocelesTriangle(Point a, Point b, Point c) :

 base(a, b, c) {
 float dx1, dy1, dx2, dy2, side1, side2;

 float slope, intercept;
 int incr;

 dx1 = b.X - a.X;
 dy1 = b.Y - a.Y;
 dx2 = c.X - b.X;
 dy2 = c.Y - b.Y;

 side1 = calcSide(dx1, dy1);
 side2 = calcSide(dx2, dy2);

 if (side2 < side1)
 incr = -1;
 else
 incr = 1;
 slope = dy2 / dx2;
 intercept = c.Y - slope * c.X;

Copyright © , 2002 by James W Cooper

405

 //move point c so that this is an isoceles triangle
 newcx = c.X;
 newcy = c.Y;
 while (Math.Abs (side1 - side2) > 1) {

//iterate a pixel at a time until close
newcx = newcx + incr;

 newcy = (int)(slope * newcx + intercept);
 dx2 = newcx - b.X;
 dy2 = newcy - b.Y;
 side2 = calcSide(dx2, dy2);
 }
 newc = new Point(newcx, newcy);
 }
 //-----
 private float calcSide(float a, float b) {
 return (float)Math.Sqrt (a*a + b*b);
 }
}
When the Triangle class calls the draw method, it calls this new version of
draw2ndLine and draws a line to the new third point. Further, it returns that new
point to the draw method so it will draw the closing side of the triangle correctly.

 public override Point draw2ndLine(Graphics g,
Point b, Point c) {

 g.DrawLine (pen, b, newc);
 return newc;
 }

The Triangle Drawing Program
The main program simply creates instances of the triangles you want to
draw. Then it adds them to an ArrayList in the TriangleForm class.
private void init() {
 triangles = new ArrayList();
 StdTriangle t1 = new StdTriangle(new Point(10, 10),
 new Point(150, 50),
 new Point(100, 75));
 IsocelesTriangle t2 = new IsocelesTriangle(
 new Point(150, 100), new Point(240, 40),
 new Point(175, 150));
 triangles.Add(t1);
 triangles.Add(t2);
 Pic.Paint+= new PaintEventHandler (TPaint);

Copyright © , 2002 by James W Cooper

406

}

It is the TPaint method in this class that actually draws the triangles, by calling
each Triangle’s draw method.
private void TPaint (object sender,

 System.Windows.Forms.PaintEventArgs e) {
 Graphics g = e.Graphics;
 for (int i = 0; i< triangles.Count ; i++) {
 Triangle t = (Triangle)triangles[i];
 t.draw(g);
 }
}

A standard triangle and an isosceles triangle are shown in Figure 30-2.

Figure 30-2 – A standard triangle and an isosceles triangle

Templates and Callbacks
Design Patterns points out that Templa tes can exemplify the “Hollywood
Principle,” or “Don’t call us, we’ll call you.” The idea here is that methods

Copyright © , 2002 by James W Cooper

407

in the base class seem to call methods in the derived classes. The operative
word here is seem. If we consider the draw code in our base Triangle
class, we see that there are three method calls.

g.DrawLine (pen, p1, p2);
 Point c = draw2ndLine(g, p2, p3);
 closeTriangle(g, c);

Now drawLine and closeTriangle are implemented in the base class. However, as
we have seen, the draw2ndLine method is not implemented at all in the base
class, and various derived classes can implement it differently. Since the actual
methods that are being called are in the derived classes, it appears as though they
are being called from the base class.

If this idea makes you uncomfortable, you will probably take solace in
recognizing that all the method calls originate from the derived class and
that these calls move up the inheritance chain until they find the first class
that implements them. If this class is the base class—fine. If not, it could
be any other class in between. Now, when you call the draw method, the
derived class moves up the inheritance tree until it finds an
implementation of draw. Likewise, for each method called from within
draw, the derived class starts at the current class and moves up the tree to
find each method. When it gets to the draw2ndLine method, it finds it
immediately in the current class. So it isn’t “really” called from the base
class, but it does seem that way.

Summary and Consequences
Template patterns occur all the time in OO software and are neither
complex nor obscure in intent. They are a normal part of OO
programming, and you shouldn’t try to make them into more than they
actually are.

