

Programming Microsoft Windows with C#
Programming Microsoft Windows with C#
by Charles Petzold

Microsoft Press © 2002

For the great people from [OR] Forum

Enjoy

Programming Microsoft Windows with C#
Charles Petzold

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2002 by Charles Petzold

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Petzold, Charles, 1953-
 Programming Microsoft Windows with C# / Charles Petzold.
 p. cm.
 Includes index.
 ISBN 0-7356-1370-2
 1. C# (Computer program language) 2. Microsoft Windows (Computer file) I. Title.

 QA76.73.C154 P48 2001
 005.26'8--dc21
 2001052178

1 2 3 4 5 6 7 8 9 QWT 7 6 5 4 3 2

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office or contact
Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at
www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

ClearType, Georgia, IntelliMouse, Microsoft, Microsoft Press, MS-DOS, MSDN, Natural, the .NET
logo, OpenType, Verdana, Visual Basic, Visual C#, Visual Studio, Webdings, Win32, Windows,
Windows NT, and Wingdings are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is intended or
should be inferred.

Acquisitions Editor: Danielle Bird
Project Editor: Sally Stickney
Technical Editor: Jean Ross

Body Part No. X08-22413

About The Author

Charles Petzold

Charles Petzold (www.charlespetzold.com) is a full-time freelance writer who has been programming
for Microsoft Windows since 1985 and writing about Windows programming for nearly as long. He
wrote the very first magazine article about Windows programming for the December 1986 issue of
Microsoft Systems Journal. His book Programming Windows (first published by Microsoft Press in
1988 and currently in its fifth edition) taught a generation of programmers how to write applications

http://www.microsoft.com/mspress
mailto:mspinput@microsoft.com
http://www.charlespetzold.com

for Windows. In May 1994, Petzold was one of only seven people (and the only writer) to be given a
Windows Pioneer Award from Windows Magazine and Microsoft Corporation for his contribution to
the success of Microsoft Windows. He is also the author of a unique introduction to the inner
workings of computers entitled Code: The Hidden Language of Computer Hardware and Software.
Petzold is currently researching a book on the historical origins of software.

The manuscript for this book was prepared and galleyed using Microsoft Word version 2000. Pages
were composed by Microsoft Press using Adobe PageMaker 6.52 for Windows, with text in
Garamond and display type in Helvetica Condensed. Composed pages were delivered to the printer
as electronic prepress files.

Cover Designer: Methodologie, Inc.

Interior Graphic Designer: James D. Kramer

Principal Compositor: Paula Gorelick

Interior Artist: Joel Panchot

Principal Copy Editor: Holly M. Viola

Indexer: Shane-Armstrong Information Systems

PROGRAMMING MICROSOFT WINDOWS WITH C# 2

WINDOWS PROGRAMMING: AN OVERVIEW.. 14
USER REQUIREMENTS... 15
SYSTEM REQUIREMENTS.. 16
THE ORGANIZATION OF THIS BOOK ... 16
THE CD-ROM ... 17
SUPPORT .. 17
SPECIAL THANKS .. 17

CHAPTER 1: CONSOLE THYSELF .. 19

OVERVIEW .. 19
THE C# VERSION.. 19
ANATOMY OF A PROGRAM.. 21
C# NAMESPACES ... 22
CONSOLE I/O ... 23
C# DATA TYPES.. 25
EXPRESSIONS AND OPERATORS .. 29
CONDITIONS AND ITERATIONS... 31
THE LEAP TO OBJECTS ... 34
PROGRAMMING IN THE KEY OF C#... 38
STATIC METHODS... 40
EXCEPTION HANDLING .. 41
THROWING EXCEPTIONS .. 43
GETTING AND SETTING PROPERTIES .. 44
CONSTRUCTORS... 47
INSTANCES AND INHERITANCE .. 51
A BIGGER PICTURE.. 54
NAMING CONVENTIONS... 55
BEYOND THE CONSOLE... 56

CHAPTER 2: HELLO, WINDOWS FORMS 57

OVERVIEW .. 57
THE MESSAGE BOX.. 58
THE FORM .. 63
SHOWING THE FORM ... 64
IT'S AN APPLICATION AND WE WANT TO RUN IT... 66
VARIATIONS ON A THEME ... 68
FORM PROPERTIES .. 68
EVENT-DRIVEN INPUT.. 70
HANDLING THE PAINT EVENT .. 71
DISPLAYING TEXT ... 74

The Font... 74
The Brush .. 75
The Coordinate Points ... 75

THE PAINT EVENT IS SPECIAL! ... 78
MULTIPLE FORMS, MULTIPLE HANDLERS .. 78
INHERITING FORMS .. 80
THE ONPAINT METHOD... 82
DOES MAIN BELONG HERE? ... 83
EVENTS AND "ON" METHODS.. 85

CHAPTER 3: ESSENTIAL STRUCTURES 89

OVERVIEW .. 89
CLASSES AND STRUCTURES.. 89
TWO-DIMENSIONAL COORDINATE POINTS... 90
ARRAYS OF POINTS.. 92
THE SIZE STRUCTURE... 92
THE FLOAT VERSIONS... 93
A RECTANGLE IS A POINT AND A SIZE .. 95
RECTANGLE PROPERTIES AND METHODS ... 96
A NICE-SIZED FORM.. 98
THE FORM AND THE CLIENT... 99
POINT CONVERSIONS .. 102
THE COLOR STRUCTURE.. 103
THE 141 COLOR NAMES... 104
PENS AND BRUSHES .. 104
SYSTEM COLORS.. 106
THE KNOWN COLORS .. 108
WHAT TO USE? ... 109
GETTING A FEEL FOR REPAINTS... 109
CENTERING HELLO WORLD ... 112
MEASURING THE STRING.. 115
TEXT IN A RECTANGLE .. 117

CHAPTER 4: AN EXERCISE IN TEXT OUTPUT 120

OVERVIEW .. 120
SYSTEM INFORMATION .. 120
SPACING LINES OF TEXT .. 120
PROPERTY VALUES.. 121
FORMATTING INTO COLUMNS .. 123
EVERYTHING IS AN OBJECT ... 125
LISTING THE SYSTEM INFORMATION.. 130
WINDOWS FORMS AND SCROLL BARS .. 132
SCROLLING A PANEL CONTROL .. 132
THE HERITAGE OF SCROLLABLECONTROL .. 136
SCROLLING WITHOUT CONTROLS.. 136
ACTUAL NUMBERS.. 138
DON'T BE A PIG... 141
REFLECTING ON THE FUTURE ... 142

CHAPTER 5: LINES, CURVES, AND AREA FILLS 149

OVERVIEW .. 149
HOW TO GET A GRAPHICS OBJECT ... 149
PENS, BRIEFLY.. 150
STRAIGHT LINES ... 151
AN INTRODUCTION TO PRINTING .. 152
PROPERTIES AND STATE .. 157
ANTI-ALIASING... 158
MULTIPLE CONNECTED LINES ... 160
CURVES AND PARAMETRIC EQUATIONS ... 164
THE UBIQUITOUS RECTANGLE .. 167
GENERALIZED POLYGONS.. 169
EASIER ELLIPSES.. 170
ARCS AND PIES ... 171
FILLING RECTANGLES, ELLIPSES, AND PIES ... 177
OFF BY 1 ... 178
POLYGONS AND THE FILLING MODE .. 180

CHAPTER 6: TAPPING INTO THE KEYBOARD 184

OVERVIEW .. 184
IGNORING THE KEYBOARD ... 184
WHO'S GOT THE FOCUS?... 184
KEYS AND CHARACTERS... 185
KEYS DOWN AND KEYS UP .. 186
THE KEYS ENUMERATION... 187
TESTING THE MODIFIER KEYS... 194
REALITY CHECK .. 195
A KEYBOARD INTERFACE FOR SYSINFO... 196
KEYPRESS FOR CHARACTERS .. 197
CONTROL CHARACTERS ... 198
LOOKING AT THE KEYS .. 199
INVOKING THE WIN32 API.. 203
HANDLING INPUT FROM FOREIGN KEYBOARDS .. 205
INPUT FOCUS ... 207
THE MISSING CARET ... 208
ECHOING KEY CHARACTERS ... 212
RIGHT-TO-LEFT PROBLEMS ... 216

CHAPTER 7: PAGES AND TRANSFORMS 218

OVERVIEW .. 218
DEVICE INDEPENDENCE THROUGH TEXT ... 218
HOW MUCH IS THAT IN REAL MONEY? ... 218
DOTS PER INCH .. 220
WHAT'S WITH THE PRINTER?... 221
MANUAL CONVERSIONS.. 222
PAGE UNITS AND PAGE SCALE ... 225
PEN WIDTHS .. 228
PAGE TRANSFORMS... 231

SAVING THE GRAPHICS STATE.. 232
METRICAL DIMENSIONS .. 233
ARBITRARY COORDINATES .. 237
WHAT YOU CAN'T DO.. 239
HELLO, WORLD TRANSFORM .. 240
THE BIG PICTURE ... 244
LINEAR TRANSFORMS.. 244
INTRODUCING MATRIXES .. 246
THE MATRIX CLASS ... 248
SHEAR AND SHEAR ALIKE .. 250
COMBINING TRANSFORMS.. 252

CHAPTER 8: TAMING THE MOUSE .. 254

OVERVIEW .. 254
THE DARK SIDE OF THE MOUSE ... 254
IGNORING THE MOUSE .. 255
SOME QUICK DEFINITIONS ... 255
INFORMATION ABOUT THE MOUSE ... 255
THE MOUSE WHEEL... 256
THE FOUR BASIC MOUSE EVENTS... 257
DOING THE WHEEL... 259
MOUSE MOVEMENT ... 262
TRACKING AND CAPTURING THE MOUSE.. 264
ADVENTURES IN TRACKING.. 267
GENERALIZING CODE WITH INTERFACES ... 274
CLICKS AND DOUBLE-CLICKS.. 277
MOUSE-RELATED PROPERTIES .. 278
ENTERING, LEAVING, HOVERING ... 279
THE MOUSE CURSOR .. 280
AN EXERCISE IN HIT-TESTING... 287
ADDING A KEYBOARD INTERFACE .. 289
PUTTING THE CHILDREN TO WORK.. 291
HIT-TESTING TEXT ... 296
SCRIBBLING WITH THE MOUSE.. 297

CHAPTER 9: TEXT AND FONTS ... 303

OVERVIEW .. 303
FONTS UNDER WINDOWS... 303
TALKING TYPE ... 303
FONT HEIGHTS AND LINE SPACING.. 305
DEFAULT FONTS ... 306
VARIATION ON A FONT... 306
CREATING FONTS BY NAME ... 309
A POINT SIZE BY ANY OTHER NAME…... 313
CLASH OF THE UNITS... 317
FONT PROPERTIES AND METHODS .. 319
NEW FONTS FROM FONTFAMILY .. 324

UNDERSTANDING THE DESIGN METRICS.. 326
ARRAYS OF FONT FAMILIES ... 329
FONT COLLECTIONS... 335
VARIATIONS ON DRAWSTRING .. 336
ANTI-ALIASED TEXT ... 337
MEASURING THE STRING.. 339
THE STRINGFORMAT OPTIONS ... 340
GRID FITTING AND TEXT FITTING ... 341
HORIZONTAL AND VERTICAL ALIGNMENT ... 343
THE HOTKEY DISPLAY ... 348
A CLIP AND A TRIM... 349
START A TAB.. 356

CHAPTER 10: THE TIMER AND TIME .. 363

OVERVIEW .. 363
THE TIMER CLASS .. 363
THE DATETIME STRUCTURE.. 366
LOCAL TIME AND UNIVERSAL TIME .. 368
THE TICK COUNT .. 370
CALENDARS AROUND THE WORLD .. 372
A READABLE RENDITION .. 374
A SIMPLE CULTURE-SPECIFIC CLOCK .. 378
THE RETRO LOOK... 383
AN ANALOG CLOCK.. 388
A LITTLE PUZZLE CALLED JEU DE TAQUIN... 394

CHAPTER 11: IMAGES AND BITMAPS .. 401

OVERVIEW .. 401
BITMAP SUPPORT OVERVIEW.. 402
BITMAP FILE FORMATS.. 402
LOADING AND DRAWING ... 405
IMAGE INFORMATION.. 409
RENDERING THE IMAGE... 413
FITTING TO A RECTANGLE .. 415
ROTATE AND SHEAR .. 420
DISPLAYING PART OF THE IMAGE ... 421
DRAWING ON THE IMAGE .. 426
MORE ON THE IMAGE CLASS ... 430
THE BITMAP CLASS.. 433
HELLO WORLD WITH A BITMAP ... 435
THE SHADOW BITMAP ... 437
BINARY RESOURCES ... 439
ANIMATION.. 443
THE IMAGE LIST .. 449
THE PICTURE BOX.. 452

CHAPTER 12: BUTTONS AND LABELS AND SCROLLS
(OH MY!) ... 456

OVERVIEW .. 456
BUTTONS AND CLICKS... 456
KEYBOARD AND MOUSE.. 459
CONTROL ISSUES ... 460
DEEPER INTO BUTTONS .. 460
APPEARANCE AND ALIGNMENT ... 464
BUTTONS WITH BITMAPS .. 466
MULTIPLE HANDLERS OR ONE?.. 469
DRAWING YOUR OWN BUTTONS .. 469
DROPPING ANCHOR... 474
DOCK AROUND THE CLOCK ... 477
CHILDREN OF THE FORM .. 480
Z-ORDER .. 482
THE CHECK BOX ... 482
THE THREE-STATE ALTERNATIVE .. 486
THE LABEL CONTROL .. 486
TAB STOPS AND TAB ORDER... 489
IDENTIFYING THE CONTROLS... 489
THE AUTO-SCALE OPTION ... 492

How the Windows Forms Designer Uses Auto-Scale .. 493
Creative AutoScaleBaseSize Settings .. 493
Inside Auto-Scale ... 494

A HEXADECIMAL CALCULATOR ... 496
RADIO BUTTONS AND GROUP BOXES ... 501
SCROLL BARS.. 504
THE TRACK BAR ALTERNATIVE ... 511

CHAPTER 13: BÉZIERS AND OTHER SPLINES 516

OVERVIEW .. 516
THE BÉZIER SPLINE IN PRACTICE .. 516
A MORE STYLISH CLOCK ... 520
COLLINEAR BÉZIERS.. 523
CIRCLES AND ARCS WITH BÉZIERS.. 525
BÉZIER ART.. 528
THE MATHEMATICAL DERIVATION .. 529
THE CANONICAL SPLINE ... 533
CANONICAL CURVE DERIVATION .. 539

CHAPTER 14: MENUS .. 543

OVERVIEW .. 543
MENUS AND MENU ITEMS ... 543
MENU SHORTCUT KEYS.. 545
YOUR FIRST MENU... 547
UNCONVENTIONAL MENUS... 550

MENUITEM PROPERTIES AND EVENTS.. 552
CHECKING THE ITEMS.. 554
WORKING WITH CONTEXT MENUS ... 557
THE MENU ITEM COLLECTION ... 561
THE STANDARD MENU (A PROPOSAL) ... 565
THE OWNER-DRAW OPTION .. 570

CHAPTER 15: PATHS, REGIONS, AND CLIPPING 580

OVERVIEW .. 580
A PROBLEM AND ITS SOLUTION.. 580
THE PATH, MORE FORMALLY.. 584
CREATING THE PATH ... 586
RENDERING THE PATH .. 589
PATH TRANSFORMS ... 593
OTHER PATH MODIFICATIONS... 595
CLIPPING WITH PATHS... 602
CLIPPING BITMAPS ... 607
REGIONS AND CLIPPING ... 610

CHAPTER 16: DIALOG BOXES ... 613

OVERVIEW .. 613
YOUR FIRST MODAL DIALOG BOX.. 613
MODAL DIALOG BOX TERMINATION ... 617
ACCEPT AND CANCEL.. 619
SCREEN LOCATION .. 621
THE ABOUT BOX ... 623
DEFINING PROPERTIES IN DIALOG BOXES... 626
IMPLEMENTING AN APPLY BUTTON .. 632
THE MODELESS DIALOG BOX.. 635
THE COMMON DIALOG BOXES .. 639
CHOOSING FONTS AND COLORS .. 639
USING THE WINDOWS REGISTRY ... 646
THE OPEN FILE DIALOG BOX... 650
THE SAVE FILE DIALOG BOX ... 657

CHAPTER 17: BRUSHES AND PENS ... 660

OVERVIEW .. 660
FILLING IN SOLID COLORS.. 660
HATCH BRUSHES .. 661
THE RENDERING ORIGIN .. 669
TEXTURE BRUSHES.. 672
LINEAR GRADIENT BRUSHES... 677
PATH GRADIENT BRUSHES .. 685
TILING THE BRUSH ... 690
PENS CAN BE BRUSHES TOO ... 699
A DASH OF STYLE .. 702

CAPS AND JOINS ... 704

CHAPTER 18: EDIT, LIST, AND SPIN.. 712

OVERVIEW .. 712
SINGLE-LINE TEXT BOXES ... 712
MULTILINE TEXT BOXES.. 716
CLONING NOTEPAD .. 717
THE NOTEPAD CLONE WITH FILE I/O .. 722
NOTEPAD CLONE CONTINUED... 732
SPECIAL-PURPOSE TEXT BOXES ... 748
THE RICH TEXT BOX .. 749
TOOLTIPS ... 750
THE LIST BOX .. 757
LIST BOX + TEXT BOX = COMBO BOX .. 762
UP-DOWN CONTROLS ... 768

CHAPTER 19: FONT FUN ... 780

OVERVIEW .. 780
GETTING STARTED... 780
BRUSHED TEXT ... 782
FONT TRANSFORMS... 788
TEXT AND PATHS .. 799
NONLINEAR TRANSFORMS ... 812

CHAPTER 20: TOOLBARS AND STATUS BARS 819

OVERVIEW .. 819
THE BASIC STATUS BAR ... 819
THE STATUS BAR AND AUTO-SCROLL .. 821
STATUS BAR PANELS .. 824
STATUSBARPANEL PROPERTIES.. 826
MENU HELP.. 829
THE BASIC TOOLBAR ... 837
TOOLBAR VARIATIONS... 840
TOOLBAR EVENTS .. 843
TOOLBAR STYLES ... 848

CHAPTER 21: PRINTING ... 857

OVERVIEW .. 857
PRINTERS AND THEIR SETTINGS .. 857
PAGE SETTINGS.. 863
DEFINING A DOCUMENT .. 865
HANDLING PRINTDOCUMENT EVENTS .. 866
THE PAGE DIMENSIONS .. 872
THE PRINT CONTROLLER ... 875
USING THE STANDARD PRINT DIALOG BOX... 879
SETTING UP THE PAGE ... 883

PRINT PREVIEW .. 887

CHAPTER 22: TREE VIEW AND LIST VIEW 895

OVERVIEW .. 895
SPLITSVILLE ... 895
TREE VIEWS AND TREE NODES .. 909
IMAGES IN TREE VIEWS... 912
TREE VIEW EVENTS ... 913
NODE NAVIGATION ... 914
THE DIRECTORY TREE .. 916
DISPLAYING IMAGES .. 922
LIST VIEW BASICS .. 930
LIST VIEW EVENTS ... 935

CHAPTER 23: METAFILES ... 943

OVERVIEW .. 943
LOADING AND RENDERING EXISTING METAFILES .. 943
METAFILE SIZES AND RENDERING ... 944
CONVERTING METAFILES TO BITMAPS.. 952
CREATING NEW METAFILES... 954
THE METAFILE BOUNDARY RECTANGLE... 961
METAFILES AND THE PAGE TRANSFORM.. 964
THE METAFILE TYPE .. 966
ENUMERATING THE METAFILE ... 968

CHAPTER 24: CLIP, DRAG, AND DROP 975

OVERVIEW .. 975
ITEMS AND FORMATS ... 975
THE TINY (BUT POWERFUL) CLIPBOARD CLASS.. 975
GETTING OBJECTS FROM THE CLIPBOARD .. 977
CLIPBOARD DATA FORMATS .. 985
CLIPBOARD VIEWERS .. 993
SETTING MULTIPLE CLIPBOARD FORMATS .. 1003
DRAG AND DROP .. 1007

APPENDIX A: FILES AND STREAMS.. 1015

OVERVIEW .. 1015
THE MOST ESSENTIAL FILE I/O CLASS .. 1015
FILESTREAM PROPERTIES AND METHODS .. 1016
THE PROBLEM WITH FILESTREAM.. 1020
OTHER STREAM CLASSES.. 1020
READING AND WRITING TEXT .. 1021
BINARY FILE I/O .. 1028
THE ENVIRONMENT CLASS .. 1031
FILE AND PATH NAME PARSING.. 1033
PARALLEL CLASSES ... 1034

WORKING WITH DIRECTORIES... 1035
FILE MANIPULATION AND INFORMATION ... 1040

APPENDIX B: MATH CLASS ... 1043

NUMERIC TYPES ... 1043
CHECKING INTEGER OVERFLOW .. 1044
THE DECIMAL TYPE.. 1045
FLOATING-POINT INFINITY AND NANS... 1047
THE MATH CLASS ... 1048
FLOATING-POINT REMAINDERS .. 1050
POWERS AND LOGARITHMS ... 1051
TRIGONOMETRIC FUNCTIONS.. 1052

APPENDIX C: STRING THEORY ... 1055

OVERVIEW .. 1055
THE CHAR TYPE .. 1056
STRING CONSTRUCTORS AND PROPERTIES.. 1058
COPYING STRINGS ... 1059
CONVERTING STRINGS.. 1061
CONCATENATING STRINGS .. 1061
COMPARING STRINGS ... 1062
SEARCHING THE STRING .. 1065
TRIMMING AND PADDING .. 1067
STRING MANIPULATION ... 1068
FORMATTING STRINGS .. 1068
ARRAY SORTING AND SEARCHING ... 1069
THE STRINGBUILDER CLASS ... 1071

Introduction
This book shows you how to write programs that run under Microsoft Windows. There are a number
of ways to write such programs. In this book, I use the new object-oriented programming language
C# (pronounced "C sharp") and a modern class library called Windows Forms. The Windows Forms
class library is part of the Microsoft .NET ("dot net") Framework unveiled in the summer of 2000 and
introduced about a year and a half later.

The Microsoft .NET Framework is an extensive collection of classes that provides programmers with
much of what they need to write Internet, Web, and Windows applications. Much of the media
coverage of .NET has focused on the Web programming. This book discusses the other part of
.NET. You use Windows Forms to write traditional stand-alone Windows applications (what are now
sometimes called client applications) or front ends for distributed applications.

Windows Forms provides almost everything you need to write full-fledged Windows applications. The
big omission is multimedia support. There's not even a Windows Forms function to beep the
computer's speaker! I was tempted to write my own multimedia classes but restrained myself under
the assumption (reasonable, I hope) that the next release of Windows Forms will include multimedia
support that is flexible, powerful, and easy to use.

The classes defined in the .NET Framework are language-neutral. Microsoft has released new
versions of C++ and Visual Basic that can use these classes, as well as the new programming
language C#. Other language vendors are adapting their own languages to use the .NET classes.
These new compilers (either optionally or by default) convert source code to an intermediate
language in an .exe file. At runtime, the intermediate language is compiled into appropriate
microprocessor machine code. Thus, the .NET Framework is potentially platform independent.

I chose to use C# for this book because C# and .NET were—in a very real sense—made for each
other. Because of the language-neutral aspect of the .NET Framework, you may be able to use this
book to learn how to write Windows Forms applications with other .NET languages.

Windows Programming: An Overview
Microsoft released the first version of Windows in the fall of 1985. Since then, Windows has been
progressively updated and enhanced, most dramatically in Windows NT (1993) and Windows 95
(1995), when Windows moved from a 16-bit to a 32-bit architecture.

When Windows was first released, there was really only one way to write Windows applications, and
that was by using the C programming language to access the Windows application programming
interface (API). Although it was also possible to access the Windows API using Microsoft Pascal, this
approach was rarely used.

Over the years, many other languages have been adapted for doing Windows programming,
including Visual Basic and C++. Both C++ and C# are object-oriented languages that support most
of the types, operators, expressions, and statements of the C programming language. For this
reason, C++ and C# (as well as Java) are sometimes called C-based languages, or languages of the
C family.

With the introduction of .NET, Microsoft currently offers three approaches to writing Windows
applications using a C-based language:
How to Write a Windows Application Using a C-Based Language (Microsoft-Centric View)

Year
Introduced

Language Interface

1985 C Windows application programming interface (API)

1992 C++ Microsoft Foundation Class (MFC) Library

2001 C# or C++ Windows Forms (part of the .NET Framework)

It's not my job to tell you what language or interface you should use to write Windows applications.
That's a decision only you can make based on the particular programming job and the resources
available to you.

If you want to learn more about the Windows API, many people have found my book Programming
Windows (5th edition, Microsoft Press, 1998) to be valuable.

I never liked MFC. Ever since it was introduced, I thought it was poorly designed and barely object
oriented. Consequently, I've never written about MFC. But that's only a personal view. Many other
programmers have successfully used MFC, and it's currently one of the most popular approaches to
Windows programming. A good place to learn about MFC is the book Programming Windows with
MFC (2nd edition, Microsoft Press, 1999) by Jeff Prosise. For the more advanced Windows
programmer, I also want to recommend Programming Applications for Microsoft Windows (Microsoft
Press, 1999) by Jeffrey Richter.

From my view, Windows Forms is much better designed than MFC and much closer to what I
envision as an ideal object-oriented interface to Windows. Over the past 14 months that I've been
working on this book, it has become my preferred approach to Windows programming.

Programmatically speaking, both the MFC and Windows Forms interfaces work by making calls to
the Windows API. Architecturally, they can be said to sit on top of the API. These higher-level
interfaces are intended to make Windows programming easier. Generally, you can do specific tasks
in MFC or Windows Forms with fewer statements than when using the API.

While high-level interfaces such as MFC or Windows Forms often improve the programmer's
productivity, any interface that makes use of another interface is obviously less versatile than the
underlying interface. You can do many things using the Windows API that you can't do using the
Windows Forms classes.

Fortunately, with a little extra work, you can make calls to the Windows API from a Windows Forms
program. Only occasionally in this book did I come across an omission in the .NET Framework so
profound that I needed to make use of this facility. My overall philosophy has been to respect the
insulation that Windows Forms offers from the inner workings of Windows itself.
User Requirements
To use this book most profitably, you need to be able to compile and run C# programs. To compile
the programs, you need a C# compiler. To run these programs, you need the .NET runtime (called
the common language runtime, or CLR), which is a collection of dynamic-link libraries.

Both these items are included in Microsoft Visual C#, a modern integrated development
environment. Alternatively, you can purchase the more extensive and more expensive Microsoft
Visual Studio .NET, which will also let you program in C++ and Visual Basic in addition to C#.

If you prefer a more rugged approach, you can instead download the free .NET Framework software
development kit (SDK). The download includes a command-line C# compiler and the .NET runtime.
First go to http://msdn.microsoft.com/downloads. At the left, select Software Development Kits, and
then look for the .NET Framework. (Keep in mind that this Web site, as with all the Web sites
mentioned throughout this book, could change, move, or in some cases disappear completely, at any
time.)

I've written this book under the assumption that you at least know how to program in C. Being
familiar with C++ or Java is helpful but not necessary. Because C# is a new language, the first
chapter of this book provides a whirlwind introduction to C# and essential concepts of object-oriented
programming. Throughout the rest of the book, I often take time to discuss miscellaneous C#
concepts as they are encountered.

But this book doesn't provide a comprehensive tutorial for C#. If you want more background and skill
in working with the language, other books on C# are available, and many others will undoubtedly
become available as the language becomes more popular. The book Inside C# (Microsoft Press,
2001) by Tom Archer provides information on writing C# code and also on what's going on beneath
the surface. Microsoft Visual C# Step by Step (Microsoft Press, 2001) by John Sharp and Jon Jagger
takes a more tutorial approach.

http://msdn.microsoft.com/downloads

I sometimes make reference to the Windows API in this book. Like I said previously, you can consult
my book Programming Windows to learn more about the API.
System Requirements
As I mentioned in the preceding section, to use this book effectively, you need to be able to compile
and run C# programs. System requirements are as follows:
§ Microsoft .NET Framework SDK (minimum); Microsoft Visual C# or Microsoft Visual Studio

.NET (preferred)
§ Microsoft Windows NT 4.0, Windows 2000, or Windows XP.

To run your C# programs on other computers requires that the .NET runtime (also referred to as the
.NET Framework redistributable package) be installed on those machines. That package comes with
the .NET Framework SDK, Visual C#, and Visual Studio .NET. The redistributable package can be
installed on the versions of Windows already mentioned as well as Windows 98 and Windows
Millennium Edition (Me).

If you want to install the sample files from the companion CD to your hard drive, you'll need
approximately 2.1 MB of additional hard disk space. (Fully compiled, the samples use just over 20
MB.)
The Organization of This Book
When Windows 1.0 was first released, the entire API was implemented in three dynamic link libraries
named KERNEL, USER, and GDI. Although the DLLs associated with Windows have become much
more voluminous, it is still useful to divide Windows function calls (or framework classes) into these
three categories: The kernel calls are those implemented in the architectural interior of the operating
system, and are generally concerned with tasking, memory management, and file I/O. The term user
refers to the user interface. These are functions to create windows, use menus and dialog boxes,
and display controls such as buttons and scroll bars. GDI is the Graphics Device Interface, that part
of Windows responsible for displaying graphical output (including text) on the screen and printer.

This book begins with four introductory chapters. Starting with Chapter 5 (which shows you how to
draw lines and curves) and continuing through Chapter 24 (on the Windows clipboard), the chapters
alternate between graphics topics (odd-numbered chapters) and user interface topics (even-
numbered chapters).

Normally a book like this wouldn't spend much time with non-Windows topics such as file I/O,
floating-point mathematics, and string manipulation. However, because the .NET Framework and C#
are so new, I found myself wishing I had a coherent guide through those classes. So I wrote such
guides myself. These are included as three appendices on files, math, and strings. You can consult
these appendices any time after reading Chapter 1.

I've tried to order the chapters—and the topics within the chapters—so that each topic builds on
succeeding topics with a minimal number of "forward references." I've written the book so that you
can read it straight through, much like you'd read the uncut version of The Stand or The Decline and
Fall of the Roman Empire.

Of course, it's good if a book as long as this one serves as a reference as well as a narrative. For
that reason, many of the important methods, properties, and enumerations used in Windows Forms
programming are listed in tables in the chapters in which they are discussed. A book of even this
size cannot hope to cover everything in Windows Forms, however. It is no substitute for the official
class documentation.

Windows Forms programs require little overhead, so this book includes plenty of code examples in
the form of complete programs. You are free to cut and paste pieces of code from these programs
into your own programs. (That's what these programs are for.) But don't distribute the code or
programs as is. That's what this book is for.

The C# compiler has a terrific feature that lets you write comments with XML tags. However, I've
chosen not to make use of this feature. The programs in this book tend to have few comments
anyway because the code is described in the text that surrounds the programs.

As you may know, Visual C# allows you to interactively design the appearance of your applications.
You position various controls (buttons, scroll bars, and so forth) on the surface of your window, and

Visual C# generates the code. While such techniques are very useful for quickly designing dialog
boxes and front-panel types of applications, I have ignored that feature of Visual C# in this book.

In this book, we're not going to let Visual C# generate code for us. In this book, we're going to learn
how to write our own code.
The CD-ROM
The companion CD-ROM contains all the sample programs in this book. You can load the solution
files (.sln) or project files (.csproj) into Visual C# and recompile the programs.

Frankly, I've never had much use for CD-ROMs in books. When learning a new language, I prefer to
type in the source code myself—even if it's someone else's source code at first. I find I learn the
language faster that way. But that's just me.

If the CD-ROM is missing or damaged, don't send e-mail to me asking for a replacement.
Contractually, I can't send you a new one. Microsoft Press is the sole distributor of this book and the
CD-ROM. To get a replacement CD-ROM or other support information regarding this book, contact
Microsoft Press. (See the "Support" section that follows for contact information.)
Support
Every effort has been made to ensure the accuracy of this book and the contents of the companion
CD-ROM. Microsoft Press provides corrections for books through the World Wide Web at the
following address:

http://www.microsoft.com/mspress/support/

To connect directly to the Microsoft Press Knowledge Base and enter a query regarding a question
or issue that you may have, go to:

http://www.microsoft.com/mspress/support/search.asp

If you have comments, questions, or ideas regarding this book or the companion CD-ROM, please
send them to Microsoft Press using either of the following methods:

Postal Mail:

Microsoft Press
Attn: Programming Microsoft Windows with C# Editor
One Microsoft Way
Redmond, WA 98052-6399

E-mail:

MSPINPUT@MICROSOFT.COM

Please note that product support is not offered through the above mail addresses. For support
information regarding C#, Visual Studio, or the .NET Framework, please visit the Microsoft Product
Support Web site at

http://support.microsoft.com
Special Thanks
Writing is usually a very solitary job, but fortunately there are always several people who make the
work much easier.

I want to thank my agent Claudette Moore of the Moore Literary Agency for getting this project going
and handling all the messy legal stuff.

As usual, the folks at Microsoft Press were an absolute pleasure to work with and once again have
helped prevent me from embarrassing myself. If it were not for my project editor, Sally Stickney, and
my technical editor, Jean Ross, this book would be infested with gibberish and buggy code. While
editors may seem superhuman at times, they are regrettably not. Any bugs or incomprehensible
sentences that remain in the book are my fault and no one else's.

http://www.microsoft.com/mspress/support/
http://www.microsoft.com/mspress/support/search.asp
mailto:MSPINPUT@MICROSOFT.COM
http://support.microsoft.com

Let me not forget to cite Johannes Brahms for providing musical accompaniment while I worked, and
Anthony Trollope for escapist literature in the evenings.

My Sunday, Tuesday, and Thursday gatherings of friends continue to help and support me in ways
that are sometimes obvious, sometimes subtle, but always invaluable.

And most of all, I want to thank my fiancée, Deirdre, for providing a very different (non .NET)
framework for me in which to live, work, and love.

Charles Petzold
New York City
November, 2001

Chapter 1: Console Thyself
Overview
In that succinct and (perhaps consequently) much-beloved classic tutorial The C Programming
Language, authors Brian Kernighan and Dennis Ritchie begin by presenting what has come to be
known as the hello-world program:[1]
#include <stdio.h>

main()
{
 printf("hello, world\n");
}

While such a program hardly exploits the power of today's computers, it's certainly useful on the
practical level because it gives the eager student programmer the opportunity to make sure that the
compiler and all its associated files are correctly installed. The hello-world program also reveals the
overhead necessary in a particular programming language: hello-world programs can be a single line
in some languages but quite scary in others. The hello-world program is also helpful to the author of
a programming book because it provides an initial focal point to begin the tutorial.

As all C programmers know, the entry point to a C program is a function named main, the printf
function displays formatted text, and stdio.h is a header file that includes definitions of printf and
other standard C library functions. The angle brackets, parentheses, and curly braces are used to
enclose information or to group collections of language statements.

The traditional hello-world program is designed to be run in a programming environment that
supports a quaint and old-fashioned type of text-only computer interface known as a command line,
or console. This type of interface originated on a machine called the teletypewriter, which was itself
based on an early word processing device known as the typewriter. As a user types on the
teletypewriter keyboard, the device prints the characters on a roll of paper and sends them to a
remote computer. The computer responds with characters of its own, which the teletypewriter
receives and also displays on the paper. In this input/output model, there's no concept of positioning
text on the page. That's why the printf function simply displays the text wherever the teletypewriter
print head (or the cursor of a video-based command line) happens to be at the time.

A command-line interface exists in Microsoft Windows in the form of an application window called
MS-DOS Prompt or Command Prompt. While the command-line interface has been largely
obsoleted by graphical interfaces, command-line programs are often simpler than programs written
for graphical environments, so they remain a good place to begin learning a new programming
language.
[1] Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2nd ed. (Englewood
Cliffs, NJ: Prentice Hall, 1988). The hello-world program in the first edition (1978) was the same but
without the #include statement.
The C# Version
In this book, I'll be using a programming language called C# (as in C-sharp, like the key of
Beethoven's Moonlight Sonata). Designed by Anders Hejlsberg at Microsoft, C# is a modern object-
oriented programming language that incorporates elements from C, C++, Java, Pascal, and even
BASIC. This chapter presents a whirlwind (but necessarily incomplete) tour of the language.

C# source code files have the filename extension .cs ("c sharp"). My first C# version of the hello-
world program is the file ConsoleHelloWorld.cs.
ConsoleHelloWorld.cs
//--
// ConsoleHelloWorld.cs © 2001 by Charles Petzold
//--

class ConsoleHelloWorld
{
 public static void Main()
 {
 System.Console.WriteLine("Hello, world!");
 }
}

You have a couple options in compiling this program, depending on how much money you want to
spend and how much modern programming convenience you wouldn't mind foregoing.

The cheapest approach is to download the .NET Framework Software Development Kit (SDK) from
http://msdn.microsoft.com. Installing the SDK also installs the dynamic-link libraries (DLLs) that
comprise the .NET runtime environment. The .NET technical documentation is available in a
Windows-based program. You also get a command-line C# compiler that you can use to compile the
programs shown in these pages.

You can use any text editor—from Microsoft Notepad on up—to write C# programs. The C# compiler
is named csc.exe. You compile ConsoleHelloWorld.cs on a command line like so:
csc consolehelloworld.cs

That's it. There's no link step involved. (As you'll see in the next chapter, compiling a Windows
Forms program rather than a console program requires some additional compiler arguments.) The
compiler produces a file named ConsoleHelloWorld.exe that you can run on the command line.

You can also create, compile, and run this program in Visual C# .NET, the latest version of
Microsoft's integrated development environment. Visual C# .NET is a must for professional C#
developers. For certain types of Windows Forms programs—those that treat the program's window
as a form that contains controls such as buttons, text-entry fields, and scroll bars—it's extremely
useful. However, it's not strictly necessary. I've found that one of the real pleasures of doing
Windows programming in C# with the Windows Forms library is that no separate files are involved.
Virtually everything goes in the C# source code file, and everything in that file can be entered with
your own fingers and brain.

The following paragraphs describe the steps I took to create the programs in this book using Visual
C# .NET. Every sample program in this book is a project, and each project has its own directory of
disk storage. In Visual C# .NET, projects are generally grouped into solutions; I created a solution for
every chapter in this book. Every solution is also a directory. Projects are subdirectories of the
solution directory.

To create a solution, select the menu item File | New | Blank Solution. In the New Project dialog box,
select a disk location for this solution and type in a name for the solution. This is how I created
solutions for each of the chapters in this book.

When you have a solution loaded in Visual C# .NET, you can create projects in that solution. Select
the menu item File | Add Project | New Project. (You can also right-click the solution name in
Solution Explorer and select Add | New Project from the context menu.) In the Add New Project
dialog box, select a project type of Visual C# Projects. You can choose from several templates. If
you want to avoid having Visual C# .NET generate code for you—I personally prefer writing my own
code—the template to choose is Empty Project. That's how I created the projects for this book.

Within a project, you can use the Project | Add New Item menu option to create new C# source code
files. (Again, you can also right-click the project name in Solution Explorer and select this item from
the context menu.) In the Add New Item dialog box, in the Categories list, choose Local Project
Items. In the Templates section, choose Code File. Again, if you use that template, Visual C# .NET
won't generate code for you.

Regardless of whether you create and compile ConsoleHelloWorld on the command line or in Visual
C# .NET, the .exe file will be small, about 3 KB or 4 KB, depending on whether the compiler puts
debugging information into it. The executable consists of statements in Microsoft Intermediate
Language (MSIL). MSIL has been submitted as a proposed standard to the European Computer

http://msdn.microsoft.com

Manufacturer's Association (ECMA), where it is known as the Common Intermediate Language
(CIL). When you run the program, the .NET common language runtime compiles the intermediate
language to your computer's native machine code and links it with the appropriate .NET DLLs.
Currently, you're probably using an Intel-based machine, so the code that the runtime generates is
32-bit Intel x86 machine code.

You can look at MSIL by running the Intermediate Language Disassembler ildasm.exe:
ildasm consolehelloworld.exe

For documentation on the MSIL instruction set, download the file identified with the acronym "CIL"
from http://msdn.microsoft.com/net/ecma. Other files on that page may also be useful. You can even
write code directly in MSIL and assemble that code using the Intermediate Language Assembler
ilasm.exe.

Because programs written in C# are compiled to an intermediate language rather than directly to
machine code, the executables are platform independent. Sometime in the future, a .NET runtime
environment may be ported to non-Intel machines. If that happens, the executables you're creating
today will run on those machines. (Let me add "in theory" so as not to seem hopelessly naïve.)

By using the .NET Framework and programming in C#, you're also creating managed code. This is
code that can be examined and analyzed by another program to determine the extent of the code's
actions. Managed code is a necessary prerequisite to exchanging binary executables over the
Internet.
Anatomy of a Program
Here's the ConsoleHelloWorld program again.
ConsoleHelloWorld.cs
//--
// ConsoleHelloWorld.cs © 2001 by Charles Petzold
//--

class ConsoleHelloWorld
{
 public static void Main()
 {
 System.Console.WriteLine("Hello, world!");
 }
}

As in C++ and Java (and in many implementations of C), a pair of forward slashes begin a single-line
comment. Everything to the right of the slashes doesn't contribute to the compilation of the program.
C# also supports multiline comments surrounded by the /* and */ character combinations. One
interesting feature of C# is that comments can contain statements in XML (Extensible Markup
Language) that can later be formatted and generate documentation of your code. This feature is
terrific and I urge you to learn all about it, but I've chosen not to use it in the sample programs in this
book.

The entry point to the C# hello-world program is the Main function tucked inside the first set of curly
brackets. Like C, C++, and Java, C# is case sensitive. Unlike those three languages, the entry point
to a C# program is a capitalized Main rather than a lowercase main. The empty parentheses indicate
that the Main function has no arguments; the void keyword indicates that it returns no value. You can
optionally define Main to accept an array of character strings as input and to return an integer value.
I'll discuss the public and static keywords later in this chapter. The public keyword isn't strictly
required here; the program will compile and run fine without it.

The Main function is inside a class definition. The class is the primary structural and organizational
element of object-oriented programming languages such as C#. Very simply, a class is a collection
of related code and data. I've given this class a name of ConsoleHelloWorld. In this book, I'll

http://msdn.microsoft.com/net/ecma

generally (but not always) have one class per source code file. The name of the file will be the name
of the class but with a .cs filename extension. This naming convention isn't required in C#, but the
concept was introduced in Java and I like it. Thus, the file that contains the ConsoleHelloWorld class
definition is ConsoleHelloWorld.cs.

System.Console.WriteLine appears to be a function call, and indeed it is. It takes one argument,
which is a text string, and it displays the text string on the console, in a command-line window, on
your vintage teletypewriter, or wherever. If you compile and run this program, the program displays
Hello, world!

and terminates.

That long function name, System.Console.WriteLine, breaks down like so:
§ System is a namespace.
§ Console is a class defined in that namespace.
§ WriteLine is a method defined in that class. A method is the same thing that is traditionally

called a function, a procedure, or a subroutine.
C# Namespaces
The namespace is a concept borrowed from C++ and helps ensure that all names used in a
particular program or project are unique. It can sometimes happen that programmers run out of
suitable global names in a large project or must use third-party class libraries that have name
conflicts. For example, you might be coding up a large project in C# and you purchase two helpful
class libraries in the form of DLLs from Bovary Enterprises and Karenina Software. Both these
libraries contain a class named SuperString that is implemented entirely differently in each DLL but is
useful to you in both versions. Fortunately, this duplication isn't a problem because both companies
have followed the C# namespace-naming guidelines. Bovary put the code for its SuperString class in
a namespace definition like so:
namespace BovaryEnterprises.VeryUsefulLibrary
{
 class SuperString

}

And Karenina did something similar:
namespace KareninaSoftware.HandyDandyLibrary
{
 class SuperString

}

In both cases, the company name is first, followed by a product name. In your programs that use
these libraries, you can refer to the particular SuperString class that you need using the fully qualified
name
BovaryEnterprises.VeryUsefulLibrary.SuperString

or
KareninaSoftware.HandyDandyLibrary.SuperString

Yes, it's a lot of typing, but it's a solution that definitely works.

This namespace feature would be fairly evil if there weren't also a way to reduce some of that typing.
That's the purpose of the using keyword. You specify a namespace once in the using statement, and
then you can avoid typing it to refer to classes in that namespace. Here's an alternative hello-world
program for C#.
ConsoleHelloWithUsing.cs
//--

// ConsoleHelloWithUsing.cs © 2001 by Charles Petzold
//--
using System;

class ConsoleHelloWithUsing
{
 public static void Main()
 {
 Console.WriteLine("Hello, world!");
 }
}

For your project using the two different SuperString classes, the using keyword has an alias feature
that helps out:
using Emma = Bovary.VeryUsefulLibrary;
using Anna = Karenina.HandyDandyLibrary;

Now you can refer to the two classes as
Emma.SuperString

and
Anna.SuperString

Consult the C# language reference for more details on the using feature.

The .NET Framework defines more than 90 namespaces that begin with the word System and 5
namespaces that begin with the word Microsoft. The most important namespaces for this book are
System itself; System.Drawing, which contains many of the graphics-related classes; and
System.Windows.Forms.

Namespaces even allow you to give your own classes names already used in the .NET Framework.
The .NET Framework itself reuses some class names. For example, it contains three classes named
Timer. These are found in the namespaces System.Timers, System.Threading, and
System.Windows.Forms.

What happens to classes that are defined without using a namespace, such as the
ConsoleHelloWorld and ConsoleHelloWithUsing classes in my sample programs? Those class
names go into a global namespace. This isn't a problem for little self-contained programs like these.
However, whenever I define a class in this book that could be useful in someone else's program, I'll
put it in the namespace Petzold.ProgrammingWindowsWithCSharp.
Console I/O
Namespaces also play an important role in the organization of the .NET Framework documentation.
To find the documentation for the Console class, look in the System namespace. You'll see that
WriteLine isn't the only output method in the Console class. The Write method is very similar in that it
also displays output to the console. The difference is that WriteLine terminates its output with a
carriage return.

There are 18 different definitions of the Write method and 19 different definitions for the WriteLine
method, each one with different arguments. These multiple versions of the same method are known
as overloads. The compiler can usually figure out which overload a program wants to use by the
number and types of the arguments passed to the method.

Here's a program that illustrates three different ways to display the same output.
ConsoleAdder.cs
//---
// ConsoleAdder.cs © 2001 by Charles Petzold

//---
using System;

class ConsoleAdder
{
 public static void Main()
 {
 int a = 1509;
 int b = 744;
 int c = a + b;

 Console.Write("The sum of ");
 Console.Write(a);
 Console.Write(" and ");
 Console.Write(b);
 Console.Write(" equals ");
 Console.WriteLine(c);

 Console.WriteLine("The sum of " + a + " and " + b + " equals " +
c);

 Console.WriteLine("The sum of {0} and {1} equals {2}", a, b, c);
 }
}

This program displays the following output:
The sum of 1509 and 744 equals 2253
The sum of 1509 and 744 equals 2253
The sum of 1509 and 744 equals 2253

C programmers will be comforted to know that C# supports the familiar int data type and that it
doesn't require the := assignment operator of Algol and Pascal.

The first approach the program uses to display the line of output involves separate Write and
WriteLine methods, each of which has a single argument. Write and WriteLine can accept any type
of variable and will convert it to a string for display.

The second approach uses a technique that C programmers aren't accustomed to but that is familiar
to BASIC programmers: string concatenation using the plus sign. C# converts the variables to strings
and tacks all the strings together as a single argument to WriteLine. The third method involves a
formatting string that has three placeholders, indicated by {0}, {1}, and {2}, for the three other
arguments. These placeholders can include additional formatting information. For example, {0:C}
displays the number as a currency amount with (depending on the regional settings of the operating
system) a dollar sign, commas, two decimal places, and wrapped in a set of parentheses if negative.
The placeholder {0:X8} displays the number in hexadecimal, possibly padded with zeros to be eight
digits wide. The following table lists some examples of formatting specifications, each applied to the
integer 12345.
Various Formatting Specifications for the Integer 12345

Format Type Format Code Result

Currency C $12,345.00
 C1 $12,345.0

Various Formatting Specifications for the Integer 12345

Format Type Format Code Result
 C7 $12,345.0000000

Decimal D 12345
 D1 12345
 D7 0012345

Exponential E 1.234500E+004
 E1 1.2E+004
 E7 1.2345000E+004

Fixed point F 12345.00
 F1 12345.0
 F7 12345.0000000

General G 12345
 G1 1E4
 G7 12345

Number N 12,345.00
 N1 12,345.0
 N7 12,345.0000000

Percent P 1,234,500.00
 P1 1,234,500.0
 P7 1,234,500.0000000

Hexadecimal X 3039
 X1 3039
 X7 0003039

Even if you don't do much console output in your .NET programming, you'll probably still make use of
these formatting specifications in the String.Format method. Just as Console.Write and
Console.WriteLine are the .NET equivalents of printf, the String.Format method is the .NET
equivalent of sprintf.
C# Data Types
I've defined a couple of numbers with the int keyword and I've been using strings enclosed in double
quotation marks, so you know that C# supports at least two data types. C# actually supports eight
integral data types, which are listed here:
C# Integral Data Types

Number of Bits Signed Unsigned

8 sbyte byte

16 short ushort

32 int uint

64 long ulong

C# also supports two floating-point data types, float and double, which implement the ANSI/IEEE Std
754-1985, the IEEE Standard for Binary Floating-Point Arithmetic. The following table shows the
number of bits used for the exponent and mantissa of float and double.
Number of Bits Used for Floating-Point Data Types in C#

C# Type Exponent Mantissa Total Bits

float 8 24 32

double 11 53 64

In addition, C# supports a decimal data type that uses 128 bits of storage, breaking down into a 96-
bit mantissa and a decimal scaling factor between 0 and 28. The decimal data type offers about 28
decimal digits of precision. It's useful for storing and performing calculations on numbers with a fixed
number of decimal points, such as money and interest rates. I discuss the decimal data type (and
other aspects of working with numbers and mathematics in C#) in more detail in Appendix B.

If you write a literal number such as 3.14 in a C# program, the compiler will assume that it's a
double. To indicate that you want it to be interpreted as a float or a decimal instead, use a suffix of f
for float or m for decimal.

Here's a little program that displays the minimum and maximum values associated with each of the
11 numeric data types.
MinAndMax.cs
//--
// MinAndMax.cs © 2001 by Charles Petzold
//--
using System;
class MinAndMax
{
 public static void Main()
 {
 Console.WriteLine("sbyte: {0} to {1}", sbyte.MinValue,
 sbyte.MaxValue);
 Console.WriteLine("byte: {0} to {1}", byte.MinValue,
 byte.MaxValue);
 Console.WriteLine("short: {0} to {1}", short.MinValue,
 short.MaxValue);
 Console.WriteLine("ushort: {0} to {1}", ushort.MinValue,

ushort.MaxValue);
 Console.WriteLine("int: {0} to {1}", int.MinValue,
 int.MaxValue);
 Console.WriteLine("uint: {0} to {1}", uint.MinValue,
 uint.MaxValue);
 Console.WriteLine("long: {0} to {1}", long.MinValue,
 long.MaxValue);
 Console.WriteLine("ulong: {0} to {1}", ulong.MinValue,
 ulong.MaxValue);
 Console.WriteLine("float: {0} to {1}", float.MinValue,
 float.MaxValue);
 Console.WriteLine("double: {0} to {1}", double.MinValue,

double.MaxValue);
 Console.WriteLine("decimal: {0} to {1}", decimal.MinValue,

decimal.MaxValue);
 }
}

As you'll notice, I've attached a period and the words MinValue and MaxValue onto each data type.
These two identifiers are structure fields, and what is going on here will become apparent toward the
end of this chapter. For now, let's simply appreciate the program's output:
sbyte: -128 to 127
byte: 0 to 255
short: -32768 to 32767
ushort: 0 to 65535
int: -2147483648 to 2147483647
uint: 0 to 4294967295
long: -9223372036854775808 to 9223372036854775807
ulong: 0 to 18446744073709551615
float: -3.402823E+38 to 3.402823E+38
double: -1.79769313486232E+308 to 1.79769313486232E+308
decimal: -79228162514264337593543950335 to 79228162514264337593543950335

C# also supports a bool data type that can take on two and only two values: true and false, which are
C# keywords. Any comparison operation (==, !=, <, >, <=, and >=) generates a bool result. You can
also define bool data types explicitly. Although you can cast between a bool and an integer (true
being converted to 1 and false to 0), this cast must be explicit.

The char data type stores one character, and the string data type stores multiple characters. The
char data type is separate from the integer data types and shouldn't be confused or identified with
sbyte or byte. For one thing, a char is 16-bits wide (but that doesn't mean you should confuse it with
short or ushort either).

The char is 16-bits wide because C# encodes characters in Unicode[2] rather than ASCII. Instead of
the 7 bits used to represent each character in strict ASCII, or the 8 bits per character that have
become common in extended ASCII character sets on computers, Unicode uses a full 16 bits for
character encoding. This allows Unicode to represent all the letters, ideographs, and other symbols
found in all the written languages of the world that are likely to be used in computer communication.
Unicode is an extension of ASCII character encoding in that the first 128 characters are defined as in
ASCII.

Date types don't need to be defined at the top of a method. As in C++, you can define data types
anywhere in the method as you need them.

You can define and initialize a string variable like so:
string str = "Hello, World!";

Once you've assigned a string to a string variable, the individual characters can't be changed. You
can, however, assign a whole new string to the string variable. Strings are not zero-terminated, but
you can obtain the number of characters in a string variable using the expression
str.Length

Length is a property of the string data type, a concept I'll cover later in this chapter. Appendix C
contains more information on working with strings in C#.

To define an array variable, use empty square brackets after the data type:
float[] arr;

The data type of the arr variable is an array of floats, but in reality arr is a pointer. In C# lingo, an
array is a reference type. So is a string. The other data types I've mentioned so far are value types.

When you initially define arr, its value is null. To allocate memory for the array, you must use the new
operator and specify how many elements the array has:
arr = new float[3];

It's actually more common to combine the two statements:
float[] arr = new float[3];

When you're defining an array, you can also initialize the elements:
float[] arr = new float[3] { 3.14f, 2.17f, 100 };

The number of initializers must be equal to the declared size of the array. If you're initializing the
array, you can leave out the size:
float[] arr = new float[] { 3.14f, 2.17f, 100 };

You can even leave out the new operator:
float[] arr = { 3.14f, 2.17f, 100 };

Later on in your program, you can reassign the arr variable to a float array of another size:
arr = new float[5];

With this call, enough memory is allocated for five float values, each of which is initially equal to 0.

You might ask, "What happens to the original block of memory that was allocated for the three float
values?" There is no delete operator in C#. Because the original block of memory is no longer
referenced by anything in the program, it becomes eligible for garbage collection. At some point, the
common language runtime will free up the memory originally allocated for the array.

As with strings, you can determine the number of elements in an array by using the expression
arr.Length;

C# also lets you create multidimensional arrays and jagged arrays, which are arrays of arrays.

Unless you need to interface with non-C# code, using pointers in a C# program is rarely necessary.
By default, parameters to methods are always passed by value, which means that the method can
freely modify any parameter and it won't be changed in the calling method. To change this behavior,
you can use the ref ("reference") or out keywords. For example, here's how you can define a method
that modifies a variable passed as an argument:
void AddFive(ref int i)
{
 i + 5;
}

Here's one that sets a parameter variable:
void SetToFive(out int i)
{
 i = 5;
}

In the first example, i must be set before the call to AddFive, and then the value can be changed in
the AddFive method. In the second example, i doesn't have to be set to anything before the method
call.

The enumeration plays an important role in C# and the .NET Framework. Many constants throughout
the .NET Framework are defined as enumerations. Here's one example from the System.IO
namespace:

public enum FileAccess
{
 Read = 1,
 Write,
 ReadWrite
}

Enumerations are always integral data types, and the int data type by default. If you don't specify an
explicit value (as is done for Read in this case), the first member is set to the value 0. Subsequent
members are set to consecutive values.

You use FileAccess in conjunction with several file I/O classes. (Appendix A discusses file I/O in
detail.) You must indicate both the enumeration name and the member name separated by a period,
as here:
file.Open(FileMode.CreateNew, FileAccess.ReadWrite)

FileMode is another enumeration in the System.IO class. If you were to switch around these two
enumerations in the Open method, the compiler would report an error. This use of enumerations
helps the programmer avoid errors involving constants.
[2] See The Unicode Consortium, The Unicode Standard Version 3.0 (Reading, Mass.: Addison-
Wesley, 2000) and http://www.unicode.org for additional information.
Expressions and Operators
One important reference for C programmers is the table that lists the order of evaluation of all the C
operations. (It used to be possible to get this table on a T-shirt—printed upside down, naturally, for
easy reference.) The equivalent C# table, shown here, is just a little different in the first two lines. It
includes a few more operators and excludes the comma operator.
Order of Evaluation in C#

Operator Type Operators Associativity

Primary () [] f() . x++ y++ new typeof
sizeof checked unchecked

Left to right

Unary + − ! ~ ++x —x (type) Left to right

Multiplicative * / % Left to right

Additive + − Left to right

Shift << >> Left to right

Relational < > <= >= is as Left to right

Equality == != Left to right

Logical AND & Left to right

Logical XOR ^ Left to right

Logical OR | Left to right

Conditional AND && Left to right

Conditional OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= <<= >>= |= &=
^=

Right to left

I want to discuss the two AND and OR operators in some detail because they can provoke some
confusion—at least they did when I first encountered them.

http://www.unicode.org

Notice that the &, ^, and | operators are termed logical AND, XOR, and OR; in C, these are called the
bitwise operators. In C#, the logical AND, XOR, and OR operators are defined for both integral data
types and bool. For integral data types, they function as bitwise operators, the same as in C. For
example, the expression
0x03 | 0x05

evaluates as 0x07. For bool data types or expressions, they evaluate to bool values. The result of
the logical AND operation is true only if both operands are true. The result of the logical XOR is true
only if one operand is true and the other is false. The result of the logical OR is true if either of the
operands is true.

In C, the && and || operators are known as logical operators. In C#, they're termed conditional AND
and OR, and they are defined only for bool data types.

C programmers are accustomed to using the && and || operators in statements like this:
if (a != 0 && b >= 5)

C programmers also know that if the first expression evaluates as false (that is, if a equals 0), then
the second expression isn't evaluated. It's important to know this because the second expression
could involve an assignment or a function call. Similarly, when you use the || operator, the second
expression isn't evaluated if the first expression is true.

In C#, you use the && and || operators in the same way you use them in C. These operators are
called the conditional AND and OR because the second operand is evaluated only if necessary.

In C#, you can also use the & and | operators in the same way as && and ||, as in this example:
if (a != 0 & b >= 5)

When you use the & and | operators in this way in C#, both expressions are evaluated regardless of
the outcome of the first expression.

The second of the two if statements is also legal in C, and it works the same way as in C#. However,
most C programmers would probably write such a statement only in error. That statement simply
looks wrong to me, and it sets off a bell in my head because I've trained myself to treat the & as the
bitwise AND and && as the logical AND. But in C, the result of a relational or logical expression is an
int that has a value of 1 if the expression is true and 0 otherwise. That's why the bitwise AND
operation works here.

A C programmer might make the original statement involving the && operator a little more concise by
writing it like so:
if (a && b >= 5)

This works fine in C because C treats any nonzero expression as being true. In C#, however, this
statement is illegal because the && operator is defined only for bool data types.

Where the C programmer gets into big trouble is using the bitwise AND operator in the shortened
form of the expression:
if (a & b >= 5)

If b equals 7, then the expression on the right is evaluated as the value 1. If a is equal to 1 or 3 or
any odd number, then the bitwise AND operation yields 1 and the total expression evaluates as true.
If a is 0 or 2 or any even number, then the bitwise AND operation yields 0 and the total expression
evaluates as false. Probably none of these results are what the programmer intended, and this is
precisely why the C programmer has such a violent reaction to seeing bitwise AND and OR
operators in logical expressions. (In C#, this statement is illegal because integers and bool values
can't be mixed in the logical AND, XOR, and OR statements.)

C# is much stricter than C with regard to casting. If you need to convert from one data type to
another beyond what C# allows, the Convert class (defined in the System namespace) provides
many methods that probably do what you want. If you need to interface with existing code, the
Marshal class (defined in the System.Runtime.InteropServices namespace) contains a method
named Copy that lets you transfer between C# arrays and memory areas referenced by pointers.

Conditions and Iterations
C# supports many of the conditional, iteration, and flow control statements used in C. In this section,
I'll discuss statements built around the if, else, do, while, switch, case, default, for, foreach, in, break,
continue, and goto keywords.

The if and else construction looks the same as in C:
if (a == 5)
{

}
else if (a < 5)
{

}
else
{

}

In C#, however, the expression in parentheses must resolve to a bool data type. This restriction
helps the programmer avoid a common pitfall in C of mistakenly using an assignment as the test
expression when a comparison is intended:
if (a = 5)

This statement produces a compilation error in C#, and you'll be thankful that it does.

Of course, no compiler can offer full protection against programmer sleepiness. In one early C#
program I wrote, I defined a bool variable named trigger, but instead of writing the statement
if (trigger)

I wanted to be a little more explicit and probably intended to type this:
if (trigger == true)

Unfortunately, I typed this instead:
if (trigger = true)

This is a perfectly valid statement in C# but obviously didn't do what I wanted.

C# also supports the do and while statements. You can test a conditional at the top of a block:
while (a < 5)
{

}

or at the bottom of a block:
do
{

}
while (a < 5);

The expression must resolve to a bool here as well. In the second example, the block is executed at
least once regardless of the value of a.

The switch and case construction in C# has a restriction not present in C. In C, you can do this:
switch (a)
{
case 3:
 b = 7;
 // Fall through isn't allowed in C#.
case 4:
 c = 3;
 break;

default:
 b = 2;
 c = 4;
 break;
}

In the case where a is equal to 3, one statement is executed and then execution falls through to the
case where a is equal to 4. That may be what you intended, or you may have forgotten to type in a
break statement. To help you avoid bugs like that, the C# compiler will report an error. C# allows a
case to fall through to the next case only when the case contains no statements. This is allowed in
C#:
switch (a)
{
case 3:
case 4:
 b = 7;
 c = 3;
 break;

default:
 b = 2;
 c = 4;
 break;
}

If you need something more complex than this, you can use the goto (described later in this section).

One cool feature of C# is that you can use a string variable in the switch statement and compare it to
literal strings in the case statements:
switch (strCity)
{
case "Boston":

 break;

case "New York":

 break;

case "San Francisco":

 break;

default:

 break;
}

Of course, this is exactly the type of thing that causes performance-obsessed C and C++
programmers to cringe. All those string comparisons simply cannot be very efficient. In fact, because
of a technique known as string interning (which involves a table of all unique strings used in a
program), it's a lot faster than you might think.

The for loop looks the same in C# as in C and C++:
for (i = 0; i < 100; i += 3)
{

}

As in C++, it's very common for C# programmers to define the iteration variable right in the for
statement:
for (float f = 0; f < 10.05f; f += 0.1f)
{

}

A handy addition is the foreach statement, which C# picked up from Visual Basic. Suppose arr is an
array of float values. If you wanted to display all the elements of this array in a single line separated
by spaces, you would normally do it like so:
for (int i = 0; i < arr.Length; i++)
 Console.Write("{0} ", arr[i]);

The foreach statement, which also involves the in keyword, simplifies the operation:
foreach (float f in arr)
 Console.Write("{0} ", f);

The foreach identifier (named f here) must be assigned a data type in the foreach statement; within
the statement or block of statements following foreach, that identifier is read only. As a result, you
can't use foreach to initialize the elements of an array:
int[] arr = new int[100];

foreach (int i in arr) // Can't do it!
 i = 55;

What's interesting about the foreach statement is that it isn't restricted to arrays. It can be used with
any class that implements the IEnumerable interface defined in the System.Collections namespace.
Over a hundred classes in the .NET Framework implement IEnumerable. (I'll discuss interfaces
briefly later in this chapter and more in Chapter 8.)

The break statement normally used with the switch and case construction will also cause execution
flow to jump out of any while, do, for, or foreach loop. The continue statement jumps to the end of
any while, do, for, or foreach block; execution flow continues with the next iteration (if any).

And then there's the goto:
goto MyLabel;

MyLabel:

The goto is useful for getting out of deeply nested blocks and for writing amusingly obscure code. C#
also supports a goto in the switch and case construction to branch to another case:
switch (a)
{
case 1:
 b = 2;
 goto case 3;

case 2:
 c = 7;
 goto default;

case 3:
 c = 5;
 break;

default:
 b = 2;
 break;
}

You don't need the final break at the end of a case if the goto is there instead. This feature
compensates for not being able to fall through to the next case.
The Leap to Objects
In most traditional procedural languages, such as Pascal, Fortran, BASIC, PL/I, C, and COBOL, the
world is divided into code and data. Basically, you write code to crunch data.

Throughout the history of programming, programmers have often strived to organize code and data,
particularly in longer programs. Related functions might be grouped together in the same source
code file, for example. This file might have variables that are used by those isolated functions and
nowhere else in the program. And, of course, a formal means to consolidate related data, at least, is
common in traditional languages in the form of the structure.

Let's suppose you're writing an application and you see that you're going to need to work with dates
and, in particular, to calculate day-of-year values. February 2 has a day-of-year value of 33, for
example. December 31 has a day-of-year value of 366 in leap years and 365 otherwise. You would
probably see the wisdom of referring to the date as a single entity. In C, for example, you can group
related data in a structure with three fields:
struct Date
{
 int year;
 int month;
 int day;

};

You can then define a variable of type Date like so:
struct Date today;

You refer to the individual fields by using a period between the structure variable name and the field
name:
today.year = 2001;
today.month = 8;
today.day = 29;

But otherwise you can use the variable name (in this case, today) to refer to the data as a group. In
C, you can also define a structure variable and initialize it in one shot:
struct Date birthdate = { 1953, 2, 2 } ;

To write your day-of-year function, you might begin by writing a little function that determines
whether a particular year is a leap year:
int IsLeapYear(int year)
{
 return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 == 0));
}

The DayOfYear function makes use of that function:
int DayOfYear(struct Date date)
{
 static int MonthDays[12] = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 return MonthDays[date.month - 1] + date.day +
 ((date.month > 2) && IsLeapYear(date.year));
}

Notice that the function refers to the fields of the input structure using the period and the field name.

Here's a complete working C version of the Date structure and related functions.
CDate.c
//-----------------------------------
// CDate.c © 2001 by Charles Petzold
//-----------------------------------
#include <stdio.h>

struct Date
{
 int year;
 int month;
 int day;
};
int IsLeapYear(int year)
{
 return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 == 0));

}
int DayOfYear(struct Date date)
{
 static int MonthDays[12] = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 return MonthDays[date.month - 1] + date.day +
 ((date.month > 2) && IsLeapYear(date.year));
}
int main(void)
{
 struct Date mydate;

 mydate.month = 8;
 mydate.day = 29;
 mydate.year = 2001;

 printf("Day of year = %i\n", DayOfYear(mydate));

 return 0;
}

I've structured the program with main down at the bottom to avoid forward declarations.

That's how it's done in C because the C structure can contain only data types. Code and data are
separate and distinct. However, the IsLeapYear and DayOfMonth functions are closely related to the
Date structure because the functions are defined only for the Date structure variables. For that
reason, it makes sense to consolidate those functions within the Date structure itself. Moving the
functions into the structure turns a C program into a C++ program. The C++ version of this program
looks like the code on the following page.
CppDateStruct.cpp
//---
// CppDateStruct.cpp © 2001 by Charles Petzold
//---
#include <stdio.h>

struct Date
{
 int year;
 int month;
 int day;

 int IsLeapYear()
 {
 return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 ==
0));
 }
 int DayOfYear()

 {
 static int MonthDays[12] = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 return MonthDays[month - 1] + day + ((month > 2) &&
IsLeapYear());
 }
};
int main(void)
{
 Date mydate;

 mydate.month = 8;
 mydate.day = 29;
 mydate.year = 2001;

 printf("Day of year = %i\n", mydate.DayOfYear());

 return 0;
}

Notice that the total code bulk is smaller. The IsLeapYear and DayOfYear functions no longer have
any arguments. They can reference the structure fields directly because they're all part of the same
structure. These functions now earn the right to be called methods.

Notice also that the struct keyword has been removed in the declaration of the mydate variable in
main. It now appears as if Date is a normal data type and mydate is a variable of that type. In object-
oriented programming jargon, the mydate variable can now be called an object of type Date, or an
instance of Date. Date is sometimes said (by those who have privately practiced saying the word out
loud) to be instantiated.

And most important, notice that the DayOfYear method can be called simply by referring to it in the
same way you refer to the data fields of the structure: with a period separating the object name and
the method name. The more subtle change is a shift of focus: Previously we were asking a function
named DayOfYear to crunch some data in the form of a Date structure. Now we're asking the Date
structure—which represents a real date on the calendar—to calculate its DayOfYear.

We're now doing object-oriented programming, or at least one aspect of it. We're consolidating code
and data into a single unit.

However, in most object-oriented languages, the single unit that combines code and data isn't called
a struct. It's called a class. Changing that struct to a class in C++ requires the addition of just one
line of code, the keyword public at the top of what is now the definition of the Date class.
CppDateClass.cpp
//--
// CppDateClass.cpp © 2001 by Charles Petzold
//--
#include <stdio.h>

class Date
{
public:

 int year;
 int month;
 int day;

 int IsLeapYear()
 {
 return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 ==
0));
 }
 int DayOfYear()
 {
 static int MonthDays[12] = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 return MonthDays[month - 1] + day + ((month > 2) &&
IsLeapYear());
 }
};
int main(void)
{
 Date mydate;

 mydate.month = 8;
 mydate.day = 29;
 mydate.year = 2001;

 printf("Day of year = %i\n", mydate.DayOfYear());

 return 0;
}

In both C++ and C#, a class is very similar to a struct. In both languages, the class isn't exactly the
same as the struct, and the class and the struct are different in different ways in the two languages.
I'll discuss the C# difference toward the end of this chapter and more in Chapter 3. In C++, all the
fields and methods in a struct are public by default; that is, they can be accessed from outside the
structure. The fields and methods need to be public because I reference them in main. In a C++
class, all the fields and methods are private by default, and the public keyword is necessary to make
them public.

I've done this example in C++ rather than C# because C++ was designed to be compatible with C
and thus provides a rather smoother transition from the world of C. Now it's time to do it in C#.
Programming in the Key of C#
The C# version of this program really doesn't look all that much different from the C++ version.
CsDateClass.cs
//--
// CsDateClass.cs © 2001 by Charles Petzold
//--
using System;

class CsDateClass
{
 public static void Main()
 {
 Date mydate = new Date();

 mydate.month = 8;
 mydate.day = 29;
 mydate.year = 2001;

 Console.WriteLine("Day of year = {0}", mydate.DayOfYear());
 }
}
class Date
{
 public int year;
 public int month;
 public int day;

 public static bool IsLeapYear(int year)
 {
 return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 ==
0));
 }

 public int DayOfYear()
 {
 int[] MonthDays = new int[] { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 return MonthDays[month - 1] + day +
 (month > 2 && IsLeapYear(year) ? 1 : 0);
 }
}

One thing I've done, however, is to put the Main method (enclosed in its own class) up at the top of
the program and the Date class down at the bottom. I can do this because C# doesn't require
forward declarations.

In the C++ version, I defined the Date object like so:
Date mydate;

C# requires a construction like this:
Date mydate = new Date();

As when defining an array, the new keyword performs a memory allocation for the new object of type
Date. (I'll discuss the use of parentheses following Date later in this chapter.)

Another change that the C# version requires is the use of the keyword public in front of every field
and method in the class that is referenced outside the class. The public keyword is called an access

modifier because it indicates how the fields and methods can be accessed. The other two common
alternatives are private and protected, which I'll discuss later in this chapter.

Notice that the IsLeapYear method returns a bool. In the DayOfYear method, I use the conditional
operator (?:) to generate a value of 1 to add to the day of year for leap years. I could also have cast
the bool expression into an int.

Let's get the hang of the jargon: Date is a class. The Date class has five members. The three data
members year, month, and day are called fields. The two code members are called methods. The
variable mydate is an object of type Date. It's also referred to as an instance of the Date class.
Static Methods
I've made another change in converting the C++ version of the program to C#: I added the static
modifier to the definition of IsLeapYear and included a year argument to the method. This wasn't a
necessary change: if you remove the static keyword and the argument to IsLeapYear, the program
will work the same.

But the static modifier is so important in C# and the .NET Framework that I didn't want to delay
discussing it another second.

Throughout this chapter, I've been displaying text on the console by specifying the WriteLine method
in the Console class:
Console.WriteLine(...);

However, when calling the DayOfYear method, you specify not the class (which is Date) but mydate,
which is an object of type Date:
mydate.DayOfYear();

You see the difference? In the first case, the class Console is specified; in the second case, the
object mydate is specified.

That's the static difference. The WriteLine method is defined as static in the Console class, like so:
public static void WriteLine(string value)

A static method pertains to the class itself rather than to an object of that class. To call a method
defined as static, you must preface it with the name of the class. To call a method not defined as
static, you must preface it with the name of an object—an instance of the class in which that method
is defined.

This distinction also applies to data members in a class. Any data member defined as static has the
same value for all instances of the class. From outside the class definition, the data member must be
accessed using the class name rather than an object of that class. Those MinValue and MaxValue
fields I used earlier in the MinAndMax program were static fields.

What is the implication of defining IsLeapYear as static? First, you can't call IsLeapYear prefaced
with an instance of Date:
mydate.IsLeapYear(1997) // Won't work!

You must call IsLeapYear prefaced with the class name:
Date.IsLeapYear(1997)

Within the class definition (as in the DayOfYear method), you don't need to preface IsLeapYear at
all. The other implication is that IsLeapYear must have an argument, which is the year that you're
testing. The advantage of defining IsLeapYear as static is that you don't have to create an instance
of Date in order to use it. Similarly, you don't need to create an instance of the Console class to use
the static methods defined in that class. (Actually, you can't create an instance of Console, and even
if you could, you couldn't use it for anything because Console has no nonstatic methods.)

A static method can't call any nonstatic method in the class or use any nonstatic field. That's
because nonstatic fields are different for different instances of the class and nonstatic methods
return different values for different instances of the class. Whenever you look up something in the
.NET Framework reference, you should be alert to see whether or not it's defined as static. It's an

extremely important distinction. Likewise, I'll try to be very careful in this book in indicating when
something is defined as static.

Fields can also be defined as static, in which case they're shared among all instances of the class. A
static field is a good choice for an array that must be initialized with constant values, such as the
MonthDays array in the CsDateClass program. As shown in that program, the array is reinitialized
whenever the DayOfYear method is called.
Exception Handling
Different operating systems, different graphical environments, different libraries, and different
function calls all report errors in different ways. Some return Boolean values, some return error
codes, some return NULL values, some beep, and some crash the system.

In C# and the .NET Framework, an attempt has been made to uniformly use a technique known as
structured exception handling for reporting all errors.

To explore this subject, let's begin by setting the month field of the Date object in the CsDateClass
program to 13:
mydate.month = 13;

Now recompile and run the program. If a dialog box comes up about selecting a debugger, click No.
You'll then get a message on the command line that says this:
Unhandled Exception: System.IndexOutOfRangeException: Index was outside
the
bounds of the array.
 at Date.DayOfYear()
 at CsDateClass.Main()

If you've compiled with debug options on, you'll get more explicit information that indicates actual line
numbers in the source code. In either case, however, the program will have been prematurely
terminated.

Notice that the message is accurate: the index to the MonthDays array was truly out of range. In C, a
problem like this might result in some other kind of error, such as a stack overflow. C# checks
whether an array index is valid before indexing the array. The program responds to an anomalous
index by a simple process that's called throwing (or raising) an exception.

It's possible—and in fact very desirable—for programs themselves to know when exceptions are
occurring and to deal with them constructively. When a program checks for exceptions, it is said to
catch the exception. To catch an exception, you enclose statements that may generate an exception
in a try block and statements that respond to the exception in a catch block. For example, you can try
putting the following code in the CsDateClass program with the bad date:
try
{
 Console.WriteLine("Day of year = {0}", mydate.DayOfYear());
}
catch (Exception exc)
{
 Console.WriteLine(exc);
}

Exception is a class defined in the System namespace, and exc is an object of type Exception that
the program is defining. This object receives information about the exception. In this example, I've
chosen simply to pass exc as an argument to Console.WriteLine, which then displays the same
block of text describing the error I showed you earlier. The difference, however, is that the program
isn't prematurely terminated and could have handled the error in a different way, perhaps even a
graceful way.

A single line of code can cause several types of exceptions. For that reason, you can define different
catch blocks:
try
{

}
catch (NullReferenceException exc)
{

}
catch (ArgumentOutOfRangeException exc)
{

}
catch (Exception exc)
{

}

Notice that the most generalized exception is at the end.

You can also include a finally block:
try
{

}
catch (Exception exc)
{

}
finally
{

}

Regardless of whether or not an exception occurs, the code in the finally block is executed following
the code in the catch block (if an exception occurred) or the code in the try block (if there was no
exception). You can put cleanup code in the finally block.

You might ask, Why do I need the finally block? Why can't I simply put my cleanup code after the
catch block? That's certainly possible. However, you could end your try or catch blocks with goto
statements. In that case, the code in the finally block would be executed anyway, before the goto
occurred.

It's also possible to leave out the catch block:
try
{

}
finally

{

}

In this case, you'd get the dialog box about a debugger and a printed version of the exception (the
same as displaying it with Console.WriteLine), and then the code in the finally clause would be
executed and the program would proceed normally.
Throwing Exceptions
What still bothers me in this particular case is that we really haven't gotten to the root of the problem.
The DayOfYear method is throwing an exception because the index to the MonthDays array is out of
bounds. But the real problem occurs earlier in the program, with this statement that I told you to put
in the program:
mydate.month = 13;

Once this statement is executed, you're dealing with a Date object that contains an invalid date.
That's the real problem. It just so happens that DayOfYear was the first method that had a bad
reaction to this problem. But suppose you put the following statement in the program:
mydate.day = 47;

The DayOfYear method goes right ahead and calculates a result despite the fact that it's dealing with
a bogus date.

Is there a way for the class to protect itself against the fields being set to invalid values by a program
using the class? The easy way is by marking the fields as private rather than public:
private int year;
private int month;
private int day;

The private modifier makes the three fields accessible only from methods inside the Date class
definition. In fact, in C#, the private attribute is the default, so you only need to remove the public
attribute to make this change:
int year;
int month;
int day;

Of course, this change creates its own problem: How is a program that uses the Date class
supposed to set the values of the year, month, and day?

One solution that might occur to you is to define methods in the Date class specifically for setting
these three fields and also for getting the values once they're set. For example, here are two simple
methods for setting and getting the private month field:
public void SetMonth (int month)
{
 this.month = month;
}
public int GetMonth ()
{
 return month;
}

Notice that both these methods are defined as public. Notice also that I've given the name of the
argument variable in SetMonth the same name as the field! If you do this, the field name needs to be
prefaced with the word this and a dot. Inside a class, the keyword this refers to the instance of the
class that's calling the method. The this keyword is invalid in static methods.

Here's a version of SetMonth that checks for proper month values:
public void SetMonth (int month)
{
 if (month >= 1 && month <= 12)
 this.month = month;
 else
 throw new ArgumentOutOfRangeException("Month");
}

And there's the syntax for throwing an exception. I've chosen ArgumentOutOfRangeException
because that one most closely identifies the problem. The new keyword creates a new object of type
ArgumentOutOfRangeException. That object is what the catch block gets as a parameter. The
argument to ArgumentOutOfRangeException is a text string that identifies the parameter causing the
problem. This text string is included along with the other information about the error if you choose to
display it.

C# has a better alternative to Get and Set methods. Whenever you're on the verge of writing
methods that begin with the words Get or Set—indeed, whenever you're on the verge of writing any
method that returns information about an object and that doesn't require an argument—you should
think of a C# feature known as the property.
Getting and Setting Properties
As you've seen, C# classes can contain data members that are called fields and code members that
are called methods. C# classes can also contain other code members, called properties, that are
extremely important in the .NET Framework.

Properties seem to blur the distinction between code and data. To a program using the class,
properties look like data fields, and they can often be treated like data fields. Within a class,
however, a property is definitely code. In many cases, a public property provides other classes
access to a private field in the class. The property has the advantage over a field of being able to
perform validity checks.

Some C# programmers (like myself) give private fields names that begin with lowercase letters and
public properties names that begin with uppercase letters. Here's a simple definition of a Month
property that provides access to the private month field:
public int Month
{
 set
 {
 month = value;
 }
 get
 {
 return month;
 }
}

A program using a class with such a property refers to the property in the same way as it might refer
to a field:
mydate.Month = 7;

or
Console.WriteLine(mydate.Month);

or

mydate.Month += 2;

The final example increases the Month property by 2. See how much cleaner this syntax is than an
equivalent statement using those SetMonth and GetMonth methods we toyed with earlier:
mydate.SetMonth(mydate.GetMonth() + 2); // Good riddance!

Let's examine the property definition in detail: The public keyword indicates that this property is
accessible from outside the class. The int data type indicates that the property is a 32-bit integer.
The property itself is named Month.

Within the body of the property are two accessors, named set and get. You don't have to include
both. Many properties have only public get accessors, in which case the set accessor is either not
defined at all or defined as private. Such properties are known as read-only properties. It's also
possible to have a property with a set accessor and no get accessor, but these are much rarer.

Within the definition of the set accessor, the special word value refers to the value that property is
being set to by a statement such as this:
mydate.Month = 7;

A get accessor always contains a return statement to return a value to the program using the
property.

Here's a program that defines Year, Month, and Day properties and implements validity checking in
the set accessors.
CsDateProperties.cs
//---
// CsDateProperties.cs © 2001 by Charles Petzold
//---
using System;

class CsDateProperties
{
 public static void Main()
 {
 Date mydate = new Date();

 try
 {
 mydate.Month = 8;
 mydate.Day = 29;
 mydate.Year = 2001;

 Console.WriteLine("Day of year = {0}", mydate.DayOfYear);
 }
 catch (Exception exc)
 {
 Console.WriteLine(exc);
 }
 }
}
class Date
{

 // Fields
 int year;
 int month;
 int day;
 static int[] MonthDays = new int[] { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 // Properties
 public int Year
 {
 set
 {
 if (value < 1600)
 throw new ArgumentOutOfRangeException("Year");
 else
 year = value;
 }
 get
 {
 return year;
 }
 }
 public int Month
 {
 set
 {
 if (value < 1 || value > 12)
 throw new ArgumentOutOfRangeException("Month");
 else
 month = value;
 }
 get
 {
 return month;
 }
 }
 public int Day
 {
 set
 {
 if (value < 1 || value > 31)
 throw new ArgumentOutOfRangeException("Day");
 else
 day = value;
 }

 get
 {
 return day;
 }
 }
 public int DayOfYear
 {
 get
 {
 return MonthDays[month - 1] + day +
 (month > 2 && IsLeapYear(year) ? 1 :
0);
 }
 }
 // Method
 public static bool IsLeapYear(int year)
 {
 return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 ==
0));
 }
}

I've left in the try and catch code so that you can experiment with invalid dates. Notice that I've also
set a minimum of 1600 on the Year property. The IsLeapYear method doesn't make much sense for
dates earlier than that. One problem that still remains is that the individual properties don't test for
consistency. You can set a date of February 31, for example. Such consistency checking would
impose restrictions on the order in which the properties were set, so I'm going to let that go.

I've also changed DayOfYear from a method to a read-only property, just because the value seemed
to me more like a property of a date rather than a method. Sometimes it's hard to determine whether
something should be a method or a property. The only obvious rule is, If it has an argument, it's gotta
be a method.
Constructors
Back in the C version of the program, I mentioned briefly that you can initialize the fields of a
structure when you define a structure variable:
struct Date birthdate = { 1953, 2, 2 } ;

I didn't really pursue this throughout the various versions, however. It's possible to initialize a C++
class or struct in such a way, but such an initialization is dependent on the number of fields in a
struct or class and the ordering of those fields, and it's probably not a good idea. In C#, it's not
allowed. But it certainly would be nice to do something like this in C#.

Another issue: The previous version of the C# program implements validity checking in all the set
accessors of its properties. However, there's still a situation in which the class has an invalid date,
and that's when the object is first created:
Date mydate = new Date();

You can solve both these problem with something called a constructor. A constructor is a method in
the class that is run when an object of that class is created. If you look at the expression following
the word new in
Date mydate = new Date();

you'll see what seems to be a method call with no arguments. That's exactly what it is! It's a call to
the default constructor of Date. Every class has a default constructor that exists whether or not you

explicitly define it. But if you explicitly define a default constructor in the Date class, you can make
sure that the Date object always has a valid date.

It's also possible to define constructors that have one or more arguments. In the Date class, you
might want to define a constructor with three arguments that initializes a Date object with a particular
date. Such a constructor would allow you to create a Date object like so:
Date birthdate = new Date(1953, 2, 2);

In the class, the constructor looks a lot like a method except that it has the same name as the class
in which it is defined and it has no return type. If you put a return type on a constructor or if you
define any other method without a return type, you'll get an error from the compiler. This is good
because it lets you know whether you've typed the class name wrong when defining the constructor.

Here's a simple approach to a constructor that includes date arguments:
public Date(int year, int month, int day)
{
 this.year = year;
 this.month = month;
 this.day = day;
}

But it doesn't use all the error checking we've implemented in the properties. A better approach is for
the constructor to set the properties rather than the fields:
public Date(int year, int month, int day)
{
 Year = year;
 Month = month;
 Day = day;
}

In fact, you can do more than this. You can actually perform consistency checks among the three
values in the constructor.

What about the default constructor? It's common for classes to define a default constructor that sets
the object to a value of 0, or something more or less equivalent to a 0 value. For the Date class, that
probably means the date January 1, 1600 because that's the earliest date allowed. Here's the new
version of the program.
CsDateConstructors.cs
//---
// CsDateConstructors.cs © 2001 by Charles Petzold
//---
using System;

class CsDateConstructors
{
 public static void Main()
 {
 try
 {
 Date mydate = new Date(2001, 8, 29);

 Console.WriteLine("Day of year = " + mydate.DayOfYear);

 }
 catch (Exception exc)
 {
 Console.WriteLine(exc);
 }
 }
}
class Date
{
 // Fields
 int year;
 int month;
 int day;
 static int[] MonthDays = new int[] { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 //
Constructors
 public Date()
 {
 Year = 1600;
 Month = 1;
 Day = 1;
 }
 public Date(int year, int month, int day)
 {
 if ((month == 2 && IsLeapYear(year) && day > 29) ||
 (month == 2 && !IsLeapYear(year) && day > 28) ||
 ((month == 4 || month == 6 ||
 month == 9 || month == 11) && day > 30))
 {
 throw new ArgumentOutOfRangeException("Day");
 }
 else
 {
 Year = year;
 Month = month;
 Day = day;
 }
 }
 // Properties
 public int Year
 {
 set
 {
 if (value < 1600)

 throw new ArgumentOutOfRangeException("Year");
 else
 year = value;
 }
 get
 {
 return year;
 }
 }
 public int Month
 {
 set
 {
 if (value < 1 || value > 12)
 throw new ArgumentOutOfRangeException("Month");
 else
 month = value;
 }
 get
 {
 return month;
 }
 }
 public int Day
 {
 set
 {
 if (value < 1 || value > 31)
 throw new ArgumentOutOfRangeException("Day");
 else
 day = value;
 }
 get
 {
 return day;
 }
 }
 public int DayOfYear
 {
 get
 {
 return MonthDays[month - 1] + day +
 (month > 2 && IsLeapYear(year) ? 1 :
0);
 }
 }

 // Method
 public static bool IsLeapYear(int year)
 {
 return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 ==
0));
 }
}
Instances and Inheritance
There may come a time when you're using a class and you think, "This class is pretty good, but it'd
be even better if it did …" something or other. If you have the source code to the class, you could
simply edit it, put the new method in, recompile, and go. But you may not have the source code. You
may have access only to a compiled version of the class implemented in a DLL.

Or maybe there's something the class does that you'd like it to do a little differently. But you're using
the class as is in other applications, and it's fine there. It just needs this change for your new
application, and you'd prefer not to mess around with the source code for the original version.

That's why object-oriented languages like C# implement a feature known as inheritance. You can
define a new class based on an existing class. It's said that you inherit from an existing class, or
subclass an existing class. The new class need contain only the new stuff. All classes in C# and the
.NET Framework inherit from a class named Object or from a class inherited from Object. It's also
said that all classes ultimately derive from Object.

Let's create a new class named DatePlus that inherits from Date. DatePlus is going to have a new
property named DaysSince1600. And because it implements such a property, DatePlus can
calculate the difference in days between two dates.

Here's the program that defines the DatePlus class.
CsDateInheritance.cs
//--
// CsDateInheritance.cs © 2001 by Charles Petzold
//--
using System;

class CsDateInheritance
{
 public static void Main()
 {
 DatePlus birth = new DatePlus(1953, 2, 2);
 DatePlus today = new DatePlus(2001, 8, 29);

 Console.WriteLine("Birthday = {0}", birth);
 Console.WriteLine("Today = " + today);
 Console.WriteLine("Days since birthday = {0}", today - birth);
 }
}
class DatePlus: Date
{
 public DatePlus() {}
 public DatePlus(int year, int month, int day): base(year, month, day)
{}

 public int DaysSince1600
 {
 get
 {
 return 365 * (Year - 1600) +
 (Year - 1597) / 4 -
 (Year - 1601) / 100 +
 (Year - 1601) / 400 + DayOfYear;
 }
 }
 public override string ToString()
 {
 string[] str = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };

 return String.Format("{0} {1} {2}", Day, str[Month - 1], Year);
 }
 public static int operator -(DatePlus date1, DatePlus date2)
 {
 return date1.DaysSince1600 - date2.DaysSince1600;
 }
}

When you compile this program, you must compile it along with the CsDateConstructors.cs file,
which is the most recent file that implements the Date class. Because you now have two classes that
have a Main method, you must tell the compiler which class contains the Main method you want to
use as the program's entry point.

If you're compiling on the command line, you need to use
csc CsDateConstructors.cs CsDateInheritance.cs /main:CsDateInheritance

Watch out for uppercase and lowercase here. You can type the filename arguments in whatever
case you want, but the /main argument refers to a class, and the case must match the class name
exactly as defined in the file. If you're using Visual C# .NET, you need to add CsDateConstructors.cs
to the CsDateInheritance project. To do this, choose Add Existing Item from the Project menu. When
you select CsDateConstructors.cs in the Add Existing Item dialog box, click the arrow next to the
Open button and select Link File. Selecting this option avoids having to make a copy of the
CsDateConstructors.cs file and also avoids problems that occur when you change one version of the
file but not the other.

Notice the first line of the DatePlus definition:
class DatePlus: Date

That means DatePlus inherits from Date. DatePlus doesn't need to do anything special in its
constructors. For that reason, it defines the default constructor with an empty body:
public DatePlus() {}

Whenever you create an instance of a class, all the default constructors of all the objects that the
class derives from are called, starting with the default constructor for Object and ending with the
default constructor for the class you're creating an object of.

The same isn't true of nondefault constructors. The constructor with three arguments doesn't need to
do anything special in DatePlus, but you need to include it and you need to explicitly call the

constructor in the base class, which is the class that DatePlus inherits from, namely Date. Here's the
syntax:
public DatePlus(int year, int month, int day): base(year, month, day) {}

Again, the constructor does nothing special in DatePlus, so the body is empty.

The DatePlus class implements two other neat features besides the DaysSince1600 property. First,
DatePlus defines the minus operator (−) for objects of this class. This is called overloading the
operator. The minus operator is normally defined only for numbers, but here we're saying you can
use it for dates as well. The body of this operator overload is fairly simple: it just subtracts one
DaysSince1600 property from another.

So if you define two DatePlus objects as
DatePlus birth = new DatePlus(1953, 2, 2);
DatePlus today = new DatePlus(2001, 8, 29);

you can find the difference in days simply by using the expression
today - birth

Notice that I didn't implement an override of the plus operator in this class. It wouldn't make sense to
add two dates together. However, I could have implemented the addition of a date and an integer to
yield a new date. But I would also need some code to convert a new day-since-1600 value back to a
date. Implementing comparison operators (<, >, <=, and >=) would be fairly easy, though.

I mentioned earlier that all classes ultimately derive from Object. The Object class implements a
method named ToString that's intended to convert an object into a human-readable text string.
We've actually already made use of ToString. Whenever you concatenate a numeric variable with a
text string, the ToString method of the variable is automatically called. Whenever you pass an object
to Console.WriteLine, the ToString method of the object is called.

However, the default behavior of the ToString method in Object is to return the name of the class, for
example, the text string "DatePlus". But that's OK, because any class that derives from Object (and
that means any class defined in C#) can override the ToString method in Object by providing its own.
The DatePlus class implements its own ToString method and uses the static method String.Format
to format the date into a text string. You can then pass a DatePlus object to Console.WriteLine and
get a formatted date. The output of the CsDateInheritance program looks like this:
Birthday = 2 Feb 1953
Today = 29 Aug 2001
Days since birthday = 17740

We're now ready to look at access modifiers in more detail. If you define a field, property, or method
as private, it is visible and accessible only from within the class. If you define a field, property, or
method as public, it is visible and accessible from other classes. If you define a field, property, or
method as protected, it is visible and accessible only from within the class and in any class that
inherits from the class.

The ToString method in the Object class is defined with the modifier virtual. A method defined as
virtual is intended to be overridden by classes that derive from the class. A method that overrides the
virtual method uses the override modifier to indicate that it wants to replace a method with its own
version. The override modifier is required so that you won't make the mistake of accidentally
overriding a virtual method when you didn't intend to.

A class can also override a method that isn't defined as virtual. In that case, the new method must
include the modifier new.

Besides ToString, the Object class also defines several other methods, including GetType. GetType
returns an object of type Type, a class defined in the System namespace. The Type class allows you
to obtain information about the object, including its methods, properties, and fields. The C# typeof
operator also returns an object of type Type. The difference is that GetType is applied to an object
while typeof is applied to a class. In the Main method in CsDataInheritance, the expression
today.GetType() == typeof(DatePlus)

would return true.
A Bigger Picture
The documentation of the class libraries in the .NET Framework is organized by namespace. Each
namespace is a logical grouping of classes (and such) and is implemented in a particular DLL.

Within each namespace you'll see five types of items. These are the only five types of items that can
be defined on the external level in C#:
§ A class, which we've already encountered.
§ A struct is very similar to a class.
§ An interface is similar to a class or struct but defines only method names rather than bodies.

(Chapter 8 has an example of an interface.)
§ An enumeration is a list of constants with predefined integer values.
§ A delegate is a prototype of a method call.

The class and the struct are ostensibly very similar in C#. A class, however, is a reference type,
which means that the object is really a pointer into an allocated block of memory. A struct is a value
type, more like a regular numeric variable. I'll discuss the difference in more detail in Chapter 3. I'll
talk about the delegate in the next chapter; it's most commonly used in conjunction with events.

Some classes in the .NET Framework contain static methods and properties that you'll call by
specifying the class name and the method (or property) name. Some classes in the .NET Framework
you'll instantiate in your Windows Forms applications. And some classes in the .NET Framework
you'll inherit in your applications.

Within a class or a struct you'll find the following members:
§ Fields, which are objects of specific types
§ Constructors, which are executed when an object is created
§ Properties, which are blocks of code with set and get accessors
§ Methods, which are functions that accept arguments and return values
§ Operators, which implement standard operators such as + and − defined for the object, or

casts
§ Indexers, which allow the object to be referenced like an array
§ Events, which I'll discuss in the next chapter
§ Other embedded classes, structures, interfaces, enumerations, or delegates

Early in this discussion of C#, I covered numeric types and string types supported by the language.
All the basic types in C# are implemented as classes or structures in the System namespace. The int
data type, for example, is an alias for the Int16 structure. Rather than define an int as
int a = 55;

you can use
System.Int16 a = 55;

These two statements are functionally identical, which is why you sometimes see strings in C#
defined like so:
string str = "Hello, world!";

And sometimes with a capitalized String data type:
String str = "Hello, world!";

The appearance of uppercase and lowercase types in these two statements doesn't mean that C# is
sometimes case insensitive. The capitalized String refers to the String class in the System
namespace. If you don't have a using statement for the System namespace, you'd need to use
System.String str = "Hello, world!";

if you want to use String rather than string.

Here's a table showing how the C# types correspond to classes and structures in the System
namespace:
C# Data Types Aliases

Signed Unsigned

.NET Type C# Alias .NET Type C# Alias

System.Object object System.Enum enum

System.String string System.Char char

System.SByte sbyte System.Byte byte

System.Int16 short System.UInt16 ushort

System.Int32 int System.UInt32 uint

System.Int64 long System.UInt64 ulong

System.Single float System.Double double

System.Decimal decimal System.Boolean bool

Because basic types are classes and structures, they can have fields, methods, and properties. This
is how the Length property can return the number of characters in a string object and how the
numeric data types can have fields named MinValue and MaxValue. Arrays support properties and
methods implemented in the System.Array class.
Naming Conventions
Throughout the remainder of this book, I'll use naming conventions that are based somewhat on the
.NET Framework and somewhat on a system called Hungarian notation, named in honor of
legendary Microsoft programmer Charles Simonyi.

For class names, property names, and event names that I define, I'll use Pascal casing. This system
is a mixture of uppercase and lowercase beginning with a capital and possibly containing embedded
capitals.

For fields, variables, and objects I define, I'll use camel casing. The first letter is lowercase but the
name may include uppercase letters. (The uppercase letters are the camel's humps.)

For variables of the standard types, I'll use a lowercase prefix on the variable name that indicates the
type of the variable. Here are the prefixes I use in this book:

Date Type Prefix

bool b

byte by

short s

int i, x, y, cx, cy

long l

float f

char ch

string str

object obj

The x and y prefixes indicate coordinate points. The cx and cy prefixes indicate widths and heights.
(The c stands for count.)

For objects created from classes, I'll use a lowercase version of the class name as a prefix,
sometimes abbreviated. For example, an object of type Point may be called ptOrigin. Sometimes the
program will create only one object of a particular class, so the object can be the same as the class
name but in lowercase. For example, an object of type Form will be named form. An object of type
PaintEventArgs will be named pea.

Any array variable will be prefixed with an a before any other prefix.
Beyond the Console
In fall 1985, Microsoft released the first version of Windows. At the same time, Microsoft also
released the Windows Software Development Kit (SDK), which showed programmers how to write
Windows applications in C.

The original hello-world program in the Windows 1.0 SDK was a bit of a scandal. HELLO.C was
about 150 lines long, and the HELLO.RC resource script had another 20 or so more lines. Granted,
the program created a menu and displayed a simple dialog box, but even so, leaving out those
amenities still left about 70 lines of code. Veteran C programmers often curled up in horror or
laughter when first encountering the Windows hello-world program.

In a sense, the whole history of new programming languages and class libraries for Windows has
involved the struggle to reduce the Windows hello-world program down to something small, sleek,
and elegant.

Let's see how Windows Forms fares in this respect.

Chapter 2: Hello, Windows Forms
Overview
The programs shown in the previous chapter were not, of course, Windows programs. Those
programs didn't create their own windows, didn't draw any graphics, and knew nothing about the
mouse. All the user input and output came through a class named Console. It's time to move on. For
the remainder of this book, the Console class won't be entirely forgotten, but it will be relegated to
relatively mundane chores such as logging and primitive debugging.

Which raises the question: What exactly is the difference between a console application and a
Windows application? Interestingly enough, the distinction isn't quite as clear-cut as it used to be. A
single application can have elements of both. It can start out as a console application and then
become a Windows application, and go back to being a console application again. A Windows
application can also display console output with impunity. A console application can display a
Windows message box to report a problem and then resume console output when the user
dismisses that message box.

To the C# compiler, the difference between a console application and a Windows application is a
compiler switch named target (which can be abbreviated t). To create a console application, use the
switch
/target:exe

That's the default if you specify no target switch. To create a Windows executable, use
/target:winexe

The target switch can also indicate a library or a module. In Microsoft Visual Studio .NET, you use
the project Property Pages dialog box. In the General Common Properties section, set the Output
Type to either Console Application or Windows Application.

This compiler switch doesn't do anything very profound. It really only sets a flag in the executable file
that indicates how the program is to be loaded and run. If an executable is flagged as a Console
Application and is started from Windows, the Windows operating system creates a Command
Prompt window that launches the program and displays any console output from the program. If the
console application is started from within the Command Prompt window, the MS-DOS prompt
doesn't return until the program terminates. If the executable is flagged as a Windows Application, no
Command Prompt window is created. Any console output from the program goes into the bit bucket.
If you start such a program from the Command Prompt window, the MS-DOS prompt appears again
right after the program is launched. The point is this: nothing bad happens if you compile a Windows
Forms application as a console application!

One thing to keep in mind is that the Command Prompt window behaves differently depending on
whether you're running in release mode or debug mode. If you're in release mode, you'll see the
standard "Press any key to continue" message in the console when a program ends. At that point,
you'll still be able to see any output sent to the console and you can then dismiss the console
window when you're done viewing the output. If you're in debug mode and you start the program
from Windows, the console window will disappear without warning as soon as the program ends.
You'll need to view any output to the console before shutting down the program.

All the Visual Studio .NET project files that accompany the programs from this book specify that the
programs are console applications. That's why when you execute these programs, a Command
Prompt window comes up first. That console is to your advantage: if you ever need to see what's
going on inside one of these programs, you can simply stick Console.Write or Console.WriteLine
statements anywhere in any program in this book. (Although as I mentioned, you won't have an
opportunity to view these statements if you run in debug mode and end the program. In such cases,
you'll also want to be sure not to put the Write or WriteLine statements in the code to display after
the program window has shut down.) There are very few mysteries in life that can't be cleared up
with a couple Console.WriteLine statements. (There's also a Debug class in the System.Diagnostics
namespace that provides alternatives to using the Console class for this purpose.)

Of course, I wouldn't send a Windows program compiled as a console application out into the
nondeveloper marketplace. Users might get upset seeing a Command Prompt window popping up

(unless they are familiar with UNIX and UNIX-like environments). But it's only a compiler switch, and
that can be changed at any time.

The real difference between a console application and a Windows application is the way in which the
program gets user input. A console application gets keyboard input through the Console.Read or
Console.ReadLine methods; a Windows Forms application gets keyboard (and other) input through
events, a subject we'll be studying for much of this book.

I created the projects for this chapter in Visual Studio .NET in much the same way I created the
projects in Chapter 1. I specified that the project was a Visual C# Project but that it was an Empty
Project. When I created a program in the project, I used the Add New Item menu option and
specified a Local Project Item and a Code File. This process dissuades Visual Studio .NET from
generating code for you. In this book, you and I will be writing our own code.

However, the C# compiler needs access to some additional DLLs that are part of the .NET Common
Language Runtime (CLR) environment. If you're running the C# compiler on the command line, you
need to include the reference (abbreviated r) compiler switch:
/r:System.dll,System.Windows.Forms.dll,System.Drawing.dll

You'll also need to specify these three files in Visual Studio .NET. In Solution Explorer, right-click on
the References item underneath the project name and select Add Reference from the context menu.
(You can also select the Add Reference item from the Project menu.) Select these three items from
the list in the dialog box that you're presented with:
§ System.dll
§ System.Drawing.dll
§ System.Windows.Forms.dll

If you have multiple projects grouped in a Visual Studio .NET solution (as the projects for this book
are organized), you need to specify these files only for the first project. You can then select these
three files in Solution Explorer as they are listed in the References section of one project and drag
them to the References section of each subsequent project.
The Message Box
At the beginning of the chapter, I mentioned message boxes. Let's take a look at a short but
authentic Windows Forms program that displays our favorite two words of deathless prose.
MessageBoxHelloWorld.cs
//---
// MessageBoxHelloWorld.cs © 2001 by Charles Petzold
//---
class MessageBoxHelloWorld
{
 public static void Main()
 {
 System.Windows.Forms.MessageBox.Show("Hello, world!");
 }
}

This program is quite similar to the original ConsoleHelloWorld program in Chapter 1. It has a class
(MessageBoxHelloWorld), a method in that class named Main that's the entry point to the program,
and a single executable statement that's really not too much longer than the console equivalent. That
long function name breaks down like so:
§ System.Windows.Forms is a namespace.
§ MessageBox is a class in that namespace.
§ Show is a static method in the MessageBox class.

Because Show is a static method, it must be prefaced with the class name and not an object created
from that class, just like the WriteLine method of the Console class. Here's what the output of this
program looks like:

When you press the OK button, the message box goes away, the Show method returns, and the
program terminates.

System.Windows.Forms is a gigantic namespace that contains around 200 classes and 100
enumerations as well as about 41 delegates, 7 interfaces, and 4 structures. Together with System
and System.Drawing, it is the most important namespace in this book. Customarily, you'll put the
statement
using System.Windows.Forms;

at the top of your Windows Forms programs; you can then refer to the static Show method of
MessageBox simply as:
MessageBox.Show("Hello, world!");

You've probably seen plenty of message boxes when you've worked with Windows. Message boxes
always contain a brief message to the user and let the user respond by clicking a button, sometimes
one of two or three buttons. Optionally, the message can be adorned with an icon and a descriptive
caption. Programmers can also use message boxes for debugging purposes because they offer a
quick way to display text information and temporarily suspend the program.

MessageBox is derived from Object and thus inherits a few methods implemented by Object. The
only method MessageBox itself implements is Show. It's a static method and exists in 12 different
versions. Here are 6 of them:

MessageBox Show Methods (selection)

DialogResult Show(string strText)
DialogResult Show(string strText, string strCaption)
DialogResult Show(string strText, string strCaption,
 MessageBoxButtons mbb)
DialogResult Show(string strText, string strCaption,
 MessageBoxButtons mbb, MessageBoxIcon mbi)
DialogResult Show(string strText, string strCaption,
 MessageBoxButtons mbb, MessageBoxIcon mbi,
 MessageBoxDefaultButton mbdb)
DialogResult Show(string strText, string strCaption,
 MessageBoxButtons mbb, MessageBoxIcon mbi,
 MessageBoxDefaultButton mbdb, MessageBoxOptions mbi)

The other six overloaded Show methods are used in connection with Win32 code. The text you
specify in the message box caption is typically the name of the application. Here's an alternative
MessageBox.Show call for our first Windows Forms program:
MessageBox.Show("Hello, world!", "MessageBoxHelloWorld");

When you don't use the second argument, no text appears in the caption bar.

You can choose one of the following enumeration values to indicate the buttons that appear on the
message box:
MessageBoxButtons Enumeration

Member Value

OK 0

OKCancel 1

AbortRetryIgnore 2

YesNoCancel 3

YesNo 4

RetryCancel 5

For example, to display OK and Cancel buttons, call
MessageBox.Show("Hello, world!", "MessageBoxHelloWorld",
 MessageBoxButtons.OKCancel);

If you use one of the versions of MessageBox.Show without this argument, only the OK button is
displayed. The AbortRetryIgnore buttons are based on an infamous message that MS-DOS used to
display when you tried to access a device (usually a floppy disk) that couldn't respond for some
reason. These buttons should probably be avoided in a graphical environment unless you're
deliberately trying to be anachronistically humorous.

You can also include one of the values from the MessageBoxIcon enumeration to display an icon in
the message box:
MessageBoxIcon Enumeration

Member Value

None 0x00

Hand 0x10

Stop 0x10

Error 0x10

Question 0x20

Exclamation 0x30

Warning 0x30

Asterisk 0x40

Information 0x40

However, you can see by the values that there are really only four unique message box icons. Here's
an example:
MessageBox.Show("Hello, world!", "MessageBoxHelloWorld",
 MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation);

If you've specified a MessageBoxButtons value that displays two or three buttons, you can use the
MessageBoxDefaultButton enumeration to indicate which button is to be the default:
MessageBoxDefaultButton Enumeration

Member Value

Button1 0x000

MessageBoxDefaultButton Enumeration

Member Value

Button2 0x100

Button3 0x200

For example, calling
MessageBox.Show("Hello, world!", "MessageBoxHelloWorld",
 MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation,
 MessageBoxDefaultButton.Button2);

makes the second button—the button labeled "Cancel"—the default button. That's the button that will
be highlighted when the message box first appears and that will respond to keyboard input, such as
a press of the space bar.

One other enumeration used by the Show method of the MessageBox class is MessageBoxOptions:
MessageBoxOptions Enumeration

Member Value

DefaultDesktopOnly 0x020000

RightAlign 0x080000

RtlReading 0x100000

ServiceNotification 0x200000

These options are rarely used, however.

If you're displaying more than one button in the message box, you probably want to know which
button the user presses to make the message box go away. That's indicated as the return value from
MessageBox.Show, which is one of the following enumeration values:
DialogResult Enumeration

Member Value

None 0

OK 1

Cancel 2

Abort 3

Retry 4

Ignore 5

Yes 6

No 7

Here's how you customarily use the return value from MessageBox.Show:
DialogResult dr = MessageBox.Show("Do you want to create a new file?",
 "WonderWord",
 MessageBoxButtons.YesNoCancel,
 MessageBoxIcon.Question);
if (dr == DialogResult.Yes)
{
 // "Yes" processing

}
else if (dr == DialogResult.No)
{
 // "No" processing
}
else
{
 // "Cancel" processing
}

Or you might want to use a switch and case construction, perhaps like so:
switch (MessageBox.Show("Do you want to create a new file?",
 "WonderWord",
 MessageBoxButtons.YesNoCancel,
 MessageBoxIcon.Question)
{
case DialogResult.Yes:
 // "Yes" processing
 break;

case DialogResult.No:
 // "No" processing
 break;

case DialogResult.Cancel:
 // "Cancel" processing
 break;
}

Message boxes are sometimes handy for quick exploratory purposes. For example, suppose you
want to display the name of the directory that Windows identifies with the alias "My Documents."
That information is available from the Environment class in the System namespace. You use the
static GetFolderPath method with a single argument—a member of the Environment.SpecialFolder
enumeration. The two names separated by a period indicate that SpecialFolder is an enumeration
defined within the Environment class.
MyDocumentsFolder.cs
//--
// MyDocumentsFolder.cs © 2001 by Charles Petzold
//--
using System;
using System.Windows.Forms;

class MyDocumentsFolder
{
 public static void Main()
 {
 MessageBox.Show(

Environment.GetFolderPath(Environment.SpecialFolder.Personal),
 "My Documents Folder");
 }
}

The message box looks like this on my system:

The Form
Of course, message boxes do not a Windows program make. To begin construction of a full-fledged
Windows application, you need to create something that in Windows programming is traditionally
called a window and in the .NET Framework is called a form. A Windows Forms program generally
creates a form as its main application window. Applications also use forms for dialog boxes.

A form used as a main application window generally consists of a caption bar (sometimes also called
a title bar) with the name of the application, a menu bar underneath that caption bar, and an area
inside called the client area. A sizing border or (alternatively) a thin border that prevents the form
from being resized can surround the whole form. Until Chapter 14, however, none of our forms will
have menus.

In the pages ahead, we're going to explore several nonstandard and unconventional approaches to
creating a form and getting it up on the screen before settling into the most common and approved
method. In this way, I hope that you'll get a deeper understanding of what's going on.

Our first effort is what I believe to be the shortest program that actually creates a form. It's called
NewForm.cs.
NewForm.cs
//--------------------------------------
// NewForm.cs © 2001 by Charles Petzold
//--------------------------------------
class NewForm
{
 public static void Main()
 {
 new System.Windows.Forms.Form();
 }
}

The only way this program could be shorter is if I used a shorter class name, got rid of the comments
and the extraneous white space, and deleted the public access modifier (which isn't strictly needed).

Form is a class in the System.Windows.Forms namespace. The NewForm program uses the new
operator to create a new instance of the Form class. By now, you know that I could have made the
program a bit longer by including a using directive,
using System.Windows.Forms;

at the top of the program, in which case the sole statement in Main would be
new Form();

Or I could have defined an object of type Form like so:

Form formOfMine;

and then assigned the result of the new operator to that object:
formOfMine = new Form();

Or I could have done both jobs in one line:
Form formOfMine = new Form();

The Form class derives from ContainerControl, but it actually has a long pedigree beginning with the
Object class that everything else in the .NET Framework derives from:

The word control is used to refer collectively to user interface objects such as buttons, scroll bars,
and edit fields; the Control class implements much of the base support needed for such objects, in
particular, keyboard and mouse input, and visuals. The ScrollableControl class adds automatic
scrolling support to the control (as we'll explore in Chapter 4), and the ContainerControl class allows
a control to work like a dialog box as a parent to other controls; that is, other controls appear on the
surface of the container control.

Although the NewForm program certainly creates a form, it has a bit of a problem. The constructor
for the Form class stops short of actually displaying the form that it has created. The form is created,
but it isn't made visible. As the program terminates, that form is destroyed.
Showing the Form
The next version of the program, called ShowForm, corrects that deficiency.
ShowForm.cs
//---------------------------------------
// ShowForm.cs © 2001 by Charles Petzold
//---------------------------------------
using System.Windows.Forms;

class ShowForm
{
 public static void Main()
 {
 Form form = new Form();

 form.Show();
 }
}

This version of the program includes a using statement that reduces the amount of typing we need to
do. Otherwise, both appearances of the uppercase Form would have to be prefaced with

System.Windows.Forms. The lowercase form refers to an instance of the Form class created in this
program. You can use whatever name you want. (However, if you're programming in a case-
insensitive language like Visual Basic, you can't use form because the compiler will confuse the
name with the Form class; you'll need to choose a different name for the instance of Form.)

Show is one of two methods that Form inherits from Control that affect the visibility of the form (or the
control):
Control Methods (selection)

Method Description

void Show() Makes a control visible

void Hide() Makes a control invisible

An alternative to
form.Show();

is
form.Visible = true;

Show is a method. Visible looks like a field but in fact it's a property:
Control Properties (selection)

Type Property Accessibility

bool Visible get/set

ShowForm makes the form visible all right, but you really have to pay attention to see it! Just about
as soon as the form comes up, it disappears on you. If your machine is much faster than mine, you
might not see it at all.

This behavior implies a possible answer to the question I posed about the difference between a
console application and a Windows application: When a command-line program terminates, it leaves
behind its output on the console. When a Windows application terminates, it cleans up after itself by
destroying the window and any output that's displayed.

Could we slow down the program a bit so that we can get a good look at it? Well, are you familiar
with the concept of sleep? If you dig into the System.Threading namespace, you'll find a class
named Thread and a static method of that class named Sleep, which suspends a program (more
accurately, a thread of a program) for a specified period of time in milliseconds.

Here's a program that calls Sleep twice (with arguments indicating 2.5 seconds each) and lets you
get a better look at the form.
ShowFormAndSleep.cs
//---
// ShowFormAndSleep.cs © 2001 by Charles Petzold
//---
using System.Threading;
using System.Windows.Forms;

class ShowFormAndSleep
{
 public static void Main()
 {
 Form form = new Form();

 form.Show();

 Thread.Sleep(2500);

 form.Text = "My First Form";

 Thread.Sleep(2500);
 }
}

As a bonus, this version of the program also sets the Text property:
Control Properties (selection)

Type Property Accessibility

string Text get/set

Text is a very important property. For button controls, the Text property indicates the text that the
button displays; for edit fields, it's the actual text in the field. For forms, it's the text that appears in
the form's caption bar. When you run this program, you first see the form with a blank caption bar for
2.5 seconds; then the caption bar text appears, and 2.5 seconds later, the form goes away.

This is progress of a sort, but I'm afraid that the Sleep method isn't the proper way to get a form to
stay up on the screen.
It's an Application and We Want to Run It
The magic method we need is called Run, and it's part of the Application class in the
System.Windows.Forms namespace. Like the Console and MessageBox classes, the Application
class can't be instantiated; all its members are defined as static. This program creates a form, sets
the form's Text and Visible properties, and then calls Application.Run.
RunFormBadly.cs
//---
// RunFormBadly.cs © 2001 by Charles Petzold
//---
using System.Windows.Forms;

class RunFormBadly
{
 public static void Main()
 {
 Form form = new Form();

 form.Text = "Not a Good Idea...";
 form.Visible = true;

 Application.Run();
 }
}

Ostensibly, this program is a success. The form it displays looks like this:

You can grab the caption bar with the mouse and move the form around the screen. You can grab
the sizing borders and resize the form. You can click the minimize or maximize buttons, you can
invoke the system menu (called the control box in Windows Forms) by clicking the icon at the upper
left of the window, and you can click the close box in the upper right corner to close the window.

But this program has a very serious flaw that may now become apparent: When you close the form,
the Application.Run method never returns and the program remains running even though the form
isn't visible. This problem is most obvious if you're compiling the program as a console application:
after you close the program, you don't get the familiar "Press any key to continue" text in the
Command Prompt window. To terminate the program, you can press Ctrl+C. If you're not compiling
the program as a console application, you need to invoke Windows Task Manager, click the
Processes tab, find the RunFormBadly application, and manually terminate it. (That's another good
reason for compiling as a console application: you can terminate a problem program with Ctrl+C.)

Here's a better way to call Application.Run. You pass the Form object as an argument to the method.
RunFormBetter.cs
//--
// RunFormBetter.cs © 2001 by Charles Petzold
//--
using System.Windows.Forms;

class RunFormBetter
{
 public static void Main()
 {
 Form form = new Form();

 form.Text = "My Very Own Form";

 Application.Run(form);
 }
}

Notice that this version of the program doesn't include a call to Show, and it doesn't set the Visible
property either. The form is automatically made visible by the Application.Run method. Moreover,

when you close the form that you've passed to the method, Application.Run returns control back to
Main and the program can then properly terminate.

Programmers with experience in the Win32 API might figure out that Application.Run causes the
program to enter a message loop and that the form passed to the Run method is equipped with code
to post a quit message to the message loop when the form is closed. It is Application.Run that really
turns an application into a Windows application.
Variations on a Theme
Let's try creating two forms to get a better feel for this process.
TwoForms.cs
//---------------------------------------
// TwoForms.cs © 2001 by Charles Petzold
//---------------------------------------
using System.Windows.Forms;

class TwoForms
{
 public static void Main()
 {
 Form form1 = new Form();
 Form form2 = new Form();

 form1.Text = "Form passed to Run()";
 form2.Text = "Second form";
 form2.Show();

 Application.Run(form1);

 MessageBox.Show("Application.Run() has returned " +
 "control back to Main. Bye, bye!",
 "TwoForms");
 }
}

This program creates two forms, named form1 and form2, and gives them two different caption texts
so that you can tell them apart. The Show method is called for form2, and form1 is passed to
Application.Run. A message box indicates when Application.Run returns control back to Main.

You may want to run TwoForms a couple times to see what happens. If you close form2 first, form1
is unaffected. The only way you can get Application.Run to return and the program to display its
message box is to also close form1. If you close form1 first, however, both forms disappear from the
screen, Application.Run returns control to Main, and the message box is displayed.

So that's something else that Application.Run does: when you close the form passed as an
argument to Application.Run, the method closes all the other forms created by the program. If you
don't pass a Form object to Application.Run (as RunFormBadly demonstrated), the program needs
to explicitly call the Application.Exit method to force Application.Run to return. But where can the
program call Application.Exit if it's off somewhere in the Application.Run call? We'll see shortly how a
program can set events that return control to a program and potentially give it the opportunity to call
Application.Exit if it needs to.
Form Properties

Like many other classes, the Form class defines a number of properties, and Form also inherits
additional properties from its ancestors, particularly Control. Two such properties that I've already
described are Text and Visible. Here's a program that sets a smattering of sample properties to
illustrate some of the flexibility you have in creating and displaying a form.
FormProperties.cs
//---
// FormProperties.cs © 2001 by Charles Petzold
//---
using System.Drawing;
using System.Windows.Forms;

class FormProperties
{
 public static void Main()
 {
 Form form = new Form();

 form.Text = "Form Properties";
 form.BackColor = Color.BlanchedAlmond;
 form.Width *= 2;
 form.Height /= 2;

 form.FormBorderStyle = FormBorderStyle.FixedSingle;
 form.MaximizeBox = false;
 form.Cursor = Cursors.Hand;
 form.StartPosition = FormStartPosition.CenterScreen;

 Application.Run(form);
 }
}

BackColor is the property that determines the background color of the form. As you'll see in the next
chapter, Color is a structure defined in the System.Drawing namespace (notice the using statement)
that contains 141 properties that are actually color names. These names are listed on the inside
back cover of this book.

The Width and Height properties determine the initial dimensions of the form. The two statements
that change these properties perform both get and set operations, effectively doubling the width of
the window and halving its height from the default values.

FormBorderStyle is an enumeration that defines not just the appearance and functionality of the
form's border but other aspects of the form as well. Here are the possible values:
FormBorderStyle Enumeration

Member Value Comments

None 0 No border, no caption bar

FixedSingle 1 Same as FixedDialog

Fixed3D 2 Chiseled look

FixedDialog 3 Preferred for dialog boxes

FormBorderStyle Enumeration

Member Value Comments

Sizable 4 Default

FixedToolWindow 5 Smaller caption bar, no control box

SizableToolWindow 6 Same as FixedToolWindow but with sizing border

The default FormBorderStyle.Sizable style results in a form that has a caption bar with a control box
on the left, followed by the caption bar text; and a minimize box, a maximize box, and a close box at
the right. A tool window has a shorter caption bar, no control box, no minimize box, and no maximize
box.

The FormBorderStyle.FixedSingle style I've used in this program prevents the user from resizing the
form. In addition, I've set the MaximizeBox property to false, so the maximize box is disabled, as
shown here:

The Cursor property indicates what the mouse cursor looks like when it's moved to the client area of
the form. The StartPosition property indicates where the form is initially displayed; the
FormStartPosition enumeration value CenterScreen directs the form to appear in the center of the
screen rather than in a default position determined by Windows.

As you look at the FormProperties program, you might start to be puzzled about how Windows
Forms programs are structured. It seems like you need to call Application.Run to get the form to
interact with the user, but Application.Run doesn't return until the form is closed.

In short, there doesn't seem to be any place to put your code!
Event-Driven Input
Many console programs don't interact with a user at all. A typical console application obtains all the
information it needs from command-line arguments, does its stuff, and then terminates. If a console
program needs to interact with a user, it gets input from the keyboard. In the .NET Framework, a
console program reads keyboard input by calling the Read or ReadLine methods of the Console
class. After the program pauses to get keyboard input, it then continues on its way.

Programs written for graphical environments, however, have a different input model. One reason for
this is the existence of multiple input devices. Programs get interactive input not only from the
keyboard but also from the mouse. In addition, programs can create controls—such as buttons,
menus, and scroll bars—that also interact with the user on behalf of the main program.

In theory, I suppose, a programming environment that supported multiple input devices could handle
everything using the technique of serial polling. In serial polling, the program checks for input from
the keyboard, and if there is none, checks the mouse; if there's none there, it checks for input from
the menu, and the menu checks for input from the keyboard and the mouse, and so forth. (Prior to
the advent of Windows, character-mode PC programs that used mouse input had to do serial
polling.)

It turns out, however, that a better input model for multiple input devices is the event-driven model.
As implemented in Windows Forms, each type of input is associated with a different method in a
class. When a particular input event occurs (such as a key on the keyboard being pressed, the
mouse being moved, or an item being selected from the program's menu), the appropriate method is
called, seemingly from outside the program.

At first, this input model sounds chaotic. As the user is typing away and moving the mouse, pressing
buttons, scrolling scroll bars, and picking menu selections, the program must get bombarded with

method calls coming from all different directions. Yet in practice, it's much more orderly than it
sounds because all the methods exist in the same execution thread. Events never interrupt a
program's execution. Only when one method finishes processing its event is another method called
with another event.

Indeed, after a Windows Forms program performs initialization on its form, everything that the
program does—every little piece of code it executes—is in response to an event. For much of the
time, the program is sitting dormant, somewhere deep inside the Application.Run call, waiting for an
event to happen. Indeed, it's often helpful to think of your Windows Forms programs as state
machines whose state is determined entirely by changes initiated by events.

Events are so important that they are woven into the very fabric of the .NET Framework and C#.
Events are members of classes along with constructors, fields, methods, and properties. When a
program defines a method to process an event, the method is called an event handler. The
arguments of the handler match a function prototype definition called a delegate. We'll see how this
all works shortly.

As you'll discover in Chapter 6, there are three different types of keyboard events. One type of event
tells you when a key is pressed and another when the key is released. A third keyboard event tells
you when a character code has been generated by a particular combination of keystrokes.

In Chapter 8, I'll introduce the seven types of mouse events, indicating when the mouse has moved
and what buttons have been clicked or double-clicked.

In Chapter 10, you'll see that there's also a timer event. This event periodically notifies your form
when a preset length of time has elapsed. Clock programs use timer events to update the time every
second.

In Chapter 12, when we start creating controls (such as buttons and text boxes and list boxes) and
putting them on the surface of forms, you'll find out that these controls communicate information
back to the form with events. Events indicate when the button has been clicked or the text in the text
box has changed.

In Chapter 14, you'll discover that menus also communicate information to a form using events.
There's an event to indicate when a drop-down menu is about to be displayed, an event to indicate
when a menu item is selected, and an event to indicate when a menu item is clicked.

But one of the oddest events—perhaps the most unlikely candidate for eventhood—is also one of the
most important. This event, known as the Paint event, tells your program when you need to display
output on your window.

Nothing reveals the enormous difference between command-line programs and graphical programs
more than the Paint event. A command-line program displays output whenever it feels like it. A
Windows Forms program can display output whenever it wants to as well, but doing so isn't quite
adequate. What the Paint event is really doing is informing a program when part or all of the form's
client area is invalid and must be redrawn.

How does a client area become invalid? When a form is first created, the entire client area is invalid
because the program hasn't yet drawn anything. The first Paint event that a program receives tells it
to draw something on the client area.

When you move windows around the screen so that they overlap, Windows doesn't save the
appearance of a client area that is covered by another window. When that client area is later
uncovered, the program must restore its appearance. For that reason, it gets another Paint event.
When you restore a program that's been minimized, you get another Paint event.

A Windows program must be able to entirely repaint its client area at any time. It must retain—or
keep quickly accessible—all the information it needs to do this. Structuring your programs to respond
properly to Paint events may sound quite restrictive, but you'll get the hang of it.
Handling the Paint Event
The subject of events is best approached with examples. In practical terms, handling a Paint event in
your program first involves taking a look at PaintEventHandler. PaintEventHandler is a delegate that

is defined in the System.Windows.Forms namespace with a single statement that (in C# syntax)
looks like this:
public delegate void PaintEventHandler(object objSender, PaintEventArgs
pea);

If this statement looks like a function prototype to you, you're not too far from the mark. The second
argument indicates a class named PaintEventArgs—also defined in the System.Windows.Forms
namespace—that I'll discuss shortly.

To handle Paint events in one of the programs shown earlier in this chapter, you must define a static
method in your class that has the same arguments and return type as the PaintEventHandler
delegate:
static void MyPaintHandler(object objSender, PaintEventArgs pea)
{

}

You then attach this event handler to the Paint event of the Form class with some very special
syntax that looks like this:
form.Paint += new PaintEventHandler(MyPaintHandler);

Paint is an event defined in the Control class and is part of the Form class by virtue of inheritance.
The only two operations you can perform on the Paint event are the assignment operators += and
−=. The += operator installs an event handler by attaching a method to an event. The general syntax
is
object.event += new delegate(method)

You detach a method from an event by using the same general syntax but with the −= operator:
object.event -= new delegate(method)

Detaching a method from an event is rarely necessary, however. Generally, you'll install an event
handler and never uninstall it.

The two arguments to the Paint event handler are an object I've called objSender and a
PaintEventArgs class I've abbreviated as pea. The first argument refers to the object that this Paint
event applies to, in this case, the object form. The object is called a "sender" because the event
originates from that object.

The PaintEventArgs class is defined in the System.Windows.Forms namespace, and it has two
properties, named Graphics and ClipRectangle, which are both read-only:
PaintEventArgs Properties

Type Property Accessibility Description

Graphics Graphics get All-important graphics output object

Rectangle ClipRectangle get Invalid rectangle

The Graphics property contains an instantiation of the Graphics class, which is defined in the
System.Drawing namespace. Graphics is an extremely important class in the Windows Forms
library, ranking right up there with Form. This is the class you use to draw graphics and text on your
form. The System.Drawing namespace implements a graphics programming system known as GDI+,
which is an enhanced version of the Windows Graphics Device Interface. I'll discuss the
ClipRectangle property in Chapter 4.

In a vast majority of the programs in this book, you'll see
Graphics grfx = pea.Graphics;

as the first line in the Paint event handler. You can name your Graphics object whatever you want.
Some programmers use the lowercase graphics, but this object shows up so much in graphics code
that some programmers use just the letter g! I've taken a compromise approach.

Before all this new stuff piles up too deeply, let's take a look at an actual program that implements a
Paint event handler.
PaintEvent.cs
//---
// PaintEvent.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class PaintEvent
{
 public static void Main()
 {
 Form form = new Form();
 form.Text = "Paint Event";
 form.Paint += new PaintEventHandler(MyPaintHandler);

 Application.Run(form);
 }
 static void MyPaintHandler(object objSender, PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 grfx.Clear(Color.Chocolate);
 }
}

After the form is created in Main, the method named MyPaintHandler is attached to the Paint event
of the form. In this handler, the program obtains a Graphics object from the PaintEventArgs class
and uses that to call the method Clear. Clear is a simple method—perhaps the simplest drawing
method—defined in the Graphics class:
Graphics Methods (selection)

Method Description

void Clear(Color clr) Paints entire client area with color

The argument is an object of type Color, which I'll discuss in much more detail in the next chapter.
As I mentioned in connection with the FormProperties program shown earlier in this chapter, the
easiest way to get a color is to specify one of the 141 color names implemented as static properties
in the Color structure.

To get an idea of the frequency with which the program gets Paint events, try inserting the statement
Console.WriteLine("Paint Event");

in MyPaintHandler. A couple programs in the next chapter will also visually demonstrate the
frequency of Paint events.

From here on, all the Windows Forms programs in this book will have at least the following three
using statements at the top of the program:
using System;
using System.Drawing;
using System.Windows.Forms;

Generally, these are the minimum required for any nontrivial Windows Forms application.

You might see a connection between these three using statements and the three DLLs that you
need to specify as references when compiling the program. It's natural for a C or C++ programmer to
think of the using statements as equivalent to #include statements. They are not! They're a little
more closely related to the With statement in Visual Basic. They exist solely so that you don't have to
type fully qualified class names. Everything that header files normally provide in C and C++
programs (such as type declarations, function declarations, and class declarations) is provided
instead by the DLLs specified as references, the same DLLs that are linked with the running program
to implement these classes.
Displaying Text
The Graphics class has many methods to draw graphics figures such as lines, curves, rectangles,
ellipses, and bitmapped images. The Graphics method that displays text in a form is called
DrawString (not to be confused with the cord that may be holding up your pants).

DrawString comes in six overloaded versions, but the first three arguments are always the same. At
this point in our lives, the simplest version of DrawString is defined like so:
void DrawString(string str, Font font, Brush brush, float x, float y)

You might expect the arguments of DrawString to include the text string you want to display and the
coordinate position where it is to appear. You might not expect the method to also include the font
used to display the text and something called a Brush (which is used to color the text), but there they
are. The presence of these two arguments is part of what is implied when GDI+ is said to be a
stateless graphics programming system. Just about everything that the system needs to display
various graphics figures is included right in the method calls.

The downside is that the DrawString call is rather bulky with information. You might find yourself
reducing the second and third arguments to single letters or searching out other ways to make the
method call less lengthy.

The first argument to DrawString is the text string you want to display, for example,
grfx.DrawString("Hello, world!", ...);

Let's take a look at the other arguments in detail.

The Font

The second argument to DrawString is the font used for drawing the text. This is an object of type
Font, a class defined in the System.Drawing namespace. I'll have much more to say about the Font
class in Chapter 9. Suffice it to say that a Windows Forms program has access to many fonts with
scalable sizes. For now, we'll use a default font. Very conveniently, every class derived from Control
inherits a property named Font that stores the default font for the control.
Control Properties (selection)

Type Property Accessibility Description

Font Font get/set Default font for the control

You might find it quite confusing at first to deal with a class and a property that are both named Font,
but I assure you, after some months, you'll find it somewhat less confusing.

When you install a Paint event handler for a form, you can obtain the object that the event applies to
by casting the first argument to the type of that object:

Form form = (Form)objSender;

This cast works because objSender is indeed an object of type Form. If objSender were not an
object of type Form (or a class descended from Form), this statement would raise an exception.
Thus, within the event handler, you can reference the default font for the form by using form.Font.
The DrawString call thus looks something like this:
grfx.DrawString(str, form.Font, ...);

If you have multiple DrawString calls, you might first want to define an object of type Font and assign
the form's default font to it:
Font font = form.Font;

That statement includes a lot of font! The first Font is the class defined in the System.Drawing
namespace. The lowercase font is an object of that class. The last Font is a property of the Form
class. The DrawString call then becomes
grfx.DrawString(str, font, ...);

To be more concise, you could name this Font object just f.

The Brush

The third argument to DrawString indicates the "color" of the font characters. I put "color" in quotation
marks because the argument is actually an object of type Brush, and brushes can be much more
than just color. Brushes can be gradients of color or fancy patterns or bitmapped images. Indeed,
brushes are so wonderfully varied and powerful that they get very nearly their own entire chapter.
But since that is Chapter 17 and this is Chapter 2, for now we'll have to be satisfied with very simple
brushes.

The simplest way to be colorfully versatile is with the Brushes class. Notice the plural Brushes and
not the singular Brush, which is also the name of a class. The Brushes class has 141 static read-only
properties with the same color names as implemented in the Color class and listed on the inside
back cover of this book. The Brushes properties return objects of type Brush. Because these are
static properties, they are referenced using the class name and property name, like the example
here:
grfx.DrawString(str, font, Brushes.PapayaWhip, ...);

You're probably thinking, "Sure it might be fun drawing text with lots of different colors and maybe
gradients and patterns and stuff like that, but let's be realistic: Probably 97.5 percent of the text I'll
want to display will be plain old black. With few exceptions, I'll probably just use Brushes.Black as
the third argument to DrawString." So, you can define an object of type Brush like so:
Brush brush = Brushes.Black;

and pass that object to 97.5 percent of your DrawString calls:
grfx.DrawString(str, font, brush, ...);

You could, of course, even name it b to do less typing.

But I'm afraid that using Brushes.Black in this way would be a mistake. You're making an implicit
assumption that the background of the form isn't also black. Could it be? Yes, and very easily. In
such a case, the text wouldn't be visible.

Regardless, for now I'll give you special dispensation to use Brushes.Black in calls to DrawString,
but only if you also set the BackColor property of the form to Color.White or something else that's
guaranteed to make the black text visible. I'll discuss better approaches to selecting colors in
Chapter 3.

The Coordinate Points

Finally, the last two arguments of DrawString indicate the horizontal (x) and vertical (y) coordinates
where the upper left corner of the text string is to appear.

If you come from a mathematics background—or if the trauma of high school mathematics has
forever left its scar on your brain—you may have envisioned a two-dimensional coordinate system
like so:

This is known as a Cartesian coordinate system, after French mathematician and philosopher René
Descartes (1596–1650), who is credited with inventing analytical geometry, and to whom the field of
computer graphics is eternally indebted.[1] The origin—the point (0, 0)—is in the center. Values of x
increase to the right, and values of y increase going up.

However, this isn't exactly the coordinate system used in most graphical environments. A coordinate
system in which increasing values of y go up is at odds with the way in which most Western
languages are written. Also, early computer graphics involved programmers writing directly into video
display memory. Video memory buffers are arranged starting at the top of the screen because
computer monitors scan from the top down. And that's because television sets scan from the top
down, and that decision goes back some 60 years or so.

In the Windows Forms environment, as in most graphical environments[2], the default coordinate
system has an origin in the upper left corner and looks like this:

I say this is the default coordinate system because it's possible to change it to something else. Such
fun awaits us in Chapter 7.

When you draw on a form using the Graphics object that you obtain from the PaintEventArgs class
passed as an argument to your Paint event handler, all coordinates are relative to the upper left
corner of the client area of the form. All units are in pixels. Increasing values of x go to the right, and
increasing values of y go down.

Let me repeat: Coordinates are relative to the upper left corner of the client area. The client area is
the area inside a form that's not occupied by the form's caption bar or sizing border or any menu the
form might have. When you use the Graphics object from the PaintEventArgs class, you can't draw
outside the client area. This means you never have to worry about drawing something where you're
not supposed to.

The coordinate point passed to the DrawString method refers to the position of the upper left corner
of the first character of the text string. If you specify a coordinate of (0, 0), the text string is thus
displayed in the upper left corner of the client area.

So let's put it all together in a program called PaintHello.
PaintHello.cs

//---
// PaintHello.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;
class PaintHello
{
 public static void Main()
 {
 Form form = new Form();
 form.Text = "Paint Hello";
 form.BackColor = Color.White;
 form.Paint += new PaintEventHandler(MyPaintHandler);

 Application.Run(form);
 }
 static void MyPaintHandler(object objSender, PaintEventArgs pea)
 {
 Form form = (Form)objSender;
 Graphics grfx = pea.Graphics;

 grfx.DrawString("Hello, world!", form.Font, Brushes.Black, 0,
0);
 }
}

And here we have our first—but, as you'll see, perhaps not quite the simplest—program that displays
text in a form. The text appears in the upper left corner of the client area:

[1] A facsimile and English translation of Descartes' 1637 work on analytical geometry is available as
The Geometry of René Descartes (New York: Dover, 1954).

[2] An exception is the OS/2 Presentation Manager, which was designed as a completely bottom-up
system. This was fine for graphics programming but didn't always work otherwise. Programmers had
to use bottom-up coordinates when specifying the location of controls in dialog boxes, for example,
which often entailed designing the dialog box from the bottom up. See Charles Petzold,
Programming the OS/2 Presentation Manager (Redmond, WA: Microsoft Press, 1989) or Charles
Petzold, OS/2 Presentation Manager Programming (Emeryville, CA: Ziff-Davis Press, 1994) for
details.

The Paint Event Is Special!
Watch out what you put in the Paint event handler. The method can be called quite frequently and
sometimes unexpectedly, and it works best when it can repaint the client area quickly without
interruption.

Earlier in this chapter, I suggested that you use message boxes for simple debugging. But don't put
a call to MessageBox.Show in the Paint event handler! The message box could cover up part of the
client area and result in another Paint event. And another and another and another…. Also, don't put
any Console.Read or Console.ReadLine calls in there or in any event handler. Console.Write or
Console.WriteLine calls are safe, however.

And don't do anything that accumulates. In one of my very early Windows Forms programs, I wrote a
Paint event handler that accessed the Font property, made a new font that was twice as big, and set
the Font property to that new font. Well, every time there was a new Paint event, the font got twice
as big as the time before. It was like Honey, I Blew Up the Font.

Doing all your drawing in the Paint event handler might sound a bit restrictive, and at times it is.
That's why Windows Forms implements a couple methods to make painting more flexible.

First, you can obtain a Graphics object outside a Paint event handler by calling the CreateGraphics
method implemented in Control and inherited by Form. Second, at times, you'll need to generate a
Paint event from some other event. The method that does this is Invalidate, which is implemented in
the Control class. I'll demonstrate how to do these things when covering keyboard, mouse, and timer
input in Chapters 6, 8, and 10.
Multiple Forms, Multiple Handlers
To get a better feel for the Paint event handler, let's look at a couple variations on the basic theme.
This program uses the same Paint event handler for two forms that it creates.
PaintTwoForms.cs
//--
// PaintTwoForms.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class PaintTwoForms
{
 static Form form1, form2;

 public static void Main()
 {
 form1 = new Form();
 form2 = new Form();

 form1.Text = "First Form";

 form1.BackColor = Color.White;
 form1.Paint += new PaintEventHandler(MyPaintHandler);

 form2.Text = "Second Form";
 form2.BackColor = Color.White;
 form2.Paint += new PaintEventHandler(MyPaintHandler);
 form2.Show();

 Application.Run(form1);
 }
 static void MyPaintHandler(object objSender, PaintEventArgs pea)
 {
 Form form = (Form)objSender;
 Graphics grfx = pea.Graphics;
 string str;

 if(form == form1)
 str = "Hello from the first form";
 else
 str = "Hello from the second form";

 grfx.DrawString(str, form.Font, Brushes.Black, 0, 0);
 }
}

Notice that the Form objects are stored as fields so that they are accessible from both Main and the
Paint event handler. Each call to the Paint event handler applies to one of the two forms the program
created. The event handler can determine which form it applies to by comparing the objSender
argument (cast to a Form object) with the two Form objects stored as fields. If you don't mind a little
capitalization problem, you could replace the entire if and else construction with the single statement
str = "Hello from the " + form.Text;

Now let's try just the opposite. Let's create one form but attach two Paint event handlers to it.
TwoPaintHandlers.cs
//---
// TwoPaintHandlers.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class TwoPaintHandlers
{
 public static void Main()
 {
 Form form = new Form();
 form.Text = "Two Paint Handlers";
 form.BackColor = Color.White;

 form.Paint += new PaintEventHandler(PaintHandler1);
 form.Paint += new PaintEventHandler(PaintHandler2);

 Application.Run(form);
 }
 static void PaintHandler1(object objSender, PaintEventArgs pea)
 {
 Form form = (Form)objSender;
 Graphics grfx = pea.Graphics;

 grfx.DrawString("First Paint Event Handler", form.Font,
 Brushes.Black, 0, 0);
 }
 static void PaintHandler2(object objSender, PaintEventArgs pea)
 {
 Form form = (Form)objSender;
 Graphics grfx = pea.Graphics;

 grfx.DrawString("Second Paint Event Handler", form.Font,
 Brushes.Black, 0, 100);
 }
}

This program highlights one of the interesting aspects of attaching handlers to events. If there is
more than one handler, all the handlers get called in sequence. Notice that the DrawString
coordinates are (0, 0) in the first handler and (0, 100) in the second handler. I'm making an
assumption that the default font isn't more than 100 pixels tall, but that seems fairly safe.

Inheriting Forms
So far, you've seen how you can create a form, give it some properties (such as a text string to show
in its caption bar and a nondefault background color), and attach some event handlers. Just as you
attached a Paint event handler, you can attach handlers for the keyboard, mouse, menus, and so
forth.

But I'm afraid the truth is this: it's not usually done like that.

To exploit the full power of everything implemented in the Form class, you can't just create a form.
You must become a form. For just as Control begat ScrollableControl, and ScrollableControl begat
ContainerControl, and ContainerControl begat Form, then Form can now beget some truly amazing
form that only you can create.

You create such a form in your program by defining a class that inherits from Form. Let's take a look.
InheritTheForm.cs
//---
// InheritTheForm.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class InheritTheForm: Form
{
 public static void Main()
 {
 InheritTheForm form = new InheritTheForm();
 form.Text = "Inherit the Form";
 form.BackColor = Color.White;

 Application.Run(form);
 }
}

Let me draw your attention to the class statement:
class InheritTheForm: Form

The part of the statement that follows the class name, : Form, means that InheritTheForm is a
descendent of Form and inherits every method and property of Form.

This class still has a static Main method that is the entry point to the program. However, Main
creates a new instance of InheritTheForm rather than Form. Because InheritTheForm derives from
Form, of course it also has properties named Text and BackColor, which the program sets next. Just
as an object of type Form can be passed to Application.Run, any object of a type derived from Form
can also be passed to Application.Run.

The InheritTheForm program creates the form, performs initialization (which in this case just involves
setting the Text property), and then passes the form object to Application.Run. A more conventional
approach is to move form initialization to the class's constructor.
InheritWithConstructor.cs
//---
// InheritWithConstructor.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class InheritWithConstructor: Form

{
 public static void Main()
 {
 Application.Run(new InheritWithConstructor());
 }
 public InheritWithConstructor()
 {
 Text = "Inherit with Constructor";
 BackColor = Color.White;
 }
}

You'll recall that a constructor has no return type, and a default constructor has an empty argument
list.

Form has a pedigree starting at Object and encompassing five other classes. When an
InheritWithConstructor object is created in Main, first the default constructor for Object is called, then
the default constructor for the MarshalByRefObject class, and so forth on through the default
constructor for the Form class, and finally the default constructor for the InheritWithConstructor class.

Notice that I don't have to preface the Text and BackColor properties with an object name, an object
that I called form in previous programs in this chapter. These properties don't need anything in front
of them because they are properties of the InheritWithConstructor class. They are properties of
InheritWithConstructor because this class derives from Control and Form, in which these properties
and many others were originally defined.

If I wanted to preface these properties with anything, it would be the keyword this:
this.Text = "Inherit with Constructor";
this.BackColor = Color.White;

The this keyword indicates the current object.
The OnPaint Method
What advantages do you get by inheriting Form rather than just creating an instance of it? Although
most of the methods and properties implemented in Form are defined as public, some essential ones
are defined as protected. These protected methods and properties can be accessed only by a
descendent of Form. One such protected property is ResizeRedraw, which I'll be discussing in
Chapter 3.

One protected method inherited by Form by way of Control is named OnPaint. You don't want to call
this method, however; you want to override it, for if you do, you don't have to install a Paint event
handler. The OnPaint method has a single argument, which is an object of type PaintEventArgs. You
can use this argument to obtain a Graphics object just as in a Paint event handler.

And here's my final version of a Windows Forms hello-world program.
HelloWorld.cs
//---
// HelloWorld.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class HelloWorld: Form
{

 public static void Main()
 {
 Application.Run(new HelloWorld());
 }
 public HelloWorld()
 {
 Text = "Hello World";
 BackColor = Color.White;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 grfx.DrawString("Hello, Windows Forms!", Font,
 Brushes.Black, 0, 0);
 }
}

This is the official, certified, programmer-tested and mother-approved way to create a form in C#
using the Windows Forms class library. That's why this is the first program in this book to be called
simply HelloWorld. (In the next chapter, I'll show you a better way to specify the background and text
colors, however.) Again, notice in OnPaint that I don't have to preface Font with anything. The
OnPaint method doesn't need an objSender argument because the form that the OnPaint call
applies to is always this.

And here's what it looks like:

Of course, there's always some smart aleck in the back row with a raised hand and the impudent
question, "Can you now center that text in the window?"

Yes, and in the next chapter, I'll show you three different ways to do it.
Does Main Belong Here?
When you look at a program like HelloWorld, you may find yourself wondering about Main. Main is a
method in the HelloWorld class, yet Main also creates an instance of the HelloWorld class. This may

seem odd. It may appear as if the program is pulling itself up by its bootstraps. How can Main
execute at all when an instance of the HelloWorld class hasn't been created yet?

The answer is that Main is defined as static. Static methods exist independently of any objects that
are instantiated from the class. Conceptually, the operating system loads the program into memory
and begins execution by making a call to
HelloWorld.Main();

It couldn't make this call unless Main were defined as static, and if you remove static from the
definition of Main, the compiler will complain that the program doesn't have an entry point.

Still, however, you may be more comfortable putting Main in a class by itself, like the C# programs in
Chapter 1. There's nothing wrong with that approach, and some programmers prefer it. This sample
program is named SeparateMain.cs and is functionally equivalent to the HelloWorld program.
SeparateMain.cs
//---
// SeparateMain.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SeparateMain
{
 public static void Main()
 {
 Application.Run(new AnotherHelloWorld());
 }
}
class AnotherHelloWorld: Form
{
 public AnotherHelloWorld()
 {
 Text = "Another Hello World";
 BackColor = Color.White;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 grfx.DrawString("Hello, Windows Forms!", Font,
 Brushes.Black, 0, 0);
 }
}

I must admit that this program looks architecturally cleaner to me, and I briefly toyed with structuring
all the sample programs in this book like this. However, adding three lines to every program wasn't
appealing to me, and coming up with twice as many class names didn't make sense either. I was
also dissuaded when I began taking notice of all the static methods and properties in the .NET
classes that return instances of the class they belong to. Chocolate, for example, is a static property
of the Color class but returns an instance of Color.

Events and "On" Methods
As you've seen, when you create an instance of Control or any class derived from Control (such as
Form), you can install a Paint event handler by defining a static method with the same return types
and arguments as the PaintEventHandler delegate:
static void MyPaintHandler(object objSender, PaintEventArgs pea)
{
 // Painting code
}

You then install this paint handler for a particular object (named form, for example) using the code
form.Paint += new PaintEventHandler(MyPaintHandler);

In a class derived from Control, however, you don't need to install a Paint event handler (even
though you can). You can simply override the protected OnPaint method:
protected override void OnPaint(PaintEventArgs pea)
{
 // Painting code
}

You'll find that all events defined in Windows Forms are similar. Every event has a corresponding
protected method. The method has a name that consists of the word On followed by the event name.
For each event that we'll encounter, I'll show a little table like this:
Control Events (selection)

Event Method Delegate Argument

Paint OnPaint PaintEventHandler PaintEventArgs

The table indicates the name of the event, the corresponding method, the delegate involved in
installing an event handler, and the argument to the event handler and the method.

You might assume—as I did originally—that the OnPaint method is basically just a preinstalled Paint
event handler. But that's wrong. It's really implemented the other way around: the OnPaint method in
Control is actually responsible for calling all the installed Paint handlers.

Let's explore this concept a bit. First, just as the HelloWorld class shown earlier inherited from Form,
here's a class named InheritHelloWorld that inherits from HelloWorld.
InheritHelloWorld.cs
//--
// InheritHelloWorld.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class InheritHelloWorld: HelloWorld
{
 public new static void Main()
 {
 Application.Run(new InheritHelloWorld());
 }
 public InheritHelloWorld()

 {
 Text = "Inherit " + Text;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 grfx.DrawString("Hello from InheritHelloWorld!",
 Font, Brushes.Black, 0, 100);
 }
}

Let me take care of some housekeeping issues first. When I created the InheritHelloWorld project in
Visual Studio .NET, I created a new C# file named InheritHelloWorld.cs, as usual, but I also needed
to include HelloWorld.cs in the project. I did that by using the Add Existing Item option and specifying
Link File in the drop-down menu next to the Open button. That avoids making a second copy of the
HelloWorld.cs file.

Notice that the Main method includes the new keyword, indicating that it is supposed to replace any
Main methods that may be in any parent classes (such as HelloWorld). You also have to tell Visual
Studio .NET which Main you want to be the entry point to the program. You do this with the project's
Properties dialog box. In the General Common Properties, specify the Startup Object as
InheritHelloWorld.

If you're running the command-line C# compiler, specify both source code files in the command line
and use the compiler switch
/Main:InheritHelloWorld

to indicate which class has the Main method you want as the entry point to the program.

As I mentioned earlier, when you create a new object based on a derived class using a default
constructor, all the ancestral default constructors are called starting with Object. Toward the end of
this process, the HelloWorld constructor gets called and responds by setting the Text property of the
form to "Hello World." Finally, the InheritHelloWorld constructor is executed and sets the Text
property like so:
Text = "Inherit " + Text;

That the caption bar of this program reads "Inherit Hello World" demonstrates that this sequence of
events is correct.

The OnPaint method in InheritHelloWorld overrides the OnPaint method in HelloWorld. When
InheritHelloWorld runs, it displays "Hello from InheritHelloWorld!" I've positioned the text at the
coordinate position (0, 100) so you can see that the OnPaint method in HelloWorld isn't also
executed. The OnPaint method in HelloWorld is overridden.

Now let's take a look at a program that does something a little different. This program doesn't define
a class that inherits HelloWorld; this one instantiates the HelloWorld class.
InstantiateHelloWorld.cs
//--
// InstantiateHelloWorld.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class InstantiateHelloWorld
{
 public static void Main()
 {
 Form form = new HelloWorld();
 form.Text = "Instantiate " + form.Text;
 form.Paint += new PaintEventHandler(MyPaintHandler);

 Application.Run(form);
 }
 static void MyPaintHandler(object objSender, PaintEventArgs pea)
 {
 Form form = (Form)objSender;
 Graphics grfx = pea.Graphics;

 grfx.DrawString("Hello from InstantiateHelloWorld!",
 form.Font, Brushes.Black, 0, 100);
 }
}

Take a close look at this code. First, notice that the InstantiateHelloWorld class doesn't inherit from
HelloWorld or Form or anything else (except the Object class, of course):
class InstantiateHelloWorld

Instead, it creates a new instance of the HelloWorld class and saves it in the variable form, just as
early programs in this chapter created instances of the Form class:
Form form = new HelloWorld();

This program can save the HelloWorld object in a variable of type Form because HelloWorld is
derived from Form. During the creation of the HelloWorld object, the HelloWorld constructor is called,
which gives the form a Text property of "Hello World." The next statement prepends the word
Instantiate to the Text property. The program then installs a Paint event handler for the form.

But what appears in InstantiateHelloWorld's client area is not the text "Hello from
InstantiateHelloWorld!" but instead the text "Hello, Windows Forms!" which is what the OnPaint
method in HelloWorld displays. What happened?

The OnPaint method in Control is responsible for calling the installed Paint event handlers. Because
the HelloWorld class overrides OnPaint, that job doesn't get done. That's why the .NET
documentation recommends that when you override one of the protected methods beginning with the
On prefix, you should call the On method in the base class like so:
base.OnPaint(pea)

Try inserting this statement at the top of HelloWorld's OnPaint method and rebuilding
InstantiateHelloWorld. Now the program works as you probably wanted it to. InstantiateHelloWorld
displays its text string ("Hello from InstantiateHelloWorld!") and also the "Hello, Windows Forms!"
text string.

The sequence of events in the revised version is this:
§ Whenever the client area becomes invalid, the OnPaint method is called. This is the OnPaint

method in the HelloWorld class, which overrides any OnPaint method in ancestral classes.
§ The OnPaint method in HelloWorld calls the OnPaint method in its base class. (Remember, I'm

talking about a revised version of HelloWorld that includes the base.OnPaint call.) That would
normally be the OnPaint method implemented in Form, but it's likely Form doesn't override the
OnPaint method and what really gets called is the OnPaint method back in Control.

§ The OnPaint method in Control calls all the installed Paint event handlers. The only one in this
process is the MyPaintHandler method in InstantiateHelloWorld. That method displays some
text at position (0, 100).

§ When all the installed Paint event handlers have been called, the OnPaint method in Control
returns back to the OnPaint method in HelloWorld.

§ The OnPaint method in HelloWorld displays some text at position (0, 0).

The Windows Forms documentation recommends that whenever you override an On method you
call the base class On method. However, in most cases, you need to do this only if you're defining a
class that you'll also be instantiating, and that the instantiated classes are also installing event
handlers for On methods you've overridden. This scenario doesn't happen very often. Still, at times,
you need to call the base class in overrides of On methods. As we'll see in the next chapter, one of
these is OnResize.

Chapter 3: Essential Structures
Overview
Computers were originally built to perform numeric calculations, and crunching numbers is still what
computers do best. Virtually all programming languages have mechanisms for storing numbers in
variables, performing arithmetical operations, looping through ranges of numbers, comparing
numbers, and displaying numbers in a readable form.

For many programming languages, the next step beyond numbers is text in the form of character
strings. Character strings chiefly exist to allow computer programs to communicate with human
users. Internal to the computer, of course, characters are represented by numbers, as is everything
else in the machine.

It is the central premise of object-oriented programming that data types beyond the standard
numbers and character strings be easy to define and easy to work with. We've already seen several
examples of that ease of use, including a class named Form, which hardly seems like either a
number or a character string.

In programming for graphical environments, four other data types appear quite frequently:
§ Two-dimensional coordinate points
§ Two-dimensional sizes in terms of width and height
§ Rectangles
§ Colors

These four data types are the focus of this chapter.
Classes and Structures
These four data types—actually seven because three of them are implemented in both integer and
floating-point forms—are defined in the System.Drawing namespace. Interestingly enough, these
seven data types are not implemented as classes. They are instead structures, and indeed, these
are seven of only eight structures defined in System.Drawing.

The structure data type (which is defined using the keyword struct) comes to C# by way of C and
C++. (Java doesn't have a structure data type.) In C++, classes and structures are very similar. In
C++ structures, all methods and fields are public by default, and in C++ classes, all methods and
fields are private by default. Of course, you can use the public, private, or protected keywords to
change the visibility of any method or field in a C++ class or structure.

In C#, classes and structures are also very similar, but the differences aren't the same as those in
C++. In C#, all methods and fields (as well as properties and events) are private by default in both
classes and structures. The difference lies in the fact that classes are reference types, and structures
are value types. Let's examine what this difference means. Consider the following expression:
new Form()

This statement causes a memory block to be allocated in an area of general-purpose memory known
as the heap. This memory block must be large enough for an instance of the Form object, which
means that it must be for large enough for all of Form's instance (that is, nonstatic) fields. If you look
at the .NET documentation, that amount of space might not seem like much, but remember that
you're not seeing the private fields, and there are undoubtedly many of them.

The value returned from that new expression is essentially a pointer to the memory block located in
the heap. That memory pointer is what's saved in the variable form in a statement like this:
Form form = new Form();

That's what a reference type means: the object is a pointer to (references) a memory block.

Suppose you do something like this:
Form form2 = form;
form2.Text = "Form 2 Text";

Go ahead: insert these calls into the PaintEvent program from Chapter 2, right before the call to
Application.Run. What happens? The form that we're displaying—the form referenced by form—gets
the caption bar text "Form 2 Text." How can this be? It's because form is a pointer. The statement
Form form2 = form;

simply copies that pointer to form2. The statement does not create a new instance of the Form class.
The variables form and form2 are equal, which means they point to the same memory block and
therefore refer to the same object.

Now obviously, passing pointers around isn't something you want happening universally. Consider
the following sequence of statements:
int a = 5;
int b = a;
a = 10;

You wouldn't want this to mean that a and b were identical pointers that would always refer to the
same number, and that b was now equal to 10! That would be insane. And that's why numbers in C#
are value types. The variable name of any value type is not a pointer to a location in memory that
stores the number. The variable name represents the number itself.

If you check through the documentation of the System namespace, you'll find that most of the basic
types—Boolean, Byte, Char, Decimal, Double, Int16, Int32, Int64, SByte, Single, UInt16, UInt32,
UInt64—are defined as structures rather than classes. Structures inherit from ValueType, which
inherits from Object. You can think of value types as "lightweight objects," and indeed, you should
use struct only for types that are small and that might be frequently created and destroyed.
Two-Dimensional Coordinate Points
One data type that is prevalent enough in graphical environments and small enough to justify making
it a structure rather than a class is a coordinate point, represented in the .NET Framework by the
structure Point. In a two-dimensional coordinate system (such as the surface of a video display or a
sheet of printer paper), a point is signified by two numbers, generally the number pair (x, y), where x
is the horizontal coordinate and y is the vertical coordinate. In Chapter 2, I discussed how the
coordinates system in Windows Forms is defined, but the Point data type doesn't necessarily imply
any particular coordinate system. You can use Point in any two-dimensional coordinate system.

The Point structure has two read-write properties, named X and Y, which are defined as 32-bit
integers. X and Y can be negative. Even though Point is a struct rather than a class, you can't just
define a variable of type Point and then assign values to the two properties:
Point pt;
pt.X = 23; // Compiler error here!
pt.Y = 47;

You'll get a message from the compiler complaining about the "use of unassigned local variable."
You still need to use new to create an instance of a structure, just as with a class. The declaration
Point pt = new Point();

results in both the X and Y properties being initialized to 0. Then you can set the X and Y properties
to explicit values:
pt.X = 23;
pt.Y = 47;

Or you can use this declaration to initialize the values:
Point pt = new Point(34, 55);

Or, in a rare instance of bit packing in the .NET Framework, you can specify the two coordinates as
16-bit values stuck together in a 32-bit integer, as here:
Point pt = new Point(0x01000010);

This declaration results in the X property being set to 16 (0x0010) and the Y property to 256
(0x0100). I don't suggest you begin treating points as single 32-bit integers; this declaration is mostly
for the benefit of people who must continue to use Win32 API functions, which sometimes involve
packed coordinates.

The only time you can get away without using new is when you use a method, property, or field that
returns a Point. Actually, the Point structure has one such member itself. It's a static field named
Empty:
Point pt = Point.Empty;

Notice the use of the capitalized Point on the right to indicate the Point structure itself rather than an
instance of the Point structure. You need to reference the Point class because the Empty field is
static. This statement results in the X and Y properties being initialized to 0. Point also has a read-
only property named IsEmpty that returns true if both X and Y equal 0.

Here's a complete list of the Point properties:
Point Properties

Type Property Accessibility

int X get/set

int Y get/set

bool IsEmpty get

Point inherits the GetType method from Object, overrides the GetHashCode, ToString, and Equals
methods from Object by way of ValueType, and implements a method named Offset on its own.
Here's a complete list of the public instance (that is, nonstatic) methods of Point:

Point Instance Methods

Type GetType()
int GetHashCode()
string ToString()
bool Equals(Point point)
void Offset(int dx, int dy)

There are three static methods of Point that I'll discuss shortly.

The ToString method converts a Point object to a readable character string. For example, after the
statements
Point pt = new Point(5, 201);
string str = pt.ToString();

the str variable is set to the text string {X=5,Y=201}. The ToString method is called by Console.Write,
Console.WriteLine, and String.Format to convert objects to strings.

The Equals method tests whether one point is equal to another, as in the statement
if (pt1.Equals(pt2))

Equality is defined to mean that the X and Y properties of the two Point objects are both equal to
each other. More conveniently, in C#, you can also use the equals operator:
if (pt1 == pt2)

The Equals method is provided for languages that don't support an equals operator. You can also
use the inequality operator with Point structures:
if (pt1 != pt2)

The Offset method
pt.Offset(21, -12);

is basically the same as adding the two offsets to the properties:
pt.X += 21;
pt.Y += -12;
Arrays of Points
Arrays of Point structures are common in programming for graphical environments. For example, an
array of Point structures could represent a complex curve or the locations of buttons on a calculator.
To create an array of, say, 23 Point structures, you can use the following statement:
Point[] apt = new Point[23];

C# uses zero-based indexing for arrays, so the valid array elements are apt[0] through apt[22]. When
you allocate an array of structures, each of the elements is initialized to the point (0, 0).

It's possible to initialize the array elements when you create the array, but it requires a bit more
typing than when initializing an array of structures in C:
Point[] apt = new Point[3] { new Point(25, 50),
 new Point(43, 32),
 new Point(27, 8) };

You must have exactly as many initializers as the dimension of the array. Indeed, you don't need to
include the dimension:
Point[] apt = new Point[] { new Point(25, 50),
 new Point(43, 32),
 new Point(27, 8) };

And you can even leave out the first new expression:
Point[] apt = { new Point(25, 50),
 new Point(43, 32),
 new Point(27, 8) };
The Size Structure
The Size structure is very much like Point, but instead of the X and Y properties, it has Width and
Height properties:
Size Properties

Type Property Accessibility

int Width get/set

int Height get/set

bool IsEmpty get

You can create a new Size structure the same way you create a Point structure:
Size size = new Size(15, 20);

The Width and Height properties of the Size structure can be negative. (You'll start to see the
reasoning behind this when we delve into rectangles later in this chapter.)

The Point and Size structures are so similar that they can be constructed from each other. Here's a
complete list of the. Point constructors:

Point Constructors

Point()

Point(int xyPacked)
Point(int x, int y)
Point(Size size)

And here's a complete list of the Size constructors:

Size Constructors

Size()
Size(int width, int height)
Size(Point point)

You can also cast a Point object to a Size object and vice versa:
pt = (Point) size;
size = (Size) pt;

The Size structure overloads the addition and subtraction operators so you can add two sizes, as in
size3 = size1 + size2;

or subtract two sizes, as here:
size2 = size3 – size1;

What's going on here is what you'd expect: the Width and Height properties are being added or
subtracted individually. You can also use the compound assignment operators:
size2 += size1;
size3 -= size2;

The Point structure also overloads addition and subtraction, but I didn't mention these operations
earlier because they also involve a Size structure. Under the assumption that it makes no sense to
add two points together, the only objects you can add to or subtract from Point objects are Size
objects.
pt2 = pt1 + size;
pt3 = pt2 – size;
pt += size;
pt -= size;
The Float Versions
C# supports two floating-point data types, float and double. The double data type is rarely used in
Windows Forms or GDI+, but float shows up a lot. You may wonder why you need floating-point
coordinates when drawing in units of pixels, but you'll discover in Chapter 7 that you can use
coordinate systems based on units other than pixels.

The PointF structure is very much like the Point structure except that the X and Y properties are float
values rather than int. Similarly, the SizeF structure is very much like Size except that Width and
Height are float values. The PointF and SizeF structures support the addition, subtraction, equality,
and inequality operators just as Point and Size do.

Here's a mistake I make about once a week:
PointF ptf = new PointF();
ptf.X = 2.5; // Error!
ptf.Y = 3E-2; // Error!

The compiler assumes the values are double rather than float, and as the compiler will remind you,
"Literal of type double cannot be implicitly converted to type 'float'." One solution is to cast the values
to float like so:
ptf.X = (float)2.5;
ptf.Y = (float)3E-2;

But an easier method is to follow the literal with an f (for float):
ptf.X = 2.5f;
ptf.Y = 3E-2f;

Like Point, the PointF structure implements a constructor that lets you initialize it during creation:
PointF ptf = new PointF(2.5f, 3E-2f);

The PointF structure does not include an Offset method.

Integer values can be implicitly converted to float, so you can assign integers to the floating-point
fields:
PointF ptf = new PointF(127, 42);

You can cast a Point to a PointF:
ptf = (PointF)pt;

However, you can't cast a PointF to a Point:
pt = (Point)ptf; // Error!

Instead, to convert a PointF to a Point, you must use one of the static methods provided for that
purpose by the Point structure:

Point Static Methods

Point Round(PointF ptf)
Point Truncate(PointF ptf)
Point Ceiling(PointF ptf)

For example,
pt = Point.Round(ptf);

Round must be preceded by the structure name because it's a static method.

The Round method rounds the X and Y properties to the nearest integer, and to the nearest positive
integer for fractional parts of 0.5. The Truncate method essentially strips the fractional part and
rounds toward 0. For example, coordinates of 0.9 and −0.9 both become 0. The Ceiling method
rounds toward the next highest integer, that is, 0.9 becomes 1 and −0.9 becomes 0.

Similarly, you can cast a Size to a SizeF, but you should use the following methods to convert a
SizeF to a Size:

Size Static Methods

Size Round(SizeF sizef)
Size Truncate(SizeF sizef)
Size Ceiling(SizeF sizef)

The SizeF structure also includes the following two instance methods, the only instance methods
that SizeF doesn't inherit or override:

SizeF Instance Methods

PointF ToPointF()
Size ToSize()

The ToSize method is equivalent to the Truncate method.

Oddly enough, while you can cast between Point and Size, from Point to PointF, from Size to SizeF,
and from SizeF to PointF, you can't cast from PointF to SizeF. However, PointF provides a
constructor that takes a SizeF argument. Here, for comparison purposes, is a complete list of the
constructors for the four structures:
Constructor Comparisons

Point PointF Size SizeF

() () () ()

(x, y) (x, y) (cx, cy) (cx, cy)

(size) (point) (pointf)

(xyPacked) (sizef)

A Rectangle Is a Point and a Size
The Rectangle structure defines a rectangle as a combination of a Point and a Size. The idea here is
that the Point refers to the location of the upper left corner of the rectangle and the Size is the width
and height of this rectangle—which is not to say that the width and height must be non-negative. The
Rectangle structure itself imposes no such restriction. However, as we'll explore in Chapters 4 and 5,
the Rectangle structure is used in some drawing functions, and those functions require non-negative
widths and heights. The Rectangle structure has two constructors:

Rectangle Constructors

Rectangle(Point pt, Size size)
Rectangle(int x, int y, int width, int height)

Veteran Windows programmers: Watch out for that last constructor, and in other places where you
specify a rectangle using four numbers: the second two numbers are not the coordinates of the
bottom right corner of the rectangle!

There's also a RectangleF structure with the following constructors:

RectangleF Constructors

RectangleF(PointF ptf, SizeF sizef)
RectangleF(float x, float y, float width, float height)

As you can see, the constructors for Rectangle and RectangleF are identical except for the data
types.

In fact, the entire implementations of the Rectangle and RectangleF structures are so similar that
you'll swear a template was somehow involved. Aside from the data types, the only difference is that

the RectangleF structure defines a cast from a Rectangle to a RectangleF, while the Rectangle
structure defines three static (and by now familiar) methods that let you convert from a RectangleF to
a Rectangle:

Rectangle Static Methods (selection)

Rectangle Round(RectangleF rectf)
Rectangle Truncate(RectangleF rectf)
Rectangle Ceiling(RectangleF rectf)

So from here on, I'll refer to the Rectangle structure only, but everything I say applies to RectangleF
as well. The data types associated with RectangleF are, of course, float, PointF, and SizeF rather
than int, Point, and Size.
Rectangle Properties and Methods
The Rectangle structure defines a host of properties that give you information in whatever way you
want:
Rectangle Properties

Type Property Accessibility

Point Location get/set

Size Size get/set

int X get/set

int Y get/set

int Width get/set

int Height get/set

int Left get

int Top get

int Right get

int Bottom get

bool IsEmpty get

The Left property returns the same value as X; the Top property returns the same value as Y. The
Right property returns the sum of X and Width; and the Bottom property returns the sum of Y and
Height, even if Width and Height are negative. In other words, Left can be greater than Right, and
Bottom can be greater than Top.

The only operators overloaded by Rectangle are equality (==) and inequality (!=). Rectangle also
implements an Equals method. Although addition and subtraction are not allowed on Rectangle
structures, several methods do allow you to manipulate Rectangle structures in various ways or to
create new Rectangle structures from existing ones.

For Windows programmers accustomed to thinking in terms of upper left and lower right, there's a
static method that creates a Rectangle from those two coordinates:

Rectangle Methods (selection)

static Rectangle FromLTRB(int xLeft, int yTop, int xRight, int yBottom)

Because this is a static method, the method name must be prefaced with the structure name. The
method returns a newly created Rectangle object. The call
rect = Rectangle.FromLTRB(x1, y1, x2, y2);

is equivalent to
rect = new Rectangle(x1, y1, x2 – x1, y2 – y1);

The Offset and Inflate methods manipulate a Rectangle structure and compensate for the lack of
addition and subtraction operators:

Rectangle Methods (selection)

void Offset(int x, int y)
void Offset(Point)
void Inflate(int x, int y)
void Inflate(Size size)
static Rectangle Inflate(Rectangle rect, int x, int y)

The Offset method shifts a rectangle to another location. The method call
rect.Offset(23, -46);

is equivalent to
rect.X += 23;
rect.Y += -46;

or
rect.Location += new Size(23, -46);

An overloaded version of Offset takes a Point argument (which should probably be a Size):
rect.Offset(pt);

That call is equivalent to
rect.X += pt.X;
rect.Y += pt.Y;

or
rect.Location += (Size)pt;

The Inflate method affects both the location and size of the Rectangle:
rect.Inflate(x, y);

is equivalent to
rect.X -= x;
rect.Y -= y;
rect.Width += 2 * x;
rect.Height += 2 * y;

Thus, the rectangle gets larger (or smaller, if the arguments are negative) in all directions. The center
of the rectangle remains the same. An overload to Inflate uses a Size object to provide the two
values. A static version creates a new inflated Rectangle object from an existing Rectangle object.

The following methods perform unions and intersections of pairs of Rectangle objects:

Rectangle Methods (selection)

static Rectangle Union(Rectangle rect1, Rectangle rect2)
static Rectangle Intersect(Rectangle rect1, Rectangle rect2)
void Intersect(Rectangle rect)

The Intersect method has an overload that isn't static. You use it like this:
rect1.Intersect(rect2);

This expression is equivalent to
rect1 = Rectangle.Intersect(rect1, rect2);

The remaining methods unique to Rectangle return bool values:

Rectangle Methods (selection)

bool Contains(Point)
bool Contains(int x, int y)
bool Contains(Rectangle rect)
bool IntersectsWith(Rectangle rect)

Finally, both Rectangle and RectangleF override ToString in a useful manner, returning a string that
looks something like this:
{X=12,Y=5,Width=30,Height=10}
A Nice-Sized Form
How large is your form? This is not a personal question! When a program creates a form, the form
has a specific size and occupies a specific location on the screen. The size and location are not
fixed, however: If the form has a sizing border, the user can drag that border to make the form a
different size. If the form has a caption bar, the user can move the form to another location on the
screen. It might be helpful for a program to know how large its form is. Knowing exactly where the
form is located on the screen is less useful but not totally irrelevant.

The Form class has no fewer than 13 properties—most of them inherited from the Control class—
that reveal this information. With just a couple exceptions, these properties are also writable and
allow a program to change the size and location of its form. We saw an example of such changes in
the FormProperties program in Chapter 2.

Here are nine properties (all of which Form inherits from Control) that indicate the size of the form
and its location on the screen:
Control Properties (selection)

Type Property Accessibility Comments

Point Location get/set Relative to screen

Size Size get/set Size of full form

Rectangle Bounds get/set Equals Rectangle(Location, Size)

int Width get/set Equals Size.Width

int Height get/set Equals Size.Height

int Left get/set Equals Location.X

int Top get/set Equals Location.Y

Control Properties (selection)

Type Property Accessibility Comments

int Right get Equals Location.X + Size.Width

int Bottom get Equals Location.Y + Size.Height

Basically, what we're dealing with here can be reduced to four numbers: the x and y coordinates of
the upper left corner of the form relative to the upper left corner of the video display, and the height
and width of the form. I suspect that the only reason Right and Bottom are read-only is because it's
not clear what should happen when you set them. Do you want to move the form or make it a
different size?

Although you can set Width and Height to any values you want, the system imposes some limits.
The lower limits are values sufficient to display enough of the caption bar to read some of the text.
The upper limits prevent the form from being larger than if it were maximized to the size of the
screen.

Don't do this, however:
Size.Width *= 2;

That's setting a property of a property. For reasons beyond the comprehension of people who don't
write compilers, it's not allowed.

Two additional size-related and location-related properties are defined in the Form class:
Form Properties (selection)

Type Property Accessibility

Point DesktopLocation get/set

Rectangle DesktopBounds get/set

These are similar to the Location and Bounds properties but take the Windows taskbar into account.
The desktop is that part of the screen not occupied by the taskbar. If the taskbar is positioned at the
left, DesktopLocation.X will be less than Location.X; if the taskbar is at the top, DesktopLocation.Y
will be less than Location.Y. DesktopBounds is based on DesktopLocation and the normal Size
property, which isn't affected by the position of the taskbar.
The Form and the Client
The dimensions I've been presenting refer to the entire form, including the border and the caption
bar. In most cases, an application is primarily interested in the size of the form's client area. The
client area is the internal area of the form upon which the application is free to draw during the form's
Paint event or otherwise decorate with controls. The client area excludes the form's caption bar and
any border the form may have. If the form includes a menu bar beneath its caption bar (I'll discuss
how to add menu bars in Chapter 14), the client area also excludes the area occupied by that menu
bar. If the form displays scroll bars at the right and bottom of the window (I'll show you how to do this
in Chapter 4), the client area also excludes these scroll bars.

The Form class has just two properties (also first implemented in Control) that pertain to the size of
the client area:
Control Properties (selection)

Type Property Accessibility

Size ClientSize get/set

Rectangle ClientRectangle get

The ClientSize property indicates the pixel width and height of the client area. The ClientRectangle
property supplies no additional information because the X and Y properties of ClientRectangle are
always 0! ClientRectangle is sometimes useful in methods that require Rectangle arguments. The
last two programs in this chapter illustrate how Rectangle can be used for this purpose.

Again, avoid setting a property of a property. This assignment won't work:
ClientSize.Width += 100; // Won't work!

Do this instead:
ClientSize = new Size(ClientSize.Width + 100, ClientSize.Height);

Or do this:
ClientSize += new Size(100, 0);

The following program displays all thirteen of the size and location properties in its client area.
FormSize.cs
//---------------------------------------
// FormSize.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class FormSize: Form
{
 public static void Main()
 {
 Application.Run(new FormSize());
 }
 public FormSize()
 {
 Text = "Form Size";
 BackColor = Color.White;
 }
 protected override void OnMove(EventArgs ea)
 {
 Invalidate();
 }
 protected override void OnResize(EventArgs ea)
 {
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 string str = "Location: " + Location + "\n" +
 "Size: " + Size + "\n" +
 "Bounds: " + Bounds + "\n" +
 "Width: " + Width + "\n" +
 "Height: " + Height + "\n" +
 "Left: " + Left + "\n" +
 "Top: " + Top + "\n" +

 "Right: " + Right + "\n" +
 "Bottom: " + Bottom + "\n\n" +
 "DesktopLocation: " + DesktopLocation + "\n" +
 "DesktopBounds: " + DesktopBounds + "\n\n" +
 "ClientSize: " + ClientSize + "\n" +
 "ClientRectangle: " + ClientRectangle;

 grfx.DrawString(str, Font, Brushes.Black, 0, 0);
 }
}

This innocently intended program introduces a couple things we haven't seen before. First, notice
that I'm overriding the OnMove and OnResize methods. As the On prefixes indicate, these methods
are associated with events:
Control Events (selection)

Event Method Delegate Argument

Move OnMove EventHandler EventArgs

Resize OnResize EventHandler EventArgs

These methods are called when the form is moved or resized. In real-life programming, the OnMove
method is almost never overridden. Programs usually don't care where they are located on the
screen. Overriding the OnResize method is quite common, however. We'll see many examples of
OnResize used in the chapters ahead.

In response to both these events, I'm calling the simplest of the six overloads of the Invalidate
method:

Control Invalidate Methods

void Invalidate();
void Invalidate(Rectangle rectInvalid);
void Invalidate(bool bIncludeChildren);
void Invalidate(Rectangle rectInvalid, bool bIncludeChildren);
void Invalidate(Region rgnInvalid);
void Invalidate(Region rgnInvalid, bool bIncludeChildren);

What this method does is invalidate the entire client area, or a rectangular or nonrectangular subset
of it, with or without invalidating any child controls that may be located on it. Invalidating the client
area informs Windows that what's on there is no longer valid. Eventually, your form will receive a call
to OnPaint so that you have an opportunity to repaint the client area. Calling Invalidate is the
standard way in which a program forces a repaint.