The first significant point is that your base class may only define some of
the methods it will be using, leaving the rest to be implemented in the
derived classes. The second major point is that there may be methods in

Copyright © , 2002 by James W Cooper

408

the base class that call a sequence of methods, some implemented in the
base class and some implemented in the derived class. This Template
method defines a general algorithm, although the details may not be
worked out completely in the base class.

Template classes will frequently have some abstract methods that you
must override in the derived classes, and they may also have some classes
with a simple “placeholder” implementation that you are free to override
where this is appropriate. If these placeholder classes are called from
another method in the base class, then we call these overridable methods
“Hook” methods.

Programs on the CD-ROM
\Template\Strategy plot strategy using Template

method pattern
\Template\Template plot of triangles

Copyright © , 2002 by James W Cooper

409

31. The Visitor Pattern

The Visitor pattern turns the tables on our object-oriented model and
creates an external class to act on data in other classes. This is useful when
you have a polymorphic operation that cannot reside in the class hierarchy
for some reason—for example, because the operation wasn’t considered
when the hierarchy was designed or it would clutter the interface of the
classes unnecessarily.

Motivation
While at first it may seem “unclean” to put operations inside one class that
should be in another, there are good reasons for doing so. Suppose each of
a number of drawing object classes has similar code for drawing itself.
The drawing methods may be different, but they probably all use
underlying utility functions that we might have to duplicate in each class.
Further, a set of closely related functions is scattered throughout a number
of different classes, as shown in Figure 31-1.

Figure 31-1 – A DrawObject and three of its subclasses

Instead, we write a Visitor class that contains all the related draw methods
and have it visit each of the objects in succession (Figure 31-2).

Copyright © , 2002 by James W Cooper

410

Figure 31-2 – A Visitor class (Drawer) that visits each of three triangle classes

The first question that most people ask about this pattern is “What does
visiting mean?” There is only one way that an outside class can gain
access to another class, and that is by calling its public methods. In the
Visitor case, visiting each class means that you are calling a method
already installed for this purpose, called accept. The accept method has
one argument: the instance of the visitor. In return, it calls the visit method
of the Visitor, passing itself as an argument, as shown in Figure 31-3.

Visitor Visited
instancev.visit(Me)

visited.accept(v)

Figure 31-3 - How the visit and accept methods interact

Copyright © , 2002 by James W Cooper

411

Putting it in simple code terms, every object that you want to visit must have the
following method.

 public virtual void accept(Visitor v) {
 v.visit(this);
 }

In this way, the Visitor object receives a reference to each of the instances, one
by one, and can then call its public methods to obtain data, perform calculations,
generate reports, or just draw the object on the screen. Of course, if the class does
not have an accept method, you can subclass it and add one.

When to Use the Visitor Pattern
You should consider using a Visitor pattern when you want to perform an
operation on the data contained in a number of objects that have different
interfaces. Visitors are also valuable if you have to perform a number of
unrelated operations on these classes. Visitors are a useful way to add
function to class libraries or frameworks for which you either do not have
the course or cannot change the source for other technical (or political)
reasons. In these latter cases, you simply subclass the classes of the
framework and add the accept method to each subclass.

On the other hand, as we will see, Visitors are a good choice only when
you do not expect many new classes to be added to your program.

Sample Code
Let’s consider a simple subset of the Employee problem we discussed in
the Composite pattern. We have a simple Employee object that maintains
a record of the employee’s name, salary, vacation taken, and number of
sick days taken. The following is a simple version of this class.
public class Employee {
 int sickDays, vacDays;
 float salary;
 string name;
 public Employee(string name, float salary,

int vDays, int sDays) {
 this.name = name;
 this.salary = salary;

Copyright © , 2002 by James W Cooper

412

 sickDays = sDays;
 vacDays = vDays;
}
//-----
public string getName() {
 return name;
}
public int getSickDays() {
 return sickDays;
}
public int getVacDays() {
 return vacDays;
}
public float getSalary() {
 return salary;
}
public virtual void accept(Visitor v) {
 v.visit(this);
}
}

Note that we have included the accept method in this class. Now let’s
suppose that we want to prepare a report on the number of vacation days
that all employees have taken so far this year. We could just write some
code in the client to sum the results of calls to each Employee’s
getVacDays function, or we could put this function into a Visitor.