The OnPaint call doesn't occur right away. Whatever event the form is currently processing (in this
case, the Resize or Move event) must be completed first, and even then, if other events are pending
(such as keyboard or mouse input), the OnPaint call must wait. If you want to update your client area
immediately, follow the Invalidate call with a call to the Control object's Update method:

Control Methods (selection)

void Update();

This will cause an immediate call to OnPaint; after OnPaint returns, Update will return.

Something else the FormSize program demonstrates is string concatenation with Point, Size, and
Rectangle objects. When you put a property or another object in a string as we did in this program,
the object's ToString method is invoked.

I've also taken advantage of the fact that the DrawString method recognizes ASCII line feed
characters and correctly spaces successive lines of text. As it is, the output is a bit sloppy:

We'll learn how to put text into nice neat columns in the next chapter.

There is a 14th property of the Form object inherited from Control that is related to the size of the
client area:
Control Properties (selection)

Type Property Accessibility

Rectangle DisplayRectangle get

By default, this property is the same as ClientRectangle and doesn't change unless you start putting
controls on the client area.
Point Conversions
As you saw in a couple programs in Chapter 2, when you draw graphics on your form, you're using a
coordinate system that is relative to the upper left corner of the client area. These coordinates are
referred to as client area coordinates. Earlier, when I discussed the location of the form relative to
the screen, I implicitly introduced another coordinate system. This coordinate system is relative to
the upper left corner of the screen, and such coordinates are called screen coordinates. Often
desktop coordinates are the same as screen coordinates, but not if the Windows taskbar is on the
top or left edge of the screen. Finally, form coordinates are relative to the upper left corner of the
form, which is usually the corner of the form's sizing border.

The Location property refers to a point in screen coordinates that is equivalent to the point (0, 0) in
form coordinates. Thus, this property allows an application to convert between points in these two
coordinate systems. Symbolically,

xscreen = xform + Location.X
yscreen = yform + Location.Y

Similarly, the form's DesktopLocation property allows a program to convert between desktop
coordinates and form coordinates:

xdesktop = xform + DesktopLocation.X
ydesktop = yform + DesktopLocation.Y

With some simple algebraic manipulation, you can also convert between desktop coordinates and
screen coordinates:

xdesktop = xscreen + DesktopLocation.X – Location.X
ydesktop = yscreen + DesktopLocation.Y – Location.Y

There aren't any similar properties of Form that allow an application to convert between client area
coordinates and any of the other three coordinate systems. It's possible, by using the CaptionHeight
property of the SystemInformation class, to obtain the height of the standard caption bar and then to
obtain the width of the sizing border by comparing ClientSize with the form's total Size (less the
caption bar height), but that's more work than you should have to do.

Fortunately, the Form class contains two methods that convert points directly between screen
coordinates and client area coordinates:
Form Methods (selection)

Method Description

Point PointToClient(Point
ptScreen)

Converts screen coordinates to client

Point PointToScreen(Point
ptClient)

Converts client coordinates to screen

The Point passed as an argument to these methods remains unchanged; the methods return a Point
containing the converted points. For example, the call
Point pt = PointToScreen(Point.Empty);

returns the location of the upper left corner of the client area in screen coordinates.

The Form class also supports two additional conversion methods that work with Rectangle objects
rather than Point objects:
Form Methods (selection)

Method Description

Rectangle RectangleToClient(Rectangle
rectScreen)

Converts screen coordinates to
client

Rectangle RectangleToScreen(Rectangle
rectClient)

Converts client coordinates to
screen

These methods don't provide any additional information than PointToClient and PointToScreen
because the Size property of the Rectangle object remains unaffected by the conversion.
The Color Structure
The human eye perceives electromagnetic radiation in the range of about 430 to 750 terahertz,
corresponding to wavelengths between 700 and 400 nanometers. Electromagnetic radiation in this
range is known as visible light. If the light isn't very strong, the 120 million rods in the retina of the
human eye respond to the light's intensity. Stronger light affects the 7 million cones, which come in
three different types, each of which responds to a different range of wavelengths. The varying
degrees of excitation of these cones is the phenomena we call color, and the three ranges of
wavelengths correspond to our concepts of red, green, and blue.

Because very little data is required to specify a color, color is a good candidate for a structure rather
than a class and, indeed, Color is another important structure in the System.Drawing namespace.

Color in Windows Forms is based on an ARGB (alpha-red-green-blue) model. Colors themselves are
generally defined by single-byte values of red, green, and blue. The alpha channel determines the
transparency of the color. Alpha values range from 0 for transparent to 0xFF for opaque.

The Color structure has only a default constructor, which you can use like so:
Color color = new Color();

You almost surely won't be using code like this, however, because it would create an empty color
(transparent black) and there's no way to change the properties of that color. Instead, you'll be
obtaining color objects by using one of the static methods or properties defined in Color for that
purpose.

The static properties in Color are quite valuable, for there are no fewer than 141 of them.
The 141 Color Names
The Color structure has 140 static read-only properties that are actual names of colors ranging (in
alphabetical order) from AliceBlue[1] to YellowGreen. Only a couple of the names (Magenta and
Fuchsia, for example) represent identical colors; most of them are unique colors. The Color class
also has a 141st property, named Transparent, that represents a transparent color. The following
table shows some of the 141 properties in the Color class. I haven't included all the properties
because such a listing would have run to four pages.
Color Properties

Type Property Accessibility

Color AliceBlue get

Color AntiqueWhite get

Color Yellow get

Color YellowGreen get

Color Transparent get

You can find a complete list of the 140 standard (and sometimes whimsically named) colors on the
inside back cover of this book.

Where did these colors come from? They originated in the X Window System, X11R3 (version 11,
revision 3), which is a graphical user interface developed at MIT for UNIX. More recently, these
colors were considered for inclusion in the Cascading Style Sheets (CSS) standard from the World
Wide Web Consortium (W3C), but they were removed before the specification was finalized.
Nevertheless, these 140 colors have become a de facto standard in HTML, being supported by
recent versions of both Microsoft Internet Explorer and Netscape Navigator.

Whenever you need a Color object, you can just use Color.Red (or whatever color you want) and it'll
work. I've already done this in some of the programs, when setting the BackColor property of a form
and as an argument to the Clear method of the Graphics class.

To create a color based on the red, green, blue, and alpha components, you can use the following
Color.FromArgb static methods, each of which returns a Color object:

Color.FromArgb Static Methods

Color Color.FromArgb(int r, int g, int b)
Color Color.FromArgb(int a, int r, int g, int b)
Color Color.FromArgb(int a, Color color)
Color Color.FromArgb(int argbPacked)

I'll use the first of these methods in the RandomClear program later in this chapter.
[1] AliceBlue gets its name from Alice Roosevelt (1884–1980), who was a spirited teenager when her
father became president in 1901 and whose favorite color was immortalized in fashion and song.
See www.theodoreroosevelt.org/life/familytree/AliceLongworth.htm and
www.theodoreroosevelt.org/life/aliceblue.htm for more details.
Pens and Brushes
Color objects by themselves aren't used much in Windows Forms. You've seen how you can set the
BackColor property to a Color object. There's also a ForeColor property you can set likewise. The
Clear method in the Graphics class also takes a Color argument, but that's an exception.

http://www.theodoreroosevelt.org/life/familytree/AliceLongworth.htm
http://www.theodoreroosevelt.org/life/aliceblue.htm

Most of the other Graphics drawing methods don't involve Color arguments. When you draw lines or
curves (which you'll start doing in Chapter 5), you use an object of type Pen, and when you draw
filled areas and text, you specify an object of type Brush. Of course, pens and brushes themselves
are specified using color, but other characteristics are often involved as well.

You create a pen using one of the four constructors of the Pen class. The simplest of these
constructors creates a Pen object based on a Color object:
Pen pen = new Pen(clr);

If you want to create a pen based on one of the predefined colors, you don't need to do this:
Pen pen = new Pen(Color.RosyBrown);

It's better to use the Pens class instead. (Notice the plural on the class name.) Pens consists solely
of 141 static read-only properties, each of which returns an object of type Pen. Aside from the return
type, these properties are identical to the 141 Color properties.
Pens Static Properties

Type Property Accessibility

Pen AliceBlue get

Pen AntiqueWhite get

Pen Yellow get

Pen YellowGreen get

Pen Transparent get

You'll learn more about the Pen class in Chapter 5, and we'll really dig into the details of it in Chapter
17.

When you draw text or filled areas, you specify a Brush object. The Brush class itself is abstract,
which means you can't create an instance of it. Brush is instead the parent class for five other
classes: SolidBrush, HatchBrush, TextureBrush, LinearGradientBrush, and PathGradientBrush. We'll
go over brushes in depth in Chapter 17. For now, be aware that you can create a brush of a solid
color like so:
Brush brush = new SolidBrush(clr);

You can assign the result to an object of type Brush because SolidBrush is inherited from Brush.

As with the Pen class, using one of the static Color properties in SolidBrush is unnecessary because
the Brushes class (notice the plural again) consists solely of—that's right!—141 static read-only
properties that return objects of type Brush.
Brushes Static Properties

Type Property Accessibility

Brush AliceBlue get

Brush AntiqueWhite get

Brush Yellow get

Brush YellowGreen get

Brush Transparent get

This is the class we used in Chapter 2 to provide a black brush (Brushes.Black) for the DrawString
method. I mentioned at the time that you should use Brushes.Black for text only when you're assured

that the background of your form isn't also black. One way to do this is to set the form's background
color explicitly:
BackColor = Color.White;
System Colors
The reason Brushes.Black isn't a good idea for text is that it's possible for a Windows user to invoke
the Display Properties dialog box (either from Control Panel or by right-clicking the desktop), select
the Appearance tab, and choose a color scheme, such as High Contrast Black, in which the
background color of windows and controls is black. People with poor eyesight or color blindness
often use such high-contrast color schemes, and you're definitely not helping them if you display
your text in black as well!

Welcome to the world of system colors, which are probably more correctly called user-preference
colors. Using the Display Properties dialog box, users can select their own color schemes. Windows
itself maintains 29 user-settable colors that it employs to color different components of the user
interface. Twenty-six of these colors are exposed in the Windows Forms framework.

You can obtain these color values from the SystemColors class, which consists solely of 26 read-
only properties, each of which returns a Color object:
SystemColors Static Properties

Type Property Accessibility Comment

Color ActiveBorder get Border of active window

Color ActiveCaption get Caption bar of active window

Color ActiveCaptionText get Caption bar text of active window

Color AppWorkspace get Workspace background in a
multiple-document interface (MDI)

Color Control get Background color of controls

Color ControlDark get Shadows of 3D controls

Color ControlDarkDark get Dark shadows of 3D controls

Color ControlLight get Highlights of 3D controls

Color ControlLightLight get Light highlights of 3D controls

Color ControlText get Text color of controls

Color Desktop get Windows desktop

Color GrayText get Disabled text

Color Highlight get Highlighted text background

Color HighlightText get Highlighted text

Color HotTrack get Hot track

Color InactiveBorder get Border of inactive windows

Color InactiveCaption get Caption bar of inactive windows

Color InactiveCaptionText get Caption bar text of inactive
windows

Color Info get ToolTip background

Color InfoText get ToolTip text

Color Menu get Menu background

Color MenuText get Menu text

Color ScrollBar get Scroll bar background

SystemColors Static Properties

Type Property Accessibility Comment

Color Window get Window background

Color WindowFrame get Thin window frame

Color WindowText get Window text

You could create a Pen or a Brush from one of these colors like so:
Pen pen = new Pen(SystemColor.ControlText);
Brush brush = new SolidBrush(SystemColor.ControlText);

It's usually not necessary to do this, however, because the System.Drawing namespace also
includes a SystemPens class and a SystemBrushes class. SystemPens has 15 static read-only
properties that return objects of type Pen:
SystemPens Properties

Type Property Accessibility

Pen ActiveCaptionText get

Pen Control get

Pen ControlDark get

Pen ControlDarkDark get

Pen ControlLight get

Pen ControlLightLight get

Pen ControlText get

Pen GrayText get

Pen Highlight get

Pen HighlightText get

Pen InactiveCaptionText get

Pen InfoText get

Pen MenuText get

Pen WindowFrame get

Pen WindowText get

The SystemBrushes class contains 21 static read-only properties that return objects of type Brush:
SystemBrushes Properties

Type Property Accessibility

Brush ActiveBorder get

Brush ActiveCaption get

Brush ActiveCaptionText get

Brush AppWorkspace get

Brush Control get

Brush ControlDark get

Brush ControlDarkDark get

SystemBrushes Properties

Type Property Accessibility

Brush ControlLight get

Brush ControlLightLight get

Brush ControlText get

Brush Desktop get

Brush Highlight get

Brush HighlightText get

Brush HotTrack get

Brush InactiveBorder get

Brush InactiveCaption get

Brush Info get

Brush Menu get

Brush ScrollBar get

Brush Window get

Brush WindowText get

Strangely enough, not all the system colors that pertain to text are included in the SystemBrushes
class. However, if you need a Pen or Brush that's not included in the SystemPens or SystemBrushes
class, you can always create it using one of the SystemColors properties as an argument to one of
the following static methods:
Pen pen = SystemPens.FromSystemColor(SystemColor.ActiveBorder);

Brush brush = SystemBrushes.FromSystemColor(SystemColor.MenuText);
The Known Colors
The final big color list is the KnownColor enumeration that encompasses all the color names and all
the system colors:
KnownColor Enumeration

Field Value Field Value

ActiveBorder 1 InactiveCaption 17

ActiveCaption 2 InactiveCaptionText 18

ActiveCaptionText 3 Info 19

AppWorkspace 4 InfoText 20

Control 5 Menu 21

ControlDark 6 MenuText 22

ControlDarkDark 7 ScrollBar 23

ControlLight 8 Window 24

ControlLightLight 9 WindowFrame 25

ControlText 10 WindowText 26

Desktop 11 Transparent 27

KnownColor Enumeration

Field Value Field Value

GrayText 12 AliceBlue 28

Highlight 13 AntiqueWhite 29

HighlightText 14

HotTrack 15 Yellow 166

InactiveBorder 16 YellowGreen 167

Although KnownColor is the third largest enumeration in the entire .NET Framework, it's not used for
very much. The Color class has a static method that lets you create a color based on a KnownColor
value, but if that's something you need, it probably makes more sense to use one of the static Color
or SystemColors properties.
What to Use?
Somewhere in the constructor for the Control class, the following code is probably executed:
BackColor = SystemColors.Control;
ForeColor = SystemColors.ControlText;

What the Control and ControlText system colors are is entirely up to the user. Normally they're gray
and black, respectively.

When a button control (for example) draws itself, it uses the BackColor property to color its
background and the ForeColor property to display the button text. A Form object uses the BackColor
property to erase the background of the client area but doesn't itself use the ForeColor property.
That property is made available for applications inheriting or instantiating Form.

So, the question is, What brush should you be using to draw text? I think I've pretty well established
that it's not Brushes.Black. A much better choice would be SystemBrushes.ControlText.

However, I'm not so sure that's optimum either. Consider this question: Why are the BackColor and
ForeColor properties of Form set to the system colors used for controls? The answer is, because the
Windows Forms developers have assumed that you'll be covering a form with controls or using a
form for a dialog box.

If you're not putting controls on a form, though, and if you want your form to look like a regular old
Windows program, you should be putting the following two statements in the constructor for your
form:
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;

In that case, the DrawString calls in your OnPaint code should use SystemBrushes.WindowText to
be consistent.

But why write OnPaint code that's dependent on the way you set BackColor and ForeColor in the
constructor? To write ideally generalized code, the brush you should use in your DrawString calls is
new SolidBrush(ForeColor)

And that's the brush I'll be using for the remainder of this book whenever I want to display text in the
user-preferred color.

Until I start creating controls on the surface of my forms, I'll also be setting the BackColor and
ForeColor properties to SystemColors.Window and SystemColors.WindowText whenever I know I'll
be drawing something that depends on those colors.
Getting a Feel for Repaints

As you've seen, the background of a form is automatically colored by the property BackColor. You've
also seen another way to recolor the background of a form: by using the Clear method of the
Graphics class. Clear has one argument, which is a Color object:

Graphics Methods (selection)

void Clear(Color color)

The RandomClear program randomly calculates a new color whenever its OnPaint method is called
and uses the Clear method to display the new color.
RandomClear.cs
//--
// RandomClear.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class RandomClear: Form
{
 public static void Main()
 {
 Application.Run(new RandomClear());
 }
 public RandomClear()
 {
 Text = "Random Clear";
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Random rand = new Random();

 grfx.Clear(Color.FromArgb(rand.Next(256),
 rand.Next(256),
 rand.Next(256)));
 }
}

Run this program, and experiment with resizing the form. Think about what you're seeing: as you
make the form larger, the newly uncovered strips on the right and bottom get a different color. Every
new color you see represents a new call to OnPaint. Even though the Clear method is seemingly
clearing the entire client area, however, it's actually restricted to the region that's newly invalid.
(You'll notice that if you make the form smaller, the color doesn't change because there is no area of
the client that hasn't remained valid.)

This behavior isn't always desirable. It could be that you're writing a program in which you want the
entire client area to be invalidated whenever the size of the client area changes. I showed one way
to do that in the FormSize program earlier in this chapter: override the OnResize method and put in
an Invalidate call.

Another solution is to set the ResizeRedraw property to true in the form's constructor:
ResizeRedraw = true;

The ResizeRedraw property causes the entire client area to be invalidated whenever its size
changes. The following program demonstrates the difference.
RandomClearResizeRedraw.cs
//--
// RandomClearResizeRedraw.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class RandomClearResizeRedraw: Form
{
 public static void Main()
 {
 Application.Run(new RandomClearResizeRedraw());
 }
 public RandomClearResizeRedraw()
 {
 Text = "Random Clear with Resize Redraw";
 ResizeRedraw = true;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Random rand = new Random();

 grfx.Clear(Color.FromArgb(rand.Next(256),
 rand.Next(256),
 rand.Next(256)));
 }
}

I'm a little hesitant about recommending that you put this ResizeRedraw assignment in every
Windows Forms program you write, or even every sizable control. It probably shows up more in this
book than in real life because I like to write programs that change their contents based on the size of
the client area.

But keep this advice in mind: Whenever something on your form isn't being updated correctly, you
should think about whether setting the ResizeRedraw property makes sense. And if you've already
set ResizeRedraw, well, the problem is something else.

Before we leave this program, here's a little exercise. Put the following do-nothing OnResize override
in RandomClearResizeRedraw:
protected override void OnResize(EventArgs ea)
{
}

What you'll find is that the program now behaves exactly like RandomClear. Obviously, the
OnResize method implemented in Control (which Form inherits) is responsible for invalidating the
control depending on the style. OnResize probably contains some code that looks like this:
if (ResizeRedraw)
 Invalidate();

For this reason and others, whenever you override the OnResize method, you should make a call to
the OnResize method implemented in the base class:
protected override void OnResize(EventArgs ea)
{
 base.OnResize(ea);

 // Do what the program needs.
}
Centering Hello World
Who was that kid in the back of the classroom who asked about centering text in a program's client
area? We are now, at long last, ready to do it. Does such a program require setting the
ResizeRedraw property? Yes, it certainly does, because what constitutes the center of the client
area depends on the overall size of the client area.

One approach that might occur to you is to change the coordinate point in the DrawString function.
Instead of using
 grfx.DrawString ("Hello, world!", Font, brush, 0, 0);

you would use
 grfx.DrawString ("Hello, world!", Font, brush,
 ClientSize.Width / 2, ClientSize.Height / 2);

That's a good start, but it's not quite right. Remember that the coordinate point passed to Drawstring
specifies the position of the upper left corner of the text string, so that's what will be positioned in the
center of the client area. The text won't be in the center of the client area but will instead be situated
in the upper left corner of the bottom right quadrant of the client area.

It's possible to alter this default behavior by using one of the overloaded versions of DrawString—a
version that includes another argument along with the text string, font, brush, and starting position.
The additional argument is an object of type StringFormat, the purpose of which is to specify in more
detail how you want the text to be displayed.

An extensive discussion of StringFormat awaits us in Chapter 9. For now, let's just focus on the
most-used facility of StringFormat, which is to change the default text alignment—the rule that says
that the coordinate point passed to DrawString refers to the position where the upper left corner of
the text is to be displayed.

To change the default text alignment, you must first create an object of type StringFormat:
StringFormat strfmt = new StringFormat();

You can then set two properties of this object to specify the desired text alignment:
StringFormat Properties (selection)

Type Property Accessibility Description

StringAlignment Alignment get/set Horizontal alignment

StringAlignment LineAlignment get/set Vertical alignment

Both these properties are of type StringAlignment, which is an enumeration consisting of three oddly
named members:

StringAlignment Enumeration

Member Value Description

Near 0 Usually left or top

Center 1 Always the center

Far 2 Usually right or bottom

Well, OK, so only two of the members are oddly named. Windows Forms has the ability to display
text right-to-left, as is normal in some languages, or vertically, also normal in some languages. Near
and Far are intended to be orientation-neutral, meaning "nearest to the beginning of the text" or
"farthest from the beginning of the text."

If you know you'll be displaying left-to-right horizontally oriented text, you can think of
StringAlignment.Near as meaning left and StringAlignment.Far as right when used with the
Alignment property, and StringAlignment.Near as top and StringAlignment.Far as bottom when used
with the LineAlignment property. Here's a program that uses all four combinations of these settings
to display text strings in the four corners of the client area.
FourCorners.cs
//--
// FourCorners.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class FourCorners: Form
{
 public static void Main()
 {
 Application.Run(new FourCorners());
 }
 public FourCorners()
 {
 Text = "Four Corners Text Alignment";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(ForeColor);
 StringFormat strfmt = new StringFormat();

 strfmt.Alignment = StringAlignment.Near;
 strfmt.LineAlignment = StringAlignment.Near;
 grfx.DrawString("Upper left corner", Font, brush, 0, 0, strfmt);

 strfmt.Alignment = StringAlignment.Far;
 strfmt.LineAlignment = StringAlignment.Near;
 grfx.DrawString("Upper right corner", Font, brush,
 ClientSize.Width, 0, strfmt);

 strfmt.Alignment = StringAlignment.Near;
 strfmt.LineAlignment = StringAlignment.Far;
 grfx.DrawString("Lower left corner", Font, brush,
 0, ClientSize.Height, strfmt);

 strfmt.Alignment = StringAlignment.Far;
 strfmt.LineAlignment = StringAlignment.Far;
 grfx.DrawString("Lower right corner", Font, brush,
 ClientSize.Width, ClientSize.Height, strfmt);
 }
}

The coordinate points passed to the four DrawString calls refer to the four corners of the client area.
Here's what it looks like:

If StringFormat were not used, however, only the first DrawString call would result in visible text. The
text displayed by the other three calls would be positioned completely outside the client area.

If you set the Alignment property of your StringFormat object to StringAlignment.Center, the text
string will be positioned so that the horizontal center corresponds with the x coordinate passed to
DrawString. If you set the LineAlignment property to StringAlignment.Center, the y coordinate
passed to DrawString indicates where the vertical center of the text string is positioned.

Here's how to use both effects to center text in the client area.
HelloCenteredAlignment.cs
//---
// HelloCenteredAlignment.cs © 2001 by Charles Petzold
//---
using System;

using System.Drawing;
using System.Windows.Forms;

class HelloCenteredAlignment: Form
{
 public static void Main()
 {
 Application.Run(new HelloCenteredAlignment());
 }
 public HelloCenteredAlignment()
 {
 Text = "Hello Centered Using String Alignment";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 StringFormat strfmt = new StringFormat();

 strfmt.Alignment = StringAlignment.Center;
 strfmt.LineAlignment = StringAlignment.Center;

 grfx.DrawString("Hello, world!", Font, new
SolidBrush(ForeColor),
 ClientSize.Width / 2, ClientSize.Height / 2,
 strfmt);
 }
}

And here it is:

I'm going to warn you about something that sounds pretty stupid, but I'm speaking from experience
here. Often when I add a StringFormat definition to some existing code, I remember to do everything
except include the object as the last argument to DrawString. Because DrawString doesn't require
StringFormat, the program compiles just fine but the StringFormat doesn't seem to make any
difference. You really need to include it in the DrawString call for it to work right!
Measuring the String

Another approach to centering text—a much more generalized approach to text positioning—doesn't
require the StringFormat class but instead involves a method of the Graphics class, named
MeasureString. MeasureString comes in seven versions, the simplest of which you call something
like this:
SizeF sizefText = grfx.MeasureString(str, font);

MeasureString returns a SizeF structure that indicates the width and height of the string in units of
pixels (or, as you'll discover in Chapter 7, whatever units you prefer). MeasureString is easily the
second most important method for displaying text—not as essential as DrawString, but right up there
nonetheless. I'll have more to say about MeasureString in Chapter 9.

Imagine a displayed text string. Now imagine a rectangle drawn around that string. The SizeF
structure returned from MeasureString is the width and height of that rectangle. For a particular font,
regardless of the character string, the Height property of the SizeF structure is always the same.
(Actually, the Height property is usually independent of the character string. If the string has
embedded line feed characters, the Height property represents the height of multiple lines of text and
hence will be an integral multiple of the Height value for a single line of text.)

The Width property of the SizeF structure depends on the characters that comprise the string. For all
but fixed-pitch fonts, the width of the text string "i" is less than the width of "W", and MeasureString
reflects that difference.

We'll be using MeasureString a lot in this book. For now, to center some text in the client area, you
can subtract those Width and Height properties of the SizeF structure returned from MeasureString
from the width and height of the client area. The two differences represent the total horizontal and
vertical margin around the text. Divide each value by 2, and that's where to position the upper left
corner of the string. Here's the complete code.
HelloCenteredMeasured.cs
//--
// HelloCenteredMeasured.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class HelloCenteredMeasured: Form
{
 public static void Main()
 {
 Application.Run(new HelloCenteredMeasured());
 }
 public HelloCenteredMeasured()
 {
 Text = "Hello Centered Using MeasureString";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 string str = "Hello, world!";
 SizeF sizefText = grfx.MeasureString(str, Font);

 grfx.DrawString(str, Font, new SolidBrush(ForeColor),
 (ClientSize.Width - sizefText.Width) / 2,
 (ClientSize.Height - sizefText.Height) / 2);
 }
}
Text in a Rectangle
We've already looked at two versions of the DrawString method. There are six in total:

Graphics Class DrawString Methods

void DrawString(string str, Font font, Brush brush, PointF ptf)
void DrawString(string str, Font font, Brush brush, float x, float y)
void DrawString(string str, Font font, Brush brush, RectangleF rectf)
void DrawString(string str, Font font, Brush brush, PointF ptf,
 StringFormat sf)
void DrawString(string str, Font font, Brush brush, float x, float y,
 StringFormat sf)
void DrawString(string str, Font font, Brush brush, RectangleF rectf,
 StringFormat sf)

As you can see, the first three arguments are always the same. The only differences are whether
you specify coordinates using a PointF structure, two float values, or a RectangleF and whether you
include a StringFormat argument.

Whether you use a PointF structure or two float values is a matter of personal preference. The two
methods have identical functionality. Use whichever is currently convenient in your program.

But the RectangleF version is a little different. The DrawString method confines the text to the
rectangle, and the optional StringFormat argument governs how the text is positioned within the
rectangle. For example, if ClientRectangle is passed to the DrawString function and the Alignment
and LineAlignment properties of StringFormat are both set to StringAlignment.Center, the text is
centered within the client area, as the following program demonstrates.
HelloCenteredRectangle.cs
//---
// HelloCenteredRectangle.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class HelloCenteredRectangle: Form
{
 public static void Main()
 {
 Application.Run(new HelloCenteredRectangle());
 }
 public HelloCenteredRectangle()

 {
 Text = "Hello Centered Using Rectangle";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 StringFormat strfmt = new StringFormat();

 strfmt.Alignment = StringAlignment.Center;
 strfmt.LineAlignment = StringAlignment.Center;

 grfx.DrawString("Hello, world!", Font, new
SolidBrush(ForeColor),
 ClientRectangle, strfmt);
 }
}

The option to specify a rectangle rather than a single coordinate point for positioning text may set
you to wondering. Do you suppose DrawString might be able to wrap text within the rectangle?

There's only one way to find out. Let's replace that little text string we've been using with something
more substantial—the first paragraph of Mark Twain's The Adventures of Huckleberry Finn comes to
mind as a reasonable example—and see what happens.
HuckleberryFinn.cs
//--
// HuckleberryFinn.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class HuckleberryFinn: Form
{
 public static void Main()
 {
 Application.Run(new HuckleberryFinn());
 }
 public HuckleberryFinn()
 {
 Text = "\"The Adventures of Huckleberry Finn\"";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 }
 protected override void OnPaint(PaintEventArgs pea)

 {
 pea.Graphics.DrawString(
 "You don't know about me, without you " +
 "have read a book by the name of \"The " +
 "Adventures of Tom Sawyer,\" but that " +
 "ain't no matter. That book was made by " +
 "Mr. Mark Twain, and he told the truth, " +
 "mainly. There was things which he " +
 "stretched, but mainly he told the truth. " +
 "That is nothing. I never seen anybody " +
 "but lied, one time or another, without " +
 "it was Aunt Polly, or the widow, or " +
 "maybe Mary. Aunt Polly\x2014Tom's Aunt " +
 "Polly, she is\x2014and Mary, and the Widow " +
 "Douglas, is all told about in that book" +
 "\x2014which is mostly a true book; with " +
 "some stretchers, as I said before.",
 Font, new SolidBrush(ForeColor), ClientRectangle);
 }
}

Notice the "\x2014" characters in the text string. That's the Unicode character code for an em dash,
which is the long dash that's often used—perhaps overused by some writers—to separate clauses in
a sentence. The DrawString call in this program doesn't need a StringFormat argument because
we're only interested in displaying the text normally.

And sure enough, DrawString nicely formats the text to fit within the client area:

What DrawString doesn't do (and we can hardly expect it to) is give us a couple scroll bars if the
client area isn't big enough.

But that's OK. We'll find out how to do scroll bars in the next chapter.

Chapter 4: An Exercise in Text Output
Overview
The client area of a form is sometimes referred to as the program's presentation area. Here is where
you present to the user your program's look and feel, its personality and idiosyncrasies, its virtues
and character flaws. The appearance of a program's client area is, of course, highly dependent on
what the program does. Some programs—particularly those that serve as front ends for distributed
applications—may consist entirely of child window controls such as buttons and edit fields. Others
may do all their own drawing, keyboard input, and mouse processing within the client area. And
some programs—like the ones in this chapter—may simply display information.

Yet the simple display of information often requires some user interaction. This chapter discusses
not only the techniques of formatting text into nice neat columns but also the ways of enabling and
using those wonderful user-input devices known as scroll bars.
System Information
When I encounter a new operating system or a development environment like Windows Forms, I
often write programs that explore the system itself. Writing programs that do nothing but display
information (like the FormSize program in Chapter 3) gives me an opportunity to find out about the
system while learning to code for it at the same time.

The SystemInformation class in the System.Windows.Forms namespace contains (at last count) 60
static read-only properties that reveal certain aspects of the particular computer on which your
application is running and certain metrics the system uses to display items on the desktop and in
your program. SystemInformation tells you the number of buttons on the user's mouse, the size of
icons on the desktop, and the height of the form's caption bar. It also indicates whether the computer
is connected to a network and the name of the user's domain. This information is returned in a
variety of data types—int, bool, string, Size, Rectangle—and a couple enumerations.

My mission in this chapter is to create a program that displays this information in a manner that is
convenient to peruse. Because you'll probably consult this program fairly often, doing a good job will
be worth the extra effort.
Spacing Lines of Text
As you saw in Chapter 3, DrawString properly spaces multiple lines of text that are separated by line
feed characters, and it also wraps text in a rectangle. What's usually more convenient in a program
that displays multiple lines of text in columns, however, is to call DrawString for each line of each
column separately. That means specifying a coordinate point in DrawString that indicates exactly
where each text string goes.

In Chapter 3, I introduced the MeasureString method of the Graphics class. That method gives us a
height of a character string. Although you can use this height for spacing successive lines of text, it's
not quite suitable for that purpose. For performing line spacing that's consistent with the word-
wrapping facility of DrawString, you should use a value that's a little different than the height returned
from MeasureString. This subject is a bit confusing because the properties and methods that provide
you with proper line-spacing values have names that seem to refer to the height of the font
characters! The most generalized method for obtaining a line-spacing value is this GetHeight method
of the Font class:
float cySpace = font.GetHeight(grfx);

I use a variable name prefix of cy to mean a count in the y direction, that is, a height. In this
statement, font is an object of type Font and grfx is an object of type Graphics. I refer to this as the
most generalized method because the Graphics argument allows it to be used for both the video
display and the printer. The method also takes into account any transforms that are in effect.
(Transforms allow you to draw in units other than pixels, as I'll explain in Chapter 7.) Notice that the
return value is a float. With some fonts, the value returned from GetHeight is the same as the height
associated with MeasureString. For most fonts, however, GetHeight is somewhat smaller.

Another version of the GetHeight method gives you a line-spacing value that is suitable only for the
video display and not the printer. You should use this method only when you're drawing on the video
display and when no transforms are in effect:
float cySpace = font.GetHeight();

If you round that float value up to the next highest integer, you'll obtain the same value that's
returned from the Height property of the Font class:
int cySpace = font.Height;

If you're drawing on the video display in units of pixels (which is the default), the Height property of
Font is probably the best choice.

When you use the GetHeight method or Height property with the default font associated with the
form, you can just specify the form's Font property as the Font object:
float cySpace = Font.GetHeight();
int cySpace = Font.Height;

Notice the uppercase Font in these statements to refer to the Font property. The Form class includes
a protected read/write property named FontHeight (inherited from Control) that returns an int value
consistent with the Font.Height property. Although in theory you can set this property, doing so
doesn't result in the form's default font changing size.
Property Values
Here's a first—and woefully incomplete—stab at writing a program to display SystemInformation
properties.
SysInfoFirstTry.cs
//--
// SysInfoFirstTry.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class SysInfoFirstTry: Form
{
 public static void Main()
 {
 Application.Run(new SysInfoFirstTry());
 }
 public SysInfoFirstTry()
 {
 Text = "System Information: First Try";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(ForeColor);
 int y = 0;

 grfx.DrawString("ArrangeDirection: " +
 SystemInformation.ArrangeDirection,
 Font, brush, 0, y);

 grfx.DrawString("ArrangeStartingPosition: " +
 SystemInformation.ArrangeStartingPosition,
 Font, brush, 0, y += Font.Height);

 grfx.DrawString("BootMode: " +
 SystemInformation.BootMode,
 Font, brush, 0, y += Font.Height);

 grfx.DrawString("Border3DSize: " +
 SystemInformation.Border3DSize,
 Font, brush, 0, y += Font.Height);

 grfx.DrawString("BorderSize: " +
 SystemInformation.BorderSize,
 Font, brush, 0, y += Font.Height);

 grfx.DrawString("CaptionButtonSize: " +
 SystemInformation.CaptionButtonSize,
 Font, brush, 0, y += Font.Height);

 grfx.DrawString("CaptionHeight: " +
 SystemInformation.CaptionHeight,
 Font, brush, 0, y += Font.Height);

 grfx.DrawString("ComputerName: " +
 SystemInformation.ComputerName,
 Font, brush, 0, y += Font.Height);

 grfx.DrawString("CursorSize: " +
 SystemInformation.CursorSize,
 Font, brush, 0, y += Font.Height);

 grfx.DrawString("DbcsEnabled: " +
 SystemInformation.DbcsEnabled,
 Font, brush, 0, y += Font.Height);
 }
}

Well, I gave up after 10 items, not because I got tired of typing, but because I realized that this
wasn't the best approach and that I'd probably need to retype the items in some other, more
generalized format. As far as it goes, though, it's not bad for a first try:

Let's take a look at how this program works.

Each line of output is a single call to DrawString. The first argument is the text name of the property
concatenated with the property value. The SystemInformation property is automatically converted
into a string for the concatenation. What happens behind the scenes is a call to the ToString method
implemented by the property's return value. In particular, notice that those properties returning Size
values get nicely formatted to indicate the Width and Height values. The proper line spacing is
handled within the DrawString call. Each DrawString call after the first has a y coordinate value of
y += Font.Height

thus placing it one line lower in the client area.
Formatting into Columns
Other than its incompleteness, I think the most glaring problem with SysInfoFirstTry is the formatting.
The output of a program like this would be easier to read if the property values were formatted into a
second column. So let's tackle that problem before continuing onward.

Of the 10 properties that SysInfoFirstTry displays, the widest property name seems to be
ArrangeStartingPosition. Before displaying any information, this program calls MeasureString with
that string (plus a space so that the two columns won't touch).
SysInfoColumns.cs
//---
// SysInfoColumns.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SysInfoColumns: Form
{
 public static void Main()
 {
 Application.Run(new SysInfoColumns());
 }
 public SysInfoColumns()
 {

 Text = "System Information: Columns";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(ForeColor);
 SizeF sizef;
 float cxCol, y = 0;
 int cySpace;

 sizef = grfx.MeasureString("ArrangeStartingPosition ", Font);
 cxCol = sizef.Width;
 cySpace = Font.Height;

 grfx.DrawString("ArrangeDirection", Font, brush, 0, y);
 grfx.DrawString(SystemInformation.ArrangeDirection.ToString(),
 Font, brush, cxCol, y);
 y += cySpace;

 grfx.DrawString("ArrangeStartingPosition", Font, brush, 0, y);
 grfx.DrawString(
 SystemInformation.ArrangeStartingPosition.ToString(),
 Font, brush, cxCol, y);
 y += cySpace;

 grfx.DrawString("BootMode", Font, brush, 0, y);
 grfx.DrawString(SystemInformation.BootMode.ToString(),
 Font, brush, cxCol, y);
 y += cySpace;

 grfx.DrawString("Border3DSize", Font, brush, 0, y);
 grfx.DrawString(SystemInformation.Border3DSize.ToString(),
 Font, brush, cxCol, y);
 y += cySpace;

 grfx.DrawString("BorderSize", Font, brush, 0, y);
 grfx.DrawString(SystemInformation.BorderSize.ToString(),
 Font, brush, cxCol, y);
 y += cySpace;

 grfx.DrawString("CaptionButtonSize", Font, brush, 0, y);
 grfx.DrawString(SystemInformation.CaptionButtonSize.ToString(),
 Font, brush, cxCol, y);

 y += cySpace;

 grfx.DrawString("CaptionHeight", Font, brush, 0, y);
 grfx.DrawString(SystemInformation.CaptionHeight.ToString(),
 Font, brush, cxCol, y);
 y += cySpace;

 grfx.DrawString("ComputerName", Font, brush, 0, y);
 grfx.DrawString(SystemInformation.ComputerName,
 Font, brush, cxCol, y);
 y += cySpace;

 grfx.DrawString("CursorSize", Font, brush, 0, y);
 grfx.DrawString(SystemInformation.CursorSize.ToString(),
 Font, brush, cxCol, y);
 y += cySpace;

 grfx.DrawString("DbcsEnabled", Font, brush, 0, y);
 grfx.DrawString(SystemInformation.DbcsEnabled.ToString(),
 Font, brush, cxCol, y);
 }
}

The program saves the width of the string in the variable cxCol and uses that to position the second
column. The program also saves the Height property of the form's Font object in a variable named
cySpace and uses that to space successive lines of text. The coordinate positions passed to the
DrawString method are float values.

Now each line of output requires two calls to DrawString, the first displaying the property name and
the second displaying the property value. All but one of these property values now require explicit
ToString calls to convert the values to strings. Here's what it looks like:

Everything Is an Object

In a program like SysInfoColumns, the code that displays the lines of text should probably be in a for
loop. The actual information should probably be stored in an array of some sort, and perhaps
isolated from the actual text-output code so that it could be used in other programs. In a C or C++
program, for example, you might put the information in an array of structures in a header file.
However, there are no header files in C#. Instead, remember the magic rule for C#: Everything is an
object—or at least a class with static methods and properties.

Here's one possible implementation of a class that contains the text strings we want to display and
provides some information about them.
SysInfoStrings.cs
//---
// SysInfoStrings.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SysInfoStrings
{
 public static string[] Labels
 {
 get
 {
 return new string[]
 {
 "ArrangeDirection",
 "ArrangeStartingPosition",
 "BootMode",
 "Border3DSize",
 "BorderSize",
 "CaptionButtonSize",
 "CaptionHeight",
 "ComputerName",
 "CursorSize",
 "DbcsEnabled",
 "DebugOS",
 "DoubleClickSize",
 "DoubleClickTime",
 "DragFullWindows",
 "DragSize",
 "FixedFrameBorderSize",
 "FrameBorderSize",
 "HighContrast",
 "HorizontalScrollBarArrowWidth",
 "HorizontalScrollBarHeight",
 "HorizontalScrollBarThumbWidth",
 "IconSize",
 "IconSpacingSize",

 "KanjiWindowHeight",
 "MaxWindowTrackSize",
 "MenuButtonSize",
 "MenuCheckSize",
 "MenuFont",
 "MenuHeight",
 "MidEastEnabled",
 "MinimizedWindowSize",
 "MinimizedWindowSpacingSize",
 "MinimumWindowSize",
 "MinWindowTrackSize",
 "MonitorCount",
 "MonitorsSameDisplayFormat",
 "MouseButtons",
 "MouseButtonsSwapped",
 "MousePresent",
 "MouseWheelPresent",
 "MouseWheelScrollLines",
 "NativeMouseWheelSupport",
 "Network",
 "PenWindows",
 "PrimaryMonitorMaximizedWindowSize",
 "PrimaryMonitorSize",
 "RightAlignedMenus",
 "Secure",
 "ShowSounds",
 "SmallIconSize",
 "ToolWindowCaptionButtonSize",
 "ToolWindowCaptionHeight",
 "UserDomainName",
 "UserInteractive",
 "UserName",
 "VerticalScrollBarArrowHeight",
 "VerticalScrollBarThumbHeight",
 "VerticalScrollBarWidth",
 "VirtualScreen",
 "WorkingArea",
 };
 }
 }
 public static string[] Values
 {
 get
 {
 return new string[]

 {
 SystemInformation.ArrangeDirection.ToString(),
 SystemInformation.ArrangeStartingPosition.ToString(),
 SystemInformation.BootMode.ToString(),
 SystemInformation.Border3DSize.ToString(),
 SystemInformation.BorderSize.ToString(),
 SystemInformation.CaptionButtonSize.ToString(),
 SystemInformation.CaptionHeight.ToString(),
 SystemInformation.ComputerName,
 SystemInformation.CursorSize.ToString(),
 SystemInformation.DbcsEnabled.ToString(),
 SystemInformation.DebugOS.ToString(),
 SystemInformation.DoubleClickSize.ToString(),
 SystemInformation.DoubleClickTime.ToString(),
 SystemInformation.DragFullWindows.ToString(),
 SystemInformation.DragSize.ToString(),
 SystemInformation.FixedFrameBorderSize.ToString(),
 SystemInformation.FrameBorderSize.ToString(),
 SystemInformation.HighContrast.ToString(),
 SystemInformation.HorizontalScrollBarArrowWidth.ToString(),
 SystemInformation.HorizontalScrollBarHeight.ToString(),
 SystemInformation.HorizontalScrollBarThumbWidth.ToString(),
 SystemInformation.IconSize.ToString(),
 SystemInformation.IconSpacingSize.ToString(),
 SystemInformation.KanjiWindowHeight.ToString(),
 SystemInformation.MaxWindowTrackSize.ToString(),
 SystemInformation.MenuButtonSize.ToString(),
 SystemInformation.MenuCheckSize.ToString(),
 SystemInformation.MenuFont.ToString(),
 SystemInformation.MenuHeight.ToString(),
 SystemInformation.MidEastEnabled.ToString(),
 SystemInformation.MinimizedWindowSize.ToString(),
 SystemInformation.MinimizedWindowSpacingSize.ToString(),
 SystemInformation.MinimumWindowSize.ToString(),
 SystemInformation.MinWindowTrackSize.ToString(),
 SystemInformation.MonitorCount.ToString(),
 SystemInformation.MonitorsSameDisplayFormat.ToString(),
 SystemInformation.MouseButtons.ToString(),
 SystemInformation.MouseButtonsSwapped.ToString(),
 SystemInformation.MousePresent.ToString(),
 SystemInformation.MouseWheelPresent.ToString(),
 SystemInformation.MouseWheelScrollLines.ToString(),
 SystemInformation.NativeMouseWheelSupport.ToString(),
 SystemInformation.Network.ToString(),
 SystemInformation.PenWindows.ToString(),

SystemInformation.PrimaryMonitorMaximizedWindowSize.ToString(),
 SystemInformation.PrimaryMonitorSize.ToString(),
 SystemInformation.RightAlignedMenus.ToString(),
 SystemInformation.Secure.ToString(),
 SystemInformation.ShowSounds.ToString(),
 SystemInformation.SmallIconSize.ToString(),
 SystemInformation.ToolWindowCaptionButtonSize.ToString(),
 SystemInformation.ToolWindowCaptionHeight.ToString(),
 SystemInformation.UserDomainName,
 SystemInformation.UserInteractive.ToString(),
 SystemInformation.UserName,
 SystemInformation.VerticalScrollBarArrowHeight.ToString(),
 SystemInformation.VerticalScrollBarThumbHeight.ToString(),
 SystemInformation.VerticalScrollBarWidth.ToString(),
 SystemInformation.VirtualScreen.ToString(),
 SystemInformation.WorkingArea.ToString(),
 };
 }
 }
 public static int Count
 {
 get
 {
 return Labels.Length;
 }
 }
 public static float MaxLabelWidth(Graphics grfx, Font font)
 {
 return MaxWidth(Labels, grfx, font);
 }
 public static float MaxValueWidth(Graphics grfx, Font font)
 {
 return MaxWidth(Values, grfx, font);
 }
 static float MaxWidth(string[] astr, Graphics grfx, Font font)
 {
 float fMax = 0;

 foreach (string str in astr)
 fMax = Math.Max(fMax, grfx.MeasureString(str, font).Width);

 return fMax;
 }
}

This class has three read-only static properties. The first, Labels, returns an array of strings that are
the names of the SystemInformation properties.

The second property is named Values, and it also returns an array of character strings, each one
corresponding to an element of the Labels array. However, in reality, the Values array consists of a
series of expressions involving SystemInformation properties, each of which evaluates to a string.
Each expression is evaluated at the time the property is obtained. You'll recognize the use of the
ToString method to convert each item to a string.

The third property returns the number of items in the Labels array, which should (unless I messed
up) also be the number of items in the Values array.

In addition, SysInfoStrings has two public methods: MaxLabelWidth and MaxValueWidth. These two
methods require arguments of a Graphics object and a Font object and simply return the largest
width reported by MeasureString for the two arrays. They both rely on a private method named
MaxWidth. That method makes use of the static Math.Max method to obtain the maximum of two
values. (The Math class in the System namespace is a collection of static methods that implement
various mathematics functions. Appendix B is devoted to the Math class and other aspects of
working with numbers.)
Listing the System Information
I created the SysInfoStrings.cs file in a project named SysInfoList, which also includes the
SysInfoList.cs file shown here. This program displays the system information items provided by the
SysInfoStrings class.
SysInfoList.cs
//--
// SysInfoList.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class SysInfoList: Form
{
 readonly float cxCol;
 readonly int cySpace;

 public static void Main()
 {
 Application.Run(new SysInfoList());
 }
 public SysInfoList()
 {
 Text = "System Information: List";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 Graphics grfx = CreateGraphics();
 SizeF sizef = grfx.MeasureString(" ", Font);
 cxCol = sizef.Width + SysInfoStrings.MaxLabelWidth(grfx, Font);
 grfx.Dispose();
 cySpace = Font.Height;

 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(ForeColor);
 int iCount = SysInfoStrings.Count;
 string[] astrLabels = SysInfoStrings.Labels;
 string[] astrValues = SysInfoStrings.Values;

 for (int i = 0; i < iCount; i++)
 {
 grfx.DrawString(astrLabels[i], Font, brush,
 0, i * cySpace);
 grfx.DrawString(astrValues[i], Font, brush,
 cxCol, i * cySpace);
 }
 }
}

This program attempts to be somewhat efficient by calculating the cxCol and cySpace values only
once during the form's constructor, saving them as fields that the OnPaint method uses later.
However, this calculation requires a call to MeasureString, and MeasureString requires a Graphics
object. How do we get such an object outside of a Paint event or an OnPaint method call?

The Control class implements (and the Form class inherits) a CreateGraphics method that lets you
obtain a Graphics object at any time:

Control Methods (selection)

Graphics CreateGraphics()

You can use this Graphics object to obtain information—as the SysInfoList program does—or to
draw on the program's client area. (However, don't bother drawing during the constructor because
the form isn't even displayed at that time.)

You must dispose of a Graphics object obtained from CreateGraphics before returning control from
the constructor or the event in which it is created. You do this by calling the Dispose method:

Graphics Methods (selection)

void Dispose()

After SysInfoList obtains a Graphics object from CreateGraphics, it calls MeasureString to obtain the
width of a single space character. It adds this width to the MaxLabelWidth value returned from the
SysInfoStrings class and saves that result as cxCol. A simple for loop displays the pair of strings
during the OnPaint method.

And we're definitely making progress:

However, depending on certain settings you've made regarding your video display resolution (an
issue I'll discuss in Chapter 9), you may or may not be able to resize the form to be large enough to
view all 60 values. If you can't, you'll find this program very frustrating to use. There's no way to bring
the later values into view.

And even if there were only 20 or 25 values, you might still face a problem. Perhaps the worst
mistake you can make in Windows programming is to assume that a certain amount of text is visible
on a particular user's machine. Users—particularly those whose eyesight isn't too good—can set
large font sizes and thus reduce the amount of text that is visible on the screen. Your Windows
programs should be usable at just about any screen resolution and font size.

We need to display more text than can fit on the screen, but that's nothing a scroll bar can't fix.
Windows Forms and Scroll Bars
Scroll bars are an important part of any graphical environment. For the user, they are easy to use
and provide excellent visual feedback. You can use scroll bars whenever you need to display
anything—text, graphics, a spreadsheet, database records, pictures, Web pages—that requires
more space than is available in the program's client area.

Scroll bars are oriented either vertically, for up-and-down movement, or horizontally, for back-and-
forth movement. Clicking the arrows at either end of a scroll bar causes the document to scroll by a
small amount—generally a line of text for a vertical scroll bar. Clicking the area between the arrows
causes the document to scroll by a larger amount. A scroll box (also sometimes called the scroll bar
thumb) travels the length of the scroll bar to indicate the approximate location of the material shown
in the client area in relation to the entire content. You can drag the scroll box with the mouse to move
to a particular location within the content. A relatively recent innovation in scroll bars makes the size
of the scroll box variable to indicate the relative proportion of the content currently displayed in the
client area.

You can add scroll bars to a form in one of two ways. In the first approach, you create controls of
type VScrollBar and HScrollBar and position them anywhere in the client area. These scroll bar
controls have settable properties that affect the appearance and functionality of the scroll bars. A
form is notified when the user manipulates a scroll bar control through events. I'll be putting scroll bar
controls to work in Chapter 12.

The second approach to adding scroll bars to a form is easier than creating scroll bar controls. This
approach, often called the auto-scroll approach, is the one I'll be demonstrating in this chapter.

The auto-scroll facility is primarily intended for programs that put controls (such as buttons and text
boxes) on the form's client area. The program enables auto-scroll by setting the AutoScroll property
of the form to true. If the client area is too small to allow all the controls to be visible at once, scroll
bars appear (as if by magic) that allow the user to bring the other controls into view.

It's also possible to enable auto-scroll without using any controls. I'll show you both approaches, and
you can decide which you like best.
Scrolling a Panel Control
The .NET Framework has lots of interesting controls, ranging from buttons, list boxes, and text boxes
to calendars, tree views, and data grids. The panel control, however, is not one of these interesting
controls. It has no visual appearance to speak of and not much of a user interface. Panels are

generally used for architectural purposes to group other controls against a background. Panels are
also useful when you need a control but don't want it to do very much.

What I've done in the following SysInfoPanel program is to create a panel control that is the size of
the information I want to display—that is, a panel control large enough to display all 60 lines of
system-information text. I put that control on the client area of the form and let auto-scrolling do the
rest.
SysInfoPanel.cs
//---
// SysInfoPanel.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SysInfoPanel: Form
{
 readonly float cxCol;
 readonly int cySpace;

 public static void Main()
 {
 Application.Run(new SysInfoPanel());
 }
 public SysInfoPanel()
 {
 Text = "System Information: Panel";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 AutoScroll = true;

 Graphics grfx = CreateGraphics();
 SizeF sizef = grfx.MeasureString(" ", Font);
 cxCol = sizef.Width + SysInfoStrings.MaxLabelWidth(grfx,
Font);
 cySpace = Font.Height;

 // Create a panel.

 Panel panel = new Panel();
 panel.Parent = this;
 panel.Paint += new PaintEventHandler(PanelOnPaint);
 panel.Location = Point.Empty;
 panel.Size = new Size(
 (int) Math.Ceiling(cxCol +
 SysInfoStrings.MaxValueWidth(grfx,
Font)),
 (int) Math.Ceiling(cySpace * SysInfoStrings.Count));

 grfx.Dispose();
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(ForeColor);
 int iCount = SysInfoStrings.Count;
 string[] astrLabels = SysInfoStrings.Labels;
 string[] astrValues = SysInfoStrings.Values;

 for (int i = 0; i < iCount; i++)
 {
 grfx.DrawString(astrLabels[i], Font, brush,
 0, i * cySpace);
 grfx.DrawString(astrValues[i], Font, brush,
 cxCol, i * cySpace);
 }
 }
}

This program also requires the SysInfoStrings.cs file. A good way to share files among projects in
Visual C# .NET is to use the Add Existing Item menu item. (You'll find this entry on the Project menu;
you can also select it by right-clicking the project name in Solution Explorer and selecting Add.) You
select the existing file you need in the project, and instead of pressing the Open button, you click the
arrow next to Open and select Link File. Doing this avoids making a copy of the file and also
prevents problems that result when you change one copy but not the other.

Let's look at the SysInfoPanel constructor. To enable the auto-scroll facility, you must set the
AutoScroll property of the form to true. That's the easy part. Next the program calculates cxCol and
cySpace exactly as SysInfoList did. But before disposing of the Graphics object, the program
proceeds to create the panel
Panel panel = new Panel();

I've given this panel the name panel. I want this panel to be located on the surface of the form's
client area. The surface on which a control is located is called the control's parent. All controls must
have a parent. The statement
panel.Parent = this;

assigns the program's form to be the parent of the panel. The keyword this is used in a method or
property to refer to the current instance of the object; here, this refers to the particular Form object
that I created. It's the same as the value passed to Application.Run in Main.

I want to be able to draw on this panel. To do that, I assign an event handler to the panel's Paint
event:
panel.Paint += new PaintEventHandler(PanelOnPaint);

I used similar code in Chapter 2 when I installed Paint event handlers for forms that were instantiated
from Form rather than inherited from it. The PanelOnPaint method is in the SysInfoPanel class.

The panel must have a location relative to its parent. The Location property of the Panel class
indicates where the upper left corner of the panel will be positioned. In this program, I want the
panel's upper left corner to be at the point (0, 0) in the client area, which I set with this statement:
panel.Location = Point.Empty;

This statement isn't strictly needed because the location of controls is at point (0, 0) by default.

For this program to work correctly, the panel's size must be set to the dimensions of the output you
want to display:
panel.Size = new Size(
 (int) Math.Ceiling(cxCol + SysInfoStrings.MaxValueWidth(grfx, Font)),
 (int) Math.Ceiling(cySpace * SysInfoStrings.Count));

The cxCol variable has already been set to the width of the first column plus a space. The call to the
MaxValueWidth method of SysInfoStrings retrieves the maximum width of the SystemInformation
property values. The height of the panel is set equal to the line-spacing value times the number of
lines. I use Math.Ceiling to round each value up to the next highest integer. (An alternative is to
make a SizeF object based on the floating-point width and height, and then use the static
Size.Ceiling method to convert it to a Size object.)

And that's that. The PanelOnPaint method displays the information on the surface of the panel using
exactly the same code as the OnPaint method in the SysInfoList class.

But in this program, whenever the panel is wider than the client area, a horizontal scroll bar will
automatically appear. If the panel is higher than the height of the client area, a vertical scroll bar will
appear at the right of the client area. This happens dynamically: as you change the size of the client
area, the scroll bars will disappear and reappear as needed. The scroll boxes are also dynamically
sized to reflect the proportion of the content that is visible. For example, the height of the vertical
scroll box is based on the ratio of the client area height to the height of the panel:

Because controls generally adopt the background colors of their parents and because panels are
such bland controls to begin with, it's hard to see that there's really another control here. To give
yourself a better idea of what's going on in this program, you may want to explicitly give the panel a
different background color:
panel.BackColor = Color.Honeydew;

When you then make the client area of the program larger than the panel—in which case, the scroll
bars disappear—you can see the honeydew panel against the (probably white) background of the
form. Another way to see the panel is to set the AutoScrollMargin property of the form in the
constructor:
AutoScrollMargin = new Size(10, 10);

You'll see a 10-pixel area on the right side of the panel when you scroll all the way to the right and on
the bottom of the panel when you scroll all the way down. That's the background of the form's client
area.

I mentioned earlier that a more general-purpose approach to scrolling involves the use of scroll bar
controls. Scroll bars created as controls have properties named Minimum and Maximum that define
the numeric values associated with the extreme positions of the scroll box and thus the range of
values that the scroll bar can assume. When using the auto-scroll facility, however, you don't have
access to these settings. The range is implied by the difference between the width and height of the
client area less the width and height of the area occupied by the controls (or in our case, the single
Panel control) plus the AutoScrollMargin less the width and height of the client area.

Scroll bars created as controls generate an event named Scroll when the user manipulates the scroll
bar. There is no such event associated with auto-scroll—at least not that an application has access
to.

Although the SysInfoPanel program isn't responding directly to Scroll events, it's definitely
responding to Paint events from the panel. When a program paints on a control, it's really painting
only on the visible area of the control. Every time the user scrolls, the panel generates a Paint event
because some previously unseen area has been pulled into view.
The Heritage of ScrollableControl
What's going on behind the scenes? As I explained in Chapter 2, among the many classes that Form
descends from is the ScrollableControl class, and that's where auto-scroll is implemented. We've
already encountered two of the following six properties of ScrollableControl that are also inherited by
Form.
ScrollableControl Properties (selection)

Type Property Accessibility Description

bool AutoScroll get/set Enables auto-scroll

bool HScroll get/set Indicates the existence of horizontal
scroll

bool VScroll get/set Indicates the existence of vertical scroll

Size AutoScrollMargin get/set Sets the margin around right and bottom
of controls

Size AutoScrollMinSize get/set Defines the minimum scrolling area

Point AutoScrollPosition get/set Indicates the scroll bar position

You can determine whether a particular scroll bar is currently visible by using the HScroll and VScroll
properties. (Supposedly, you can also use these properties to hide a scroll bar that would normally
be visible, but that facility doesn't seem to work very well.) I'll be discussing AutoScrollMinSize in
more detail shortly.

AutoScrollPosition provides the current scrolling position in negative coordinates. In the
SysInfoPanel program, the value of AutoScrollPosition is the same as the value of the panel's
Location property. However, there's an inconsistency in the get and set accessors of
AutoScrollPosition. When you read the property, the coordinates are always less than or equal to 0.
When you set AutoScrollPosition, however, the coordinates must be positive. I'll have an example of
this anomaly in the SysInfoKeyboard program in Chapter 6 when I add a keyboard interface to the
program.

The ScrollableControl class obviously has access to the normal properties and events of the scroll
bars; the class is hiding these items from you in order to provide a higher-level interface. As you
manipulate the scroll bar in the SysInfoPanel program, code implemented in ScrollableControl is
obviously changing the Location property of the panel control to negative values. (It's easy to confirm
this change by adding an event handler for the panel's Move event.) Negative Location values mean
that the upper left corner of the panel is being positioned above and to the left of the upper left
corner of the client area. That's why the contents of the panel seem to move around within the form.

We'll explore auto-scroll more in later chapters as we begin creating more controls. Now let's see if
we can persuade auto-scroll to work without creating any child controls at all.
Scrolling Without Controls
The key to enabling auto-scroll without creating child controls is to set the AutoScrollMinSize
property to something other than the default (0, 0). Normally, the scrolling area is based on the
locations and sizes of controls on the client area. However, AutoScrollMinSize sets a minimum
scrolling area regardless of the presence of any controls. Of course, you must also set the AutoScroll
property to true.

Typically, you set AutoScrollMinSize to the dimensions necessary to display all the program's output.
In the system-information programs, AutoScrollMinSize should be set to a size sufficient to

encompass the full width and height of all 60 lines of information. That's the same size as the panel
in the SysInfoPanel program.

The SysInfoScroll program is virtually identical in functionality to SysInfoPanel but enables auto-
scroll without any child controls.
SysInfoScroll.cs
//--
// SysInfoScroll.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class SysInfoScroll: Form
{
 readonly float cxCol;
 readonly int cySpace;

 public static void Main()
 {
 Application.Run(new SysInfoScroll());
 }
 public SysInfoScroll()
 {
 Text = "System Information: Scroll";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 Graphics grfx = CreateGraphics();
 SizeF sizef = grfx.MeasureString(" ", Font);
 cxCol = sizef.Width + SysInfoStrings.MaxLabelWidth(grfx,
Font);
 cySpace = Font.Height;

 // Set auto-scroll properties.

 AutoScroll = true;
 AutoScrollMinSize = new Size(
 (int) Math.Ceiling(cxCol +
 SysInfoStrings.MaxValueWidth(grfx,
Font)),
 (int) Math.Ceiling(cySpace * SysInfoStrings.Count));

 grfx.Dispose();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {

 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(ForeColor);
 int iCount = SysInfoStrings.Count;
 string[] astrLabels = SysInfoStrings.Labels;
 string[] astrValues = SysInfoStrings.Values;
 Point pt = AutoScrollPosition;

 for (int i = 0; i < iCount; i++)
 {
 grfx.DrawString(astrLabels[i], Font, brush,
 pt.X, pt.Y + i * cySpace);

 grfx.DrawString(astrValues[i], Font, brush,
 pt.X + cxCol, pt.Y + i * cySpace);
 }
 }
}

SysInfoPanel put a panel control on its client area. In a program such as SysInfoScroll, you might
wonder whether the scroll bars are also located on top of the client area. They are not! The client
area is actually made smaller to accommodate the scroll bars. Sometimes the width of the client area
is just a little larger than AutoScrollMinSize.Width. If a vertical scroll bar is required, however, the
width of the client area must be narrowed by the width of the scroll bar; that change could then make
the client area width smaller than AutoScrollMinSize.Width and thus also require a horizontal scroll
bar.

By setting AutoScrollMinSize, you are not defining something akin to a virtual drawing area.
Regardless of how large you make AutoScrollMinSize, when you handle the OnPaint method, you're
still drawing within the confines of the physical client area. Indeed, that client area is probably even
smaller than usual because of the presence of the scroll bars.

In SysInfoPanel, any manipulation of the scroll bars resulted in the uncovering of previously unseen
areas of the panel control and thus generated a Paint event. That program did all its drawing on a
panel control that was large enough for all the program's output. Scrolling relocated the panel
relative to the program's client area. But the coordinates of the output on the panel remained the
same. For example, the second column of the third row of text output was always at the location
(cxCol, 2 * cySpace).

SysInfoScroll responds to changes in the scroll bars by overriding the form's OnPaint method.
However, this program is drawing directly on its client area and not on some control that's being
shifted around. The client area isn't large enough for the program's output, and the Graphics object
obtained during the OnPaint method knows nothing about auto-scroll.

What this means is that the OnPaint method of the SysInfoScroll program (or any program that
implements auto-scroll and draws directly on its client area) must adjust the coordinates of any
drawing function it calls based on the AutoScrollPosition property. As you can see, the OnPaint
method in this program gets AutoScrollPosition, saves it in a Point variable named pt, and adds the
values to the coordinates in the DrawString calls. Keep in mind that the coordinates returned by
AutoScrollPosition are negative. If you've scrolled down 30 pixels (for example), the first DrawString
call for the first line of text uses the coordinates (0, −30), which is above the client area and not
visible.

This method of repainting the client area may start to sound inefficient: The program is drawing 60
lines of text every time it needs to repaint, yet usually only a small fraction of those calls result in
something being painted on the client area. I'll take on the efficiency issue later in this chapter.
Actual Numbers

Let's pause for a moment and try to get a better feel for what's going on by looking at actual
numbers. Just keep in mind that some of these numbers are based on my system settings and may
not be exactly the same numbers you're seeing. (In particular, my video display settings include
Large Fonts. This setting affects some of the items I'll be discussing.)

Suppose your program needs a client area of 400 pixels wide by 1600 pixels high. Here's how you
set AutoScroll and AutoScrollMinSize in the form's constructor:
AutoScroll = true;
AutoScrollMinSize = new Size(400, 1600);

My experience is that forms are created with a default size of 300 by 300 pixels. How large is the
client area in that case? Well, we now have two programs that let you scroll through the
SystemInformation properties, so you can figure out how large the client area is. I see a
SystemInformation.CaptionHeight value of 24. That's the height of the caption bar. The width of the
normal sizing border is stored in SystemInformation.FrameBorderSize. I'm seeing 4 pixels for that,
and remember that's 4 pixels on all four sides. So you can calculate the client area width as 300
minus two 4's, or 292. The height of the client area should be 300 minus two 4's minus 24, or 268. (If
you don't trust my math skills, you can verify these values by using the form's ClientSize property.)

Because the client area height of 268 is less than 1600, the program needs a vertical scroll bar. I'm
seeing a value of SystemInformation.VerticalScrollBarWidth of 20 pixels. Thus, the client area width
is reduced to 292 minus 20, or 272 pixels.

That width of 272 is less than 400, so the program needs a horizontal scroll bar as well. The value of
SystemInformation.HorizontalScrollBarHeight is also 20 pixels, thus reducing the height of the client
area to 268 minus 20, or 248 pixels.

The vertical scroll bar is probably set to have a range of values from 0 through 1352, which is the
required height of 1600 minus the actual height of 248. The horizontal scroll bar is probably set to
have a range of values from 0 through 128 (which is 400 minus 272).

The code implemented in ScrollableControl responds to the user clicking the scroll bar or dragging
the scroll box by performing two actions: changing the value of AutoScrollPosition and scrolling the
contents of the client area. AutoScrollPosition is initially set to (0, 0). As the user moves the
horizontal scroll bar, the X property varies between 0 and −128 and the Y property varies from 0
through −1352.

The scrolling of the client area requires the system to copy the contents from one location on the
client area to another. The Win32 API includes functions named ScrollWindow, ScrollWindowEx, and
ScrollDC that let programs scroll their client areas. Although these functions are not exposed in the
Windows Forms class library, it's obvious that ScrollableControl is using one of them.

When code implemented in the ScrollableControl class scrolls the client area, it can scroll only
what's currently displayed on the screen. Scrolling generally "uncovers" a rectangle in the client
area, making that portion of the client invalid. This invalidation generates a call to the OnPaint
method.

So when you're scrolling the SysInfoPanel or SysInfoScroll program, the OnPaint method really
needs to refresh only a small rectangular subset of the client area. It hardly seems rational that these
programs process the OnPaint call by obtaining and displaying every single line of information.

Let's take care of that problem in two steps.

LISPA ch4 Keeping it green

Don't Be a Pig
Users have a name for a program that isn't as fast as it could be. They say, "This program is a real
pig." It's not nice, but it's a fact of life.

I've already made the system-information program somewhat more efficient by calling the methods
in SysInfoStrings only when the program begins execution and when any of the SystemInformation
items change. The program no longer makes three calls to SysInfoStrings every time it gets a call to
OnPaint.

However, OnPaint is still displaying all 60 lines—and calling DrawString 120 times—every time any
part of the client window is invalidated. On most people's machines, not all 60 lines will even be
visible. Moreover, as I mentioned earlier, vertical scrolling usually uncovers only a line or two of text;
in those cases, OnPaint really needs to redraw only a line or two.

To some extent, Windows itself provides some built-in efficiency. The Graphics object you obtain
during the OnPaint method can paint only on the invalid region of the client area. Something called a
clipping region, which encompasses only the invalid region and doesn't let you draw outside it, is
involved. You saw an example of repainting only the invalid region in the RandomClear program in
Chapter 3. The fact remains, however, that you're still making 120 DrawString calls, and you're still
requiring Windows to check whether a particular DrawString call will or will not fall within the clipping
region.

Fortunately, the ClipRectangle property of the PaintEventArgs class is there to help. The
ClipRectangle property is the smallest rectangle in client area coordinates that encompasses the
invalid region. (As the RandomClear program demonstrated, the invalid region need not be
rectangular.) For personal experimentation, you might insert the line
Console.Writeline(pea.ClipRectangle);

in an OnPaint method and play with scrolling and partially covering and then uncovering the form
with other programs.

The SysInfoEfficient program inherits from SysInfoUpdate and overrides the OnPaint method in that
class with a more efficient version. A couple of fairly simple calculations based on the
AutoScrollPosition property of the form and the ClipRectangle property of PaintEventArgs derive line
index values named iFirst and iLast that are then used in the for loop to display the minimum number
of lines of text required to update the client area.
SysInfoEfficient.cs
//---
// SysInfoEfficient.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SysInfoEfficient: SysInfoUpdate
{
 public new static void Main()
 {
 Application.Run(new SysInfoEfficient());
 }
 public SysInfoEfficient()
 {
 Text = "System Information: Efficient";
 }

 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(ForeColor);
 Point pt = AutoScrollPosition;

 int iFirst = (int)((pea.ClipRectangle.Top - pt.Y) / cySpace);
 int iLast = (int)((pea.ClipRectangle.Bottom - pt.Y) / cySpace);

 iLast = Math.Min(iCount - 1, iLast);

 for (int i = iFirst; i <= iLast; i++)
 {
 grfx.DrawString(astrLabels[i], Font, brush,
 pt.X, pt.Y + i * cySpace);

 grfx.DrawString(astrValues[i], Font, brush,
 pt.X + cxCol, pt.Y + i * cySpace);
 }
 }
}

Just prior to the for loop, the statement involving Math.Min prevents iLast from exceeding the number
of items to be displayed. This limit can be exceeded only if the window is taller than the size
necessary to display all the items.
Reflecting on the Future
While the .NET Framework might appear to be the epitome of perfection today, there's still a
possibility, however slim, that in some distant year a misguided Microsoft developer might feel
compelled to add one or two additional properties to the SystemInformation class. In that case, my
SysInfoStrings class would have to be updated to include those additional properties, and all the
various programs in this chapter would also have to be recompiled to include the new version.

Might it be possible, however, to write a program that automatically includes all current
SystemInformation properties implemented in the class, even those that didn't exist when the
program was written?

Yes, it is possible, and to understand how to do it, let's think about where the SystemInformation
code actually exists. According to the documentation for the class, it's in the file
System.Windows.Forms.dll. When one of the programs in this chapter is run, the operating system
links it with System.Windows.Forms.dll so that the program can make calls to the SystemInformation
class.

But the DLL isn't just a bunch of code. It exists with binary metadata that describes in detail the
classes implemented in the file and all the fields, properties, methods, and events in these classes.
In fact, the C# compiler uses this information to compile programs (that's why you need to set the
Reference files), and the reference documentation of the .NET Framework is derived from this
metadata.

So it makes sense that a program might be able to access this metadata at runtime, find out about
the .NET classes dynamically, and even execute some methods and properties in them. This
process is called reflection, and it's a concept borrowed from Java. Reflection would normally be
considered an advanced topic, but it's just so perfect for this application that I can't resist.

The first step is to rewrite the SysInfoStrings class so that it uses reflection to obtain the property
names and the actual properties.
SysInfoReflectionStrings.cs
//---
// SysInfoReflectionStrings.cs © 2001 by Charles Petzold
//---
using Microsoft.Win32;
using System;
using System.Drawing;
using System.Reflection;
using System.Windows.Forms;

class SysInfoReflectionStrings
{
 // Fields
 static bool bValidInfo = false;
 static int iCount;
 static string[] astrLabels;
 static string[] astrValues;
 // Constructor
 static SysInfoReflectionStrings()
 {
 SystemEvents.UserPreferenceChanged +=
 new
UserPreferenceChangedEventHandler(UserPreferenceChanged);

 SystemEvents.DisplaySettingsChanged +=
 new EventHandler(DisplaySettingsChanged);
 }
 // Properties
 public static string[] Labels
 {
 get
 {
 GetSysInfo();
 return astrLabels;
 }
 }
 public static string[] Values
 {
 get
 {
 GetSysInfo();
 return astrValues;
 }
 }

 public static int Count
 {
 get
 {
 GetSysInfo();
 return iCount;
 }
 }
 // Event
handlers
 static void UserPreferenceChanged(object obj,
 UserPreferenceChangedEventArgs ea)
 {
 bValidInfo = false;
 }
 static void DisplaySettingsChanged(object obj, EventArgs ea)
 {
 bValidInfo = false;
 }
 // Methods
 static void GetSysInfo()
 {
 if(bValidInfo)
 return;

 // Get property information for SystemInformation class.

 Type type = typeof(SystemInformation);
 PropertyInfo[] apropinfo = type.GetProperties();

 // Count the number of static readable properties.

 iCount = 0;
 foreach (PropertyInfo pi in apropinfo)
 {
 if(pi.CanRead && pi.GetGetMethod().IsStatic)
 iCount++;
 }
 // Allocate string arrays.

 astrLabels = new string[iCount];
 astrValues = new string[iCount];

 // Loop through the property information classes again.

 iCount = 0;

 foreach (PropertyInfo pi in apropinfo)
 {
 if(pi.CanRead && pi.GetGetMethod().IsStatic)
 {
 // Get the property names and values.

 astrLabels[iCount] = pi.Name;
 astrValues [iCount] = pi.GetValue(type,
null).ToString();
 iCount++;
 }
 }
 Array.Sort(astrLabels, astrValues);
 bValidInfo = true;
 }
 public static float MaxLabelWidth(Graphics grfx, Font font)
 {
 return MaxWidth(Labels, grfx, font);
 }
 public static float MaxValueWidth(Graphics grfx, Font font)
 {
 return MaxWidth(Values, grfx, font);
 }
 static float MaxWidth(string[] astr, Graphics grfx, Font font)
 {
 float fMax = 0;

 GetSysInfo();

 foreach (string str in astr)
 fMax = Math.Max(fMax, grfx.MeasureString(str, font).Width);

 return fMax;
 }
}

The GetSysInfo method in this class does the bulk of the work. It obtains the property names and
their values when they are first required and whenever they change. The C# typeof operator obtains
the type of the SystemInformation class, which is saved in a variable of type Type. One method of
Type is GetProperties, which returns an array of PropertyInfo objects. Each object in this array is a
property of SystemInformation. A foreach loop counts up all the properties that are both static and
readable. (I know that all the properties of SystemInformation are static and readable today, but I'm
trying to make the program generalized.)

The program then allocates arrays for the properties and their values, and loops through the
PropertyInfo array again. The Name property of the PropertyInfo object is the name of the property;
in this case, the Name property returns strings such as HighContrast and IconSize. The GetValue
method obtains each property's value. The static Sort method of the Array class sorts both the name
and value arrays based on the text of the property names.

The program that makes use of SysInfoReflectionStrings is functionally the same as the combination
of SysInfoUpdate and SysInfoEfficient.
SysInfoReflection.cs
//---
// SysInfoReflection.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SysInfoReflection: Form
{
 protected int iCount;
 protected string[] astrLabels;
 protected string[] astrValues;
 protected float cxCol;
 protected int cySpace;

 public static void Main()
 {
 Application.Run(new SysInfoReflection());
 }
 public SysInfoReflection()
 {
 Text = "System Information: Reflection";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 AutoScroll = true;

 SystemEvents.UserPreferenceChanged +=
 new
UserPreferenceChangedEventHandler(UserPreferenceChanged);

 SystemEvents.DisplaySettingsChanged +=
 new EventHandler(DisplaySettingsChanged);

 UpdateAllInfo();
 }
 void UserPreferenceChanged(object obj,
 UserPreferenceChangedEventArgs ea)
 {
 UpdateAllInfo();
 Invalidate();
 }
 void DisplaySettingsChanged(object obj, EventArgs ea)
 {

 UpdateAllInfo();
 Invalidate();
 }
 void UpdateAllInfo()
 {
 iCount = SysInfoReflectionStrings.Count;
 astrLabels = SysInfoReflectionStrings.Labels;
 astrValues = SysInfoReflectionStrings.Values;

 Graphics grfx = CreateGraphics();
 SizeF sizef = grfx.MeasureString(" ", Font);
 cxCol = sizef.Width +
 SysInfoReflectionStrings.MaxLabelWidth(grfx,
Font);
 cySpace = Font.Height;

 AutoScrollMinSize = new Size(
 (int) Math.Ceiling(cxCol +
 SysInfoReflectionStrings.MaxValueWidth(grfx,
Font)),
 (int) Math.Ceiling(cySpace * iCount));

 grfx.Dispose();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(ForeColor);
 Point pt = AutoScrollPosition;

 int iFirst = (int)((pea.ClipRectangle.Top - pt.Y) / cySpace);
 int iLast = (int)((pea.ClipRectangle.Bottom - pt.Y) / cySpace);

 iLast = Math.Min(iCount - 1, iLast);

 for (int i = iFirst; i <= iLast; i++)
 {
 grfx.DrawString(astrLabels[i], Font, brush,
 pt.X, pt.Y + i * cySpace);

 grfx.DrawString(astrValues[i], Font, brush,
 pt.X + cxCol, pt.Y + i * cySpace);
 }
 }
}

And this is my absolutely final version of a SystemInformation display program (until Chapter 6, that
is, when I add a keyboard interface to it).

Chapter 5: Lines, Curves, and Area Fills
Overview
According to Euclid, "A line is breadthless length."[1] It's the "breadthless" part that makes this
statement interesting. It certainly indicates the high degree of abstract thought that characterizes
ancient Greek mathematics. It also proves conclusively that the ancient Greeks knew nothing about
computer graphics. They would have realized that pixels do indeed have breadth, a fact that
contributes to one of the annoying problems often associated with computer graphics: the off-by-1-
pixel error, a problem we'll be attuned to in this chapter.

The world of computer graphics is roughly divided into two areas:
§ Vector graphics, which is the practical application of analytic geometry and involves drawing

lines, curves, and filled areas
§ Raster graphics, which involves bitmaps and real-world images

Then there's text, which occupies a plane of its own in the computer graphics world. In recent years,
however, with the ascendance of outline fonts, text is often treated as part of vector graphics.

This chapter introduces vector graphics as implemented in Microsoft Windows Forms and GDI+. All
the drawing functions discussed in this chapter are methods of the Graphics class and begin with the
prefix Draw or Fill. The Draw methods draw lines and curves; the Fill methods fill areas (the outlines
of which, of course, are defined by lines and curves). The first argument to all the Draw methods
covered in this chapter is a Pen object; the first argument to all the Fill methods is a Brush.
[1] Sir Thomas L. Heath, ed., The Thirteen Books of Euclid's Elements (New York: Dover, 1956), 1:
153.
How to Get a Graphics Object
Most of the drawing functions are methods of the Graphics class. (There are additional drawing
functions in the ControlPaint class, but these are somewhat specialized.) To draw, you need an
object of type Graphics. But the Graphics constructor isn't public. You cannot simply create a
Graphics object like so:
Graphics grfx = new Graphics(); // Won't work!

The Graphics class is also sealed, which means you can't derive your own class from Graphics:
class MyGraphics: Graphics // Won't work!

You must obtain the Graphics object in some other way. Here's a complete list of ways that you can
do this, beginning with the most common:
§ When you override the OnPaint method or install a Paint event handler in any class derived

from Control (such as Form), a Graphics object is delivered to you as a property of the
PaintEventArgs class.

§ To paint on a control or a form at times other than during the OnPaint method or the Paint
event, you can call the CreateGraphics method of the control. Classes sometimes call
CreateGraphics in their constructors to obtain information and perform initialization. (Some of
the programs in Chapter 4 did this.) Although classes can't draw during the constructor, they
can do so during other events. It's common for a control or a form to draw something during
keyboard, mouse, or timer events, as I'll demonstrate in Chapters 6, 8, and 10. It's important for
a program to use the Graphics object only during the event that obtains it (that is, the Graphics
object shouldn't be stored in a field in the class). The program should also call the Dispose
method of the Graphics object when it's finished using it.

§ When printing, you install a PrintPage event handler and get an object of type
PrintPageEventArgs, which contains a Graphics object suitable for the printer. I'll demonstrate
how to do this shortly.

§ Some controls—most commonly menus, list boxes, combo boxes, and status bars—have a
feature called owner draw that allows a program to dynamically draw items on the control. The
MeasureItem and DrawItem events deliver objects of type MeasureItemEventArgs and
DrawItemEventArgs, which have Graphics objects the event handler can use.

§ To draw on a bitmap or a metafile (techniques I'll demonstrate in Chapters 11 and 23), you
need to obtain a special Graphics object by calling the static method Graphics.FromImage.

§ If you need to obtain information from the Graphics object associated with a printer without
actually printing, you can use the CreateMeasurementGraphics method of the PrinterSettings
class.

§ If you're interfacing with Win32 code, you can use the static methods Graphics.FromHwnd and
Graphics.FromHdc to obtain a Graphics object.

Pens, Briefly
When you draw a line by hand on paper, you use a pencil, a crayon, a fountain pen, a ballpoint pen,
a felt-tip marker, or whatever. The type of instrument you choose at least determines the line's color
and width. These qualities and others are subsumed under the Pen class, and whenever you draw a
line, you specify a Pen object.

I'm not going to get into a comprehensive exploration of pens at this time, however. The problem is
that pens can be created from brushes, so a complete discussion of pens is dependent on that topic.
And brushes can be created from bitmapped images and graphics paths, and those are more
advanced graphics programming topics. We'll examine pens and brushes thoroughly in Chapter 17.

As I explained in Chapter 3, you can create a pen of a particular color like so:
Pen pen = new Pen(color);

where color is an object of type Color. You can also take advantage of the Pens class, which
contains 141 static read-only properties that return Pen objects. Pens.HotPink is thus an acceptable
first argument to line-drawing methods (although appropriate only when used in moderation). A
complete list of these color names is available on the inside back cover of this book.

The SystemPens class contains 15 static read-only properties that also return Pen objects based on
the system colors. But if you want to create a pen that you know will be visible against the
background color the user has chosen, base it on the current ForeColor property:
Pen pen = new Pen(ForeColor);

There's one more aspect of pens I want to mention here, and that's the pen's width. The width is a
read/write property:
Pen Properties (selection)

Type Property Accessibility

float Width get/set

There's also a Pen constructor that includes the pen width, so here's a table listing the two Pen
constructors I've mentioned so far:

Pen Constructors (selection)

Pen(Color color)
Pen(Color color, float fWidth)

(Just so you won't think I'm holding back information, there are only two other Pen constructors,
which look the same as these two except that a Brush object is the first argument.) When you use
the first constructor, the pen is created with a width of 1. Pen objects available from the Pens and
SystemPens class also have a width of 1. For the time being, you can think of that as 1 pixel wide.
However, you'll discover in Chapter 7 that this width is actually in world coordinates and affected by
various transforms.

It's possible to create a pen that is always 1 pixel wide regardless of any transforms that may be in
effect. Use a width of 0 in the constructor:
Pen pen = new Pen(color, 0);

Or set the Width property to 0:
pen.Width = 0;

Straight Lines
To draw a single straight line, you use the DrawLine method of the Graphics class. There are four
overloaded versions of DrawLine, but they all involve the same information: the coordinates where
the line begins and ends, and the pen used to draw the line:

Graphics DrawLine Methods

void DrawLine(Pen pen, int x1, int y1, int x2, int y2)
void DrawLine(Pen pen, float x1, float y1, float x2, float y2)
void DrawLine(Pen pen, Point point1, Point point2)
void DrawLine(Pen pen, PointF point1, PointF point2)

You can specify the coordinates either as four int or float values, or as two Point or PointF structures.

DrawLine draws a line from the first point up to and including the second point. (This is a little
different from Win32 GDI, which draws up to but not including the second point.) For example,
grfx.Drawline(pen, 0, 0, 5, 5);

colors 6 pixels black—the pixels at coordinate points (0,0), (1,1), (2,2), (3,3), (4,4), and (5, 5). The
order of the two points doesn't matter, so the call
grfx.DrawLine(pen, 5, 5, 0, 0);

produces identical results. The call
grfx.DrawLine(pen, 2, 2, 3, 3);

draws 2 pixels, at points (2, 2) and (3, 3). However,
grfx.DrawLine(pen, 3, 3, 3, 3);

draws nothing.

As you know, you can determine the width and height of your client area by using the ClientSize
property of Form. The number of pixels horizontally is ClientSize.Width; the pixels can be numbered
from 0 through ClientSize.Width − 1. Similarly, the vertical pixels can be numbered from 0 through
ClientSize.Height − 1.

The XMarksTheSpot program draws an X in the client area.
XMarksTheSpot.cs
//--
// XMarksTheSpot.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class XMarksTheSpot: Form
{
 public static void Main()
 {
 Application.Run(new XMarksTheSpot());
 }
 public XMarksTheSpot()

 {
 Text = "X Marks The Spot";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Pen pen = new Pen(ForeColor);

 grfx.DrawLine(pen, 0, 0,
 ClientSize.Width - 1, ClientSize.Height - 1);
 grfx.DrawLine(pen, 0, ClientSize.Height - 1,
 ClientSize.Width - 1, 0);
 }
}

The first DrawLine call draws a line from the upper left pixel to the lower right pixel of the client area.
The second DrawLine call begins the line at the lower left pixel, which is the point (0,
ClientSize.Height − 1), and goes to the upper right pixel at (ClientSize.Width − 1, 0).
An Introduction to Printing
Many of the graphics demonstration programs in this chapter and subsequent chapters will be similar
to XMarksTheSpot. They won't necessarily be as lame as XMarksTheSpot (although some will,
unfortunately), but they'll do nothing more than demonstrate basic graphics programming techniques
by displaying static images in their client areas.

It might be helpful even at this early stage to print these images on your printer as well, if only to
have the option of proudly displaying them on your refrigerator door. More important, printing
graphics gives you an opportunity to discover firsthand the extent to which a graphics programming
system is device independent as you're learning the system.

Printing is a topic customarily banished to the end of programming books if not ignored entirely,
mostly because printing is often terribly complicated. I've devoted Chapter 21 to printing to cover all
the various facilities and options that are available. But for our immediate purposes—turning out a
single page on the user's default printer using default settings—printing from a Windows Forms
application is quite easy.

Indeed, the only reason I hesitated at all in introducing printing so early was the user-interface
problem—how the program would allow the user to initiate printing. As you know, most programs
that print include a Print option on the File menu. It's a little too early in the book for menus, a subject
covered exhaustively in Chapter 14. I also considered implementing a simple keyboard interface,
perhaps using the Print Screen (sometimes labeled PrtScn) key or Ctrl+P. Finally I decided on
overriding the OnClick method.

OnClick is implemented in the Control class and inherited by every class descended from Control,
including Form. The OnClick method is called whenever the user clicks the client area of the form
with any mouse button. And that's all I'm going to say about the mouse until Chapter 8!

To print to the default printer, you first need to create an object of type PrintDocument, a class
defined in the System.Drawing.Printing namespace:
PrintDocument prndoc = new PrintDocument();

We'll spend more time with this class in Chapter 21. For now, I'll mention only one property, one
event, and one method in the class.

You set the DocumentName property of the PrintDocument object to a text string. This is the text that
identifies the job in the printer dialog box as the graphics output is being spooled out to the printer:
prndoc.DocumentName = "My print job";

A program that works with documents generally uses the name of the document for this text string. In
this chapter, I'll use the program's caption bar text.

You need to create a method in your class that will perform the graphics output calls. This method is
defined in accordance with the PrintPageEventHandler delegate. You can name this method
PrintDocumentOnPrintPage, as in this example:
void PrintDocumentOnPrintPage(object obj, PrintPageEventArgs ppea)
{

}

Attach this handler to the PrintPage event of the PrintDocument object like so:
prndoc.PrintPage += new PrintPageEventHandler(PrintDocumentOnPrintPage);

This is the same way that Paint event handlers were installed in some of the programs in Chapter 2
and in the SysInfoPanel program of Chapter 4.

To begin printing, the last thing you'll do with the PrintDocument object is call its Print method:
prndoc.Print();

This Print method doesn't return immediately. Instead, a small message box is briefly displayed that
contains the document name you specified and that gives the user the option of canceling the print
job.

The Print method also causes your PrintPage event handler (which we've called
PrintDocumentOnPrintPage) to be called. The object parameter to PrintDocumentOnPrintPage is the
PrintDocument object created earlier. The PrintPageEventArgs parameter has properties that supply
you with information about the printer. The most important of these properties, however, is named
Graphics and is similar to the same-named property in PaintEventArgs, except that this property
supplies you with a Graphics object for the printer page rather than for the client area of the form.

So the PrintDocumentOnPrintPage method often looks something like this:
void PrintDocumentOnPrintPage(object obj, PrintPageEventArgs ppea)
{
 Graphics grfx = ppea.Graphics;

}

You use that Graphics object to call methods that display graphics on the printer page.

If you were printing multiple pages, you'd set the HasMorePages property of PrintPageEventArgs to
true, but because we're printing only one page, we leave the property at its default false setting and
return from PrintDocumentOnPrintPage.

After PrintDocumentOnPrintPage returns with the HasMorePages property of the
PrintPageEventArgs object set to false, the original call to the Print method of the PrintDocument
object also returns. The program is finished with the print job. Sending the graphics output to the
printer is somebody else's problem. Dealing with paper jams, empty ink cartridges, toner smudges,
and bad cables is also somebody else's problem.

You might have more than one printer attached to your machine. The approach to printing that I've
shown here uses your default printer. The Printers dialog box that you invoke from Control Panel or
from the Settings submenu on your Start menu contains an item on its File menu to set the default
printer.

As you know, a form's ClientSize property gives you the pixel dimensions of your form's client area,
and that's sufficient for intelligently drawing within the client area. A similar property for the printer
page is somewhat problematic.

A printer page is defined by three different areas. First, there's the entire size of the page. That
information is provided by the PageBounds property of the PrintPageEventArgs class. It's a
Rectangle structure where the X and Y properties are 0 and the Width and Height properties provide
the default paper dimensions in units of 0.01 inch. For example, for 8½-by-11-inch paper, the Width
and Height properties of PageBounds are equal to 850 and 1100. If the default printer settings
indicate landscape rather than portrait, the Width and Height properties are set equal to 1100 and
850, respectively.

Second, the printable area of the page is usually very nearly the whole page except a margin where
the print head (or whatever) can't reach. This margin may be different for the top and bottom of the
page, and for the left and right. The VisibleClipBounds property of the Graphics class is a
RectangleF structure that provides the size of the page's printable area. The X and Y properties of
this structure are set to 0. The Width and Height properties indicate the dimensions of the printable
area of the page in the same units that you'll be using for drawing to the printer.

The third area of the page takes into account 1-inch margins on all four edges of the page. Those
represent bounds within which the user prefers to print. This information is returned in a Rectangle
structure from the MarginBounds property of the PrintPageEventArgs object.

We'll explore these issues more in Chapter 21. For now, using the VisibleClipBounds property of the
Graphics class is probably your best bet. The Graphics object you obtain from the
PrintPageEventArgs object is consistent with this property—that is, the point (0, 0) references the
upper left corner of the printable area of the page.

Of course, everything I so carefully emphasized about using a visible color on the video display is
wrong for the printer. For a printer, the best color to use is Color.Black. The best pen is Pens.Black,
and the best brush is Brushes.Black. That will take care of everybody except those strange people
who insist on loading up their printers with black paper.

Here's a program that displays "Click to print" in its client area and prints when it gets a button click.
HelloPrinter.cs
//---
// HelloPrinter.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Printing;
using System.Windows.Forms;

class HelloPrinter: Form
{
 public static void Main()
 {
 Application.Run(new HelloPrinter());
 }
 public HelloPrinter()
 {
 Text = "Hello Printer!";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 }

 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 StringFormat strfmt = new StringFormat();

 strfmt.Alignment = strfmt.LineAlignment =
StringAlignment.Center;

 grfx.DrawString("Click to print", Font, new
SolidBrush(ForeColor),
 ClientRectangle, strfmt);
 }
 protected override void OnClick(EventArgs ea)
 {
 PrintDocument prndoc = new PrintDocument();

 prndoc.DocumentName = Text;
 prndoc.PrintPage +=
 new PrintPageEventHandler(PrintDocumentOnPrintPage);
 prndoc.Print();
 }
 void PrintDocumentOnPrintPage(object obj, PrintPageEventArgs ppea)
 {
 Graphics grfx = ppea.Graphics;

 grfx.DrawString(Text, Font, Brushes.Black, 0, 0);

 SizeF sizef = grfx.MeasureString(Text, Font);

 grfx.DrawLine(Pens.Black, sizef.ToPointF(),

grfx.VisibleClipBounds.Size.ToPointF());
 }
}

Notice that I've used the Text property of the form for both the print document name and as the text
string argument to DrawString and MeasureString in the PrintDocumentOnPrintPage method. The
program displays the text "Hello Printer!" in the upper left corner of the printable area of the page and
then draws a line that extends from the bottom right corner of the text string to the bottom right
corner of the printable area of the page. This example should be enough to assure you that
VisibleClipBounds is indeed providing information consistent with the Graphics origin.

I'm detecting some scoffing among my readers. That's because I blithely used the form's Font
property in the DrawString and MeasureString calls without considering that the printer has a
resolution of 300, 600, 720, 1200, 1440, or perhaps even 2400 or 2880 dots per inch. The font
accessible through the form's Font property was selected by the system to be appropriate for the
video display, which probably has a resolution more like 100 dots per inch. The resultant text on the
printer should therefore look quite puny.

Well go ahead: try it. The text is printed using a respectable 8-point font. Notice also that the
diagonal line the program draws is obviously more than 1 pixel in width. One-pixel-wide lines on

today's high-resolution printers are barely visible. Windows Forms instead draws a nice solid line.
Why that is so must remain a mystery for now, although a pleasant one. The answer will become
apparent in Chapters 7 and 9.

Let's now write a program that displays the same output in both the form's client area and the printer
page. I don't mean for you to copy and paste code from the OnPaint method to the
PrintDocumentOnPrintPage method; let's demonstrate that we know something about programming
by putting the graphics output code in a separate method named DoPage that is called by both
OnPaint and PrintDocumentOnPrintPage. Here's a variation of XMarksTheSpot that does just that.
PrintableForm.cs
//--
// PrintableForm.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Printing;
using System.Windows.Forms;

class PrintableForm: Form
{
 public static void Main()
 {
 Application.Run(new PrintableForm());
 }
 public PrintableForm()
 {
 Text = "Printable Form";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 DoPage(pea.Graphics, ForeColor,
 ClientSize.Width, ClientSize.Height);
 }
 protected override void OnClick(EventArgs ea)
 {
 PrintDocument prndoc = new PrintDocument();

 prndoc.DocumentName = Text;
 prndoc.PrintPage +=
 new PrintPageEventHandler(PrintDocumentOnPrintPage);
 prndoc.Print();
 }
 void PrintDocumentOnPrintPage(object obj, PrintPageEventArgs ppea)
 {
 Graphics grfx = ppea.Graphics;

 SizeF sizef = grfx.VisibleClipBounds.Size;

 DoPage(grfx, Color.Black, (int)sizef.Width, (int)sizef.Height);
 }
 protected virtual void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen pen = new Pen(clr);

 grfx.DrawLine(pen, 0, 0, cx - 1, cy - 1);
 grfx.DrawLine(pen, cx - 1, 0, 0, cy - 1);
 }
}

The DoPage method at the end of the listing outputs the graphics. The arguments are a Graphics
object, a suitable color for the device, and the width and height of the output area. DoPage is called
from two other methods: the OnPaint method and the PrintDocumentOnPrintPage method. In
OnPaint, the last three DoPage arguments are set to ForeColor and the width and height of the
form's client area. In PrintDocumentOnPrintPage, these arguments are Color.Black and the width
and height of VisibleClipBounds.

I've given the last two arguments to DoPage names of cx and cy. The c stands for count and
because x and y commonly refer to coordinates, cx and cy can be interpreted as referring to a
"count" of the coordinate points, or the width and height.

Interestingly enough, when you have a Graphics object for your client area, the VisibleClipBounds
property is equal to the width and height of the client area. I could have dispensed with the cx and cy
arguments to DoPage and just used VisibleClipBounds inside DoPage for both the screen and the
printer. However, I like having the width and height values already available in convenient variables,
particularly considering what I've done here. Notice that I've made the DoPage method protected
and virtual, and hence overridable. If you want to write a program that displays only a single screen
of graphics, you can derive from PrintableForm rather than Form and have printing facilities built into
your program.

And that's exactly what I'll do in virtually all the sample programs in this chapter and in many
programs in subsequent graphics-oriented chapters.
Properties and State
Some graphics programming environments include the concept of a current position, which is a
coordinate point retained by the environment that is used as a starting point in drawing functions.
Generally, the graphics system defines one function to set the current position and another function
to draw a line from the current position to a specified point. The drawing function also sets the
current position to the new point.

GDI+ has no concept of a current position. This may come as a bit of a shock to veteran Windows
programmers because drawing a line in Windows GDI requires two function calls, each of which
specifies a single coordinate: MoveTo to set the current position to the specified point and LineTo to
draw the line up to (but not including) that point.

GDI+ is also different from Windows GDI in that the DrawLine and DrawString calls include
arguments specifying the font, the brush, and the pen. If GDI+ were more like Windows GDI, the
font, the brush, and the pen would be properties of the Graphics object. You'll recall that
StringFormat specifies certain details about the display of text. StringFormat is also an argument to
DrawString rather than a property of the Graphics object.

For these reasons, the architects of GDI+ have termed it a stateless graphics programming
environment. It's not entirely stateless, however. If it were, the Graphics class would have no
read/write properties at all! As is, Graphics has 12 read/write properties as well as 6 read-only
properties.

I count four settable properties of Graphics that have a profound impact on the appearance of
graphics figures:
§ PageScale and PageUnit determine the units you draw in. By default, you draw on the screen

in units of pixels. I'll go over these properties in detail in Chapter 7.
§ The Transform property is an object of type Matrix that defines a matrix transform for all

graphics output. The transform translates, scales, shears, or rotates coordinate points. I'll cover
the matrix transform in Chapter 7.

§ Clip is a clipping region. When you set a clipping region, any drawing functions you call will be
limited to output in that region. I'll discuss clipping in Chapter 15.

Anti-Aliasing
Besides those four properties of the Graphics class that affect output very profoundly, other
properties affect the output in more subtle ways. Two of these properties are SmoothingMode and
PixelOffsetMode.
Graphics Properties (selection)

Type Property Accessibility Description

SmoothingMode SmoothingMode get/set Anti-aliasing of lines

PixelOffsetMode PixelOffsetMode get/set Enhanced anti-aliasing

These properties enable a graphics rendering technique known as anti-aliasing. The term alias in
this context comes from sampling theory. Anti-aliasing is an attempt to reduce the sharp jaggies of
displayed graphics by using shades of color.

Here's a program that draws a small line; I've also included statements to let you set the
SmoothingMode and PixelOffsetMode properties.
AntiAlias.cs
//--
// AntiAlias.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class AntiAlias: Form
{
 public static void Main()
 {
 Application.Run(new AntiAlias());
 }
 public AntiAlias()
 {
 Text = "Anti-Alias Demo";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Pen pen = new Pen(ForeColor);

 grfx.SmoothingMode = SmoothingMode.None;
 grfx.PixelOffsetMode = PixelOffsetMode.Default;

 grfx.DrawLine(pen, 2, 2, 18, 10);
 }
}

You can try various combinations of these properties, recompile and run the program, capture its
screen image, and blow it up in some graphics or paint program to see the difference. Or you can sit
back and let me do it.

By default, the line is rendered like so:

I've included in this figure a little section of the form outside the client area on the left and top so you
can clearly see that the line begins at pixel position (2, 2).

The SmoothingMode enumeration is defined in the namespace System.Drawing.Drawing2D:
SmoothingMode Enumeration

Member Value Comments

Default 0 No anti-aliasing

HighSpeed 1 No anti-aliasing

HighQuality 2 Anti-aliasing enabled

None 3 No anti-aliasing

AntiAlias 4 Anti-aliasing enabled

Invalid -1 Raises exception

There are really only three choices here: Do you want anti-aliasing? Do you not want it? Or would
you rather raise an exception? The default is None.

When you enable anti-aliasing by setting the SmoothingMode property to
SmoothingMode.HighQuality or SmoothingMode.AntiAlias, the line is rendered like so:

It looks like a mess close up, but from a distance it's supposed to look smoother. (Not everyone
agrees: some people find that anti-aliasing makes things look "fuzzy.")

The idea here is that the line begins in the center of pixel (2, 2) and ends in the center of pixel (18,
10). The line is 1 pixel wide. When a graphics system uses anti-aliasing, the extent to which the
theoretical line intersects a pixel determines how black the pixel is colored.

If you enable anti-aliasing, you can enhance it a bit by using the PixelOffsetMode property. You set
the property to one of the PixelOffsetMode enumeration values, also (like SmoothingMode) defined
in System.Drawing.Drawing2D:
PixelOffsetMode Enumeration

Member Value Description

Default 0 Pixel offset not set

HighSpeed 1 Pixel offset not set

HighQuality 2 Half-pixel offset set

None 3 Pixel offset not set

Half 4 Half-pixel offset set

Invalid -1 Raises exception

Again, you really have only three choices, and one of them is worthless. If you set the
PixelOffsetMode property to Half or HighQuality, the line is rendered like this:

Setting the pixel offset is more in accordance with an analytical geometry approach. The coordinates
of the line are decreased by half a pixel. The line is assumed to begin 2 pixels from the corner, which
is actually on the crack between the pixels.
Multiple Connected Lines
I mentioned earlier the concept of a current position used in some graphics programming
environments, and you may have thought such a thing odd because it implied that two function calls
were needed to draw a single line. Where the current position helps, however, is in drawing a series
of connected lines. Each additional call requires only one coordinate point. GDI+ isn't so economical.
Here, for example, are four DrawLine calls required to draw a box around the perimeter of the
program's client area:
grfx.DrawLine(pen, 0, 0, cx - 1, 0);
grfx.DrawLine(pen, cx - 1, 0, cx - 1, cy - 1);
grfx.DrawLine(pen, cx - 1, cy - 1, 0, cy - 1);
grfx.DrawLine(pen, 0, cy - 1, 0, 0);

Notice that the end point in each call must be repeated as the start point in the next call.

For this reason—and a couple other reasons that I'll discuss shortly—the Graphics class includes a
method to draw multiple connected lines, commonly called a polyline. The DrawLines (notice the
plural) method comes in two versions:

Graphics DrawLines Methods

void DrawLines(Pen pen, Point[] apt)
void DrawLines(Pen pen, PointF[] aptf)

You need an array of either integer Point coordinates or floating-point PointF coordinates.

Here's the DrawLines code to outline the client area.
BoxingTheClient.cs
//--
// BoxingTheClient.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BoxingTheClient: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new BoxingTheClient());
 }
 public BoxingTheClient()
 {
 Text = "Boxing the Client";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Point[] apt = {new Point(0, 0),
 new Point(cx - 1, 0),
 new Point(cx - 1, cy - 1),
 new Point(0, cy - 1),
 new Point(0, 0)};

 grfx.DrawLines(new Pen(clr), apt);
 }
}

Notice that the class is derived from PrintableForm, so you can print it as well.

You can define the array of Point structures right in the DrawLines method. Here's a program that
does that. It's the solution to a kids' puzzle that involves drawing a particular design that resembles a
house without lifting the pen or pencil from the paper.
DrawHouse.cs
//--
// DrawHouse.cs © 2001 by Charles Petzold
//--

using System;
using System.Drawing;
using System.Windows.Forms;

class DrawHouse: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new DrawHouse());
 }
 public DrawHouse()
 {
 Text = "Draw a House in One Line";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawLines(new Pen(clr),
 new Point[]
 {
 new Point(cx / 4, 3 * cy / 4), // Lower left
 new Point(cx / 4, cy / 2),
 new Point(cx / 2, cy / 4), // Peak
 new Point(3 * cx / 4, cy / 2),
 new Point(3 * cx / 4, 3 * cy / 4), // Lower right
 new Point(cx / 4, cy / 2),
 new Point(3 * cx / 4, cy / 2),
 new Point(cx / 4, 3 * cy / 4), // Lower left
 new Point(3 * cx / 4, 3 * cy / 4) // Lower right
 });
 }
}

But the purpose of DrawLines isn't to solve kids' puzzles. In Chapter 17, you'll discover how you can
create pens that are composed of patterns of dots and dashes, and how when you create thick pens,
you can define the appearance of the ends of lines (whether they are rounded or square or whatnot)
and the appearance of two lines that are joined together. These are called line ends and joins. In
order for ends and joins to work correctly, GDI+ needs to know whether two lines that share a
coordinate point are separate or connected. Using DrawLines rather than DrawLine is how you
provide this information.

Another reason to use DrawLines is performance. This performance improvement is neither
apparent nor important in the programs shown so far, but we haven't quite begun to exercise
DrawLines. You see, the real purpose of DrawLines is not to draw straight lines. The real purpose is
to draw curves. The trick is to make the individual lines very short and to use plenty of them. Any
curve that you can define mathematically you can draw using DrawLines.

Don't hesitate to use hundreds or even thousands of Point or PointF structures in a single DrawLines
call. That's what the function is for. Even a million Point or PointF structures passed to DrawLines
doesn't take more than a second or two to render.

How many points do you need for a particular curve? Probably not a million. The curve will be
smoothest if the number of points at least equals the number of pixels. You can often roughly
approximate this number.

Here's some code that draws one cycle of a sine curve the size of the client area.
SineCurve.cs
//--
// SineCurve.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class SineCurve: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new SineCurve());
 }
 public SineCurve()
 {
 Text = "Sine Curve";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 PointF[] aptf = new PointF[cx];

 for (int i = 0; i < cx; i++)
 {
 aptf[i].X = i;
 aptf[i].Y = cy / 2 * (1 -(float)
 Math.Sin(i * 2 * Math.PI / (cx - 1)));
 }
 grfx.DrawLines(new Pen(clr), aptf);
 }
}

This is the first program in this book to use a trigonometric method in the Math class, a very
important class defined in the System namespace. I cover the Math class in more detail in Appendix
B. The arguments to the trigonometric methods are in terms of radians rather than degrees. The
Math class also includes two convenient const fields named PI and E that you can use with these
methods. No longer will you need something like this at the top of your programs:
#define PI 3.14159 // Good riddance!

One note, however: most of the Math methods return double values; these must be explicitly cast to
float before being used in PointF and similar structures.

It might be helpful to analyze in detail the assignment statement for the Y property of the PointF
array: the argument to the Math.Sin function is in radians. One complete cycle (360º) is 2π radians.
Thus, the argument ranges from 0 (when i is 0) to 2π (when i is ClientSize.Width − 1). The value of

the Math.Sin method ranges between −1 and +1. Normally, that value must be scaled by half the
client area height to range from negative ClientSize.Height / 2 to positive ClientSize.Height / 2 and
then subtracted from half the client area height to make the height range from 0 to ClientSize.Height.
But I've used more efficient code by adding 1 to the negative result of the Sin method so that it
ranges from 0 to 2 and then multiplying by half the client area height. Here's what the result looks
like:

Curves and Parametric Equations
Coding a sine curve is relatively straightforward because values of y are obtained by a simple
function of x. In general, however, coding curves isn't quite that simple. For example, the equation of
the unit circle (that is, a circle with a radius of 1 unit) centered at the origin (0, 0) is generally given as

x2 + y2 = 1

More generalized, a circle of radius r can be expressed as

x2 + y2 = r2

However, if you attempt to represent this equation in the form where y is a function of x, you have

There are several problems with this thing. The first is that y has two values for every value of x. The
second is that there are invalid values of x; x must range between −r and +r. A third, more practical,
problem involves drawing a circle based on this equation. The resolution is lopsided: When x is
around 0, changes in x produce relatively small changes in y. When x approaches r or −r, changes in
x produce much greater changes in y.

A more generalized approach to drawing curves uses parametric equations. In parametric equations,
both the x and y coordinates of every point are calculated from functions based on a third variable,
often called t. Intuitively, you can think of t as time or some other abstract index necessary to define
the entire curve. In graphics programming in Windows Forms, you can think of t as ranging from 0 to
one less than the number of PointF structures in your array.

The parametric equations that define a unit circle are

x(t) = cos(t)
y(t) = sin(t)

For t ranging from 0 degrees to 2π degrees, these equations define a circle around the point (0, 0)
with a radius of 1.

The ellipse is defined similarly:

x(t) = RX cos(t)
y(t) = RY sin(t)

The two axes of the ellipse are parallel to the horizontal and vertical axes. The horizontal ellipse axis
is 2 × RX in length; the vertical ellipse axis is 2 × RY. The ellipse is still centered around (0, 0). To
center it around the point (CX, CY), the formulas are

x(t) = CX + RX cos(t)
y(t) = CY + RY sin(t)

And here's a program to draw an ellipse that encompasses the full display area.
PolyEllipse.cs
//---------------------------------------
// PolyEllipse.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class PolyEllipse: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new PolyEllipse());
 }
 public PolyEllipse()
 {
 Text = "Ellipse with DrawLines";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 int iNum = 2 * (cx + cy);
 PointF[] aptf = new PointF[iNum];

 for (int i = 0; i < iNum; i++)
 {
 double dAng = i * 2 * Math.PI / (iNum - 1);

 aptf[i].X = (cx - 1) / 2f * (1 + (float)Math.Cos(dAng));
 aptf[i].Y = (cy - 1) / 2f * (1 + (float)Math.Sin(dAng));
 }
 grfx.DrawLines(new Pen(clr), aptf);
 }
}

Because the center of the ellipse is half the width and height of the display area, and the width and
height of the ellipse are equal to the width and height of the display area, I was able to simplify the
formulas a bit. I approximated the number of points in the array as the number of points that would
be sufficient for a rectangle drawn around the display area.

You may have looked ahead in this chapter and discovered that the Graphics class includes a
DrawEllipse method and wondered why we had to do one "manually." Well, that was just an exercise
to prepare us for the next program, which draws something that certainly is not implemented by a
simple method in Graphics.
Spiral.cs
//-------------------------------------
// Spiral.cs © 2001 by Charles Petzold
//-------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class Spiral: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new Spiral());
 }
 public Spiral()
 {
 Text = "Spiral";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 const int iNumRevs = 20;
 int iNumPoints = iNumRevs * 2 * (cx + cy);
 PointF[] aptf = new PointF[iNumPoints];

 float fAngle, fScale;

 for (int i = 0; i < iNumPoints; i++)
 {
 fAngle = (float)(i * 2 * Math.PI /(iNumPoints / iNumRevs));
 fScale = 1 - (float)i / iNumPoints;

 aptf[i].X = (float)(cx / 2 * (1 + fScale *
Math.Cos(fAngle)));
 aptf[i].Y = (float)(cy / 2 * (1 + fScale *
Math.Sin(fAngle)));
 }
 grfx.DrawLines(new Pen(clr), aptf);
 }
}

And here's what it looks like:

The Ubiquitous Rectangle
Rectangles aren't found in nature very much, but they are certainly the most common form of objects
designed and built by humans. Rectangles are everywhere. The page you're reading right now is a
rectangle, these paragraphs are formatted into rectangles, the screenshot just before this section is a
rectangle, the desk you're sitting at or the bed you're lying on is likely a rectangle, and the window
you're gazing out of when I get a bit tedious is probably also a rectangle.

Certainly you can draw a rectangle using DrawLine or DrawLines (we've done it already when
outlining the client area), but a simpler approach is the DrawRectangle method. In each of the three
versions of DrawRectangle, a rectangle is defined by a point that specifies the upper left corner of
the rectangle plus a width and a height. That's the same way the Rectangle structure is defined, and
indeed, one of the methods uses that structure:

Graphics DrawRectangle Methods

void DrawRectangle(Pen pen, int x, int y, int cx, int cy)
void DrawRectangle(Pen pen, float x, float y, float cx, float cy)

void DrawRectangle(Pen pen, Rectangle rect)

Oddly enough, there's no DrawRectangle method that uses a RectangleF structure. Perhaps a
programmer forgot to mark it with a public modifier. Perhaps we'll see one in a later release.

The width and height of the rectangle must be greater than 0. Negative widths and heights won't
raise exceptions, but nothing will be drawn.

When drawing rectangles, off-by-1 errors are common because the sides of the rectangles
themselves are a pixel wide (at least). Does the width and height of the rectangle encompass the
width of the sides, just one side, or neither side?

With default pen properties (an issue I'll talk about more in Chapter 17), a height and width of 3 in the
dimensions passed to DrawRectangle results in this figure (blown up in size, of course):

The upper left corner of the figure is the pixel (x, y). A width and height of 2 draws a 3-by-3-pixel
rectangle with a single-pixel interior, as shown here:

A width and height of 1 causes a 2-by-2-pixel block to be drawn. You might be tempted to put the
form's ClientRectangle property right in the DrawRectangle call
grfx.DrawRectangle(pen, ClientRectangle); // Avoid this!

to outline the outer visible edge of the client rectangle. It won't work! The right and bottom sides of
the rectangle won't be visible. Next is a program that properly displays a complete rectangle on both
the client area and the printer. I've made it red to be more visible on the screen.
OutlineClientRectangle.cs
//---
// OutlineClientRectangle.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class OutlineClientRectangle: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new OutlineClientRectangle());
 }
 public OutlineClientRectangle()
 {
 Text = "Client Rectangle";
 }

 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawRectangle(Pens.Red, 0, 0, cx - 1, cy - 1);
 }
}

Try specifying only cx and cy, without subtracting 1, as the last two arguments of DrawRectangle.
You'll note that the right and bottom edges of the rectangle won't be visible on the client area, which
is the same problem as if you use the ClientRectangle property in the call to DrawRectangle.

The Graphics class also includes two methods for drawing multiple rectangles:

Graphics DrawRectangles Methods

void DrawRectangles (Pen pen, Rectangle[] arect)
void DrawRectangles (Pen pen, RectangleF[] arectf)

These methods are much less useful than DrawLines. However, if you have a RectangleF structure
named rectf (for example) and you want to draw a single rectangle based on that structure, and you
then remember that no DrawRectangle overload is available for that structure, you can use
DrawRectangles to do it:
grfx.DrawRectangles(pen, new RectangleF[] { rectf });
Generalized Polygons
Mathematically, polygons are closed figures of three or more sides, such as triangles, quadrilaterals,
pentagons, hexagons, heptagons, octagons, nonagons, decagons, undecagons, dodecagons, and
so forth. Here are two Graphics methods that draw polygons:

Graphics DrawPolygon Methods

void DrawPolygon(Pen pen, Point[] point)
void DrawPolygon(Pen pen, PointF[] point)

The DrawPolygon method is very similar in functionality to DrawLines, except that the figure is
automatically closed by a line that connects the last point to the first point. For example, consider the
following array of Point structures:
Point[] apt = {new Point (0, 0), new Point (50, 100), new Point (100, 0)};

The call
grfx.DrawLines(pen, apt);

draws two lines that look like a V, and
grfx.DrawPolygon(pen, apt);

draws a triangle.

In some cases, you could simulate a DrawPolygon call with a call to DrawLines and DrawLine:
DrawLines(pen, apt);
DrawLine(pen, apt[apt.Length-1], apt[0]);

However, if you were dealing with wide lines with ends and joins, you wouldn't get exactly the same
effect as with DrawPolygon.

Easier Ellipses
We already know how to draw an ellipse using DrawLines, but here's an easier approach that takes
the same arguments as DrawRectangle:

Graphics DrawEllipse Methods

void DrawEllipse(Pen pen, int x, int y, int cx, int cy)
void DrawEllipse(Pen pen, float, x, float y, float cx, float cy)
void DrawEllipse(Pen pen, Rectangle rect)
void DrawEllipse(Pen pen, RectangleF rectf)

The DrawEllipse methods are consistent with the DrawRectangle methods. For example, here's the
ellipse drawn with a width and height of 3:

A width and height of 1 result in a solid 2-pixel-square figure.

What this means is that, as with DrawRectangle, to fit an ellipse in an area that is cx pixels wide and
cy pixels high, you need to reduce the width and height by 1.
ClientEllipse.cs
//--
// ClientEllipse.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ClientEllipse: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new ClientEllipse());
 }
 public ClientEllipse()
 {
 Text = "Client Ellipse";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawEllipse(new Pen(clr), 0, 0, cx - 1, cy - 1);
 }
}

If the last two arguments of DrawEllipse are set to cx and cy, the right and bottom edges will be
chopped off slightly.
Arcs and Pies
An arc—at least as far as Windows Forms is concerned—is a segment of an ellipse. To define an
arc, you need to specify the same information as you need for an ellipse, plus you need to specify
where the arc begins and where it ends. For that reason, each of the four versions of the DrawArc
method require the same arguments as DrawEllipse plus two more arguments:

Graphics DrawArc Methods

void DrawArc(Pen pen, int x, int y, int cx, int cy,
 int iAngleStart, int iAngleSweep)
void DrawArc(Pen pen, float x, float y, float cx, float cy,
 float fAngleStart, float fAngleSweep)
void DrawArc(Pen pen, Rectangle rect,
 float fAngleStart, float fAngleSweep)
void DrawArc(Pen pen, RectangleF rectf,
 float fAngleStart, float fAngleSweep)

These additional two arguments are angles that indicate the beginning of the arc and the length of
the arc. The angles—which can be positive or negative—are measured clockwise in degrees
beginning at the horizontal axis to the right of the ellipse's center (that is, the position of 3:00 on a
clock):

Here's a program that draws an ellipse with a dashed circumference. The dashes are 10 degrees of
arc; the gaps between the dashes are 5 degrees of arc.
DashedEllipse.cs
//--
// DashedEllipse.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class DashedEllipse: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new DashedEllipse());

 }
 public DashedEllipse()
 {
 Text = "Dashed Ellipse Using DrawArc";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen pen = new Pen(clr);
 Rectangle rect = new Rectangle(0, 0, cx - 1, cy - 1);

 for (int iAngle = 0; iAngle < 360; iAngle += 15)
 grfx.DrawArc(pen, rect, iAngle, 10);
 }
}

The dashed ellipse looks like this:

The Win32 API includes a function named RoundRect that draws a rectangle with rounded corners.
The function takes four arguments that specify the upper left and lower right coordinates of the
rectangle, plus two more arguments that specify the width and height of an ellipse that is used for
curving the corners.

The Graphics class doesn't include a RoundRect method, but we can certainly attempt to simulate
one.
RoundRect.cs
//--
// RoundRect.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class RoundRect: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new RoundRect());
 }
 public RoundRect()
 {
 Text = "Rounded Rectangle";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 RoundedRectangle(grfx, Pens.Red,
 new Rectangle(0, 0, cx - 1, cy - 1),
 new Size(cx / 5, cy / 5));
 }
 void RoundedRectangle(Graphics grfx, Pen pen, Rectangle rect, Size
size)
 {
 grfx.DrawLine(pen, rect.Left + size.Width / 2, rect.Top,
 rect.Right - size.Width / 2, rect.Top);

 grfx.DrawArc(pen, rect.Right - size.Width, rect.Top,
 size.Width, size.Height, 270, 90);

 grfx.DrawLine(pen, rect.Right, rect.Top + size.Height / 2,
 rect.Right, rect.Bottom - size.Height / 2);

 grfx.DrawArc(pen, rect.Right - size.Width,
 rect.Bottom - size.Height,
 size.Width, size.Height, 0, 90);

 grfx.DrawLine(pen, rect.Right - size.Width / 2, rect.Bottom,
 rect.Left + size.Width / 2, rect.Bottom);

 grfx.DrawArc(pen, rect.Left, rect.Bottom - size.Height,
 size.Width, size.Height, 90, 90);

 grfx.DrawLine(pen, rect.Left, rect.Bottom - size.Height / 2,
 rect.Left, rect.Top + size.Height / 2);

 grfx.DrawArc(pen, rect.Left, rect.Top,
 size.Width, size.Height, 180, 90);
 }
}

The RoundedRectangle method I've written has a Rectangle argument that indicates the location
and the size of the rectangle and a Size argument for the width and the height of an ellipse used to
round the corners. I wrote the method to be consistent with the dimensions of the rectangle drawn by
DrawRectangle—that is, when the width and height are set equal to 1 less than the width and height
of the client area, the entire figure is visible. The method alternates DrawLine and DrawArc calls
starting with the line at the top of the figure and continuing around clockwise.

I hesitate to recommend this as a general rounded rectangle drawing function, however. The
individual lines and arcs are drawn with individual calls to DrawLine and DrawArc, which means that
each of the eight pieces of the figure is drawn with line ends rather than line joins. The correct way to
combine straight lines and curves into a single figure is with a graphics path. I'll show you how in
Chapter 15.

The DrawPie methods have the same arguments as DrawArc, but these methods also draw lines
from the ends of the arc to the center of the ellipse, creating an enclosed area:

Graphics DrawPie Methods

void DrawPie(Pen pen, int x, int y, int cx, int cy,
 int iAngleStart, int iAngleSweep)
void DrawPie(Pen pen, float x, float y, float cx, float cy,
 float fAngleStart, float fAngleSweep)
void DrawPie(Pen pen, Rectangle rect,
 float fAngleStart, float fAngleSweep)
void DrawPie(Pen pen, RectangleF rectf,
 float fAngleStart, float fAngleSweep)

The pie chart is, of course, a venerable fixture in business graphics. The problem is, if you really
need to code up a pie chart, you probably want to adorn it with 3-D effects and such, which means
that DrawPie provides less convenience than you might think. Regardless, here's a program that
draws a pie chart based on an array of values (stored as a field) that I made up for this purpose.
PieChart.cs
//---------------------------------------
// PieChart.cs © 2001 by Charles Petzold
//---------------------------------------

using System;
using System.Drawing;
using System.Windows.Forms;

class PieChart: PrintableForm
{
 int[] aiValues = { 50, 100, 25, 150, 100, 75 };

 public new static void Main()
 {
 Application.Run(new PieChart());
 }
 public PieChart()
 {
 Text = "Pie Chart";
 }

 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Rectangle rect = new Rectangle(50, 50, 200, 200);
 Pen pen = new Pen(clr);
 int iTotal = 0;
 float fAngle = 0, fSweep;

 foreach(int iValue in aiValues)
 iTotal += iValue;

 foreach(int iValue in aiValues)
 {
 fSweep = 360f * iValue / iTotal;
 DrawPieSlice(grfx, pen, rect, fAngle, fSweep);
 fAngle += fSweep;
 }
 }
 protected virtual void DrawPieSlice(Graphics grfx, Pen pen,
 Rectangle rect,
 float fAngle, float fSweep)
 {
 grfx.DrawPie(pen, rect, fAngle, fSweep);
 }
}

Notice the Rectangle definition in the DoPage method. This is the only program in this chapter that
uses absolute coordinates and sizes, the reason being that elliptical pie charts aren't very attractive.
The DoPage method totals the array of values and then calculates a sweep angle for each slice by
dividing the value by the total and multiplying by 360 degrees. Here's the result:

I'm sorry, but I just can't let you think that this is the best pie chart I can come up with! Fortunately, I
was prescient enough to isolate the call to DrawPie in a virtual function in PieChart. That makes it
easy to override this method in a BetterPieChart program.
BetterPieChart.cs
//--
// BetterPieChart.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BetterPieChart: PieChart
{
 public new static void Main()
 {
 Application.Run(new BetterPieChart());
 }
 public BetterPieChart()
 {
 Text = "Better " + Text;
 }
 protected override void DrawPieSlice(Graphics grfx, Pen pen,
 Rectangle rect,
 float fAngle, float fSweep)
 {
 float fSlice = (float)(2 * Math.PI * (fAngle + fSweep / 2) /
360);

 rect.Offset((int)(rect.Width / 10 * Math.Cos(fSlice)),
 (int)(rect.Height / 10 * Math.Sin(fSlice)));

 base.DrawPieSlice(grfx, pen, rect, fAngle, fSweep);
 }
}

The fSlice variable is the angle of the center of the slice converted to radians. I use that to calculate x
and y offset values that are applied to the rectangle that defines the size and location of the pie
slices. The result is that each slice is moved away from the center for an "exploded" view:

This doesn't exhaust the collection of line-drawing methods in the Graphics class. You can draw
curves more complex than elliptical arcs by using the DrawBezier, DrawBeziers, DrawCurve, and
DrawClosedCurve methods that you'll find out about in Chapter 11. You can assemble a collection of
lines and curves into a graphics path and render that path using the DrawPath method. We'll get to
that topic in Chapter 15.
Filling Rectangles, Ellipses, and Pies
Several of the Graphics methods discussed so far have defined enclosed areas, even though these
methods have only drawn the outline of the area with the specified pen and not filled the interior of
the area. For those methods prefixed with Draw that define enclosed areas, there are also methods
beginning with Fill that fill the interiors. The first argument to these methods is the Brush used to fill
the area.

Here are the four versions of the FillRectangle method:

Graphics FillRectangle Methods

void FillRectangle(Brush brush, int x, int y, int cx, int cy)
void FillRectangle(Brush brush, float x, float y, float cx, float cy)
void FillRectangle(Brush brush, Rectangle rect)
void FillRectangle(Brush brush, RectangleF rectf)

The width and height of the resultant figure is equal to the width and height specified in the method
arguments. For example, if the width and height are equal to 3, the FillRectangle call draws a 3-pixel-

square block with the upper left corner at pixel (x, y). If you want to draw and fill a particular
rectangle, call FillRectangle first so the fill doesn't overwrite any of the lines.

The Graphics class also includes two FillRectangles methods:

Graphics FillRectangles Methods

void FillRectangles(Brush brush, Rectangle[] arect)
void FillRectangles(Brush brush, RectangleF[] arect)

These FillRectangles methods produce the same results as multiple calls to FillRectangle.

There are four FillEllipse methods, and they have the same arguments as DrawEllipse:

Graphics FillEllipse Methods

void FillEllipse(Brush brush, int x, int y, int cx, int cy)
void FillEllipse(Brush brush, float x, float y, float cx, float cy)
void FillEllipse(Brush brush, Rectangle rect)
void FillEllipse(Brush brush, RectangleF rectf)

FillEllipse behaves a little differently from all the methods covered so far. For example, suppose you
specify a location of (0, 0) and a height and width of 20 for the ellipse. As you know, DrawEllipse
draws a figure that encompasses pixels 0 through 20 both horizontally and vertically for an effective
width and height of 21 pixels.

For the most part, the area colored by FillEllipse encompasses pixels 1 through 19 both horizontally
and vertically, for an effective width of 19 pixels. I say "for the most part" because there always
seems to be 1 pixel at the left that occupies pixel position 0! There's also some overlap between the
ellipse drawn by DrawEllipse and the area filled by FillEllipse. If you need to draw an ellipse that is
both filled and outlined, call FillEllipse before calling DrawEllipse.

There are also three FillPie methods:

Graphics FillPie Methods

void FillPie(Brush brush, int x, int y, int cx, int cy,
 int iAngle, int iSweep)
void FillPie(Brush brush, float x, float y, float cx, float cy,
 float fAngle, float fSweep)
void FillPie(Brush brush, Rectangle rect,
 float fAngle, float fSweep)
Off by 1
Now that we've examined all the rectangle and ellipse methods, it's time to compare them with the
purpose of avoiding off-by-1 errors. The following program draws 4 × 4 rectangles and ellipses using
the six methods DrawRectangle, DrawRectangles, DrawEllipse, FillRectangle, FillRectangles, and
FillEllipse.
FourByFours.cs
//--
// FourByFours.cs © 2001 by Charles Petzold
//--

using System;
using System.Drawing;
using System.Windows.Forms;

class FourByFours: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new FourByFours());
 }
 public FourByFours()
 {
 Text = "Four by Fours";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen pen = new Pen(clr);
 Brush brush = new SolidBrush(clr);

 grfx.DrawRectangle(pen, new Rectangle(2, 2, 4, 4));
 grfx.DrawRectangles(pen, new Rectangle[]
 {new Rectangle(8, 2, 4, 4)});
 grfx.DrawEllipse(pen, new Rectangle(14, 2, 4, 4));

 grfx.FillRectangle(brush, new Rectangle(2, 8, 4, 4));
 grfx.FillRectangles(brush, new Rectangle[]
 {new Rectangle(8, 8, 4, 4)});
 grfx.FillEllipse(brush, new Rectangle(14, 8, 4, 4));
 }
}

Here's what the output looks like blown up to analyzable size:

As you can see, the DrawRectangle, DrawRectangles, and DrawEllipse methods are all consistent in
rendering figures that are an extra pixel wider and higher than the size would imply. With the

exception of a little nub on the left, the FillEllipse method draws a figure that is a pixel narrower and
shorter than the 4 × 4 figures drawn by FillRectangle and FillRectangles.
Polygons and the Filling Mode
Finally (at least for this chapter), we have the FillPolygon method. What makes the polygon different
from other filled areas is that the lines that define the polygon can cross and overlap. This adds a
layer of complexity because the interiors of the polygon can be filled in two distinct ways. There are
four FillPolygon methods:

Graphics FillPolygon Methods

void FillPolygon(Brush brush, Point[] apt)
void FillPolygon(Brush brush, PointF[] apt)
void FillPolygon(Brush brush, Point[] apt, FillMode fm)
void FillPolygon(Brush brush, PointF[] apt, FillMode fm)

These are similar to the DrawPolygon methods except that an optional argument is included.
FillMode is an enumeration defined in the namespace System.Drawing.Drawing2D with just two
possible values:
FillMode Enumeration

Member Value Comments

Alternate 0 Default; alternates filled and unfilled areas

Winding 1 Most interior areas filled

The fill mode makes a difference only when the lines that define the polygon overlap. The fill mode
determines which of the enclosed areas are filled and which are not. If you don't specify a fill mode in
the FillPolygon method, FillMode.Alternate is the default. In this case, an enclosed area is filled only
if there are an odd number of boundaries between the enclosed area and infinity.

The classical example is the five-point star. The interior pentagon is filled when the winding fill mode
is used but not when the alternate fill mode is used.
FillModesClassical.cs
//---
// FillModesClassical.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class FillModesClassical: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new FillModesClassical());
 }
 public FillModesClassical()
 {

 Text = "Alternate and Winding Fill Modes (The Classical
Example)";
 ClientSize = new Size(2 * ClientSize.Height, ClientSize.Height);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 Point[] apt = new Point[5];

 for (int i = 0; i < apt.Length; i++)
 {
 double dAngle = (i * 0.8 - 0.5) * Math.PI;
 apt[i] = new Point(
 (int)(cx *(0.25 + 0.24 * Math.Cos(dAngle))),
 (int)(cy *(0.50 + 0.48 *
Math.Sin(dAngle))));
 }
 grfx.FillPolygon(brush, apt, FillMode.Alternate);

 for (int i = 0; i < apt.Length; i++)
 apt[i].X += cx / 2;

 grfx.FillPolygon(brush, apt, FillMode.Winding);
 }
}

The first for loop defines the five points of the star displayed in the left half of the client area. That
polygon is filled with the alternate fill mode. The second for loop shifts the points to the right side of
the client area where the polygon is filled with the winding fill mode.

In most cases, the winding fill mode causes all enclosed areas to be filled. But it's not quite that
simple, and there are exceptions. To determine whether an enclosed area is filled in winding mode,
imagine a line drawn from a point in that area to infinity. If the imaginary line crosses an odd number
of boundary lines, the area is filled, just as in alternate mode. If the imaginary line crosses an even
number of boundary lines, the area can be either filled or not filled. The area is filled if the number of
boundary lines going in one direction (relative to the imaginary line) is not equal to the number of
boundary lines going in the other direction.

With a little effort, it's possible to devise a figure that leaves an interior unfilled with winding mode.
FillModesOddity.cs

//--
// FillModesOddity.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class FillModesOddity: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new FillModesOddity());
 }
 public FillModesOddity()
 {
 Text = "Alternate and Winding Fill Modes (An Oddity)";
 ClientSize = new Size(2 * ClientSize.Height, ClientSize.Height);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 PointF[] aptf = { new PointF(0.1f, 0.7f), new PointF(0.5f,
0.7f),
 new PointF(0.5f, 0.1f), new PointF(0.9f,
0.1f),
 new PointF(0.9f, 0.5f), new PointF(0.3f,
0.5f),
 new PointF(0.3f, 0.9f), new PointF(0.7f,
0.9f),
 new PointF(0.7f, 0.3f), new PointF(0.1f,
0.3f)};

 for (int i = 0; i < aptf.Length; i++)
 {
 aptf[i].X *= cx / 2;
 aptf[i].Y *= cy;
 }
 grfx.FillPolygon(brush, aptf, FillMode.Alternate);

 for (int i = 0; i < aptf.Length; i++)
 aptf[i].X += cx / 2;

 grfx.FillPolygon(brush, aptf, FillMode.Winding);
 }
}

Here's the result:

I'll discuss three more Fill methods in subsequent chapters: FillClosedCurve in Chapter 13, and
FillRegion and FillPath in Chapter 15.

Chapter 6: Tapping into the Keyboard
Overview
Despite the sophisticated, visually oriented point-and-click user interface of today's graphical
environments—including the mouse, controls, menus, and dialog boxes—the keyboard remains the
primary source of input in most applications. The keyboard also has the most ancient ancestry of any
component of the personal computer, dating from 1874 with the first Remington typewriter. Through
a few decades of evolution, computer keyboards have expanded beyond the typewriter to include
function keys, cursor positioning keys, and (usually) a separate numeric keypad.

In most computers, the keyboard and the mouse are the sole sources of user input. While much
research continues with voice and handwriting recognition for entering alphanumeric data into the
computer, those input methods don't—and never will—offer the precision of the keyboard. (Of
course, I'm assuming that computers will never be better than humans at decoding bad handwriting
or strong accents.)
Ignoring the Keyboard
Although the keyboard is an important source of user input in most applications, you certainly don't
need to write code that acts on each and every keyboard event your application receives. Microsoft
Windows and the Windows Forms class libraries handle many keyboard functions themselves.

Applications can usually ignore keystrokes involved in menu selection, for example. Programs don't
need to monitor those keystrokes because the menu itself handles all the keyboard activity
associated with menu selection and tells your program—through an event—when a menu item has
been selected.

Windows Forms programs often define keyboard accelerators to invoke common menu items. These
accelerators usually involve the Ctrl key in combination with a letter or function key (for example,
Ctrl+S to save a file). Again, your application doesn't have to worry about translating these
keystrokes into menu commands. The menu itself does that.

Dialog boxes also have a keyboard interface, but programs usually don't need to monitor the
keyboard when a dialog box is active. Your program is notified through events of the effects of any
keystrokes in the dialog box. If you put controls on the surface of your form, you don't need to worry
about navigation keys, such as Tab or the cursor-movement keys (other than to ensure at design
time that the tab order is logical); all user navigation through the controls is handled for you. You can
also use controls such as TextBox and RichTextBox to process keyboard input. These controls
deliver a resultant text string to your program when the user has finished entering the input.

Despite all this help, there remain many applications in which you need to process keyboard input
directly. Certainly if you're going to be writing your own controls, you need to know something about
the keyboard.
Who's Got the Focus?
The keyboard is a shared resource in Windows. All applications get input from the same keyboard,
yet any particular keystroke must have only a single destination. For Windows Forms programs, this
destination must be an object of type Control (the class that implements keyboard handling) or a
descendent of Control, such as Form.

The object that receives a particular keyboard event is the object that has the input focus. The
concept of input focus is closely related to the concept of the active form. The active form is usually
easy to identify. It is often the topmost form on the desktop. If the active form has a caption bar, the
caption bar is highlighted. If the active form has a dialog box frame instead, the frame is highlighted.
If the active form is currently minimized, its entry in the taskbar is shown as a depressed button.

The active form is available from the only static property implemented by Form:
Form Static Property

Type Property Accessibility

Form ActiveForm get

However, this property returns a non-null object only if the currently active form is part of your
application. It can't obtain objects created by other applications!

A form can attempt to make itself the active form by calling the following method:

Form Methods (selection)

void Activate()

Usually, if the form is not topmost on the desktop, this call will cause Windows to flash the form's
entry in the taskbar, requiring the user to bring the form topmost and make it the active form. In
addition, the Form class implements two events related to the active form:
Form Events (selection)

Event Method Delegate Argument

Activated OnActivated EventHandler EventArgs

Deactivate OnDeactivate EventHandler EventArgs

I'm mentioning these properties, methods, and events now because you probably won't be using
them much. It isn't often necessary for a program to get involved with the activation of its forms.

Input focus is another matter. If the active form has child controls—that is, controls on the surface of
its client area, like the Panel control in Chapter 4—the object with the input focus must be either one
of these controls or the form itself. Controls indicate they have input focus in different ways. A button
displays a dotted line around the text; a text box displays a flashing caret. I'll discuss issues related
to input focus later in this chapter; they will surface again in subsequent chapters as well.
Keys and Characters
A keyboard always generates numeric codes of some sort. But you can think of a keyboard in two
different ways:
§ As a collection of distinct physical keys
§ As a means of generating character codes

When you treat the keyboard as a collection of keys, any code generated by the keyboard must
identify the key and indicate whether the key is being pressed or released. When you treat the
keyboard as a character input device, the code generated by a particular keystroke identifies a
unique character in a character set. Traditionally, this character set has been ASCII, but in the
Windows Forms environment the character set is Unicode.

Many of the keys on today's computer keyboards aren't associated with character codes. Neither the
function keys nor the cursor-movement keys generate character codes. Programs that use keyboard
input in any nontrivial manner usually must deal with the keyboard as both a collection of keys and a
character generator.

You can think of the keyboard as divided into four general groups of keys:
§ Toggle keys Caps Lock, Num Lock, Scroll Lock, and possibly the Insert key. Pressing the key

is intended to turn on the state of the key; pressing it again turns the state off. The Caps Lock,
Num Lock, and Scroll Lock keys have systemwide states. (That is, when programs are running
concurrently on the same computer, Caps Lock can't be simultaneously on for one program and
off for another.) Keyboards often have lights that indicate the toggle state of these keys.

§ Shift keys The Shift, Ctrl, and Alt keys. When depressed, the shift keys affect the
interpretation of other keys. The shift keys are called modifier keys in the Windows Forms class
library.

§ Noncharacter keys The function keys, the cursor movement keys, Pause, Delete, and
possibly the Insert key. These keys aren't associated with characters but instead often direct a
program to carry out a particular action.

§ Character keys The letter, number, and symbol keys, the spacebar, the Tab key, Backspace,
Esc, and Enter. (The Tab, Backspace, Esc, and Enter keys can also be treated as noncharacter
keys.)

Often a single physical key can generate different character codes depending on the state of the
toggle and shift keys. For example, the A key generates a lowercase a or an uppercase A depending
on the Caps Lock and Shift keys. Sometimes two different physical keys (such as the two Enter keys
on most personal computer keyboards) can generate the same character code.

A Windows Forms program receives keyboard input in the form of events. I'll describe first how to
treat the keyboard as a collection of keys and then how to treat it as a generator of character codes.
Keys Down and Keys Up
Much of the keyboard functionality is implemented in the Control class, which supports the following
two events and methods that let you deal with key-down and key-up events:
Control Events (selection)

Event Method Delegate Argument

KeyDown OnKeyDown KeyEventHandler KeyEventArgs

KeyUp OnKeyUp KeyEventHandler KeyEventArgs

As usual, in any class derived from Control (such as Form), you can override the OnKeyDown and
OnKeyUp methods:
protected override void OnKeyDown(KeyEventArgs kea)
{

}
protected override void OnKeyUp(KeyEventArgs kea)
{

}

This is the customary way of handling key events in a class derived from Form.

You can also process key-down and key-up events in objects created from the Control class or one
of its descendents. You first need to define methods in accordance with the KeyEventHandler
delegate:
void MyKeyDownHandler(object objSender, KeyEventArgs kea)
{

}
void MyKeyUpHandler(object objSender, KeyEventArgs kea)
{

}

You then register the key event handlers:
cntl.KeyDown += new KeyEventHandler(MyKeyDownHandler);
cntl.KeyUp += new KeyEventHandler(MyKeyUpHandler);

Whichever way you do it, you get a KeyEventArgs object when a key is pressed or released. This
object has the following properties:
KeyEventArgs Properties

Type Property Accessibility Comments

Keys KeyCode get Identifies the key

KeyEventArgs Properties

Type Property Accessibility Comments

Keys Modifiers get Identifies shift states

Keys KeyData get Combination of KeyCode and Modifiers

bool Shift get Set to true if Shift key is pressed

bool Control get Set to true if Ctrl key is pressed

bool Alt get Set to true if Alt key is pressed

bool Handled get/set Set by event handler (initially false)

int KeyValue get Returns KeyData in the form of an integer

There's a whole lot of redundancy here. The only necessary properties are KeyData and Handled.
Everything else can be derived from KeyData. But the redundancy is convenient. You'll probably find
yourself using the KeyCode, Shift, Control, and Alt properties the most.

The first three properties in this table are all of the same type—a very important enumeration named
Keys. The KeyCode property tells you what key is being pressed; that's the most important
information. The Modifiers property indicates whether the Alt, Ctrl, or Shift keys are also pressed.
KeyData combines KeyCode and Modifiers; Shift, Control, and Alt duplicate the Modifiers information
in Booleans. Handled is a property sometimes set to true by controls to indicate that the control has
used a keyboard event and it shouldn't be passed to the control's parent. KeyValue returns the same
information as KeyData but as an integer rather than as a Keys enumeration.
The Keys Enumeration
Three of the properties of KeyEventArgs are of type Keys. Keys is a large enumeration—the second
largest enumeration in the entire .NET Framework. It includes keys that certainly aren't on my
keyboard and probably aren't on yours either. (Veteran Windows programmers might notice that
these enumeration values are the same as the virtual key codes defined in the Windows header
files.)

Let's tackle the Keys enumeration in logical groups. First, Keys has 26 members that identify the
letter keys regardless of the shift state:
Keys Enumeration (letters)

Member Value Member Value

A 65 N 78

B 66 O 79

C 67 P 80

D 68 Q 81

E 69 R 82

F 70 S 83

G 71 T 84

H 72 U 85

I 73 V 86

J 74 W 87

K 75 X 88

L 76 Y 89

M 77 Z 90

Notice that the enumeration values are the same as the ASCII codes (which are the same as the
Unicode codes) for the uppercase letters. (These keys also generate character codes that are
dependent on the Ctrl, Shift, and Caps Lock states.)

Just so we don't get too far adrift here, let's look at some code that makes use of one of the Keys
values.
ExitOnX.cs
//--------------------------------------
// ExitOnX.cs © 2001 by Charles Petzold
//--------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class ExitOnX: Form
{
 public static void Main()
 {
 Application.Run(new ExitOnX());
 }
 public ExitOnX()
 {
 Text = "Exit on X";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 }
 protected override void OnKeyDown(KeyEventArgs kea)
 {
 if (kea.KeyCode == Keys.X)
 Close();
 }
}

This program closes itself when you press the X key. You can have any combination of Shift, Ctrl, or
Alt keys pressed when you press the X. Because you know the relationship between the
enumeration values and Unicode, the if statement could be replaced by
if (kea.KeyCode == (Keys)(int)'X')

The next set of Keys values refers to the horizontal row of number keys located above the letter keys
regardless of shift state:
Keys Enumeration (number keys)

Member Value

D0 48

D1 49

D2 50

D3 51

D4 52

Keys Enumeration (number keys)

Member Value

D5 53

D6 54

D7 55

D8 56

D9 57

Again, notice the relationship to the ASCII codes for the numbers. These keys also generate
character codes that depend on the shift state.

The Keys enumeration has values for 24 function keys:
Keys Enumeration (function keys)

Member Value Member Value

F1 112 F13 124

F2 113 F14 125

F3 114 F15 126

F4 115 F16 127

F5 116 F17 128

F6 117 F18 129

F7 118 F19 130

F8 119 F20 131

F9 120 F21 132

F10 121 F22 133

F11 122 F23 134

F12 123 F24 135

I know: I don't have 24 function keys on my keyboard either, and I think I prefer it that way.

The original IBM PC keyboard introduced a numeric keypad. The following keys of the numeric
keypad generate the same codes regardless of the Num Lock state:
Keys Enumeration (keypad operators)

Member Value Description

Multiply 106 Numeric keypad *

Add 107 Numeric keypad +

Subtract 109 Numeric keypad −

Divide 111 Numeric keypad /

The other keys of the numeric keypad generate different codes depending on the state of the Num
Lock key. Here are the numeric keypad codes when Num Lock is toggled on. I've arranged this table
somewhat like the numeric keypad itself:
Keys Enumeration (keypad numbers)

Member Value Member Value Member Value

Keys Enumeration (keypad numbers)

Member Value Member Value Member Value

NumPad7 103 NumPad8 104 NumPad9 105

NumPad4 100 NumPad5 101 NumPad6 106

NumPad1 97 NumPad2 98 NumPad3 99

NumPad0 96 Decimal 110

These keys also generate character codes for the 10 digits and the decimal separator character. For
keyboard layouts in some countries, the decimal separator character is a period. In others, it's a
comma. Regardless, the KeyCode value is Keys.Decimal. The following enumeration value doesn't
seem to be used:
Keys Enumeration (keypad, unused)

Member Value

Separator 108

Here are the codes generated when Num Lock is toggled off:
Keys Enumeration (keypad cursor movement)

Member Value Member Value Member Value

Home 36 Up 38 PageUp or Prior 33

Left 37 Clear 12 Right 39

End 35 Down 40 PageDown or Next 34

Insert 45 Delete 46

Notice that Keys.Prior and Keys.Next duplicate the values for Keys.PageUp and Keys.PageDown.
With the exception of Clear, many keyboards duplicate these keys as a separate set of 10 cursor-
movement keys that generate the same codes.

I've isolated the following six keys because they also generate character codes and because the
Keys enumeration values are the same as the character codes they generate:
Keys Enumeration (ASCII control keys)

Member Value

Back 8

Tab 9

LineFeed 10

Enter Return 13

Escape 27

Space 32

Back is the Backspace key. If present, the numeric keypad provides a second Enter (or Return) key
that generates the same code as the normal Enter (or Return) key regardless of the Num Lock state.

The following table shows Keys enumeration values for the Shift key, Ctrl key, and Alt key (here
called the Menu key because it usually initiates menu selection). Most keyboards these days have
pairs of Shift, Ctrl, and Alt keys on the bottom of the keyboard, and the table seems to imply that the
left and right versions of these keys generate different codes:
Keys Enumeration (shift keys)

Member Value Member Value Member Value

ShiftKey 16 LShiftKey 160 RShiftKey 161

ControlKey 17 LControlKey 162 RControlKey 163

Menu 18 LMenu 164 RMenu 165

In reality, however, the enumeration members prefaced with L and R don't appear in any
KeyEventArgs object I've ever seen.

These are keys found on the Microsoft Natural Keyboard and clones of that keyboard:
Keys Enumeration (Microsoft keys)

Member Value Description

LWin 91 Windows flag logo at left

RWin 92 Windows flag logo at right

Apps 93 Application menu icon

In this case, the left and right keys do generate different codes.

This table is a collection of some miscellaneous keys and combinations:
Keys Enumeration (miscellaneous)

Member Value Description

Cancel 3 Pause/Break key when Ctrl is pressed

Pause 19 Pause/Break key when Ctrl isn't pressed

Capital CapsLock 20 Caps Lock key

Snapshot
PrintScreen

44 Print Scrn key

NumLock 144 Num Lock key

Scroll 145 Scroll Lock key

Five of the Keys enumeration values actually refer to mouse buttons:
Keys Enumeration (mouse buttons)

Member Value

LButton 1

RButton 2

MButton 4

XButton1 5

XButton2 6

You won't see these members in the KeyDown and KeyUp events. And then there's this group of
oddballs:
Keys Enumeration (special keys)

Member Value

Select 41

Print 42

Keys Enumeration (special keys)

Member Value

Execute 43

Help 47

ProcessKey 229

Attn 246

Crsel 247

Exsel 248

EraseEof 249

Play 250

Zoom 251

NoName 252

Pa1 253

OemClear 254

If I ever sat down at a keyboard with all these keys, I wouldn't know what to do with them.

The following 12 Keys values apply only to Windows 2000 and later. These keys also generate
character codes:
Keys Enumeration (symbols)

Member Value

OemSemicolon 186

Oemplus 187

Oemcomma 188

OemMinus 189

OemPeriod 190

OemQuestion 191

Oemtilde 192

OemOpenBrackets 219

OemPipe 220

OemCloseBrackets 221

OemQuotes 222

Oem8 223

OemBackslash 226

For example, the OemSemicolon key code is generated when the user presses and releases the key
displaying the semicolon and colon.

These key codes are generated for special browser-enabled and media player–enabled keyboards
(such as the Microsoft Natural Keyboard Pro or Microsoft Internet Keyboard Pro) in Windows 2000
and later:
Keys Enumeration (browsers and players)

Member Value

BrowserBack 166

BrowserForward 167

BrowserRefresh 168

BrowserStop 169

BrowserSearch 170

BrowserFavorites 171

BrowserHome 172

VolumeMute 173

VolumeDown 174

VolumeUp 175

MediaNextTrack 176

MediaPreviousTrack 177

MediaStop 178

MediaPlayPause 179

LaunchMail 180

SelectMedia 181

LaunchApplication1 182

LaunchApplication2 183

These key codes can obviously be ignored by many applications.

The following key codes are generated in connection with the Input Method Editor (IME), which is
used to enter ideographs in Chinese, Japanese, and Korean:
Keys Enumeration (IME)

Member Value

HanguelMode
HangulMode KanaMode

21

JunjaMode 23

FinalMode 24

KanjiMode HanjaMode 25

IMEConvert 28

IMENonconvert 29

IMEAceept 30

IMEModeChange 31

Applications are generally only interested in the Unicode character codes that result from the use of
the IME.

All the Keys members listed so far have been key codes; that is, they refer to particular keys that are
pressed or released. The KeyCode property of the KeyEventArgs object delivered with the KeyDown
or KeyUp event will be set to one of the preceding codes.

The Keys enumeration also includes these modifier codes:

Keys Enumeration (modifier keys)

Member Value

None 0x00000000

Shift 0x00010000

Control 0x00020000

Alt 0x00040000

Notice that these are bit values. These modifier codes indicate if the Shift, Ctrl, or Alt keys were
already pressed when the key-down or key-up event took place. You'll recall in a previous table that I
showed key codes for ShiftKey, ControlKey, and Menu. Those key codes indicate the actual Shift,
Ctrl, or Alt key being pressed or released.

Three of the read-only properties in KeyEventArgs—KeyCode, Modifiers, and KeyData—are all of
type Keys. Each key pressed or released generates one event:
§ The KeyCode property indicates the key being pressed or released. These keys can include

the Shift (indicated by Keys.ShiftKey), Ctrl (Keys.ControlKey), or Alt key (Keys.Menu).
§ The Modifiers property indicates the state of the Shift, Ctrl, and Alt keys during the key press or

release. Modifiers can be any combination of Keys.Shift, Keys.Control, or Keys.Alt. Or if no
modifier key is pressed, Modifiers is Keys.None, which is defined simply as 0.

§ The KeyData property is a combination of KeyCode and Modifiers.

For example, let's assume you press the Shift key and then D, and then release D and release Shift.
This table shows the four events and the KeyEventArgs properties associated with these key
actions:
KeyEventArgs Properties and Associated Key Actions
 Properties

Action Event KeyCode Modifiers KeyData

Press Shift KeyDown Keys.ShiftKey Keys.Shift Keys.Shift |
Keys.ShiftKey

Press D KeyDown Keys.D Keys.Shift Keys.Shift | Keys.D

Release D KeyUp Keys.D Keys.Shift Keys.Shift | Keys.D

Release Shift KeyUp Keys.ShiftKey Keys.None Keys.ShiftKey

If you're working with the KeyData property, the Keys enumeration also defines two masks to
differentiate the key codes and the modifiers:
Keys Enumeration (KeyData bit masks)

Member Value Comment

KeyCode 0x0000FFFF Bit mask for key codes

Modifiers 0xFFFF0000 Bit mask for modifier keys

Notice that these enumeration members have the same names as the corresponding properties of
the KeyEventArgs class. If the KeyEventArgs object is named kea, the expression
kea.KeyData & Keys.KeyCode

is the same as kea.KeyCode and the expression
key.KeyData & Keys.Modifiers

is the same as kea.Modifiers.
Testing the Modifier Keys

It's not necessary to be handling a KeyDown or KeyUp event to determine whether the Shift, Ctrl, or
Alt key is pressed. You can also obtain the current state of the three modifier keys using the static
Control.ModifierKeys property:
Static Control Properties (selection)

Type Property Accessibility Description

Keys ModifierKeys get State of the Shift, Alt, and Ctrl keys

Suppose you needed to do something different depending on whether the Shift or Ctrl key—or
both—were pressed, but not if the Alt key were pressed. You would first call the static ModifierKeys
property:
Keys keysMod = Control.ModifierKeys;

You then test the possible combinations you're interested in with code that looks like this:
if (keysMod == (Keys.Shift | Keys.Control))
{
 // Shift and Ctrl keys are pressed.
}
else if (keysMod == Keys.Shift)
{
 // Shift key is pressed.
}
else if (keysMod == Keys.Control)
{
 // Ctrl key is pressed.
}

You might need to use ModifierKeys when you're not processing a KeyDown or KeyUp event,
perhaps when you're processing a mouse event. We've all seen programs that interpret mouse clicks
and mouse movement differently when the Shift or Ctrl key is pressed. This is the kind of situation in
which the ModifierKeys property is useful. An example is the CanonicalSpline program in Chapter
13.

Unfortunately, there is no way to test the state of the toggle keys Caps Lock, Num Lock, and Scroll
Lock.
Reality Check
Although a Windows Forms program certainly gets a lot of information about keystrokes, most
programs can ignore most of them. If you process the KeyDown event, for example, you usually
don't have to bother with the KeyUp event.

Windows Forms programs often ignore events involving keystrokes that also generate characters.
(I'll get to the keyboard character event shortly.) You might have concluded that you can get all the
keyboard information you need from the KeyDown and KeyUp events to generate your own
character codes.

This is a bad idea. For example, suppose your event handler gets a KeyEventArgs object with a
KeyCode property of Keys.D3 and a Modifiers property of Keys.Shift. You know what that is, right?
It's the pound sign (#), which has an ASCII and Unicode encoding of 0x0023. Well, maybe. In the
United Kingdom, the upper-shift 3 key generates another type of pound sign, which has a character
encoding of 0x00A3 and looks like this: £.

A more serious problem involves the Caps Lock key. As I mentioned earlier, there is no facility in
Windows Forms to test the state of Caps Lock. You can tell when Caps Lock is being pressed and
released, but Caps Lock could already be toggled on when your program begins executing.

The KeyDown event is most useful for the cursor-movement keys, the function keys, Insert, and
Delete. However, the function keys often appear as menu accelerators. Because menu accelerator
keys are translated into menu command events automatically, you don't have to process the
keystrokes themselves. Function keys, too, often duplicate the functionality of menu items. And when
programs define function keys that don't duplicate menu items—when function keys are used in
combination with Shift and Ctrl with the crazy abandon of old MS-DOS programs such as
WordPerfect and Microsoft Word—then those programs aren't being very user friendly.

So it comes down to this: most of the time you'll process KeyDown events only for cursor-movement
keys, Insert, and Delete. When you use those keys, you can check the shift state with the Modifiers
property of the KeyEventArgs object. Programs often use the Shift key in combination with the cursor
keys to extend a selection in (for example) a word processing document. The Ctrl key is often used
to alter the meaning of the cursor keys. For example, Ctrl in combination with the right arrow key
might mean to move the cursor one word to the right rather than one character.
A Keyboard Interface for SysInfo
I assume you recall the various programs from Chapter 4 that displayed system information. The last
one was SysInfoReflection, and it had progressed a great deal from the earliest tentative code. But it
still had one little problem: it had no keyboard interface.

The time has come to add one, and here's another example in which inheritance really pays off. This
class derives from the SysInfoReflection class and adds an override of the OnKeyDown method.
SysInfoKeyboard.cs
//--
// SysInfoKeyboard.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class SysInfoKeyboard: SysInfoReflection
{
 public new static void Main()
 {
 Application.Run(new SysInfoKeyboard());
 }
 public SysInfoKeyboard()
 {
 Text = "System Information: Keyboard";
 }
 protected override void OnKeyDown(KeyEventArgs kea)
 {
 Point pt = AutoScrollPosition;

 pt.X = -pt.X;
 pt.Y = -pt.Y;

 switch(kea.KeyCode)
 {
 case Keys.Right:
 if ((kea.Modifiers & Keys.Control) == Keys.Control)

 pt.X += ClientSize.Width;
 else
 pt.X += Font.Height;
 break;

 case Keys.Left:
 if ((kea.Modifiers & Keys.Control) == Keys.Control)
 pt.X -= ClientSize.Width;
 else
 pt.X -= Font.Height;
 break;

 case Keys.Down: pt.Y += Font.Height; break;
 case Keys.Up: pt.Y -= Font.Height; break;
 case Keys.PageDown:
 pt.Y += Font.Height * (ClientSize.Height / Font.Height);
 break;
 case Keys.PageUp:
 pt.Y -= Font.Height * (ClientSize.Height / Font.Height);
 break;
 case Keys.Home: pt = Point.Empty; break;
 case Keys.End: pt.Y = 1000000; break;
 }
 AutoScrollPosition = pt;
 }
}

As I said in Chapter 4, the read/write AutoScrollPosition property is implemented in ScrollableControl
(of which Form is a descendent) as part of the support for auto-scroll. AutoScrollPosition is a Point
structure that indicates the positions of the two scroll bars.

When you get the AutoScrollPosition value, the coordinates are negative, indicating the location of
the virtual client area relative to the upper left corner of the physical client area. When you set
AutoScrollPosition, however, the coordinates must be positive. That's the reason for the two lines of
code:
pt.X = -pt.X;
pt.Y = -pt.Y;

Otherwise, the coordinates are simply adjusted based on the particular cursor key. For the left and
right arrow keys, I shift the client area by the width of the client area if the Ctrl key is pressed and by
the height of a Font character if not. I've made the effects of other cursor keys independent of any
modifier keys. The Home key returns the display back to the origin; the End key goes to the bottom
of the list but doesn't change the horizontal position.
KeyPress for Characters
Many keys on the keyboard generate character codes. To get those codes, you install an event
handler for KeyPress or (if possible) override the OnKeyPress method:
Control Events (selection)

Event Method Delegate Argument

KeyPress OnKeyPress KeyPressEventHandler KeyPressEventArgs

The KeyPressEventArgs class has just two properties:
KeyPressEventArgs Properties

Type Property Accessibility Comments

char KeyChar get Unicode character code

bool Handled get/set Set by event handler (initially false)

The char data type is, of course, a 16-bit Unicode character.

Refer to the table presented earlier (page 226) that showed the events corresponding to pressing the
Shift key and the D key. Right in the middle of this process—between the pair of KeyDown events
and the pair of KeyUp events—you'll get a KeyPress event with a KeyChar property of 0x0044,
which is the uppercase D. (Well, probably. If Caps Lock is toggled on, you'll get 0x0064, a lowercase
d.)

Of course, I'm assuming that you have an American English keyboard layout installed. If you have a
Greek keyboard layout installed, you'll get 0x0394, which corresponds to . If you have a Russian
keyboard layout installed, you'll get a code of 0x0412, which corresponds to Â. I'll explain how to
install foreign keyboard layouts later in this chapter.
Control Characters
With the Ctrl key down, you can generate control characters that are reported through the KeyPress
event. You get character codes 0x0001 through 0x001A by using the Ctrl key in combination with A
through Z regardless of the Shift key status. Here are some other control characters you can
generate from the keyboard.
Keyboard-Generated Control Characters

Key Control Character

Shift+Ctrl @ 0x0000

Backspace 0x0008

Tab 0x0009

Ctrl+Enter 0x000A

Enter 0x000D

Esc
Ctrl [

0x001B

Ctrl \ 0x001C

Ctrl] 0x001D

Shift+Ctrl ^ 0x001E

Shift+Ctrl _ 0x001F

Ctrl+Backspace 0x007F

Programs often use Shift in combination with Tab to tab backward. There's no special code for that;
it's something you'll have to handle on your own.

A bit of overlap occurs between the Keys enumeration codes you get with the KeyDown and KeyUp
events and the character codes you get with the KeyPress event. Which should you use to process
the Tab key, Enter, Backspace, or Esc?

I've gone back and forth on this issue for the past 15 years, but these days I prefer treating these
keys as Unicode control characters rather than keystrokes. The only good reason I can come up
with, however, is that some old-time users may type Ctrl+H for Backspace or Ctrl+I for Tab, and you
want to make sure those key combinations work correctly. You get that functionality by processing
Backspace and Tab in the KeyPress event handler.

Looking at the Keys
You may be wondering where I got all the information I've been telling you about what you'll see in
the keyboard events since it certainly isn't in the Windows Forms documentation. Well, most of what
I know about the keyboard was revealed by the following program, which displays information about
keys as you type them and which keeps the last 25 keyboard events (KeyDown, KeyUp, and
KeyPress) stored in an array.
KeyExamine.cs
//---
// KeyExamine.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

public class KeyExamine: Form
{
 public static void Main()
 {
 Application.Run(new KeyExamine());
 }
 // Enum and struct definitions for storage of key events

 enum EventType
 {
 None,
 KeyDown,
 KeyUp,
 KeyPress
 }
 struct KeyEvent
 {
 public EventType evttype;
 public EventArgs evtargs;
 }
 // Storage of key events

 const int iNumLines = 25;
 int iNumValid = 0;
 int iInsertIndex = 0;
 KeyEvent[] akeyevt = new KeyEvent[iNumLines];

 // Text positioning

 int xEvent, xChar, xCode, xMods, xData,
 xShift, xCtrl, xAlt, xRight;

 public KeyExamine()
 {
 Text = "Key Examine";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 xEvent = 0;
 xChar = xEvent + 5 * Font.Height;
 xCode = xChar + 5 * Font.Height;
 xMods = xCode + 8 * Font.Height;
 xData = xMods + 8 * Font.Height;
 xShift = xData + 8 * Font.Height;
 xCtrl = xShift + 5 * Font.Height;
 xAlt = xCtrl + 5 * Font.Height;
 xRight = xAlt + 5 * Font.Height;

 ClientSize = new Size(xRight, Font.Height * (iNumLines + 1));
 FormBorderStyle = FormBorderStyle.Fixed3D;
 MaximizeBox = false;
 }
 protected override void OnKeyDown(KeyEventArgs kea)
 {
 akeyevt[iInsertIndex].evttype = EventType.KeyDown;
 akeyevt[iInsertIndex].evtargs = kea;
 OnKey();
 }
 protected override void OnKeyUp(KeyEventArgs kea)
 {
 akeyevt[iInsertIndex].evttype = EventType.KeyUp;
 akeyevt[iInsertIndex].evtargs = kea;
 OnKey();
 }
 protected override void OnKeyPress(KeyPressEventArgs kpea)
 {
 akeyevt[iInsertIndex].evttype = EventType.KeyPress;
 akeyevt[iInsertIndex].evtargs = kpea;
 OnKey();
 }
 void OnKey()
 {
 if(iNumValid < iNumLines)
 {
 Graphics grfx = CreateGraphics();
 DisplayKeyInfo(grfx, iInsertIndex, iInsertIndex);
 grfx.Dispose();

 }
 else
 {
 ScrollLines();
 }
 iInsertIndex = (iInsertIndex + 1) % iNumLines;
 iNumValid = Math.Min(iNumValid + 1, iNumLines);
 }
 protected virtual void ScrollLines()
 {
 Rectangle rect = new Rectangle(0, Font.Height,
 ClientSize.Width,
 ClientSize.Height - Font.Height);

 // I wish I could scroll here!

 Invalidate(rect);
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 BoldUnderline(grfx, "Event", xEvent, 0);
 BoldUnderline(grfx, "KeyChar", xChar, 0);
 BoldUnderline(grfx, "KeyCode", xCode, 0);
 BoldUnderline(grfx, "Modifiers", xMods, 0);
 BoldUnderline(grfx, "KeyData", xData, 0);
 BoldUnderline(grfx, "Shift", xShift, 0);
 BoldUnderline(grfx, "Control", xCtrl, 0);
 BoldUnderline(grfx, "Alt", xAlt, 0);

 if(iNumValid < iNumLines)
 {
 for (int i = 0; i < iNumValid; i++)
 DisplayKeyInfo(grfx, i, i);
 }
 else
 {
 for (int i = 0; i < iNumLines; i++)
 DisplayKeyInfo(grfx, i,(iInsertIndex + i) %
iNumLines);
 }
 }
 void BoldUnderline(Graphics grfx, string str, int x, int y)
 {
 // Draw the text bold.

 Brush brush = new SolidBrush(ForeColor);
 grfx.DrawString(str, Font, brush, x, y);
 grfx.DrawString(str, Font, brush, x + 1, y);

 // Underline the text.

 SizeF sizef = grfx.MeasureString(str, Font);
 grfx.DrawLine(new Pen(ForeColor), x, y + sizef.Height,
 x + sizef.Width, y +
sizef.Height);

 }
 void DisplayKeyInfo(Graphics grfx, int y, int i)
 {
 Brush br = new SolidBrush(ForeColor);
 y = (1 + y) * Font.Height; // Convert y to pixel coordinate.

 grfx.DrawString(akeyevt[i].evttype.ToString(),
 Font, brush, xEvent, y);

 if(akeyevt[i].evttype == EventType.KeyPress)
 {
 KeyPressEventArgs kpea =
 (KeyPressEventArgs) akeyevt[i].evtargs;

 string str = String.Format("\x202D{0} (0x{1:X4})",
 kpea.KeyChar, (int)
kpea.KeyChar);
 grfx.DrawString(str, Font, br, xChar, y);
 }
 else
 {
 KeyEventArgs kea = (KeyEventArgs) akeyevt[i].evtargs;

 string str = String.Format("{0} ({1})",
 kea.KeyCode, (int) kea.KeyCode);
 grfx.DrawString(str, Font, br, xCode, y);
 grfx.DrawString(kea.Modifiers.ToString(), Font, br, xMods,
y);
 grfx.DrawString(kea.KeyData.ToString(), Font, br, xData,
y);
 grfx.DrawString(kea.Shift.ToString(), Font, br, xShift, y);
 grfx.DrawString(kea.Control.ToString(), Font, br, xCtrl,
y);
 grfx.DrawString(kea.Alt.ToString(), Font, br, xAlt, y);
 }

 }
}

This is a fairly large program for this book. Early in the class is the definition of a private enumeration
(named EventType) and a structure (named KeyEvent) used for storing the KeyEventArgs and
KeyPressEventArgs information associated with each keystroke. The program then creates an array
of 25 of these structures. The integer fields beginning with the prefix x are used for positioning the
information into columns.

As each KeyDown, KeyUp, and KeyPress event comes through, the event information is stored in
the array and also displayed on the client area by the method named DisplayKeyInfo, which is the
largest method in the KeyExamine class. The OnPaint method also makes use of the DisplayKeyInfo
method and displays column headers bolded and underlined. I'll present a much better way of
getting a bold underlined font in Chapter 9; this program simply draws the text twice, the second time
offset from the first by a pixel, and then uses DrawLine to draw a line underneath the text. Here's the
program after typing "Hello!":

One problem with this program is that when it gets down to the bottom of the client area, it wants to
scroll everything up. If I were writing Win32 code, I'd use the ScrollWindow call for doing that.
However, nothing like that function is available in Windows Forms. So instead of scrolling, the
program simply invalidates that part of the client area below the headings, forcing the OnPaint
method to repaint all the lines. It doesn't really work very well and I feel awful doing it, but probably
not as bad as the person at Microsoft who forgot to implement ScrollWindow in Windows Forms!
Invoking the Win32 API
So, what do you do if you really, really, really need to use a Win32 API function and it's simply not
available in the .NET Framework?

If necessary, you can resort to using Platform Invocation Services. PInvoke (as it's called) is a
generalized mechanism that allows you to call functions exported from DLLs. The ScrollWindow
function happens to be located on your machine in the dynamic-link library User32.dll, so that
certainly qualifies. The drawback is that a programmer who uses this facility is no longer writing
managed code, and certainly not platform-independent code.

The documentation for the Win32 API shows the following syntax for ScrollWindow:
BOOL ScrollWindow(HWND hWnd, int XAmount, int YAmount,
 CONST RECT *lpRect, CONST RECT *lpClipRect);

In the C header files for Windows, BOOL is simply defined as an int data type, and the HWND (a
handle to a window) is defined as a pointer to void, but it's really just a 32-bit value.

Where are we going to get a window handle in Windows Forms? Well, the Control class has a
Handle property, which is documented as the control's HWND. The type of the Handle property is an
IntPtr structure, which is defined in the System namespace and indicates a pointer. You can easily
convert between the int and IntPtr data types. So far, we have a fairly clean transition between C#
data types and the arguments and return type of the ScrollWindow call.

The tough part involves the last two arguments to ScrollWindow. These arguments are pointers to
Windows RECT structures. The RECT structure is defined in a Windows header file like so:
typedef struct tagRECT
{
 LONG left;
 LONG top;
 LONG right;
 LONG bottom;
} RECT;

The LONG data type is defined in a Windows header file as a long, but that's not a 64-bit C# long; it's
only a 32-bit C long, so it too is compatible with the C# int.

To call ScrollWindow from a C# program, you must define a struct that has the same fields in the
same order as the Windows RECT structure and preface it with the attribute
[StructLayout(LayoutKind.Sequential)]

StructLayout is a C# attribute based on the StructLayoutAttribute class defined in the
System.Runtime.InteropServices namespace. You must also declare ScrollWindow as an extern
function and preface it with the attribute
[DllImport("user32.dll")]

You may have noticed that the KeyExamine class contains a method I called ScrollLines that is
responsible for scrolling the contents of the client area. The ScrollLines method in KeyExamine
simply invalidated that portion of the client area below the titles. Here's a class that inherits from
KeyExamine, defines a RECT structure, declares the ScrollWindow function, and overrides the
ScrollLines method in KeyExamine. This revised version of ScrollLines calls the Windows
ScrollWindow function.
KeyExamineWithScroll.cs
//---
// KeyExamineWithScroll.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Runtime.InteropServices;
using System.Windows.Forms;

class KeyExamineWithScroll: KeyExamine
{
 public new static void Main()
 {
 Application.Run(new KeyExamineWithScroll());
 }
 public KeyExamineWithScroll()
 {
 Text += " With Scroll";
 }
 // Define a Win32-like rectangle structure.

 [StructLayout(LayoutKind.Sequential)]
 public struct RECT

 {
 public int left;
 public int top;
 public int right;
 public int bottom;
 }
 // Declare the ScrollWindow call.

 [DllImport("user32.dll")]
 public static extern int ScrollWindow(IntPtr hwnd, int cx, int cy,
 ref RECT rectScroll,
 ref RECT rectClip);

 // Override the method in KeyExamine.

 protected override void ScrollLines()
 {
 RECT rect;

 rect.left = 0;
 rect.top = Font.Height;
 rect.right = ClientSize.Width;
 rect.bottom = ClientSize.Height;

 ScrollWindow(Handle, 0, -Font.Height, ref rect, ref rect);
 }
}

This version is much better: the program runs smoother and more efficiently when it doesn't have to
redraw all the lines of output.
Handling Input from Foreign Keyboards
It's always helpful to test your programs on any type of keyboard that's not like the one on your
machine, and in particular, foreign language keyboards.[1] And running your program with Russian is
much easier than a trip to Moscow. You can install foreign-language keyboard layouts, which are
small files that let you use your existing keyboard to generate character codes from other languages.

The following instructions for installing foreign-language keyboard layouts pertain to the English
version of Windows 2000.

In Control Panel, run Regional Options. Select the General tab. Where it says Language Settings For
The System, probably only Western Europe And United States (the default) is checked. Check at
least Arabic, Cyrillic, Greek, and Hebrew, and click OK. You'll need to have your Windows 2000 CD-
ROM handy, and the system will want to reboot itself.

After you've rebooted, bring up Control Panel again and run Keyboard. Select the Input Locales tab.
In the Installed Input Locales section, click the Add button, and, one by one, add Input Locales of the
following if they're not already installed: Arabic (Egypt), English (United Kingdom), English (United
States), German (Germany), Greek, Hebrew, and Russian. This process will also install keyboard
layouts associated with these input locales.

If you've never added additional keyboard layouts and you left the Enable Indicator On Taskbar
option in the Keyboard Properties dialog box checked, you'll see a new icon in the tray section of

your taskbar: a box with the letters EN (meaning English). You can click on that icon and switch to an
alternative English keyboard or to an Arabic, a German, a Greek, a Hebrew, or a Russian one. This
change affects only the currently active application.

Now let's experiment a bit with KeyExamine or KeyExamineWithScroll. Run one of these programs
and switch to the English (United States) keyboard layout if it's not set for that already. Type an
upper-shift 3. You'll get a KeyChar code of 0x0023 and a # character. Switch to English (United
Kingdom) and type the same key combination. Now it's a code of 0x00A3 and a £ character.

Switch to the German (Germany) keyboard layout. Type a Y and a Z. Notice that both the KeyCode
and KeyChar codes indicate a Z when you type Y and a Y when you type Z. That's because these
two characters are switched around on the German keyboard.

While still running the German (Germany) keyboard layout, press the +/= key. The KeyCode is 221,
which corresponds to Keys.OemCloseBrackets. Now type the A key. The result is a lowercase a with
an acute accent: á, Unicode character 0x00E1. The +/= key on the German keyboard is known as a
dead key. You follow a dead key with an appropriate character key and the result is an accented
character key. You can follow the +/= key with any uppercase or lowercase vowel: a, e, i, o, u, or y
(which is actually produced by your Z key). The uppercase +/= followed by an uppercase or
lowercase vowel (a, e, i, o, or u, but not a y in this case) results in that letter with a grave accent, for
example à.

If you type a consonant after a dead key, you'll get the accent by itself (an ´ or a ') followed by the
letter. To type one of these accents by itself, follow the dead key by the spacebar.

Similarly, on the German keyboard, pressing the ~/' key followed by a, e, i, o, or u results in the letter
with a circumflex: â. (The shifted ~/' key isn't a dead key; it generates a ° character.) The umlaut in
German appears only on uppercase or lowercase ä, ö, or ü. You can generate these characters by
typing the "/' key, :/; key, or {/[key, respectively.

So far, all the KeyChar values that have accompanied the KeyPress events we've generated have
been in the 8-bit range. These are characters that are defined by one of two standards. The first
standard is known as ANSI X3.4-1986, "Coded Character Sets—7-Bit American National Standard
Code for Information Interchange (7-Bit ASCII)":

The second standard is the ASCII extension documented by ANSI/ISO 8859-1-1987, "American
National Standard for Information Processing—8-Bit Single-Byte Coded Graphic Character Sets—
Part 1: Latin Alphabet No. 1" and commonly referred to as "Latin 1":

These character sets are suitable only for languages that use the Latin alphabet. To accommodate
other alphabets of the world (as well as the ideographs of Chinese, Japanese, and Korean), the 16-
bit character encoding known as Unicode was developed. Windows Forms programs written in C#

generally don't need to do anything special to support Unicode. The char data type in C# is 16 bits
wide, for example.

If you switch to the Russian keyboard layout and type a few keys, you'll see Cyrillic letters. These
have character codes in the range from 0x0410 through 0x044F, which is defined in the Unicode
standard as the Basic Russian Alphabet. Similarly, you can switch to the Arabic, Greek, or Hebrew
keyboard layout and type letters in those alphabets.

If you've never explored this stuff before, you may be wondering how foreign-language alphabets
and keyboards worked before Unicode—when character codes were just 8 bits wide. Well, in short, it
was a mess.

If you'd like your program to be informed when the user changes the keyboard layout, you can install
event handlers for the InputLanguageChanging and InputLanguageChanged events or override the
OnInputLanguageChanging and OnInputLanguageChanged methods. In the following table, ellipses
are used to indicate the event name in the method, delegate, and event argument names:
Form Events (selection)

Event Method Delegate Argument

InputLanguageChanging On… …EventHandler …EventArgs

InputLanguageChanged On… …EventHandler …EventArgs

You get the InputLanguageChanging event first. The InputLanguageChangingEventArgs object has
information about the language the user wants to switch to. If it's not OK with your program to make
this switch, set the Cancel property of the InputLanguageChangingEventArgs object to true;
otherwise, you'll soon receive an InputLanguageChanged event.

To pursue this subject further, take a look at the InputLanguage class in the System.Windows.Forms
namespace and the CultureInfo class in the System.Globalization namespace.
[1] Diagrams of many foreign-language keyboards are in Nadine Kano's Developing International
Software for Windows 95 and Windows NT. This Microsoft Press book is out of print, but an
electronic version is available on the MSDN library Web site (http://msdn.microsoft.com/library, under
Development (General) and Internationalization).
Input Focus
Input focus is an important issue when you begin creating controls on the surface of your form. Input
focus determines which control gets keyboard input. In a dialog box, some keys (such as Tab and
the cursor-movement keys) shift input focus among the controls.

Form inherits three read-only properties that pertain to input focus:
Control Properties (selection)

Type Property Accessibility

bool CanFocus get

bool ContainsFocus get

bool Focused get

A control (or form) can't get the input focus if it is disabled or invisible. You can use the CanFocus
property to check this state. The ContainsFocus property returns true if the control (or form) or one of
its children has the input focus. Focused returns true if the control (or form) has the input focus.

A program can set the input focus to one of its controls by using the Focus method.

Control Methods (selection)

bool Focus()

http://msdn.microsoft.com/library

The return value indicates whether focus was successfully applied. It won't succeed if the control
isn't a child of the active form.

Finally, two events tell a control (or form) when it is getting input focus and when it is losing input
focus:
Control Events (selection)

Event Method Delegate Argument

GotFocus OnGotFocus EventHandler EventArgs

LostFocus OnLostFocus EventHandler EventArgs

A control (or form) always eventually gets a LostFocus event to match every GotFocus event. I'll
have more to say about input focus when we begin creating controls in Chapter 12.
The Missing Caret
Controls or forms that accept keyboard input generally display something special when they have
input focus. A button control, for example, displays a dotted outline around its text. Controls or forms
that allow you to type text usually display a little underline, a vertical bar, or a box that shows you
where the next character you type will appear on the screen. You may know this indicator as a
cursor, but in Windows it's more properly known as a caret. The word cursor is reserved for the
bitmap picture representing the mouse position.

If you create a TextBox or a RichTextBox control (which I'll demonstrate in Chapter 18), the control is
responsible for creating and displaying the caret. In many cases, using these controls will serve your
program well. RichTextBox in particular is quite powerful and is built around the same Windows
control that Microsoft WordPad uses.

However, if these controls are not adequate for your purposes and you need to write your own text-
input code, you have a little problem. Of the several features missing from the Windows Forms class
libraries, perhaps none is more inexplicable than the caret.

I'm afraid it's time again to create some unmanaged code that digs into the Windows DLLs to do
what we need to do. My class named Caret is defined in my own personalized namespace in case
you want to use it in one of your own programs. It's based on the Windows caret API and begins by
declaring five external functions located in User32.dll.
Caret.cs
//------------------------------------
// Caret.cs © 2001 by Charles Petzold
//------------------------------------
using System;
using System.Drawing;
using System.Runtime.InteropServices;
using System.Windows.Forms;

namespace Petzold.ProgrammingWindowsWithCSharp
{
 class Caret
 {
 [DLLImport("user32.dll")]
 public static extern int CreateCaret(IntPtr hwnd, IntPtr hbm,
 int cx, int cy);
 [DLLImport("user32.dll")]
 public static extern int DestroyCaret();

 [DLLImport("user32.dll")]
 public static extern int SetCaretPos(int x, int y);

 [DLLImport("user32.dll")]
 public static extern int ShowCaret(IntPtr hwnd);

 [DLLImport("user32.dll")]
 public static extern int HideCaret(IntPtr hwnd);
 // Fields
 Control ctrl;
 Size size;
 Point ptPos;
 bool bVisible;
 //
Constructors
 // Don't allow default constructor.
 private Caret()
 {
 }
 // Only allowable constructor has Control argument.

 public Caret(Control ctrl)
 {
 this.ctrl = ctrl;
 Position = Point.Empty;
 Size = new Size(1, ctrl.Font.Height);

 Control.GotFocus += new EventHandler(ControlOnGotFocus);
 Control.LostFocus += new EventHandler(ControlOnLostFocus);

 // If the control already has focus, create the caret.

 if (ctrl.Focused)
 ControlOnGotFocus(ctrl, new EventArgs());
 }
 // Properties
 public Control Control
 {
 get
 {
 return ctrl;
 }
 }
 public Size Size
 {
 get

 {
 return size;
 }
 set
 {
 size = value;
 }
 }
 public Point Position
 {
 get
 {
 return ptPos;
 }
 set
 {
 ptPos = value;
 SetCaretPos(ptPos.X, ptPos.Y);
 }
 }
 public bool Visibility
 {
 get
 {
 return bVisible;
 }
 set
 {
 if (bVisible = value)
 ShowCaret(Control.Handle);
 else
 HideCaret(Control.Handle);
 }
 }
 // Methods
 public void Show()
 {
 Visibility = true;
 }
 public void Hide()
 {
 Visibility = false;
 }
 public void Dispose()
 {

 // If the control has focus, destroy the caret.

 if (ctrl.Focused)
 ControlOnLostFocus(ctrl, new EventArgs());

 Control.GotFocus -= new EventHandler(ControlOnGotFocus);
 Control.LostFocus -= new EventHandler(ControlOnLostFocus);
 }
 // Event
handlers
 void ControlOnGotFocus(object obj, EventArgs ea)
 {
 CreateCaret(Control.Handle, IntPtr.Zero,
 Size.Width, Size.Height);
 SetCaretPos(Position.X, Position.Y);
 Show();
 }
 void ControlOnLostFocus(object obj, EventArgs ea)
 {
 Hide();
 DestroyCaret();
 }
 }
}

To create a caret for your form (or any other object derived from Control), use the constructor
Caret caret = new Caret(form);

The Caret class defines the default constructor as private, so you must include an argument in the
constructor. Caret provides four properties:
Caret Properties

Type Property Accessibility Description

Control Control get Control object the caret is associated with

Size Size get/set Size of caret in pixels

Point Position get/set Position of caret relative to control origin

bool Visibility get/set Visibility of caret

In character mode environments, carets are often underlines or boxes. These shapes don't quite
work right for variable-width text, however; a vertical line is better. Generally, a program that uses the
Caret class in connection with the default font for the control will set the size like so:
caret.Size = new Size(2, Font.Height);

The Position property indicates the position of the caret relative to the upper left corner of the client
area.

You can use the Visibility property to hide and reshow the caret. You must hide the caret when you
draw on your form at any time other than during the Paint event! As an alternative to Visibility, you
can use the Hide and Show methods. The Dispose method is the only other public method Caret
supports:

Caret Methods

Method Description

void Hide() Hides the caret

void Show() Shows the caret

void Dispose() Disables the caret

Normally, you don't need to call Dispose. The only time Dispose is necessary is if you've been using
the caret to perform some keyboard input in your form or control and you no longer need to do so.

The Caret class is a good example of a class that must install event handlers for the form that it's
associated with. Caret installs event handlers for the GotFocus and LostFocus events; it creates the
caret when the form gets the focus and destroys the caret when the form loses the focus. This
approach is in accordance with recommended handling of the caret in Win32 programming. Dispose
simply uninstalls the event handlers so the caret isn't created anymore.

But keep this in mind: A form that uses this Caret class and that itself overrides its OnGotFocus and
OnLostFocus methods runs the risk of disabling the event handlers in Caret! If you need to override
these methods, be sure to call the method in the base class:
protected override void OnGotFocus(EventArgs ea)
{
 base.OnGotFocus(ea);

}
protected override void OnLostFocus(EventArgs ea)
{
 base.OnLostFocus(ea);

}

Those base class OnGotFocus and OnLostFocus methods call the installed event handlers such as
the ones in Caret.
Echoing Key Characters
Now let's look at a program that uses the Caret class to let you enter and edit text. This program
comes very close to the functionality of a TextBox control in single-line mode.
TypeAway.cs
//---------------------------------------
// TypeAway.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Drawing.Text;
using System.Windows.Forms;
using Petzold.ProgrammingWindowsWithCSharp;

class TypeAway: Form
{
 public static void Main()
 {
 Application.Run(new TypeAway());

 }

 protected Caret caret;
 protected string strText = "";
 protected int iInsert = 0;

 public TypeAway()
 {
 Text = "Type Away";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 FontHeight = 24;

 caret = new Caret(this);
 caret.Size = new Size(2, Font.Height);
 caret.Position = new Point(0, 0);
 }
 protected override void OnKeyPress(KeyPressEventArgs kpea)
 {
 caret.Hide();
 Graphics grfx = CreateGraphics();
 grfx.FillRectangle(new SolidBrush(BackColor),
 new RectangleF(Point.Empty,
 grfx.MeasureString(strText, Font,
 Point.Empty,
StringFormat.GenericTypographic)));
 switch(kpea.KeyChar)
 {
 case '\b':
 if (iInsert > 0)
 {
 strText = strText.Substring(0, iInsert - 1) +

strText.Substring(iInsert);
 iInsert -= 1;
 }
 break;

 case '\r':
 case '\n':
 break;

 default:
 if (iInsert == strText.Length)
 strText += kpea.KeyChar;

 else
 strText = strText.Substring(0, iInsert) +
 kpea.KeyChar +
 strText.Substring(iInsert);
 iInsert++;
 break;
 }
 grfx.TextRenderingHint = TextRenderingHint.AntiAlias;
 grfx.DrawString(strText, Font, new SolidBrush(ForeColor),
 0, 0, StringFormat.GenericTypographic);
 grfx.Dispose();

 PositionCaret();
 caret.Show();
 }
 protected override void OnKeyDown(KeyEventArgs kea)
 {
 switch (kea.KeyData)
 {
 case Keys.Left:
 if (iInsert > 0)
 iInsert--;
 break;

 case Keys.Right:
 if (iInsert < strText.Length)
 iInsert++;
 break;

 case Keys.Home:
 iInsert = 0;
 break;

 case Keys.End:
 iInsert = strText.Length;
 break;

 case Keys.Delete:
 if (iInsert < strText.Length)
 {
 iInsert++;
 OnKeyPress(new KeyPressEventArgs('\b'));
 }
 break;

 default:
 return;
 }
 PositionCaret();
 }
 protected void PositionCaret()
 {
 Graphics grfx = CreateGraphics();
 string str = strText.Substring(0, iInsert);
 StringFormat strfmt = StringFormat.GenericTypographic;
 strfmt.FormatFlags |= StringFormatFlags.MeasureTrailingSpaces;
 SizeF sizef = grfx.MeasureString(str, Font, Point.Empty,
strfmt);
 caret.Position = new Point((int)sizef.Width, 0);
 grfx.Dispose();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 grfx.TextRenderingHint = TextRenderingHint.AntiAlias:
 grfx.DrawString(strText, Font, new SolidBrush(ForeColor),
 0, 0, StringFormat.GenericTypographic);
 }
}

The TypeAway class creates an object of type Caret in its constructor and initializes the size and
position. The program needs only to hide and then reshow the caret when drawing on the form at
times other than the Paint event and to set the caret's position within the client area.

The string of characters that the user enters and edits is stored in the field named strText. The iInsert
field is the insertion point in this string. For example, after you type three characters, iInsert equals 3.
If you then press the left arrow, iInsert equals 2. The PositionCaret method in TypeAway is
responsible for converting that character position to a pixel position that it uses to set the Position
property of the Caret object.

Let's take a look at how TypeAway handles the OnKeyPress method. In most cases, it may seem
that the program simply needs to display this new character on the form at the pixel position
corresponding to the current insertion point and to append this character to the strText field. Instead,
however, the program uses MeasureString and FillRectangle to entirely erase any text currently
displayed in the form! This behavior may sound a little extreme, but (as we'll see) it's necessary if the
insertion point isn't at the end of the string or if it's displaying text in some non-English languages.

The OnKeyPress method handles the Backspace key by removing a character from the string in
front of the insertion point. The method ignores carriage returns and line feeds, and handles all other
characters by inserting them into strText at the insertion point. The method then displays the entire
string and calls PositionCaret (which I'll describe shortly). Notice that the method hides the caret
while drawing on the form.

The OnKeyDown method handles a few cursor-movement keys by changing the insertion point and
handles the Delete key by simulating a Backspace key. The OnKeyDown method also calls
PositionCaret.

The PositionCaret method is responsible for converting the insertion point (iInsert) into a pixel
location for the caret. It does this using MeasureString. Unfortunately, the default version of
MeasureString doesn't offer quite the precision required in applications like this. The most blatant

problem is that MeasureString normally excludes trailing blanks when calculating string lengths. To
correct this problem, the program uses a version of MeasureString with a StringFormat argument
and includes the enumeration value StringFormatFlags.MeasureTrailingSpaces in the FormatFlags
property of StringFormat. Before that change, the caret would move whenever I typed letters that
made up a word, but not when I typed a space after the word.

But that change isn't sufficient to make the caret line up nicely with displayed text. For reasons I
discuss in Chapter 9, in the section "Grid Fitting and Text Fitting," the MeasureString and DrawString
methods normally have built-in padding to compensate for problems related to the device-
independent rasterization of outline fonts. To override this default behavior, the program uses a
StringFormat object that it obtains from the static StringFormat.GenericTypographic property. As part
of this solution (covered in Chapter 9), the program also uses the Graphics property
TextRenderingHint to enable anti-aliasing of the text output.
Right-to-Left Problems
I mentioned earlier that the TypeAway program has almost the full functionality of a TextBox control
in single-line mode. One problem is that it doesn't have clipboard support. Another is that TypeAway
doesn't correctly display the caret when you type text that is written right to left, such as Arabic or
Hebrew.

Let's take a look: run TypeAway, and switch to the Hebrew keyboard layout. We're going to type the

Hebrew for "good morning," which is , commonly transliterated as boker tov. To
accomplish this little feat on an English keyboard, you first need to know how the characters of the
Hebrew alphabet correspond to the keys of the keyboard.
Hebrew Alphabet

Unicode Letter Glyph Key Unicode Letter Glyph Key

0x05D0 alef t 0x05DE mem n

0x05D1 bet c 0x05DF final nun

i

0x05D2 gimel d 0x05E0 nun

b

0x05D3 dalet

s 0x05E1 samekh x

0x05D4 he v 0x05E2 ayin g

0x05D5 vav u 0x05E3 final pe

;

0x05D6 zayin z 0x05E4 pe p

0x05D7 het j 0x05E5 final tsadi

.

0x05D8 tet y 0x05E6 tsadi m

0x05D9 yod h 0x05E7 qof

e

0x05DA final kaf

l 0x05E8 resh r

0x05DB kaf f 0x05E9 shin a

0x05DC lamed

k 0x05EA tav

,

0x05DD final
mem o

I've taken the spellings of these letters from The Unicode Standard Version 3.0. You'll note that
some letter names include the word final. These letters are written differently when they fall at the
end of a word.

You also need to know that Hebrew is written from right to left. So to type the Hebrew phrase shown
above into TypeAway, you need to type the letters in this order: bet (the c key), qof (the e key), resh
(the r key), space, tet (the y key), vav (the u key), and bet (the c key). TypeAway stores the Unicode
characters in the character string in the order that you type them. That is correct. The DrawString
method displays these characters from right to left. That is also correct, and the DrawString method
must be given full credit and congratulations for recognizing and properly displaying text that reads
right to left.

And now you know why TypeAway has to completely erase the line of previously drawn text: new
text may not necessarily be appended at the end of the text string. When you're typing from the
Hebrew keyboard, new text must be displayed at the beginning of the text string rather than the end.
Typing in Arabic is even more critical: adjacent characters in Arabic are often joined to form different
glyphs. DrawString needs to draw the whole string, not just individual characters, to correctly handle
this situation.

Where TypeAway fails is in the caret positioning. When you're typing right-to-left text, the caret isn't
showing the insertion point. The solution to this problem isn't trivial, particularly when you're dealing
with a combination of left-to-right and right-to-left text in the same line. It appears that Windows
Forms doesn't make available sufficient tools to solve this problem, but if you're interested in seeing
how it's done using the Win32 API, check out the article "Supporting Multilanguage Text Layout and
Complex Scripts with Windows NT 5.0" from the November 1998 issue of Microsoft Systems
Journal.

Chapter 7: Pages and Transforms
Overview
A primary goal in any graphics programming environment is device independence. Programs should
be able to run without change on many different types of video display adapters regardless of the
resolution. Programs should also be able to print text and graphics on many different printers without
requiring a multitude of specialized printer drivers or completely separate drawing code.

In Chapter 5, I demonstrated that you can write graphics output code that draws to both the video
display and the printer. Yet so far, I've been drawing in units of pixels—at least on the video display;
the printer is something of a puzzle just yet—and pixels hardly seem device independent.
Device Independence Through Text
With some care, it's possible to use pixels in a device-independent manner. One way is to base
graphics output on the default size of the Font property associated with the form. This approach is
particularly useful if you're combining some simple graphics with text.

For example, suppose you were programming a simple database application using an index card
metaphor. Each record is displayed as a simulated 3-by-5-inch index card. How large are the index
cards in pixels? Think of a typewriter. A typewriter with a pica typeface types 6 lines to the inch, so
an index card fits 18 lines of type. You can thus make the height of the index card equal to 18 ×
Font.Height pixels. You set the width to 5/3 times that number.

Making the width of the index card 5/3 times the height implies that the horizontal resolution of your
output device—the number of pixels corresponding to a given measurement such as an inch—is
equal to the vertical resolution. When a graphics output device has equal horizontal and vertical
resolution, it is sometimes said to have square pixels. The very early video displays used when
Windows was first released in 1985 did not have square pixels; it wasn't until the 1987 introduction of
the IBM Video Graphics Array (VGA) that square pixels started to become a standard for PC-
compatible video adapters.

Today, it's fairly safe to assume that the video display on which your Windows Forms program is
running has square pixels. I say "fairly safe" because Windows doesn't require square pixels, and it's
always possible that somebody may write a Windows device driver for some specialized display
adapter that doesn't have square pixels.

Printers these days often do not have square pixels. Often the resolution in one dimension is twice
the resolution in the other.
How Much Is That in Real Money?
Let's start exploring the relationship between pixels and real-world measurements. Suppose you
draw a box of 100 pixels width and height located 100 pixels from the upper left corner of the client
area (or printable area of the printer page).
HundredPixelsSquare.cs
//--
// HundredPixelsSquare.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class HundredPixelsSquare: PrintableForm
{
 public new static void Main()
 {

 Application.Run(new HundredPixelsSquare());
 }
 public HundredPixelsSquare()
 {
 Text = "Hundred Pixels Square";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.FillRectangle(new SolidBrush(clr), 100, 100, 100, 100);
 }
}

How large is that box on the screen? How large is it on the printer? Is it even square?

Certainly you have a vague idea of how large this box will be on the screen without actually running
the program, at least in terms of the relationship of the size of the box to the size of the screen. The
smallest video display size in common use today is 640 pixels horizontally by 480 pixels vertically (or
640 × 480). On such a display, the box would be roughly 1/6 the width of the screen and 1/5 the
height. But video displays these days can go up to 2048 × 1536 pixels or so, in which case the box is
much smaller in relationship to the entire screen.

It would be nice to know the resolution of the video display, perhaps in a common measurement like
dots per inch (dpi). However, while such a concept is very well defined for printers—it's usually
printed right on the box you take home from the computer store—it remains an elusive concept for
video displays. If you think about it, the actual dpi resolution of a video display is based on two
measurements: the physical size of the monitor (usually measured diagonally in inches) and the
corresponding pixel dimensions.

Confusingly enough, this latter measurement is often termed the resolution of the video display. In
the SystemInformation class, it's the item called PrimaryMonitorSize. If you invoke the Display
Properties dialog box—which you can run from Control Panel or by right-clicking on your desktop
and selecting Properties from the menu—and select the Settings tab, this pixel dimension is called
the screen area, and that's the term I'll use.

Video display adapters these days are capable of half a dozen (or so) different screen-area settings,
and video monitors come in several different sizes. Here's a little table that shows the approximate
video resolution in dots per inch for various combinations of monitor sizes and screen areas:
Actual Video Resolution (dots per inch)
 Monitor Size (diagonally)

Screen Area 15 inches 17 inches 19 inches 21 inches

640 × 480 57 50 44 40

800 × 600 71 63 56 50

1024 × 768 91 80 71 64

1152 × 870 103/104 90/91 80/81 72/73

1280 × 1024 114/122 100/107 89/95 80/85

1600 × 1200 143 125 111 100

2048 × 1536 183 160 142 128

I'm assuming that the actual display area is an inch smaller than the rated diagonal size and that the
monitor has the standard aspect ratio of 4:3. For example, a 21-inch monitor has a diagonal display
area of 20 inches, implying (thank you, Pythagoras) dimensions of 16 inches horizontally and 12
inches vertically. For screen areas of 1152 × 870 and 1280 × 1024, the horizontal and vertical

dimensions are not in the ratio of 4:3 and hence the horizontal and vertical resolutions are unequal—
but they're close enough to assume they're equal.

So if you were running a 1600 × 1200 video mode on a 21-inch monitor, that 100-pixel square box
would be about 1-inch square. But it could be almost as small as 1/2 inch or larger than 2 inches. Of
course, few people use 21-inch monitors to run a 640 × 480 video mode, nor do they try to run 2048
× 1536 on 15-inch monitors. The more likely range of resolutions appears in the diagonal area of the
table from the upper left to the lower right.

Windows doesn't know the size of your monitor, so it can't tell you the actual resolution of your video
display. And even if it did know your monitor's size, what would it do when you connect a video
projector to your machine and create a screen some 6 feet wide? What should it do? Should
Windows assume a much lower resolution because the screen is larger? Almost assuredly, you don't
want that.

The most essential issue regarding the video display is readable text. The default font should be
large enough for you to read, obviously, but it shouldn't be much larger because you also want to fit
as much text on the screen as possible.

For this reason, Windows basically ignores screen area and monitor size and instead delegates the
selection of a video resolution to a very important person: You!

I've already mentioned the Display Properties dialog box. The Settings tab lets you change your
video display settings. (Note that this description of Display Properties is based on Windows 2000.
Other versions of Windows might differ slightly.) The Settings page also has a button labeled
Advanced. In a roundabout way, this button essentially lets you select a video resolution in dots per
inch for the video display. I say this is "roundabout" because you actually select a Windows system
font size that is comfortable for you to read. That system font is assumed to be 10 points in size.
(Fonts are measured in points, which in computer typography are 1/72 inch.) The pixel size of the
10-point font that you select implies a resolution of the video display in dots per inch.

For example, the default system font is called Small Fonts. The Small Fonts characters are 13 pixels
in height. If that font is assumed to be 10 points in size, then 13 pixels are equivalent to 10/72 inch,
and the display resolution (with a little rounding involved) is 96 dpi.

One common alternative to Small Fonts is Large Fonts, which are 16 pixels tall. If these 16 pixels are
equivalent to 10/72 inch, then the display resolution (again with a little rounding) is 120 dpi.

By the way, the Windows system font is not the default font that's accessible through the Font
property in a Windows Forms program. Windows Forms sets the default font to something a bit
smaller—about 8 points in size.[1]

Large Fonts and Small Fonts are not the only choices. By selecting Other from the list box, you are
presented with a ruler that you can manually adjust to pick a really big font (implying a resolution of
480 dpi) or a really small font (about 19 dpi).

Here's a quick summary: You select a system font size that you find readable. Windows assumes
that this is a 10-point font. That implies a video display resolution in dots per inch.

Commonly, the system font you choose will have larger physical dimensions than the point size
implies. When people read print on paper, the distance between the eyes and the text is generally
about a foot, but a video display is often viewed from a distance of 2 feet or so.
[1] Veteran Windows programmers might be curious about where my numbers come from. I'm
quoting the TextMetric field tmHeight (which is 16 for Small Fonts and 20 for Large Fonts) less
tmInternalLeading (which is 3 and 4, respectively). The tmHeight value is suitable for line spacing;
tmHeight less tmInternalLeading indicates the point size converted to pixels (13 for Small Fonts and
16 for Large Fonts). Somewhat confusingly, the default font in Windows Forms has a Font.Height
property that reports similar values: 13 for Small Fonts and 15 for Large Fonts. But this is a line-
spacing value that is comparable with tmHeight. The Windows system font is 10 points; the default
Windows Forms font is about 8 points.
Dots Per Inch
The Graphics object has two properties that indicate the resolution of the graphics output device in
dots per inch:

Graphics Properties (selection)

Type Property Accessibility Description

float DpiX get Horizontal resolution in dots per inch

float DpiY get Vertical resolution in dots per inch

Here's a short program that displays these values without much fuss.
DotsPerInch.cs
//--
// DotsPerInch.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class DotsPerInch: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new DotsPerInch());
 }
 public DotsPerInch()
 {
 Text = "Dots Per Inch";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawString(String.Format("DpiX = {0}\nDpiY = {1}",
 grfx.DpiX, grfx.DpiY),
 Font, new SolidBrush(clr), 0, 0);
 }
}

The values that this program reports in its client area are the same as the settings you've made in
the Display Properties dialog box: 96 dpi if you've selected Small Fonts, 120 dpi if you've selected
Large Fonts, and something else if you've selected a custom size.

If you click on the client area, the printed version will show the resolution of your printer, which is
probably something you already knew or could look up in the manual. Printers these days have
resolutions of 300, 600, 1200, or 2400 dpi, or 720, 1440, or 2880 dpi.
What's with the Printer?
Earlier in this chapter, I presented the HundredPixelsSquare program that displayed a box 100 pixels
square. I wondered how large the box was on the screen. The real answer is that the physical
dimensions of this box are irrelevant. Nobody expects a ruler held up to the screen to provide much
useful information. The important point is that rulers displayed on the screen should be consistent
with each other. In that sense, the horizontal and vertical screen dimensions of a 100-pixel square
box in inches are

100 / grfx.DpiX
100 / grfx.DpiY

That is, 1.04 inches if you've selected Small Fonts, 0.83 inch if you've selected Large Fonts, and
something else if you've selected a custom size.

And on the printer… Well, you may want to try this one yourself. On your printer, the
HundredPixelsSquare program draws a box that is precisely 1 inch square. Let's try something else.
This program attempts to draw an ellipse with a diameter of 1 inch based on the DpiX and DpiY
properties of the Graphics object.
TryOneInchEllipse.cs
//--
// TryOneInchEllipse.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class TryOneInchEllipse: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new TryOneInchEllipse());
 }
 public TryOneInchEllipse()
 {
 Text = "Try One-Inch Ellipse";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawEllipse(new Pen(clr), 0, 0, grfx.DpiX, grfx.DpiY);
 }
}

On the video display, the size of this ellipse looks about right. On my 600 dpi printer, however, the
ellipse is 6 inches in diameter.

For the video display, the coordinates you pass to the Graphics drawing functions are obviously in
units of pixels. For the printer, however, that is apparently not the case. For the printer, the
coordinates passed to the Graphics drawing functions are actually interpreted as units of 0.01 inch
regardless of the printer. We'll see how this works shortly. The nice part is that the resolution of the
video display is probably somewhere in the region of 100 dpi, and the printer is treated as if it were a
100-dpi device. This means that in a pinch you can use the same coordinates when displaying
graphics on the video display and the printer, and you'll get approximately the same results.
Manual Conversions
If you wanted to, you could use the DpiX and DpiY properties of the Graphics object to adjust the
coordinates that you pass to the drawing functions. For example, suppose you wanted to use
floating-point coordinates to draw in units of millimeters. You'd need a method that converts from
millimeters to pixels:
PointF MMConv(Graphics grfx, PointF pointf)
{

 pointf.X *= grfx.DpiX / 25.4f;
 pointf.Y *= grfx.DpiY / 25.4f;

 return pointf;
}

The point you're passing to this method is your desired units of millimeters. Dividing that point by
25.4 converts it to inches. (That's an exact calculation, by the way.) Multiplying by the resolution in
dots per inch converts it to pixels.

Just so we're sure about this, let's draw a 10-centimeter ruler.
TenCentimeterRuler.cs
//---
// TenCentimeterRuler.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class TenCentimeterRuler: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new TenCentimeterRuler());
 }
 public TenCentimeterRuler()
 {
 Text = "Ten-Centimeter Ruler";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen pen = new Pen(clr);
 Brush brush = new SolidBrush(clr);
 const int xOffset = 10;
 const int yOffset = 10;

 grfx.DrawPolygon(pen, new PointF[]
 {
 MMConv(grfx, new PointF(xOffset, yOffset)),
 MMConv(grfx, new PointF(xOffset + 100, yOffset)),
 MMConv(grfx, new PointF(xOffset + 100, yOffset + 10)),
 MMConv(grfx, new PointF(xOffset, yOffset + 10))
 });

 StringFormat strfmt = new StringFormat();
 strfmt.Alignment = StringAlignment.Center;

 for (int i = 1; i < 100; i++)
 {
 if (i % 10 == 0) // Centimeter markings
 {
 grfx.DrawLine(pen,
 MMConv(grfx, new PointF(xOffset + i, yOffset)),
 MMConv(grfx, new PointF(xOffset + i, yOffset +
5)));

 grfx.DrawString((i/10).ToString(), Font, brush,
 MMConv(grfx, new PointF(xOffset + i, yOffset +
5)),
 strfmt);
 }
 else if (i % 5 == 0) // Half-centimeter markings
 {
 grfx.DrawLine(pen,
 MMConv(grfx, new PointF(xOffset + i, yOffset)),
 MMConv(grfx, new PointF(xOffset + i, yOffset +
3)));
 }
 else // Millimeter markings
 {
 grfx.DrawLine(pen,
 MMConv(grfx, new PointF(xOffset + i, yOffset)),
 MMConv(grfx, new PointF(xOffset + i, yOffset +
2.5f)));
 }
 }
 }
 PointF MMConv(Graphics grfx, PointF pointf)
 {
 pointf.X *= grfx.DpiX / 25.4f;
 pointf.Y *= grfx.DpiY / 25.4f;

 return pointf;
 }
}

Here's how the ruler looks on the screen:

This diagram also involves some text. How did I know the text was going to look right? Well, I know
that the Font property is about an 8-point font, so I know that the font characters should be about 3
millimeters tall, which is about the right size.

I've made the TenCentimerRuler class a descendent of PrintableForm to hammer home a point: this
technique will not work on the printer. My 600-dpi printer displays it six times too large.
Page Units and Page Scale
So that you can avoid writing methods such as MMConv, GDI+ includes a facility that performs
automatic scaling to dimensions of your choosing. Basically, the coordinates you pass to the
Graphics drawing functions are scaled by constants, just as in the MMConv method. But you don't
set these scaling factors directly. Instead, you set them indirectly using two properties of the
Graphics class named PageUnit and PageScale:
Graphics Properties (selection)

Type Property Accessibility

GraphicsUnit PageUnit get/set

float PageScale get/set

You set the PageUnit property to a value in the GraphicsUnit enumeration:
GraphicsUnit Enumeration

Member Value Description

World 0 Can't be used with PageUnit

Display 1 Same as Pixel for video displays; 1/100 inch for printers
(default for printers)

Pixel 2 Units of pixels (default for video display)

Point 3 Units of 1/72 inch

Inch 4 Units of inches

Document 5 Units of 1/300 inch

Millimeter 6 Units of millimeters

If you say, for example, "I want to draw in units of hundredths of an inch," you then set these two
properties like so:
grfx.PageUnit = GraphicsUnit.Inch;
grfx.PageScale = 0.01f;

This is equivalent to saying, "When I specify a coordinate of 1, I want it to equal 0.01 inch." Following
these calls, this DrawLine method draws a 1-inch-long line:
grfx.DrawLine(pen, 0, 0, 100, 0);

That's an actual measurable inch on the printer and equal to grfx.DpiX pixels on the video display.
You'll get the same results with
grfx.PageUnit = GraphicsUnit.Document;
grfx.PageScale = 3;

or
grfx.PageUnit = GraphicsUnit.Millimeter;
grfx.PageScale = 0.254f;

or
grfx.PageUnit = GraphicsUnit.Point;
grfx.PageScale = 0.72f;

The default settings are GraphicsUnit.Pixel for the video display and GraphicsUnit.Display for the
printer, both with a PageScale of 1. Notice that the GraphicsUnit.Display value means something
different for the video display than for the printer. For the video display, it's the same as
GraphicsUnit.Pixel, but for the printer, GraphicsUnit.Display indicates units of 1/100 inch.

So if we want to get that TenCentimeterRuler program to work on the printer, we need to set
PageUnit to GraphicsUnit.Pixel and everything should be OK. Let's do that by defining a class that
inherits from TenCentimeterRuler. The new OnPage method here resets the PageUnit property and
then calls the base DoPage class.
PrintableTenCentimeterRuler.cs
//--
// PrintableTenCentimeterRuler.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class PrintableTenCentimeterRuler: TenCentimeterRuler
{
 public new static void Main()
 {
 Application.Run(new PrintableTenCentimeterRuler());
 }
 public PrintableTenCentimeterRuler()
 {
 Text = "Printable " + Text;
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.PageUnit = GraphicsUnit.Pixel;
 base.DoPage(grfx, clr, cx, cy);
 }
}

This program doesn't use the cx and cy arguments to DoPage. These dimensions—of the form's
client area and of the printable area of the printer page—are in units compatible with the default
PageUnit. In the general case, if you change PageUnit, you'll probably need to recalculate the size of
the output device in identical units. I'll discuss this problem shortly.

Even though we're now drawing to the printer in units of pixels, the font still looks good. The font
accessible from the Font property of the form is an 8-point font on the video display, and it's an 8-
point font on the printer as well. We'll see how this works in Chapter 9.

This program still has a problem, however, one involving the pen that the TenCentimeterRuler
version of DoPage defines:
Pen pen = new Pen(clr);

This pen gets a default width of 1. On the video display, that means a width of 1 pixel. On the printer,
that's normally a width of 1/100 inch. However, if you change PageUnit to GraphicsUnit.Pixel, the 1-
unit-wide pen is now interpreted as a width of 1 pixel. On some very high-resolution printers, the ruler
may be nearly invisible.

Rather than continuing to mess around with the original 10-centimeter-ruler program, let's take
advantage of the PageUnit and PageScale properties to eliminate the manual conversion.
TenCentimeterRulerAuto.cs
//---
// TenCentimeterRulerAuto.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class TenCentimeterRulerAuto: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new TenCentimeterRulerAuto());
 }
 public TenCentimeterRulerAuto()
 {
 Text = "Ten-Centimeter Ruler (Auto)";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen pen = new Pen(clr, 0.25f);
 Brush brush = new SolidBrush(clr);
 const int xOffset = 10;
 const int yOffset = 10;

 grfx.PageUnit = GraphicsUnit.Millimeter;
 grfx.PageScale = 1;
 grfx.DrawRectangle(pen, xOffset, yOffset, 100, 10);

 StringFormat strfmt = new StringFormat();
 strfmt.Alignment = StringAlignment.Center;

 for (int i = 1; i < 100; i++)
 {
 if (i % 10 == 0) // Centimeter markings
 {
 grfx.DrawLine(pen,
 new PointF(xOffset + i, yOffset),
 new PointF(xOffset + i, yOffset + 5));

 grfx.DrawString((i/10).ToString(), Font, brush,
 new PointF(xOffset + i, yOffset + 5),
 strfmt);

 }
 else if (i % 5 == 0) // Half-centimeter markings
 {
 grfx.DrawLine(pen,
 new PointF(xOffset + i, yOffset),
 new PointF(xOffset + i, yOffset + 3));
 }
 else // Millimeter markings
 {
 grfx.DrawLine(pen,
 new PointF(xOffset + i, yOffset),
 new PointF(xOffset + i, yOffset +
2.5f));
 }
 }
 }
}

Besides eliminating the MMConv method, I've really made just a few changes. My MMConv method
worked only with PointF structures, so in the earlier ruler-drawing programs, I used DrawPolygon
rather than DrawRectangle to draw the outline of the ruler. Because GDI+ scales both coordinates
and sizes in the same way, I can use DrawRectangle here. Another change occurs toward the
beginning of the DoPage method, where the program creates a pen 0.25 unit wide:
Pen pen = new Pen(clr, 0.25f);

The program also sets up the Graphics object to draw in units of millimeters:
grfx.PageUnit = GraphicsUnit.Millimeter;
grfx.PageScale = 1;

You might wonder if it makes a difference whether you set the PageUnit and PageScale properties
before you create the pen or if you create a pen with a specific width before you set the PageUnit
and PageScale properties. It doesn't matter. Pens are device independent! They are not associated
with a particular Graphics object until the call to one of the line-drawing methods. Only at that time is
the pen width interpreted in units indicated by the current PageUnit and PageScale properties. In this
case, the pen is interpreted to be 0.25 millimeter or about 1/100 inch. You may want to try a smaller
value (such as 0.10 millimeter) to see the difference on the printer.

If you don't include a width in the pen constructor, the pen is created 1 unit wide, which in this case
means that the pen is 1 whole millimeter wide and the ruler divisions become one big blob. (Try it!)
Pen Widths
What's a proper pen width for the printer? You might take a cue from PostScript—the well-known
and highly respected page composition language many upscale printers use—and think of a normal
default pen width as 1 point, otherwise expressible as 1/72 inch, or about 1/3 millimeter. I personally
find a 1-point pen width to be a bit on the chunky side, but it's an easy rule to remember.

Here's a program that displays a bunch of pen widths in units of points.
PenWidths.cs
//--
// PenWidths.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;

using System.Windows.Forms;

class PenWidths: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new PenWidths());
 }
 public PenWidths()
 {
 Text = "Pen Widths";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 float y = 0;

 grfx.PageUnit = GraphicsUnit.Point;
 grfx.PageScale = 1;

 for (float f = 0; f < 3.2; f += 0.2f)
 {
 Pen pen = new Pen(clr, f);
 string str = String.Format("{0:F1} point wide pen: ", f);
 SizeF sizef = grfx.MeasureString(str, Font);

 grfx.DrawString(str, Font, brush, 0, y);
 grfx.DrawLine(pen, sizef.Width, y + sizef.Height / 2,
 sizef.Width + 144, y + sizef.Height /
2);
 y += sizef.Height;
 }
 }
}

Of course, although you can specify pen widths that are fractions of pixels, they can be rendered
only with whole pixel widths. On the video display, many of the pen widths created by this program
round to the same values:

One thing you don't have to worry about on the video display is the pen width rounding down to 0
and the pen disappearing. Pens are always drawn at least 1 pixel wide. Indeed, you can set the
width to 0 in the Pen constructor and always get 1-pixel-wide lines regardless of the PageUnit and
PageScale properties.

Although 0-width pens are fine for the video display, they should never be used on the printer. On
today's high-resolution laser printers, 1-pixel-wide lines are virtually invisible.

Here's a program for a ruler marked in inches that uses units of 1/64 inch and creates a pen 1/128
inch wide.
SixInchRuler.cs
//---
// SixInchRuler.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SixInchRuler: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new SixInchRuler());
 }
 public SixInchRuler()
 {
 Text = "Six-Inch Ruler";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 Pen pen = new Pen(clr, 0.5f);
 const int xOffset = 16;
 const int yOffset = 16;

 grfx.PageUnit = GraphicsUnit.Inch;
 grfx.PageScale = 1 / 64f;
 grfx.DrawRectangle(pen, xOffset, yOffset, 6 * 64, 64);

 StringFormat strfmt = new StringFormat();
 strfmt.Alignment = StringAlignment.Center;

 for (int i = 1; i < 6 * 16; i++)
 {
 int x = xOffset + i * 4;
 int y = yOffset;
 int dy;

 if(i % 16 == 0) // One-inch marks
 {
 dy = 32;
 grfx.DrawString((i / 16).ToString(), Font, brush,
 x, y + dy, strfmt);
 }
 else if(i % 8 == 0) // Half-inch marks
 dy = 24;

 else if(i % 4 == 0) // Quarter-inch marks
 dy = 20;

 else if(i % 2 == 0) // Eighth-inch marks
 dy = 16;

 else // Sixteeenth-inch marks
 dy = 12;

 grfx.DrawLine(pen, x, y, x, y + dy);
 }
 }
}

The ruler looks like this:

You might have noticed that text seems unaffected by any PageUnit and PageScale values I've set.
That's because the font accessible through the form's Font property is about 8 points in size and
remains that same size. In Chapter 9, I'll show you how to create a font that is affected by the
PageUnit and PageScale properties.
Page Transforms
What you're effectively setting when you set the PageScale and PageUnit properties is known as the
page transform. This transform can be represented by a pair of simple formulas. Assume that the

coordinates you pass to the Graphics drawing methods are page coordinates. (This assumption isn't
quite true, as you'll see later in this chapter, but it is true if you're setting only the PageScale and
PageUnit properties.) You can represent a point in page units as (xpage, ypage).

Pixel coordinates relative to the upper left corner of the client area (or the upper left corner of the
printable area of the page) are said to be in device coordinates, or (xdevice, ydevice). The page
transform depends on the PageUnit, PageScale, DpiX, and DpiY properties.
Page Transform Formulas

PageUnit Value Translation Formulas

GraphicsUnit.Pixel xdevice = xpage × PageScale
ydevice = ypage × PageScale

GraphicsUnit.Display (video display) xdevice = xpage × PageScale
ydevice = ypage × PageScale

GraphicsUnit.Display (printer) xdevice = xpage × PageScale × DpiX / 100
ydevice = ypage × PageScale × DpiY / 100

GraphicsUnit.Inch xdevice = xpage × PageScale × DpiX
ydevice = ypage × PageScale × DpiY

GraphicsUnit.Millimeter xdevice = xpage × PageScale × DpiX / 25.4
ydevice = ypage × PageScale × DpiY / 25.4

GraphicsUnit.Point xdevice = xpage × PageScale × DpiX / 72
ydevice = ypage × PageScale × DpiY / 72

GraphicsUnit.Document xdevice = xpage × PageScale × DpiX / 300
ydevice = ypage × PageScale × DpiY / 300

In general,

xdevice = xpage × PageScale × DpiX / (GraphicsUnit units per inch)
ydevice = ypage × PageScale × DpiY / (GraphicsUnit units per inch)

Watch out for integer arithmetic. You might try to set the page scale to 1/64 of an inch like so:
grfx.PageScale = 1 / 64;

However, C# will perform the integer division before automatically converting to float! Help out the
compiler by telling it what you want to happen:
grfx.PageScale = 1f / 64;

The page transform affects all the coordinates of all the drawing functions implemented in the
Graphics class that I've discussed so far. It also affects the information returned from MeasureString
and the version of the GetHeight method implemented in the Font class that takes a Graphics object
argument.

The page transform is a characteristic of the Graphics class. The page transform doesn't affect
anything that's not a member of the Graphics class or that (unlike GetHeight) doesn't have a
Graphics object argument. The page transform doesn't affect the information you get from
ClientSize, for example. ClientSize is always in units of pixels.
Saving the Graphics State
Setting the PageUnit and PageScale properties of the Graphics object profoundly affects the
subsequent display of graphics. You might want to set these properties—or other properties in the
Graphics class—to draw some graphics or obtain some information, and then revert back to the
original properties.

The Graphics class has two methods, named Save and Restore, that let you do just that: save the
properties of the Graphics object and later restore them. These two methods use the GraphicsState
class from the namespace System.Drawing.Drawing2D.

Graphics Methods (selection)

GraphicsState Save()
void Restore(GraphicsState gs)

The GraphicsState class has nothing public of any interest. You really treat it as a black box. When
you call
GraphicsState gs = grfx.Save();

all the current read/write properties of the Graphics object are stored in the GraphicsState object.
You can then change those properties on the Graphics object. To restore the saved properties, use
grfx.Restore(gs);

Programmers with experience using Win32 are probably accustomed to thinking of the similar facility
(involving the functions SaveDC and RestoreDC) in terms of a last-in-first-out stack. The Windows
Forms implementation is more flexible. For example, you could begin OnPaint processing by defining
three different graphics states:
GraphicsState gs1 = grfx.Save();

 // Change some properties.

GraphicsState gs2 = grfx.Save();

 // Change some properties.

GraphicsState gs3 = grfx.Save();

You could then arbitrarily and in any order make calls to the Restore method to use any one of these
three graphics states.

A similar facility is provided by the BeginContainer and EndContainer methods of the Graphics class.
These methods make use of the GraphicsContainer class in System.Drawing.Drawing2D.
Metrical Dimensions
The dimensions of a form's client area are available from the ClientSize property. These dimensions
are always in units of pixels. If you set a new page transform, you probably want the dimensions of
the client area not in units of pixels but in units corresponding to what you're now using in the
drawing methods.

There are at least two ways to get the client size in metrical dimensions. Probably the most
convenient way is the VisibleClipBounds property of the Graphics object. This property always
returns the dimensions of the client area in units consistent with the current settings of the PageUnit
and PageScale properties. Here's a program that uses this information to show the size of the client
area using all the possible units.
WhatSize.cs
//---------------------------------------
// WhatSize.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;

using System.Drawing.Drawing2D;
using System.Windows.Forms;

class WhatSize: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new WhatSize());
 }
 public WhatSize()
 {
 Text = "What Size?";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 int y = 0;

 DoIt(grfx, brush, ref y, GraphicsUnit.Pixel);
 DoIt(grfx, brush, ref y, GraphicsUnit.Display);
 DoIt(grfx, brush, ref y, GraphicsUnit.Document);
 DoIt(grfx, brush, ref y, GraphicsUnit.Inch);
 DoIt(grfx, brush, ref y, GraphicsUnit.Millimeter);
 DoIt(grfx, brush, ref y, GraphicsUnit.Point);
 }
 void DoIt(Graphics grfx, Brush brush, ref int y, GraphicsUnit gu)
 {
 GraphicsState gs = grfx.Save();

 grfx.PageUnit = gu;
 grfx.PageScale = 1;

 SizeF sizef = grfx.VisibleClipBounds.Size;

 grfx.Restore(gs);

 grfx.DrawString(gu+ ": " + sizef, Font, brush, 0, y);
 y += (int) Math.Ceiling(Font.GetHeight(grfx));
 }
}

The DoIt method in WhatSize makes use of the Save and Restore facility so that the different
PageUnit settings don't interfere with the actual display of information when we call the DrawString
method and the GetHeight call. Here's a typical WhatSize display:

Unfortunately, the printer is different. For the printer, VisibleClipBounds is designed to return values
in units of 1/100 inch regardless of the page transform. However, if the printer PageUnit is set for
pixels, VisibleClipBounds returns the printable area of the page in pixels.

An historical note: I wrote the first how-to-program-for-Windows magazine article for the December
1986 issue of Microsoft Systems Journal. The sample program in that article was called WSZ ("what
size"), and it displayed the size of the program's client area in pixels, inches, and millimeters.
WhatSize is a somewhat simplified—and considerably shorter—version of that program.

Another approach to determining the size of the display area involves using the TransformPoints
method implemented in the Graphics class:

Graphics TransformPoints Methods

void TransformPoints(CoordinateSpace csDst, CoordinateSpace csSrc,
 Point[] apt)
void TransformPoints(CoordinateSpace csDst, CoordinateSpace csSrc,
 PointF[] aptf)

The CoordinateSpace enumeration is defined in the System.Drawing.Drawing2D namespace:
CoordinateSpace Enumeration

Member Value

World 0

Page 1

Device 2

So far, we know of the coordinate space called Device (that's units of pixels relative to the upper left
corner of the client area) and the coordinate space called Page (units of inches, millimeters, points,
or such). If you have an array of Point or PointF structures in device units, you can convert those
values to page units by calling
grfx.TransformPoints(CoordinateSpace.Page, CoordinateSpace.Device, apt);

I'll talk about the coordinate space known as World shortly.

Here's another version of the WhatSize program that uses TransformPoints to calculate the size of
the client area.
WhatSizeTransform.cs
//--
// WhatSizeTransform.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;

using System.Drawing.Drawing2D;
using System.Windows.Forms;

class WhatSizeTransform: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new WhatSizeTransform());
 }
 public WhatSizeTransform()
 {
 Text = "What Size? With TransformPoints";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 int y = 0;
 Point[] apt = { new Point(cx, cy) };

 grfx.TransformPoints(CoordinateSpace.Device,
 CoordinateSpace.Page, apt);

 DoIt(grfx, brush, ref y, apt[0], GraphicsUnit.Pixel);
 DoIt(grfx, brush, ref y, apt[0], GraphicsUnit.Display);
 DoIt(grfx, brush, ref y, apt[0], GraphicsUnit.Document);
 DoIt(grfx, brush, ref y, apt[0], GraphicsUnit.Inch);
 DoIt(grfx, brush, ref y, apt[0], GraphicsUnit.Millimeter);
 DoIt(grfx, brush, ref y, apt[0], GraphicsUnit.Point);
 }
 void DoIt(Graphics grfx, Brush brush, ref int y,
 Point pt, GraphicsUnit gu)
 {
 GraphicsState gs = grfx.Save();

 grfx.PageUnit = gu;
 grfx.PageScale = 1;

 PointF[] aptf = { pt };

 grfx.TransformPoints(CoordinateSpace.Page,
 CoordinateSpace.Device, aptf);

 SizeF sizef = new SizeF(aptf[0]);
 grfx.Restore(gs);

 grfx.DrawString(gu + ": " + sizef, Font, brush, 0, y);
 y += (int) Math.Ceiling(Font.GetHeight(grfx));
 }
}

I've added an extra argument to the program's DoIt method: a Point structure containing the width
and height of the display area in pixels. For the video display, that's not much of a problem because
the cx and cy arguments to DoPage are already pixels. For the printer, however, they are not. For
that reason, the DoPage method adds cx and cy to a Point structure, makes a single-element Point
array, and passes that array to TransformPoints to convert the values to device units. Notice that for
this call to TransformPoints the destination coordinate space is CoordinateSpace.Device. DoIt then
uses TransformPoints to convert from device units to CoordinateSpace.Page.
Arbitrary Coordinates
Some of the graphics programs shown so far in this book have scaled their output to the size of the
client area or the printable area of the printer page. Programs in this chapter have drawn in specific
sizes in units of millimeters or inches.

Then there are times when you want to hard-code a bunch of coordinates and would prefer that you
could skip any explicit scaling of them. For example, you may want to code some graphics output
using a coordinate system of (say) 1000 units horizontally and 1000 units vertically. You want this
coordinate system to be as large as possible but still fit inside your client area or the printer page.

This program demonstrates how to do just that.
ArbitraryCoordinates.cs
// --
// ArbitraryCoordinates.cs © 2001 by Charles Petzold
// --
using System;
using System.Drawing;
using System.Windows.Forms;

class ArbitraryCoordinates: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new ArbitraryCoordinates());
 }
 public ArbitraryCoordinates()
 {
 Text = "Arbitrary Coordinates";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.PageUnit = GraphicsUnit.Pixel;
 SizeF sizef = grfx.VisibleClipBounds.Size;

 grfx.PageUnit = GraphicsUnit.Inch;
 grfx.PageScale = Math.Min(sizef.Width / grfx.DpiX / 1000,
 sizef.Height / grfx.DpiY / 1000);

 grfx.DrawEllipse(new Pen(clr), 0, 0, 990, 990);
 }
}

The DoPage method first sets PageUnit to GraphicsUnit.Pixel for the sole purpose of obtaining the
VisibleClipBounds property indicating the size of the client area or printer page in units of pixels.

Next, DoPage sets PageUnit to inches:
grfx.PageUnit = GraphicsUnit.Inch;

Earlier I showed the following transform formulas that apply to a PageUnit of inches:

xdevice = xpage × PageScale × DpiX
ydevice = ypage × PageScale × DpiY

You want xpage and ypage to range from 0 through 1000 while xdevice and ydevice range from 0 through
the Width and Height properties (respectively) from VisibleClipBounds. In other words,

Width = 1000 × PageScale × DpiX
Height = 1000 × PageScale × DpiY

However, these two equations would result in two different PageScale factors, and you can have
only one. You want the lesser of the two calculated values:
grfx.PageScale = Math.Min(sizef.Width / grfx.DpiX / 1000,
 sizef.Height / grfx.DpiY / 1000);

The program then draws an ellipse with a width and height of 990 units. (Using 1000 or 999 for the
width and height sometimes causes one side of the figure to be truncated for large window sizes.)
The resultant figure is a circle that appears at the left of the client area when the client area is wide
and at the top when the client area is tall:

You can also print the circle; it will be as large as the printable width of the page.

There's a subtle problem in this program, however. Try reducing the window size as far as it will go.
You'll notice that there's a limit in the width of the window, but you can decrease the height of the
window until the client area height is 0. At that point, you'll get an exception because the DoPage
method will be setting the PageScale to 0, an invalid value.

You can deal with this problem in a couple ways. Perhaps the most obvious is simply to abort the
DoPage method if the height of the client area is 0:
if (cy == 0)
 return;

That's not a problem because it doesn't make sense to draw anything anyway.

Don't you find it a little peculiar that you're getting a call to the OnPaint method anyway given that
your client area is of 0 dimension? It wouldn't hurt to put a statement like this at the beginning of your
OnPaint method:
if (pea.ClipRectangle.IsEmpty)
 return;

This statement is equivalent:
if (grfx.IsVisibleClipEmpty)
 return;

A very specialized solution is to use the Math.Max method in the calculation of the PageScale
property to prevent values of 0:
grfx.PageScale = Math.Min(sizef.Width / grfx.DpiX / 1000,
 Math.Max(sizef.Height, 1) / grfx.DpiY / 1000);

Or, to demonstrate that you known something about exception handling in C#, you can put the
statement in a try block:
try
{
 grfx.PageScale = Math.Min(sizef.Width / grfx.DpiX / 1000,
 sizef.Height / grfx.DpiY / 1000);
}
catch
{
 return;
}

But a method that might not seem so obvious is to prevent the client area from shrinking down to a 0
height in the first place. The static property SystemInformation.MinimumWindowSize returns a size
whose height is simply the sum of the caption bar height and twice the sizing border height. The
width is considerably greater to give windows a minimum width that still allows part of the program's
caption bar to be visible.

You can set a form's MinimumSize property to keep the window above a certain dimension. Try
putting this in the constructor for ArbitraryCoordinates:
MinimumSize = SystemInformation.MinimumWindowSize + new Size(0, 1);
What You Can't Do
There are several things you can't do with the page transform. First, you can't set PageScale to
negative values; that is, you can't make x coordinates increase to the left (which few people want to
do anyway) or y coordinates increase going up the screen (which is something that's useful for the
mathematically inclined).

Second, you can't have different units in the horizontal and vertical directions. The PageScale and
PageUnit properties apply to both axes equally. A function like
grfx.DrawEllipse(pen, 0, 0, 100, 100);

will always draw a circle regardless of the page transform, with one exception: when you set a
PageUnit of GraphicsUnit.Pixel and your output device has different horizontal and vertical
resolution. This issue will rarely come up for the video display, but it's fairly common for printers.

And finally, you can't change the origin. The point (0, 0) in page coordinates always maps to the
upper left corner of the client area or printable area of the printer page.

Fortunately, there's another transform supported by GDI+ that lets you do all of these tasks and
more.

Hello, World Transform
The other transform supported by GDI+ is known as the world transform. It involves a traditional 3 ×
3 matrix, but it's possible to skip the matrix and use some very handy methods instead. To begin,
let's look at this program that displays the first paragraph of Herman Melville's Moby-Dick.
MobyDick.cs
//---------------------------------------
// MobyDick.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class MobyDick: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new MobyDick());
 }
 public MobyDick()
 {
 Text = "Moby-Dick by Herman Melville";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 // Insert RotateTransform, ScaleTransform,
 // TranslateTransform, and other calls here.

 grfx.DrawString("Call me Ishmael. Some years ago\x2014never " +
 "mind how long precisely\x2014having little " +
 "or no money in my purse, and nothing " +
 "particular to interest me on shore, I " +
 "thought I would sail about a little and " +
 "see the watery part of the world. It is " +
 "a way I have of driving off the spleen, " +
 "and regulating the circulation. Whenever " +
 "I find myself growing grim about the " +
 "mouth; whenever it is a damp, drizzly " +
 "November in my soul; whenever I find " +
 "myself involuntarily pausing before " +
 "coffin warehouses, and bringing up the " +
 "rear of every funeral I meet; and " +
 "especially whenever my hypos get such an " +
 "upper hand of me, that it requires a " +
 "strong moral principle to prevent me " +

 "from deliberately stepping into the " +
 "street, and methodically knocking " +
 "people's hats off\x2014then, I account it " +
 "high time to get to sea as soon as I " +
 "can. This is my substitute for pistol " +
 "and ball. With a philosophical flourish " +
 "Cato throws himself upon his sword; I " +
 "quietly take to the ship. There is " +
 "nothing surprising in this. If they but " +
 "knew it, almost all men in their degree, " +
 "some time or other, cherish very nearly " +
 "the same feelings towards the ocean with " +
 "me.",
 Font, new SolidBrush(clr),
 new Rectangle(0, 0, cx, cy));
 }
}

This is nothing you haven't seen before except that I've indicated where you can add a line or two of
code, recompile, and see what happens.

Here's the first one you can try:
grfx.RotateTransform(45);

Make sure you insert this call before the DrawString call. The effect is to rotate the text 45 degrees
clockwise:

Simple enough, no? Notice that the text is still within the rectangle specified in the DrawString call,
but that rectangle has been effectively rotated along with the text. You can also print it, but I must
warn you that it may take quite some time for the print spooler file to be created.

What's affected by RotateTransform? All the Graphics drawing functions covered so far.

The argument to RotateTransform is a float value, and it can be positive or negative. Try this:
grfx.RotateTransform(-45);

The text is rotated 45º counterclockwise. The angle can also be greater than 360º or less than −360º.
For our particular example, any value that doesn't resolve to an angle between −90º and 90º will
cause the text to be rotated right off the visible area of the window.

Successive calls to RotateTransform are cumulative. The calls
grfx.RotateTransform(5);
grfx.RotateTransform(10);
grfx.RotateTransform(-20);

result in the text being rotated 5º counterclockwise.

Now try this:
grfx.ScaleTransform(1, 3);

This function increases the coordinates and sizes of displayed graphics. The first argument affects
the horizontal coordinates and sizes, and the second argument affects the vertical. In the MobyDick
program, calling this function causes the width of the text to be the same but makes the font
characters three times taller. The call
grfx.ScaleTransform(3,1);

doesn't affect the height of the characters but makes them three times wider. The display rectangle
increases likewise, so the text has the same line breaks.You can also combine the two effects:
grfx.ScaleTransform(3, 3);

Again, these are float values, and they are compounded. Scaling both the horizontal and vertical
sizes by a factor of 3 can be accomplished by the following two calls:
grfx.ScaleTransform(3, 1);
grfx.ScaleTransform(1, 3);

Or by
grfx.ScaleTransform((float)Math.Sqrt(3), (float)Math.Sqrt(3));
grfx.ScaleTransform((float)Math.Sqrt(3), (float)Math.Sqrt(3));

But what you'll probably find most interesting is that blowing up the text doesn't make it all jaggy. It
looks as if you are using a different sized font rather than increasing the size of an existing font.

Can the scale values be negative? Yes, they can. However, if you try it right now, you won't see
anything. But I will shortly get to a point where we can use negative scale values and see the very
startling effect. The scale values can't be 0, or the function will throw an exception.

I've saved, well, the most boring for last. The TranslateTransform call simply shifts coordinates along
the horizontal and vertical axis. For example, inserting the call
grfx.TranslateTransform(100, 50);

into the MobyDick program causes the text to begin 100 pixels to the right of and 50 pixels below the
origin of the client area. If you print this version, the text appears 1 inch to the right of and 1/2 inch
below the origin of the printable area of the page. Negative values of the first argument will move the
text off the left side of the client area; negative y values move the text off the top.

But shifting the text helps demonstrate other techniques. I want you to insert the call
grfx.TranslateTransform(cx / 2, cy / 2);

That will begin the text in the center of the client area or printer page. That's not very interesting by
itself, but now insert the following after the TranslateTransform call:
grfx.ScaleTransform(-1, 1);

Now that is interesting, isn't it? What happens is that the text is reflected around the vertical axis,
appearing as a mirror image in the bottom left quadrant of the client area:

Now replace that ScaleTransform call with this one:
grfx.ScaleTransform(1, -1);

Now the text is reflected around the horizontal axis and appears upside down. Again, you can
combine the two effects:
grfx.ScaleTransform(-1, -1);

Now you know why you couldn't use the ScaleTransform call by itself with negative arguments—the
text would be flipped off the visible surface of the client area. You need to move the text farther from
the left and top edge to see the effect.

OK, now let's try switching around the order of the TranslateTransform and one of the
ScaleTransform calls:
grfx.ScaleTransform(-1, 1);
grfx.TranslateTransform(cx / 2, cy / 2);

Now you see nothing, and you probably figure that it's because the text has been somehow moved
off the surface of the client area. There are two ways to bring it back. One way is to change the first
argument of the TranslateTransform call so that it's negative:
grfx.ScaleTransform(-1, 1);
grfx.TranslateTransform(-cx / 2, cy / 2);

Now it's back to being reflected around the vertical axis in the center of the client area. By the way,
I'm not expecting you to understand why this works yet. Indeed, at this point, confusion would not be
inappropriate.

To add to that confusion, here's another way to do it. Leave the first argument the way it was, but
use this overload of the TranslateTransform method:
grfx.ScaleTransform(-1, 1);
grfx.TranslateTransform(cx / 2, cy / 2, MatrixOrder.Append);

Each of the three methods we've looked at so far—RotateTransform, ScaleTransform, and
TranslateTransform—is overloaded to allow a final MatrixOrder argument, which is an enumeration

defined in the System.Drawing.Drawing2D namespace. (That's why I've conveniently included the
additional using statement at the top of the MobyDick program.)

Here are the formal definitions of the Graphics methods I've discussed in this section so far, plus
another:

Graphics Methods (selection)

void TranslateTransform(float dx, float dy)
void TranslateTransform(float dx, float dy, MatrixOrder mo)
void ScaleTransform(float sx, float sy)
void ScaleTransform(float sx, float sy, MatrixOrder mo)
void RotateTransform(float fAngle)
void RotateTransform(float fAngle, MatrixOrder mo)
void ResetTransform()

The ResetTransform call makes everything go back to normal. The MatrixOrder enumeration has
just two members:
MatrixOrder Enumeration

Member Value Description

Prepend 0 Default

Append 1 Switches order of application

What these enumeration values do will become evident before the conclusion of the chapter.
The Big Picture
The coordinates you pass to the various drawing methods implemented in the Graphics class are
said to be world coordinates. World coordinates are first subjected to the world transform, which is
the thing we've been playing around with by calling TranslateTransform, ScaleTransform, and
RotateTransform. I'll formalize the world transform shortly.

The world transform converts world coordinates to page coordinates. The page transform—the
transform defined by the PageUnit and PageScale properties of the Graphics object—converts those
page coordinates to device coordinates, which are pixels relative to the upper left corner of the client
area or printable area of the printer page.

For functions such as the Graphics method MeasureString or the Font method GetHeight, this
process is reversed. Device coordinates are converted to page coordinates, which are then
converted to world coordinates and returned by the method.
Linear Transforms
Let's look at the mathematical effect of calling the various transform methods. The simplest of these
methods seems to be
grfx.TranslateTransform(dx, dy);

where I'm symbolizing the arguments with dx and dy. (The d stands for delta, mathematically
meaning change.) The world transform that results from this method call is

xpage = xworld + dx
ypage = yworld + dy

Easy enough. As you saw, the TranslateTransform call resulted in all coordinates being offset.

Similarly, here's a call to ScaleTransform:
grfx.ScaleTransform(sx, sy);

The s stands for scale. This world transform involves not an addition but a multiplication:

xpage = sx · xworld
ypage = sy · yworld

This scaling effect is very similar to the page transform.

When you call

grfx.RotateTransform(α);

with an angle of α, well, I won't make you guess. The resultant transform is obviously a bit more
complicated and looks like this:

xpage = xworld · cos(α) + yworld · sin(α)
ypage = −xworld · sin(α) + yworld · cos(α)

This little table of sines and cosines may help you verify that these formulas do indeed work:

By the way, if you're familiar with this stuff from experience with other graphics programming
environments, the two formulas for rotations might look slightly off. That's because GDI+ expresses
rotations clockwise. In more mathematically oriented environments, rotations are counterclockwise.
In that case, the sine term in the first formula is negative and the sine term in the second is positive.

We can generalize all three of these transforms into the two formulas

xpage = sx · xworld + rx · yworld + dx
ypage = ry · xworld + sy · yworld + dy

where sx, sy, rx, ry, dx, and dy are constants that define the particular transform. You've already been
introduced to the scaling factors sx and sy, and the translation factors dx and dy. You've also seen
that certain specific combinations of sx, sy, rx, and ry—combinations defined by trigonometric

functions of particular angles—can result in rotation. The rx and ry factors also have a meaning in
themselves, and the graphical effect of these two constants will soon become apparent.

These two formulas taken together are known as the general linear transformation of the plane.[2]
Although xpage and ypage are functions of both xworld and yworld, these formulas don't involve powers of
xworld or yworld or anything like that. That the world transform is linear implies certain restrictions on
what you can do with the world transform.
§ The world transform will always transform a straight line into another straight line. Straight lines

will never become curved.
§ A pair of parallel lines will never be transformed into lines that are not parallel.
§ Two objects equal in size to each other will never be transformed into two objects unequal in

size.
§ Parallelograms (including rectangles) will always be transformed into other parallelograms;

ellipses will always be transformed into other ellipses.

When you start off with a new, clean Graphics class on entry to a Paint or a PrintPage event, the
world transform in effect is called the identity transform: the sx and sy factors are set equal to 1; the
other factors are set to 0. The ResetTransform method restores the Graphics object to the identity
transform.

As you've seen, the effects of successive calls to TranslateTransform, ScaleTransform, and
RotateTransform are accumulated. However, the resultant world transform differs depending on the
order that you call these methods. It's fairly easy to demonstrate why. This won't be pretty, so it's OK
if you cover your eyes during the scary parts.

First, let's assume we have one world transform that I'll call T1:

x′ = sx1 · x + rx1 · y + dx1
y′ = ry1 · x + sy1 · y + dy1

Rather than using subscripts indicating world coordinates and page coordinates, the world
coordinates are simply x and y, and the page coordinates are x′ and y′. Let's assume a second
transform called T2 with different factors:

x′ = sx2 · x + rx2 · y + dx2
y′ = ry2 · x + sy2 · y + dy2

Applying T1 first to world coordinates and then T2 to the result produces this transform:

x′ = sx2·sx1·x + sx2·rx1·y + sx2·dx1 + rx2·ry1·x + rx2·sy1·y + rx2·dy1 + dx2
y′ = ry2·sx1·x + ry2·rx1·y + ry2·dx1 + sy2·ry1·x + sy2·sy1·y + sy2·dy1 + dy2

Consolidating the terms, you arrive at this:

x′ = (sx2·sx1 + rx2·ry1) · x + (sx2·rx1 + rx2·sy1) · y + (sx2·dx1 + rx2·dy1 + dx2)
y′ = (ry2·sx1 + sy2·ry1) · x + (ry2·rx1 + sy2·sy1) · y + (ry2·dx1 + sy2·dy1 + dy2)

If you apply T2 first and then T1, you get something different:

x′ = sx1·sx2·x + sx1·rx2·y + sx1·dx2 + rx1·ry2·x + rx1·sy2·y + rx1·dy2 + dx1
y′ = ry1·sx2·x + ry1·rx2·y + ry1·dx2 + sy1·ry2·x + sy1·sy2·y + sy1·dy2 + dy1

Consolidating the terms, you obtain

x′ = (sx1·sx2 + rx1·ry2) · x + (sx1·rx2 + rx1·sy2) · y + (sx1·dx2 + rx1·dy2 + dx1)
y′ = (ry1·sx2 + sy1·ry2) · x + (ry1·rx2 + sy1·sy2) · y + (ry1·dx2 + sy1·dy2 + dy1)

And that, my friends, is why you get different results depending on whether you call ScaleTransform
or TranslateTransform first.
[2] See Anthony J. Pettofrezzo, Matrices and Transformations (New York: Dover, 1978), Chapter 3,
and particularly section 3-7 for a rigorous mathematical treatment.
Introducing Matrixes

When something is very messy in mathematics (like the calculations I just demonstrated), the
solution usually doesn't involve removing something but introducing something new. Here it will be
very useful to introduce a matrix, particularly because the mathematics of matrix algebra are well
known (at least to mathematicians). You can represent a linear transform by a matrix; applying
multiple transforms is equivalent to multiplying the matrices.

A matrix is a rectangular array of numbers. Here's an array with three columns and two rows:

Arrays are usually symbolized by capital letters. When multiplying two matrices like so:

A × B = C

the number of columns in A must be the same as the number of rows in B. The number of rows in
the product C is equal to the number of rows in A. The number of columns in C is equal to the
number of columns in B. The number in the ith row and jth column in C is equal to the sum of the
products of the numbers in the ith row of A times the corresponding numbers in the jth column of B.[3]
Matrix multiplication is not commutative. The product A × B does not necessarily equal the product B
× A.

If we weren't dealing with translation, we could represent the world coordinates (x, y) as a 1 × 2
matrix and the transformation matrix as a 2 × 2 matrix. You multiply these two matrices and express
the resultant page coordinates (x′, y′) as another 1 × 2 matrix:

Applying the multiplication rules to the matrices gives us the formulas

x′ = sx · x + rx · y
y′ = ry · x + sy · y

These formulas are not quite complete, however. The world transform also involves a translation
factor. To get the matrix multiplication to work right, the world coordinates and page coordinates
must be expanded to 1 × 3 matrices, and the transform is a 3 × 3 matrix:

Here are the resultant formulas:

x′ = sx · x + rx · y + dx
y′ = ry · x + sy · y + dy

The type of transform that can be represented by a matrix like this is often called a matrix transform.

The matrix transform that doesn't do anything has scaling factors of 1, and r and d have factors of 0:

This is called the identity matrix.
[3] See Pettofrezzo, section 1-2 for examples.
The Matrix Class
The matrix transform is encapsulated in the Matrix class defined in the System.Drawing.Drawing2D
namespace. You can create a Matrix object using one of four constructors, two of which are shown
here:

Matrix Constructors (selection)

Matrix()
Matrix(float sx, float ry, float rx, float sy, float dx, float dy)

The second constructor allows you to specify all six constants that define the matrix transform. The
scaling factors sx and sy must be nonzero! (If they're not, you'll get an exception error.)

The Graphics class has a read/write property named Transform that is a Matrix object:
Graphics Property (selection)

Type Property Accessibility

Matrix Transform get/set

Whenever you call the TranslateTransform, ScaleTransform, RotateTransform, or ResetTransform
method, the Transform property is affected. You can also set the Transform property directly. The
call
grfx.Transform = new Matrix(1, 0, 0, 1, 0, 0);

has the same effect as ResetTransform.

The Matrix class has five properties, all of which are read-only:
Matrix Properties

Type Property Accessibility Description

float[] Elements get Six transformation constants

float OffsetX get Transform dx constant

float OffsetY get Transform dy constant

bool IsIdentity get Diagonal of 1's

bool IsInvertible get Can be inverted

Let's now look at an example of compounded transforms. Suppose you first call
grfx.ScaleTransform(2, 2);

Your program could then examine the resultant matrix by calling
float[] afElements = grfx.Transform.Elements;

You'll see the values 2, 0, 0, 2, 0, 0, which can be represented as the following matrix:

Now you call
grfx.TranslateTransform(100, 100);

By itself, that would result in the matrix

However, the new transform is a composite of the two method calls. The matrix representing the
second call is multiplied by the existing Transform property, and the result is the new Transform
property:

Now try making the ScaleTransform and TranslateTransform calls in the opposite order:
grfx.TranslateTransform(100, 100);
grfx.ScaleTransform(2, 2);

Again, the resultant transform is calculated by multiplying the second matrix by the first matrix:

You can also obtain this transform by calling
grfx.ScaleTransform(2, 2);
grfx.TranslateTransform(100, 100, MatrixOrder.Append);

The MatrixOrder.Append argument indicates that the new transform is to be appended to the existing
transform. The default is MatrixOrder.Prepend.

The Graphics class has one more world transform method:

Graphics Methods (selection)

void MultiplyTransform(Matrix mat)
void MultiplyTransform(Matrix mat, MatrixOrder mo)

This method lets you multiply the existing transform matrix by a new one.

I'll discuss the Matrix class more in Chapter 15.
Shear and Shear Alike
Let's go back to the MobyDick program and insert the following statement:
grfx.Transform = new Matrix(1, 0, 0, 3, 0, 0);

This statement has the same effect as the call
grfx.ScaleTransform(1, 3);

What we haven't experimented with yet are the rx and ry factors used by themselves. Consider the
following call:
grfx.Transform = new Matrix(1, 0, 0.5f, 1, 0, 0);

This call results in the following transform matrix:

And these are the transform formulas:

x′ = x + 0.5 · y
y′ = y

Notice that the x coordinate values are increased by the y value. When y equals 0 (the top of the
client area), no transform will occur. As y gets larger going down the client area, x is increased
likewise. The result is an effect called shear.

Specifically, the effect here is called horizontal shear, or x-shear. Unfortunately, the word shear
starts with the same letter as scale, so to identify the shear factors in the transform formulas, I've
used the last letter of shear.

You can also set the vertical shear, or y-shear, factor like so:
grfx.Transform = new Matrix(1, 0.5f, 0, 1, 0, 0);

This matrix is

The transform formulas are

x′ = x
y′ = 0.5 · x + y

Notice that each line of text still begins at the left margin of the client area:

Rotation is actually a combination of horizontal shear and vertical shear. However, some
combinations, like this one, won't work:
grfx.Transform = new Matrix(1, 1, 1, 1, 0, 0);

This defines the transform

x′ = x + y
y′= x + y

This transform would cause an image to be compressed into a single line. It will generate an
exception before it does that. But this call works:
grfx.Transform = new Matrix(1, 1, -1, 1, 0, 0);

It results in the following display:

If you set the first four arguments to the square root of 1/2,
grfx.Transform = new Matrix(0.707f, 0.707f, -0.707f, 0.707f, 0, 0);

you'll produce the same result as the call we started this whole exploration with:
grfx.RotateTransform(45);
Combining Transforms
In theory, you don't need the page transform at all. All the page transform does is scaling, and you
can certainly do that and a lot more with the world transform. It's often convenient to combine the two
transforms, however, particularly if you're interested in drawing figures of a particular size that are
then subjected to the world transform.

This program draws 36 one-inch squares that are rotated around the center of the display area.
RotatedRectangles.cs
//--
// RotatedRectangles.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class RotatedRectangles: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new RotatedRectangles());
 }
 public RotatedRectangles()
 {
 Text = "Rotated Rectangles";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)

 {
 Pen pen = new Pen(clr);
 grfx.PageUnit = GraphicsUnit.Pixel;
 PointF[] aptf = { (PointF) grfx.VisibleClipBounds.Size };
 grfx.PageUnit = GraphicsUnit.Inch;
 grfx.PageScale = 0.01f;

 grfx.TransformPoints(CoordinateSpace.Page,
 CoordinateSpace.Device, aptf);

 grfx.TranslateTransform(aptf[0].X / 2, aptf[0].Y / 2);

 for (int i = 0; i < 36; i++)
 {
 grfx.DrawRectangle(pen, 0, 0, 100, 100);
 grfx.RotateTransform(10);
 }
 }
}

The hard part here is calculating the arguments to the TranslateTransform call, which is necessary to
shift the world coordinate origin to the center of the display area. The OnPage method changes the
page unit to pixels in order to get the VisibleClipBounds property in units of pixels. OnPage then
switches to a page unit of 1/100 inch and transforms the display area width and height to page
coordinates. The TranslateTransform call uses these values halved.

The for loop is the easy part: It draws a rectangle 100 units wide and high positioned at the point (0,
0). The RotateTransform call then rotates 10º in preparation for the next iteration. And here's what it
looks like:

Knowing how to rotate objects around an origin will come in handy in the analog clock program in
Chapter 10.

Chapter 8: Taming the Mouse
Overview
United States patent number 3,541,541, filed June 21, 1967, describes an "X-Y Position Indicator for
a Display System."[1] The inventor is listed as Douglas C. Engelbart of the Stanford Research
Institute (SRI). The word mouse is never mentioned in the original patent, of course, but it's obvious
that's what the patent describes.

Doug Engelbart (born 1925) founded the Augmentation Research Center at SRI to advance
computer hardware and software in pursuit of an ambitious goal: to create tools for the augmentation
of human intelligence. As Engelbart recollected in 1986, "We wanted to start experimenting with
screen selection. The idea of working and interacting very actively with the display meant that we
had to tell the computer what we were looking at, so we needed a screen selection device. There
was a lot of argument about light pens and tracking balls in those days, but none of those arguments
served our needs very directly. I wanted to find the best thing that would serve us in the context in
which we wanted to work—text and structured items and interactive commands…. I dug up some
notes of mine describing a possibility that turned into the very first mouse."[2]

By 1972, the mouse had found its way to the Xerox Palo Alto Research Center (PARC), where it
became part of the Alto, the machine that is commonly regarded as the first implementation of a
graphical user interface and the precursor to the personal computer. But it wasn't until the 1983
introduction of the ill-fated Apple Lisa and the more successful Macintosh a year later that the mouse
started to become a common accessory on every well-dressed computer.

While the keyboard is adequate for alphanumeric input and rudimentary cursor movement, the
mouse provides a more intimate connection between the user and objects on the screen. As an
extension of the user's fingers, the mouse can point, grab, and move. The mouse has also adapted
itself well to new types of applications: although games players and graphics artists were among the
first to experience the mouse, in more recent years, the mouse has proved invaluable in navigating
through hypertext-oriented mediums like the Web.
[1] U.S. patents are available for viewing at http://www.uspto.gov/patft. You'll need a TIFF viewer for
patents issued prior to 1976.
[2] Adele Goldberg, ed., A History of Personal Workstations (New York: ACM Press, 1988), 194–195.
This book is a collection of papers presented at the ACM (Association for Computing Machinery)
Conference on the History of Personal Workstations held January 9–10, 1986, in Palo Alto,
California. A more extensive discussion of the mouse can be found in Thierry Bardini's book,
Bootstrapping: Douglas Engelbart, Coevolution, and the Origins of the Personal Computer (Stanford,
CA: Stanford University Press, 2000).
The Dark Side of the Mouse
When Microsoft Windows was first released in 1985, the mouse was still a relatively rare appliance in
the IBM-compatible world. The early developers of Windows felt that users shouldn't be required to
buy a mouse in order to use the product. The mouse was made an optional accessory for Windows,
and keyboard alternatives to the mouse were provided in all the little programs that came with
Windows. (This is still the case: check out the help information in the Windows Calculator to see how
each button is industriously assigned a keyboard alternative.) Third-party software developers were
also encouraged to follow Microsoft's lead and provide keyboard interfaces in their own applications.

Although the mouse has become a nearly universal PC peripheral, part of the legacy of Windows
involves an openness to mouseless system configurations. When at all possible, I still like the idea of
providing keyboard equivalents for mouse actions. Touch typists in particular prefer keeping their
hands on the keyboard, and I suppose everyone has had the experience of "losing" a mouse on a
cluttered desk or having a mouse too clogged up with mouse gunk to work well. The keyboard
equivalents usually don't cost much in terms of thought or effort, and they can deliver more
functionality to users who prefer them.

There are a number of strong reasons why keyboard alternatives to the mouse must be considered
an essential part of any Windows application, most having to do with accessibility. For example, as
the average age of computer users increases, some people—myself included—have suffered from
painful and debilitating injuries to their hands, arms, and shoulders that are a direct result of
excessive mouse use. Sometimes these problems can even be traced to a single application. I've

http://www.uspto.gov/patft

made an extra effort in searching out keyboard alternatives in the applications I use, and it's
disheartening to find applications whose developers have seemingly given up on providing a well-
rounded user interface.
Ignoring the Mouse
Since Chapter 2, you've been writing and running programs that respond to mouse input. The
standard form includes a mouse interface that lets the user move the form around the screen by
dragging its caption bar, resize the form by dragging its sizing border, open the control box (also
known as the system menu) to select items, and trigger the minimize, maximize, and close buttons.
All this happens without any effort by you, the programmer. Obviously, Windows is handling that
mouse input itself.

As you learned in Chapter 4, it's not necessary for a Windows Forms program to worry about mouse
input when it implements a scroll bar. The scroll bar code itself handles the mouse input and
responds appropriately.

Beginning in Chapter 12, I'll start talking about the many predefined controls available in Windows
Forms. Later chapters will cover menus and dialog boxes. You'll discover that all these user interface
enhancements handle their own mouse input. Indeed, that's the primary purpose of controls: to
encapsulate a low-level interface to the keyboard and mouse, and to provide a higher-level interface
that you as a programmer can deal with.

This chapter involves those times when you need to directly handle mouse input within your client
area, which, of course, is something that not all applications need to do. Those programmers who
will adorn their client areas with predefined controls may never need to deal directly with mouse
input. However, if you ever want to write your own controls, having a solid foundation in mouse
handling is a necessity.
Some Quick Definitions
A mouse is a pointing device with one or more buttons. The mouse is the object that sits on your
desk. When you move the mouse, the Windows environment moves a small bitmap image called the
mouse cursor on the screen. (In some graphical environments—and even in some of the Windows
Forms documentation—the mouse cursor is referred to as a pointer.)

The mouse cursor has a hot spot that corresponds to a precise pixel location on the screen. For
example, the hot spot of the default arrow cursor is the tip of the arrow. This is what is meant by the
location of the mouse cursor. I hope you won't be too alarmed if I'm occasionally a little sloppy and
refer to the location or position of the mouse rather than the mouse cursor. Rest assured that the
mouse is still on your desk and not crawling up your screen.

Clicking the mouse is pressing and releasing a mouse button. Dragging the mouse is holding down
the mouse button and moving the mouse. Double-clicking is clicking the mouse button twice in
succession. For an action to qualify as a double-click, both clicks must occur within a set period of
time and with the mouse cursor in approximately the same location on the screen. If you ever need
to know these values (and it's unlikely you will), the SystemInformation class contains two static
read-only properties with this information:
SystemInformation Static Properties (selection)

Type Property Accessibility Description

int DoubleClickTime get Time in milliseconds

Size DoubleClickSize get Area in pixels

The user has control over these settings using the Mouse item in Control Panel.
Information About the Mouse
Can you run your computer without a mouse? Well, why don't you try? Shut down your computer,
unplug the mouse, restart, and see what happens. Windows 2000 doesn't seem to complain.
Ctrl+Esc (or the Windows key on some keyboards) brings up the Start menu, and you can navigate
through your programs, documents, or favorites list with the keyboard cursor-movement keys.

A Windows Forms program may want to determine whether a mouse is present and, if so, how many
buttons it has. Again, the SystemInformation class comes to the rescue:
SystemInformation Static Properties (selection)

Type Property Accessibility Description

bool MousePresent get Indicates whether a mouse is installed

int MouseButtons get Indicates the number of buttons on the
mouse

bool MouseButtonsSwapped get Indicates whether buttons are swapped

MousePresent returns true if a mouse is installed, and MouseButtons indicates the number of
buttons on the mouse. If a mouse is installed, the number of buttons could be reported as one, two,
three, four, or five, with two and three buttons probably being the most common on machines
currently running Windows.

The MouseButtonsSwapped property returns true if the user has used the Mouse item on Control
Panel to swap the functionality of the left and right mouse buttons. This swapping is usually done by
left-handed users who put the mouse on the left side of the keyboard and want to use the forefinger
of the left hand to carry out the most common mouse operations.

You don't normally need to know about button swapping. However, if you want to write a computer-
based training program that includes an animation that shows mouse buttons being pressed, you
might want to delight the user by showing the mouse in the configuration that the user has selected.
(Of course, nothing prevents a user from moving the mouse to the left of the keyboard without
swapping the buttons—a technique I've used deliberately to lessen my mouse use—or swapping the
buttons and using the right hand.)

Regardless of any button swapping, the button called the left button is really the primary button. This
is the button that carries out the most common activities of selecting items, dragging icons, and
triggering actions.

The right mouse button has come to be used for invoking context menus. These are menus that
appear at the mouse cursor position and pertain to options that apply only to the area where the
mouse cursor is currently located. For example, in Internet Explorer, if the cursor is positioned over
an image and you press the right mouse button, you get several options, including one to save the
picture to a file. If the mouse isn't positioned over a picture but on some other part of the page, you
won't have an option to save the image, but you will have an option to print the page. I'll discuss how
you can create context menus in Chapter 14.
The Mouse Wheel
"Build a better mousetrap and the world will beat a path to your door," my mother used to tell me,
unknowingly paraphrasing Ralph Waldo Emerson.[3] Nowadays, it might make more sense to build a
better mouse.

The three-button mouse never achieved much popularity under Windows until Microsoft introduced
the IntelliMouse. While not exactly intelligent in the conventional sense, the IntelliMouse does include
an enhancement in the form of a little wheel between the two buttons. If you press on this wheel, it
functions as a third mouse button (referred to in programming interfaces as the middle button). But
you can also rotate the wheel with your finger, and wheel-aware programs can respond by scrolling
or zooming a document.

As gimmicky as this may sound, it turns out that the mouse wheel is habit-forming, particularly for
reading long documents or Web pages. The big advantage is that you don't need to keep the mouse
cursor positioned over the scroll bar; it can be anywhere within the document.

Once again, SystemInformation is the place to go for information about the mouse wheel:
SystemInformation Static Properties (selection)

Type Property Accessibility Description

bool MouseWheelPresent get Returns true if wheel is present

SystemInformation Static Properties (selection)

Type Property Accessibility Description

int MouseWheelScrollLines get Number of lines to scroll per turn

bool NativeMouseWheelSupport get Not important to applications

The mouse wheel doesn't turn smoothly but instead has a definite notched, or clicked, feel. To
ensure that applications respond to the mouse wheel consistently, each notch (called a detent in the
.NET Framework documentation) is supposed to correspond to a certain number of text lines that the
application scrolls through the document. The MouseWheelScrollLines property indicates that
number of lines. For the Microsoft IntelliMouse, the property currently returns 3. However, future
super-duper mouse gizmos may have a finer notch, and in that case, MouseWheelScrollLines might
someday return 2 or 1.

If you think it might be interesting to add mouse wheel support to supplement the scroll bar in one of
the SysInfo programs we developed in Chapter 4, don't bother. The scroll bars created by the auto-
scroll facility respond to the mouse wheel automatically.
[3] Or maybe not. The full quotation "If a man can write a better book, preach a better sermon, or
make a better mousetrap than his neighbor, though he builds his house in the woods the world will
make a beaten path to his door" is attributed to a lecture by Emerson but doesn't appear in his
writings. See Bartlett's Familiar Quotations, 16th ed. (Boston: Little, Brown, 1992), 430. It's also
widely acknowledged these days that this charming sentiment just ain't so. A good marketing
strategy is also necessary for the commercial success of mousetraps or any other consumer item.
The Four Basic Mouse Events
Mouse activity is communicated to a Windows Forms application in the form of events. The Control
class defines nine mouse events and nine corresponding protected methods; any class descended
from Control (including Form) also inherits these nine methods.

Although a detailed discussion of controls awaits us in Chapter 12, it's helpful to get an idea of how
the mouse works with controls. So for now, imagine a form or a dialog box covered with controls
such as buttons, text labels, text-entry fields, and so forth. These controls are considered children of
the form. Likewise, the form is known as the parent of the controls. We've already had contact with
this notion in the SysInfoPanel program in Chapter 4 when the Parent property of the Panel control
was assigned to the Form object.

Only one control receives any particular mouse event. A control receives mouse events only when it
is both enabled and visible, that is, when both the Enabled and Visible properties are set to true.
Usually, mouse events are received only by the control directly underneath the mouse cursor.

If a child control is enabled and visible, and you pass the mouse cursor over the control, the child
control receives the mouse events rather than the parent. If the child control is either disabled or
invisible, the parent receives the mouse events. It's as if the child were transparent. If multiple
controls are stacked on the same physical point, the enabled and visible control highest in the Z-
order receives the mouse events, that is, visibly on top of all other overlapping controls. I'll explain
this concept in Chapter 12.

Any object derived or instantiated from Form receives mouse events only when the mouse is
positioned over the form's client area; the Form object does not receive mouse events when the
cursor is positioned over the form's border, caption bar, control box, minimize box, maximize box,
close box, menu, or scroll bars.

However, as you'll see, under some circumstances a control or form receives mouse events when
the mouse cursor is not positioned over the control. This feature is known as mouse capturing, and it
assists forms and controls in tracking mouse movement. I'll have much more to say on this subject
later in this chapter.

Here are the four basic mouse events:
Control Events (selection)

Event Method Delegate Argument

Control Events (selection)

Event Method Delegate Argument

MouseDown OnMouseDown MouseEventHandler MouseEventArgs

MouseUp OnMouseUp MouseEventHandler MouseEventArgs

MouseMove OnMouseMove MouseEventHandler MouseEventArgs

MouseWheel OnMouseWheel MouseEventHandler MouseEventArgs

As the names imply, the MouseDown and MouseUp events indicate a button being pressed or
released. The MouseMove event signals mouse movement, and the MouseWheel event occurs
when the user rolls the mouse wheel.

These four events are the only events associated with objects of type MouseEventArgs. The
MouseEventArgs class has five read-only properties:
MouseEventArgs Properties

Type Property Accessibility Description

int X get The horizontal position of the mouse

int Y get The vertical position of the mouse

MouseButtons Button get The mouse button or buttons

int Clicks get Returns 2 for a double-click

int Delta get Mouse wheel movement

X and Y are integers that indicate the position of the mouse cursor hot spot in pixels relative to the
upper left corner of the client area. These two properties are valid for all four mouse events.

The Button property indicates the mouse button or buttons involved in the event. This property isn't
valid for MouseWheel events. The Button property is a MouseButtons enumeration value:
MouseButtons Enumeration

Member Value

None 0x00000000

Left 0x00100000

Right 0x00200000

Middle 0x00400000

XButton1 0x00800000

XButton2 0x01000000

In this enumeration, the word Left should be interpreted as the user's primary mouse button—the
button that invokes application menus and lets the user resize and move forms. The Right mouse
button is the button that invokes context menus. XButton1 and XButton2 refer to buttons in the
IntelliMouse Explorer, which has five buttons.

For MouseDown and MouseUp events, the Button property indicates the particular button being
pressed or released.

For MouseMove events, the Button property indicates which button or buttons are currently pressed.
Notice that the values are bit flags that can be combined. For example, if both the left and right
buttons are pressed, the Button property equals 0x00300000. If the MouseEventArgs object is
named mea, the following expression returns true if the right mouse button and only the right mouse
button is pressed:
(mea.Button == MouseButtons.Right)

The following expression is true if the right mouse button is pressed, regardless of the other mouse
buttons:
(mea.Button & MouseButtons.Right != 0)

The Clicks property is valid only for MouseDown events and is normally set to 1. The property is set
to 2 if the MouseDown event follows a previous MouseDown event quickly enough to qualify as a
double-click.

The Delta property is valid only for MouseWheel events. If you roll the wheel forward one click, the
Delta property will typically equal 120, and if you roll it back one click, the Delta property will typically
equal −120.
Doing the Wheel
Let's get the mouse wheel out of the way first so we can focus on more conventional aspects of
mouse use. In the previous paragraph, I mentioned the value 120. This is a rare instance of a
number essential to Windows Forms programming—or at least the processing of mouse wheel
events—that is not associated with a static property or an enumeration value. In the Win32 header
files, an identifier named WHEEL_DELTA is defined as 120; in Windows Forms programs that use
the mouse wheel, you'll have to hard-code this value or define your own const variable.

When you get a MouseWheel event, you calculate the number of text lines to scroll like so:
mea.Delta * SystemInformation.MouseWheelScrollLines / 120

Currently, this calculation yields either 3 or −3, but including the SystemInformation constant in the
calculation allows your program to adapt better to future mouse wheel devices that have finer wheel
gradations. Positive values indicate that the user is pushing the wheel forward; the program should
respond by scrolling toward the top of the document. Negative values mean that the user is pulling
the wheel back, and the program should scroll toward the bottom of the document.

The following program demonstrates the use of the mouse wheel by displaying (and scrolling) Edgar
Allan Poe's creepy poem "Annabel Lee."
PoePoem.cs
//--------------------------------------
// PoePoem.cs © 2001 by Charles Petzold
//--------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class PoePoem: Form
{
 const string strAnnabelLee =

 "It was many and many a year ago,\n" +
 " In a kingdom by the sea,\n" +
 "That a maiden there lived whom you may know\n" +
 " By the name of Annabel Lee;\x2014\n" +
 "And this maiden she lived with no other thought\n" +
 " Than to love and be loved by me.\n" +
 "\n" +
 "I was a child and she was a child\n" +
 " In this kingdom by the sea,\n" +
 "But we loved with a love that was more than love\x2014\n" +

 " I and my Annabel Lee\x2014\n" +
 "With a love that the wingéd seraphs of Heaven\n" +
 " Coveted her and me.\n" +
 "\n" +
 "And this was the reason that, long ago,\n" +
 " In this kingdom by the sea,\n" +
 "A wind blew out of a cloud, chilling\n" +
 " My beautiful Annabel Lee;\n" +
 "So that her highborn kinsmen came\n" +
 " And bore her away from me,\n" +
 "To shut her up in a sepulchre,\n" +
 " In this kingdom by the sea.\n" +
 "\n" +
 "The angels, not half so happy in Heaven,\n" +
 " Went envying her and me\x2014\n" +
 "Yes! that was the reason (as all men know,\n" +
 " In this kingdom by the sea)\n" +
 "That the wind came out of the cloud by night,\n" +
 " Chilling and killing my Annabel Lee.\n" +
 "\n" +
 "But our love it was stronger by far than the love\n" +
 " Of those who were older than we\x2014\n" +
 " Of many far wiser than we\x2014\n" +
 "And neither the angels in Heaven above\n" +
 " Nor the demons down under the sea\n" +
 "Can ever dissever my soul from the soul\n" +
 " Of the beautiful Annabel Lee:\x2014\n" +
 "\n" +
 "For the moon never beams, without bringing me dreams\n" +
 " Of the beautiful Annabel Lee;\n" +
 "And the stars never rise, but I feel the bright eyes\n" +
 " Of the beautiful Annabel Lee:\x2014\n" +
 "And so, all the night-tide, I lie down by the side\n" +
 "Of my darling\x2014my darling\x2014my life and my bride,\n" +
 " In her sepulchre there by the sea\x2014\n" +
 " In her tomb by the sounding sea.\n" +
 "\n" +
 " [May 1849]\n";

 readonly int iTextLines = 0;
 int iClientLines, iStartLine = 0;
 float cyText;

 public static void Main()
 {

 // See whether the program makes sense.

 if (!SystemInformation.MouseWheelPresent)
 {
 MessageBox.Show("Program needs a mouse with a mouse
wheel!",
 "PoePoem", MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }
 // Otherwise go normally.

 Application.Run(new PoePoem());
 }
 public PoePoem()
 {
 Text = "\"Annabel Lee\" by Edgar Allan Poe";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;

 // Calculate the number of lines in the text.

 int iIndex = 0;

 while((iIndex = strAnnabelLee.IndexOf('\n', iIndex)) != -1)
 {
 iTextLines++;
 iIndex++;
 }
 // Obtain line-spacing value.

 Graphics grfx = CreateGraphics();
 cyText = Font.GetHeight(grfx);
 grfx.Dispose();

 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 iClientLines = (int) (ClientSize.Height / cyText);

 iStartLine = Math.Max(0,
 Math.Min(iStartLine, iTextLines - iClientLines));

 }
 protected override void OnMouseWheel(MouseEventArgs mea)
 {
 int iScroll =
 mea.Delta * SystemInformation.MouseWheelScrollLines / 120;

 iStartLine -= iScroll;
 iStartLine = Math.Max(0,
 Math.Min(iStartLine, iTextLines - iClientLines));
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 grfx.DrawString(strAnnabelLee, Font, new SolidBrush(ForeColor),
 0, -iStartLine * cyText);
 }
}

Notice that the program checks whether a mouse wheel is installed and lets the user know if it can't
find one. I've put this check in Main, but that's not the only option in programs that shouldn't run
under certain conditions. You can alternatively override the OnLoad method of the Form class and
check at that time. The Load event occurs after the constructor code executes but before the form is
made visible on the screen. In that case, if the program determines that it shouldn't run, it can display
a message box and call Close to prevent the form from being displayed. Where you cannot abort the
display of a form is in the form's constructor. Neither Close nor the static Application.Exit method
works there.

The text of the poem includes embedded line feed characters and is stored in a string variable. The
program counts the number of lines during the form's constructor and saves the result in a field
named iTextLines. The constructor also obtains the text line spacing by calling the GetHeight method
of the form's Font property. The return value is stored in a field named cyText.

The remainder of the initialization occurs in the OnResize method. The constructor must first call
OnResize explicitly. Thereafter, OnResize is called whenever the user resizes the form. OnResize
uses cyText to calculate iClientLines, the number of lines that can fit in the client area.

The iStartLine variable is the line of text that should appear at the top of the client area. It is
initialized at zero. The OnMouseWheel method adjusts the value using the calculation I showed
earlier.

Sometimes programs that scroll text are written so that scrolling all the way to the bottom makes the
last line of text appear at the top of the client area. But it's not necessary to allow the user to scroll
quite that far. All that's required is for the last line of text to be visible at the bottom of the client area.
For this reason, both the OnMouseWheel and OnResize methods in PoePoem include a calculation
using the Math.Min and Math.Max methods. This calculation ensures that iStartLine is non-negative
and also that it's based on the amount of text that can fit in the client area. If you make the client
area tall enough to fit the entire text, the text won't scroll at all.
Mouse Movement
Let's next look at the MouseMove event. This program is called MouseWeb but it has nothing to do
with the World Wide Web; instead, it overrides the OnMouseMove method to draw a web that
connects the current mouse position with the corners and sides of the client area.
MouseWeb.cs

//---------------------------------------
// MouseWeb.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class MouseWeb: Form
{
 Point ptMouse = Point.Empty;

 public static void Main()
 {
 Application.Run(new MouseWeb());
 }
 public MouseWeb()
 {
 Text = "Mouse Web";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 Graphics grfx = CreateGraphics();

 DrawWeb(grfx, BackColor, ptMouse);
 ptMouse = new Point(mea.X, mea.Y);
 DrawWeb(grfx, ForeColor, ptMouse);

 grfx.Dispose();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 DrawWeb(pea.Graphics, ForeColor, ptMouse);
 }
 void DrawWeb(Graphics grfx, Color clr, Point pt)
 {
 int cx = ClientSize.Width;
 int cy = ClientSize.Height;
 Pen pen = new Pen(clr);

 grfx.DrawLine(pen, pt, new Point(0, 0));
 grfx.DrawLine(pen, pt, new Point(cx / 4, 0));
 grfx.DrawLine(pen, pt, new Point(cx / 2, 0));

 grfx.DrawLine(pen, pt, new Point(3 * cx / 4, 0));
 grfx.DrawLine(pen, pt, new Point(cx , 0));
 grfx.DrawLine(pen, pt, new Point(cx , cy / 4));
 grfx.DrawLine(pen, pt, new Point(cx , cy / 2));
 grfx.DrawLine(pen, pt, new Point(cx , 3 * cy / 4));
 grfx.DrawLine(pen, pt, new Point(cx , cy));
 grfx.DrawLine(pen, pt, new Point(3 * cx / 4, cy));
 grfx.DrawLine(pen, pt, new Point(cx / 2, cy));
 grfx.DrawLine(pen, pt, new Point(cx / 4, cy));
 grfx.DrawLine(pen, pt, new Point(0, cy));
 grfx.DrawLine(pen, pt, new Point(0, cy / 4));
 grfx.DrawLine(pen, pt, new Point(0, cy / 2));
 grfx.DrawLine(pen, pt, new Point(0, 3 * cy / 4));
 }
}

Move the mouse cursor within the client area, and the center of the web follows. A typical screen
looks like this:

The program displays the web first during the OnPaint method using a Point structure stored as a
field and initialized to (0, 0). During the OnMouseMove method, the program erases the previous
figure by redrawing it using the background color. The program then redraws the web based on the
new mouse position using the foreground color.

Notice how the program stops responding to the mouse as soon as the mouse cursor leaves the
client area. Even if the mouse cursor is moved over the program's caption bar, the calls to
OnMouseMove stop.

Or do they? Try this: Move the mouse cursor to MouseWeb's client area. The center of the web
follows the mouse as usual. Now press one of the mouse buttons. With the button still pressed,
move the mouse cursor outside the client area. The center of the web continues to follow the cursor!
Release the mouse button. The program stops responding. This is a feature called mouse capture,
and it's an important part of the technique of tracking the mouse position.
Tracking and Capturing the Mouse
When a program needs to draw something or move something in response to mouse movement, it
uses a technique called mouse tracking. Most often, mouse tracking begins when a mouse button is

pressed and ends when the button is released. A program written for an environment not supporting
event handling would probably track the mouse by sitting in a while loop continuously monitoring the
mouse cursor position. A Windows Forms program, however, must track the mouse by responding to
events. This architecture forces the programmer to approach the exercise as if dealing with a state
machine.

Here's a fun little program that demonstrates some rudimentary mouse cursor tracking.
MouseConnect.cs
// --
// MouseConnect.cs © 2001 by Charles Petzold
// --
using System;
using System.Drawing;
using System.Windows.Forms;

class MouseConnect: Form
{
 const int iMaxPoints = 1000;
 int iNumPoints = 0;
 Point[] apoint = new Point[iMaxPoints];

 public static void Main()
 {
 Application.Run(new MouseConnect());
 }
 public MouseConnect()
 {
 Text = "Mouse Connect: Press, drag quickly, release";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ClientSize += ClientSize; // Double the client area.
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 if (mea.Button == MouseButtons.Left)
 {
 iNumPoints = 0;
 Invalidate();
 }
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 if (mea.Button == MouseButtons.Left)
 {
 apoint[iNumPoints++] = new Point(mea.X, mea.Y);

 Graphics grfx = CreateGraphics();

 grfx.DrawLine(new Pen(ForeColor), mea.X, mea.Y,
 mea.X, mea.Y + 1);
 grfx.Dispose();
 }
 }
 protected override void OnMouseUp(MouseEventArgs mea)
 {
 if (mea.Button == MouseButtons.Left)
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Pen pen = new Pen(ForeColor);

 for (int i = 0 ; i < iNumPoints - 1; i++)
 for (int j = i + 1; j < iNumPoints; j++)
 grfx.DrawLine(pen, apoint[i], apoint[j]);
 }
}

To use this program, you press the left mouse button anywhere in the client area, move the mouse
cursor quickly around, and then release the button. For every OnMouseMove call the program gets,
it stores the X and Y properties of the MouseEventArgs object and draws a tiny mark at that point.

When you release the button, the OnMouseUp method invalidates the client area. OnPaint responds
by connecting every point to every other point, sometimes creating a big blob and sometimes making
an interesting pattern:

As you can see, as I whipped the mouse cursor around, I twice drifted outside the client area. The
program didn't seem to mind. It connected all the lines, even those with points outside the client
area. The lines are clipped to the client area, but all the points are still correctly stored. If you create

such an image and make the client area a bit taller, you'll see the bottom of the figure. You can even
release the mouse button outside of MouseConnect's client area and the program will work normally.

This is probably what you want to happen: the user is signaling a desire to work with MouseConnect
by pressing the mouse button within its client area, and this activity should end only when the user
releases the mouse button—regardless of where the mouse cursor is or has been.

Whenever you press any mouse button on a control or in a form's client area, the control or form
captures the mouse and forces each subsequent mouse event to be sent to itself. The capture ends
when the user releases the mouse button. Mouse capture capability is virtually a prerequisite for
tracking the mouse, and it is automatically provided for you. A bool property of the Control class
indicates when the mouse is captured:
Control properties (selection)

Type Property Accessibility

bool Capture get/set

Although this property is writable, you can't arbitrarily set it. In particular, you can't force a mouse
capture when a mouse button isn't pressed. However, you can cancel mouse capture at any time by
setting the property to false. (I'll do that later in this chapter.) The property is also useful for
informational purposes. The property is true during both the MouseDown event that begins mouse
capture and MouseMove events when the mouse is captured, and false during the MouseUp event
that releases mouse capture. The mouse isn't automatically captured on the second click of a
double-click.
Adventures in Tracking
Generally, it's fairly easy to write some mouse-tracking code that works 99.5 percent of the time.
This program is quite similar in structure to MouseConnect but it does something much more
conventional, which is letting you drag the mouse to draw a rectangle.
BlockOut.cs
//---------------------------------------
// BlockOut.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class BlockOut: Form
{
 bool bBlocking, bValidBox;
 Point ptBeg, ptEnd;
 Rectangle rectBox;

 public static void Main()
 {
 Application.Run(new BlockOut());
 }
 public BlockOut()
 {
 Text = "Blockout Rectangle with Mouse";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 if (mea.Button == MouseButtons.Left)
 {
 ptBeg = ptEnd = new Point(mea.X, mea.Y);

 Graphics grfx = CreateGraphics();
 grfx.DrawRectangle(new Pen(ForeColor), Rect(ptBeg, ptEnd));
 grfx.Dispose();

 bBlocking = true;
 }
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 if (bBlocking)
 {
 Graphics grfx = CreateGraphics();
 grfx.DrawRectangle(new Pen(BackColor), Rect(ptBeg, ptEnd));
 ptEnd = new Point(mea.X, mea.Y);
 grfx.DrawRectangle(new Pen(ForeColor), Rect(ptBeg, ptEnd));
 grfx.Dispose();
 Invalidate();
 }
 }
 protected override void OnMouseUp(MouseEventArgs mea)
 {
 if (bBlocking && mea.Button == MouseButtons.Left)
 {
 Graphics grfx = CreateGraphics();
 rectBox = Rect(ptBeg, new Point(mea.X, mea.Y));
 grfx.DrawRectangle(new Pen(ForeColor), rectBox);
 grfx.Dispose();

 bBlocking = false;
 bValidBox = true;
 Invalidate();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 if (bValidBox)

 grfx.FillRectangle(new SolidBrush(ForeColor), rectBox);

 if (bBlocking)
 grfx.DrawRectangle(new Pen(ForeColor), Rect(ptBeg, ptEnd));
 }
 Rectangle Rect(Point ptBeg, Point ptEnd)
 {
 return new Rectangle(Math.Min(ptBeg.X, ptEnd.X),
 Math.Min(ptBeg.Y, ptEnd.Y),
 Math.Abs(ptEnd.X - ptBeg.X),
 Math.Abs(ptEnd.Y - ptBeg.Y));
 }
}

To use this program, you press the left mouse button, drag, and release. As you're dragging, the
program draws a rectangle outline. When you release the button, the program fills in the rectangle. If
you want, you can then define a new rectangle that replaces the first one.

BlockOut uses two bool variables stored as fields: bBlocking and bValidBox. The bBlocking variable
indicates that the user is blocking out a rectangle. It is set to true during the OnMouseDown method
and false during OnMouseUp. The OnMouseMove method tests the variable to determine what it
should do. If bBlocking is true, OnMouseMove erases the previous rectangle outline by drawing it in
the background color and draws a new rectangle outline in the foreground color. When you release
the button, the OnMouseUp method sets bBlocking to false and bValidBox to true. This latter
variable allows the OnPaint method to draw the filled rectangle.

Customarily, during the OnMouseMove method, I would use a technique called exclusive-OR (or
XOR) drawing. XOR drawing is a technique that doesn't merely write colored pixels out to the display
device but instead reverses the colors of the existing pixels. An XOR line drawn on a black
background appears white, an XOR line drawn on a white background appears black, and an XOR
line drawn on a cyan background appears red. The advantage of this technique is that a second
XOR line of the same coordinates erases the first.

GDI+ doesn't support exclusive-OR drawing, however, which is why I'm forced to erase the previous
rectangle by using the background color in the OnMouseMove method. When you're blocking out a
new rectangle over an existing filled rectangle, some unsightly artifacts are created, and these must
be cleaned up. That's why the OnMouseMove processing terminates with a call to Invalidate to
generate a Paint event. That Invalidate call isn't strictly needed, but if you remove it, you'll see why I
felt compelled to include it. With XOR drawing, the Invalidate call wouldn't be necessary at all.

The omission of XOR drawing is certainly a flaw in GDI+, but BlockOut has some flaws of its own.

If you experiment a little, you'll see that the BlockOut program works just fine most of the time.
Because the mouse is captured when you press the mouse button, you can move the mouse cursor
outside the client area and the program will continue to get OnMouseMove calls. You can also
release the mouse button outside the client area and the program will get a call to OnMouseUp.

But try this: While blocking out a rectangle with the left button held down, press and release the right
button. When the right button is released, the form loses the mouse capture. It will now respond to
mouse movement only when the mouse cursor is within the form's client area. Now move the mouse
cursor outside the client area and release the left button. The form doesn't get a call to OnMouseUp
because the mouse is no longer captured. Now move the mouse (with no buttons pressed) back
inside the client area. The program responds to mouse movement even though no mouse button is
pressed! This behavior is clearly undesirable.

A few fixes that help solve these problems are apparent:
§ Tracking should be terminated whenever any button is released. This approach more closely

mimics the way mouse capture is lost.

§ OnMouseMove processing should include a check that the left button is still pressed. If a form
loses the mouse capture, it's probably better for a rectangle outline to lie dormant rather than for
the program to respond to mouse movement with no button pressed.

§ Pressing the Esc key should terminate mouse tracking.

Here's a better version of the program.
BetterBlockOut.cs
//---
// BetterBlockOut.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class BetterBlockOut: Form
{
 bool bBlocking, bValidBox;
 Point ptBeg, ptEnd;
 Rectangle rectBox;

 public static void Main()
 {
 Application.Run(new BetterBlockOut());
 }
 public BetterBlockOut()
 {
 Text = "Better Blockout";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 if (mea.Button == MouseButtons.Left)
 {
 ptBeg = ptEnd = new Point(mea.X, mea.Y);

 Graphics grfx = CreateGraphics();
 grfx.DrawRectangle(new Pen(ForeColor), Rect(ptBeg, ptEnd));
 grfx.Dispose();

 bBlocking = true;
 }
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 if (bBlocking && (mea.Button & MouseButtons.Left) != 0)
 {

 Graphics grfx = CreateGraphics();
 grfx.DrawRectangle(new Pen(BackColor), Rect(ptBeg, ptEnd));
 ptEnd = new Point(mea.X, mea.Y);
 grfx.DrawRectangle(new Pen(ForeColor), Rect(ptBeg, ptEnd));
 grfx.Dispose();
 Invalidate();
 }
 }
 protected override void OnMouseUp(MouseEventArgs mea)
 {
 if (bBlocking)
 {
 Graphics grfx = CreateGraphics();
 rectBox = Rect(ptBeg, new Point(mea.X, mea.Y));
 grfx.DrawRectangle(new Pen(ForeColor), rectBox);
 grfx.Dispose();

 bBlocking = false;
 bValidBox = true;
 Invalidate();
 }
 }
 protected override void OnKeyPress(KeyPressEventArgs kpea)
 {
 if (bBlocking && kpea.KeyChar == '\x001B') // Escape
 {
 Graphics grfx = CreateGraphics();
 grfx.DrawRectangle(new Pen(BackColor), Rect(ptBeg, ptEnd));
 grfx.Dispose();

 bBlocking = false;
 Invalidate();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 if (bValidBox)
 grfx.FillRectangle(new SolidBrush(ForeColor), rectBox);

 if (bBlocking)
 grfx.DrawRectangle(new Pen(ForeColor), Rect(ptBeg, ptEnd));
 }
 Rectangle Rect(Point ptBeg, Point ptEnd)

 {
 return new Rectangle(Math.Min(ptBeg.X, ptEnd.X),
 Math.Min(ptBeg.Y, ptEnd.Y),
 Math.Abs(ptEnd.X - ptBeg.X),
 Math.Abs(ptEnd.Y - ptBeg.Y));
 }
}

In some situations, this program can still lose the mouse capture and not be aware of it. If you're in
the middle of a tracking operation and you press Ctrl+Esc to bring up the Start menu or you press
Alt+Tab to switch to another program, both BlockOut and BetterBlockOut will lose the mouse capture
and not even know it. Losing the mouse capture doesn't have to be the result of something weird
that a user does. Suppose you're in the middle of a tracking operation and a message box pops up
complaining that the printer has run out of paper. That occurrence also causes the program to lose
the mouse capture because the message box needs to respond to mouse input.

Wouldn't it be nice if there were an event to tell a form when it's lost the mouse capture? Well, if we
were writing a Win32 program, we'd be able to trap the WM_CAPTURECHANGED message. This
message occurs whenever a window is losing the mouse capture, whether normally (when the
mouse button is released) or abnormally. Is it possible to implement a handler for this message in a
Windows Forms program?

Yes, it is, and to do it you make use of the NativeWindow class. Here's a program that demonstrates
how to use that class to implement an OnLostCapture method in a class derived from Form.
CaptureLoss.cs
//--
// CaptureLoss.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class CaptureLoss: Form
{
 public static void Main()
 {
 Application.Run(new CaptureLoss());
 }
 public CaptureLoss()
 {
 Text = "Capture Loss";

 // Hook up NativeWindow object.

 CaptureLossWindow win = new CaptureLossWindow();
 win.form = this;
 win.AssignHandle(Handle);
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {

 Invalidate();
 }
 public void OnLostCapture()
 {
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 if (Capture)
 grfx.FillRectangle(Brushes.Red, ClientRectangle);
 else
 grfx.FillRectangle(Brushes.Gray, ClientRectangle);
 }
}

class CaptureLossWindow: NativeWindow
{
 public CaptureLoss form;

 protected override void WndProc(ref Message message)
 {
 if (message.Msg == 533) // WM_CAPTURECHANGED
 form.OnLostCapture();

 base.WndProc(ref message);
 }
}

I have two classes here: CaptureLoss is derived from Form, and CaptureLossWindow is derived
from NativeWindow. I've added a field to CaptureLossWindow that is an object of type CaptureLoss.
CaptureLossWindow also overrides the WndProc ("window procedure") method in NativeWindow.
Win32 API programmers will recognize WndProc as the all-important function in every Windows
application program that processes messages to the window that the program creates.

CaptureLoss creates an object of type CaptureLossWindow in its constructor. It assigns the field
named form (the field I added to the class) to the form that the program creates. The constructor also
calls the AssignHandle method implemented in NativeWindow. This call assigns to the
CaptureLossWindow object the window handle associated with the form. The CaptureLossWindow
then receives, through its WndProc method, all messages to the form. Win32 API programmers will
be well familiar with these messages. The Message parameter to WndProc is a structure in
System.Windows.Forms that contains properties corresponding to all the Win32 message
parameters. When WndProc receives a message ID of 533 (which is WM_CAPTURECHANGED), it
calls the OnLostCapture method of the CaptureLoss object.

The CaptureLoss class invalidates its client area when the OnMouseDown and OnLostCapture
methods are called. The OnPaint method displays a red client area when the Capture property is
true and a gray client area otherwise. (You can get a better view of mouse capturing if you enable
the Show Window Contents While Dragging option in the Effects tab of the Display Properties dialog
box in Control Panel. You'll notice if you grab the title bar of the window and move it partially off
screen and then back, the uncovered area of the client area will be colored red until you release the

mouse button, at which point the entire client area turns gray again. If you make the window larger
with the mouse, likewise the new area of the client area will be red, returning to gray when you
release the mouse button. This happens because the Capture property is true even if the mouse
button is pressed on the program's caption bar or sizing border.)
Generalizing Code with Interfaces
I want to call your attention to a little structural flaw in the CaptureLoss program. It would be best if
you could reuse the CaptureLossWindow class in other programs. However, the name of the class
using the CaptureLossWindow class is hard-coded in the definition of the CaptureLossWindow field:
public CaptureLoss form;

Why does that class name need to be hard-coded here? Because changing it to
public Form form;

simply won't work, and the reason is that the class later makes this call:
form.OnLostCapture();

This call would generate a compile-time error because form is defined as an object of type Form, and
the OnLostCapture method isn't defined in the Form class. It's defined in the CaptureLoss class.

Is there a way out of this quandary? A good solution is to make use of the C# interface. An interface
looks something like a class definition. It can contain methods, properties, and an indexer. However,
the interface includes only signatures of these members. None of these members has bodies.

As you know, a class can inherit from another class, and a class that seemingly doesn't inherit from
any class actually inherits from Object. A class can also inherit from one or more interfaces. When a
class inherits from an interface, it must implement all the methods and properties defined in the
interface. (Interfaces can also inherit from other interfaces, in which case a class that derives from
the interface must also implement all the methods and properties defined in the base interfaces.) The
interface is the closest thing C# has to multiple inheritance, but the only elements inherited from an
interface are names of methods and properties, and not any actual code.

Interfaces help generalize classes because an interface name can be used instead of a class name
or a structure name to define a variable. The class can then call methods or properties that are
defined in the interface.

Here's a little program named CaptureLossNotifyWindow that contains a class of that name but also
an interface named ICaptureLossNotify. Interface names by convention begin with a capital I.
CaptureLossNotifyWindow.cs
//--
// CaptureLossNotifyWindow.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

interface ICaptureLossNotify
{
 void OnLostCapture();
}

class CaptureLossNotifyWindow: NativeWindow
{
 public ICaptureLossNotify control;

 protected override void WndProc(ref Message message)
 {
 if (message.Msg == 533) // WM_CAPTURECHANGED
 control.OnLostCapture();

 base.WndProc(ref message);
 }
}

The interface defines a signature only for a method named OnLostCapture. Notice that the field in
the CaptureLossNotifyWindow class named control is defined as an object of type
ICaptureLossNotify:
public ICaptureLossNotify control;

This fact tells the compiler that the OnLostCapture method may be called on the control variable.
And, indeed, that's what the WndProc method does.

For a form to take advantage of the CaptureLossNotifyWindow class, it must indicate that it is
derived from ICaptureLossNotify as well as Form. This in turn indicates that the class implements the
OnLostCapture method. Here's a program that implements better block-out code by deriving from
ICaptureLossNotify.
EvenBetterBlockOut.cs
//---
// EvenBetterBlockOut.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class EvenBetterBlockOut: Form, ICaptureLossNotify
{
 bool bBlocking, bValidBox;
 Point ptBeg, ptEnd;
 Rectangle rectBox;

 public static void Main()
 {
 Application.Run(new EvenBetterBlockOut());
 }
 public EvenBetterBlockOut()
 {
 Text = "Even Better Blockout";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 // Hook up native window object.

 CaptureLossNotifyWindow win = new CaptureLossNotifyWindow();
 win.control = this;

 win.AssignHandle(Handle);
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 if (mea.Button == MouseButtons.Left)
 {
 ptBeg = ptEnd = new Point(mea.X, mea.Y);

 Graphics grfx = CreateGraphics();
 grfx.DrawRectangle(new Pen(ForeColor), Rect(ptBeg, ptEnd));
 grfx.Dispose();

 bBlocking = true;
 }
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 if (bBlocking)
 {
 Graphics grfx = CreateGraphics();
 grfx.DrawRectangle(new Pen(BackColor), Rect(ptBeg, ptEnd));
 ptEnd = new Point(mea.X, mea.Y);
 grfx.DrawRectangle(new Pen(ForeColor), Rect(ptBeg, ptEnd));
 grfx.Dispose();
 Invalidate();
 }
 }
 public void OnMouseUp(Point pt)
 {
 if (bBlocking)
 {
 Graphics grfx = CreateGraphics();
 rectBox = Rect(ptBeg, new Point(mea.X, mea.Y));
 grfx.DrawRectangle(new Pen(BackColor), rectBox);
 grfx.Dispose();

 bBlocking = false;
 bValidBox = true;
 Invalidate();
 }
 }
 protected override void OnKeyPress(KeyPressEventArgs kpea)
 {
 if (kpea.KeyChar == '\x001B')
 Capture = false;

 }
 public void OnLostCapture()
 {
 if (bBlocking)
 {
 Graphics grfx = CreateGraphics();
 grfx.DrawRectangle(new Pen(BackColor), Rect(ptBeg, ptEnd));
 grfx.Dispose();

 bBlocking = false;
 Invalidate();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 if (bValidBox)
 grfx.FillRectangle(new SolidBrush(ForeColor), rectBox);

 if (bBlocking)
 grfx.DrawRectangle(new Pen(ForeColor), Rect(ptBeg, ptEnd));
 }
 Rectangle Rect(Point ptBeg, Point ptEnd)
 {
 return new Rectangle(Math.Min(ptBeg.X, ptEnd.X),
 Math.Min(ptBeg.Y, ptEnd.Y),
 Math.Abs(ptEnd.X - ptBeg.X),
 Math.Abs(ptEnd.Y - ptBeg.Y));
 }
}

The program completes the tracking operation normally when it gets a call to OnMouseUp and
aborts the tracking operation when it gets a call to OnLostCapture that wasn't preceded by
OnMouseUp.

EvenBetterBlockOut finally accommodates all the ways in which a program can lose the mouse
capture.
Clicks and Double-Clicks
Here are the two highest-level mouse events:
Control Events (selection)

Event Method Delegate Argument

Click OnClick EventHandler EventArgs

DoubleClick OnDoubleClick EventHandler EventArgs

Notice that the EventArgs argument doesn't give you any information specific to the mouse. It
doesn't even tell you what button was clicked or double-clicked, or where the mouse was located.

The Click event occurs when any mouse button is pressed and released over a control or the client
area of a form. The event occurs right before the corresponding MouseUp event. If you press the
mouse button while the mouse cursor is positioned over one control and release the mouse button
over another control, a Click event is not generated.

The DoubleClick event occurs when the mouse is clicked twice. The event occurs right before the
second MouseUp event. However, the second button-down must occur within a certain period of
time and within a certain distance of the first. Here's a typical sequence of events for a double-click:
§ MouseDown (Clicks property set to 1)
§ Click
§ MouseUp
§ MouseMove
§ MouseDown (Clicks property set to 2)
§ DoubleClick
§ MouseUp
§ MouseMove

I used the OnClick method to trigger printing in the PrintableForm program in Chapter 5. Obviously, I
didn't need to know where the mouse cursor was located when the button was pressed, or even
which button was pressed.

It's more common for a program to install Click and DoubleClick event handlers for controls that it
has created. For example, handling a button control's Click event is the normal way for a form to
determine when the button has been clicked, as you'll discover in Chapter 12. Buttons (and other
controls) also generate Click events when the keyboard is used to press the button, so the Click
event is a convenient consolidation of keyboard and mouse input.
Mouse-Related Properties
Although the Click and DoubleClick events aren't delivered with a MouseEventArgs object that
indicates the location of the mouse cursor, that doesn't mean the information isn't available. The
Control class supports two read-only static properties that indicate the position of the mouse and
which buttons are currently pressed:
Control Static Properties (selection)

Type Property Accessibility Description

Point MousePosition get Returns the position of the mouse in
screen coordinates

MouseButtons MouseButtons get Returns which buttons are currently
pressed

You can use these properties while processing any event. Because they are static properties, you
can even use them in a class not descended from Control.

Keep in mind that the X and Y properties of MouseEventArgs indicate the mouse cursor location in
client area coordinates, and the Control.MousePosition property gives the position in screen
coordinates. You'll have to use PointToClient to convert screen coordinates to client area
coordinates if that's what you need.

I introduced the static property Control.ModifierKeys in Chapter 6 because it pertains to the
keyboard:
Control Static Properties (selection)

Type Property Accessibility Description

Keys ModifierKeys get Status of Shift, Ctrl, and Alt keys

However, as I mentioned at that time, this property is most often used when processing mouse
events. For example, if you want to initiate an action when the user presses the left mouse button
with the Shift key (and only the Shift key) pressed, the OnMouseDown processing might start like
this:
if ((mea.Button == Buttons.Left) && (Control.ModifierKeys == Keys.Shift))

Entering, Leaving, Hovering
Here are the final three mouse events:
Control Events (selection)

Event Method Delegate Argument

MouseEnter OnMouseEnter EventHandler EventArgs

MouseLeave OnMouseLeave EventHandler EventArgs

MouseHover OnMouseHover EventHandler EventArgs

The MouseEnter event announces to a control (or a client area of a form) that the mouse cursor has
been moved on top of the control. The control may want to change its appearance in response to this
event. The MouseLeave event tells the control that the mouse is no longer located on top of the
control.

The MouseHover event occurs after the cursor has entered the control (or the client area) and has
stopped moving. The MouseHover event occurs at most only once between MouseEnter and
MouseLeave events.

Here's a program that provides a visual indication of these three events. The client area is colored
green following a call to OnMouseEnter and restored to the normal background color following the
OnMouseLeave call. In response to OnMouseHover, the client area is colored red for 1/10 second.
EnterLeave.cs
//---
// EnterLeave.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class EnterLeave: Form
{
 bool bInside = false;

 public static void Main()
 {
 Application.Run(new EnterLeave());
 }
 public EnterLeave()
 {
 Text = "Enter/Leave";
 }
 protected override void OnMouseEnter(EventArgs ea)
 {
 bInside = true;
 Invalidate();
 }
 protected override void OnMouseLeave(EventArgs ea)
 {

 bInside = false;
 Invalidate();
 }
 protected override void OnMouseHover(EventArgs ea)
 {
 Graphics grfx = CreateGraphics();

 grfx.Clear(Color.Red);
 System.Threading.Thread.Sleep(100);
 grfx.Clear(Color.Green);
 grfx.Dispose();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 grfx.Clear(bInside ? Color.Green : BackColor);
 }
}
The Mouse Cursor
The mouse cursor is the little bitmap image you see on the screen that indicates the location of the
mouse. As you know, the cursor can change appearance depending on its location. Often it's an
arrow, but if you pass it over a sizing border of a form, it changes into a double-headed arrow. In a
text-entry field, the cursor becomes a vertical I-beam.

The mouse cursor is an object of type Cursor, a class defined in the System.Windows.Forms
namespace. I'll describe the Cursor class in more detail in Chapter 11. In most cases, the easiest
way to get a cursor object is by using the Cursors class. (Notice the plural.) The Cursors class—also
defined in the System.Windows.Forms namespace—consists solely of 28 static read-only properties
that return predefined objects of type Cursor:
Cursors Static Read-Only Properties

AppStarting PanNorth

Arrow PanNW

Cross PanSE

Default PanSouth

Hand PanSW

Help PanWest

HSplit SizeAll

IBeam SizeNESW

No SizeNS

NoMove2D SizeNWSE

NoMoveHoriz SizeWE

NoMoveVert UpArrow

PanEast VSplit

PanNE WaitCursor

Even if you obtain Cursor objects only from the Cursors class, there are still three static properties of
the Cursor class that are useful:
Cursor Static Properties

Type Property Accessibility

Cursor Current get/set

Point Position get/set

Rectangle Clip get/set

You'll recall that the Control class includes a static property named MousePosition, but that property
is read-only. You can't use it to set the mouse cursor position. The Cursor.Position property is
writable as well, although it's not common for applications to set the position of the mouse cursor.
(The Beziers program in Chapter 13 uses Cursor.Position to set the cursor position.) The Cursor.Clip
property limits the movement of the mouse cursor to a specified rectangle. You can set this property
only if the mouse is captured. The Position and Clip properties are both in screen coordinates, so
you probably need to use PointToClient after obtaining the properties or PointToScreen before
setting the properties.

You can also set the current mouse cursor by using the Cursor.Current property. However, you
might find that this approach doesn't always work. But let me show you first a couple cases in which
the Cursor.Current property does work.

As you know, programs that must perform lengthy jobs generally display a cursor shaped like an
hourglass, which is the predefined Cursors.WaitCursor object. A program can display the hourglass
cursor using the statement
Cursor.Current = Cursors.WaitCursor;

The program can then carry out the lengthy job it needs to do and afterward restore the arrow cursor
by calling
Cursor.Current = Cursors.Arrow;

However, if the user is running Windows without a mouse installed, the hourglass cursor won't be
visible. To display a mouse cursor regardless of whether or not a mouse is installed, a program can
make use of the following two static methods of the Cursor class:

Cursor Static Methods

void Show()
void Hide()

You can think of the mouse cursor as having a show-count variable associated with it. If a mouse is
installed, this show-count variable is initially set to 1. If a mouse is not installed, the show-count is
initially 0. The Cursor.Show method increments the show-count; the Cursor.Hide method
decrements it. The mouse cursor is visible if the show-count is greater than 0 and hidden otherwise.

What this means is that an application must balance its calls to Cursor.Show and Cursor.Hide. If a
program calls Show more than Hide, it risks leaving a visible mouse cursor on the screen when a
mouse isn't installed. If a program calls Hide more than Show, the mouse cursor is made invisible.
Fortunately, this problem affects the mouse cursor only when the mouse is positioned over the errant
application.

One program in this chapter that might spend a considerable amount of time in its OnPaint method is
MouseConnect. Here's a program that subclasses the MouseConnect class and displays an
hourglass cursor during the OnPaint processing.
MouseConnectWaitCursor.cs
// --

// MouseConnectWaitCursor.cs © 2001 by Charles Petzold
// --
using System;
using System.Drawing;
using System.Windows.Forms;

class MouseConnectWaitCursor: MouseConnect
{
 public new static void Main()
 {
 Application.Run(new MouseConnectWaitCursor());
 }
 public MouseConnectWaitCursor()
 {
 Text = "Mouse Connect with Wait Cursor";
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Cursor.Current = Cursors.WaitCursor;
 Cursor.Show();

 base.OnPaint(pea);

 Cursor.Hide();
 Cursor.Current = Cursors.Arrow;
 }
}

In this particular case, the calls to Show and Hide methods aren't necessary because if the mouse
weren't installed, the user couldn't have initiated a long OnPaint call to begin with!

This next program uses a call to Cursor.Current during the OnMouseMove call to let you see what all
28 predefined cursors look like.
MouseCursors.cs
//---
// MouseCursors.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class MouseCursors: Form
{
 Cursor[] acursor =
 {
 Cursors.AppStarting, Cursors.Arrow, Cursors.Cross,
 Cursors.Default, Cursors.Hand, Cursors.Help,

 Cursors.HSplit, Cursors.IBeam, Cursors.No,
 Cursors.NoMove2D, Cursors.NoMoveHoriz, Cursors.NoMoveVert,
 Cursors.PanEast, Cursors.PanNE, Cursors.PanNorth,
 Cursors.PanNW, Cursors.PanSE, Cursors.PanSouth,
 Cursors.PanSW, Cursors.PanWest, Cursors.SizeAll,
 Cursors.SizeNESW, Cursors.SizeNS, Cursors.SizeNWSE,
 Cursors.SizeWE, Cursors.UpArrow, Cursors.VSplit,
 Cursors.WaitCursor
 };
 string[] astrCursor =
 {
 "AppStarting", "Arrow", "Cross",
 "Default", "Hand", "Help",
 "HSplit", "IBeam", "No",
 "NoMove2D", "NoMoveHoriz", "NoMoveVert",
 "PanEast", "PanNE", "PanNorth",
 "PanNW", "PanSE", "PanSouth",
 "PanSW", "PanWest", "SizeAll",
 "SizeNESW", "SizeNS", "SizeNWSE",
 "SizeWE", "UpArrow", "VSplit",
 "WaitCursor"
 };

 public static void Main()
 {
 Application.Run(new MouseCursors());
 }
 public MouseCursors()
 {
 Text = "Mouse Cursors";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 int x = Math.Max(0, Math.Min(3, mea.X / (ClientSize.Width /
4)));
 int y = Math.Max(0, Math.Min(6, mea.Y / (ClientSize.Height /
7)));

 Cursor.Current = acursor[4 * y + x];
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 Brush brush = new SolidBrush(ForeColor);
 Pen pen = new Pen(ForeColor);
 StringFormat strfmt = new StringFormat();

 strfmt.LineAlignment = strfmt.Alignment =
StringAlignment.Center;

 for (int y = 0; y < 7; y++)
 for (int x = 0; x < 4; x++)
 {
 Rectangle rect = Rectangle.FromLTRB(
 x * ClientSize.Width / 4,
 y * ClientSize.Height / 7,
 (x + 1) * ClientSize.Width / 4,
 (y + 1) * ClientSize.Height / 7);

 grfx.DrawRectangle(pen, rect);
 grfx.DrawString(astrCursor[4 * y + x],
 Font, brush, rect, strfmt);
 }
 }
}

The program displays a grid containing the names of the Cursors properties. Simply move the
mouse cursor to one of the boxes to see what the cursor looks like. Here's a screen shot that shows
the Cursors.Help cursor:

I mentioned earlier that Cursor.Current doesn't always work. It certainly works in these two
programs, but they illustrate the only two ways in which Cursor.Current can be used. Here's the
important rule: If your form (or any descendant of Control) does not set Cursor.Current during the
MouseMove event, the mouse cursor will be set instead to the normal cursor associated with the
form (or control) during that event. The MouseCursors program works because it sets Cursor.Current
during the call to OnMouseMove.

What about MouseConnectWaitCursor? That one doesn't set Cursor.Current during OnMouseMove.
But that program sets Cursor.Current during OnPaint and then resets the property before OnPaint is
concluded. The program doesn't get OnMouseMove calls during that time. A method in a program is
never interrupted to execute another method in the same thread.

What you can't do, however, is set Cursor.Current during a constructor or an OnMouseDown event
or some other event and expect it to stick. As soon as the program gets a call to OnMouseMove, the
cursor will be reset.

However, there is a way to set the cursor once and then forget about it. You assign a cursor to a
control (or a form) by using the Cursor property defined in the Control class:
Control Properties (selection)

Type Property Accessibility

Cursor Cursor get/set

For example, in a form's constructor, you can call
Cursor = Cursors.Hand;

and the cursor will be a hand whenever you pass the mouse cursor over the form's client area. It will
remain a hand until the program sets it to something else. I mentioned earlier that if you don't set
Cursor.Current during the OnMouseMove method, the cursor is set to the normal cursor associated
with the form or control. It's actually set to the value of the Cursor property. Somewhere behind the
scenes, something equivalent to the following statement probably occurs during mouse movement
before a Windows Forms program gets a call to OnMouseMove:
Cursor.Current = Cursor;

That's the Cursor class on the left and the form's Cursor property on the right. The Current property
of the Cursor class is static. The Cursor property of the Control class is not.

It makes sense that a control should have a cursor associated with it because some controls have
different cursors. The most obvious examples are the text-entry controls TextBox and RichTextBox,
which are associated with Cursors.IBeam.

Let's experiment with this technique by creating a program similar in functionality to MouseCursors.
But instead of creating 28 boxes, I want to create 28 controls and assign each of them a different
mouse cursor.

Back in Chapter 4, I created a Panel control in the SysInfoPanel program. I mentioned at the time
that Panel controls were rather innocuous and didn't do much. But the panel suited our purposes in
providing a surface for us on which to draw. The Label control is also a fairly benign control. The sole
purpose of Label is to display some text. Here's a program that creates an array of 28 Label controls,
each of which is assigned a different cursor.
MouseCursorsProperty.cs
//---
// MouseCursorsProperty.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class MouseCursorsProperty: Form
{
 Label[] acntl = new Label[28];

 public static void Main()
 {
 Application.Run(new MouseCursorsProperty());
 }
 public MouseCursorsProperty()
 {
 Cursor[] acursor =
 {

 Cursors.AppStarting, Cursors.Arrow, Cursors.Cross,
 Cursors.Default, Cursors.Hand, Cursors.Help,
 Cursors.HSplit, Cursors.IBeam, Cursors.No,
 Cursors.NoMove2D, Cursors.NoMoveHoriz,
Cursors.NoMoveVert,
 Cursors.PanEast, Cursors.PanNE, Cursors.PanNorth,
 Cursors.PanNW, Cursors.PanSE, Cursors.PanSouth,
 Cursors.PanSW, Cursors.PanWest, Cursors.SizeAll,
 Cursors.SizeNESW, Cursors.SizeNS, Cursors.SizeNWSE,
 Cursors.SizeWE, Cursors.UpArrow, Cursors.VSplit,
 Cursors.WaitCursor
 };
 string[] astrCursor =
 {
 "AppStarting", "Arrow", "Cross",
 "Default", "Hand", "Help",
 "HSplit", "IBeam", "No",
 "NoMove2D", "NoMoveHoriz", "NoMoveVert",
 "PanEast", "PanNE", "PanNorth",
 "PanNW", "PanSE", "PanSouth",
 "PanSW", "PanWest", "SizeAll",
 "SizeNESW", "SizeNS", "SizeNWSE",
 "SizeWE", "UpArrow", "VSplit",
 "WaitCursor"
 };

 Text = "Mouse Cursors Using Cursor Property";

 for (int i = 0; i < 28; i++)
 {
 acntl[i] = new Label();
 acntl[i].Parent = this;
 acntl[i].Text = astrCursor[i];
 acntl[i].Cursor = acursor[i];
 acntl[i].BorderStyle = BorderStyle.FixedSingle;
 }
 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 for (int i = 0; i < acntl.Length; i++)
 {
 acntl[i].Bounds = Rectangle.FromLTRB(
 (i % 4) * ClientSize.Width /
4,

 (i / 4) * ClientSize.Height /
7,
 (i % 4 + 1) * ClientSize.Width /
4,
 (i / 4 + 1) * ClientSize.Height /
7);
 }
 }
}

The program creates the 28 Label objects during the form's constructor and saves them in an array
named acntl, which is a field of the class. The constructor sets four properties of each Label object.
The first of these four properties indicates that the parent of the control is the form, which means that
the control will appear on the surface of the form's client area:
acntl[i].Parent = this;

The Text property of the control is set to the name of one of the 28 predefined cursors:
acntl[i].Text = astrCursor[i];

The program also sets the Cursor property of the control to the corresponding Cursor object:
acntl[i].Cursor = acursor[i];

Finally, the BorderStyle property is set to a single line:
acntl[i].BorderStyle = BorderStyle.FixedSingle;

What the constructor doesn't do is set the location and size of the control. The control's location and
size are set during the form's OnResize method. Each control gets a size equal to 1/4 the width and
1/7 the height of the form's client area. (Well, not quite. Setting all the controls to the same width and
height caused some rounding problems that resulted in gaps between the controls. The calculation
of the controls' Bounds property using the Rectangle.FromLTRB method helps avoid that problem.)

The program looks similar to the early MouseCursors program. As you pass the mouse cursor over
each control, the cursor changes automatically without any need to process the MouseMove event.
An Exercise in Hit-Testing
When you draw graphics figures or text on your form, you determine the coordinates of each item
and call the appropriate methods to draw it. Often, however, a program uses a mouse interface to
allow a user to point to and manipulate these items. That means that your program must work
backward from the pointer coordinates to determine which graphical item the mouse is pointing to.

This process is called hit-testing, and it can tend to be quite complex, particularly if your client
window contains figures that overlap or text in a variable-pitch font. But in some cases, hit-testing is
fairly straightforward. In fact, the MouseCursors program shown earlier in this chapter used hit-
testing to determine which mouse cursor to display.

The Checker program draws an array of boxes covering its client area. If you click one of these
boxes with the mouse, the box is filled with an X. Click it again and the X disappears.
Checker.cs
//--------------------------------------
// Checker.cs © 2001 by Charles Petzold
//--------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class Checker: Form

{
 protected const int xNum = 5; // Number of boxes
horizontally
 protected const int yNum = 4; // Number of boxes vertically
 protected bool[,] abChecked = new bool[yNum, xNum];
 protected int cxBlock, cyBlock;

 public static void Main()
 {
 Application.Run(new Checker());
 }
 public Checker()
 {
 Text = "Checker";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;

 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea); // Or else ResizeRedraw doesn't
work

 cxBlock = ClientSize.Width / xNum;
 cyBlock = ClientSize.Height / yNum;
 }
 protected override void OnMouseUp(MouseEventArgs mea)
 {
 int x = mea.X / cxBlock;
 int y = mea.Y / cyBlock;

 if (x < xNum && y < yNum)
 {
 abChecked[y, x] ^= true;
 Invalidate(new Rectangle(x * cxBlock, y * cyBlock,
 cxBlock, cyBlock));
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Pen pen = new Pen(ForeColor);

 for (int y = 0; y < yNum; y++)

 for (int x = 0; x < xNum; x++)
 {
 grfx.DrawRectangle(pen, x * cxBlock, y * cyBlock,
 cxBlock, cyBlock);
 if (abChecked[y, x])
 {
 grfx.DrawLine(pen, x * cxBlock, y *
cyBlock,
 (x + 1) * cxBlock, (y + 1) *
cyBlock);
 grfx.DrawLine(pen, x * cxBlock, (y + 1) *
cyBlock,
 (x + 1) * cxBlock, y *
cyBlock);
 }
 }
 }
 }

Whenever the form is resized, the program recalculates cxBlock and cyBlock values, which indicate
the size of each box. The program also maintains an array of bool values named abChecked that
indicate whether a particular box is checked. The OnPaint method draws an outline around each box
and, if abChecked for that box is true, draws an X in the box.

The hit-testing occurs during the OnMouseUp method. (I chose OnMouseUp rather than
OnMouseDown to more closely mimic OnClick, which occurs when the mouse button is released.)
The program divides the mouse coordinates by cxBlock and cyBlock to get indices of abChecked. It
then inverts the bool value and invalidates the corresponding rectangle.

Here's a typical Checker display after a few boxes have been checked:

Adding a Keyboard Interface
I said at the outset of this chapter that you should try to write your Windows Forms programs so they
are usable with either a mouse or the keyboard. I've been shamelessly ignoring my own rule to
concentrate on mouse logic. However, I think this is a good opportunity to see what's involved in
emulating the mouse with the keyboard in the Checker program.

The first decision you have to make is how the keyboard interface should work. For this program, a
reasonable approach might be to let the user move the mouse cursor around the client area using
the arrow keys and other cursor-movement keys. You could simulate a mouse click by using the
Enter key or the spacebar.

This CheckerWithKeyboard class subclasses Checker and provides a keyboard interface.
CheckerWithKeyboard.cs
//--
// CheckerWithKeyboard.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class CheckerWithKeyboard: Checker
{
 public new static void Main()
 {
 Application.Run(new CheckerWithKeyboard());
 }
 public CheckerWithKeyboard()
 {
 Text += " with Keyboard Interface";
 }
 protected override void OnGotFocus(EventArgs ea)
 {
 Cursor.Show();
 }
 protected override void OnLostFocus(EventArgs ea)
 {
 Cursor.Hide();
 }
 protected override void OnKeyDown(KeyEventArgs kea)
 {
 Point ptCursor = PointToClient(Cursor.Position);

 int x = Math.Max(0, Math.Min(xNum - 1, ptCursor.X / cxBlock));
 int y = Math.Max(0, Math.Min(yNum - 1, ptCursor.Y / cyBlock));

 switch(kea.KeyCode)
 {
 case Keys.Up: y--; break;
 case Keys.Down: y++; break;
 case Keys.Left: x--; break;
 case Keys.Right: x++; break;

 case Keys.Home: x = y = 0; break;

 case Keys.End: x = xNum - 1;
 y = yNum - 1; break;
 case Keys.Enter:
 case Keys.Space:
 abChecked[y, x] ^= true;
 Invalidate(new Rectangle(x * cxBlock, y * cyBlock,
 cxBlock, cyBlock));
 return;

 default:
 return;
 }
 x = (x + xNum) % xNum;
 y = (y + yNum) % yNum;

 Cursor.Position = PointToScreen(new Point(x*cxBlock + cxBlock/2,
 y*cyBlock +
cyBlock/2));
 }
}

Let's take a look at the OnKeyDown processing first. The program obtains the current cursor position
by using Cursor.Position and converts the position to client area coordinates. The x and y variables
indicate the row and column of the box that the cursor is closest to, where x ranges from 0 to one
less than the number of boxes horizontally, and y ranges from 0 to one less than the number of
boxes vertically.

For cursor-movement keys, the program modifies the x and y variables. The Home key moves the
cursor to the upper left box; the End key moves it to the lower right box. For the Enter key or the
spacebar, the program reacts as it does to OnMouseUp. It toggles the check-mark variable and
invalidates the rectangle. The OnKeyDown processing concludes by calculating a new mouse cursor
position and setting the Cursor.Position property.

By itself, such OnKeyDown processing would work fine except for one little problem: such a
keyboard interface is most important if a mouse isn't installed. Yet, if a mouse isn't installed, the
cursor isn't visible! That's why this program also overrides the OnGotFocus and OnLostFocus
methods and simply calls Cursor.Show and Cursor.Hide.
Putting the Children to Work
Do the X marks in Checker remind you of anything? Perhaps very large versions of check boxes
such as those seen in Windows dialog boxes? As we saw in the MouseCursorsProperty program,
controls can help you structure and modularize your programs, and they particularly help in hit-
testing.

So far, I've demonstrated some simple uses of the Panel control and the Label control. But you can
get even simpler than what I've shown. It's not necessary to use one of the predefined controls. You
can create your own controls by subclassing the Control class. Control is the basis of all the
predefined controls in Windows Forms. When you create your own controls, however, it's
recommended that you derive from UserControl, which derives from Control by way of
ScrollableControl and ContainerControl.

Here's a class derived from UserControl that has a single bool field, which it toggles in response to
an OnClick call. During the OnPaint method, it draws a border around itself and, if the bool variable
is set to true, an X.
CheckerChild.cs

//---
// CheckerChild.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class CheckerChild: UserControl
{
 bool bChecked = false;

 public CheckerChild()
 {
 ResizeRedraw = true;
 }
 protected override void OnClick(EventArgs ea)
 {
 base.OnClick(ea);

 bChecked = !bChecked;
 Invalidate();
 }
 protected override void OnKeyDown(KeyEventArgs kea)
 {
 switch(kea.KeyCode)
 {
 case Keys.Enter:
 case Keys.Space:
 OnClick(new EventArgs());
 break;
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Pen pen = new Pen(ForeColor);

 grfx.DrawRectangle(pen, ClientRectangle);

 if (bChecked)
 {
 grfx.DrawLine(pen, 0, 0, ClientSize.Width,
ClientSize.Height);
 grfx.DrawLine(pen, 0, ClientSize.Height, ClientSize.Width,
0);
 }

 }
}

The class also responds to a depression of the Enter or spacebar key by simulating an OnClick
method call.

The following program creates 20 of these controls and puts them on the surface of the client area.
In this way, it's very similar to the MouseCursorsProperty program shown earlier except that it's
using this custom control rather than a Label control. The hard part is the OnResize call when the
form must change the Location and Size of each of the controls.
CheckerWithChildren.cs
//--
// CheckerWithChildren.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class CheckerWithChildren: Form
{
 protected const int xNum = 5;
 protected const int yNum = 4;
 protected CheckerChild[,] acntlChild;

 public static void Main()
 {
 Application.Run(new CheckerWithChildren());
 }
 public CheckerWithChildren()
 {
 Text = "Checker With Children";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 CreateChildren();

 OnResize(EventArgs.Empty);
 }
 protected virtual void CreateChildren()
 {
 acntlChild = new CheckerChild[yNum, xNum];

 for (int y = 0; y < yNum; y++)
 for (int x = 0; x < xNum; x++)
 {
 acntlChild[y, x] = new CheckerChild();
 acntlChild[y, x].Parent = this;
 }
 }

 protected override void OnResize(EventArgs ea)
 {
 int cxBlock = ClientSize.Width / xNum;
 int cyBlock = ClientSize.Height / yNum;

 for (int y = 0; y < yNum; y++)
 for (int x = 0; x < xNum; x++)
 {
 acntlChild[y, x].Location = new Point(x*cxBlock,
y*cyBlock);
 acntlChild[y, x].Size = new Size(cxBlock, cyBlock);
 }
 }
}

Here's the really nice thing about this program: no hit-testing! The child control doesn't care where it
gets clicked. If it gets a call to OnClick, it toggles the check mark. Windows itself is doing all the hit-
testing by determining which control the mouse click should go to.

In this particular case, the parent form isn't interested in when the child gets clicked. But it could fairly
easily install event handlers for the control's Click event. (The OnClick method in CheckerChild calls
base.OnClick to ensure that Click event handlers are called.) The form would need a method defined
like so:
void ChildOnClick(object obj, EventArgs ea)

And then in the loop when creating the controls, event handlers would be installed like so:
acntlChild[y, x].Click += new EventHandler(ChildOnClick);

The bChecked field of CheckerChild could be made public so that the parent could find the state of
each child. Or CheckerChild could implement a property that provides access to the value.

Does the CheckerWithChildren program have a keyboard interface? Funny you should ask. If you
run the program and press Enter or the spacebar, you'll toggle the X in the box in the upper left
corner. Now press the Tab key seven times. Or the Right Arrow key, or the Down Arrow key, or any
combination of these three keys seven times. Now press Enter or the spacebar. The box that gets
toggled this time is the one in the middle of the second row.

Without any effort on the programmer's part, the form is responding to the Tab key and arrow keys
by shifting the input focus among the 20 controls. The 20 controls were created in a particular order
starting with the one in the upper left corner and then across each row, and then down to the next
row. The Tab, Right Arrow, and Down Arrow keys shift the input focus to the next control in this
order; the Left Arrow and Up Arrow keys and the Shift+Tab key combination shift the input focus to
the previous control. You can also change the input focus by clicking on a control. This interface is
implemented in the ContainerControl class, which is one of the ancestors of Form. The control itself
responds to the Enter or spacebar key.

However, a common amenity is missing: the control isn't giving any indication when it has the input
focus. Perhaps a wider border around the control would be sufficient.

Here's a new class that subclasses the original CheckerChild class to implement this feature.
CheckerChildWithFocus.cs
//--
// CheckerChildWithFocus.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;

using System.Drawing.Drawing2D;
using System.Windows.Forms;

class CheckerChildWithFocus: CheckerChild
{
 protected override void OnGotFocus(EventArgs ea)
 {
 Invalidate();
 }
 protected override void OnLostFocus(EventArgs ea)
 {
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 base.OnPaint(pea);

 if (Focused)
 {
 Graphics grfx = pea.Graphics;
 grfx.DrawRectangle(new Pen(ForeColor, 5), ClientRectangle);
 }
 }
}

This new control invalidates itself when the control gains or loses focus, providing an opportunity for
the OnPaint method to redraw its border based on the Focused property.

The form that uses these new controls is basically identical to CheckerWithChildren, but it needs to
create children of type CheckerChildWithFocus rather than CheckerChild. For this reason, the new
form overrides the CreateChildren method of the CheckerWithChildren class.
CheckerWithChildrenAndFocus.cs
//--
// CheckerWithChildrenAndFocus.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class CheckerWithChildrenAndFocus: CheckerWithChildren
{
 public new static void Main()
 {
 Application.Run(new CheckerWithChildrenAndFocus());
 }
 public CheckerWithChildrenAndFocus()
 {

 Text = "Checker with Children and Focus";
 }
 protected override void CreateChildren()
 {
 acntlChild = new CheckerChildWithFocus[yNum, xNum];

 for (int y = 0; y < yNum; y++)
 for (int x = 0; x < xNum; x++)
 {
 acntlChild[y, x] = new CheckerChildWithFocus();
 acntlChild[y, x].Parent = this;
 }
 }
}
Hit-Testing Text
I mentioned earlier in this chapter that one of the more complex hit-testing jobs involves text in a
variable-pitch font. Basically, what you need to do is call MeasureString multiple times to attempt to
figure out which character of displayed text (or, more accurately, which space between the
characters) the user is clicking with the mouse.

In Chapter 6, I presented a program named TypeAway that showed how to echo keyboard input in a
single line of displayed text. This program included a caret that the user moves with the arrow keys.
Let's add a mouse interface to that program that sets the caret position based on the X property of
the MouseEventArgs object passed as an argument to OnMouseDown. (For multiple lines of text,
such a program would also use the Y property to determine the line of text the user was pointing to.)
HitTestText.cs
//--
// HitTestText.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class HitTestText: TypeAway
{
 public new static void Main()
 {
 Application.Run(new HitTestText());
 }
 public HitTestText()
 {
 Text += " with Hit-Testing";
 Cursor = Cursors.IBeam;
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 if (strText.Length == 0)
 return;

 Graphics grfx = CreateGraphics();
 float xPrev = 0;
 int i;

 for (i = 0; i < strText.Length; i++)
 {
 SizeF sizef = grfx.MeasureString(strText.Substring(0, i +
1),
 Font, Point.Empty,

StringFormat.GenericTypographic);

 if (Math.Abs(mea.X - xPrev) < Math.Abs(mea.X -
sizef.Width))
 break;

 xPrev = sizef.Width;
 }
 iInsert = i;

 grfx.Dispose();
 PositionCaret();
 }
}

Notice that the constructor sets the Cursor property of the form to Cursors.IBeam to make the
program look like a real text editor.

The OnMouseDown method includes a for loop based on the number of characters in the stored text
string. The comparison using calls to Math.Abs (absolute value) determines which space between
the characters the X coordinate of the mouse cursor is closest to. It then sets the iInsert field to that
new character index and calls PositionCaret essentially to convert that character index into a new
pixel position of the caret.

Like TypeAway itself, this program unfortunately doesn't work correctly with text that is read (and
typed) right to left.
Scribbling with the Mouse
You've heard of CAD programs? You've heard of paint programs? The Scribble program is neither of
these.
Scribble.cs
//---------------------------------------
// Scribble.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class Scribble: Form
{

 bool bTracking;
 Point ptLast;

 public static void Main()
 {
 Application.Run(new Scribble());
 }
 public Scribble()
 {
 Text = "Scribble";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 if (mea.Button != MouseButtons.Left)
 return;

 ptLast = new Point(mea.X, mea.Y);
 bTracking = true;
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 if (!bTracking)
 return;

 Point ptNew = new Point(mea.X, mea.Y);

 Graphics grfx = CreateGraphics();
 grfx.DrawLine(new Pen(ForeColor), ptLast, ptNew);
 grfx.Dispose();

 ptLast = ptNew;
 }
 protected override void OnMouseUp(MouseEventArgs mea)
 {
 bTracking = false;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 // What do I do here?
 }
}

At first, the program seems to work just fine. You position the mouse cursor over the program's client
area, press the left mouse button, and drag the mouse to draw straight, curvy, or otherwise

awkward-looking lines. (I'm using a simple approach to mouse tracking here so as not to overly
obscure how the program works.) The drawing occurs during the OnMouseMove method: the
program obtains a Graphics object from CreateGraphics and simply draws a line from the previous
mouse position (which it has saved in the field ptLast) to the new mouse position. Here's my homage
to the early advertisements for the Apple Macintosh:

But what does Scribble do during its OnPaint method? Oops! The program forgot to retain all those
mouse positions it used to draw the lines. If the client area needs repainting, it's out of luck.

You can implement a repainting facility in a program such as this in a couple ways. One technique is
to use a shadow bitmap that the program draws on at the same time it draws on the screen. During
the OnPaint method, it simply displays that bitmap. I'll have another version of the Scribble program
in Chapter 11 that does precisely this. In Chapter 15, I use a graphics path to save the points.

Another solution is to accumulate an array of Point structures and simply call DrawLines during the
OnPaint method. Well, that raises some questions as well. The number of elements that a C# array
can store is fixed at the time it's created. We might be tempted to create an array of many points, as
in this example:
Point[] apt = new Point[1000000];

But we would burden ourselves with two conflicting fears: first, that we hadn't allocated enough
points for a particular artistic user, and second, that we were wasting an awful lot of memory.

The solution is the ArrayList class, defined in the System.Collections namespace, which also
includes classes with the mouthwatering names Queue, Stack, SortedList, and Hashtable. An
ArrayList object is like a single-dimension array that expands itself when necessary. I can't go into a
full discussion of ArrayList here, but I'll give you the basics and you can explore the rest on your
own.

You begin by creating a new ArrayList object:
ArrayList arrlst = new ArrayList();

An alternative constructor provides an initial capacity. By default, the capacity is set to 16. Then you
can use the Add method to add any object to ArrayList. Here's a statement adding a Point object:
arrlst.Add(pt);

You can also insert or remove items by using similar methods.

One convenient approach to retrieving objects from ArrayList is to use an indexer, much like an
array. For example, if you know that the fourth item in arrlst is a Point structure, you can get it by
using
Point pt = (Point) arrlst[3];

The cast is needed because the indexer returns an object of type Object.

You can add different types of objects to the same array list. For example, right after adding a Point
to the array list you can add a Rectangle:
arrlst.Add(rect);

However, there may come a time when you want to copy the contents of an array list into a regular
array (as I'll demonstrate shortly). A run-time error will be raised if you try to copy a Rectangle object
into an array of Point structures.

The Capacity property of the array list indicates how many objects the array list is currently capable
of holding. As you add objects to the array list (and perhaps remove some), the Count property
indicates the number of objects in the array list. Count is always less than or equal to Capacity. If
Count equals Capacity and you add another item, Capacity is doubled.

A version of Scribble that uses the ArrayList class to save all the Point structures can't make do with
only one array list. A single ArrayList of Point structures would imply that all the points are connected
with a single line. However, the user can press the left mouse button, scribble around, and release
the mouse button multiple times. One ArrayList is needed to store these points as they're being
drawn. But then that collection of points needs to be converted to an array of Point structures. Each
array of Point structures needs to be stored in another ArrayList object.

In the ScribbleWithSave program, the main ArrayList object (the one storing Point arrays) is the field
named arrlstApts. The arrlstPts field is used to store each collection of points as they're being drawn.
ScribbleWithSave.cs
//---
// ScribbleWithSave.cs © 2001 by Charles Petzold
//---
using System;
using System.Collections; // For ArrayList
using System.Drawing;
using System.Windows.Forms;

class ScribbleWithSave: Form
{
 ArrayList arrlstApts = new ArrayList();
 ArrayList arrlstPts;
 bool bTracking;

 public static void Main()
 {
 Application.Run(new ScribbleWithSave());
 }
 public ScribbleWithSave()
 {
 Text = "Scribble with Save";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 if (mea.Button != MouseButtons.Left)

 return;

 arrlstPts = new ArrayList();
 arrlstPts.Add(new Point(mea.X, mea.Y));

 bTracking = true;
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 if (!bTracking)
 return;

 arrlstPts.Add(new Point(mea.X, mea.Y));

 Graphics grfx = CreateGraphics();
 grfx.DrawLine(new Pen(ForeColor),
 (Point) arrlstPts[arrlstPts.Count - 2],
 (Point) arrlstPts[arrlstPts.Count - 1]);
 grfx.Dispose();
 }
 protected override void OnMouseUp(MouseEventArgs mea)
 {
 if (!bTracking)
 return;

 Point[] apt = (Point[]) arrlstPts.ToArray(typeof(Point));
 arrlstApts.Add(apt);
 bTracking = false;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Pen pen = new Pen(ForeColor);

 for (int i = 0; i < arrlstApts.Count; i++)
 grfx.DrawLines(pen, (Point[]) arrlstApts[i]);
 }
}

The program creates a new ArrayList object whenever the user presses the left mouse button and
the program gets a call to OnMouseDown. The first member of the ArrayList object is the mouse
cursor position at that time:
arrlstPts.Add(new Point(mea.X, mea.Y));

The program adds additional members on each call to OnMouseMove.

On receipt of OnMouseUp, the program uses the ToArray method to convert the collection of Point
structures into a Point array:

Point[] apt = (Point[]) arrlstPts.ToArray(typeof(Point));

(There's an overload of the ToArray method that doesn't require an argument, but it returns an array
of type Object. With the argument, the method returns an object of type Array.) That Point array is
then added to arrlstApts:
arrlstApts.Add(apt);

What's really nice is the OnPaint method. It simply loops through the elements of arrlstApts and
casts each one to the Point array that it passes to DrawLines. (I didn't think displaying the lines
stored in arrlstPts was quite as necessary, although code to do that could easily be added.)

Of course, ScribbleWithSave can't really save an indefinite number of points. At some point, it will
run out of memory. To protect itself, the program should probably enclose the calls to the Add
method of ArrayList in a try block. But I wasn't even quite sure how I would test such a thing, given
that it would occur only after a great deal of drawing.

Chapter 9: Text and Fonts
Overview
In a graphical environment, the seemingly commonplace exercise of displaying text takes on
additional layers of complexity. Fonts are often proportionally spaced, and they usually come in a
variety of styles and sizes, which means that text must be handled much like other graphical output.
Yet text is not quite like the abstract analytical geometry of lines and filled areas and thus occupies
an uneasy niche in the field of computer graphics. To a typographer, fonts are a form of art with a
long history of sophisticated design. Creators of computer graphics systems that implement fonts
with any degree of integrity must deal with classical typographical concepts; application
programmers must also learn about these concepts.

The most important principle is that text is meant to be read. There are subtleties in font design, font
rendering, and page layout that affect readability even if the average person doesn't consciously
notice them. Moreover, text is not purely content; the style in which the text is printed on the page
can affect the interpretation of the content, either positively or adversely. You don't want a wedding
invitation to look like an office memorandum, or a doctoral thesis to look like a magazine
advertisement.
Fonts Under Windows
The 1992 introduction of Microsoft Windows 3.1 marked a major change in how Windows
applications used fonts. Prior to that, most of the fonts available for the video display under Windows
were bitmap fonts (also called raster fonts) stored in discrete sizes and generally not scalable to
other sizes. Also available were stroke fonts (also called plotter or vector fonts) defined as polylines,
but these were unattractive and rarely used.

Windows 3.1 introduced TrueType, which greatly enhanced the ability of programmers and users to
work with text in a flexible manner. TrueType is an outline font technology developed by Apple and
Microsoft and is supported by many font manufacturers. Outline fonts are continuously scalable and
contain built-in hints that prevent distortions when the outlines are scaled to a particular pixel size
and grid.

Outline fonts also lend themselves well to integration with other graphics operators. You've already
seen in Chapter 7 how you can scale, rotate, and shear text. In Chapter 15, I'll demonstrate how you
can make text output part of a graphics path and use that path for outlining, filling, or clipping.
Chapter 19 is devoted to exercises I collectively call Font Fun.

In 1997, Adobe and Microsoft announced the OpenType font format, which combines TrueType and
the Type 1 outline font format used in PostScript, Adobe's page-description language. (In the Fonts
dialog box invokable from Control Panel, TrueType font files are associated with an icon containing
the initials TT, and OpenType font files have an icon with an O.)

The U.S. edition of Windows 2000 comes with 42 TrueType and OpenType font files, and the CD-
ROM includes another 83 font files for non-Latin alphabets. You can optionally get access to these
additional fonts by installing additional language support from the Regional Options dialog box of
Control Panel.

Although bitmap fonts and stroke fonts are still supported under Windows, they are not directly
available to Windows Forms applications. A Windows Forms program has direct access to only
TrueType and OpenType fonts. This is actually a good thing, for it means that Windows Forms
applications can work consistently with all fonts to which they have access and can use them on both
the video display and the printer.

Windows Forms supports anti-aliasing of TrueType and OpenType fonts, and it also supports
ClearType, a technique announced by Microsoft in 1998 for taking advantage of the arrangement of
color dots on LCD displays. I'll discuss font anti-aliasing and ClearType later in this chapter.
Talking Type
Typographers generally denote a particular font by a typeface name (often called simply a face
name) and a point size (sometimes called the em size). Each typeface belongs to a type family. Type

families have simple names such as Bookman, Helvetica, Garamond, and Times. Each family often
includes several variations:
§ The strokes that make up the characters can be light or heavy in various degrees, described by

typeface names such as Helvetica Ultra Light, Helvetica Thin, Helvetica Light, Helvetica Bold,
Helvetica Heavy, and Helvetica Black.

§ The widths of the individual characters can be narrower or wider than usual, for typeface
names such as Helvetica Narrow, Helvetica Condensed, or Helvetica Extended.

§ The characters can be slanted to the right, giving us typeface names such as Helvetica Italic or
Helvetica Oblique. Strictly speaking, oblique refers to characters that are simply slanted, while
italic implies that the characters are also stylistically somewhat different from the upright font.
The appearance of the lowercase "a" is usually a good indication of whether a font is oblique (a)
or italic (a).

These three variations can be combined in a single typeface name—for example, Helvetica Bold
Extended Oblique. Typeface names can also include the name of the copyright holder of the font and
perhaps a code number meaningful only to the font manufacturer.

When TrueType was first introduced in Windows, it was represented by 13 TrueType files (filename
extension .ttf) associated with the following typeface names:
§ Courier New
§ Courier New Bold
§ Courier New Italic
§ Courier New Bold Italic
§ Times New Roman
§ Times New Roman Bold
§ Times New Roman Italic
§ Times New Roman Bold Italic
§ Arial
§ Arial Bold
§ Arial Italic
§ Arial Bold Italic
§ Symbol

Courier is a fixed-pitch font family that resembles typewriter output. Very little text is displayed in
Courier these days, the big exceptions being command-line windows, program listings, and hex
dumps.

Times New Roman is a clone of the Times font (renamed for copyright reasons) originally designed
for the Times of London and used in much printed material. It is considered highly readable. Arial is a
clone of Helvetica, a popular sans serif font. Serifs are small turns that often finish the strokes of
letters. A sans serif font doesn't have serifs. (A font with serifs is sometimes called a roman font.)
The Symbol font includes common symbols rather than letters.

Windows 2000 also includes additional TrueType and OpenType font files installed with the North
American English version. These include the following eight roman font faces:
§ Georgia
§ Georgia Bold
§ Georgia Italic
§ Georgia Bold Italic
§ Palatino Linotype
§ Palatino Linotype Bold
§ Palatino Linotype Italic
§ Palatino Linotype Bold Italic

Fourteen sans serif font faces:
§ Arial Black
§ Impact
§ Lucida Sans Unicode
§ Microsoft Sans Serif
§ Tahoma
§ Tahoma Bold
§ Trebuchet MS
§ Trebuchet MS Bold
§ Trebuchet MS Italic

§ Trebuchet MS Bold Italic
§ Verdana
§ Verdana Bold
§ Verdana Italic
§ Verdana Bold Italic

A whimsical font face:
§ Comic Sans MS
§ Comic Sans MS Bold

Another fixed-pitch font face:
§ Lucida Console

And two additional symbol font faces:
§ Wingdings
§ Webdings

As you can see, many (but not all) of the font families come in regular, bold, italic, and bold italic
faces. In addition, Windows can apply underlining or strikeout to any font.

In graphical environments, users tend to use the word font to refer to what is technically a font family.
"Let's change this font from Helvetica to Verdana," a user will say. In addition, users tend to think of
italic and boldface (as well as underlining and strikeout) as attributes or styles that are applied to a
particular font. For example, no user says, "I want to make this word italic so I have to switch the
typeface name from Linotype Palatino to Linotype Palatino Italic." No, it's more like "I want to make
this word italic," regardless of the face name.

Windows Forms helps you present fonts to the user in a manner familiar to the user's expectations
by consolidating multiple face names (such as Arial, Arial Bold, Arial Italic, and Arial Bold Italic) into a
single font family (Arial). Despite the theoretical wide variety of face names possible with different
levels of stroke width and character width, the only variations allowed are a combination of bold,
italic, underline, and strikeout styles. In Windows Forms, the Arial Black typeface is not considered
part of the Arial family; Arial Black is considered a separate font family, which just so happens is not
available on the Windows 2000 CD-ROM in italic or bold versions.
Font Heights and Line Spacing
Along with a typeface name, a font is identified by a vertical size in points. In traditional typography, a
point is 0.01384 inch. This number is very close to 1/72 of an inch, so in computer typography, the
point is assumed to be exactly 1/72 of an inch.

The point size of a font is commonly described as the height of the characters in the Latin alphabet—
that is, the uppercase and lowercase letters A through Z without diacritical marks—from the very top
of the ascenders to the bottom of the descenders, encompassing, for example, the full height of the
characters "bq." That's certainly a convenient way to think of the point size, but it's usually not
metrically precise.

Back in the days of metal type, the point size of a font was the vertical size of the metal type on
which the letters were cast. The letters themselves were generally a little shorter than the point size.
Today, this restriction has disappeared, and it's sometimes the case that letters can be larger than
the point size. It's safer to think of the point size of a font as a typographical design concept rather
than a metrical concept. The size of the characters in a particular font could be greater than or less
than what the point size implies. Never assume that the point size of a font is anything other than an
approximate measure of the height of the font characters.

Getting familiar with common point sizes is helpful when beginning to work with fonts. Most of The
New York Times is printed in 8-point type; Newsweek is 9-point type; this book has 10.5-point type.
The default Windows font is 10 points. The default Windows Forms font is about 8 points. As I
discussed in Chapter 7, the user is responsible for setting an assumed resolution of the video
display, and that resolution is what affects the visual size of these 8-point and 10-point fonts.

I mentioned earlier that the point size is sometimes referred to as the em size. The term comes from
the size of the square piece of metal type used in olden days for the capital M. These days, the em is
used mostly to refer to horizontal measurements. The width of an em in a particular font is equal to
the vertical point size of the font. For example, in a 14-point font, the em dash and the em space are

both 14 points wide. The en is half of the em. In a 14-point font, the en dash and the en space are 7
points wide.

Successive lines of text are generally spaced by an amount somewhat larger than the point size,
usually at least about 115 percent of the point size. The rationale for the line spacing is partly based
on the need for some extra space for the diacritics that appear in many European languages. But
line spacing is also an aesthetic necessity: text is easier to read if there's some air between the lines.

The recommended line spacing is the value you obtain from the Height property and the GetHeight
method of the Font class (both of which I'll discuss later in this chapter in context with other Font
properties). For many fonts, the recommended line spacing is usually larger than the point size but
somewhat smaller than the height returned from the MeasureString method of the Graphics class. As
I've mentioned before, you should avoid using the Height property unless you know that you're
dealing only with the default page transform on the video display. Because Height doesn't involve a
Graphics object, it isn't applicable for the printer or for nondefault page transforms.
Default Fonts
Since Chapter 2, we've been using the Font property that's implemented in Control and inherited by
all its descendents, including Form:
Control Properties (selection)

Type Property Accessibility

Font Font get/set

As you'll see shortly, you can set this Font property to a different Font object and all the successive
DrawString calls that use the Font property will use this different font. (You can also just create a
new Font object and use that directly in DrawString.) If you change the value of the Font property,
you can set it back to the original value by using this static read-only property of Control:
Control Static Properties (selection)

Type Property Accessibility

Font DefaultFont get

You can do this manually:
Font = DefaultFont;

Or you can simply use this method:

Control Methods (selection)

void ResetFont()

There's also this font-related property:
Control Properties (selection)

Type Property Accessibility

int FontHeight get/set

You can use this property instead of Font.Height. Although this property is writable, setting it to a
new value won't change the Font property!
Variation on a Font
The System.Drawing namespace defines two important classes for working with fonts:
§ FontFamily is identified by a string such as "Times New Roman."
§ Font is a combination of a font family (either a FontFamily object or a character string

identifying the family name), attributes (such as italic and bold), and a point size.

I'm going to begin with the Font class. The Font constructors are in three categories:
§ Based on an existing Font object
§ Based on a character string identifying the font family
§ Based on a FontFamily object

The simplest constructor for Font creates a new font based on an existing font. The new font is the
same except for the font style:

Font Constructors (selection)

Font(Font font, FontStyle fs)

FontStyle is an enumeration defined as a series of single-bit flags:
FontStyle Enumeration

Member Value

Regular 0

Bold 1

Italic 2

Underline 4

Strikeout 8

For example, suppose font is an existing font, perhaps obtained from the form's Font property:
Font font = Font;

You can make an italic version of that font named fontItalic by using the following statement:
Font fontItalic = new Font(font, FontStyle.Italic);

You can use multiple enumeration members combined with the C# bitwise OR operator:
Font fontBoldStrikeout = new Font(font, FontStyle.Bold |
FontStyle.Strikeout);

Here's a program that takes the form's Font property and creates bold and italic versions for
displaying a mix of regular, bold, and italic text.
BoldAndItalic.cs
//--
// BoldAndItalic.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BoldAndItalic: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new BoldAndItalic());
 }
 public BoldAndItalic()
 {

 Text = "Bold and Italic Text";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 const string str1 = "This is some ";
 const string str2 = "bold";
 const string str3 = " text and this is some ";
 const string str4 = "italic";
 const string str5 = " text.";
 Brush brush = new SolidBrush(clr);
 Font fontRegular = Font;
 Font fontBold = new Font(fontRegular,
FontStyle.Bold);
 Font fontItalic = new Font(fontRegular,
FontStyle.Italic);
 float x = 0;
 float y = 0;

 grfx.DrawString(str1, fontRegular, brush, x, y);
 x += grfx.MeasureString(str1, fontRegular).Width;

 grfx.DrawString(str2, fontBold, brush, x, y);
 x += grfx.MeasureString(str2, fontBold).Width;

 grfx.DrawString(str3, fontRegular, brush, x, y);
 x += grfx.MeasureString(str3, fontRegular).Width;

 grfx.DrawString(str4, fontItalic, brush, x, y);
 x += grfx.MeasureString(str4, fontItalic).Width;

 grfx.DrawString(str5, fontRegular, brush, x, y);
 }
}

Because DrawString has a Font argument and a particular font is either regular, bold, italic, or bold
italic, multiple DrawString calls are required to display text that combines multiple styles. The
program uses MeasureString to determine the size of each piece of text and space the text
horizontally:

If you look closely, you'll probably notice that there seems to be a little extraneous space between
each piece of displayed text. I'll show you how to avoid this extra space when I get to detailed
coverage of the StringFormat class later in this chapter.

Let me give you another warning now, and we'll examine later how to deal with it: this Font
constructor can fail if the particular font family that the font belongs to isn't capable of the requested
style. The constructor throws an exception that a well-behaved program should deal with. This isn't a

problem in the BoldAndItalic program because it's using the form's default font, and that font is
capable of all the styles. The BoldAndItalic program will not work with every font family, however.
Creating Fonts by Name
This next set of constructors for Font is exceptionally convenient and straightforward. You specify a
font by using the font family name, the point size, and an optional style:

Font Constructors (selection)

Font(string strFamily, float fSizeInPoints)
Font(string strFamily, float fSizeInPoints, FontStyle fs)

The font family names you can use as the first argument to the Font constructor are familiar names
such as "Times New Roman," "Arial," "Courier New," "Comic Sans MS," and many others. For
example,
Font font = new Font("Times New Roman", 24);

creates a 24-point Times New Roman font.

I love creating fonts like this, and I suspect that you too will find yourself using these Font
constructors more than the others. However, you should keep in mind some drawbacks.

The name should represent a TrueType or OpenType font that is installed on the system on which
the program is running. If the Times New Roman font isn't available—or if you misspell the name—
the constructor will substitute a default font (probably Microsoft Sans Serif). Can you be sure that the
Times New Roman font is available? Well, yes, if you're coding something for yourself. And yes
again, if you're coding something for internal use in a company where you're sure that all the
machines have Times New Roman fonts installed. But it's possible for users to uninstall TrueType
fonts, and while getting rid of Times New Roman may sound perverse to you and me, it's not
impossible. As your code achieves an ever broader platform base, using explicit font family names
becomes less safe. At some point in the future, Windows Forms programs might run under
environments that have other collections of fonts with different names. Presumably, those
environments will implement some kind of font-mapping so that existing programs don't break, but
it's probably still risky to use the more obscure font family names.

Sticking to the familiar three font family names of Times New Roman, Arial, and Courier New is
probably safest. Some aliases are even allowed: you can use "Times" for Times New Roman and
"Helvetica" for Arial.

Specifying an explicit point size is less problematic. You know that the user has set the video display
properties based on the idea that a 10-point font is comfortable. Windows Forms itself sets the form's
Font property based on the assumption that an 8-point font is also readable. Everything else is
relative. For example, a 24-point font is three times larger than the normal Windows Forms font.

Because there are 72 points to the inch, a 24-point font is approximately 1/3 inch tall. (I say
approximately because, as I mentioned earlier, the point size is a typographical design concept, not
a precise measurement.) You can also think of a 24-point font as having a size in pixels that is
approximately 1/3 the DpiY property of the Graphics object.

The family name and the point size can also be combined with a font style. The following program
creates and displays 18-point Courier New, Arial, and Times New Roman fonts in regular, bold, italic,
and bold-italic versions. These 18-point fonts are approximately 1/4 inch in size.
FontNames.cs
//--
// FontNames.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;

using System.Windows.Forms;

class FontNames: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new FontNames());
 }
 public FontNames()
 {
 Text = "Font Names";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 string[] astrFonts = { "Courier New", "Arial",
 "Times New Roman" };
 FontStyle[] afs = { FontStyle.Regular, FontStyle.Bold,
 FontStyle.Italic,
 FontStyle.Bold | FontStyle.Italic };
 Brush brush = new SolidBrush(clr);
 float y = 0;

 foreach (string strFont in astrFonts)
 {
 foreach (FontStyle fs in afs)
 {
 Font font = new Font(strFont, 18, fs);
 grfx.DrawString(strFont, font, brush, 0, y);
 y += font.GetHeight(grfx);
 }
 }
 }
}

This class derives from PrintableForm, so you can print the fonts by clicking on the client area. Keep
in mind that the coordinates passed to the DrawString method indicate the position of the upper left
corner of the string. Therefore, coordinates for each string must be adjusted by the text height of the
previous string. The program adjusts the coordinate by using the Font method GetHeight after
displaying text using the font.

Notice also that the program assumes that each font returns a different value from the GetHeight
method. Put a Console.WriteLine statement in there if you're curious about these values. You'll find
that the Times New Roman and Arial fonts return the same value, which is a little larger than the
Courier New value. But other fonts may be quite different, and there's no reason you should guess.
Use GetHeight to make sure. Here's the program's display:

You can try substituting the Height property for the GetHeight method and see what happens when
you print the output on your printer. The line spacing will be off by an amount that's dependent on
how much the video display resolution in dots per inch (dpi) differs from the 100-dpi resolution set for
the printer.

Here's a very similar program that displays the Times New Roman font in sizes from 6 points to 12
points in increments of 1/4 point.
FontSizes.cs
//--
// FontSizes.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class FontSizes: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new FontSizes());
 }
 public FontSizes()
 {
 Text = "Font Sizes";
 }

 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 string strFont = "Times New Roman";
 Brush brush = new SolidBrush(clr);
 float y = 0;

 for (float fSize = 6; fSize <= 12; fSize += 0.25f)
 {
 Font font = new Font(strFont, fSize);
 grfx.DrawString(strFont + " in " + fSize + " points",
 font, brush, 0, y);
 y += font.GetHeight(grfx);
 }
 }
}

Here's the program output:

Perhaps what's most noticeable about this display is the sudden leap at 10.5 points from strokes that
are 1 pixel wide to strokes that are 2 pixels wide. Such transitions are not evident on higher-
resolution devices such as printers.

If you want to use a larger font for everything your program displays in its client area, you can
change the Font property of a form right in its constructor. Here's a program that overrides the
BoldAndItalic program shown earlier and displays the text string with a 24-point font.

BoldAndItalicBigger.cs
//--
// BoldAndItalicBigger.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BoldAndItalicBigger: BoldAndItalic
{
 public new static void Main()
 {
 Application.Run(new BoldAndItalicBigger());
 }
 public BoldAndItalicBigger()
 {
 Text += " Bigger";
 Font = new Font("Times New Roman", 24);
 }
}

Here's the program display:

In this program, the extraneous space between the various pieces of text has become more
noticable than in the BoldAndItalic program. Avoiding this extra space requires a StringFormat
object, as I'll demonstrate later in this chapter.
A Point Size by Any Other Name…
You need not specify the size of the font in points. Two more constructors for Font include a
GraphicsUnit argument:

Font Constructors (selection)

Font(string strFamily, float fSize, GraphicsUnit gu)
Font(string strFamily, float fSize, FontStyle fs, GraphicsUnit gu)

You can use all but one of the GraphicsUnit enumeration values that you learned about in
connection with the PageUnit property in Chapter 7:
GraphicsUnit Enumeration

Member Value Description

World 0 Units of world coordinates

Display 1 Won't work with Font constructor!