Since C# is a strongly typed language, our base Visitor class needs to have
a suitable abstract visit method for each kind of class in your program. In
this first simple example, we only have Employees, so our basic abstract
Visitor class is just the following.
public abstract class Visitor {
 public abstract void visit(Employee emp);
 public abstract void visit(Boss bos);
}

Notice that there is no indication what the Visitor does with each class in
either the client classes or the abstract Visitor class. We can, in fact, write
a whole lot of visitors that do different things to the classes in our

Copyright © , 2002 by James W Cooper

413

program. The Visitor we are going to write first just sums the vacation
data for all our employees.
public class VacationVisitor : Visitor {
 private int totalDays;
 //-----
 public VacationVisitor() {
 totalDays = 0;
 }
 //-----
 public int getTotalDays() {
 return totalDays;
 }
 //-----
 public override void visit(Employee emp){
 totalDays += emp.getVacDays ();
 }
 //-----
 public override void visit(Boss bos){
 totalDays += bos.getVacDays ();
 }
}

Visiting the Classes
Now all we have to do to compute the total vacation days taken is go
through a list of the employees, visit each of them, and ask the Visitor for
the total.
for (int i = 0; i< empls.Length; i++) {
 empls[i].accept(vac); //get the employee
}
lsVac.Items.Add("Total vacation days=" +

vac.getTotalDays().ToString());

Let’s reiterate what happens for each visit.

1. We move through a loop of all the Employees.

2. The Visitor calls each Employee’s accept method.

3. That instance of Employee calls the Visitor’s visit method.

Copyright © , 2002 by James W Cooper

414

4. The Visitor fetches the vacation days and adds them into the
total.

5. The main program prints out the total when the loop is
complete.

Visiting Several Classes
The Visitor becomes more useful when there are a number of different
classes with different interfaces and we want to encapsulate how we get
data from these classes. Let’s extend our vacation days model by
introducing a new Employee type called Boss. Let’s further suppose that
at this company, Bosses are rewarded with bonus vacation days (instead of
money). So the Boss class has a couple of extra methods to set and obtain
the bonus vacation day information.
public class Boss : Employee {
 private int bonusDays;
 public Boss(string name, float salary,

int vdays, int sdays):
base(name, salary, vdays, sdays) { }

 public void setBonusDays(int bdays) {
 bonusDays = bdays;
 }
 public int getBonusDays() {
 return bonusDays;
 }
 public override void accept(Visitor v) {
 v.visit(this);
 }
}

When we add a class to our program, we have to add it to our Visitor as
well, so that the abstract template for the Visitor is now the following.
public abstract class Visitor {
 public abstract void visit(Employee emp);
 public abstract void visit(Boss bos);
}

Copyright © , 2002 by James W Cooper

415

This says that any concrete Visitor classes we write must provide polymorphic
visit methods for both the Employee class and the Boss class. In the case of our
vacation day counter, we need to ask the Bosses for both regular and bonus days
taken, so the visits are now different. We’ll write a new bVacationVisitor class
that takes account of this difference.

public class bVacationVisitor :Visitor {
 private int totalDays;
 public bVacationVisitor() {
 totalDays = 0;
 }
 //-----
 public override void visit(Employee emp) {
 totalDays += emp.getVacDays();
 try {
 Manager mgr = (Manager)emp;
 totalDays += mgr.getBonusDays();
 }
 catch(Exception){}
 }
 //-----
 public override void visit(Boss bos) {
 totalDays += bos.getVacDays();
 totalDays += bos.getBonusDays();
 }
 //-----
 public int getTotalDays() {
 return totalDays;
 }
}
Note that while in this case Boss is derived from Employee, it need not be
related at all as long as it has an accept method for the Visitor class. It is
quite important, however, that you implement a visit method in the Visitor
for every class you will be visiting and not count on inheriting this
behavior, since the visit method from the parent class is an Employee
rather than a Boss visit method. Likewise, each of your derived classes
(Boss, Employee, etc.) must have its own accept method rather than
calling one in its parent class. This is illustrated in the class diagram in
Figure 31-4.