Pixel 2 Units of pixels

Point 3 Units of 1/72 inch

GraphicsUnit Enumeration

Member Value Description

Inch 4 Units of inches

Document 5 Units of 1/300 inch

Millimeter 6 Units of millimeters

The constructor
new Font(strFamily, float fSize)

is identical to
new Font(strFamily, float fSize, GraphicsUnit.Point)

Indeed, the following constructors are all equivalent:
new Font(strFamily, 72)
new Font(strFamily, 72, GraphicsUnit.Point)
new Font(strFamily, 1, GraphicsUnit.Inch)
new Font(strFamily, 25.4f, GraphicsUnit.Millimeter)
new Font(strFamily, 300, GraphicsUnit.Document)

All these constructors result in the creation of identical 72-point fonts. There's nothing going on here
that's more sophisticated than knowing that an inch is equal to 72 points and 25.4 millimeters.

The messy Font constructor arguments are GraphicsUnit.Pixel and GraphicsUnit.World. For the
video display, if you're displaying text with the default page transform (that is, all coordinates and
sizes are in units of pixels), you can also use the following two constructors to create 72-point fonts:
new Font(strFamily, grfx.DpiY, GraphicsUnit.Pixel)
new Font(strFamily, grfx.DpiY, GraphicsUnit.World)

The second argument is the number of pixels in one vertical inch.

The equivalence of these constructors is demonstrated in the following program, which creates 24-
point fonts seven different ways.
TwentyFourPointScreenFonts.cs
//---
// TwentyFourPointScreenFonts.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class TwentyFourPointScreenFonts: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new TwentyFourPointScreenFonts());
 }
 public TwentyFourPointScreenFonts()
 {
 Text = "Twenty-Four Point Screen Fonts";

 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 float y = 0;
 Font font;
 string strFamily = "Times New Roman";

 font = new Font(strFamily, 24);
 grfx.DrawString("No GraphicsUnit, 24 points", font, brush, 0,
y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, 24, GraphicsUnit.Point);
 grfx.DrawString("GraphicsUnit.Point, 24 units", font, brush, 0,
y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, 1/ 3f, GraphicsUnit.Inch);
 grfx.DrawString("GraphicsUnit.Inch, 1/3 units", font, brush, 0,
y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, 25.4f / 3, GraphicsUnit.Millimeter);
 grfx.DrawString("GraphicsUnit.Millimeter, 25.4/3 units",
 font, brush, 0, y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, 100, GraphicsUnit.Document);
 grfx.DrawString("GraphicsUnit.Document, 100 units",
 font, brush, 0, y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, grfx.DpiY / 3, GraphicsUnit.Pixel);
 grfx.DrawString("GraphicsUnit.Pixel, " + grfx.DpiY / 3 + "
units",
 font, brush, 0, y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, grfx.DpiY / 3, GraphicsUnit.World);
 grfx.DrawString("GraphicsUnit.World, " + grfx.DpiY / 3 + "
units",
 font, brush, 0, y);
 }
}

I'm using 24-point fonts rather than 72-point fonts in this program just so they all fit on the display. In
each of the constructors, the values passed as the second argument are simply 1/3 the values I
showed previously.

On the video display, all seven lines of text are the same height. If you click on the client area of this
program to print the output, however, you'll discover a problem. The first five lines of output look fine.
These constructors have all successfully created 24-point fonts for the printer. But the last two lines
create fonts that are much too large.

As you'll recall, the DpiX and DpiY properties of the Graphics object for the printer give its true
resolution: probably 300, 600, 720, or something higher. In the final two Font constructors, the
program specifies 1/3 that resolution, so the second argument will be 100, 200, 240, or something
higher. The default page transform for the printer makes it appear to be a 100-dpi device. The
combination of the font size and page transform results in a font that is 1 inch, 2 inches, 2.3 inches,
or something larger.

To create 72-point fonts for the printer's default page transform using GraphicsUnit.Pixel or
GraphicsUnit.World, you need to use the following constructors:
new Font(strFamily, 100, GraphicsUnit.Pixel)
new Font(strFamily, 100, GraphicsUnit.World)

To create 24-point fonts for the printer, you need to use 1/3 of 100. The following program is the
same as the previous one except that the last two Font constructors create 24-point fonts
appropriate for the printer.
TwentyFourPointPrinterFonts.cs
//--
// TwentyFourPointPrinterFonts.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class TwentyFourPointPrinterFonts: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new TwentyFourPointPrinterFonts());
 }
 public TwentyFourPointPrinterFonts()
 {
 Text = "Twenty-Four Point Printer Fonts";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 float y = 0;
 Font font;
 string strFamily = "Times New Roman";

 font = new Font(strFamily, 24);

 grfx.DrawString("No GraphicsUnit, 24 points", font, brush, 0,
y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, 24, GraphicsUnit.Point);
 grfx.DrawString("GraphicsUnit.Point, 24 units", font, brush, 0,
y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, 1/ 3f, GraphicsUnit.Inch);
 grfx.DrawString("GraphicsUnit.Inch, 1/3 units", font, brush, 0,
y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, 25.4f / 3, GraphicsUnit.Millimeter);
 grfx.DrawString("GraphicsUnit.Millimeter, 25.4/3 units",
 font, brush, 0, y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, 100, GraphicsUnit.Document);
 grfx.DrawString("GraphicsUnit.Document, 100 units",
 font, brush, 0, y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, 100f / 3, GraphicsUnit.Pixel);
 grfx.DrawString("GraphicsUnit.Pixel, " + 100f / 3 + " units",
 font, brush, 0, y);
 y += font.GetHeight(grfx);

 font = new Font(strFamily, 100f / 3, GraphicsUnit.World);
 grfx.DrawString("GraphicsUnit.World, " + 100f / 3 + " units",
 font, brush, 0, y);
 }
}

On the printer, all seven lines of text will be the same height. On the video display, the first five lines
will be 24-point fonts, and the last two will probably be a little off, depending on how much your video
display resolution differs from 100 dpi.
Clash of the Units
Experimenting with different units in the Font constructors raises the question, How do the font units
interact with the world transform and the page transform? Both the Font class and the Graphics class
make use of the GraphicsUnit enumeration. The Font class uses the GraphicsUnit enumeration in
some of its constructors, and the Graphics class PageUnit property is also set equal to one of the
enumeration values.

We've already had a little taste of that interaction. Now let's see if we can come up with an overall
analysis and a few solid rules.

Try to keep in mind that Font objects are device-independent. It doesn't matter what world transform
or page transform is in effect when you create the font. The Font constructor doesn't know anything

about that. You can create Font objects anywhere in your program regardless of whether or not
there's a Graphics object in sight.

There are only three commonly used methods that involve the interaction of both a Font object
(which is created in a particular size with particular units) and a Graphics object (which has a world
transform and a page transform associated with it):
§ DrawString, a method of the Graphics class that has a Font argument
§ MeasureString, a method of the Graphics class that has a Font argument
§ GetHeight, a method of the Font class that has a Graphics argument

These are generally the only three methods in which you have to worry about the clash among
graphics units and transforms. Two others—the DrawStringDisabled method of the ControlPaint
class and the MeasureCharacterRanges method of the Graphics class—aren't used nearly as often.

Only three rules affect these methods. I encourage you to experiment with the
TwentyFourPointScreenFonts and TwentyFourPointPrinterFonts programs to verify that what I say is
correct:

Rule 1 The world transform affects everything in the same way.

Let's say you have some graphics output: a collection of lines, filled areas, and text using fonts
created with a variety of GraphicsUnit arguments. Then you decide you want everything twice as big.
So, before any of the graphics output calls, you put the statement
grfx.ScaleTransform(2, 2);

The world transform affects everything in the same way. Everything—every line, every filled area,
and every text string—is doubled in size regardless of the way in which the font was created. The
sizes returned from MeasureString and GetHeight remain the same, however.

Rule 2 For fonts constructed with metrical sizes (that is, units of points, inches, or millimeters), the
page transform doesn't affect the physical size of the text.

Let's say you create a 72-point font:
Font font = new Font("Arial", 72, GraphicsUnit.Point);

And you also decide you'd like to draw in units of millimeters:
grfx.PageUnit = GraphicsUnit.Millimeter;
grfx.PageScale = 1;

Regardless of the page transform, the physical size of the text remains the same. Because the font
size is 72 points, it's equivalent to a height of about 25.4 units, where the units are millimeters.

What the page transform does affect, however, are the coordinates to the DrawString method, the
sizes returned from the MeasureString method, and the height returned by GetHeight. All those
coordinates and sizes are in units of millimeters. This should be OK, however, because you're
generally using GetHeight or MeasureString to calculate the coordinates you pass to DrawString.
Just make sure that the same transforms are in effect when you obtain numbers from GetHeight or
MeasureString as when you pass the numbers to DrawString.

If you insert statements into the TwentyFourPointScreenFonts program to change the PageUnit and
PageScale properties, you'll find that the first five lines of text are unaffected. The last lines are
affected by the page transform, however. That's the third rule.

Rule 3 For fonts constructed with GraphicsUnit.Pixel or GraphicsUnit.World units, the size of the
font is assumed to be in units of world coordinates.

In other words, the font size is treated just like the coordinates and sizes passed to the various line-
drawing and area-filling methods of the Graphics class. For example, suppose you create a font like
so:
Font font = new Font("Arial", 72, GraphicsUnit.World);

With the default page transform, that's assumed to be 72 pixels on the video display or 72/100 inch
on the printer. If you set the page transform to millimeters, as here,
grfx.PageUnit = GraphicsUnit.Millimeter;
grfx.PageScale = 1;

the font size of 72 is assumed to be units of millimeters, which results in fonts almost 3 inches in
height.

For fonts created with GraphicsUnit.World and GraphicsUnit.Pixel, the values returned from
GetHeight and MeasureString are unaffected by the page transform. The physical size of the font is
in units indicated by the page transform, and the sizes returned from these methods are also in page
units.

Finally, although their names would imply otherwise, I have discovered no difference between the
GraphicsUnit.Pixel and GraphicsUnit.World arguments when used to create fonts.
Font Properties and Methods
All properties of the Font class are read-only. That implies that you can't make a font a little different
simply by changing one of its properties. Here's the complete list of Font properties:
Font Properties

Type Property Accessibility Description

string Name get Font family name

FontFamily FontFamily get Font family class

FontStyle Style get From constructor

bool Bold get True if boldface

bool Italic get True if italic

bool Underline get True if underlined

bool Strikeout get True if strikeout

float Size get From constructor

GraphicsUnit Unit get From constructor

float SizeInPoints get Calculated from Size

int Height get Line spacing for video display

byte GdiCharSet get GDI character set ID

bool GdiVerticalFont get True if a vertical font

The Size and Unit properties just return the values used to create the font. The SizeInPoints property
is calculated from these values. For GraphicsUnit.Pixel and GraphicsUnit.World, the calculation is
based on the resolution of the video display.

If you don't need to interface with Win32 API code, there's really only one Font method that's of any
interest, and that's one I've already emphasized. It comes in three different versions:

Font Methods (selection)

float GetHeight()
float GetHeight(Graphics grfx)
float GetHeight(float fDpi)

The value returned from GetHeight is what you should use for spacing successive lines of text. The
version without an argument applies only to the video display in its default page transform. The
second version is the most useful and takes the resolution and page transform of the output device
into account. The third version obtains the line spacing based on a hypothetical vertical resolution in
dots per inch.

If you need to interface with Win32 API code, Font has three static methods that you can use to
create a Font object: FromHdc, FromHfont, and FromLogFont. Otherwise, the Font class doesn't
have any way to create a Font object other than to use one of the constructors of the class. I've
already discussed five of these constructors; four more are coming up soon. As you'll see in Chapter
16, the FontDialog class displays a dialog box that lets the user select a font and creates a Font
object that applications can use.

Here's a program that displays all the properties of the form's Font property as well as the result of
three versions of GetHeight, the third using a resolution of 100 dpi.
AllAboutFont.cs
//---
// AllAboutFont.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class AllAboutFont: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new AllAboutFont());
 }
 public AllAboutFont()
 {
 Text = "All About Font";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawString(
 "Name: " + Font.Name + "\n" +
 "FontFamily: " + Font.FontFamily + "\n" +
 "FontStyle: " + Font.Style + "\n" +
 "Bold: " + Font.Bold + "\n" +
 "Italic: " + Font.Italic + "\n" +
 "Underline: " + Font.Underline + "\n" +
 "Strikeout: " + Font.Strikeout + "\n" +
 "Size: " + Font.Size + "\n" +
 "GraphicsUnit: " + Font.Unit + "\n" +
 "SizeInPoints: " + Font.SizeInPoints + "\n" +
 "Height: " + Font.Height + "\n" +
 "GdiCharSet: " + Font.GdiCharSet + "\n" +
 "GdiVerticalFont : " + Font.GdiVerticalFont + "\n" +

 "GetHeight(): " + Font.GetHeight() + "\n" +
 "GetHeight(grfx): " + Font.GetHeight(grfx) + "\n" +
 "GetHeight(100 DPI): " + Font.GetHeight(100),
 Font, new SolidBrush(clr), Point.Empty);
 }
}

Try clicking on this program's client area to print this output. The printed output will be the same as
the display output except for the penultimate GetHeight value, which on the printer will match the last
value. You can look at the properties of other fonts by simply setting the form's Font property to the
font you want to examine. Here's what the program looks like on my system:

I have my video display settings set for Large Fonts, which implies a resolution of 120 dpi. The line-
spacing value of 14.71 pixels corresponds to about 0.123 inch, or about 9 points, a suitable line
spacing for an 8-point font. If you have Small Fonts installed (for an implied resolution of 96 dpi), the
line-spacing value will be 12.45; the Height property returns 13.

The first constructor for Font that we looked at creates a new font based on an existing font but with
a different style property. There are times when you need to do something similar but with a different
size.

For example, suppose you want to create a font that fits the interior of a specified rectangle. To do
this, you need to start off with a font and the text you want to display. You use MeasureString to
determine the dimensions of the displayed string, and then you create a new font with a size that's
scaled to the size of the rectangle. Here's a program that displays the text "Howdy, world!" (a
variation on the traditional text to include a character with a descender). The text is scaled as large
as possible to fit in the client area.
HowdyWorld.cs
//---
// HowdyWorld.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class HowdyWorld: PrintableForm
{

 public new static void Main()
 {
 Application.Run(new HowdyWorld());
 }
 public HowdyWorld()
 {
 Text = "Howdy, world!";
 MinimumSize = SystemInformation.MinimumWindowSize + new
Size(0,1);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Font font = new Font("Times New Roman", 10,
FontStyle.Italic);
 SizeF sizef = grfx.MeasureString(Text, font);
 float fScale = Math.Min(cx / sizef.Width, cy / sizef.Height);

 font = new Font(font.Name, fScale * font.SizeInPoints,
font.Style);
 sizef = grfx.MeasureString(Text, font);

 grfx.DrawString(Text, font, new SolidBrush(clr),
 (cx - sizef.Width) / 2, (cy - sizef.Height) /
2);
 }
}

The setting of the MinimumSize property in the constructor prevents the client area height from going
to zero, which would result in a zero font size and an exception being thrown.

The DoPage method begins with the creation of a Font object, but the font this method uses could
just as well have been the form's Font property or a font created somewhere else. The idea is that
the program doesn't really need to know what arguments were originally used to create the font.

The next statement in DoPage uses MeasureString to find the length of a string (which happens to
be the form's Text property) based on the font we just created, and the third statement calculates a
scaling factor based on the relationship between the size of the client area (or the printable area of
the printer page) and the size of the text. Notice the use of the Math.Min method to find the minimum
of the horizontal and vertical scaling factors.

Next, the DoPage method creates a new font based on the existing font but scaling the point size by
the fScale factor. MeasureString is called again. (Alternatively, you can multiply the Width and Height
of the previous SizeF object by fScale.) Finally, the method centers the string in its client area.

If the window is extra wide, the size of the font is governed by the window height:

Is it possible to create a font that fills up the rectangle regardless of its aspect ratio? Of course, the
characters would be distorted—either wider or narrower than the font height would imply. You can't
do something like this with the Font constructors. In the Font constructors, you specify a font height.
The character widths are based on that height.

However, you can distort the aspect ratio of text characters by using the world transform. Here's a
variation of the HowdyWorld program called HowdyWorldFullFit that does just that.
HowdyWorldFullFit.cs
//--
// HowdyWorldFullFit.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class HowdyWorldFullFit: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new HowdyWorldFullFit());
 }
 public HowdyWorldFullFit()
 {
 Text = "Howdy, world!";
 MinimumSize = SystemInformation.MinimumWindowSize + new
Size(0,1);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Font font = new Font("Times New Roman", 10, FontStyle.Italic);
 SizeF sizef = grfx.MeasureString(Text, font);
 float fScaleHorz = cx / sizef.Width;
 float fScaleVert = cy / sizef.Height;

 grfx.ScaleTransform(fScaleHorz, fScaleVert);

 grfx.DrawString(Text, font, new SolidBrush(clr), 0, 0);
 }
}

This version calculates separate scaling factors for the horizontal and vertical dimensions. The
scaling factors are passed directly to the ScaleTransform method. The DrawString call displays the
text at point (0, 0):

As usual, you can print this out and see the characters extend to fit almost the height of the paper.

Notice in this screen shot (and the second screen shot from the first HowdyWorld program) that the
text doesn't extend to the full height of the client area. There's ample space above the ascenders
that isn't being used for anything. That space is mostly used for diacritical marks. If the text
contained characters À, Á, or Â (Unicode characters '\x00C0', '\x00C1', and '\x00C2'), for example,
the accent marks would reach to the top of the client area.

Using the Windows Forms libraries, it isn't possible for an application to determine the amount of
space that is reserved for diacritical marks. Nor is it possible to directly determine the x-height of a
font, which is the height of lowercase letters without ascenders (such as "x") above the baseline.
These particular font metrics, as they're called, are not exposed in the Windows Forms libraries. But
other font metrics are derivable, as I'll discuss later in this chapter, and if you really need the
information, you can approximately determine x-heights using paths. (Paths are covered in Chapter
15.)
New Fonts from FontFamily
Four more constructors for Font are the same as the previous four constructors except that the first
argument is a FontFamily object rather than a string with the family name:

Font Constructors (selection)

Font(FontFamily ff, float fSizeInPoints)
Font(FontFamily ff, float fSizeInPoints, FontStyle fs)
Font(FontFamily ff, float fSize, GraphicsUnit gu)
Font(FontFamily ff, float fSize, FontStyle fs, GraphicsUnit gu)

So the question now becomes, How do you get a FontFamily object?

One way you can get it is from an existing font. For example, if you wanted to create a new font
based on an existing font but in a new size, you could reference the Name property of the existing
font as I did in the HowdyWorld program:
Font font18 = new Font(font.Name, 18, font.Style);

Or you could use the FontFamily property as the first argument:
Font font18 = new Font(font.FontFamily, 18, font.Style);

Another way to get a FontFamily object is to use one of the three FontFamily constructors:

FontFamily Constructors

FontFamily(string strFamily)
FontFamily(GenericFontFamilies gff)
FontFamily(string strFamily, FontCollection fontcoll)

That first constructor strongly suggests that a FontFamily object is defined entirely by a font family
name. Indeed, the familiar statement
Font font = new Font(strFamily, fSizeInPoints);

is just a shortcut for
Font font = new Font(new FontFamily(strFamily), fSizeInPoints);

The only nonstatic property of FontFamily is its name:
FontFamily Nonstatic Properties

Type Property Accessibility Description

string Name get FontFamily name

Although you've seen how you can create a Font without explicitly creating a FontFamily, it's
sometimes useful to get the FontFamily first and store that in its own variable:
FontFamily ff = new FontFamily(strFamily);

You can then use the IsStyleAvailable method to determine whether a particular style is available:

FontFamily Methods (selection)

bool IsStyleAvailable(FontStyle fs)

Not all TrueType or OpenType fonts have bold or italic versions, and if you try to create an italic or a
bold font with a style that's not supported, you'll generate an exception. Worse yet, not all fonts have
regular versions! It makes more sense to have code like this:
if (ff.IsStyleAvailable(FontStyle.Italic))
 fontItalic = new Font(ff, 24, FontStyle.Italic);
else if (ff.IsStyleAvailable(FontStyle.Regular)
 fontItalic = new Font(ff, 24, FontStyle.Regular);
else
 fontItalic = new Font(ff, 24, FontStyle.Bold);

This code might not result in creating an italic font, but at least you've avoided raising the exception.

As you saw at the beginning of this chapter, for many font families, separate files support the italic,
bold, and bold italic versions of the families. In some cases, Windows synthesizes italic and bold,
which means it creates italic, bold, and bold italic versions by modifying the characters of the regular
font. This is the case for the Symbol font, Wingdings, and Webdings.

The second constructor for FontFamily requires a member of the GenericFontFamilies enumeration
defined in System.Drawing.Text:

GenericFontFamilies Enumeration

Member Value Description

Serif 0 e.g., Times New Roman

SansSerif 1 e.g., Arial

Monospace 2 e.g., Courier New

Earlier I warned about possible problems creating a font based on a font family name that might not
be present on some oddball system:
font = new Font("Times New Roman", 24);

You'll sleep much better at night if you use this constructor instead:
font = new Font(new FontFamily(GenericFontFamilies.Serif), 24);

I know, it's quite a mouthful and not nearly as elegant. But there's a shorter, equivalent version that's
somewhat less verbose. The shorter version makes use of one of FontFamily's static properties:
FontFamily Static Properties (selection)

Type Property Accessibility Description

FontFamily GenericSerif get e.g., Times New Roman

FontFamily GenericSansSerif get e.g., Arial

FontFamily GenericMonospace get e.g., Courier New

You can create a font like so:
font = new Font(FontFamily.GenericSerif, 24);

I'll discuss the third constructor for FontFamily later in this chapter.
Understanding the Design Metrics
Programmers with experience in working with fonts in Windows or other graphical environments will
probably agree that Windows Forms is really skimpy on the font metrics. So far, you've seen only
three measurements that tell you anything about the height of the font: the point size (which I've
emphasized is a typographical design concept only approximately related to any metrical size of the
font characters); the maximum vertical extent of the font characters that you get from MeasureString;
and the recommended line spacing, which is the value you get from GetHeight and, in an integer
form suitable only for the video display, Height.

If I could have just one more font metric, it would provide me with the location of the baseline. The
baseline of a font is the line above which ascenders ascend and below which descenders descend.
Knowing the location of the baseline relative to the top or bottom of the characters (which is what you
specify in the DrawString method) is necessary if you want to mix different fonts on the same line.

This information is actually available in the FontFamily class. It's not very obvious, and it won't work
for some of the Far Eastern and Middle Eastern fonts, but it's the best that's available.

The FontFamily class contains four methods that let you obtain additional metrical information about
the font. Each of these methods requires a FontStyle enumeration value as an argument:

FontFamily Methods (selection)

int GetEmHeight(FontStyle fs)
int GetCellAscent(FontStyle fs)
int GetCellDescent(FontStyle fs)
int GetLineSpacing(FontStyle fs)

These are called "design metrics" because they were originally set by the person who designed the
font (or at least the TrueType version of the font). These design metrics are independent of the
eventual size of the font created from this font family.

Let's look at an example. If you create a FontFamily based on Times New Roman and you call these
four methods using FontStyle.Regular (or any other FontStyle value), you'll get the following
numbers.
Times New Roman Design Metrics

Metric Value

Em Height 2048

Ascent 1825

Descent 443

Ascent + Descent 2268

Line Spacing 2355

The Em Height represents the grid that the designer of the font used for specifying coordinates of the
various lines and curves that define each character in the font. The value of 2048 is very common.
Less common are values of 1000 or 256.

The Ascent value is the height of the font characters above the baseline (including diacritical marks),
and Descent is the height below the baseline. For Times New Roman, the sum of the Ascent and
Descent (which I've added to the table) represents the actual height of the font characters.

The Line Spacing value breaks down into three components: the Ascent above the baseline, the
Descent below the baseline, and some extra space below the Descent. It looks like this:

For some fonts, the Line Spacing value is greater than the sum of the cell Ascent and Descent. For
other fonts, the Extra space is 0 and the sum of the Ascent and Descent equals the Line Spacing.

Do not attempt to fit the Em Height into this diagram in some way! The Em Height is simply a
reference point for the other design metrics.

Let's continue the example by creating a 72-point Times New Roman font. Let us also set the
PageUnit property to GraphicsUnit.Point. That means that GetHeight returns units of points
regardless of the resolution of the graphics device. You'll get the following values (rounded to two
decimal places):
Times New Roman Font Metrics

Property or Method Value (in points)

font.SizeInPoints 72.00

font.GetHeight(grfx) 82.79

Can this table be reconciled with the previous table showing the design metrics? Yes, because the
value obtained from GetHeight is derived from those design metrics. The design metric called Em
Height is equivalent to the point size of the font. If you take the ratio of 72 to 2048, you'll get
0.03515625. That's a scaling factor to convert the coordinates of the font characters to a point size.

Multiply that scaling factor by the Line Spacing metric (2355) and you get 82.79, the value returned
from GetHeight.

The implication here is that we can apply that same factor separately to the Ascent and Descent
design metrics to provide us with numbers we didn't have before:
Times New Roman Metrics

Metric

Design
Metric
Value

Value for
72-Point
Font
(in points)

Property
or Method

Em Height 2048 72.00 font.SizeInPoints

Ascent 1825 64.16

Descent 443 15.57

Ascent + Descent 2268 79.73

Line Spacing 2355 82.79 font.GetHeight(grfx)

You can use information derived from the design metrics to position text on a baseline. Let's
suppose we want the baseline to be the horizontal line in the center of the client area and we want a
144-point Times New Roman font to be positioned on that line. Here's the code to do it.
TextOnBaseline.cs
//---
// TextOnBaseline.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class TextOnBaseline: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new TextOnBaseline());
 }
 public TextOnBaseline()
 {
 Text = "Text on Baseline";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 float yBaseline = cy / 2;
 Pen pen = new Pen(clr);

 // Draw the baseline across the center of the client area.

 grfx.DrawLine(pen, 0, yBaseline, cx, yBaseline);

 // Create a 144-point font.

 Font font = new Font("Times New Roman", 144);

 // Get and calculate some metrics.

 float cyLineSpace = font.GetHeight(grfx);
 int iCellSpace = font.FontFamily.GetLineSpacing(font.Style);
 int iCellAscent = font.FontFamily.GetCellAscent(font.Style);
 float cyAscent = cyLineSpace * iCellAscent / iCellSpace;

 // Display the text on the baseline.

 grfx.DrawString("Baseline", font, new SolidBrush(clr),
 0, yBaseline - cyAscent);
 }
}

The cyAscent value is the ascent for the 144-point Times New Roman font. Subtract that from the
vertical coordinate of that baseline, and that's where to position text that sits on the baseline:

If you look carefully, you'll see that the rounded part of some letters actually dips below the baseline
a bit, but that's normal.
Arrays of Font Families
FontFamily has one more static property and just one static method, and they are very similar and
very important. Both of them return an array of FontFamily objects corresponding to the installed
TrueType and OpenType fonts on the system. Here's the static property:
FontFamily Static Property (selection)

Type Property Accessibility

FontFamily[] Families get

If you call
FontFamily[] aff = FontFamily.Families;

each element of the aff array will be a FontFamily object. If you've ever done font enumeration under
Windows using the Win32 API, you're probably wondering why life can't always be this easy.

The first thing you'll probably want to do with this wonderful property is list all your fonts by creating a
sample font from each family. Here's a simple program that does just that.
NaiveFamiliesList.cs
//--

// NaiveFamiliesList.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class NaiveFamiliesList: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new NaiveFamiliesList());
 }
 public NaiveFamiliesList()
 {
 Text = "Naive Font Families List";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 float y = 0;
 FontFamily[] aff = FontFamily.Families;

 foreach (FontFamily ff in aff)
 {
 Font font = new Font(ff, 12);
 grfx.DrawString(ff.Name, font, brush, 0, y);
 y += font.GetHeight(grfx);
 }
 }
}

The foreach statement goes through the elements of the FontFamily array. For each element, a Font
constructor creates a 12-point font, the DrawString call uses that font to display the name of the font
family, and the GetHeight call prepares the vertical coordinate for the next font.

This program might not work on your system. On mine, the Font constructor throws an exception for
the very first font family in the array.

The problematic font file is Ahronbd.ttf, which is installed from the Windows 2000 CD-ROM as part of
the support for Hebrew. The font implemented in this file is Aharoni Bold, and it's the only font in the
Aharoni family (as least as far as Windows 2000 goes). What that means is that this statement will
work:
font = new Font("Aharoni", 12, FontStyle.Bold)

But this one won't:
font = new Font("Aharoni", 12)

It won't work because it's equivalent to
font = new Font("Aharoni", 12, FontStyle.Regular)

and there's no regular Aharoni font. Bummer, right?

You can deal with this problem in a couple ways. The first approach is to use a try and catch
construction. Put the code in the previous foreach loop in a try block. In the catch block, display the
problematic font family name with an asterisk using the Font property of the form:
foreach (FontFamily ff in aff)
{
 try
 {
 Font font = new Font(ff, 12);
 grfx.DrawString(ff.Name, font, brush, 0, y);
 y += font.GetHeight(grfx);
 }
 catch
 {
 grfx.DrawString("* " + ff.Name, Font, brush, 0, y);
 y += Font.GetHeight(grfx);
 }
}

However, the general rule is that you should avoid try and catch blocks if alternative approaches are
possible. The alternative approach here is the IsStyleAvailable method of the FontFamily class.
Here's a better approach to listing the font families that works whether or not the Aharoni Bold font is
installed.
BetterFamiliesList.cs
//---
// BetterFamiliesList.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class BetterFamiliesList: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new BetterFamiliesList());
 }
 public BetterFamiliesList()
 {
 Text = "Better Font Families List";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 float y = 0;
 FontFamily[] aff = FontFamily.Families;

 foreach (FontFamily ff in aff)
 {
 if (ff.IsStyleAvailable(FontStyle.Regular))
 {
 Font font = new Font(ff, 12);
 grfx.DrawString(ff.Name, font, brush, 0, y);
 y += font.GetHeight(grfx);
 }
 else
 {
 grfx.DrawString("* " + ff.Name, Font, brush, 0, y);
 y += Font.GetHeight(grfx);
 }
 }
 }
}

If you have a large number of fonts installed on your system, however, this approach won't let you
see them all, even if you have a big monitor and even if you print the list.

Short of adding scroll bars, a much better approach is to format the list into columns. That's what the
following program does. And if this approach still isn't sufficient for all your fonts, try changing the
iPointSize field to 10, 8, or 6.
FamiliesList.cs
//---
// FamiliesList.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class FamiliesList: PrintableForm
{
 const int iPointSize = 12;

 public new static void Main()
 {
 Application.Run(new FamiliesList());
 }
 public FamiliesList()
 {
 Text = "Font Families List";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);

 float x = 0, y = 0, fMaxWidth = 0;
 FontFamily[] aff = GetFontFamilyArray(grfx);

 foreach (FontFamily ff in aff)
 {
 Font font = CreateSampleFont(ff, iPointSize);
 SizeF sizef = grfx.MeasureString(ff.Name, font);

 fMaxWidth = Math.Max(fMaxWidth, sizef.Width);
 }
 foreach (FontFamily ff in aff)
 {
 Font font = CreateSampleFont(ff, iPointSize);
 float fHeight = font.GetHeight(grfx);

 if (y > 0 && y + fHeight > cy)
 {
 x += fMaxWidth;
 y = 0;
 }
 grfx.DrawString(ff.Name, font, brush, x, y);

 y += fHeight;
 }
 }
 protected virtual FontFamily[] GetFontFamilyArray(Graphics grfx)
 {
 return FontFamily.Families;
 }
 Font CreateSampleFont(FontFamily ff, float fPointSize)
 {
 if (ff.IsStyleAvailable(FontStyle.Regular))
 return new Font(ff, fPointSize);

 else if (ff.IsStyleAvailable(FontStyle.Bold))
 return new Font(ff, fPointSize, FontStyle.Bold);

 else if (ff.IsStyleAvailable(FontStyle.Italic))
 return new Font(ff, fPointSize, FontStyle.Italic);

 else
 return Font;
 }
}

The DoPage method has two foreach loops. The first determines the width of each font family name
displayed in a sample font from that family and saves the maximum width; the second foreach loop
uses that maximum width to display multiple columns.

Notice the CreateSampleFont method down at the bottom of the class. I use this in the DoPage
method instead of using the Font constructor. CreateSampleFont uses the IsStyleAvailable method
to determine whether to create a regular, bold, or italic font. This approach succeeds in displaying a
sample Aharoni font where the previous programs did not. Here's a nonmaximized version of the
program running on my machine:

If you've installed some Far Eastern or Middle Eastern fonts, you'll notice that the line spacing seems
to be excessively large for the displayed text. That's because these fonts are designed for displaying
alphabets other than Latin.

This FamiliesList program isolates the statement that obtains the array of FontFamily objects in a
short method I named GetFontFamilyArray. I did that so that in the next program I can easily
demonstrate the use of the only static method implemented in FontFamily. This static method is
similar to the Families property except that it has an argument of type Graphics:

FontFamily Static Method

FontFamily[] GetFamilies(Graphics grfx)

The idea here is that different graphics output devices might have different fonts installed; in
particular, some printers have built-in fonts that can't be displayed on the screen. This program
overrides the GetFontFamilyArray to get the font families from GetFamilies rather than Families.
GetFamiliesList.cs
//--
// GetFamiliesList.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class GetFamiliesList: FamiliesList
{
 public new static void Main()
 {
 Application.Run(new GetFamiliesList());
 }
 public GetFamiliesList()
 {
 Text = "Font GetFamilies List";
 }

 protected override FontFamily[] GetFontFamilyArray(Graphics grfx)
 {
 return FontFamily.GetFamilies(grfx);
 }
}

At least for my printer, GetFamilies returns the same array as Families. Perhaps in a later version of
Windows Forms we'll see more support for printer-specific fonts.
Font Collections
The Families property and GetFamilies method of the FontFamily class are not the only way to get
an array of font families. The System.Drawing.Text namespace has an abstract FontCollection class
from which two other classes are derived: InstalledFontCollection and PrivateFontCollection.

FontCollection implements just one property:
FontCollection Property

Type Name Accessibility

FontFamily[] Families get

This property—which is not defined as static—is inherited by both InstalledFontCollection and
PrivateFontCollection. The following program overrides the GetFontFamilyArray method in the
FamiliesList program with code that creates an instance of the InstalledFontCollection class and
uses the Families property to get the array of font families.
InstalledFontsList.cs
//---
// InstalledFontsList.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Text;
using System.Windows.Forms;

class InstalledFontsList: FamiliesList
{
 public new static void Main()
 {
 Application.Run(new InstalledFontsList());
 }
 public InstalledFontsList()
 {
 Text = "InstalledFontCollection List";
 }
 protected override FontFamily[] GetFontFamilyArray(Graphics grfx)
 {
 FontCollection fc = new InstalledFontCollection();
 return fc.Families;
 }
}

This program produces the same output as the FamiliesList program.

When you create an instance of the PrivateFontCollection class, it initially contains no font families.
You add fonts to the collection by using the following two methods:

PrivateFontCollection Methods (selection)

void AddFontFile(string strFilename)
void AddMemoryFont(IntPtr pFont, int iLength)

This facility is used by applications that include their own specialized font files. After creating a
PrivateFontCollection object and calling these two methods, the application can then use the
Families property to obtain an array of FontFamily objects suitable for creating Font objects. Or
(since your program probably knows what font families are included in this collection) you can use
the third FontFamily constructor in the list on page 387 to create FontFamily objects based on font
files in this collection.
Variations on DrawString
We've already encountered the six variations of the DrawString method:

Graphics DrawString Methods

void DrawString(string str, Font font, Brush brush, PointF ptf)
void DrawString(string str, Font font, Brush brush, float x, float y)
void DrawString(string str, Font font, Brush brush, RectangleF rectf)
void DrawString(string str, Font font, Brush brush, PointF ptf,
 StringFormat sf)
void DrawString(string str, Font font, Brush brush, float x, float y,
 StringFormat sf)
void DrawString(string str, Font font, Brush brush, RectangleF rectf,
 StringFormat sf)

The versions using a PointF structure are identical to the versions using the two float values. It's just
two different ways of specifying the same starting point for the string. All four of the DrawString
overloads that use a PointF or two float values generally display a single line of text. However, if the
text contains line feed characters ('\n' or '\x000A'), the text that follows is displayed one line lower.

The two versions of DrawString that use a RectangleF argument wrap text that is too wide to fit
within the rectangle width. If a single word is too wide for the rectangle, the method will fit as much of
the word as possible and then display the remainder of the word on the next line.

These versions of DrawString properly recognize Unicode character '\x00A0', the No-Break Space.
You use a no-break space instead of a regular space when text wrapped at the space would look
peculiar, for example, in the following string:
"World War\x00A0I"

In this case, if the I doesn't fit at the end of a line, the DrawString method would break the line after
the word World.

These versions of DrawString do not properly recognize Unicode character '\x00AD', the Soft
Hyphen. Customarily, you insert soft hyphens at the syllable breaks in long words:
"ex\x00ADtraor\x00ADdi\x00ADnary"

In theory, if the text formatter can break the line at the hyphen, it will do so and display the hyphen. If
not, the hyphen won't be displayed. The DrawString method displays these hyphens regardless, and
even breaks a line before the hyphen.

These versions of DrawString also do not properly handle Unicode character '\x2011', the Non-
Breaking Hyphen, which you use in words like this:
"T\x2011shirt"

The T followed by a hyphen would look odd at the end of a line. Some TrueType fonts don't include
this character. In those fonts that do include the character (such as Lucida Sans Unicode), the
DrawString method seems to avoid breaking a line on the Non-Breaking Hyphen, but it inserts some
extra space following the hyphen.

Because the word-wrapping ability of the DrawString call seems so powerful, it's important to
understand its limitations. For example, you may find DrawString perfect for displaying a particular
block of text in your application, but with just one little problem: there's a word in the text that needs
to be bold or italic. Well, you can't do it. The Font argument to DrawString determines the font for the
entire block of text. (Interestingly enough, however, there is a way you can underline selected text in
a DrawString call. I'll demonstrate how to do that in the UnderlinedText program later in this chapter.)

Another limitation: as you know, you can use the Alignment property of the StringFormat class to
control the horizontal alignment of text you display in a rectangle. You can align a paragraph on the
left edge of the rectangle, you can align a paragraph on the right, and you can center the lines of the
paragraph within the rectangle. But you can't justify the rectangle. You can't instruct DrawString to
insert extra space between the words so that the left margin and the right margin are both even.

If you need to do either of these jobs, you have two choices: you can either write your own text-
formatting logic or make use of the RichTextBox control that has many more built-in formatting
options than DrawString does. I discuss RichTextBox in Chapter 18.
Anti-Aliased Text
In Chapter 5, I showed how the SmoothingMode and PixelOffsetMode properties of the Graphics
class govern anti-aliasing of lines and curves. Windows can also use anti-aliasing for the display of
text. This feature is under user control. You can turn it on and off by checking the option Smooth
Edges Of Screen Fonts in the Effects tab of the Display Properties dialog box.

If you want, you can override the user's preferences by setting the TextRenderingHint property of the
Graphics class:
Graphics Properties (selection)

Type Property Accessibility

TextRenderingHint TextRenderingHint get/set

TextRenderingHint is also an enumeration defined in the System.Drawing.Text namespace:
TextRenderingHint Enumeration

Member Value Description

SystemDefault 0 Default

SingleBitPerPixelGridFit 1 No anti-aliasing, grid fitting

SingleBitPerPixel 2 No anti-aliasing, no grid fitting

AntiAlias 3 Anti-aliasing, no grid fitting

AntiAliasGridFit 4 Anti-aliasing with grid fitting

ClearTypeGridFit 5 ClearType for LCD displays

ClearType is a technology similar to anti-aliasing but which takes advantage of the arrangement of
color dots on LCD displays.[1]

The following program demonstrates the use of all six of these enumeration values.
AntiAliasedText.cs
//--
// AntiAliasedText.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Text;
using System.Windows.Forms;

class AntiAliasedText: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new AntiAliasedText());
 }
 public AntiAliasedText()
 {
 Text = "Anti-Aliased Text" ;
 Font = new Font("Times New Roman", 12);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 string str = "A ";
 int cxText = (int) grfx.MeasureString(str, Font).Width;

 for (int i = 0; i < 6; i++)
 {
 grfx.TextRenderingHint = (TextRenderingHint)i;
 grfx.DrawString(str, Font, brush, i * cxText, 0);
 }
 }
}

The program displays a capital A six times using the six TextRenderingHint values. You can copy an
image of this program into the clipboard by using Alt+Print Scrn and then paste the image into a
graphics paint or photo program, where you can blow it up like so:

Depending on your settings, the first (SystemDefault) will match either the second
(SingleBitPerPixelGridFit) or the fourth (AntiAlias), or if you're using ClearType on an LCD display
the first could match the sixth (ClearTypeGridFit). Neither the second nor the third enumeration value
(SingleBitPerPixel) causes any anti-aliasing of text to be performed. However, notice one or more
blank pixels in the third capital A. The character rasterizer is using a stricter criteria for determining
whether or not a pixel should be colored.

The fourth and fifth (AntiAliasGridFit) examples use anti-aliasing. Pixels are colored with a darker
gray shade depending on the extent to which they intersect the theoretical outlined character.

For ClearTypeGridFit, pixels to the left and right of the strokes are in different colors based on the
horizontal organization of color dots on LCD displays. You should not use ClearType on regular
CRTs. Some LCD displays allow users to rotate them 90 degrees and use them in portrait mode.
ClearType won't work in that case either.
[1] It turns out that this technique has been discovered and rediscovered over a period of more than
two decades. See Steve Gibson's discussion of the technology and its history on his Web site at
http://grc.com/cleartype.htm.
Measuring the String
Since Chapter 2, we've been using MeasureString to determine the size of a text string for accurate
positioning. MeasureString also has another use. As you've probably noticed, the DrawString
method displays text without also erasing the background of the destination rectangle. (This isn't the
default behavior in Windows GDI.) If you do need to erase the background, you can use the
coordinate point at which you'll be drawing the text combined with the SizeF returned from
MeasureString in a FillRectangle call.

The MeasureString method comes in seven versions:

Graphics MeasureString Methods

SizeF MeasureString(string str, Font font);
SizeF MeasureString(string str, Font font, int iWidth);
SizeF MeasureString(string str, Font font, SizeF sizef);
SizeF MeasureString(string str, Font font, int iWidth,
 StringFormat strfmt);
SizeF MeasureString(string str, Font font, SizeF sizef,
 StringFormat strfmt);
SizeF MeasureString(string str, Font font, PointF ptfOrigin,
 StringFormat strfmt);
SizeF MeasureString(string str, Font font, SizeF sizef,
 StringFormat strfmt,
 out int iCharacters, out int iLines);

We've been using the first version of MeasureString for quite some time. It returns the width and
height of the specified string as displayed using the specified font. The Height property of the SizeF
object returned from the method is often equal to the value returned from the GetHeight method of
the Font class, but it could be a multiple of the GetHeight value if the text includes line feed
characters.

The second version of MeasureString includes a third argument that indicates a text width. This
version is useful if you'll be displaying the string using the RectangleF version of DrawString and
want wrapping to occur. The Width property of the SizeF object returned from MeasureString is
always less than or equal to the iWidth argument; the Height property, when divided by the
GetHeight value, equals the number of lines.

The third version of MeasureString has an actual SizeF argument, indicating both a width and a
height. If the Width property of this SizeF argument is the same as the iWidth argument used in the
second version of MeasureString and if the Height property is sufficient for all the lines of text in the
string, the return value of this version will be the same as the second version. Otherwise, the Height
property of the returned SizeF object will equal the Height property of the SizeF argument, and the
Width property of the returned SizeF object will indicate the maximum width of the text that can fit in
that size rectangle.

http://grc.com/cleartype.htm

The fourth, fifth, and sixth versions are similar to the second and third except that they include a
StringFormat argument. If you'll be using a StringFormat argument in the DrawString call, you should
also use one in the MeasureString call.

The final version of MeasureString has two arguments that return additional information to the
application. These indicate the number of characters and lines of text that a DrawString call will
display when passed a RectangleF structure of the same size as the SizeF structure and the same
StringFormat object.

Calling MeasureString with these arguments is extremely useful when you need to use multiple
DrawString calls to display a single block of text. For example, suppose you want to use DrawString
to display text to the printer but the text is too long for a single page. You use MeasureString to
determine how much can fit on the first page and then start the second page with a new text string
based on information returned from MeasureString. I'll demonstrate the use of this version of
MeasureString in the TextColumns program toward the end of this chapter.
The StringFormat Options
The DrawString and MeasureString methods can optionally include an argument that is an object of
type StringFormat. This argument offers you many different—sometimes subtle and sometimes not
so subtle—variations in the display of text. You can create a StringFormat object by using one of the
following constructors:

StringFormat Constructors

StringFormat()
StringFormat(StringFormat strfmt)
StringFormat(StringFormatFlags sff)
StringFormat(StringFormatFlags sff, int iLanguage)

The second version essentially clones an existing StringFormat object; the third and fourth versions
create a StringFormat object based on a combination of StringFormatFlags enumeration values. The
StringFormatFlags enumeration is also used in setting the FormatFlags property of StringFormat:
StringFormat Properties (selection)

Type Property Accessibility

StringFormatFlags FormatFlags get/set

The StringFormatFlags enumeration is a series of bit flags:
StringFormatFlags Enumeration

Member Value

DirectionRightToLeft 1

DirectionVertical 2

FitBlackBox 4

DisplayFormatControl 32

NoFontFallback 1024

MeasureTrailingSpaces 2048

NoWrap 4096

LineLimit 8192

NoClip 16384

I discuss some of these flags in this book in connection with certain programs. I use
MeasureTrailingSpaces in the TypeAway program in Chapter 6, and in the BoldAndItalicTighter
program coming up shortly. I demonstrate NoWrap and NoClip in the TrimmingTheText program
later in this chapter.

When you create a new StringFormat object using the default constructor, the FormatFlags property
is set to 0. Notice that these enumeration values are single bits, so you can combine them with the
C# logical OR operator. For example,
StringFormat strfmt = new StringFormat(StringFormatFlags.DirectionVertical
|
 StringFormatFlags.NoClip);

When you're setting the FormatFlags property, I strongly recommend that you get into the habit of
using the |= operator:
strfmt.FormatFlags |= StringFormatFlags.NoWrap;

That way, you'll never accidentally turn off one of the other flags that you may have set earlier.

Besides using one of the constructors, you can obtain a StringFormat object by using one of the
following static properties:
StringFormat Static Properties

Type Property Accessibility

StringFormat GenericDefault get

StringFormat GenericTypographic get

If you examine the properties of the StringFormat objects returned by these static properties, you'll
discover that GenericDefault returns a StringFormat object that is the same as that created by the
default constructor. The GenericTypographic property returns an object that has the FitBlackBox,
LineLimit, and NoClip flags set as well as a different value for the Trimming property, which I'll
discuss later in this chapter.

However, the StringFormat object that GenericTypographic returns has an additional effect on
DrawString and MeasureString that is not revealed by the public StringFormat properties and flags.
This additional effect is what I'll tackle next.
Grid Fitting and Text Fitting
The text-handling portion of GDI+ is designed to be device independent. In practical terms,
MeasureString returns a text dimension that is independent of the output device. If you set the same
page transform on both the screen and the printer, MeasureString returns identical values for any
particular text string and font. This consistency makes it comparatively easy to format text on the
screen that will look the same when printed on the printer.

However desirable the goal of WYSIWYG may be, it's not easy to realize in real life. The problem is
pixels. When the characters of an outline font are rasterized, the original floating-point coordinates
must be rounded to discrete pixels. Such grid fitting, as it's called, requires hints that prevent this
rounding from destroying the legibility of the font. The two vertical strokes on a capital H must be the
same width, for example. Even for small point sizes, these two strokes must be at least 1 pixel wide
and must be separated by a pixel. (If the point size is very small compared to the resolution of the
output device, such requirements can be abandoned because the text wouldn't be legible anyway.)

In some cases, particularly for small point sizes on low-resolution devices (such as the video
display), grid fitting can cause rendered characters to be noticeably larger than their theoretical size.
String a bunch of these characters together (for example, lower case Arial i's), and you could end up
with a text string substantially larger on the screen than on the printer. (See the article at
http://www.gotdotnet.com/team/windowsforms/gdiptext.aspx for more-detailed examples of this
problem.)

When you use DrawString and MeasureString to concatenate pieces of text (such as in the
BoldAndItalic programs shown earlier in this chapter), would you prefer that the resultant output has
extra space between the pieces or that the pieces of text overlap somewhat? I think you'd agree that

http://www.gotdotnet.com/team/windowsforms/gdiptext.aspx

overlapping text is the less desirable alternative. To prevent overlapping text, the DrawString and
MeasureString methods have been deliberately finagled to include a little extra space. Thus, if the
rasterizer requires more space to render a particular font, that space is available.

By default, the SizeF object returned from MeasureString has a Height property 1/8 em greater than
what is theoretically necessary and a Width property 1/3 em more than the theoretical width in
addition to a small percentage increase. (Remember that an em is equal to the point size of the font.
For example, for a 24-point font, 1/3 em equals 8 points.) By default, the DrawString method begins
displaying text 1/6 em beyond the specified vertical coordinate. In effect, MeasureString indicates a
rectangle that is wider than the theoretical text string by 1/6 em on the right and left.

And that's why the BoldAndItalic program and, more demonstrably, the BoldAndItalicBigger program,
have superfluous padding between the concatenated pieces of text.

Keep in mind that the grid-fitting problem affects only fonts with small point sizes displayed on low-
resolution devices. To achieve device independence, however, the extra padding built into
DrawString and MeasureString must be the same for both low-resolution and high-resolution
devices. And the padding must be proportional for small fonts and large fonts. For a 720-point font,
MeasureString must return a text size 100 times greater than for a 7.2-point font.

What do you do if you don't want this extra space? You simply use a StringFormat object based on
StringFormat.GenericTypographic. Here's a version of the BoldAndItalic program that uses such a
StringFormat object.
BoldAndItalicTighter.cs
//---
// BoldAndItalicTighter.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Text;
using System.Windows.Forms;

class BoldAndItalicTighter: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new BoldAndItalicTighter());
 }
 public BoldAndItalicTighter()
 {
 Text = "Bold and Italic (Tighter)";
 Font = new Font("Times New Roman", 24);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 const string str1 = "This is some ";
 const string str2 = "bold";
 const string str3 = " text, and this is some ";
 const string str4 = "italic";
 const string str5 = " text.";
 Brush brush = new SolidBrush(clr);

 Font fontRegular = Font;
 Font fontBold = new Font(fontRegular,
FontStyle.Bold);
 Font fontItalic = new Font(fontRegular,
FontStyle.Italic);
 PointF ptf = new PointF(0, 0);
 StringFormat strfmt = StringFormat.GenericTypographic;
 strfmt.FormatFlags |=
StringFormatFlags.MeasureTrailingSpaces;

 grfx.DrawString(str1, fontRegular, brush, ptf, strfmt);
 ptf.X += grfx.MeasureString(str1, fontRegular, ptf,
strfmt).Width;

 grfx.DrawString(str2, fontBold, brush, ptf, strfmt);
 ptf.X += grfx.MeasureString(str2, fontBold, ptf, strfmt).Width;

 grfx.DrawString(str3, fontRegular, brush, ptf, strfmt);
 ptf.X += grfx.MeasureString(str3, fontRegular, ptf,
strfmt).Width;

 grfx.DrawString(str4, fontItalic, brush, ptf, strfmt);
 ptf.X += grfx.MeasureString(str4, fontItalic, ptf,
strfmt).Width;

 grfx.DrawString(str5, fontRegular, brush, ptf, strfmt);
 }
}

Notice that the program also sets the MeasureTrailingSpaces flag. The result looks just fine:

I can get away with using the GenericTypographic object in BoldAndItalicTighter because I know that
the font is large enough that a few pixels here and there won't make a difference. If you want to use
GenericTypographic in small font sizes on the video display, you should also enable anti-aliasing.
Anti-aliasing avoids grid fitting approximations because each pixel is colored based on its
intersection with the theoretical outline.
Horizontal and Vertical Alignment
Our first encounter with the StringFormat class was back in Chapter 3, where we used it to center
text in a form's client area. The two StringFormat properties that affect the alignment of text are
shown here:
StringFormat Properties (selection)

Type Property Accessibility Description

StringAlignment Alignment get/set Horizontal alignment

StringAlignment LineAlignment get/set Vertical alignment

Both these properties are of type StringAlignment, which is an enumeration consisting of just three
members:
StringAlignment Enumeration

Member Value Description

Near 0 Usually left or top

Center 1 Always the center

Far 2 Usually right or bottom

The alignment values work a little differently depending on whether you specify a PointF object or a
RectangleF object in the DrawString call. Let's take a look at the RectangleF version of DrawString
first. The following program uses the client area rectangle in nine DrawString calls, each of which
uses a different combination of Alignment and LineAlignment properties. Just to make it interesting,
the text I'm displaying with each DrawString call has an embedded line feed character.
StringAlignmentRectangle.cs
//---
// StringAlignmentRectangle.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class StringAlignmentRectangle: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new StringAlignmentRectangle());
 }
 public StringAlignmentRectangle()
 {
 Text = "String Alignment (RectangleF in DrawString)";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 RectangleF rectf = new RectangleF(0, 0, cx, cy);
 string[] strAlign = { "Near", "Center", "Far" };
 StringFormat strfmt = new StringFormat();

 for (int iVert = 0; iVert < 3; iVert++)
 for (int iHorz = 0; iHorz < 3; iHorz++)
 {
 strfmt.LineAlignment = (StringAlignment)iVert;
 strfmt.Alignment = (StringAlignment)iHorz;

 grfx.DrawString(
 String.Format("LineAlignment = {0}\nAlignment = {1}",

 strAlign[iVert], strAlign[iHorz]),
 Font, brush, rectf, strfmt);
 }
 }
}

The three possible values of the Alignment property cause the text to be left aligned, centered, or
right aligned in the rectangle. The three possible values of LineAlignment cause the text to be
displayed at the top, center, or bottom of the rectangle:

Such a nice, neat, well-ordered display isn't possible when you use the same PointF object in
multiple calls to DrawString. Some of the combinations would overlap with others. Let's instead look
at a few at a time.

This program sets the PointF object in the DrawString call to the center of the client area but uses
only four combinations of the Alignment and LineAlignment properties.
StringAlignmentPoint.cs
//---
// StringAlignmentPoint.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class StringAlignmentPoint: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new StringAlignmentPoint());
 }
 public StringAlignmentPoint()
 {
 Text = "String Alignment (PointF in DrawString)";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 Pen pen = new Pen(clr);
 string[] strAlign = { "Near", "Center", "Far" };

 StringFormat strfmt = new StringFormat();

 grfx.DrawLine(pen, 0, cy / 2, cx, cy / 2);
 grfx.DrawLine(pen, cx / 2, 0, cx / 2, cy);

 for (int iVert = 0; iVert < 3; iVert += 2)
 for (int iHorz = 0; iHorz < 3; iHorz += 2)
 {
 strfmt.LineAlignment = (StringAlignment)iVert;
 strfmt.Alignment = (StringAlignment)iHorz;

 grfx.DrawString(
 String.Format("LineAlignment = {0}\nAlignment = {1}",
 strAlign[iVert], strAlign[iHorz]),
 Font, brush, cx / 2, cy / 2, strfmt);
 }
 }
}

Notice the two for statements: the iVert and iHorz variables end up being set to only 0 and 2, and the
program uses only four combinations of the Alignment and LineAlignment properties to create a
display that looks like this:

The PointF object passed to DrawString is the center of the client area. The DrawString call positions
the two lines of text relative to this coordinate depending on the settings of the Alignment and
LineAlignment properties.

If you change the first for statement in this program to
for (int iVert = 1; iVert < 3; iVert += 2)

and recompile, you can see how a LineAlignment property set to StringAlignmentCenter causes the
vertical coordinate passed to DrawString to specify the center of the text. In this case, that's the
vertical center of the two text lines:

If instead you change the second for statement to
for (int iHorz = 1; iHorz < 3; iHorz += 2)

the two lines of text are centered around the horizontal coordinate:

If you change both for loops as just shown, you'll get the final case. The two lines of text are
centered horizontally and vertically around the midpoint of the client area.

The Hotkey Display
The HotkeyPrefix property of StringFormat determines how the DrawString call interprets
ampersands:
StringFormat Properties (selection)

Type Property Accessibility

HotkeyPrefix HotkeyPrefix get/set

How the DrawString call interprets ampersands? That might sound a little odd until you realize that
embedded ampersands have a special meaning in the text used in menu items, buttons, and other
controls. The ampersand indicates that the character that follows is to be underlined and that the
character is to function as a keyboard shortcut.

You set the HotkeyPrefix property to one of the following HotkeyPrefix enumeration values defined in
the System.Drawing.Text namespace:
HotkeyPrefix Enumeration

Member Value Description

None 0 "&File" → "&File" (default)

Show 1 "&File" → "File"

Hide 2 "&File" → "File"

By default, ampersands aren't treated special and are simply displayed as ampersands. The Show
value suppresses the ampersand and forces the next character to be underlined. The Hide value
suppresses the ampersand but doesn't underline the next character.

Even if you're not displaying text in menus or controls, you can use this property to underline specific
letters or words that appear in blocks of text you pass to the DrawString call. Here's a program that
demonstrates this technique.
UnderlinedText.cs
//---
// UnderlinedText.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;

using System.Drawing.Text;
using System.Windows.Forms;

class UnderlinedText: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new UnderlinedText());
 }
 public UnderlinedText()
 {
 Text = "Underlined Text Using HotkeyPrefix";
 Font = new Font("Times New Roman", 14);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 string str = "This is some &u&n&d&e&r&l&i&n&e&d text!";
 StringFormat strfmt = new StringFormat();

 strfmt.HotkeyPrefix = HotkeyPrefix.Show;

 grfx.DrawString(str, Font, new SolidBrush(clr), 0, 0, strfmt);
 }
}

The string in this program listing doesn't appear very attractive, but the results look quite nice:

It's too bad there's not also some kind of facility to italicize or boldface words in a text block passed
to DrawString.

I use HotkeyPrefix for what it's designed for in the OwnerDrawMenu program in Chapter 14.
A Clip and a Trim
When you use the RectangleF version of DrawString, you're defining not only a right margin that
governs text wrapping but also a bottom margin that limits the total amount of text that can be
displayed.

What happens if the text is too long to fit in the rectangle?

Let's look at the default case first—when you don't include a StringFormat object as the last
argument to DrawString. If the height of the rectangle is an integral multiple of the line-spacing
height, an integral number of lines of text can fit in the rectangle. The last line of displayed text will
contain as many characters as can fit in the rectangle width. Notice I said characters that can fit—not
necessarily complete words. To let you explore the way this works, here's a version of the

HuckleberryFinn program from Chapter 3 that restricts the text to half the client area width and
height.
HuckleberryFinnHalfHeight.cs
//--
// HuckleberryFinnHalfHeight.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class HuckleberryFinnHalfHeight: Form
{
 public static void Main()
 {
 Application.Run(new HuckleberryFinnHalfHeight());
 }
 public HuckleberryFinnHalfHeight()
 {
 Text = "\"The Adventures of Huckleberry Finn\"";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 int cx = ClientSize.Width;
 int cy = ClientSize.Height;
 Pen pen = new Pen(ForeColor);
 Rectangle rect = new Rectangle(0, 0, cx / 2, cy / 2);

 grfx.DrawString(
 "You don't know about me, without you " +
 "have read a book by the name of \"The " +
 "Adventures of Tom Sawyer,\" but that " +
 "ain't no matter. That book was made by " +
 "Mr. Mark Twain, and he told the truth, " +
 "mainly. There was things which he " +
 "stretched, but mainly he told the truth. " +
 "That is nothing. I never seen anybody " +
 "but lied, one time or another, without " +
 "it was Aunt Polly, or the widow, or " +
 "maybe Mary. Aunt Polly\x2014Tom's Aunt " +
 "Polly, she is\x2014and Mary, and the Widow " +
 "Douglas, is all told about in that book" +
 "\x2014which is mostly a true book; with " +

 "some stretchers, as I said before.",
 Font, new SolidBrush(ForeColor), rect);

 grfx.DrawLine(pen, 0, cy / 2, cx / 2, cy / 2);
 grfx.DrawLine(pen, cx / 2, 0, cx / 2, cy / 2);
 }
}

The program also draws lines to indicate the rectangle in which the text is being displayed.

When the display rectangle isn't sufficient for the entire paragraph, you'll notice that the last line
displayed in the client area may end with an incomplete word:

As you make the display rectangle taller, there comes a point when DrawString decides that there's
enough room to display an additional line of text. It's sooner than you might think! DrawString
displays an additional line of text when the height of the rectangle exceeds an additional 25 percent
of the line-spacing height. The last line is clipped to the interior of the rectangle.

Although the last line is mostly clipped, you can see that this new last line concludes with another
partial word—the first two letters of the word mainly.

You can alter this default behavior by using the Trimming property of the StringFormat class:
StringFormat Properties (selection)

Type Property Accessibility

StringTrimming Trimming set/get

The Trimming property determines how the last line of the text is terminated when you use the
RectangleF version of DrawString and the rectangle isn't large enough to fit all the text. The value is
a member of the StringTrimming enumeration used solely in connection with this property:
StringTrimming Enumeration

Member Value Description

None 0 As if no bottom margin

Character 1 End on character

Word 2 End on word

EllipsisCharacter 3 End on character with ellipsis (...)

EllipsisWord 4 End on word with ellipsis (...)

EllipsisPath 5 Ellipsis preceding last directory

Here's a program that illustrates the effect of these values.
TrimmingTheText.cs
//--
// TrimmingTheText.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class TrimmingTheText: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new TrimmingTheText());
 }
 public TrimmingTheText()
 {
 Text = "Trimming the Text";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 float cyText = Font.GetHeight(grfx);
 float cyRect = cyText;
 RectangleF rectf = new RectangleF(0, 0, cx, cyRect);

 string str = "Those who profess to favor freedom and "
+
 "yet depreciate agitation. . .want " +
 "crops without plowing up the ground, " +
 "they want rain without thunder and " +
 "lightning. They want the ocean without "
+
 "the awful roar of its many waters. " +
 "\x2014 Frederick Douglass";
 StringFormat strfmt = new StringFormat();

 strfmt.Trimming = StringTrimming.Character;
 grfx.DrawString("Character: " + str, Font, brush, rectf,
strfmt);

 rectf.Offset(0, cyRect + cyText);

 strfmt.Trimming = StringTrimming.Word;
 grfx.DrawString("Word: " + str, Font, brush, rectf, strfmt);

 rectf.Offset(0, cyRect + cyText);

 strfmt.Trimming = StringTrimming.EllipsisCharacter;
 grfx.DrawString("EllipsisCharacter: " + str,
 Font, brush, rectf, strfmt);

 rectf.Offset(0, cyRect + cyText);

 strfmt.Trimming = StringTrimming.EllipsisWord;
 grfx.DrawString("EllipsisWord: " + str,
 Font, brush, rectf, strfmt);

 rectf.Offset(0, cyRect + cyText);

 strfmt.Trimming = StringTrimming.EllipsisPath;
 grfx.DrawString("EllipsisPath: " +
 Environment.GetFolderPath
 (Environment.SpecialFolder.Personal),
 Font, brush, rectf, strfmt);

 rectf.Offset(0, cyRect + cyText);

 strfmt.Trimming = StringTrimming.None;
 grfx.DrawString("None: " + str, Font, brush, rectf, strfmt);
 }
}

This program defines a RectangleF object sufficient in height for a single line of text. Using the six
possible StringTrimming values, the program displays some text. This text is a quotation from
Frederick Douglass for all values except StringTrimming.EllipsisPath, in which case the program
uses the static Environment.GetFolderPath method to obtain the path of your My Documents folder.
You can adjust the width of the window and examine how it affects the text. Here's a typical display:

Both the EllipsisCharacter and the EllipsisWord members of StringTrimming cause an ellipsis (…) to
be displayed at the end of the string, indicating that not enough room was available to display it. Both
Character and EllipsisCharacter can result in a partial word being displayed.

The EllipsisPath member of StringTrimming is specifically for displaying file path names. Notice that
the ellipsis is embedded in the middle of the text to favor the display of the beginning and the end of
the path specification.

Just offhand, the None member appears to be the same as Word, but we're not quite finished with
this exercise, and you'll find out why I put this one down at the bottom.

You can go into the program and change the calculation of cyRect from
float cyRect = cyText;

to
float cyRect = 1.5f * cyText;

Now recompile and run the new version. Here's a typical display:

The DrawString method is now displaying two lines of text, and although you can't see much of the
second line, that's the line being affected by the Trimming property.

At this point, you might want to see what effect the NoWrap flag of the StringFormatFlags
enumeration has on this display. Add the following statement after the creation of the StringFormat
object but before any DrawString calls:
strfmt.FormatFlags |= StringFormatFlags.NoWrap;

Or you can put the flag in the StringFormat constructor:
StringFormat strfmt = new StringFormat(StringFormatFlags.NoWrap);

As the name implies, the NoWrap flag suppresses the line-wrapping facility of DrawString:

The text still ends at the right margin of the rectangle, however. What you might not see clearly
(unless you change the right margin of the rectangle to something less than the width of the client
area) is that the StringTrimming.None case causes the last letter to be partially truncated at the right
margin. This is the only case we've seen so far in which a partial letter is displayed.

Now get rid of that NoWrap flag. Or rather, replace it with the NoClip flag:
strfmt.FormatFlags = StringFormatFlags.NoClip;

This flag directs DrawString not to clip text that lies partially outside the display rectangle. The result
is that two full lines of text are displayed for every enumeration value except StringTrimming.None:

For the StringTrimming.None case, the entire block of text is now displayed. The combination of this
enumeration value and the NoClip format flag essentially negates the effect of the bottom of the
rectangle.

If you include both flags, like so,
strfmt.FormatFlags |= StringFormatFlags.NoClip;
strfmt.FormatFlags |= StringFormatFlags.NoWrap;

then for all StringTrimming values except None, the effect is the same as with just the NoWrap flag.
For StringTrimming.None, the text is not wrapped and also not prevented from going past the right
margin. It's as if you specified a PointF rather than a RectangleF in the DrawString call.

When you're displaying text in a rectangle, you need to watch out for clipping. If you make the
rectangle height an integral multiple of the line-spacing value, you won't have a problem with
clipping. That's probably the best solution. Otherwise, you should set the NoClip format flag to
prevent clipping. But keep in mind that doing so will possibly cause the last line of text to be partially
displayed beyond the bottom of the rectangle. In some cases (if the height of the rectangle is the
height of your client area, for example), the last line of text will be clipped anyway because it
exceeds the boundary of the client area. Be sure to adjust the rectangle so that all lines of text are
displayed.

If you create a StringFormat object using the default constructor
StringFormat strfmt = new StringFormat();

or if you create it using this static property of StringFormat
StringFormat strfmt = StringFormat.GenericDefault;

the Trimming property is initially set to StringTrimming.Character. If you create the StringFormat
object using the static property
StringFormat strfmt = StringFormat.GenericTypographic;

the Trimming property is initially set to StringTrimming.None and the NoClip format flag is set.
Start a Tab
Tab stops govern how the DrawString call interprets the Unicode tab character '\t' or '\x0009'. If your
DrawString call doesn't include a StringFormat argument, the default tab stops, measured in points,
are equal to four times the size of the font. (In other words, the tabs are four ems.) For example, a 9-

point font will have tab stops every 36 points, or 1/2 inch; an 18-point font will have tab stops every
72 points, or 1 inch; and a 36-point font will have tab stops every 144 points, or 2 inches. The tab
stops are measured from where the text begins as indicated by the PointF or RectangleF argument
to the DrawString call.

If your DrawString call includes a StringFormat argument, default tab stops don't exist and the
DrawString method ignores all tab characters in the text. You need to set tab stops using the
SetTabStops method of StringFormat. The StringFormat class also includes a method to obtain the
current tab stop settings:

StringFormat Methods (selection)

void SetTabStops(float fFirstTab, float[] afTabs)
float[] GetTabStops(out float fFirstTab)

Tab stops are in world coordinates. You'll notice that the tab stops are specified by both a float value
and an array of float values, which would seem to indicate that the value not in the array is treated
differently. What the method syntax doesn't imply is that the last value of the array is also treated
differently.

Let me give you a few simple examples first before I show you how the SetTabStops method works
in the general case. I'll assume the page units are set to GraphicsUnit.Point.

If you need just one tab stop, say at 4 inches (288 points), you can specify that as the first argument
to the method and make the array contain just a single 0:
strfmt.SetTabStops(288, new float[] { 0 });

You can't set the array argument to null. You can also use
strfmt.SetTabStops(0, new float[] { 288, 0 });

If you need two tabs stops, for example, at 1 inch (72 points) and 3 inches (216 points), you use
strfmt.SetTabStops(0, new float[] { 72, 144, 0 });

Notice that the second array element is the difference between 72 and 216 points. Although I'm
showing the array being created directly in the SetTabStops call, you can, of course, define it outside
the method.

If you need tab stops every 0.5 inch (36 points), you use
strfmt.SetTabStops(0, new float[] { 36 });

The tab stops will be at 36 points, 72 points, 108 points, 144 points, and so forth.

As you can see, the SetTabStops method can define both discrete tab stops and repeating tab
stops, and it's the combination of these two that makes this method so complicated. In the general
case, the arguments to SetTabStops look like this:
strfmt.SetTabStops(S, new float[] { A, B, C, ..., N, R });

I'm using the letter R to stand for Repeating and the letter S to indicate Shift. Any of these values can
be 0 or negative. The SetTabStops method sets tab stops at the following positions measured from
the starting position of the text:

S + A
S + A + B
S + A + B + C
S + A + B + C + ... + N
S + A + B + C + ... + N + R

In addition, the method also sets tab stops at positions R, 2R, 3R, and so forth, but these repeating
tab stops begin only after the longest of the other tab stops. For example, the call

strfmt.SetTabStops(100, new float[] { 50, 75, 50, 100 });

sets tab stops at 150, 225, 275, 375, 400, 500, 600, and so on. Units are world coordinates.

You can set the last element of the array (which I've called R) to 0 if you want all the tab stops to be
explicitly defined. You can also set S to 0. However, it's possible to use that initial argument to
SetTabStops intelligently. For example, you could first define an array that has four tab stops
measured from a horizontal coordinate of 0:
float[] afTabs = { 100, 150, 100, 50, 0 };

Notice that the last argument is 0, so there will be no repeating tab stops.

If you're preparing to display text starting at a horizontal coordinate of 0, you can call SetTabStops
with an initial argument of 0:
strfmt.SetTabStops(0, afTabs);

This call sets tabs at 100, 250, 350, and 400 units. However, you might now need to display text
starting at a horizontal coordinate of 50, but you want the tab stops in the same physical locations.
You can do that by passing −50 as the first argument to SetTabStops:
strfmt.SetTabStops(-50, afTabs);

Now the tab stops are 50, 200, 300, and 350 but measured from the starting coordinate of 50, so
they're really 100, 250, 350, and 400, the same as before.

Let's put a lot of what we've learned here into practice by formatting a chunk of text into columns.
The text I'm using is the beginning of Edith Wharton's 1920 novel The Age of Innocence. The
following class has a single read-only Text property that returns the first five paragraphs of the novel.
AgeOfInnocence.cs
//--
// AgeOfInnocence.cs © 2001 by Charles Petzold; text by Edith Wharton
//--
class AgeOfInnocence
{
 public static string Text
 {
 get
 {
 return

"On a January evening of the early seventies, Christine Nilsson was " +
"singing in Faust at the Academy of Music in New York." +
"\n" +
"\tThough there was already talk of the erection, in remote metropolitan "
+
"distances \"above the Forties,\" of a new Opera House which should " +
"compete in costliness and splendour with those of the great European " +
"capitals, the world of fashion was still content to reassemble every " +
"winter in the shabby red and gold boxes of the sociable old Academy. " +
"Conservatives cherished it for being small and inconvenient, and thus " +
"keeping out the \"new people\" whom New York was beginning to dread and "
+
"yet be drawn to; and the sentimental clung to it for its historic " +
"associations, and the musical for its excellent acoustics, always so " +

"problematic a quality in halls built for the hearing of music." +
"\n" +
"\tIt was Madame Nilsson's first appearance that winter, and what the " +
"daily press had already learned to describe as \"an exceptionally " +
"brilliant audience\" had gathered to hear her, transported through the "
+
"slippery, snowy streets in private broughams, in the spacious family " +
"landau, or in the humbler but more convenient \"Brown &c&o&u&p&é.\" To "
+
"come to the Opera in a Brown &c&o&u&p&é was almost as honourable a way "
+
"of arriving as in one's own carriage; and departure by the same means " +
"had the immense advantage of enabling one (with a playful allusion to " +
"democratic principles) to scramble into the first Brown conveyance in " +
"the line, instead of waiting till the cold-and-gin congested nose of " +
"one's own coachman gleamed under the portico of the Academy. It was one "
+
"of the great livery-stableman's most masterly intuitions to have " +
"discovered that Americans want to get away from amusement even more " +
"quickly than they want to get to it." +
"\n" +
"\tWhen Newland Archer opened the door at the back of the club box the " +
"curtain had just gone up on the garden scene. There was no reason why " +
"the young man should not have come earlier, for he had dined at seven, "
+
"alone with his mother and sister, and had lingered afterward over a " +
"cigar in the Gothic library with glazed black-walnut bookcases and " +
"finial-topped chairs which was the only room in the house where Mrs. " +
"Archer allowed smoking. But, in the first place, New York was a " +
"metropolis, and perfectly aware that in metropolises it was \"not the " +
"thing\" to arrive early at the opera; and what was or was not \"the " +
"thing\" played a part as important in Newland Archer's New York as the "
+
"inscrutable totem terrors that had ruled the destinies of his " +
"forefathers thousands of years ago." +
"\n" +
"\tThe second reason for his delay was a personal one. He had dawdled " +
"over his cigar because he was at heart a dilettante, and thinking over a
" +
"pleasure to come often gave him a subtler satisfaction than its " +
"realisation. This was especially the case when the pleasure was a " +
"delicate one, as his pleasures mostly were; and on this occasion the " +
"moment he looked forward to was so rare and exquisite in quality " +
"that\x2014well, if he had timed his arrival in accord with the prima " +
"donna's stage-manager he could not have entered the Academy at a more " +
"significant moment than just as she was singing: \"He loves me\x2014he "
+

"loves me not\x2014&h&e& &l&o&v&e&s& &m&e!\" and sprinkling the falling "
+
"daisy petals with notes as clear as dew." +
"\n";
 }
 }
}

Notice that I've used a tab character to indent the first line of every paragraph except the first. The
text includes a few italicized words; I used the ampersand technique I discussed earlier to make
these words underlined instead. The text has some em dashes as well.

Here's the program that formats this text into columns. Each column requires a DrawString call. I
originally wrote this program to set a page transform that lets me express units in terms of picas. A
pica is equal to 12 points, or (in computer typography) 1/6 inch. I wanted to use picas because the
widths of columns in magazines and newspapers are generally measured in picas. I decided to make
my columns 12 picas wide (that is, 2 inches) with a 1-pica space between the columns. However, at
the time this was written, converting to picas caused a problem in the DrawString method, so I've
changed the program to use units of points.
TextColumns.cs
//--
// TextColumns.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Drawing.Text;
using System.Windows.Forms;

class TextColumns: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new TextColumns());
 }
 public TextColumns()
 {
 Text = "Edith Wharton's \"The Age of Innocence\"";
 Font = new Font("Times New Roman", 10);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 int iChars, iLines;
 string str = AgeOfInnocence.Text;
 StringFormat strfmt = new StringFormat();

 // Set units of points while converting dimensions.

 PointF[] aptf = { new PointF(cx, cy) };
 grfx.TransformPoints(CoordinateSpace.Device,
 CoordinateSpace.Page, aptf);

 grfx.PageUnit = GraphicsUnit.Point;

 grfx.TransformPoints(CoordinateSpace.Page,
 CoordinateSpace.Device, aptf);
 float fcx = aptf[0].X;
 float fcy = aptf[0].Y;

 // StringFormat properties, flags, and tabs

 strfmt.HotkeyPrefix = HotkeyPrefix.Show;
 strfmt.Trimming = StringTrimming.Word;
 strfmt.FormatFlags |= StringFormatFlags.NoClip;
 strfmt.SetTabStops(0, new float[] { 18 });

 // Display text.

 for (int x = 0; x < fcx && str.Length > 0; x += 156)
 {
 RectangleF rectf = new RectangleF(x, 0, 144,
 fcy -
Font.GetHeight(grfx));

 grfx.DrawString(str, Font, brush, rectf, strfmt);
 grfx.MeasureString(str, Font, rectf.Size, strfmt,
 out iChars, out iLines);

 str = str.Substring(iChars);
 }

 }
}

Notice the setting of the StringFormat properties, flags, and tabs. I use HotkeyPrefix.Show so that
my underlines are displayed, StringTrimming.Word to display a whole word at the bottom of each
rectangle, and StringFormatFlags.NoClip so that lines aren't clipped at the bottom of the rectangle. I
set the single tab (which controls the indentation of the first line) to 18 points.

The for loop has an iteration for each column. It continues until the width of the client area is
exceeded or all the text has been displayed. Within the for loop, the height of the display rectangle is
calculated as the height of the client area less the height of one line of text. The DrawString call
simply uses that rectangle. The MeasureString call determines how much text the DrawString call
just displayed. The SubString method of the String class then prepares the string for the next
iteration of the loop.

Here's a sample display:

Chapter 10: The Timer and Time
Overview
The timer is an input device that periodically notifies an application when a specified interval of time
has elapsed. Your program defines the interval, in effect saying, "Give me a nudge every 10th
second." The timer then triggers an event handler in your program 10 times a second.

Three different classes defined in the System.Timers, System.Threading, and
System.Windows.Forms namespaces are named Timer. I'll be using the one defined in
System.Windows.Forms, which is the timer that Microsoft Windows programmers are familiar with. It
is integrated with the other Windows events and involves the lowest hassle factor.

While obviously not as important an input device as the keyboard and the mouse, the timer is
surprisingly useful and finds its way into many Windows Forms applications. The obvious timer
application is a clock, and indeed, this chapter is overflowing with clock applications. But here are
some other uses for the timer, some perhaps not so obvious:
§ Multitasking Although Windows is a preemptive multitasking environment, usually it's

advisable for a program to return control to Windows as quickly as possible after processing an
event. Not doing so tends to gum up the works. If a program must do a large amount of
processing, it can divide the job into smaller pieces and process each piece upon receipt of a
timer event.

§ Maintaining an updated status report A program can use the timer to display real-time
updates of continuously changing information, such as a display of resources or the progress of
certain tasks.

§ Implementing an "autosave" feature The timer can prompt an application to save a user's
work to disk whenever a specified period of time has elapsed.

§ Terminating demo versions of programs Some demonstration versions of programs are
designed to terminate, say, 30 minutes after they begin. The timer can signal such applications
when the time is up. (An example is the CloseInFive program coming up soon in this chapter.)

§ Pacing movement Graphical objects in a game or successive displays in a computer-assisted
instruction program usually need to proceed at a set rate. Using the timer eliminates the
inconsistencies that might result from variations in microprocessor speed. Animation often
makes use of the timer.

You can also think of the timer as a guarantee that a program can regain control sometime in the
future. Whenever a program relinquishes control after executing the code in the constructor or an
event handler, it usually can't determine when the next event will occur. The timer is more certain.

I say more certain because the timer doesn't have the rhythmical consistency of a metronome. The
events triggered by the Timer class are synchronous with the other events. In other words, a timer
event will never interrupt the processing of another event in the same execution thread. Code that
spends a long time processing an event will delay a timer event.
The Timer Class
The Timer class is small and relatively simple. You generally create a Timer object using the default
constructor:
Timer timer = new Timer();

The Timer has one event:
Timer Event

Event Method Delegate Argument

Tick OnTick EventHandler EventArgs

Somewhere in your class you'll have an event handler for the timer defined like so:
void TimerOnTick(object obj, EventArgs ea)
{

}

You can name it whatever you want, of course. You attach this event handler to the Timer object
you've created:
timer.Tick += new EventHandler(TimerOnTick);

The Timer class has just two properties:
Timer Properties

Type Property Accessibility Description

int Interval get/set Tick time in milliseconds

bool Enabled get/set Set to true if timer is running

You set the Interval property to the number of milliseconds between calls to your event handler. For
example, this statement sets the tick time to 1 second:
timer.Interval = 1000;

Although you can set the Interval property to values as low as 1, you're not guaranteed to get a tick
time of 1 millisecond. Under Windows 2000, for example, even if you set an Interval of 1, the timer
will call your event handler approximately every 10 milliseconds.

Windows rounds intervals you specify to the next highest multiple of the period of the operating
system's internal clock. Under Windows 2000, for example, specifying an Interval of 11 through 20
results in an actual interval of 20 milliseconds. But an Interval of 20 doesn't imply that you'll get
precisely 50 calls every second. If a timer event is delayed more than 20 milliseconds, it's
consolidated with the next timer event. There are never multiple pending timer events.

But you won't get any calls to your event handler unless you also enable the timer:
timer.Enabled = true;

Alternatively, you can use these two methods:

Timer Methods (selection)

void Start()
void Stop()

The Start call is equivalent to setting Enabled to true, and the Stop call is equivalent to setting
Enabled to false.

You can change these properties in your timer event handler, effectively resetting the timer.
Remember that the first argument to the event handler is the object associated with the event
handler, which in this case is the Timer object, so you can cast it like so:
Timer timer = (Timer) obj;

Here's a program that sets a one-shot timer, so called because the timer event handler turns the
timer off.
CloseInFive.cs
//--
// CloseInFive.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class CloseInFive: Form
{
 public static void Main()
 {
 Application.Run(new CloseInFive());
 }
 public CloseInFive()
 {
 Text = "Closing in Five Minutes";

 Timer timer = new Timer();
 timer.Interval = 5 * 60 * 1000;
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Enabled = true;
 }
 void TimerOnTick(object obj, EventArgs ea)
 {
 Timer timer = (Timer) obj;

 timer.Stop();
 timer.Tick -= new EventHandler(TimerOnTick);

 Close();
 }
}

Not only does the timer event handler turn the timer off, but it also closes the program. This program
is an example of how you would implement a demo feature that allows the user to experience the
benefits of an application but not actually use it much.

When closing a program, it's not necessary to stop the timer and detach the event handler. However,
if you truly are using a timer for a one-shot operation, it's a good idea to do so: the Timer object will
then qualify for garbage collection.

At the other extreme from CloseInFive, here's a hypnotic program that sets the timer once and runs
forever.
RandomRectangle.cs
//--
// RandomRectangle.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class RandomRectangle: Form
{
 public static void Main()
 {

 Application.Run(new RandomRectangle());
 }
 public RandomRectangle()
 {
 Text = "Random Rectangle";

 Timer timer = new Timer();
 timer.Interval = 1;
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Start();
 }
 void TimerOnTick(object obj, EventArgs ea)
 {
 Random rand = new Random();

 int x1 = rand.Next(ClientSize.Width);
 int x2 = rand.Next(ClientSize.Width);
 int y1 = rand.Next(ClientSize.Height);
 int y2 = rand.Next(ClientSize.Height);

 Color color = Color.FromArgb(rand.Next(256),
 rand.Next(256),
 rand.Next(256));

 Graphics grfx = CreateGraphics();
 grfx.FillRectangle(new SolidBrush(color),
 Math.Min(x1, x2), Math.Min(y1, y2),
 Math.Abs(x2 - x1), Math.Abs(y2 - y1));
 grfx.Dispose();
 }
}
The DateTime Structure
If you want to write a clock application, you need to know something about the representation of date
and time in the .NET Framework.

The most important date and time structure, appropriately named DateTime, is defined in the System
namespace. You can create an object of type DateTime using one of its seven constructors, three of
which are listed here:

DateTime Constructors (selection)

DateTime(int year, int month, int day)
DateTime(int year, int month, int day, int hour, int minute,
 int second)
DateTime(int year, int month, int day, int hour, int minute,
 int second, int msec)

The year can range from 1 to 9999, the month can range from 1 to 12, the day can range from 1
through the number of days in that month and year, the hour can range from 0 through 23, the
minute and second can range from 0 through 59, and the milliseconds argument can range from 0
through 999. If any of the arguments is out of range, the constructor throws an exception.

The DateTime constructor also throws an exception if the combination of year, month, and day
arguments isn't consistent. For example, a month of 2 and a day of 29 is acceptable only for a leap
year. These DateTime constructors use leap year rules associated with the Gregorian calendar
(which was instituted by Pope Gregory XIII in 1582 and eventually adapted worldwide in the years
and centuries that followed). In the Gregorian calendar, a year is a leap year if it is divisible by 4 but
not divisible by 100 unless it is divisible by 400. The year 1900 is not a leap year; 2000 is. (Prior to
the Gregorian calendar, leap years were celebrated every four years without exception.) The
DateTime constructor observes these same leap year rules even for years preceding the invention of
the Gregorian calendar.

DateTime has 15 properties, all of which are read-only, and 10 of which are shown here:
DateTime Properties (selection)

Type Property Accessibility Description

int Year get 1 through 9999

int Month get 1 through 12

int Day get 1 through 31

int Hour get 0 through 23

int Minute get 0 through 59

int Second get 0 through 59

int Millisecond get 0 through 999

int DayOfWeek get 0 (Sunday) through 6 (Saturday)

int DayOfYear get 1 through 366

DateTime Date get Time set to 0 (midnight)

The first seven properties are the familiar components of the date and time, and will match the
values set in the constructor. The DayOfWeek and DayOfYear properties provide some additional
information about the date. The Date property returns a DateTime object that represents the same
day as the current DateTime object but with the Hour, Minute, Second, and Millisecond properties
set to 0.

DateTime has three static properties, which are particularly useful:
DateTime Static Properties

Type Property Accessibility Description

DateTime Now get Current local date and time

DateTime Today get Current local date

DateTime UtcNow get Current UTC date and time

The DateTime.Now property returns a DateTime structure filled in with the current local date and
time. For example, to obtain the current date and time in your program, call
DateTime dt = DateTime.Now;

Now you can use the DateTime properties in dt to obtain the components of the current date and
time. The DateTime.Today property is similar but returns a DateTime structure with today's date and
all the time components set to 0.

The static UtcNow property returns a DateTime structure with the current date and time in
Coordinated Universal Time (UTC), which I'll discuss in the next section.

The DateTime structure contains a number of methods and overloaded operators that let you
perform calculations on dates and times. The comparison operators (==, !=, <, >, <=, and >=) are all
valid for DateTime objects. Addition and subtraction are also supported, but these operations involve
TimeSpan objects that I'll get to shortly.
Local Time and Universal Time
People everywhere around the world like to think of noon as the time when the sun is highest in the
sky and midnight as the middle of the night. Because these two events don't occur everywhere on
the earth at the same time, people living in different areas of the world set their clocks differently.
Once a chaotic practice, this tendency has evolved into strict time zones generally set by national
governments and calculated as hour or half-hour offsets from Greenwich Mean Time.

Greenwich, England, has played an important role in the evolution of time standards because it is the
site of the Royal Greenwich Observatory (RGO). The RGO was founded in 1675 to develop
techniques of astronomical navigation for ships at sea. In the 1760s, the observatory began
publishing nautical almanacs that for convenience placed the prime meridian (the line of 0º
longitude) at Greenwich. This system of meridians was eventually agreed upon as a world standard
in 1884, although the French continued to use Paris as the prime meridian until 1911.

Earlier, in 1833, Greenwich astronomers began dropping a ball that was visible to ships in the
Thames every day at 1:00 p.m. That was the origin of Greenwich Mean Time. In the 1840s,
Greenwich Mean Time was declared the standard time for all of Great Britain to replace various local
times that had developed over the years.

While people often still refer to Greenwich Mean Time as the world standard, the use of the term
Coordinated Universal Time (UTC) is considered more scientifically correct. (Coordinated Universal
Time is abbreviated UTC as something of a compromise between the English word order—which
would imply the abbreviation CUT—and the French Temps Universel Coordonné, which has the
abbreviation TUC.) By international agreement since 1972, UTC is the same all over the world.

Local standard time is a positive or negative offset from UTC. Time zones to the west of Greenwich
are behind UTC, and time zones to the east of Greenwich are ahead of UTC. For example, Eastern
Standard Time, which includes the east coast of the United States, is UTC minus 5 hours. This is not
the same as UTC plus 19 hours. Such a calculation results in the correct time but the incorrect day.

Then there's that quaint custom known as daylight saving time. The principle behind it is simple: as
the summer solstice approaches, the sun is rising earlier and setting later, so it's no big deal to get
out of bed a little earlier and enjoy even more sun in the evening. Some countries observe daylight
saving time and some don't, and those that observe it frequently begin and end it on different dates.
Even within some countries, notably the United States, daylight saving time is implemented
inconsistently—many states observe it, but some don't.

In Windows, you can set the time zone for your machine using the Date/Time Properties dialog box
that you can open from Control Panel or by double-clicking the time in the Windows taskbar. You can
also indicate whether the system should automatically adjust for daylight saving time. Obviously, for
a particular machine, the local time is just an offset of the UTC based on both the local time zone
and the effect of daylight saving time.

The DateTime structure by itself doesn't imply UTC or a local time. When you use one of the
DateTime constructors, you are specifying a date and time that may be UTC, a local time, the date
and time of your birth, or anything you want.

As I mentioned earlier, the properties Now and Today return local date and time, and UtcNow returns
UTC based on the time zone settings of the current machine. You can convert the time stored in a
DateTime object between local time and UTC by using the following methods:

DateTime Methods (selection)

DateTime ToLocalTime()
DateTime ToUniversalTime()

For example, if the variable dtLocal contains a local date and time, you can convert it to a UTC date
and time by calling
DateTime dtUtc = dtLocal.ToUniversalTime();

If dtLocal actually contained a time in UTC, what you end up with here is nonsense. It's your
responsibility to keep track of what time zones your DateTime objects pertain to.

You can get information about the time zone defined for the current machine, and the daylight saving
time rules associated with that time zone, from the TimeZone class, also defined in the System
namespace. TimeZone is defined as abstract, which means that you can't instantiate it; you can only
instantiate a subclass of TimeZone. However, the class by itself provides some useful information.
TimeZone has one static property, which returns an instance of the class. This instance represents
the time zone that is set for the current machine:
TimeZone Static Property

Type Property Accessibility

TimeZone CurrentTimeZone get

For example, if you call
TimeZone tz = TimeZone.CurrentTimeZone;

tz represents the time zone set on the current computer. The two nonstatic properties provide names
associated with the time zone:
TimeZone Properties

Type Property Accessibility

string StandardName get/set

string DaylightName get/set

For example, if your machine is located on the east coast of the United States, the time zone is set
correctly, and you've set the tz variable as shown previously, the tz.StandardName property returns
"Eastern Standard Time" and tz.DaylightName returns "Eastern Daylight Time."

Here are the TimeZone methods:

TimeZone Methods

TimeSpan GetUtcOffset(DateTime dt)
DateTime ToLocalTime(DateTime dt)
DateTime ToUniversalTime(DateTime dt)
DaylightTime GetDaylightChanges(int iYear)
bool IsDaylightSavingTime(DateTime dt)
bool IsDaylightSavingTime(DateTime dt, DaylightTime dlt)

The GetUtcOffset method returns an offset between the time in the particular time zone and UTC
expressed as a TimeSpan object. (I'll discuss TimeSpan in more detail shortly. For now, be aware
that it's a structure defined in the System namespace that's used to express durations of time in units
of 100 nanoseconds.) GetUtcOffset takes daylight saving time into account. Using the same example
of the computer on the east coast of the United States, the method
tz.GetUtcOffset(new DateTime(2002, 2, 2))

returns −5:00:00, which signifies −5 hours. That's what you add to UTC to get Eastern Standard
Time. The method call
tz.GetUtcOffset(new DateTime(2002, 8, 29))

returns −4:00:00, or −4 hours. That's the effect of daylight saving time.

The ToLocalTime and ToUniversalTime methods are similar to the methods in the DateTime
structure but are based on the particular TimeZone object. If you had a way to get TimeZone objects
for other time zones around the world, you could use these methods to convert between local and
UTC for other time zones.

The statement
DaylightTime dlt = tz.GetDaylightChanges(2002);

returns an object of type DaylightTime, a class defined in the System.Globalization namespace. It
has three properties:
DaylightTime Properties

Type Property Accessibility

DateTime Start get

DateTime End get

TimeSpan Delta get

The Start and End properties indicate that daylight saving time begins on April 7, 2002, at 2:00 a.m.,
and ends on October 27, 2002, at 2:00 a.m. (Both transitions occur on Sunday mornings.) The Delta
value is the time difference, which is 1 hour.

For time zones in the northern hemisphere, Start is earlier in the year than End. For time zones in
the southern hemisphere, the seasons are switched: daylight saving time starts later in the year and
ends early in the next year.
The Tick Count
Another way of representing date and time is by a number of 100-nanosecond clock ticks. Internally,
the DateTime structure stores the date and time as the number of ticks since midnight, January 1, 1
C.E. The two remaining DateTime properties provide that value as well as the number of ticks since
midnight:
DateTime Properties (selection)

Type Property Accessibility Description

long Ticks get 100-nanosecond intervals since 1/1/0001

TimeSpan TimeOfDay get Ticks since midnight

Remember that a long is 64 bits wide and hence is adequate for storing the very large numbers
involved here. Notice that the TimeOfDay property returns an object of type TimeSpan, which
expresses durations of time in units of 100 nanoseconds.

For the date January 1, 2001, the Ticks property returns the value 631,139,040,000,000,000. There
are 10,000 ticks in a millisecond, 10,000,000 ticks in a second, 600,000,000 ticks in a minute,
36,000,000,000 ticks in an hour, and 864,000,000,000 ticks in a day. (All these constant values are
available as fields in the TimeSpan structure, by the way.) That means that 730,485 days have
elapsed in those 2000 years, for an average of 365.2425 days per year.

The value of 365.2425 days per year is correct for the Gregorian calendar: most years have 365
days. An extra day every four years adds 0.25 to the average days per year. Excluding an extra day
every 100 years lessens the average days per year by 0.01. Including an extra day every 400 years
increases the average days per year by 0.0025. In other words,

365 + 1/4 − 1/100 + 1/400 = 365.2425

You can create a DateTime object from a long value indicating the number of ticks since January 1,
1 C.E.:

DateTime Constructors (selection)

DateTime(long ticks)

You can create TimeSpan objects similarly, and you can also create TimeSpan objects with explicit
day and time values. Here's a complete list of the TimeSpan constructors:

TimeSpan Constructors

TimeSpan(long ticks)
TimeSpan(int hours, int minutes, int seconds)
TimeSpan(int days, int hours, int minutes, int seconds)
TimeSpan(int days, int hours, int minutes, int seconds, int milliseconds)

The DateTime and TimeSpan constructors look very similar, so it's important to understand the
distinction between the two structures. A DateTime object represents a particular date and time; the
Ticks property of DateTime is the number of 100-nanosecond intervals since January 1, 1 C.E.

A TimeSpan object represents a duration—a period of elapsed time. Notice that the arguments of the
TimeSpan constructors don't represent any particular day, hour, minute, second, and millisecond.
They represent a certain number of days, and a number of hours, and so forth. There are no
TimeSpan constructors that involve months and years because months and years don't have a fixed
number of days.

The values that can be assigned to arguments in the TimeSpan constructors aren't limited, unlike
those of DateTime constructors. For example, the statement
TimeSpan ts = new TimeSpan(1000, 1000, 1000, 1000, 1000);

is perfectly legal.

Here's a complete list of the TimeSpan properties:
TimeSpan Properties

Type Property Accessibility Description

long Ticks get Number of 100-nanosecond intervals

int Days get Whole number of days

int Hours get 0 through 23

int Minutes get 0 through 59

int Seconds get 0 through 59

int Milliseconds get 0 through 999

double TotalDays get = (double) Ticks / TicksPerDay

double TotalHours get = (double) Ticks / TicksPerHour

double TotalMinutes get = (double) Ticks / TicksPerMinute

double TotalSeconds get = (double) Ticks / TicksPerSecond

double TotalMilliseconds get = (double) Ticks / TicksPerMillisecond

For the last five properties, I've indicated how they are calculated from convenient fields in the
TimeSpan structure.

I mentioned earlier that the DateTime structure defines an overload of the addition operator.
However, you can add only a TimeSpan object to a DateTime object. If dt, dt1, and dt2 are DateTime
objects and ts is a TimeSpan object, you can perform addition like this:
dt2 = dt1 + ts;

or like this:
dt += ts;

For example, you may want to increase a time and date by 45 minutes:
dt += new TimeSpan(0, 45, 0);

or 1 week:
dt += new TimeSpan(7, 0, 0, 0);

This is the safe way to perform these calculations. (Another safe approach is to use the various Add
methods of the DateTime class.) The subtraction operator is defined in two ways. You can subtract
one date and time from another to get a TimeSpan object:
ts = dt2 – dt1;

Or you can subtract a TimeSpan object from a DateTime object to get another DateTime object:
dt2 = dt1 – ts;

or
dt -= ts;

TimeSpan objects can also be added, subtracted, or compared to each other in any way.
Calendars Around the World
Here are the final three constructors for DateTime:

DateTime Constructors (selection)

DateTime(int year, int month, int day, Calendar cal)
DateTime(int year, int month, int day, int hour, int minute, int sec,
 Calendar cal)
DateTime(int year, int month, int day, int hour, int minute, int sec,
 int msec, Calendar cal)

The final argument is an object of type Calendar. This argument indicates how the year, month, and
day arguments are to be interpreted. As I mentioned earlier, the constructors without the Calendar
argument are assumed to refer to dates in the Gregorian calendar.

Calendar is an abstract class defined in the System.Globalization namespace, a namespace that
also includes eight classes derived from Calendar:

Hijri is another name for the Islamic calendar.

When you include a Calendar object as the last argument to the constructor, different consistency
rules are applicable. For example,
DateTime dt = new DateTime(1900, 2, 29);

generates an exception because 1900 isn't a leap year in the Gregorian calendar. However,
DateTime dt = new DateTime(1900, 2, 29, new JulianCalendar());

doesn't cause an exception because in the Julian calendar every year divisible by 4 is a leap year.

Moreover, if you actually make that call using the JulianCalendar object and then look at the
individual properties of the DateTime structure, you'll find that Month equals 3 (March) and Day
equals 13. The Year, Month, and Day properties of the DateTime structure always represent dates in
the Gregorian calendar. The constructor converts a date in a particular calendar into a tick count; the
DateTime properties convert from the tick count to dates in the Gregorian calendar.

The original adoption of the Gregorian calendar caused the date after October 4, 1582, to be
October 15, 1582, effectively skipping 10 days.[1] If you call
dt = new DateTime(1582, 10, 5, new JulianCalendar());

the Month property will be 10 and the Day property will indeed be 15.

It gets more interesting. Suppose you call

dt = new DateTime(5762, 5, 20, new HebrewCalendar());

Yes, that is indeed a year in the Hebrew calendar—the 20th day in the month of Shevat in the year
5762. The resultant DateTime structure has a Year property of 2002, and Month and Day properties
both equal to 2. Basically, what you have here is a conversion between the Hebrew calendar and the
Gregorian calendar. When the last argument to the DateTime constructor is a HebrewCalendar
object, the Month argument can be set to 13 in some years.

Similarly, you can specify a date in the Islamic calendar:
dt = new DateTime(1422, 11, 20, new HijriCalendar());

That's the 20th day of the month of Dhu'l-Qa'dah in the year 1422. Again, the resultant DateTime
structure has a Year property of 2002, and Month and Day properties both equal to 2.

To convert from a Gregorian date to another calendar, you need to create instances of the particular
calendar, for example,
HebrewCalendar hebrewcal = new HebrewCalendar();
HijriCalendar hijrical = new HijriCalendar();

You also need a DateTime object:
DateTime dt = new DateTime(2002, 2, 2);

To convert this Gregorian date into a date in the Hebrew or Islamic calendar, you use the following
three methods:

Calendar Methods (selection)

int GetYear(DateTime dt)
int GetMonth(DateTime dt)
int GetDayOfMonth(DateTime dt)

For example, the expression
hijrical.GetYear(dt)

returns 1422.
[1] The years leading up to the recent millennium anniversary saw the publication of several books
that retold the history of the Julian and Gregorian calendars. Perhaps the shortest and most eloquent
is Stephen Jay Gould, Questioning the Millennium: A Rationalist's Guide to a Precisely Arbitrary
Countdown (New York: Harmony Books, 1997).
A Readable Rendition
Some of the most important methods in DateTime are those that format the date and time into
human-readable form. This conversion might seem fairly trivial until you realize that people all over
the world write dates and times in different ways. Some cultures use 24-hour clocks; others prefer
using a.m. and p.m. Some cultures write the day before the month; others put the month before the
day. If the date includes month names or days of the week, it's helpful for these names to be in the
user's language. Even within a particular culture, some users may have individual preferences that
differ from the cultural standards.

These cultural standards and user preferences are accessible through the Regional Options dialog
box in Control Panel. If you select the General tab, you can change your Locale, and the default date
and time formatting will reflect the preferences in that location. You can select the Time and Date
tabs to change the default formatting to something you prefer. Date and time display formats that
depend on cultural differences or user preferences are said to be culture-specific.

While it's often polite for a program to format a date or time in a manner that is recognizable and
readable by the user, sometimes it's undesirable. Sometimes dates and times must be embedded in
documents that must be viewed by people in other cultures or merged with similar documents. In this

case, a program should use a consistent date and time format, perhaps in accordance with some
international standard. In the jargon of the .NET Framework, such formats are said to be culture-
invariant.

For the following examples, I'll be using a day of June 1, 2002, and a local time of 3:05:01 p.m. The
single-digit month, day, hour, minute, and second will help clarify whether any zero-suppression is
going on in the formatting.

Let's assume that dt is a DateTime object. If you simply put this object in a Console.WriteLine
method, as
Console.WriteLine(dt);

or in a String.Format method, as
str = String.Format("{0}", dt);

the method causes the ToString method of DateTime to be called. The previous statement is
equivalent to
str = dt.ToString();

ToString converts the date and time to a culture-specific character string. For U.S. English settings,
the character string returned from ToString looks like this:
6/1/2002 3:05:01 PM

The DateTime structure also defines several additional versions of ToString that have one or two
arguments. These versions allow you to format the date and time in a variety of culture-specific and
culture-invariant ways:

DateTime ToString Method

string ToString()
string ToString(string strFormat)
string ToString(IFormatProvider ifp)
string ToString(string strFormat, IFormatProvider ifp)

The string argument is typically a single letter that denotes a particular style of formatting. I'll be
describing these letters in detail shortly. The string argument can also be a series of letters that
describe a custom format.

The IFormatProvider argument refers to an interface. What you need for this argument is an instance
of a class that implements IFormatProvider. One such class is DateTimeFormatInfo, which is in the
System.Globalization namespace. (You should check the documentation for DateTimeFormatInfo if
you need formatting information beyond what I'm presenting here.) The DateTimeFormatInfo class
has two static properties, both of which return instances of the class:
DateTimeFormatInfo Static Properties

Type Property Accessibility

DateTimeFormatInfo CurrentInfo get

DateTimeFormatInfo InvariantInfo get

Thus, to get culture-invariant formatting, you can call
strDT = dt.ToString(DateTimeFormatInfo.InvariantInfo);

or
strDT = dt.ToString(strFormat, DateTimeFormatInfo.InvariantInfo);

To get formatting consistent with the user's cultural and personal preferences as specified in Control
Panel, use
strDT = dt.ToString(DateTimeFormatInfo.CurrentInfo);

or
strDT = dt.ToString(strFormat, DateTimeFormatInfo.CurrentInfo);

You'll also get culture-specific formatting if you use null as the second argument to ToString:
strDT = dt.ToString(strFormat, null);

or if you use the version with strFormat as the only argument:
strDT = dt.ToString(strFormat);

To use standard date and time formats, set the first argument of ToString to a single character as
shown in the first column of the following table. The second column in this table displays the
formatting you get when you've used Control Panel to set the locale to the United States, and you've
specified null or DateTimeFormatInfo.CurrentInfo as the second argument to ToString or you've used
the version of ToString that has a single string argument. The column on the right shows the
formatted strings when you use a second argument of DateTimeFormatInfo.InvariantInfo. These
strings are the same regardless of Control Panel settings.
ToString Date and Time Formats

Format Format Argument

Character CurrentInfo for United States InvariantInfo

d 6/1/2002 06/01/2002

D Saturday, June 01, 2002 Saturday, 01 June 2002

f Saturday, June 01, 2002 3:05 PM Saturday, 01 June 2002 15:05

F Saturday, June 01, 2002 3:05:01 PM Saturday, 01 June 2002 15:05:01

g 6/1/2002 3:05 PM 06/01/2002 15:05

G or null 6/1/2002 3:05:01 PM 06/01/2002 15:05:01

m or M June 01 June 01

r or R Sat, 01 Jun 2002 15:05:01 GMT Same as CurrentInfo

s 2002-06-01T15:05:01 Same as CurrentInfo

t 3:05 PM 15:05

T 3:05:01 PM 15:05:01

u 2002-06-01 15:05:01Z Same as CurrentInfo

U Saturday, June 01, 2002 7:05:01 PM Saturday, 01 June 2002 19:05:01

y or Y June, 2002 2002 June

The letters are mnemonics of sorts:
DateTime Formatting Mnemonics

Letter Mnemonic

d Date

f Full

g General

m month/day

DateTime Formatting Mnemonics

Letter Mnemonic

r RFC

s sortable

t time

u universal

y year/month

When the uppercase and lowercase letter produce different results (such as d and D), the uppercase
letter produces a longer string. For the r, R, s, or u formatting strings, the results are the same
regardless of the second argument to ToString.

The ToString method with a null or an absent string argument returns a string corresponding to the
culture-specific G (general) formatting option. Thus, the call
dt.ToString()

is also equivalent to
dt.ToString((string)null)

or
dt.ToString((IFormatProvider)null)

or
dt.ToString(null, null);

All return culture-specific G formatted strings. The ToString methods with a single IFormatProvider
argument also return strings equivalent to the G formatting option.

Using r or R results in the RFC 1123[2] format. The s format is known as ISO 8601[3] format, and it is
intended to be universal and easily sortable. The T in the center is known as a time designator and
separates the date and time. Dates that begin with months or days of the month can't be sorted quite
as easily in this format. The u formatting is quite similar to s except that the time designator is
missing and the string ends with a Z. In military and radio circles, UTC is sometimes known as Zulu
time, Zulu being used to represent Z, and Z referring to zero degrees of longitude.

The U format option performs a conversion to UTC. The use of this formatting string implies that the
DateTime value is a local time.

The DateTime structure has four other convenient formatting methods, all of which are culture-
specific:
DateTime Methods (selection)

Method Resultant String (U.S. English)

string
ToShortDateString()

6/1/2001

string ToLongDateString() Saturday, June 01, 2002

string
ToShortTimeString()

3:05 PM

string ToLongTimeString() 3:05:01 PM

These are identical to the culture-specific formatting strings of d, D, t, and T, respectively.

Just for kicks, let's go into the Regional Options dialog box in Control Panel and change the locale to
Germany. Now let's look at how date and time strings are formatted with default German settings:

ToString Date and Time Formats (German)

Format Format Argument

Character CurrentInfo for Germany InvariantInfo

d 01.06.2002 06/01/2002

D Samstag, 1. Juni 2002 Saturday, 01 June 2002

f Samstag, 1. Juni 2002 15:05 Saturday, 01 June 2002 15:05

F Samstag, 1. Juni 2002 15:05:01 Saturday, 01 June 2002 15:05:01

g 01.06.2002 15:05 06/01/2002 15:05

G or null 01.06.2002 15:05:01 06/01/2002 15:05:01

m or M 01 Juni June 01

r or R Sat, 01 Jun 2002 15:05:01 GMT Same as CurrentInfo

s 2002-06-01T15:05:01 Same as CurrentInfo

t 15:05 15:05

T 15:05:01 15:05:01

u 2002-06-01 15:05:01Z Same as CurrentInfo

U Samstag, 1. Juni 2002 19:05:01 Saturday, 01 June 2002 19:05:01

y or Y Juni 2002 2002 June

The column on the right is the same as the previous table. The culture-specific formatting involves
using German names for months and days of the week as well as other formatting specifics.

In some cases, ToString does more than just format. If you change your locale to one of the Arab
countries, you have a choice (on the Date tab of the Regional Options dialog box) between using the
Gregorian calendar or the Islamic calendar. Likewise, if you select Hebrew in the Regional Options,
you can choose between the Gregorian calendar or the Hebrew calendar. If you choose an Islamic
or Hebrew calendar, the culture-specific format options will perform a conversion to a date in that
calendar.
[2] RFC stands for "request for comment" and is the means by which Internet standards are
distributed. The time and date specification in RFC 1123 slightly modifies the specification discussed
in RFC 822. RFCs are available at many Web sites, including http://www.ietf.org.
[3] ISO 8601 ("Date elements and interchange formats—Information interchange—Representation of
dates and times") is available from the ISO at http://www.iso.ch. ISO 8601 is actually a collection of
formats for representing dates and times. The format used by the ToString method of DateTime is
the first of the three extended formats shown in section 5.4.1.a.
A Simple Culture-Specific Clock
Here's a program that uses the F formatting option to display the current date and time in its client
area.
SimpleClock.cs
//--
// SimpleClock.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class SimpleClock: Form

http://www.ietf.org
http://www.iso.ch

{
 public static void Main()
 {
 Application.Run(new SimpleClock());
 }
 public SimpleClock()
 {
 Text = "Simple Clock";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 Timer timer = new Timer();
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Interval = 1000;
 timer.Start();
 }
 private void TimerOnTick(object sender, EventArgs ea)
 {
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 StringFormat strfmt = new StringFormat();
 strfmt.Alignment = StringAlignment.Center;
 strfmt.LineAlignment = StringAlignment.Center;

 pea.Graphics.DrawString(DateTime.Now.ToString("F"),
 Font, new SolidBrush(ForeColor),
 ClientRectangle, strfmt);
 }
}

The program sets a 1-second timer and simply invalidates the client area in response to the OnTick
event. Here's what it looks like with the default U.S. formatting in effect:

But I ask you: Did we spend all that time learning about fonts only to create a clock as pathetic as
this one? I don't think so.

Let's restrict ourselves to the time and make it as large as possible. That just requires using OnPaint
processing more creatively.
DigitalClock.cs
//---
// DigitalClock.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class DigitalClock: Form
{
 public static void Main()
 {
 Application.Run(new DigitalClock());
 }
 public DigitalClock()
 {
 Text = "Digital Clock";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;
 MinimumSize = SystemInformation.MinimumWindowSize + new Size(0,
1);

 Timer timer = new Timer();
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Interval = 1000;
 timer.Start();
 }
 private void TimerOnTick(object obj, EventArgs ea)
 {
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 string strTime = DateTime.Now.ToString("T");
 SizeF sizef = grfx.MeasureString(strTime, Font);
 float fScale = Math.Min(ClientSize.Width / sizef.Width,
 ClientSize.Height / sizef.Height);
 Font font = new Font(Font.FontFamily,
 fScale * Font.SizeInPoints);

 sizef = grfx.MeasureString(strTime, font);

 grfx.DrawString(strTime, font, new SolidBrush(ForeColor),
 (ClientSize.Width - sizef.Width) / 2,
 (ClientSize.Height - sizef.Height) / 2);
 }
}

The OnPaint method stores the formatted time in strTime and then uses a technique I discussed in
Chapter 9 to make the text as large (but no larger) than the client area. Here's the display with
default U.S. English settings:

Unfortunately, for the sake of getting something large enough to read from across the room, we've
lost the date display. Is it possible to display both the date and the time while maintaining the big
size? Of course! The trick is to avoid using those format strings that combine the date and time, and
to format the date and time separately, combining the two strings with a line feed character.
DigitalClockWithDate.cs
//---
// DigitalClockWithDate.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class DigitalClockWithDate: DigitalClock
{
 public new static void Main()
 {
 Application.Run(new DigitalClockWithDate());
 }
 public DigitalClockWithDate()
 {
 Text += " with Date";
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 DateTime dt = DateTime.Now;
 string strTime = dt.ToString("d") + "\n" + dt.ToString("T");
 SizeF sizef = grfx.MeasureString(strTime, Font);
 float fScale = Math.Min(ClientSize.Width / sizef.Width,
 ClientSize.Height / sizef.Height);
 Font font = new Font(Font.FontFamily,
 fScale * Font.SizeInPoints);

 StringFormat strfmt = new StringFormat();
 strfmt.Alignment = strfmt.LineAlignment =
StringAlignment.Center;

 grfx.DrawString(strTime, font, new SolidBrush(ForeColor),
 ClientRectangle, strfmt);
 }
}

The call to MeasureString returns the height of the two lines of text and the width of the wider line. To
center both lines horizontally in the client area, the DrawString call needs a StringFormat object.
Here's the display, again with default U.S. English settings:

The fact that the OnPaint method gets called every second might get you to wondering about the
efficiency of the drawing code. Would it be better, for example, to create the required font during the
OnResize method? Yes, it would, but it would take a bit of work to get it to work just right. The font
size is dependent on both the size of the client area and the width and height of the text string. In
most cases, of course, the text string width doesn't change from second to second. But it does
change occasionally. The width of the text string containing the time depends on whether the hour is
one digit or two digits wide. And if the time is displayed in a 24-hour format, the date string is wider
than the time string, and that width depends on the month and the day of the month.

If the program had a separate method to create an appropriate font, that method would have to
retain in fields both the font and the width of the text used to calculate the font. The OnResize
method would call the font-calculation method, obviously. And the OnPaint method would need to
call it as well if the text width didn't match the width used to calculate the font.
The Retro Look
You could use any TrueType font you have installed on your system in either of the digital clock
programs. Just put a statement in the program's constructor to change the form's Font property:
Font = new Font("Comic Sans MS", 12);

Then just let the OnPaint method scale the font.

To give the clock a neat retro look, you might want to choose a font that looks like a seven-segment
LCD display. Or you can use this SevenSegmentDisplay class instead of a font.
SevenSegmentDisplay.cs
//--
// SevenSegmentDisplay.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Petzold.ProgrammingWindowsWithCSharp
{
class SevenSegmentDisplay
{
 Graphics grfx;

 // Indicates what segments are illuminated for all 10 digits

 static byte[,] bySegment = {{1, 1, 1, 0, 1, 1, 1}, // 0
 {0, 0, 1, 0, 0, 1, 0}, // 1
 {1, 0, 1, 1, 1, 0, 1}, // 2
 {1, 0, 1, 1, 0, 1, 1}, // 3
 {0, 1, 1, 1, 0, 1, 0}, // 4
 {1, 1, 0, 1, 0, 1, 1}, // 5
 {1, 1, 0, 1, 1, 1, 1}, // 6
 {1, 0, 1, 0, 0, 1, 0}, // 7
 {1, 1, 1, 1, 1, 1, 1}, // 8
 {1, 1, 1, 1, 0, 1, 1}}; // 9

 // Points that define each of the seven segments

 readonly Point[][] apt = new Point[7][];

 public SevenSegmentDisplay(Graphics grfx)
 {
 this.grfx = grfx;
 // Initialize jagged Point array.

 apt[0] = new Point[] {new Point(3, 2), new Point(39, 2),
 new Point(31, 10), new Point(11, 10)};

 apt[1] = new Point[] {new Point(2, 3), new Point(10, 11),
 new Point(10, 31), new Point(2, 35)};

 apt[2] = new Point[] {new Point(40, 3), new Point(40, 35),
 new Point(32, 31), new Point(32, 11)};

 apt[3] = new Point[] {new Point(3, 36), new Point(11, 32),
 new Point(31, 32), new Point(39, 36),
 new Point(31, 40), new Point(11, 40)};

 apt[4] = new Point[] {new Point(2, 37), new Point(10, 41),
 new Point(10, 61), new Point(2, 69)};

 apt[5] = new Point[] {new Point(40, 37), new Point(40, 69),
 new Point(32, 61), new Point(32, 41)};

 apt[6] = new Point[] {new Point(11, 62), new Point(31, 62),
 new Point(39, 70), new Point(3, 70)};
 }
 public SizeF MeasureString(string str, Font font)

 {
 SizeF sizef = new SizeF(0, grfx.DpiX * font.SizeInPoints / 72);

 for (int i = 0; i < str.Length; i++)
 {
 if (Char.IsDigit(str[i]))
 sizef.Width += 42 * grfx.DpiX * font.SizeInPoints
 / 72 / 72;
 else if (str[i] == ':')
 sizef.Width += 12 * grfx.DpiX * font.SizeInPoints
 / 72 / 72;
 }
 return sizef;
 }
 public void DrawString(string str, Font font,
 Brush brush, float x, float y)
 {
 for (int i = 0; i < str.Length; i++)
 {
 if (Char.IsDigit(str[i]))
 x = Number(str[i] - '0', font, brush, x, y);

 else if (str[i] == ':')
 x = Colon(font, brush, x, y);
 }
 }
 float Number(int num, Font font,
 Brush brush, float x, float y)
 {
 for (int i = 0; i < apt.Length; i++)
 if (bySegment[num, i] == 1)
 Fill(apt[i], font, brush, x, y);

 return x + 42 * grfx.DpiX * font.SizeInPoints / 72 / 72;
 }
 float Colon(Font font, Brush brush, float x, float y)
 {
 Point[][] apt = new Point[2][];

 apt[0] = new Point[] {new Point(2, 21), new Point(6, 17),
 new Point(10, 21), new Point(6, 25)};

 apt[1] = new Point[] {new Point(2, 51), new Point(6, 47),
 new Point(10, 51), new Point(6, 55)};

 for (int i = 0; i < apt.Length; i++)
 Fill(apt[i], font, brush, x, y);

 return x + 12 * grfx.DpiX * font.SizeInPoints / 72 / 72;
 }
 void Fill(Point[] apt, Font font, Brush brush, float x, float y)
 {
 PointF[] aptf = new PointF[apt.Length];

 for (int i = 0; i < apt.Length; i++)
 {
 aptf[i].X = x + apt[i].X * grfx.DpiX *
 font.SizeInPoints / 72 / 72;
 aptf[i].Y = y + apt[i].Y * grfx.DpiY *
 font.SizeInPoints / 72 / 72;
 }
 grfx.FillPolygon(brush, aptf);
 }
}
}

The SevenSegmentDisplay class has one public constructor, which takes an argument of type
Graphics, and two public methods, which are called MeasureString and DrawString and which have
the same arguments as the two most popular versions of those methods in the Graphics class. The
idea here is that you create a SevenSegmentDisplay object with a Graphics object argument and
then use these two methods instead of the methods in the Graphics class.

The DrawString method implemented in SevenSegmentDisplay can deal with only 11 character
codes: those for the 10 digits and the colon. It calls the private Number and Colon methods for these
two cases. The Number method uses a static array named bySegment that indicates which of the
seven segments are illuminated for each of the 10 digits. (This array should probably have been
defined with the bool data type rather than byte, but I thought that the list of true and false initializers
would have been more difficult to read, and I couldn't imagine that the machine code would have
been more efficient.) A readonly jagged Point array named apt has the points that define each of the
seven segments. These points are based on a character width of 42 and a height of 72. The private
Fill method scales these coordinates based on the font size and uses FillPolygon to color the
interiors red.

The clock program that uses this class is virtually identical to DigitalClock except that it begins
OnPaint processing by creating a SevenSegmentDisplay object and uses that rather than the
Graphics object for calls to MeasureString and DrawString.
SevenSegmentClock.cs
//--
// SevenSegmentClock.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Globalization;
using System.Windows.Forms;
using Petzold.ProgrammingWindowsWithCSharp;

class SevenSegmentClock: Form
{
 DateTime dt;

 public static void Main()
 {
 Application.Run(new SevenSegmentClock());
 }
 public SevenSegmentClock()
 {
 Text = "Seven-Segment Clock";
 BackColor = Color.White;
 ResizeRedraw = true;
 MinimumSize = SystemInformation.MinimumWindowSize + new Size(0,
1);

 dt = DateTime.Now;

 Timer timer = new Timer();
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Interval = 100;
 timer.Enabled = true;
 }
 void TimerOnTick(object obj, EventArgs ea)
 {
 DateTime dtNow = DateTime.Now;
 dtNow = new DateTime(dtNow.Year, dtNow.Month, dtNow.Day,
 dtNow.Hour, dtNow.Minute, dtNow.Second);
 if (dtNow != dt)
 {
 dt = dtNow;
 Invalidate();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 SevenSegmentDisplay ssd = new SevenSegmentDisplay(pea.Graphics);

 string strTime = dt.ToString("T",
 DateTimeFormatInfo.InvariantInfo);
 SizeF sizef = ssd.MeasureString(strTime, Font);
 float fScale = Math.Min(ClientSize.Width / sizef.Width,
 ClientSize.Height / sizef.Height);
 Font font = new Font(Font.FontFamily,
 fScale * Font.SizeInPoints);

 sizef = ssd.MeasureString(strTime, font);

 ssd.DrawString(strTime, font, Brushes.Red,
 (ClientSize.Width - sizef.Width) / 2,
 (ClientSize.Height - sizef.Height) / 2);
 }
}

However, notice that I've used a culture-invariant ToString method of DateTime. This is an excellent
example of a program that works best with a culture-invariant string because it needs to know
exactly what characters it's getting and doesn't want to encounter a.m. or p.m. indicators:

An Analog Clock
Digital clocks were popular when they were new, but the pendulum has swung back (so to speak) to
analog clocks. An analog clock needn't concern itself with different date and time formats, but the
complexity of the graphics more than outweighs that convenience. Users have come to expect
analog clocks to dynamically change size with the size of the window.

For greatest versatility, I decided to write the clock display logic as a child window control like the
CheckerChild class in the CheckerWithChildren program in Chapter 8. That would make it easier to
embed a clock display in another application or to write an application that displayed multiple clocks.
Here's the code for the ClockControl class.
ClockControl.cs
//---
// ClockControl.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

namespace Petzold.ProgrammingWindowsWithCSharp
{
class ClockControl: UserControl

{
 DateTime dt;

 public ClockControl()
 {
 ResizeRedraw = true;
 Enabled = false;
 }
 public DateTime Time
 {
 get
 {
 return dt;
 }
 set
 {
 Graphics grfx = CreateGraphics();
 InitializeCoordinates(grfx);

 Pen pen = new Pen(BackColor);

 if (dt.Hour != value.Hour)
 {
 DrawHourHand(grfx, pen);
 }
 if (dt.Minute != value.Minute)
 {
 DrawHourHand(grfx, pen);
 DrawMinuteHand(grfx, pen);
 }
 if (dt.Second != value.Second)
 {
 DrawMinuteHand(grfx, pen);
 DrawSecondHand(grfx, pen);
 }
 if (dt.Millisecond != value.Millisecond)
 {
 DrawSecondHand(grfx, pen);
 }
 dt = value;
 pen = new Pen(ForeColor);

 DrawHourHand(grfx, pen);
 DrawMinuteHand(grfx, pen);
 DrawSecondHand(grfx, pen);

 grfx.Dispose();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Pen pen = new Pen(ForeColor);
 Brush brush = new SolidBrush(ForeColor);

 InitializeCoordinates(grfx);
 DrawDots(grfx, brush);
 DrawHourHand(grfx, pen);
 DrawMinuteHand(grfx, pen);
 DrawSecondHand(grfx, pen);
 }
 void InitializeCoordinates(Graphics grfx)
 {
 if (Width == 0 || Height == 0)
 return;

 grfx.TranslateTransform(Width / 2, Height / 2);

 float fInches = Math.Min(Width / grfx.DpiX, Height / grfx.DpiY);

 grfx.ScaleTransform(fInches * grfx.DpiX / 2000,
 fInches * grfx.DpiY / 2000);
 }
 void DrawDots(Graphics grfx, Brush brush)
 {
 for (int i = 0; i < 60; i++)
 {
 int iSize = i % 5 == 0 ? 100 : 30;

 grfx.FillEllipse(brush, 0 - iSize / 2, -900 - iSize / 2,
 iSize, iSize);
 grfx.RotateTransform(6);
 }
 }
 protected virtual void DrawHourHand(Graphics grfx, Pen pen)
 {
 GraphicsState gs = grfx.Save();
 grfx.RotateTransform(360f * Time.Hour / 12 +
 30f * Time.Minute / 60);

 grfx.DrawPolygon(pen, new Point[]
 {
 new Point(0, 150), new Point(100, 0),
 new Point(0, -600), new Point(-100, 0)
 });
 grfx.Restore(gs);
 }
 protected virtual void DrawMinuteHand(Graphics grfx, Pen pen)
 {
 GraphicsState gs = grfx.Save();
 grfx.RotateTransform(360f * Time.Minute / 60 +
 6f * Time.Second / 60);

 grfx.DrawPolygon(pen, new Point[]
 {
 new Point(0, 200), new Point(50, 0),
 new Point(0, -800), new Point(-50, 0)
 });
 grfx.Restore(gs);
 }
 protected virtual void DrawSecondHand(Graphics grfx, Pen pen)
 {
 GraphicsState gs = grfx.Save();
 grfx.RotateTransform(360f * Time.Second / 60 +
 6f * Time.Millisecond / 1000);

 grfx.DrawLine(pen, 0, 0, 0, -800);
 grfx.Restore(gs);
 }
}
}

ClockControl inherits from UserControl and overrides the OnPaint method. The ClockControl
constructor sets the ResizeRedraw control style to true and also sets its Enabled property to false.
ClockControl doesn't have any need for keyboard or mouse input, so any such input will pass
through to the control's parent.

Notice the private DateTime field I've named dt and the read/write public property named Time that
gives other objects access to this field. The control doesn't implement its own timer and doesn't set
this property itself; the control simply displays the time indicated by the current value of its Time
property. Keeping that Time property up to date is the responsibility of whatever class creates an
instance of ClockControl.

The code implementing the set accessor of the Time property seems inordinately lengthy. The
temptation, of course, is to simplify the set accessor like so:
dt = value;
Invalidate();

That Invalidate call would cause the control to get an OnPaint call, at which time it would redraw the
clock. Visually, however, this simplification is a disaster. The Invalidate call causes the background
of the control to be erased and the entire clock must be redrawn. That causes an annoying flickering

of the image. Instead, I've taken a more attractive approach. Let me come back to the set accessor
of Time after I've discussed the OnPaint processing.

OnPaint creates a pen and a brush based on the control's foreground color and then calls five other
methods. First, InitializeCoordinates sets up a coordinate system with an origin at the center of the
control and isotropic coordinates that extend to 1000 units in all four directions.

Second, DrawDots draws the dots that indicate the minutes and hours. This method uses the
Graphics class methods FillEllipse to draw a dot at 12:00 and RotateTransform to rotate 6º for the
next dot. The DrawHourHand, DrawMinuteHand, and DrawSecondHand methods also use
RotateTransform. I've made these three methods virtual functions so that they can be overridden at
some point (by a program in Chapter 13, to be precise).

The actual drawing code (DrawPolygon for the hour and minute hands and DrawLine for the second
hand) assumes that the hands are pointing straight up. The call to RotateTransform before the
drawing code rotates the hand to its proper position. Each of the hand-drawing routines makes a call
to the Save method of the Graphics class to save the current graphics state before calling
RotateTransform, and Restore after it's finished.

Notice that the position of the hour hand is based on both the Hour and Minute properties of the
DateTime structure, the position of the minute hand is based on both Minute and Second, and the
position of the second hand is based on the Second and Millisecond properties. Thus, the hands
sweep continuously rather than jump in discrete steps.

Now we're ready to look at the set accessor code of the DateTime property. After calling
CreateGraphics to obtain a Graphics object for the control, a call to InitializeCoordinates sets up the
proper coordinate system. Then the code creates a pen based on the control's background color.
What it needs to do is effectively erase any hand that is changing position. The problem, however, is
that drawing a particular hand in a background color might also affect one of the other two hands.
For that reason, all three hands must be redrawn using the foreground color. Even though there's
still a lot of drawing whenever the time changes, this process reduces flickering considerably.

Now that we have a control, implementing a form that uses this control is fairly easy.
AnalogClock.cs
//---
// AnalogClock.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;
using Petzold.ProgrammingWindowsWithCSharp;

class AnalogClock: Form
{
 ClockControl clkctl;

 public static void Main()
 {
 Application.Run(new AnalogClock());
 }
 public AnalogClock()
 {
 Text = "Analog Clock";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 clkctl = new ClockControl();
 clkctl.Parent = this;
 clkctl.Time = DateTime.Now;
 clkctl.Dock = DockStyle.Fill;
 clkctl.BackColor = Color.Black;
 clkctl.ForeColor = Color.White;

 Timer timer = new Timer();
 timer.Interval = 100;
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Start();
 }
 void TimerOnTick(object obj, EventArgs ea)
 {
 clkctl.Time = DateTime.Now;
 }
}

In the constructor, the program creates an object of type ClockControl, sets the Parent property of
the control to the form, and also initializes the form's Time property to the current date and time.

Next, the form sets a control property I haven't mentioned yet, which is named Dock. This property is
implemented in Control, and I'll discuss it in much more detail in Chapter 12. For now, be aware that
setting the Dock style of a control to DockStyle.Fill causes the control to fill up the entire display
surface of its parent. The clock control will be automatically sized and resized to fit in the form's client
area.

The last two properties of the clock control that I set are BackColor to black and ForeColor to white
just to make a point that the control isn't controlling its color. The parent has control over that. Of
course, it doesn't hurt that a white-on-black clock looks pretty cool:

The constructor processing concludes with setting the timer to an interval of 100 milliseconds (1/10
second). Clocks normally need just a 1-second update, but with this one, the second hand wouldn't
give the appearance of sweeping continuously if it weren't updated more frequently. The

TimerOnTick event handler simply sets the Time property of the clock control to the current date and
time.

A program that didn't want a continuously sweeping second hand would set the timer to 1000
milliseconds and set the Time property of the clock control with a DateTime object that had a
Millisecond property of 0. Because the Millisecond property is read-only, this job requires re-creating
the DateTime object. The TimerOnTick code would look like this:
DateTime dt = DateTime.Now;
dt = new DateTime(dt.Year, dt.Month, dt.Day, dt.Hour, dt.Minute,
dt.Second);
clkctl.Time = dt;

There are other ways to demonstrate that the time displayed by the clock control is entirely governed
by the parent. Try replacing the TimerOnTick code with this:
clkctl.Time += new TimeSpan(10000000);

The clock begins at the correct time but then moves at 10 times the normal speed. Or try this one:
clkctl.Time -= new TimeSpan(1000000);

The clock moves at normal speed but backward.
A Little Puzzle Called Jeu de Taquin
It's now time to program a game. Well, more like a puzzle. This particular puzzle was invented in the
1870s, probably by the famous American puzzle-maker Sam Loyd (1841–1911). For a while, this
puzzle was all the rage, particularly in Europe, and was known under various names, including the
15-puzzle, the 14-15 puzzle, and (in France) Jeu de Taquin, the "teasing game."

In its classic form, the puzzle consists of 15 square blocks numbered 1 through 15. The squares are
arranged in a 4-by-4 grid, leaving one blank space. You can move the squares around the grid by
shifting a square horizontally or vertically into the blank space, which in turn opens a different blank
space.

As Sam Loyd presented it, the numbered squares were arranged in consecutive order except with
the 14 and 15 reversed. He offered $1000 to anyone who could find a way to shift the squares
around to correct the order of the 14 and 15. No one collected the reward because, from that starting
point, the puzzle is insolvable.[4]

In computer form, this puzzle was one of the first game programs created for the Apple Macintosh,
where it was called PUZZLE. It also appeared in early versions of the Microsoft Windows Software
Development Kit (SDK) under the name MUZZLE, where it was the only sample program in the SDK
coded in Microsoft Pascal rather than C. Both these programs initially displayed the 15 squares in
consecutive order and presented a menu option to scramble the squares. You then attempted to
restore the order of the squares or put them into different orders, such as going down the columns
rather than across the rows. Because we haven't covered menus yet, my version of the program
scrambles the squares when it first starts up. (That's where the timer comes into play.)

The tiles are child windows, but they set their Enabled property to false to let the parent process all
keyboard and mouse input. Normally, controls indicate that they're disabled by graying their text, but
they don't have to use this approach. In this case, they don't. The OnPaint method uses normal
control colors to draw a 3D-like edge.
JeuDeTaquinTile.cs
//--
// JeuDeTaquinTile.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class JeuDeTaquinTile: UserControl
{
 int iNum;

 public JeuDeTaquinTile(int iNum)
 {
 this.iNum = iNum;
 Enabled = false;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 grfx.Clear(SystemColors.Control);

 int cx = Size.Width;
 int cy = Size.Height;
 int wx = SystemInformation.FrameBorderSize.Width;
 int wy = SystemInformation.FrameBorderSize.Height;

 grfx.FillPolygon(SystemBrushes.ControlLightLight,
 new Point[] {new Point(0, cy), new Point(0, 0),
 new Point(cx, 0), new Point(cx - wx, wy),
 new Point(wx, wy), new Point(wx, cy - wy)});

 grfx.FillPolygon(SystemBrushes.ControlDark,
 new Point[] { new Point(cx, 0), new Point(cx, cy),
 new Point(0, cy), new Point(wx, cy - wy),
 new Point(cx - wx, cy - wy),
 new Point(cx - wx, wy)});

 Font font = new Font("Arial", 24);
 StringFormat strfmt = new StringFormat();
 strfmt.Alignment = strfmt.LineAlignment =
StringAlignment.Center;

 grfx.DrawString(iNum.ToString(), font,
SystemBrushes.ControlText,
 ClientRectangle, strfmt);
 }
}

The program that creates these tiles and moves them around the grid is a bit more complicated. It
creates the tile controls (and sizes the client area based on those controls) in an override of the
OnLoad method implemented in the Form class. The OnLoad method is called soon before the form
is first displayed; my experience indicates that obtaining Graphics objects and setting the size of a
client area usually works better when done during OnLoad rather than during the constructor.

OnLoad processing concludes with a call to the protected method Randomize, which uses a timer to
scramble the tiles.
JeuDeTaquin.cs
//--
// JeuDeTaquin.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class JeuDeTaquin: Form
{
 const int nRows = 4;
 const int nCols = 4;
 Size sizeTile;
 JeuDeTaquinTile[,] atile = new JeuDeTaquinTile[nRows, nCols];
 Random rand;
 Point ptBlank;
 int iTimerCountdown;

 public static void Main()
 {
 Application.Run(new JeuDeTaquin());
 }
 public JeuDeTaquin()
 {
 Text = "Jeu de Taquin";
 BorderStyle = FormBorderStyle.Fixed3D;
 }
 protected override void OnLoad(EventArgs ea)
 {
 // Calculate the size of the tiles and the form.

 Graphics grfx = CreateGraphics();

 sizeTile = new Size((int)(2 * grfx.DpiX / 3),
 (int)(2 * grfx.DpiY / 3));
 ClientSize = new Size(nCols * sizeTile.Width,
 nRows * sizeTile.Height);
 grfx.Dispose();

 // Create the tiles.

 for (int iRow = 0; iRow < nRows; iRow++)
 for (int iCol = 0; iCol < nCols; iCol++)
 {

 int iNum = iRow * nCols + iCol + 1;

 if (iNum == nRows * nCols)
 continue;

 JeuDeTaquinTile tile = new JeuDeTaquinTile(iNum);
 tile.Parent = this;
 tile.Location = new Point(iCol * sizeTile.Width,
 iRow * sizeTile.Height);
 tile.Size = sizeTile;

 atile[iRow, iCol] = tile;
 }
 ptBlank = new Point(nCols - 1, nRows - 1);

 Randomize();
 }
 protected void Randomize()
 {
 rand = new Random();
 iTimerCountdown = 64 * nRows * nCols;

 Timer timer = new Timer();
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Interval = 1;
 timer.Enabled = true;
 }
 void TimerOnTick(object obj, EventArgs ea)
 {
 int x = ptBlank.X;
 int y = ptBlank.Y;

 switch(rand.Next(4))
 {
 case 0: x++; break;
 case 1: x--; break;
 case 2: y++; break;
 case 3: y--; break;
 }
 if (x >= 0 && x < nCols && y >= 0 && y < nRows)
 MoveTile(x, y);

 if (--iTimerCountdown == 0)
 {
 ((Timer)obj).Stop();

 ((Timer)obj).Tick -= new EventHandler(TimerOnTick);
 }
 }
 protected override void OnKeyDown(KeyEventArgs kea)
 {
 if (kea.KeyCode == Keys.Left && ptBlank.X < nCols - 1)
 MoveTile(ptBlank.X + 1, ptBlank.Y);

 else if (kea.KeyCode == Keys.Right && ptBlank.X > 0)
 MoveTile(ptBlank.X - 1, ptBlank.Y);

 else if (kea.KeyCode == Keys.Up && ptBlank.Y < nRows - 1)
 MoveTile(ptBlank.X, ptBlank.Y + 1);

 else if (kea.KeyCode == Keys.Down && ptBlank.Y > 0)
 MoveTile(ptBlank.X, ptBlank.Y - 1);

 kea.Handled = true;
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 int x = mea.X / sizeTile.Width;
 int y = mea.Y / sizeTile.Height;

 if (x == ptBlank.X)
 {
 if (y < ptBlank.Y)
 for (int y2 = ptBlank.Y - 1; y2 >= y; y2--)
 MoveTile(x, y2);

 else if (y > ptBlank.Y)
 for (int y2 = ptBlank.Y + 1; y2 <= y; y2++)
 MoveTile(x, y2);
 }
 else if (y == ptBlank.Y)
 {
 if (x < ptBlank.X)
 for (int x2 = ptBlank.X - 1; x2 >= x; x2--)
 MoveTile(x2, y);

 else if (x > ptBlank.X)
 for (int x2 = ptBlank.X + 1; x2 <= x; x2++)
 MoveTile(x2, y);
 }
 }

 void MoveTile(int x, int y)
 {
 atile[y, x].Location = new Point(ptBlank.X * sizeTile.Width,
 ptBlank.Y * sizeTile.Height);

 atile[ptBlank.Y, ptBlank.X] = atile[y, x];
 atile[y, x] = null;
 ptBlank = new Point(x, y);
 }
}

Everything else in the program just involves processing keyboard and mouse input leading up to a
call to the MoveTile method at the bottom of the listing.

The two-dimensional atile array stores the tile objects. For example, the tile object stored at atile[3,1]
is the tile currently in the fourth row and second column of the grid. One element of the atile array is
always null. That null element corresponds to the coordinate currently not occupied by any tile. The
ptBlank field also stores that coordinate. The blank—as I'll call it—governs the user interface;
likewise, ptBlank plays a major role in the user interface code. Any tile that the program moves must
be adjacent to the blank, and it must move into the blank.

When you use the mouse, you don't have to click a tile adjacent to the blank, however. If you click a
tile in the same row or column as the blank, the program moves multiple tiles with one shot, which
means it makes multiple calls to MoveTile. The MoveTile method both physically moves the tile (by
setting the Location property of the tile being moved to the location of the blank) and adjusts the atile
and ptBlank fields accordingly.

The keyboard interface involves the arrow keys. If you think about it, pressing any of the four arrow
keys has an unambiguous meaning. For example, pressing the down key always moves the tile
immediately above the blank (if any) into the location of the blank.

Here's a sample view of the program as I'm about halfway through solving it:

This is now the third program in this book in which creating a custom control has been found useful.
As you undoubtedly know, Windows and the Windows Forms .NET Framework implement a

multitude of ready-made controls in the form of buttons, labels, text-entry fields, list boxes, scroll
bars, and much more. We'll begin exploring that world in Chapter 12.
[4] A mathematical analysis of the 14-15 puzzle first appeared in an 1879 article in the American
Journal of Mathematics. The underlying math is summarized in James R. Newman, The World of
Mathematics (New York: Simon and Schuster, 1956), 4: 2429–2432. The four-volume World of
Mathematics was republished in 1988 by Tempus Books (a defunct imprint of Microsoft Press) and in
2000 by Dover Books. The section on the 14-15 puzzle appears on pages 2405 to 2408 in the
Tempus edition.

Chapter 11: Images and Bitmaps
Overview
The world of computer graphics is generally divided into two distinct areas: vector graphics and
raster graphics. In mathematics, a vector is a combination of a magnitude and a direction, and it can
also refer to a line in a coordinate space. Vector graphics is the application of analytical geometry to
draw lines, curves, and filled areas. With the use of outline fonts, text can also be considered part of
vector graphics.

The term raster comes from video display technology and refers to the use of multiple scan lines to
form a composite image. In raster graphics, images are described by rectangular arrays of pixels
known as bitmaps.

Both vector and raster graphics have their origins in graphical display devices. Most display devices
in use today are raster devices. In laser or ink jet printers, the image on the page is a rectangular
array of pixels that are colored with dots. Cathode ray tubes (CRTs) display images as a collection of
horizontal scan lines, each of which is made up of a series of pixels. The bits that define the CRT
image are stored in a block of memory on the video display board.

Although raster output devices certainly seem normal today, in the early days of computer graphics
(the 1950s), memory was too expensive for raster displays. Video displays attached to a computer
worked much like an oscilloscope: the cathode ray didn't draw horizontal scan lines but was instead
deflected directly to draw lines and curves under computer control. Vector printing devices were also
more common in days gone by and still exist today in the form of plotters.

Vectors and rasters both have their place in the world of graphics. An architectural drawing is
obviously a job for vector graphics, whereas a realistic-looking image of what the completed building
will look like is a job for raster graphics. Vector and raster graphics are generally the provinces of
different types of applications: draw programs do vector graphics, and paint programs do raster
graphics. Photo programs are variations of paint programs that work with real-world raster images
captured from digital cameras or scanned photographs.

As we've seen, vector images can be subjected to transforms that change their size and orientation.
This transformation happens without any loss of resolution. A 10-point font scaled in size by a factor
of 10 doesn't accumulate any jaggies at that new size because the vector outlines are being scaled.
Raster images, however, usually have device dependencies that can't easily be ignored. Bitmaps
have specific pixel sizes. Attempting to display a bitmap in a larger size can result in jaggies; in a
smaller size, information can be lost. (GDI+ attempts to minimize these problems by using smoothing
algorithms.) Bitmap images also contain specific color information that can't always be rendered on a
specific output device.

Converting a vector image to a raster image is very easy. All that's necessary is to draw the various
lines, curves, filled areas, and text on the surface of a bitmap. (We'll do this later in the chapter.)
Converting a raster image to a vector image can be quite difficult, however, and is feasible only with
simple images.

Many older or traditional books on computer graphics focus almost entirely on vector graphics.
Today's dominance of raster graphics is a more recent phenomenon brought about by low-cost
memory, scanners, and digital cameras. Also helping this trend are bitmap compression
technologies, such as JPEG, that help cut down on the memory bulk normally associated with
bitmaps.

Almost all the graphics found on the World Wide Web are stored as bitmaps; to many Web users,
computer graphics is synonymous with JPEG and GIF files. This is not necessarily a good thing.
Many Web graphics would be more efficiently stored and transmitted as vector images, particularly
considering that such images often originate as lines, curves, and filled areas in paint programs.
However, recent attempts at promoting vector graphics standards for the Web have not caught on
much.[1]
[1] You can learn about the proposed Scalable Vector Graphics (SVG) standard on the Web site of
the World Wide Web consortium (www.w3.org/Graphics/SVG), and you can learn about the Vector
Markup Language (VML), which is supported by recent versions of Internet Explorer, on the

http://www.w3.org/Graphics/SVG

Microsoft Web site at msdn.microsoft.com/workshop/author/vml. Both are XML-based. Finding Web
sites that display images using SVG or VML is a much bigger challenge.
Bitmap Support Overview
The System.Drawing namespace has two classes, named Image and Bitmap, that provide much of
the raster graphics support in .NET. The Bitmap class as well as the Metafile class (to be covered in
Chapter 23) are derived from Image, as shown in the following class hierarchy:

Image is an abstract class that can't be instantiated using a constructor. However, Image has two
static methods (four if you count overloads) that return objects of type Image. These methods are
extremely powerful, for they can load a bitmap or a metafile from a file or a stream. You probably
expect these methods to work with BMP files because that's the native Windows bitmap format.
What you'll undoubtedly be pleased to learn is that these methods can also load files in several other
popular bitmap formats, including GIF, JPEG, PNG, and TIFF. Image also has another static
method, which lets you create a Bitmap object from a Win32 bitmap handle.

Once you have an Image object, you can do a couple things with it. You can display it on the screen
or a printer by using one of the DrawImage methods in the Graphics class. Or you can use the static
FromImage method of Graphics to return a Graphics object that applies to the image. This facility
lets a program draw on a bitmap. Additional methods of the Image class allow you to save an image
object in one of the supported formats. Thus, Image has a built-in format-conversion facility.

If you just need to load and display bitmap images, the Image class is probably all you need. The
Bitmap class extends Image by providing a number of constructors that let you create a new bitmap
of a particular size and color format. The Bitmap class also allows you to directly read and write
individual pixels and to access the bitmap data as a block of memory.

The Bitmap class also includes a constructor that lets you load a bitmap that's been embedded in the
.exe file as a resource. You can also use this technique for loading icons and custom cursors. I'll
discuss binary resources later in this chapter.

Sometimes programmers will wonder whether they should use the Image or Bitmap class for a
particular task. If everything you need to do can be done with Image, then use Image. The bonus is
that your code (with some exceptions) will also work with metafiles.
Bitmap File Formats
A bitmap is a rectangular array of bits that correspond to the pixels of a graphics output device. A
bitmap has a particular height and width measured in pixels. A bitmap also has a particular color
depth, which is the number of bits per pixel (commonly abbreviated bpp). Each pixel in the bitmap
has the same number of bits, which determines how many unique colors are in the image:

Number of colors = 2 Number of bits per pixel

The number of bits per pixel can generally range from 1 to 32 (and even beyond), although some
formats are more common than others.

In graphical environments such as Windows, colors are usually represented as RGB (red-green-
blue) values, where each primary is 1 byte and a full RGB color value is 3 bytes, or 24 bits. Such a
color resolution seems to be fairly close to the ability of the human eye to differentiate between
colors. It also approximates the ability of today's monitors to render distinct colors. An additional byte
can represent levels of transparency, ranging from complete opacity to complete transparency. But
32 bits per pixel is not the ultimate limit. Some applications—such as medical imaging—require more
bits per pixel for increased resolution.

A bitmap with 1 bit per pixel stores a bilevel, or monochrome, image. Only two colors are possible;
these are often black and white, but not always. Generally, such a bitmap contains a small color
table (or color palette) that indicates the two colors associated with the two bit values.

In the early days of Windows, 4-bit-per-pixel images were popular, and these can still be found. For
example, icons are often 16-color images. The 16 colors are generally combinations of the red,
green, and blue primaries in regular and dark versions. Such a bitmap contains a color table
indicating the exact colors corresponding to the 16 different possible combinations of pixels.

A very common bitmap format has 8 bits per pixel. Often, the image is gray scale and the 8 bits
correspond to 256 (or fewer) gray shades from black to white. However, color images can also be
stored in 8-bit-per-pixel bitmaps, in which case the 256 (or fewer) colors are usually specifically
chosen for the particular image. This color choice is sometimes known as the optimized palette for
the image.

A bitmap with 16 bits per pixel generally uses 5 bits each for the red, green, and blue levels, with 1
bit unused. Thus, each primary can have 32 different values, for a total of 32,768 unique colors.
Sometimes green gets an extra bit because it's the color human eyes are most sensitive to. Such a
bitmap is sometimes referred to as a 5-6-5, referring to the number of bits used for each primary.
The use of 15 or 16 bits per pixel is sometimes referred to as high color and is insufficient to
represent color gradations in some real-world images.

A full-color, or true-color, bitmap has 24 bits per pixel. Each pixel is a 24-bit RGB color value. The
use of exactly 3 bytes per pixel in a bitmap can result in a performance problem: generally, 32-bit
processors are most efficient if they access 32-bit values on 32-bit memory boundaries.

A 32-bit-per-pixel bitmap can actually be a 24 bit-per-pixel image with 1 byte per pixel unused for
performance purposes. Or the additional byte could provide transparency information, known as an
alpha channel. For each pixel, the alpha value indicates a level of transparency for the pixel.

Bitmaps can be very large. For example, if you run your video adapter in 1600 × 1200 pixel mode, a
24-bit-per-pixel bitmap that occupies the entire screen is over 5 megabytes in size. For this reason, a
great deal of research has gone into the development of image compression techniques.

One simple method that occurs to just about everyone who thinks about image compression is called
run-length encoding (RLE). If there are 12 consecutive blue pixels, for example, it makes sense to
store the number of repeated pixels rather than all 12 pixels. RLE generally works well for images
that have a limited number of colors, such as cartoonlike images.

To go beyond RLE, it's necessary for a compression program to analyze the data for recurring
patterns. A major advance in data compression occurred in the late 1970s when Jacob Zif and
Abraham Lempel published compression techniques now known as LZ77 and LZ78. These
algorithms find patterns in the data on the fly and efficiently indicate when the patterns are reused. A
1984 article by Terry Welch of the Sperry Research Center (now part of Unisys) built on LZ78 to form
a technique now called LZW. LZW is the basis of several popular compression formats.[2] In recent
years, however, Unisys has restricted the unlicensed use of LZW. Given that LZW was already used
in several entrenched standards (including GIF), much of the programming community has
responded with disdain at the claims of Unisys, and LZW has been deliberately and conspicuously
avoided in new compression formats.

RLE and all the LZ techniques are known as lossless compression techniques because the original
data can be entirely recovered from the compressed data. (It's fairly simple to prove that a particular
lossless compression algorithm can't work for every possible file. For some files, application of the
compression algorithm increases the file size!) Lossless compression is essential if you're dealing
with spreadsheets or word processing documents. Lossless compression is much less of a concern
for real-world images such as digitized photographs.

For that reason, lossy compression techniques have become popular in recent years when
photographic images must be compressed. Lossy compression works best when it eliminates data
that is imperceptible (or less perceptible) to human vision. Extreme levels of lossy compression can
result in noticeable degradation of the image, however.

The bitmap file formats supported by the Image class are indicated by static properties in
ImageFormat, a class defined in the System.Drawing.Imaging namespace:
ImageFormat Static Properties

Type Property Accessibility Description

ImageFormat Bmp get Windows device-independent bitmap
(DIB)

ImageFormat MemoryBmp get Memory-based DIB (no file header)

ImageFormat Icon get Windows icon format

ImageFormat Gif get CompuServe Graphics Interchange
Format

ImageFormat Jpeg get Joint Photographic Experts Group

ImageFormat Png get Portable Network Graphics

ImageFormat Tiff get Tag Image File Format

ImageFormat Exif get Exchangeable image format

ImageFormat Wmf get Windows metafile (original)

ImageFormat Emf get Windows enhanced metafile

You may be familiar with many of these formats. For the sake of completeness, here's a brief
description of each:
§ Bmp The native Windows bitmap file format, also known as the device-independent bitmap

(DIB). The DIB was adapted from the OS/2 1.1 bitmap format and was introduced in Windows
3.0. Prior to that time, the format of bitmaps in Windows was based on specific output devices.
Although some applications also used the old format for file interchange, it wasn't intended for
that purpose.

The DIB format is mostly defined in the documentation of certain structures used in the Win32
API, specifically BITMAPFILEHEADER, BITMAPINFO, BITMAPINFOHEADER, and their
variants. Chapter 15 of my book Programming Windows, 5th ed. (Microsoft Press, 1999) has an
extensive discussion of the DIB format. DIB files are generally stored without any compression.
A little-used RLE compression scheme is defined for some color formats.

§ MemoryBmp A memory-based DIB, which is a DIB that is not preceded by a
BITMAPFILEHEADER.

§ Icon The Windows icon file format, an extension of the Windows DIB format.
§ Gif Pronounced with a soft G (like "jif"), the Graphics Interchange Format was developed in the

late 1980s for use on CompuServe (an early online information service) and remains one of the
two most popular graphics formats on the World Wide Web. The GIF file format uses LZW
compression. The Gif87a.txt and Gif98a.txt documents that describe the file format can be found
in many different locations on the Web. The GIF specification includes a rudimentary (but
popular) animation facility.

§ Jpeg Pronounced "jay peg," JPEG stands for Joint Photographic Experts Group, which is a
collection of industry representatives who developed a family of compression techniques—some
lossy, some lossless—specifically for continuous-tone still images. The official JPEG Web site is
http://www.jpeg.org. The actual JPEG specification is available as an ISO standard. The book
JPEG: Still Image Data Compression Standard by William B. Pennebaker and Joan L. Mitchell
(New York: Van Nostrand Reinhold, 1993) contains a very usable draft version and much useful
background information as well.

As defined in the standard, however, JPEG is not a file format. What is commonly referred to as
the JPEG file format is more correctly called the JPEG File Interchange Format (JFIF) and is
described in the document http://www.jpeg.org/public/jfif.pdf. JFIF incorporates a lossy JPEG

http://www.jpeg.org
http://www.jpeg.org/public/jfif.pdf

compression technique and has become (with GIF) one of the two most popular graphics
formats on the Web. (Neither GIF nor JPEG is specifically referred to in the HTML specification,
however, so they're really de facto Web standards.)

§ Png Pronounced "ping," Portable Network Graphics is a lossless format that was developed
under the auspices of the World Wide Web Consortium (W3C) as a license-free alternative to
GIF. Most modern Web browsers support PNG as well as GIF and JPEG. A good place to begin
exploring PNG is http://www.w3c.org/Graphics/PNG. If you want to compress nonphotographic
images and you'd prefer to avoid GIF, PNG is the best alternative.

§ Tiff The Tag Image File Format was originally developed by Aldus (creators of the popular
PageMaker application) and Microsoft, and the specification is now owned by Adobe. The 121-
page TIFF 6.0 specification in PDF format is available at
http://partners.adobe.com/asn/developer/pdfs/tn/TIFF6.pdf.

§ Exif The Exchangeable image format was developed by the organization now known as Japan
Electronic Industry Development Association (JEIDA) for use in digital cameras. The
specification is published on the Web site of the International Imaging Industry Association
(I3A), formerly the Photographic and Imaging Association, Inc. (PIMA) at
http://www.pima.net/standards/it10/PIMA15740/Exif_2-1.PDF.

§ Wmf This is not a bitmap file format! It is a format for a metafile, which is a collection of
drawing functions (generally vector drawing functions) stored in binary form. WMF refers to the
old Windows metafile format used prior to the 32-bit versions of Windows.

§ Emf The Windows enhanced metafile format, inaugurated in the 32-bit versions of Windows.
Although you can treat metafiles like other images, they're really in a class of their own. I'll cover
metafiles in more detail in Chapter 23.

[2]The Data Compression Book, 2nd ed. (New York: M&T Books, 1985) by Mark Nelson and Jean-
Loup Gailly is a good source for the history, technology, and programming of data compression
techniques.
Loading and Drawing
The Image class is abstract, which means that you can't instantiate it using a constructor. However,
as mentioned previously, the class includes four static methods that let you obtain an Image object,
and two that let you obtain a Bitmap object:

Image Static Methods (selection)

Image Image.FromFile(string strFilename)
Image Image.FromFile(string strFilename, bool bUseImageColorManagement)
Image Image.FromStream(Stream stream)
Image Image.FromStream(Stream stream, bool bUseImageColorManagement)
Bitmap Image.FromHbitmap(IntPtr hBitmap)
Bitmap Image.FromHbitmap(IntPtr hBitmap, IntPtr hPalette)

You probably won't use the last two methods in this table unless you're interfacing with Win32 code.
The first two methods, however, are quite powerful and very simple, as you can see here:
Image image = Image.FromFile("CuteCat.jpg");

One nice feature of this method is that it uses the file's contents rather than the filename extension to
determine the file's format. For example, even if CuteCat.jpg were actually a PNG file that you had
perversely named, FromFile would still work. If the file can't be found or can't be opened, or if
something is wrong with the file's contents, FromFile throws an exception.

The second two methods use an object of type Stream rather than a filename, but files and streams
are closely related. Stream is an abstract class in the System.IO namespace that implements
methods such as Read, Write, and Seek. In many cases, a stream is simply an open file. However, a
Stream object can also represent sequential data that is stored in a block of memory or that travels
on a network connection. Appendix A focuses on files and streams.

The Boolean arguments for FromFile and FromStream deal with color management, a subject that
I'm afraid is beyond the scope of this book.

http://www.w3c.org/Graphics/PNG
http://partners.adobe.com/asn/developer/pdfs/tn/TIFF6.pdf
http://www.pima.net/standards/it10/PIMA15740/Exif_2-1.PDF

Although these first four static methods are documented as returning an object of type Image, if you
call GetType on the return value, you'll find the return value to be either of type
System.Drawing.Bitmap or System.Drawing.Imaging.Metafile, depending on the type of file (or
stream) you've loaded.

For many of the programs in this chapter, I'll be using a file named Apollo11FullColor.jpg that is
stored on the companion CD in the Images And Bitmaps directory that contains the projects for this
chapter. This image is the famous portrait of astronaut Buzz Aldrin taken by crewmate Neil
Armstrong with a Hasselblad camera on the surface of the moon. As the filename implies, the bitmap
is a full-color 24-bit-per-pixel image. Also included in the same directory for your experimentation are
Apollo11GrayScale.jpg and Apollo11Palette.png, both of which store 8 bits per pixel. The images in
all three files are 220 pixels wide and 240 pixels high. The resolution encoded in the JPEG files is 72
dpi.

Just to get started, here's a small program that uses Image.FromFile to obtain an Image object and
the Graphics method DrawImage to display it.
ImageFromFile.cs
//--
// ImageFromFile.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ImageFromFile: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new ImageFromFile());
 }
 public ImageFromFile()
 {
 Text = "Image From File";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Image image =
Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");

 grfx.DrawImage(image, 0, 0);
 }
}

The argument to FromFile indicates the location of the JPEG file relative to the location of the
ImageFromFile.exe file. If you've moved things around, the FromFile method won't find the file and
will throw an exception. The arguments to DrawImage indicate the position of the upper left corner of
the image relative to the client area. Using the point (0, 0) positions the image on the left and top
edges:

You can also click on the client area to print the image. (Notice that I derived this class from the
PrintableForm class we created in Chapter 5, "Lines, Curves, and Area Fills.") You'll probably be
pleased to see that the printed image appears to be normal size and isn't shrunk to the size of a
postage stamp, as so often happens when bitmap images are naively printed.

For comparison, you might want to load this same JPEG file into another application (for example,
the Imaging program that comes with Windows 2000) and use the application's display options to
display the photo at 100 percent. You'll probably find that the ImageFromFile program displays the
image somewhat larger than other applications. Why this is so I'll explain soon.

Meanwhile, however, I want to call your attention to two flaws in ImageFromFile that I ignored just so
you could see how easy it is to load and display a bitmap file. It's really not as easy as
ImageFromFile implies! The first problem I already mentioned: if the image file isn't where FromFile
expects it to be, the method will throw an exception. The program should be prepared to catch that
exception. The second flaw involves the location of the FromFile call. In such a program, the call
really needs to be executed only once, most conveniently in the program's constructor. The program
can save the Image object in a field and access it from the OnPaint method. Here's a better version
of the program.
BetterImageFromFile.cs
//--
// BetterImageFromFile.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BetterImageFromFile: PrintableForm
{
 Image image;

 public new static void Main()
 {
 Application.Run(new BetterImageFromFile());
 }
 public BetterImageFromFile()
 {
 Text = "Better Image From File";

 string strFileName = "..\\..\\..\\Apollo11FullColor.jpg";

 try
 {
 image = Image.FromFile(strFileName);
 }
 catch
 {
 MessageBox.Show("Cannot find file " + strFileName + "!",
 Text, MessageBoxButtons.OK, MessageBoxIcon.Hand);
 }
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 if (image == null)
 return;

 grfx.DrawImage(image, 0, 0);
 }
}

For purposes of clarity, however, I generally won't be checking for the existence of the file in the
remaining programs in this chapter.

The static Image.FromStream method, demonstrated in this next program, is useful if you have
access to an open file or if you obtain a stream from a source other than a file system. For example,
you can use the FromStream method to load an image from the Internet. Here's a program that
accesses the NASA Web site to load the original file that I cropped (and made a couple other
changes to) to create the Apollo11 files included with this chapter.
ImageFromWeb.cs
//---
// ImageFromWeb.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.IO;
using System.Net;
using System.Windows.Forms;

class ImageFromWeb: PrintableForm
{
 Image image;

 public new static void Main()
 {
 Application.Run(new ImageFromWeb());

 }
 public ImageFromWeb()
 {
 Text = "Image From Web";

 string strUrl =
 "http://images.jsc.nasa.gov/images/pao/AS11/10075267.jpg";

 WebRequest webreq = WebRequest.Create(strUrl);
 WebResponse webres = webreq.GetResponse();
 Stream stream = webres.GetResponseStream();

 image = Image.FromStream(stream);
 stream.Close();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawImage(image, 0, 0);
 }
}

The statements using the WebRequest and WebResponse classes represent the standard approach
to downloading Web files. In this program, the GetResponseStream method of WebResponse
obtains a readable stream of the JPEG file. At that point, you can just pass that stream to the
Image.FromStream method:
image = Image.FromStream(stream);

The ImageFromWeb program is missing a few features that should be standard in any program that
downloads files from the Web. It probably should include a progress bar (easily implemented as an
object of type ProgressBar), and the stream-reading code should probably be in a second thread of
execution.

Image Information

http://images.jsc.nasa.gov/images/pao/AS11/10075267.jpg

The Image class contains several properties that provide information about the object. First are three
properties that indicate the size of the image in pixels:
Image Properties (selection)

Type Property Accessibility

Size Size get

int Width get

int Height get

The Width and Height properties are consistent with the Size property. Use whichever is convenient.

Most modern bitmap formats include some indication of the resolution of the image in dots per inch
or an equivalent. Such a resolution might not make much sense for some images, including the
image I just displayed. You can display such an image larger or smaller and it's still the same. But for
some bitmaps—perhaps ones in which the image is supposed to match the size of the object it
portrays—some indication of the physical size of the image is helpful.

Where does the resolution come from? Usually from the program that originally creates the bitmap.
For example, if you scan an image on a scanner at 300 dpi, the scanning software usually sets the
resolution of the resultant image at 300 dpi. When you create an image in a paint application, it
usually sets the resolution to the screen resolution under the assumption that you've made the image
the appropriate size for your screen.

Additional properties of Image let you obtain the horizontal and vertical resolution of the Image object
and the resultant metrical size:
Image Properties (selection)

Type Property Accessibility Description

float HorizontalResolution get In dots per inch

float VerticalResolution get In dots per inch

SizeF PhysicalDimension get In hundredths of millimeters

If the image doesn't have any resolution information, the HorizontalResolution and VerticalResolution
properties return the resolution of the video display. You might want to ignore PhysicalDimension
(particularly because it wasn't working right in early versions of Windows Forms) and calculate a
metrical size of the image yourself. For example, the following statements calculate the size of the
image in inches:
float cxInches = image.Width / image.HorizontalResolution;
float cyInches = image.Height / image.VerticalResolution;

The programs shown so far in this chapter used the following version of the DrawImage function to
display the image:
grfx.DrawImage(image, x, y)

This method sizes the image based on its metrical dimension! That's why the programs shown
earlier in this chapter display the image at a little different size than other Windows applications.
We'll examine the image rendering methods in more detail later in this chapter.

Another property of the Image class indicates the image's pixel format. The pixel format indicates the
color depth and how the pixels correspond to colors:
Image Properties (selection)

Type Property Accessibility

PixelFormat PixelFormat get

This property will return one of the following members of the PixelFormat enumeration, defined in the
System.Drawing.Imaging namespace:

PixelFormat Enumeration (selection)

Member Value

Undefined or DontCare 0x00000000

Format16bppRgb555 0x00021005

Format16bppRgb565 0x00021006

Format24bppRgb 0x00021808

Format32bppRgb 0x00022009

Format1bppIndexed 0x00030101

Format4bppIndexed 0x00030402

Format8bppIndexed 0x00030803

Format16bppArgb1555 0x00061007

Format32bppPArgb 0x000E200B

Format16bppGrayScale 0x00101004

Format48bppRgb 0x0010300C

Format64bppPArgb 0x001C400E

Format32bppArgb 0x0026200A

Format64bppArgb 0x0034400D

The number after the word Format indicates the number of bits per pixel: 1, 4, 8, 16, 32, 48, or 64.
Those formats that have 1, 4, or 8 bits per pixel are indexed, which means that the pixel values are
indices into a color palette. The formats containing the letters Rgb store red, green, and blue values
for each pixel. The Argb formats also include an alpha channel for transparency. The PArgb formats
contain red, green, and blue values that have been premultiplied by the alpha value. Just off hand,
the numerical values of the enumeration members might appear to be random, but if you look more
closely, you'll find some definite patterns. Take a look at the rightmost two hexadecimal digits. Each
value is unique, ranging from 0x00 (the ominous Undefined or DontCare value) to 0x0E.

The next two rightmost digits indicate the number of bits per pixel: 0x01, 0x04, 0x08, 0x10, 0x18,
0x20, 0x30, or 0x40. The other bits are flags. The following PixelFormat enumeration values include
Max, which indicates that the number of formats (including Undefined) is 15, plus the values that
explain the meaning of the flags:
PixelFormat Enumeration (selection)

Member Value Description

Max 0x0000000F Number of formats

Indexed 0x00010000 Pixel bits are palette indices

Gdi 0x00020000 Windows GDI format

Alpha 0x00040000 Contains transparency bit or byte

PAlpha 0x00080000 Contains premultiplied transparency byte

Extended 0x00100000 Uses more than 1 byte per primary or gray shade

Canonical 0x00200000 Standard format

The Image class also contains several static methods that let you extract most of this information
without digging into the bits:

Image Static Methods (selection)

int GetPixelFormatSize(PixelFormat pf)
bool IsAlphaPixelFormat(PixelFormat pf)
bool IsCanonicalPixelFormat(PixelFormat pf)
bool IsExtendedPixelFormat(PixelFormat pf)

The first of these methods returns the number of bits per pixel.

If the image is indexed, which you can determine by performing a bitwise AND with the PixelFormat
property and PixelFormat.Indexed, the image has a color palette. You can obtain that palette from
the Palette property:
Image Properties (selection)

Type Property Accessibility

ColorPalette Palette get/set

This property is quite peculiar. You'll notice that it's both readable and writable. However, the
ColorPalette class itself (which is defined in the System.Drawing.Imaging namespace) is sealed,
which means that you can't subclass it, and it has no public constructors, which means that you can't
instantiate it. There is no way in all of .NET to obtain a ColorPalette object except as this property of
the Image class.

ColorPalette itself has just two, read-only properties:
ColorPalette Properties

Type Property Accessibility

Color[] Entries get

int Flags get

The Entries property returns the array of colors in the image's color palette.

Another property of the Image class indicates the file format:
Image Properties (selection)

Type Property Accessibility

ImageFormat RawFormat get

I've already mentioned the ImageFormat class. That's the class that contains a static property for
each of the supported bitmap file formats as shown in the table earlier in this chapter (page 482).

The RawFormat property of the Image class is a bit difficult to use, however. You have to use it in
conjunction with the only instance property (that is, the only nonstatic property) of the ImageFormat
class, which returns a globally unique identifier (GUID) for an ImageFormat object:
ImageFormat Instance Property

Type Property Accessibility

Guid Guid get

Your program can test only whether a particular Image object is a particular ImageFormat type. For
example, if you have an Image object named image that was loaded from a JPEG file, the
expression
image.RawFormat.Guid == ImageFormat.Png.Guid

returns false and
image.RawFormat.Guid == ImageFormat.Jpeg.Guid

returns true. The expression
image.RawFormat.ToString()

returns the string
[ImageFormat: b96b3cae-0728-11d3-9d7b-0000f81ef32e]

while the expression
ImageFormat.Jpeg.ToString()

returns the string
Jpeg

You know which one to display to a user, right?

I'll cover some other Image properties and methods later in this chapter.
Rendering the Image
As the sample programs shown so far in this chapter illustrate, the method of the Graphics class that
displays images is called DrawImage, a method that comes in a whopping 30 versions for much
flexibility. Another image-drawing method, named DrawImageUnscaled, is also available, but it
provides no additional functionality over DrawImage.

As with the display of text, the display of images involves dealing with an object that already has a
specific size. Just as a text string associated with a certain font has a size, a bitmap image also has
a size, or rather two sizes: a pixel size and a metrical size. Displaying images in their metrical size
(which the simplest versions of DrawImage do) is helpful when you're attempting to treat images in a
device-independent manner. However, if you're otherwise drawing in units of pixels, you need to use
a bit of math to anticipate the pixel size of such a rendered image. (I'll show you that math shortly.)
At times—particularly when integrating images with controls—you'll want to display an image in its
pixel size. DrawImage doesn't use the image's pixel size automatically, but it's easy to persuade the
method to draw an image in its pixel size.

Traditionally, bitmaps have been resistant to transforms such as rotation. In Windows Forms and
GDI+, the display of bitmaps is always affected by the world transform in much the same way as
text.

The first argument to all the versions of DrawImage is an object of type Image. At the very least, the
method also always includes a coordinate point. This point is in the form of two integers, two floats, a
Point, a PointF, a Rectangle, or a RectangleF and indicates in world coordinates where the upper left
corner of the image appears.

These four DrawImage methods size the image based on its metrical dimensions:

Graphics DrawImage Methods (selection)

void DrawImage(Image image, int x, int y)
void DrawImage(Image image, float x, float y)
void DrawImage(Image image, Point pt)
void DrawImage(Image image, PointF ptf)

The size of the image is unaffected by any page transform but is affected by the world transform.
Using these four methods of DrawImage is analogous to calling DrawString with a Font object
created with a metrical size. The resultant image is the same metrical size on both the video display
and the printer.

For example, the Apollo11 images are 220 pixels wide and 240 pixels high, and they have a
resolution of 72 dpi. Thus, when displayed by the versions of DrawImage I've talked about so far, the
width of the images is about 3 inches and the height is 3-1/3 inches.

The JPEG from the NASA Web site that the ImageFromWeb program accesses is 640 × 480 pixels
in size but has no embedded resolution information. In such a case, the resolution of the image is
assumed to be your screen resolution, which is probably 96 or 120 dpi.

At times, you need to anticipate how large an image will be when it's displayed. For example, you
might need to center an image within a rectangle. Because the four versions of DrawImage we've
seen so far draw the image in its metrical size, centering that image within the client area requires a
bit of work, as illustrated in the following program.
CenterImage.cs
//--
// CenterImage.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class CenterImage: PrintableForm
{
 Image image;

 public new static void Main()
 {
 Application.Run(new CenterImage());
 }
 public CenterImage()
 {
 Text = "Center Image";

 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.PageUnit = GraphicsUnit.Pixel;
 grfx.PageScale = 1;

 RectangleF rectf = grfx.VisibleClipBounds;

 float cxImage = grfx.DpiX * image.Width /
 image.HorizontalResolution;
 float cyImage = grfx.DpiY * image.Height /
 image.VerticalResolution;

 grfx.DrawImage(image, (rectf.Width - cxImage) / 2,
 (rectf.Height - cyImage) / 2);
 }
}

The cxImage and cyImage values are in units of pixels: dividing the pixel width and height of the
image by the horizontal and vertical resolution provides the dimension of the image in inches, and
then multiplying that by the DpiX and DpiY properties yields the dimension in device pixels of the
displayed image.

If you were dealing only with the video display, you could then subtract cxImage and cyImage from
the width and height of the client area and divide by 2. However, that method won't work on the
printer. Instead, at the beginning of the DoPage method, I switch to pixel coordinates and use
VisibleClipBounds to obtain the dimension of the output device in pixels. The cxImage and cyImage
values are then subtracted from the pixel width and height of the device and divided by 2.
Fitting to a Rectangle
The following four DrawImage methods specify a rectangular destination for the image. The
rectangle is in world coordinates:

Graphics DrawImage Methods (selection)

void DrawImage(Image image, int x, int y, int cx, int cy)
void DrawImage(Image image, float x, float y, float cx, float cy)
void DrawImage(Image image, Rectangle rect)
void DrawImage(Image image, RectangleF rectf)

These methods scale the image to the size of the rectangle, either stretching or compressing it to fit.
One common use of these methods is to display an image in its pixel size rather than its metrical
size. If page units are pixels, simply call
grfx.DrawImage(image, x, y, image.Width, image.Height);

The following program displays an image in its pixel dimensions centered within the client area (or
printer page).
CenterPixelSizeImage.cs
//---
// CenterPixelSizeImage.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class CenterPixelSizeImage: PrintableForm
{
 Image image;

 public new static void Main()
 {
 Application.Run(new CenterPixelSizeImage());
 }
 public CenterPixelSizeImage()
 {
 Text = "Center Pixel-Size Image";

 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");

 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawImage(image, (cx - image.Width) / 2,
 (cy - image.Height) / 2,
 image.Width, image.Height);
 }
}

Because your video resolution is most likely greater than 72 dpi, this image is smaller than the one
drawn by DrawImage:

On the printer, which has a default page transform that makes it appear to be a 100-dpi device, this
version of the DrawImage method will render the 220 × 240 pixel bitmap as 2.2 × 2.4 inches. If you
set page units to pixels in the DoPage method, the printed image will be much smaller, probably
resulting in the postage stamp effect commonly encountered in less sophisticated graphics
programming environments.

The following program loads an image and scales it to the entire size of the client area (or printable
area of the printer page).
ImageScaleToRectangle.cs
//--
// ImageScaleToRectangle.cs © 2001 by Charles Petzold
//------------------ ----------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class ImageScaleToRectangle: PrintableForm
{
 Image image;

 public new static void Main()

 {
 Application.Run(new ImageScaleToRectangle());
 }
 public ImageScaleToRectangle()
 {
 Text = "Image Scale To Rectangle";

 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawImage(image, 0, 0, cx, cy);
 }
}

As you make the client area much wider than it is tall, or much taller than it is wide, the image is
distorted accordingly:

If you really do need to scale an image to the size of a rectangle, this effect is probably not what you
had in mind. You probably want to scale the image isotropically, which means equally in both
directions. Here's a program that scales a rectangle more intelligently.
ImageScaleIsotropic.cs
//--
// ImageScaleIsotropic.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ImageScaleIsotropic: PrintableForm
{
 Image image;

 public new static void Main()
 {
 Application.Run(new ImageScaleIsotropic());
 }
 public ImageScaleIsotropic()
 {
 Text = "Image Scale Isotropic";

 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 ScaleImageIsotropically(grfx, image, new Rectangle(0, 0, cx,
cy));
 }
 void ScaleImageIsotropically(Graphics grfx, Image image, Rectangle
rect)
 {
 SizeF sizef = new SizeF(image.Width /
image.HorizontalResolution,
 image.Height /
image.VerticalResolution);

 float fScale = Math.Min(rect.Width / sizef.Width,
 rect.Height / sizef.Height);

 sizef.Width *= fScale;
 sizef.Height *= fScale;

 grfx.DrawImage(image, rect.X + (rect.Width - sizef.Width) / 2,
 rect.Y + (rect.Height - sizef.Height) / 2,
 sizef.Width, sizef.Height);
 }
}

The ScaleImageIsotropically method will work in all cases except when the horizontal and vertical
resolutions of the device are different (as is the case with some printers) and when the PageUnit is
GraphicsUnit.Pixel (which is not the default case for printers).

The method begins by calculating a SizeF structure that indicates the size of the Image object in
inches. (This step wouldn't be necessary if the horizontal and vertical resolution of the image were
the same.) Then a factor is calculated that is the minimum of the destination rectangle width and
height divided by the image width and height. This fScale number is the factor that must be applied
to the image size to isotropically scale it to the size of the destination rectangle. The method then
calculates the origin of this rectangle and passes all the information to DrawImage. Here's the image:

The rectangle-destination versions of the DrawImage method can do additional tricks beyond just
stretching an image. If you specify a negative width, the image is flipped around the vertical axis—it's
a mirror image. A negative height flips the image around the horizontal axis and shows it upside
down. In all cases, the upper left corner of the original unflipped image is always positioned at the
Point or PointF portion of the rectangle you specify in the drawing method.

Let's look at a program that draws four images, some with negative widths and heights. In all four
cases, the second and third arguments to DrawImage indicate the center of the client area.
ImageReflection.cs
//--
// ImageReflection.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ImageReflection: PrintableForm
{
 Image image;

 public new static void Main()
 {
 Application.Run(new ImageReflection());
 }
 public ImageReflection()
 {
 Text = "Image Reflection";

 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 int cxImage = image.Width;
 int cyImage = image.Height;

 grfx.DrawImage(image, cx / 2, cy / 2, cxImage, cyImage);
 grfx.DrawImage(image, cx / 2, cy / 2, -cxImage, cyImage);
 grfx.DrawImage(image, cx / 2, cy / 2, cxImage, -cyImage);
 grfx.DrawImage(image, cx / 2, cy / 2, -cxImage, -cyImage);
 }
}

And here's the result showing the four images:

Notice that the program sizes the image based on its pixel dimension.
Rotate and Shear
You can distort the image even more using the following two methods. These methods effectively
translate, scale, shear, or rotate an image into a parallelogram.

Graphics DrawImage Methods (selection)

void DrawImage(Image image, Point[] apt)
void DrawImage(Image image, PointF[] aptf)

The array argument must contain exactly three points. These points indicate the destination in world
coordinates of three corners of the image:

apt[0] = destination of upper left corner of image
apt[1] = destination of upper right corner of image
apt[2] = destination of lower left corner of image

Because the resulting image is a parallelogram, the destination of the lower right corner of the image
is implied.

Here's a program that sets these three points to the center of the top side of the client area, the
center of the right side of the client area, and the center of the left side of the client area.
ImageAtPoints.cs
//--
// ImageAtPoints.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ImageAtPoints: PrintableForm
{
 Image image;

 public new static void Main()
 {
 Application.Run(new ImageAtPoints());
 }
 public ImageAtPoints()
 {
 Text = "Image At Points";

 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawImage(image, new Point[] { new Point(cx / 2, 0),
 new Point(cx, cy / 2),
 new Point(0, cy / 2)});

 }
}

And here's the image:

This isn't the only way to rotate or shear bitmap images. You can also use the normal world
transform.
Displaying Part of the Image
If you've kept count, you'll know that so far I've covered only 10 of the 30 versions of the DrawImage
method. All the remaining methods let you specify a rectangular subsection of the bitmap to display.
You specify this subsection in pixels relative to the upper left corner of the image. For an Image
object named image, the rectangle
new Rectangle(0, 0, image.Width, image.Height)

indicates the entire image; the rectangle
new Rectangle(image.Width – 10, image.Height – 10, 10, 10)

indicates the 10-pixel-square rectangle at the lower right corner of the image.

Here are two versions of DrawImage that specify the destination as a point in world coordinates, a
rectangular source specifying a subset of the image, and a GraphicsUnit argument:

Graphics DrawImage Methods (selection)

void DrawImage(Image image, int xDst, int yDst,
 Rectangle rectSrc, GraphicsUnit gu)
void DrawImage(Image image, float xDst, float yDst,
 RectangleF rectfSrc, GraphicsUnit gu)

The concept here is simpler than the bizarre definitions of these methods would seem to imply. First,
you always specify the source rectangle in units of pixels. (Thus, the version of DrawImage defined
with a RectangleF structure rather than a Rectangle structure makes no sense.) Second, the
GraphicsUnit argument must be GraphicsUnit.Pixel. I happen to know that the coordinates of Buzz
Aldrin's helmet in the image I've been using can be expressed approximately by the rectangle
new Rectangle(95, 0, 50, 55)

Let's take a look at a program that displays just this portion of the image.
PartialImage.cs
//---
// PartialImage.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class PartialImage: PrintableForm
{
 Image image;

 public new static void Main()
 {
 Application.Run(new PartialImage());
 }
 public PartialImage()
 {
 Text = "Partial Image";

 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Rectangle rect = new Rectangle(95, 5, 50, 55);

 grfx.DrawImage(image, 0, 0, rect, GraphicsUnit.Pixel);
 }
}

How large is the rendered image? Because the resolution of the file is 72 dpi, the image is drawn
50/72 inch wide and 55/72 inch high:

There are also four methods that let you specify both a source rectangle and a destination rectangle:

Graphics DrawImage Methods (selection)

void DrawImage(Image image, Rectangle rectDst,
 int xSrc, int ySrc, int cxSrc, int cySrc,
 GraphicsUnit gu, *)
void DrawImage(Image image, Rectangle rectDst,
 Rectangle rectSrc,
 GraphicsUnit gu)
void DrawImage(Image image, Rectangle rectDst,
 float x, float y, float cx, float cy,
 GraphicsUnit gu, *)
void DrawImage(Image image, RectangleF rectfDst,
 RectangleF rectfSrc,
 GraphicsUnit gu)

In these methods, the source rectangle is in pixels and the destination rectangle is in world
coordinates. The GraphicsUnit argument must be GraphicsUnit.Pixel.

Notice in this table that I've put an asterisk at the end of the argument list for two of the methods.
The asterisk means that these methods can also have three optional arguments: an ImageAttribute
object, a callback function to abort drawing an image, and data to pass to the callback function; thus,
each of the two methods with the asterisks has three additional versions. (Unfortunately, I won't be
able to discuss these additional versions of DrawImage in this book.)

Here's a program that displays Aldrin's helmet (the source rectangle) the size of the client area or the
printer page (the destination rectangle).
PartialImageStretch.cs
//--
// PartialImageStretch.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class PartialImageStretch: PrintableForm
{
 Image image;

 public new static void Main()
 {
 Application.Run(new PartialImageStretch());
 }
 public PartialImageStretch()
 {
 Text = "Partial Image Stretch";

 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Rectangle rectSrc = new Rectangle(95, 5, 50, 55);
 Rectangle rectDst = new Rectangle(0, 0, cx, cy);

 grfx.DrawImage(image, rectDst, rectSrc, GraphicsUnit.Pixel);
 }
}

Here's the image stretched to the client area:

If the destination rectangle isn't the same aspect ratio as the source rectangle, the image will be
distorted. But you can easily adapt the ScaleImageIsotropically method I showed earlier (on page
501) to partial images. To display the image in its pixel size, use the same width and height in the
destination rectangle as specified in the source rectangle.

When you blow up smaller images like this and print them, you might expect to see jaggies.
However, GDI+ performs an interpolation of the image pixels to smooth out the image.

To complete the collection of DrawImage methods, you can also display the partial image using an
array of three points. The asterisk indicates that each of these methods is actually four methods.

Graphics DrawImage Methods (selection)

void DrawImage(Image image, Point[] aptDst,
 Rectangle rectSrc, GraphicsUnit gu, *)
void DrawImage(Image image, PointF[] aptfDst
 RectangleF rectfSrc, GraphicsUnit gu, *)

Again, the source rectangle is in pixels, the destination points are in world coordinates, and the
GraphicsUnit argument must be GraphicsUnit.Pixel. Here's a sample program.
PartialImageRotate.cs
//---
// PartialImageRotate.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class PartialImageRotate: PrintableForm

{
 Image image;

 public new static void Main()
 {
 Application.Run(new PartialImageRotate());
 }
 public PartialImageRotate()
 {
 Text = "Partial Image Rotate";

 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Point[] aptDst = { new Point(0, cy / 2),
 new Point(cx / 2, 0),
 new Point(cx / 2, cy) };

 Rectangle rectSrc = new Rectangle(95, 5, 50, 55);

 grfx.DrawImage(image, aptDst, rectSrc, GraphicsUnit.Pixel);
 }
}

And now, if you've been keeping count, we're finished with the 30 DrawImage methods.
Drawing on the Image
We've been drawing a bitmapped image on the video display and the printer. It's also possible to
draw on an image. If you think about it, when Windows draws on the video display, it's really drawing
on a big bitmap stored in memory on the video display adapter. Many printers, also, base their output
on the contents of memory organized like a bitmap. So it makes sense that a Windows program
should be able to draw on any bitmap by using the same graphics output functions you use on the
video display and the printer.

To draw on an image, you need to obtain a Graphics object that refers to the image. You get that
Graphics object from a static method of the Graphics class:

Graphics Static Methods (selection)

Graphics Graphics.FromImage(Image image)

For example, here's a statement that obtains a Graphics object named grfxImage based on an
Image object named image:
Graphics grfxImage = Graphics.FromImage(image);

When you're finished with this Graphics object, call the Dispose method to get rid of it.

The Graphics.FromImage method won't work with every image format. The method will not work and
will throw an exception if the PixelFormat property of the image is one of the following PixelFormat

members: Format1bppIndexed, Format4bppIndexed, Format8bppIndexed, Format16bppGrayScale,
or Format16Argb1555. This restriction may make sense to you. Suppose you obtain a Graphics
object based on an indexed image and then try to draw on the image with a color that's not in the
image's palette table. The problem is similar if you could obtain a Graphics object for a gray-scaled
image format or the 1-bit transparency format.

Neither can you obtain a Graphics object for an image loaded from an old Windows metafile (WMF)
or a Windows enhanced metafile (EMF). In Chapter 23, I'll discuss some other ways to draw on
metafiles.

You can use the Graphics object you obtain from Graphics.FromImage in the same way you use a
Graphics object for the video display or the printer. If you check the DpiX and DpiY properties for the
image-based Graphics object, you'll find that they are equal to the HorizontalResolution and
VerticalResolution properties of the Image object. The default page transform is a PageUnit of
GraphicsUnit.Display and a PageScale of 1, which for images is the same as GraphicsUnit.Pixels.
By default, the VisibleClipBounds property of this Graphics object is equal to the width and height of
the image in pixels.

You can set a different page transform for the Graphics object. If you change the PageUnit and
PageScale properties, the VisibleClipBounds property indicates the dimensions of the image in page
units. For example, if you set
grfxImage.PageUnit = GraphicsUnit.Inch;
grfxImage.PageScale = 1;

VisibleClipBounds indicates the size of the image in inches, which you could also calculate by
dividing the pixel size of the image by the HorizontalResolution and VerticalResolution properties.

In a few moments, I'll be drawing text on the surface of a bitmap. So the questions naturally arise,
What font should I use? Is the default Font property of the form satisfactory?

The default Font property for a form is an 8-point font. If you draw text on a bitmap using this font
and then display the image in its metrical size (rather than pixel size), the text will be the same size
as if you drew the text directly on the client area. However, if the resolution of the image is less than
the resolution of the video display, the text certainly won't look exactly the same. The text on the
image will be coarser than the text displayed directly on the window.

Consider this example. The sample bitmaps I've been using in this chapter are 72 dpi—1 pixel per
point. That means that an 8-point font at this resolution is about 8 pixels in height. Using the form's
default Font property, if you call
Font.GetHeight(72)

or, using the Graphics object created from one of the bitmaps I've been using in this chapter, if you
call
Font.GetHeight(grfxImage)

you'll get 8.83 pixels for line spacing, confirming a character height of about 8 pixels.

Now, 8 pixels isn't a whole lot of space to draw well-rounded font characters. But that will be the font
height DrawString will be limited to if you use the form's default Font property on a 72-dpi image. If
the resolution of your video display is higher than 72 dpi and you display that image in its pixel size,
the text on the image will appear very small. If you display the image in its metrical size, the image
and the text will be larger. On a 96-dpi display, the image (and hence the text in the image) will be
increased by a factor of 1-1/3. On a 120-dpi display, the image will be increased by a factor of 1-2/3.
So, those 8 pixels are stretched to the normal size of the default Font.

Let's take a look. Here's the program.
DrawOnImage.cs
//--
// DrawOnImage.cs © 2001 by Charles Petzold
//--

using System;
using System.Drawing;
using System.Windows.Forms;

class DrawOnImage: PrintableForm
{
 Image image;
 string str = "Apollo11";

 public new static void Main()
 {
 Application.Run(new DrawOnImage());
 }
 public DrawOnImage()
 {
 Text = "Draw on Image";
 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");

 Graphics grfxImage = Graphics.FromImage(image);

 grfxImage.PageUnit = GraphicsUnit.Inch;
 grfxImage.PageScale = 1;

 SizeF sizef = grfxImage.MeasureString(str, Font);

 grfxImage.DrawString(str, Font, Brushes.White,
 grfxImage.VisibleClipBounds.Width - sizef.Width,
0);

 grfxImage.Dispose();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.PageUnit = GraphicsUnit.Pixel;
 grfx.DrawImage(image, 0, 0);
 grfx.DrawString(str, Font, new SolidBrush(clr),
 grfx.DpiX * image.Width / image.HorizontalResolution,
0);
 }
}

Just for fun, I changed the page transform of the Graphics object associated with the image to draw
in units of inches. I call MeasureString to obtain the dimensions of the string, and I set the
coordinates of DrawString so that the string appears in the upper right corner of the image. The
DoPage method calls DrawImage to draw the image and then—for comparison—the method also
calls DrawString to display the same text string on the right side of the image. (Setting page units to
pixels is necessary so that the text is positioned correctly on the printer.) You'll notice that the text on

the image is considerably coarser and somewhat distorted because the image has been stretched
on the display:

Is there anything you can do about this distortion problem? The problem arises from using a font that
has only a 9-pixel height. You can solve the problem only if you use a font with a larger pixel size.
That means using images with resolutions greater than the screen resolution or inflating the font size
so that it's at least 12 pixels or so. The latter approach will make the text look larger, but at least it
will be readable.

If you'll be displaying the image in its pixel size, you need to take a different approach. To make text
on the image the same size as normal text displayed on the client area, you need to scale the font
based on the ratio of the screen resolution to the image resolution. Here's an example.
DrawOnPixelSizeImage.cs
//---
// DrawOnPixelSizeImage.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class DrawOnPixelSizeImage: PrintableForm
{
 Image image;
 string str = "Apollo11";

 public new static void Main()
 {
 Application.Run(new DrawOnPixelSizeImage());
 }
 public DrawOnPixelSizeImage()
 {
 Text = "Draw on Pixel-Size Image";
 image = Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");

 Graphics grfxImage = Graphics.FromImage(image);
 Graphics grfxScreen = CreateGraphics();

 Font font = new Font(Font.FontFamily,
 grfxScreen.DpiY / grfxImage.DpiY * Font.SizeInPoints);

 SizeF sizef = grfxImage.MeasureString(str, font);

 grfxImage.DrawString(str, font, Brushes.White,
 image.Width - sizef.Width, 0);
 grfxImage.Dispose();
 grfxScreen.Dispose();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawImage(image, 0, 0, image.Width, image.Height);
 grfx.DrawString(str, Font, new SolidBrush(clr), image.Width, 0);
 }
}

The constructor creates a new Font object (named font) that is the same as the default font but with
a size in points scaled by the ratio of the screen resolution to the image resolution. This is the font I
use in the calls to MeasureString and DrawString. Because I haven't set a nondefault page
transform, I can use the pixel width of the image in the DrawString call to position the string. The font
displayed on the image is visually the same size as the font displayed on the client area:

The two fonts now look identical, even though they are different point sizes. They appear to be the
same size because they're displayed on two different surfaces (the image and the client area) with
different display resolutions. Because I sized the font used on the image based on the screen
resolution, the two fonts will differ on the printer by the extent to which the 100-dpi virtual resolution
of the printer differs from the screen resolution.

I didn't mention my use of Brushes.White in the DrawString call to draw on the image. It's exactly
what's appropriate, of course, given the black background, but suggests also that you really need to
know what's on an existing image before you start drawing on it!

You can also draw on blank bitmaps that you create specifically for that purpose. I'll show you how to
do that shortly.
More on the Image Class

The Image class has several additional methods that let you save or manipulate the image in limited
ways. The first version of Save in the following list uses the filename extension to determine the file
format, but you can be more explicit in the next two versions:

Image Save Methods (selection)

void Save(string strFilename)
void Save(string strFilename, ImageFormat if)
void Save(Stream stream, ImageFormat if)

You can't use Save on any Image object loaded from a metafile or a memory bitmap. Nor can you
save an image in a metafile or a memory bitmap format.

The following two methods can resize an image and rotate and flip it in certain fixed ways,
respectively:

Image Methods (selection)

Image GetThumbnailImage(int cx, int cy,
 Image.GetThumbnailImageAbort gtia,
 IntPtr pData
void RotateFlip(RotateFliptype rft);

The GetThumbnailImage method is intended to be used to create a thumbnail of an image, which is
a smaller version of the image that an application can use to convey the contents of the image while
saving time and space. However, GetThumbnailImage is actually a general-purpose image-resizing
function. You can make the image larger as well as smaller. The last two arguments are used to
specify a callback function, but you can set them to null and 0 and the method will work just fine
without them. Here's a program that creates a thumbnail designed to fit in a 64-pixel-square space.
Thumbnail.cs
//--
// Thumbnail.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class Thumbnail: PrintableForm
{
 const int iSquare = 64;
 Image imageThumbnail;

 public new static void Main()
 {
 Application.Run(new Thumbnail());
 }
 public Thumbnail()
 {

 Text = "Thumbnail";

 Image image =
Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");

 int cxThumbnail, cyThumbnail;

 if (image.Width > image.Height)
 {
 cxThumbnail = iSquare;
 cyThumbnail = iSquare * image.Height / image.Width;
 }
 else
 {
 cyThumbnail = iSquare;
 cxThumbnail = iSquare * image.Width / image.Height;
 }
 imageThumbnail = image.GetThumbnailImage(cxThumbnail,
cyThumbnail,
 null, (IntPtr) 0);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 for (int y = 0; y < cy; y += iSquare)
 for (int x = 0; x < cx; x += iSquare)
 grfx.DrawImage(imageThumbnail,
 x + (iSquare - imageThumbnail.Width) / 2,
 y + (iSquare - imageThumbnail.Height) / 2,
 imageThumbnail.Width,
imageThumbnail.Height);
 }
}

The program handles the DoPage method by filling up its client area (or the printer page) with the
thumbnail image:

While the GetThumbnailImage method creates a new image, the RotateFlip method alters the
existing image. The single argument is a member of the RotateFlipType enumeration:
RotateFlipType Enumeration

Member Value Result

RotateNoneFlipNone
Rotate180FlipXY

0

Rotate90FlipNone
Rotate270FlipXY

1

Rotate180FlipNone
RotateNoneFlipXY

2

Rotate270FlipNone
Rotate90FlipXY

3

RotateNoneFlipX
Rotate180FlipY

4

Rotate90FlipX
Rotate270FlipY

5

Rotate180FlipX
RotateNoneFlipY

6

Rotate270FlipX
Rotate90FlipY

7

Although the enumeration has 16 members, there are only 8 unique effects on the image. For 4 of
these effects, the Image object gets its Width and Height properties switched around.

If you need to rotate or flip an image but you still want to retain the original unflipped unrotated
image, you can first make a copy of the original Image object by using the Clone method:
Image imageCopy = (Image) image.Clone();
The Bitmap Class
So far, everything I've been discussing uses objects of type Image. As I mentioned at the beginning
of this chapter, the System.Drawing namespace also includes a class named Bitmap that inherits
from Image. All the Image properties apply to Bitmap as well. Anything you can do with an Image

object you can also do with a Bitmap object. Plus more, of course. The Bitmap class allows you to
get down and dirty with the bitmap bits.

The Image class has no constructors; the Bitmap class has 12 constructors. These first constructors
load a Bitmap object from a file, a stream, or a resource:

Bitmap Constructors (selection)

Bitmap(string strFilename)
Bitmap(string strFilename, bool bUseImageColorManagement)
Bitmap(Stream stream)
Bitmap(Stream stream, bool bUseImageColorManagement)
Bitmap(Type type, string strResource)

The first four constructors basically duplicate the static FromFile and FromStream methods
implemented in Image. The last loads a Bitmap object as a resource, which is usually embedded in
the .exe file of the application. I'll explain resources later in this chapter.

Next is a collection of constructors that create new Bitmap objects based on an existing Image
object:

Bitmap Constructors (selection)

Bitmap(Image image)
Bitmap(Image image, Size size)
Bitmap(Image image, int cx, int cy)

Although the first argument of these constructors is defined as an Image, it can also be another
Bitmap object. The first constructor is similar to the Clone method of the Image class; it creates a
new Bitmap object that is identical to the first. The second and third constructors are similar to the
GetThumbnailImage method; the image is resized. In all cases, the new bitmap inherits the pixel
format of the existing bitmap. In all cases, the resolution of the bitmap is set to the resolution of the
video display.

The final four constructors have no equivalents in the Image class. These constructors let you create
brand new Bitmap objects with blank images:

Bitmap Constructors (selection)

Bitmap(int cx, int cy)
Bitmap(int cx, int cy, PixelFormat pf)
Bitmap(int cx, int cy, Graphics grfx)
Bitmap(int cx, int cy, int cxRowBytes, PixelFormat pf, IntPtr pBytes)

The first three constructors initialize the pixels to 0. A pixel value of 0 has a different meaning for
different types of bitmaps. For RGB bitmaps, 0 means black. For ARGB bitmaps, 0 means
transparent. The fourth constructor also allows you to pass a pointer to an array of bytes that
initializes the bitmap image.

The first constructor in the table creates a Bitmap object of the specified size with a pixel format of
PixelFormat.Format32bppArgb. That's 32 bits per pixel with an alpha channel for transparency. The
horizontal and vertical resolution are set to the resolution of the video display. The second

constructor lets you specify a PixelFormat member if you want something other than
Format32bppArgb.

The third constructor lets you specify a Graphics object. Regardless of whether you specify a
Graphics object associated with the video display or the printer, and regardless of whether or not
your printer is capable of color, the constructor always creates a Bitmap with a pixel format of
PixelFormat.Format32bppPArgb. Notice that this pixel format implies a premultiplied alpha channel.
The really important implication of creating a bitmap based on a Graphics object is that the
HorizontalResolution and VerticalResolution properties of the Bitmap object are set to the DpiX and
DpiY properties of the Graphics object. And that doesn't mean 100 dpi for the printer! That means
300, 600, 720, or something higher.

For example, suppose your printer has a resolution of 600 dpi. You want to create a bitmap based on
the printer resolution. And why do you want to do this? Because if you'll eventually be printing the
bitmap, you want anything you draw on this bitmap (including text) to be as fine and as rounded as
the printer resolution will allow. But keep in mind that the bitmap size must be compatible with the
resolution. A 2-inch-square 600-dpi bitmap will require widths and heights of 1200 pixels and will
consume over 5 megabytes of memory. And be sure to use the metrical size when you display such
a bitmap on the screen and the printer! (Don't worry: I'll have an example shortly.)

At any rate, if you prefer to create a bitmap with a resolution that matches neither the screen nor the
printer, the Bitmap class provides a method that allows you to change the resolution of a bitmap
you've loaded or created:

Bitmap Methods (selection)

void SetResolution(float xDpi, float yDpi)

How do you get stuff on the surface of the bitmap? There are three approaches:
§ You can create a Graphics object for the bitmap and draw on the bitmap as if it were any other

graphics device. I described this approach earlier in the chapter. Remember that you can't
create a Graphics object for every possible pixel format!

§ You can use the SetPixel and GetPixel methods of the Bitmap class to set (or get) the color of
individual pixels in the bitmap.

§ You can use the Bitmap class methods LockBits and UnlockBits to get access to the actual
bitmap data.

I won't be able to demonstrate the second and third approaches in this book.
Hello World with a Bitmap
This HelloWorldBitmap program creates a bitmap and draws on the bitmap a 72-point version of the
programmer's universal mantra. It then displays that bitmap on the client area and (optionally) on
your printer page.
HelloWorldBitmap.cs
//---
// HelloWorldBitmap.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class HelloWorldBitmap: PrintableForm
{
 const float fResolution = 300;
 Bitmap bitmap;

 public new static void Main()
 {
 Application.Run(new HelloWorldBitmap());
 }
 public HelloWorldBitmap()
 {
 Text = "Hello, World!";

 bitmap = new Bitmap(1, 1);
 bitmap.SetResolution(fResolution, fResolution);

 Graphics grfx = Graphics.FromImage(bitmap);
 Font font = new Font("Times New Roman", 72);
 Size size = grfx.MeasureString(Text, font).ToSize();

 bitmap = new Bitmap(bitmap, size);
 bitmap.SetResolution(fResolution, fResolution);

 grfx = Graphics.FromImage(bitmap);
 grfx.Clear(Color.White);
 grfx.DrawString(Text, font, Brushes.Black, 0, 0);
 grfx.Dispose();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawImage(bitmap, 0, 0);
 }
}

The bitmap is created in the program's constructor and, as you can see, the code is rather involved.
The problem is that I wanted the bitmap to be the exact size of the text string it displays, but I didn't
necessarily want to use a bitmap resolution associated with a real display device. Do you see the
problem? You need MeasureString to get the dimensions of a text string, and you need a Graphics
object to use MeasureString. But if you want that Graphics object to be based on a bitmap with an
arbitrary device resolution, you need a Bitmap object or an Image object to get that Graphics object!

For that reason, the constructor creates two bitmaps. The first one is tiny, just 1 pixel square, but
that's enough. The program assigns this tiny bitmap a 300-dpi resolution by using the fResolution
constant. It obtains a Graphics object, creates a 72-point Times New Roman font, and then calls
MeasureString.

The MeasureString dimensions are used to create a new bitmap. The bitmap must have the same
300-dpi resolution. The program then obtains a Graphics object for this bitmap, clears the
background to white, and draws the text in black.

The program uses DrawImage to display the same bitmap on both the video display and the printer.
The resulting image looks like a normal 72-point font. But the real proof that something interesting is
happening here is the printer output: the font characters appear as round and unjaggy as any other
300-dpi output. Try changing the fResolution constant to something much smaller (say, 30 dpi), and
witness the dramatic difference on both the video display and the printer.

The Shadow Bitmap
Occasionally, implementing an OnPaint method can be costly in terms of processing time or
memory. The client area could contain a complex image that has been assembled over a long period
of time, for example. For such applications, implementing a shadow bitmap is usually an excellent
solution. A shadow bitmap is a bitmap that your program draws on whenever it also draws on its
client area outside the OnPaint method. Then the OnPaint method reduces to a simple call to
DrawImage.

In Chapter 8, "Taming the Mouse," I presented a progam named Scribble that let you do free-form
drawing on your client area with the mouse. At the time, I was able to show only one solution to
saving the drawing for refreshing during the OnPaint method. That was the ScribbleWithSave
program (on page 356), which saved every coordinate point in ArrayList objects. There's nothing
wrong with this approach! In fact, if you wanted to give the user the option to edit the drawing by
manipulating individual lines, saving every one of those coordinate points would be necessary.
ScribbleWithSave is the first step to creating a drawing program that saves the drawing in a metafile
format.

The following new version of the Scribble program is called ScribbleWithBitmap and maintains the
entire image in a large bitmap. This program might be the first step in creating a paint program.
ScribbleWithBitmap.cs
//---
// ScribbleWithBitmap.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class ScribbleWithBitmap: Form
{
 bool bTracking;
 Point ptLast;
 Bitmap bitmap;
 Graphics grfxBm;

 public static void Main()
 {
 Application.Run(new ScribbleWithBitmap());
 }
 public ScribbleWithBitmap()
 {
 Text = "Scribble with Bitmap";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 // Create bitmap

 Size size = SystemInformation.PrimaryMonitorMaximizedWindowSize;
 bitmap = new Bitmap(size.Width, size.Height);

 // Create Graphics object from bitmap

 grfxBm = Graphics.FromImage(bitmap);
 grfxBm.Clear(BackColor);
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 if (mea.Button != MouseButtons.Left)
 return;

 ptLast = new Point(mea.X, mea.Y);
 bTracking = true;
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 if (!bTracking)
 return;

 Point ptNew = new Point(mea.X, mea.Y);

 Pen pen = new Pen(ForeColor);
 Graphics grfx = CreateGraphics();
 grfx.DrawLine(pen, ptLast, ptNew);
 grfx.Dispose();

 // Draw on bitmap

 grfxBm.DrawLine(pen, ptLast, ptNew);

 ptLast = ptNew;
 }
 protected override void OnMouseUp(MouseEventArgs mea)
 {
 bTracking = false;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 // Display bitmap

 grfx.DrawImage(bitmap, 0, 0, bitmap.Width, bitmap.Height);
 }
}

The statements that I've added to the basic Scribble program are highlighted with comments: there
aren't many of them. In the constructor, I create a bitmap with a size obtained from

SystemInformation.PrimaryMonitorMaximizedWindowSize. The FromImage method of the Graphics
class obtains a Graphics object, and the bitmap image is initialized with a call to Clear. During the
OnMouseMove method, the DrawLine method draws on the bitmap as well as the client area. During
OnPaint, the bitmap is displayed with a call to DrawImage.

The ScribbleWithBitmap version of the program is considerably shorter and sweeter than
ScribbleWithSave. But this simplicity comes at a cost: In a very real sense, the coordinate points of
the polylines have been lost. They can't easily be extracted again from the bitmap.

And here's another difference: The efficiency of the OnPaint method in ScribbleWithSave depends
on how complex the drawing is. As more and more polylines are added to the total drawing, OnPaint
will require longer to redraw them. The speed of the OnPaint method in ScribbleWithBitmap is
independent of the complexity of the image.

As I mentioned, the ScribbleWithBitmap program creates a bitmap the size of a maximized window
in its constructor. This is a fairly good approximation of how large such a shadow bitmap should be.
However, if the user changes the display size while ScribbleWithBitmap is running, the bitmap could
become inadequate. To deal with this eventuality, you need to install a handler for the
DisplaySettingsChanged event in the SystemEvents class defined in the Microsoft.Win32
namespace. But how do you respond to the event? If the display is getting larger, you could create a
new bitmap with the new size and copy the old bitmap to the new one. But what happens if the
display gets smaller? Do you create a smaller bitmap and potentially throw away part of the existing
image? It's not an easy problem to solve!
Binary Resources
If your application needs to display a particular bitmap, I've demonstrated numerous times in this
chapter how you can load the bitmap from a file.

But as you know, storing bitmaps in separate files isn't always a good solution for an application that
is distributed to other users. What happens if the program file and the bitmap file are separated? An
overzealous user might be cleaning up the hard drive by erasing "unnecessary" files and suddenly,
Bam! No more bitmap.

For this reason, it's often advantageous to store small binary files—particularly bitmaps, icons, and
custom cursors—right in the application's .exe file. That way, they can never be lost. Files stored in
the executable in this way are known as resources.

Visual C# .NET lets you create binary resources by using an interactive image editor. To add a
binary resource to a program, choose the Add New Item option from the Project menu. In the Add
New Item dialog box, pick Resources from the Categories list on the left. On the right, choose Bitmap
File, Cursor File, or Icon File. Give the file whatever name you want.

For bitmap files, the Properties window allows you to specify the dimensions and the color format.
For cursor files, the default format is 32 pixels square and 16 colors. But you can also paint in two
colors known as Screen and Reverse Screen. The Screen color is transparent. You use it to make a
cursor nonrectangular (as most cursors are). The Reverse Screen color reverses the color of the
background behind the cursor; Reverse Screen is rarely used. You also need to specify a hot spot
for cursors.

For icon files, you have 16 colors available plus Screen and Reverse Screen by default. The Screen
color is often used in icons to make them nonrectangular. The Reverse Screen color was popular in
the early days of Windows but is much less used nowadays.

Normally, you create an icon that is 32 pixels square and has 16 colors. But icons are often
displayed in a smaller size, which is 16 pixels square. Windows will display the 32-pixel icon as a 16-
pixel icon by eliminating every other row and column of pixels. If your icon doesn't look quite right
after 75 percent of its content has been ripped out, you can also create a custom 16-pixel-square
version that is stored in the same icon file. In the image editor, you can switch between these two
formats by using the New Image Type option on the Image menu.

Now here's the most important rule whenever you create a bitmap, a cursor, or an icon file you want
to use as a resource. Listen up.

In Visual C# .NET, when you select any bitmap, icon, or cursor file in Solution Explorer that is part of
a project, you'll see (or you can invoke) a Properties window for the file. Change the Build Action
property to Embedded Resource. That property instructs Visual C# .NET to embed the resource file
in the .exe file for the project. In the program, you load such a resource by using a Bitmap
constructor, a Cursor constructor, or an Icon constructor.

Let's look at an example with an icon resource. The project is called ProgramWithIcon, which means
that the program file is ProgramWithIcon.cs, which means that it contains a class named
ProgramWithIcon. Just to keep the rhythm going, I also named the icon file ProgramWithIcon.ico.
The icon image is a simple file cabinet. The program doesn't do much except load the icon and set
the form's Icon property.
ProgramWithIcon.cs
//--
// ProgramWithIcon.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ProgramWithIcon: Form
{
 public static void Main()
 {
 Application.Run(new ProgramWithIcon());
 }
 public ProgramWithIcon()
 {
 Text = "Program with Icon";

 Icon = new Icon(typeof(ProgramWithIcon),
 "ProgramWithIcon.ProgramWithIcon.ico");
 }
}

ProgramWithIcon.ico

Again, if you're re-creating this program yourself in Visual C# .NET, be sure to specify the Build
Action for the icon file as Embedded Resource.

To load the icon, use the following constructor of the Icon class:

Icon Constructors (selection)

Icon(Type type, string strResource)

Other Icon constructors let you load icons from files or streams. If an icon file or resource contains
multiple images, you can attempt to obtain an icon of a specific size based on an existing icon:

Icon Constructors (selection)

Icon(Icon icon, Size size)
Icon(Icon icon, int cx, int cy)

These constructors try to match the available icons with the size you specify. They won't stretch or
compress icons. You use the following properties of the Icon class to determine an icon's size:
Icon Properties (selection)

Type Property Accessibility

Size Size get

int Width get

int Height get

You can also use these methods of the Graphics class to draw the icon on your client area:

Graphics Methods (selection)

void DrawIcon(Icon icon, int x, int y)
void DrawIcon(Icon icon, Rectangle rect)
void DrawIconUnstretched(Icon icon, Rectangle rect)

What ProgramWithIcon does, however, is simply assign the return value of the Icon constructor to
the Icon property of the form. Notice the icon in the upper left corner of the form:

Now take a look at the Icon constructor in the program:
new Icon(typeof(ProgramWithIcon), "ProgramWithIcon.ProgramWithIcon.ico")

ProgramWithIcon occurs so often in this project and in this statement that it's hard to tell what refers
to what. Let's analyze the constructor in detail.

The first argument of the constructor refers to the ProgramWithIcon class. Within that typeof
operator, you can use the name of any class that your program defines. Or you can use the name of
any structure, enumeration, interface, or delegate that your program defines.

In any code in the ProgramWithIcon class, the expression
typeof(ProgramWithIcon)

is equivalent to
this.GetType()

or, more simply,
GetType()

This equivalence means that you can use the somewhat shorter constructor
new Icon(GetType(), "ProgramWithIcon.ProgramWithIcon.ico")

and the program still works the same.

The second argument to the Icon constructor is more or less a filename. If you named the icon file
MyIcon.ico, the Icon constructor would look like this:
new Icon(GetType(), "ProgramWithIcon.MyIcon.ico")

The first part of the quoted name is called a namespace, but it's a resource namespace. Don't
confuse it with the .NET Framework namespace. By default, Visual C# .NET gives this resource
namespace the same name as the project, but you can change it. It's the field labeled Default
Namespace in the Property Pages dialog box for the project. The name in that field must agree with
the first part of the quoted name in the Icon constructor. You can even set the Default Namespace
field to nothing, in which case the second argument to the Icon constructor is just the bare filename
new Icon(GetType(), "ProgramWithIcon.ico");

or MyIcon.ico or whatever you've named the file.

If you're running the C# compiler from the command line, you use the /res switch for each resource.
For example, if you use the compiler switch
/res:ProgramWithIcon.ico

you load the icon like so:
new Icon(GetType(), "ProgramWithIcon.ico")

Or you can give the icon an extended name following the filename and a comma:
/res:ProgramWithIcon.ico,ProgramWithIcon.ProgramWithIcon.ico

You then use the constructor
new Icon(GetType(), "ProgramWithIcon.ProgramWithIcon.ico")

to load the icon.

Here's a problem you might run into if you just use the default resource namespace name that Visual
C# .NET assigns to your project: Suppose you create a new project named ProgramWithIconPlus in
which the ProgramWithIconPlus class inherits from the ProgramWithIcon class. In the
ProgramWithIconPlus project, you create a new file named ProgramWithIconPlus.cs and you also
add a link to the existing ProgramWithIcon.cs file. But you decide not to create a new icon for the
new program. Instead, you create a link in the ProgramWithIconPlus project to the
ProgramWithIcon.ico file. The constructor in the ProgramWithIcon class continues to load the icon.

And what happens when the program tries to load the icon? It terminates with an exception. So
what's going on? The statement in the ProgramWithIcon constructor to load the icon looks like this:
Icon = new Icon(typeof(ProgramWithIcon),
 "ProgramWithIcon.ProgramWithIcon.ico");

But the default resource namespace for ProgramWithIconPlus is ProgramWithIconPlus, not
ProgramWithIcon. The simple solution? Change the Default Namespace field in the
ProgramWithIconPlus project to ProgramWithIcon. Or make all the Default Namespace fields blank
and use the naked filename in the constructor.

Loading a cursor is exactly the same as loading an icon. The Cursor constructor looks like this:

Cursor Constructors (selection)

Cursor(Type type, string strResource)

And I've already shown you this constructor for the Bitmap class:

Bitmap Constructors (selection)

Bitmap(Type type, string strResource)

And now we'll put the Bitmap constructor to use.
Animation
Windows Forms and GDI+ are missing a couple features that are usually considered important for
animation. In Chapter 8, I discussed how GDI+ doesn't support exclusive-OR (XOR) drawing. XOR
drawing lets you draw an image and then draw it again to erase what you drew. Another problem is
that Windows Forms doesn't allow any way to read pixels from the screen. When doing animation,
it's often useful to read a block of pixels from the screen as a bitmap, draw on it, and then write it
back to the screen.

Still, however, you can perform some rudimentary animation in a Windows Forms program. One
approach to animation is called frame animation and involves the successive display of identically
sized bitmaps, much like a movie. Here's a program that loads in four bitmaps as resources and then
uses a Timer event to display a winking eye.
Wink.cs
//------------- ---------------------
// Wink.cs © 2001 by Charles Petzold
//-----------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class Wink: Form
{
 protected Image[] aimage = new Image[4];
 protected int iImage = 0, iIncr = 1;

 public static void Main()
 {

 Application.Run(new Wink());
 }
 public Wink()
 {
 Text = "Wink";
 ResizeRedraw = true;
 BackColor = Color.White;

 for (int i = 0; i < 4; i++)
 aimage[i] = new Bitmap(GetType(),
 "Wink.Eye" + (i + 1) + ".png");
 Timer timer = new Timer();
 timer.Interval = 100;
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Enabled = true;
 }
 protected virtual void TimerOnTick(object obj, EventArgs ea)
 {
 Graphics grfx = CreateGraphics();

 grfx.DrawImage(aimage[iImage],
 (ClientSize.Width - aimage[iImage].Width) / 2,
 (ClientSize.Height - aimage[iImage].Height) / 2,
 aimage[iImage].Width, aimage[iImage].Height);
 grfx.Dispose();

 iImage += iIncr;

 if (iImage == 3)
 iIncr = -1;

 else if (iImage == 0)
 iIncr = 1;
 }
}
Eye1.png Eye2.png Eye3.png Eye4.png

Notice that the constructor loads in the four resources using the names Wink.Eye1.png,
Wink.Eye2.png, and so forth. The Wink part of the name is the resource namespace. The

TimerOnTick method uses DrawImage to display each image in the center of the client area. Here's
the program caught in action:

When doing animation, you should try to display images in their pixel size to avoid stretching or
compressing the image, which tends to sap the CPU.

Just for fun, I subclassed the Wink class in this program and used the RotateFlip method to make a
set of right eyes out of the left eyes.
DualWink.cs
//---------------------------------------
// DualWink.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class DualWink: Wink
{
 Image[] aimageRev = new Image[4];

 public new static void Main()
 {
 Application.Run(new DualWink());
 }
 public DualWink()
 {
 Text = "Dual " + Text;

 for(int i = 0; i < 4; i++)
 {
 aimageRev[i] = (Image) aimage[i].Clone();
 aimageRev[i].RotateFlip(RotateFlipType.RotateNoneFlipX);
 }

 }
 protected override void TimerOnTick(object obj, EventArgs ea)
 {
 Graphics grfx = CreateGraphics();

 grfx.DrawImage(aimage[iImage],
 ClientSize.Width / 2,
 (ClientSize.Height - aimage[iImage].Height) / 2,
 aimage[iImage].Width, aimage[iImage].Height);

 grfx.DrawImage(aimageRev[3 - iImage],
 ClientSize.Width / 2 - aimageRev[3 - iImage].Width,
 (ClientSize.Height - aimageRev[3 - iImage].Height) /
2,
 aimageRev[3 - iImage].Width,
 aimageRev[3 - iImage].Height);

 grfx.Dispose();

 iImage += iIncr;

 if (iImage == 3)
 iIncr = -1;

 else if (iImage == 0)
 iIncr = 1;
 }
}

This project also requires links to the four PNG files associated with the Wink program. And
remember my warning about inheriting from classes that load resources? In the DualWink project, I
had to change the resource namespace from DualWink to Wink.

And now, what you've all been waiting for: the bouncing ball program. The Bounce program basically
creates a square bitmap, draws a red ball on it, and then draws the bitmap in different places on the
client area, simulating a ball that bounces off the walls.
Bounce.cs
//-------------------------------------
// Bounce.cs © 2001 by Charles Petzold
//-------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class Bounce: Form
{
 const int iTimerInterval = 25; // In milliseconds
 const int iBallSize = 16; // As fraction of client area
 const int iMoveSize = 4; // As fraction of ball size

 Bitmap bitmap;
 int xCenter, yCenter;
 int cxRadius, cyRadius, cxMove, cyMove, cxTotal, cyTotal;

 public static void Main()
 {
 Application.Run(new Bounce());
 }
 public Bounce()
 {
 Text = "Bounce";
 ResizeRedraw = true;
 BackColor = Color.White;

 Timer timer = new Timer();
 timer.Interval = iTimerInterval;
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Start();

 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 Graphics grfx = CreateGraphics();
 grfx.Clear(BackColor);

 float fRadius = Math.Min(ClientSize.Width / grfx.DpiX,
 ClientSize.Height / grfx.DpiY)
 / iBallSize;

 cxRadius = (int) (fRadius * grfx.DpiX);
 cyRadius = (int) (fRadius * grfx.DpiY);

 grfx.Dispose();

 cxMove = Math.Max(1, cxRadius / iMoveSize);
 cyMove = Math.Max(1, cyRadius / iMoveSize);

 cxTotal = 2 * (cxRadius + cxMove);
 cyTotal = 2 * (cyRadius + cyMove);

 bitmap = new Bitmap(cxTotal, cyTotal);

 grfx = Graphics.FromImage(bitmap);
 grfx.Clear(BackColor);

 DrawBall(grfx, new Rectangle(cxMove, cyMove,
 2 * cxRadius, 2 * cyRadius));
 grfx.Dispose();

 xCenter = ClientSize.Width / 2;
 yCenter = ClientSize.Height / 2;
 }
 protected virtual void DrawBall(Graphics grfx, Rectangle rect)
 {
 grfx.FillEllipse(Brushes.Red, rect);
 }
 void TimerOnTick(object obj, EventArgs ea)
 {
 Graphics grfx = CreateGraphics();

 grfx.DrawImage(bitmap, xCenter - cxTotal / 2,
 yCenter - cyTotal / 2,
 cxTotal, cyTotal);
 grfx.Dispose();

 xCenter += cxMove;
 yCenter += cyMove;

 if ((xCenter + cxRadius >= ClientSize.Width) ||
 (xCenter - cxRadius <= 0))
 cxMove = -cxMove;

 if ((yCenter + cyRadius >= ClientSize.Height) ||

 (yCenter - cyRadius <= 0))
 cyMove = -cyMove;
 }
}

The big question, of course, is not how the ball is drawn on the client area but how the previous
image of the ball is erased—and whether the program manages to accomplish that feat without an
inordinate amount of flickering. The trick here is that the bitmap is actually larger than the ball, and
the extra margin around the ball is sufficient to erase the previous ball.

Bounce reconstructs the bitmap whenever the form gets a call to OnResize. The radius of the ball is
set to 1/16 of the width or height of the client area, whichever is less. But the program constructs a
bitmap that is larger than the ball. On each of its four sides, the bitmap extends beyond the ball's
dimensions by 1/4 of the radius. (You can change both these factors fairly easily.) The entire bitmap
is colored white, and then the ball is drawn. (I put the ball-drawing code in a protected virtual method
in hope that a future chapter will provide an override to draw a better-looking ball.)

The margins around the ball are stored as cxMove and cyMove. Not coincidentally, these two values
are precisely the amount of space that the bitmap is moved on every call to TimerOnTick.

Such a simple approach to animation can't work in the general case. Change the background of the
client area to anything but a solid color, and the whole technique falls apart.
The Image List
In Chapter 12, we'll begin working with controls, specifically buttons, labels, and scroll bars, and
soon after that, menus, list boxes, edit boxes, and others. You'll find that you can often use bitmaps
on the surface of controls instead of (or in addition to) text. At the furthest extreme, a toolbar control
that often appears below application menus is usually just a string of small bitmaps.

To help you deal with collections of images, the System.Windows.Forms namespace defines the
ImageList class. An image list is essentially just a flexible array of Image objects with the same size
and color format. You put images into an ImageList object (in a process I'll explain shortly) and
access them as if you were dealing with an array. The images that you put into the image list don't
have to be the same size when you put them in—but they will be scaled to the same size when you
extract them.

These are the crucial ImageList properties:
ImageList Properties (selection)

Type Property Accessibility

ImageList Properties (selection)

Type Property Accessibility

Size ImageSize get/set

ColorDepth ColorDepth get/set

Color TransparentColor get/set

ImageList.ImageCollection Images get

The default ImageSize property value is 16 pixels square, and it doesn't get changed automatically
when you start adding images to the image list. You'll probably need to set it yourself based on the
size of the Image objects you're dealing with, and possibly also based on the resolution of the video
display on which the program is running.

The ColorDepth property is a member of the ColorDepth enumeration:
ColorDepth Enumeration

Member Value

Depth4Bit 4

Depth8Bit 8

Depth16Bit 16

Depth24Bit 24

Depth32Bit 32

The default property is Depth8Bit, and you'll want to manually change this property based on the
images you're using. Fortunately, the ColorDepth enumeration is defined in a very rational manner,
so if you have an Image object (named image, for example) that you want to store in the image list,
you can obtain the pixel format, obtain the number of bits per pixel by using the static
Image.GetPixelFormatSize method, and cast that to a value of type ColorDepth:
imglst.ColorDepth = (ColorDepth)
Image.GetPixelFormatSize(image.PixelFormat);

I know that fourth property named Images looks scary because the type of this property is defined as
ImageList.ImageCollection. That long name only means that it's a class named ImageCollection
that's defined in the ImageList class. In an application, you'll never have to refer to the
ImageCollection class: you need only refer to the Images property to use properties and methods of
the ImageCollection class. The Images property is what stores all the images in the image list.

The functionality of the Images property shows up in a number of other classes in
System.Windows.Forms. In Chapter 12, you'll encounter a property of the Control class named
Controls that is of type Control.ControlCollection. In Chapter 14, you'll see a property of the Menu
class named MenuItems that is of type Menu.MenuItemCollection. All these properties work pretty
much the same. The types of the properties all implement the IList, ICollection, and IEnumerable
interfaces (defined in the System.Collections namespace), which allow these properties to work like
expandable arrays.

To create an object of type ImageList, you call the default constructor:
ImageList imglst = new ImageList();

You'll then want to set the ImageSize and ColorDepth properties. You add Image objects to the
image list by using one of the following methods:

ImageList.ImageCollection Methods (selection)

void Add(Image image)
void Add(Image image, Color clrTransparent)

void Add(Icon icon)
void AddStrip(Image image)

Because these methods are defined in the ImageList.ImageCollection class, you call them by using
the Images property of the ImageList object. It's actually a lot simpler than it sounds:
imglist.Images.Add(image);

As you add each image, it is assigned an index beginning at 0. The AddStrip method adds multiple
images, the number of which depends on the width of the image you pass to the method and the
width of the ImageSize property.

The number of images in an ImageList is indicated by the following property:
ImageList.ImageCollection Properties (selection)

Type Property Accessibility

int Count get

Use Count in an expression like this:
imglst.Images.Count

Most important, you can index the Images property as if it were an array. The expression
imglst.Images[2]

returns the third Image object in the image list. If the image list has fewer than three images, the
expression throws an exception. You can also replace an image in the image list by using indexing:
imglst.Images[3] = image;

However, if the image list doesn't already contain four images, the statement throws an exception.

You can also determine whether a particular image is in the image list, and you can obtain the index
of such an image:

ImageList.ImageCollection Methods (selection)

bool Contains(Image image)
int IndexOf(Image image)

For example, the expression
imglst.Images.IndexOf(image)

returns 2 if the object image is the third image in the image list, and −1 if it isn't in the image list at all.
You can also remove images from the image list, either individually or entirely:

ImageList.ImageCollection Methods (selection)

void RemoveAt(int index)
void Clear()

As you'll see in later chapters, you can use an ImageList object in conjunction with various controls,
most importantly with the ToolBar control. Used by itself, ImageList is also a convenient way to store
a number of images of the same size. The ImageList class provides the Draw method to draw these
images:

ImageList Draw Methods

void Draw(Graphics grfx, Point pt, int index)
void Draw(Graphics grfx, int x, int y, int index)
void Draw(Graphics grfx, int x, int y, int cx, int cy, int index)

Notice that the index of the image in the image list is given in the last argument. For example,
imglst.Draw(grfx, x, y, 1)

draws the second image in the image list.

Watch out for the coordinates you pass to the Draw methods: The coordinate point passed to the
first two Draw methods is in device units (pixels). The size of the image is based on the ImageSize
property of the ImageList object, again in device units. Neither the page transform nor the world
transform will affect these two methods! The use of device coordinates is intended to maximize
performance but results in the postage-stamp effect on the printer. In the third Draw method, both
the coordinate point and the width and height are in world coordinates.
The Picture Box
Another image-related control class is PictureBox. The PictureBox class is descended from Control
(and hence can process keyboard and mouse input), but usually the control does little more than
display an image. Here are the crucial PictureBox properties:
PictureBox Properties (selection)

Type Property Accessibility

Image Image get/set

BorderStyle BorderStyle get/set

PictureBoxSizeMode SizeMode get/set

The members of the BorderStyle enumeration govern the border displayed around the image:
BorderStyle Enumeration

Member Value

None 0

FixedSingle 1

Fixed3D 2

The default is None. PictureBoxSizeMode is an enumeration that indicates how the image is
displayed in the control:
PictureBoxSizeMode Enumeration

Member Value

Normal 0

StretchImage 1

AutoSize 2

CenterImage 3

The default is Normal. With PictureBox, as with other controls, you normally use the Location
property to set the location of the control relative to its parent and the Size property to set the width
and height of the control. If you specify a SizeMode of PictureBoxSizeMode.Normal or

PictureBoxSizeMode.CenterImage, the image is displayed in its pixel size (not metrical size) within
the picture box.

For PictureBoxSizeMode.Normal, the image is aligned with the top left of the control. If the control is
larger than the pixel size of the image, you'll see the control BackColor around the right and bottom
of the image. If the control is smaller than the image, part of the right and bottom of the image is
hidden.

For PictureBoxSizeMode.Centered, the image is centered within the control. But the image is still
displayed in its pixel size, so the image may be surrounded by a border, or the sides of the image
may be hidden, depending on the size of the image and the size of the control.

If you set the ClientSize property of the PictureBox control equal to the Size property of the Image
object, the control will be perfectly sized for the image. (The ClientSize property of the control
indicates the size within the border.) Or you can use PictureBoxSizeMode.AutoSize to make the
control size dependent on the Image size.

The PictureBoxSizeMode.StretchImage mode stretches the image to fit the size of the control. As
you may fear, however, the image will be distorted if the aspect ratio of the control doesn't match that
of the image.

So where's the PictureBoxSizeMode member that stretches the image isotropically? Alas, there isn't
one. I'm forced to correct that deficiency with a PictureBoxPlus control that overrides PictureBox and
adds a NoDistort property.
PictureBoxPlus.cs
//---
// PictureBoxPlus.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Petzold.ProgrammingWindowsWithCSharp
{
 class PictureBoxPlus: PictureBox
 {
 bool bNoDistort = false;

 public bool NoDistort
 {
 get { return bNoDistort; }
 set
 {
 bNoDistort = value;
 Invalidate();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 if ((Image != null) && NoDistort &&
 (SizeMode == PictureBoxSizeMode.StretchImage))
 ScaleImageIsotropically(pea.Graphics, Image,

 ClientRectangle);
 else
 base.OnPaint(pea);
 }
 void ScaleImageIsotropically(Graphics grfx, Image image,
 Rectangle rect)
 {
 SizeF sizef =
 new SizeF(image.Width / image.HorizontalResolution,
 image.Height / image.VerticalResolution);

 float fScale = Math.Min(rect.Width / sizef.Width,
 rect.Height / sizef.Height);

 sizef.Width *= fScale;
 sizef.Height *= fScale;

 grfx.DrawImage(image,
 rect.X + (rect.Width - sizef.Width) / 2,
 rect.Y + (rect.Height - sizef.Height) / 2,
 sizef.Width, sizef.Height);
 }
 }
}

Only if SizeMode is PictureBoxSizeMode.StretchImage and the NoDistort property is true will this
control display the image using the trusty ScaleImageIsotropically method. Otherwise, the control
calls the OnPaint method in the base class.

Here's a program that tests the PictureBoxPlus control by using the control's Dock property to make
the control fill the form's client area. The program is functionally similar to the ImageScaleIsotropic
program.
PictureBoxPlusDemo.cs
//---
// PictureBoxPlusDemo.cs © 2001 by Charles Petzold
//---
using Petzold.ProgrammingWindowsWithCSharp;
using System;
using System.Drawing;
using System.Windows.Forms;

class PictureBoxPlusDemo: Form
{
 public static void Main()
 {
 Application.Run(new PictureBoxPlusDemo());
 }
 public PictureBoxPlusDemo()

 {
 Text = "PictureBoxPlus Demo";

 PictureBoxPlus picbox = new PictureBoxPlus();
 picbox.Parent = this;
 picbox.Dock = DockStyle.Fill;
 picbox.Image =
Image.FromFile("..\\..\\..\\Apollo11FullColor.jpg");
 picbox.SizeMode = PictureBoxSizeMode.StretchImage;
 picbox.NoDistort = true;
 }
}

Chapter 12: Buttons and Labels and Scrolls (Oh
My!)
Overview
Much of the ease of use of Microsoft Windows and other graphical user interfaces results from the
employment of familiar and consistent visual objects. Scroll bars, menus, push buttons, radio
buttons, check boxes, text-entry fields, list boxes—these are all examples of controls. Controls are to
the graphical user interface what subroutines are to programming languages. Controls let you
structure and modularize your applications by off-loading low-level keyboard and mouse processing.

In the early days of Windows, controls were often referred to as child windows. With the exception of
menus and scroll bars, controls appeared mostly in dialog boxes. Although it was possible to put
controls on an application's main window, doing so was considered unusual and was rarely done. It
wasn't until the 1991 introduction of Microsoft Visual Basic that a different Windows programming
paradigm was introduced. Using Visual Basic, programmers could interactively assemble a collection
of controls on the main window of an application and then write code associated with these controls.
This style of programming has proved useful for developing front ends for distributed applications
and is also a natural for many other "front panel" types of applications (such as the Windows CD
Player).

I've already shown several examples of controls in this book. I used a Panel control in Chapter 4, a
Label control in Chapter 8, and—what was once considered a relatively advanced topic in Windows
programming—custom controls in Chapters 8 and 10. It's now time to begin more systematically
exploring the numerous predefined controls available in the .NET Framework.
Buttons and Clicks
Perhaps the archetypal control is the push button—that ubiquitous rectangular object often labeled
OK, Cancel, Open, or Save. Push buttons (often referred to as command buttons) are intended to
trigger an immediate action without retaining any sort of on/off indication. You press a push button by
clicking it with the mouse or—if it has the input focus—by pressing the spacebar. Even if a button
doesn't have the input focus, you can sometimes trigger it by pressing Enter or Esc. I'll discuss the
use of the Enter key later in this chapter and talk more about both Enter and Esc in Chapter 16.

The push button is implemented by the Button class, which is one of three classes that are
descended from the abstract class ButtonBase:

We'll examine the CheckBox and RadioButton classes later in this chapter.

In a Windows Forms program, you create a push button control by creating an object of type Button.
By installing an event handler for the button's Click event, you can have the button notify a form
when the button has been pressed. Here's a program that creates a single button. When you click
the button, the form briefly displays some text.
SimpleButton.cs

//---
// SimpleButton.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SimpleButton: Form
{
 public static void Main()
 {
 Application.Run(new SimpleButton());
 }
 public SimpleButton()
 {
 Text = "Simple Button";

 Button btn = new Button();
 btn.Parent = this;
 btn.Text = "Click Me!";
 btn.Location = new Point(100, 100);
 btn.Click += new EventHandler(ButtonOnClick);
 }
 void ButtonOnClick(object obj, EventArgs ea)
 {
 Graphics grfx = CreateGraphics();
 Point ptText = Point.Empty;
 string str = "Button clicked!";

 grfx.DrawString(str, Font, new SolidBrush(ForeColor), ptText);
 System.Threading.Thread.Sleep(250);
 grfx.FillRectangle(new SolidBrush(BackColor),
 new RectangleF(ptText, grfx.MeasureString(str, Font)));

 grfx.Dispose();
 }
}

After setting its own caption bar text, the form's constructor begins by creating an object of type
Button:
Button btn = new Button();

The Button class has only a default constructor.

The next task is something I frequently forget to do, so I've tried to train myself to do it as quickly as
possible after creating the control. You must assign the control a parent, and one way to do that is to
set the Parent property of the control:
btn.Parent = this;

The keyword this refers to the current object, which in this case is the form—the object of type
SimpleButton that was created in the Main method. The button is made a child of the form.

Parents and children seem to abound in programming. There are parent and child processes, parent
and child directories, and parent and child classes, to name a few examples. You might even
conclude that the parent-child relationship is the primary metaphor of operating systems and
programming languages. Controls must have parents too! A control without a parent isn't visible.
When you set the Parent property of a control, you are actually mandating the following relationship
between the parent and the control:
§ The child control appears on the surface of its parent. Furthermore, the control is clipped to the

surface of its parent, meaning that no part of the control can appear outside the surface of its
parent.

§ The child's location is specified relative to the upper left corner of the parent's client area.
§ The child initially inherits some properties of its parent, specifically the Font, ForeColor, and

BackColor properties.

Back to the SimpleButton program. The next statement in the constructor assigns some text to the
button's Text property:
btn.Text = "Click Me!";

That is the text that will appear on the surface of the button. The next statement,
btn.Location = new Point(100, 100);

indicates where the upper left corner of the button is to appear relative to the upper left corner of the
parent's client area. For the SimpleButton program, I just guessed at a coordinate point that I figured
would be close to the center of the client area when the program started up. I'll get more precise with
coordinates later on. All the location and size properties listed in Chapter 3 (page 104) are
implemented in Control. For any descendent of Control other than Form, ClientSize is usually the
same as Size.

Speaking of size, you might have noticed that I haven't specified a size for the button. That's
because I'm hoping that the button will be created with a default size that will be suitable for our
purposes. And if it isn't, getting a button with an inappropriate size will be an important lesson for us.

Finally, the form installs an event handler for the button's Click event:
btn.Click += new EventHandler(ButtonOnClick);

The button generates a Click event when it is clicked with the mouse or—if it has the input focus—
when the spacebar is pressed. Because we'll be installing many event handlers in the chapters
ahead, I'll be using a standard naming scheme. The name of the event handler will consist of the
object type (in this case Button), perhaps another descriptive word if the class has more than one
handler of a particular event of a particular object type, the word On, and the name of the event, in
this case Click.

The ButtonOnClick method must be defined in accordance with the EventHandler delegate. The
method has two arguments:
void ButtonOnClick(object obj, EventArgs ea)
{

}

In the SimpleButton program, the ButtonOnClick event simply displays a line of text in the upper left
corner of the client area and then erases it 1/4 second later.

Keep in mind that despite the fact that ButtonOnClick handles Click events from the button, the event
handler is still a method of the SimpleButton class. For example, when the ButtonOnClick method
calls CreateGraphics, it's obtaining a Graphics object that pertains to the form, not to the button. If
the ButtonOnClick method wants to access a property or method of the button, it can cast the object
argument like so:
Button btn = (Button) obj;

Or the Button object could be stored as a field in the SimpleButton class.

It's also important not to confuse the method I've called ButtonOnClick with the normal OnClick
method. If the SimpleButton program overrides the OnClick method, that method would get click
events for the form, not for the button. When you click the button, the ButtonOnClick method is
called. When you click anywhere else in the client area, the OnClick method is called.

Here's how the SimpleButton program comes up:

You can trigger the push button (and cause the ButtonOnClick method to display the text) by using
the mouse or by pressing the spacebar or the Enter key.
Keyboard and Mouse
I've already alluded to how the SimpleButton form and the push button respond to mouse input:
When the mouse cursor is positioned over the push button, the button gets the mouse events. When
the mouse cursor is otherwise positioned over the client area of the form, the form gets the mouse
events. (But don't forget about mouse capturing: if you press the mouse button over the push button,
the push button captures the mouse and continues to receive all mouse events until the mouse
button is released or the push button loses the mouse capture.)

With regard to keyboard input, the difference between SimpleButton and most of the previous
programs in this book is much more extreme: whenever the SimpleButton program is the active
window, the button has the input focus. That means that the form gets no keyboard input.

You may want to verify this fact for yourself. If you were to include OnKeyDown, OnKeyUp, and
OnKeyPress overrides in the SimpleControl class, they would reveal that the form itself gets no
keystroke events. You could also install KeyDown, KeyUp, and KeyPress event handlers for the
button. You'd need to add methods to the SimpleButton class that look like this:
void ButtonOnKeyDown(object obj, KeyEventArgs kea)
{

}

You'd also need to install event handlers for the button, like so:
btn.KeyDown += new KeyEventHandler(ButtonOnKeyDown);

If you were to install keyboard event handlers for the button, you'd find that when SimpleButton is the
active program, most of the keystrokes go to the button. The button itself ignores most of these
events except when the spacebar is pressed.

I said that the button gets most of the keystrokes. There are a few keystrokes that neither the form
nor the button control see at all. The missing keyboard events are the KeyDown events for the Enter
key, the Tab key, and the arrow keys (up, down, left, and right), and the KeyPress events for the
Enter and Tab keys.

It's no coincidence that the Tab key and the arrow keys constitute the normal keyboard interface for
navigating among controls in Windows dialog boxes and that the Enter key is normally used for
triggering the default push button. These missing keystrokes are consumed in code implemented in
the ContainerControl class. You might recall that ContainerControl is one of the ancestors of Form.
ContainerControl is the class responsible for implementing focus management among child controls.
For this reason, a class such as Form that is responsible for maintaining a collection of controls is
often called a container of the controls.

A control gets keyboard and mouse input only if it is both visible and enabled, which means that both
the Visible and Enabled properties are set to true:
Control Properties (selection)

Type Property Accessibility

bool Visible get/set

bool Enabled get/set

Both properties are true by default. If you set the Visible property to false, the control disappears
from view and doesn't receive keyboard or mouse input. If the control is on a form, the mouse input
that would have gone to the control goes to the form instead, just as if the control weren't there. If the
nonvisible control is the only control on the form, keyboard input goes to the form as usual.

If you set the Enabled property of a control to false, the control is still visible but it doesn't respond to
keyboard or mouse input. Often a control indicates that it's disabled by displaying text in a faint gray
color.
Control Issues
Although SimpleButton may appear to be quite a simple program, I'm actually doing something very
controversial in it. In fact, some people might look at such a program and shake their heads in
exasperation. Can you believe that? What is it I'm doing that could possibly be so bad?

I'm coding.

As you may know, Visual C# .NET includes the Windows Forms Designer, which lets you
interactively design your form by selecting and positioning controls, and then writing code associated
with each control. The Windows Forms Designer generates code in your .cs file that creates these
controls and sets their properties. The advantage of the Windows Forms Designer is obvious: you
get to move the controls around to an aesthetically pleasing configuration without getting involved in
the actual numbers that specify their location and size.

In this book, however, for the most part I'm going to pretend that the Windows Forms Designer
doesn't exist. All my controls will be manually coded. There are some definite advantages to
manually coding the locations and sizes of controls: You can use const values. You can use
variables. You can use arrays. You can use for loops. In the pages ahead, I'll demonstrate these
options.

More important, however, is that the Windows Forms Designer will take you only so far. At some
point, you'll need to write code, and you'll probably also need to understand the code that the
Windows Forms Designer is generating.

Don't misunderstand me. There's nothing wrong with using the Windows Forms Designer. But there
is something wrong with not being able to code the controls yourself.
Deeper into Buttons
I didn't set the Size property of the Button object I created in the SimpleButton program, and nothing
bad seemed to happen. On my machine, and probably on yours too, the button came out

approximately the correct size. However, if your display settings include a font much larger than
Large Fonts, it's possible that some of the button text was clipped. And that's no good.

When you decorate a form with controls, your primary design criteria must be to make it usable.
Usability involves a number of factors. The controls shouldn't be too crowded, for example. They
should be logically ordered. It helps if the form is aesthetically attractive in some way. But above all,
control text can't be clipped! A user might figure out that "Cance" is really "Cancel," but it doesn't
reflect well on you, the programmer.

You can size controls in a couple ways, which I'll be explaining in this chapter. Your experience with
creating device-independent graphics involving text will certainly help in this regard. But sizing
controls involves some intangibles as well. For example, if you set the height of a push button to the
font height, the text will be clipped anyway because of the button border. The border of a push
button is 4 pixels wide, but this information isn't available anywhere, and the size might be different
in extreme device resolutions.

So how tall should a push button be? Traditionally, a height of 7/4 (or 175 percent) of the font height
has been recommended. The next program in this chapter uses twice the font height, and those
buttons certainly don't look too large. Testing your programs with different display resolutions is
essential.

You'll have additional problems if you decide to translate your application to other languages.
Translation affects the width of text strings, and some languages tend to be a little wordier than
others.

The following program has two push buttons to demonstrate button sizing. One button makes the
form 10 percent larger; the other makes it 10 percent smaller (within limits imposed by Windows).
The buttons remain positioned in the center of the client area.
TwoButtons.cs
//---
// TwoButtons.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class TwoButtons: Form
{
 readonly Button btnLarger, btnSmaller;
 readonly int cxBtn, cyBtn, dxBtn;

 public static void Main()
 {
 Application.Run(new TwoButtons());
 }
 public TwoButtons()
 {
 Text = "Two Buttons";
 ResizeRedraw = true;

 cxBtn = 5 * Font.Height;
 cyBtn = 2 * Font.Height;
 dxBtn = Font.Height;

 btnLarger = new Button();
 btnLarger.Parent = this;
 btnLarger.Text = "&Larger";
 btnLarger.Size = new Size(cxBtn, cyBtn);
 btnLarger.Click += new EventHandler(ButtonOnClick);

 btnSmaller = new Button();
 btnSmaller.Parent = this;
 btnSmaller.Text = "&Smaller";
 btnSmaller.Size = new Size(cxBtn, cyBtn);
 btnSmaller.Click += new EventHandler(ButtonOnClick);

 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 btnLarger.Location =
 new Point(ClientSize.Width / 2 - cxBtn - dxBtn /
2,
 (ClientSize.Height - cyBtn) / 2);
 btnSmaller.Location =
 new Point(ClientSize.Width / 2 + dxBtn / 2,
 (ClientSize.Height - cyBtn) / 2);
 }
 void ButtonOnClick(object obj, EventArgs ea)
 {
 Button btn = (Button) obj;

 if (btn == btnLarger)
 {
 Left -= (int)(0.05 * Width);
 Top -= (int)(0.05 * Height);
 Width += (int)(0.10 * Width);
 Height += (int)(0.10 * Height);
 }
 else
 {
 Left += (int)(Width / 22f);
 Top += (int)(Height / 22f);
 Width -= (int)(Width / 11f);
 Height -= (int)(Height / 11f);
 }
 }

}

The constructor calculates three values that it stores in fields: cxBtn and cyBtn indicate the width and
height of each button, and dxBtn is the distance between the two buttons. All three values are based
on the Height property of the form's Font property. Because controls inherit the Font property of their
parents, the size of the font is applicable to the buttons as well. The buttons are made twice as high
as the font height, and five times as wide. (I chose five times because it seemed to work right for this
program; I'll discuss other approaches later in this chapter.) The constructor sets only the size of
each button, not its location.

Because the location of each button depends on the size of the client area, the button location isn't
set until the OnResize method, which is called for the first time from the last statement of the
constructor.

The text of each button begins with an ampersand to indicate that the following letter should be
underlined. The underlined letter functions as a keyboard accelerator. When the program runs, you'll
have to momentarily press the Alt key to bring the underlines into view:

You can navigate between the buttons by using the Tab key or any of the four arrow keys. As you
switch between the buttons, the dotted line just inside the button indicates the button that has the
input focus. When a button has the input focus, all keystrokes (except the navigational keystrokes)
go to that button. The button with the input focus generates a Click event when you press the
spacebar.

The heavy outline indicates which button is the default button. The default button is the one that
responds to pressing the Enter key. The difference between the button with the input focus and the
default button may be a bit confusing. In this program, they are always the same button. As we begin
working with other controls, however, the difference will become more apparent. Yes, the push
button with the input focus is always the default button. However, if another type of control has the
input focus, there can also be a default push button that will respond to the Enter key. In a dialog
box, the button labeled OK or Open or Save is usually the default button. That button is triggered
when a nonbutton control has the input focus and Enter is pressed. In addition, the button labeled
Cancel is usually the cancel button, which is triggered when the Esc key is pressed. I'll explore these
issues more in Chapter 16.

You can also trigger a button by pressing the underlined letter: L for Larger or S for Smaller. The
button responds with a Click event, but the input focus doesn't change.

The ButtonOnClick method begins by casting the object argument to an object of type Button. The
method can then determine what to do by comparing that object with the btnLarger and btnSmaller
objects that the constructor saved as fields. Depending on which button was pressed, the method
responds by increasing or decreasing the size of the window by 10 percent and also by moving the
window 5 percent so that it stays in the same location on the screen.

Changing the size of the window generates a call to the OnResize method, which responds by
moving the buttons to the new center of the client area. I could have set the location during the Click
event after recalculating the client size, but that would prevent the program from relocating the
buttons when the user manually resizes the window.

Is it normal for a program to reposition controls based on the size of the client area? No, it's not. But
it's an option that becomes apparent only when you break out of the walls in which the Windows
Forms Designer imprisons you. This is why we write code to begin with: to be flexible.
Appearance and Alignment
By default, buttons (and other controls) inherit their Font, ForeColor, and BackColor properties from
their parent. If your program creates some child controls and then changes the font, foreground
color, or background color of the form, the child controls will also reflect these changes. For example,
in the TwoButtons program, you could insert the statement
BackColor = Color.Blue;

anywhere in the form's constructor, or even in the ButtonOnClick method. This statement will turn the
form's background blue, and the buttons will also inherit a blue background.

But you can also set the Font, ForeColor, or BackColor property of one of the buttons, for example,
btnSmaller.BackColor = Color.Red;

Once that statement is executed, the background color of the btnSmaller button will be set to red.
(You can set either the ForeColor or the BackColor property to Color.Transparent or another
transparent or partially transparent color.) Now what happens if the statement
BackColor = Color.Magenta;

is executed? The form's background changes to magenta and the btnLarger button background
changes to magenta, but the btnSmaller button background remains red.

How does that work? The control actually keeps track of which property the program has set and
won't override that property when the corresponding property of the parent changes. The following
methods restore the control to its default state, that is, inheriting these properties from its parent:

Control Methods (selection)

void ResetFont()
void ResetForeColor()
void ResetBackColor()

The TextAlign property defined in the ButtonBase class determines how the text is oriented within
the button:
ButtonBase Properties (selection)

Type Property Accessibility

ContentAlignment TextAlign get/set

You set the property to one of the ContentAlignment enumeration values. Oddly enough,
ContentAlignment is defined in the System.Drawing namespace but isn't used in conjunction with
any class in that namespace.
ContentAlignment Enumeration

Member Value

TopLeft 0x0001

TopCenter 0x0002

ContentAlignment Enumeration

Member Value

TopRight 0x0004

MiddleLeft 0x0010

MiddleCenter 0x0020

MiddleRight 0x0040

BottomLeft 0x0100

BottomCenter 0x0200

BottomRight 0x0400

Although these values appear to be bit flags, that idiosyncrasy is a legacy from a prerelease version
of Windows Forms. Do not combine ContentAlignment values! The default TextAlign value for push
buttons is MiddleCenter, which doesn't become apparent unless the button is somewhat larger than
the text inside.

The ButtonBase class includes another property that affects the button's appearance:
ButtonBase Properties (selection)

Type Property Accessibility

FlatStyle FlatStyle get/set

FlatStyle is an enumeration defined in the System.Windows.Forms namespace:
FlatStyle Enumeration

Member Value Description

Flat 0 Flat rather than 3D

Popup 1 3D effect on mouse hovering

Standard 2 Normal 3D appearance

System 3 Operating system standard

The default is FlatStyle.Standard.

Here's a program that displays push buttons in all four styles. Notice how the program uses the static
Enum.GetValues method for obtaining an array of all the FlatStyle values. The program uses each
enumeration value to assign both the FlatStyle and Text properties of the buttons.
ButtonStyles.cs
//---
// ButtonStyles.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class ButtonStyles: Form
{
 public static void Main()
 {
 Application.Run(new ButtonStyles());

 }
 public ButtonStyles()
 {
 Text = "Button Styles";

 int y = 0;

 foreach (FlatStyle fs in Enum.GetValues(typeof(FlatStyle)))
 {
 Button btn = new Button();
 btn.Parent = this;
 btn.FlatStyle = fs;
 btn.Text = fs.ToString();
 btn.Location = new Point(50, y += 50);
 }
 }
}

Here's what the four styles look like:

The Standard style is the same as System, but in this screen shot, the button labeled Standard has
the input focus and is thus the default button.
Buttons with Bitmaps
Although you can set custom fonts and colors in your buttons, you may want to go to greater
extremes in presenting a unique visual interface to your users. You can put a graphical image on
your buttons in two ways. The first involves four properties of the ButtonBase class:
ButtonBase Properties (selection)

Type Property Accessibility

Image Image get/set

ImageList ImageList get/set

int ImageIndex get/set

ButtonBase Properties (selection)

Type Property Accessibility

ContentAlignment ImageAlign get/set

These properties let you specify a bitmap image to be displayed in the background of the button.
Either you set the Image property to a specific Image or Bitmap object, or you set ImageList to an
ImageList object and ImageIndex to an index within that list. The default ImageAlign property is
ContentAlignment.MiddleButton.

You can obtain these images in whatever manner is convenient—resources, files, or fabricated right
in the program. You should set the width and height of the button equal to the width and height of the
bitmap plus 8 (4 pixels for each border).

Although it's most common for a program to use a bitmap as an alternative to text, the two aren't
mutually exclusive. If you also set the Text property, the text is displayed on top of the image.

Here's a version of the TwoButtons program that loads a couple 64-pixel-square images stored as
resources for symbolizing the functionality of the buttons.
BitmapButtons.cs
//--
// BitmapButtons.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BitmapButtons: Form
{
 readonly int cxBtn, cyBtn, dxBtn;
 readonly Button btnLarger, btnSmaller;

 public static void Main()
 {
 Application.Run(new BitmapButtons());
 }
 public BitmapButtons()
 {
 Text = "Bitmap Buttons";
 ResizeRedraw = true;

 dxBtn = Font.Height;

 // Create first button.

 btnLarger = new Button();
 btnLarger.Parent = this;
 btnLarger.Image = new Bitmap(GetType(),
 "BitmapButtons.LargerButton.bmp") ;

 // Calculate button dimensions based on image dimensions.

 cxBtn = btnLarger.Image.Width + 8;
 cyBtn = btnLarger.Image.Height + 8;

 btnLarger.Size = new Size(cxBtn, cyBtn);
 btnLarger.Click += new EventHandler(ButtonLargerOnClick);

 // Create second button.

 btnSmaller = new Button();
 btnSmaller.Parent = this;
 btnSmaller.Image = new Bitmap(GetType(),
 "BitmapButtons.SmallerButton.bmp");
 btnSmaller.Size = new Size(cxBtn, cyBtn);
 btnSmaller.Click += new EventHandler(ButtonSmallerOnClick);

 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 btnLarger.Location =
 new Point(ClientSize.Width / 2 - cxBtn - dxBtn /
2,
 (ClientSize.Height - cyBtn) / 2);
 btnSmaller.Location =
 new Point(ClientSize.Width / 2 + dxBtn / 2,
 (ClientSize.Height - cyBtn) / 2);
 }
 void ButtonLargerOnClick(object obj, EventArgs ea)
 {
 Left -= (int)(0.05 * Width);
 Top -= (int)(0.05 * Height);
 Width += (int)(0.10 * Width);
 Height += (int)(0.10 * Height);
 }
 void ButtonSmallerOnClick(object obj, EventArgs ea)
 {
 Left += (int)(Width / 22f);
 Top += (int)(Height / 22f);
 Width -= (int)(Width / 11f);
 Height -= (int)(Height / 11f);
 }
}

LargerButton.bmp

SmallerButton.bmp

The program calculates the cxBtn and cyBtn dimensions based on the size of the bitmap image plus
8. After creating each button, the constructor loads bitmap resources and sets the Image property of
the button. Here's what the buttons look like:

Multiple Handlers or One?
In the TwoButtons program, I have a single method that handles the Click events from both buttons.
In the BitmapButtons program, I use two separate event handlers. As you begin developing forms
and dialog boxes with many controls, you'll undoubtedly ponder which approach is best: to have one
event handler for a collection of controls or to separate event handlers for each control.

Neither approach is entirely right or wrong. You'll probably write neater and more maintainable code
if you have separate handlers for each control. However, if event handlers for several controls must
share some code, it's probably best to consolidate those handlers into one.
Drawing Your Own Buttons
Specifying a bitmap image in a button isn't the only approach to displaying custom buttons. You can
also take over button painting entirely by installing an event handler for the button's Paint event. This
approach is sometimes called owner draw: your program is the owner of the button and it—rather
than the buttons—does the drawing.

Owner-draw isn't quite as easy as using a bitmap, but it's probably a better approach if you're using
simple vector drawing for the image, merely because vector drawing scales better.

What helps in creating owner-draw buttons is that you don't have to draw every single little thing. The
System.Windows.Forms namespace contains a class named ControlPaint that includes a bunch of

static methods for drawing various pieces of common controls. For drawing push buttons, for
example, the following two overloaded methods are useful:

ControlPaint Static Methods (selection)

void DrawButton(Graphics grfx, int x, int y, int cx, int cy, ButtonState
bs)
void DrawButton(Graphics grfx, Rectangle rect, ButtonState bs)
void DrawFocusRectangle(Graphics grfx, Rectangle rect)
void DrawFocusRectangle(Graphics grfx, Rectangle rect, Color clr, Color
clr)

The DrawButton method really just draws the border around the button. The ButtonState
enumeration is a collection of bit flags that governs the appearance of the button:
ButtonState Enumeration

Member Value

Normal 0x0000

Inactive 0x0100

Pushed 0x0200

Checked 0x0400

Flat 0x4000

All 0x4700

I use both these methods in the OwnerDrawButtons program.
OwnerDrawButtons.cs
//---
// OwnerDrawButtons.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class OwnerDrawButtons: Form
{
 readonly int cxImage, cyImage;
 readonly int cxBtn, cyBtn, dxBtn;
 readonly Button btnLarger, btnSmaller;

 public static void Main()
 {
 Application.Run(new OwnerDrawButtons());
 }
 public OwnerDrawButtons()
 {

 Text = "Owner-Draw Buttons";
 ResizeRedraw = true;

 cxImage = 4 * Font.Height;
 cyImage = 4 * Font.Height;
 cxBtn = cxImage + 8;
 cyBtn = cyImage + 8;
 dxBtn = Font.Height;

 btnLarger = new Button();
 btnLarger.Parent = this;
 btnLarger.Size = new Size(cxBtn, cyBtn);
 btnLarger.Click += new EventHandler(ButtonLargerOnClick);
 btnLarger.Paint += new PaintEventHandler(ButtonOnPaint);

 btnSmaller = new Button();
 btnSmaller.Parent = this;
 btnSmaller.Size = new Size(cxBtn, cyBtn);
 btnSmaller.Click += new EventHandler(ButtonSmallerOnClick);
 btnSmaller.Paint += new PaintEventHandler(ButtonOnPaint);

 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 btnLarger.Location =
 new Point(ClientSize.Width / 2 - cxBtn - dxBtn /
2,
 (ClientSize.Height - cyBtn) / 2);
 btnSmaller.Location =
 new Point(ClientSize.Width / 2 + dxBtn / 2,
 (ClientSize.Height - cyBtn) / 2);
 }
 void ButtonLargerOnClick(object obj, EventArgs ea)
 {
 Left -= (int)(0.05 * Width);
 Top -= (int)(0.05 * Height);
 Width += (int)(0.10 * Width);
 Height += (int)(0.10 * Height);
 }
 void ButtonSmallerOnClick(object obj, EventArgs ea)
 {
 Left += (int)(Width / 22f);
 Top += (int)(Height / 22f);

 Width -= (int)(Width / 11f);
 Height -= (int)(Height / 11f);
 }
 void ButtonOnPaint(object obj, PaintEventArgs pea)
 {
 Button btn = (Button) obj;
 Graphics grfx = pea.Graphics;

 ControlPaint.DrawButton(grfx, 0, 0, cxBtn, cyBtn,
 (btn == (Button) GetChildAtPoint(
 PointToClient(
 MousePosition))) &&
 btn.Capture ? ButtonState.Pushed :
ButtonState.Normal);

 GraphicsState grfxstate = grfx.Save();

 grfx.TranslateTransform((cxBtn - cxImage) / 2,
 (cyBtn - cyImage) / 2);
 if (btn == btnLarger)
 DrawLargerButton(grfx, cxImage, cyImage);
 else
 DrawSmallerButton(grfx, cxImage, cyImage);

 grfx.Restore(grfxstate);

 if (btn.Focused)
 ControlPaint.DrawFocusRectangle(grfx,
 new Rectangle((cxBtn - cxImage) / 2 + cxImage / 16,
 (cyBtn - cyImage) / 2 + cyImage / 16,
 7 * cxImage / 8, 7 * cyImage / 8));
 }
 void DrawLargerButton(Graphics grfx, int cx, int cy)
 {
 Brush brush = new SolidBrush(btnLarger.ForeColor);
 Pen pen = new Pen(btnLarger.ForeColor);

 grfx.TranslateTransform(cx / 2, cy / 2);

 for (int i = 0; i < 4; i++)
 {
 grfx.DrawLine(pen, 0, 0, cx / 4, 0);
 grfx.FillPolygon(brush, new Point[] {
 new Point(cx / 4, -cy / 8),
 new Point(cx / 2, 0),
 new Point(cx / 4, cy / 8)});

 grfx.RotateTransform(90);
 }
 }
 void DrawSmallerButton(Graphics grfx, int cx, int cy)
 {
 Brush brush = new SolidBrush(btnSmaller.ForeColor);
 Pen pen = new Pen(btnSmaller.ForeColor);

 grfx.TranslateTransform(cx / 2, cy / 2);

 for (int i = 0; i < 4; i++)
 {
 grfx.DrawLine(pen, 3 * cx / 8, 0, cx / 2, 0);
 grfx.FillPolygon(brush, new Point[] {
 new Point(3 * cx / 8, -cy / 8),
 new Point(cx / 8, 0),
 new Point(3 * cx / 8, cy / 8)});
 grfx.RotateTransform(90);
 }
 }
}

For both buttons, I install a Paint event handler named ButtonOnPaint. The event handler begins by
calling DrawButton. That long expression in the middle of the method call determines whether the
flag passed as the last argument to the method should be ButtonState.Normal or
ButtonState.Pushed. If you examine a normal push button, you'll find that the button switches to a
pushed appearance when you press the mouse button over the button. The push button retains that
appearance until you release the mouse button or you move the mouse cursor away from the button.
If you move the mouse cursor back over the push button with the mouse button still pressed, the
push button changes back to the pressed state. The logic I chose checks that the button's Capture
property is true and that the mouse cursor position is over the control. It works!

That takes care of the border around the button. The program next makes use of the
DrawLargerButton and DrawSmallerButton methods to draw the interiors. Before calling these
methods, however, the program calls TranslateTransform to shift the graphics origin to the area
inside the border. I bracket the graphics transform calls with calls to the Graphics object's Save and
Restore methods so that they won't interfere with the call to DrawFocusRectangle.

The DrawLargerButton and DrawSmallerButton methods draw the interiors. Notice that these
methods begin by setting the origin to the center of the image and then draw the same image four
times, each time rotating 90 degrees. (I actually used these same two methods to create the bitmaps
I used in the BitmapButtons program.)

The ButtonOnPaint processing concludes with a call to DrawFocusRectangle if the button has the
keyboard input focus. This method draws the standard rectangular dotted line.

Dropping Anchor
All the variations of the TwoButtons program shown so far have moved the two buttons to the center
of the client area whenever the client area is resized. There are times when it would surely be
convenient for controls to be dynamically positioned or resized depending on the size of the client
area, but you'd prefer not to handle the OnResize code yourself. You're in luck, for Windows Forms
supports two control properties that dynamically move (and even resize) controls. These properties
are called Anchor and Dock:
Control Properties (selection)

Type Property Accessibility

AnchorStyles Anchor get/set

DockStyle Dock get/set

It's very easy to confuse these two properties! They are similar in some respects, and the
AnchorStyles and DockStyle enumerations are just about identical. But the effects of the two
properties are quite different. (Except when they're the same.)

Here's the AnchorStyles enumeration:
AnchorStyles Enumeration

Member Value

None 0

Top 1

Bottom 2

Left 4

Right 8

Notice that the values are single bits. You can combine the AnchorStyles enumeration values with
the C# bitwise OR operator.

You set the Anchor style for a control, not for a form. When you resize the form, the Anchor property
determines which side or sides of the form the control remains the same distance from.

The default Anchor property is not AnchorStyle.None! The default is the value 5, which can be
expressed as
AnchorStyles.Left | AnchorStyles.Top

The default Anchor property means that when you resize a form, the controls remain the same
distance from the left and top sides of the form, which is, of course, the behavior we normally expect.

Let's see if we can rewrite the TwoButtons program to take advantage of the Anchor property.
TwoButtonsAnchor.cs
//---
// TwoButtonsAnchor.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class TwoButtonsAnchor: Form
{
 public static void Main()
 {
 Application.Run(new TwoButtonsAnchor());
 }
 public TwoButtonsAnchor()
 {
 Text = "Two Buttons with Anchor";
 ResizeRedraw = true;

 int cxBtn = 5 * Font.Height;
 int cyBtn = 2 * Font.Height;
 int dxBtn = Font.Height;

 Button btn = new Button();
 btn.Parent = this;
 btn.Text = "&Larger";
 btn.Location = new Point(dxBtn, dxBtn);
 btn.Size = new Size(cxBtn, cyBtn);
 btn.Click += new EventHandler(ButtonLargerOnClick);

 btn = new Button();
 btn.Parent = this;
 btn.Text = "&Smaller";
 btn.Location = new Point(ClientSize.Width - cxBtn - dxBtn,
 ClientSize.Height - cyBtn - dxBtn);
 btn.Size = new Size(cxBtn, cyBtn);
 btn.Anchor = AnchorStyles.Right | AnchorStyles.Bottom;
 btn.Click += new EventHandler(ButtonSmallerOnClick);
 }
 void ButtonLargerOnClick(object obj, EventArgs ea)
 {
 Left -= (int)(0.05 * Width);

 Top -= (int)(0.05 * Height);
 Width += (int)(0.10 * Width);
 Height += (int)(0.10 * Height);
 }
 void ButtonSmallerOnClick(object obj, EventArgs ea)
 {
 Left += (int)(Width / 22f);
 Top += (int)(Height / 22f);
 Width -= (int)(Width / 11f);
 Height -= (int)(Height / 11f);
 }
}

The biggest change is that the OnResize method is gone. But if you ever need an OnResize method
in a program that makes use of the Anchor property, be sure to call
base.OnResize(ea);

or else anchoring won't work. By eliminating the OnResize method, I was able to make the cxBtn,
cyBtn, and dxBtn variables local to the constructor. Also, because I use two different Click event
handlers for the two buttons, the button objects don't have to be stored as fields either. I use the
same btn variable for creating both buttons.

The Larger button is positioned in the upper left corner of the form, and the Smaller button is in the
lower right corner of the form:

The buttons aren't flush against the edges. I use the dxBtn variable (equal to the font height) to
specify the distance between the buttons and the side of the client area. The Larger button retains
the default Anchor property, but the Smaller button is assigned a nondefault property:
btn.Anchor = AnchorStyles.Right | AnchorStyles.Bottom;

This means that the Smaller button will remain dxBtn pixels from the right and bottom sides of the
client area regardless of any changes in the size of the client area. As you make the client area very
small, the buttons will overlap.

I encourage you to experiment with the anchor styles. Here's what you'll find.

If the Anchor property contains AnchorStyles values indicating a pair of opposite sides, the control
changes size when the form is resized. For example, if the Anchor property is AnchorStyle.Top |

AnchorStyle.Bottom, the width of the control stays the same but the height changes as you change
the height of the form. That's because the same distance is maintained from the top and bottom of
the control to the top and bottom of the form. If you make the form too small, it's possible for the
control to be resized into nothingness.

If you set the Anchor property to a combination of AnchorStyles values for all four sides, both the
width and height of the control change size as you change the size of the form.

If the Anchor property is set to just one AnchorStyle value indicating a side, for instance,
AnchorStyle.Right, the distance between the control and the right side of the client area remains the
same. As you change the height of the form, however, the control retains its approximate vertical
position relative to the client area.

If you set the Anchor property to AnchorStyle.None, the control retains its approximate position in the
client area relative to the size of the client area. For example, if you position a control in the center of
the client area and set the Anchor property to AnchorStyle.None, as you resize the client area the
control will remain the same size but will stay in the approximate center of the client area.
Dock Around the Clock
Now for docking. Here are the DockStyle enumeration values:
DockStyle Enumeration

Member Value

None 0

Top 1

Bottom 2

Left 3

Right 4

Fill 5

The first thing you should notice is that these are not bit flags. You can't combine two or more styles.
The default is DockStyle.None.

When you set the Dock property to one of the four DockStyle values indicating a side, the control is
positioned flush against the entire length of that side and will touch the two adjacent sides. For
example, if you specify DockStyle.Top, the control will be positioned against the top of the client area
and extend the full width of the client area. As you make the form wider, the control becomes wider
as well.

In contrast, the process of anchoring usually doesn't cause the control to be resized. The control is
resized only if the control is anchored to opposite edges and the form is resized. However, if you
position a control on a particular side and make it extend the full width or height of that side, and then
set the Anchor property with AnchorStyles values that combine those three sides, the effect is pretty
similar to docking the control on that side.

Let's look at another version of the TwoButtons program that docks the two buttons on the top and
bottom sides.
TwoButtonsDock.cs
//---
// TwoButtonsDock.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class TwoButtonsDock: Form
{
 public static void Main()
 {
 Application.Run(new TwoButtonsDock());
 }
 public TwoButtonsDock()
 {
 Text = "Two Buttons with Dock";
 ResizeRedraw = true;

 Button btn = new Button();
 btn.Parent = this;
 btn.Text = "&Larger";
 btn.Height = 2 * Font.Height;
 btn.Dock = DockStyle.Top;
 btn.Click += new EventHandler(ButtonLargerOnClick);

 btn = new Button();
 btn.Parent = this;
 btn.Text = "&Smaller";
 btn.Height = 2 * Font.Height;
 btn.Dock = DockStyle.Bottom;
 btn.Click += new EventHandler(ButtonSmallerOnClick);
 }
 void ButtonLargerOnClick(object obj, EventArgs ea)
 {
 Left -= (int)(0.05 * Width);
 Top -= (int)(0.05 * Height);
 Width += (int)(0.10 * Width);
 Height += (int)(0.10 * Height);
 }
 void ButtonSmallerOnClick(object obj, EventArgs ea)
 {
 Left += (int)(Width / 22f);
 Top += (int)(Height / 22f);
 Width -= (int)(Width / 11f);
 Height -= (int)(Height / 11f);
 }
}

This program dispenses with cxBtn, cyBtn, and dxBtn entirely and just sets the Height property of
each button equal to twice the height of the default font. The Dock property positions the button
against the specified side and makes it the width of the side:

Docking isn't often used with buttons! Docking makes much more sense with toolbars (docked at the
top of the client area) and status bars (docked on the bottom of the client area), as I'll be
demonstrating in Chapter 20. Docking also makes much more sense in a program visually structured
like Windows Explorer, with a tree view control docked at the left of the client area, a list view control
docked at the right of the client area, and a splitter control in between, as I'll demonstrate in Chapter
22.

What happens when you dock two controls on the same side? You'll probably be pleased to know
that docking controls on the same side doesn't cause the controls to overlap one another. The
controls are stacked on the edge. For example, if you use a Dock property of DockStyle.Top with
both buttons in the TwoButtonsDock program, the buttons look like this:

Just offhand, it appears as if the most recently created control takes priority for actually touching the
edge. In reality, the positioning is based on the z-order, a concept I'll explain shortly.

Then there's DockStyle.Fill. I used DockStyle.Fill in the AnalogClock program in Chapter 10 to make
the clock control fill up the form's entire client area. Only one control should have its Dock property
set to DockStyle.Fill. The control fills up the client area but won't overlap any other controls that have
nondefault Dock properties set.

Keep in mind that nothing magical is happening with the Anchor and Dock properties that you
couldn't do yourself during the OnResize method.

Children of the Form
The Control class includes an important and very handy read-only property named Controls:
Control Properties (selection)

Type Property Accessibility

Control.ControlCollection Controls get

Although the Controls property is defined in the Control class, it is useful only in classes descended
from Control that are parent to other controls, such as Form. The Control.ControlCollection type
defined for this property might look a little peculiar, but it's only a public class named
ControlCollection that's defined inside the Control class. In your programs, you don't need to refer to
the name of this class. You only need to refer to the Controls property.

You've already seen something like this toward the end of Chapter 11. The ImageList class has a
property named Images that is of type ImageList.ImageCollection. And in Chapter 14, you'll see that
the Menu class has a property named MenuItems that is of type Menu.MenuItemCollection.

The Control.ControlCollection class implements the IList, ICollection, and IEnumerable interfaces
(defined in the System.Collections namespace). The total effect is to make the Controls property
appear to be a flexible array (similar to the ArrayList class I discussed toward the end of Chapter 8)
to which you can add and delete members. The Controls property is essentially an array of all the
controls that are children of the form.

Let's assume your form creates three buttons, named btn1, btn2, and btn3. You make these three
buttons children of your form in the usual way:
btn1.Parent = this;
btn2.Parent = this;
btn3.Parent = this;

After these three statements are executed, you can obtain the number of controls that are children of
the form by using the Count property of the form's Controls property. If those three buttons are the
only children of the form, the expression
Controls.Count

returns 3. You can also index the Controls property as if it were an array. An object of type Control is
returned. For example, the statement
Control ctrl = Controls[1];

sets the ctrl variable equal to the btn2 object. If you know that the element is a push button, you can
cast the return value to an object of type Button:
Button btn = (Button) Controls[1];

That indexer is read-only. You can't do something like this:
Controls[1] = new Button(); // Won't work!

Child controls get into the Control.ControlCollection class automatically when they are made children
of the form. But you can also put controls into the collection by using one of the following two
methods:

Control.ControlCollection Methods (selection)

void Add(Control ctrl)
void AddRange(Control[] actrl)

Just offhand, the statement

Controls.Add(btn1);

looks like we're calling a static method named Add in the Controls class. Not so! Controls is a
property of Form inherited from Control. The type of the property is Control.ControlCollection, a class
that defines a method named Add. Calling that Add method is equivalent to
btn1.Parent = this;

The statement
Controls.AddRange(new Control[] { btn1, btn2, btn3 });

is equivalent to the three statements earlier where I assigned the Parent property of the buttons. Of
course, the AddRange statement would be a lot shorter if the three buttons were an array to begin
with.

You can also remove controls from the collection:

Control.ControlCollection Methods (selection)

void Remove(Control ctrl)
void RemoveAt(int iIndex)
void Clear()

Removing a control from the collection doesn't destroy the control. Removing a control is merely the
equivalent of setting the Parent property of the control to null. The Clear method removes all the
controls from the collection.

When you remove a control from the collection, the remaining controls are reindexed to close up the
indices. There won't be any skipped indices; the indices always range from 0 to 1 less than the
Count property.

You can also obtain the index of a particular control:

Control.ControlCollection Methods (selection)

bool Contains(Control ctrl)
int GetChildIndex(Control ctrl)
int GetChildIndex(Control ctrl, bool bThrowException)

You may want to use the Contains method first to check whether the collection contains the control
before calling GetChildIndex. If the collection doesn't contain the control, the first version of
GetChildIndex will throw an exception. The second version won't throw an exception if
bThrowException is set to false. Instead, if the control isn't part of the collection, the method returns
−1.

You can also assign a control a new index:

Control.ControlCollection Methods (selection)

void SetChildIndex(Control ctrl, int iNewIndex)

Again, the other controls are reindexed, so the indices are still consecutive, ranging from 0 to 1 less
than the number of controls. If you want to give a particular control the highest index, you can specify
iNewIndex as −1.

Why would you want to change indices in the control collection? Because the control collection
indices aren't simply ways of accessing the individual controls. The indexing of the control collection
is also the z-order of the controls.
Z-Order
I've alluded before to the z-order of a group of controls that are children of the same form. The term
z-order comes from the concept of a three-dimensional coordinate space: The x and y axes are the
normal horizontal and vertical coordinates. The z axis is at right angles to the screen.

Most obviously, the z-order affects the appearance of overlapping controls that have the same
parent. You can see z-order at work in the TwoButtonsAnchor program when you make the window
small enough for the buttons to overlap. The button labeled Larger appears visually on top of the
button labeled Smaller. The z-order also affects how controls are stacked when they are docked
against the same edge of the form.

The z-order is established by the order in which you assign the Parent property of a control to the
form or the order in which you add the control to the control collection. The z-order is established
programmatically and can only be changed programmatically. The z-order does not change by the
user clicking on the controls.

I often get confused about what constitutes the top and bottom of the z-order, so let me spell it out
clearly here. A control at the top of the z-order has the following characteristics:
§ It is the first control to be assigned its Parent property or to be added to the control collection.
§ It is referenced by an index of 0 in the Controls property.
§ It is visually on top of all other controls. It's the control that gets the mouse events when the

mouse cursor is positioned over the control, regardless of other controls that might occupy the
same space.

§ It is the control closest to the center of the client area when multiple controls are docked
against the same edge of the container.

A control at the bottom of the z-order has the following characteristics:
§ It is the last control to be assigned its Parent property or to be added to the control collection.
§ It is referenced by an index of (Controls.Count − 1) in the control collection.
§ It is visually underneath all other controls.
§ If multiple controls are docked against the same edge of the container, it's the control on the

edge.

Aside from the SetChildIndex method implemented in the Control.ControlCollection class, a
container can also change the z-ordering of its children by calling either of the following two
methods:
Control Methods (selection)

Method Description

void BringToFront() Elevates control to top of z-order

void SendToBack() Puts control at bottom of z-order

For example, if a form has three child controls, btn1, btn2, and btn3, and btn1 is at the top of the z-
order and btn3 is at the bottom of the z-order, then
btn3.BringToFront()

puts btn3 at the top of the z-order and btn2 at the bottom. That's not the same as
btn1.SendToBack()

which puts btn2 at the top of the z-order and btn1 at the bottom.
The Check Box
A second type of button is the check box. A check box consists of a small box followed by a text
string. When you click the control (or press the spacebar when the control has the input focus), a
check mark appears in the box. When you click the control again, the check mark disappears. Unlike
the push button, the check box retains an on/off state.

These are the two crucial CheckBox properties:
CheckBox Properties (selection)

Type Property Accessibility Description

bool Checked get/set Default is false

bool AutoCheck get/set Default is true

The Checked property indicates whether or not the control is checked. You can use this property to
initialize the state of the control or to obtain the state. You'll probably want to leave the AutoCheck
property set to true so that the CheckBox control itself will toggle the state of the control as the user
clicks it with the mouse.

Whenever the Checked property changes, the control triggers a CheckedChanged event.
CheckBox Events (selection)

Event Method Delegate Argument

CheckedChanged OnCheckedChanged EventHandler EventArgs

The CheckedChanged event occurs under two conditions: when AutoCheck is true and the user
clicks the CheckBox control, and when the program changes the Checked property itself, perhaps in
initializing the control.

If you set AutoCheck to false, your program needs to install handlers for the control's Click event.
The Click event processing will probably include the following statements to toggle the check mark:
CheckBox chkbox = (CheckBox) obj;
chkbox.Checked ^= true;

Do not toggle the Checked property in the CheckedChanged event handler! Doing so will generate
another CheckedChanged event, and another, and another…

Here's a program that creates four CheckBox controls that let you set the bold, italic, underline, and
strikeout attributes of a font.
CheckBoxDemo.cs
//---
// CheckBoxDemo.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class CheckBoxDemo: Form
{
 public static void Main()
 {
 Application.Run(new CheckBoxDemo());
 }
 public CheckBoxDemo()
 {
 Text = "CheckBox Demo";

 CheckBox[] achkbox = new CheckBox[4];
 int cyText = Font.Height;

 int cxText = cyText / 2;
 string[] astrText = {"Bold", "Italic", "Underline",
"Strikeout"};

 for (int i = 0; i < 4; i++)
 {
 achkbox[i] = new CheckBox();
 achkbox[i].Text = astrText[i];
 achkbox[i].Location = new Point(2 * cxText,
 (4 + 3 * i) * cyText / 2);
 achkbox[i].Size = new Size(12 * cxText, cyText);
 achkbox[i].CheckedChanged +=
 new EventHandler(CheckBoxOnCheckedChanged);
 }
 Controls.AddRange(achkbox);
 }
 void CheckBoxOnCheckedChanged(object obj, EventArgs ea)
 {
 Invalidate(false);
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 FontStyle fs = 0;
 FontStyle[] afs = { FontStyle.Bold, FontStyle.Italic,
 FontStyle.Underline, FontStyle.Strikeout };

 for (int i = 0; i < 4; i++)
 if (((CheckBox) Controls[i]).Checked)
 fs |= afs[i];

 Font font = new Font(Font, fs);
 grfx.DrawString(Text, font, new SolidBrush(ForeColor), 0, 0);
 }
}

I defined an array of CheckBox controls just so I could have the opportunity to use the AddRange
method of the Controls property! The cyText variable is the height of the form's (and hence the
control's) Font property. I set the cxText variable to half that size to roughly approximate the average
width of lowercase characters. These variables are used to set the Location and Size of each
control. Although I set the height of each control to cyText, I use 150 percent of that value to space
the controls. The width of 12 times cxText is sufficient for the text and the check box. Here's what the
program looks like:

The processing of the CheckedChanged event simply invalidates the form, which generates a call to
OnPaint. The OnPaint method indexes the form's Controls property to obtain the Checked property
of each of the four controls and assembles a FontStyle variable using that information. From there,
it's a simple matter to create a new Font object and display some text.

Because CheckBox inherits from ButtonBase, it shares some properties with the Button class. The
TextAlign property for check boxes indicates how the text is aligned within the rectangle defined by
the Size property. The default is ContentAlignment.MiddleLeft, which means that the text is vertically
positioned in the center of the rectangle and horizontally positioned at the left (but no farther left than
the check box itself, obviously). In addition, the CheckBox class also has a CheckAlign property:
CheckBox Properties (selection)

Type Property Accessibility

ContentAlignment CheckAlign get/set

This property indicates the position of the check box within the rectangle. The default is also
ContentAlignment.MiddleLeft.

If you'd like to put the check boxes at the right of the text, it makes sense to set both the TextAlign
and CheckAlign properties to ContentAlignment.MiddleRight so that the text is right-justified as well.
Another interesting variation is to make the height of the control about twice the font height and to set
CheckAlign to ContentAlignment.TopCenter and TextAlign to ContentAlignment.BottomCenter. That
horizontally centers the box above the horizontally centered text.

The CheckBox class includes another property that affects the appearance of the control:
CheckBox Properties (selection)

Type Property Accessibility

Appearance Appearance get/set

The Appearance enumeration is defined like so:
Appearance Enumeration

Member Value

Normal 0

Button 1

The Button option causes the CheckBox control to look like a push button, but one that retains a
checked state. You'll need to increase the height of the control to accommodate the button border.

The Three-State Alternative
Most of the time, a CheckBox object is an on/off, yes/no, 1/0 type control that George Boole would
have approved of. But sometimes 1 bit isn't quite enough and 2 bits are way too many. For such
cases, you can put the check box into a third state.

When might you need this option? Suppose you were writing a word processor, and somewhere
(perhaps in a dialog box for font selection), you have a CheckBox control labeled Italic. If the user
selects some text that isn't italic, the program should initialize the CheckBox control to its unchecked
state. If the text is italic, the program initializes the CheckBox to its checked state. And if the text is
partially italic and partially not italic? That's a good candidate for the third state. The check is drawn
in the box, but it's a light gray color.

You shouldn't confuse this third state with a disabled CheckBox control. You would disable the
CheckBox control if the selected text was displayed in a font that wasn't capable of the italic style.

To use a three-state CheckBox, you need to use the following two properties:
CheckBox Properties (selection)

Type Property Accessibility Description

bool ThreeState get/set Default is false

CheckState CheckState get/set Use instead of Checked

First, you set the ThreeState property to true. Then, instead of using the Checked property to
initialize the control and to determine its current state, you use the CheckState property. The
CheckState enumeration has three values:
CheckState Enumeration

Member Value

Unchecked 0

Checked 1

Indeterminate 2

If your program needs to be informed when the CheckState changes, don't install a handler for the
CheckedChanged event. Install a handler for the CheckStateChanged event:
CheckBox Events

Event Method Handler Argument

CheckStateChanged OnCheckStateChanged EventHandler EventArgs

As the user clicks on a three-state CheckBox, the control cycles through the three states.
The Label Control
Sometimes programmers wonder, Can I mix controls and graphics output on the same form? Yes,
you can, and the CheckBoxDemo program proves it. Notice in CheckBoxDemo that the
CheckBoxOnCheckedChanged method contains the single statement
Invalidate(false);

The false argument indicates that the method won't invalidate any part of the form occupied by child
controls. Using the false argument to Invalidate prevents the controls from being unnecessarily
redrawn.

Although you can mix controls and graphics on the same form, it's more common for programs to
use additional controls to display text and other graphics. You saw back in Chapter 4 how you can
display text on a Panel control. A control specifically designed for the display of text is the Label
control. The Label control has a fairly light ancestry:

Here's another version of the CheckBoxDemo program that creates a Label control for displaying the
sample line of text. Rather than invalidating the form in the CheckBoxOnCheckedChanged method
and using the information to display the text in the OnPaint method, this version creates a new font
during CheckBoxOnCheckedChanged and just sets the Font property of the Label control.
CheckBoxWithLabel.cs
//--
// CheckBoxWithLabel.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class CheckBoxWithLabel: Form
{
 Label label;

 public static void Main()
 {
 Application.Run(new CheckBoxWithLabel());
 }
 public CheckBoxWithLabel()
 {
 Text = "CheckBox Demo with Label";

 int cyText = Font.Height;
 int cxText = cyText / 2;
 string[] astrText = {"Bold", "Italic", "Underline",
"Strikeout"};

 label = new Label();
 label.Parent = this;
 label.Text = Text + ": Sample Text";
 label.AutoSize = true;

 for (int i = 0; i < 4; i++)
 {
 CheckBox chkbox = new CheckBox();
 chkbox.Parent = this;
 chkbox.Text = astrText[i];

 chkbox.Location = new Point(2 * cxText,
 (4 + 3 * i) * cyText / 2);
 chkbox.Size = new Size(12 * cxText, cyText);
 chkbox.CheckedChanged +=
 new EventHandler(CheckBoxOnCheckedChanged);
 }
 }
 void CheckBoxOnCheckedChanged(object obj, EventArgs ea)
 {
 FontStyle fs = 0;
 FontStyle[] afs = { FontStyle.Bold, FontStyle.Italic,
 FontStyle.Underline, FontStyle.Strikeout };

 for (int i = 0; i < 4; i++)
 if (((CheckBox) Controls[i + 1]).Checked)
 fs |= afs[i];

 label.Font = new Font(label.Font, fs);
 }
}

A Label control will wrap text into multiple lines if the text is longer than the width of the control. No
scroll bars are provided, however. If you prefer that a Label control display only a single line of text,
you have a few properties that help facilitate that:
Label Properties (selection)

Type Property Accessibility

int PreferredWidth get

int PreferredHeight get

bool AutoSize get/set

The PreferredWidth and PreferredHeight properties are consistent with the information returned from
MeasureString rounded to the next highest integer. Use the AutoSize property (which by default is
false) to make the label's size the same as the PreferredWidth and PreferredHeight values.

The Label control supports the same four properties as the ButtonBase control for displaying
bitmaps: Image, ImageList, ImageIndex, and ImageAlign. The AutoSize property does not adjust the
size of the control based on the size of the image.

Two additional properties affect the appearance of Label controls:
Label Properties (selection)

Type Property Accessibility

BorderStyle BorderStyle get/set

bool UseMnemonic get/set

The BorderStyle property causes a border to be drawn around the label. Set the property to one of
the following enumeration values:
BorderStyle Enumeration

Member Value

BorderStyle Enumeration

Member Value

None 0

FixedSingle 1

Fixed3D 2

The default is BorderStyle.None.

The UseMnemonic property (which by default is true) causes the Label control to suppress
ampersands and underline the letter following the ampersand. But this raises a question: If a Label is
used just to display some text or an image, why does it need a mnemonic? The purpose—as you'll
find out later in this chapter—is to navigate to controls such as scroll bars, track bars, and text boxes
that have no fixed text.
Tab Stops and Tab Order
As you've discovered, you can navigate among child controls by using the Tab key or the arrow
keys. However, if you use Tab or the arrow keys with CheckBoxWithLabel, you'll find that the
navigation skips the Label control. This makes sense: the Label control isn't intended to get input
from the keyboard, so there's no reason why it should get keyboard focus.

Whether you can navigate to a control with the Tab key is governed by the TabStop property:
Control Properties (selection)

Type Property Accessibility

bool TabStop get/set

int TabIndex get/set

Buttons have a TabStop property of true; labels have a TabStop property of false.

If TabStop is true, the TabIndex property determines the order in which the Tab key causes focus to
shift from control to control. TabIndex is set when you assign a parent to the control, so the TabIndex
values initially are the same as the z-order indices. If you change the z-order, however, the TabIndex
property doesn't change. Your program can also change the TabIndex independently of the z-order.

If two controls have the same TabIndex, the control with the lowest z-order gets the focus first.
Identifying the Controls
In the CheckBoxWithLabel program, I defined two arrays: one with the text strings for the four check
boxes and the second containing the corresponding FontStyle enumeration values. Unfortunately,
these arrays were defined in two different areas of the program. And if you change the order of the
elements in one array without changing the other, the program will no longer work right.

Moreover, take a look at how the Controls property is indexed in the OnPaint method in the
CheckBoxDemo program as compared to the CheckBoxOnCheckedChanged method in the
CheckBoxWithLabel program. In the first program, the indices are 0 through 3. In the second
program, however, the Label control is the first control made a child of the form, so it has an index of
0. The CheckBox controls are indices 1 through 4.

If I were to change the constructor in CheckBoxWithLabel so that the Label control is made a child of
the form after the CheckBox controls, the program wouldn't work right. I don't have to tell you that
making the Controls array indexing dependent on the ordering of control creation is a bad
programming practice! For a few controls, it might not be so awful. But for many controls, it could
easily turn into a nightmare.

There are several ways for your program to keep track of all the controls it creates. You can always
save the control objects as fields, such as the TwoButtons program did. Or you could install different
event handlers for each control. Another approach is to use a property (or something else) of the
control to uniquely identify it. The Text property, of course, usually identifies the control, and in an

event handler, you can even use the control text as a switch variable to test which control is
generating the event. However, if you ever wanted to change the control text, you'd have to change
both the code that assigned the control Text property and the switch and case construction in the
event handler.

If the Text property isn't quite what you want for identifying the controls, what would you prefer? The
Control class includes the following property that you can set to any object that's convenient:
Control Properties (selection)

Type Property Accessibility

object Tag get/set

This property is specifically intended to identify controls. When creating a control, you can assign the
Tag property to any object. For example, here's a partial definition of a CheckBox control that's
intended to select a color:
chkbox.Text = "Magenta";
chkbox.Tag = Color.Magenta;

In the event handler, you first obtain the CheckBox control sending the event
CheckBox chkbox = (CheckBox) obj;

and then cast the Tag property to a Color object:
Color clr = (Color) Tag;

If the Tag property is not a Color object, an exception will be raised. I'll have an example of the Tag
property in the AutoScaleDemo program coming up shortly.

What's also nice about object-oriented programming in general (and Windows Forms in particular) is
that you can easily add anything you want to the control to identify it. It's simply a matter of
inheritance.

The following program creates a new class based on CheckBox that is specifically intended for
displaying font styles. This new class adds just one field to the CheckBox class: a field named
fontstyle of type FontStyle. As you can see, the definition of this new class (down at the bottom of the
listing) requires a minimum amount of code.
CustomCheckBox.cs
//---
// CustomCheckBox.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class CustomCheckBox: Form
{
 public static void Main()
 {
 Application.Run(new CustomCheckBox());
 }
 public CustomCheckBox()
 {
 Text = "Custom CheckBox Demo";

 int cyText = Font.Height;
 int cxText = cyText / 2;
 FontStyle[] afs = { FontStyle.Bold, FontStyle.Italic,
 FontStyle.Underline, FontStyle.Strikeout };

 Label label = new Label();
 label.Parent = this;
 label.Text = Text + ": Sample Text";
 label.AutoSize = true;

 for (int i = 0; i < 4; i++)
 {
 FontStyleCheckBox chkbox = new FontStyleCheckBox();
 chkbox.Parent = this;
 chkbox.Text = afs[i].ToString();
 chkbox.fontstyle = afs[i];
 chkbox.Location = new Point(2 * cxText,
 (4 + 3 * i) * cyText / 2);
 chkbox.Size = new Size(12 * cxText, cyText);
 chkbox.CheckedChanged +=
 new EventHandler(CheckBoxOnCheckedChanged);
 }
 }
 void CheckBoxOnCheckedChanged(object obj, EventArgs ea)
 {
 FontStyle fs = 0;
 Label label = null;

 for (int i = 0; i < Controls.Count; i++)
 {
 Control ctrl = Controls[i];

 if (ctrl.GetType() == typeof(Label))
 label = (Label) ctrl;

 else if (ctrl.GetType() == typeof(FontStyleCheckBox))
 if (((FontStyleCheckBox) ctrl).Checked)
 fs |= ((FontStyleCheckBox) ctrl).fontstyle;
 }
 label.Font = new Font(label.Font, fs);
 }
}
class FontStyleCheckBox: CheckBox
{
 public FontStyle fontstyle;

}

This program now defines the array of FontStyle values in the constructor. As each
FontStyleCheckBox object is created, the program assigns the FontStyle value to the fontstyle field
of the object. The program also dispenses with the string array. Instead, it converts the FontStyle
value to a string for the Text property. And even if an array of strings were needed, at least the two
arrays would be defined side by side and could be changed (if necessary) at the same time.

Now take a look at the CheckBoxOnCheckedChanged method. The method loops through all the
controls in the Controls array and determines what type of control each one is. You can use the
GetType method with any object to obtain its type, and you can use the C# typeof operator with any
class name to obtain its type. If the control is a FontStyleCheckBox, the program casts the control to
an object of that type, and if the Checked property is true, accesses its fontstyle field. If the control is
a Label, the program saves the Label object and concludes event handling by setting its Font
property to the new font. This is code that can withstand changes in the array of FontStyle values
and any changes in the order in which controls are created and made children of the form.
The Auto-Scale Option
The programs shown in this chapter have used the Font.Height property of the form to scale the
sizes of controls that display text. For horizontal sizing, I've used one-half the font height as a
generous approximation of the average character width of lowercase letters. (It's even generous for
the Courier font.) Because controls inherit their parent's font, this is a perfectly acceptable method of
scaling controls. If you ever want to set a different font for the form (and hence its controls), do so
early in the form's constructor before obtaining the font height.

The .NET Framework offers an alternative method of scaling controls that is referred to as auto-
scale. In support of auto-scale are the following two properties of the Form class:
Form Properties (selection)

Type Property Accessibility Description

bool AutoScale get/set Default is true

Size AutoScaleBaseSize get/set Width and height of form's font

The only static method of Form is also connected with the auto-scale feature:

Form Static Method

SizeF GetAutoScaleSize(Font font)

The AutoScaleBaseSize property and the GetAutoScaleSize method are useful in themselves even if
you don't use the auto-scale feature. They are the only source in Windows Forms of the average
character width associated with a particular font. By default, AutoScaleBaseSize returns the width
and height of the form's Font property; GetAutoScaleSize returns the width and height of any Font
object. The width is an average based on lowercase letters of the Latin alphabet. The height is the
same as the Height property of the Font object.

If you have Small Fonts specified in your display settings, AutoScaleBaseSize reports that the 8-
point default Windows Forms font has a width of 5 pixels and a height of 13 pixels. For Large Fonts,
AutoScaleBaseSize reports a width of 6 pixels and a height of 15. So if you want to be more
accurate about positioning controls, use
cxText = AutoScaleBaseSize.Width;
cyText = AutoScaleBaseSize.Height;

I just said that AutoScaleBaseSize returns the width and height of the form's Font property. That's
true. And if you set a new Font property for the form, AutoScaleBaseSize reports the width and
height of the new font. However, it's true only if the form doesn't set AutoScaleBaseSize itself. If the
form sets AutoScaleBaseSize (by which I mean that you the programmer write code that sets
AutoScaleBaseSize), the property returns whatever the form set it to.

And here's the secret of auto-scale: If the form sets AutoScaleBaseSize itself, the width and height of
all the form's child controls are scaled based on the ratio of the height and width of the form's Font
property to the height and width of the AutoScaleBaseSize property. If the form doesn't set
AutoScaleBaseSize, these two ratios are simply equal to 1 and no scaling takes place.

Basically, the form can use whatever coordinate system and sizes it wants when setting the Location
and Size properties of its child controls. The form then uses AutoScaleBaseSize to indicate that
coordinate system. All the scaling takes place after the form's constructor has completed based on
the Font and AutoScaleBaseSize properties at that time.

The auto-scale process is confusing at first, so let's take a look at some examples.

How the Windows Forms Designer Uses Auto-Scale

I mentioned that you'll someday have to look at the code that the Visual C# .NET Windows Forms
Designer generates, and you may need to understand certain aspects of it. Well, auto-scale is a
primary example.

Let me assume that your display settings are set to Small Fonts. When you use the Windows Forms
Designer to design a form, it generates code that contains the pixel dimensions you've used. For
example, a Button control might have its Size property set like so:
this.button1.Size = new System.Drawing.Size(104, 26);

Yes, the Windows Forms Designer is a little verbose. But that's not the point. Normally, hard-coding
pixel positions and sizes of controls is just begging for trouble. You're practically guaranteeing that
somebody is going to run this program with Large Fonts or even larger fonts, and the text in the
button will be truncated. But the Windows Forms Designer also adds the following statement to the
constructor:
this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

That size is the font width and height associated with Small Fonts. What the Windows Forms
Designer is essentially doing here is embedding into the code the underlying display resolution upon
which all the control locations and sizes are based.

If such a program runs on another machine that has a display setting of Small Fonts, the ratios of the
font width and height to the AutoScaleBaseSize property width and height are 1, and the control
locations and sizes are used directly.

However, if the program runs on a machine with a Large Fonts setting, the font width and height are
6 and 15, respectively. When your form's constructor concludes its processing, Windows Forms
scales the horizontal locations and sizes of all the controls by a factor of 6/5 (that's the average width
associated with the form's Font property divided by AutoScaleBaseSize.Width). The vertical
locations and sizes are scaled by a factor of 15/13, which is the height of the form's font divided by
AutoScaleBaseSize.Height.

And that's how the Windows Forms Designer gets away with hard-coding pixel coordinates and
sizes.

You can do something like this yourself. You can code all the locations and sizes of controls using
values that work right for your machine and then insert a statement that sets the AutoScaleBaseSize
property to a Size also appropriate for your machine. Then you'll want to check out the program with
a different font size, either by changing your display settings or by setting a new Font property in the
constructor.

However, you can also use AutoScaleBaseSize in more interesting ways.

Creative AutoScaleBaseSize Settings

Traditionally, Windows programmers coding in C and C++ using the Win32 API or the Microsoft
Foundation Class (MFC) Library define their dialog boxes in a text format known as a dialog box
template using a special device-independent coordinate system known as dialog box coordinates. All
x coordinates are 1/4 of the average character width; y coordinates are expressed in units of 1/8 of

the character height. If a control's location is specified as (40, 32), for example, the control is
positioned 10 average character widths from the left of the dialog box and 4 character heights from
the top.

A Windows Forms program can use this same traditional dialog box coordinate system. All that's
necessary to make it work is the following statement in the constructor:
AutoScaleBaseSize = new Size(4, 8);

Here's another alternative: you can even specify locations and sizes entirely in units of integral
character heights and character widths. Then you only need the statement
AutoScaleBaseSize = new Size(1, 1);

You may find such a coordinate system just a bit too coarse, however. Usually at least half a
character height resolution is necessary for attractively spacing controls vertically.

Inside Auto-Scale

After the code in your form's constructor is executed, the form and all children in the form are scaled
based on the form's Font and AutoScaleBaseSize properties. The actual scaling is performed by a
protected method of the Control class named ScaleCore, which is called first for the form and then
for all the controls that are children of the form.

You can accomplish the same scaling as auto-scale by calling one of the Scale methods for the
form:

Control Methods (selection)

void Scale(float fScale)
void Scale(float xScale, yScale)

For example, if you set the AutoScale property to false, you can mimic auto-scaling by inserting the
following statement at the end of the form's constructor:
Scale(GetAutoScaleSize(Font).Width / AutoScaleBaseSize.Width,
 GetAutoScaleSize(Font).Height / AutoScaleBaseSize.Height);

That's the width and height of the form's Font divided by the width and height you've specified in the
AutoScaleBaseSize property.

If you need to rescale existing controls later on—probably because you change the Font property
someplace other than in the constructor—you can't rely on auto-scale to do it for you. You need to
call Scale directly. But be aware that the form and controls don't retain any previous scaling history.
Once the controls are scaled following the constructor code, they have simple pixel locations and
sizes. You can't call Scale again based on the form's Font and AutoScaleBaseSize. You'll need to
calculate the scaling factors based on the size of the old font and the size of the new font.

Here's a program that creates five push buttons that let you select five different font sizes. The
program's constructor uses locations and sizes based on the traditional dialog box coordinates.
Auto-scaling handles the initial scaling. When you press a button, the Click event handler scales
everything again based on the existing font and the new font.
AutoScaleDemo.cs
//--
// AutoScaleDemo.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;

using System.Windows.Forms;

class AutoScaleDemo: Form
{
 public static void Main()
 {
 Application.Run(new AutoScaleDemo());
 }
 public AutoScaleDemo()
 {
 Text = "Auto-Scale Demo";
 Font = new Font("Arial", 12);
 FormBorderStyle = FormBorderStyle.FixedSingle;

 int[] aiPointSize = { 8, 12, 16, 24, 32 };

 for (int i = 0; i < aiPointSize.Length; i++)
 {
 Button btn = new Button();
 btn.Parent = this;
 btn.Text = "Use " + aiPointSize[i] + "-point font";
 btn.Tag = aiPointSize[i];
 btn.Location = new Point(4, 16 + 24 * i);
 btn.Size = new Size(80, 16);
 btn.Click += new EventHandler(ButtonOnClick);
 }
 ClientSize = new Size(88, 16 + 24 * aiPointSize.Length);
 AutoScaleBaseSize = new Size(4, 8);
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 pea.Graphics.DrawString(Text, Font,
 new SolidBrush(ForeColor), 0, 0);
 }
 void ButtonOnClick(object obj, EventArgs ea)
 {
 Button btn = (Button) obj;

 SizeF sizefOld = GetAutoScaleSize(Font);
 Font = new Font(Font.FontFamily, (int) btn.Tag);
 SizeF sizefNew = GetAutoScaleSize(Font);

 Scale(sizefNew.Width / sizefOld.Width,
 sizefNew.Height / sizefOld.Height);
 }

}

This program uses the Tag property of the Button control to store the integer point size associated
with each button. During the ButtonOnClick method, the Tag property is cast to an integer for
creating the font. Here's what the program looks like with the 12-point font set for the form:

As you press each button, the entire form is resized to reflect the new font size.

If you create a control somewhere other than in your form's constructor, you may need to use Scale.
Call the new control's Scale method with the sizes of the current font and the AutoScaleBaseSize
property.
A Hexadecimal Calculator
Here's a program that creates 29 Button controls to implement an infix notation hexadecimal
calculator. The HexCalc program works with 64-bit unsigned integers and does addition, subtraction,
multiplication, division, and remainders; bitwise AND, OR, and exclusive OR operations; and left and
right bits shifts. Here's what the program looks like:

You can use either the mouse or the keyboard with HexCalc. You begin by "clicking in" or typing the
number (up to 16 hexadecimal digits), then the operation, and then the second number. You can
then show the result by clicking the Equals button or by pressing either the equals (=) or the Enter
key. To correct your entries, click the button labeled Back or press the Backspace key. Click the
display box, or press the Esc key to clear the current entry.

This is not a program I would care to put together in the Visual C# .NET Windows Forms Designer.
This many buttons of identical coordinates and sizes cry out for a more methodical approach. After a
couple false starts, I decided to subclass Button in a class named CalcButton. In the CalcButton
class, I implemented a constructor that has arguments for the button's parent, its text, its location
and size, and an additional field named chKey that contains the keyboard character that invokes the
button. The HexCalc constructor contains 29 new CalcButton statements that create all the buttons. I
use traditional dialog box coordinates for the buttons, but I call the short version of Scale directly to
scale equally in all directions. That preserves the square appearance of most of the buttons.
HexCalc.cs
//--------------------------------------
// HexCalc.cs © 2001 by Charles Petzold
//--------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class HexCalc: Form
{
 Button btnResult;
 ulong ulNum = 0;
 ulong ulFirstNum = 0;
 bool bNewNumber = true;
 char chOperation = '=';

 public static void Main()
 {
 Application.Run(new HexCalc());
 }
 public HexCalc()
 {

 Text = "Hex Calc";
 Icon = new Icon(GetType(), "HexCalc.HexCalc.ico");
 FormBorderStyle = FormBorderStyle.FixedSingle;
 MaximizeBox = false;

 new CalcButton(this, "D", 'D', 8, 24, 14, 14);
 new CalcButton(this, "A", 'A', 8, 40, 14, 14);
 new CalcButton(this, "7", '7', 8, 56, 14, 14);
 new CalcButton(this, "4", '4', 8, 72, 14, 14);
 new CalcButton(this, "1", '1', 8, 88, 14, 14);
 new CalcButton(this, "0", '0', 8, 104, 14, 14);
 new CalcButton(this, "E", 'E', 26, 24, 14, 14);
 new CalcButton(this, "B", 'B', 26, 40, 14, 14);
 new CalcButton(this, "8", '8', 26, 56, 14, 14);
 new CalcButton(this, "5", '5', 26, 72, 14, 14);
 new CalcButton(this, "2", '2', 26, 88, 14, 14);
 new CalcButton(this, "Back", '\x08', 26, 104, 32, 14);
 new CalcButton(this, "C", 'C', 44, 40, 14, 14);
 new CalcButton(this, "F", 'F', 44, 24, 14, 14);
 new CalcButton(this, "9", '9', 44, 56, 14, 14);
 new CalcButton(this, "6", '6', 44, 72, 14, 14);
 new CalcButton(this, "3", '3', 44, 88, 14, 14);
 new CalcButton(this, "+", '+', 62, 24, 14, 14);
 new CalcButton(this, "-", '-', 62, 40, 14, 14);
 new CalcButton(this, "*", '*', 62, 56, 14, 14);
 new CalcButton(this, "/", '/', 62, 72, 14, 14);
 new CalcButton(this, "%", '%', 62, 88, 14, 14);
 new CalcButton(this, "Equals", '=', 62, 104, 32, 14);
 new CalcButton(this, "&&", '&', 80, 24, 14, 14);
 new CalcButton(this, "|", '|', 80, 40, 14, 14);
 new CalcButton(this, "^", '^', 80, 56, 14, 14);
 new CalcButton(this, "<", '<', 80, 72, 14, 14);
 new CalcButton(this, ">", '>', 80, 88, 14, 14);

 btnResult =
 new CalcButton(this, "0", '\x1B', 8, 4, 86, 14);

 foreach (Button btn in Controls)
 btn.Click += new EventHandler(ButtonOnClick);

 ClientSize = new Size(102, 126);
 Scale(Font.Height / 8f);
 }
 protected override void OnKeyPress(KeyPressEventArgs kpea)
 {

 char chKey = Char.ToUpper(kpea.KeyChar);

 if (chKey == '\x0D')
 chKey = '=';

 for (int i = 0; i < Controls.Count; i++)
 {
 CalcButton btn = (CalcButton) Controls[i];

 if (chKey == btn.chKey)
 {
 InvokeOnClick(btn, EventArgs.Empty);
 break;
 }
 }
 }
 void ButtonOnClick(object obj, EventArgs ea)
 {
 CalcButton btn = (CalcButton) obj;

 if (btn.chKey == '\x08')
 ulNum /= 16;

 else if (btn.chKey == '\x1B')
 ulNum = 0;

 else if (Char.IsLetterOrDigit(btn.chKey)) // Hex digit
 {
 if (bNewNumber)
 {
 ulFirstNum = ulNum;
 ulNum = 0;
 bNewNumber = false;
 }

 if (ulNum <= ulong.MaxValue >> 4)
 ulNum = 16 * ulNum +
 (ulong)(btn.chKey -
 (Char.IsDigit(btn.chKey) ? '0' : 'A' - 10));
 }
 else // Operation
 {
 if(!bNewNumber)
 {
 switch(chOperation)

 {
 case '=': ulNum = ulNum; break;
 case '+': ulNum = ulFirstNum + ulNum; break;
 case '-': ulNum = ulFirstNum - ulNum; break;
 case '*': ulNum = ulFirstNum * ulNum; break;
 case '&': ulNum = ulFirstNum & ulNum; break;
 case '|': ulNum = ulFirstNum | ulNum; break;
 case '^': ulNum = ulFirstNum ^ ulNum; break;
 case '<': ulNum = ulFirstNum << (int)ulNum; break;
 case '>': ulNum = ulFirstNum >> (int)ulNum; break;
 case '/': ulNum = ulNum != 0 ?
 ulFirstNum / ulNum :
ulong.MaxValue;
 break;
 case '%': ulNum = ulNum != 0 ?
 ulFirstNum % ulNum :
ulong.MaxValue;
 break;
 default: ulNum = 0; break;
 }
 }
 bNewNumber = true;
 chOperation = btn.chKey;
 }
 btnResult.Text = String.Format("{0:X}", ulNum);
 }
}
class CalcButton: Button
{
 public char chKey;

 public CalcButton(Control parent, string str, char chkey,
 int x, int y, int cx, int cy)
 {
 Parent = parent;
 Text = str;
 chKey = chkey;
 Location = new Point(x, y);
 Size = new Size(cx, cy);
 SetStyle(ControlStyles.Selectable, false);
 }
}

HexCalc.ico

The tricky part of this program was the keyboard interface. I didn't want the keys themselves to get
the input focus. The dotted outline that the button draws to indicate input focus just didn't look right in
this program. Shifting focus among the buttons by using the Tab key didn't make much sense either.
And I had more keyboard equivalents than buttons.

To force keyboard events to the form, each button sets its Selectable style to false. This style
prevents the button from obtaining the input focus.

The OnKeyPress method loops through the Controls array and finds the button corresponding to the
keystroke. It then calls InvokeOnClick to mimic a Click event for the button. The ButtonOnClick
method thus handles both button mouse clicks and keyboard equivalents.
Radio Buttons and Group Boxes
Someday, no one will know why they're called radio buttons. You see, car radios once came
equipped with a row of tall buttons that could be set to favorite radio stations. To select a station, you
pushed in a button, which caused the previously pushed-in button to pop out. Because only one
button could be pressed at a time, a group of radio button controls always reflects a group of
mutually exclusive options.

What makes radio buttons different from other controls is that they always exist in a group. Because
one (and only one) button in a group can be checked at any time, the states of the radio buttons
affect each other. Turning one radio button on turns another off. The keyboard navigation is also
somewhat different. Within a group of radio buttons, the arrow keys are supposed to move the input
focus from button to button. As the input focus changes, the checked radio button also changes. The
Tab key is supposed to move from the group of radio buttons to the next control. When you use the
Tab key to move into a group of radio buttons, the checked radio button receives the input focus.

Fortunately, much of this user interface is taken care of for you. For each group of radio buttons, all
you need to do is create a control of type GroupBox and make the GroupBox a child of your form.
Then you make all the RadioButton objects in the group children of the GroupBox.

Let's look at the RadioButton class first. Like CheckBox, the RadioButton class includes properties
named Checked and AutoCheck:
RadioButton Properties (selection)

Type Property Accessibility Description

bool Checked get/set Default is false

bool AutoCheck get/set Default is true

The Checked property indicates whether the radio button is checked (which it visually illustrates by
displaying a solid dot in a circle). Keeping the AutoCheck property set to true automates the process
of using radio buttons. As the user clicks the radio buttons (or moves the input focus among the
group), the radio buttons are automatically checked and unchecked. If you set AutoCheck to false,
you'll have to install Click event handlers and do all the checking and unchecking yourself.

The only other public properties that RadioButton defines are Appearance and CheckAlign, which
work just as they do in the CheckBox class.

The CheckedChanged event occurs whenever a radio button is checked or unchecked, either by the
user or by the program:
RadioButton Events (selection)

Event Method Delegate Argument

CheckedChanged OnCheckedChanged EventHandler EventArgs

You'll get two CheckedChanged events in a row, one for the radio button being unchecked and then
one for the radio button being checked. You can tell these two events apart by looking at the
Checked property of the button. During the CheckedChanged event, the Checked property reflects
the new state.

The GroupBox class is a descendent of Control but implements only one public property (FlatStyle)
and no additional methods or events beyond what Control defines.

Let's look at an example. The following program draws an ellipse based on the setting of eight radio
buttons and one check box.
RadioButtons.cs
//---
// RadioButtons.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class RadioButtons: Form
{
 bool bFillEllipse;
 Color colorEllipse;

 static void Main()
 {
 Application.Run(new RadioButtons());
 }
 RadioButtons()
 {
 Text = "Radio Buttons Demo";
 ResizeRedraw = true;

 string[] astrColor = { "Black", "Blue", "Green", "Cyan",
 "Red", "Magenta", "Yellow", "White"};

 GroupBox grpbox = new GroupBox();
 grpbox.Parent = this;
 grpbox.Text = "Color";
 grpbox.Location = new Point(Font.Height / 2, Font.Height / 2);
 grpbox.Size = new Size(9 * Font.Height,
 (3 * astrColor.Length + 4) * Font.Height /
2);

 for (int i = 0; i < astrColor.Length; i++)
 {
 RadioButton radiobtn = new RadioButton();
 radiobtn.Parent = grpbox;
 radiobtn.Text = astrColor[i];
 radiobtn.Location = new Point(Font.Height,
 3 * (i + 1) * Font.Height /
2);
 radiobtn.Size = new Size(7 * Font.Height,
 3 * Font.Height / 2);
 radiobtn.CheckedChanged +=
 new
EventHandler(RadioButtonOnCheckedChanged);
 if(i == 0)
 radiobtn.Checked = true;
 }
 CheckBox chkbox = new CheckBox();
 chkbox.Parent = this;
 chkbox.Text = "Fill Ellipse";
 chkbox.Location = new Point(Font.Height,
 3 * (astrColor.Length + 2) * Font.Height /
2);
 chkbox.Size = new Size(Font.Height * 7, 3 * Font.Height /
2);
 chkbox.CheckedChanged +=
 new EventHandler(CheckBoxOnCheckedChanged);
 }
 void RadioButtonOnCheckedChanged(object obj, EventArgs ea)
 {
 RadioButton radiobtn = (RadioButton) obj;

 if(radiobtn.Checked)
 {
 colorEllipse = Color.FromName(radiobtn.Text);
 Invalidate(false);
 }
 }
 void CheckBoxOnCheckedChanged(object obj, EventArgs ea)
 {
 bFillEllipse = ((CheckBox)obj).Checked;
 Invalidate(false);
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 Rectangle rect = new Rectangle(10 * Font.Height, 0,
 ClientSize.Width -
 10 * Font.Height - 1,
 ClientSize.Height - 1);
 if(bFillEllipse)
 grfx.FillEllipse(new SolidBrush(colorEllipse), rect);
 else
 grfx.DrawEllipse(new Pen(colorEllipse), rect);
 }
}

An array of eight colors is defined toward the beginning of the constructor. All the vertical coordinates
and sizes the program calculates are generalized enough to accommodate additional colors in this
array, just as long as you make sure they're actual .NET Framework color names. (The width of the
controls isn't sufficient to accommodate some of the longer color names, however.)

The constructor first creates a GroupBox control. The parent of the group box is the form. Next, the
constructor creates eight radio buttons that are children of the group box. Notice at the bottom of the
for loop that the program sets the Checked property of the first radio button. That statement
generates a call to RadioButtonOnCheckedChanged, which initializes the colorEllipse field. The
constructor concludes by creating a CheckBox control as a child of the form.

You can test that the keyboard interface works as I described. As you use the arrow keys to move
the focus among the radio buttons, the buttons make calls to RadioButtonOnCheckedChanged. That
method uses the static Color.FromName method to convert the button text to a Color object. Both
this method and CheckBoxOnCheckedChanged invalidate the client area to generate a call to
OnPaint, which paints the ellipse:

Scroll Bars
When the subject of scroll bars first came up in Chapter 4, I discussed some of the differences
between scroll bar controls and the scroll bars created as part of the auto-scroll feature in any class
descended from ScrollableControl (including Form and Panel). With the auto-scroll feature, you
specify the size of the client area you want, and the scroll bars appear automatically at the bottom
and right of the client area. The auto-scroll scroll bars have no events associated with them—at least
none that an application can get access to.

The ScrollBar class is an abstract class descended from Control:

Descended from ScrollBar are the horizontal scroll bar (HScrollBar) and the vertical scroll bar
(VScrollBar). You can position these scroll bar controls anywhere in your client area, and even make
them whatever size you want. Although horizontal scroll bars have a default height and vertical scroll
bars have a default width, you can indeed make very thin scroll bars or very pudgy ones. However,
you can't set the background color or foreground color of scroll bars.

To keep the terminology consistent between horizontal and vertical scroll bars, let me refer to
thickness and length. Thickness is the height of horizontal scroll bars and the width of vertical scroll
bars. Length is the width of horizontal scroll bars and the height of vertical scroll bars. By default,
newly created scroll bars have their thickness set to standard values—the same values you can
obtain from SystemInformation.VerticalScrollBarWidth and
SystemInformation.HorizontalScrollBarHeight.

Here are the five main properties that the ScrollBar class adds to Control:
ScrollBar Properties (selection)

Type Property Accessibility Description

int Value get/set Ranges from Minimum to (Maximum +
1 − LargeChange)

int Minimum get/set Default is 0

int Maximum get/set Default is 100

int SmallChange get/set Default is 1

int LargeChange get/set Default is 10

The Value property indicates the position of the scroll box on the scroll bar. It ranges from the
Minimum setting to the, well, not quite Maximum setting. If you click the arrows at the ends of the
scroll bar, the Value property changes by SmallChange. If you click on either side of the scroll box,
the Value property changes by LargeChange.

Why does the Value range from Minimum to (Maximum + 1 − LargeChange)? Think of a document,
perhaps a word processing document, that contains 500 lines of text. You set Minimum to 0 and
Maximum to 499. Your client area is large enough to display 25 lines of text. Set SmallChange to 1
(that is, one line of text) and LargeChange to 25.

The size of the scroll box relative to the length of the scroll bar is based on the ratio of LargeChange
to Maximum. That's the proportion of the document you can view.

When Value is 0, you view the top of the document, which comprises—assuming you're using zero-
based indexing of the lines of the document—lines 0 through 24. When Value is 1, you view lines 1
through 25. And when Value is 475, you view lines 475 through 499. That's the bottom of the
document, which means that Value doesn't need to get any higher. And that's why Value doesn't get
higher than (Maximum + 1 − LargeChange).

If you're not dealing with a document, you need to set Maximum so that you get the correct range for
Value. I'll have an example soon.

Two events are implemented by ScrollBar:
ScrollBar Events

Event Method Handler Argument

ValueChanged OnValueChanged EventHandler EventArgs

Scroll OnScroll ScrollEventHandler ScrollEventArgs

The ValueChanged event occurs only when the Value property really truly changes. If the cat lies
down on your keyboard, ValueChanged won't waste your time with a bunch of superfluous events.

The ValueChanged event occurs not only when the user manipulates the scroll bar but also when
the program sets the Value property. The Scroll event doesn't occur when the Value property is
programmatically changed.

Moreover, the Scroll event gives you much more information about how the scroll bar is being
manipulated. It's possible you might never need to use the Scroll event, but it's there if you find
ValueChanged insufficient. The event handler for the Scroll event gets an object of type
ScrollEventArgs, which has the following properties:
ScrollEventArgs Properties

Type Property Accessibility

int NewValue get/set

ScrollEventType Type get

The NewValue property is what the scroll bar Value property will be set to after the event handler
returns control back to the scroll bar. You can override that property by setting NewValue to
something else. The Type property is of type ScrollEventType.
ScrollEventType Enumeration

Member Value Description

SmallDecrement 0 Mouse: Left or top arrow
Keyboard: Left or Up arrow

SmallIncrement 1 Mouse: Right or bottom arrow
Keyboard: Right or Down arrow

LargeDecrement 2 Mouse: Left or top area
Keyboard: Page Up

LargeIncrement 3 Mouse: Right or bottom area
Keyboard: Page Down

ThumbPosition 4 Mouse: Button up on scroll box (thumb)

ThumbTrack 5 Mouse: Button down on scroll box (thumb) or move

First 6 Keyboard: Home

Last 7 Keyboard: End

EndScroll 8 Scrolling operation completed

For example, suppose a scroll bar has the input focus and you press and release one of the
keyboard arrow keys. Or you click with the mouse on the scroll bar arrow. You'll first get a Scroll
event with the Type field set to ScrollEventArgsType.SmallIncrement or
ScrollEventArgsType.SmallDecrement. Then you'll receive a ValueChanged event, followed by
another Scroll event with the Type field equal to ScrollEventArgsType.EndScroll. If sb is an object of
type ScrollBar and sea is an object of type ScrollEventArgs, here's the sequence of events:

Event sb.Value sea.Type sea.NewValue

Scroll N SmallIncrement N + 1

Event sb.Value sea.Type sea.NewValue

ValueChanged N + 1

Scroll N + 1 EndScroll N + 1

If you keep the mouse button (or the arrow key) pressed, you'll get a series of events, finally
terminated with an EndScroll:

Event sb.Value sea.Type sea.NewValue

Scroll N SmallIncrement N + 1

ValueChanged N + 1

Scroll N + 1 SmallIncrement N + 2

ValueChanged N + 2

Scroll N + 2 SmallIncrement N + 3

ValueChanged N + 3

Scroll N + 3 SmallIncrement N + 4

ValueChanged N + 4

Scroll N + 4 EndScroll N + 4

You won't get a ValueChanged event if the Value has reached its minimum or maximum. If you
press the End key, generally you'll get the following:

Event sb.Value sea.Type sea.NewValue

Scroll N Last sb.Maximum

ValueChanged sb.Maximum

Scroll sb.Maximum EndScroll sb.Maximum

However, if the scroll box is already at the end of the scroll bar, when you press the End key, you'll
get the following:

Event sb.Value sea.Type sea.NewValue

Scroll sb.Maximum Last sb.Maximum

Scroll sb.Maximum EndScroll sb.Maximum

If you grab the scroll box with the mouse and move it, you get the following sequence of events:

Event sb.Value sea.Type sea.NewValue

Scroll N ThumbTrack N

Scroll N ThumbTrack N + 1

ValueChanged N + 1

Scroll N + 1 ThumbTrack N + 2

ValueChanged N + 2

Scroll N + 2 ThumbTrack N + 3

ValueChanged N + 3

Scroll N + 3 ThumbTrack N + 4

ValueChanged N + 4

Event sb.Value sea.Type sea.NewValue

Scroll N + 4 ThumbPosition N + 4

Scroll N + 4 EndScroll N + 4

Depending on how fast you move the scroll bar, you might not get events for every possible value.
And it's really how your program reacts to quick movement of the scroll box that determines whether
you should install a Scroll handler rather than a ValueChanged handler. Try grabbing the scroll box
with the mouse and shaking it violently. If your program can't keep up, consider the possibility of
processing the Scroll event rather than ValueChanged. You can then ignore all values of Type
except EndScroll, for example.

The ColorScroll program uses three scroll bars, labeled Red, Green, and Blue, that let you select a
color mix. The program sets the form's background color to the resultant color you select. To keep all
the scroll bars and labels visible, a white Panel control covers half the client area of the form. All the
other controls—three scroll bars and six labels—are children of Panel.
ColorScroll.cs
//--
// ColorScroll.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ColorScroll: Form
{
 Panel panel;
 Label[] alabelName = new Label[3];
 Label[] alabelValue = new Label[3];
 VScrollBar[] avscroll = new VScrollBar[3];

 public static void Main()
 {
 Application.Run(new ColorScroll());
 }
 public ColorScroll()
 {
 Text = "Color Scroll";

 Color[] acolor = { Color.Red, Color.Green, Color.Blue };

 // Create the panel.

 panel = new Panel();
 panel.Parent = this;
 panel.Location = new Point(0, 0);
 panel.BackColor = Color.White;

 // Loop through the three colors.

 for (int i = 0; i < 3; i++)
 {
 alabelName[i] = new Label();
 alabelName[i].Parent = panel;
 alabelName[i].ForeColor = acolor[i];
 alabelName[i].Text = "&" + acolor[i].ToKnownColor();
 alabelName[i].TextAlign = ContentAlignment.MiddleCenter;

 avscroll[i] = new VScrollBar();
 avscroll[i].Parent = panel;
 avscroll[i].SmallChange = 1;
 avscroll[i].LargeChange = 16;
 avscroll[i].Minimum = 0;
 avscroll[i].Maximum = 255 + avscroll[i].LargeChange - 1;
 avscroll[i].ValueChanged +=
 new EventHandler(ScrollOnValueChanged);
 avscroll[i].TabStop = true;

 alabelValue[i] = new Label();
 alabelValue[i].Parent = panel;
 alabelValue[i].TextAlign = ContentAlignment.MiddleCenter;
 }
 Color color = BackColor;
 avscroll[0].Value = color.R; // Generates ValueChanged event
 avscroll[1].Value = color.G;
 avscroll[2].Value = color.B;

 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 int cx = ClientSize.Width;
 int cy = ClientSize.Height;
 int cyFont = Font.Height;

 panel.Size = new Size(cx / 2, cy);

 for (int i = 0; i < 3; i++)
 {
 alabelName[i].Location = new Point(i * cx / 6, cyFont / 2);
 alabelName[i].Size = new Size(cx / 6, cyFont);

 avscroll[i].Location = new Point((4 * i + 1) * cx / 24,
 2 * cyFont);
 avscroll[i].Size = new Size(cx / 12, cy - 4 * cyFont);

 alabelValue[i].Location = new Point(i * cx / 6,
 cy - 3 * cyFont / 2);
 alabelValue[i].Size = new Size(cx / 6, cyFont);
 }
 }
 void ScrollOnValueChanged(Object obj, EventArgs ea)
 {
 for (int i = 0; i < 3; i++)
 if((VScrollBar) obj == avscroll[i])
 alabelValue[i].Text = avscroll[i].Value.ToString();

 BackColor = Color.FromArgb(avscroll[0].Value,
 avscroll[1].Value,
 avscroll[2].Value);
 }
}

The constructor creates all the controls and stores them as fields. The scroll bars must provide
values from 0 through 255. Notice how I set LargeChange to 16 and then set the Maximum property
to 255 plus LargeChange minus 1, which equals 270. The constructor doesn't position or size the
controls, however. That brutal job is the responsibility of the OnResize method. The location and
sizes are based on the size of the client area and the font height. The vertical scroll bars change
width as you resize the form. (I tried to use anchoring for the effect I wanted, but I just couldn't get it
to work right.) Here's a normal-size view of the program:

There are two sets of labels: the three Label controls stored in the alabelName array are assigned
the Text properties Red, Green, and Blue, and get their ForeColor properties set to the same color. I
use the acolor array for both jobs. If you use the ToString method with a Color object, you get
something like Color [Red]. But if the Color object is part of the KnownColor enumeration, you can
convert the Color object to a KnownColor value by using the method ToKnownColor. The
enumeration value converts to a string like Red.

The TabStop property inherited from Control is normally set to false for scroll bars. ColorScroll sets it
to true. In addition, the Red, Green, and Blue labels are prefaced with an ampersand. Because
labels are not tab stops, if they contain a letter preceded by an ampersand, the letter functions as an
accelerator in setting the input to the next tab stop control. So not only can you shift the input focus
among the scroll bars using the Tab key, you can also shift input focus by pressing R, G, or B.

When you move one of the scroll bars, it generates a ValueChanged event and a call to the
program's ScrollOnValueChanged method. This method casts the obj argument to a VScrollBar
object and then searches through the avscroll array to find the match. The resultant index is used to
set the corresponding Label control below the scroll bar that displays the value (alabelValue). The
method concludes by using the values from all three scroll bars to recompute a background color for
the form.

Watch out when setting the scroll bar Value property from your program! The constructor for
ColorScroll originally concluded with the following three statements to initialize the three scroll bars
with the background color of the form:
avscroll[0].Value = BackColor.R;
avscroll[1].Value = BackColor.G;
avscroll[2].Value = BackColor.B;

However, the first statement caused a ValueChanged event, which performed a call to
ScrollOnValueChanged in the program, which then set the background color based on the three
scroll bar Value properties. But because the Green and Blue scroll bars hadn't been initialized yet,
the background color effectively had its green and blue components—BackColor.G and
BackColor.B—set to 0. Saving the background color first in another Color variable and using that
variable to set the Value properties fixed the problem:
Color color = BackColor;
avscroll[0].Value = color.R;
avscroll[1].Value = color.G;
avscroll[2].Value = color.B;
The Track Bar Alternative
Very similar in functionality to scroll bars are track bars. From the programmer's perspective, one
difference between scroll bars and track bars is that the horizontal or vertical orientation of a track
bar is a property:
TrackBar Properties (selection)

Type Property Accessibility

Orientation Orientation get/set

The Orientation enumeration is short and simple:
Orientation Enumeration

Member Value

Horizontal 0

Vertical 1

As you know from experimenting with the ColorScroll program, you can change the thickness of
scroll bars. By default, you can't change the thickness of track bars, and the track bar is less
amenable to such changes. The track bar usually needs a minimum thickness to display the tick
marks, and it doesn't really use any extra thickness. If you want to experiment with changing the
thickness of track bars, you must set the AutoSize property to false:
TrackBar Properties (selection)

Type Property Accessibility Description

bool AutoSize get/set Default is true

By default, the AutoSize property is true, which means that the track bar will have a constant width
(for vertical track bars) or height (for horizontal track bars) regardless of the Size property. The
default TabStop property for track bars is also set to true (unlike scroll bars).

The TrackBar class has the following same properties as ScrollBar but with different Maximum and
LargeChange defaults:
TrackBar Properties (selection)

Type Property Accessibility Description

int Value get/set Ranges from Minimum to Maximum

int Minimum get/set Default is 0

int Maximum get/set Default is 10

int SmallChange get/set Default is 1

int LargeChange get/set Default is 5

The Value property of track bars ranges from Minimum to Maximum without any trickiness involving
the LargeChange property. This actually makes track bars easier to use for applications like
ColorScroll but harder to use for applications in which a document is scrolled.

Although vertical scroll bars have increasing values as you scroll the scroll box down, vertical track
bars have increasing values as you scroll the scroll box up. Again, it's the difference between
scrolling a document and selecting a value.

Two additional properties let you control tick marks on the track bar:
TrackBar Properties (selection)

Type Property Accessibility Description

TickStyle TickStyle get/set Default is BottomRight

int TickFrequency get/set Default is 1

The TickStyle property lets you specify which side of the track bar contains the tick marks based on
the following enumeration:
TickStyle Enumeration

Member Value Description

None 0 No tick marks

TopLeft 1 Tick marks on top for horizontal track bars and on left for
vertical track bars

BottomRight 2 Tick marks on bottom for horizontal track bars and on right for
vertical track bars

Both 3 Tick marks on both sides

The default is BottomRight. If your TickFrequency is 1 (the default) and you set a wide range for the
track bar, the tick marks may end up looking like a solid block of black.

You also have a bit more flexibility with track bars in specifying a background color or image:
TrackBar Properties (selection)

Type Property Accessibility

Color BackColor get/set

Image BackgroundImage get/set

The two crucial TrackBar events have the same names as those implemented in ScrollBar:

TrackBar Events

Event Method Delegate Argument

ValueChanged OnValueChanged EventHandler EventArgs

Scroll OnScroll EventHandler EventArgs

Both events are associated with normal EventHandler delegates. For track bars, the Scroll events
and ValueChanged events always come in pairs (Scroll first, then ValueChanged) except when the
Value property is programmatically set to a different value. In that case, a ValueChanged event
occurs without a corresponding Scroll event.

Here's the ColorScroll program rewritten to use track bars.
ColorTrackBar.cs
//--
// ColorTrackBar.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ColorTrackBar: Form
{
 Panel panel;
 Label[] alabelName = new Label[3];
 Label[] alabelValue = new Label[3];
 TrackBar[] atrackbar = new TrackBar[3];

 public static void Main()
 {
 Application.Run(new ColorTrackBar());
 }
 public ColorTrackBar()
 {
 Text = "Color Track Bar";

 Color[] acolor = { Color.Red, Color.Green, Color.Blue };

 // Create the panel.

 panel = new Panel();
 panel.Parent = this;
 panel.Location = new Point(0, 0);
 panel.BackColor = Color.White;

 // Loop through the three colors.

 for (int i = 0; i < 3; i++)

 {
 alabelName[i] = new Label();
 alabelName[i].Parent = panel;
 alabelName[i].ForeColor = acolor[i];
 alabelName[i].Text = "&" + acolor[i].ToKnownColor();
 alabelName[i].TextAlign = ContentAlignment.MiddleCenter;

 atrackbar[i] = new TrackBar();
 atrackbar[i].Parent = panel;
 atrackbar[i].Orientation = Orientation.Vertical;
 atrackbar[i].BackColor = acolor[i];
 atrackbar[i].SmallChange = 1;
 atrackbar[i].LargeChange = 16;
 atrackbar[i].Minimum = 0;
 atrackbar[i].Maximum = 255;
 atrackbar[i].TickFrequency = 16;
 atrackbar[i].ValueChanged +=
 new EventHandler(TrackBarOnValueChanged);

 alabelValue[i] = new Label();
 alabelValue[i].Parent = panel;
 alabelValue[i].TextAlign = ContentAlignment.MiddleCenter;
 }
 Color color = BackColor;
 atrackbar[0].Value = color.R; // Generates ValueChanged event
 atrackbar[1].Value = color.G;
 atrackbar[2].Value = color.B;

 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 int cx = ClientSize.Width;
 int cy = ClientSize.Height;
 int cyFont = Font.Height;

 panel.Size = new Size(cx / 2, cy);

 for (int i = 0; i < 3; i++)
 {
 alabelName[i].Location = new Point(i * cx / 6, cyFont / 2);
 alabelName[i].Size = new Size(cx / 6, cyFont);

 atrackbar[i].Height = cy - 4 * cyFont;
 atrackbar[i].Location =
 new Point((1 + 2 * i) * cx / 12 - atrackbar[i].Width /
2,
 2 * cyFont);

 alabelValue[i].Location = new Point(i * cx / 6,
 cy - 3 * cyFont / 2);
 alabelValue[i].Size = new Size(cx / 6, cyFont);
 }
 }
 void TrackBarOnValueChanged(object obj, EventArgs ea)
 {
 for (int i = 0; i < 3; i++)
 if((TrackBar) obj == atrackbar[i])
 alabelValue[i].Text = atrackbar[i].Value.ToString();

 BackColor = Color.FromArgb(atrackbar[0].Value,
 atrackbar[1].Value,
 atrackbar[2].Value);
 }
}

As you can see, there aren't many differences between the two programs. The code that sets the
TrackBar properties mostly reflects the difference between scroll bars and track bars. The
ColorTrackBar program doesn't need to set the TabStop property, but it does need to set the
Orientation and TickFrequency properties. In addition, the program takes advantage of the fact that
track bars color their backgrounds by setting the BackColor property to red, green, or blue. The
OnResize method is a little different as well because I decided to let the track bars retain their default
width.

Chapter 13: Béziers and Other Splines
Overview
What is a spline? Even recent dictionaries define spline as "a flexible piece of wood, hard rubber, or
metal used in drawing curves."[1] The definition conjures up a quaint image of an engineer wielding
an awkward bendable contraption while hunched over a spread of graph paper attempting to fit a
curve through a scattering of data points. These days a spline is more accurately described as "a
curve calculated by a mathematical function that connects separate points with a high degree of
smoothness…. See also Bézier curve."[2]

Pierre Etienne Bézier was born in Paris in 1910 into a family of engineers. He received a degree in
mechanical engineering in 1930 and a second degree in electrical engineering the following year. In
1933, he began working at the French automotive company Renault, where he remained until 1975.
During the 1950s, Bézier was responsible for implementing some of the first drilling and milling
machines that operated under NC, that is, numerical control (a term rarely used these days).

Beginning in 1960, much of Bézier's work was centered around the UNISURF program, an early
CAD/CAM system used at Renault for interactively designing automobile parts. What was required in
such a system were mathematical definitions of complex curves that designers could manipulate
without knowing about

the underlying mathematics, which could then be used in manufacturing processes. From this work
came the curve that now bears Bézier's name. Pierre Bézier died in 1999.[3]

The Bézier spline has come to assume a high degree of importance in computer graphics, ranking
just under the straight line and the elliptical arc. In PostScript, the Bézier spline is used to render all
curves—even elliptical arcs are approximated from Béziers. Bézier splines are also used to define
the outlines of PostScript fonts. (TrueType uses a simpler and faster form of spline.)
[1]American Heritage Dictionary of the English Language, 4th ed. (Boston: Houghton Mifflin, 2000).
[2]Microsoft Computer Dictionary, 4th ed. (Redmond, WA: Microsoft Press, 1999).
[3] Much of the biographical information is from Pierre Bézier, "Style, Mathematics and NC,"
Computer-Aided Design 22, no. 9 (November 1990): 523. Two of Bézier's books have been
translated into English: Pierre Bézier, Numerical Control: Mathematics and Application (London:
John Wiley & Sons, 1972) and Pierre Bézier, The Mathematical Basis of the UNISURF CAD System
(London: Butterworths, 1986). See also Pierre Bézier, "How a Simple System Was Born" in Gerald
Farin, Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide, 4th ed. (San
Diego: Academic Press, 1997).
The Bézier Spline in Practice
A single Bézier spline is uniquely defined by four points, which we can call p0, p1, p2, and p3. The
curve begins at p0 and ends at p3; thus, p0 is referred to as the begin point and p3 as the end point.
(Collectively, p0 and p3 are often referred to as end points.) The points p1 and p2 are called control
points. The control points function like magnets to pull the curve toward them. Here's a sample
Bézier curve showing the two end points and two control points:

Notice how the curve begins at p0 by heading toward p1 but then abandons that trip and heads
toward p2. Not touching p2 either, the curve ends at p3. Here's another Bézier curve:

Only rarely does the Bézier curve pass through the two control points. However, if you position both
control points between the end points, the Bézier curve becomes a straight line and passes through
them:

At the other extreme, it's even possible to choose points that make the Bézier spline do a loop:

To draw a Bézier curve in a Windows Forms program, you need to specify the four points, either as
four Point or PointF structures or as eight float values:

Graphics DrawBezier Methods

void DrawBezier(Pen pen, Point pt0, Point pt1, Point pt2, Point pt3)
void DrawBezier(Pen pen, PointF ptf0, PointF ptf1, PointF ptf2,
 PointF ptf3)
void DrawBezier(Pen pen, float x0, float y0, float x1, float y1,
 float x2, float y2, float x3, float y3)

It's sometimes more convenient to specify these four points as an array of Point or PointF structures.
The two DrawBeziers methods let you do that. (Notice the plural.) You can pass an array of four
Point or PointF structures to the DrawBeziers method, or you can use the method to draw multiple
connected Bézier splines:

Graphics DrawBeziers Methods

void DrawBeziers(Pen pen, Point[] apt)
void DrawBeziers(Pen pen, PointF[] aptf)

When you draw multiple Bézier splines, the end point of each connected spline is the same as the
begin point of the next spline, which means that each additional spline requires three more points. To
draw N Bézier curves, the number of points in the array must be equal to 3N + 1. If the size of the
array doesn't equal 3N + 1, for N ≥ 1, the method throws an exception.

There are no FillBezier or FillBeziers methods. If you want to use Bézier curves to fill enclosed
areas, you need to use graphics paths, which I cover in Chapter 15.

You can get a good feel for the Bézier curve by experimenting with the following program.
Bezier.cs

//-------------------------------------
// Bezier.cs © 2001 by Charles Petzold
//-------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class Bezier: Form
{
 protected Point[] apt = new Point[4];

 public static void Main()
 {
 Application.Run(new Bezier());
 }
 public Bezier()
 {
 Text = "Bezier (Mouse Defines Control Points)";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;

 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 int cx = ClientSize.Width;
 int cy = ClientSize.Height;

 apt[0] = new Point(cx / 4, cy / 2);
 apt[1] = new Point(cx / 2, cy / 4);
 apt[2] = new Point(cx / 2, 3 * cy / 4);
 apt[3] = new Point(3 * cx / 4, cy / 2);
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 Point pt;

 if (mea.Button == MouseButtons.Left)
 pt = apt[1];

 else if (mea.Button == MouseButtons.Right)
 pt = apt[2];

 else
 return;

 Cursor.Position = PointToScreen(pt);
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 if (mea.Button == MouseButtons.Left)
 {
 apt[1] = new Point(mea.X, mea.Y);
 Invalidate();
 }
 else if (mea.Button == MouseButtons.Right)
 {
 apt[2] = new Point(mea.X, mea.Y);
 Invalidate();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 grfx.DrawBeziers(new Pen(ForeColor), apt);

 Pen pen = new Pen(Color.FromArgb(0x80, ForeColor));

 grfx.DrawLine(pen, apt[0], apt[1]);
 grfx.DrawLine(pen, apt[2], apt[3]);
 }
}

The program fixes the two end points and lets you manipulate the two control points with the mouse.
Use the left mouse button for p1 and the right mouse button for p2. I implemented a "snap to" feature
in this program: when you press the left or right mouse button, the program uses the static
Cursor.Position property to move the position of the mouse cursor to the appropriate control point.
The program also draws gray lines from the end points to the control points. Here's a typical display:

Bézier splines are useful in computer-assisted graphics design work because of several
characteristics. First, with a little practice, you can usually manipulate the curve into something close
to the shape you desire.

Second, the Bézier spline is very well controlled. Some splines don't pass through any of the points
that define them. The Bézier spline is always anchored at the two end points. (As we'll see, this is
one of the assumptions that is used to derive the Bézier formulas.) Also, some forms of splines have
singularities where the curve veers off into infinity (an effect rarely desired in computer-design work).
The Bézier spline is much better behaved. In fact, the Bézier spline is always bounded by a four-
sided polygon (called a convex hull) that is formed by connecting the end points and the control
points. (The way in which you connect the end points and the control points to form this convex hull
depends on the particular curve.)

The third characteristic of the Bézier spline involves the relationship between the end points and the
control points. At the begin point, the curve is always tangential to and in the same direction as a
straight line drawn from the begin point to the first control point. (This relationship is visually
illustrated in the Bézier program.) At the end point, the curve is always tangential to and in the same
direction as a straight line drawn from the second control point to the end point. These are two other
assumptions used to derive the Bézier formulas.

Fourth, the Bézier spline is often aesthetically pleasing. I know this is a subjective criterion, but I'm
not the only person who finds the Bézier curve quite graceful.
A More Stylish Clock
In the two decades since the dawn of analog clock programs, such programs have looked pretty
much the same. Almost always the programmer uses a fairly simple polygon to draw the hands of
the clock. It is now time to explore new vistas by drawing the clock hands using Bézier splines.

You'll recall that the AnalogClock program in Chapter 10, "The Timer and Time," made use of a
control that I implemented in a class named ClockControl. Fortunately, I had the foresight to isolate
the clock hand-drawing code in protected virtual methods in that class. Here's a BezierClockControl
class that makes calls to DrawBeziers in new DrawHourHand and DrawMinuteHand methods.
BezierClockControl.cs
//---
// BezierClockControl.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;

using System.Windows.Forms;

namespace Petzold.ProgrammingWindowsWithCSharp
{
class BezierClockControl: ClockControl
{
 protected override void DrawHourHand(Graphics grfx, Pen pen)
 {
 GraphicsState gs = grfx.Save();
 grfx.RotateTransform(360f * Time.Hour / 12 +
 30f * Time.Minute / 60);

 grfx.DrawBeziers(pen, new Point[]
 {
 new Point(0, -600), new Point(0, -300),
 new Point(200, -300), new Point(50, -200),
 new Point(50, -200), new Point(50, 0),
 new Point(50, 0), new Point(50, 75),
 new Point(-50, 75), new Point(-50, 0),
 new Point(-50, 0), new Point(-50, -200),
 new Point(-50, -200), new Point(-200, -300),
 new Point(0, -300), new Point(0, -600)
 });
 grfx.Restore(gs);
 }
 protected override void DrawMinuteHand(Graphics grfx, Pen pen)
 {
 GraphicsState gs = grfx.Save();
 grfx.RotateTransform(360f * Time.Minute / 60 +
 6f * Time.Second / 60);

 grfx.DrawBeziers(pen, new Point[]
 {
 new Point(0, -800), new Point(0, -750),
 new Point(0, -700), new Point(25, -600),
 new Point(25, -600), new Point(25, 0),
 new Point(25, 0), new Point(25, 50),
 new Point(-25, 50), new Point(-25, 0),
 new Point(-25, 0), new Point(-25, -600),
 new Point(-25, -600), new Point(0, -700),
 new Point(0, -750), new Point(0, -800)
 });
 grfx.Restore(gs);
 }
}

}

Each of the two calls to DrawBeziers passes an array of 16 Point structures to draw 5 Bézier curves.
(Remember that the first Bézier curve drawn by DrawBeziers requires 4 points; each subsequent
curve requires 3 more.)

The original AnalogClock program was so small that I decided it didn't make sense trying to subclass
it. Instead, here's a brand new BezierClock program that takes advantage of the BezierClockControl
class.
BezierClock.cs
//--
// BezierClock.cs © 2001 by Charles Petzold
//--
using Petzold.ProgrammingWindowsWithCSharp;
using System;
using System.Drawing;
using System.Windows.Forms;

class BezierClock: Form
{
 BezierClockControl clkctl;

 public static void Main()
 {
 Application.Run(new BezierClock());
 }
 public BezierClock()
 {
 Text = "Bezier Clock";

 clkctl = new BezierClockControl();
 clkctl.Parent = this;
 clkctl.Time = DateTime.Now;
 clkctl.Dock = DockStyle.Fill;
 clkctl.BackColor = Color.Black;
 clkctl.ForeColor = Color.White;

 Timer timer = new Timer();
 timer.Interval = 100;
 timer.Tick += new EventHandler(OnTimerTick);
 timer.Start();
 }
 void OnTimerTick(object obj, EventArgs ea)
 {
 clkctl.Time = DateTime.Now;
 }
}

And here it is:

The curved tip of each hand is defined by two Bézier curves, one on each side. The straight-line
portions are another pair of Bézier curves, and the rounded part at the center of the clock is another
curve, for a total of five.
Collinear Béziers
Although connected Bézier curves share end points, it's possible that the point at which one curve
ends and the other begins won't be smooth. Mathematically speaking, the composite curve is
considered to be smooth only if the first derivative of the curve is continuous—that is, it doesn't make
any sudden changes.

When you draw multiple Bézier curves, you may want the resultant composite curve to be smooth
where one curve ends and the next one begins. Then again, you may not. The hands of the clock
have a combination of smoothness and discontinuity. The point at which the two Bézier curves meet
at the tip of the clock hand has a discontinuous first derivative. Likewise, there's a discontinuity
where the Bézier curve defining the curved part of the tip meets the straight line. However, the
straight lines smoothly join the rounded part at the center of the clock.

If you want connected Bézier curves to join each other smoothly, the following three points must be
collinear (that is, lie on the same line):
§ The second control point of the first Bézier
§ The end point of the first Bézier (which is the same as the begin point of the second Bézier)
§ The first control point of the second Bézier

Here's a program that draws four connected Bézier curves that are smooth at each connection. The
end of the fourth Bézier curve meets the beginning of the first curve to create a closed curve.
Infinity.cs
//---------------------------------------
// Infinity.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class Infinity: PrintableForm
{
 public new static void Main()

 {
 Application.Run(new Infinity());
 }
 public Infinity()
 {
 Text = "Infinity Sign Using Bezier Splines";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 cx--;
 cy--;

 Point[] apt =
 {
 new Point(0, cy / 2), // Begin
 new Point(0, 0), // Control
 new Point(cx / 3, 0), // Control
 new Point(cx / 2, cy / 2), // End / Begin
 new Point(2 * cx / 3, cy), // Control
 new Point(cx, cy), // Control
 new Point(cx, cy / 2), // End / Begin
 new Point(cx, 0), // Control
 new Point(2 * cx / 3, 0), // Control
 new Point(cx / 2, cy / 2), // End / Begin
 new Point(cx / 3, cy), // Control
 new Point(0, cy), // Control
 new Point(0, cy / 2) // End
 };
 grfx.DrawBeziers(new Pen(clr), apt);
 }
}

In the array, each point labeled Begin, End, or End/Begin is collinear with the two control points on
either side. The result of these four Bézier splines is a design that somewhat resembles an infinity
sign:

Circles and Arcs with Béziers
Earlier in this chapter, I mentioned that PostScript uses Bézier splines to draw elliptical arcs. As
you'll discover in Chapter 15, Windows Forms does so as well, at least when it comes time to store
arcs and ellipses to a graphics path.

A couple articles that describe the approximation of elliptical arcs using Bézier splines are
available.[4] The first of these articles describes a fairly simple technique that you can use to draw
segments of a circle. Suppose you want to use a Bézier spline to draw a circular arc with a particular
radius and an angular width of α. You know that you must set p0 and p3 to the points at the beginning
and the end of the arc, but how do you set p1 and p2? As this diagram illustrates, the problem
reduces to finding the distance between the end points and control points—a single length labeled L:

I've indicated that the lines connecting the end points with the control points are at right angles to the
radii. How do we know this? Because of the collinearity requirement for smoothness. If you were to
use a Bézier spline to draw another arc adjacent to this one with the same center and radius, the
common end point and the two adjacent control points would need to be collinear. That means that
the line from the end point to the control point is at right angles to the circle's radius.

If you know L, calculating the coordinates of p1 and p2 involves just basic trigonometry. But look how
simple the calculations of p1 and p2 are when you use an angle of 90 degrees oriented with the
horizontal and vertical coordinates:

The calculation of p1 and p2 is also trivial when you use an angle of 180 degrees.

The first paper I cited demonstrates that a fairly good approximation results from

times the radius.

The BezierCircles program draws two complete circles using this approximation, first using two
Bézier splines and then (more accurately) using four Bézier splines.
BezierCircles.cs
//--
// BezierCircles.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BezierCircles: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new BezierCircles());
 }
 public BezierCircles()
 {
 Text = "Bezier Circles";

 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 int iRadius = Math.Min(cx - 1, cy - 1) / 2;

 grfx.DrawEllipse(new Pen(clr), cx / 2 - iRadius, cy / 2 -
iRadius,
 2 * iRadius, 2 * iRadius);

 // Two-segment (180-degree) approximation

 int L = (int) Math.Round(iRadius * 4f / 3 * Math.Tan(Math.PI /
4));

 Point[] apt = {
 new Point(cx / 2, cy / 2 - iRadius),
 new Point(cx / 2 + L, cy / 2 - iRadius),
 new Point(cx / 2 + L, cy / 2 + iRadius),
 new Point(cx / 2, cy / 2 + iRadius),
 new Point(cx / 2 - L, cy / 2 + iRadius),
 new Point(cx / 2 - L, cy / 2 - iRadius),
 new Point(cx / 2, cy / 2 - iRadius)
 };
 grfx.DrawBeziers(Pens.Blue, apt);

 // Four-segment (90-degree) approximation

 L = (int) Math.Round(iRadius * 4f / 3 * Math.Tan(Math.PI / 8));

 apt = new Point[]
 {
 new Point(cx / 2, cy / 2 -
iRadius),
 new Point(cx / 2 + L, cy / 2 -
iRadius),
 new Point(cx / 2 + iRadius, cy / 2 - L),
 new Point(cx / 2 + iRadius, cy / 2),
 new Point(cx / 2 + iRadius, cy / 2 + L),
 new Point(cx / 2 + L, cy / 2 +
iRadius),
 new Point(cx / 2, cy / 2 +
iRadius),
 new Point(cx / 2 - L, cy / 2 +
iRadius),
 new Point(cx / 2 - iRadius, cy / 2 + L),
 new Point(cx / 2 - iRadius, cy / 2),
 new Point(cx / 2 - iRadius, cy / 2 - L),

 new Point(cx / 2 - L, cy / 2 -
iRadius),
 new Point(cx / 2, cy / 2 -
iRadius)
 };
 grfx.DrawBeziers(Pens.Red, apt);
 }
}

This program also visually demonstrates how the Bézier approximation differs from the DrawEllipse
method. The program begins its DoPage processing by calling DrawEllipse to draw an ellipse in
black. The two-Bézier approximation is drawn in blue, and the four-Bézier version in red. Remember
that the arguments to the Math class trigonometric functions are in units of radians, so instead of
dividing the angle by 4 as the formula for L indicates, I use an expression based on the Math.PI
constant.
[4] Tor Dokken, et al., "Good Approximation of Circles by Curvature-Continuous Bézier Curves,"
Computer Aided Geometric Design 7 (1990), 33–41. Michael Goldapp, "Approximation of Circular
Arcs by Cubic Polynomials," Computer Aided Geometric Design 8 (1991), 227–238.
Bézier Art
Many people—including Pierre Bézier[5] himself—have used Bézier splines to create interesting
designs and patterns. These are generally lumped under the category of "Bézier art." There are no
rules here except that a for loop is generally involved. Here's an example.
BezierArt.cs
//--
// BezierArt.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BezierArt: PrintableForm
{
 const int iNum = 100;

 public new static void Main()
 {
 Application.Run(new BezierArt());
 }
 public BezierArt()
 {
 Text = "Bezier Art";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen pen = new Pen(clr);
 PointF[] aptf = new PointF[4];

 for (int i = 0; i < iNum; i++)

 {
 double dAngle = 2 * i * Math.PI / iNum;

 aptf[0].X = cx / 2 + cx / 2 * (float)
Math.Cos(dAngle);
 aptf[0].Y = 5 * cy / 8 + cy / 16 * (float)
Math.Sin(dAngle);

 aptf[1] = new PointF(cx / 2, -cy);
 aptf[2] = new PointF(cx / 2, 2 * cy);

 dAngle += Math.PI;

 aptf[3].X = cx / 2 + cx / 4 * (float) Math.Cos(dAngle);
 aptf[3].Y = cy / 2 + cy / 16 * (float) Math.Sin(dAngle);

 grfx.DrawBeziers(pen, aptf);
 }
 }
}

Images that involve a lot of line or curve drawing usually look better when printed, but here's the
video version of this one:

Although I'm stuck with black and white for images in this book, don't forget about color when you do
your own Bézier art.
[5] A sample of Pierre Bézier's artwork appears on Professor Brian Barsky's Web site at
http://www.cs.berkeley.edu/~barsky/gifs/bezier.html.
The Mathematical Derivation
It's sometimes helpful to know the underlying formulas that a graphics system uses to render
particular curves. For example, you may need to orient other graphics figures (text characters,
perhaps) in relationship to a curve that the system has drawn. It's also a good exercise to derive the
curves, if only so that you don't think the formulas fell out of the sky one day.

http://www.cs.berkeley.edu/~barsky/gifs/bezier.html

A Bézier spline is a cubic polynomial. Like all cubic polynomials, a Bézier spline is uniquely defined
by four points, which we have called p0 (the begin point), p1 and p2 (the two control points), and p3
(the end point). These four points can also be denoted as (x0, y0), (x1, y1), (x2, y2), and (x3, y3).

The general parametric form of a cubic polynomial in two dimensions is

x(t) = ax · t3 + bx · t2 + cx · t + dx
y(t) = ay · t3 + by · t2 + cy · t + dy

where ax, bx, cx, dx, ay, by, cy, and dy are constants, and t ranges from 0 to 1. Every Bézier spline
is uniquely defined by these eight constants. The constants are dependent on the four points that
define the spline. The object of this exercise is to develop equations for the eight constants in terms
of the four points.