Copyright © , 2002 by James W Cooper

416

Visitor

+visit(emp)
+visit(bos)

Boss

+New
+setBonusDays
+getBonusDays:Integer
+accept

Employee

+New
+getName
+getSalary
+getSickdays
+getVacDays
+acceptVacationVisitor

bVacationVisitor

Figure 31-4 – The two visitor classes visiting the Boss and Employee classes

Bosses Are Employees, Too
We show in Figure 31-5 a simple application that carries out both
Employee visits and Boss visits on the collection of Employees and
Bosses. The original VacationVisitor will just treat Bosses as Employees
and get only their ordinary vacation data. The bVacationVisitor will get
both.
for (int i = 0; i< empls.Length; i++) {
 empls[i].accept(vac); //get the employee
 empls[i].accept(bvac);
}
lsVac.Items.Add("Total vacation days=" +

vac.getTotalDays().ToString());
lsVac.Items.Add("Total boss vacation days=" +

Copyright © , 2002 by James W Cooper

417

bvac.getTotalDays().ToString());
The two lines of displayed data represent the two sums that are computed when
the user clicks on the Vacations button.

Figure 31-5 – A simple application that performs the vacation visits described

Catch-All Operations with Visitors
In the preceding cases, the Visitor class has a visit method for each
visiting class, such as the following.
public abstract void visit(Employee emp);
public abstract void visit(Boss bos);

However, if you start subclassing your visitor classes and adding new classes that
might visit, you should recognize that some visit methods might not be satisfied
by the methods in the derived class. These might instead “fall through” to
methods in one of the parent classes where that object type is recognized. This
provides a way of specifying default visitor behavior.

Copyright © , 2002 by James W Cooper

418

Now every class must override accept(v) with its own implementation so
the return call v.visit(this) returns an object this of the correct type and not
of the superclass’s type.

Let’s suppose that we introduce another layer of management into our
company: the Manager. Managers are subclasses of Employees, and now
they have the privileges formerly reserved for Bosses of extra vacation
days. Bosses now have an additional reward—stock options. Now if we
run the same program to compute vacation days but do not revise our
Visitor to look for Managers, it will recognize them as mere Employees
and count only their regular vacation and not their extra vacation days.
However, the catch-all parent class is a good thing if subclasses may be
added to the application from time to time and you want the visitor
operations to continue to run without modification.

There are three ways to integrate the new Manager class into the visitor
system. You could define a ManagerVisitor or use the BossVisitor to
handle both. However, there could be conditions when continually
modifying the Visitor structure is not desirable. In that case, you could
simply test for this special case in the EmployeeVisitor class.
public override void visit(Employee emp) {
 totalDays += emp.getVacDays();
 try {
 Manager mgr = (Manager)emp;
 totalDays += mgr.getBonusDays();
 }
 catch(Exception){}
}

While this seems “unclean” at first compared to defining classes properly, it can
provide a method of catching special cases in derived classes without writing
whole new visitor program hierarchies. This “catch-all” approach is discussed in
some detail in the book Pattern Hatching (Vlissides 1998).

Copyright © , 2002 by James W Cooper

419

Double Dispatching
No discussion on the Visitor pattern is complete without mentioning that
you are really dispatching a method twice for the Visitor to work. The
Visitor calls the polymorphic accept method of a given object, and the
accept method calls the polymorphic visit method of the Visitor. It is this
bidirectional calling that allows you to add more operations on any class
that has an accept method, since each new Visitor class we write can carry
out whatever operations we might think of using the data available in these
classes.

Why Are We Doing This?
You may be asking yourself why we are jumping through these hoops
when we could call the getVacationDays methods directly. By using this
“callback” approach, we are implementing “double dispatching.” There is
no requirement that the objects we visit be of the same or even of related
types. Further, using this callback approach, you can have a different visit
method called in the Visitor, depending on the actual type of class. This is
harder to implement directly.

Further, if the list of objects to be visited in an ArrayList is a collection of
different types, having different versions of the visit methods in the actual
Visitor is the only way to handle the problem without specifically
checking the type of each class.

Traversing a Series of Classes
The calling program that passes the class instances to the Visitor must
know about all the existing instances of classes to be visited and must
keep them in a simple structure such as an array or collection. Another
possibility would be to create an Enumeration of these classes and pass it
to the Visitor. Finally, the Visitor itself could keep the list of objects that it
is to visit. In our simple example program, we used an array of objects, but
any of the other methods would work equally well.

Copyright © , 2002 by James W Cooper

420

Consequences of the Visitor Pattern
The Visitor pattern is useful when you want to encapsulate fetching data
from a number of instances of several classes. Design Patterns suggests
that the Visitor can provide additional functionality to a class without
changing it. We prefer to say that a Visitor can add functionality to a
collection of classes and encapsulate the methods it uses.

The Visitor is not magic, however, and cannot obtain private data from
classes. It is limited to the data available from public methods. This might
force you to provide public methods that you would otherwise not have
provided. However, it can obtain data from a disparate collection of
unrelated classes and utilize it to present the results of a global calculation
to the user program.

It is easy to add new operations to a program using Visitors, since the
Visitor contains the code instead of each of the individual classes. Further,
Visitors can gather related operations into a single class rather than forcing
you to change or derive classes to add these operations. This can make the
program simpler to write and maintain.

Visitors are less helpful during a program’s growth stage, since each time
you add new classes that must be visited, you have to add an abstract visit
operation to the abstract Visitor class, and you must add an
implementation for that class to each concrete Visitor you have written.
Visitors can be powerful additions when the program reaches the point
where many new classes are unlikely.

Visitors can be used very effectively in Composite systems, and the boss-
employee system we just illustrated could well be a Composite like the
one we used in the Composite chapter.

Thought Question
An investment firm’s customer records consist of an object for each stock
or other financial instrument each investor owns. The object contains a
history of the purchase, sale, and dividend activities for that stock. Design

Copyright © , 2002 by James W Cooper

421

a Visitor pattern to report on net end-of-year profit or loss on stocks sold
during the year.

Programs on the CD-ROM
\Visitor\ Visitor example

Copyright © , 2002 by James W Cooper

422

32. Bibliography

Copyright © , 2002 by James W Cooper

423

Alexander, Christopher, Ishikawa, Sara, et. al. A Pattern Language, Oxford University
Press, New York, 1977.

Alpert, S. R., Brown, K., and Woolf, B. The Design Patterns Smalltalk Companion,
Addison-Wesley, Reading, MA, 1998.

Arnold, K., and Gosling, J. The Java Programming Language, Addison-Wesley,
Reading, MA, 1997.

Booch, G., Jacobson, I., and Rumbaugh, J. The Unified Modeling Language User Guide,
Addison-Wesley, Reading, MA, 1998.

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. A System of
Patterns, John Wiley and Sons, New York, 1996.

Cooper, J. W. Java Design Patterns: A Tutorial. Addison-Wesley, Reading, MA, 2000.

Cooper, J. W. Principles of Object-Oriented Programming in Java 1.1 Coriolis
(Ventana), 1997.

Cooper, J.W. Visual Basic Design Patterns: VB6 and VB.NET, Addison-Wesley, Boston,
MA, 2001.

Coplien, James O. Advanced C++ Programming Styles and Idioms, Addison-Wesley,
Reading, MA, 1992.

Coplien, James O., and Schmidt, Douglas C. Pattern Languages of Program Design,
Addison-Wesley, Reading, MA, 1995.

Fowler, Martin, with Kendall Scott. UML Distilled, Addison-Wesley, Reading, MA,
1997.

Gamma, E., Helm, T., Johnson, R., and Vlissides, J. Design Patterns: Abstraction and
Reuse of Object Oriented Design. Proceedings of ECOOP ’93, 405—431.

Gamma, Eric, Helm, Richard, Johnson, Ralph, and Vlissides, John. Design Patterns.
Elements of Reusable Software, Addison-Wesley, Reading, MA, 1995.

Grand, Mark Patterns in Java, Volume 1, John Wiley & Sons, New York 1998.

Krasner, G.E. and Pope, S.T. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programmng I(3)., 1988

Kurata, Deborah, “Programming with Objects,” Visual Basic Programmer’s Journal,
June, 1998.

Pree, Wolfgang, Design Patterns for Object Oriented Software Development, Addison-
Wesley, 1994.

Riel, Arthur J., Object-Oriented Design Heuristics, Addison-Wesley, Reading, MA, 1996

Vlissides, John, Pattern Hatching: Design Patterns Applied, Addison-Wesley, Reading,
MA, 1998

Copyright © , 2002 by James W Cooper

424