The first assumption is that the Bézier spline begins at the point (x0, y0) when t equals 0:

x(0) = x0
y(0) = y0

Even with this simple assumption we can make some headway in deriving the constants. If you put a
0 value for t in the parametric equations, you get

x(0) = dx
y(0) = dy

This means that two of the constants are simply the coordinates of the begin point:

dx = x0 (1a)
dy = y0 (1b)

The second assumption regarding the Bézier spline is that it ends at the point (x3, y3) when t equals
1:

x(1) = x3
y(1) = y3

Substituting a value of 1 for t in the parametric formulas yields the following:

x(1) = ax + bx + cx + dx
y(1) = ay + by + cy + dy

This means that the constants relate to the coordinate of the end point like so:

ax + bx + cx + dx = x3 (2a)
ay + by + cy + dy = y3 (2b)

The remaining two assumptions involve the first derivatives of the parametric equations, which
describe the slope of the curve. The first derivatives of the generalized parametric equations of a
cubic polynomial with respect to t are

x′(t) = 3axt2 + 2bxt + cx
y′(t) = 3ayt2 + 2byt + cy

In particular, we're interested in the slope of the curve at the two end points. At the begin point, the
Bézier spline is tangential to and in the same direction as a straight line drawn from the first begin
point to the first control point. That straight line would normally be defined by the parametric
equations

x(t) = (x1 − x0) t + x0
y(t) = (y1 − y0) t + y0

for t ranging from 0 to 1. However, another way of expressing this straight line would be the
parametric equations

x(t) = 3 (x1 − x0) t + x0
y(t) = 3 (y1 − y0) t + y0

where t ranges from 0 to 1/3. Why 1/3? Because the section of the Bézier spline that is tangential to
and in the same direction as the straight line from p0 to p1 is roughly 1/3 of the total Bézier spline.
Here are the first derivatives of these revised parametric equations:

x′(t) = 3 (x1 − x0)
y′(t) = 3 (y1 − y0)

We want these equations to represent the slope of the Bézier spline when t equals 0, so

x′(0) = 3 (x1 − x0)
y′(0) = 3 (y1 − y0)

Substitute t in the generalized cubic first derivatives, and you get

x′(0) = cx
y′(0) = cy

That means

cx = 3 (x1 − x0) (3a)
cy = 3 (y1 − y0) (3b)

The last assumption is that at the end point, the Bézier spline is tangential to and in the same
direction as a straight line drawn from the second control point to the end point. In other words,

x′(1) = 3 (x3 − x2)
y′(1) = 3 (y3 − y2)

Since we know from the generalized formulas that

x′(1) = 3ax + 2bx + cx
y′(1) = 3ay + 2by + cy

then

3ax + 2bx + cx = 3 (x3 − x2) (4a)
3ay + 2by + cy = 3 (y3 − y2) (4b)

Equations 1a, 2a, 3a, and 4a provide four equations and four unknowns that let us solve for ax, bx,
cx, and dx in terms of x0, x1, x2, and x3. Go through the algebra, and you find

ax = −x0 + 3x1 − 3x2 + x3
bx = 3x0 − 6x1 + 3x2
cx = 3x0 + 3x1
dx = x0

Equations 1b, 2b, 3b, and 4b let us do the same for the y coefficients. We can then put the constants
back into the generalized cubic parametric equations:

x(t) = (−x0 + 3x1 − 3x2 + x3) t3 + (3x0 − 6x1 + 3x2) t2 + (3x0 + 3x1) t + x0
y(t) = (−y0 + 3y1 − 3y2 + y3) t3 + (3y0 − 6y1 + 3y2) t2 + (3y0 + 3y1) t + y0

We're basically done. However, it's much more common for the terms to be rearranged to yield the
more elegant and easier-to-use parametric equations:

x(t) = (1 − t)3 x0 + 3t (1 − t)2 x1 + 3t2 (1 − t) x2 + t3 x3
y(t) = (1 − t)3 y0 + 3t (1 − t)2 y1 + 3t2 (1 − t) y2 + t3 y3

These equations are the customary form in which the Bézier spline is expressed.

The BezierManual class in the following program overrides the Bezier class from the Bezier program
earlier in this chapter and draws a second Bézier spline—this time calculated "manually" using the
parametric equations I just derived.
BezierManual.cs
//---
// BezierManual.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class BezierManual: Bezier
{
 public new static void Main()
 {
 Application.Run(new BezierManual());
 }
 public BezierManual()
 {
 Text = "Bezier Curve \"Manually\" Drawn";
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 base.OnPaint(pea);

 BezierSpline(pea.Graphics, Pens.Red, apt);
 }
 void BezierSpline(Graphics grfx, Pen pen, Point[] aptDefine)
 {
 Point[] apt = new Point[100];

 for (int i = 0; i < apt.Length; i++)
 {
 float t = (float) i / (apt.Length - 1);

 float x = (1 - t) * (1 - t) * (1 - t) * aptDefine[0].X +
 3 * t * (1 - t) * (1 - t) * aptDefine[1].X +
 3 * t * t * (1 - t) * aptDefine[2].X +
 t * t * t * aptDefine[3].X;

 float y = (1 - t) * (1 - t) * (1 - t) * aptDefine[0].Y +
 3 * t * (1 - t) * (1 - t) * aptDefine[1].Y +
 3 * t * t * (1 - t) * aptDefine[2].Y +
 t * t * t * aptDefine[3].Y;

 apt[i] = new Point((int) Math.Round(x), (int)
Math.Round(y));
 }
 grfx.DrawLines(pen, apt);
 }
}

The OnPaint method in BezierManual calls the OnPaint method in the base class (that's the Bezier
class) and then calls the BezierSpline method in its own class. The BezierSpline method is defined
much the same way as DrawBeziers except that it has a Graphics object as a first argument and is
equipped to handle only a single Bézier spline. This method uses an array of 100 Point structures,
calculates each Point based on the parametric equations I derived above, and then draws the spline
as a polyline. The program draws the manually calculated Bézier spline in red, so you can compare it
with the version that Windows Forms draws. It's not exact, but it never differs by more than 1 pixel.
The Canonical Spline
The Graphics class includes a second type of spline called the canonical spline, meaning a standard
or normal spline. You draw a canonical spline by using one of the DrawCurve methods. DrawCurve
comes in seven different versions, but you'll probably use the following four methods most
frequently:

Graphics DrawCurve Methods (selection)

DrawCurve(Pen pen, Point[] apt)
DrawCurve(Pen pen, PointF[] aptf)
DrawCurve(Pen pen, Point[] apt, float fTension)
DrawCurve(Pen pen, PointF[] aptf, float fTension)

At least two points are required. If the array contains only two points, the DrawCurve method draws a
straight line from the first point to the second. For three points or more, the method draws a curved
line that connects all the points.

The big difference between the Bézier spline and the canonical spline is that the canonical spline
passes through every point in the array. The curve between each adjacent pair of points is
sometimes called a segment of the total curve. The shape of each segment of the curve is governed
by the two points at the beginning and the end of the segment (of course) but also the other two
adjacent points. For example, for an array of Point structures named apt, the shape of the segment
between apt[3] and apt[4] is also affected by the points apt[2] and apt[5].

The spline is also affected by the tension, which is an explicit argument in some of the DrawCurve
overloads. If you think of traditional wooden or metal splines, the tension is equivalent to the stiffness
of the spline. The default is 0.5. A tension of 0 results in straight lines: DrawCurve becomes
DrawLines. With tensions greater than 0.5, the curve gets curvier. You can set tensions less than 0,
but they often result in loops. Tensions much higher than 1 can also create loops.

Let's experiment. The following program is much like the Bezier program except that it also includes
a scroll bar for setting the tension and it gives you more flexibility in moving the points around.
CanonicalSpline.cs
//--
// CanonicalSpline.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class CanonicalSpline: Form
{
 protected Point[] apt = new Point[4];
 protected float fTension = 0.5f;

 public static void Main()
 {
 Application.Run(new CanonicalSpline());
 }
 public CanonicalSpline()
 {
 Text = "Canonical Spline";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;
 ResizeRedraw = true;

 ScrollBar scroll = new VScrollBar();
 scroll.Parent = this;
 scroll.Dock = DockStyle.Right;
 scroll.Minimum = -100;
 scroll.Maximum = 109;
 scroll.SmallChange = 1;
 scroll.LargeChange = 10;
 scroll.Value = (int) (10 * fTension);
 scroll.ValueChanged += new EventHandler(ScrollOnValueChanged);

 OnResize(EventArgs.Empty);
 }
 void ScrollOnValueChanged(object obj, EventArgs ea)
 {
 ScrollBar scroll = (ScrollBar) obj;

 fTension = scroll.Value / 10f;

 Invalidate(false);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 int cx = ClientSize.Width;
 int cy = ClientSize.Height;

 apt[0] = new Point(cx / 4, cy / 2);
 apt[1] = new Point(cx / 2, cy / 4);

 apt[2] = new Point(cx / 2, 3 * cy / 4);
 apt[3] = new Point(3 * cx / 4, cy / 2);
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 Point pt;

 if (mea.Button == MouseButtons.Left)
 {
 if (ModifierKeys == Keys.Shift)
 pt = apt[0];
 else if (ModifierKeys == Keys.None)
 pt = apt[1];
 else
 return;
 }
 else if (mea.Button == MouseButtons.Right)
 {
 if (ModifierKeys == Keys.None)
 pt = apt[2];
 else if (ModifierKeys == Keys.Shift)
 pt = apt[3];
 else
 return;
 }
 else
 return;

 Cursor.Position = PointToScreen(pt);
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 Point pt = new Point(mea.X, mea.Y);

 if (mea.Button == MouseButtons.Left)
 {
 if (ModifierKeys == Keys.Shift)
 apt[0] = pt;
 else if (ModifierKeys == Keys.None)
 apt[1] = pt;
 else
 return;
 }
 else if (mea.Button == MouseButtons.Right)
 {

 if (ModifierKeys == Keys.None)
 apt[2]= pt;
 else if (ModifierKeys == Keys.Shift)
 apt[3] = pt;
 else
 return;
 }
 else
 return;

 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(ForeColor);

 grfx.DrawCurve(new Pen(ForeColor), apt, fTension);

 grfx.DrawString("Tension = " + fTension, Font, brush, 0, 0);

 for (int i = 0; i < 4; i++)
 grfx.FillEllipse(brush, apt[i].X - 3, apt[i].Y - 3, 7, 7);
 }
}

As with the Bezier program, you use the left mouse button and the right mouse button to change the
locations of p1 and p2. In addition, the CanonicalSpline program lets you change the locations of p0
and p3 by using the left and right mouse buttons in conjunction with the Shift key. Here's a typical
display:

You adjust the tension with the scroll bar; the value is displayed in the upper left corner of the
window. I've allowed the tension to range between −10 and 10, just so you can see for yourself how

extreme values make the curve go crazy. Here's one of my favorites using the program's default
setting of the Point array:

It's also possible to use a subset of the point array in the following DrawCurve methods:

Graphics DrawCurve Methods (selection)

DrawCurve(Pen pen, PointF[] aptf, int iOffset, int iSegments)
DrawCurve(Pen pen, Point[] apt, int iOffset, int iSegments,
 float fTension)
DrawCurve(Pen pen, PointF[] aptf, int iOffset, int iSegments,
 float fTension)

Think of the iOffset argument as an index into the Point or PointF array. That's where the curve
begins. The iSegments argument indicates the number of segments drawn and also the number of
additional Point or PointF structures the method will use. For example, suppose aptf is an array of
PointF structures. The call
grfx.DrawCurve(pen, aptf, 2, 3);

draws three segments, from aptf[2] to aptf[3], from aptf[3] to aptf[4], and from aptf[4] to aptf[5]. The
visual results aren't the same as calling the simpler version of DrawCurve with just these four points.
The versions with iOffset and iSegments use the aptf[1] point in determining the shape of the curve
from aptf[2] to apf[3], and the aptf[6] point for the curve between aptf[4] and aptf[5].

The DrawClosedCurve methods connect the last point in the array to the first point in the array with
an additional curve:

Graphics DrawClosedCurve Methods

DrawClosedCurve(Pen pen, Point[] apt)
DrawClosedCurve(Pen pen, PointF[] aptf)
DrawClosedCurve(Pen pen, Point[] apt, float fTension, FillMode fm)
DrawClosedCurve(Pen pen, PointF[] aptf, float fTension, FillMode fm)

DrawClosedCurve does more than simply draw an additional segment. The first segment drawn by
DrawClosedCurve is a little different than the segment drawn by DrawCurve because it is influenced
by the last point in the array; similarly, the penultimate curve is influenced by the first point in the
array.

Two of the DrawClosedCurve overloads have a FillMode argument. Of course you remember
FillMode, an enumeration defined in the namespace System.Drawing.Drawing2D that is used in the
DrawPolygon method to govern which enclosed areas are filled:
FillMode Enumeration

Member Value Comments

Alternate 0 Default; alternates filled and unfilled areas

Winding 1 Most interior areas are filled

But why—you ask—is a fill mode required in a method that simply draws lines and doesn't fill? It's a
mystery, and the methods seem to work the same regardless of the FillMode setting.

The FillMode argument makes a lot more sense in the FillClosedCurve methods:

Graphics FillClosedCurve Methods

FillClosedCurve(Brush brush, Point[] apt)
FillClosedCurve(Brush brush, PointF[] aptf)
FillClosedCurve(Brush brush, Point[] apt, FillMode fm)
FillClosedCurve(Brush brush, PointF[] aptf, FillMode fm)
FillClosedCurve(Brush brush, Point[] apt, FillMode fm, float fTension)
FillClosedCurve(Brush brush, PointF[] aptf, FillMode fm, float fTension)

The ClosedCurveFillModes program shown next is almost identical to the FillModesClassical
program from Chapter 5. The program draws two five-pointed stars to illustrate the difference
between FillMode.Alternate and FillMode.Winding.
ClosedCurveFillModes.cs
//---
// ClosedCurveFillModes.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class ClosedCurveFillModes: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new ClosedCurveFillModes());
 }
 ClosedCurveFillModes()
 {
 Text = "FillClosedCurve Fill Modes";

 ClientSize = new Size(2 * ClientSize.Height, ClientSize.Height);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 Point[] apt = new Point[5];

 for (int i = 0; i < apt.Length; i++)
 {
 double dAngle = (i * 0.8 - 0.5) * Math.PI;
 apt[i] = new Point(
 (int)(cx *(0.25 + 0.24 * Math.Cos(dAngle))),
 (int)(cy *(0.50 + 0.48 *
Math.Sin(dAngle))));
 }
 grfx.FillClosedCurve(brush, apt, FillMode.Alternate);

 for (int i = 0; i < apt.Length; i++)
 apt[i].X += cx / 2;

 grfx.FillClosedCurve(brush, apt, FillMode.Winding);
 }
}

While still recognizable as stars, these figures have a softer look:

They look more like star-shaped cookies that came out of the cookie cutter with straight sides but
then plumped up a little when baking.

Canonical Curve Derivation
Like the Bézier spline, the canonical spline is a cubic, so it has the general parametric formulas

x(t) = axt3 + bxt2 + cxt + dx
y(t) = ayt3 + byt2 + cyt + dy

for t ranging from 0 to 1. The first derivatives are

x′(t) = 3axt2 + 2bxt + cx
y′(t) = 3ayt2 + 2byt + cy

Let's look at four points, labeled p0, p1, p2, and p3. I'm going to develop the formulas for the segment
between p1 and p2. That curve is based on those two points as well as the two adjoining points, p0
and p3. The first assumptions are that the curve begins at p1 and ends at p2:

x(0) = x1
y(0) = y1
x(1) = x2
y(1) = y2

From the generalized parametric formulas, we can then derive the equations

dx = x1
dy = y1
ax + bx + cx + dx = x2
ay + by + cy + dy = y2

The other two assumptions govern the slope of the line at p1 and p2. The slope at p1 is assumed to
be the product of the tension (which I'll represent as T) and the slope of the straight line between p0
and p2. Similarly, the slope at p2 is assumed to be the tension times the straight-line slope between
p1 and p3:

x′(0) = T (x2 − x0)
y′(0) = T (y2 − y0)
x′(1) = T (x3 − x1)
y′(1) = T (y3 − y1)

From the first derivatives of the general parametric formulas, we find that

cx = T (x2 − x0)
cy = T (y2 − y0)
3ax + 2bx + cx = T(x3 − x1)
3ay + 2by + cy = T(y3 − y1)

With a bit of algebra, solving the simultaneous equations yields

ax = T (x2 − x0) + T (x3 − x1) + 2x1 − 2x2
ay = T (y2 − y0) + T (y3 − y1) + 2y1 − 2y2
bx = −2T (x2 − x0) − T (x3 − x1) − 3x1 + 3x2
by = −2T (y2 − y0) − T (y3 − y1) − 3y1 + 3y2
cx = T (x2 − x0)
cy = T (y2 − y0)
dx = x1
dy = y1

The CanonicalSplineManual program demonstrates that these constants are correct.
CanonicalSplineManual.cs
//--
// CanonicalSplineManual.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class CanonicalSplineManual: CanonicalSpline
{
 public new static void Main()
 {
 Application.Run(new CanonicalSplineManual());

 }
 public CanonicalSplineManual()
 {
 Text = "Canonical Spline \"Manually\" Drawn";
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 base.OnPaint(pea);

 CanonicalSpline(pea.Graphics, Pens.Red, apt, fTension);
 }
 void CanonicalSpline(Graphics grfx, Pen pen, Point[] apt, float T)
 {
 CanonicalSegment(grfx, pen, apt[0], apt[0], apt[1], apt[2], T);
 CanonicalSegment(grfx, pen, apt[0], apt[1], apt[2], apt[3], T);
 CanonicalSegment(grfx, pen, apt[1], apt[2], apt[3], apt[3], T);
 }
 void CanonicalSegment(Graphics grfx, Pen pen, Point pt0, Point pt1,
 Point pt2, Point pt3, float T)
 {
 Point[] apt = new Point[10];

 float SX1 = T * (pt2.X - pt0.X);
 float SY1 = T * (pt2.Y - pt0.Y);
 float SX2 = T * (pt3.X - pt1.X);
 float SY2 = T * (pt3.Y - pt1.Y);
 float AX = SX1 + SX2 + 2 * pt1.X - 2 * pt2.X;
 float AY = SY1 + SY2 + 2 * pt1.Y - 2 * pt2.Y;
 float BX = -2 * SX1 - SX2 - 3 * pt1.X + 3 * pt2.X;
 float BY = -2 * SY1 - SY2 - 3 * pt1.Y + 3 * pt2.Y;
 float CX = SX1;
 float CY = SY1;
 float DX = pt1.X;
 float DY = pt1.Y;

 for (int i = 0; i < apt.Length; i++)
 {
 float t = (float)i / (apt.Length - 1);
 apt[i].X = (int) (AX * t * t * t + BX * t * t + CX * t +
DX);
 apt[i].Y = (int) (AY * t * t * t + BY * t * t + CY * t +
DY);
 }
 grfx.DrawLines(pen, apt);
 }
}

I want to point out a couple things here. The CanonicalSpline method only handles a four-element
array and calls CanonicalSegment three times, each time displaying one of the three segments. The
first segment and the last segment require special treatment because the curve is based on only
three points rather than four.

The CanonicalSegment method uses an array of only 10 Point structures for each of the segments.
That's not quite enough for a smooth curve, but it's enough to demonstrate that the method does
indeed mimic the DrawCurve method implemented in the Graphics class.

I'll have some more sample programs using Bézier splines and canonical splines in Chapters 15 and
19.

Chapter 14: Menus
Overview
The menu is the focal point of most traditional Microsoft Windows applications. Residing just under
the form's title bar, the menu essentially lists everything that the program is capable of doing—from
simple operations like cut and paste to complex jobs like spelling checks. Even if an application
supports a large number of function-key shortcuts, these shortcuts generally duplicate menu items.

The menus of many Windows applications look roughly similar. This consistency is an important
aspect of the Windows user interface. Users learn a new program more quickly if the menu works
like the menus in other Windows programs. When designing your programs' menus, you should look
at existing Windows applications for hints about structure and content. This is not necessarily to say
that you should perpetuate any inelegant design choices, but sometimes even an imperfect user
interface can be good merely because it's consistent with other applications.

Visual Studio .NET includes a Menu Designer that lets you interactively piece together the hierarchy
of your program's menu. The Menu Designer is fairly easy to use, and it's adequate for creating
simple menus. However, I can almost guarantee that someday soon you'll need to go beyond the
capabilities of this Menu Designer, and you won't much like the code that it generates. For this
reason, I'm going to approach menu design in this chapter strictly with code.
Menus and Menu Items
The menu that sits between a form's title bar and the client area is referred to in Windows Forms as
the form's main menu. Many applications also support shortcut menus, or context menus, which are
menus that appear at the mouse cursor position when you right-click the mouse. A main menu is
associated with a form, while a context menu is usually associated with a particular control; that is,
clicking different controls often causes different context menus to be invoked.

A menu—either a main menu or a context menu—contains menu items. A menu item is generally
associated with a word or a short phrase, such as File, Open, Save, Save As, Edit, Cut, Copy, Paste,
or Select All. These are all menu items. I'll often refer to a menu item simply by the text associated
with that item.

As you're undoubtedly aware, however, the File and Edit items seem quite different from Open,
Save, Save As, Cut, Copy, and Select All. The File and Edit items are located on the visible part of
the program's main menu; the others I mentioned are not. The items that run across the visible
length of the main menu are known as top-level items. Selecting File or another top-level item from
the main menu invokes the display of a rectangular area traditionally called a pop-up menu or a
drop-down menu, but nowadays more commonly called a submenu or a child menu. (Yes, here's
another parent-children relationship in Windows Forms!) The submenu invoked from the File item
contains the additional menu items Open, Save, Save As, and so forth.

From the perspective of your Windows Forms program, the File menu item contains an array of other
menu items; this array includes Open, Save, and Save As. The Edit menu item contains an array of
menu items that includes Cut, Copy, and Select All.

In fact, if we step backward a moment, we can see that the main menu itself is an array of menu
items—an array including File and Edit and everything else in the visible part of the main menu,
probably ending with Help. Each menu item in the main menu is associated with its own array of
menu items; each of these arrays represents a submenu of the main menu. Some of the menu items
in these submenus also include their own arrays of menu items to invoke further nested submenus.
Similarly, a context menu is an array of menu items, each of which can include additional arrays of
menu items.

The MainMenu, ContextMenu, and MenuItem classes are all derived from the abstract Menu class in
the System.Windows.Forms namespace. Here's the class hierarchy:

The first thing you should notice is that Menu isn't derived from Control, so such familiar properties
as BackColor, ForeColor, and Font aren't available. Users can change the color and font of menus,
but programs can't. If you want to display menus in nonstandard colors and fonts, you'll have to use
the owner-draw facility I describe toward the end of this chapter.

I said that a form's main menu is an array of menu items. Here are the two constructors for
MainMenu, the second of which clearly indicates this fact:

MainMenu Constructors

MainMenu()
MainMenu(MenuItem[] ami)

To attach a particular MainMenu object to a form, you assign it to the form's Menu property:
Form Properties (selection)

Type Property Accessibility

MainMenu Menu get/set

Similarly, ContextMenu also has two constructors, the second of which also indicates that a context
menu is an array of menu items:

ContextMenu Constructors

ContextMenu()
ContextMenu(MenuItem[] ami)

The ContextMenu property of Control lets you attach a particular ContextMenu object to any control:
Control Properties (selection)

Type Property Accessibility

ContextMenu ContextMenu get/set

If you have a bunch of controls—or if you've divided your form into different functional areas using
panels—each control can invoke a different context menu. However, it's not necessary to use the
ContextMenu property of the control to implement context menus. You can instead "manually" invoke
different context menus during the OnMouseUp method based on the current mouse cursor position.

Although the constructors for MainMenu and ContextMenu indicate that these objects are associated
with arrays of menu items, I haven't shown you the constructors for MenuItem yet. Here are five of
the six MenuItem constructors:

MenuItem Constructors (selection)

MenuItem()
MenuItem(string strText)
MenuItem(string strText, EventHandler ehClick)
MenuItem(string strText, EventHandler ehClick, Shortcut sc)
MenuItem(string strText, MenuItem[] ami)

MenuItem has one additional—and quite complex—constructor that merges menus.

We'll be looking at the MenuItem class in much detail throughout this chapter, but it won't hurt to see
a couple quick examples now. For a top-level menu item like File, you might use the last constructor
in the table:
new MenuItem("&File", amiFile)

Notice the ampersand that appears before the F in File. The ampersand indicates that the F is to be
underlined and that it will be part of the built-in keyboard interface that Windows provides for menus.
When the user presses the Alt key and then F, the submenu for File is displayed. Use two
ampersands in a row if you want to display an ampersand in the menu text.

The amiFile argument to the constructor I've just shown would be an array of menu items for Open,
Save, Save As, and so forth. One of the elements of this array is the menu item for Open, which
could have been created using the constructor:
new MenuItem("&Open...",
 new EventHandler(MenuFileOpenOnClick),
 Shortcut.CtrlO)

Again, the ampersand indicates that the O is to be underlined. Pressing Alt, F, and then O causes
the Open item to be invoked. The ellipsis indicates to the user that the menu item invokes a dialog
box.

Every menu item that does not invoke a submenu is usually associated with a Click event handler
that is called when the user clicks the item with the mouse or triggers it with the keyboard. I'll be
using a standard naming scheme for such event handlers. In a real-life program, the
MenuFileOpenOnClick method would be responsible for displaying the dialog box that lets the user
select a file to open. (I'll be discussing dialog boxes in depth in Chapter 16.)
Menu Shortcut Keys
I've mentioned the menu keyboard interface involving underlined letters. When the user presses the
Alt key, the form goes into a special menu-selection mode. Pressing the F key displays the File
submenu, and pressing O is equivalent to clicking the Open item.

Windows has an additional keyboard interface to the menu, traditionally known as accelerators but in
Windows Forms known as shortcuts. You specify a shortcut by using values of the Shortcut
enumeration. In the previous example, the value Shortcut.CtrlO indicates that the Ctrl+O key
combination is a shortcut to display a dialog box to open a file. When you use shortcuts with menu
items, the text "Ctrl+O" is also automatically inserted in the text of the menu item that is displayed to
the user. When the user presses Ctrl+O, the MenuFileOpenOnClick event handler is called directly,
seemingly without the menu being involved.

Shortcut is an enumeration of 150 key combinations recommended for use in menus. (It's the fourth
largest enumeration in the .NET Framework.) The set shown in this first table involves the function
keys, Insert, Delete, and Backspace:
Shortcut Enumeration (selection)

F1 ShiftF1 CtrlF1 CtrlShiftF1 AltF1

F2 ShiftF2 CtrlF2 CtrlShiftF2 AltF2

F3 ShiftF3 CtrlF3 CtrlShiftF3 AltF3

F4 ShiftF4 CtrlF4 CtrlShiftF4 AltF4

F5 ShiftF5 CtrlF5 CtrlShiftF5 AltF5

F6 ShiftF6 CtrlF6 CtrlShiftF6 AltF6

F7 ShiftF7 CtrlF7 CtrlShiftF7 AltF7

F8 ShiftF8 CtrlF8 CtrlShiftF8 AltF8

F9 ShiftF9 CtrlF9 CtrlShiftF9 AltF9

F10 ShiftF10 CtrlF10 CtrlShiftF10 AlfF10

F11 ShiftF11 CtrlF11 CtrlShiftF11 AltF11

F12 ShiftF12 CtrlF12 CtrlShiftF12 AltF12

Ins ShiftIns CtrlIns

Del ShiftDel CtrlDel

None AltBksp

The default is Shortcut.None. The following table shows all the letters in combination with the Shift
and Ctrl keys:
Shortcut Enumeration (selection)

CtrlA CtrlN CtrlShiftA CtrlShiftN

CtrlB CtrlO CtrlShiftB CtrlShiftO

CtrlC CtrlP CtrlShiftC CtrlShiftP

CtrlD CtrlQ CtrlShiftD CtrlShiftQ

CtrlE CtrlR CtrlShiftE CtrlShiftR

CtrlF CtrlS CtrlShiftF CtrlShiftS

CtrlG CtrlT CtrlShiftG CtrlShiftT

CtrlH CtrlU CtrlShiftH CtrlShiftU

CtrlI CtrlV CtrlShiftI CtrlShiftV

CtrlJ CtrlW CtrlShiftJ CtrlShiftW

CtrlK CtrlX CtrlShiftK CtrlShiftX

CtrlL CtrlY CtrlShiftL CtrlShiftY

CtrlM CtrlZ CtrlShiftM CtrlShiftZ

The values of these enumeration members are equal to the Keys enumeration values (covered in
Chapter 6) as they are combined in the KeyData property of the KevEventArgs class. The following
table shows shortcuts that consist of the number keys in combination with the Ctrl or Alt key:
Shortcut Enumeration (selection)

Ctrl0 CtrlShift0 Alt0

Ctrl1 CtrlShift1 Alt1

Ctrl2 CtrlShift2 Alt2

Ctrl3 CtrlShift3 Alt3

Ctrl4 CtrlShift4 Alt4

Shortcut Enumeration (selection)

Ctrl0 CtrlShift0 Alt0

Ctrl5 CtrlShift5 Alt5

Ctrl6 CtrlShift6 Alt6

Ctrl7 CtrlShift7 Alt7

Ctrl8 CtrlShift8 Alt8

Ctrl9 CtrlShift9 Alt9

It's not possible to use a menu shortcut value that isn't defined in the Shortcut enumeration.

In Win32 programming, accelerator keys aren't restricted to menu items. In Windows Forms
programming, however, shortcuts are always associated with menu items. If you want to define a
shortcut that isn't associated with a menu item, you can define a menu item with that shortcut,
include that menu item in your menu, and simply set the Visible property of the menu item to false.
The item won't be displayed, but the shortcut will still be active.
Your First Menu
We now know enough to create our first menu. Unfortunately, we don't know quite enough to make
the menu items very useful, such as displaying dialog boxes or using the clipboard, but it's a start.
The Click event handlers in this program mostly just display message boxes to indicate that the
menu item has been clicked.
FirstMainMenu.cs
//--
// FirstMainMenu.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class FirstMainMenu: Form
{
 public static void Main()
 {
 Application.Run(new FirstMainMenu());
 }
 public FirstMainMenu()
 {
 Text = "First Main Menu";

 // Items on File submenu

 MenuItem miOpen = new MenuItem("&Open...",
 new EventHandler(MenuFileOpenOnClick),
 Shortcut.CtrlO);

 MenuItem miSave = new MenuItem("&Save",
 new EventHandler(MenuFileSaveOnClick),

 Shortcut.CtrlS);

 MenuItem miSaveAs = new MenuItem("Save &As...",
 new
EventHandler(MenuFileSaveAsOnClick));

 MenuItem miDash = new MenuItem("-");

 MenuItem miExit = new MenuItem("E&xit",
 new EventHandler(MenuFileExitOnClick));
 // File item

 MenuItem miFile = new MenuItem("&File",
 new MenuItem[] {miOpen, miSave,
miSaveAs,
 miDash, miExit });
 // Items on Edit submenu

 MenuItem miCut = new MenuItem("Cu&t",
 new EventHandler(MenuEditCutOnClick),
 Shortcut.CtrlX);

 MenuItem miCopy = new MenuItem("&Copy",
 new EventHandler(MenuEditCopyOnClick),
 Shortcut.CtrlC);

 MenuItem miPaste = new MenuItem("&Paste",
 new EventHandler(MenuEditPasteOnClick),
 Shortcut.CtrlV);
 // Edit item

 MenuItem miEdit = new MenuItem("&Edit",
 new MenuItem[] {miCut, miCopy,
miPaste});

 // Item on Help submenu

 MenuItem miAbout = new MenuItem("&About FirstMainMenu...",
 new
EventHandler(MenuHelpAboutOnClick));
 // Help item

 MenuItem miHelp = new MenuItem("&Help",
 new MenuItem[] {miAbout});
 // Main menu

 Menu = new MainMenu(new MenuItem[] {miFile, miEdit, miHelp});
 }
 void MenuFileOpenOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("File Open item clicked!", Text);
 }
 void MenuFileSaveOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("File Save item clicked!", Text);
 }
 void MenuFileSaveAsOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("File Save As item clicked!", Text);
 }
 void MenuFileExitOnClick(object obj, EventArgs ea)
 {
 Close();
 }
 void MenuEditCutOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("Edit Cut item clicked!", Text);
 }
 void MenuEditCopyOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("Edit Copy item clicked!", Text);
 }
 void MenuEditPasteOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("Edit Paste item clicked!", Text);
 }
 void MenuHelpAboutOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show(Text + " © 2001 by Charles Petzold");
 }
}

That this is a lot of code for a program that displays only a few message boxes I won't deny. But
considering the overall importance of a menu to most applications, the amount of code isn't
unreasonable. Much of what your program does it will do in response to menu Click events.

The program demonstrates the use of four different MenuItem constructors. For the Open menu item
on the File menu, the program uses the constructor with three arguments:
MenuItem miOpen = new MenuItem("&Open...",
 new EventHandler(MenuFileOpenOnClick),
 Shortcut.CtrlO);

The Save As item on the File menu usually doesn't have a shortcut, so that constructor has only two
arguments:

MenuItem miSaveAs = new MenuItem("Save &As...",
 new EventHandler(MenuFileSaveAsOnClick));

And here's a constructor that has only a text argument:
MenuItem miDash = new MenuItem("-");

When you specify a dash as the menu item in a submenu, a horizontal line is drawn in the submenu.
This is the way you separate groups of items on a submenu.

When all the menu items on the File submenu have been created, the program creates a top-level
menu item using yet another form of the MenuItem constructor:
MenuItem miFile = new MenuItem("&File",
 new MenuItem[] {miOpen, miSave, miSaveAs,
 miDash, miExit });

This constructor indicates the text of the item ("File") and an array of items that appear in the
submenu invoked by that item.

The program continues with the Edit item (which invokes a submenu containing Cut, Copy, and
Paste) and a Help item (containing just an About item). Finally, the form's constructor sets the Menu
property of the form to an object of type MainMenu. The MainMenu constructor specifies an array of
MenuItem objects that appear on the top level of the menu:
Menu = new MainMenu(new MenuItem[] {miFile, miEdit, miHelp});

All the Click event handlers in FirstMainMenu display message boxes except the event handler for
the Exit item on the File menu. That event handler calls the Close method of Form to close the form
and terminate the program.

You don't need to have separate event handlers for each Click event. You could handle every menu
item in the same event handler. But using separate event handlers is cleaner and probably easier to
maintain. The only time it makes sense to handle multiple items in the same Click event handler is
when they form part of a related group, usually referring to mutually exclusive options.
Unconventional Menus
Although designing your menu to look like the menus of other Windows programs is helpful to your
user, it's not mandatory. Sometimes—perhaps in a quickie program you're writing for yourself—you
need only one menu item. If a top-level menu item doesn't invoke a submenu but instead carries out
some action itself, it's customary to use an exclamation point to indicate that fact.

Here's a program that subclasses the JeuDeTaquin program from Chapter 10, "The Timer and
Time," to add a one-item menu with the command "Scramble!"
JeuDeTaquinWithScramble.cs
//--
// JeuDeTaquinWithScramble.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class JeuDeTaquinWithScramble: JeuDeTaquin
{
 public new static void Main()
 {
 Application.Run(new JeuDeTaquinWithScramble());
 }

 public JeuDeTaquinWithScramble()
 {
 Menu = new MainMenu(new MenuItem[] {
 new MenuItem("&Scramble!",
 new EventHandler(MenuScrambleOnClick)) });
 }
 void MenuScrambleOnClick(object obj, EventArgs ea)
 {
 Randomize();
 }
}

Now you don't have to end the program to rescramble the tiles.

One of the first popular programs to use a visual hierarchical menu in the character-mode MS-DOS
environment was Lotus 1-2-3. The 1-2-3 menus didn't have pop-up menus, however. The menu
display was restricted to a single line, and each level of menu replaced the one above it.

You can simulate an arrangement like that in Windows Forms by defining multiple MainMenu objects
and then dynamically setting them to the Menu property of your form. Here's a program that
demonstrates this technique.
OldFashionedMenu.cs
//---
// OldFashionedMenu.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class OldFashionedMenu: Form
{
 MainMenu mmMain, mmFile, mmEdit;

 public static void Main()
 {
 Application.Run(new OldFashionedMenu());
 }
 public OldFashionedMenu()
 {
 Text = "Old-Fashioned Menu";

 EventHandler eh = new EventHandler(MenuOnClick);

 mmMain = new MainMenu(new MenuItem[]
 {
 new MenuItem("MAIN:"),
 new MenuItem("&File", new EventHandler(MenuFileOnClick)),
 new MenuItem("&Edit", new EventHandler(MenuEditOnClick))

 });

 mmFile = new MainMenu(new MenuItem[]
 {
 new MenuItem("FILE:"),
 new MenuItem("&New", eh),
 new MenuItem("&Open...", eh),
 new MenuItem("&Save", eh),
 new MenuItem("Save &As...", eh),
 new MenuItem("(&Main)", new EventHandler(MenuMainOnClick))
 });

 mmEdit = new MainMenu(new MenuItem[]
 {
 new MenuItem("EDIT:"),
 new MenuItem("Cu&t", eh),
 new MenuItem("&Copy", eh),
 new MenuItem("&Paste", eh),
 new MenuItem("De&lete", eh),
 new MenuItem("(&Main)", new EventHandler(MenuMainOnClick))
 });

 Menu = mmMain;
 }
 void MenuMainOnClick(object obj, EventArgs ea)
 {
 Menu = mmMain;
 }
 void MenuFileOnClick(object obj, EventArgs ea)
 {
 Menu = mmFile;
 }
 void MenuEditOnClick(object obj, EventArgs ea)
 {
 Menu = mmEdit;
 }
 void MenuOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("Menu item clicked!", Text);
 }
}
MenuItem Properties and Events
The one MenuItem constructor (of the five I originally listed) that I haven't demonstrated is the default
constructor:
new MenuItem()

If you use this constructor, you must then have statements that set properties of the MenuItem
object. The properties connected with the menu item text and shortcut are listed in this table:
MenuItem Properties (selection)

Type Property Accessibility

string Text get/set

char Mnemonic get

Shortcut Shortcut get/set

bool ShowShortcut get/set

The Mnemonic property is the character that follows the ampersand in the Text property (or 0 if there
is no mnemonic character). You can set the ShowShortcut property to false to inhibit the display of
the shortcut to the right of the menu item text.

The following list shows most of the read/write bool properties of MenuItem:
MenuItem Properties (selection)

Type Property Accessibility

bool Visible get/set

bool Enabled get/set

bool DefaultItem get/set

bool Break get/set

bool BarBreak get/set

Setting the Visible property to false causes the menu item to not appear in the menu. However, the
shortcut (if any) still invokes the Click event handler. You can use this property to set shortcuts that
aren't associated with any menu items. You can also make a number of menu items optionally
invisible to implement a simplified-menu system that won't overwhelm beginners.

The Enabled property is probably the most commonly used of these five properties. It is often set to
false to disable menu items that aren't currently applicable. When an item is disabled, the text is
displayed in a weak font that indicates the item is unavailable. You can't trigger the Click event
handler for a disabled item, either by clicking the item or by typing the keyboard shortcut.

Items on the File and Edit menus are often enabled and disabled based on certain conditions. The
Save and Save As options are typically disabled if the program currently has no document loaded. A
program disables the Cut and Copy options if a document has been loaded but nothing is currently
selected in the document. A program disables Paste if the clipboard currently has nothing the
program can use. I'll explain how to handle the disabling of menu items later in this chapter.

When you set the DefaultItem property to true, the menu item is displayed in boldface. For a
program's main menu, the DefaultItem property makes sense only for items on submenus. When
you double-click the item that invokes the submenu, the default item is triggered. For example, if you
insert the statement
miExit.DefaultItem = true;

in the constructor of FirstMainMenu, double-clicking the File item causes the program to terminate.
Default items are more common on context menus.

Setting the Break property to true causes the menu item (and subsequent menu items) to be
displayed in a new column. Setting the BarBreak property to true has the same effect as Break but
also draws a vertical line between the columns. Although it's not common, you can use Break and
BarBreak with items on the top level of a main menu. Both properties have the same effect of
displaying the menu item (and subsequent menu items) in a new row.

These are not all the properties of MenuItem. I'll get to the Checked and RadioCheck properties
shortly. In addition, the MenuItem class—as well as MainMenu and ContextMenu—inherits from
Menu an extremely important class named MenuItems (notice the plural) that I'll also talk about later
in this chapter.

The MenuItem class defines five events, of which Click is obviously the most crucial. Two of the five
events refer to the owner-draw facility of menus, which I'll discuss toward the end of this chapter.
The other three events (including Click) are shown here:
MenuItem Events (selection)

Event Method Delegate Argument

Click OnClick EventHandler EventArgs

Popup OnPopup EventHandler EventArgs

Select OnSelect EventHandler EventArgs

Programs often install Popup event handlers for top-level items such as File or Edit. The Popup
event tells you when the submenu associated with that top-level item is about to be displayed. As I
mentioned earlier, some menu items, such as Cut, Copy, and Paste, must be enabled or disabled
based on whether something has been selected in the document or whether the clipboard contains
data the application can use. The Popup event handler is the perfect opportunity to perform this
enabling and disabling of items.

The Select event occurs when the mouse cursor passes over a menu item or the user presses the
arrow keys to move among menu items. The selected menu item is usually displayed in a different
color. As you may know, some applications use a status bar to display a simple text description of
each menu item as it's being selected. I'll demonstrate how to do this in Chapter 20.
Checking the Items
If you look at the View menu of the Windows Calculator (and particularly if you switch to the Scientific
format), you'll see several examples of menu items that are checked. Menu items that represent
Boolean choices—such as the Digit Grouping item—can be checked or unchecked just like a
CheckBox control.

Other groups of menu items, such as the Hex, Decimal, Octal, and Binary items in Calculator,
represent mutually exclusive options. The currently selected item is indicated by a filled circle, called
a radio check. (Some Windows programs use the regular menu check mark for mutually exclusive
menu items as well as on-off items. The check mark is allowed but no longer encouraged for
mutually exclusive items.)

You control the check mark and radio check with the following two properties of MenuItem:
MenuItem Properties (selection)

Type Property Accessibility

bool Checked get/set

bool RadioCheck get/set

Set the Checked property to true if the mark (regardless whether it's a check or a circle) is to be
displayed. Set RadioCheck to true to display a circle (indicating mutually exclusive options) or false
for check marks (for on-off items).

Here's a program similar to the RadioButtons program of Chapter 12. The main menu contains a
single item named Format that contains ten items—eight items are used like radio buttons to select a
color; the ninth item is a horizontal bar; and the tenth is an item with the text Fill that can be checked
to indicate that the ellipse should be filled.
CheckAndRadioCheck.cs
//---
// CheckAndRadioCheck.cs © 2001 by Charles Petzold
//---

using System;
using System.Drawing;
using System.Windows.Forms;

class CheckAndRadioCheck: Form
{
 MenuItem miColor, miFill;

 public static void Main()
 {
 Application.Run(new CheckAndRadioCheck());
 }
 public CheckAndRadioCheck()
 {
 Text = "Check and Radio Check";
 ResizeRedraw = true;

 string[] astrColor = {"Black", "Blue", "Green", "Cyan",
 "Red", "Magenta", "Yellow",
"White"};
 MenuItem[] ami = new MenuItem[astrColor.Length + 2];
 EventHandler ehColor = new
EventHandler(MenuFormatColorOnClick);

 for (int i = 0; i < astrColor.Length; i++)
 {
 ami[i] = new MenuItem(astrColor[i], ehColor);
 ami[i].RadioCheck = true;
 }
 miColor = ami[0];
 miColor.Checked = true;

 ami[astrColor.Length] = new MenuItem("-");

 miFill = new MenuItem("&Fill",
 new EventHandler(MenuFormatFillOnClick));

 ami[astrColor.Length + 1] = miFill;

 MenuItem mi = new MenuItem("&Format", ami);

 Menu = new MainMenu(new MenuItem[] {mi});
 }
 void MenuFormatColorOnClick(object obj, EventArgs ea)
 {
 miColor.Checked = false;

 miColor = (MenuItem)obj;
 miColor.Checked = true;

 Invalidate();
 }
 void MenuFormatFillOnClick(object obj, EventArgs ea)
 {
 MenuItem mi = (MenuItem)obj;

 mi.Checked ^= true;

 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 if (miFill.Checked)
 {
 Brush brush = new SolidBrush(Color.FromName(miColor.Text));
 grfx.FillEllipse(brush, 0, 0, ClientSize.Width - 1,
 ClientSize.Height - 1);
 }
 else
 {
 Pen pen = new Pen(Color.FromName(miColor.Text));
 grfx.DrawEllipse(pen, 0, 0, ClientSize.Width - 1,
 ClientSize.Height - 1);
 }
 }
}

The constructor defines an array of eight text strings representing colors and then an array of
MenuItem structures sufficient to accommodate those eight colors and two more menu items:
MenuItem[] ami = new MenuItem[astrColor.Length + 2];

A group of mutually exclusive menu items are generally associated with the same Click event
handler. For that reason, the event handler is defined before any of the menu items are created:
EventHandler ehColor = new EventHandler(MenuFormatColorOnClick);

A for loop creates the eight menu items based on the eight color names and the ehColor event
handler. The RadioCheck property is set to true so that a circle is displayed rather than a check mark
when the Checked property is set to true.

The miColor variable stored as a field is the MenuItem object that is currently checked. The
constructor sets this field to the first MenuItem in the array and then sets the Checked property to
true.
miColor = ami[0];
miColor.Checked = true;

Let me go over the MenuFormatColorOnClick handler now and then come back to the program's
constructor. The Click event handler begins by unchecking the currently checked menu item:
miColor.Checked = false;

The miColor field is then set to the first argument of the event handler, which is the item the user has
clicked:
miColor = (MenuItem)obj;

The event handler then checks the menu item
miColor.Checked = true;

and invalidates the form to repaint the ellipse. This block of code demonstrates the customary way to
check and uncheck mutually exclusive menu items.

Let's return to the constructor. After creating the eight menu items for the eight colors, it creates a
ninth menu item that is a horizontal dividing line and then a tenth menu item for the Fill item:
miFill = new MenuItem("&Fill",
 new EventHandler(MenuFormatFillOnClick));

ami[astrColor.Length + 1] = miFill;

The miFill variable is also stored as a field. The OnPaint method uses both miColor and miFill to
draw (or fill) the ellipse.

The MenuFormatFillOnClick method doesn't need to access miFill, however. The event handler
obtains the MenuItem object being clicked by casting the first argument,
MenuItem mi = (MenuItem)obj;

and then toggles the state of that item:
mi.Checked ^= true;

You could replace these two statements with the single statement
miFill.Checked ^= true;

but the event handler is more generalized if it doesn't refer to a specific menu item. If you added
other on-off menu items that affected OnPaint processing, you could use the same general-purpose
checking-and-unchecking method.

The OnPaint method in CheckAndRadioCheck converts the text color name from the menu item into
a Color object by using the static method Color.FromName in preparation for creating a brush or
pen:
Color.FromName(miColor.Text)

Obviously, not every menu item has a Text property that can be directly converted into a usable
object. Using menu text in this way isn't a good idea for a couple reasons. First, if the menu needs to
be translated into another language, the new text might not convert to Color objects so readily.
Second, it's awkward to put ampersands in the color names because they would have to be stripped
out before passing the text to the Color.FromName method.

I'll demonstrate a more generalized approach to differentiating mutually exclusive menu items
shortly. (Does it involve deriving a class from MenuItem? you ask. What do you think?)
Working with Context Menus
Context menus are in some ways simpler than main menus, mostly because they are smaller,
sometimes containing only a list of menu items without any submenus. The following program
creates a context menu that lets you select the background color of the form.
ContextMenuDemo.cs
//--

// ContextMenuDemo.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ContextMenuDemo: Form
{
 MenuItem miColor;

 public static void Main()
 {
 Application.Run(new ContextMenuDemo());
 }
 public ContextMenuDemo()
 {
 Text = "Context Menu Demo";

 EventHandler eh = new EventHandler(MenuColorOnClick);

 MenuItem[] ami = { new MenuItem("Black", eh),
 new MenuItem("Blue", eh),
 new MenuItem("Green", eh),
 new MenuItem("Cyan", eh),
 new MenuItem("Red", eh),
 new MenuItem("Magenta", eh),
 new MenuItem("Yellow", eh),
 new MenuItem("White", eh) };

 foreach (MenuItem mi in ami)
 mi.RadioCheck = true;

 miColor = ami[3];
 miColor.Checked = true;
 BackColor = Color.FromName(miColor.Text);

 ContextMenu = new ContextMenu(ami);
 }
 void MenuColorOnClick(object obj, EventArgs ea)
 {
 miColor.Checked = false;
 miColor = (MenuItem) obj;
 miColor.Checked = true;

 BackColor = Color.FromName(miColor.Text);

 }
}

In this program, the eight menu items are defined right in the initialization of the MenuItem array
named ami. As in the previous program, all the menu items use the same Click event handler. A for
loop sets the RadioCheck property of each menu item to true. The constructor then sets the field
variable miColor to the fourth menu item in the array, checks that item, and sets the background
color to the checked item.

The constructor concludes by making a new ContextMenu object from the array of MenuItem objects
and then assigning that to the ContextMenu property of the form:
ContextMenu = new ContextMenu(ami);

You can invoke the context menu by right-clicking anywhere within the client area. Alternatively, the
ContextMenu class also has a method that lets you display a context menu without setting the
ContextMenu property of a control:

ContextMenu Methods (selection)

void Show(Control ctrl, Point ptLocation)

You can use this method if you need to display different context menus for a single control (or form)
depending on where the mouse is clicked.

By converting the menu item text to a color, the ContextMenuDemo program has the same flaws as
CheckAndRadioCheck. When implementing mutually exclusive menu items that use the same Click
event handler, a much better (and more generalized) approach is to derive a class from MenuItem
and use that class in your menu instead. The class derived from MenuItem includes a new field or
property that stores an object to identify the item.

Here's a program that derives a class named MenuItemColor from MenuItem. The class includes a
private field named clr to store a Color object. The public property named Color gives other classes
access to that color. In addition, the new class also includes a new constructor that lets a
MenuItemColor object be created with a specified color. The following program is very similar to
ContextMenuDemo except that it uses MenuItemColor rather than MenuItem.
BetterContextMenu.cs
//--
// BetterContextMenu.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BetterContextMenu: Form
{
 MenuItemColor micColor;

 public static void Main()
 {
 Application.Run(new BetterContextMenu());
 }
 public BetterContextMenu()
 {

 Text = "Better Context Menu Demo";

 EventHandler eh = new EventHandler(MenuColorOnClick);

 MenuItemColor[] amic =
 {
 new MenuItemColor(Color.Black, "&Black", eh),
 new MenuItemColor(Color.Blue, "B&lue", eh),
 new MenuItemColor(Color.Green, "&Green", eh),
 new MenuItemColor(Color.Cyan, "&Cyan", eh),
 new MenuItemColor(Color.Red, "&Red", eh),
 new MenuItemColor(Color.Magenta, "&Magenta", eh),
 new MenuItemColor(Color.Yellow, "&Yellow", eh),
 new MenuItemColor(Color.White, "&White", eh)
 };

 foreach (MenuItemColor mic in amic)
 mic.RadioCheck = true;

 micColor = amic[3];
 micColor.Checked = true;
 BackColor = micColor.Color;

 ContextMenu = new ContextMenu(amic);
 }
 void MenuColorOnClick(object obj, EventArgs ea)
 {
 micColor.Checked = false;
 micColor = (MenuItemColor) obj;
 micColor.Checked = true;

 BackColor = micColor.Color;
 }
}
class MenuItemColor: MenuItem
{
 Color clr;

 public MenuItemColor(Color clr, string str, EventHandler eh):
 base(str, eh)
 {
 Color = clr;
 }
 public Color Color
 {

 get { return clr; }
 set { clr = value; }
 }
}

Now the program can set the BackColor property of the form directly from the Color property of the
currently checked MenuItemColor object.
The Menu Item Collection
If you look back at the FirstMainMenu program, you'll see that the menu was built from the inside
out. It began by creating MenuItem objects for the innermost items (such as Open, Save, and so on).
These were assembled into arrays to create top-level items (File, Edit, and so forth). Then the top-
level menu items were gathered together into a MainMenu object.

A program might be more coherent and maintainable if the menu were created from the top down,
beginning by creating a MainMenu object, adding MenuItem objects to the main menu to create top-
level items (File, Edit, and so forth), and then adding other items in the submenus (Open, Save, and
so forth).

This second approach is made possible by a couple important properties defined in the Menu class.
As I mentioned early in this chapter, the MenuItem, MainMenu, and ContextMenu classes are all
derived from Menu, so they all inherit these properties:
Menu Properties (selection)

Type Property Accessibility

bool IsParent get

Menu.MenuItemCollection MenuItems get

Does that Menu.MenuItemCollection type look like a familiar friend yet? It's quite similar to the
ImageList.ImageCollection class in Chapter 11 and the Control.ControlCollection class in Chapter
12. Like those other classes, Menu.MenuItemCollection implements the IList, ICollection, and
IEnumerable interfaces. You can index the MenuItems property as if it were an array of MenuItem
objects. You can also call methods named Add, Remove, and Clear.

The IsParent property indicates that a menu item is parent to other menu items and hence the
MenuItems property is valid.

In addition, the MenuItem class has the following two related properties:
MenuItem Properties (selection)

Type Property Accessibility

Menu Parent get

int Index get/set

The Parent property indicates the parent menu of a particular menu item; the Index property (which
is also writable) indicates the zero-based index of a MenuItem object within a particular submenu.

The Menu.MenuItemCollection class implements the following methods that let you add child menu
items to a main menu, a context menu, or another menu item:

Menu.MenuItemCollection Methods (selection)

MenuItem Add(string strText)
MenuItem Add(string strText, EventHandler ehClick)
MenuItem Add(string strText, MenuItem[] ami)
int Add(MenuItem mi)
int Add(int index, MenuItem mi)

void AddRange(MenuItem[] ami)

A program can use the following properties (the second of which is an indexer) to determine how
many menu items the collection contains and to obtain them:
Menu.MenuItemCollection Properties

Type Property Accessibility

int Count get

MenuItem [] get

Menu items can also be located and removed:

Menu.MenuItemCollection Methods (selection)

bool Contains(MenuItem mi)
int IndexOf(MenuItem mi)
void Remove(MenuItem mi)
void RemoveAt(int index)
void Clear()

Here's a version of the ContextMenuDemo program, named ContextMenuAdd, that uses the Add
and indexing facility of the MenuItem property to create the menu. The ContextMenu object is
created first, and then the menu items are added to it.
ContextMenuAdd.cs
//---
// ContextMenuAdd.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class ContextMenuAdd: Form
{
 MenuItem miColor;

 public static void Main()
 {
 Application.Run(new ContextMenuAdd());
 }
 public ContextMenuAdd()
 {
 Text = "Context Menu Using Add";

 ContextMenu cm = new ContextMenu();
 EventHandler eh = new EventHandler(MenuColorOnClick);

 cm.MenuItems.Add("Black", eh);
 cm.MenuItems.Add("Blue", eh);
 cm.MenuItems.Add("Green", eh);
 cm.MenuItems.Add("Cyan", eh);
 cm.MenuItems.Add("Red", eh);
 cm.MenuItems.Add("Magenta", eh);
 cm.MenuItems.Add("Yellow", eh);
 cm.MenuItems.Add("White", eh);

 foreach (MenuItem mi in cm.MenuItems)
 mi.RadioCheck = true;

 miColor = cm.MenuItems[3];
 miColor.Checked = true;
 BackColor = Color.FromName(miColor.Text);

 ContextMenu = cm;
 }
 void MenuColorOnClick(object obj, EventArgs ea)
 {
 miColor.Checked = false;
 miColor = (MenuItem) obj;
 miColor.Checked = true;

 BackColor = Color.FromName(miColor.Text);
 }
}

This program could have saved a statement by assigning the new ContextMenu object to the
ContextMenu property of the form:
ContextMenu = new ContextMenu();

The statements adding the items would then look like this:
ContextMenu.MenuItems.Add("Black", eh);

Earlier in this chapter, I transformed the ContextMenuDemo program into the BetterContextMenu
program by defining a class named MenuItemColor that inherits from MenuItem but also stores a
Color object. What would I need to do to convert the ContextMenuAdd program to use
MenuItemColor objects?

What's most obvious is that I couldn't use the same Add method I used in ContextMenuAdd. The
method call
cm.MenuItems.Add("Black", eh);

implicitly creates an object of type MenuItem and then adds it to the menu item collection. The
following statement does the same job more explicitly:
cm.MenuItems.Add(new MenuItem("Black", eh));

To convert the program to use the MenuItemColor class, you'd need to make calls like so:
cm.MenuItems.Add(new MenuItemColor(Color.Black, "Black", eh));

The next program has a single top-level menu item named Facename and uses the Popup event as
an opportunity to add all the available font facenames to the menu. In theory, this approach is better
than building the menu when the program starts up because the program can display fonts that are
added after the program starts running.
FontMenu.cs
//---------------------------------------
// FontMenu.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class FontMenu: Form
{
 const int iPointSize = 24;
 string strFacename;

 public static void Main()
 {
 Application.Run(new FontMenu());
 }
 public FontMenu()
 {
 Text = "Font Menu";

 strFacename = Font.Name;

 Menu = new MainMenu();

 MenuItem mi = new MenuItem("&Facename");
 mi.Popup += new EventHandler(MenuFacenameOnPopup);
 mi.MenuItems.Add(" "); // Necessary for pop-up call
 Menu.MenuItems.Add(mi);
 }
 void MenuFacenameOnPopup(object obj, EventArgs ea)
 {
 MenuItem miFacename = (MenuItem)obj;
 FontFamily[] aff = FontFamily.Families;
 EventHandler ehClick = new EventHandler(MenuFacenameOnClick);
 MenuItem[] ami = new MenuItem[aff.Length];

 for (int i = 0; i < aff.Length; i++)
 {
 ami[i] = new MenuItem(aff[i].Name);
 ami[i].Click += ehClick;

 if (aff[i].Name == strFacename)
 ami[i].Checked = true;
 }
 miFacename.MenuItems.Clear();
 miFacename.MenuItems.AddRange(ami);
 }
 void MenuFacenameOnClick(object obj, EventArgs ea)
 {
 MenuItem mi = (MenuItem)obj;
 strFacename = mi.Text;
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Font font = new Font(strFacename, iPointSize);

 StringFormat strfmt = new StringFormat();
 strfmt.Alignment = StringAlignment.Center;
 strfmt.LineAlignment = StringAlignment.Center;

 grfx.DrawString("Sample Text", font, new SolidBrush(ForeColor),
 ClientRectangle, strfmt);
 }
}

When the constructor defines the menu, it adds a single blank item to the submenu. At least one
item in the submenu seems to be necessary to generate a Popup event.

The MenuFacenameOnPopup event handler begins by obtaining the top-level menu item:
MenuItem miFacename = (MenuItem)obj;

The method then obtains an array of all the available font facenames by calling the static
FontFamily.Families method. It defines a MenuItem array of that size and then initializes all the
entries, in the process setting the Check property of the item corresponding to the font facename
currently stored in the strFacename field.

After the MenuItem array has been initialized, the method concludes by clearing all the existing
entries from the pop-up menu and adding the new array of items:
miFacename.MenuItems.Clear();
miFacename.MenuItems.AddRange(ami);

To keep the code bulk down, this program doesn't have a fix for the problem that results when you
pick a font facename that isn't capable of the FontStyle.Regular style (such as Aharoni). If you pick
such a font, the Font constructor in the OnPaint method will throw an exception and terminate the
program. (See Chapter 9 for more details on this issue and on working with fonts.)

But the real problem with this program is the size of the submenu. It's very likely that the list will
exceed the height of your display. Picking a font facename is obviously a job for a dialog box, as I'll
demonstrate in Chapter 16.
The Standard Menu (A Proposal)

To make your program easy to read and maintain, it seems logical that the flow of the menu-creation
code should mimic the hierarchy of the menu. Thus, the constructor should probably build the menu
starting with the first top-level item (typically File), then all the items in the File submenu (typically
New, Open, Save, and so forth), then the next top-level item (typically Edit), then the items in the Edit
submenu, and ending with the About item on the Help menu.

As you begin experimenting with top-down menu construction using the Add method of the
Menu.MenuItemCollection class, you'll find that the Add methods are not created equal. Some are
more useful than others. You may want to adopt a standard style for the creation of your main menu
that makes use of just a small subset of the MenuItem constructors and the Add methods. The
proposal I've outlined here uses just one form of MenuItem constructor and one form of the Add
method. You're free to disregard this proposal. I disregard it myself in later chapters. But I'd like to
explore some of the issues involved in menu construction code.

Let's first look at some top-down menu creation statements for nonfunctional items without any event
handlers or shortcuts. The code would look something like this:
Menu = new MainMenu();
Menu.MenuItems.Add("&File");
Menu.MenuItems[0].MenuItems.Add("&Open...");
Menu.MenuItems[0].MenuItems.Add("&Save...");

Menu.MenuItems.Add("&Edit");
Menu.MenuItems[1].MenuItems.Add("Cu&t");
Menu.MenuItems[1].MenuItems.Add("&Copy");

This code is all very orderly (if not exactly pretty): The top-level items (File and Edit) are added to the
MainMenu object using the Add method of its MenuItems property. The expression
Menu.MenuItems[0] refers to the File menu item, and Menu.MenuItems[1] refers to the Edit menu
item. Each of those menu items has its own MenuItems property that is the collection of menu items
on the submenu. You use the Add method of that MenuItems property to add items Open, Save, Cut,
Copy, and so forth.

Except for groups of mutually exclusive menu items, most menu items should be associated with
their own Click event handlers. To make the menu functional, you need to convert the previous
statements into statements like this:
Menu.MenuItems[0].MenuItems.Add("&Open...",
 new EventHandler(MenuFileOpenOnClick));

But the Open item also commonly includes a Ctrl+O shortcut, and there's no Add method that
includes a shortcut argument. You'd need an additional statement like
Menu.MenuItems[0].MenuItems[0].Shortcut = Shortcut.CtrlO;

to reference the Shortcut property of the Open menu item. But if you then modify your code to put a
New item before the Open item, you need to change the statement so the indexing is different:
Menu.MenuItems[0].MenuItems[1].Shortcut = Shortcut.CtrlO;

We're headed down a wrong path with this approach. I think you'll agree that setting the property of a
menu item shouldn't require going through two levels of MenuItems properties.

Probably a better approach is to define the MenuItem first, as here,
miFileOpen = new MenuItem("&Open",
 new EventHandler(MenuFileOpenOnClick),
 Shortcut.CtrlO);

and then add this menu item to the MenuItems collection:
Menu.MenuItems[0].MenuItems.Add(miFileOpen);

Since the creation of the miFileOpen object spills over beyond one line of code, it may be clearer if
we go with a simple constructor and a more explicit assignment of the MenuItem properties:
miFileOpen = new MenuItem("&Open");
miFileOpen.Click += new EventHandler(MenuFileOpenOnClick);
miFileOpen.Shortcut = Shortcut.CtrlO;
Menu.MenuItems[0].MenuItems.Add(miFileOpen);

Does it ever make sense to use the version of Add that has a single string argument? It's a good
choice when you want to add a horizontal separation line to the menu:
Menu.MenuItems[0].MenuItems.Add("-");

And this version of Add might make sense when adding a top-level item:
Menu.MenuItems.Add("F&ormat");

But many top-level items should have Popup event handlers installed to enable or disable menu
items on the submenu. So here also, it makes more sense to create the MenuItem first, set its
properties, and then add the menu item to the menu:
MenuItem mi = new MenuItem("&File");
mi.Popup += new EventHandler(MenuFileOnPopup);
Menu.MenuItems.Add(mi);

If you want to be totally consistent throughout your menu creation, all you need to use is one form of
the MenuItem constructor (the one with just a string argument) and one form of the Add method (the
one with a MenuItem argument).

As you may have gathered from much of this book, I prefer to keep the number of field variables in a
class to a minimum. The Menu Designer in Visual Studio .NET makes every MenuItem object a field.
That's clearly unnecessary! Because most menu items have their own Click event handlers, it isn't
necessary for the program to retain all the MenuItem objects. An exception is when items must be
enabled or disabled during a Popup event. Those items should probably be stored as fields.

Finally, I want to justify one more little tiny variable—just a little int that I call index. Every time you
add an item to the top level of the menu with a statement like
Menu.MenuItems.Add(mi);

you can also calculate a new index value:
index = Menu.MenuItems.Count - 1;

Use this index value to add items to each of the submenus, as here:
Menu.MenuItems[index].MenuItems.Add(miFileOpen);

For the File menu, the use of a variable rather than an explicit 0 is hardly necessary: File will always
be the first item on the main menu, from now until the end of time. But the index variable makes
loads of sense for later submenus, particularly if you someday revise your constructor code to insert
a new submenu.

Here's a program that demonstrates my approach to creating a standard menu from the top down
consistently using one form of the MenuItem constructor and one form of the Add method.
StandardMenu.cs
//---
// StandardMenu.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class StandardMenu: Form
{
 MenuItem miFileOpen, miFileSave;
 MenuItem miEditCut, miEditCopy, miEditPaste;

 // Experimental variables for Popup code

 bool bDocumentPresent = true;
 bool bNonNullSelection = true;
 bool bStuffInClipboard = false;

 public static void Main()
 {
 Application.Run(new StandardMenu());
 }
 public StandardMenu()
 {
 Text = "Standard Menu";
 Menu = new MainMenu();

 // File

 MenuItem mi = new MenuItem("&File");
 mi.Popup += new EventHandler(MenuFileOnPopup);
 Menu.MenuItems.Add(mi);
 int index = Menu.MenuItems.Count - 1;

 // File Open

 miFileOpen = new MenuItem("&Open...");
 miFileOpen.Click += new EventHandler(MenuFileOpenOnClick);
 miFileOpen.Shortcut = Shortcut.CtrlO;
 Menu.MenuItems[index].MenuItems.Add(miFileOpen);

 // File Save

 miFileSave = new MenuItem("&Save");
 miFileSave.Click += new EventHandler(MenuFileSaveOnClick);
 miFileSave.Shortcut = Shortcut.CtrlS;
 Menu.MenuItems[index].MenuItems.Add(miFileSave);

 // Horizontal line

 mi = new MenuItem("-");
 Menu.MenuItems[index].MenuItems.Add(mi);

 // File Exit

 mi = new MenuItem("E&xit");
 mi.Click += new EventHandler(MenuFileExitOnClick);
 Menu.MenuItems[index].MenuItems.Add(mi);

 // Edit

 mi = new MenuItem("&Edit");
 mi.Popup += new EventHandler(MenuEditOnPopup);
 Menu.MenuItems.Add(mi);
 index = Menu.MenuItems.Count - 1;

 // Edit Cut

 miEditCut = new MenuItem("Cu&t");
 miEditCut.Click += new EventHandler(MenuEditCutOnClick);
 miEditCut.Shortcut = Shortcut.CtrlX;
 Menu.MenuItems[index].MenuItems.Add(miEditCut);

 // Edit Copy

 miEditCopy = new MenuItem("&Copy");
 miEditCopy.Click += new EventHandler(MenuEditCopyOnClick);
 miEditCopy.Shortcut = Shortcut.CtrlC;
 Menu.MenuItems[index].MenuItems.Add(miEditCopy);

 // Edit Paste

 miEditPaste = new MenuItem("&Paste");
 miEditPaste.Click += new EventHandler(MenuEditCopyOnClick);
 miEditPaste.Shortcut = Shortcut.CtrlV;
 Menu.MenuItems[index].MenuItems.Add(miEditPaste);

 // Help

 mi = new MenuItem("&Help");
 Menu.MenuItems.Add(mi);
 index = Menu.MenuItems.Count - 1;

 // Help About

 mi = new MenuItem("&About StandardMenu...");
 mi.Click += new EventHandler(MenuHelpAboutOnClick);

 Menu.MenuItems[index].MenuItems.Add(mi);
 }
 void MenuFileOnPopup(object obj, EventArgs ea)
 {
 miFileSave.Enabled = bDocumentPresent;
 }
 void MenuEditOnPopup(object obj, EventArgs ea)
 {
 miEditCut.Enabled = bNonNullSelection;
 miEditCopy.Enabled = bNonNullSelection;
 miEditPaste.Enabled = bStuffInClipboard;
 }
 void MenuFileOpenOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("This should be a File Open dialog box!", Text);
 }
 void MenuFileSaveOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("This should be a File Save dialog box!", Text);
 }
 void MenuFileExitOnClick(object obj, EventArgs ea)
 {
 Close();
 }
 void MenuEditCutOnClick(object obj, EventArgs ea)
 {
 // Copy selection to clipboard; delete from document.
 }
 void MenuEditCopyOnClick(object obj, EventArgs ea)
 {
 // Copy selection to clipboard.
 }
 void MenuEditPasteOnClick(object obj, EventArgs ea)
 {
 // Copy clipboard data to document.
 }
 void MenuHelpAboutOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("StandardMenu © 2001 by Charles Petzold", Text);
 }
}

Although this is certainly not the tersest code imaginable, I think the program achieves a significant
degree of clarity and maintainability.
The Owner-Draw Option

We're nearing the end of this chapter and I still haven't shown you how to put little pictures in your
menu items or how to use a different font or different colors.

Any menu feature beyond what I've covered so far requires that you use a facility called owner-draw.
For every MenuItem object that you want to draw yourself, you must set the following property to
true:
MenuItem Properties (selection)

Type Property Accessibility

bool OwnerDraw get/set

Usually you'd set this property only for items on pop-up menus. If you set OwnerDraw to true, you
must also install event handlers for the following two events:
MenuItem Events (selection)

Event Method Delegate Argument

MeasureItem OnMeasureItem MeasureItemEventHandler MeasureItemEventArgs

DrawItem OnDrawItem DrawItemEventHandler DrawItemEventArgs

Whenever Windows is preparing to draw a menu item (which is usually when it's preparing to display
a pop-up menu), it calls the handler for the MeasureItem event. The event is accompanied by an
object of type MeasureItemEventArgs.
MeasureItemEventArgs Properties

Type Property Accessibility

int Index get

Graphics Graphics get

int ItemWidth get/set

int ItemHeight get/set

On entry to the MeasureItem event handler, the ItemWidth and ItemHeight properties are set to 0.
Your responsibility is to set them to the total width and height of the menu item you intend to draw.
The Index property is there to help your event handler figure out which item requires measurement. If
necessary, the Graphics property lets you obtain the device resolution in dots per inch, or the size of
text items by calling MeasureString.

A short time later, Windows calls the DrawItem event handler, accompanied by an object of
DrawItemEventArgs:
DrawItemEventArgs Properties

Type Property Accessibility

int Index get

Graphics Graphics get

Rectangle Bounds get

DrawItemState State get

Font Font get

Color BackColor get

Color ForeColor get

Your program's responsibility is to draw the item using the Graphics object within the rectangle
defined by the Bounds property. Don't assume that the Bounds property has an upper left corner at
point (0, 0)! In fact, the Bounds rectangle is a rectangle within the entire pop-up menu.

The width of the Bounds rectangle will be greater than the amount you specified while handling the
MeasureItem event to allow for a check mark of standard size at the left of the item.

The DrawItemState enumeration tells you whether the item is selected, disabled, or checked:
DrawItemState Enumeration

Member Value

None 0

Selected 1

Grayed 2

Disabled 4

Checked 8

Focus 16

Default 32

HotLight 64

Inactive 128

NoAccelerator 256

NoFocusRect 512

ComboBoxEdit 4096

Some of these members apply to other types of controls that have owner-draw facilities.

Normally, the BackColor property of the DrawItemEventArgs object will be SystemColors.Window
and the ForeColor property will be SystemColors.WindowText. To be consistent with normal menu
items, these are not the colors you should be using! Use SystemColors.Menu and
SystemColors.MenuText instead. If the item is selected, BackColor will be SystemColors.Highlight
and ForeColor will be SystemColors.HighlightText. These are the correct colors for selected menu
items.

The Font property of the DrawItemEventArgs property will be the same as
SystemInformation.MenuFont.

In addition, DrawItemEventArgs has two methods that assist you in drawing the item:

DrawItemEventArgs Methods

void DrawBackground();
void DrawFocusRectangle();

The DrawFocusRectangle method isn't used with menu items.

You'll also find the following static method of the ControlPaint class to be useful for drawing arrows,
check marks, and radio buttons on menus:

ControlPaint Static DrawMenuGlyph Methods

void DrawMenuGlyph(Graphics grfx, Rectangle rect,
 MenuGlyph mg)
void DrawMenuGlyph(Graphics grfx, int x, int y, int cx, int cy,
 MenuGlyph mg)

MenuGlyph is another enumeration:
MenuGlyph Enumeration

Member Value

Min 0

Arrow 0

Checkmark 1

Bullet 2

Max 2

You can size your menu items in a couple ways. The normal font used for menu items is (as I
mentioned) available from SystemInformation.MenuFont. Another important measure is
SystemInformation.MenuCheckSize, which is the default width and height of the check mark. As you
can see in the static ControlPaint.DrawMenuGlyph method, you specify the width and height of the
glyph (such as the check mark) as you draw it. If you make your items taller than the normal menu
items and you want to use check marks, you should probably scale the check mark glyph when you
draw it. This implies that you should also take account of the scaled-up width of the check mark
when you calculate the size of the item while handling the MeasureItem event.

Here's a program that has a single top-level item named Facename. The pop-up menu has three
items showing the three most common font faces. The owner-draw logic displays these facename
items in fonts based on the facenames.
OwnerDrawMenu.cs
//--
// OwnerDrawMenu.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Text; // For HotkeyPrefix enumeration
using System.Windows.Forms;

class OwnerDrawMenu: Form
{
 const int iFontPointSize = 18; // For menu items
 MenuItem miFacename;

 public static void Main()
 {
 Application.Run(new OwnerDrawMenu());
 }
 public OwnerDrawMenu()
 {
 Text = "Owner-Draw Menu";

 // Top-level items

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Facename");

 // Array of items on submenu

 string[] astrText = {"&Times New Roman", "&Arial", "&Courier
New"};
 MenuItem [] ami = new MenuItem[astrText.Length];

 EventHandler ehOnClick = new EventHandler(MenuFacenameOnClick);
 MeasureItemEventHandler ehOnMeasureItem =
 new
MeasureItemEventHandler(MenuFacenameOnMeasureItem);
 DrawItemEventHandler ehOnDrawItem =
 new DrawItemEventHandler(MenuFacenameOnDrawItem);

 for (int i = 0; i < ami.Length; i++)
 {
 ami[i] = new MenuItem(astrText[i]);
 ami[i].OwnerDraw = true;
 ami[i].RadioCheck = true;
 ami[i].Click += ehOnClick;
 ami[i].MeasureItem += ehOnMeasureItem;
 ami[i].DrawItem += ehOnDrawItem;
 }
 miFacename = ami[0];
 miFacename.Checked = true;

 Menu.MenuItems[0].MenuItems.AddRange(ami);
 }
 void MenuFacenameOnClick(object obj, EventArgs ea)
 {
 miFacename.Checked = false;
 miFacename = (MenuItem) obj;
 miFacename.Checked = true;

 Invalidate();
 }
 void MenuFacenameOnMeasureItem(object obj, MeasureItemEventArgs miea)
 {
 MenuItem mi = (MenuItem) obj;
 Font font = new Font(mi.Text.Substring(1), iFontPointSize);

 StringFormat strfmt = new StringFormat();
 strfmt.HotkeyPrefix = HotkeyPrefix.Show;

 SizeF sizef = miea.Graphics.MeasureString(mi.Text, font,
 1000, strfmt);

 miea.ItemWidth = (int) Math.Ceiling(sizef.Width);
 miea.ItemHeight = (int) Math.Ceiling(sizef.Height);

 miea.ItemWidth += SystemInformation.MenuCheckSize.Width *
 miea.ItemHeight /
 SystemInformation.MenuCheckSize.Height;

 miea.ItemWidth -= SystemInformation.MenuCheckSize.Width;
 }
 void MenuFacenameOnDrawItem(object obj, DrawItemEventArgs diea)
 {
 MenuItem mi = (MenuItem) obj;
 Graphics grfx = diea.Graphics;
 Brush brush;

 // Create the Font and StringFormat.

 Font font = new Font(mi.Text.Substring(1), iFontPointSize);
 StringFormat strfmt = new StringFormat();
 strfmt.HotkeyPrefix = HotkeyPrefix.Show;

 // Calculate check mark and text rectangles.

 Rectangle rectCheck = diea.Bounds;

 rectCheck.Width = SystemInformation.MenuCheckSize.Width *
 rectCheck.Height /
 SystemInformation.MenuCheckSize.Height;

 Rectangle rectText = diea.Bounds;

 rectText.X += rectCheck.Width;

 // Do all the drawing.

 diea.DrawBackground();

 if ((diea.State & DrawItemState.Checked) != 0)
 ControlPaint.DrawMenuGlyph(grfx, rectCheck,
MenuGlyph.Bullet);

 if ((diea.State & DrawItemState.Selected) != 0)
 brush = SystemBrushes.HighlightText;

 else
 brush =
SystemBrushes.FromSystemColor(SystemColors.MenuText);

 grfx.DrawString(mi.Text, font, brush, rectText, strfmt);
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Font font = new Font(miFacename.Text.Substring(1), 12);
 StringFormat strfmt = new StringFormat();
 strfmt.Alignment = strfmt.LineAlignment =
StringAlignment.Center;

 grfx.DrawString(Text, font, new SolidBrush(ForeColor), 0, 0);
 }
}

I've set the iFontPointSize field to 18 just to have a jumbo font in the menu to ensure that the
measuring and drawing logic is working correctly.

The MenuFacenameOnMeasureItem method begins by obtaining the MenuItem to be measured and
constructing a font based on the Text property of that item:
MenuItem mi = (MenuItem) obj;
Font font = new Font(mi.Text.Substring(1), iFontPointSize);

The Substring method on the Text property skips past the ampersand. Next, the method creates a
StringFormat object indicating that the letter following the ampersand will be underlined when the
facename is displayed:
StringFormat strfmt = new StringFormat();
strfmt.HotkeyPrefix = HotkeyPrefix.Show;

The Text property of the menu item is then measured based on the new Font and StringFormat
objects:
SizeF sizef = miea.Graphics.MeasureString(mi.Text, font, 1000, strfmt);

Without a check mark, the sizef structure would provide the size of the menu item:
miea.ItemWidth = (int) Math.Ceiling(sizef.Width);
miea.ItemHeight = (int) Math.Ceiling(sizef.Height);

But the width must be increased by the width of the check mark when the height of the check mark is
scaled to the height of the text
miea.ItemWidth += SystemInformation.MenuCheckSize.Width *
 miea.ItemHeight /
 SystemInformation.MenuCheckSize.Height;

and then decreased by the normal width of the check mark:
miea.ItemWidth -= SystemInformation.MenuCheckSize.Width;

The MenuFacenameOnDrawItem method creates Font and StringFormat objects similarly and then
calculates two Rectangle structures based on the Bounds property of the DrawItemEventArgs object.
The first rectangle is the location and size of the check mark:
Rectangle rectCheck = diea.Bounds;

rectCheck.Width = SystemInformation.MenuCheckSize.Width *
 rectCheck.Height /
 SystemInformation.MenuCheckSize.Height;

The second is the location and size of the text string:
Rectangle rectText = diea.Bounds;
rectText.X += rectCheck.Width;

From that point, it's simple. The DrawBackground method draws the background, DrawMenuGlyph
draws the check mark, and DrawString draws the text, the color of which is based on whether or not
the item is selected. And here's the result:

For some simple applications, such extensive processing of the MeasureItem and DrawItem events
isn't required. For example, the following program loads a 64-pixel-square bitmap resource and uses
this image as a menu item.
HelpMenu.cs
//---------------------------------------
// HelpMenu.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class HelpMenu: Form
{
 Bitmap bmHelp;

 public static void Main()
 {
 Application.Run(new HelpMenu());
 }
 public HelpMenu()
 {
 Text = "Help Menu";

 bmHelp = new Bitmap(GetType(), "HelpMenu.Bighelp.bmp");

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Help");

 MenuItem mi = new MenuItem("&Help");
 mi.OwnerDraw = true;
 mi.Click += new EventHandler(MenuHelpOnClick);
 mi.DrawItem += new DrawItemEventHandler(MenuHelpOnDrawItem);
 mi.MeasureItem +=
 new MeasureItemEventHandler(MenuHelpOnMeasureItem);

 Menu.MenuItems[0].MenuItems.Add(mi);
 }
 void MenuHelpOnMeasureItem(object obj, MeasureItemEventArgs miea)
 {
 miea.ItemWidth = bmHelp.Width;
 miea.ItemHeight = bmHelp.Height;
 }
 void MenuHelpOnDrawItem(object obj, DrawItemEventArgs diea)
 {
 Rectangle rect = diea.Bounds;
 rect.X += diea.Bounds.Width - bmHelp.Width;
 rect.Width = bmHelp.Width;

 diea.DrawBackground();
 diea.Graphics.DrawImage(bmHelp, rect);
 }
 void MenuHelpOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("Help not yet implemented.", Text);
 }
}

Bighelp.bmp

The MeasureItem and DrawItem processing here is very modest. The MeasureItem handler needs
only set ItemWidth and ItemHeight to the height and width of the bitmap, and DrawItem draws it,
essentially right-justifying the image within the rectangle indicated by the Bounds property. The
resulting effect perhaps mirrors the desperation of a new user:

Chapter 15: Paths, Regions, and Clipping
Overview
If you've ever done any graphics programming in PostScript, you probably already know what a
graphics path is. In PostScript, you can't get to first base without using paths. While other graphics
programming environments haven't gone to quite the extremes of PostScript in elevating the path to
the role of central drawing object, the path has come to be recognized as a valuable graphics
programming tool.

Very simply, the graphics path provides a way to connect straight lines and curves. As you know,
you can draw connected straight lines using DrawLines and connected Bézier curves using
DrawBeziers, but I haven't yet discussed any way to connect straight lines and Bézier curves to each
other. That's what the path does. It sounds simple, but it opens up a variety of drawing techniques
that I'll explore in this chapter and in Chapters 17 and 19.

You can also use paths for clipping. Clipping is the restriction of graphics output to a particular area
of the screen or printer page. When you specify a path for clipping, the path is actually converted to a
region first. A region describes an area of the output device in device coordinates.
A Problem and Its Solution
Let's begin our exploration of graphics paths with a graphics programming problem. Suppose you
want to draw a figure that's composed of a line, a semicircle, and another line, all connected to each
other, and you want to use a pen that is considerably thicker than 1 pixel. Here's a possible first stab
at drawing such a figure.
LineArcCombo.cs
//---
// LineArcCombo.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class LineArcCombo: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new LineArcCombo());
 }
 public LineArcCombo()
 {
 Text = "Line & Arc Combo";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen pen = new Pen(clr, 25);

 grfx.DrawLine(pen, 25, 100, 125, 100);
 grfx.DrawArc (pen, 125, 50, 100, 100, -180, 180);
 grfx.DrawLine(pen, 225, 100, 325, 100);

 }
}

The two lines are 100 units in length (that's 100 pixels on the video display and 1 inch on the printer),
and the circle that forms the basis of the arc is 100 units in diameter. The pen is 25 units wide. And
the result looks like this:

Perhaps this is exactly what you wanted. But it's not what I wanted. I wanted the lines and arc to be
connected. Sure, they're touching each other, but they are definitely not visually connected. I don't
want those notches on the bottom inside of the arc.

If you alter the LineArcCombo program to draw the figure twice, once with a thick gray pen and then
with a 1-pixel-wide black pen, you might more clearly see what's going on here:

The 25-pixel-wide lines simply extend 12 pixels to each side of the 1-pixel-wide lines. Because the
lines and arc are drawn with separate method calls, each figure is a distinct entity. At the two points
at which the lines and arc meet, the wide lines intersect but do not form a composite whole.

You could perhaps finagle the coordinates to make this figure look right. You could, for example,
lower the arc by 12 units or so. But deep in your heart of hearts, you know that you haven't solved
the problem, only temporarily disguised it.

What we need here is some way of letting the graphics system know that the lines and arc are
supposed to be connected. If you were dealing only with straight lines, drawing connected lines
would be a snap: you'd use DrawLines to draw a polyline rather than DrawLine to draw discrete
lines. For example, here's a program that draws something similar to what we want.
WidePolyline.cs
//---
// WidePolyline.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class WidePolyline: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new WidePolyline());
 }

 public WidePolyline()
 {

 Text = "Wide Polyline";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen pen = new Pen(clr, 25);

 grfx.DrawLines(pen, new Point[] {
 new Point(25, 100), new Point(125, 100),
 new Point(125, 50), new Point(225, 50),
 new Point(225, 100), new Point(325, 100) });
 }
}

The DrawLines call includes an array of six Point structures to render a polyline that's composed of
five lines:

The graphics system knows that these lines are supposed to be connected because they're all
included in one function call. The wide line is correctly drawn where the lines meet.

The use of a polyline in the WidePolyline program suggests another solution to the line-and-arc
figure. You could look back in Chapter 5 to see how to draw an ellipse using a polyline, and then
implement the arc in that way. Or you could convert the straight lines to Bézier splines (by specifying
control points that are between and collinear to the end points), convert the arc to one or more
Bézier splines (using formulas shown in Chapter 13), and then draw the whole thing using
DrawBeziers.

But surely there's a more direct approach to letting the graphics system know that lines and arc are
connected. What we need is something like DrawLines that works with a combination of straight lines
and arcs. And while we're at it, we may as well request that this magical function work with Bézier
splines and cardinal splines as well.

That magical function (more precisely, a magical class) is GraphicsPath. Here's a program named
LineArcPath that correctly draws the figure using only three more statements than LineArcCombo.
LineArcPath.cs
//--
// LineArcPath.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class LineArcPath: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new LineArcPath());
 }
 public LineArcPath()
 {
 Text = "Line & Arc in Path";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();
 Pen pen = new Pen(clr, 25);

 path.AddLine(25, 100, 125, 100);
 path.AddArc (125, 50, 100, 100, -180, 180);
 path.AddLine(225, 100, 325, 100);

 grfx.DrawPath(pen, path);
 }
}

One of these three additional statements creates the path at the beginning of the DoPage method:
GraphicsPath path = new GraphicsPath();

Although the class that implements the path is named GraphicsPath, I'll be using just the simple
variable name path for instances of this class. GraphicsPath is defined in the
System.Drawing.Drawing2D namespace, and an additional using statement accounts for another of
the three additional statements in this program.

The LineArcCombo program drew the first line using the DrawLine method of the Graphics class:
grfx.DrawLine(pen, 25, 100, 125, 100);

The LineArcPath program replaces this statement with the AddLine method of the GraphicsPath
class:
path.AddLine(25, 100, 125, 100);

The AddLine method doesn't have a Pen argument, but otherwise the arguments are identical to
DrawLine. The same is true for AddArc as compared to DrawArc. The AddLine and AddArc calls
don't draw anything. The coordinates specified in the method calls are simply accumulated in the
path.

Finally (in the third of the three additional statements in this program), the path is actually drawn on
the display device:
grfx.DrawPath(pen, path);

Notice that DrawPath is a method of our old friend the Graphics class. The result of the DrawPath
call is exactly the figure we were hoping for:

Programmers with experience in Win32 API or MFC programming will notice that the implementation
of the graphics path in Windows Forms is conceptually different. In the Win32 API, the BeginPath
function puts the device context into a special mode where all calls to the normal drawing functions
(LineTo, BezierTo, and so forth) are not rendered but instead become part of the path. The path is
ended with a call to EndPath and then drawn with a call to StrokePath (or something else is done
with the path).

The Windows Forms approach is much more flexible. The Win32 API allows only one path to be in
existence for a particular device context, but with Windows Forms, you can create and store as many
paths as you want. And you don't need a Graphics object to create a path. The path exists
independently of any Graphics object until it is rendered using DrawPath (or you do something else
with the path).

You could, in fact, alter LineArcPath to store the GraphicsPath object as a field. You could create the
path and make the calls to AddLine and AddArc in the form's constructor. The DoPage method
would then just create the pen and call DrawPath. If you really wanted to get everything out of the
way in the form's constructor, you could also make the pen-creation statement a field of the form.
The Path, More Formally
Let's begin a more formal look at paths with a few definitions and a quick overview:

A path is a collection of device-independent coordinate points that describe straight lines and curves.
These lines and curves might or might not be connected to each other. Any set of connected lines
and curves within the path is known as a figure or a subpath. (Both terms are used in the Windows
Forms interface. The terms are synonymous.) Thus, a path is composed of zero or more subpaths.
Each subpath is a collection of connected lines and curves. The path created in the LineArcPath
program has just one subpath.

A subpath can be either open or closed. A subpath is closed if the end of the last line in the subpath
is connected to the beginning of the first line. (A special method in the GraphicsPath class—
CloseFigure—is available to close a subpath.) Otherwise, the subpath is open. The single subpath
created in the LineArcPath program is open.

I've already demonstrated the DrawPath method that draws the lines and curves that comprise a
path on an output device. The Graphics class also includes a FillPath method that uses a brush to fill
the interior of all closed subpaths in the path. For the purpose of the FillPath method, all open
subpaths in the path are closed so that all the subpaths define enclosed areas.

As I'll demonstrate later in this chapter, you can also convert a path into a region. In contrast to a
path (which is a collection of lines and curves), a region describes an area of the display surface.
This area may be simple (a rectangle) or quite complex. You can fill the area defined by a region with
a brush. Or you can use the region for clipping. Clipping restricts drawing to a particular area of the
display surface.

Programmers approaching paths for the first time sometimes tend to think that a path is something
much more than just a collection of lines and curve definitions. Let's disabuse ourselves of this
notion by looking at the GraphicsPath properties. The path contains no other persistent data than
what's accessible through its properties:
GraphicsPath Properties

Type Property Accessibility Description

FillMode FillMode get/set FillMode.Alternate or FillMode.Winding

int PointCount get Number of points in path

GraphicsPath Properties

Type Property Accessibility Description

PointF[] PathPoints get Array of coordinate points

byte[] PathTypes get Array of point types

PathData PathData get Duplicates PathPoints and PathTypes

The FillMode enumeration is also used with the DrawPolygon method described in Chapter 5 and
the DrawClosedCurve method featured in Chapter 13. For paths, the FillMode property determines
how the path is filled (or how it's converted to a region) when the path contains overlapping lines.

The other four properties redundantly define nothing more than two arrays of identical size:
§ An array of PointF structures named PathPoints
§ An array of byte values named PathTypes

The number of elements in these arrays (which you could obtain from PathPoints.Length or
PathTypes.Length) is also provided by the PointCount property.

An additional layer of redundancy is provided by the PathData property. This property is an object of
type PathData, defined in the System.Drawing.Drawing2D namespace. The PathData class has the
following two properties:
PathData Properties

Type Property Accessibility Description

PointF[] Points get/set Array of coordinate points

byte[] Types get/set Array of point types

For any GraphicsPath object, the Points array of the PathData property is identical to the PathPoints
property; the Types array of the PathData property is identical to the PathTypes property.

The values in the array of bytes that makes up the PathTypes property are actually values of the
PathPointType enumeration, also defined in System.Drawing.Drawing2D:
PathPointType Enumeration

Member Value

Start 0

Line 1

Bezier or Bezier3 3

PathTypeMask 7

DashMode 16

PathMarker 32

CloseSubpath 128

Each PointF structure in the PathPoints array has an associated PathPointType of Start, Line, or
Bezier. The Start type identifies the first point of a figure; the Line type indicates a point that defines
a straight line; the Bezier type indicates a point that is part of a Bézier spline. Any arcs or canonical
splines are converted into Bézier splines as they are added to the path. After my demonstration in
Chapter 13 about how circles can be closely approximated using Bézier splines, such conversions
should be plausible.

The last three values in the PathPointType enumeration table are flags that can be combined with
the values of Start, Line, or Bezier. As you'll see, both the PathMarker and CloseSubpath flags are
generated by GraphicsPath method calls.

The PathTypeMask enumeration member is a bit mask that lets you separate the values into point
types (Start, Line, or Bezier) and flags (DashMode, PathMarker, or CloseSubpath).

What a path does not contain is anything that relates these coordinate points to real-world
measurements. It is meaningless to ask if the coordinate points in a path are pixels or inches or
millimeters or anything else. They're just points. They are converted to pixels, inches, or millimeters
only when the path is rendered on an output device.
Creating the Path
The GraphicsPath class has six constructors:

GraphicsPath Constructors

GraphicsPath()
GraphicsPath(Point[] apt, byte[] abyPointType)
GraphicsPath(PointF[] aptf, byte[] abyPointType)
GraphicsPath(FillMode fm)
GraphicsPath(Point[] apt, byte[] abyPointType, FillMode fm)
GraphicsPath(PointF[] aptf, byte[] abyPointType, FillMode fm)

If you don't specify a FillMode argument, the default is FillMode.Alternate.

As four of the constructors indicate, you can create a path using an array of Point or PointF
structures and an array of corresponding PathPointType enumeration values, expressed as an array
of byte values. But it's unlikely that a program will start off creating a path in that way. Instead, these
constructors are most profitably used to alter the PathPoints values of an existing path.

Normally, you create a new path using the default constructor:
GraphicsPath path = new GraphicsPath();

You then call methods of the GraphicsPath class that add straight lines and curves to the path.
These methods are similar to corresponding methods in the Graphics class except that they begin
with the word Add instead of Draw and they have no Pen argument.

Here are the methods of GraphicsPath that add straight lines, Bézier splines, arcs, and canonical
splines to the current subpath. I'm not showing the arguments in the following table because for the
most part they are the same as corresponding Draw methods defined in the Graphics class:

GraphicsPath Methods (selection)

void AddLine(...)
void AddLines(...)
void AddArc(...)
void AddBezier(...)
void AddBeziers(...)
void AddCurve(...)

Arcs and canonical splines are converted to Bézier splines as they are added to the path.

If path is an object of type GraphicsPath, the following three calls add three connected lines to the
path:
path.AddLine(0, 0, 0, 100);
path.AddLine(0, 100, 100, 100);

path.AddLine(100, 100, 100, 0);

The resultant figure looks like the left, bottom, and right sides of a square. I chose the coordinates so
that the end point of each line is the same as the starting point of the next line, just as if I were
drawing such a figure.

When defining a path, however, it's not necessary to be quite this meticulous. Until you specify
otherwise (as I'll demonstrate shortly), the lines, arcs, Bézier splines, and canonical splines you add
to the path all end up being part of the same figure. If the coordinates don't match up exactly, the
path automatically generates a straight line to connect the pieces. You can achieve the same results
as the three statements just shown by eliminating the second statement entirely:
path.AddLine(0, 0, 0, 100);
path.AddLine(100, 100, 100, 0);

Because the first line ends at (0, 100) and the second line begins at (100, 100), the path adds a line
between those two points.

You can also make calls to the following three methods:

GraphicsPath Methods (selection)

void StartFigure()
void CloseFigure()
void CloseAllFigures()

All three of these calls end the current subpath and begin a new subpath. In addition, CloseFigure
closes the current subpath. If necessary, a straight line is automatically added to the path from the
last point of the subpath to the first point of the subpath. CloseAllFigures closes all the subpaths that
are part of the path so far.

The calls
path.AddLine(0, 0, 0, 100);
path.AddLine(0, 100, 100, 100);
path.AddLine(100, 100, 100, 0);
path.AddLine(100, 0, 0, 0);
path.CloseFigure();

explicitly create a square closed figure. The calls
path.AddLine(0, 0, 0, 100);
path.AddLine(100, 100, 100, 0);
path.CloseFigure();

create the same closed figure by forcing the path to automatically add lines for the bottom and top
sides. The calls
path.AddLine(0, 0, 0, 100);
path.AddLine(0, 100, 100, 100);
path.AddLine(100, 100, 100, 0);
path.AddLine(100, 0, 0, 0);
path.StartFigure();

create a figure that consists of four sides of a square, but the figure isn't considered closed because
it doesn't end with a call to CloseFigure.

The following methods start a new figure, which is then closed:

GraphicsPath Methods (selection)

void AddRectangle(...)
void AddRectangles(...)
void AddPolygon(...)
void AddEllipse(...)
void AddPie(...)
void AddClosedCurve(...)

For example, the calls
path.AddLine(0, 0, 100, 0);
path.AddRectangle(new Rectangle(50, 50, 100, 100);
path.AddLine(200, 0, 0, 0);

create three subpaths:
§ One line, unclosed
§ Four lines, closed
§ One line, unclosed

You can also add one path to another path:

GraphicsPath AddPath Method

void AddPath(GraphicsPath path, bool bConnect)

The second argument indicates whether the path that is added should be connected to the current
subpath.

The AddString methods add a text string to the path. The syntax of these methods is quite different
from the syntax of the DrawString methods:

GraphicsPath AddString Methods

void AddString(string str, FontFamily ff, int iStyle, float fSize,
 Point pt, StringFormat sf)
void AddString(string str, FontFamily ff, int iStyle, float fSize,
 PointF ptf, StringFormat sf)
void AddString(string str, FontFamily ff, int iStyle, float fSize,
 Rectangle rect, StringFormat sf)
void AddString(string str, FontFamily ff, int iStyle, float fSize,
 RectangleF rectf, StringFormat sf)

Despite the presence of arguments that don't look a bit like coordinate points, these methods do
nothing more than add a series of straight lines and Bézier curves to the path. The lines and curves
are the outlines of the font characters.

The arguments to AddString are actually not as odd as the method definitions initially suggest. The
third argument is defined as an int but is really a member of the FontStyle enumeration (Regular,
Bold, Italic, Underline, or Strikeout). The second, third, and fourth arguments are thus the same as
three arguments used in a constructor to Font.

But why don't the AddString methods use Font arguments in the same way that DrawString does?
Because a Font is most commonly a specific point size, and a path doesn't retain any metrical
information. The fSize argument to AddString is not a point size. Specifying the fSize argument to
AddString is similar to creating a Font with a pixel size and an argument of GraphicsUnit.Pixel or
GraphicsUnit.World, as I discussed in Chapter 9 (on page 379). The text doesn't assume a metrical
size until it's rendered.

Putting text into a path opens up such a wide variety of effects that Chapter 19 is entitled "Font Fun."

You can also insert nonfunctional markers into the path:

GraphicsPath Methods (selection)

void SetMarkers()
void ClearMarkers()

You can then use the GraphicsPathIterator class to search for these markers. Such a facility possibly
lets you edit a path with more ease.
Rendering the Path
Most often, you call one of the following two methods of the Graphics class to render a path:

Graphics Methods (selection)

void DrawPath(Pen pen, GraphicsPath path)
void FillPath(Brush brush, GraphicsPath path)

The DrawPath method draws the lines and curves that comprise the path using the specified pen.
FillPath fills the interiors of all closed subpaths using the specified brush. The method closes all
unclosed subpaths for purposes of this function but doesn't permanently affect the path. If any lines
of the path overlap, interiors are filled based on the current FillPath property of the GraphicsPath
object. At the time of rendering, the points in the path are subject to any transforms that are in effect
in the Graphics object.

Let's see how this stuff works in practice. The Flower program draws a flower using a path and a
transform.
Flower.cs
//-------------------------------------
// Flower.cs © 2001 by Charles Petzold
//-------------------------------------
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class Flower: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new Flower());
 }

 public Flower()
 {
 Text = "Flower";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 // Draw green stem from lower left corner to center.

 grfx.DrawBezier(new Pen(Color.Green, 10),
 new Point(0, cy), new Point(0, 3 * cy / 4),
 new Point(cx / 4, cy / 4), new Point(cx / 2, cy / 2));

 // Set up transform for remainder of flower.

 float fScale = Math.Min(cx, cy) / 2000f;
 grfx.TranslateTransform(cx / 2, cy / 2);
 grfx.ScaleTransform(fScale, fScale);

 // Draw red petals.

 GraphicsPath path = new GraphicsPath();

 path.AddBezier(new Point(0, 0), new Point(125, 125),
 new Point(475, 125), new Point(600, 0));
 path.AddBezier(new Point(600, 0), new Point(475, -125),
 new Point(125, -125), new Point(0, 0));

 for (int i = 0; i < 8; i++)
 {
 grfx.FillPath(Brushes.Red, path);
 grfx.DrawPath(Pens.Black, path);
 grfx.RotateTransform(360 / 8);
 }

 // Draw yellow circle in center.

 Rectangle rect = new Rectangle(-150, -150, 300, 300);
 grfx.FillEllipse(Brushes.Yellow, rect);
 grfx.DrawEllipse(Pens.Black, rect);
 }
}

The DoPage method begins by drawing a Bézier spline from the lower left corner of the client area
(or printer page) to the center to create the stem. Next, it sets up a world transform that creates a
four-quadrant isotropic drawing area with the origin in the center and coordinates ranging from −1000
to 1000.

The program needs to draw some petals next, and that's where the path comes into play. If petals
looked like ellipses, I could just use FillEllipse. But petals are more accurately defined with a pair of
Bézier splines, and filling such a figure requires a path. After the program creates the path, it calls
FillPath and DrawPath eight times. After each pair of calls, the RotateTransform call changes the
world transform of the Graphics object so that the eight petals are rotated around the center. DoPage
finishes by drawing a yellow circle in the center of the client area.

I'm sure you remember the Scribble program from Chapter 8. At the time, I demonstrated how to
save all the lines the user draws using the ArrayList class, which is an array-like object that can
dynamically resize itself. The use of the ArrayList class is actually quite similar to saving coordinates
in a path. And using a GraphicsPath object instead of an ArrayList object simplifies the program
considerably. It's even simpler than the version in Chapter 11 (ScribbleWithBitmap) that saved the
image using a shadow bitmap.
ScribbleWithPath.cs
//---
// ScribbleWithPath.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class ScribbleWithPath: Form
{
 GraphicsPath path;
 bool bTracking;
 Point ptLast;

 public static void Main()
 {
 Application.Run(new ScribbleWithPath());
 }
 public ScribbleWithPath()
 {

 Text = "Scribble with Path";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 // Create the path.

 path = new GraphicsPath();
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 if (mea.Button != MouseButtons.Left)
 return;

 ptLast = new Point(mea.X, mea.Y);
 bTracking = true;

 // Start a figure.

 path.StartFigure();
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 if (!bTracking)
 return;

 Point ptNew = new Point(mea.X, mea.Y);

 Graphics grfx = CreateGraphics();
 grfx.DrawLine(new Pen(ForeColor), ptLast, ptNew);
 grfx.Dispose();
 // Add a line.

 path.AddLine(ptLast, ptNew);

 ptLast = ptNew;
 }
 protected override void OnMouseUp(MouseEventArgs mea)
 {
 bTracking = false;
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 // Draw the path.

 pea.Graphics.DrawPath(new Pen(ForeColor), path);

 }
}

Aside from the additional using statement, transforming the no-save version of Scribble to
ScribbleWithPath requires defining a path as a field variable and then adding just four statements, all
identified with comments.

The path is created in the form's constructor. Whenever the left mouse button is pressed when the
cursor is positioned in the form's client area, a call to the StartFigure method begins a new subpath.
An AddLine call during the OnMouseMove method adds a new line to the path. The OnPaint method
is simply a call to DrawPath.
Path Transforms
The GraphicsPath class contains several methods that let a program modify a path. The first of these
is likely to be very confusing. (At least it was for me when I first encountered it.)

GraphicsPath Transform Method

void Transform(Matrix matrix)

As you know from Chapter 7, the Graphics class has a property named Transform that is of type
Matrix. The Transform property of the Graphics class affects the display of all subsequent graphics
output.

But the Transform in GraphicsPath is different. Transform is not a property of GraphicsPath;
Transform is a method. And that's an important distinction. A property is usually a characteristic of an
object; a method usually carries out an operation. A property is an adjective; a method is a verb.

The Transform method of the GraphicsPath class permanently alters the coordinates of the path by
applying the specified transform to those coordinates. The Transform method doesn't affect
coordinates subsequently added to the path. Nor does the GraphicsPath object retain the transform
in any way. For example, if you have a Matrix object named matrix that describes a doubling of
coordinate points, and you call
grfx.Transform(matrix);

the result is equivalent to obtaining the array of coordinate points in the path using the PathPoints
property, doubling all the numbers in the array, and then creating a new path based on those
modified points.

The Transform method is the only method in the GraphicsPath class concerned with matrix
transforms. To use it, you'll need to make use of the Matrix class, which is defined in the
System.Drawing.Drawing2D namespace and which I touched on briefly toward the end of Chapter 7.
The easiest way to use the Matrix class is first to create an identity matrix using the default
constructor:
Matrix matrix = new Matrix();

You can then use various methods of the Matrix class to alter this transform. The Translate method
is just like the TranslateTransform method of the Graphics class. (In fact, I wouldn't be surprised if
the Graphics class implemented its TranslateTransform methods by simply calling the corresponding
Translate method of its Transform property.)

Matrix Translate Methods

void Translate (float dx, float dy)
void Translate (float dx, float dy, MatrixOrder mo)

The MatrixOrder enumeration has two members, Append and Prepend.

The Scale method is just like the ScaleTransform method of the Graphics class:

Matrix Scale Methods

void Scale(float sx, float sy)
void Scale(float sx, float sy, MatrixOrder mo)

Earlier I mentioned doubling all the coordinates in a path. You can do that with the following three
lines of code:
Matrix matrix = new Matrix();
matrix.Scale(2, 2);
path.Transform(matrix);

The Matrix class also includes a Rotate method:

Matrix Rotate Methods

void Rotate(float fAngle)
void Rotate(float fAngle, MatrixOrder mo)

You can alter the Flower program to use the Rotate method of the Matrix class rather than the
RotateTransform method of the Graphics class. After creating the path, create a Matrix object that
describes a rotation of 45 degrees:
Matrix matrix = new Matrix();
matrix.Rotate(45);

Then in the for loop, rather than call RotateTransform, call the Transform method of the path:
path.Transform(matrix);

In the original version of Flower, the path remains the same and the RotateTransform call affects
how the coordinates are transformed as the path is rendered by the Graphics class. In the altered
version, the coordinates stored in the path are rotated. By the end of the for loop, after eight rotations
of 45 degrees, the coordinates of the path have been restored to their original values.

Here's an interesting method of the Matrix class that isn't duplicated by a method in the Graphics
class:

Matrix RotateAt Methods

void RotateAt(float fAngle, PointF ptf)
void RotateAt(float fAngle, PointF ptf, MatrixOrder mo)

Normally the matrix transform rotates an image around the point (0, 0). This method lets you specify
the point around which the rotation occurs. For example, suppose you create a path like this:
GraphicsPath path = new GraphicsPath();
path.AddRectangle(new Rectangle(0, 0, 100, 100));

The path contains the points (0, 0), (100, 0), (100, 100), and (0, 100). If you then create a Matrix
object, call the Rotate method for 45 degrees, and apply it to the path like so:
Matrix matrix = new Matrix();
matrix.Rotate(45);

path.Transform(matrix);

the points in the path are, with some rounding, (0, 0), (70.7, 70.7), (0, 141.4), and (−70, 70). If
instead you use the RotateAt method specifying the center of the rectangle
Matrix matrix = new Matrix();
matrix.RotateAt(45, new Point(50, 50));
path.Transform(matrix);

the path contains the points (50, −20.7), (120.7, 50), (50, 120.7), and (−20.7, 50).

The Matrix class also includes a method for shearing:

Matrix Shear Methods

void Shear(float xShear, float yShear)
void Shear(float xShear, float yShear, MatrixOrder mo)

Applied to a default transform, this method results in the following transformation formulas:

x′ = x + xShear · y
y′ = yShear · x + y
Other Path Modifications
Transform is not the only method of the GraphicsPath class that modifies all the coordinates of a
path. The Flatten method is intended to convert all the Bézier splines in a path into straight-line
segments:

GraphicsPath Flatten Methods

void Flatten()
void Flatten(Matrix matrix)
void Flatten(Matrix matrix, float fFlatness)

You can optionally apply a Matrix to transform the points before flattening them.

The number of line segments decreases as the fFlatness argument gets higher. The default
fFlatness argument is equivalent to an argument of 0.25. The method is not defined for values of 0.

The Widen method has a much more profound effect on the path than the Flatten method does. The
first argument is always a Pen object:

GraphicsPath Widen Methods

void Widen(Pen pen)
void Widen(Pen pen, Matrix matrix)
void Widen(Pen pen, Matrix matrix, float fFlatness)

The method ignores the color of the pen and uses only the pen width, generally a width of at least a
couple units or so. Imagine the path being drawn using a thick pen. The new path is the outline of
that thick line. Every open path is converted into a closed path, and every closed path is converted
into two closed paths. Before widening the path, the method converts all Bézier splines to polylines.

You can optionally specify a flatness factor for this conversion; you can also optionally use a Matrix
to transform the coordinates in the path before the widening process.

The results of the Widen method are sometimes a bit strange, so it helps to look at an example. The
following program creates a path in the constructor containing one open subpath shaped like a V,
and one closed subpath shaped like a triangle.
WidenPath.cs
//--
// WidenPath.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class WidenPath: PrintableForm
{
 GraphicsPath path;

 public new static void Main()
 {
 Application.Run(new WidenPath());
 }
 public WidenPath()
 {
 Text = "Widen Path";

 path = new GraphicsPath();

 // Create open subpath.

 path.AddLines(new Point[] { new Point(20, 10),
 new Point(50, 50),
 new Point(80, 10) });

 // Create closed subpath.

 path.AddPolygon(new Point[] { new Point(20, 30),
 new Point(50, 70),
 new Point(80, 30) });
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.ScaleTransform(cx / 300f, cy / 200f);

 for (int i = 0; i < 6; i++)

 {
 GraphicsPath pathClone = (GraphicsPath) path.Clone();
 Matrix matrix = new Matrix();
 Pen penThin = new Pen(clr, 1);
 Pen penThick = new Pen(clr, 5);
 Pen penWiden = new Pen(clr, 7.5f);
 Brush brush = new SolidBrush(clr);

 matrix.Translate((i % 3) * 100, (i / 3) * 100);

 if (i < 3)
 pathClone.Transform(matrix);
 else
 pathClone.Widen(penWiden, matrix);

 switch (i % 3)
 {
 case 0: grfx.DrawPath(penThin, pathClone); break;
 case 1: grfx.DrawPath(penThick, pathClone); break;
 case 2: grfx.FillPath(brush, pathClone); break;
 }
 }
 }
}

The DoPage method makes six copies of this path using the Clone method and uses the Transform
method to position each copy in a particular area of the display. It then draws the path six different
ways. The results look like this:

The top row shows the path drawn with a 1-unit-wide pen, drawn with a 5-unit-wide pen, and filled.
The bottom row shows the same three drawing operations following a call to Widen using a 7.5-unit-
wide pen.

The two renditions on the left side of the display show most clearly the effects of the Widen method.
The open V-shaped subpath is converted into a closed subpath that outlines the path as if it had
been drawn with a wide pen. The closed triangle subpath is converted into two paths, one on the
outside and one on the inside of the line that would result from drawing the path with a wide pen. Of
course, the little interior loops at the apexes look rather odd, but those are the results of the
algorithm that the Widen method uses.

The two renditions in the center column look just like the ones in the left column except drawn with a
thicker pen.

The filled path in the upper right corner has an unfilled interior area as a result of the default filling
mode of the path, which is FillMode.Alternating. Change the fill mode to FillMode.Winding and all
interior areas will be filled. The most interesting version is the figure in the lower right corner. That's
the effect of FillPath on the widened path. It looks very much like DrawPath on the original path using
a wide pen.

You can determine the smallest rectangle in which the path can fit by using the GetBounds method,
either with or without taking into account the effect of a matrix transform and a wide pen:

GraphicsPath GetBounds Methods

RectangleF GetBounds()
RectangleF GetBounds(Matrix matrix)
RectangleF GetBounds(Matrix matrix, Pen pen)

Neither argument has any effect on the coordinates stored in the path. You should be aware that the
calculated rectangle reflects the minimum and maximum x and y coordinates of all the points in the
path. If the path contains Bézier splines, the rectangle reflects the coordinates of the control points,
not the actual curve. To get a more accurate measurement of the figure, call Flatten before
GetBounds.

In Chapter 7, I spoke of the matrix transform as being a linear transform. The linearity of the
transform imposes certain restrictions on what you can do with the transform. Parallelograms will
always be transformed into other parallelograms, for example.

The GraphicsPath class introduces another transform in the Warp method. Like the Transform
method, the Warp method modifies all the coordinates of the path. But the Warp transform is
nonlinear, the only nonlinear transform in GDI+.

To use Warp, you specify four source coordinates and four destination coordinates. The method
maps the four source coordinates to the four corresponding destination coordinates. The source
coordinates are specified as a RectangleF structure. Conveniently (but not necessarily), you can set
the RectangleF argument to the RectangleF structure returned from GetBounds. The destination
coordinates are specified as an array of PointF structures:

GraphicsPath Warp Methods

void Warp(PointF[] aptfDst, RectangleF rectfSrc)
void Warp(PointF[] aptfDst, RectangleF rectfSrc, Matrix matrix)
void Warp(PointF[] aptfDst, RectangleF rectfSrc, Matrix matrix,
 WarpMode wm)
void Warp(PointF[] aptfDst, RectangleF rectfSrc, Matrix matrix,
 WarpMode wm, float fFlatness)

You can optionally also supply a Matrix object and a flatness value. The source points are
transformed to the destination points like this:
§ aptfDst[0] is the destination of the upper left corner of the rectangle.
§ aptfDst[1] is the destination of the upper right corner of the rectangle.
§ aptfDst[2] is the destination of the lower left corner of the rectangle.
§ aptfDst[3] is the destination of the lower right corner of the rectangle.

An optional argument determines how intermediary points are calculated:

WarpMode Enumeration

Member Value

Perspective 0

Bilinear 1

The PathWarping program lets you experiment with the Warp function. The form's constructor
creates a path with a square 8-by-8 checkerboard pattern. You then use the mouse to indicate the
destination of this path.
PathWarping.cs
//--
// PathWarping.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class PathWarping: Form
{
 MenuItem miWarpMode;
 GraphicsPath path;
 PointF[] aptfDest = new PointF[4];

 public static void Main()
 {
 Application.Run(new PathWarping());
 }
 public PathWarping()
 {
 Text = "Path Warping";

 // Create menu.

 Menu = new MainMenu();

 Menu.MenuItems.Add("&Warp Mode");
 EventHandler ehClick = new EventHandler(MenuWarpModeOnClick);

 miWarpMode = new MenuItem("&" + (WarpMode)0, ehClick);
 miWarpMode.RadioCheck = true;
 miWarpMode.Checked = true;
 Menu.MenuItems[0].MenuItems.Add(miWarpMode);

 MenuItem mi = new MenuItem("&" + (WarpMode)1, ehClick);
 mi.RadioCheck = true;

 Menu.MenuItems[0].MenuItems.Add(mi);

 // Create path.

 path = new GraphicsPath();

 for (int i = 0; i <= 8; i++)
 {
 path.StartFigure();
 path.AddLine(0, 100 * i, 800, 100 * i);
 path.StartFigure();

 path.AddLine(100 * i, 0, 100 * i, 800);
 }
 // Initialize Point array.

 aptfDest[0] = new Point(50, 50);
 aptfDest[1] = new Point(200, 50);
 aptfDest[2] = new Point(50, 200);
 aptfDest[3] = new Point(200, 200);
 }
 void MenuWarpModeOnClick(object obj, EventArgs ea)
 {
 miWarpMode.Checked = false;
 miWarpMode = (MenuItem) obj;
 miWarpMode.Checked = true;

 Invalidate();
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 Point pt;

 if (mea.Button == MouseButtons.Left)
 {
 if (ModifierKeys == Keys.None)
 pt = Point.Round(aptfDest[0]);
 else if (ModifierKeys == Keys.Shift)
 pt = Point.Round(aptfDest[2]);
 else
 return;
 }
 else if (mea.Button == MouseButtons.Right)
 {
 if (ModifierKeys == Keys.None)

 pt = Point.Round(aptfDest[1]);
 else if (ModifierKeys == Keys.Shift)
 pt = Point.Round(aptfDest[3]);
 else
 return;
 }
 else
 return;

 Cursor.Position = PointToScreen(pt);
 }
 protected override void OnMouseMove(MouseEventArgs mea)
 {
 Point pt = new Point(mea.X, mea.Y);

 if (mea.Button == MouseButtons.Left)
 {

 if (ModifierKeys == Keys.None)
 aptfDest[0] = pt;
 else if (ModifierKeys == Keys.Shift)
 aptfDest[2] = pt;
 else
 return;
 }
 else if (mea.Button == MouseButtons.Right)
 {
 if (ModifierKeys == Keys.None)
 aptfDest[1] = pt;
 else if (ModifierKeys == Keys.Shift)
 aptfDest[3] = pt;
 else
 return;
 }
 else
 return;

 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 GraphicsPath pathWarped = (GraphicsPath) path.Clone();
 WarpMode wm = (WarpMode) miWarpMode.Index;

 pathWarped.Warp(aptfDest, path.GetBounds(), new Matrix(), wm);
 grfx.DrawPath(new Pen(ForeColor), pathWarped);
 }
}

Use the left and right mouse buttons to set the upper left and upper right destination coordinates.
Use the left and right mouse buttons with the Shift key pressed to set the lower left and lower right
destination coordinates. Use the menu to select between Perspective and Bilinear modes. (And
notice the clever way in which the OnPaint method casts the Index property of the clicked menu item
to a member of type WarpMode.) Here's an example of a Perspective warp:

The path provides a convenient way for you to implement your own nonlinear transforms. You first
store the figure you want to display in a path. You then access the PathPoints and PathTypes
properties of the path to obtain all the coordinate points. Modify these points in whatever way you
want, and then use one of the nondefault GraphicsPath constructors to create a new path based on
the modified arrays. I have two examples of this technique in Chapter 19.
Clipping with Paths
Besides drawing and filling paths, you can also use paths to set a clipping region for the Graphics
object:

Graphics SetClip Methods (selection)

void SetClip(GraphicsPath path)
void SetClip(GraphicsPath path, CombineMode cm)

Suppose the path contains an ellipse. When you call the first version of SetClip, all subsequent
drawing is restricted to that ellipse. I'll talk about the second version of SetClip shortly. But first, let's
jump right into a demonstration program. The Clover program defines a path containing four
overlapping ellipses and uses that for the clipping region.
Clover.cs
//-------------------------------------
// Clover.cs © 2001 by Charles Petzold
//-------------------------------------
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class Clover: PrintableForm
{
 public new static void Main()
 {

 Application.Run(new Clover());
 }
 public Clover()
 {
 Text = "Clover";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();

 path.AddEllipse(0, cy / 3, cx / 2, cy / 3); // Left
 path.AddEllipse(cx / 2, cy / 3, cx / 2, cy / 3); // Right
 path.AddEllipse(cx / 3, 0, cx / 3, cy / 2); // Top
 path.AddEllipse(cx / 3, cy / 2, cx / 3, cy / 2); // Bottom

 grfx.SetClip(path);
 grfx.TranslateTransform(cx / 2, cy / 2);

 Pen pen = new Pen(clr);
 float fRadius = (float) Math.Sqrt(Math.Pow(cx / 2, 2) +
 Math.Pow(cy / 2, 2));

 for (float fAngle = 0; fAngle < (float) Math.PI * 2;
 fAngle += (float) Math.PI / 180)
 {
 grfx.DrawLine(pen, 0, 0, fRadius * (float)
Math.Cos(fAngle),
 -fRadius * (float)
Math.Sin(fAngle));
 }
 }
}

The GraphicsPath is created in the DoPage method. The path consists of four ellipses based on the
size of the client area or the printer page. The SetClip method sets the clipping region for the
Graphics object based on the path.

The DoPage method next sets an origin in the center of the drawing space and draws 360 lines
radiating from the center. These lines are clipped to the interior of the ellipses:

Such an image would be difficult to draw in any other way. You'll notice that the clipping region
doesn't include the area where the ellipses overlap. That's a result of using the default path-filling
mode of FillMode.Alternate. If you change the filling mode to
path.FillMode = FillMode.Winding;

before calling SetClip, those overlapping areas become part of the clipping region as well.

Clipping is often an algorithmically slow process. I've derived the Clover class from PrintableForm so
that you can click on the client area and print the image, but be forewarned that it could take an hour
or more for the program to print.

The question naturally arises, How do the page transform and the world transform affect the clipping
region?

When you call SetClip, the path coordinates are assumed to be world coordinates. The world
coordinates are converted to device coordinates just as if you were drawing or filling the path. The
clipping region is saved in device coordinates and remains in device coordinates. For example, after
the SetClip call in Clover, you can change the page transform and the world transform to anything,
and drawing will still be restricted to the same area of the window. In fact, I've used
TranslateTransform in Clover without affecting the location of the clipping region.

The second version of SetClip I showed lets you combine the existing clipping region with the new
clipping region specified in the SetClip method:
CombineMode Enumeration

Member Value Description

Replace 0 Clip = New

Intersect 1 Clip = New ∧ Existing

Union 2 Clip = New ∨ Existing

Xor 3 Clip = Union − Intersection

Exclude 4 Clip = Existing − New

Complement 5 Clip = New − Existing

The following program creates a clipping region based on two overlapping ellipses. A menu item lets
you select which CombineMode value is used to combine the two ellipses. The program then colors
its entire client area. As in the PathWarping program, I've used the submenu indices (which range
from 0 through 5) as the CombineMode value.

ClippingCombinations.cs
//---
// ClippingCombinations.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class ClippingCombinations: PrintableForm
{
 string strCaption = "CombineMode = ";
 MenuItem miCombineMode;

 public new static void Main()
 {
 Application.Run(new ClippingCombinations());
 }
 public ClippingCombinations()
 {
 Text = strCaption + (CombineMode)0;

 Menu = new MainMenu();
 Menu.MenuItems.Add("&CombineMode");

 EventHandler ehClick = new EventHandler(MenuCombineModeOnClick);

 for (int i = 0; i < 6; i++)
 {
 MenuItem mi = new MenuItem("&" + (CombineMode)i);
 mi.Click += ehClick;
 mi.RadioCheck = true;

 Menu.MenuItems[0].MenuItems.Add(mi);
 }
 miCombineMode = Menu.MenuItems[0].MenuItems[0];
 miCombineMode.Checked = true;
 }
 void MenuCombineModeOnClick(object obj, EventArgs ea)
 {
 miCombineMode.Checked = false;
 miCombineMode = (MenuItem) obj;
 miCombineMode.Checked = true;

 Text = strCaption + (CombineMode)miCombineMode.Index;

 Invalidate();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();
 path.AddEllipse(0, 0, 2 * cx / 3, cy);
 grfx.SetClip(path);

 path.Reset();
 path.AddEllipse(cx / 3, 0, 2 * cx / 3, cy);
 grfx.SetClip(path, (CombineMode)miCombineMode.Index);

 grfx.FillRectangle(Brushes.Red, 0, 0, cx, cy);
 }
}

Here's the result when the two ellipses are combined with CombineMode.Xor:

Additional versions of the SetClip method let you set the clipping region (or combine the clipping
region) with a rectangle:

Graphics SetClip Methods (selection)

void SetClip(Rectangle rect)
void SetClip(Rectangle rect, CombineMode cm)
void SetClip(RectangleF rectf)
void SetClip(RectangleF rectf, CombineMode cm)

The Graphics class also includes methods named IntersectClip and ExcludeClip to modify the
existing clipping region. To return the clipping region to normal (that is, an infinitely large region) call
the following method:

Graphics ResetClip Method

void ResetClip()
Clipping Bitmaps
Clipping lets you draw nonrectangular areas of a bitmap. Here's a program that loads an image and
defines a path in its constructor. In the DoPage method, the program sets a clipping region based on
the path and draws the bitmap.
KeyholeClip.cs
//--
// KeyholeClip.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class KeyholeClip: PrintableForm
{
 protected Image image;
 protected GraphicsPath path;

 public new static void Main()
 {
 Application.Run(new KeyholeClip());
 }
 public KeyholeClip()
 {
 Text = "Keyhole Clip";

 image = Image.FromFile(
 "..\\..\\..\\..\\Images and
Bitmaps\\Apollo11FullColor.jpg");

 path = new GraphicsPath();
 path.AddArc(80, 0, 80, 80, 45, -270);
 path.AddLine(70, 180, 170, 180);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.SetClip(path);
 grfx.DrawImage(image, 0, 0, image.Width, image.Height);
 }
}

The result looks a bit incongruous (a keyhole on the moon?), but it works:

Obviously, I defined the path in this program based on this specific image, and under the assumption
that the image would be drawn using its pixel dimension with the upper left corner at the point (0, 0).

But suppose you wanted to draw the clipped image in the center of the client area. It's easy to draw
the image in the center, but how do you get the path in the center also? One solution is to re-create
the path based on the size of the client area. Another solution is to translate the path or to use the
following methods that translate the clipping region:

Graphics TranslateClip Methods

void TranslateClip(int cx, int cy)
void TranslateClip(float cx, float cy)

The KeyholeClipCentered program overrides the KeyholeClip program and centers both the clipping
region and the path in the client area.
KeyholeClipCentered.cs
//--
// KeyholeClipCentered.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class KeyholeClipCentered: KeyholeClip
{
 public new static void Main()
 {
 Application.Run(new KeyholeClipCentered());
 }
 public KeyholeClipCentered()
 {
 Text += " Centered";

 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.SetClip(path);

 RectangleF rectf = path.GetBounds();
 int xOffset = (int)((cx - rectf.Width) / 2 - rectf.X);
 int yOffset = (int)((cy - rectf.Height) / 2 - rectf.Y);

 grfx.TranslateClip(xOffset, yOffset);
 grfx.DrawImage(image, xOffset, yOffset, image.Width,
image.Height);
 }
}

It's also possible to create a new bitmap based on the size of the clipped image and to use
transparency to get the same effect. The KeyholeBitmap program demonstrates this technique.
KeyholeBitmap.cs
//--
// KeyholeBitmap.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Drawing.Imaging;
using System.Windows.Forms;

class KeyholeBitmap: PrintableForm
{
 Bitmap bitmap;

 public new static void Main()
 {
 Application.Run(new KeyholeBitmap());
 }
 public KeyholeBitmap()
 {
 Text = "Keyhole Bitmap";

 // Load image.

 Image image = Image.FromFile(
 "..\\..\\..\\..\\Images and
Bitmaps\\Apollo11FullColor.jpg");
 // Create clipping path.

 GraphicsPath path = new GraphicsPath();
 path.AddArc(80, 0, 80, 80, 45, -270);
 path.AddLine(70, 180, 170, 180);

 // Get size of clipping path.

 RectangleF rectf = path.GetBounds();

 // Create new bitmap initialized to transparent.

 bitmap = new Bitmap((int) rectf.Width, (int) rectf.Height,
 PixelFormat.Format32bppArgb);

 // Create Graphics object based on new bitmap.

 Graphics grfx = Graphics.FromImage(bitmap);

 // Draw original image on bitmap with clipping.

 grfx.SetClip(path);
 grfx.TranslateClip(-rectf.X, -rectf.Y);
 grfx.DrawImage(image, (int) -rectf.X, (int) -rectf.Y,
 image.Width, image.Height);
 grfx.Dispose();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.DrawImage(bitmap, (cx - bitmap.Width) / 2,
 (cy - bitmap.Height) / 2,
 bitmap.Width, bitmap.Height);
 }
}

The loading of the image and the creation of the path in the constructor are the same as in the
KeyholeClip program. This program then obtains the size of the path and uses that size to create a
new Bitmap object. The pixel format of the bitmap is specified as Format32bppArgb (which is the
default anyway), and the bitmap is initialized to all zeros, which means that the entire bitmap image
is initially transparent. Anything drawn on the bitmap won't be transparent.

The constructor then obtains a Graphics object for the bitmap and uses the path to set a clipping
region. The problem, however, is that the new bitmap is smaller than the loaded bitmap, so the path
isn't oriented correctly. The TranslateClip method moves the clipping region into place, and
DrawImage (with the same offset factors as TranslateClip) renders the image on the new bitmap.

The DoPage method simply centers the bitmap in the display area. The program could save the new
bitmap as a file as well.
Regions and Clipping
Historically, regions predate the path support in Windows by many years. Regions were available in
Windows 1.0 (which was released in 1985), while paths didn't become available in Windows until

they were introduced in the 32-bit versions, beginning with Windows NT 3.1 in 1993 and Windows 95
in 1995.

With the introduction of paths, regions have become much less important in Windows graphics
programming. They might even be ignored altogether if not for the role they play in clipping.
Basically, when you define a path for clipping, the path is converted into a region. So the deeper you
get into clipping, the more you'll have to learn about regions.

As you know, a graphics path is a collection of lines and curves. A region describes an area of the
output device. It's fairly straightforward to convert a path to a region. In fact, one of the constructors
of the Region class (which is defined in System.Drawing) creates a region directly from a path:

Region Constructors (selection)

Region(GraphicsPath path)

For the purpose of this constructor, all open subpaths are closed. The region encompasses the
interiors of all the subpaths in the path. If the subpaths have overlapping areas, the filling mode of
the path determines which interior areas become part of the region and which ones do not. Only one
method of the Graphics class uses a region for drawing:

Graphics FillRegion Method

void FillRegion(Brush brush, Region rgn)

If the region was created from a path, this method is equivalent to calling FillPath on the original
path.

Only one version of the SetClip method uses a region directly:

Graphics SetClip Methods (selection)

void SetClip(Region rgn, CombineMode cm)

It may seem odd that there's no version of SetClip that has a region argument without any
CombineMode argument. That's because the Clip property of the Graphics object is itself defined as
a Region. Here are three clipping-related properties of Graphics.
Graphics Properties (selection)

Type Property Accessibility

Region Clip get/set

RectangleF ClipBounds get

bool IsClipEmpty get

So instead of using a method call to set the clipping region from a Region object,
grfx.SetClip(rgn); // Doesn't exist!

you just set the property:
grfx.Clip = rgn;

The ClipBounds property indicates the smallest rectangle that encompasses the clipping region;
IsClipEmpty indicates whether the clipping region defines a nonexistent area.

Two additional properties of the Graphics path relate to clipping:
Graphics Properties (selection)

Type Property Accessibility

RectangleF VisibleClipBounds get

bool IsVisibleClipEmpty get

With a new Graphics object, the VisibleClipBounds property indicates the size of the drawing
surface. For a form, that's the size of the client area; for the printer, it's the size of the printable area
of the page. The ClipBounds property indicates an "infinite" boundary rectangle. (Actually, it's not
really infinite. It's just extremely large.)

When you set a clipping region for the Graphics object, VisibleClipBounds will be equal to the
intersection of the original VisibleClipBounds and the ClipBounds property. If the clipping region is
entirely within the display area, VisibleClipBounds and ClipBounds will be equal.

If IsClipEmpty is true, IsVisibleClipEmpty will also be true. However, it could be that IsClipEmpty is
false but the clipping region is outside the boundaries of the client area (or printable area of the
printer page). In that case, IsVisibleClipEmpty will be true because no part of the clipping region is
within the display area.

Chapter 16: Dialog Boxes
Overview
Given that you can decorate an application's main form with buttons and other controls in the same
way that you can design a dialog box, what makes a form different from a dialog box? In terms of
managing events from the dialog box and its child controls, the difference is slight. Dialog boxes
once represented a big conceptual leap in Windows programming. In the Windows Forms library,
however, there's not even a separate class for dialog boxes. You simply create another instance (or
in most cases, another subclass) of Form.

Dialog boxes are either modal or modeless. Modal dialog boxes are the most common. As the name
suggests, a modal dialog box changes the mode of input from the main application form to the dialog
box. When your program displays a modal dialog box, the user can't switch between the dialog box
and another form in your program. The user must explicitly end the dialog box, usually by clicking a
push button marked OK (or Open or Save) or a button marked Cancel. The user can, however,
switch to another program while the dialog box is still displayed. Some dialog boxes (called system
modal) don't even allow switching to other programs: system modal dialog boxes report serious
problems and must be ended before the user can do anything else in Windows. (It's not possible to
create a system modal dialog box using the Windows Forms library.)

Modeless dialog boxes are much like additional forms the program creates. (The TwoForms and
PaintTwoForms programs in Chapter 2 create two forms.) You can switch among the modeless
dialog boxes a program creates and the program's main application form.

Programmers often use modal dialog boxes when a program needs to obtain information from a user
beyond what can be easily managed in a menu. (Remember the FontMenu program in Chapter 14?)
The dialog box often defines fields or properties that allow the program to initialize the dialog box and
(ultimately) obtain information from it.

Very often, programmers working with object-oriented languages find it difficult to decide what should
be an object. One approach is to design your dialog boxes so that they have a single field (or
property) that an application uses to get all the information from the dialog box. That means that the
dialog box is associated with a specific object. There are worse ways to structure your programs!

Toward the end of this chapter, I discuss what are known as the common dialog boxes. These are
the predefined dialog boxes that you can present to a user for the selection of files, fonts, or colors.
As you'll see, each of these dialog boxes often returns a single object.
Your First Modal Dialog Box
Dialog boxes differ from application forms mostly in the way in which they are invoked and (just as
important) terminated. This SimpleDialog program demonstrates both of these jobs.
SimpleDialog.cs
//---
// SimpleDialog.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SimpleDialog: Form
{
 string strDisplay = "";

 public static void Main()
 {

 Application.Run(new SimpleDialog());
 }
 public SimpleDialog()
 {
 Text = "Simple Dialog;

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Dialog!", new EventHandler(MenuOnClick));
 }
 void MenuOnClick(object obj, EventArgs ea)
 {
 SimpleDialogBox dlg = new SimpleDialogBox();

 dlg.ShowDialog();

 strDisplay = "Dialog box terminated with " +
 dlg.DialogResult + "!";
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 grfx.DrawString(strDisplay, Font, new SolidBrush(ForeColor), 0,
0);
 }
}
class SimpleDialogBox: Form
{
 public SimpleDialogBox()
 {
 Text = "Simple Dialog Box";

 // Standard stuff for dialog boxes

 FormBorderStyle = FormBorderStyle.FixedDialog;
 ControlBox = false;
 MaximizeBox = false;
 MinimizeBox = false;
 ShowInTaskbar = false;

 // Create OK button.

 Button btn = new Button();
 btn.Parent = this;
 btn.Text = "OK";
 btn.Location = new Point(50, 50);

 btn.Size = new Size (10 * Font.Height, 2 * Font.Height);
 btn.Click += new EventHandler(ButtonOkOnClick);

 // Create Cancel button.

 btn = new Button();
 btn.Parent = this;
 btn.Text = "Cancel";
 btn.Location = new Point(50, 100);
 btn.Size = new Size (10 * Font.Height, 2 * Font.Height);
 btn.Click += new EventHandler(ButtonCancelOnClick);
 }
 void ButtonOkOnClick(object obj, EventArgs ea)
 {
 DialogResult = DialogResult.OK;
 }
 void ButtonCancelOnClick(object obj, EventArgs ea)
 {
 DialogResult = DialogResult.Cancel;
 }
}

The program contains two classes; both are derived from Form. The first class, named SimpleDialog,
is the class for the program's main window. The SimpleDialogBox class is the class for the program's
dialog box.

The Main method creates only an instance of the SimpleDialog class. The constructor of this class
creates a very small menu containing just one item labeled "Dialog!" When you click this menu item,
the MenuOnClick method invokes the dialog box. It begins this job by creating an instance of
SimpleDialogBox:
SimpleDialogBox dlg = new SimpleDialogBox();

Although my dialog boxes will tend to be based on classes with long names such as
SimpleDialogBox, I'll generally use a variable named dlg or something similar to refer to the dialog
box.

When the program creates an object of type SimpleDialogBox, the default constructor defined in the
SimpleDialogBox class is executed. That constructor begins by setting the text that will appear in the
dialog box caption:
Text = "Simple Dialog Box";

It then sets five additional properties:
FormBorderStyle = FormBorderStyle.FixedDialog;
ControlBox = false;
MaximizeBox = false;
MinimizeBox = false;
ShowInTaskbar = false;

Setting these five properties is common with dialog boxes. The FixedDialog border style doesn't
allow resizing the dialog box, and the next three properties eliminate the control box (also known as
the system menu), the maximize box, and the minimize box from the caption bar. Setting ControlBox
to false also eliminates the close box. The caption bar contains only the dialog box text (in this case,
"Simple Dialog Box"). Although some dialog boxes in Windows have no caption bar, it's best to use a

caption bar so that the user has the option to move the dialog box to another location of the screen.
Finally, you set the fifth property because you don't want the dialog box showing up in the Windows
taskbar. The taskbar should be reserved for applications.

The constructor continues by creating two push buttons with the Text properties "OK" and "Cancel."
Each button is associated with its own handler for the button's Click events.

The dialog box isn't visible yet! After the constructor in SimpleDialogBox finishes up, the code in the
MenuOnClick method of SimpleDialog calls the ShowDialog method of the dialog box:
dlg.ShowDialog();

ShowDialog causes the dialog box to become visible. The ShowDialog method doesn't return until
the dialog box is terminated.

ShowDialog is the method you must use to invoke a modal dialog box. During the time a modal
dialog box is displayed, you can't switch back to the program's main form. That's what it means to be
modal. (As I said earlier, you can, however, switch to other applications running under Windows.)
While the modal dialog box is displayed, the application form can't receive any keyboard or mouse
input. However, the form can continue to receive Tick events from a Timer object and calls to
OnPaint.

The two buttons in the dialog box have Click event handlers named ButtonOkOnClick and
ButtonCancelOnClick. Both methods have just a single line that sets a property of the dialog box
form, named DialogResult:
Form Properties (selection)

Type Property Accessibility

DialogResult DialogResult get/set

The DialogResult property must be set to one of the following enumeration values:
DialogResult Enumeration

Member Value

None 0

OK 1

Cancel 2

Abort 3

Retry 4

Ignore 5

Yes 6

No 7

You'll notice that these members correspond to text strings commonly displayed on buttons within a
dialog box. If this table looks familiar, it's because you first encountered it in Chapter 2. The Show
method of the MessageBox class returns a member of the DialogResult enumeration.

In the program at hand, the button labeled "OK" sets DialogResult to DialogResult.OK, and the
button labeled "Cancel" sets the property to DialogResult.Cancel.

What happens in either case is quite dramatic: the dialog box is closed. It disappears from the
screen. The ShowDialog method that originally invoked the dialog box now returns control to the
MenuOnClick method.

Although the dialog box has been terminated and is no longer visible, the dialog box object named
dlg in the application form is still valid. That means that the MenuOnClick method can access the
dialog box's DialogResult property to determine how the dialog box was terminated. In this particular

case, the MenuOnClick method simply sets the strDisplay field variable and invalidates the form. The
OnPaint method displays this string.

Now let's look at a couple shortcuts. First, the ShowDialog method is defined like so:

Form Methods (selection)

DialogResult ShowDialog()

The return value is the same as the DialogResult property of the dialog box when the dialog box was
terminated. So, a program that invokes a dialog box can save the DialogResult when ShowDialog
returns:
DialogResult dr = dlg.ShowDialog();

Or the ShowDialog call can go right into an if statement:
if (dlg.ShowDialog() == DialogResult.OK)
{

}
else
{

}

or a switch statement:
switch(dlg.ShowDialog())
{
case DialogResult.OK:

case DialogResult.Cancel:

default:

}

Generally, a program gets information from a dialog box if DialogResult is OK and just continues on
its merry way if DialogResult is Cancel.
Modal Dialog Box Termination
You're probably fairly happy with the code I showed in the SimpleDialogBox program. How much
easier could it be to terminate a dialog box than just setting a DialogResult property in a button's
Click event handler?

Well, keep reading.

As you probably know from experience, modal dialog boxes are almost always terminated when the
user presses a push button. For that reason, the Button class—or more precisely, the IButtonControl
interface that Button and LinkLabel implement—also includes a property named DialogResult:
IButtonControl Property

Type Property Accessibility

DialogResult DialogResult get/set

We've already seen that Form has a property named DialogResult, and now you see that Button has
a property named DialogResult as well. Usually when you see the same property implemented in
both the Form and Button classes, you'd naturally assume that both classes inherit the property from
Control. But that's not the case with DialogResult, although the two implementations of the property
are related.

When you set the DialogResult property of a button, you are essentially instructing the button to set
the same DialogResult of its parent (the dialog box itself) when the button is clicked. The result is
that you don't have to install event handlers for the dialog box buttons, as the SimplerDialog program
demonstrates.
SimplerDialog.cs
//--
// SimplerDialog.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class SimplerDialog: Form
{
 string strDisplay = "";

 public static void Main()
 {
 Application.Run(new SimplerDialog());
 }
 public SimplerDialog()
 {
 Text = "Simpler Dialog";

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Dialog!", new EventHandler(MenuOnClick));
 }
 void MenuOnClick(object obj, EventArgs ea)
 {
 SimplerDialogBox dlg = new SimplerDialogBox();
 DialogResult dr = dlg.ShowDialog();

 strDisplay = "Dialog box terminated with " + dr + "!";
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 grfx.DrawString(strDisplay, Font, new SolidBrush(ForeColor), 0,
0);
 }
}

class SimplerDialogBox: Form
{
 public SimplerDialogBox()
 {
 Text = "Simpler Dialog Box";

 // Standard stuff for dialog boxes

 FormBorderStyle = FormBorderStyle.FixedDialog;
 ControlBox = false;
 MaximizeBox = false;
 MinimizeBox = false;
 ShowInTaskbar = false;

 // Create OK button.

 Button btn = new Button();
 btn.Parent = this;
 btn.Text = "OK";
 btn.Location = new Point(50, 50);
 btn.Size = new Size (10 * Font.Height, 2 * Font.Height);
 btn.DialogResult = DialogResult.OK;

 // Create Cancel button.

 btn = new Button();
 btn.Parent = this;
 btn.Text = "Cancel";
 btn.Location = new Point(50, 100);
 btn.Size = new Size (10 * Font.Height, 2 * Font.Height);
 btn.DialogResult = DialogResult.Cancel;
 }
}

This version of the program behaves the same way as SimpleButton when you press the OK or
Cancel button. The dialog box doesn't need to explicitly set the form's DialogResult property unless
you want to terminate the dialog box by means other than a button.

If you still need to do a little processing when the user presses the OK or Cancel button, you can
always install Click event handlers as well. But for purposes of terminating the dialog box, you
certainly don't have to.
Accept and Cancel
The dialog boxes created so far are missing a small piece of the normal keyboard interface for dialog
boxes. What's there works fine: using the keyboard Tab or arrow keys, you can move input focus
between the OK and Cancel buttons. As you move the input focus, the button with the input focus
also becomes the default button. You can trigger the button with the input focus by using the
spacebar; you can also trigger the default button by using the Enter key.

What you can't do is terminate the dialog box with the Esc key. The Esc key is supposed to be the
equivalent of pressing the Cancel button.

Moreover, if you put another type of control in the dialog box (a CheckBox perhaps), you'll find that
whenever the CheckBox has the input focus, there is no default push button. Pressing Enter does
nothing in that case. If any non-Button control has the input focus, the OK button (or the equivalent of
the OK button, labeled Open or Save or something else) is supposed to be the default push button,
which means that it should respond to the Enter key.

You can take care of this aspect of the user interface by using the following two properties of Form:
Form Properties (selection)

Type Property Accessibility

IButtonControl AcceptButton get/set

IButtonControl CancelButton get/set

You can set these two properties to an object of any class that implements IButtonControl, which is
probably a Button or LinkLabel object.

The AcceptButton property indicates which Button control should be triggered whenever a non-
Button control has the input focus and the Enter key is pressed. Regardless of how you set
AcceptButton, any control that implements the IButtonControl interface will become the default
button and respond to Enter if it has the input focus.

The CancelButton property indicates the Button control that should be triggered whenever the Esc
key is pressed.

You may be curious about IButtonControl. You've already seen a third of what it means to implement
the IButtonControl interface, which is to implement a property named DialogResult. The other two-
thirds of IButtonControl are these two methods:

IButtonControl Methods

void NotifyDefault(bool bDefault)
void PerformClick()

When a control implementing IButtonControl gets a call to NotifyDefault with an argument of true, it is
responsible for visually indicating that it is the default control (and hence will respond to the Enter
key). A button indicates that it's the default control with a bold outline. The PerformClick method
simulates a button click. That's the method of the default Button control that the form calls when the
Enter key is pressed.

Generally, the DialogResult property of the Button control and the AcceptButton and CancelButton
properties of the dialog box form go together. For example, when a form creates a button labeled OK
or Load or Save, it sets the DialogResult property like so:
btn.DialogResult = DialogResult.OK;

It also sets the AcceptButton property of the dialog box form to the Button object:
AcceptButton = btn;

Similarly, when a form creates a Cancel button, it sets the DialogResult like this:
btn.DialogResult = DialogResult.Cancel;

And it sets the CancelButton property of the form like so:
CancelButton = btn;

I'll show you a program that sets these properties shortly.

Screen Location
You've probably noticed that newly launched Windows applications often appear in different
locations of the screen. When a Windows session first begins, Windows positions the first application
in the upper left corner of the screen. Each successive application is then positioned somewhat to
the right of and below the previous one in a cascaded pattern using an offset equal to
SystemInformation.CaptionButtonSize plus SystemInformation.FrameBorderSize.

While this behavior is fine for applications, the same rules also apply to dialog boxes, with less than
optimal results. The result is that a dialog box could appear some distance from the application that
invokes it. The problem may not be so evident in the SimpleDialog and SimplerDialog programs
because you're probably running the programs, invoking the dialog box, closing the dialog box, and
then closing the program. In that chain of events, the dialog box often appears suitably offset from
the application form. But if you were to run a couple other programs before you invoke the dialog
box, the results would be different.

You can override the default behavior governing the location of forms by using the StartPosition
property:
Form Properties (selection)

Type Property Accessibility

FormStartPosition StartPosition get/set

FormStartPosition is an enumeration:
FormStartPosition Enumeration

Member Value

Manual 0

CenterScreen 1

WindowsDefaultLocation 2

WindowsDefaultBounds 3

CenterParent 4

The default for Windows Forms applications is WindowsDefaultLocation, which means that Windows
positions the form as I described but the application itself sizes the form. Actually, the constructor for
Form sets the size of the form, but the constructor in any class that inherits from Form can override
that size. That's why all Windows Forms applications have the same default size, and this size is
different from regular (non–Windows Forms) Windows programs that use a default size.

You can get the regular Windows default position and size by specifying WindowsDefaultBounds,
which means that Windows sets both the location and size of the form. When you use
WindowsDefaultBounds, any attempt to set the location or size of the form in your program's
constructor will be ignored; when you use WindowsDefaultLocation, your constructor can set a size
but not a location.

The CenterParent option allows a program to position a dialog box in the center of the program's
form without doing any calculations. This placement might not be optimum, however. So far in this
chapter, I haven't been resizing application client areas or dialog boxes, so CenterParent results in a
dialog box that exactly overlays (and completely hides) the application that invoked it. CenterScreen
positions a dialog box in the center of the screen and is useful for modeless dialog boxes that
sometimes appear on the screen while an application is loading. Both CenterParent and
CenterScreen allow a dialog box constructor to set its own size.

The Manual option lets a dialog box have complete freedom in setting its position and size.
Generally, a dialog box will want to use this option to position itself relative to the form that invoked it.
The best way for a dialog box to obtain the form that invoked it is the ActiveForm property.

Here's a program named BetterDialog with a dialog box that sets its location properly offset from the
application form. The program also demonstrates the use of the AcceptButton and CancelButton
properties I talked about earlier.
BetterDialog.cs
//---
// BetterDialog.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class BetterDialog: Form
{
 string strDisplay = "";

 public static void Main()
 {
 Application.Run(new BetterDialog());
 }
 public BetterDialog()
 {
 Text = "Better Dialog";

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Dialog!", new EventHandler(MenuOnClick));
 }
 void MenuOnClick(object obj, EventArgs ea)
 {
 BetterDialogBox dlg = new BetterDialogBox();
 DialogResult dr = dlg.ShowDialog();

 strDisplay = "Dialog box terminated with " + dr + "!";
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 grfx.DrawString(strDisplay, Font, new SolidBrush(ForeColor), 0,
0);
 }
}
class BetterDialogBox: Form
{
 public BetterDialogBox()
 {
 Text = "Better Dialog Box";

 // Standard stuff for dialog boxes

 FormBorderStyle = FormBorderStyle.FixedDialog;
 ControlBox = false;
 MaximizeBox = false;
 MinimizeBox = false;
 ShowInTaskbar = false;
 StartPosition = FormStartPosition.Manual;
 Location = ActiveForm.Location +
 SystemInformation.CaptionButtonSize +
 SystemInformation.FrameBorderSize;

 // Create OK button.

 Button btn = new Button();
 btn.Parent = this;
 btn.Text = "OK";
 btn.Location = new Point(50, 50);
 btn.Size = new Size (10 * Font.Height, 2 * Font.Height);
 btn.DialogResult = DialogResult.OK;

 AcceptButton = btn;

 // Create Cancel button.

 btn = new Button();
 btn.Parent = this;
 btn.Text = "Cancel";
 btn.Location = new Point(50, 100);
 btn.Size = new Size (10 * Font.Height, 2 * Font.Height);
 btn.DialogResult = DialogResult.Cancel;

 CancelButton = btn;
 }
}

Now as part of the standard housekeeping at the beginning of the dialog box constructor, the
StartPosition property is set to FormStartPosition.Manual. The dialog box also sets its Location
property equal to the Location property of the active form (the form that invoked the dialog box) plus
those two SystemInformation properties I mentioned earlier.

Also take note that as the dialog box creates each of the two buttons, it also sets the AcceptButton
and CancelButton properties of the dialog box form. The dialog box now has a full and proper
keyboard interface.
The About Box

One common dialog box found in nearly all nontrivial applications is called an about box. The about
box can be as simple as a copyright notice or as complex as a display of system resources and
perhaps a phone number and a Web site for tech support.

Here's a program that displays an about box containing an icon, two label controls, and one button.
AboutBox.cs
//---------------------------------------
// AboutBox.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class AboutBox: Form
{
 public static void Main()
 {
 Application.Run(new AboutBox());
 }
 public AboutBox()
 {
 Text = "About Box";
 Icon = new Icon(GetType(), "AboutBox.AforAbout.ico");

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Help");
 Menu.MenuItems[0].MenuItems.Add("&About AboutBox...",
 new
EventHandler(MenuAboutOnClick));
 }
 void MenuAboutOnClick(object obj, EventArgs ea)
 {
 AboutDialogBox dlg = new AboutDialogBox();
 dlg.ShowDialog();
 }
}
class AboutDialogBox: Form
{
 public AboutDialogBox()
 {
 Text = "About AboutBox";

 StartPosition = FormStartPosition.CenterParent;
 FormBorderStyle = FormBorderStyle.FixedDialog;
 ControlBox = false;
 MaximizeBox = false;
 MinimizeBox = false;

 ShowInTaskbar = false;

 Label label1 = new Label();
 label1.Parent = this;
 label1.Text = " AboutBox Version 1.0 ";
 label1.Font = new Font(FontFamily.GenericSerif, 24,
 FontStyle.Italic);
 label1.AutoSize = true;
 label1.TextAlign = ContentAlignment.MiddleCenter;

 Icon icon = new Icon(GetType(), "AboutBox.AforAbout.ico");

 PictureBox picbox = new PictureBox();
 picbox.Parent = this;
 picbox.Image = icon.ToBitmap();
 picbox.SizeMode = PictureBoxSizeMode.AutoSize;
 picbox.Location = new Point(label1.Font.Height / 2,
 label1.Font.Height / 2);

 label1.Location = new Point(picbox.Right,label1.Font.Height /
2);

 int iClientWidth = label1.Right;

 Label label2 = new Label();
 label2.Parent = this;
 label2.Text = "\x00A9 2001 by Charles Petzold";
 label2.Font = new Font(FontFamily.GenericSerif, 16);
 label2.Location = new Point(0, label1.Bottom +
 label2.Font.Height);
 label2.Size = new Size(iClientWidth, label2.Font.Height);
 label2.TextAlign = ContentAlignment.MiddleCenter;

 Button button = new Button();
 button.Parent = this;
 button.Text = "OK";
 button.Size = new Size(4 * button.Font.Height,
 2 * button.Font.Height);
 button.Location = new Point((iClientWidth - button.Size.Width) /
2,
 label2.Bottom + 2 *
button.Font.Height);

 button.DialogResult = DialogResult.OK;

 CancelButton = button;

 AcceptButton = button;

 ClientSize = new Size(iClientWidth,
 button.Bottom + 2 * button.Font.Height);
 }
}

AforAbout.ico

The constructors of both the AboutBox class and the AboutDialogBox class load the icon resource.
The AboutBox class sets the resource as the form icon by using the Icon property. The
AboutDialogBox class creates a PictureBox control for displaying the icon in the dialog box.

The constructor of the AboutDialogBox class is a bit involved because of the positioning of the
controls. For the first Label control (which contains the name of the program in a 24-point italic font),
the AutoSize property is set to true. For the PictureBox control, the SizeMode property is set to
PictureBoxSizeMode.AutoSize. The picture box is positioned based on the resultant size of the label,
and the label is positioned based on the resultant size of the picture box.

For a dialog box with one button, the DialogResult property of the button is usually assigned
DialogResult.OK. You should also assign both the AcceptButton and CancelButton properties of the
form to that button.

Aside from the button, you don't need to use controls in a dialog box like this. Instead of using Label
and PictureBox controls, you can call DrawString and DrawIcon from the OnPaint method in the
AboutDialogBox class.

Actually, for a dialog box as simple as this one, you don't even need to derive a class from Form to
use for the dialog box. You'll recall in Chapter 2 how forms could be created by making an instance
of Form rather than a class derived from Form. You can do the same thing with dialog boxes. In fact,
the problem of sharing data between an application form and a dialog box becomes much simpler
when the dialog box isn't in a separate form.

Much simpler, yes, but also not quite as structured. Wouldn't it be nice to write dialog boxes that
could be reused in other applications? It might not always be possible, but it should always be a
goal.
Defining Properties in Dialog Boxes

The RadioButtons program in Chapter 12 shows how you can define a group of radio buttons and a
check box to indicate the color of an ellipse and whether the ellipse is outlined or filled. Let's
implement the same controls (plus a couple buttons) in a dialog box instead. The dialog box must
have some provision that lets a program initialize the controls and also some way for an application
to obtain the user's selections. You generally provide this interface through public properties of the
dialog box form or, in some cases—particularly if you're in a hurry—through public fields.

This dialog box implements two public properties, named Color and Fill, that give another class
access to the two items that the user sets using the dialog box.
ColorFillDialogBox.cs
//---
// ColorFillDialogBox.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class ColorFillDialogBox: Form
{
 protected GroupBox grpbox;
 protected CheckBox chkbox;

 public ColorFillDialogBox()
 {
 Text = "Color/Fill Select";

 FormBorderStyle = FormBorderStyle.FixedDialog;
 ControlBox = false;
 MinimizeBox = false;
 MaximizeBox = false;
 ShowInTaskbar = false;
 Location = ActiveForm.Location +
 SystemInformation.CaptionButtonSize +
 SystemInformation.FrameBorderSize;

 string[] astrColor = { "Black", "Blue", "Green", "Cyan",
 "Red", "Magenta", "Yellow", "White"};

 grpbox = new GroupBox();
 grpbox.Parent = this;
 grpbox.Text = "Color";
 grpbox.Location = new Point(8, 8);
 grpbox.Size = new Size(96, 12 * (astrColor.Length + 1));

 for (int i = 0; i < astrColor.Length; i++)
 {
 RadioButton radiobtn = new RadioButton();
 radiobtn.Parent = grpbox;

 radiobtn.Text = astrColor[i];
 radiobtn.Location = new Point(8, 12 * (i + 1));
 radiobtn.Size = new Size(80, 10);
 }
 chkbox = new CheckBox();
 chkbox.Parent = this;
 chkbox.Text = "Fill Ellipse";
 chkbox.Location = new Point(8, grpbox.Bottom + 4);
 chkbox.Size = new Size(80, 10);

 Button btn = new Button();
 btn.Parent = this;
 btn.Text = "OK";
 btn.Location = new Point(8, chkbox.Bottom + 4);
 btn.Size = new Size(40, 16);
 btn.DialogResult = DialogResult.OK;
 AcceptButton = btn;

 btn = new Button();
 btn.Parent = this;
 btn.Text = "Cancel";
 btn.Location = new Point(64, chkbox.Bottom + 4);
 btn.Size = new Size(40, 16);
 btn.DialogResult = DialogResult.Cancel;
 CancelButton = btn;

 ClientSize = new Size(112, btn.Bottom + 8);
 AutoScaleBaseSize = new Size(4, 8);
 }
 public Color Color
 {
 get
 {
 for (int i = 0; i < grpbox.Controls.Count; i++)
 {
 RadioButton radiobtn = (RadioButton)
grpbox.Controls[i];

 if (radiobtn.Checked)
 return Color.FromName(radiobtn.Text);
 }
 return Color.Black;

 }
 set
 {

 for (int i = 0; i < grpbox.Controls.Count; i++)
 {
 RadioButton radiobtn = (RadioButton)
grpbox.Controls[i];

 if (value == Color.FromName(radiobtn.Text))
 {
 radiobtn.Checked = true;
 break;
 }
 }
 }
 }
 public bool Fill
 {
 get { return chkbox.Checked; }
 set { chkbox.Checked = value; }
 }
}

The constructor uses a classical dialog box coordinate system to create, position, and size all the
controls. The code is flexible enough to let you put additional colors in the astrColor array.

The class stores the GroupBox and CheckBox objects as protected fields, but it doesn't keep track of
the current state of the radio buttons or check boxes. The class relies on the auto-check facility of
these two controls to keep the check state consistent with the user's selections. But it's still
necessary for the class to provide an interface to the state of the controls.

That interface is provided in the public Color and Fill properties defined toward the bottom of the
program. The Fill property is quite simple. The get accessor returns the Checked property of the
check box; the set accessor sets that property. The Color property, however, requires a search
through all the radio buttons, which is equivalent to a search through all the children of the group box
control, which is also equivalent to looping through the Controls property of the group box. The get
accessor returns a Color object represented by the currently checked radio button; the set accessor
checks the radio button corresponding to a particular Color object.

Here's what the dialog box looks like (although we haven't yet encountered a program that invokes
it):

Now this is not a dialog box that a whole lot of different applications require, but it's written to allow
reuse. That's the goal.

The DrawOrFillEllipse program implements a menu item to invoke this dialog box and then uses the
results to update its client area with a colored (and possibly filled) ellipse.
DrawOrFillEllipse.cs
//--
// DrawOrFillEllipse.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class DrawOrFillEllipse: Form
{
 Color colorEllipse = Color.Red;
 bool bFillEllipse = false;

 public static void Main()
 {
 Application.Run(new DrawOrFillEllipse());
 }
 public DrawOrFillEllipse()
 {
 Text = "Draw or Fill Ellipse";
 ResizeRedraw = true;

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Options");

 Menu.MenuItems[0].MenuItems.Add("&Color...",
 new EventHandler(MenuColorOnClick));
 }
 void MenuColorOnClick(object obj, EventArgs ea)
 {
 ColorFillDialogBox dlg = new ColorFillDialogBox();

 dlg.Color = colorEllipse;
 dlg.Fill = bFillEllipse;

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 colorEllipse = dlg.Color;
 bFillEllipse = dlg.Fill;
 Invalidate();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Rectangle rect = new Rectangle(0, 0, ClientSize.Width - 1,
 ClientSize.Height - 1);
 if(bFillEllipse)
 grfx.FillEllipse(new SolidBrush(colorEllipse), rect);
 else
 grfx.DrawEllipse(new Pen(colorEllipse), rect);
 }
}

I want to draw your attention to the MenuColorOnClick method, which is the event handler
associated with the menu item to invoke the dialog box. The method creates an object of type
ColorFillDialogBox. Keep in mind that you can set just about any property of the dialog box form at
this time. You may want to change the Text property, for example. A dialog box designed for reuse
could specifically implement other properties that let an application program alter its appearance and
functionality.

The MenuColorOnClick method continues with dialog box initialization by setting the two custom
properties implemented in ColorFillDialogBox from fields in the DrawOrFillEllipse class:
dlg.Color = colorEllipse;
dlg.Fill = bFillEllipse;

The next statement calls the ShowDialog method of the dialog box form, which won't return until the
dialog box is closed. At that time, the program compares the return value of ShowDialog with
DialogResult.OK. If the dialog box was terminated with the OK button, the program stores the new
values of the properties and invalidates the client area:
if (dlg.ShowDialog() == DialogResult.OK)
{
 colorEllipse = dlg.Color;
 bFillEllipse = dlg.Fill;
 Invalidate();

}

The MenuColorOnClick method represents very standard code for creating, initializing, invoking, and
obtaining information from dialog boxes.
Implementing an Apply Button
In recent years, some dialog boxes have sprouted buttons labeled Apply. The Apply button doesn't
make the dialog box go away, but it causes the application to use the new settings specified in the
dialog box.

The Apply button upsets the normal orderly relationship between an application and a modal dialog
box. It requires that the application be informed when the Apply button has been pressed before the
ShowDialog method returns control to the application.

It is very tempting to implement an Apply button by defining a public method in your application form
that the dialog box form calls when the Apply button is pressed. In fact, you may wonder why this
isn't the right way to go. It isn't a good idea because the class implementing the dialog box would
then require an application using that class to implement a particular method with a particular name.
Do you know of any .NET class that forces an application to define a particular method to use the
class?

No you don't. But you're very familiar with the facility by which the .NET classes communicate to
applications, and that is by events.

Let's rewrite the ColorFillDialogBox class so that it includes, first, an Apply button; second, a property
to enable and disable that button; and third, an event. This job is going to be easier than you
probably fear!

Here's a ColorFillDialogBoxWithApply class that inherits from ColorFillDialogBox. Besides
implementing an Apply button, this class must also move the controls around a bit and set a new
client size to accommodate the new button.
ColorFillDialogBoxWithApply.cs
//--
// ColorFillDialogBoxWithApply.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ColorFillDialogBoxWithApply: ColorFillDialogBox
{
 Button btnApply;

 public event EventHandler Apply;

 public ColorFillDialogBoxWithApply()
 {
 grpbox.Location = new Point(36, 8);
 chkbox.Location = new Point(36, grpbox.Bottom + 4);

 btnApply = new Button();
 btnApply.Parent = this;
 btnApply.Enabled = false;
 btnApply.Text = "Apply";

 btnApply.Location = new Point(120, chkbox.Bottom + 4);
 btnApply.Size = new Size(40, 16);
 btnApply.Click += new EventHandler(ButtonApplyOnClick);

 ClientSize = new Size(168, btnApply.Bottom + 8);
 AutoScaleBaseSize = new Size(4, 8);
 }
 public bool ShowApply
 {
 get { return btnApply.Enabled; }
 set { btnApply.Enabled = value; }
 }
 void ButtonApplyOnClick(object obj, EventArgs ea)
 {
 if (Apply != null)
 Apply(this, new EventArgs());
 }
}

Toward the top of this class, you'll see the statement
public event EventHandler Apply;

This statement defines a public event named Apply that is based on the EventHandler delegate.

The class also has a new private field named btnApply. Obviously, this is the Button object labeled
Apply, which is created in the new constructor. Notice that the constructor sets the Enabled property
for this button to false. A program using this dialog box may not want to deal with an Apply button.
But then how is the button enabled? By a public property, of course! This class implements a new
property named ShowApply that lets a program using the dialog box enable or disable the Apply
button at will.

The Apply button isn't associated with any DialogResult because the Apply button doesn't terminate
the dialog box. Instead, I install an event handler named ButtonApplyOnClick for the button's Click
event. This method contains the magic code required to implement an event in a class. Here's what's
executed whenever the user triggers the Apply button:
if (Apply != null)
 Apply(this, new EventArgs());

The if statement checks whether at least one handler has been installed for the Apply event. If so, all
the installed event handlers are called with the EventHandler arguments: the first argument indicates
the origin of the event (the dialog box form), and the second argument is an object of type
EventArgs.

To be even more consistent with the .NET classes, the ButtonApplyOnClick method would call a
protected virtual method named OnApply with a single EventArgs argument. OnApply would then
contain the code to call the Apply event handlers.

And here's the program that uses the new version of the dialog box.
DrawOrFillEllipseWithApply.cs
//---
// DrawOrFillEllipseWithApply.cs © 2001 by Charles Petzold
//---
using System;

using System.Drawing;
using System.Windows.Forms;

class DrawOrFillEllipseWithApply: Form
{
 Color colorEllipse = Color.Red;
 bool bFillEllipse = false;

 public static void Main()
 {
 Application.Run(new DrawOrFillEllipseWithApply());
 }
 public DrawOrFillEllipseWithApply()
 {
 Text = "Draw or Fill Ellipse with Apply";
 ResizeRedraw = true;

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Options");
 Menu.MenuItems[0].MenuItems.Add("&Color...",
 new EventHandler(MenuColorOnClick));
 }
 void MenuColorOnClick(object obj, EventArgs ea)
 {
 ColorFillDialogBoxWithApply dlg =
 new ColorFillDialogBoxWithApply();

 dlg.ShowApply = true;
 dlg.Apply += new EventHandler(ColorFillDialogOnApply);

 dlg.Color = colorEllipse;
 dlg.Fill = bFillEllipse;

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 colorEllipse = dlg.Color;
 bFillEllipse = dlg.Fill;
 Invalidate();
 }
 }
 void ColorFillDialogOnApply(object obj, EventArgs ea)
 {
 ColorFillDialogBoxWithApply dlg =
 (ColorFillDialogBoxWithApply) obj;

 colorEllipse = dlg.Color;
 bFillEllipse = dlg.Fill;
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Rectangle rect = new Rectangle(0, 0, ClientSize.Width - 1,
 ClientSize.Height - 1);
 if(bFillEllipse)
 grfx.FillEllipse(new SolidBrush(colorEllipse), rect);
 else
 grfx.DrawEllipse(new Pen(colorEllipse), rect);
 }
}

During the MenuColorOnClick method, the program enables the Apply button and installs an event
handler for the button:
dlg.ShowApply = true;
dlg.Apply += new EventHandler(ColorFillDialogOnApply);

The ColorFillDialogOnApply event handler casts the object argument to an object of type
ColorFillDialogBoxWithApply in order to get access to the Color and Fill properties. The program
then sets its fields from the properties and invalidates the client area. As I mentioned earlier, even if
a modal dialog box is active, an application form can still get Paint events. So, the client area is able
to update itself based on the new dialog box settings.
The Modeless Dialog Box
At the beginning of this chapter, I mentioned that dialog boxes can be either modal or modeless. So
far we've been looking at modal dialog boxes, certainly the more common of the two types.
Modeless dialog boxes allow the user to switch between the dialog box and the form that created it.

Modeless dialog boxes are preferred when the user would find it convenient to keep the dialog box
displayed for a while. Perhaps the most common modeless dialog boxes are the Find and Replace
dialog boxes displayed by word processing programs. As a user, you probably want to keep such a
dialog box active for a while so that you can do multiple find or replace actions. Yet while the dialog
box is active, you also want to be able to edit the document on which you're running the find or
replace.

The modeless dialog box implemented in this next class is based on the ColorScroll program in
Chapter 12. The form contains three scroll bars and six labels that resize themselves based on the
form's size. The dialog box is intended to remain active during the entire duration of the program that
displays it; thus, it has no buttons or a close box on its caption bar. A property named Color provides
public access to the scroll bar values.
ColorScrollDialogBox.cs
//---
// ColorScrollDialogBox.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class ColorScrollDialogBox: Form

{
 Label[] alabelName = new Label[3];
 Label[] alabelValue = new Label[3];
 VScrollBar[] avscroll = new VScrollBar[3];

 public event EventHandler Changed;

 public ColorScrollDialogBox()
 {
 Text = "Color Scroll Dialog Box";

 ControlBox = false;
 MinimizeBox = false;
 MaximizeBox = false;
 ShowInTaskbar = false;

 Color[] acolor = { Color.Red, Color.Green, Color.Blue };

 for (int i = 0; i < 3; i++)
 {
 alabelName[i] = new Label();
 alabelName[i].Parent = this;
 alabelName[i].ForeColor = acolor[i];
 alabelName[i].Text = "&" + acolor[i].ToKnownColor();
 alabelName[i].TextAlign = ContentAlignment.MiddleCenter;

 avscroll[i] = new VScrollBar();
 avscroll[i].Parent = this;
 avscroll[i].SmallChange = 1;
 avscroll[i].LargeChange = 16;
 avscroll[i].Minimum = 0;
 avscroll[i].Maximum = 255 + avscroll[i].LargeChange - 1;
 avscroll[i].ValueChanged +=
 new EventHandler(ScrollOnValueChanged);
 avscroll[i].TabStop = true;

 alabelValue[i] = new Label();
 alabelValue[i].Parent = this;
 alabelValue[i].TextAlign = ContentAlignment.MiddleCenter;
 }

 OnResize(EventArgs.Empty);
 }
 public Color Color
 {

 get
 {
 return Color.FromArgb(avscroll[0].Value,
 avscroll[1].Value,
 avscroll[2].Value);
 }
 set
 {
 avscroll[0].Value = value.R;
 avscroll[1].Value = value.G;
 avscroll[2].Value = value.B;
 }
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 int cx = ClientSize.Width;
 int cy = ClientSize.Height;
 int cyFont = Font.Height;

 for (int i = 0; i < 3; i++)
 {
 alabelName[i].Location = new Point(i * cx / 3, cyFont / 2);
 alabelName[i].Size = new Size(cx / 3, cyFont);

 avscroll[i].Location = new Point((4 * i + 1) * cx / 12,
 2 * cyFont);
 avscroll[i].Size = new Size(cx / 6, cy - 4 * cyFont);

 alabelValue[i].Location = new Point(i * cx / 3,
 cy - 3 * cyFont / 2);
 alabelValue[i].Size = new Size(cx / 3, cyFont);
 }
 }
 void ScrollOnValueChanged(Object obj, EventArgs ea)
 {
 for (int i = 0; i < 3; i++)
 if((VScrollBar) obj == avscroll[i])
 alabelValue[i].Text = avscroll[i].Value.ToString();

 if (Changed != null)
 Changed(this, new EventArgs());
 }
}

As we've seen, modal dialog boxes don't usually need to implement their own public events unless
they include an Apply button. However, modeless dialog boxes almost always need to actively
communicate with the application that invokes them, and the best way to do this is through events.

The ColorScrollDialogBox class implements an event named Changed that is triggered whenever
one of the scroll bars has a ValueChanged event. If I wanted to imitate the .NET Framework more,
I'd also include a protected virtual OnChanged method in the class. The OnChanged method would
be called by ScrollOnValueChanged, and OnChanged would then call the Changed event.

You don't use ShowDialog with a modeless dialog box. ShowDialog doesn't return until the dialog
box is closed, and that's not what you want. Instead, you use Show, a method of Form we
encountered in Chapter 2 and haven't seen since.

Another crucial part of implementing modeless dialog boxes involves this property:
Form Properties (selection)

Type Property Accessibility

Form Owner get/set

You set the Owner property of the modeless dialog box to the application form. Doing so causes the
form to own the dialog box. Being owned by an application form means that the modeless dialog box
will always appear in front of the application form. Also, whenever the application form is minimized,
the modeless dialog box disappears from the screen.

The following program creates an object of type ColorScrollDialogBox, sets the Owner property to
itself (the application form), initializes the Color property of the dialog box with the application form's
BackColor property, sets an event handler for the dialog box's Changed event, and then calls the
dialog box's Show method. The dialog box stays active (and lets you change the application form's
background color) until the application is terminated.
ModelessColorScroll.cs
//--
// ModelessColorScroll.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ModelessColorScroll: Form
{
 public static void Main()
 {
 Application.Run(new ModelessColorScroll());
 }
 public ModelessColorScroll()
 {
 Text = "Modeless Color Scroll";

 ColorScrollDialogBox dlg = new ColorScrollDialogBox();

 dlg.Owner = this;
 dlg.Color = BackColor;
 dlg.Changed += new EventHandler(ColorScrollOnChanged);
 dlg.Show();

 }
 void ColorScrollOnChanged(object obj, EventArgs ea)
 {
 ColorScrollDialogBox dlg = (ColorScrollDialogBox) obj;

 BackColor = dlg.Color;
 }
}

The Transform program in Chapter 18 demonstrates another modeless dialog box (which itself
invokes a modal dialog box) that lets you interactively set the six elements of a matrix transform.
The Common Dialog Boxes
One of the primary goals of Windows has always been to promote a standardized user interface. In
the early days of Windows, some user interface conventions were established fairly quickly. Almost
every software manufacturer adopted the Alt+File+Open selection to open a file, for example.
However, the actual file-open dialog boxes were often quite dissimilar.

It wasn't until Windows 3.1 that the common dialog box library became part of the Windows API.
Much of this library is exposed in the .NET Framework and consists of dialog boxes to open and
close files, select colors and fonts, and aid in printing. The class hierarchy is as follows:

Both CommonDialog and FileDialog are abstract classes and can't be instantiated. That leaves six
classes that you can use in applications. I'll cover ColorDialog, FontDialog, OpenFileDialog, and
SaveFileDialog in this chapter, and PageSetupDialog and PrintDialog when I go deeper into printing
in Chapter 21.
Choosing Fonts and Colors
Let's take a look at both FontDialog and ColorDialog in a single program that lets you set the
BackColor, ForeColor, and Font properties of a form.
FontAndColorDialogs.cs
//--
// FontAndColorDialogs.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;

using System.Windows.Forms;

class FontAndColorDialogs:Form
{
 public static void Main()
 {
 Application.Run(new FontAndColorDialogs());
 }
 public FontAndColorDialogs()
 {
 Text = "Font and Color Dialogs";
 ResizeRedraw = true;

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Format");
 Menu.MenuItems[0].MenuItems.Add("&Font...",
 new
EventHandler(MenuFontOnClick));
 Menu.MenuItems[0].MenuItems.Add("&Background Color...",
 new
EventHandler(MenuColorOnClick));
 }
 void MenuFontOnClick(object obj, EventArgs ea)
 {
 FontDialog fontdlg = new FontDialog();

 fontdlg.Font = Font;
 fontdlg.Color = ForeColor;
 fontdlg.ShowColor = true;

 if(fontdlg.ShowDialog() == DialogResult.OK)
 {
 Font = fontdlg.Font;
 ForeColor = fontdlg.Color;
 Invalidate();
 }
 }
 void MenuColorOnClick(object obj, EventArgs ea)
 {
 ColorDialog clrdlg = new ColorDialog();

 clrdlg.Color = BackColor;

 if (clrdlg.ShowDialog() == DialogResult.OK)
 BackColor = clrdlg.Color;
 }

 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 StringFormat strfmt = new StringFormat();

 strfmt.Alignment = strfmt.LineAlignment =
StringAlignment.Center;

 grfx.DrawString("Hello common dialog boxes!", Font,
 new SolidBrush(ForeColor),
 this.ClientRectangle, strfmt);
 }
}

The program creates a Format menu containing two items: Font and Background Color. Although
this program uses prewritten common dialog boxes rather than dialog boxes that we've written
ourselves, the structure of the two menu Click event handlers should look very familiar. Look at
MenuColorOnClick, for example. The dialog box is first created:
ColorDialog clrdlg = new ColorDialog();

It's then initialized by setting a property:
clrdlg.Color = BackColor;

And then the ShowDialog method is called:
if (clrdlg.ShowDialog() == DialogResult.OK)
 BackColor = clrdlg.Color;

If ShowDialog returns DialogResult.OK, the program uses information from the dialog box.

Although this program uses the form's Font, ForeColor, and BackColor properties to initialize the two
dialog boxes and then sets these properties based on what the user sets in the dialog boxes, you
could instead define fields in your form that are associated with the dialog box settings.

The FontDialog class lets the user choose both a font and a font color identified by the following two
properties:
FontDialog Properties (selection)

Type Property Accessibility

Font Font get/set

Color Color get/set

The FontAndColorDialogs program simply initializes these two properties from the Font and
ForeColor properties of the form and then sets these two form properties if the dialog box is
terminated with the OK button.

The FontAndColorDialogs program sets the ShowColor property to enable the color option on the
dialog box, which by default is disabled. The following properties let you control the appearance of
the color option and other parts of the font dialog box:
FontDialog Properties (selection)

Type Property Accessibility Default

bool ShowEffects get/set true

bool ShowColor get/set false

bool ShowApply get/set false

FontDialog Properties (selection)

Type Property Accessibility Default

bool ShowHelp get/set false

If you set the ShowEffects property to false, the dialog box won't let you select underline or strikeout.
Here's what the dialog box looks like when both ShowEffects and ShowColor are set to true:

The ShowApply and ShowHelp options control the appearance of buttons labeled Apply and Help. If
you enable these buttons, you'll want to handle the following events.
FontDialog Events (selection)

Event Method Delegate Argument

Apply OnApply EventHandler EventArgs

HelpRequest OnHelpRequest EventHandler EventArgs

We've already had experience in using an Apply button, but I'll also demonstrate using the Apply
button in FontDialog in the next version of the program.

The FontDialog class has several other properties that control the appearance of fonts in the dialog
box, but the defaults are usually sufficient. However, later on in this chapter (in the HeadDump
program), I'll use the following property:
FontDialog Properties (selection)

Type Property Accessibility Default

bool FixedPitchOnly get/set false

Set this property to true if you want to limit the display of fonts to those that have a uniform character
width.

The ColorDialog dialog box lets you choose a color, which is represented by a property named Color
of type Color:
ColorDialog Properties (selection)

Type Property Accessibility

ColorDialog Properties (selection)

Type Property Accessibility

Color Color get/set

Several other bool properties control various aspects of the dialog box:
ColorDialog Properties (selection)

Type Property Accessibility Default

bool FullOpen get/set false

bool AllowFullOpen get/set true

bool SolidColorOnly get/set false

bool AnyColor get/set false

bool ShowHelp get/set false

The ColorDialog class doesn't support an Apply button. Here's the default color dialog box:

Normally, you just click one of the displayed colors and press OK. If none of those colors is
satisfactory, you can click the button labeled Define Custom Colors. The dialog box expands like so:

What you can do now is define custom colors over at the right and then add them to the collection
labeled Custom Colors at the left. You can't make the dialog box return to its original appearance
unless you end it by pressing OK or Cancel. If you set the FullOpen property to true before calling
ShowDialog, the dialog box opens in the wide version. If you set the AllowFullOpen property to false
(regardless of the setting of FullOpen), the small version of the dialog box comes up and the Define
Custom Colors button is disabled.

An application using the ColorDialog class has access to the custom colors through this property:
ColorDialog Properties (selection)

Type Property Accessibility

int[] CustomColors get/set

The custom colors are stored as an array of sixteen 32-bit integers, where red is the least significant
byte, green the next byte, blue the next, and the most significant byte is 0. (Do not use these integers
in the static Color.FromArgb method that returns a Color object based on an integer. That method
interprets blue as the least significant byte, and then green, red, and an alpha value where 0 is
transparent.)

Suppose a user invokes the color dialog box from the FontAndColorDialogs program, clicks the
Define Custom Colors button, and then carefully defines 16 custom colors. The user then selects
one of them and presses OK. Then the user invokes the dialog box again and…. The custom colors
are gone!

What happened? It's very simple. Look at the MenuColorOnClick method. The program re-creates
the dialog box every time it's invoked. At the end of the MenuColorOnClick method, there are no
more references to the ColorDialog object named clrdlg, so it becomes eligible for garbage
collection.

If you leave the AllowFullOpen property set to true, it is very impolite not to save the custom colors
between various invocations of the dialog box. You can do this in a couple ways. You can define an
array of integers as a field:
int[] aiCustomColors;

Before invoking the dialog box with ShowDialog, you set the property from the field, like so:
clrdlg.CustomColors = aiCustomColors;

After ShowDialog returns, regardless of how the user ended the dialog box, the custom colors are
saved back in the field:
aiCustomColors = clrdlg.CustomColors;

There's an even easier approach. Simply remove the statement
ColorDialog clrdlg = new ColorDialog();

from the MenuColorOnClick method and make it a field. Now the program uses only one instance of
ColorDialog during the entire time the application is running.

Here's a better version of the FontAndColorDialogs program that also implements the Apply button in
the font dialog box.
BetterFontAndColorDialogs.cs
//--
// BetterFontAndColorDialogs.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BetterFontAndColorDialogs:Form
{
 protected ColorDialog clrdlg = new ColorDialog();

 public static void Main()
 {
 Application.Run(new BetterFontAndColorDialogs());
 }
 public BetterFontAndColorDialogs()
 {
 Text = "Better Font and Color Dialogs";

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Format");
 Menu.MenuItems[0].MenuItems.Add("&Font...",
 new
EventHandler(MenuFontOnClick));
 Menu.MenuItems[0].MenuItems.Add("&Background Color...",
 new
EventHandler(MenuColorOnClick));
 }
 void MenuFontOnClick(object obj, EventArgs ea)
 {
 FontDialog fontdlg = new FontDialog();

 fontdlg.Font = Font;
 fontdlg.Color = ForeColor;
 fontdlg.ShowColor = true;
 fontdlg.ShowApply = true;
 fontdlg.Apply += new EventHandler(FontDialogOnApply);

 if(fontdlg.ShowDialog() == DialogResult.OK)
 {
 Font = fontdlg.Font;

 ForeColor = fontdlg.Color;
 Invalidate();
 }
 }
 void MenuColorOnClick(object obj, EventArgs ea)
 {
 clrdlg.Color = BackColor;

 if (clrdlg.ShowDialog() == DialogResult.OK)
 BackColor = clrdlg.Color;
 }
 void FontDialogOnApply(object obj, EventArgs ea)
 {
 FontDialog fontdlg = (FontDialog) obj;

 Font = fontdlg.Font;
 ForeColor = fontdlg.Color;
 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 grfx.DrawString("Hello common dialog boxes!", Font,
 new SolidBrush(ForeColor), 0, 0);
 }
}

Now the custom colors are preserved when the dialog box is terminated and reshown.

Unfortunately, saving the dialog box settings from one invocation to another raises an additional
question: How do you preserve settings when you terminate and rerun the program?

For that job, you probably want to take advantage of the Windows registry.
Using the Windows Registry
The Windows registry is a general-purpose mechanism that applications (and Windows itself) use to
store program information that must be retained when an application terminates. The information is
stored in a hierarchical format. You can use the Registry Editor program (Regedit.exe) that comes
with Windows to examine (and, if you're very brave, even modify) the contents of the registry on your
machine.

The information in the registry is organized by keys, which are often written in the syntax of directory
paths. For example, in the Registry Editor, you can find the key
HKEY_CURRENT_USER\Software\Microsoft\Notepad to examine all the information stored in the
registry by the Microsoft Notepad program. Each piece of information has a name (for example,
iPointSize and iWindowPosX), a type (in both these cases, a REG_DWORD, which is a 32-bit
unsigned integer), and a value.

The Windows registry is supported with two classes in the Microsoft.Win32 namespace. The
Registry class consists solely of seven static read-only fields for the seven possible root keys in the
registry. The Description column shows how these root keys are defined in the Win32 header files
and displayed in the Registry Editor:
Registry Static Fields

Type Field Accessibility Description

RegistryKey ClassesRoot read-only HKEY_CLASSES_ROOT

RegistryKey CurrentUser read-only HKEY_CURRENT_USER

RegistryKey LocalMachine read-only HKEY_LOCAL_MACHINE

RegistryKey Users read-only HKEY_USERS

RegistryKey PerformanceData read-only HKEY_PERFORMANCE_DATA

RegistryKey CurrentConfig read-only HKEY_CURRENT_CONFIG

RegistryKey DynData read-only HKEY_DYN_DATA

Most applications will probably restrict themselves to the CurrentUser key to store user-specific
information such as favorite fonts, colors, and other settings.

The second class is RegistryKey. The following methods are probably the most common:

RegistryKey Methods (selection)

RegistryKey CreateSubKey(string strSubKey)
RegistryKey OpenSubKey(string strSubKey)
RegistryKey OpenSubKey(string strSubKey, bool bWritable)
void SetValue(string strName, object obj)
object GetValue(string strName)
void Close()

Notice that the CreateSubKey and OpenSubKey methods are members of the RegistryKey class and
also return RegistryKey objects. The first RegistryKey object you obtain is from one of the fields of
the Registry class, for example:
RegistryKey regkey = Registry.CurrentUser;

You then obtain another RegistryKey object by combining that registry key with a subkey argument
passed to CreateSubKey or OpenSubKey. For example, if regkey has been obtained from
Registry.CurrentUser, the call
regkey = regkey.OpenSubKey("Software\\Microsoft\\Notepad");

returns a registry key suitable for reading the information stored by Notepad. Or you can do both
calls in one shot:
RegistryKey regkey =
 Registry.CurrentUser.OpenSubKey("Software\\Microsoft\\Notepad");

But that call obtains the key for Notepad. That's not the key you want to use for your application.
You'll want to make your own key using the CreateSubKey method, for example:
RegistryKey regkey =
 Registry.CurrentUser.CreateSubKey("Software\\MyCompany\\MyApp");

You'll probably use CreateSubKey when your program is first installed or the first time it runs.
Subsequently, you can use OpenSubKey to open the key for reading:
RegistryKey regkey =
 Registry.CurrentUser.OpenSubKey("Software\\MyCompany\\MyApp");

You can also use OpenSubKey to open the key for writing:
RegistryKey regkey =

 Registry.CurrentUser.OpenSubKey("Software\\MyCompany\\MyApp", true);

After you're finished accessing the registry, close it like so:
regkey.Close();

The SetValue and GetValue methods let you read and write values associated with names. But
watch out: the syntax of the SetValue call makes it appear as if you can use an object of any type as
the second argument, for example, an object of type Font:
regkey.SetValue("MyFont", font);

This call will work (kind of), but the problem arises when you try to retrieve that same object with a
call to GetValue:
font = (Font) regkey.GetValue("MyFont"); // Won't work!

If the registry had been originally designed with an object-oriented interface in mind, these two calls
might work. But it wasn't, and they won't. Basically, you're limited to storing strings, 32-bit integers,
and byte arrays. (A byte array lets you store generalized binary information, though probably not as
conveniently as you'd like.)

The SetValue call just shown actually stores font.ToString(), which is a string that describes the Font
object. When you call GetValue, however, that string can't be cast into an object of type Font, and
the invalid cast will cause a run-time exception. If you need to store an object of type Font in the
registry, you must store everything you need to re-create the font in the form of strings, 32-bit
integers, and byte arrays.

Let's look at an example. The DialogsWithRegistry class in the following program subclasses
BetterFontAndColorDialogs and adds registry support. The seven const fields define the registry key
and all the registry names I use in the program.
DialogsWithRegistry.cs
//--
// DialogsWithRegistry.cs © 2001 by Charles Petzold
//--
using Microsoft.Win32;
using System;
using System.Drawing;
using System.Windows.Forms;

class DialogsWithRegistry: BetterFontAndColorDialogs
{
 const string strRegKey =

"Software\\ProgrammingWindowsWithCSharp\\DialogsWithRegistry";
 const string strFontFace = "FontFace";
 const string strFontSize = "FontSize";
 const string strFontStyle = "FontStyle";
 const string strForeColor = "ForeColor";
 const string strBackColor = "BackColor";
 const string strCustomClr = "CustomColor";

 public new static void Main()
 {
 Application.Run(new DialogsWithRegistry());
 }

 public DialogsWithRegistry()
 {
 Text = "Font and Color Dialogs with Registry";

 RegistryKey regkey = Registry.CurrentUser.OpenSubKey(strRegKey);

 if (regkey != null)
 {
 Font = new Font((string) regkey.GetValue(strFontFace),
 float.Parse(
 (string) regkey.GetValue(strFontSize)),
 (FontStyle) regkey.GetValue(strFontStyle));

 ForeColor = Color.FromArgb(
 (int) regkey.GetValue(strForeColor));

 BackColor = Color.FromArgb(
 (int) regkey.GetValue(strBackColor));

 int[] aiColors = new int[16];

 for (int i = 0; i < 16; i++)
 aiColors[i] = (int) regkey.GetValue(strCustomClr + i);

 clrdlg.CustomColors = aiColors;

 regkey.Close();
 }
 }
 protected override void OnClosed(EventArgs ea)
 {
 RegistryKey regkey =
 Registry.CurrentUser.OpenSubKey(strRegKey, true);
 if (regkey == null)
 regkey = Registry.CurrentUser.CreateSubKey(strRegKey);

 regkey.SetValue(strFontFace, Font.Name);
 regkey.SetValue(strFontSize, Font.SizeInPoints.ToString());
 regkey.SetValue(strFontStyle, (int) Font.Style);
 regkey.SetValue(strForeColor, ForeColor.ToArgb());
 regkey.SetValue(strBackColor, BackColor.ToArgb());

 for (int i = 0; i < 16; i++)
 regkey.SetValue(strCustomClr + i, clrdlg.CustomColors[i]);

 regkey.Close();
 }
}

Let's look at the override of the OnClosed method first. OnClosed is called when the form has been
closed. That's a good time for the program to write information to the registry. If the OpenSubKey call
returns null, the program must be running for the first time, so it calls CreateSubKey to create the
registry key. Each SetValue call stores either an integer or a string in the registry. For the form's Font
property, three values must be stored: the Name, SizeInPoints, and Style properties. The
SizeInPoints property of Font is a float, so that value is converted to a string representation with
ToString. The ToArgb method of the Color class converts Color objects into integers.

Also take note of the SetValue call in the for loop that's used to store the custom colors. The value
name is
strCustomClr + i

which creates names of CustomColor0, CustomColor1, through CustomColor15.

The values are loaded from the registry in the program's constructor. The form's font is re-created
using the face name, point size, and style values. The point size has to be converted from a string
back to a float using the static Parse method of the Single class. The static Color.FromArgb method
converts the stored integers back into Color objects.

Because implementing registry support requires working with two blocks of code, registry read and
write code can be difficult to debug. The best approach is to get all the SetValue calls working first.
Monitor your progress with the Registry Editor. (F5 refreshes the display.) The Registry Editor also
lets you delete an entire key, so you can test how well your program re-creates the registry entries
from scratch. When you get all the SetValue calls working, then code the GetValue calls.
The Open File Dialog Box
Both OpenFileDialog and SaveFileDialog inherit from the abstract class FileDialog, which
implements a number of properties common to both classes. Both OpenFileDialog and
SaveFileDialog are sealed, meaning that you can't inherit from them.

Both OpenFileDialog and SaveFileDialog are primarily responsible for returning to your program a
fully qualified filename that the user specifies either by selecting from a list box or by manually
typing. Considering that this is file I/O we're speaking of here, however, using these dialog boxes can
be more complex than using those involved with fonts or color.

Let's look at OpenFileDialog first. Three properties are connected with the retrieval of a filename or
filenames from the dialog box:
OpenFileDialog Properties (selection)

Type Property Accessibility

bool Multiselect get/set

string FileName get/set

string[] FileNames get

By default, Multiselect is false, indicating that the user can select only one file from the dialog box, in
which case FileName indicates the selected file.

Armed with only this information, let's take a look at HeadDump, a hexadecimal dump program that
displays only as much of the selected file as can fit in the client area. This program makes use of the
static ComposeLine method from the HexDump program in Appendix A (which you should consult
for information about files and streams as implemented in .NET).
HeadDump.cs
//---------------------------------------
// HeadDump.cs © 2001 by Charles Petzold

//---------------------------------------
using System;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

class HeadDump: Form
{
 const string strProgName = "Head Dump";
 string strFileName = "";

 public static void Main()
 {
 Application.Run(new HeadDump());
 }
 public HeadDump()
 {
 Text = strProgName;
 Font = new Font(FontFamily.GenericMonospace,
 Font.SizeInPoints);

 Menu = new MainMenu();
 Menu.MenuItems.Add("&File");
 Menu.MenuItems[0].MenuItems.Add("&Open...",
 new EventHandler(MenuFileOpenOnClick));
 Menu.MenuItems.Add("F&ormat");
 Menu.MenuItems[1].MenuItems.Add("&Font...",
 new EventHandler(MenuFormatFontOnClick));
 }
 void MenuFileOpenOnClick(object obj, EventArgs ea)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 strFileName = dlg.FileName;
 Text = strProgName + " - " + Path.GetFileName(strFileName);
 Invalidate();
 }
 }
 void MenuFormatFontOnClick(object obj, EventArgs ea)
 {
 FontDialog dlg = new FontDialog();

 dlg.Font = Font;

 dlg.FixedPitchOnly = true;

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 Font = dlg.Font;
 Invalidate();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(ForeColor);
 FileStream fs;

 try
 {
 fs = new FileStream(strFileName, FileMode.Open,
 FileAccess.Read, FileShare.Read);
 }
 catch
 {
 return;
 }

 for (int iLine = 0; iLine <= ClientSize.Height / Font.Height;
 iLine++)
 {
 byte[] abyBuffer = new byte[16];
 int iCount = fs.Read(abyBuffer, 0, 16);
 string str = HexDump.ComposeLine(16 * iLine,
 abyBuffer, iCount);

 grfx.DrawString(str, Font, brush, 0, iLine * Font.Height);
 }
 fs.Close();
 }
}

Because hexadecimal dumps become a chaotic jumble when displayed with proportional fonts, this
form sets its Font property to the GenericMonospace font. The menu the program creates allows
changing this font to another fixed-pitch font as well as selecting a file.

The MenuFileOpenOnClick method shows how to create and display an OpenFileDialog object. If
ShowDialog returns DialogResult.OK, the program saves the FileName property in a field named
strFileName and then sets a new Text property for the form, using the static Path.GetFileName
method to extract the filename from the fully qualfied path and filename. The OnPaint method is
responsible for opening the file, reading bytes, and formatting them. Here's the program displaying
its own source code file:

What you'll find when experimenting with HeadDump is that the initial directory that opens in the
open file dialog box is the one known as My Documents. You can then navigate to other directories.
OpenFileDialog automatically saves the directory you finally select in the Windows registry. The next
time you run the program, the open file dialog box will display the files in the last directory you
navigated to using that dialog box.

By default, OpenFileDialog changes the current directory associated with the application as you're
navigating through the directories. If you want to set an initial directory for the dialog box or you want
it to restore the current directory when the dialog box terminates, you can use the following two
properties:
FileDialog Properties (selection)

Type Property Accessibility

string InitialDirectory get/set

bool RestoreDirectory get/set

Although most users navigate through directories and select files by picking the directories and files
from lists, a user can also manually type a directory name or a filename. The following two properties
are set to true by default so that the dialog box itself checks for valid path names and filenames
before closing the dialog box:
FileDialog Properties (selection)

Type Property Accessibility

bool CheckPathExists get/set

bool CheckFileExists get/set

If you want to let the user create a new file using OpenFileDialog, set CheckFileExists to false.

The following two properties let you enable a check box labeled Open As Read-Only on the dialog
box and determine whether the user checked it:
OpenFileDialog Properties (selection)

Type Property Accessibility

bool ShowReadOnly get/set

bool ReadOnlyChecked get/set

If you enable this check box and the user checks it, your program shouldn't save any changes to the
file back to disk.

The other remaining properties I want to discuss involve the messy area of file types and filename
extensions. You may have noticed that the OpenFileDialog in HeadDump has a combo box labeled
Files Of Type that is blank:

For the HeadDump program, that's not so bad because the program can open and display any type
of file. But for most programs, you want to force OpenFileDialog to display files of only specific types.
You do this by using a text string called a filter. For the HeadDump program, I could have defined the
filter like this:
"All Files (*.*)|*.*"

or like this:
"All Files|*.*"

The portion of the string up to the vertical bar is what the dialog box displays in the Files Of Type
combo box. The string to the right of the vertical bar indicates the types of files the dialog box is to
display, in this case, all files.

It's up to you whether or not the portion of the text string to the left of the vertical bar includes a file
specification. That's the part the user sees, and it doesn't determine which files the dialog box
displays.

If you were writing a clone of the Notepad program (which I'll actually be doing in Chapter 18), you
would define the filter like so:
"Text Documents (*.txt)|*.txt|" +
"All Files|*.*"

In this case, the Files Of Type combo box has two lines. When the user selects the first line in the
combo box, the dialog box displays all files that have a txt extension; when the user selects the
second line, the dialog box displays all files. Although I've written the string in two lines with a
concatenation symbol (+) for clarity, it's really just one long string with the pieces separated by
vertical bars:
"Text Documents (*.txt)|*.txt|All Files|*.*"

There are always twice as many pieces of the string as there are lines in the combo box.

If you were writing a program that was able to load a variety of image files, you'd define a filter
something like this:
"All Image Files|*.bmp;*.gif;*.jpeg;*.jpg;*.jfif;*.png;*.tif;*.tiff|" +
"Windows Bitmap (*.bmp)|*.bmp|" +
"Graphics Interchange Format (*.gif)|*.gif|" +
"JPEG File Interchange Format (*.jpg)|*.jpg;*.jpeg;*.jfif|" +
"Portable Network Graphics (*.png)|*.png|" +
"Tag Image File Format (*.tif)|*.tif;*.tiff|" +
"All Files (*.*)|*.*";

The Files Of Type combo box would have seven lines in this case. As you'll notice, some of the file
types are associated with multiple filename specifications. These are separated by semicolons. For
example, if the user selects the line in the combo box that reads
JPEG File Interchange Format (*.jpg)

the dialog box displays files with extensions jpg, jpeg, and jfif. The part that's displayed in the combo
box could alternatively be
JPEG File Interchange Format

or
JPEG/JFIF

or
JPEG File Interchange Format (*.jpg, *.jpeg, *.jfif)

Use whatever you think is best for the user.

You use the following two properties to specify the filter to be used for the Files Of Type combo type
and the line number of the filter that is to be initially displayed:
FileDialog Properties (selection)

Type Property Accessibility

string Filter get/set

int FilterIndex get/set

On return from ShowDialog, FilterIndex indicates the index of the line selected by the user in the
Files Of Type combo box. These line numbers begin at 1.

Here's a program that implements an OpenFileDialog that has a filter to specify every type of file
supported by the static Image.FromFile method.
ImageOpen.cs
//--
// ImageOpen.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

class ImageOpen: Form
{
 protected string strProgName;
 protected string strFileName;
 protected Image image;

 public static void Main()
 {
 Application.Run(new ImageOpen());
 }
 public ImageOpen()
 {

 Text = strProgName = "Image Open";
 ResizeRedraw = true;

 Menu = new MainMenu();
 Menu.MenuItems.Add("&File");
 Menu.MenuItems[0].MenuItems.Add(new MenuItem("&Open...",
 new EventHandler(MenuFileOpenOnClick),
 Shortcut.CtrlO));
 }
 void MenuFileOpenOnClick(object obj, EventArgs ea)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Filter = "All Image Files|*.bmp;*.ico;*.gif;*.jpeg;*.jpg;" +
 "*.jfif;*.png;*.tif;*.tiff;*.wmf;*.emf|" +
 "Windows Bitmap (*.bmp)|*.bmp|" +
 "Windows Icon (*.ico)|*.ico|" +
 "Graphics Interchange Format (*.gif)|*.gif|" +
 "JPEG File Interchange Format (*.jpg)|" +
 "*.jpg;*.jpeg;*.jfif|" +
 "Portable Network Graphics (*.png)|*.png|" +
 "Tag Image File Format (*.tif)|*.tif;*.tiff|" +
 "Windows Metafile (*.wmf)|*.wmf|" +
 "Enhanced Metafile (*.emf)|*.emf|" +
 "All Files (*.*)|*.*";

 if (dlg.ShowDialog() == DialogResult.OK)
 {

 try
 {
 image = Image.FromFile(dlg.FileName);
 }
 catch (Exception exc)
 {
 MessageBox.Show(exc.Message, strProgName);
 return;
 }
 strFileName = dlg.FileName;
 Text = strProgName + " - " + Path.GetFileName(strFileName);
 Invalidate();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {

 Graphics grfx = pea.Graphics;

 if (image != null)
 grfx.DrawImage(image, 0, 0);
 }
}

This program is structurally similar to the HeadDump program except that it attempts to load the
image immediately after ShowDialog returns. Although the dialog box itself checks to make sure that
the file exists, nothing prevents the user from specifying an existing file that's not an image file. If the
file is not an image file (or the file is corrupted in some way), Image.FromFile throws an exception
and the program displays a message box reporting the problem. The OnPaint method simply uses
DrawImage to display the loaded image.
The Save File Dialog Box
Has it occurred to you yet that we're on the verge of writing a program that can convert between
various bitmap file formats using the standard Open and Save dialog boxes? It's a little tricky to carry
it off—and the implementation isn't quite optimum—but that's my goal in the remainder of the
chapter.

The SaveFileDialog class adds just two properties to the properties defined by FileDialog:
SaveFileDialog Properties

Type Property Accessibility Default

bool CreatePrompt get/set false

bool OverwritePrompt get/set true

These two properties affect the display of message boxes that can be displayed while
SaveFileDialog is still displayed. If you set CreatePrompt to true and the user specifies a file that
doesn't exist, the dialog box will display a message box asking whether the user really wants to
create that file. If you leave OverwritePrompt set to true, the dialog box asks for confirmation if the
user selects a file that already exists.

Usually when an application invokes a dialog box to save a document, the application suggests a
filename, and very often a default filename extension. For example, Notepad displays a filename of
*.txt in the save file dialog box.

For a program that can convert between image formats, however, it's more proper for the save file
dialog box to suggest a filename without an extension. The filename is the same as the filename of
the loaded file. But the filename extension must be based on whatever format the user wants to save
the file in, and that's not known when the dialog box is displayed.

Here's a way to do it. First, before displaying the dialog box, set the FileName property of
SaveFileDialog to the opened filename without the extension. You can use the static
Path.GetFileNameWithoutExtension method to strip an extension from a filename. Second, specify
that the dialog box itself appends an extension to the selected file by setting the following property to
true:
FileDialog Properties (selection)

Type Property Accessibility Default

bool AddExtension get/set false

The extension that SaveFileDialog appends to the filename is the first filename extension listed in
the line of the filter that the user selects in the Save As Type combo box.

Here's one possible implementation. The ImageIO class overrides the ImageOpen class and adds a
Save As item to the menu.
ImageIO.cs

//--------------------------------------
// ImageIO.cs © 2001 by Charles Petzold
//--------------------------------------
using System;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

class ImageIO: ImageOpen
{
 MenuItem miSaveAs;

 public new static void Main()
 {
 Application.Run(new ImageIO());
 }
 public ImageIO()
 {
 Text = strProgName = "Image I/O";

 Menu.MenuItems[0].Popup += new EventHandler(MenuFileOnPopup);
 miSaveAs = new MenuItem("Save &As...");
 miSaveAs.Click += new EventHandler(MenuFileSaveAsOnClick);
 Menu.MenuItems[0].MenuItems.Add(miSaveAs);
 }
 void MenuFileOnPopup(object obj, EventArgs ea)
 {
 miSaveAs.Enabled = (image != null);
 }
 void MenuFileSaveAsOnClick(object obj, EventArgs ea)
 {
 SaveFileDialog savedlg = new SaveFileDialog();

 savedlg.InitialDirectory = Path.GetDirectoryName(strFileName);
 savedlg.FileName =
Path.GetFileNameWithoutExtension(strFileName);
 savedlg.AddExtension = true;
 savedlg.Filter = "Windows Bitmap (*.bmp)|*.bmp|" +
 "Graphics Interchange Format (*.gif)|*.gif|" +
 "JPEG File Interchange Format (*.jpg)|" +
 "*.jpg;*.jpeg;*.jfif|" +
 "Portable Network Graphics (*.png)|*.png|" +
 "Tagged Imaged File Format
(*.tif)|*.tif;*.tiff";

 if (savedlg.ShowDialog() == DialogResult.OK)

 {
 try
 {
 image.Save(savedlg.FileName);
 }
 catch (Exception exc)
 {
 MessageBox.Show(exc.Message, Text);
 return;
 }
 strFileName = savedlg.FileName;
 Text = strProgName + " - " + Path.GetFileName(strFileName);
 }
 }
}

Notice that the filter for the SaveFileDialog object doesn't include an All Files or All Image Files line
and includes only those formats that work with the Save method of the Image class. The idea here is
that the user accepts the filename (without the extension) displayed in the dialog box and selects the
format using the Save As Type combo box. If the user selects "JPEG File Interchange Format," for
example, the dialog box appends a .jpg filename extension to the base filename.

I mentioned at the beginning of this discussion that the implemention isn't optimum. That's because I
think the absence of a displayed filename extension may be confusing to the more sophisticated
user. It's not clear whether or not the program will append a filename extension. Fortunately, if the
user types an extension, the dialog box won't append another one.

What's the best approach? I like an approach in which the filename is always displayed with an
extension, and as the user selects different lines in the Save As Type combo box, the displayed
filename extension changes accordingly. When you're programming using the Win32 API, it's
possible to get access to the various controls in the common dialog boxes and perform little tricks
like this. In the Windows Forms interface, however, access to those controls is hidden away.

Another approach to implementing format conversions is to force the user to make a decision before
the save file dialog box is even displayed. You do this by making a submenu of the Save As menu
item that lists the various formats: Windows Bitmap, Graphics Interchange Format, JPEG, and so
forth. Each of these items invokes a SaveFileDialog that has a single-line filter for a specific file type.

Chapter 17: Brushes and Pens
Overview
Pens and brushes are fundamental to the Windows Forms graphics system. You use pens to draw
straight lines and curves, and you use brushes to fill areas enclosed by straight lines and curves, and
to draw text. It's hard to get started at all in Windows Forms without knowing something about pens
and brushes. You can't even display text without knowing what a brush is.

Yet brushes are also one of the most all-encompassing objects in Windows Forms because you can
create brushes based on paths and bitmaps, neither of which is an elementary graphics topic.
Moreover, if brushes encompass almost everything we've learned about Windows Forms graphics
so far, then pens are even more encompassing because pens can be based on brushes.

Here's the class hierarchy of the classes I'll be discussing in this chapter:

Both Brush and Pen are defined in the System.Drawing namespace, but Brush is an abstract class
and hence can't be instantiated. Of the five classes derived from Brush, SolidBrush and
TextureBrush are defined in the System.Drawing namespace, and HatchBrush,
LinearGradientBrush, and PathGradientBrush are defined in the System.Drawing.Drawing2D
namespace.

Because all five nonabstract brush classes are derived from Brush, it's often convenient to store an
instance of one of these classes in a variable of type Brush. I've often done so in this book:
Brush brush = new SolidBrush(ForeColor);

However, the classes derived from Brush define their own read/write properties, and it's easier to
read and write these properties if you save the object in a variable of its own type.
Filling in Solid Colors
SolidBrush is by far the simplest of the five classes derived from Brush. The class has just one
constructor, which we've been using since Chapter 3:

SolidBrush Constructor

SolidBrush (Color color)

And the class has just one property:
SolidBrush Property

Type Property Accessibility

SolidBrush Property

Type Property Accessibility

Color Color get/set

In many cases, when you need a solid brush, you'll probably take advantage of the Brushes class,
which has 141 static read-only properties, each of which returns a Brush object based on one of the
standard colors.
Hatch Brushes
The hatch brush fills an area with a small repeating pattern, most commonly consisting of horizontal,
vertical, or diagonal lines. At first, the hatch brush seems like one of the quainter approaches to
computer graphics, conjuring up an ancient age of black-and-white bar graphs, pie charts, and other
staples of business graphics.

While the use of color has certainly made hatch brushes less necessary, hatch brushes can continue
to play a role in graphics output. Many users (myself included) still prefer noncolor laser printers to
color ink jet printers. In some cases—when you're printing color photographs on a black-and-white
printer, for example—different colors are mapped to gray shades and the results are often
satisfactory. But sometimes different colors are used to represent data, for example, to indicate
varying population levels on a map. Such colored graphics suffer greatly when the colors are blindly
rendered as gray shades. Using hatch brushes instead allows an easier interpretation of the patterns
on the map.

In Windows Forms, hatch patterns are based on monochrome 8-pixel-square bitmaps. Here's such a
bitmap for a brick pattern:

This pattern doesn't begin looking like a brick until it's repeated horizontally and vertically:

The HatchBrush class is defined in the System.Drawing.Drawing2D namespace. There are only two
constructors:

HatchBrush Constructors

HatchBrush(HatchStyle hs, Color clrForeground)
HatchBrush(HatchStyle hs, Color clrForeground, Color clrBackground)

Although the bitmaps used for hatch brushes are monochrome, the 0's and 1's of the bitmap can be
mapped to any two colors you want. In the simpler hatch brushes with line patterns, the foreground
color is the color of the lines themselves; the background color is the color between the lines.

Watch out: The first time you use the first constructor, you'll probably choose black for the
foreground color, like this:
new HatchBrush(hs, Color.Black) // Won't work right!

or this:
new HatchBrush(hs, ForeColor) // Probably won't work right!

The problem is that the default background color is black, and you should choose white for maximum
brush contrast:
new HatchBrush(hs, Color.White) // Correct!

The more explicit equivalent is
new HatchBrush(hs, Color.White, Color.Black) // Correct!

Many hatch brushes will look fine with the foreground and background colors swapped like so:
new HatchBrush(hs, Color.Black, Color.White) // Satisfactory

However, with swapped colors, the brick pattern is rendered as white bricks and black mortar, which
looks a bit peculiar.

A HatchBrush object is defined entirely by three properties, which are the same as the three
arguments specified in the second constructor:
HatchBrush Properties

Type Property Accessibility

HatchStyle HatchStyle get

Color ForegroundColor get

Color BackgroundColor get

The HatchStyle property is a member of the HatchStyle enumeration. What makes Windows Forms
GDI+ different from Windows GDI in the implementation of hatch brushes is the sheer number of
hatch styles. GDI has 6 hatch styles (horizontal, vertical, two diagonal, and two cross hatches); GDI+
has 53 of them.

The HatchStyle enumeration provides members for all 53 styles (you'll see 54 in the documentation,
but Cross and LargeGrid are identical), but it also has two members that ease the use of the
enumeration values without hard-coding them:
HatchStyle Enumeration (selection)

Member Value

Min 0

Max 4

In theory, what these members should tell you is that there are 53 hatch styles with values of 0
through 52. Unfortunately, HatchStyle.Max is inexplicably set to 4 rather than the expected 52. If
HatchStyle.Max is ever corrected to reflect the true maximum value, it could be useful in generalizing
code that presents all the possible hatch styles to the user. In the meantime, the two sample
programs coming up contain hard-coded values for the minimum and maximum HatchStyle values.

The following program displays 32-pixel-square rectangles showing all the hatch styles.
HatchBrushArray.cs
//--
// HatchBrushArray.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class HatchBrushArray: PrintableForm
{
 const int iSize = 32, iMargin = 8;
 const int iMin = 0, iMax = 52; // HatchStyle minimum and maximum
values

 public new static void Main()
 {
 Application.Run(new HatchBrushArray());
 }
 public HatchBrushArray()
 {
 Text = "Hatch Brush Array";
 ClientSize = new Size(8 * iSize + 9 * iMargin,
 7 * iSize + 8 * iMargin);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 for (HatchStyle hs = (HatchStyle)iMin; hs <= (HatchStyle)iMax;
 hs++)
 {
 HatchBrush hbrush =
 new HatchBrush(hs, Color.White,
Color.Black);
 int y = (int)hs / 8;
 int x = (int)hs % 8;

 grfx.FillRectangle(hbrush, iMargin + x * (iMargin + iSize),
 iMargin + y * (iMargin + iSize),
 iSize, iSize);
 }

 }
}

The screen output looks like this:

Because the rectangles are 32 pixels square, each rectangle shows the 8-pixel-square hatch pattern
repeated 16 times—4 times horizontally times 4 times vertically.

You can also print the hatch patterns by clicking the client area. Different printers might render the
hatch patterns a little differently. For example, on a laser printer I have, each 8-pixel-square hatch
pattern is displayed as a 1/15-inch square. Because the default page transform of the printer makes
it appear to be a 100-dpi device, the 32-pixel-square rectangles displayed by HatchBrushArray are
0.32 inch square, a dimension that allows almost 25 repetitions of the pattern—5 times horizontally
times 5 times vertically. When I direct the printer output to my fax machine, however, each rectangle
shows 64 repetitions of the pattern.

Hatch patterns are not affected by transforms! If you insert statements in HatchBrushArray that set a
nondefault page transform or world transform, you'll find that the transforms affect the location and
size of the displayed rectangles (of course), but they don't affect the appearance of the pattern. The
hatch lines don't spread wider or become closer; nor are they rotated or sheared.

In a drawing program, you may want to include a convenient way for a user to select a hatch style.
Here's a program that puts all the hatch styles on a menu.
HatchBrushMenu.cs
//---
// HatchBrushMenu.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class HatchBrushMenu: Form
{
 HatchStyleMenuItem hsmiChecked;

 const int iMin = 0, iMax = 52; // HatchStyle minimum and maximum
values

 public static void Main()
 {
 Application.Run(new HatchBrushMenu());
 }
 public HatchBrushMenu()
 {
 Text = "Hatch Brush Menu";
 ResizeRedraw = true;

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Hatch-Style");

 for (HatchStyle hs = (HatchStyle)iMin; hs <= (HatchStyle)iMax;
 hs++)
 {
 HatchStyleMenuItem hsmi = new HatchStyleMenuItem();

 hsmi.HatchStyle = hs;
 hsmi.Click += new EventHandler(MenuHatchStyleOnClick);

 if ((int)hs % 8 == 0)
 hsmi.BarBreak = true;

 Menu.MenuItems[0].MenuItems.Add(hsmi);
 }
 hsmiChecked = (HatchStyleMenuItem)
Menu.MenuItems[0].MenuItems[0];
 hsmiChecked.Checked = true;
 }
 void MenuHatchStyleOnClick(object obj, EventArgs ea)
 {
 hsmiChecked.Checked = false;
 hsmiChecked = (HatchStyleMenuItem) obj;
 hsmiChecked.Checked = true;

 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 HatchBrush hbrush = new HatchBrush(hsmiChecked.HatchStyle,
 Color.White, Color.Black);

 grfx.FillEllipse(hbrush, ClientRectangle);
 }
}
class HatchStyleMenuItem: MenuItem
{
 const int cxImage = 32, cyImage = 32, iMargin = 2;
 readonly int cxCheck, cyCheck;

 public HatchStyle HatchStyle;

 public HatchStyleMenuItem()
 {
 OwnerDraw = true;

 cxCheck = SystemInformation.MenuCheckSize.Width;
 cyCheck = SystemInformation.MenuCheckSize.Height;
 }
 protected override void OnMeasureItem(MeasureItemEventArgs miea)
 {
 miea.ItemWidth = 2 * cxImage + 3 * iMargin - cxCheck;
 miea.ItemHeight = cyImage + 2 * iMargin;
 }
 protected override void OnDrawItem(DrawItemEventArgs diea)
 {
 diea.DrawBackground();

 if ((diea.State & DrawItemState.Checked) != 0)
 {
 ControlPaint.DrawMenuGlyph(diea.Graphics,
 diea.Bounds.Location.X + iMargin,
 diea.Bounds.Location.Y + iMargin,
 cxImage, cyImage, MenuGlyph.Checkmark);
 }
 HatchBrush hbrush = new HatchBrush(HatchStyle,
 Color.White, Color.Black);

 diea.Graphics.FillRectangle(hbrush,
 diea.Bounds.X + 2 * iMargin + cxImage,
 diea.Bounds.Y + iMargin, cxImage, cyImage);
 }
}

The program defines a HatchStyleMenuItem class that subclasses MenuItem to provide a public
HatchStyle field, but it also implements support for owner-draw items. When the application creates
this menu, it inserts bar breaks every eight items. The resultant submenu is large, but not unwieldy,
and provides a reasonable way for a user to select a hatch style:

It's about time we look at the actual names of these hatch styles. In the following tables, the images
have a default background color of black and a foreground color of white. Each rectangle has 16
repetitions of the pattern (4 horizontally and 4 vertically).

The following six HatchStyle values are consistent with the Windows GDI:
HatchStyle Enumeration (selection)

Member Value Image

Horizontal 0

Vertical 1

ForwardDiagonal 2

BackwardDiagonal 3

Cross or LargeGrid 4

DiagonalCross 5

The following styles simulate gray shades. The member names indicate an approximate percentage
of foreground color in the pattern:
HatchStyle Enumeration (selection)

Member Value Image

Percent05 6

Percent10 7

Percent20 8

Percent25 9

Percent30 10

Percent40 11

Percent50 12

HatchStyle Enumeration (selection)

Member Value Image

Percent60 13

Percent70 14

Percent75 15

Percent80 16

Percent90 17

Next are some variations of the standard horizontal, vertical, and diagonal hatch styles:
HatchStyle Enumeration (selection)

Member Value Image

LightDownwardDiagonal 18

LightUpwardDiagonal 19

DarkDownwardDiagonal 20

DarkUpwardDiagonal 21

WideDownwardDiagonal 22

WideUpwardDiagonal 23

LightVertical 24

LightHorizontal 25

NarrowVertical 26

NarrowHorizontal 27

DarkVertical 28

DarkHorizontal 29

DashedDownwardDiagonal 30

DashedUpwardDiagonal 31

DashedHorizontal 32

DashedVertical 33

Finally, here's a group of miscellaneous patterns:
HatchStyle Enumeration (selection)

Member Value Image

SmallConfetti 34

LargeConfetti 35

ZigZag 36

Wave 37

DiagonalBrick 38

HorizontalBrick 39

Weave 40

Plaid 41

Divot 42

DottedGrid 43

DottedDiamond 44

Shingle 45

Trellis 46

Sphere 47

SmallGrid 48

SmallCheckerBoard 49

LargeCheckerBoard 50

OutlinedDiamond 51

SolidDiamond 52

The Rendering Origin
There's something you should know about the hatch brush, and it's something that affects more
sophisticated brushes as well. In fact, it's part of the model under which the Windows Forms
graphics system was developed. To illustrate what I'm talking about, consider the following program.
OverlappingHatchBrushes.cs
//--
// OverlappingHatchBrushes.cs © 2001 by Charles Petzold

//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class OverlappingHatchBrushes: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new OverlappingHatchBrushes());
 }
 public OverlappingHatchBrushes()
 {
 Text = "Overlapping Hatch Brushes";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 HatchBrush hbrush = new HatchBrush(HatchStyle.HorizontalBrick,
 Color.White);
 for (int i = 0; i < 10; i++)
 grfx.FillRectangle(hbrush, i * cx / 10, i * cy / 10,
 cx / 8, cy / 8);
 }
}

This program uses the same hatch brush to draw 10 overlapping rectangles. But the rectangles don't
seem to be distinct because the hatches in each rectangle coincide:

When you fill an area with a hatch pattern, the pattern is simply repeated horizontally and vertically.
But that doesn't tell the whole story. The pattern has to be initially oriented at a particular pixel
position. You might have suspected that the pattern is oriented with the graphics object being drawn,

for example, with the upper left corner of a rectangle. But this program pretty much demonstrates
that's not the case. In fact, the hatch pattern bitmap is oriented with the upper left corner of the
drawing area, which is the upper left corner of the client area or the printable area of the printer
page.

A good way to think about this is that the brush blankets the entire display surface that your Graphics
object refers to. When you draw a filled area with a particular brush, you're actually making a hole or
a stencil that looks into that patterned surface.

You can override the default behavior of hatch-brush orientation by using the property of the
Graphics class.
Graphics Properties (selection)

Type Property Accessibility

Point RenderingOrigin get/set

The RenderingOrigin property affects only the display of hatch brushes. (Other types of brushes
have other approaches to changing brush orientation.) By default, the RenderingOrigin property is
the point (0, 0). If you set a new point in device coordinates, subsequent hatch brushes will be
oriented with that point.

Here's a program that draws 10 staggered rectangles, using a different RenderingOrigin value for
each.
HatchBrushRenderingOrigin.cs
//--
// HatchBrushRenderingOrigin.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class HatchBrushRenderingOrigin: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new HatchBrushRenderingOrigin());
 }
 public HatchBrushRenderingOrigin()
 {
 Text = "Hatch Brush Rendering Origin";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 HatchBrush hbrush = new HatchBrush(HatchStyle.HorizontalBrick,
 Color.White);
 for (int i = 0; i < 10; i++)
 {
 grfx.RenderingOrigin = new Point(i * cx / 10, i * cy / 10);

 grfx.FillRectangle(hbrush, i * cx / 10, i * cy / 10,
 cx / 8, cy / 8);
 }
 }
}

The result shows that the hatch pattern begins anew at the upper left corner of each rectangle:

There are a couple situations in which you'll want to change the rendering origin. If you're using
hatch patterns for bar graphs, all the patterns will normally be oriented with the upper left corner of
the drawing area. Even if you're using a different pattern for each bar, the patterns can connect with
each other in distracting ways. In such a case, you'll want to set a new rendering origin for each bar
based on the upper left corner of the bar.

You can also experience the opposite problem. Say you're coloring a parent window and one or
more child windows with the same hatch pattern. You probably want the child window to blend in
with the parent. But the hatch pattern the child draws is oriented with the child's upper left corner.
The child will want to set the rendering origin to the upper left corner of its parent.
Texture Brushes
If you've gone through the list of hatch brushes and not discovered one you like, or if you need more
than two colors in your brush, or if you want a brush that's subject to transforms, you'll want to
explore the TextureBrush class.

A texture brush is based on an object of type Image—or a rectangular subset of an Image object—
that repeats horizontally and vertically.

TextureBrush Constructors

TextureBrush(Image image)
TextureBrush(Image image, Rectangle rectSrc)
TextureBrush(Image image, RectangleF rectfSrc)
TextureBrush(Image image, WrapMode wm)
TextureBrush(Image image, WrapMode wm, Rectangle rectSrc)
TextureBrush(Image image, WrapMode wm, RectangleF rectfSrc)
TextureBrush(Image image, Rectangle rectSrc, ImageAttributes ia)
TextureBrush(Image image, RectangleF rectSrc, ImageAttributes ia)

The WrapMode enumeration is defined in the System.Drawing.Drawing2D namespace:
WrapMode Enumeration

Member Value

Tile 0

TileFlipX 1

TileFlipY 2

TileFlipXY 3

Clamp 4

As we'll see shortly, the enumeration determines how the image repeats horizontally and vertically.
The two versions of the constructor with an ImageAttributes argument don't require a WrapMode
argument because ImageAttributes has its own method to set the wrap mode.

Here's a program that constructs a texture brush from a subset of the Apollo 11 image from Chapter
11. A menu option lets you select the wrap mode. The OnPaint method displays two overlapping
ellipses using the brush.
TextureBrushDemo.cs
//---
// TextureBrushDemo.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class TextureBrushDemo: PrintableForm
{
 MenuItem miChecked;
 TextureBrush tbrush;

 public new static void Main()
 {
 Application.Run(new TextureBrushDemo());
 }
 public TextureBrushDemo()
 {
 Text = "Texture Brush Demo";

 Image image = Image.FromFile(
 "..\\..\\..\\..\\Images and
Bitmaps\\Apollo11FullColor.jpg");

 tbrush = new TextureBrush(image, new Rectangle(95, 0, 50, 55));

 Menu = new MainMenu();

 Menu.MenuItems.Add("&Wrap-Mode");

 foreach (WrapMode wm in Enum.GetValues(typeof(WrapMode)))
 {
 MenuItem mi = new MenuItem();
 mi.Text = wm.ToString();
 mi.Click += new EventHandler(MenuWrapModeOnClick);
 Menu.MenuItems[0].MenuItems.Add(mi);
 }
 miChecked = Menu.MenuItems[0].MenuItems[0];
 miChecked.Checked = true;
 }
 void MenuWrapModeOnClick(object obj, EventArgs ea)
 {
 miChecked.Checked = false;
 miChecked = (MenuItem) obj;
 miChecked.Checked = true;

 tbrush.WrapMode = (WrapMode)miChecked.Index;
 Invalidate();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 grfx.FillEllipse(tbrush, 0, 0, 2 * cx / 3, 2 * cy / 3);
 grfx.FillEllipse(tbrush, cx / 3, cy / 3, 2 * cx / 3, 2 * cy /
3);
 }
}

What this program does as well is demonstrate the see-through stencil effect of Windows Forms
graphics. As long as the OnPaint method is using the same unaltered brush, the patterns will
coincide exactly:

By default, WrapMode is Tile, which repeats the identical image horizontally and vertically. If you use
the menu to change WrapMode to TileFlipX, the images in every other column are flipped left-to-
right:

A WrapMode of TileFlipY turns the images in every other row upside down. The TileFlipXY option
combines both effects.

The Clamp option results in the most extreme effect. The entire brush consists of only one rendition
of the image in the upper left corner of the client area. The rest of the brush is transparent. You can
see the bottom right part of the single image inside the ellipse:

As I mentioned earlier, the page transform and world transform do not affect hatch brushes. The
transforms do affect texture brushes, however.

Suppose you modify the DoPage method of the TextureBrushDemo program so that it doesn't
display an ellipse but instead displays a rectangle sized to fit exactly 9 repetitions of the 50 × 55 pixel
image, for example:
grfx.FillRectangle(tbrush, 0, 0, 150, 165);

No matter what you do with the page transform or the world transform—regardless of any scaling,
shearing, or rotation—the resultant parallelogram (for that, in general, is what the rectangle will be
drawn as) will always be filled with exactly nine repetitions of the pattern, scaled, sheared, or rotated
accordingly.

I also mentioned earlier that the RenderingOrigin property of the Graphics object affects only the
HatchBrush object. The TextureBrush class itself has an alternative property that allows you to do
something similar—plus lots more. Here's a complete list of the TextureBrush properties:
TextureBrush Properties

Type Property Accessibility

Image Image get

WrapMode WrapMode get/set

Matrix Transform get/set

Yes, that third property is a matrix transform that affects the brush itself. For example, if you add the
statement
tbrush.Transform = new Matrix(2, 0, 0, 2, 0, 0);

to the DoPage method of TextureBrushDemo, the ellipses (or rectangle or whatever you're drawing
in that method) will be the same size and position, but the repeating image that makes up the pattern
will be twice as large: 100 × 110 pixels. You can rotate or shear the pattern if you want. The
TextureBrush class also includes the methods TranslateTransform, ScaleTransform,
RotateTransform, MultiplyTransform, and ResetTransform, which are quite similar to the same-
named methods in the Graphics class. (These are the only methods in TextureBrush that aren't in
Brush.) Use translation to simulate a different rendering origin.

As with the similarly named methods in the Graphics class, the various transform methods in the
TextureBrush class are cumulative. For example, if you put the statement
tbrush.RotateTransform(45);

in the DoPage method, the brush pattern will be rotated an additional 45 degrees whenever DoPage
is called. To prevent unpredictable results, preface the RotateTransform call with a call to
ResetTransform. Or better yet, put the RotateTransform call in the program's constructor. Here's
what you'll get:

The Transform property of the TextureBrush class affects only the size and orientation of the brush
pattern—not any objects you draw using the brush. The Transform property of the Graphics class
affects both the size and orientation of the texture brush pattern and any objects you draw. If you use
both, the pattern is affected by the composite transform.
Linear Gradient Brushes
The remaining two brush classes are LinearGradientBrush and PathGradientBrush; the word
gradient here refers to a transition between colors. LinearGradientBrush involves a transition
between two colors, sometimes called a fountain. At first, it may seem complicated to define a way in
which one color merges with another, and that's probably why there are a couple different ways of
specifying such a brush.

A gradient between two colors can be defined by a pair of parallel lines. Each line is a pure color.
The color makes a transition between the two lines. Here's an example with the first color being
Color.LightGray and the second Color.DarkGray:

The linear-gradient brush is thus an infinitely long stripe with two parallel borders of two colors.

To define such a brush, you don't need to specify two parallel lines. It's much easier to specify two
points. The two parallel borders are at right angles to the line connecting the two points:

Note that there are an infinite number of pairs of points that result in the same linear gradient. I'm
going to refer to the line connecting those two points as the gradient line. I also want to define the
term mix line as the line at right angles to the gradient line and parallel to the two border lines.

The LinearGradientBrush class has eight constructors. Two of these let you specify two points and
two colors:

LinearGradientBrush Constructors (selection)

LinearGradientBrush(Point pt1, Point pt2, Color clr1, Color clr2)
LinearGradientBrush(PointF ptf1, PointF ptf2, Color clr1, Color clr2)

The only difference between these two constructors is the use of either Point or PointF structures.
The points are in world coordinates. The color at the first point (pt1 or ptf1) is clr1, and the color at
the second point (pt2 or ptf2) is clr2.

Let's take a look at a program that creates a LinearGradientBrush object in its DoPage method,
defining the first point as (cx/4, cy/4) and the second as (3*cx/4, 3*cy/4). The two colors are
Color.White and Color.Black. The program then colors a rectangle the size of its display area with
this brush.
TwoPointLinearGradientBrush.cs
//--
// TwoPointLinearGradientBrush.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class TwoPointLinearGradientBrush: PrintableForm
{
 public new static void Main()

 {
 Application.Run(new TwoPointLinearGradientBrush());
 }
 TwoPointLinearGradientBrush()
 {
 Text = "Two-Point Linear Gradient Brush";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 LinearGradientBrush lgbrush =
 new LinearGradientBrush(
 new Point(cx / 4, cy / 4),
 new Point(3 * cx / 4, 3 * cy / 4),
 Color.White, Color.Black);

 grfx.FillRectangle(lgbrush, 0, 0, cx, cy);
 }
}

I haven't yet mentioned what happens outside the stripe that the LinearGradientBrush object defines.
As you can see, by default the brush is tiled:

The wide continuous stripe from the lower left to the upper right is defined by the two brush
coordinates. On either side of the stripe (in this case, the upper left and lower right of the client area),
the stripe is repeated.

This behavior is controlled by the WrapMode property of the brush. WrapMode.Tile (the default) is
the same as WrapMode.TileFlipY, and it causes the brush to be tiled with no flipping, as shown
previously.

WrapMode.TileFlipX is the same as Wrapmode.TileFlipXY and causes the brush to be flipped so that
there are no discontinuities, like so:

WrapMode.Clamp is not allowed for linear-gradient brushes.

Let me emphasize again that any Fill method you call with a particular brush essentially provides
only a window through which you view the brush. When using texture brushes or gradient brushes,
the appearance of any filled area depends to some degree on where the area is drawn. If you draw a
small rectangle using the brush defined by the TwoPointLinearGradientBrush program, it might not
even seem like much of a gradient.

In many cases, you'll define a particular linear-gradient brush based on the actual coordinates of the
object you're filling. For example, if you want to fill a rectangle with a linear-gradient brush, you'll
define the brush with the same coordinates you use to draw the rectangle. In such cases, you might
find it convenient to use the following constructors for LinearGradientBrush that have a rectangle
argument:

LinearGradientBrush Constructors (selection)

LinearGradientBrush(Rectangle rect, Color clr1, Color clr2,
 LinearGradientMode lgm)
LinearGradientBrush(RectangleF rectf, Color clr1, Color clr2,
 LinearGradientMode lgm)

The LinearGradientMode enumeration defines how the gradient line is formed from the sides or
corners of the rectangle:
LinearGradientMode Enumeration

Member Value Description

Horizontal 0 Gradient line is horizontal, clr1 at left side, clr2 at right

Vertical 1 Gradient line is vertical, clr1 at top side, clr2 at bottom

ForwardDiagonal 2 Mix line passes through upper right and lower left corners;
upper left corner is clr1 and lower right is clr2

BackwardDiagonal 3 Mix line passes through upper left and lower right corners;
upper right corner is clr1 and lower left is clr2

Notice that for the last two enumeration values, two opposite corners of the rectangle define the mix
line rather than the gradient line. Although the two other corners of the rectangle are pure colors and

the border lines pass through those two corners, those two corners do not define the gradient line
unless the rectangle is a square. Let's take a closer look.

The following program defines a linear-gradient brush based on a rectangle that is half the width and
height of the display area, and centered within the display area. You can use the menu to set the
constructor's LinearGradientMode argument. After filling the display area with that brush, the
DoPage method also draws the rectangle used in creating the brush.
RectangleLinearGradientBrush.cs
//---
// RectangleLinearGradientBrush.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class RectangleLinearGradientBrush: PrintableForm
{
 MenuItem miChecked;

 public new static void Main()
 {
 Application.Run(new RectangleLinearGradientBrush());
 }
 public RectangleLinearGradientBrush()
 {
 Text = "Rectangle Linear-Gradient Brush";

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Gradient-Mode");

 foreach (LinearGradientMode gm in
 Enum.GetValues(typeof(LinearGradientMode)))
 {
 MenuItem mi = new MenuItem();
 mi.Text = gm.ToString();
 mi.Click += new EventHandler(MenuGradientModeOnClick);
 Menu.MenuItems[0].MenuItems.Add(mi);
 }
 miChecked = Menu.MenuItems[0].MenuItems[0];
 miChecked.Checked = true;
 }
 void MenuGradientModeOnClick(object obj, EventArgs ea)
 {
 miChecked.Checked = false;
 miChecked = (MenuItem) obj;
 miChecked.Checked = true;

 Invalidate();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Rectangle rectBrush =
 new Rectangle(cx / 4, cy / 4, cx / 2, cy / 2);

 LinearGradientBrush lgbrush =
 new LinearGradientBrush(
 rectBrush, Color.White, Color.Black,
 (LinearGradientMode) miChecked.Index);

 grfx.FillRectangle(lgbrush, 0, 0, cx, cy);
 grfx.DrawRectangle(Pens.Black, rectBrush);
 }
}

Here's an example when you've used the menu to select LinearGradientMode.ForwardDiagonal and
the window has been widened somewhat:

Although the upper left corner of the brush rectangle is colored with the first color and the lower right
corner with the second color, the gradient line is obviously not the line from the upper left corner to
the lower right corner because the gradient line is always at right angles to the border lines. Instead,
the mix line (parallel to the border lines and midway between them) passes through the upper right
and lower left corners of the rectangle.

The four final constructors for LinearGradientBrush let you specify a rectangle and an angle:

LinearGradientBrush Constructors (selection)

LinearGradientBrush (Rectangle rect, Color clr1, Color clr2, float fAngle)
LinearGradientBrush (Rectangle rect, Color clr1, Color clr2, float fAngle,
 bool bScale)
LinearGradientBrush (RectangleF rectf, Color clr1, Color clr2, float
fAngle)
LinearGradientBrush (RectangleF rectf, Color clr1, Color clr2, float
fAngle,
 bool bScale)

If fAngle is 0, the effect is identical to LinearGradientMode.Horizontal: the gradient line is horizontal
from the left side of the rectangle to the right side.

As fAngle increases, the gradient line rotates clockwise that number of degrees. The upper left
corner of the rectangle is the first color, and the lower right corner is the second color. When fAngle
reaches 90 degrees, the effect is identical to LinearGradientMode.Vertical: the gradient line is
vertical from the top of the rectangle to the bottom. As fAngle increases beyond 90 degrees, the
gradient line continues to rotate clockwise. But now the upper right corner of the rectangle is the first
color, and the lower left corner of the rectangle is the second color.

The optional bScale argument indicates whether the rotation angle is scaled by any transform
associated with the brush.

I've already alluded to the WrapMode and Transform properties of LinearGradientBrush. This table
of four properties also includes the rectangle specified (or implied) by the constructor and an array of
two colors used in the brush:
LinearGradientBrush Properties (selection)

Type Property Accessibility

RectangleF Rectangle get

Color[] LinearColors get/set

WrapMode WrapMode get/set

Matrix Transform get/set

In addition to duplicating the TranslateTransform, ScaleTransform, RotateTransform,
MultiplyTransform, and ResetTransform methods defined in the TextureBrush class, the
LinearGradientBrush class also includes these two methods:

LinearGradientBrush Methods (selection)

void SetBlendTriangularShape(float fFocus)
void SetBlendTriangularShape(float fFocus, float fScale)
void SetSigmaBellShape(float fFocus)
void SetSigmaBellShape(float fFocus, float fScale)

Normally, the gradient is from the first color to the second color. These two methods change the
gradient so that it goes from the first color to the second color and then back to the first. Both
arguments (which I'll describe shortly) can range from 0 to 1.

Let's take a look. Here's the unaltered RectangleLinearGradientBrush program running with the
default LinearGradientMode of Horizontal:

The gradient is white at the left side of the rectangle and makes a transition to black at the right side
of the rectangle. If you insert the statement
lgbrush.SetBlendTriangularShape(0.33f);

right after the brush creation statement, the output looks like this:

The gradient goes from white at the left side of the rectangle to black and then back to white at the
right side of the rectangle. The fFocus argument of 0.33 indicates that the black peaks at 1/3 of the
way between the two sides of the rectangle.

When you replace that method call with
lgbrush.SetSigmaBellShape(0.33f);

the window looks like this:

The transition is more of a bell shape, again peaking 1/3 of the way between the left and right sides
of the rectangle.

In both methods, the fScale argument indicates to what extent the gradient goes to the second color.
The default is 1. Anything less then 1 causes the transition to go only partially to the second color.
An fScale of 0 causes the brush to consist of only the first color, with no gradient.

To get even deeper into the control of the gradient colors, you can use the following three properties:
LinearGradientBrush Properties (selection)

Type Property Accessibility

Blend Blend get/set

ColorBlend InterpolationColors get/set

bool GammaCorrection get/set

Both Blend and ColorBlend are fairly simple classes. Both classes have just two read/write
properties, which are both equally sized arrays. The two Blend properties are float arrays named
Positions and Factors, which indicate the factors (0 through 1) used to scale the two colors at relative
positions (ranging from 0 to 1) along the gradient line. The two ColorBlend properties are arrays
named Positions and Colors, which indicate the colors at relative positions along the gradient line.
Path Gradient Brushes
The final type of brush is named PathGradientBrush. In the constructor, you define a polygon (which,
as you know, is simply an array of points) and the brush is defined for the interior of the polygon.
Alternatively, you can simply specify a GraphicsPath object:

PathGradientBrush Constructors

PathGradientBrush(Point[] apt)
PathGradientBrush(PointF[] aptf)
PathGradientBrush(Point[] apt, WrapMode wm)
PathGradientBrush(PointF[] aptf, WrapMode wm)
PathGradientBrush(GraphicsPath path)

Let's leap right into this subject by specifying a triangle in the PathGradientBrush constructor and
seeing what happens.

TriangleGradientBrush.cs
//--
// TriangleGradientBrush.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class TriangleGradientBrush: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new TriangleGradientBrush());
 }
 public TriangleGradientBrush()
 {
 Text = "Triangle Gradient Brush";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Point[] apt = { new Point(cx, 0),
 new Point(cx, cy),
 new Point(0, cy) };

 PathGradientBrush pgbrush = new PathGradientBrush(apt);

 grfx.FillRectangle(pgbrush, 0, 0, cx, cy);
 }
}

Not much is happening in the program. An array of three points is defined (the upper right, lower
right, and lower left corners of the display area), and then a PathGradientBrush is created from those
points. The result, however, is quite cool:

Obviously, some default behavior was wisely defined!

Notice that I'm filling the entire client rectangle with this brush, yet the resultant object looks like a
triangle. That's because I used a triangle to define the brush. Outside of the triangle, the brush is
transparent. Whatever was on the display surface before the FillRectangle call will be unaffected.

In the generalized PathGradientBrush, gradients occur between each pair of points along the sides
of the polygon and from the sides of the polygon to the center. The location of the center point and
the colors are defined by the following three properties:
PathGradientBrush Properties (selection)

Type Property Accessibility

PointF CenterPoint get/set

Color CenterColor get/set

Color[] SurroundColors get/set

The CenterPoint property is initially set to the average of the points in the polygon, which could
actually be outside the polygon if the polygon has some concavity. The CenterColor property is
initially set to Color.Black. The SurroundColors property is initialized as an array with one element
equal to Color.White. You can set SurroundColors to an array of any size up to the number of points
you used to create the brush.

For example, if you insert the line
pgbrush.SurroundColors = new Color[] { Color.Red, Color.Green, Color.Blue
};

in the program right before the FillRectangle call, the point (cx, 0) will be red, (cx, cy) will be green,
and (0, cy) will be blue. Try it!

Here's a program that creates a polygon describing a five-pointed star. It sets the center color to
white and the surround color to black.
StarGradientBrush.cs
//--
// StarGradientBrush.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;

using System.Drawing.Drawing2D;
using System.Windows.Forms;

class StarGradientBrush: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new StarGradientBrush());
 }
 public StarGradientBrush()
 {
 Text = "Star Gradient Brush";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Point[] apt = new Point[5];

 for (int i = 0; i < apt.Length; i++)
 {
 double dAngle = (i * 0.8 - 0.5) * Math.PI;
 apt[i] = new Point(
 (int)(cx * (0.50 + 0.48 * Math.Cos(dAngle))),
 (int)(cy * (0.50 + 0.48 * Math.Sin(dAngle))));
 }
 PathGradientBrush pgbrush = new PathGradientBrush(apt);

 pgbrush.CenterColor = Color.White;
 pgbrush.SurroundColors = new Color[1] { Color.Black };

 grfx.FillRectangle(pgbrush, 0, 0, cx, cy);
 }
}

You can almost see how GDI+ draws the gradients as it circles around the points of the polygon. The
latter gradients draw over the earlier ones and cause an effect that makes it look like part of the star
goes through itself:

You can also use a path for defining a PathGradientBrush object. Here's a program that overrides
the Bounce program from Chapter 11 to provide a new DrawBall method.
BouncingGradientBrushBall.cs
//--
// BouncingGradientBrushBall.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class BouncingGradientBrushBall: Bounce
{
 public new static void Main()
 {
 Application.Run(new BouncingGradientBrushBall());
 }
 public BouncingGradientBrushBall()
 {
 Text = "Bouncing Gradient Brush Ball";
 }
 protected override void DrawBall(Graphics grfx, Rectangle rect)
 {
 GraphicsPath path = new GraphicsPath();
 path.AddEllipse(rect);

 PathGradientBrush pgbrush = new PathGradientBrush(path);
 pgbrush.CenterPoint = new PointF((rect.Left + rect.Right) / 3,
 (rect.Top + rect.Bottom) / 3);
 pgbrush.CenterColor = Color.White;
 pgbrush.SurroundColors = new Color[] { Color.Red };

 grfx.FillRectangle(pgbrush, rect);
 }
}

As you'll recall, the DrawBall method is responsible for drawing a ball on a bitmap. The earlier
version just drew a red Ellipse object using the Rectangle argument to the method. This version
defines a path based on that ellipse and then creates a PathGradientBrush object based on that
path. Normally, the gradient center would be the center of the ellipse, but this method moves the
center a bit to the upper left. The center color is set to white, and the surround color is set to red. The
method concludes by drawing a rectangle using this brush. (The brush is transparent outside the
boundaries of the ellipse.) The resultant ball looks more realistic than the earlier one because the
white spot gives the appearance of reflected light.

Tiling the Brush
Here are two other useful properties of PathGradientBrush:
PathGradientBrush Properties (selection)

Type Property Accessibility

RectangleF Rectangle get

WrapMode WrapMode get/set

Rectangle is a read-only property calculated by the brush when the brush is created. It is the
smallest rectangle that encloses the polygon. This rectangle is not affected by the CenterPoint
property; that is, CenterPoint is not necessarily inside this rectangle.

For a path-gradient brush, the WrapMode property is WrapMode.Clamp by default. Besides setting
the WrapMode property, you can also optionally specify a nondefault value in the constructor. The
reason I mention both the Rectangle and WrapMode properties together is because the effect of
WrapMode is highly dependent on the rectangle.

Let's make another triangle, this one of a fixed size and occupying the upper left half of a square. A
two-argument version of the constructor is used to set the wrap mode, which is based on a menu
selection.
TriangleTile.cs
//---
// TriangleTile.cs © 2001 by Charles Petzold

//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class TriangleTile: PrintableForm
{
 const int iSide = 50; // Side of square for triangle
 MenuItem miChecked;

 public new static void Main()
 {
 Application.Run(new TriangleTile());
 }
 public TriangleTile()
 {
 Text = "Triangle Tile";

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Wrap-Mode");

 foreach (WrapMode wm in Enum.GetValues(typeof(WrapMode)))
 {
 MenuItem mi = new MenuItem();
 mi.Text = wm.ToString();
 mi.Click += new EventHandler(MenuWrapModeOnClick);
 Menu.MenuItems[0].MenuItems.Add(mi);
 }
 miChecked = Menu.MenuItems[0].MenuItems[0];
 miChecked.Checked = true;
 }
 void MenuWrapModeOnClick(object obj, EventArgs ea)
 {
 miChecked.Checked = false;
 miChecked = (MenuItem) obj;
 miChecked.Checked = true;
 Invalidate();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Point[] apt = { new Point(0, 0),
 new Point(iSide, 0),
 new Point(0, iSide)};

 PathGradientBrush pgbrush =
 new PathGradientBrush(apt, (WrapMode)
miChecked.Index);

 grfx.FillRectangle(pgbrush, 0, 0, cx, cy);
 }
}

Without the second argument to the constructor, the default WrapMode is WrapMode.Clamp, which
means that the polygon isn't repeated at all. With WrapMode.Tile, which we've set as the initial wrap
mode, the polygon is repeated horizontally and vertically over the entire filled area (in this case, the
client rectangle).

You can, of course, achieve different kinds of effects by using different wrap modes. If you use
WrapMode.TileFlipX, every other polygon is flipped around the vertical axis:

Similarly, WrapMode.TileFlipY causes every other polygon to be flipped around the horizontal axis:

Finally, the WrapMode.TileFlipXY option is a combination of the two effects:

And this is now beginning to look like an interesting pattern.

The uncolored white areas in that last screen shot are the background of the window showing
through the transparent areas of the brush. The brush is only a triangle, so it can't entirely fill an area
with tiling. Only a brush composed of a rectangle can fill an area with horizontal and vertical tiling, as
in this program.
SquareTile.cs
//---
// SquareTile.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class SquareTile: PrintableForm
{
 const int iSide = 50; // Side of square

 public new static void Main()
 {
 Application.Run(new SquareTile());
 }
 public SquareTile()
 {
 Text = "Square Tile";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Point[] apt = {new Point(0, 0), new Point(iSide, 0),
 new Point(iSide, iSide), new Point(0,
iSide)};

 PathGradientBrush pgbrush =
 new PathGradientBrush(apt, WrapMode.TileFlipXY);

 pgbrush.SurroundColors = new Color[] { Color.Red, Color.Lime,
 Color.Blue, Color.White};

 grfx.FillRectangle(pgbrush, 0, 0, cx, cy);
 }
}

This program looks pretty cool in color, even though this monochrome rendition doesn't capture the
full effect:

But if you remove the SurroundColors assignment, the gray-shaded version also looks like an
interesting pattern—or at least more interesting than the few statements of code would seem to
imply:

Although a rectangular brush is the only brush shape capable of filling an entire area with tiling, it's
also possible to fill an entire area by using two (or more) nonrectangular brushes. Here's a program
that creates two interlocking triangular brushes and fills the client area twice.
TwoTriangleTile.cs
//--
// TwoTriangleTile.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class TwoTriangleTile: PrintableForm
{
 const int iSide = 50; // Side of square for triangle

 public new static void Main()
 {
 Application.Run(new TwoTriangleTile());
 }
 public TwoTriangleTile()
 {
 Text = "Two-Triangle Tile";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 // Define the triangle and create the first brush.

 Point[] apt =
 {new Point(0, 0), new Point(iSide, 0), new Point(0,
iSide)};

 PathGradientBrush pgbrush1 =
 new PathGradientBrush(apt, WrapMode.TileFlipXY);

 // Define another triangle and create the second brush.

 apt = new Point[] {new Point(iSide, 0), new Point(iSide, iSide),
 new Point(0, iSide)};

 PathGradientBrush pgbrush2 =
 new PathGradientBrush(apt, WrapMode.TileFlipXY);

 grfx.FillRectangle(pgbrush1, 0, 0, cx, cy);
 grfx.FillRectangle(pgbrush2, 0, 0, cx, cy);

 }
}

Notice that the second polygon simply defines a triangle in the lower right corner of the square. The
combination of the two triangle brushes fills the entire area:

Because the overall effect appears to be tiled squares, you might ask, Isn't it possible to do this
pattern with one PathGradientBrush? No, it's not, because a PathGradientBrush has only one
center. Each square in this pattern has two centers. (Of course, you could simulate this effect with a
TextureBrush because then you're defining a tiled bitmap.)

Using PathGradientBrush is so much fun, it's hard to stop. Let's consider the following honeycomb-
like pattern:

The black centers indicate that the polygon used in the PathGradientBrush object is a hexagon. Yet
the tiling doesn't look possible. Each column of hexagons might be vertically tiled, but they certainly
aren't horizontally tiled. The trick here, again, is to use two brushes. One brush does all the even
columns of hexagons, and the other does the odd columns. Both brushes are tiled both horizontally
and vertically.
HexagonGradientBrush.cs
//---

// HexagonGradientBrush.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class HexagonGradientBrush: PrintableForm
{
 const float fSide = 50; // Side (also radius) of hexagon

 public new static void Main()
 {
 Application.Run(new HexagonGradientBrush());
 }
 public HexagonGradientBrush()
 {
 Text = "Hexagon Gradient Brush";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 // Calculate half the hexagon height.

 float fHalf = fSide * (float) Math.Sin(Math.PI / 3);

 // Define a hexagon including some extra width.

 PointF[] aptf = {new PointF(fSide, 0),
 new PointF(fSide * 1.5f, 0),
 new PointF(fSide, 0),
 new PointF(fSide / 2, -fHalf),
 new PointF(-fSide / 2, -fHalf),
 new PointF(-fSide, 0),
 new PointF(-fSide * 1.5f, 0),
 new PointF(-fSide, 0),
 new PointF(-fSide / 2, fHalf),
 new PointF(fSide / 2, fHalf) };

 // Create the first brush.

 PathGradientBrush pgbrush1 =
 new PathGradientBrush(aptf, WrapMode.Tile);

 // Offset the hexagon and define the second brush.

 for (int i = 0; i < aptf.Length; i++)
 {
 aptf[i].X += fSide * 1.5f;
 aptf[i].Y += fHalf;
 }
 PathGradientBrush pgbrush2 =
 new PathGradientBrush(aptf, WrapMode.Tile);

 grfx.FillRectangle(pgbrush1, 0, 0, cx, cy);
 grfx.FillRectangle(pgbrush2, 0, 0, cx, cy);
 }
}
Pens Can Be Brushes Too
So far in this chapter I've been discussing brushes, but I've also been talking about pens, and that's
because pens can be created from brushes. Here's the complete list of Pen constructors:

Pen Constructors

Pen (Color clr)
Pen (Color clr, float fWidth)
Pen (Brush brush)
Pen (Brush brush, float fWidth)

Creating a Pen from a SolidBrush object is equivalent to creating a Pen from the Color object that
the SolidBrush object is based on.

With pens, it's very helpful to remember the stenciling effect that I mentioned earlier. When you draw
with a pen created from a brush, you are effectively creating a slit through which you can view the
brush. For example, here's a program that creates a Pen object based on a LinearGradientBrush.
GradientPen.cs
//--
// GradientPen.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class GradientPen: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new GradientPen());
 }
 public GradientPen()
 {
 Text = "Gradient Pen";

 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush lgbrush = new LinearGradientBrush(
 new Rectangle(0, 0, cx, cy),
 Color.White, Color.Black,
 LinearGradientMode.BackwardDiagonal);

 Pen pen = new Pen(lgbrush, Math.Min(cx, cy) / 25);

 pen.Alignment = PenAlignment.Inset;

 grfx.DrawRectangle(pen, 0, 0, cx, cy);
 grfx.DrawLine(pen, 0, 0, cx, cy);
 grfx.DrawLine(pen, 0, cy, cx, 0);
 }
}

The brush is based on a rectangle that encompasses the entire drawing area. The
LinearGradientMode is set as BackwardDiagonal, which means that the mix line is from the upper
left corner of the rectangle to the lower right corner. When you draw a line coinciding with (or parallel
to) the mix line using a pen created with this brush, it has a constant color, not a gradient.

Although all the lines drawn by this program use the same pen, they have different gradients. The
diagonal line from the lower left to the upper right goes from black to white. The horizontal and
vertical lines go from black to gray, or gray to white.

In this program, I use a pen width that is a minimum of 1/25 of the width and height of the display
area. The following table shows some width-related properties of the Pen class:
Pen Properties (selection)

Type Property Accessibility

float Width get/set

Matrix Transform get/set

Pen Properties (selection)

Type Property Accessibility

PenAlignment Alignment get/set

The Width property is in world coordinates, but it's never smaller than 1 pixel. If you specifically want
a 1-pixel pen, specify a width of 0.

Along with the Transform property, the Pen class has the customary array of transform-setting
methods: TranslateTransform, ScaleTransform, RotateTransform, MultiplyTransform, and
ResetTransform. However, the transform does not affect the location and orientation of lines you
draw with a pen, nor the brush that the pen may be based on. The transform affects only the pen
width. The type of transform that makes most sense for pens is scaling. With ScaleTransform (or
setting the Transform property manually), you can make pens that have different horizontal and
vertical widths. For example, suppose you have a pen that is 10 units wide. If you call
pen.ScaleTransform(2, 4);

the pen will have a horizontal width of 20 and a vertical width of 40, which means that vertical lines
with this pen will have a width of 20 units, horizontal lines will have a width of 40 units, and diagonal
lines will have a width somewhere in between. RotateTransform will rotate that effect.

I set the pen's Alignment property in the GradientPen program. The Alignment property can have
one of the values of the PenAlignment enumeration defined in System.Drawing.Drawing2D:
PenAlignment Enumeration

Member Value

Center 0

Inset 1

Outset 2

Left 3

Right 4

The Alignment property governs how wide pens appear when you draw rectangles or ellipses. By
default, the property is PenAlignment.Center, which means that the wide pen is centered over the
specified coordinates. In the GradientPen program, the lines drawn by DrawRectangle would be half
outside the client area. Switching to PenAlignment.Inset causes the whole pen to appear inside the
rectangle.

The following three properties concern the Brush or Color object used in the Pen:
Pen Properties (selection)

Type Property Accessibility

PenType PenType get

Color Color get/set

Brush Brush get/set

The PenType enumeration is defined in System.Drawing.Drawing2D:
PenType Enumeration

Member Value

SolidColor 0

HatchFill 1

TextureFill 2

PenType Enumeration

Member Value

PathGradient 3

LinearGradient 4

If you've created a pen with a color or with SolidBrush, the Color property of Pen is valid; otherwise,
the Brush property is valid. However, you can change either the Color or Brush property of an
existing pen and effectively change the pen type.
A Dash of Style
Pens needn't be solid lines. They can instead consist of patterns of dots and dashes. This style is
specified with the pen property named DashStyle:
Pen Properties (selection)

Type Property Accessibility

DashStyle DashStyle get/set

float DashOffset get/set

float[] DashPattern get/set

The DashStyle enumeration is defined in System.Drawing.Drawing2D:
DashStyle Enumeration

Member Value

Solid 0

Dash 1

Dot 2

DashDot 3

DashDotDot 4

Custom 5

The appearance of the dots and dashes is affected by the pen width and any transforms that are in
effect. The following program demonstrates this.
PenDashStyles.cs
//--
// PenDashStyles.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class PenDashStyles: PrintableForm
{
 MenuItem miChecked;

 public new static void Main()
 {

 Application.Run(new PenDashStyles());
 }
 public PenDashStyles()
 {
 Text = "Pen Dash Styles";

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Width");

 int[] aiWidth = { 1, 2, 5, 10, 15, 20, 25 };

 foreach (int iWidth in aiWidth)
 Menu.MenuItems[0].MenuItems.Add(iWidth.ToString(),
 new
EventHandler(MenuWidthOnClick));

 miChecked = Menu.MenuItems[0].MenuItems[0];
 miChecked.Checked = true;
 }
 void MenuWidthOnClick(object obj, EventArgs ea)
 {
 miChecked.Checked = false;
 miChecked = (MenuItem) obj;
 miChecked.Checked = true;
 Invalidate();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen pen = new Pen(clr);
 pen.Width = Convert.ToInt32(miChecked.Text);

 for (int i = 0; i < 5; i++)
 {
 pen.DashStyle = (DashStyle) i;

 int y = (i + 1) * cy / 6;

 grfx.DrawLine(pen, cx / 8, y, 7 * cx / 8, y);
 }
 }
}

The program constructs a menu that lets you select various widths from 1 through 25. The program
displays five lines using the first five dash styles equally spaced in the client area. Here's the Morse
code effect when you select a width of 25:

As I'll demonstrate in the next section, you have some control over the appearance of large dashes
and dots.

If you need to draw a dashed or dotted polyline, use DrawLines or a path. Don't use multiple calls to
DrawLine because the dash pattern starts anew with each line.

You can control how the dash begins in each line by using the DashOffset property. The property
indicates an offset into the dash style where the pattern of dots and dashes begins. The offset is in
increments of the dot size and is independent of the pen width. For example, if you insert the line
pen.DashOffset = 1;

into the PenDashStyles program, the patterns begin one dot size later and look like this:

The DashOffset value is a float, so it can take on nonintegral values. If you want the DashDot or
DashDotDot styles to begin with dots rather than dashes, set DashOffset equal to 4:
pen.DashOffset = 4;

You can also set your own pattern of dots and dashes using the DashPattern property. The array of
float values you specify indicates an alternating series of dash lengths and space lengths, all in
increments of the dot size. Here's an example:
float[] afDash = {2, 1, 4, 3};
pen.DashPattern = afDash;

After setting DashPattern, DashStyle is Custom and the line drawn with pen will contain a two-dot
dash, one space, a four-dot dash, and three spaces.
Caps and Joins
As the PenDashStyle program indicates, when lines start to get wide, they assume a graphical form
of their own. You may like the square and rectangular appearance of the dots and dashes in styled
lines, but you may prefer a more rounded appearance instead.

This is the realm of line caps (also known as ends) and joins. The cap governs the appearance of
the lines at their beginning and end, or the appearance of the dots and dashes. The join governs
what happens at the meeting of two connected lines. Here are the four basic caps and joins
properties:
Pen Properties (selection)

Type Property Accessibility

LineCap StartCap get/set

LineCap EndCap get/set

Pen Properties (selection)

Type Property Accessibility

DashCap DashCap get/set

LineJoin LineJoin get/set

I want to begin with the LineJoin property because that's probably the simplest. The property can
take on one of the following enumeration values:
LineJoin Enumeration

Member Value Description

Miter 0 Default, pointed

Bevel 1 Leveled off

Round 2 Rounded

MiterClipped 3 Pointed with limitations

The LineJoin property affects only lines that are connected, that is, polylines drawn with DrawLines
or connected lines in a path. Here's a program that draws simple V-shaped polylines with the four
different LineJoin values.
LineJoins.cs
//--
// LineJoins.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class LineJoins: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new LineJoins());
 }
 public LineJoins()
 {
 Text = "Line Joins: Miter, Bevel, Round, MiterClipped";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen penNarrow = new Pen(clr);
 Pen penWide = new Pen(Color.Gray, cx / 16);
 Point[] apt = { new Point(1 * cx / 32, 1 * cy / 8),
 new Point(4 * cx / 32, 6 * cy / 8),
 new Point(7 * cx / 32, 1 * cy / 8) };

 for (int i = 0; i < 4; i++)
 {
 penWide.LineJoin = (LineJoin) i;

 grfx.DrawLines(penWide, apt);
 grfx.DrawLines(penNarrow, apt);
 grfx.TranslateTransform(cx / 4, 0);
 }
 }
}

And here's what it looks like:

The wide gray pen is the one whose LineJoin property is set. The thin black line shows the actual
geometric line. You'll notice that the MiterClipped join looks just like Miter, but try making the form
very tall: the Miter join continues to get longer and pointier, but at some point the MiterClipped join is
truncated to look the same as a Bevel join. There's a reason to limit the length of miter joins: as the
angle between two joined lines increases, the miter join can become very long. For example, a 1-
inch-thick polyline joined at an angle of 1 degree would have a miter join that extended over 4½
feet![1] The Pen class has a special property to limit this extent when the LineJoin property is
MiterClipped:
Pen Properties (selection)

Type Property Accessibility

float MiterLimit get/set

The property truncates the miter join at a distance of pen.MiterLimit × pen.Width / 2. The default
MiterLimit is 10. If the Width property of the pen is 20, the miter extends only 100 units past the
theoretical end of the line.

Let's now take a look at the DashCap property that affects the appearance of dots and dashes in
styled lines. The property can take on one of the following enumeration values.
DashCap Enumeration

Member Value

Flat 0

Round 2

Triangle 3

Here's a variation of the PenDashStyles program that displays a DashDotDot line using the three
different DashCap values.
PenDashCaps.cs
//--

// PenDashCaps.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class PenDashCaps: PrintableForm
{
 MenuItem miChecked;

 public new static void Main()
 {
 Application.Run(new PenDashCaps());
 }
 public PenDashCaps()
 {
 Text = "Pen Dash Caps: Flat, Round, Triangle";

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Width");

 int[] aiWidth = { 1, 2, 5, 10, 15, 20, 25 };

 foreach (int iWidth in aiWidth)
 Menu.MenuItems[0].MenuItems.Add(iWidth.ToString(),
 new
EventHandler(MenuWidthOnClick));

 miChecked = Menu.MenuItems[0].MenuItems[0];
 miChecked.Checked = true;
 }
 void MenuWidthOnClick(object obj, EventArgs ea)
 {
 miChecked.Checked = false;
 miChecked = (MenuItem) obj;
 miChecked.Checked = true;
 Invalidate();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen pen = new Pen(clr, Convert.ToInt32(miChecked.Text));
 pen.DashStyle = DashStyle.DashDotDot;

 foreach (DashCap dc in Enum.GetValues(typeof(DashCap)))

 {
 pen.DashCap = dc;

 grfx.DrawLine(pen, cx / 8, cy / 4, 7 * cx / 8, cy / 4);
 grfx.TranslateTransform(0, cy / 4);
 }
 }
}

Here's the display when you select a width of 25:

These look a little odd because the beginning and end of the actual line is still squared off. The
appearance of the beginning and end of the line is affected by the StartCap and EndCap properties,
both of which are of type LineCap. You can insert the following statement into the PenDashCaps
program to make these two properties consistent with the DashCap property:
pen.StartCap = pen.EndCap = (LineCap) (int) dc;

The display then looks like this:

The two lines with the round and triangle caps aren't quite aligned with the flat caps. The reason
they're not is that (as we'll see) the round and triangle caps go beyond the geometric point marking
the beginning and end of the line. But the full width of the dashes and dots is kept consistent
regardless of the cap style.

Here's the complete LineCap enumeration:
LineCap Enumeration

Member Value

LineCap Enumeration

Member Value

Flat 0x00

Square 0x01

Round 0x02

Triangle 0x03

NoAnchor 0x10

SquareAnchor 0x11

RoundAnchor 0x12

DiamondAnchor 0x13

ArrowAnchor 0x14

AnchorMask 0xF0

Custom 0xFF

And here's a program that draws wide lines using all these values. The width of the line is fixed at
the Font.Height property. In addition, the program draws thin lines showing the geometric beginning
and end of each line.
LineCaps.cs
//---------------------------------------
// LineCaps.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class LineCaps: PrintableForm
{
 public new static void Main()
 {
 Application.Run(new LineCaps());
 }
 public LineCaps()
 {
 Text = "Line Caps";
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Pen penWide = new Pen(Color.Gray, Font.Height);
 Pen penNarrow = new Pen(clr);
 Brush brush = new SolidBrush(clr);

 foreach (LineCap lc in Enum.GetValues(typeof(LineCap)))

 {
 grfx.DrawString(lc.ToString(), Font, brush,
 Font.Height, Font.Height / 2);

 penWide.StartCap = lc;
 penWide.EndCap = lc;

 grfx.DrawLine(penWide, 2 * cx / 4, Font.Height,
 3 * cx / 4, Font.Height);

 grfx.DrawLine(penNarrow, 2 * cx / 4, Font.Height,
 3 * cx / 4, Font.Height);

 grfx.TranslateTransform(0, 2 * Font.Height);
 }
 }
}

Here's the result:

Keep in mind that I'm using the same enumeration value for the beginning and end of the line. You
can use different values if you want.

The NoAnchor value produces the same result as Flat. The SquareAnchor, RoundAnchor, and
DiamondAnchor line ends are similar to Square, Round, and Triangle, respectively (as their
enumeration values indicate), except that they are larger.

If the various line caps provided by the LineCap enumeration aren't enough for you, you can set the
StartCap and/or EndCap properties of the pen equal to LineCap.Custom and then make use of the
following properties:
Pen Properties (selection)

Type Property Accessibility

CustomLineCap CustomStartCap get/set

CustomLineCap CustomEndCap get/set

The CustomLineCap class (in System.Drawing.Drawing2D) lets you use a path to define the outline
of your custom caps. In addition, the AdjustableArrowCap class derives from CustomLineCap to let
you draw arrow caps with more control over the arrow size and filled interior.
[1] Let w be the width of the line and α the join angle. It's easy to show that the extension of the miter
tip past the actual join point is (w/2)/sin(α/2).

Chapter 18: Edit, List, and Spin
Overview
Just about every Windows program requires a little text input from the user every now and then.
Back in Chapter 6, I discussed how your program can install handlers for the KeyDown, KeyUp, and
KeyPress events to obtain keyboard input and echo the input back to the user. For many simple
purposes, however, you can make use of a type of control traditionally called an edit control, but in
the .NET Framework is referred to as a text box.

A text box can range from a small, single-line entry field to a multiline control with word wrap, such
as that used in the Microsoft Notepad program. Writing a clone of Notepad is a traditional exercise
for a book like this, and we'll accomplish most of that job in this chapter. (I'll add printing support in
Chapter 21 and drag-and-drop in Chapter 24.)

In this chapter, I'll also discuss several other important types of controls. The list box presents a
scrollable list of options to the user; the combo box combines the text box and the list box. When
numbers are involved, you'll probably want to use the up-down control, more commonly called a spin
box.
Single-Line Text Boxes
The simplest text box control is named TextBox, which is derived from the abstract TextBoxBase
class, as shown in the class hierarchy on the top of the following page.

Also deriving from TextBoxBase is RichTextBox. The RichTextBox control provides additional
functionality over TextBox in the same way that the Microsoft WordPad program provides additional
features over Notepad. In TextBox (as in Notepad), you can define a font, but the font applies to the
entire document. In RichTextBox (as in WordPad), you can define different fonts as well as other
formatting for different parts of the document.

The most important property for text boxes is Text because it contains the text that the user enters
into the text box. A program can also initialize the text of the text box and limit the length of the text:
TextBoxBase Properties (selection)

Type Property Accessibility

string Text get/set

int MaxLength get/set

int TextLength get

string[] Lines get/set

The TextLength property is the same as Text.Length.

The Lines property might also be called Paragraphs since it divides the document into text blocks
terminated by end-of-line characters. These blocks show up as lines of text if word wrap is off but as
paragraphs if word wrap is on.

When you use a text box in a dialog box, in many cases you need to fish the text out of the text box
only when the user presses OK. But some dialog boxes like to keep closer track of what the user is
entering. Perhaps the dialog box enables the OK button only when the text box contains some valid
information. The most useful event for text boxes is actually defined in Control:
Control Events (selection)

Event Method Delegate Argument

TextChanged OnTextChanged EventHandler EventArgs

Here's a program that creates a text box and a label control. By installing a handler for the text box's
TextChanged event, the program can track the text that the user enters in the text box and replicate
it in the label control.
TextBoxDemo.cs
//--
// TextBoxDemo.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class TextBoxDemo: Form
{
 Label label;

 public static void Main()
 {
 Application.Run(new TextBoxDemo());
 }
 public TextBoxDemo()
 {
 Text = "TextBox Demo";

 // Create text box control.

 TextBox txtbox = new TextBox();
 txtbox.Parent = this;
 txtbox.Location = new Point(Font.Height, Font.Height);
 txtbox.Size = new Size(ClientSize.Width - 2 *
Font.Height,
 Font.Height);
 txtbox.Anchor |= AnchorStyles.Right;
 txtbox.TextChanged += new EventHandler(TextBoxOnTextChanged);

 // Create label control.

 label = new Label();
 label.Parent = this;
 label.Location = new Point(Font.Height, 3 * Font.Height);
 label.AutoSize = true;
 }
 void TextBoxOnTextChanged(object obj, EventArgs ea)
 {
 TextBox txtbox = (TextBox) obj;

 label.Text = txtbox.Text;
 }
}

Because I've set the Anchor property of the text box, the control will stretch wider when you resize
the form. However, the actual size of the text box doesn't limit the amount of text you can enter. As
you enter text beyond the width of the text box, the text will automatically scroll to the left. When that
happens, the label control may not be able to display all the text even though it has its AutoSize
property set:

The default background and foreground colors of the text box are SystemColors.Window and
SystemColors.WindowText, as opposed to the SystemColors.Control and SystemColors.ControlText
colors that the form uses. The text box inherits its default Font property from its parent. The default
BorderStyle property is BorderStyle.Fixed3D, which gives the control a sunken appearance. You can
also use None or FixedSingle.

I want you to take a moment to experiment with the TextBoxDemo program or the Notepad program
or any other text box anywhere in Windows. As you undoubtedly know, the caret in the text box
indicates the insertion point—where text will be inserted when you type. You can move the caret
anywhere you want within the entire block of text by using the cursor arrow keys. You can also
change the location of the caret by clicking with the mouse.

If you hold down the Shift key and move the cursor arrow keys, you define a selection, which is a
block of text that the text box highlights using a reverse-video effect. You can also use the mouse to
define a selection in the text box by dragging the mouse with the button pressed.

Here's the important point: If there's text selected in the text box, the caret is always at the beginning
or the end of the selection. It's important to realize this because the properties that provide

information about the selection also provide information about the caret position. Four properties of
TextBoxBase are concerned with the selection and hence also the caret position:
TextBoxBase Properties (selection)

Type Property Accessibility

int SelectionStart get/set

int SelectionLength get/set

string SelectedText get/set

bool HideSelection get/set

The SelectionStart property is a zero-based index indicating the character position of the beginning
of the selection. If SelectionStart is 0, the selection begins at the very beginning of the text in the text
box.

The SelectionLength property indicates the number of characters in the selection. If SelectionLength
is 0, no text is selected and SelectionStart indicates the caret position. If both SelectionStart and
SelectionLength are 0, the caret is located at the very beginning of the text box contents.

If SelectionLength is greater than 0, the precise caret position isn't available. Depending on how
you've selected the text (that is, whether you used the left arrow or the right arrow, or you swept the
mouse in a particular direction), the caret could be at either the beginning or the end of the selection.
The caret position is either SelectionStart or (SelectionStart + SelectionLength).

If there's no selection, SelectedText is the empty string. Otherwise, it's a text string of the selected
text. The SelectionLength property is really just a shortcut for SelectedText.Length.

Notice that the SelectedText property is writable. If a program wants to delete the selected text from
the text box (without deleting the unselected text), it can simply set the property to an empty string:
txtbox.SelectedText = "";

If a program wants to insert text at the caret position, it can call
txtbox.SelectedText = "insert text";

If there's currently a selection, the inserted text will replace the selection. If there's no selection, the
text will be inserted at the caret position.

The HideSelection property is normally true. That means that when the text box loses the input
focus, it no longer highlights the selection. This is normal behavior. Later on in this chapter, I use a
nondefault setting of HideSelection in connection with a find-and-replace modeless dialog box.

The TextBox control doesn't have an event that allows a program to determine when the selection
changes. However, the RichTextBox control does have an event named SelectionChanged.

The Select and SelectAll methods allow a program to set a selection in a text box:

TextBoxBase Methods (selection)

void Select(int iStart, int iLength)
void SelectAll()
void Clear()

The Select method is equivalent to setting the SelectionStart and SelectionLength properties. The
SelectAll method is equivalent to setting SelectionStart to 0 and SelectionLength to TextLength. The
Clear method is equivalent to setting Text to an empty string.

By experimenting with TextBoxDemo, you may have noticed that the text box automatically works
with the clipboard. You can type Ctrl+X to delete the selected text and copy it to the clipboard, Ctrl+C

to copy selected text to the clipboard without deleting it, and Ctrl+V to paste text from the clipboard.
We'll see how to do this programmatically later in the chapter. The standard TextBox also includes
an undo facility. If you select some text and delete it using the Delete key, you can bring it back by
typing Ctrl+Z. It's only a one-level undo: pressing Ctrl+Z again makes the deleted text go away, and
pressing Ctrl+Z again restores the text.
Multiline Text Boxes
It's fairly easy to convert a single-line text box to a multiline text box. Basically, you set the Multiline
property to true and (most likely) make the text box large enough to display more than one line.
However, a number of other properties are involved with multiline text boxes, so let's begin by getting
familiar with them.

Here's Multiline and two other related properties:
TextBox Properties (selection)

Type Property Accessibility Default

bool Multiline get/set false

bool WordWrap get/set true

ScrollBars ScrollBars get/set ScrollBars.None

The Multiline and WordWrap properties are implemented in TextBoxBase and are also inherited by
RichTextBox. The ScrollBars property is implemented in TextBox and can have one of the following
values:
ScrollBars Enumeration

Member Value

None 0

Horizontal 1

Vertical 2

Both 3

Setting the property to Horizontal, Vertical, or Both makes the scroll bars appear even if they're not
needed, which is the case when there's not enough text to make them useful. However, if the scroll
bars aren't currently needed, they are disabled. Regardless of the setting of the ScrollBars property,
the horizontal scroll bar won't be displayed if WordWrap is set to true.

The RichTextBox control also has a ScrollBars property, but the property is a different type—
RichTextBoxScrollBars—and it lets you get more specific about when you want the scroll bars to
appear:
RichTextBoxScrollBars Enumeration

Member Value

None 0

Horizontal 1

Vertical 2

Both 3

ForcedHorizontal 17

ForcedVertical 18

ForcedBoth 19

The Horizontal, Vertical, and Both members cause the scroll bars to be displayed only when they're
needed. The members beginning with the word Forced cause the scroll bars to be displayed
regardless.

You can't center text vertically in multiline text boxes. The most control you have is with the TextAlign
property:
TextBox Properties (selection)

Type Property Accessibility

HorizontalAlignment TextAlign get/set

HorizontalAlignment is an enumeration:
HorizontalAlignment Enumeration

Member Value

Left 0

Right 1

Center 2

As you know, the Tab and Enter keys have special meaning in dialog boxes or in any form that has
child controls. The Tab key causes the focus to shift among controls; Enter usually activates the OK
button. For single-line text boxes implemented in dialog boxes, you probably want the Tab and Enter
keys to function normally. For multiline text boxes, however, you probably want the text box itself to
capture the Tab and Enter keys. If so, set these two properties to true:
TextBox Properties (selection)

Type Property Accessibility Default

bool AcceptsReturn get/set true

bool AcceptsTab get/set false

AcceptsReturn is implemented in TextBox; AcceptsTab is implemented in TextBoxBase. If the
AcceptButton property of the parent form isn't set, the text box will capture the Enter key regardless
of the AcceptsReturn property.
Cloning Notepad
We're now ready to begin building a clone of Notepad. To present the code in manageable chunks,
I'm going to build this program up through several levels of inheritance.

Here's the first module, which creates the text box and uses DockStyle.Fill to make it fill the form's
client area. The constructor concludes by setting several properties appropriate for multiline text
boxes.
NotepadCloneNoMenu.cs
//---
// NotepadCloneNoMenu.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class NotepadCloneNoMenu: Form
{
 protected TextBox txtbox;

 public static void Main()
 {
 Application.Run(new NotepadCloneNoMenu());
 }
 public NotepadCloneNoMenu()
 {
 Text = "Notepad Clone No Menu";

 txtbox = new TextBox();
 txtbox.Parent = this;
 txtbox.Dock = DockStyle.Fill;
 txtbox.BorderStyle = BorderStyle.None;
 txtbox.Multiline = true;
 txtbox.ScrollBars = ScrollBars.Both;
 txtbox.AcceptsTab = true;
 }
}

Considering the length of this program, it has a high level of functionality and works much like the
Notepad program when the Word Wrap menu item is checked. Here's what it looks like with some
text typed in.

Before beginning to implement a menu in Notepad Clone, I want to implement some code that
accesses the Windows registry. As you may know, whenever you change the Word Wrap menu item
in Notepad or the font that it uses, the new settings are used when you next run Notepad. You can
view all the Notepad registry settings in the Registry Editor (Regedit.exe) under
HKEY_CURRENT_USER with the key Software\Microsoft\Notepad.

Besides saving the Word Wrap setting and the font, Notepad also uses the registry to save its
window size and position on the desktop. If you move or resize Notepad, terminate the program, and
then run it again, it will appear in the saved location and with the saved size.

At first, implementing a feature to save the location and size seems to involve merely saving the
form's DesktopBounds property in the registry when the program terminates and setting the property
from the registry when the program next runs. Such a scheme would indeed work fine were it not for
those window-display options known as minimize and maximize.

Let's examine these cases: When you maximize any Windows program and then restore it, the
program returns to the same location and size as before it was maximized. Similarly, when you
minimize and then restore the program, it goes back to the same location and size. Windows
obviously saves the location and size of the program's window before the window becomes
minimized or maximized. A program using the Win32 API has access to this information in the
WINDOWPLACEMENT structure (where it is referred to as the normal position). The
WINDOWPLACEMENT structure is used in the API functions GetWindowPlacement and
SetWindowPlacement.

A Windows Forms program doesn't always have direct access to the normal position. When a form is
maximized, the DesktopBounds property reflects the maximized location and size. If the form has a
sizing border, the location of the maximized form has negative coordinates because the form is
positioned with the sizing border outside the area of the desktop. When a form is minimized, the
DesktopBounds property has special X and Y values of −32000, and the Height and Width values
represent the size of the minimized button on the Windows taskbar. Only when the form is not
minimized or maximized does DesktopBounds reflect the normal position of the form.

Do you see the problem yet? It manifests itself if the program is terminated when it happens to be
minimized or maximized. Because DesktopBounds doesn't reflect the normal position of the form,
that's not what the program should save in the registry.

For this reason, a Windows Forms program that wants to save its normal position in the registry
should maintain a field specifically for that purpose. (In the program coming up shortly, I call this field
rectNormal.) The program can set this field from DesktopBounds in its constructor, and it can also
reset the field from DesktopBounds during any call to OnMove or OnResize when the form isn't
minimized or maximized. Use the WindowState property to determine whether the window is
minimized or maximized:
Form Properties (selection)

Type Property Accessibility

FormWindowState WindowState get/set

The FormWindowState enumeration has the following members:
FormWindowState Enumeration

Member Value

Normal 0

Minimized 1

Maximized 2

Here's the next installment in the Notepad Clone series, which derives from NotepadCloneNoMenu
and implements the overhead required to access the registry. It also uses the registry to save and
restore the location and size of the window. As I mentioned, the rectNormal field is set during the
constructor (a time during which the WindowState property is always FormWindowState.Normal) and
in the OnMove and OnResize methods whenever WindowState equals FormWindowState.Normal.
NotepadCloneWithRegistry.cs
//---
// NotepadCloneWithRegistry.cs © 2001 by Charles Petzold
//---
using Microsoft.Win32;
using System;
using System.Drawing;
using System.Windows.Forms;

class NotepadCloneWithRegistry: NotepadCloneNoMenu

{
 Rectangle rectNormal;
 protected string strProgName;
 string strRegKey =

"Software\\ProgrammingWindowsWithCSharp\\";
 const string strWinState = "WindowState";
 const string strLocationX = "LocationX";
 const string strLocationY = "LocationY";
 const string strWidth = "Width";
 const string strHeight = "Height";

 public new static void Main()
 {
 Application.Run(new NotepadCloneWithRegistry());
 }
 public NotepadCloneWithRegistry()
 {
 Text = strProgName = "Notepad Clone with Registry";
 rectNormal = DesktopBounds;
 }
 protected override void OnMove(EventArgs ea)
 {
 base.OnMove(ea);

 if (WindowState == FormWindowState.Normal)
 rectNormal = DesktopBounds;
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 if (WindowState == FormWindowState.Normal)
 rectNormal = DesktopBounds;
 }
 protected override void OnLoad(EventArgs ea)
 {
 base.OnLoad(ea);

 // Construct complete registry key.

 strRegKey = strRegKey + strProgName;

 // Load registry information.

 RegistryKey regkey = Registry.CurrentUser.OpenSubKey(strRegKey);

 if (regkey != null)
 {
 LoadRegistryInfo(regkey);
 regkey.Close();
 }
 }
 protected override void OnClosed(EventArgs ea)
 {
 base.OnClosed(ea);

 // Save registry information.

 RegistryKey regkey =
 Registry.CurrentUser.OpenSubKey(strRegKey, true);

 if (regkey == null)
 regkey = Registry.CurrentUser.CreateSubKey(strRegKey);

 SaveRegistryInfo(regkey);
 regkey.Close();
 }
 protected virtual void SaveRegistryInfo(RegistryKey regkey)
 {
 regkey.SetValue(strWinState, (int) WindowState);
 regkey.SetValue(strLocationX, rectNormal.X);
 regkey.SetValue(strLocationY, rectNormal.Y);
 regkey.SetValue(strWidth, rectNormal.Width);
 regkey.SetValue(strHeight, rectNormal.Height);
 }
 protected virtual void LoadRegistryInfo(RegistryKey regkey)
 {
 int x = (int) regkey.GetValue(strLocationX, 100);
 int y = (int) regkey.GetValue(strLocationY, 100);
 int cx = (int) regkey.GetValue(strWidth, 300);
 int cy = (int) regkey.GetValue(strHeight, 300);

 rectNormal = new Rectangle(x, y, cx, cy);

 // Adjust rectangle for any change in desktop size.

 Rectangle rectDesk = SystemInformation.WorkingArea;

 rectNormal.Width = Math.Min(rectNormal.Width, rectDesk.Width);
 rectNormal.Height = Math.Min(rectNormal.Height,
rectDesk.Height);

 rectNormal.X -= Math.Max(rectNormal.Right - rectDesk.Right,
0);
 rectNormal.Y -= Math.Max(rectNormal.Bottom - rectDesk.Bottom,
0);

 // Set form properties.

 DesktopBounds = rectNormal;
 WindowState = (FormWindowState) regkey.GetValue(strWinState, 0);
 }
}

An earlier program in this book that used the registry (DialogsWithRegistry in Chapter 16) loaded
information during the form's constructor and saved information during the OnClosed method. The
NotepadCloneWithRegistry program, however, loads information during the OnLoad method, which
is associated with the Load event and is called after the constructor code executes but before the
program is made visible.

I chose this alternative because I wanted each installment in the Notepad Clone series to use its own
area of the registry based on its own program name. The constructor in NotepadCloneWithRegistry
sets both the strProgName field and the Text property to the string "Notepad Clone with Registry".
The next program in the series (coming up soon) is called NotepadClonewithFile. Its sets the
strProgName field to "Notepad Clone with File" and initially sets the Text property to "Notepad Clone
with File – Untitled".

By the time the OnLoad method in NotepadCloneWithRegistry is called, all the default constructors
have been executed. If the NotepadCloneWithRegistry program is running, strProgName will equal
"Notepad Clone with Registry". If the NotepadCloneWithFile program is running, strProgName will
equal "Notepad Clone with File". The OnLoad method uses strProgName to form a registry key that
is also later used in the OnClosed method.

The OnLoad method in NotepadCloneWithRegistry calls the virtual method LoadRegistryInfo, and
the OnClosed method calls another virtual method named SaveRegistryInfo. Both these virtual
methods have RegistryKey arguments. Thus, any subsequent program in the Notepad Clone series
can simply override these two virtual methods to load and save registry information. The overrides
must also call the base methods. We'll see how this works shortly.

SaveRegistryInfo saves the WindowState property and the four components of the rectNormal field.
LoadRegistryInfo first sets the rectNormal field from these four components. However, it could be
that the user changed the desktop size after closing the earlier instance of the program. If so,
rectNormal is adjusted to fit within the desktop. The method sets the DesktopBounds property from
the adjusted rectNormal field and then sets the WindowState property from the value saved in the
registry. Thus, if you close the program in a minimized or maximized state, that state will be reflected
the next time the program is run. However, if you then restore the program to its normal size, the
location and size will be the same as the previous instance, before it was minimized or maximized.
(This behavior is a little different from the Windows Notepad program. Notepad always comes up in
its normal state regardless of how the previous instance was closed.)
The Notepad Clone with File I/O
The next step for the Notepad Clone series is implementing a File menu in the program. We've seen
file I/O code before, but because I'm trying to write a "real-life" program here, Notepad Clone must
do what other programs dealing with documents do, which is sometimes display a message box
saying, "The text in the file has changed. Do you want to save the changes?"

The following property of TextBoxBase is useful for implementing such a facility:
TextBoxBase Properties (selection)

Type Property Accessibility

bool Modified get/set

When you create a new TextBox or RichTextBox, the Modified property is initialized to false.
Thereafter, whenever the user does something to change the contents of the text box (such as
typing), the text box sets its Modified property to true. Your program uses this property to determine
whether the contents of the text box must be saved to a file. Whenever your program saves the
contents of the text box to a file, it must reset the property to false. (An indicator that the text has
changed is sometimes called a dirty bit.)

On several occasions, a program dealing with documents should display a message box asking
whether the document should be saved: when the user selects New from the File menu, essentially
deleting the existing file from the application; when the user selects Open from the File menu,
replacing the existing file; and when the user wants to exit the program. In the NotepadCloneWithFile
program (coming up soon), the method that checks whether it's OK to delete the existing document
is called OkToTrash.

If the user chooses to save the existing document to a file, the program normally must perform the
same operation as if the user had selected Save from the File menu. However, if the document has
no name, the Save As dialog box must be displayed. If the user then clicks the Cancel button in the
dialog box, the file isn't saved, but neither does the program perform the New, Open, or Exit
operation.

To handle the last case, the program must override the OnClosing method, which occurs before the
form is closed, after which the OnClosed method is called. The OnClosing method is accompanied
by a CancelEventArgs object, which has a single Boolean property (named Cancel) that the
OnClosing method can set to true to prevent the program from being closed.

NotepadCloneWithFile also requires a method of TextBoxBase that I haven't mentioned yet:

TextBoxBase Methods (selection)

void ClearUndo()

Some background is required here. As I mentioned, the TextBoxBase class implements a single-
level undo feature. When a change is made to the contents of the text box, the previous version is
often saved. As we'll see in the next section, TextBoxBase also includes a Boolean property named
CanUndo that returns true to indicate the existence of a previous version and a method named Undo
that reverts to the previous version.

However, at times you don't want the user to be able to revert to the previous contents of the text
box, for example, when the program loads the text box from a file. It doesn't make much sense for
the Undo command to revert to the text box state before the file was loaded. In such cases, the
program calls ClearUndo to delete the previous version of the text box contents.

Here's the version of Notepad Clone that implements a File menu. Currently, three options involving
printing are left unimplemented. I'll be supplying code for those items in Chapter 21, in the
NotepadCloneWithPrinting program.
NotepadCloneWithFile.cs
//---
// NotepadCloneWithFile.cs © 2001 by Charles Petzold
//---
using Microsoft.Win32; // For registry classes
using System;
using System.ComponentModel; // For CancelEventArgs class
using System.Drawing;
using System.IO;
using System.Text; // For Encoding class
using System.Windows.Forms;

class NotepadCloneWithFile: NotepadCloneWithRegistry
{
 // Fields
 protected string strFileName;
 const string strEncoding = "Encoding"; // For registry
 const string strFilter =
 "Text Documents(*.txt)|*.txt|All Files(*.*)|*.*";
 MenuItem miEncoding;
 MenuItemEncoding mieChecked;
 // Entry point
 public new static void Main()
 {
 Application.Run(new NotepadCloneWithFile());
 }
 // Constructor
 public NotepadCloneWithFile()
 {
 strProgName = "Notepad Clone with File";
 MakeCaption();
 Menu = new MainMenu();

 // File menu

 MenuItem mi = new MenuItem("&File");
 Menu.MenuItems.Add(mi);
 int index = Menu.MenuItems.Count - 1;

 // File New

 mi = new MenuItem("&New");
 mi.Click += new EventHandler(MenuFileNewOnClick);
 mi.Shortcut = Shortcut.CtrlN;
 Menu.MenuItems[index].MenuItems.Add(mi);

 // File Open

 MenuItem miFileOpen = new MenuItem("&Open...");
 miFileOpen.Click += new EventHandler(MenuFileOpenOnClick);
 miFileOpen.Shortcut = Shortcut.CtrlO;
 Menu.MenuItems[index].MenuItems.Add(miFileOpen);

 // File Save

 MenuItem miFileSave = new MenuItem("&Save");

 miFileSave.Click += new EventHandler(MenuFileSaveOnClick);
 miFileSave.Shortcut = Shortcut.CtrlS;
 Menu.MenuItems[index].MenuItems.Add(miFileSave);

 // File Save As

 mi = new MenuItem("Save &As...");
 mi.Click += new EventHandler(MenuFileSaveAsOnClick);
 Menu.MenuItems[index].MenuItems.Add(mi);

 // File Encoding

 miEncoding = new MenuItem("&Encoding");
 Menu.MenuItems[index].MenuItems.Add(miEncoding);
 Menu.MenuItems[index].MenuItems.Add("-");

 // File Encoding submenu

 EventHandler eh = new EventHandler(MenuFileEncodingOnClick);

 string[] astrEncodings = { "&ASCII", "&Unicode",
 "&Big-Endian Unicode",
 "UTF-&7", "&UTF-&8" };

 Encoding[] aenc = { Encoding.ASCII, Encoding.Unicode,
 Encoding.BigEndianUnicode,
 Encoding.UTF7, Encoding.UTF8 };

 for (int i = 0; i < astrEncodings.Length; i++)
 {
 MenuItemEncoding mie = new MenuItemEncoding();
 mie.Text = astrEncodings[i];
 mie.Encoding = aenc[i];
 mie.RadioCheck = true;
 mie.Click += eh;

 miEncoding.MenuItems.Add(mie);
 }
 mieChecked = (MenuItemEncoding) miEncoding.MenuItems[4]; //
UTF-8
 mieChecked.Checked = true;

 // File Page Setup

 mi = new MenuItem("Page Set&up...");
 mi.Click += new EventHandler(MenuFileSetupOnClick);

 Menu.MenuItems[index].MenuItems.Add(mi);

 // File Print Preview

 mi = new MenuItem("Print Pre&view...");
 mi.Click += new EventHandler(MenuFilePreviewOnClick);
 Menu.MenuItems[index].MenuItems.Add(mi);

 // File Print

 mi = new MenuItem("&Print...");
 mi.Click += new EventHandler(MenuFilePrintOnClick);
 mi.Shortcut = Shortcut.CtrlP;
 Menu.MenuItems[index].MenuItems.Add(mi);
 Menu.MenuItems[index].MenuItems.Add("-");

 // File Exit

 mi = new MenuItem("E&xit");
 mi.Click += new EventHandler(MenuFileExitOnClick);
 Menu.MenuItems[index].MenuItems.Add(mi);

 // Set system event.

 SystemEvents.SessionEnding +=
 new
SessionEndingEventHandler(OnSessionEnding);
 }
 // Event overrides
 protected override void OnLoad(EventArgs ea)
 {
 base.OnLoad(ea);

 // Deal with the command-line argument.

 string[] astrArgs = Environment.GetCommandLineArgs();

 if (astrArgs.Length > 1) // First argument is program name!
 {
 if (File.Exists(astrArgs[1]))
 {
 LoadFile(astrArgs[1]);
 }
 else
 {
 DialogResult dr =

 MessageBox.Show("Cannot find the " +
 Path.GetFileName(astrArgs[1]) +
 " file.\r\n\r\n" +
 "Do you want to create a new
file?",
 strProgName,
 MessageBoxButtons.YesNoCancel,
 MessageBoxIcon.Question);
 switch(dr)
 {
 case DialogResult.Yes: // Create and close file.
 File.Create(strFileName = astrArgs[1]).Close();
 MakeCaption();
 break;

 case DialogResult.No:
 break;

 case DialogResult.Cancel:
 Close();
 break;
 }
 }
 }
 }
 protected override void OnClosing(CancelEventArgs cea)
 {
 base.OnClosing(cea);

 cea.Cancel = !OkToTrash();
 }
 // Event
handlers
 void OnSessionEnding(object obj, SessionEndingEventArgs seea)
 {
 seea.Cancel = !OkToTrash();
 }
 // Menu items
 void MenuFileNewOnClick(object obj, EventArgs ea)
 {
 if (!OkToTrash())
 return;

 txtbox.Clear();
 txtbox.ClearUndo();
 txtbox.Modified = false;

 strFileName = null;
 MakeCaption();
 }
 void MenuFileOpenOnClick(object obj, EventArgs ea)
 {
 if (!OkToTrash())
 return;

 OpenFileDialog ofd = new OpenFileDialog();
 ofd.Filter = strFilter;
 ofd.FileName = "*.txt";

 if (ofd.ShowDialog() == DialogResult.OK)
 LoadFile(ofd.FileName);
 }
 void MenuFileEncodingOnClick(object obj, EventArgs ea)
 {
 mieChecked.Checked = false;
 mieChecked = (MenuItemEncoding) obj;
 mieChecked.Checked = true;
 }
 void MenuFileSaveOnClick(object obj, EventArgs ea)
 {
 if (strFileName == null || strFileName.Length == 0)
 SaveFileDlg();
 else
 SaveFile();
 }
 void MenuFileSaveAsOnClick(object obj, EventArgs ea)
 {
 SaveFileDlg();
 }
 protected virtual void MenuFileSetupOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("Page Setup not yet implemented!", strProgName);
 }
 protected virtual void MenuFilePreviewOnClick(object obj, EventArgs
ea)
 {
 MessageBox.Show("Print Preview not yet implemented!",
strProgName);
 }
 protected virtual void MenuFilePrintOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show("Print not yet implemented!", strProgName);

 }
 void MenuFileExitOnClick(object obj, EventArgs ea)
 {
 if (OkToTrash())
 Application.Exit();
 }
 // Method overrides
 protected override void LoadRegistryInfo(RegistryKey regkey)
 {
 base.LoadRegistryInfo(regkey);

 // Set encoding setting.

 int index = (int) regkey.GetValue(strEncoding, 4);

 mieChecked.Checked = false;
 mieChecked = (MenuItemEncoding) miEncoding.MenuItems[index];
 mieChecked.Checked = true;

 }
 protected override void SaveRegistryInfo(RegistryKey regkey)
 {
 base.SaveRegistryInfo(regkey);
 regkey.SetValue(strEncoding, mieChecked.Index);
 }
 // Utility routines
 protected void LoadFile(string strFileName)
 {
 StreamReader sr;

 try
 {
 sr = new StreamReader(strFileName);
 }
 catch (Exception exc)
 {
 MessageBox.Show(exc.Message, strProgName,
 MessageBoxButtons.OK,
 MessageBoxIcon.Asterisk);
 return;
 }
 txtbox.Text = sr.ReadToEnd();
 sr.Close();

 this.strFileName = strFileName;

 MakeCaption();

 txtbox.SelectionStart = 0;
 txtbox.SelectionLength = 0;
 txtbox.Modified = false;
 txtbox.ClearUndo();
 }
 void SaveFile()
 {
 try
 {
 StreamWriter sw = new StreamWriter(strFileName, false,
 mieChecked.Encoding);
 sw.Write(txtbox.Text);
 sw.Close();
 }
 catch (Exception exc)
 {
 MessageBox.Show(exc.Message, strProgName,
 MessageBoxButtons.OK,
 MessageBoxIcon.Asterisk);
 return;
 }
 txtbox.Modified = false;
 }
 bool SaveFileDlg()
 {
 SaveFileDialog sfd = new SaveFileDialog();

 if (strFileName != null && strFileName.Length > 1)
 sfd.FileName = strFileName;
 else
 sfd.FileName = "*.txt";

 sfd.Filter = strFilter;

 if (sfd.ShowDialog() == DialogResult.OK)
 {
 strFileName = sfd.FileName;
 SaveFile();
 MakeCaption();
 return true;
 }
 else
 {

 return false; // Return values are for OkToTrash.
 }
 }
 protected void MakeCaption()
 {
 Text = strProgName + " - " + FileTitle();
 }
 protected string FileTitle()
 {
 return (strFileName != null && strFileName.Length > 1) ?
 Path.GetFileName(strFileName) : "Untitled";
 }
 protected bool OkToTrash()
 {
 if (!txtbox.Modified)
 return true;

 DialogResult dr =
 MessageBox.Show("The text in the " + FileTitle() +
 " file has changed.\r\n\r\n" +
 "Do you want to save the changes?",
 strProgName,
 MessageBoxButtons.YesNoCancel,
 MessageBoxIcon.Exclamation);
 switch (dr)
 {
 case DialogResult.Yes:
 return SaveFileDlg();

 case DialogResult.No:
 return true;

 case DialogResult.Cancel:
 return false;
 }
 return false;
 }
}
class MenuItemEncoding: MenuItem
{
 public Encoding Encoding;
}

Although using the File Open menu option is the most common way of loading a file into Notepad,
you can also run Notepad from a command line and specify a file as an argument.
NotepadCloneWithFile likewise overrides the OnLoad method and attempts to load a file specified as
a command-line argument.

The Notepad program includes a special combo box in the Save As dialog box that lets you specify a
file encoding.

See it at the bottom? The options are ANSI, Unicode, Unicode Big Endian, and UTF-8. (If you're
unfamiliar with these terms and the encoding of text files under Windows, you'll probably want to
read the section on "Reading and Writing Text" in Appendix A.)

Unfortunately, Windows Forms programs don't have quite the same flexibility as Windows API
programs in enhancing the common dialog boxes. For this reason, I've added an Encoding item to
the File menu. This item invokes another submenu that lists five encoding options: ASCII, Unicode,
Big-Endian Unicode, UTF-7, and UTF-8. A small MenuItemEncoding class overrides MenuItem so
that the appropriate object of the Encoding class can be stored along with each of these five items.

NotepadCloneWithFile overrides the SaveRegistryInfo and LoadRegistryInfo methods in
NotepadCloneWithRegistry to save and later reload the character encoding the user selects. Notice
that these methods call the methods in the base class so that the program continues to save and
load the location and size of the window.
Notepad Clone Continued
The next program we're going to look at is NotepadCloneWithEdit. This program derives from
NotepadCloneWithFile and implements an Edit menu. The Edit menu would be more difficult than it
is (and would require material I won't cover until Chapter 24) were it not for the built-in support that
TextBoxBase has for the clipboard. Even with the earliest program in the Notepad Clone series, you
can type Ctrl+Z, Ctrl+X, Ctrl+C, and Ctrl+V to perform undo, cut, copy, and paste operations.

As I mentioned earlier, the undo operation restores the text of the text box to a previous version.
Both the cut and copy operations copy the selected text to the clipboard. In addition, the cut
operation deletes the text. The paste operation copies text from the clipboard to the text box. If text is
selected at the time of the paste operation, the selection is replaced by the pasted text.

Although TextBoxBase supports these operations directly, Undo, Cut, Copy, and Paste should also
be options on the Edit menu. In addition, a Delete item (with a Delete key shortcut) should delete
selected text without copying it to the clipboard. (In some applications, a Clear menu item does the
work of Delete.) Interestingly enough, if you simply create an Edit menu with these items—and you
specify the appropriate Shortcut properties—you effectively disable the ability of the text box to
respond to these keystrokes! The reason for this behavior is that the menu gets priority over
keystrokes, and if (for example) Ctrl+C is a shortcut in a menu item, that keystroke is consumed by
the menu and never reaches the text box.

You can get the shortcuts to work in the text box again by installing Click event handlers for the
Undo, Cut, Copy, Paste, and Delete menu items and by calling the following five methods in
response to the events:

TextBoxBase Methods (selection)

void Undo()
void Cut()

void Copy()
void Paste()
void Clear()

You'll also want to install a Popup event handler for the Edit menu to enable and disable these five
items appropriately. You can enable the Undo item based on the return value of the following
property:
TextBoxBase Properties (selection)

Type Property Accessibility

bool CanUndo get

Enable the Cut, Copy, and Delete (or Clear) menu items only if the SelectionLength property is
greater than 0. Otherwise, there's no selected text to delete or copy to the clipboard.

The tough one is Paste. The Paste menu item should be enabled only if there's text in the clipboard.
Until Chapter 24, I'm afraid you'll just have to take my word for it that you should enable the Paste
item if the following expression returns true:
Clipboard.GetDataObject().GetDataPresent(typeof(string))

GetDataObject is a static method of Clipboard that returns an object of type IDataObject.
GetDataPresent is a method of that interface that returns true if the clipboard contains data of the
type specified by its argument, which in this case is a string.

If the Edit menu contained only Undo, Cut, Copy, Paste, and Delete, it would be a snap. Even a
Select All option can be implemented by a call to SelectAll, and the Time/Date item found on
Notepad's Edit menu is also easy using the ToString method of the DateTime class.

But Notepad's Edit menu also includes Find, Find Next, Replace, and Go To, the latter of which lets
the user jump to a particular line of the document. I decided not to implement the Go To item,
primarily because the text box controls are missing a method that indicates the character offset of a
specified line. (In Win32 API programming, this facility is provided by the EM_LINEINDEX message.)
I'll make up for this omission in the Format menu, when I allow you to do something Notepad doesn't:
select a text color and a background color.

The following file supports dialog boxes for Find and Replace. Both FindDialog and ReplaceDialog
are descended from the abstract class FindReplaceDialog. The abstract class creates all the controls
common to both dialog boxes. The two classes descended from FindReplaceDialog disable certain
of these controls and (in one case) move a button to a more appropriate location.
FindReplaceDialog.cs
//--
// FindReplaceDialog.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class FindDialog: FindReplaceDialog
{
 public FindDialog()
 {
 Text = "Find";

 labelReplace.Visible = false;
 txtboxReplace.Visible = false;
 btnReplace.Visible = false;
 btnReplaceAll.Visible = false;
 btnCancel.Location = btnReplace.Location;
 }
}
class ReplaceDialog: FindReplaceDialog
{
 public ReplaceDialog()
 {
 Text = "Replace";

 grpboxDirection.Visible = false;
 }
}
abstract class FindReplaceDialog: Form
{
 // Fields
 protected Label labelFind, labelReplace;
 protected TextBox txtboxFind, txtboxReplace;
 protected CheckBox chkboxMatchCase;
 protected GroupBox grpboxDirection;
 protected RadioButton radiobtnUp, radiobtnDown;
 protected Button btnFindNext, btnReplace, btnReplaceAll,
btnCancel;

 // Public events
 public event EventHandler FindNext;
 public event EventHandler Replace;
 public event EventHandler ReplaceAll;
 public event EventHandler CloseDlg;
 // Constructor
 public FindReplaceDialog()
 {
 FormBorderStyle = FormBorderStyle.FixedDialog;
 ControlBox = false;
 MinimizeBox = false;
 MaximizeBox = false;
 ShowInTaskbar = false;
 StartPosition = FormStartPosition.Manual;
 Location = ActiveForm.Location +
 SystemInformation.CaptionButtonSize +
 SystemInformation.FrameBorderSize;

 labelFind = new Label();

 labelFind.Parent = this;
 labelFind.Text = "Fi&nd what:";
 labelFind.Location = new Point(8, 8);
 labelFind.Size = new Size(64, 8);

 txtboxFind = new TextBox();
 txtboxFind.Parent = this;
 txtboxFind.Location = new Point(72, 8);
 txtboxFind.Size = new Size(136, 8);
 txtboxFind.TextChanged +=
 new EventHandler(TextBoxFindOnTextChanged);

 labelReplace = new Label();
 labelReplace.Parent = this;
 labelReplace.Text = "Re&place with:";
 labelReplace.Location = new Point(8, 24);
 labelReplace.Size = new Size(64, 8);

 txtboxReplace = new TextBox();
 txtboxReplace.Parent = this;
 txtboxReplace.Location = new Point(72, 24);
 txtboxReplace.Size = new Size(136, 8);

 chkboxMatchCase = new CheckBox();
 chkboxMatchCase.Parent = this;
 chkboxMatchCase.Text = "Match &case";
 chkboxMatchCase.Location = new Point(8, 50); // 48);
 chkboxMatchCase.Size = new Size(64, 8);

 grpboxDirection = new GroupBox();
 grpboxDirection.Parent = this;
 grpboxDirection.Text = "Direction";
 grpboxDirection.Location = new Point(100, 40);
 grpboxDirection.Size = new Size(96, 24);

 radiobtnUp = new RadioButton();
 radiobtnUp.Parent = grpboxDirection;
 radiobtnUp.Text = "&Up";
 radiobtnUp.Location = new Point(8, 8);
 radiobtnUp.Size = new Size(32, 12);

 radiobtnDown = new RadioButton();
 radiobtnDown.Parent = grpboxDirection;
 radiobtnDown.Text = "&Down";
 radiobtnDown.Location = new Point(40, 8);

 radiobtnDown.Size = new Size(40, 12);

 btnFindNext = new Button();
 btnFindNext.Parent = this;
 btnFindNext.Text = "&Find Next";
 btnFindNext.Enabled = false;
 btnFindNext.Location = new Point(216, 4);
 btnFindNext.Size = new Size(64, 16);
 btnFindNext.Click += new EventHandler(ButtonFindNextOnClick);

 btnReplace = new Button();
 btnReplace.Parent = this;
 btnReplace.Text = "&Replace";
 btnReplace.Enabled = false;
 btnReplace.Location = new Point(216, 24);
 btnReplace.Size = new Size(64, 16);
 btnReplace.Click += new EventHandler(ButtonReplaceOnClick);

 btnReplaceAll = new Button();
 btnReplaceAll.Parent = this;
 btnReplaceAll.Text = "Replace &All";
 btnReplaceAll.Enabled = false;
 btnReplaceAll.Location = new Point(216, 44);
 btnReplaceAll.Size = new Size(64, 16);
 btnReplaceAll.Click += new
EventHandler(ButtonReplaceAllOnClick);

 btnCancel = new Button();
 btnCancel.Parent = this;
 btnCancel.Text = "Cancel";
 btnCancel.Location = new Point(216, 64);
 btnCancel.Size = new Size(64, 16);
 btnCancel.Click += new EventHandler(ButtonCancelOnClick);
 CancelButton = btnCancel;

 ClientSize = new Size(288, 84);
 AutoScaleBaseSize = new Size(4, 8);
 }
 // Properties
 public string FindText
 {
 set { txtboxFind.Text = value; }
 get { return txtboxFind.Text; }
 }
 public string ReplaceText
 {

 set { txtboxReplace.Text = value; }
 get { return txtboxReplace.Text; }
 }
 public bool MatchCase
 {
 set { chkboxMatchCase.Checked = value; }
 get { return chkboxMatchCase.Checked; }
 }
 public bool FindDown
 {
 set
 {
 if (value)
 radiobtnUp.Checked = true;
 else
 radiobtnDown.Checked = true;
 }
 get { return radiobtnDown.Checked; }
 }
 // Event handlers
 void TextBoxFindOnTextChanged(object obj, EventArgs ea)
 {
 btnFindNext.Enabled =
 btnReplace.Enabled =
 btnReplaceAll.Enabled = txtboxFind.Text.Length > 0;
 }
 void ButtonFindNextOnClick(object obj, EventArgs ea)
 {
 if (FindNext != null)
 FindNext(this, EventArgs.Empty);
 }
 void ButtonReplaceOnClick(object obj, EventArgs ea)
 {
 if (Replace != null)
 Replace(this, EventArgs.Empty);
 }
 void ButtonReplaceAllOnClick(object obj, EventArgs ea)
 {
 if (ReplaceAll != null)
 ReplaceAll(this, EventArgs.Empty);
 }
 void ButtonCancelOnClick(object obj, EventArgs ea)
 {
 if (CloseDlg != null)
 CloseDlg(this, EventArgs.Empty);

 Close();
 }
}

FindReplaceDialog has four properties that give the main program access to the text of two text
boxes (the "find" text and the "replace" text), the Match Case check box, and the pair of radio buttons
for specifying a search up or down in the document.

FindDialog and ReplaceDialog are both intended to be modeless dialog boxes. Indeed, these are
classic examples of dialog boxes that work best by being modeless. You want the dialog box to be
up and visible as you perform a repetitive search or replace operation. As you know from Chapter
16, modeless dialog boxes usually communicate to the underlying program through events.
FindReplaceDialog defines four public events:
public event EventHandler FindNext;
public event EventHandler Replace;
public event EventHandler ReplaceAll;
public event EventHandler CloseDlg;

These events are triggered when the user presses the dialog box buttons labeled Find Next,
Replace, Replace All, and Cancel.

Here's NotepadCloneWithEdit, which adds an Edit menu and implements all the items on that menu.
NotepadCloneWithEdit.cs
//---
// NotepadCloneWithEdit.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class NotepadCloneWithEdit: NotepadCloneWithFile
{
 MenuItem miEditUndo, miEditCut, miEditCopy, miEditPaste,
miEditDelete;
 string strFind = "", strReplace = "";
 bool bMatchCase = false, bFindDown = true;

 public new static void Main()
 {
 Application.Run(new NotepadCloneWithEdit());
 }
 public NotepadCloneWithEdit()
 {
 strProgName = "Notepad Clone with Edit";
 MakeCaption();

 // Edit menu

 MenuItem mi = new MenuItem("&Edit");

 mi.Popup += new EventHandler(MenuEditOnPopup);
 Menu.MenuItems.Add(mi);
 int index = Menu.MenuItems.Count - 1;

 // Edit Undo menu item

 miEditUndo = new MenuItem("&Undo");
 miEditUndo.Click += new EventHandler(MenuEditUndoOnClick);
 miEditUndo.Shortcut = Shortcut.CtrlZ;
 Menu.MenuItems[index].MenuItems.Add(miEditUndo);
 Menu.MenuItems[index].MenuItems.Add("-");

 // Edit Cut menu item

 miEditCut = new MenuItem("Cu&t");
 miEditCut.Click += new EventHandler(MenuEditCutOnClick);
 miEditCut.Shortcut = Shortcut.CtrlX;
 Menu.MenuItems[index].MenuItems.Add(miEditCut);

 // Edit Copy menu item

 miEditCopy = new MenuItem("&Copy");
 miEditCopy.Click += new EventHandler(MenuEditCopyOnClick);
 miEditCopy.Shortcut = Shortcut.CtrlC;
 Menu.MenuItems[index].MenuItems.Add(miEditCopy);

 // Edit Paste menu item

 miEditPaste = new MenuItem("&Paste");
 miEditPaste.Click += new EventHandler(MenuEditPasteOnClick);
 miEditPaste.Shortcut = Shortcut.CtrlV;
 Menu.MenuItems[index].MenuItems.Add(miEditPaste);

 // Edit Delete menu item

 miEditDelete = new MenuItem("De&lete");
 miEditDelete.Click += new EventHandler(MenuEditDeleteOnClick);
 miEditDelete.Shortcut = Shortcut.Del;
 Menu.MenuItems[index].MenuItems.Add(miEditDelete);
 Menu.MenuItems[index].MenuItems.Add("-");

 // Edit Find menu item

 mi = new MenuItem("&Find...");
 mi.Click += new EventHandler(MenuEditFindOnClick);

 mi.Shortcut = Shortcut.CtrlF;
 Menu.MenuItems[index].MenuItems.Add(mi);

 // Edit Find Next menu item

 mi = new MenuItem("Find &Next");
 mi.Click += new EventHandler(MenuEditFindNextOnClick);
 mi.Shortcut = Shortcut.F3;
 Menu.MenuItems[index].MenuItems.Add(mi);

 // Edit Replace menu item

 mi = new MenuItem("&Replace...");
 mi.Click += new EventHandler(MenuEditReplaceOnClick);
 mi.Shortcut = Shortcut.CtrlH;
 Menu.MenuItems[index].MenuItems.Add(mi);
 Menu.MenuItems[index].MenuItems.Add("-");

 // Edit Select All menu item

 mi = new MenuItem("Select &All");
 mi.Click += new EventHandler(MenuEditSelectAllOnClick);
 mi.Shortcut = Shortcut.CtrlA;
 Menu.MenuItems[index].MenuItems.Add(mi);

 // Edit Time/Date menu item

 mi = new MenuItem("Time/&Date");
 mi.Click += new EventHandler(MenuEditTimeDateOnClick);
 mi.Shortcut = Shortcut.F5;
 Menu.MenuItems[index].MenuItems.Add(mi);
 }
 void MenuEditOnPopup(object obj, EventArgs ea)
 {
 miEditUndo.Enabled = txtbox.CanUndo;

 miEditCut.Enabled =
 miEditCopy.Enabled =
 miEditDelete.Enabled = (txtbox.SelectionLength > 0);

 miEditPaste.Enabled =
 Clipboard.GetDataObject().GetDataPresent(typeof(string));
 }
 void MenuEditUndoOnClick(object obj, EventArgs ea)
 {

 txtbox.Undo();
 txtbox.ClearUndo();
 }
 void MenuEditCutOnClick(object obj, EventArgs ea)
 {
 txtbox.Cut();
 }
 void MenuEditCopyOnClick(object obj, EventArgs ea)
 {
 txtbox.Copy();
 }
 void MenuEditPasteOnClick(object obj, EventArgs ea)
 {
 txtbox.Paste();
 }
 void MenuEditDeleteOnClick(object obj, EventArgs ea)
 {
 txtbox.Clear();
 }
 void MenuEditFindOnClick(object obj, EventArgs ea)
 {
 if (OwnedForms.Length > 0)
 return;

 txtbox.HideSelection = false;

 FindDialog dlg = new FindDialog();

 dlg.Owner = this;
 dlg.FindText = strFind;
 dlg.MatchCase = bMatchCase;
 dlg.FindDown = bFindDown;
 dlg.FindNext += new EventHandler(FindDialogOnFindNext);
 dlg.CloseDlg += new EventHandler(FindReplaceDialogOnCloseDlg);
 dlg.Show();
 }
 void MenuEditFindNextOnClick(object obj, EventArgs ea)
 {
 if (strFind.Length == 0)
 {
 if (OwnedForms.Length > 0)
 return;

 MenuEditFindOnClick(obj, ea);
 }

 else
 FindNext();
 }
 void MenuEditReplaceOnClick(object obj, EventArgs ea)
 {
 if (OwnedForms.Length > 0)
 return;

 txtbox.HideSelection = false;

 ReplaceDialog dlg = new ReplaceDialog();

 dlg.Owner = this;
 dlg.FindText = strFind;
 dlg.ReplaceText = strReplace;
 dlg.MatchCase = bMatchCase;
 dlg.FindDown = bFindDown;
 dlg.FindNext += new EventHandler(FindDialogOnFindNext);
 dlg.Replace += new EventHandler(ReplaceDialogOnReplace);
 dlg.ReplaceAll += new EventHandler(ReplaceDialogOnReplaceAll);
 dlg.CloseDlg += new EventHandler(FindReplaceDialogOnCloseDlg);
 dlg.Show();
 }
 void MenuEditSelectAllOnClick(object obj, EventArgs ea)
 {
 txtbox.SelectAll();
 }
 void MenuEditTimeDateOnClick(object obj, EventArgs ea)
 {
 DateTime dt = DateTime.Now;
 txtbox.SelectedText = dt.ToString("t") + " " + dt.ToString("d");
 }
 void FindDialogOnFindNext(object obj, EventArgs ea)
 {
 FindReplaceDialog dlg = (FindReplaceDialog) obj;

 strFind = dlg.FindText;
 bMatchCase = dlg.MatchCase;
 bFindDown = dlg.FindDown;

 FindNext();
 }
 bool FindNext()
 {
 if (bFindDown)

 {
 int iStart = txtbox.SelectionStart +
txtbox.SelectionLength;

 while (iStart + strFind.Length <= txtbox.TextLength)
 {
 if (string.Compare(strFind, 0, txtbox.Text, iStart,
 strFind.Length, !bMatchCase) == 0)
 {
 txtbox.SelectionStart = iStart;
 txtbox.SelectionLength = strFind.Length;
 return true;
 }
 iStart++;
 }
 }
 else
 {
 int iStart = txtbox.SelectionStart - strFind.Length;

 while (iStart >= 0)
 {
 if (string.Compare(strFind, 0, txtbox.Text, iStart,
 strFind.Length, !bMatchCase) == 0)
 {
 txtbox.SelectionStart = iStart;
 txtbox.SelectionLength = strFind.Length;
 return true;
 }
 iStart--;
 }
 }
 MessageBox.Show("Cannot find \"" + strFind + "\"", strProgName,
 MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);
 return false;
 }
 void ReplaceDialogOnReplace(object obj, EventArgs ea)
 {
 FindReplaceDialog dlg = (FindReplaceDialog) obj;

 strFind = dlg.FindText;
 strReplace = dlg.ReplaceText;
 bMatchCase = dlg.MatchCase;

 if (string.Compare(strFind, txtbox.SelectedText, !bMatchCase) ==
0)
 {
 txtbox.SelectedText = strReplace;
 }
 FindNext();
 }
 void ReplaceDialogOnReplaceAll(object obj, EventArgs ea)
 {
 FindReplaceDialog dlg = (FindReplaceDialog) obj;

 string str = txtbox.Text;
 strFind = dlg.FindText;
 strReplace = dlg.ReplaceText;
 bMatchCase = dlg.MatchCase;

 if (bMatchCase)
 {
 str = str.Replace(strFind, strReplace);
 }
 else
 {
 for (int i = 0; i < str.Length - strFind.Length;)
 {
 if (String.Compare(str, i, strFind, 0,
 strFind.Length, true) == 0)
 {
 str = str.Remove(i, strFind.Length);
 str = str.Insert(i, strReplace);
 i += strReplace.Length;
 }
 else
 {
 i += 1;
 }
 }
 }
 if (str != txtbox.Text)
 {
 txtbox.Text = str;
 txtbox.SelectionStart = 0;
 txtbox.SelectionLength = 0;
 txtbox.Modified = true;
 }
 }
 void FindReplaceDialogOnCloseDlg(object obj, EventArgs ea)

 {
 txtbox.HideSelection = true;
 }
}

When a menu item invokes a modeless dialog box, you usually don't want the item to invoke multiple
copies of the dialog box. For that reason, the Find and Replace menu items check whether the
OwnedForms property (which returns an array of Form objects) has a Length property greater than
0. If it does, one of the modeless dialog boxes is up and another shouldn't be displayed. As usual,
the Owner property of the modeless dialog box is assigned this, referring to the program itself.

When the program creates either of the two modeless dialog boxes, it also installs event handlers for
the events implemented by the dialog boxes. It's in response to these events that the program does
most of its work. For the actual search logic, the program uses the Compare method of the String
class. For replacing text, it uses Remove and Insert. These methods are described in Appendix C.

The next installment in the Notepad Clone series is comparatively simple. It implements the Format
menu, which expands on the Notepad functionality by including Background Color along with the
standard Word Wrap and Font options. Word Wrap is simply a checked menu item, while the Font
and Background Color items make use of FontDialog and ColorDialog.
NotepadCloneWithFormat.cs
//---
// NotepadCloneWithFormat.cs © 2001 by Charles Petzold
//---
using Microsoft.Win32;
using System;
using System.Drawing;
using System.Windows.Forms;

class NotepadCloneWithFormat: NotepadCloneWithEdit
{
 // Strings for registry

 const string strWordWrap = "WordWrap";
 const string strFontFace = "FontFace";
 const string strFontSize = "FontSize";
 const string strFontStyle = "FontStyle";
 const string strForeColor = "ForeColor";
 const string strBackColor = "BackColor";
 const string strCustomClr = "CustomColor";

 ColorDialog clrdlg = new ColorDialog();
 MenuItem miFormatWrap;

 public new static void Main()
 {
 Application.Run(new NotepadCloneWithFormat());
 }
 public NotepadCloneWithFormat()
 {

 strProgName = "Notepad Clone with Format";
 MakeCaption();

 // Format

 MenuItem mi = new MenuItem("F&ormat");
 mi.Popup += new EventHandler(MenuFormatOnPopup);
 Menu.MenuItems.Add(mi);
 int index = Menu.MenuItems.Count - 1;

 // Format Word Wrap

 miFormatWrap = new MenuItem("&Word Wrap");
 miFormatWrap.Click += new EventHandler(MenuFormatWrapOnClick);
 Menu.MenuItems[index].MenuItems.Add(miFormatWrap);

 // Format Font

 mi = new MenuItem("&Font...");
 mi.Click += new EventHandler(MenuFormatFontOnClick);
 Menu.MenuItems[index].MenuItems.Add(mi);

 // Format Background Color

 mi = new MenuItem("Background &Color...");
 mi.Click += new EventHandler(MenuFormatColorOnClick);
 Menu.MenuItems[index].MenuItems.Add(mi);
 }
 protected override void OnLoad(EventArgs ea)
 {
 base.OnLoad(ea);

 // Help

 MenuItem mi = new MenuItem("&Help");
 Menu.MenuItems.Add(mi);
 int index = Menu.MenuItems.Count - 1;

 // Help About

 mi = new MenuItem("&About " + strProgName + "...");
 mi.Click += new EventHandler(MenuHelpAboutOnClick);
 Menu.MenuItems[index].MenuItems.Add(mi);
 }
 void MenuFormatOnPopup(object obj, EventArgs ea)

 {
 miFormatWrap.Checked = txtbox.WordWrap;
 }
 void MenuFormatWrapOnClick(object obj, EventArgs ea)
 {
 MenuItem mi = (MenuItem) obj;
 mi.Checked ^= true;
 txtbox.WordWrap = mi.Checked;
 }
 void MenuFormatFontOnClick(object obj, EventArgs ea)
 {
 FontDialog fontdlg = new FontDialog();

 fontdlg.ShowColor = true;
 fontdlg.Font = txtbox.Font;
 fontdlg.Color = txtbox.ForeColor;

 if (fontdlg.ShowDialog() == DialogResult.OK)
 {
 txtbox.Font = fontdlg.Font;
 txtbox.ForeColor = fontdlg.Color;
 }
 }
 void MenuFormatColorOnClick(object obj, EventArgs ea)
 {
 clrdlg.Color = txtbox.BackColor;

 if (clrdlg.ShowDialog() == DialogResult.OK)
 txtbox.BackColor = clrdlg.Color;
 }
 void MenuHelpAboutOnClick(object obj, EventArgs ea)
 {
 MessageBox.Show(strProgName + " © 2001 by Charles Petzold",
 strProgName);
 }
 protected override void LoadRegistryInfo(RegistryKey regkey)
 {
 base.LoadRegistryInfo(regkey);

 txtbox.WordWrap = Convert.ToBoolean(
 (int) regkey.GetValue(strWordWrap));
 txtbox.Font = new Font((string) regkey.GetValue(strFontFace),
 float.Parse(
 (string) regkey.GetValue(strFontSize)),
 (FontStyle)
regkey.GetValue(strFontStyle));

 txtbox.ForeColor = Color.FromArgb(
 (int) regkey.GetValue(strForeColor));
 txtbox.BackColor = Color.FromArgb(
 (int) regkey.GetValue(strBackColor));

 int[] aiColors = new int[16];

 for (int i = 0; i < 16; i++)
 aiColors[i] = (int) regkey.GetValue(strCustomClr + i);

 clrdlg.CustomColors = aiColors;
 }
 protected override void SaveRegistryInfo(RegistryKey regkey)
 {
 base.SaveRegistryInfo(regkey);

 regkey.SetValue(strWordWrap, Convert.ToInt32(txtbox.WordWrap));
 regkey.SetValue(strFontFace, txtbox.Font.Name);
 regkey.SetValue(strFontSize,
txtbox.Font.SizeInPoints.ToString());
 regkey.SetValue(strFontStyle, (int) txtbox.Font.Style);
 regkey.SetValue(strForeColor, txtbox.ForeColor.ToArgb());
 regkey.SetValue(strBackColor, txtbox.BackColor.ToArgb());

 for (int i = 0; i < 16; i++)
 regkey.SetValue(strCustomClr + i, clrdlg.CustomColors[i]);
 }
}

This version of the program also implements a Help menu that includes an About item. I moved the
creation of this item to yet another override of the OnLoad method. Doing so allows the About item to
include the strProgName field indicating the name of the program. If the About item were created in
the constructor, any program that derived from this one would have the wrong program name in the
menu item.

All the options you specify on the Format menu are saved in the registry, so this program again
overrides the LoadRegistryInfo and SaveRegistryInfo methods.

In Chapter 21, I'll enhance the Notepad Clone program by implementing the three items on the File
menu involved with printing (in NotepadCloneWithPrinting). In Chapter 24, I'll complete the program
by adding drag-and-drop functionality. You'll be able to drag a file or selected text from another
application into the program (in the final version named simply NotepadClone).
Special-Purpose Text Boxes
Although text boxes are used most often to allow a user to enter and edit text, they have a couple
special-purpose uses as well, which are indicated by the following properties:
TextBox Properties (selection)

Type Property Accessibility

char PasswordChar get/set

CharacterCasing CharacterCasing get/set

TextBox Properties (selection)

Type Property Accessibility

bool ReadOnly get/set

You can use a text box in situations where the user must enter a password or other information that
should be hidden from others. Normally, PasswordChar is 0, but if you set it to something else,
everything the user types in the text box will appear as that character. Generally, password boxes
use an asterisk for this purpose. The Multiline property must be false for PasswordChar to work.

Sometimes in connection with password entry, text must be converted to uppercase or lowercase.
That's the purpose of the CharacterCasing property. Set it to one of the following values:
CharacterCasing Enumeration

Member Value

Normal 0

Upper 1

Lower 2

The ReadOnly property is defined in TextBoxBase and also applies to RichTextBox controls. If this
property is set to true, the user can't type anything into the text box. However, the text box still has a
caret, and text can still be selected and copied to the clipboard. A read-only text box is an excellent
choice for programs that must display textual information to the user, particularly when the length of
the information can't be anticipated. While a Label control might work fine for short strings, the
TextBox lets the user scroll longer blocks of text. The ability to copy text from the text box to the
clipboard is an added bonus. The next program in this chapter (EnumerateEnumeration) uses a
read-only text box.
The Rich Text Box
I haven't gone into many details about RichTextBox because, I'm afraid, the topic is just too big for
this book. The class is so named for two reasons. First, it supports rich text, which means formatted
text—text that can have a variety of fonts, paragraph indents, and tabs. The second reason is that
RichTextBox imports and exports text according to the specification known as the Rich Text Format
(RTF). RTF was developed at Microsoft around 1986 for the purpose of exchanging formatted text
among Windows applications. RTF version 1.6 is documented at
http://msdn.microsoft.com/library/specs/rtfspec.htm.

An RTF document is a text file that defines the back slash (\) for formatting tags (such as \i to begin a
block of italic text) and the curly braces { and } for enclosing groups of tags. Although RTF has a long
history and is supported as an exchange format by many word processors, at this time in the
evolution of formatted text, perhaps the biggest problem with RTF is that it's not HTML.

While Notepad is built around the Win32 equivalent of the TextBox control, WordPad is built around
the Win32 equivalent of the RichTextBox control. In a TextBox control, you can specify a color or a
font for the entire contents of the control; in a RichTextBox control, you can specify multiple fonts,
colors, paragraph alignments, indents, and so forth. You specify this formatting based on the current
selection by using a number of properties, such as SelectionFont, SelectionColor,
SelectionAlignment, SelectionIndent, and so on.

To get access to the RTF data, use these two properties:
RichTextBox Properties (selection)

Type Property Accessibility

string Rtf get/set

string SelectedRtf get/set

The RichTextBox class also includes two methods (with three overloads each) that let you load a file
directly into the control (LoadFile) and save the document directly to a file (SaveFile).

http://msdn.microsoft.com/library/specs/rtfspec.htm

ToolTips
A ToolTip is a small rectangular window that displays some helpful explanatory text, usually when
the mouse pointer hovers over a particular control. ToolTips are implemented in Windows Forms in
the ToolTip class. Although ToolTips in Windows Forms are more limited than those defined in the
Win32 API, they are also much easier to use.

You need to define only one ToolTip object to provide ToolTips for a collection of controls:
ToolTip tooltip = new ToolTip();

Generally, you'll define a ToolTip object for your form (if your form contains controls) and in the
constructor of each dialog box your program creates. If your form contains no controls other than a
toolbar and a status bar, you don't need a ToolTip object in your form because those controls have
their own ToolTip facility. (Chapter 20 covers toolbars and status bars.)

ToolTip is one of those rare classes in which a couple of methods are much more important than its
properties and events:

ToolTip Methods (selection)

void SetToolTip(Control cntl, string strTip)
string GetToolTip(Control cntl)
void RemoveAll()

For the single ToolTip object you create for a particular dialog box, you can call SetToolTip once for
each control to associate ToolTip text with the control, as here:
ToolTip tooltip = new ToolTip();
tooltip.SetToolTip(btnBigger, "This button increases the font size");
tooltip.SetToolTip(btnSmaller, "This button decreases the font size");

To make the ToolTip text appear in multiple lines, use line feed characters ('\n'). For lengthy ToolTip
text, I usually insert line feed characters every 32 characters or so.

If you want to remove a ToolTip for a particular control, set the text to null:
tooltip.SetToolTip(btn, null)

To remove all the ToolTips, call
tooltip.RemoveAll()

There's no way to get a list of all the controls for which ToolTips have been defined.

The following two ToolTip properties affect the visibility of the ToolTip text:
ToolTip Properties (selection)

Type Property Accessibility Default

bool Active get/set True

bool ShowAlways get/set False

Set Active to false to disable the display of ToolTip text for all the controls associated with the
ToolTip object. Set ShowAlways to true to display the ToolTip text even if the parent form of the
control isn't currently active.

To prevent hectic pop-up activity on the screen, ToolTips usually aren't displayed immediately. A
period of time elapses (by default, 0.5 second) after the mouse pointer has stopped moving before
the ToolTip is displayed. After another period of time (5 seconds by default), the ToolTip is removed

from the screen. The following properties control the timing associated with a particular ToolTip
object:
ToolTip Properties (selection)

Type Property Accessibility Default

int AutomaticDelay get/set 500 (milliseconds)

int InitialDelay get/set AutomaticDelay

int ReshowDelay get/set AutomaticDelay / 5

int AutoPopDelay get/set 10 × AutomaticDelay

When you set the AutomaticDelay property, the other three properties are automatically set to the
values indicated in the "Default" column of the table. The idea here is that you can change all timings
proportionally just by changing the one property. However, you can then change the other three
properties independently. The other three properties are the ones that directly affect the ToolTip
display:
§ InitialDelay indicates the period of time from when the mouse cursor stops moving to when the

ToolTip text is displayed.
§ The ReshowDelay property is the period of time before a new ToolTip is displayed when you

move the mouse cursor from one control to another.
§ AutoPopDelay indicates the time that a ToolTip remains displayed.

Let's take a look at a program that has three single-line text boxes, a multiline read-only text box,
and ToolTips to make life easier for the user. Although this program is one of only two examples of
ToolTips in this book, you should probably implement them everywhere you use controls.

Throughout this book, I've shown tables of the various enumerations defined in the .NET Framework
class library, usually with the numeric values associated with the enumeration members. You may
have wondered where these tables came from, since the .NET documentation doesn't include the
numeric values. I constructed those tables from a program I wrote early on in my .NET exploration
and which I've polished into the following piece of code I call EnumerateEnumeration.
EnumerateEnumeration.cs
//---
// EnumerateEnumeration.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Reflection; // For the Assembly class
using System.Text; // For the StringBuilder class
using System.Windows.Forms;

class EnumerateEnumeration: Form
{
 Button button;
 TextBox tbLibrary, tbNamespace, tbEnumeration, tbOutput;
 CheckBox cbHex;

 public static void Main()
 {
 Application.Run(new EnumerateEnumeration());
 }
 public EnumerateEnumeration()

 {
 Text = "Enumerate Enumeration";
 ClientSize = new Size(242, 164);

 Label label = new Label();
 label.Parent = this;
 label.Text = "Library:";
 label.Location = new Point(8, 8);
 label.Size = new Size(56, 8);

 tbLibrary = new TextBox();
 tbLibrary.Parent = this;
 tbLibrary.Text = "system.windows.forms";
 tbLibrary.Location = new Point(64, 8);
 tbLibrary.Size = new Size(120, 12);
 tbLibrary.Anchor |= AnchorStyles.Right;

 ToolTip tooltip = new ToolTip();
 tooltip.SetToolTip(tbLibrary,
 "Enter the name of a .NET dynamic-\n" +
 "link libary, such as 'mscorlib',\n" +
 "'system.windows.forms', or\n" +
 "'system.drawing'.");

 label = new Label();
 label.Parent = this;
 label.Text = "Namespace:";
 label.Location = new Point(8, 24);
 label.Size = new Size(56, 8);

 tbNamespace = new TextBox();
 tbNamespace.Parent = this;
 tbNamespace.Text = "System.Windows.Forms";
 tbNamespace.Location = new Point(64, 24);
 tbNamespace.Size = new Size(120, 12);
 tbNamespace.Anchor |= AnchorStyles.Right;

 tooltip.SetToolTip(tbNamespace,
 "Enter the name of a namespace\n" +
 "within the library, such as\n" +
 "'System', 'System.IO',\n" +
 "'System.Drawing',\n" +
 "'System.Drawing.Drawing2D',\n" +
 "or 'System.Windows.Forms'.");

 label = new Label();
 label.Parent = this;
 label.Text = "Enumeration:";
 label.Location = new Point(8, 40);
 label.Size = new Size(56, 8);

 tbEnumeration = new TextBox();
 tbEnumeration.Parent = this;
 tbEnumeration.Text = "ScrollBars";
 tbEnumeration.Location = new Point(64, 40);
 tbEnumeration.Size = new Size(120, 12);
 tbEnumeration.Anchor |= AnchorStyles.Right;

 tooltip.SetToolTip(tbEnumeration,
 "Enter the name of an enumeration\n" +
 "defined in the namespace.");

 cbHex = new CheckBox();
 cbHex.Parent = this;
 cbHex.Text = "Hex";
 cbHex.Location = new Point(192, 16);
 cbHex.Size = new Size(40, 8);
 cbHex.Anchor = AnchorStyles.Top | AnchorStyles.Right;
 cbHex.CheckedChanged += new
EventHandler(CheckBoxOnCheckedChanged);

 tooltip.SetToolTip(cbHex, "Check this box to display the\n" +
 "enumeration values in hexadecimal.");

 button = new Button();
 button.Parent = this;
 button.Text = "OK";
 button.Location = new Point(192, 32);
 button.Size = new Size(40, 16);
 button.Anchor = AnchorStyles.Top | AnchorStyles.Right;
 button.Click += new EventHandler(ButtonOkOnClick);

 AcceptButton = button;

 tooltip.SetToolTip(button,
 "Click this button to display
results.");

 tbOutput = new TextBox();
 tbOutput.Parent = this;
 tbOutput.ReadOnly = true;

 tbOutput.Multiline = true;
 tbOutput.ScrollBars = ScrollBars.Vertical;
 tbOutput.Location = new Point(8, 56);
 tbOutput.Size = new Size(226, 100);
 tbOutput.Anchor = AnchorStyles.Left | AnchorStyles.Top |
 AnchorStyles.Right | AnchorStyles.Bottom;

 AutoScaleBaseSize = new Size(4, 8);

 // Initialize the display.

 ButtonOkOnClick(button, EventArgs.Empty);
 }
 void CheckBoxOnCheckedChanged(object sender, EventArgs ea)
 {
 button.PerformClick();
 }
 void ButtonOkOnClick(object sender, EventArgs ea)
 {
 FillTextBox(tbOutput, tbLibrary.Text, tbNamespace.Text,
 tbEnumeration.Text, cbHex.Checked);
 }
 public static bool FillTextBox(TextBox tbOutput, string strLibrary,
 string strNamespace,
 string strEnumeration, bool
bHexadecimal)
 {
 string strEnumText = strNamespace + "." + strEnumeration;
 string strAssembly;

 try
 {
 strAssembly =
 Assembly.LoadWithPartialName(strLibrary).FullName;
 }
 catch
 {
 return false;
 }
 string strFullText = strEnumText + "," + strAssembly;

 // Get the type of the enum.

 Type type = Type.GetType(strFullText, false, true);

 if(type == null)

 {
 tbOutput.Text = "\"" + strFullText +
 "\" is not a valid type.";
 return false;
 }
 else if(!type.IsEnum)
 {
 tbOutput.Text = "\"" + strEnumText +
 "\" is a valid type but not an enum.";
 return false;
 }

 // Get all the members in that enum.

 string[] astrMembers = Enum.GetNames(type);
 Array arr = Enum.GetValues(type);
 object[] aobjMembers = new object[arr.Length];

 arr.CopyTo(aobjMembers, 0);

 // Create a StringBuilder for the text.

 StringBuilder sb = new StringBuilder();

 // Append the enumeration name and headings.

 sb.Append(strEnumeration);
 sb.Append(" Enumeration\r\nMember\tValue\r\n");

 // Append the text rendition and the actual numeric values.

 for (int i = 0; i < astrMembers.Length; i++)
 {
 sb.Append(astrMembers[i]);
 sb.Append("\t");

 if (bHexadecimal)
 sb.Append("0x" + Enum.Format(type, aobjMembers[i],
"X"));
 else
 sb.Append(Enum.Format(type, aobjMembers[i], "D"));

 sb.Append("\r\n");
 }
 // Append some other information.

 sb.Append("\r\nTotal = " + astrMembers.Length + "\r\n");
 sb.Append("\r\n" + type.AssemblyQualifiedName + "\r\n");

 // Set the text box Text property from the StringBuilder.

 tbOutput.Text = sb.ToString();
 tbOutput.SelectionLength = 0;
 return true;
 }
}

The constructor creates three pairs of labels and single-line text boxes to let the user type in a DLL
name, a namespace in that library, and an enumeration in that namespace. A check box lets you
indicate that the results should be displayed in hexadecimal. A push button lets you indicate when
everything is finished and the results should be displayed. Each of these controls is associated with
some ToolTip text.

The results are displayed in a read-only text box. Notice the use of the Anchor property to make all
the text boxes flexible in size. As you make the form wider, all three single-line text boxes increase in
width. As you make the form shorter or taller, the read-only text box changes height.

Here's a view of the program from the last time I used it:

Notice that the read-only text box has a different default background color than the normal text
boxes. Because read-only text boxes still implement a caret and clipboard interface, I've been able to
select the text I want from the text box and type Ctrl+C to copy it to the clipboard. I then paste the
text into my Microsoft Word document for the chapter and convert the text to a Word table.

After a little while working with this program, you may begin to be annoyed at having to retype
various commonly used libraries and namespaces. Later on in this chapter, I'll present another
version of this program, named EnumerateEnumerationCombo, that has combo boxes that use the
Windows registry to save all valid combinations of library names, namespaces, and enumerations.

To accommodate this second program is the reason that all the display code is isolated in the
FillTextBox method, which I've also defined as static. It's static because
EnumerateEnumerationCombo needs to make use of the FillTextBox method but doesn't derive from
EnumerateEnumeration. FillTextBox returns true if the combination of three text strings was valid
and false otherwise. EnumerateEnumeration doesn't use this information;
EnumerateEnumerationCombo does.

FillTextBox uses the GetType method of the Type class to obtain a Type object for the enumeration.
The argument to GetType is a text string that takes the following form:
namespace.enumeration,library

Notice the normal period separating the namespace and the enumeration name, and also the
comma preceding the library name. The library name must include version information, which is the
reason for the Assembly.LoadWithPartialName call.

The program obtains the enumeration member names and values from the static GetNames and
GetValues methods of the Enum class.

The relationship between the library name and the namespace can be a bit tricky: The
system.drawing.dll library contains the namespace System.Drawing. However,
System.Drawing.Drawing2D is also located in system.drawing.dll. Many of the basic namespaces
(such as System and System.IO) are located in mscorlib.dll, which stands for "Microsoft Core
Library."

Notice the use of the StringBuilder class to build the string that's displayed in the read-only text box.
(I discuss StringBuilder in Appendix C.) The original version put everything into the text box line-by-
line using string appending with the += operator. I was beginning to suspect a problem with that
approach when the EmfPlusRecordType enumeration required 30 seconds to display using a pre-
release version of Visual Studio .NET and my pokey machine. Switching to the StringBuilder class
made the update instantaneous.
The List Box
The ListBox control is often used in a manner similar to a group of radio buttons—to provide a way
for a user to pick one item from a list of several items. However, list boxes generally take up less
space on the screen and also let the user select multiple items. The ComboBox control (which I'll talk
about later in this chapter) usually takes up even less space and often includes an area for the user
to type information, much like a TextBox control.

Both ListBox and ComboBox are derived from ListControl, as shown in the following class hierarchy:

Usually after creating a list box, you want to fill it with items. You do that using the Items property:
ListBox Properties (selection)

Type Property Accessibility

ListBox.ObjectCollection Items get

The ObjectCollection class is by now a familiar implementation of the IList, ICollection, and
IEnumerable interfaces. You can index Items as an array, use the Add and AddRange methods to
add items to the list box, and search for items with the Contains and IndexOf methods.

The items in a ListBox control are defined to be of type Object, not necessarily strings. Each object in
ListBox is displayed using the object's ToString method. Of course, when the program retrieves
items from the list box, it is responsible for casting the object to its proper type.

It's possible for the list box to contain multiple identical items. For example, if you add an item to a
list box that's already in the collection, the collection will contain two copies of the item. Because
such a situation confuses the user, it's probably undesirable.

As you add items to a list box, each item is assigned an index beginning at 0. The index determines
the item's position in the list box. Generally, the indices are consecutive as the items are added.
However, if you've set the Sorted property to true, the indices will be consecutive based on the
alphabetical order of the items.
ListBox Properties (selection)

Type Property Accessibility

bool Sorted get/set

int TopIndex get/set

The TopIndex property indicates the index of the item displayed at the top of the list box. By default,
TopIndex is 0.

The PreferredHeight property indicates the height of the list box required to fit all the items:
ListBox Properties (selection)

Type Property Accessibility

int PreferredHeight get

bool IntegralHeight get/set

Generally, you don't set the height of the list box to PreferredHeight. The IntegralHeight property is
true by default to adjust the height you set so that partial items aren't displayed.

If the height of the list box doesn't accommodate the full number of items, a vertical scroll bar will be
displayed. Optionally, you can display the scroll bar regardless of the number of items. You can also
optionally display a horizontal scroll bar for items that exceed the width of the list box:
ListBox Properties (selection)

Type Property Accessibility

bool ScrollAlwaysVisible get/set

bool HorizontalScrollbar get/set

The following properties of ListBox involve the selection of items:
ListBox Properties (selection)

Type Property Accessibility

SelectionMode SelectionMode get/set

int SelectedIndex get/set

object SelectedItem get/set

ListBox.SelectedIndexCollection SelectedIndices get

ListBox.SelectedObjectCollection SelectedItems get

The SelectionMode property is one of the following members of the SelectionMode enumeration:
SelectionMode Enumeration

Member Value

None 0

One 1

MultiSimple 2

MultiExtended 3

The default is One. At any time, only one item in the list box is highlighted, which is indicated by a
reverse-video display. Whenever the list box has the input focus, the same item is also surrounded
by a dotted line—a focus rectangle similar to that on push buttons—but the focus rectangle might be
a bit difficult to see because it's the same size as the reverse-video rectangle. You can also select an
item with the mouse.

By default, a newly created and filled list box has no selection, in which case SelectedIndex returns
−1 and SelectedItem returns null. You'll probably want to use one of these two properties to initialize
the list box to a particular index or item.

With the MultiSimple option, the user can select multiple items in the list box. Each selected item is
indicated by reverse-video. The focus rectangle is independent of any selection rectangle. You can
move the dotted-line focus rectangle among the items using the cursor-movement keys. Pressing the
spacebar selects (or deselects) the item indicated by the focus rectangle. In addition, you can select
(or deselect) an item with the mouse, in which case that item also gets the focus rectangle.

A list box with the MultiExtended option at first looks much like a single-selection list box. Using the
cursor-movement keys, you change both the reverse-video selection rectangle and the dotted-line
focus rectangle. However, you can extend a selection by holding down the Shift key while pressing
the cursor-movement keys. But if you then release the Shift key and press a cursor-movement key—
or click an item with the mouse—the selection again becomes just one item. In a MultiExtended list
box, you can also select (or deselect) individual items by clicking them with the mouse while the Ctrl
key is pressed.

The MultiExtended list box probably makes most sense when the user is likely to select a range of
items. Use MultiSimple when the items the user is likely to select are not consecutive.

In a single-selection list box, use SelectedIndex or SelectedItem to obtain the selected index or item.
If lstbox is an object of type ListBox,
lstbox.SelectedItem

is equivalent to
lstbox.Items[lstbox.SelectedIndex]

You can also use the Text property to obtain the text representation of the selected item. The
expression
lstbox.Text

is equivalent to
lstbox.SelectedItem.ToString()

In a multiselection list box, the properties SelectedIndices and SelectedItems give you access to the
selected items. The SelectedIndexCollection and SelectedObjectCollection classes both have Count
properties and indexers. The Count property indicates the number of selected items, and—as
usual—the indexer can range from 0 to (Count−1). The indexer for the SelectedIndices object returns
the index of the selected item within the list box. For example, if index is a number between 0 and
(Count−1),
lstbox.SelectedItems[index]

is equivalent to
lstbox.Items[lstbox.SelectedIndices[index]]

To initialize a multiselection list box, you can call the SetSelected method for each item you want to
select:

ListBox Methods (selection)

void SetSelected(int index, bool bSelect)
bool GetSelected(int index)
void ClearSelected()

In addition, the GetSelected method returns true for each index that corresponds to a selected item.
ClearSelected deselects all items in the list box.

Often when you use list boxes in a dialog box, you need only obtain the selected item or items when
the user presses the OK button. However, at times, you'll want to react whenever the selected item
changes. For that purpose there are two events:
ListBox Events (selection)

Event Method Delegate Argument

SelectedIndexChanged OnSelectedIndexChanged EventHandler EventArgs

SelectedValueChanged OnSelectedValueChanged EventHandler EventArgs

SelectedValueChanged is implemented in ListControl and is also available in ComboBox. These two
events are basically equivalent and occur whether the selection changes programmatically or by the
user. In a MultiSimple list box, these two events are fired even when the focus rectangle changes
and not the selection.

Here's a simple program that lists the current MS-DOS environment variable names in a list box and
displays the value of the currently selected item.
EnvironmentVars.cs
//--
// EnvironmentVars.cs © 2001 by Charles Petzold
//--
using System;
using System.Collections;
using System.Drawing;
using System.Windows.Forms;

class EnvironmentVars: Form
{
 Label label;

 public static void Main()
 {
 Application.Run(new EnvironmentVars());
 }
 public EnvironmentVars()
 {
 Text = "Environment Variables";

 // Create Label control.

 label = new Label();
 label.Parent = this;
 label.Anchor = AnchorStyles.Left | AnchorStyles.Right;
 label.Location = new Point(Font.Height, Font.Height);
 label.Size = new Size(ClientSize.Width - 2 * Font.Height,

 Font.Height);

 // Create ListBox control.

 ListBox listbox = new ListBox();
 listbox.Parent = this;
 listbox.Location = new Point(Font.Height, 3 * Font.Height);
 listbox.Size = new Size(12 * Font.Height, 8 * Font.Height);
 listbox.Sorted = true;
 listbox.SelectedIndexChanged +=
 new EventHandler(ListBoxOnSelectedIndexChanged);

 // Set environment strings in ListBox control.

 IDictionary dict = Environment.GetEnvironmentVariables();
 string[] astr = new String[dict.Keys.Count];

 dict.Keys.CopyTo(astr, 0);
 listbox.Items.AddRange(astr);
 listbox.SelectedIndex = 0;
 }
 void ListBoxOnSelectedIndexChanged(object obj, EventArgs ea)
 {
 ListBox listbox = (ListBox) obj;
 string strItem = (string) listbox.SelectedItem;

 label.Text = Environment.GetEnvironmentVariable(strItem);
 }
}

Notice that the environment names are an array of strings added to the list box using the AddRange
method. The constructor concludes by setting the SelectedIndex property to 0. Doing so generates a
call to the SelectedIndexChanged event handler, which retrieves the selected item and sets the
Label text with it. Here's a sample view of the program:

List boxes have an owner-draw option that you can enable by setting the DrawMode property. You
set the property to one of the members of the DrawMode enumeration, which specifies whether all
the items have the same height or are different heights:
DrawMode Enumeration

Member Value

Normal 0

OwnerDrawFixed 1

OwnerDrawVariable 2

As usual, you must also install handlers for the MeasureItem and DrawItem events.
List Box + Text Box = Combo Box
In its classical form, the combo box looks like a text box with an arrow at the right. Click the arrow
and a list box drops down. But this traditional usage is not the only way in which you can use combo
boxes. The critical property is DropDownStyle:
ComboBox Properties (selection)

Type Property Accessibility

ComboBoxStyle DropDownStyle get/set

bool DroppedDown get/set

The DropDownStyle property is set to a member of the ComboBoxStyle enumeration:
ComboBoxStyle Enumeration

Member Value Description

Simple 0 Editable field, list always present

DropDown 1 Editable field, list drops down (default)

DropDownList 2 Noneditable field, list drops down

What I referred to as the classical combo box has the default style of DropDown. The user can type
something into the edit field or select something from the list. The style of DropDownList is most like
a regular list box except it takes up less space. The DroppedDown property is true if the list part of
the combo box is visible.

Like a list box, a combo box has an Items property that contains all the items in the list:

ComboBox Properties (selection)

Type Property Accessibility

ComboBox.ObjectCollection Items get

The ObjectCollection class has a Count property, an indexer, and familiar methods such as Add,
AddRange, Insert, and Remove.

The following properties indicate the index of the selected item and the selected item itself:
ComboBox Properties (selection)

Type Property Accessibility

int SelectedIndex get/set

object SelectedItem get/set

In a ListBox object, SelectedIndex and SelectedItem are usually valid, except possibly after a list box
is first created and the properties aren't initialized. In a ComboBox, however, if the user is currently
typing something into the edit field, SelectedIndex returns −1 and SelectedItem returns null.

The Text property always indicates the text that appears in the edit field. Thus, the Text property
changes as the user selects different items from the list part of the combo box and as the user types
something into the edit field.

The following table shows the most useful events implemented by ComboBox:
ComboBox Events (selection)

Event Method Delegate Argument

TextChanged OnTextChanged EventHandler EventArgs

SelectedIndex-
Changed

OnSelectedIndex-
Changed

EventHandler EventArgs

SelectionChange-
Committed

OnSelectionChange-
Committed

EventHandler EventArgs

The TextChanged event occurs when the user scrolls through the items in the list box or types
something into the edit field. The SelectedIndexChanged event occurs only when the user scrolls
through the items in the list box. For DropDown and DropDownList combo boxes, if the list part is
dropped down and the user scrolls through the items, both TextChanged and
SelectedIndexChanged events occur; only when the drop-down list is retracted does the
SelectionChangeCommitted event occur. However, if the user scrolls through items using the cursor
keys without causing the drop-down list to drop down, SelectionChangeCommitted events occur with
each change in the selection. For Simple combo boxes, SelectionChangedCommitted events occur
whenever the selection changes.

In the following enhancement of the EnumerateEnumeration program, I replaced all three list boxes
with combo boxes and installed TextChanged event handlers for all three. By handling TextChanged
events, the program can test for valid combinations with every keystroke that the user types into the
edit field. The push button is eliminated because it is no longer necessary.
EnumerateEnumerationCombo.cs
//--
// EnumerateEnumerationCombo.cs © 2001 by Charles Petzold
//--
using Microsoft.Win32;
using System;
using System.Drawing;
using System.Windows.Forms;

class EnumerateEnumerationCombo: Form
{
 CheckBox cbHex;
 ComboBox comboLibrary, comboNamespace, comboEnumeration;
 TextBox tbOutput;

 const string strRegKeyBase =

"Software\\ProgrammingWindowsWithCSharp\\EnumerateEnumerationCombo";

 public static void Main()
 {
 Application.Run(new EnumerateEnumerationCombo());
 }
 public EnumerateEnumerationCombo()
 {
 Text = "Enumerate Enumeration (Combo)";
 ClientSize = new Size(242, 164);

 Label label = new Label();
 label.Parent = this;
 label.Text = "Library:";
 label.Location = new Point(8, 8);
 label.Size = new Size(56, 8);

 comboLibrary = new ComboBox();
 comboLibrary.Parent = this;
 comboLibrary.DropDownStyle = ComboBoxStyle.DropDown;
 comboLibrary.Sorted = true;
 comboLibrary.Location = new Point(64, 8);
 comboLibrary.Size = new Size(120, 12);
 comboLibrary.Anchor |= AnchorStyles.Right;
 comboLibrary.TextChanged +=
 new EventHandler(ComboBoxLibraryOnTextChanged);

 label = new Label();
 label.Parent = this;
 label.Text = "Namespace:";
 label.Location = new Point(8, 24);
 label.Size = new Size(56, 8);

 comboNamespace = new ComboBox();
 comboNamespace.Parent = this;
 comboNamespace.DropDownStyle = ComboBoxStyle.DropDown;
 comboNamespace.Sorted = true;

 comboNamespace.Location = new Point(64, 24);
 comboNamespace.Size = new Size(120, 12);
 comboNamespace.Anchor |= AnchorStyles.Right;
 comboNamespace.TextChanged +=
 new EventHandler(ComboBoxNamespaceOnTextChanged);

 label = new Label();
 label.Parent = this;
 label.Text = "Enumeration:";
 label.Location = new Point(8, 40);
 label.Size = new Size(56, 8);

 comboEnumeration = new ComboBox();
 comboEnumeration.Parent = this;
 comboEnumeration.DropDownStyle = ComboBoxStyle.DropDown;
 comboEnumeration.Sorted = true;
 comboEnumeration.Location = new Point(64, 40);
 comboEnumeration.Size = new Size(120, 12);
 comboEnumeration.Anchor |= AnchorStyles.Right;
 comboEnumeration.TextChanged +=
 new
EventHandler(ComboBoxEnumerationOnTextChanged);

 cbHex = new CheckBox();
 cbHex.Parent = this;
 cbHex.Text = "Hex";
 cbHex.Location = new Point(192, 25);
 cbHex.Size = new Size(40, 8);
 cbHex.Anchor = AnchorStyles.Top | AnchorStyles.Right;
 cbHex.CheckedChanged += new
EventHandler(CheckBoxOnCheckedChanged);

 tbOutput = new TextBox();
 tbOutput.Parent = this;
 tbOutput.ReadOnly = true;
 tbOutput.Multiline = true;
 tbOutput.ScrollBars = ScrollBars.Vertical;
 tbOutput.Location = new Point(8, 56);
 tbOutput.Size = new Size(226, 100);
 tbOutput.Anchor = AnchorStyles.Left | AnchorStyles.Top |
 AnchorStyles.Right | AnchorStyles.Bottom;

 AutoScaleBaseSize = new Size(4, 8);

 // Initialize display.

 FillComboBox(comboLibrary, strRegKeyBase);
 UpdateTextBox();
 }
 void ComboBoxLibraryOnTextChanged(object obj, EventArgs ea)
 {
 FillComboBox(comboNamespace, strRegKeyBase + "\\" +
 comboLibrary.Text);

 ComboBoxNamespaceOnTextChanged(obj, ea);
 }
 void ComboBoxNamespaceOnTextChanged(object obj, EventArgs ea)
 {
 FillComboBox(comboEnumeration, strRegKeyBase + "\\" +
 comboLibrary.Text + "\\" +
 comboNamespace.Text);

 ComboBoxEnumerationOnTextChanged(obj, ea);
 }
 void ComboBoxEnumerationOnTextChanged(object obj, EventArgs ea)
 {
 UpdateTextBox();
 }
 void CheckBoxOnCheckedChanged(object obj, EventArgs ea)
 {
 UpdateTextBox();
 }
 void UpdateTextBox()
 {
 if (EnumerateEnumeration.FillTextBox(tbOutput,
comboLibrary.Text,
 comboNamespace.Text, comboEnumeration.Text, cbHex.Checked))
 {
 if (!comboLibrary.Items.Contains(comboLibrary.Text))
 comboLibrary.Items.Add(comboLibrary.Text);

 if (!comboNamespace.Items.Contains(comboNamespace.Text))
 comboNamespace.Items.Add(comboNamespace.Text);

 if
(!comboEnumeration.Items.Contains(comboEnumeration.Text))
 comboEnumeration.Items.Add(comboEnumeration.Text);

 string strRegKey = strRegKeyBase + "\\" +
 comboLibrary.Text + "\\" +
 comboNamespace.Text + "\\" +
 comboEnumeration.Text;

 RegistryKey regkey =
 Registry.CurrentUser.OpenSubKey(strRegKey);

 if (regkey == null)
 regkey = Registry.CurrentUser.CreateSubKey(strRegKey);

 regkey.Close();
 }
 }
 bool FillComboBox(ComboBox combo, string strRegKey)
 {
 combo.Items.Clear();

 RegistryKey regkey = Registry.CurrentUser.OpenSubKey(strRegKey);

 if (regkey != null)
 {
 string[] astrSubKeys = regkey.GetSubKeyNames();
 regkey.Close();

 if (astrSubKeys.Length > 0)
 {
 combo.Items.AddRange(astrSubKeys);
 combo.SelectedIndex = 0;
 return true;
 }
 }
 combo.Text = "";
 return false;
 }
}

When you first run the program, all three combo boxes are empty. It is your responsibility to type a
valid library, namespace, and enumeration name. Like I said, the program checks for a valid
combination with every keystroke. When a valid combination is encountered, the enumeration
information is displayed by the static FillTextBox method in the original EnumerateEnumeration
program.

The program also stores the valid combination in the registry, and each valid combination is then
added to the combo boxes. The tree structure of the registry is perfect for an application like this. If
you look in the Registry Editor after entering a few valid combinations of libraries, namespaces, and
enumerations, you'll see that no actual data is stored in the registry! Each valid combination
becomes a key. You'll see entries with keys like this:
Software\ProgrammingWindowsWithCSharp\EnumerateEnumerationCombo
 \system.drawing\System.Drawing.Drawing2D\DashStyle

And this:
Software\ProgrammingWindowsWithCSharp\EnumerateEnumerationCombo
 \system.windows.forms\System.Windows.Forms\DockStyle

As you change the selection or text in the first combo box (where you enter the library name), the
FillComboBox method in the program obtains the list of registry subkeys of the particular library
name. Those subkeys are used to fill the second combo box (the one for the namespace names).
Similarly, as you change the selection or text in the namespace combo box, FillComboBox obtains
the list of valid enumerations for the third combo box. The more you use the program, the more
useful it becomes.
Up-Down Controls
The Windows Forms up-down control is more traditionally known as a spin control. There are two
types of up-down controls, as shown in the following class hierarchy:

The controls consist of an edit field with a pair of arrow buttons at the right. The NumericUpDown
control lets the user select from a range of numbers while the DomainUpDown control lets the user
select from a collection of objects that are identified by strings. I'll be focusing on the
NumericUpDown control in this section.

You generally set the following properties to initialize the control:
NumericUpDown Properties (selection)

Type Property Accessibility

decimal Value get/set

decimal Minimum get/set

decimal Maximum get/set

decimal Increment get/set

Notice the decimal type. For more information on decimal, see Appendix B. The Increment property
indicates the change in the Value when the up and down arrows are clicked. The defaults let Value
range from 0 through 100 with an increment of 1. You can set the Minimum and Maximum properties
to Decimal.MinValue and Decimal.MaxValue to effectively remove any limitations.

The Minimum and Maximum properties are very strict: if the user manually enters a number outside
the Minimum and Maximum range, the spin control changes the number to either Minimum or
Maximum. (Watch out for this in modal dialog boxes. It's possible the OK button will dismiss the
dialog box before the user has a chance to notice that the value has changed.) If the program sets
the Value property to a number outside the range, an exception is raised.

The following properties control the display of the number in the control:
NumericUpDown Properties (selection)

Type Property Accessibility Default

int DecimalPlaces get/set 0

NumericUpDown Properties (selection)

Type Property Accessibility Default

bool ThousandsSeparator get/set false

bool Hexadecimal get/set false

The ValueChanged event indicates when the value of the control has changed, either by the user or
by the program:
NumericUpDown Events (selection)

Event Method Delegate Argument

ValueChanged OnValueChanged EventHandler EventArgs

To demonstrate NumericUpDown controls, I've written a program that uses nine of them. The
Transform program lets you experiment with matrix transforms, either by altering the six elements of
the matrix or by effectively making calls to the various methods implemented by the Matrix class,
such as Scale or Shear. I've divided the program into three files, one for the form and the other two
for the two dialog boxes.

The bulk of the main form consists of two methods called during the Paint event: DrawAxes draws a
coordinate system, and DrawHouse draws a little house. The house is drawn based on a Matrix
object stored as a field.
Transform.cs
//--
// Transform.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Drawing.Imaging; // For bitmap
using System.Windows.Forms;

class Transform: Form
{
 Matrix matrix = new Matrix();

 public static void Main()
 {
 Application.Run(new Transform());
 }
 public Transform()
 {
 Text = "Transform";
 ResizeRedraw = true;
 BackColor = Color.White;
 Size += Size;

 // Create modal dialog box.

 MatrixElements dlg = new MatrixElements();
 dlg.Owner = this;
 dlg.Matrix = matrix;
 dlg.Changed += new EventHandler(MatrixDialogOnChanged);
 dlg.Show();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 DrawAxes(grfx);
 grfx.Transform = matrix;
 DrawHouse(grfx);
 }
 void DrawAxes(Graphics grfx)
 {
 Brush brush = Brushes.Black;
 Pen pen = Pens.Black;
 StringFormat strfmt = new StringFormat();

 // Horizontal axis

 strfmt.Alignment = StringAlignment.Center;

 for (int i = 1; i <= 10; i++)
 {
 grfx.DrawLine(pen, 100 * i, 0, 100 * i, 10);
 grfx.DrawString((i * 100).ToString(), Font, brush,
 100 * i, 10, strfmt);
 grfx.DrawLine(pen, 100 * i, 10 + Font.Height,
 100 * i, ClientSize.Height);
 }

 // Vertical axis

 strfmt.Alignment = StringAlignment.Near;
 strfmt.LineAlignment = StringAlignment.Center;

 for (int i = 1; i <= 10; i++)
 {
 grfx.DrawLine(pen, 0, 100 * i, 10, 100 * i);
 grfx.DrawString((i * 100).ToString(), Font, brush,
 10, 100 * i, strfmt);
 float cxText = grfx.MeasureString(
 (i * 100).ToString(), Font).Width;

 grfx.DrawLine(pen, 10 + cxText, 100 * i,
 ClientSize.Width, 100 * i);
 }
 }
 void DrawHouse(Graphics grfx)
 {
 Rectangle rectFacade = new Rectangle(0, 40, 100, 60);
 Rectangle rectDoor = new Rectangle(10, 50, 25, 50);
 Rectangle[] rectWindows = { new Rectangle(50, 50, 10, 10),
 new Rectangle(60, 50, 10, 10),
 new Rectangle(70, 50, 10, 10),
 new Rectangle(50, 60, 10, 10),
 new Rectangle(60, 60, 10, 10),
 new Rectangle(70, 60, 10, 10),
 new Rectangle(15, 60, 5, 7),
 new Rectangle(20, 60, 5, 7),
 new Rectangle(25, 60, 5, 7) };
 Rectangle rectChimney = new Rectangle(80, 5, 10, 35);
 Point[] ptRoof = { new Point(50, 0),
 new Point(0, 40),
 new Point(100, 40) };

 // Create bitmap and brush for chimney.

 Bitmap bitmap = new Bitmap(8, 6);

 byte[] bits = { 0, 0, 0, 0, 0, 0, 0, 0,
 1, 1, 1, 0, 1, 1, 1, 0,
 1, 1, 1, 0, 1, 1, 1, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 1, 0, 1, 1, 1, 0, 1, 1,
 1, 0, 1, 1, 1, 0, 1, 1,

 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 1, 1, 1, 1, 1, 1 };

 for (int i = 0; i < 48; i++)
 bitmap.SetPixel(i % 8, i / 8,
 bits[i] == 1 ? Color.DarkGray: Color.LightGray);

 Brush brush = new TextureBrush(bitmap);

 // Draw entire house.

 grfx.FillRectangle(Brushes.LightGray, rectFacade);

 grfx.DrawRectangle(Pens.Black, rectFacade);

 grfx.FillRectangle(Brushes.DarkGray, rectDoor);
 grfx.DrawRectangle(Pens.Black, rectDoor);

 grfx.FillRectangles(Brushes.White, rectWindows);
 grfx.DrawRectangles(Pens.Black, rectWindows);

 grfx.FillRectangle(brush, rectChimney);
 grfx.DrawRectangle(Pens.Black, rectChimney);

 grfx.FillPolygon(Brushes.DarkGray, ptRoof);
 grfx.DrawPolygon(Pens.Black, ptRoof);
 }
 void MatrixDialogOnChanged(object obj, EventArgs ea)
 {
 MatrixElements dlg = (MatrixElements) obj;
 matrix = dlg.Matrix;
 Invalidate();
 }
}

The program also displays a modeless dialog box titled Matrix Elements, which is implemented in the
following source code file. The dialog box has six NumericUpDown controls that let you select the six
elements of the matrix and also implements an event named Changed. When you click the Update
button, the Changed event is triggered to let the main program know that a new matrix is available.
(The main program processes this event in the MatrixDialogOnChanged event handler.) The Matrix
object is accessed as a property.
MatrixElements.cs
//---
// MatrixElements.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class MatrixElements: Form
{
 Matrix matrix;
 Button btnUpdate;
 NumericUpDown[] updown = new NumericUpDown[6];

 public event EventHandler Changed;

 public MatrixElements()
 {

 Text = "Matrix Elements";
 FormBorderStyle = FormBorderStyle.FixedDialog;
 ControlBox = false;
 MinimizeBox = false;
 MaximizeBox = false;
 ShowInTaskbar = false;

 String[] strLabel = { "X Scale:", "Y Shear:",
 "X Shear:", "Y Scale:",
 "X Translate:", "Y Translate:" };

 for (int i = 0; i < 6; i++)
 {
 Label label = new Label();
 label.Parent = this;
 label.Text = strLabel[i];
 label.Location = new Point(8, 8 + 16 * i);
 label.Size = new Size(64, 8);

 updown[i] = new NumericUpDown();
 updown[i].Parent = this;
 updown[i].Location = new Point(76, 8 + 16 * i);
 updown[i].Size = new Size(48, 12);
 updown[i].TextAlign = HorizontalAlignment.Right;
 updown[i].ValueChanged += new EventHandler
 (UpDownOnValueChanged);
 updown[i].DecimalPlaces = 2;
 updown[i].Increment = 0.1m;
 updown[i].Minimum = Decimal.MinValue;
 updown[i].Maximum = Decimal.MaxValue;
 }
 btnUpdate = new Button();
 btnUpdate.Parent = this;
 btnUpdate.Text = "Update";
 btnUpdate.Location = new Point(8, 108);
 btnUpdate.Size = new Size (50, 16);
 btnUpdate.Click += new EventHandler(ButtonUpdateOnClick);

 AcceptButton = btnUpdate;

 Button btn = new Button();
 btn.Parent = this;
 btn.Text = "Methods...";
 btn.Location = new Point(76, 108);
 btn.Size = new Size(50, 16);

 btn.Click += new EventHandler(ButtonMethodsOnClick);

 ClientSize = new Size(134, 132);

 AutoScaleBaseSize = new Size(4, 8);
 }
 public Matrix Matrix
 {
 get
 {
 matrix = new Matrix((float) updown[0].Value,
 (float) updown[1].Value,
 (float) updown[2].Value,
 (float) updown[3].Value,
 (float) updown[4].Value,
 (float) updown[5].Value);
 return matrix;
 }
 set
 {
 matrix = value;

 for (int i = 0; i < 6; i++)
 updown[i].Value = (decimal) value.Elements[i];
 }
 }
 void UpDownOnValueChanged(object obj, EventArgs ea)
 {
 Graphics grfx = CreateGraphics();

 bool boolEnableButton = true;

 try
 {
 grfx.Transform = Matrix;
 }
 catch
 {
 boolEnableButton = false;
 }
 btnUpdate.Enabled = boolEnableButton;
 grfx.Dispose();
 }
 void ButtonUpdateOnClick(object obj, EventArgs ea)
 {

 if (Changed != null)
 Changed(this, new EventArgs());
 }
 void ButtonMethodsOnClick(object obj, EventArgs ea)
 {
 MatrixMethods dlg = new MatrixMethods();

 dlg.Matrix = Matrix;

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 Matrix = dlg.Matrix;
 btnUpdate.PerformClick();
 }
 }
}

The Matrix Elements dialog box also contains a second button, labeled Methods. That button
invokes a modal dialog box titled Matrix Methods, which is implemented in the following source code
file. Matrix Methods contains another three NumericUpDown controls that provide arguments to the
various methods of the Matrix class that alter the matrix elements. Each method is implemented by a
button that also dismisses the dialog box.
MatrixMethods.cs
//--
// MatrixMethods.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class MatrixMethods: Form
{
 Matrix matrix;
 Button btnInvert;
 NumericUpDown[] updown = new NumericUpDown[3];
 RadioButton[] radio = new RadioButton[2];

 public MatrixMethods()
 {
 Text = "Matrix Methods";
 FormBorderStyle = FormBorderStyle.FixedDialog;
 ControlBox = false;
 MinimizeBox = false;
 MaximizeBox = false;
 ShowInTaskbar = false;
 Location = ActiveForm.Location +

 SystemInformation.CaptionButtonSize +
 SystemInformation.FrameBorderSize;

 String[] astrLabel = { "X / DX:", "Y / DY:", "Angle:" };

 for (int i = 0; i < 3; i++)
 {
 Label label = new Label();
 label.Parent = this;
 label.Text = astrLabel[i];
 label.Location = new Point(8, 8 + 16 * i);
 label.Size = new Size(32, 8);

 updown[i] = new NumericUpDown();
 updown[i].Parent = this;
 updown[i].Location = new Point(40, 8 + 16 * i);
 updown[i].Size = new Size(48, 12);
 updown[i].TextAlign = HorizontalAlignment.Right;

 updown[i].DecimalPlaces = 2;
 updown[i].Increment = 0.1m;
 updown[i].Minimum = Decimal.MinValue;
 updown[i].Maximum = Decimal.MaxValue;
 }
 // Create group box and radio buttons.

 GroupBox grpbox = new GroupBox();
 grpbox.Parent = this;
 grpbox.Text = "Order";
 grpbox.Location = new Point(8, 60);
 grpbox.Size = new Size(80, 32);

 for (int i = 0; i < 2; i++)
 {
 radio[i] = new RadioButton();
 radio[i].Parent = grpbox;
 radio[i].Text = new string[] { "Prepend", "Append" } [i];
 radio[i].Location = new Point(8, 8 + 12 * i);
 radio[i].Size = new Size(50, 10);
 radio[i].Checked = (i == 0);
 }

 // Create eight buttons for terminating dialog box.

 string[] astrButton = { "Reset", "Invert", "Translate", "Scale",

 "Rotate", "RotateAt", "Shear", "Cancel"
};

 EventHandler[] aeh = { new EventHandler(ButtonResetOnClick),
 new EventHandler(ButtonInvertOnClick),
 new EventHandler(ButtonTranslateOnClick),
 new EventHandler(ButtonScaleOnClick),
 new EventHandler(ButtonRotateOnClick),
 new EventHandler(ButtonRotateAtOnClick),
 new EventHandler(ButtonShearOnClick) };

 for (int i = 0; i < 8; i++)
 {
 Button btn = new Button();
 btn.Parent = this;
 btn.Text = astrButton[i];
 btn.Location = new Point(100 + 72 * (i > 3 ? 1 : 0),
 8 + (i % 4) * 24);
 btn.Size = new Size(64, 14);

 if (i == 0) // Reset button
 {
 AcceptButton = btn;
 }
 if (i == 1) // Invert button
 {
 btnInvert = btn;
 }
 if (i < 7) // All buttons except Cancel
 {
 btn.Click += aeh[i];
 btn.DialogResult = DialogResult.OK;
 }
 else // Cancel button
 {
 btn.DialogResult = DialogResult.Cancel;
 CancelButton = btn;
 }
 }
 ClientSize = new Size(240, 106);

 AutoScaleBaseSize = new Size(4, 8);
 }
 public Matrix Matrix
 {
 get

 {
 return matrix;
 }
 set
 {
 matrix = value;
 btnInvert.Enabled = matrix.IsInvertible;
 }
 }
 void ButtonResetOnClick(object obj, EventArgs ea)
 {
 matrix.Reset();
 }
 void ButtonInvertOnClick(object obj, EventArgs ea)
 {
 matrix.Invert();
 }
 void ButtonTranslateOnClick(object obj, EventArgs ea)
 {
 matrix.Translate((float) updown[0].Value,
 (float) updown[1].Value,
 radio[0].Checked ? MatrixOrder.Prepend :
MatrixOrder.Append);
 }
 void ButtonScaleOnClick(object obj, EventArgs ea)
 {
 matrix.Scale((float) updown[0].Value,
 (float) updown[1].Value,
 radio[0].Checked ? MatrixOrder.Prepend :
MatrixOrder.Append);
 }
 void ButtonRotateOnClick(object obj, EventArgs ea)
 {
 matrix.Rotate((float) updown[2].Value,
 radio[0].Checked ? MatrixOrder.Prepend :
MatrixOrder.Append);
 }
 void ButtonRotateAtOnClick(object obj, EventArgs ea)
 {
 matrix.RotateAt((float) updown[2].Value,
 new PointF((float) updown[0].Value,
 (float) updown[1].Value),
 radio[0].Checked ? MatrixOrder.Prepend :
MatrixOrder.Append);
 }
 void ButtonShearOnClick(object obj, EventArgs ea)

 {
 matrix.Shear((float) updown[0].Value,
 (float) updown[1].Value,
 radio[0].Checked ? MatrixOrder.Prepend :
MatrixOrder.Append);
 }
}

Here's a view of the program with both dialog boxes displayed:

The chimney of the house is a TextureBrush based on a Bitmap image that looks like bricks. I could
have used a HatchBrush here with HatchStyle.HorizontalBrick. But, as you'll recall from Chapter 11,
the HatchBrush isn't subject to transforms; the TextureBrush is. As you make the house larger, the
bricks of the chimney also get larger. The bricks can also be sheared and rotated. You'll also notice
that GDI+ uses a smoothing algorithm to avoid a giant-pixel effect.

Chapter 19: Font Fun
Overview
The TrueType and OpenType fonts available to Windows Forms programs are outline fonts, which
means that each character is defined by a series of straight lines and splines. As we saw in Chapter
9 and subsequent chapters, outline fonts are continuously scalable. The font definitions also contain
built-in hints that help avoid distortions that result when scaled floating-point coordinates must be
rounded to a particular pixel grid.

Because font characters are defined by a series of straight lines and curves, they integrate well with
the rest of the Windows Forms graphics system. Font characters are subject to transforms, they can
be colored with any brush, and the character outlines can become part of a graphics path.

With the use of these various graphics programming techniques, singly and in combination, text can
transcend its customary role—that of being read—and aspire to become something like art.
Getting Started
Since Chapter 5, I've been deriving from a class named PrintableForm (implemented in
PrintableForm.cs) whenever I've wanted to demonstrate some graphics technique on both the video
display and the printer. A class derived from PrintableForm overrides the DoPage method to draw its
graphics. DoPage is called during the form's OnPaint method to paint the client area. When you click
the client area, the DoPage method is also called to display graphics on the printer.

For this chapter, I want to define a new class, named FontMenuForm, that derives from
PrintableForm and also includes a single menu item labeled "Font!". The item invokes a standard
Font dialog box that lets you change a field named font. The FontMenuForm class also contains a
couple methods that are handy for displaying text.
FontMenuForm.cs
//---
// FontMenuForm.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class FontMenuForm: PrintableForm
{
 protected string strText = "Sample Text";
 protected Font font = new Font("Times New Roman", 24,
FontStyle.Italic);

 public new static void Main()
 {
 Application.Run(new FontMenuForm());
 }
 public FontMenuForm()
 {
 Text = "Font Menu Form";
 Menu = new MainMenu();
 Menu.MenuItems.Add("&Font!", new EventHandler(MenuFontOnClick));
 }

 void MenuFontOnClick(object obj, EventArgs ea)
 {
 FontDialog dlg = new FontDialog();
 dlg.Font = font;

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 font = dlg.Font;
 Invalidate();
 }
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 SizeF sizef = grfx.MeasureString(strText, font);
 Brush brush = new SolidBrush(clr);

 grfx.DrawString(strText, font, brush, (cx - sizef.Width) / 2,
 (cy - sizef.Height) / 2);
 }
 public float GetAscent(Graphics grfx, Font font)
 {
 return font.GetHeight(grfx) *
 font.FontFamily.GetCellAscent(font.Style) /
 font.FontFamily.GetLineSpacing(font.Style);
 }
 public float GetDescent(Graphics grfx, Font font)
 {
 return font.GetHeight(grfx) *
 font.FontFamily.GetCellDescent(font.Style) /
 font.FontFamily.GetLineSpacing(font.Style);
 }
 public float PointsToPageUnits(Graphics grfx, Font font)
 {
 float fFontSize;

 if (grfx.PageUnit == GraphicsUnit.Display)
 fFontSize = 100 * font.SizeInPoints / 72;
 else
 fFontSize = grfx.DpiX * font.SizeInPoints / 72;

 return fFontSize;
 }
}

A program that derives from the FontMenuForm class should override the DoPage method (as when
deriving from the PrintableForm class) and also make use of the font and strText fields. Optionally,
the program can set those two fields in its constructor to different initial values.

The GetAscent and GetDescent methods calculate the ascent and descent of a particular font by
using a technique I discussed in Chapter 9. The PointToPageUnits method calculates the point size
of a font in page units. The method assumes that the default page units are in effect for the Graphics
object argument. Printers have default page units of GraphicsUnit.Display, and the video display has
default page units of GraphicsUnit.Pixel.
Brushed Text
Throughout Chapter 17, I resisted demonstrating how you can use the whole variety of available
brushes with text because I was saving them for this chapter. Here, for example, is a program that
displays text using a HatchBrush created with HatchStyle.HorizontalBrick.
Bricks.cs
//-------------------------------------
// Bricks.cs © 2001 by Charles Petzold
//-------------------------------------
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class Bricks: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new Bricks());
 }
 public Bricks()
 {
 Text = "Bricks";

 strText = "Bricks";
 font = new Font("Times New Roman", 144);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 SizeF sizef = grfx.MeasureString(strText, font);
 Brush hbrush = new HatchBrush(HatchStyle.HorizontalBrick,
 Color.White, Color.Black);

 grfx.DrawString(strText, font, hbrush, (cx - sizef.Width) / 2,
 (cy - sizef.Height) / 2);
 }
}

When you enlarge the client area sufficiently, the output looks like this:

Hatch brushes work best with larger font styles. With some of the skimpier hatch brushes, the
appearance can be improved by outlining the characters, a technique I'll demonstrate later in the
chapter.

Here's a program that displays text with a gradient brush.
GradientText.cs
//---
// GradientText.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class GradientText: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new GradientText());
 }
 public GradientText()
 {
 Text = "Gradient Text";
 Width *= 3;
 strText = "Gradient";
 font = new Font("Times New Roman", 144, FontStyle.Italic);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 SizeF sizef = grfx.MeasureString(strText, font);
 PointF ptf = new PointF((cx - sizef.Width) / 2,
 (cy - sizef.Height) / 2);

 RectangleF rectf = new RectangleF(ptf, sizef);

 LinearGradientBrush lgbrush = new LinearGradientBrush(rectf,
 Color.White, Color.Black,

LinearGradientMode.ForwardDiagonal);
 grfx.Clear(Color.Gray);
 grfx.DrawString(strText, font, lgbrush, ptf);
 }
}

The text is white at the upper left corner and black at the lower right corner, displayed against a gray
background:

If you insert the lines
sizef.Width /= 8;
sizef.Height /= 8;

before the RectangleF creation and the line
lgbrush.WrapMode = WrapMode.TileFlipXY;

after the brush creation, you get a smaller tiled brush that looks like this:

It's also possible to achieve some interesting effects using plain old solid brushes, as illustrated in
the DropShadow program.
DropShadow.cs
//---
// DropShadow.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class DropShadow: FontMenuForm
{
 const int iOffset = 10; // Approximately 1/10 inch (exactly on
printer)

 public new static void Main()

 {
 Application.Run(new DropShadow());
 }
 public DropShadow()
 {
 Text = "Drop Shadow";
 Width *= 2;
 strText = "Shadow";
 font = new Font("Times New Roman", 108);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 SizeF sizef = grfx.MeasureString(strText, font);
 float x = (cx - sizef.Width) / 2;
 float y = (cy - sizef.Height) / 2;

 grfx.Clear(Color.White);
 grfx.DrawString(strText, font, Brushes.Gray, x, y);
 grfx.DrawString(strText, font, Brushes.Black, x - iOffset,
 y - iOffset);
 }
}

This program does a drop-shadow effect by displaying the same text with two different brushes offset
by 10 units:

If the offset is very small and you choose the colors right, you can achieve an embossed or an
engraved effect, as shown in the EmbossedText program.
EmbossedText.cs
//---
// EmbossedText.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class EmbossedText: FontMenuForm
{
 int iOffset = 2;

 public new static void Main()
 {
 Application.Run(new EmbossedText());
 }
 public EmbossedText()
 {
 Text = "Embossed Text";
 Width *= 2;
 Menu.MenuItems.Add("&Toggle!",
 new EventHandler(MenuToggleOnClick));
 strText = "Emboss";
 font = new Font("Times New Roman", 108);
 }
 void MenuToggleOnClick(object obj, EventArgs ea)
 {
 iOffset = -iOffset;
 Text = (iOffset > 0) ? "Embossed Text" : "Engraved Text";
 strText = (iOffset > 0) ? "Emboss" : "Engrave";
 Invalidate();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 SizeF sizef = grfx.MeasureString(strText, font);
 float x = (cx - sizef.Width) / 2;
 float y = (cy - sizef.Height) / 2;

 grfx.Clear(Color.White);
 grfx.DrawString(strText, font, Brushes.Gray, x, y);
 grfx.DrawString(strText, font, Brushes.White, x - iOffset,
 y - iOffset);
 }
}

The program draws gray text and then white text against a white background. By default, the
program comes up like this:

The program includes a menu option labeled "Toggle!" that lets you switch to the engraved effect:

These two effects are fundamentally the same. The only difference is the choice of a positive or
negative offset between the two text displays. Because we are accustomed to light sources that
come from above, we interpret an apparent shadow that appears on the bottom and right of the
characters to be the result of raised text, and a shadow on the top and left to result from sunken text.
Turn this book (or your monitor) upside down to swap the effects.

As demonstrated in the BlockFont program, you can draw the same text string multiple times with the
same color to achieve a block effect.
BlockFont.cs
//--
// BlockFont.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class BlockFont: FontMenuForm
{
 const int iReps = 50; // Approximately 1/2 inch (exactly on
printer)

 public new static void Main()
 {
 Application.Run(new BlockFont());
 }
 public BlockFont()
 {
 Text = "Block Font";
 Width *= 2;

 strText = "Block";
 font = new Font("Times New Roman", 108);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 SizeF sizef = grfx.MeasureString(strText, font);
 float x = (cx - sizef.Width - iReps) / 2;
 float y = (cy - sizef.Height + iReps) / 2;

 grfx.Clear(Color.LightGray);

 for (int i = 0; i < iReps; i++)
 grfx.DrawString(strText, font, Brushes.Black, x + i, y -
i);

 grfx.DrawString(strText, font, Brushes.White, x + iReps,
 y - iReps);
 }
}

After drawing multiple black text strings, the DoPage method finishes with a white one. Here's the
result:

You might also want to use an outlined font on top, which will give a stronger look against a white
background.
Font Transforms
It became clear from the first investigations into the world transform in Chapter 7 that text is subject
to the same scaling, rotation, and shearing effects as any other graphics object. The RotatedFont
program derives from FontMenuForm to draw a series of identical text strings circling the center of
the display area.
RotatedFont.cs
//--
// RotatedFont.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class RotatedFont: FontMenuForm
{
 const int iDegrees = 20; // Should be divisor of 360

 public new static void Main()
 {
 Application.Run(new RotatedFont());
 }
 public RotatedFont()
 {
 Text = "Rotated Font";

 strText = " Rotated Font";
 font = new Font("Arial", 18);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 StringFormat strfmt = new StringFormat();
 strfmt.LineAlignment = StringAlignment.Center;

 grfx.TranslateTransform(cx / 2, cy / 2);

 for (int i = 0; i < 360; i += iDegrees)
 {
 grfx.DrawString(strText, font, brush, 0, 0, strfmt);
 grfx.RotateTransform(iDegrees);
 }
 }
}

The DoPage method calls TranslateTransform to set the origin in the middle of the display area. It
then draws 18 versions of the text string, each rotated an additional 20 degrees around the origin.
The DrawString call uses a StringFormat object that vertically centers the text string with respect to
the origin, and the text string begins with three blank characters so that there won't be a mess in the
center. Here's the result with the default 18-point Arial font:

Feel free to use the program's Font! menu item to change the font to something other than Arial.

Here's a program that uses the GetAscent method in FontMenuForm. In Chapter 7, I demonstrated
that negative scaling factors cause graphics objects to be flipped around either the horizontal or the
vertical axis, or both. The ReflectedText program displays the text string "Reflect" using four
combinations of positive and negative scaling.
ReflectedText.cs
//--
// ReflectedText.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class ReflectedText: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new ReflectedText());
 }
 public ReflectedText()
 {
 Text = "Reflected Text";
 Width *= 2;
 strText = "Reflect";
 font = new Font("Times New Roman", 54);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 float fAscent = GetAscent(grfx, font);

 StringFormat strfmt = StringFormat.GenericTypographic;

 grfx.TranslateTransform(cx / 2, cy / 2);

 for (int i = 0; i < 4; i++)
 {
 GraphicsState grfxstate = grfx.Save();

 grfx.ScaleTransform((i > 1 ? -1 : 1), (i & 1) == 1 ? -1 :
1);
 grfx.DrawString(strText, font, brush, 0, -fAscent, strfmt);
 grfx.Restore(grfxstate);
 }
 }
}

The TranslateTransform call sets the origin in the center of the client area. The ScaleTransform call
looks a bit messy, but it basically uses the variable i to select four different combinations of 1 and −1
for scaling. The −fAscent argument in DrawString positions the text with the left end of its baseline at
the origin:

You can also combine effects. Here's the same program with a RotateTransform call between
TranslateTransform and ScaleTransform.
RotateAndReflect.cs
//---
// RotateAndReflect.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class RotateAndReflect: FontMenuForm
{
 public new static void Main()
 {

 Application.Run(new RotateAndReflect());
 }
 public RotateAndReflect()
 {
 Text = "Rotated and Reflected Text";

 strText = "Reflect";
 font = new Font("Times New Roman", 36);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Brush brush = new SolidBrush(clr);
 float fAscent = GetAscent(grfx, font);
 StringFormat strfmt = StringFormat.GenericTypographic;
 grfx.TranslateTransform(cx / 2, cy / 2);

 for (int i = 0; i < 4; i++)
 {
 GraphicsState grfxstate = grfx.Save();

 grfx.RotateTransform(-45);
 grfx.ScaleTransform((i > 1 ? -1 : 1), (i & 1) == 1 ? -1 :
1);
 grfx.DrawString(strText, font, brush, 0, -fAscent, strfmt);
 grfx.Restore(grfxstate);
 }
 }
}

I've also made the font a little smaller so that the screen shot isn't inordinately huge:

Rotation doesn't distort the individual characters. If you tilt this book side to side, you'll see that each
text string displayed so far is entirely normal except that it's oriented in a different direction. When
you shear a text string, however, the individual characters are distorted. The horizontal and vertical
strokes will no longer be at right angles to each other.

Here's a program that uses the Shear method of the Matrix class to set a horizontal shear of 0.5.
SimpleShear.cs
//--
// SimpleShear.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class SimpleShear: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new SimpleShear());
 }
 public SimpleShear()
 {
 Text = "Simple Shear";

 strText = "Shear";
 font = new Font("Times New Roman", 72);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)

 {
 Brush brush = new SolidBrush(clr);
 Matrix matx = new Matrix();

 matx.Shear(0.5f, 0);
 grfx.Transform = matx;

 grfx.DrawString(strText, font, brush, 0, 0);
 }
}

The particular call to Shear in this program changes the default transformation matrix from

to

and the transformation formulas from

x′ = x
y′ = y

to

x′ = x + 0.5 · y
y′ = y

At the very top of the client area (or printer page), y equals 0 and the shear has no effect. But as you
move down the client area, y gets larger and hence x′ is shifted more to the right. Here's the
resultant text string:

Although the characters bend to the left, notice that they still sit on a horizontal baseline; that is, the
characters are not simply rotated but definitely distorted. This is a reverse oblique (or italic) effect. As
you increase the first argument to Shear, the effect becomes more pronounced; if you make the
argument negative, you'll get more normal-looking oblique text.

If you switch around the coordinates to the Shear method like so,
matx.Shear(0, 0.5f);

you'll get vertical shear:

Here you can see that the vertical strokes on the h and r are still vertical, but the baseline is now at
an angle to the horizontal axis.

Using shear with text can be a bit tricky. For example, suppose you want to draw some text on a
baseline, as does the TextOnBaseline program in Chapter 9 (on page 391):

Now suppose you want to give the text an artificial oblique look using shear. You probably want the
text to sit on the same baseline in the same location, but just tilted forward a bit. Because shear is
always relative to the origin, you need to use translation to move the origin to the baseline.

The BaselineTilt program is much like TextOnBaseline but has been modified to derive from
FontMenuForm. The BaselineTilt program is also a little different in that it sets the baseline three-
quarters of the distance down the client area rather than one-half (to take better advantage of client
area real estate) and makes use of the GetAscent method in FontMenuForm.
BaselineTilt.cs
//---
// BaselineTilt.cs © 2001 by Charles Petzold
//---

using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class BaselineTilt: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new BaselineTilt());
 }
 public BaselineTilt()
 {
 Text = "Baseline Tilt";

 strText = "Baseline";
 font = new Font("Times New Roman", 144);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 float yBaseline = 3 * cy / 4;
 float cyAscent = GetAscent(grfx, font);

 grfx.DrawLine(new Pen(clr), 0, yBaseline, cx, yBaseline);

 grfx.TranslateTransform(0, yBaseline);

 Matrix matx = grfx.Transform;
 matx.Shear(-0.5f, 0);
 grfx.Transform = matx;

 grfx.DrawString(strText, font, new SolidBrush(clr), 0, -
cyAscent);
 }
}

This new program also shears the text string. The TranslateTransform call sets the origin at the
designated baseline on the left side of the client area:
grfx.TranslateTransform(0, yBaseline);

The following three calls set a negative horizontal shear:
Matrix matx = grfx.Transform;
matx.Shear(-0.5f, 0);
grfx.Transform = matx;

However, because of the previous TranslateTransform call, the shear is relative to the new origin.
Here are the transformation formulas:

x′ = x − 0.5 · y
y′ = y + yBaseline

The point (0, 0) in world coordinates maps to the point (0, yBaseline) in client area coordinates,
which is the designated baseline. Points above the baseline (world coordinates with negative y
values) are sheared to the right. Points below the baseline (positive y values) are sheared to the left.

The program displays the text at the world coordinate (0, −cyAscent), where cyAscent is the height of
the characters above the baseline. I'm using a DrawString call with no StringFormat argument, so
the specified world coordinates indicate the point that corresponds to the upper left corner of the text
string. The transformation formulas map the coordinate (0, −cyClient) to the point (0.5 × cyAscent,
yBaseline − cyAscent). The left side of the baseline of the text string is displayed at the point (0, 0) in
world coordinates, which (as I mentioned) is mapped to the point (0, yBaseline), exactly where we
want it:

Although that certainly looks like an italic text string, it's not: the lowercase a is roman style, not italic.

Now that we know how to display normal text and sheared text on the same baseline, a very
interesting technique suddenly becomes available. Here's a program that demonstrates the
technique, exaggerating the shear and making the sheared text taller as well.
TiltedShadow.cs
//---
// TiltedShadow.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class TiltedShadow: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new TiltedShadow());
 }
 public TiltedShadow()
 {
 Text = "Tilted Shadow";

 strText = "Shadow";
 font = new Font("Times New Roman", 54);
 }

 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 float fAscent = GetAscent(grfx, font);

 // Set baseline 3/4 down client area.

 grfx.TranslateTransform(0, 3 * cy / 4);

 // Save the graphics state.

 GraphicsState grfxstate = grfx.Save();

 // Set scaling and shear, and draw shadow.

 grfx.MultiplyTransform(new Matrix(1, 0, -3, 3, 0, 0));
 grfx.DrawString(strText, font, Brushes.DarkGray, 0, -fAscent);

 // Draw text without scaling or shear.

 grfx.Restore(grfxstate);
 grfx.DrawString(strText, font, Brushes.Black, 0, -fAscent);
 }
}

Like the BaselineTilt program, the TiltedShadow program calls TranslateTransform to set the origin
at the client-area coordinate (0, 3 * cy / 4). The MultiplyTransform call then multiplies the transform
by the matrix:

The resultant composite transform is

x′ = x − 3 · y
y′ = 3 · y + (3 * cy / 4)

The shear is more extreme than in the earlier program, and the y coordinates are tripled as well.
Combined with text displayed normally on the baseline, the result is a shadow effect:

This effect doesn't work well when some of the text characters have descenders: the shadow then
appears in front of the text. To make the shadow seem to fall back from the bottom of the
descenders, change the variable I've called fAscent to be the sum of the ascent and the descent:
float fAscent = GetAscent(grfx, font) + GetDescent(grfx, font);

Of course, you'll want to change the strText variable to use an appropriate text string:

Notice that the shadow falls back from the bottom of the q and the y.
Text and Paths
The GraphicsPath class includes a method named AddString that lets you add a text string to a path.
The straight lines and curves that make up the character outlines become part of the path. As usual,
however, text is a little different from other graphics objects, and adding text to a path requires some
special considerations.

The first problem involves the AddString method itself. As you'll recall from Chapter 15, most of the
Add methods in GraphicsPath are very similar to the corresponding Draw methods in the Graphics
class. For example, using the Graphics class, you can draw a line by calling
grfx.DrawLine(pen, x1, y1, x2, y2);

You can add a line to a path by calling
path.AddLine(x1, y1, x2, y2);

The AddLine method doesn't require a Pen argument because the path retains only the coordinates
of the lines.

In contrast, the AddString methods of GraphicsPath are considerably different from the DrawString
methods of the Graphics class. Instead of specifying a font (as in DrawString), you specify the three
basic components that go into making a font (a font family, a style, and a size) plus a destination
(either a point or a rectangle) and a StringFormat object:

GraphicsPath AddString Methods

AddString(string str, FontFamily ff, int iStyle, float fSize, Point pt,
 StringFormat sf)
AddString(string str, FontFamily ff, int iStyle, float fSize, PointF ptf,
 StringFormat sf)
AddString(string str, FontFamily ff, int iStyle, float fSize,
 Rectangle rect, StringFormat sf)
AddString(string str, FontFamily ff, int iStyle, float fSize,
 RectangleF rectf, StringFormat sf)

Notice that the third argument is defined as an int, but it's really a member of the FontStyle
enumeration cast to an int.

When you create a font for drawing, you generally base the font on a specific metrical size. Very
often, you specify the font size in points, but you can also use inches or millimeters. As I showed in
Chapter 9, it's also possible to create a font that is not a specific metrical size by using the
GraphicsUnit.Pixel or GraphicsUnit.World value in the Font constructor. The size of such a font is
just a number. When you render text using that font, the size is interpreted at that time in terms of the
current page coordinates of the output device.

A path doesn't retain metrical information. The path is only a collection of coordinates. For that
reason, the AddString method can't be defined in terms of a Font. (And if there were an AddString
method that did include a Font argument, it would undoubtedly be restricted to a Font object created
with GraphicsUnit.Pixel or GraphicsUnit.World.)

Let's assume you add a text string to a path by calling AddString with a fourth argument of 72. What
does that number mean? How large will the font be? It all depends on the page transform in effect
when you eventually render that path by calling DrawPath or FillPath. If the page unit is
GraphicsUnit.Point, the text will be rendered in the same size as a 72-point font drawn using
DrawString. But if you render the path on the printer using the default GraphicsUnit.Display page
units, the 72 units will be interpreted as 0.72 inch, and the text will be rendered in the same size as a
52-point font. (That's 0.72 inch times 72 points to an inch.) If you render the path on the screen using
the default GraphicsUnit.Pixel page units, the size of the font will depend on the video resolution. If
the video resolution is 120 dpi, for example, the 72-unit size of the font will be interpreted as 72/120
inch and will appear about the size of a 43-point font. (That's 72/120 inch times 72 points to the
inch.)

It's likely that you want text in a path to be compatible with text displayed normally. Perhaps the
simplest approach is to call AddString with the desired point size of the font. Before rendering the
path, you simply set page units to points:
grfx.PageUnit = GraphicsUnit.Point;

Another approach (one that I'll be using in the sample programs in the remainder of this chapter) lets
you use the default page units when rendering the font. But you need to calculate an fSize argument
to AddString based on the desired point size of the font and the resolution of the device. (That
means you can't use the same path on both the screen and the printer.) Suppose you already have a
Font object named font, and you want to add text to a path based on that font. The second argument
of AddString is just font.FontFamily. The third argument is font.FontStyle cast to an int. The fourth
argument is calculated like so:
if (grfx.PageUnit == GraphicsUnit.Display)
 fFontSize = 100 * font.SizeInPoints / 72;
else
 fFontSize = grfx.DpiX * font.SizeInPoints / 72;

The first calculation is for the printer; the second is for the video display. If you look back at the
FontMenuForm program, you'll see that I've implemented this calculation in the PointsToPageUnits
method.

Regardless of what precautions you take to calculate font sizes, text displayed using DrawString and
text displayed by rendering a path on which AddString was earlier called won't be identical,
particularly on the video display. When you call DrawString, some adjustments are made to the text
to make it more readable. If you need two chunks of text to be rendered in exactly the same size (for
example, if one overlays the other), don't use a path for one and DrawString for the other. Use a path
for both.

I've mentioned hints in connection with outline fonts. When you add a text string to a path, all that's
saved in the path are floating-point coordinates. The hints are gone. When that path is eventually
rendered, the floating-point coordinates must be converted to pixels. Some rounding will be involved,
and the rounding isn't likely to be entirely consistent. For example, the widths of the two vertical
strokes of the H might differ by a pixel. For large font sizes, you won't notice the problem. On high-
resolution devices like the printer, you won't notice the problem either. But for normal font sizes on
the video display, the appearance of the text will be intolerable.

For that reason, text added to paths looks best in larger font sizes or on high-resolution output
devices like the printer. Use a path only for special text effects; avoid using paths for normal text.

Let's look at an example. Some graphics systems let you create an outline, or hollow, font that
consists of just an outline with an unfilled interior. Windows Forms doesn't include such a style in the
FontStyle enumeration. To display outlined font characters, however, you can use a path, as I've
done in the HollowFont program.
HollowFont.cs
//---
// HollowFont.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class HollowFont: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new HollowFont());
 }
 public HollowFont()
 {
 Text = "Hollow Font";
 Width *= 2;
 strText = "Hollow";
 font = new Font("Times New Roman", 108);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();
 float fFontSize = PointsToPageUnits(grfx, font);

 // Get coordinates for a centered string.

 SizeF sizef = grfx.MeasureString(strText, font);
 PointF ptf = new PointF((cx - sizef.Width) / 2,
 (cy - sizef.Height) / 2);

 // Add text to the path.

 path.AddString(strText, font.FontFamily, (int) font.Style,
 fFontSize, ptf, new StringFormat());

 // Draw the path.

 grfx.DrawPath(new Pen(clr), path);
 }
}

Before calling AddString, the program calculates a font size—here stored in a variable named
fFontSize—using the technique I described earlier. The program also calculates a PointF argument
to AddString that has the effect of centering the string in the client area when the path is drawn
(which happens at the end of the DoPage method).

The HollowFont program calculates the PointF destination of the text before adding the text to the
path because the DrawPath method itself has no argument to indicate where the path is drawn. All
the coordinates in the path are simply interpreted as world coordinates when DrawPath is called.
However, the PointF argument to AddString indicates the upper left coordinate of the text string. All
the coordinates of the text characters are relative to that point, and those are the coordinates stored
in the path. The HollowFont program calculates this point using MeasureString with the original Font
object as if it were preparing to display text using DrawString. Here's the result:

Try clicking the Font! menu item to specify a 12-point font. You'll see that the text doesn't look very
readable on the video display. It's a rounding problem.

There's another approach to centering text stored in a path. This alternative approach is more
generalized because it's based on the coordinates stored within the path itself. The GraphicsPath
method GetBounds returns a RectangleF that is the smallest rectangle encompassing all the
coordinates of the path. You can use that rectangle to center the contents of the path, perhaps most
easily by calling TranslateTransform on the destination Graphics object.

Don't assume that the rectangle returned from GetBounds will have an upper left corner of (0, 0),
even if you call AddString with a PointF argument of (0, 0). The Left property of the rectangle will
probably be a bit greater than 0 because there's normally a little margin before the first text
character. The Top property of the rectangle will likewise often be larger than 0.

Here's a program that calls AddString with a PointF argument of (0, 0) and then centers the path in
the client area using the bounding rectangle of the path.
HollowFontCenteredPath.cs
//---
// HollowFontCenteredPath.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class HollowFontCenteredPath: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new HollowFontCenteredPath());
 }
 public HollowFontCenteredPath()
 {
 Text = "Hollow Font (Centered Path)";
 Width *= 2;
 strText = "Hollow";
 font = new Font("Times New Roman", 108);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();
 float fFontSize = PointsToPageUnits(grfx, font);

 // Add text to the path.

 path.AddString(strText, font.FontFamily, (int) font.Style,
 fFontSize, new PointF(0, 0), new StringFormat());

 // Get the path bounds for centering.

 RectangleF rectfBounds = path.GetBounds();

 grfx.TranslateTransform(
 (cx - rectfBounds.Width) / 2 - rectfBounds.Left,
 (cy - rectfBounds.Height) / 2 - rectfBounds.Top);

 // Draw the path.

 Pen pen = new Pen(clr, fFontSize / 50);

 pen.DashStyle = DashStyle.Dot;

 grfx.DrawPath(pen, path);
 }
}

Notice the call to TranslateTransform based on the width and height of the display area, and the
dimensions and upper left corner of the bounding rectangle.

I've also defined the pen a little differently, this time making the width equal to 1/50 of fFontSize and
setting a DashStyle of Dot:

If you compare this screen shot with the one from HollowFont, you'll see that it's centered a little
differently. The vertical centering of the HollowFont text is based on the height returned from
MeasureString, which is a height associated with the font and includes descenders and diacritical
marks, even if they're not present in the particular text string being measured. For example,
MeasureString returns the same height for the strings "Ã", "a", and "y".

The text displayed by HollowFontCenteredPath, however, is vertically centered based solely on the
coordinates in the path. The centering of the text is more visually accurate.

Do you remember the HowdyWorldFullFit program in Chapter 9 that attempted to expand a string by
using MeasureString and ScaleTransform to fit a rectangle? It didn't quite manage to fill the
destination rectangle because MeasureString includes margins for descenders and diacritical marks.
Here's a program that uses the path bounding rectangle and ScaleTransform to tightly fill the client
area with a short text string.
FullFit.cs
//---
// FullFit.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;
class FullFit: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new FullFit());
 }
 public FullFit()
 {
 Text = "Full Fit";

 strText = "Full Fit";
 font = new Font("Times New Roman", 108);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();

 // Add text to the path.

 path.AddString(strText, font.FontFamily, (int) font.Style,
 100, new Point(0, 0), new StringFormat());

 // Set the world transform.

 RectangleF rectfBounds = path.GetBounds();
 PointF[] aptfDest = { new PointF(0, 0), new PointF(cx, 0),
 new PointF(0, cy)
};

 grfx.Transform = new Matrix(rectfBounds, aptfDest);

 // Fill the path.

 grfx.FillPath(new SolidBrush(clr), path);
 }
}

The program sets a world transform using the powerful Matrix constructor that has two arguments, a
RectangleF structure and an array of three PointF structures:
grfx.Transform = new Matrix(rectfBounds, aptfDest);

This constructor calculates a transform that maps three corners of the RectangleF structure to the
three PointF structures. Simply set the RectangleF structure to the path bounding rectangle, and the
three PointF structures to three corners of the display area, and the path fills the space.

You'll definitely want to print this one as well. You can change the font, but you'll see that the initial
font size doesn't matter. The text is always scaled to the size of the client area. That's why the
AddString call in this program has an arbitrary hard-coded font size value of 100.

I mentioned earlier that when you need to use a path for displaying text, you should also use it for
any other text that must match in size, even if the other text doesn't require a path. Here's a program
that uses the same path for two FillPath calls and one DrawPath call. The two FillPath calls could
have been done with a call to DrawString except the text wouldn't have aligned correctly on the
screen.
DropShadowWithPath.cs
//---
// DropShadowWithPath.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class DropShadowWithPath: FontMenuForm
{
 const int iOffset = 10; // Approximately 1/10 inch (exactly on
printer)

 public new static void Main()
 {
 Application.Run(new DropShadowWithPath());
 }
 public DropShadowWithPath()
 {
 Text = "Drop Shadow with Path";
 Width *= 2;
 strText = "Shadow";
 font = new Font("Times New Roman", 108);

 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();
 float fFontSize = PointsToPageUnits(grfx, font);

 // Get the coordinates for a centered string.

 SizeF sizef = grfx.MeasureString(strText, font);
 PointF ptf = new PointF((cx - sizef.Width) / 2,
 (cy - sizef.Height) / 2);

 // Add text to the path.

 path.AddString(strText, font.FontFamily, (int) font.Style,
 fFontSize, ptf, new StringFormat());

 // Clear, fill, translate, fill, and draw.

 grfx.Clear(Color.White);
 grfx.FillPath(Brushes.Black, path);
 path.Transform(new Matrix(1, 0, 0, 1, -10, -10));
 grfx.FillPath(Brushes.White, path);
 grfx.DrawPath(Pens.Black, path);
 }
}

When you outline font characters, you can color them in the same color as the background. I prefer
this drop-shadow effect to the earlier one:

You can use a similar technique for a block effect on a white background.

Here's a program that draws the outline of the font characters using a pen created from a hatch
brush with a width that's 1/20 of the fFontSize value.
HollowFontWidePen.cs
//--

// HollowFontWidePen.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class HollowFontWidePen: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new HollowFontWidePen());
 }
 public HollowFontWidePen()
 {
 Text = "Hollow Font (Wide Pen)";
 Width *= 2;
 strText = "Wide Pen";
 font = new Font("Times New Roman", 108,
 FontStyle.Bold | FontStyle.Italic);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();
 float fFontSize = PointsToPageUnits(grfx, font);

 // Add text to the path.

 path.AddString(strText, font.FontFamily, (int) font.Style,
 fFontSize, new PointF(0, 0), new StringFormat());

 // Get the path bounds for centering.

 RectangleF rectfBounds = path.GetBounds();

 grfx.TranslateTransform(
 (cx - rectfBounds.Width) / 2 - rectfBounds.Left,
 (cy - rectfBounds.Height) / 2 - rectfBounds.Top);

 // Draw the path.

 Brush brush = new HatchBrush(HatchStyle.Trellis,
 Color.White, Color.Black);
 Pen pen = new Pen(brush, fFontSize / 20);
 grfx.DrawPath(pen, path);

 }
}

The effect isn't quite satisfactory to my eyes:

What's needed here, I think, is a border around the brush pattern. In other words, the character
outlines themselves need to be outlined. Is such a thing possible? Yes, it's what happens when you
call the Widen method of the GraphicsPath class. A new path is created based on the existing path
as if it had been drawn with a pen of a specific width. Here's a demonstration program.
HollowFontWidened.cs
//--
// HollowFontWidened.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class HollowFontWidened: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new HollowFontWidened());
 }
 public HollowFontWidened()
 {
 Text = "Hollow Font (Widened)";
 Width *= 2;
 strText = "Widened";
 font = new Font("Times New Roman", 108,
 FontStyle.Bold | FontStyle.Italic);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();
 float fFontSize = PointsToPageUnits(grfx, font);

 // Add text to the path.
 path.AddString(strText, font.FontFamily, (int) font.Style,

 fFontSize, new PointF(0, 0), new StringFormat());

 // Get the path bounds for centering.

 RectangleF rectfBounds = path.GetBounds();

 grfx.TranslateTransform(
 (cx - rectfBounds.Width) / 2 - rectfBounds.Left,
 (cy - rectfBounds.Height) / 2 - rectfBounds.Top);

 // Widen, fill, and draw the path.

 path.Widen(new Pen(Color.Black, fFontSize / 20));
 Brush brush = new HatchBrush(HatchStyle.Trellis,
 Color.White, Color.Black);
 grfx.DrawPath(new Pen(Color.Black, 2), path);
 grfx.FillPath(brush, path);
 }
}

All the new code appears at the bottom of the DoPage method. The previous program called
DrawPath using a wide pen based on a hatch brush. This new program draws basically the same
thing by calling Widen based on a wide pen and then calling FillPath using the hatch brush.

You can verify that the results are the same by commenting out the DrawPath call in the
HollowFontWidened program. But the DrawPath call is the one that provides the effect I was after. It
outlines the outlines:

I arrived at some of the coding decisions in HollowBrushWidened through experimentation. I
originally called DrawPath after FillPath, but DrawPath drew a bunch of little squiggles and loops that
are a result of the algorithm used in widening the path. (Try leaving out the FillPath call to see what
I'm talking about. You may actually like the effect—like a mechanical drawing machine a bit out of
alignment.) I moved FillPath after DrawPath to cover up the squiggles and then needed to use a pen
width of 2 in DrawPath because the brush was obscuring much of the pen.

You can also set a clipping region from a path, which means that you can clip graphics output to the
interior of a text string. Here's a program that sets a clipping region and then draws a bunch of
Bézier splines in random colors.
ClipText.cs
//---------------------------------------
// ClipText.cs © 2001 by Charles Petzold
//---------------------------------------
using System;

using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class ClipText: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new ClipText());
 }
 public ClipText()
 {
 Text = "Clip Text";
 Width *= 2;
 strText = "Clip Text";
 font = new Font("Times New Roman", 108, FontStyle.Bold);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();
 float fFontSize = PointsToPageUnits(grfx, font);

 // Add text to the path.

 path.AddString(strText, font.FontFamily, (int) font.Style,
 fFontSize, new PointF(0, 0), new StringFormat());

 // Set the clipping region.

 grfx.SetClip(path);

 // Get the path bounds and center the clipping region.

 RectangleF rectfBounds = path.GetBounds();
 grfx.TranslateClip(
 (cx - rectfBounds.Width) / 2 - rectfBounds.Left,
 (cy - rectfBounds.Height) / 2 - rectfBounds.Top);

 // Draw clipped lines.

 Random rand = new Random();

 for (int y = 0; y < cy; y++)
 {
 Pen pen = new Pen(Color.FromArgb(rand.Next(255),

 rand.Next(255),
 rand.Next(255)));

 grfx.DrawBezier(pen, new Point(0, y),
 new Point(cx / 3, y + cy / 3),
 new Point(2 * cx / 3, y - cy / 3),
 new Point(cx, y));
 }
 }
}

Here's the result:

Nonlinear Transforms
The matrix transform is widely available throughout the Windows Forms graphics system. You can
apply it to a Graphics object, to a path, and to brushes and pens. But the matrix transform is always
a linear transform. Parallel lines are always mapped to other parallel lines, and after awhile, you
might begin to see those consistently parallel lines as bars on a jail cell.

The GraphicsPath class has one nonlinear transform available through a method named Warp.
Here's a program that stores some text in a path and then uses Warp to scrunch together the top of
the path.
WarpText.cs
//---------------------------------------
// WarpText.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class WarpText: FontMenuForm
{
 int iWarpMode = 0;

 public new static void Main()
 {
 Application.Run(new WarpText());
 }
 public WarpText()
 {

 Text = "Warp Text - " + (WarpMode) iWarpMode;
 Menu.MenuItems.Add("&Toggle!",
 new EventHandler(MenuToggleOnClick));
 strText = "WARP";
 font = new Font("Arial Black", 24);
 }
 void MenuToggleOnClick(object obj, EventArgs ea)
 {
 iWarpMode ^= 1;
 Text = "Warp Text - " + (WarpMode) iWarpMode;
 Invalidate();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();

 // Add text to the path.

 path.AddString(strText, font.FontFamily, (int) font.Style,
 100, new PointF(0, 0), new StringFormat());

 // Warp the path.

 RectangleF rectfBounds = path.GetBounds();
 PointF[] aptfDest = { new PointF(cx / 3, 0),
 new PointF(2 * cx / 3, 0),
 new PointF(0, cy),
 new PointF(cx, cy) };

 path.Warp(aptfDest, rectfBounds, new Matrix(),
 (WarpMode) iWarpMode);

 // Fill the path.

 grfx.FillPath(new SolidBrush(clr), path);
 }
}

Earlier, in the FullFit program, I used a constructor of Matrix that calculated a transform that mapped
three corners of a rectangle into three points in an array. The Warp method is similar, but it maps
four corners of a rectangle (again, I use the bounding rectangle of the path) into four points of an
array. For the destination array, I used the two bottom corners of the client area and two points at the
top of the client area closer to the center than the top corners.

The menu item labeled "Toggle!" lets you switch between perspective and bilinear warp modes.

Although the Warp method is the only nonlinear transform directly available to Windows Forms
programmers, the graphics path actually gives you the ability to perform any nonlinear transform that
you can conceive and describe mathematically. Here's how you do it:
§ Get the array of coordinates in the path by using the PathPoints property.
§ Modify those coordinates by using custom transformation formulas.
§ Create a new path based on the modified coordinates.

The hard part, of course, is devising the transformation formulas.

Here's a program that displays a string of text that gets progressively taller toward the center.
TallInTheCenter.cs
//--
// TallInTheCenter.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class TallInTheCenter: FontMenuForm
{
 public new static void Main()
 {
 Application.Run(new TallInTheCenter());
 }
 public TallInTheCenter()
 {
 Text = "Tall in the Center";
 Width *= 2;
 strText = Text;
 font = new Font("Times New Roman", 48);
 }

 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();
 float fFontSize = PointsToPageUnits(grfx, font);

 // Add text to the path.

 path.AddString(strText, font.FontFamily, (int) font.Style,
 fFontSize, new PointF(0, 0), new StringFormat());

 // Shift the origin to the center of the path.

 RectangleF rectf = path.GetBounds();

 path.Transform(new Matrix(1, 0, 0, 1,
 -(rectf.Left + rectf.Right) / 2,
 -(rectf.Top + rectf.Bottom) / 2));
 rectf = path.GetBounds();

 // Modify the path.

 PointF[] aptf = path.PathPoints;

 for (int i = 0; i < aptf.Length; i++)
 aptf[i].Y *= 2 * (rectf.Width - Math.Abs(aptf[i].X)) /

rectf.Width;
 path = new GraphicsPath(aptf, path.PathTypes);

 // Fill the path.

 grfx.TranslateTransform(cx / 2, cy / 2);
 grfx.FillPath(new SolidBrush(clr), path);
 }
}

One helpful technique in programs like this is to prepare the path for a nonlinear transform by first
performing a linear transform. After obtaining the path bounds (stored in the rectf variable), the
program shifts the origin to the center of the path:
path.Transform(new Matrix(1, 0, 0, 1,
 -(rectf.Left + rectf.Right) / 2,
 -(rectf.Top + rectf.Bottom) / 2));

The program then calls GetBounds again to store the new bounds in rectf.

To begin the nonlinear transform, the program obtains the array of PointF structures that make up
the path:
PointF[] aptf = path.PathPoints;

It then modifies the points, making the Y coordinates larger depending on how close the points are to
the center:
for (int i = 0; i < aptf.Length; i++)
 aptf[i].Y *= 2 * (rectf.Width - Math.Abs(aptf[i].X)) / rectf.Width;

Then it creates a new path:
path = new GraphicsPath(aptf, path.PathTypes);

Here's what it looks like:

As in the FullFit program, the initial size of the font doesn't matter.

Here's another example. This one is called WrapText (not WarpText), and it wraps a text string
around the circumference of a circle. The initial size of the font doesn't matter in this program either,
but the program needs to know the character ascent, so it bases the AddString call on an actual font.
WrapText.cs
//---------------------------------------
// WrapText.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class WrapText: FontMenuForm
{
 float fRadius = 100;

 public new static void Main()
 {
 Application.Run(new WrapText());
 }
 public WrapText()
 {
 Text = "Wrap Text";

 strText = "e snake ate the tail of th";

 font = new Font("Times New Roman", 48);
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 GraphicsPath path = new GraphicsPath();
 float fFontSize = PointsToPageUnits(grfx, font);

 // Add text to the path.

 path.AddString(strText, font.FontFamily, (int) font.Style,
 fFontSize, new PointF(0, 0), new StringFormat());

 // Shift the origin to left baseline, y increasing up.

 RectangleF rectf = path.GetBounds();
 path.Transform(new Matrix(1, 0, 0, -1, -rectf.Left,
 GetAscent(grfx, font)));
 // Scale so width equals 2*PI.

 float fScale = 2 * (float) Math.PI / rectf.Width;
 path.Transform(new Matrix(fScale, 0, 0, fScale, 0, 0));

 // Modify the path.

 PointF[] aptf = path.PathPoints;

 for (int i = 0; i < aptf.Length; i++)
 aptf[i] = new PointF(
 fRadius * (1 + aptf[i].Y) * (float)
Math.Cos(aptf[i].X),
 fRadius * (1 + aptf[i].Y) * (float)
Math.Sin(aptf[i].X));

 path = new GraphicsPath(aptf, path.PathTypes);

 // Fill the path.

 grfx.TranslateTransform(cx / 2, cy / 2);
 grfx.FillPath(new SolidBrush(clr), path);
 }
}

Notice that the text string is intended to loop from the end to the beginning. It's written without blanks
at the beginning and end because blanks wouldn't become part of the path, and the last nonblank
character would run into the first one.

In this program, initially performing matrix transforms on the path was crucial to making the
transformation formulas as simple as they are. The path is given an origin at the left side of the text
baseline and is scaled so that it has a width of 2π. The X coordinates of the path are thus simply an
angle in radians and can be passed directly to the Cos and Sin methods. The results of the Cos and
Sin methods are scaled by the Y coordinates in combination with the desired radius of the circle:

Look closely and you'll see that the baselines of each character are arched and that each character
is wider at the top than at the bottom. Use a shorter text string to exaggerate the effect.

Chapter 20: Toolbars and Status Bars
Overview
In providing a modern user interface for your programs, toolbars and status bars are the next step
beyond the standard menu and dialog boxes. Although quite different in functionality—a toolbar
usually contains pictorial buttons that often duplicate menu items, whereas a status bar usually
conveys textual information to the user—these two types of controls have several similarities. Both
the ToolBar class and the StatusBar class are descended from Control, and both controls are
customarily docked on an edge of the client area, the toolbar traditionally at the top and the status
bar at the bottom. Both controls are usually host to smaller items. A toolbar is made up of multiple
ToolBarButton items, and a status bar usually has multiple panels that are instances of the
StatusBarPanel class. Both ToolBarButton and StatusBarPanel are descended from Component.

As you'll recall, when you add a menu to a form, the menu doesn't lie on top of the form's client area.
Instead, the client area is reduced in size to accommodate the menu. Similarly, when you enable the
auto-scroll feature of your form, the client area is reduced in size to accommodate the scroll bars.

Toolbars and status bars are not like menus and scroll bars, however. They may seem
architecturally similar, but toolbars and status bars are controls just like buttons and text boxes. They
have a Parent property and sit on top of their parent. When the parent of a toolbar or status bar is a
form, the control sits on top of the client area. The client area is not reduced in size to accommodate
the control. (This difference is mostly an historical legacy. Menus and scroll bars existed from the
early days of Windows and hence were considered part of the standard application window. Toolbars
and status bars were introduced later and weren't integrated into the architecture of the standard
window.)

The implications are simple: When you include a toolbar or status bar in your form, you can't draw
over the entire height of your client area. The toolbar hides the top of your client area, and the status
bar hides the bottom. The problem is also fairly simple to solve. Instead of drawing on your client
area, you'll want to draw on a Panel control that fills the space between the toolbar and the status
bar.

Real-world applications that implement a toolbar or a status bar should give the user an option to
hide these items. The user can decide whether these items are worth the space they take away from
the client area. You can implement a View menu to provide such options. Showing or hiding the
toolbar or the status bar is just a matter of toggling the control's Visible property.

The status bar is the simpler of the two controls, so let's begin with that.
The Basic Status Bar
If you need a status bar to display only one item—a description of menu items, for example—you
can create a status bar and give it some text with three lines of code, as the SimpleStatusBar
program illustrates.
SimpleStatusBar.cs
//--
// SimpleStatusBar.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class SimpleStatusBar: Form
{
 public static void Main()
 {
 Application.Run(new SimpleStatusBar());

 }
 public SimpleStatusBar()
 {
 Text = "Simple Status Bar";
 ResizeRedraw = true;

 // Create status bar.

 StatusBar sb = new StatusBar();
 sb.Parent = this;
 sb.Text = "My initial status bar text";
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 Pen pen = new Pen(ForeColor);

 grfx.DrawLine(pen, 0, 0, ClientSize.Width, ClientSize.Height);
 grfx.DrawLine(pen, ClientSize.Width, 0, 0, ClientSize.Height);
 }
}

Of course, in a real program, you wouldn't store the StatusBar object as a local variable of the
constructor because you need access to it while processing events. I added an OnPaint method just
to drive home the fact that the status bar hides the bottom of the client area:

Notice that the diagonal lines seem to stop before reaching the corners of the form. The lines
actually go all the way to the corners, but they're covered by the status bar.

The StatusBar control doesn't need to be explicitly positioned or sized; it extends across the full
width of the form at the bottom. As you resize the form, the status bar also changes size. This
behavior is a result of the Dock property of StatusBar being initialized to DockStyle.Bottom by
default. A sizing grip appears at the right side of the status bar. This gives the user a larger target for
grabbing the lower left corner of the form to resize it. You can remove the sizing grip by setting the
SizingGrip property to false:

StatusBar Properties (selection)

Type Property Accessibility

bool SizingGrip get/set

SizingGrip is one of the few properties that StatusBar implements itself; most of the StatusBar
properties are inherited from Control.

The BackColor and ForeColor properties of the status bar are initialized to SystemColors.Control and
SystemColors.ControlText, and they can't be changed. (You could, however, change the form's
BackColor property to make the status bar stand out.) The BackgroundImage property has no effect
on the status bar. The status bar has no border style.

The TabStop property of the status bar is initialized to false, and you'll probably not want to change
it. If you have other controls in your client area, you probably don't want the Tab key to give the
status bar input focus.
StatusBar Properties (selection)

Type Property Accessibility

bool TabStop get/set

If you want to display multiple items in a status bar, you need to make use of status bar panels.
These panels have a much wider variety of options than the status bar itself. I'll be discussing status
bar panels shortly.
The Status Bar and Auto-Scroll
I've already warned you how the status bar affects the visibility of your client area. Here's another
warning: You definitely don't want to enable the auto-scroll feature of your form when using a status
bar. The status bar is treated just like any other control that is docked to the bottom. It becomes part
of the display area that is scrolled by the scroll bars.

Here's a program that sets its AutoScroll property to true to demonstrate the problem.
StatusBarAndAutoScroll.cs
//---
// StatusBarAndAutoScroll.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class StatusBarAndAutoScroll: Form
{
 public static void Main()
 {
 Application.Run(new StatusBarAndAutoScroll());
 }
 public StatusBarAndAutoScroll()
 {
 Text = "Status Bar and Auto-Scroll";
 AutoScroll = true;

 // Create status bar.

 StatusBar sb = new StatusBar();
 sb.Parent = this;
 sb.Text = "My initial status bar text";

 // Create labels as children of the form.

 Label label = new Label();
 label.Parent = this;
 label.Text = "Upper left";
 label.Location = new Point(0, 0);

 label = new Label();
 label.Parent = this;
 label.Text = "Lower right";
 label.Location = new Point(250, 250);
 label.AutoSize = true;
 }
}

When you run this program, you need to scroll to the bottom of the client area to see the status bar!
Here's what the program looks like when you scroll to the bottom right corner of the client area:

This doesn't look right at all. The status bar shouldn't be affected by the scroll bars. In fact, the status
bar shouldn't even be within the area surrounded by the scroll bars. It should appear below the
horizontal scroll bar.

To get this program looking and working right—and to solve the painting problem that results from
the reduction of the client area—you can use the Panel control. A program that uses toolbars or
status bars should almost always begin with the creation of a Panel control (or other control) that
initially fills the client area.

You can persuade the Panel control to fill the client area by setting its Dock property to
DockStyle.Fill. Then just about anything you'd normally do with the client area (decorate it with
controls or paint on it) you would do to the Panel control. The only controls that remain children of
the Form rather than the Panel are the toolbar and the status bar.

Here's an example.
SimpleStatusBarWithPanel.cs
//---
// SimpleStatusBarWithPanel.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SimpleStatusBarWithPanel: Form
{
 public static void Main()
 {
 Application.Run(new SimpleStatusBarWithPanel());
 }
 public SimpleStatusBarWithPanel()
 {
 Text = "Simple Status Bar with Panel";

 // Create panel.

 Panel panel = new Panel();
 panel.Parent = this;
 panel.BackColor = SystemColors.Window;
 panel.ForeColor = SystemColors.WindowText;
 panel.AutoScroll = true;
 panel.Dock = DockStyle.Fill;
 panel.BorderStyle = BorderStyle.Fixed3D;

 // Create status bar as child of form.

 StatusBar sb = new StatusBar();
 sb.Parent = this;
 sb.Text = "My initial status bar text";

 // Create labels as children of panel.

 Label label = new Label();
 label.Parent = panel;
 label.Text = "Upper left";
 label.Location = new Point(0, 0);

 label = new Label();
 label.Parent = panel;
 label.Text = "Lower right";

 label.Location = new Point(250, 250);
 label.AutoSize = true;
 }
}

Notice that this program sets the AutoScroll property of the Panel object to true and creates two
Label objects as children of the panel.

The Panel is given a Dock property of DockStyle.Fill so that it initially fills the client area. When the
StatusBar is then created, it assigns itself a Dock property of DockStyle.Bottom. The Panel and the
StatusBar then essentially divide the client area into two nonoverlapping parts. With the panel's
AutoScroll property set to true, the status bar appears below the scroll bars:

Status Bar Panels
In the examples shown so far, the status bar is barely more functional than a label control that's
docked to the bottom of the form. If you hide the sizing grip, you'd be hard pressed to tell them apart.

The status bar becomes more versatile when you make use of StatusBarPanel objects. A status bar
can contain zero or more status bar panels. StatusBar has two properties that involve the
StatusBarPanel objects:
StatusBar Properties (selection)

Type Property Accessibility

bool ShowPanels get/set

StatusBar.StatusBarPanelCollection Panels get

The ShowPanels property is initially false, and any panels that the status bar contains are ignored.
Only one text string is displayed, which is the Text property of the StatusBar object itself. When you
set the ShowPanels property to true, the Text property of StatusBar is ignored, and instead the text
strings associated with the StatusBarPanel objects are displayed. Each status bar panel is
associated with a text string and an optional icon. Or you can use the owner-draw facility of the
StatusBar class.

The Panels property of StatusBar is yet another collection class that provides an indexer and
implements methods such as Add, AddRange, Insert, and Remove to maintain a collection of
StatusBarPanel objects.

Here's a simple program that creates a status bar with two panels.

TwoStatusBarPanels.cs
//---
// TwoStatusBarPanels.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class TwoStatusBarPanels: Form
{
 public static void Main()
 {
 Application.Run(new TwoStatusBarPanels());
 }
 public TwoStatusBarPanels()
 {
 Text = "Two Status Bar Panels";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 StatusBar sb = new StatusBar();
 sb.Parent = this;
 sb.ShowPanels = true;

 StatusBarPanel sbpanel1 = new StatusBarPanel();
 sbpanel1.Text = "Panel 1";

 StatusBarPanel sbpanel2 = new StatusBarPanel();
 sbpanel2.Text = "Panel 2";

 sb.Panels.Add(sbpanel1);
 sb.Panels.Add(sbpanel2);
 }
}

This program creates one StatusBar object and two StatusBarPanel objects. Here's what it looks
like:

StatusBarPanel doesn't derive from Control. The class has no BackColor, ForeColor, or Font
property, no Location or Size property. (There is, however, a Width property, and that's initialized to
100 pixels.) StatusBarPanel has a Parent property, but it's read-only.

The only way to associate a StatusBarPanel object with a StatusBar object is through the Panels
property of StatusBar. The TwoStatusBarPanels program shows the most common means of making
this association, which is to use the Add method of StatusBar.StatusBarPanelCollection. Another
approach is to make an array of StatusBarPanel objects and use the AddRange method:
sb.Panels.AddRange(new StatusBarPanel[] { sbpanel1, sbpanel2 });

It's also possible to skip the explicit creation of the StatusBarPanel objects and use an overload of
the Add method that requires just a string:
sb.Panels.Add("Panel 1");
sb.Panels.Add("Panel 2");

If you need to get access to the particular StatusBarPanel to set the Text property (for example), you
can simply index the Panels property like an array:
sb.Panels[1].Text = "New panel 2 text";
StatusBarPanel Properties
StatusBarPanel has 10 noninherited properties. The only read-only property indicates the StatusBar
control that the particular StatusBarPanel is associated with:
StatusBarPanel Properties (selection)

Type Property Accessibility

StatusBar Parent get

The following properties of StatusBarPanel involve the panel's display of text:
StatusBarPanel Properties (selection)

Type Property Accessibility

StatusBarPanelStyle Style get/set

string Text get/set

Icon Icon get/set

string ToolTipText get/set

StatusBarPanelStyle is an enumeration that basically indicates whether the panel should be flagged
as owner-draw:
StatusBarPanelStyle Enumeration

Member Value

Text 1

OwnerDraw 2

StatusBarPanel doesn't implement any events of its own. The StatusBar class has a DrawItem
event, and the event arguments contain the StatusBarPanel object that should be drawn.

The Text property is undoubtedly the most commonly used property of StatusBarPanel. The panel
can also contain an icon that appears left of the text. You'll want to experiment with sizing the icon so
that it fits correctly in the status bar.

The ToolTipText property is handy. Set it to a short descriptive text string that's displayed when the
mouse cursor hovers over the panel. I'll demonstrate the ToolTipText property in the next program,
DateAndTimeStatus.

The following properties affect the size and appearance of each panel:
StatusBarPanel Properties (selection)

Type Property Accessibility

StatusBarPanelBorderStyle BorderStyle get/set

HorizontalAlignment Alignment get/set

StatusBarPanelAutoSize AutoSize get/set

int Width get/set

int MinWidth get/set

Each panel can have a different border style based on members of this enumeration:
StatusBarPanelBorderStyle Enumeration

Member Value

None 1

Raised 2

Sunken 3

The default is Sunken.

The Alignment property affects text within the panel, not the orientation of the panel itself. It uses the
HorizontalAlignment enumeration that other controls also use:
HorizontalAlignment Enumeration

Member Value

Left 0

Right 1

Center 2

By default, the size of each panel is based on its Width property, which by default is 100 pixels. You
can use the AutoSize property to size panels based on their text contents or to use the space left
over:
StatusBarPanelAutoSize Enumeration

Member Value Comments

None 1 Default; size based on Width property

Spring 2 Uses remaining space

Contents 3 Size based on text width

The MinWidth property affects only status bar panels with an AutoSize setting of
StatusBarPanelAutoSize.Spring. The default is 10 pixels.

One conventional strategy is to make the first status bar panel (the leftmost one) have a border style
of StatusBarPanelBorderStyle.None with an AutoSize setting of StatusBarPanelAutoSize.Spring.
You'd probably use this panel for menu help strings. The remaining panels have a border style of
StatusBarPanelBorderStyle.Sunken with an AutoSize property of StatusBarPanelAutoSize.None or
StatusBarPanelAutoSize.Contents.

Here's a program that creates a status bar with three panels just as I described. The two panels at
the right of the status bar display the current date and time.
DateAndTimeStatus.cs
//--
// DateAndTimeStatus.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class DateAndTimeStatus: Form
{
 StatusBarPanel sbpMenu, sbpDate, sbpTime;

 public static void Main()
 {
 Application.Run(new DateAndTimeStatus());
 }
 public DateAndTimeStatus()
 {
 Text = "Date and Time Status";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 // Create status bar.

 StatusBar sb = new StatusBar();
 sb.Parent = this;
 sb.ShowPanels = true;

 // Create status bar panels.

 sbpMenu = new StatusBarPanel();
 sbpMenu.Text = "Reserved for menu help";

 sbpMenu.BorderStyle = StatusBarPanelBorderStyle.None;
 sbpMenu.AutoSize = StatusBarPanelAutoSize.Spring;

 sbpDate = new StatusBarPanel();
 sbpDate.AutoSize = StatusBarPanelAutoSize.Contents;
 sbpDate.ToolTipText = "The current date";

 sbpTime = new StatusBarPanel();
 sbpTime.AutoSize = StatusBarPanelAutoSize.Contents;
 sbpTime.ToolTipText = "The current time";

 // Attach status bar panels to status bar.

 sb.Panels.AddRange(new StatusBarPanel[]
 { sbpMenu, sbpDate, sbpTime });

 // Set the timer for 1 second.

 Timer timer = new Timer();
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Interval = 1000;
 timer.Start();
 }
 void TimerOnTick(object obj, EventArgs ea)
 {
 DateTime dt = DateTime.Now;

 sbpDate.Text = dt.ToShortDateString();
 sbpTime.Text = dt.ToShortTimeString();
 }
}

This program also adds ToolTipText properties to two of the status bar panels. Here's what the
status bar looks like:

Menu Help

One of the primary uses of a status bar is to provide menu help, which involves the display of short
text strings that describe each menu item as the user moves the mouse or cursor over the items.

Providing menu help takes advantage of a couple features of menus and forms that don't show up in
more conventional uses of the menu. As you may recall, the MenuItem class implements five events.
So far in this book, I've made use of the Popup event when a pop-up menu is first displayed and the
Click event when the user picks an item from the menu. I've also demonstrated how to use the
MeasureItem and DrawItem events for implementing owner-draw menu items.

The fifth MenuItem event is named Select, and it occurs whenever the mouse cursor passes over a
menu item or the user presses the arrow keys to move among menu items. Select is the event you
must handle to display menu help. As the cursor moves among menu items, you display a text string
in the status bar for each item.

When you first try implementing menu help in a Select event handler, you'll encounter an annoying
problem: the last menu help string remains in the status bar after the user finally clicks a menu item!
At that point, you might seek a solution by resetting the status bar text during every Click event
handler installed for the MenuItem objects. But then what happens when the user dismisses a menu
by pressing the Esc key? Again, the last menu help string remains in the status bar.

There is a solution to this problem. To provide you with a way to initialize and clean up a session of
menu help, the Form class has the following two events:
Form Events (selection)

Event Method Delegate Argument

MenuStart OnMenuStart EventHandler EventArgs

MenuComplete OnMenuComplete EventHandler EventArgs

These events signal the beginning and end of a menu operation. The crucial one is MenuComplete.
When that event occurs, you want to reset the menu help text. Perhaps you want to set it to the text
string that was displayed in the status bar at the time you received a MenuStart event.

That's the strategy the following program uses. It creates a status bar with a single status bar panel
and uses that panel to display the menu help text. The status bar panel text is initialized to the string
"Ready". The OnMenuStart method saves that text, and the OnMenuComplete method restores it.

The program installs the same Select event handler for all the menu items. That handler is the
method MenuOnSelect. But because MenuHelpFirstTry is a simple demonstration program, it
doesn't install any Click event handlers for the menu items.
MenuHelpFirstTry.cs
//---
// MenuHelpFirstTry.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class MenuHelpFirstTry: Form
{
 StatusBarPanel sbpMenuHelp;
 string strSavePanelText;

 public static void Main()
 {
 Application.Run(new MenuHelpFirstTry());

 }
 public MenuHelpFirstTry()
 {
 Text = "Menu Help (First Try)";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 // Create a status bar with one panel.

 StatusBar sb = new StatusBar();
 sb.Parent = this;
 sb.ShowPanels = true;

 sbpMenuHelp = new StatusBarPanel();
 sbpMenuHelp.Text = "Ready";
 sbpMenuHelp.AutoSize = StatusBarPanelAutoSize.Spring;

 sb.Panels.Add(sbpMenuHelp);

 // Construct a simple menu.
 // For this demo, we can ignore the Click handlers,
 // but what we really need are Select handlers.

 Menu = new MainMenu();
 EventHandler ehSelect = new EventHandler(MenuOnSelect);

 // Create File menu items.

 MenuItem mi = new MenuItem("File");
 mi.Select += ehSelect;
 Menu.MenuItems.Add(mi);

 mi = new MenuItem("Open");
 mi.Select += ehSelect;
 Menu.MenuItems[0].MenuItems.Add(mi);

 mi = new MenuItem("Close");
 mi.Select += ehSelect;
 Menu.MenuItems[0].MenuItems.Add(mi);

 mi = new MenuItem("Save");
 mi.Select += ehSelect;
 Menu.MenuItems[0].MenuItems.Add(mi);

 // Create Edit menu items.

 mi = new MenuItem("Edit");
 mi.Select += ehSelect;
 Menu.MenuItems.Add(mi);

 mi = new MenuItem("Cut");
 mi.Select += ehSelect;
 Menu.MenuItems[1].MenuItems.Add(mi);

 mi = new MenuItem("Copy");
 mi.Select += ehSelect;
 Menu.MenuItems[1].MenuItems.Add(mi);

 mi = new MenuItem("Paste");
 mi.Select += ehSelect;
 Menu.MenuItems[1].MenuItems.Add(mi);
 }
 protected override void OnMenuStart(EventArgs ea)
 {
 strSavePanelText = sbpMenuHelp.Text;
 }
 protected override void OnMenuComplete(EventArgs ea)
 {
 sbpMenuHelp.Text = strSavePanelText;
 }
 void MenuOnSelect(object obj, EventArgs ea)
 {
 MenuItem mi = (MenuItem) obj;
 string str;

 switch (mi.Text)
 {
 case "File": str = "Commands for working with files";
break;
 case "Open": str = "Opens an existing document";
break;
 case "Close": str = "Closes the current document";
break;
 case "Save": str = "Saves the current document";
break;
 case "Edit": str = "Commands for editing the document";
break;
 case "Cut": str = "Deletes the selection and " +
 "copies it to the clipboard";
break;
 case "Copy": str = "Copies the selection to the " +

 "clipboard";
break;
 case "Paste": str = "Replaces the current selection " +
 "with the clipboard contents";
break;
 default: str = "";
break;
 }

 sbpMenuHelp.Text = str;
 }
}

The MenuOnSelect method determines the text of the selected menu item and uses that to select a
menu help string, which it then uses to set the Text property of the StatusBarPanel object. Here's the
program in action:

The Select events are generated regardless of whether the menu item is enabled, so the program
displays the same text strings even if the menu items aren't currently available. Sometimes users are
confused when certain items are disabled. (I know I am.) The menu help text might clarify why an
item isn't currently available.

As is, the MenuHelpFirstTry program works fine, and you may like the idea of consolidating all the
menu-help text in one place, such as the MenuOnSelect method. I'm not real wild about it myself,
though. I'd rather bind each menu-help string with the actual menu item. Regardless, the
MenuOnSelect method definitely needs a better means of determining which item has been
selected. The switch and case construction using the Text property of the MenuItem object needs to
duplicate the text strings exactly, and that can be a hassle.

One approach that I find appealing is to define a new class (named MenuItemHelp, for example) that
subclasses MenuItem. MenuItemHelp simply adds a new property named HelpText that stores an
additional text string. You can set the HelpText property when creating each object of
MenuItemHelp:
mi.Text = "&Open...";
mi.HelpText = "Opens an existing document";

The MenuOnSelect method then becomes much simpler:
void MenuOnSelect(object obj, EventArgs ea)

{
 sbpMenuHelp.Text = ((MenuItemHelp)obj).HelpText;
}

You can go a step further by providing another property in MenuItemHelp that stores the status bar
panel where the help text is to be displayed. The class itself can override the OnSelect methods to
set the help text in the status bar panel. The MenuItemHelp.cs file defines such a class that derives
from MenuItem.
MenuItemHelp.cs
//---
// MenuItemHelp.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class MenuItemHelp: MenuItem
{
 // Private fields
 StatusBarPanel sbpHelpPanel;
 string strHelpText;
 // Constructors
 public MenuItemHelp()
 {
 }
 public MenuItemHelp(string strText): base(strText)
 {
 }
 // Properties
 public StatusBarPanel HelpPanel
 {
 get { return sbpHelpPanel; }
 set { sbpHelpPanel = value; }
 }
 public string HelpText
 {
 get { return strHelpText; }
 set { strHelpText = value; }
 }
 // Method override
 protected override void OnSelect(EventArgs ea)
 {
 base.OnSelect(ea);

 if (HelpPanel != null)
 HelpPanel.Text = HelpText;
 }

}

Here's a revised version of the MenuHelpFirstTry program that creates MenuItemHelp objects rather
than MenuItem objects. Each MenuItemHelp object is assigned its HelpPanel and HelpText
properties as it's being created.
MenuHelpSubclass.cs
//---
// MenuHelpSubclass.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class MenuHelpSubclass: Form
{
 StatusBarPanel sbpMenuHelp;
 string strSavePanelText;

 public static void Main()
 {
 Application.Run(new MenuHelpSubclass());
 }
 public MenuHelpSubclass()
 {
 Text = "Menu Help ";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 // Create a status bar with one panel.

 StatusBar sb = new StatusBar();
 sb.Parent = this;
 sb.ShowPanels = true;

 sbpMenuHelp = new StatusBarPanel();
 sbpMenuHelp.Text = "Ready";
 sbpMenuHelp.AutoSize = StatusBarPanelAutoSize.Spring;

 sb.Panels.Add(sbpMenuHelp);

 // Construct a simple menu with MenuItemHelp items.

 Menu = new MainMenu();

 // Create File menu items.

 MenuItemHelp mi = new MenuItemHelp("&File");
 mi.HelpPanel = sbpMenuHelp;
 mi.HelpText = "Commands for working with files";
 Menu.MenuItems.Add(mi);

 mi = new MenuItemHelp("&Open...");
 mi.HelpPanel = sbpMenuHelp;
 mi.HelpText = "Opens an existing document";
 Menu.MenuItems[0].MenuItems.Add(mi);

 mi = new MenuItemHelp("&Close");
 mi.HelpPanel = sbpMenuHelp;
 mi.HelpText = "Closes the current document";
 Menu.MenuItems[0].MenuItems.Add(mi);

 mi = new MenuItemHelp("&Save");
 mi.HelpPanel = sbpMenuHelp;
 mi.HelpText = "Saves the current document";
 Menu.MenuItems[0].MenuItems.Add(mi);

 // Create Edit menu items.

 mi = new MenuItemHelp("&Edit");
 mi.HelpPanel = sbpMenuHelp;
 mi.HelpText = "Commands for editing the document";
 Menu.MenuItems.Add(mi);

 mi = new MenuItemHelp("Cu&t");
 mi.HelpPanel = sbpMenuHelp;
 mi.HelpText = "Deletes the selection and " +
 "copies it to the clipboard";
 Menu.MenuItems[1].MenuItems.Add(mi);

 mi = new MenuItemHelp("&Copy");
 mi.HelpPanel = sbpMenuHelp;
 mi.HelpText = "Copies the selection to the clipboard";
 Menu.MenuItems[1].MenuItems.Add(mi);

 mi = new MenuItemHelp("&Paste");
 mi.HelpPanel = sbpMenuHelp;
 mi.HelpText = "Replaces the current selection " +
 "with the clipboard contents";
 Menu.MenuItems[1].MenuItems.Add(mi);
 }
 protected override void OnMenuStart(EventArgs ea)

 {
 strSavePanelText = sbpMenuHelp.Text;
 }
 protected override void OnMenuComplete(EventArgs ea)
 {
 sbpMenuHelp.Text = strSavePanelText;
 }
}
The Basic Toolbar
Near the end of Chapter 11, I discussed the ImageList class, which is a collection of images of the
same size and color depth. A ToolBar control is basically an ImageList object and a collection of
ToolBarButton objects. Each button displays one of the images in the ImageList.

Most applications use toolbar images that are 16 pixels square. That's the default size for ImageList
and that's what I use throughout this chapter. If you want to use a smaller or larger button—even
nonrectangular buttons—you must first create bitmaps of the desired size. (That's the obvious part.)
Before adding the images to ImageList, set the ImageSize property to the size of the images. That
image size will trickle through all the rest of the ToolBar and ToolBarButton objects.

These are the most essential properties of ToolBar:
ToolBar Properties (selection)

Type Property Accessibility

ImageList ImageList get/set

ToolBar.ToolBarButtonCollection Buttons get

bool ShowToolTips get/set

Each ToolBar is associated with one ImageList, which, of course, usually contains multiple images.

The Buttons property is a collection of the sort we've seen several times now. You can index Buttons
like an array; each element is an object of type ToolBarButton. The ToolBarButtonCollection class
has several methods, including Add, AddRange, Insert, and Remove, that let you manage the
buttons associated with a toolbar.

I've included the ShowToolTips property with this group of essential properties because it's fairly
easy to assign ToolTips to your toolbar buttons, but you won't see them unless you set this
ShowToolTips property to true.

Here are the most essential ToolBarButton properties:
ToolBarButton Properties (selection)

Type Property Accessibility

int ImageIndex get/set

string ToolTipText get/set

ImageIndex is an index that indicates which image of the ImageList object is displayed on the button.
ToolTipText is the text displayed when the mouse hovers over the button. The images on toolbar
buttons can be fairly obscure, so ToolTips can be a big help.

I'll be talking about ToolBar events shortly, but let's first take a look at a simple do-nothing program
that has a do-nothing menu and a do-nothing toolbar based on an image list based on a bitmap
named StandardButtons.bmp.
SimpleToolBar.cs
//--

// SimpleToolBar.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class SimpleToolBar: Form
{
 public static void Main()
 {
 Application.Run(new SimpleToolBar());
 }
 public SimpleToolBar()
 {
 Text = "Simple Toolbar";

 // Create a simple menu (just for show).

 Menu = new MainMenu();
 Menu.MenuItems.Add("File");
 Menu.MenuItems.Add("Edit");
 Menu.MenuItems.Add("View");
 Menu.MenuItems.Add("Help");

 // Create ImageList.

 Bitmap bm = new Bitmap(GetType(),
 "SimpleToolBar.StandardButtons.bmp");

 ImageList imglst = new ImageList();
 imglst.Images.AddStrip(bm);
 imglst.TransparentColor = Color.Cyan;

 // Create ToolBar.

 ToolBar tbar = new ToolBar();
 tbar.Parent = this;
 tbar.ImageList = imglst;
 tbar.ShowToolTips = true;

 // Create ToolBarButtons.

 string[] astr = {"New", "Open", "Save", "Print",
 "Cut", "Copy", "Paste" };

 for (int i = 0; i < 7; i++)
 {
 ToolBarButton tbarbtn = new ToolBarButton();
 tbarbtn.ImageIndex = i;
 tbarbtn.ToolTipText = astr[i];

 tbar.Buttons.Add(tbarbtn);
 }
 }
}

StandardButtons.bmp

You can create individual bitmaps for each button, or you can create images for a bunch of buttons
in one bitmap. In the SimpleToolBar program, I've used the default ImageList bitmap size of 16
pixels square. The StandardButtons.bmp file contains seven images for seven toolbar buttons, so
the total size of the bitmap is 112 by 16 pixels. If you're creating a bitmap for an ImageList, the width
must be an integral multiple of its height. Also, as I discussed in Chapter 11, when you include a
bitmap with a project in Visual C# .NET, you must set the Build Action property to Embedded
Resource.

If you don't want to experience the fun of creating your own buttons, you can use the standard
buttons included with Visual Studio .NET. These are stored by default in subdirectories of the
directory \Program Files\Microsoft Visual Studio .NET\Common7\Graphics\Bitmaps. The
subdirectories OffCtlBr and Assorted contain bitmaps appropriate for toolbar buttons.

The SimpleToolBar program begins by creating a few top-level menu items. I added those only so
that you can see how a menu and a toolbar look together. Next, the StandardButtons.bmp image is
loaded as a resource. (See Chapter 11 for details on loading resources.) The program creates an
ImageList object and uses the AddStrip method of the Images property to include the whole bitmap
in the image list. Because the default ImageSize property indicates that the images are 16 pixels
square, the ImageList object can easily figure out that there are seven images in the strip.

It's not evident from the monochrome reproduction in this book, but the background of
StandardButtons.bmp is cyan, which is specified in the SimpleToolBar program as the transparent
color for the ImageList.

The next step is to create the toolbar. Three properties are assigned: the Parent property indicates
that the toolbar is a child of the form, the ImageList property associates the toolbar with a collection
of images, and the ShowToolTips property enables ToolTips.

Next, the program creates seven ToolBarButton objects, setting the ImageIndex property to the
numbers 0 through 6, corresponding to the seven images. (If the original images are not in the same
order as the buttons you want to create, setting the proper ImageIndex value essentially reorders the
images.) Each button also gets a short ToolTip. The program adds each button to the toolbar by
using the Add method of the Buttons property:
tbar.Buttons.Add(tbarbtn);

And here's the result:

If you experiment with this program, you'll find that the buttons work much like push button controls.
As you'll see later in this chapter, you can also create buttons that toggle or invoke a menu.

You'll probably want the toolbar to be distinct from the client area in some way, but you'll likely be
using a Panel control for display purposes anyway, and you can give that a background color of
SystemColors.Window (which is usually white).
Toolbar Variations
Before we get into handling events from the toolbar, let's take a look at a few properties that affect
the toolbar's appearance:
ToolBar Properties (selection)

Type Property Accessibility Default

bool Wrappable get/set true

bool Divider get/set true

BorderStyle BorderStyle get/set BorderStyle.None

ToolBarAppearance Appearance get/set ToolBarAppearance-.Normal

ToolBarTextAlign TextAlign get/set ToolBarTextAlign-.Underneath

When you make the form narrower than the toolbar, the Wrappable property indicates whether the
toolbar wraps to two lines or is truncated at the right. By default, it wraps.

The Divider property is responsible for the line that separates the toolbar and the menu. If you set
the property to false, the line disappears:

You'll probably want to keep the divider for aesthetic reasons.

The BorderStyle property (which you can also set to FixedSingle or Fixed3D) affects the display of a
border that extends the width of the form. Here's an example without a divider but with a BorderStyle
of FixedSingle.

I don't think the border works as well as the divider does.

The Appearance property can take on one of the following properties of the ToolBarAppearance
enumeration:
ToolBarAppearance Enumeration

Member Value

Normal 0

ToolBarAppearance Enumeration

Member Value

Flat 1

Applications these days seem to prefer a Flat appearance. Here are flat buttons with Divider set to
true and no border:

The Flat appearance looks better when the area underneath the toolbar is a different color.

The TextAlign property can take on one of the members of the ToolBarTextAlign enumeration:
ToolBarTextAlign Enumeration

Member Value

Underneath 0

Right 1

This property involves a feature we haven't examined yet, which is that buttons can also include a
text string:
ToolBarButton Properties (selection)

Type Property Accessibility

string Text get/set

For example, if you include the statement
tbarbtn.Text = astr[i];

in the for loop in SimpleToolBar, the buttons look like this:

Notice that the buttons have different sizes based on the width of the text string. If you set the
TextAlign property of the toolbar to ToolBarTextAlign.Right, the buttons become wider but shorter:

Toolbar Events
The SimpleToolBar program doesn't handle any events, so it can't do anything in response to button
clicks. In addition to the events that ToolBar inherits from Control, ToolBar implements two of its own
events:
ToolBar Events

Event Method Delegate Argument

ButtonClick OnButton-Click ToolBarButton-
ClickEventHandler

ToolBarButtonClick-
EventArgs

ButtonDropDown OnButton-
DropDown

ToolBarButton-
ClickEventHandler

ToolBarButtonClick-
EventArgs

The ButtonClick event is the more important and occurs when the user clicks one of the buttons on
the toolbar. The ButtonDropDown event applies only to buttons that have a certain style that is
intended to invoke a menu. (I'll discuss button styles shortly.)

Notice that these two events are associated with the toolbar and not with the individual buttons. The
ToolBarButton class doesn't define any events. Therefore, all button clicks on a toolbar go to a single
event handler. The event handler must determine which button has been clicked. The
ToolBarButtonClickEventArgs argument to the event handler has a single property that provides
precisely this information:
ToolBarButtonClickEventArgs Property

Type Property Accessibility

ToolBarButton Button get/set

One approach to handling the ButtonClick event is to first save all the ToolBarButton objects as
fields. During the ButtonClick event, you then compare this Button property with those fields to
determine how to respond to the click. Another approach is to use the Tag property of the
ToolBarButton object to store something (anything) that helps you handle the event:
ToolBarButton Properties (selection)

Type Property Accessibility

object Tag get/set

In many cases, toolbar buttons duplicate menu items. For this reason, it makes a whole lot of sense
to set the Tag property of the button equal to the MenuItem object of the menu item that the button
duplicates.

Let's look at an example that's both simple and functional. The TextBoxWithToolBar program is a
stripped-down version of the Notepad clone programs from Chapter 18. It's so stripped down that it
contains only an Edit menu with Cut, Copy, and Paste items. But this program also includes a toolbar
that duplicates those three items. The ToolBar object uses an ImageList based on the
StandardButtons.bmp bitmap from the SimpleToolBar program. But only indices 4, 5, and 6 are used
for the Cut, Copy, and Paste images.
TextBoxWithToolBar.cs
//---
// TextBoxWithToolBar.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class TextBoxWithToolBar: Form
{
 TextBox txtbox;
 MenuItem miEditCut, miEditCopy, miEditPaste;
 ToolBarButton tbbCut, tbbCopy, tbbPaste;

 public static void Main()
 {
 // Program doesn't run without this statement.

 System.Threading.Thread.CurrentThread.ApartmentState =

System.Threading.ApartmentState.STA;

 Application.Run(new TextBoxWithToolBar());
 }
 public TextBoxWithToolBar()
 {
 Text = "Text Box with Toolbar";

 // Create TextBox.

 txtbox = new TextBox();
 txtbox.Parent = this;
 txtbox.Dock = DockStyle.Fill;
 txtbox.Multiline = true;
 txtbox.ScrollBars = ScrollBars.Both;
 txtbox.AcceptsTab = true;

 // Create ImageList.

 Bitmap bm = new Bitmap(GetType(),

"TextBoxWithToolBar.StandardButtons.bmp");

 ImageList imglst = new ImageList();
 imglst.Images.AddStrip(bm);
 imglst.TransparentColor = Color.Cyan;

 // Create ToolBar with ButtonClick event handler.

 ToolBar tbar = new ToolBar();
 tbar.Parent = this;
 tbar.ImageList = imglst;
 tbar.ShowToolTips = true;
 tbar.ButtonClick +=
 new
ToolBarButtonClickEventHandler(ToolBarOnClick);

 // Create the Edit menu.

 Menu = new MainMenu();

 MenuItem mi = new MenuItem("&Edit");
 mi.Popup += new EventHandler(MenuEditOnPopup);
 Menu.MenuItems.Add(mi);

 // Create the Edit Cut menu item.

 miEditCut = new MenuItem("Cu&t");
 miEditCut.Click += new EventHandler(MenuEditCutOnClick);
 miEditCut.Shortcut = Shortcut.CtrlX;
 Menu.MenuItems[0].MenuItems.Add(miEditCut);

 // And create the Cut toolbar button.

 tbbCut = new ToolBarButton();
 tbbCut.ImageIndex = 4;
 tbbCut.ToolTipText = "Cut";
 tbbCut.Tag = miEditCut;
 tbar.Buttons.Add(tbbCut);

 // Create the Edit Copy menu item.

 miEditCopy = new MenuItem("&Copy");
 miEditCopy.Click += new EventHandler(MenuEditCopyOnClick);
 miEditCopy.Shortcut = Shortcut.CtrlC;
 Menu.MenuItems[0].MenuItems.Add(miEditCopy);

 // And create the Copy toolbar button.

 tbbCopy = new ToolBarButton();
 tbbCopy.ImageIndex = 5;
 tbbCopy.ToolTipText = "Copy";
 tbbCopy.Tag = miEditCopy;
 tbar.Buttons.Add(tbbCopy);

 // Create the Edit Paste menu item.

 miEditPaste = new MenuItem("&Paste");
 miEditPaste.Click += new EventHandler(MenuEditPasteOnClick);
 miEditPaste.Shortcut = Shortcut.CtrlV;
 Menu.MenuItems[0].MenuItems.Add(miEditPaste);

 // And create the Paste toolbar button.

 tbbPaste = new ToolBarButton();
 tbbPaste.ImageIndex = 6;
 tbbPaste.ToolTipText = "Paste";
 tbbPaste.Tag = miEditPaste;
 tbar.Buttons.Add(tbbPaste);

 // Set Timer for enabling buttons.

 Timer timer = new Timer();
 timer.Interval = 250;
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Start();
 }
 void MenuEditOnPopup(object obj, EventArgs ea)
 {

 miEditCut.Enabled =
 miEditCopy.Enabled = (txtbox.SelectionLength > 0);
 miEditPaste.Enabled =
 Clipboard.GetDataObject().GetDataPresent(typeof(string));
 }
 void TimerOnTick(object obj, EventArgs ea)
 {
 tbbCut.Enabled =
 tbbCopy.Enabled = (txtbox.SelectionLength) > 0;
 tbbPaste.Enabled =
 Clipboard.GetDataObject().GetDataPresent(typeof(string));
 }
 void ToolBarOnClick(object obj, ToolBarButtonClickEventArgs tbbcea)
 {
 ToolBarButton tbb = tbbcea.Button;
 MenuItem mi = (MenuItem) tbb.Tag;

 mi.PerformClick();
 }
 void MenuEditCutOnClick(object obj, EventArgs ea)
 {
 txtbox.Cut();
 }
 void MenuEditCopyOnClick(object obj, EventArgs ea)
 {
 txtbox.Copy();
 }
 void MenuEditPasteOnClick(object obj, EventArgs ea)
 {
 txtbox.Paste();
 }
}

When the constructor creates the ToolBar object, it assigns the ToolBarOnClick method as the
handler for the ButtonClick event:
tbar.ButtonClick += new ToolBarButtonClickEventHandler(ToolBarOnClick);

The ToolBarButton objects are created after each corresponding MenuItem object. The Tag property
of each ToolBarButton is assigned the corresponding MenuItem object. Here's the assignment for
the Cut button:
tbbCut.Tag = miEditCut;

The big payoff comes in the relative simplicity of the ToolBarOnClick method:
void ToolBarOnClick(object obj, ToolBarButtonClickEventArgs tbbcea)
{
 ToolBarButton tbb = tbbcea.Button;
 MenuItem mi = (MenuItem) tbb.Tag;

 mi.PerformClick();
}

The method obtains the ToolBarButton object being clicked, casts the Tag property to a MenuItem,
and simulates a click. This approach is so elegant that you could even reduce the body of the
method to a single statement:
((MenuItem) tbbcea.Button.Tag).PerformClick();

The only messy part involves enabling and disabling the buttons based on the validity of the Cut,
Copy, and Paste operations. As usual, the Cut, Copy, and Paste menu items are enabled and
disabled during the Popup event for the Edit menu. However, the buttons are always in view, and
they must be enabled and disabled using another technique.

If the edit control in the program were a RichTextBox rather than a TextBox, you could install an
event handler for the SelectionChanged event. (TextBox doesn't define a SelectionChanged event.)
Whenever the selection changes, the event handler could then enable the Cut and Copy buttons
only if some text has been selected, much like the Popup event handler for the Edit menu.

That doesn't solve the problem for the Paste button, however. The Paste button must be enabled
whenever there's text on the clipboard. Short of attempting to intercept Win32 messages that
indicate clipboard changes, perhaps the only real solution is to create a Timer and enable the Paste
button during the Tick event if text is on the clipboard. Because the Timer had to be created anyway,
I decided to enable all three buttons during that Tick event.

Along with the Enabled property, the ToolBarButton class also includes a Visible property:
ToolBarButton Properties (selection)

Type Property Accessibility

bool Visible get/set

bool Enabled get/set

Toolbar Styles
So far, the toolbar buttons we've created have functioned much like push buttons. You can also
make a toolbar button function like a check box that can be toggled on or off. Or, a toolbar button can
invoke a menu. These options are available through the following properties:
ToolBarButton Properties (selection)

Type Property Accessibility

ToolBarButtonStyle Style get/set

bool Pushed get/set

bool PartialPush get/set

Menu DropDownMenu get/set

Despite its definition, the DropDownMenu property must actually be of type ContextMenu. Set the
Style property to one of the following enumeration values:
ToolBarButtonStyle Enumeration

Member Value

PushButton 1

ToggleButton 2

Separator 3

DropDownButton 4

ToolBarButtonStyle.PushButton is the default.

The Pushed and PartialPush properties apply only to buttons that have their Style set to
ToolBarButtonStyle.ToggleButton. Such buttons maintain an on/off state. Each time the button is
clicked, it generates a ButtonClick event and the value of the Pushed property is toggled. Your
program can also initialize the state of the button by setting the Pushed property itself. Set the
PartialPush property to true to give the button a special appearance that indicates a halfway state
(much like the ThreeState property of the CheckBox control described in Chapter 12).

When you use the ToolBarButtonStyle.Separator style, the button ignores any image or text that may
be associated with it and displays a separator instead. For toolbars that have their Appearance
property set to ToolBarAppearance.Flat, the separator is a vertical line that looks much like the
horizontal divider line that separates the toolbar from the menu. When the Appearance property is
set to ToolBarAppearance.Normal, the separator manifests itself as a small gap between the
buttons.

The ToolBarButtonStyle.DropDownButton option invokes a menu when the button is pressed. You
specify the menu in the DropDownMenu property of the button. You can handle the ButtonDropDown
event if you need to initialize the menu in some way before it's displayed.

Let's look at toggle buttons first. Here's a program that displays a four-button toolbar based on a
bitmap named FontStyleButtons.bmp. The buttons allow you to indicate bold, italic, underline, or
strikeout styles for a string of displayed text.
ToggleButtons.cs
//--
// ToggleButtons.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class ToggleButtons: Form
{
 protected Panel panel;
 protected ToolBar tbar;
 protected string strText = "Toggle";
 protected Color clrText = SystemColors.WindowText;
 FontStyle fontstyle = FontStyle.Regular;

 public static void Main()
 {
 Application.Run(new ToggleButtons());
 }
 public ToggleButtons()
 {
 Text = "Toggle Buttons";

 // Create panel to fill interior.

 panel = new Panel();
 panel.Parent = this;
 panel.Dock = DockStyle.Fill;
 panel.BackColor = SystemColors.Window;

 panel.ForeColor = SystemColors.WindowText;
 panel.Resize += new EventHandler(PanelOnResize);
 panel.Paint += new PaintEventHandler(PanelOnPaint);

 // Create ImageList.

 Bitmap bm = new Bitmap(GetType(),
 "ToggleButtons.FontStyleButtons.bmp");

 ImageList imglst = new ImageList();
 imglst.ImageSize = new Size(bm.Width / 4, bm.Height);
 imglst.Images.AddStrip(bm);
 imglst.TransparentColor = Color.White;

 // Create ToolBar.

 tbar = new ToolBar();
 tbar.ImageList = imglst;
 tbar.Parent = this;
 tbar.ShowToolTips = true;
 tbar.ButtonClick +=
 new
ToolBarButtonClickEventHandler(ToolBarOnClick);

 // Create ToolBarButtons.

 FontStyle[] afs = { FontStyle.Bold, FontStyle.Italic,
 FontStyle.Underline, FontStyle.Strikeout };

 for (int i = 0; i < 4; i++)
 {
 ToolBarButton tbarbtn = new ToolBarButton();
 tbarbtn.ImageIndex = i;
 tbarbtn.Style = ToolBarButtonStyle.ToggleButton;
 tbarbtn.ToolTipText = afs[i].ToString();
 tbarbtn.Tag = afs[i];

 tbar.Buttons.Add(tbarbtn);
 }
 }
 void ToolBarOnClick(object obj, ToolBarButtonClickEventArgs tbbcea)
 {
 ToolBarButton tbarbtn = tbbcea.Button;

 // If the Tag isn't a FontStyle, don't do anything.

 if (tbarbtn.Tag == null ||
 tbarbtn.Tag.GetType() != typeof(FontStyle))
 return;

 // Set or clear the bit in the fontstyle field.

 if (tbarbtn.Pushed)
 fontstyle |= (FontStyle) tbarbtn.Tag;
 else
 fontstyle &= ~(FontStyle) tbarbtn.Tag;

 panel.Invalidate();
 }
 void PanelOnResize(object obj, EventArgs ea)
 {
 Panel panel = (Panel) obj;
 panel.Invalidate();
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 Panel panel = (Panel) obj;
 Graphics grfx = pea.Graphics;
 Font font = new Font("Times New Roman", 72, fontstyle);
 SizeF sizef = grfx.MeasureString(strText, font);

 grfx.DrawString(strText, font, new SolidBrush(clrText),
 (panel.Width - sizef.Width) / 2,
 (panel.Height - sizef.Height) / 2);
 }
}

FontStyleButtons.bmp

This program creates a Panel control that fills the client area (at least before the toolbar is created)
and displays any output that would normally go in the client area. The PanelOnPaint event handler
displays a string of centered text. Because it's displaying centered text, the panel must be repainted
whenever it's resized. However, the handy ResizeRedraw property is protected. One possibility is to
subclass Panel; another (which is what this program does) is to install an event handler for the
panel's Resize event and invalidate the panel there.

Notice that the Font object created in the PanelOnPaint method uses a FontStyle argument stored
as a field named fontstyle. This is the field that the buttons will alter.

As in the TextBoxWithToolBar program, the ToggleButtons program installs its ToolBarOnClick
method as the event handler for the toolbar's ButtonClick event. The Style property for each button is
set to ToolBarButtonStyle.ToggleButton in the constructor, and the ToolBarOnClick method assigns
the Tag property for each button the FontStyle enumeration member associated with the button.

Once again, the use of an appropriate Tag property makes the ToolBarOnClick method relatively
straightforward. After obtaining the ToolBarButton object from the event argument and checking that
the Tag type is a FontStyle object, ToolBarOnClick sets or clears a bit in the fontstyle field.
if (tbarbtn.Pushed)
 fontstyle |= (FontStyle) tbarbtn.Tag;
else
 fontstyle &= ~(FontStyle) tbarbtn.Tag;

The method then concludes by invalidating the panel, which generates a call to PanelOnPaint.

Although I've demonstrated the PushButton and ToggleButton styles separately, keep in mind that
any toolbar can contain a mix of buttons with different styles. The third style is
ToolBarButtonStyle.DropDownButton, which invokes a menu indicated by the DropDownMenu
property.

Although DropDownMenu is defined as an object of type Menu, it's really an object of type
ContextMenu (which derives from Menu). You can define an appropriate object for the
DropDownMenu property like so:
ContextMenu menu = new ContextMenu();
menu.MenuItems.Add("First Item");
menu.MenuItems.Add("Second Item");
menu.MenuItems.Add("Third Item");

Of course, you'd also define event handlers for the items. Then assign these properties of the
ToolBarButton object:
tbarbtn.Style = ToolBarButtonStyle.DropDownMenu;
tbarbtn.DropDownMenu = menu;

A property of ToolBar indicates whether the drop-down buttons in the toolbar are displayed with little
arrows that visually indicate that they invoke menus:
ToolBar Properties (selection)

Type Property Accessibility

bool DropDownArrows get/set

The default is true.

There's a catch to DropDownMenu buttons that I haven't mentioned yet. It's more of a convention
than an actual requirement, but if you're familiar with applications that use such toolbar buttons, you
know they don't invoke normal text-based menus. The menus instead usually contain little pictures.
Thus, implementing a DropDownMenu button almost always involves an owner-draw menu.

Here's a program named DropDownMenuButton that derives from ToggleButtons and adds a fifth
button to set the text color. The button invokes an owner-draw menu that displays 16 common colors
and also re-creates the button image itself to indicate the selected color.

DropDownMenuButton.cs
//---
// DropDownMenuButton.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class DropDownMenuButton: ToggleButtons
{
 public new static void Main()
 {
 Application.Run(new DropDownMenuButton());
 }
 public DropDownMenuButton()
 {
 Text = "Drop-Down Menu Button";
 strText = "Drop-Down";

 // Create bitmap for new button and add it to ImageList.

 tbar.ImageList.Images.Add(CreateBitmapButton(clrText));

 // Create the menu for the button.

 ContextMenu menu = new ContextMenu();

 EventHandler ehOnClick = new EventHandler(MenuColorOnClick);
 MeasureItemEventHandler ehOnMeasureItem =
 new MeasureItemEventHandler(MenuColorOnMeasureItem);
 DrawItemEventHandler ehOnDrawItem =
 new DrawItemEventHandler(MenuColorOnDrawItem);

 Color[] acolor =
 {
 Color.FromArgb(0x00, 0x00, 0x00), Color.FromArgb(0x00, 0x00,
0x80),
 Color.FromArgb(0x00, 0x80, 0x00), Color.FromArgb(0x00, 0x80,
0x80),
 Color.FromArgb(0x80, 0x00, 0x00), Color.FromArgb(0x80, 0x00,
0x80),
 Color.FromArgb(0x80, 0x80, 0x00), Color.FromArgb(0x80, 0x80,
0x80),
 Color.FromArgb(0xC0, 0xC0, 0xC0), Color.FromArgb(0x00, 0x00,
0xFF),
 Color.FromArgb(0x00, 0xFF, 0x00), Color.FromArgb(0x00, 0xFF,
0xFF),

 Color.FromArgb(0xFF, 0x00, 0x00), Color.FromArgb(0xFF, 0x00,
0xFF),
 Color.FromArgb(0xFF, 0xFF, 0x00), Color.FromArgb(0xFF, 0xFF,
0xFF)
 };

 for (int i = 0; i < acolor.Length; i++)
 {
 MenuItemColor mic = new MenuItemColor();
 mic.OwnerDraw = true;
 mic.Color = acolor[i];
 mic.Click += ehOnClick;
 mic.MeasureItem += ehOnMeasureItem;
 mic.DrawItem += ehOnDrawItem;
 mic.Break = i % 4 == 0;

 menu.MenuItems.Add(mic);
 }
 // Finally, make the button itself.

 ToolBarButton tbarbtn = new ToolBarButton();
 tbarbtn.ImageIndex = 4;
 tbarbtn.Style = ToolBarButtonStyle.DropDownButton;
 tbarbtn.DropDownMenu = menu;
 tbarbtn.ToolTipText = "Color";

 tbar.Buttons.Add(tbarbtn);
 }
 void MenuColorOnClick(object obj, EventArgs ea)
 {
 // Set the new text color.

 MenuItemColor mic = (MenuItemColor) obj;
 clrText = mic.Color;
 panel.Invalidate();

 // Make a new button bitmap.

 tbar.ImageList.Images[4] = CreateBitmapButton(clrText);
 tbar.Invalidate();
 }
 void MenuColorOnMeasureItem(object obj, MeasureItemEventArgs miea)
 {
 miea.ItemHeight = 18;
 miea.ItemWidth = 18;
 }

 void MenuColorOnDrawItem(object obj, DrawItemEventArgs diea)
 {
 MenuItemColor mic = (MenuItemColor) obj;
 Brush brush = new SolidBrush(mic.Color);

 Rectangle rect = diea.Bounds;

 rect.X += 1;
 rect.Y += 1;
 rect.Width -= 2;
 rect.Height -= 2;

 diea.Graphics.FillRectangle(brush, rect);
 }
 Bitmap CreateBitmapButton(Color clr)
 {
 Bitmap bm = new Bitmap(16, 16);
 Graphics grfx = Graphics.FromImage(bm);
 Font font = new Font("Arial", 10, FontStyle.Bold);
 SizeF sizef = grfx.MeasureString("A", font);
 float fScale = Math.Min(bm.Width / sizef.Width,
 bm.Height / sizef.Height);

 font = new Font(font.Name, fScale * font.SizeInPoints,
font.Style);
 StringFormat strfmt = new StringFormat();
 strfmt.Alignment = strfmt.LineAlignment =
StringAlignment.Center;

 grfx.Clear(Color.White);
 grfx.DrawString("A", font, new SolidBrush(clr),
 bm.Width / 2, bm.Height / 2, strfmt);
 grfx.Dispose();

 return bm;
 }
}
class MenuItemColor: MenuItem
{
 Color clr;

 public Color Color
 {
 get { return clr; }
 set { clr = value; }
 }

}

This file also contains an override of the MenuItem class that stores a property named Color.

The CreateBitmapButton method toward the bottom of the program creates a 16-pixel-square bitmap
containing a single "A" displayed with the Arial font and colored with the indicated argument to the
method. The program's constructor begins by creating an initial bitmap and adding it to the ImageList
object created by the ToggleButtons program.

The constructor then creates a context menu based on the MenuItemColor class defined at the
bottom of the program. Event handlers for the Click, MeasureItem, and DrawItem events are
installed. The button itself has a Style property of ToolBarButtonStyle.DropDownButton. The
DropDownMenu property is set to the menu just created.

The MeasureItem event handler sets the size of the menu item to 18 pixels square, and the
DrawItem handler draws a rectangle 1 pixel within the item bounds. Here's the resultant menu:

The images in the menu aren't square because the DrawItem event handler doesn't take account of
the additional space added to the width for a possible check box.

The MenuColorOnClick event handler sets the clrText field that the PanelOnPaint method uses for
coloring the text and then invalidates the Panel. It concludes by creating a new bitmap for the button.

One last warning: Because DropDownMenuButton inherits from ToggleButtons, and ToggleButtons
loads a bitmap resource, you must change the resource namespace in DropDownMenuButton to
"ToggleButtons" for the resource to be properly loaded. (I discussed this problem in Chapter 11.)

The standard toolbar allows push buttons, toggle buttons, and drop-down menus. If you'd like
something more elaborate—a combo box, for example—you must take a slightly different approach.
You'll want to create a Panel control that is a child of your Form and parent to one or more ToolBar
controls and whatever ComboBox or other controls you need.

Chapter 21: Printing
Overview
Printing in a Windows Forms application is relatively painless, but the key word here is relatively. It
seems easy only when you've had experience grappling with the Win32 printer API. Printing will
never be quite as easy as displaying text and graphics on the screen, mostly because of the wide
variety of printer types, their relatively slow speed, printer options (such as trays, bins, and paper
sizes), and common problems such as paper jams.

Part of the difficulty in learning about printing in Windows Forms is the existence of several
interlocking classes, all of which seem to refer to each other. For example, the PrinterSettings class
has a property of type PageSettings, and the PageSettings class has a property of type
PrinterSettings, and that's just the beginning. After awhile, the System.Drawing.Printing namespace
starts to look like a hall of mirrors. Much of the process of learning about printing involves sorting out
the various classes.

Although I'll be giving you enough information in the early pages of this chapter to handle printing
entirely on your own, you'll probably want to take advantage of the common dialog box library
(discussed toward the end of the chapter) to help out and make your application consistent with
others. The System.Windows.Forms namespace contains classes to display standard print and
page-setup dialog boxes, and a print preview window.

Let's begin this journey with the printers themselves.
Printers and Their Settings
Windows allows a user to install multiple printers. (More accurately, the user can install device
drivers for multiple printers. The printers don't actually have to be attached to the machine.) The
installed printers are listed in the Printers dialog box that you can invoke from the Settings item on
the Start menu. At any time, only one of these printers is the default printer. You can change which
printer is the default in this Printers dialog box.

From the perspective of a Windows Forms program, a particular printer is described by an object of
type PrinterSettings, which like most of the classes I'll discuss in this chapter (except for the common
dialog boxes) is defined in the System.Drawing.Printing namespace. The PrinterSettings class has
only a default constructor, which creates an object for the default printer:

PrinterSettings Constructor

PrinterSettings ()

For example, the statement
PrinterSettings prnset = new PrinterSettings();

creates a new instance of PrinterSettings that refers to the default printer.

The following three properties indicate some basic information about the printer:
PrinterSettings Properties (selection)

Type Property Accessibility

string PrinterName get/set

bool IsValid get

bool IsDefaultPrinter get

PrinterName is a string that usually indicates the make and model of the printer. It's the same string
you'll see in the Printers dialog box. Here are some examples:

HP LaserJet 1100 (MS)
NEC Silentwriter LC890 v47.0
Hewlett-Packard HP-GL/2 Plotter
Fax

During the installation of a printer, the user can change the name that refers to the printer, so the
printer name you encounter in a PrinterSettings object might not be standard.

The IsValid and IsDefaultPrinter properties will usually be set to true when you create a new
PrinterSettings object. However, if no printers are installed, PrinterName returns the string "<no
default printer>" and IsValid equals false.

Notice that PrinterName is writable, which means that you can set it to a string that identifies another
installed printer. When you set the PrinterName property, all the other properties of PrinterSettings
also change to reflect that printer. Obviously, the string you set PrinterName to must match the name
of an installed printer. If the string doesn't match, no exception is thrown but the IsValid property will
be set to false.

To intelligently set the PrinterName property to the name of another installed printer, you can first
obtain a list of all installed printers by using the only static property of PrinterSettings:
PrinterSettings Static Property

Type Property Accessibility

PrinterSettings.StringCollection InstalledPrinters get

The StringCollection class is defined within PrinterSettings. It's really just an array of read-only
strings. Suppose you make use of the InstalledPrinters property like so:
PrinterSettings.StringCollection sc = PrinterSettings.InstalledPrinters();

You can then use the following two properties with the sc object:
PrinterSettings.StringCollection Properties

Type Property Accessibility

int Count get

string [] get

The quantity sc.Count is the number of installed printers (or 0 if no printers are installed), sc[0] is the
name of the first printer, sc[1] is the name of the second, and so forth.

You don't need to save the value of InstalledPrinters in a variable. You can access the property itself.
For example,
PrinterSettings.InstalledPrinters.Count

is the number of installed printers, and
PrinterSettings.InstalledPrinters[1]

is the name of the second printer. Here's some code that puts all the installed printers in a
ComboBox named combo:
foreach (string str in PrinterSettings.InstalledPrinters)
 combo.Items.Add(str);

You can change the printer that the PrinterSettings object refers to by setting the PrinterName
property to one of the strings in the collection. If you've defined the StringCollection variable sc, you
do it like this:
prnset.PrinterName = sc[2];

You can also assign the PrinterName property directly by indexing the InstalledPrinters property:

prnset.PrinterName = PrinterSettings.InstalledPrinters[2];

Unless something is seriously wrong, the IsValid property should then be true, and IsDefaultPrinter
will be false, even if you set PrinterName to the name of the default printer.

Let me repeat: When you set the PrinterName property to the name of an installed printer, all the
properties of the PrinterSettings object change to reflect that printer.

Here are a couple properties that indicate very basic capabilities of the printer:
PrinterSettings Properties (selection)

Type Property Accessibility

bool IsPlotter get

bool SupportsColor get

int LandscapeAngle get

If the IsPlotter property is true, you probably shouldn't rely on the printer to display bitmaps. If the
printer doesn't support color, you may want to use alternatives to color in some graphics. (For
example, if you're using color for bar graphs or maps, you may want to substitute hatch brushes
when printing, as I discussed in Chapter 17.) The LandscapeAngle property usually indicates either
90 degrees or 270 degrees. However, if the printer isn't capable of landscape mode, the property will
be equal to 0.

No further information is available from PrinterSettings about the technology of the printer (that is,
whether it works by laser or ink jets or something else).

PrinterSettings also has three properties that return collections of items. These properties indicate
the available paper sources on the printer (that is, bins and trays), the various paper sizes supported
by the printer (including envelopes), and the display resolutions available on the printer:
PrinterSettings Properties (selection)

Type Property Accessibility Items

PrinterSettings.-
PaperSourceCollection

PaperSources get PaperSource

PrinterSettings.-
PaperSizeCollection

PaperSizes get PaperSize

PrinterSettings.Printer-
ResolutionCollection

PrinterResolutions get PrinterResolution

These properties are all quite similar in how they work. The three classes in the first column of the
table (headed Type) are all defined within the PrinterSettings class, and each of them has just two,
read-only properties: Count, which is the number of items in the collection, and an indexer, which
returns an object of the type indicated in the last column of the table, labeled Items.

For example, the PaperSources property is essentially a collection of PaperSource objects. The
quantity
prnset.PaperSources.Count

indicates the number of these PaperSource objects. You can reference each one by indexing the
property, so that
prnset.PaperSources[2]

is an object of type PaperSource, the third in the collection. If the number of items in the collection is
less than 3, then attempting to reference the third item in the array will cause an exception to be
thrown.

Let's take a look at the PaperSource, PaperSize, and PrinterResolution classes. The PaperSource
class has two, read-only properties:

PaperSource Properties

Type Property Accessibility

string SourceName get

PaperSourceKind Kind get

The SourceName property is a text description that should be meaningful to a user (such as "Manual
Paper Feed"). PaperSourceKind is an enumeration:
PaperSourceKind Enumeration

Member Value Member Value

Upper 1 TractorFeed 8

Lower 2 SmallFormat 9

Middle 3 LargeFormat 10

Manual 4 LargeCapacity 11

Envelope 5 Cassette 14

ManualFeed 6 FormSource 15

AutomaticFeed 7 Custom 257

Keep in mind that the PaperSources property of PrinterSettings is a collection of all the possible
paper sources on the printer. The property does not indicate the currently default paper source.
(That's coming later.)

The PaperSizes property of PrinterSettings is a collection of all the paper sizes supported by the
printer. Each item is an object of type PaperSize, which has the following four properties:
PaperSize Properties

Type Property Accessibility

string PaperName get/set

int Width get/set

int Height get/set

PaperKind Kind get

PaperName is a text string that should be meaningful to the user, such as "Envelope #10". The
Width and Height properties indicate the size of the paper (or envelope) in hundredths of an inch.
PaperKind is an enumeration that has more members (117 at last count) than is convenient to list
here. Here are some sample values that might be encountered in the United States and Europe:
PaperKind Enumeration (selection)

Member Value Description

Letter 1 8.5 in. by 11 in.

Legal 5 8.5 in. by 14 in.

Executive 7 7.25 in. by 10.5 in.

A4 9 210 mm by 297 mm

A5 11 148 mm by 210 mm

The PrinterResolutions property of PrinterSettings is a collection of PrinterResolution objects. The
PrinterResolution class has three properties:
PrinterResolution Properties

Type Property Accessibility

int X get

int Y get

PrinterResolutionKind Kind get

PrinterResolutionKind is another enumeration:
PrinterResolutionKind Enumeration

Member Value

Custom 0

Draft −1

Low −2

Medium −3

High −4

Every printer has at least five items in the PrinterResolutions collection. Four of these items have
PrinterResolutionKind values of Draft, Low, Medium, and High, with X and Y properties set equal to
−1. These four enumeration values are not necessarily associated with unique printer resolutions. If
the printer is capable of only one resolution, all these options result in the same resolution.

The remaining one or more items in the PrinterResolutions collection indicate the actual device
resolutions available on the printer. These remaining items all have PrinterResolutionKind values of
Custom. The X and Y properties indicate the actual resolution in dots per inch.

For example, a printer may be capable of two resolutions: 600 × 600 and 1200 × 1200. The
PrinterResolutions collection will have six items. Two of the items will have PrinterResolutionKind
values of Custom; one will have X and Y values of 600; the other will have X and Y values of 1200.
The other four items are Draft, Low, Medium, and High with X and Y values of −1.

The following properties of PrinterSettings involve printing a multipage document:
PrinterSettings Properties (selection)

Type Property Accessibility

bool CanDuplex get

Duplex Duplex get/set

int MaximumCopies get

short Copies get/set

bool Collate get/set

The CanDuplex property is true if the printer is capable of printing on both sides of the page. If the
property is true, you can set the Duplex property to one of the following values:
Duplex Enumeration

Member Value

Simplex 1

Vertical 2

Horizontal 3

Default −1

The Simplex member indicates one-side printing. The Vertical and Horizontal options refer to the two
different ways that double-sided pages can be printed. Vertical indicates that the pages are intended
to be joined vertically, just like a regular book. The Horizontal option is for pages that are joined
horizontally, usually at the top.

The Copies property is 1 by default. You can set it to any value up to MaximumCopies to force the
printer driver to print multiple copies. Collate indicates the order of the copies. If you print two copies
of three pages and Collate equals false, the pages will be printed in the order 1, 1, 2, 2, 3, 3. When
Collate is true, the order is 1, 2, 3, 1, 2, 3. The default value of Collate depends on the printer.

If you programmatically set the following properties, nothing will happen. These properties are
intended to be used in conjunction with the PrintDialog class that I'll discuss later in this chapter:
PrinterSettings Properties (selection)

Type Property Accessibility

PrintRange PrintRange get/set

int MinimumPage get/set

int MaximumPage get/set

int FromPage get/set

int ToPage get/set

bool PrintToFile get/set

The final property of the PrinterSettings class is an object of type PageSettings, another important
class in System.Drawing.Printing:
PrinterSettings Properties (selection)

Type Property Accessibility

PageSettings DefaultPageSettings get

I'll discuss the PageSettings class in detail shortly. The class describes the characteristics of a
printed page. For example, PrinterSettings has a PaperSources property that is a collection of all the
paper sources available on the printer. PageSettings has a PaperSource property that indicates a
paper source for a particular page.

The DefaultPageSettings property in PrinterSettings indicates—as the name implies—the default
page settings. As you'll see, you can change the page settings for an entire document or for each
page as a document is being printed.

PrinterSettings has several methods that allow you to interface with Win32 code. In particular, you
can copy the information from PrinterSettings into Win32 DEVMODE or DEVNAMES structures, or
you can copy from a DEVMODE or DEVNAMES structure into PrinterSettings.

In addition, there is one method of PrinterSettings that might be of interest even for a Windows
Forms program that isn't interfacing with Win32 code:

PrinterSettings Methods (selection)

Graphics CreateMeasurementGraphics()

This method returns something that in Win32 is called an information device context. You can use
the Graphics object from CreateMeasurementGraphics to obtain information about the printer, but
not to draw on a printer page. This method allows you to obtain additional information about any
installed printer at any time, for example, during a program's constructor. The ability to obtain such
information is much less vital in Windows Forms, primarily because Windows Forms fonts are
handled in a more device-independent manner than fonts in Win32 API programs.

Let's now move from PrinterSettings to PageSettings, and then we'll have conquered two of the
basic classes of System.Drawing.Printing.
Page Settings
The PageSettings class describes those printer characteristics that can change with each page. It's
tempting to consider a PageSettings object in a vacuum. However, a particular PageSettings object
is always associated with a particular printer. A little thought will convince you why this is so: if the
PageSettings object indicates that a page is to be printed on ledger paper (that's 17 inches by 11
inches), the printer better support that size.

Programs commonly get access to precreated PageSettings objects, such as the
DefaultPageSettings property in PrinterSettings. But you can also create a PageSettings object using
the class's constructor:

PageSettings Constructors

PageSettings()
PageSettings(PrinterSettings prnset)

The first constructor creates a PageSettings object for the default printer; the second creates a
PageSettings object based on a particular installed printer indicated by the PrinterSettings argument.
In either case, the PageSettings object contains default page settings for the printer.

Default page settings for installed printers are defined by the user in Printing Preferences dialog
boxes that the user invokes from the Printers dialog box. A Windows Forms program can change
those default settings when printing a document, but any changes made by the Windows Forms
program do not affect other applications. For example, if the user has selected landscape mode in
the Printing Preferences dialog box, a Windows Forms program can print in portrait mode, but
nothing the program does will change the landscape selection in the Printing Preferences dialog box.

The PageSettings class has eight properties, seven of which are writable as well as readable:
PageSettings Properties

Type Property Accessibility

PrinterSettings PrinterSettings get/set

bool Landscape get/set

Rectangle Bounds get

Margins Margins get/set

bool Color get/set

PaperSource PaperSource get/set

PaperSize PaperSize get/set

PrinterResolution PrinterResolution get/set

Notice that the first property in this table is the PrinterSettings property that indicates the printer
these page settings are associated with. When you obtain a PageSettings object from the
DefaultPageSettings property of a PrinterSettings object, the PrinterSettings property of the
PageSettings object is the same object as the original PrinterSettings object.

In other words, if you create a PrinterSettings object named prnset, then
(prnset == prnset.DefaultPageSettings.PrinterSettings)

returns true. Remember that objects are actually references, so any change you make to any
property in prnset will be reflected in prnset.DefaultPageSettings.PrinterSettings.

However, if you create a PageSettings object named pageset, then
(pageset == pageset.PrinterSettings.DefaultPageSettings)

returns false, even though all the corresponding properties of the two objects will initially be equal.
An object of type PageSettings refers to the settings of a particular page. You may want to change
the settings for a particular page without changing the default page settings for the document.

In most cases, you'll use the remaining properties in PageSettings just to obtain information.
However, your program can also (within limits) set the properties to change the way in which a page
is printed.

For example, the Landscape property is false to indicate portrait mode and true for landscape mode.
That's informational. Your application can use that information to print somewhat differently
depending on how the page is oriented. But your program can also change that property itself
without any intervention by the user.

The read-only Bounds property is a Rectangle object that indicates the size of the page in units of
hundredths of an inch, taking into account the paper size and the Landscape setting. For example,
letter-size paper in portrait mode will have a Bounds property of (0, 0, 850, 1100). In landscape
mode, the Bounds property is (0, 0, 1100, 850).

The Margins property indicates default margins for the page, which are initially set to 1 inch on all
four sides. You can construct a new Margins object using the following constructors:

Margins Constructors

Margins()
Margins(int Left, int Right, int Top, int Bottom)

The class has four properties, which indicate the margins in hundredths of an inch:
Margins Properties

Type Property Accessibility

int Left get/set

int Right get/set

int Top get/set

int Bottom get/set

Sometimes a user will specify that pages should not be printed in color even if the printer is capable
of color. Perhaps the color ink-jet cartridge is empty. The Color property of the PageSettings object
indicates whether the user wants color to be used on the page.

The next three properties in the table are PaperSource, PaperSize, and PrinterResolution. You'll
recall that the PrinterSettings class has three properties named PaperSources, PaperSizes, and
PrinterResolutions (all plurals) that correspond to these three properties of PageSettings. The
PaperSource property in PageSettings, for example, is one of the items from the PaperSources
collection in PrinterSettings.

If you want to change one of these three properties from your program, be sure to set the property
from a member of the corresponding collection. For example, if you have an object of type
PageSettings named pageset and you want to change the printer resolution to Draft, the code can
look something like this:
foreach (PrinterResolution prnres in
pageset.PrinterSettings.PrinterResolutions)
{
 if (prnres.Kind == PrinterResolutionKind.Draft)

 pageset.PrinterResolution = prnres;
}

The foreach statement loops through all the items of the PrinterResolutions collection in the
PrinterSettings object associated with the PageSettings object. When there's a match, the code sets
the PrinterResolution property. You need to set the PrinterResolution property of PageSettings from
precreated PrinterResolution objects because the PrinterResolution class has no public constructor.

There aren't many occasions when your program will want to change the PaperSource or PaperSize
property. However, suppose you implement a mail-merge facility and you want to alternately print
letters and envelopes in one print job. You would need to change the PaperSource and PaperSize
properties accordingly, based on specifications the user made in the application.

The PaperSize property is not affected by the Landscape property. If the Landscape property is
false, the Bounds property Width and Height will equal the Width and Height properties of the
PaperSize property. If Landscape is true, the Bounds Width and Height properties will be swapped.
The PaperSize properties will not.

So far, we haven't gotten to the point where we can actually print something. That job requires
defining an object of type PrintDocument.
Defining a Document
A print job consists of one or more pages printed on a particular printer and is represented by the
PrintDocument class. PrintDocument has only a default constructor:

PrintDocument Constructor

PrintDocument()

Generally, a program begins the process of printing by creating an object of type PrintDocument:
PrintDocument prndoc = new PrintDocument();

You could create this object anew for each print job. However, if you're using the standard print
dialog boxes—or some other means of allowing the user to select printers and printer options—you
probably want to retain those settings in the PrintDocument object and use the same instance for the
duration of the program. In that case, you'd define prndoc as a field and create it only once.

PrintDocument has only four properties, but two of them are objects of type PrinterSettings and
PageSettings, so there's much more information packed into the PrintDocument object than you'd
expect at first glance:
PrintDocument Properties

Type Property Accessibility

PrinterSettings PrinterSettings get/set

PageSettings DefaultPageSettings get/set

string DocumentName get/set

PrintController PrintController get/set

When you create a new PrintDocument object, the PrinterSettings property indicates the default
printer. If you want, you can change the PrinterSettings property or individual properties of the
PrinterSettings property. For example,
prndoc.PrinterSettings.Copies = 2;

The DefaultPageSettings property is initially set from the DefaultPageSettings property of the
PrinterSettings object. You can change that as well, or properties of that property, for example, as
shown here:

prndoc.DefaultPageSettings.Landscape = true;

For a new PrintDocument object, the expression
prndoc.PrinterSettings == prndoc.DefaultPageSettings.PrinterSettings

returns true but
prndoc.DefaultPageSettings == prndoc.PrinterSettings.DefaultPageSettings

returns false. That's because you may want to change the DefaultPageSettings for the document
without changing the default page settings for the printer.

The DocumentName property is initialized to the text string "document". You'll probably want to
change that. The name shows up whenever the print job is identified, such as in the window that lists
outstanding print jobs as they're being printed. I'll discuss the PrintController property shortly.

The PrintDocument class has four public events:
PrintDocument Events

Event Method Delegate Argument

BeginPrint OnBeginPrint PrintEventHandler PrintEventArgs

QueryPageSettings OnQuery-
PageSettings

QueryPageSettings-
EventHandler

QueryPage-
SettingsEventArgs

PrintPage OnPrintPage PrintPageEvent-
Handler

PrintPageEventArgs

EndPrint OnEndPrint PrintEventHandler PrintEventArgs

The BeginPrint and EndPrint events are triggered once for every print job. The QueryPageSettings
and PrintPage events are triggered for every page in the print job. The PrintPage event handler
indicates whether there are more pages to be printed.

At the very least, you'll set a handler for the PrintPage event. If you want to use different page
settings for each page (for example, to alternate the printing of letters and envelopes in a single print
job), you'll also install a handler for the QueryPageSettings event. Install handlers for BeginPrint and
EndPrint if you need to perform lengthy initialization or cleanup. I'll go over the arguments to these
event handlers shortly.

Finally, you initiate printing by calling the following method, which is the only method in
PrintDocument that isn't associated with an event:

PrintDocument Method

void Print()

The Print method doesn't return until the program is finished printing the document. The application
can't respond to any user input during this time. In the interim, the PrintDocument event handlers
installed by the program will be called, beginning with the BeginPrint handler, then the
QueryPageSettings and PrintPage handlers for each page, and finally the EndPrint handler.
Handling PrintDocument Events
The following class hierarchy shows the descendents of EventArgs that are involved with the
PrintDocument event handlers:

CancelEventArgs is defined in the System.ComponentModel namespace. The PrintEventArgs object
associated with the BeginPrint and EndPrint events has a single property that it inherits from
CancelEventArgs:
PrintEventArgs Property

Type Property Accessibility

bool Cancel get/set

The BeginPrint event handler can set Cancel to true to abort the print job (for example, when the
print job needs more memory than is available).

The QueryPageSettingsEventArgs class adds another property to Cancel:
QueryPageSettingsEventArgs Property

Type Property Accessibility

PageSettings PageSettings get/set

The handler for the QueryPageSettings event can change PageSettings properties in preparation for
the corresponding PrintPage event.

The PrintPageEventArgs class has four read-only properties and two read-write properties:
PrintPageEventArgs Properties

Type Property Access

Graphics Graphics get

bool HasMorePages get/set

bool Cancel get/set

PageSettings PageSettings get

Rectangle PageBounds get

Rectangle MarginBounds get

The Graphics object is created anew for each page. If you set properties of the Graphics object—
such as PageUnit or PageScale—for one page, don't expect the properties to be in effect for
subsequent pages. The default PageUnit is GraphicsUnit.Display, which makes the printer seem like
a 100-dpi device. The DpiX and DpiY properties of the Graphics object reflect the PrinterResolution
property of PageSettings.

On entry to the print-page event handler, HasMorePages is always set to false. For printing multiple
pages, you must set it to true on return from the event handler for the handler to be invoked again.
On the last page, leave the property set to false.

The Cancel property is also usually set to false. Set it to true if your program needs to abort the print
job. Setting Cancel to true is different from not setting HasMorePages to true in that the operating
system will attempt to cease the printing of pages already in the queue.

The PageSettings property is for informational purposes while printing. The property will reflect any
changes made in the QueryPageSettings event handler.

For your convenience, the PrintPageEventArgs object also includes a PageBounds rectangle, which
is the same as the Bounds property of PageSettings, and a MarginBounds rectangle, which is the
dimensions of the page less the margins indicated by the Margins property of PageSettings. I'll cover
these properties in more detail shortly.

Let's take a look at some code. First, here's a simple dialog box that lets the user pick one of the
installed printers from a combo box.
PrinterSelectionDialog.cs
//---
// PrinterSelectionDialog.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Printing;
using System.Windows.Forms;

class PrinterSelectionDialog: Form
{
 ComboBox combo;

 public PrinterSelectionDialog()
 {
 Text = "Select Printer";

 FormBorderStyle = FormBorderStyle.FixedDialog;
 ControlBox = false;
 MaximizeBox = false;
 MinimizeBox = false;
 ShowInTaskbar = false;
 StartPosition = FormStartPosition.Manual;
 Location = ActiveForm.Location +
 SystemInformation.CaptionButtonSize +
 SystemInformation.FrameBorderSize;

 Label label = new Label();
 label.Parent = this;
 label.Text = "Printer:";
 label.Location = new Point(8, 8);
 label.Size = new Size(40, 8);

 combo = new ComboBox();
 combo.Parent = this;
 combo.DropDownStyle = ComboBoxStyle.DropDownList;
 combo.Location = new Point(48, 8);
 combo.Size = new Size(144, 8);

 // Add the installed printers to the combo box.

 foreach (string str in PrinterSettings.InstalledPrinters)
 combo.Items.Add(str);

 Button btn = new Button();
 btn.Parent = this;
 btn.Text = "OK";
 btn.Location = new Point(40, 32);
 btn.Size = new Size(40, 16);
 btn.DialogResult = DialogResult.OK;
 AcceptButton = btn;

 btn = new Button();
 btn.Parent = this;
 btn.Text = "Cancel";
 btn.Location = new Point(120, 32);
 btn.Size = new Size(40, 16);
 btn.DialogResult = DialogResult.Cancel;

 CancelButton = btn;

 ClientSize = new Size(200, 56);
 AutoScaleBaseSize = new Size(4, 8);
 }
 public string PrinterName
 {
 set { combo.SelectedItem = value; }
 get { return (string) combo.SelectedItem; }
 }
}

The combo box is of type DropDownList, so the user is prohibited from typing anything in the edit
field. A read/write property named PrinterName allows a program to initialize the selected item in the
combo box to the default printer and to obtain the item the user selects.

The PrintThreePages program makes use of this dialog box. To let the user initiate printing, the
program creates a menu containing a File submenu with a Print item. The handler for the Print menu
item displays the dialog box to let the user choose a printer. The program installs both
QueryPageSettings and PrintPage event handlers to print three pages, each of which contains the
page number in a big font centered on the page. Just for kicks, the program sets the resolution
settings to "draft" mode for the entire document and alternates between portrait and landscape for
each page.
PrintThreePages.cs
//--
// PrintThreePages..cs © 2001 by Charles Petzold
//--
using System;

using System.Drawing;
using System.Drawing.Printing;
using System.Windows.Forms;

class PrintThreePages: Form
{
 const int iNumberPages = 3;
 int iPageNNumber;

 public static void Main()
 {
 Application.Run(new PrintThreePagesi());
 }
 public PrintThreePages()
 {
 Text = "Print Three Pages";

 Menu = new MainMenu();
 Menu.MenuItems.Add("&File");
 Menu.MenuItems[0].MenuItems.Add("&Print...",
 new
EventHandler(MenuFilePrintOnClick));
 }
 void MenuFilePrintOnClick(object obj, EventArgs ea)
 {
 // Create PrintDocument.

 PrintDocument prndoc = new PrintDocument();

 // Create dialog box and set PrinterName property.

 PrinterSelectionDialog dlg = new PrinterSelectionDialog();
 dlg.PrinterName = prndoc.PrinterSettings.PrinterName;

 // Show dialog box and bail out if not OK.

 if (dlg.ShowDialog() != DialogResult.OK)
 return;

 // Set PrintDocument to selected printer.

 prndoc.PrinterSettings.PrinterName = dlg.PrinterName;

 // Set printer resolution to "draft".

 foreach (PrinterResolution prnres in

prndoc.PrinterSettings.PrinterResolutions)
 {
 if (prnres.Kind == PrinterResolutionKind.Draft)
 prndoc.DefaultPageSSettings.PrinterResolution =
prnres;
 }

 // Set remainder of PrintDocument properties.

 prndoc.DocumentName = Text;
 prndoc.PrintPage += new PrintPageEventHandler(OnPrintPage)v;
 prndoc.QueryPageSSettings += new QueryPageSSettingsEventHandler
 (OnQueryPageSSettings);
 // Commence printing.
 iPageNNumber = 1;
 prndoc.Print();
 }
 void OnQueryPageSSettings(object obj, QueryPageSSettingsEventArgs
qpsea)
 {
 if (qpsea.PageSSettings.PrinterSettings.LandscapeAngle != 0)
 qpsea.PageSSettings.Landscape ^= true;
 }
 void OnPrintPage((object obj, PrintPageEventArgs ppea)
 {
 Graphics grfx = ppea.Graphics;
 Font font = new Font("Times New Roman", 360);
 string str = iPageNNumber.ToString();
 SizeF sizef = grfx.MeasureString(str, font);

 grfx.DrawString(str, font, Brushes.Black,
 (grfx.VisibleClipBounds.Width - sizef.Width) / 2,
 (grfx.VisibleClipBounds.Height - sizef.Height) / 2);

 ppea.HasMorePages v= iPageNNumber < iNumberPages;
 iPageNNumber += 1;
 }
}

Let's take a look at the MenuFilePrintOnClick method first. That's the method that's executed when
the user selects Print from the File menu. It begins by creating a new PrintDocument object and a
new PrinterSelectionDialog object. The constructor in PrinterSelectionDialog fills a combo box with
installed printers. The method then sets the PrinterName property of the dialog box to the default
printer:
dlg.PrinterName = prndoc.PrinterSettings.PrinterName;

That becomes the selected item in the combo box.

If the user returns from the dialog box by pressing OK, the PrinterName property of the
PrinterSettings property of the PrintDocument object is set to the selected printer:
prndoc.PrinterSettings.PrinterName = dlg.PrinterName;

The method then sets the PrinterResolution property of the DefaultPageSettings property of
PrintDocument to draft mode using code similar to what I showed earlier for doing such jobs. All
pages of the document will now be printed with the resolution associated with draft mode. (You can
determine what that resolution is by examining the DpiX and DpiY properties of the Graphics object
during the PrintPage method.)

The MenuFilePrintOnClick method concludes by setting the DocumentName property of the
PrintDocument object, installing event handlers for the PrintPage and QueryPageSettings events,
initializing the page number, and calling the Print method in PrintDocument to begin printing.

The next code executed in the program will be the OnQueryPageSettings event handler for the first
page. If the printer supports landscape mode, the method toggles the Landscape property of the
PageSettings object passed as a property of QueryPageSettingsEventArgs:
qpsea.PageSettings.Landscape ^= true;

After the OnQueryPageSettings method returns, the OnPrintPage event handler is called for the first
page. That handler displays a large number centered on the page.

If the printer is set up to print in portrait mode by default, the first page will be in landscape mode, the
second in portrait, and the third in landscape. Notice that PrintPage doesn't have to do anything
special except use the current VisibleClipBounds property of the Graphics object to center the text.
VisibleClipBounds reflects the current orientation for the printer.

Whenever you print from PrintThreePages, the PrintDocument object is created anew. That means
your default printer always shows up as the selected printer in the dialog box, even if you switched to
another printer in a previous print job. You might want to consider storing the PrintDocument object
as a field. Just move this entire statement outside the MenuFilePrintOnClick method:
PrintDocument prndoc = new PrintDocument();

Now the object will retain any changes made while the program is running. As I mentioned earlier, no
changes are made that affect any other application or the same application when run later.
The Page Dimensions
To intelligently draw text and graphics on a printer page, you need to know some details about the
size of the area in which you can draw. From Chapter 5 until now, I've been assuming that you can
draw anywhere on the printable area of the printer page. But you really should be drawing only within
certain margins that the user has specified.

Unfortunately, taking into account the user's selection of margins is a problematic area of printing in
a Windows Forms application. You may think you have all the information you need, but you really
don't.

Let's take a look at what you do have. A PrintPage event handler is passed an object of type
PrintPageEventArgs. One property of that class is a Rectangle object named PageBounds.
PageBounds is equal to the Bounds property of the PageSettings class, and it indicates the
dimension of the physical page, taking portrait or landscape orientation into account, in units of
hundredths of an inch. For example, for 8.5-by-11-inch letter-size paper in portrait mode,
PageBounds is equal to (0, 0, 850, 1100).

The PageSettings class also includes an object named Margins, which indicates the margins the
user desires on all four sides of the page in units of hundredths of an inch. By default, all four
margins are initially equal to 100.

The MarginBounds property of PrintPageEventArgs is a Rectangle object based on PageBounds but
taking margins into account. For letter-size paper with default margins, MarginBounds is the
rectangle (100, 100, 650, 900).

So far, so good. The problem, however, is that the Graphics object you obtain from
PrintPageEventArgs is set up to print on the printable area of the page. Printers usually can't print to

the very edge of the paper because of the presence of rollers and paper guides and whatnot in the
printer. The origin of this Graphics object—that is, the location where graphics appear when you
specify the point (0, 0) in drawing methods—is the upper left corner of the printable area of the page.
The origin is consistent with the VisibleClipBounds property of the Graphics object.

When my printer is loaded with standard 8.5-by-11-inch paper and printing is set for portrait mode,
VisibleClipBounds reports a rectangle of (0, 0, 800, 1060). By default, these units are 1/100 inch, so
the printable area of the page is 8 inches wide and 10.6 inches high. The unprintable area is 0.5 inch
total on the left and right, and 0.4 inch total on the top and bottom.

However, you can't assume that the unprintable area on my printer is 0.25 inch on the left and right,
and 0.20 inch on the top and bottom. Depending on the printer, the unprintable area might be
unequally distributed between the left and right, and the top and bottom of the page.

What we need is a rectangle describing the printable area of the page relative to the total page.
Unfortunately, we've now run out of information. No more information exists in PrinterSettings,
PageSettings, PrintDocument, or PrintPageEventArgs that reveals how the unprintable area is
distributed along the edges of the page.

If you're content to live with approximations, you can calculate a rectangle relative to
VisibleClipBounds (and hence usable with Graphics drawing methods) that describes the area of the
page within the user-selected margins. If the PrintPageEventArgs object is named ppea and the
Graphics object is named grfx, the expression
(ppea.PageBounds.Width - grfx.VisibleClipBounds.Width) / 2

is the approximate unprintable margin on the left side of the page, and
(ppea.PageBounds.Height - grfx.VisibleClipBounds.Height) / 2

is the approximate unprintable margin on the top side of the page. Subtract these two values from
ppea.MarginBounds.Left and ppea.MarginBounds.Top, respectively, and you get the point in
drawing coordinates that is approximately the upper left corner of the area of the page in which you
should print to respect the user's margins.

Here's a calculation of a display rectangle that takes the user's margins into account:
RectangleF rectf = new RectangleF(
 ppea.MarginBounds.Left -
 (ppea.PageBounds.Width - grfx.VisibleClipBounds.Width) / 2,
 ppea.MarginBounds.Top -
 (ppea.PageBounds.Height - grfx.VisibleClipBounds.Height) / 2,
 ppea.MarginBounds.Width, ppea.MarginBounds.Height);

Again, let me emphasize that this is an approximate calculation because it assumes the unprintable
margins are distributed equally between the left and right sides, and the top and bottom. But it's the
best you can do within the Windows Forms interface.

I use this rectangle calculation in the following program, which simply draws the rectangle and two
lines connecting its corners.
PrintWithMargins.cs
//---
// PrintWithMargins.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Printing;
using System.Windows.Forms;

class PrintWithMargins: Form

{
 public static void Main()
 {
 Application.Run(new PrintWithMargins());
 }
 public PrintWithMargins()
 {
 Text = "Print with Margins";
 Menu = new MainMenu();
 Menu.MenuItems.Add("&File");
 Menu.MenuItems[0].MenuItems.Add("&Print...",
 new
EventHandler(MenuFilePrintOnClick));
 }
 void MenuFilePrintOnClick(object obj, EventArgs ea)
 {
 // Create PrintDocument.

 PrintDocument prndoc = new PrintDocument();

 // Create dialog box and set PrinterName property.

 PrinterSelectionDialog dlg = new PrinterSelectionDialog();
 dlg.PrinterName = prndoc.PrinterSettings.PrinterName;

 // Show dialog box and bail out if not OK.

 if (dlg.ShowDialog() != DialogResult.OK)
 return;

 // Set PrintDocument to selected printer.

 prndoc.PrinterSettings.PrinterName = dlg.PrinterName;

 // Set remainder of PrintDocument properties and commence.

 prndoc.DocumentName = Text;
 prndoc.PrintPage += new PrintPageEventHandler(OnPrintPage);
 prndoc.Print();
 }
 void OnPrintPage(object obj, PrintPageEventArgs ppea)
 {
 Graphics grfx = ppea.Graphics;
 RectangleF rectf = new RectangleF(
 ppea.MarginBounds.Left -
 (ppea.PageBounds.Width - grfx.VisibleClipBounds.Width) / 2,

 ppea.MarginBounds.Top -
 (ppea.PageBounds.Height - grfx.VisibleClipBounds.Height) /
2,
 ppea.MarginBounds.Width,
 ppea.MarginBounds.Height);

 grfx.DrawRectangle(Pens.Black, rectf.X, rectf.Y,
 rectf.Width, rectf.Height);

 grfx.DrawLine(Pens.Black, rectf.Left, rectf.Top,
 rectf.Right, rectf.Bottom);

 grfx.DrawLine(Pens.Black, rectf.Right, rectf.Top,
 rectf.Left, rectf.Bottom);
 }
}

If you're not satisfied with this approximation, you'll have to access the Win32 GetDeviceCaps
function with the arguments PHYSICALOFFSETX and PHYSICALOFFSETY.

If you're more comfortable with units other than 1/100 inch, you can convert the PageBounds and
MarginBounds values to something else using the PrinterUnitConvert class. This class has one static
method, named Convert, that's defined in six versions:

PrinterUnitConvert Static Convert Method

int Convert(int iValue, PrinterUnit puFrom, PrinterUnit puTo)
double Convert(double dValue, PrinterUnit puFrom, PrinterUnit puTo)
Point Convert(Point pt, PrinterUnit puFrom, PrinterUnit puTo)
Size Convert(Size size, PrinterUnit puFrom, PrinterUnit puTo)
Rectangle Convert(Rectangle rect, PrinterUnit puFrom, PrinterUnit puTo)
Margins Convert(Margins margins, PrinterUnit puFrom, PrinterUnit puTo)

PrinterUnit is an enumeration:
PrinterUnit Enumeration

Member Value

Display 0

ThousandthsOfAnInch 1

HundredthsOfAMillimeter 2

TenthsOfAMillimeter 3

The member Display indicates hundredths of an inch.
The Print Controller
Earlier, when discussing the PrintDocument class, I skipped over the PrintController property. By
default, you can set that property to an instance of a class descended from the abstract
PrintController class. Here's the class hierarchy:

The PrintController class defines four methods:

PrintController Methods

void OnStartPrint(PrintDocument prndoc, PrintEventArgs pea)
Graphics OnStartPage(PrintDocument prndoc, PrintPageEventArgs ppea)
void OnEndPage(PrintDocument prndoc, PrintPageEventArgs ppea)
void OnEndPrint(PrintDocument prndoc, PrintEventArgs pea)

As you've seen, when a program initiates printing by calling the Print method of the PrintDocument
class, the PrintDocument object responds by triggering the four events defined by the class. These
events are BeginPrint, QueryPageSettings, PrintPage, and EndPrint.

But PrintDocument also makes calls to the four methods of the particular PrintController object that is
indicated by its PrintController property. PrintDocument calls the OnStartPrint method of
PrintController after triggering its own BeginPrint event. PrintDocument calls OnStartPage and
OnEndPage before and after triggering each PrintPage event. And finally, PrintDocument calls
OnEndPrint in the PrintController after triggering its own EndPrint event.

In particular, the OnStartPage method in the PrintController object is responsible for obtaining the
Graphics object that is eventually passed to the PrintPage event handler. (Notice the return value
from the OnStartPage method.) This Graphics object essentially determines where the graphics
output in PrintPage goes.

Normally, the graphics output goes to the printer, of course, and that's the responsibility of the
PrintController object. However, the PreviewPrintController object has something else in mind. This
particular controller creates a Graphics object based on a bitmap that represents the printer page.
And that (as we shall see toward the end of this chapter) is how print preview is implemented in
Windows Forms.

The default PrintController property of PrintDocument is an object of type
PrintControllerWithStatusDialog, and that very name discloses another responsibility of the print
controller: it displays the dialog box that shows the name of the print document and the page
currently printing.

If you don't want that dialog box to be displayed, set the PrintController property of PrintDocument to
an object of type StandardPrintController. StandardPrintController does everything
PrintControllerWithStatusDialog does but without the dialog box.

If you'd prefer to display printing progress with something other than the dialog box, you can derive a
class from StandardPrintController. Here, for example, is a print controller that displays the printing
status in a panel of a status bar.
StatusBarPrintController.cs
//---
// StatusBarPrintController.cs © 2001 by Charles Petzold
//---
using System;

using System.Drawing;
using System.Drawing.Printing;
using System.Windows.Forms;

class StatusBarPrintController: StandardPrintController
{
 StatusBarPanel statpanel;
 int iPageNumber;
 string strSaveText;

 public StatusBarPrintController(StatusBarPanel sbp): base()
 {
 statpanel = sbp;
 }
 public override void OnStartPrint(PrintDocument prndoc,
 PrintEventArgs pea)
 {
 strSaveText = statpanel.Text; // Probably "Ready" or
similar
 statpanel.Text = "Starting printing";
 iPageNumber = 1;

 base.OnStartPrint(prndoc, pea);
 }
 public override Graphics OnStartPage(PrintDocument prndoc,
 PrintPageEventArgs ppea)
 {
 statpanel.Text = "Printing page " + iPageNumber++;

 return base.OnStartPage(prndoc, ppea);
 }
 public override void OnEndPage(PrintDocument prndoc,
 PrintPageEventArgs ppea)
 {
 base.OnEndPage(prndoc, ppea);
 }
 public override void OnEndPrint(PrintDocument prndoc,
 PrintEventArgs pea)
 {
 statpanel.Text = strSaveText;

 base.OnEndPrint(prndoc, pea);
 }
}

Notice first that the class overrides all four methods of StandardPrintController but also makes sure
to call the corresponding methods in the base class. Doing so assures that all the normal activity of
the print controller still takes place. The only enhancement this version adds is to keep a status bar
panel updated. The panel object is required in the class's constructor.

Here's a version of PrintThreePages that forgoes the dialog box to select a printer but instead
creates a status bar with one panel.
PrintWithStatusBar.cs
//---
// PrintWithStatusBar.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Printing;
using System.Windows.Forms;

class PrintWithStatusBar: Form
{
 StatusBar sbar;
 StatusBarPanel sbarpanel;

 const int iNumberPages = 3;
 int iPageNumber;
 public static void Main()
 {
 Application.Run(new PrintWithStatusBar());
 }
 public PrintWithStatusBar()
 {
 Text = "Print with Status Bar";

 Menu = new MainMenu();
 Menu.MenuItems.Add("&File");
 Menu.MenuItems[0].MenuItems.Add("&Print",
 new
EventHandler(MenuFilePrintOnClick));

 sbar = new StatusBar();
 sbar.Parent = this;
 sbar.ShowPanels = true;

 sbarpanel = new StatusBarPanel();
 sbarpanel.Text = "Ready";
 sbarpanel.Width = Width / 2;
 sbar.Panels.Add(sbarpanel);
 }
 void MenuFilePrintOnClick(object obj, EventArgs ea)

 {
 PrintDocument prndoc = new PrintDocument();
 prndoc.DocumentName = Text;
 prndoc.PrintController = new
StatusBarPrintController(sbarpanel);
 prndoc.PrintPage += new PrintPageEventHandler(OnPrintPage);

 iPageNumber = 1;
 prndoc.Print();
 }
 void OnPrintPage(object obj, PrintPageEventArgs ppea)
 {
 Graphics grfx = ppea.Graphics;
 Font font = new Font("Times New Roman", 360);
 string str = iPageNumber.ToString();
 SizeF sizef = grfx.MeasureString(str, font);

 grfx.DrawString(str, font, Brushes.Black,
 (grfx.VisibleClipBounds.Width - sizef.Width) / 2,
 (grfx.VisibleClipBounds.Height - sizef.Height) / 2);

 System.Threading.Thread.Sleep(1000);

 ppea.HasMorePages = iPageNumber < iNumberPages;
 iPageNumber += 1;
 }
}

When setting up the PrintDocument in response to the menu click, this version also sets the
PrintController property:
prndoc.PrintController = new StatusBarPrintController(statpanel);

Because the three pages went by a little too fast for me to confirm that the program was working
right, I inserted a call to the Sleep method of the Thread class in the OnPrintPage method.

The only problem with this approach to displaying printer status is that it's deceptive. The absence of
the modal dialog box indicates to the user that the application is ready to continue responding to user
input. It's not. The application can't respond to user input until the Print method of PrintDocument
returns. When a program reports printing status in a status bar, it should also implement background
printing, which requires a second thread of execution.
Using the Standard Print Dialog Box
Part of the collection of common dialog boxes in System.Windows.Forms is PrintDialog, a dialog box
that lets users select a printer and change the settings for that printer. PrintDialog also includes a
facility for users to specify whether to print an entire document, a range of pages, or a selection (that
is, the part of the document that has been highlighted).

You create a new PrintDialog object with the default constructor:

PrintDialog Constructor

PrintDialog()

You must initialize one (but not both) of the following properties:
PrintDialog Properties (selection)

Type Property Accessibility

PrintDocument Document get/set

PrinterSettings PrinterSettings get/set

Setting the Document property is preferred; the PrintDialog object then uses the PrinterSettings
property from that PrintDocument object to set its own PrinterSettings property.

The bulk of the additional options available with PrintDialog involve letting the user print an entire
document, a range of pages, or the current selection. The PrintDialog dialog box displays these three
options (labeled All, Pages, and Selection) as radio buttons. By default, only the All option is enabled
and, of course, it's checked.

You can optionally enable the Pages and Selection buttons as well. You do so (and select a few
other options on the dialog box) using the following properties:
PrintDialog Properties (selection)

Type Property Accessibility Default

bool AllowSelection get/set false

bool AllowSomePages get/set false

bool AllowPrintToFile get/set true

bool PrintToFile get/set false

bool ShowNetwork get/set true

bool ShowHelp get/set false

If you set ShowHelp to true, you must install a handler for the HelpRequest event (inherited from
CommonDialog). The AllowPrintToFile property enables the check box for printing to a file. The
PrintToFile property indicates whether or not the check box is checked.

When you enable the Pages radio button, the user has the option to type in a From page and a To
page. You can specify initial values and minimum and maximum values for these two fields, but not
as properties in PrintDialog. The properties are defined instead in PrinterSettings. After you set the
Document property of PrintDialog, you can use the PrinterSettings property of PrintDialog to
reference these properties:
PrinterSettings Properties (selection)

Type Property Accessibility

PrintRange PrintRange get/set

int MinimumPage get/set

int MaximumPage get/set

int FromPage get/set

int ToPage get/set

bool PrintToFile get/set

The PrintRange property is an enumeration of type PrintRange, which has the following values:
PrintRange Enumeration

Member Value

AllPages 0

Selection 1

SomePages 2

You're probably tempted to set MinimumPage to 1 and MaximumPage to the total number of pages
in the document. You can also initialize FromPage and ToPage to those same values. That's actually
not such a hot idea for some applications (for example, a Notepad clone). When the PrintDialog
dialog box is displayed, the user has the option to change the printer, orientation, page size, and so
forth, and any of these items could affect the total number of pages in the printed document.

As with any common dialog box, after initializing the PrintDialog object, you call its ShowDialog
method. ShowDialog returns a DialogResult enumeration value. On return from PrintDialog, the
PrintRange property indicates which option the user has selected. For a range of pages, FromPage
and ToPage indicate the page range.

Let's start off simple. The following program is another version of PrintThreePages that uses a
PrintDialog object.
SimplePrintDialog.cs
//--
// SimplePrintDialog.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Printing;
using System.Windows.Forms;

class PrintDialogHelloWorld: Form
{
 const int iNumberPages = 3;
 int iPagessToPrint, iPageNNumber;

 public static void Main()
 {
 Application.Run(new PrintDialogHelloWorld());
 }
 public PrintDialogHelloWorld()
 {
 Text = "Simple PrintDialog";

 Menu = new MainMenu();
 Menu.MenuItems.Add("&File");
 Menu.MenuItems[0].MenuItems.Add("&Print...",
 new
EventHandler(MenuFilePrintOnClick));
 }
 void MenuFilePrintOnClick(object obj, EventArgs ea)
 {

 // Create the PrintDocument and PrintDialog.

 PrintDocument prndoc = new PrintDocument();
 PrintDialog prndlg = new PrintDialog();
 prndlg.Document = prndoc;

 // Allow a page range.

 prndlg.AllowSomePages i= true;
 prndlg.PrinterSettings.MinimumPage = 1;
 prndlg.PrinterSettings.MaximumPage = iNumberPagesi;
 prndlg.PrinterSettings.FromPage = 1;
 prndlg.PrinterSettings.ToPage = iNumberPagesi;

 // If the dialog box returns OK, print.

 if(prndlg.ShowDialog() == DialogResult.OK)
 {
 prndoc.DocumentName = Text;
 prndoc.PrintPage += new
PrintPageEventHandler(OnPrintPage)v;

 // Determine which pages to print.

 switch (prndlg.PrinterSettings.PrintRange)
 {
 case PrintRange.AllPages:
 iPagessToPrint = iNumberPagesi;
 iPageNNumber = 1;
 break;

 case PrintRange.SomePages:
 iPagessToPrint = 1 + prndlg.PrinterSettings.ToPage i-
 prndlg.PrinterSettings.FromPage;
 iPageNNumber = prndlg.PrinterSettings.FromPage;
 break;
 }
 prndoc.Print();
 }
 }
 void OnPrintPage((object obj, PrintPageEventArgs ppea)
 {
 Graphics grfx = ppea.Graphics;
 Font font = new Font("Times New Roman", 360);
 string str = iPageNNumber.ToString();
 SizeF sizef = grfx.MeasureString(str, font);

 grfx.DrawString(str, font, Brushes.Black,
 (grfx.VisibleClipBounds.Width - sizef.Width) / 2,
 (grfx.VisibleClipBounds.Height - sizef.Height) / 2);

 iPageNNumber += 1;
 iPagessToPrint -= 1;
 ppea.HasMorePages v= iPagessToPrint > 0;
 }
}

The hard part of this program is allowing the user to select a range of pages to print. The
iNumberPages field is hard-coded as 3. But along with the iPageNumber field, I also include a new
field, named iPagesToPrint, which can take on a value from 1 to iNumberPages.

Before invoking PrintDialog, the program sets all the properties of PrintDialog (including the
properties in PrinterSettings rather than PrintDialog itself) that involve the page range. On returning
from PrintDialog, the program checks the value of PrintRange and initializes iPagesToPrint and
iPageNumber (the first page to print) accordingly.

Some features of PrintDialog are handled for you automatically. If you select Print To File, a dialog
box appears asking you for a filename, and the graphics output for the printer is saved in that file.

As you can see by experimentation, every time PrintDialog is invoked, all the settings revert to their
default values. As you probably know by experience, some Windows applications also work like that,
and they can be quite annoying. If you have multiple printers, for example, you may want to print on
a nondefault printer from a particular application. If you select that nondefault printer once in
PrintDialog, the dialog box should probably display that printer on subsequent evocations. The same
goes for other settings you specify in the dialog box.

To make settings persistent, store both the PrintDialog and PrintDocument objects as fields. You can
simply move both these statements outside the MenuFilePrintOnClick method:
PrintDocument prndoc = new PrintDocument();
PrintDialog prndlg = new PrintDialog();

Then move this statement to the constructor:
prndlg.Document = prndoc;

I'll be using this approach in the remaining programs in this chapter.
Setting Up the Page
The second common dialog box connected with printing is PageSetupDialog. This dialog box usually
lets the user specify margins, page orientation, page sources, and paper sizes. But the dialog box
can also be used to select a default printer and printer options. PageSetupDialog has a single
constructor:

PageSetupDialog Constructor

PageSetupDialog()

You then set one (and only one) of the following properties:
PageSetupDialog Properties (selection)

Type Property Accessibility

PrintDocument Document get/set

PageSetupDialog Properties (selection)

Type Property Accessibility

PrinterSettings PrinterSettings get/set

PageSettings PageSettings get/set

Setting the Document property is recommended. PageSetupDialog then sets the PrinterSettings and
PageSettings properties from that PrintDocument object. To make everything work right, you must
use the same PrintDocument object with both PageSetupDialog and PrintDialog.

Here are the remaining PageSetupDialog properties:
PageSetupDialog Properties (selection)

Type Property Accessibility

bool AllowMargins get/set

bool AllowOrientation get/set

bool AllowPaper get/set

bool AllowPrinter get/set

bool ShowNetwork get/set

bool ShowHelp get/set

Margins MinMargins get/set

All the bool properties are true by default except ShowHelp. Setting them to false disables certain
aspects of the dialog box. The Network button is on the additional dialog box invoked when you
press the Printer button. The MinMargins property is set to all zeros by default.

Changes the user makes in the PageSetupDialog dialog box are reflected in the PageSettings object
that the dialog box obtains from the PrintDocument object.

The ImagePrint program derives from ImageIO in Chapter 16 (which itself derived from ImageOpen)
to add Page Setup and Print options to the File menu. You can now use the program to load, save,
and print bitmaps.
ImagePrint.cs
//---
// ImagePrint.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Printing;
using System.Windows.Forms;

class ImagePrint: ImageIO
{
 PrintDocument prndoc = new PrintDocument();
 PageSetupDialog setdlg = new PageSetupDialog();
 PrintDialog prndlg = new PrintDialog();

 MenuItem miFileSet, miFilePrint, miFileProps;

 public new static void Main()
 {
 Application.Run(new ImagePrint());
 }
 public ImagePrint()
 {
 Text = strProgName = "Image Print";

 // Initialize PrintDocument and common dialog boxes.

 prndoc.PrintPage += new PrintPageEventHandler(OnPrintPage);
 setdlg.Document = prndoc;
 prndlg.Document = prndoc;

 // Add menu items.

 Menu.MenuItems[0].Popup += new EventHandler(MenuFileOnPopup);
 Menu.MenuItems[0].MenuItems.Add("-");
 // File Page Setup item

 miFileSet = new MenuItem("Page Set&up...");
 miFileSet.Click += new EventHandler(MenuFileSetupOnClick);
 Menu.MenuItems[0].MenuItems.Add(miFileSet);

 // File Print item

 miFilePrint = new MenuItem("&Print...");
 miFilePrint.Click += new EventHandler(MenuFilePrintOnClick);
 miFilePrint.Shortcut = Shortcut.CtrlP;
 Menu.MenuItems[0].MenuItems.Add(miFilePrint);
 Menu.MenuItems[0].MenuItems.Add("-");

 // File Properties item

 miFileProps = new MenuItem("Propert&ies...");
 miFileProps.Click += new EventHandler(MenuFilePropsOnClick);
 Menu.MenuItems[0].MenuItems.Add(miFileProps);
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 if (image != null)
 ScaleImageIsotropically(pea.Graphics, image,
ClientRectangle);
 }
 void MenuFileOnPopup(object obj, EventArgs ea)
 {

 miFileSet.Enabled =
 miFilePrint.Enabled =
 miFileProps.Enabled = (image != null);
 }
 void MenuFileSetupOnClick(object obj, EventArgs ea)
 {
 setdlg.ShowDialog();
 }
 void MenuFilePrintOnClick(object obj, EventArgs ea)
 {
 if (prndlg.ShowDialog() == DialogResult.OK)
 {
 prndoc.DocumentName = Text;
 prndoc.Print();
 }
 }
 void MenuFilePropsOnClick(object obj, EventArgs ea)
 {
 string str =
 "Size = " + image.Size +
 "\nHorizontal Resolution = " + image.HorizontalResolution +
 "\nVertical Resolution = " + image.VerticalResolution +
 "\nPhysical Dimension = " + image.PhysicalDimension +
 "\nPixel Format = " + image.PixelFormat;
 MessageBox.Show(str, "Image Properties");
 }
 void OnPrintPage(object obj, PrintPageEventArgs ppea)
 {
 Graphics grfx = ppea.Graphics;
 RectangleF rectf = new RectangleF(
 ppea.MarginBounds.Left -
 (ppea.PageBounds.Width - grfx.VisibleClipBounds.Width) / 2,
 ppea.MarginBounds.Top -
 (ppea.PageBounds.Height - grfx.VisibleClipBounds.Height) /
2,
 ppea.MarginBounds.Width,
 ppea.MarginBounds.Height);

 ScaleImageIsotropically(grfx, image, rectf);
 }
 void ScaleImageIsotropically(Graphics grfx, Image image,
 RectangleF rectf)
 {
 SizeF sizef = new SizeF(image.Width /
image.HorizontalResolution,

 image.Height /
image.VerticalResolution);

 float fScale = Math.Min(rectf.Width / sizef.Width,
 rectf.Height / sizef.Height);

 sizef.Width *= fScale;
 sizef.Height *= fScale;

 grfx.DrawImage(image, rectf.X + (rectf.Width - sizef.Width) /
2,
 rectf.Y + (rectf.Height - sizef.Height) /
2,
 sizef.Width, sizef.Height);
 }
}

PrintDocument and both dialog boxes (PageSetupDialog and PrintDialog) are defined as fields and
initialized in the program's constructor. The constructor also adds Page Setup and Print items to the
menu as well as a Properties item that displays information about the image.

Processing the Page Setup menu item is a snap. The MenuFileSetupOnClick method simply calls
the ShowDialog method of PageSetupDialog. It doesn't even have to check the return value. The
Print menu item is also fairly simple: The MenuFilePrintOnClick method begins by invoking
PrintDialog. If PrintDialog returns DialogResult.OK, the method sets the DocumentName property of
the PrintDocument object and calls Print. (The handler for the PrintPage event is set during the
constructor.)

The OnPrintPage method first calculates a display rectangle with margins using the formulas I
showed in the PrintWithMargins program. The method then displays the bitmap as large as possible
within these margins while maintaining the correct aspect ratio. It makes use of a slightly modified
version of the ScaleImageIsotropically method in the ImageScaleIsotropic program from Chapter 11.
(I changed the Rectangle argument in the original version to a RectangleF to be consistent with the
calculated display rectangle.) The program also overrides the previous OnPaint method to use the
same display logic.
Print Preview
Once your application supports printing, it's fairly easy to implement a print preview feature.
Basically, your normal PrintPage event handler is used to display printer output on the surfaces of
bitmaps rather than to the printer. These bitmaps are then presented to the user. But before I show
you how easy it is, let's examine what goes on behind the scenes. You may want to know these
details if you prefer to take a different approach to handling the print preview bitmaps.

The key to print preview is the PrintController property of PrintDocument. By default, PrintController
is set to PrintControllerWithStatusDialog, but I've already demonstrated how you can change this
property to something else to allow you to display an alternative to the status dialog box.

For a more extreme effect, you can set the PrintController property of PrintDocument to an object of
type PreviewPrintController:
PreviewPrintController ppc = new PreviewPrintController();
prndoc.PrintController = ppc;

The PreviewPrintController class has a single property:
PreviewPrintController Property

Type Property Accessibility

bool UseAntiAlias get/set

Set the other properties of the PrintDocument object as usual, just as if you were going to print. Then
initiate printing normally by calling the Print method of PrintDocument:
prndoc.Print();

Recall that the print controller is responsible for obtaining the Graphics object that the PrintDocument
passes to the PrintPage event handler. PreviewPrintController doesn't obtain a Graphics object for
the printer. Instead, it creates a bitmap for each page and obtains a Graphics object for drawing on
that bitmap. That's actually the Graphics object passed to the PrintPage event handler.

When the Print method returns, you can get access to these bitmaps. The only noninherited method
of PreviewPrintController returns an array of PreviewPageInfo classes:

PreviewPrintController Method

PreviewPageInfo[] GetPreviewPageInfo()

The PreviewPageInfo class has two properties:
PreviewPageInfo Properties

Type Property Accessibility

Image Image get

Size PhysicalSize get

The pixel size of the Image property is the pixel size of your printer page. The PhysicalSize property
indicates the dimensions in hundredths of an inch. Now you have a collection of bitmaps, each of
which corresponds to a page of the printed document. You can display these bitmaps however you
want.

Is there an even easier approach? Yes, there is. You begin by creating an object of type
PrintPreviewDialog:
PrintPreviewDialog predlg = new PrintPreviewDialog();

PrintPreviewDialog is descended from Form, so it has lots of properties, methods, and events. But
you really don't have to bother with many of them. Here are a few that PrintPreviewDialog
implements itself:
PrintPreviewDialog Properties (selection)

Type Property Accessibility

PrintDocument Document get/set

PrintPreviewControl PrintPreviewControl get

bool UseAntiAlias get/set

bool HelpButton get/set

The essential property you must set is Document, and you set it to the same PrintDocument object
you use for printing and page setup. PrintPreviewControl is another class defined in
System.Windows.Forms and represents the controls that ultimately appear on the form that displays
the bitmaps with your page images.

Here's the usual code to initialize and initiate print preview:
predlg.Document = prndoc;
predlg.ShowDialog();

The ShowDialog method does all the work. It takes the PrintDocument object stored as its Document
property, sets the PrintController to PreviewPrintController, calls the Print method of PrintDocument,
and then shows a form displaying those bitmaps with a series of controls. You can also print from

print preview, in which case the print preview dialog box just uses the same PrintDocument object
with the same event handlers. For that eventuality, you should set the DocumentName property of
PrintDocument before calling ShowDialog.

Let's implement printing with page setup and print preview in our Notepad clone. The
NotepadCloneWithPrinting program inherits from the NotepadCloneWithFormat program in Chapter
18, "Edit, List, and Spin."
NotepadCloneWithPrinting.cs
//---
// NotepadCloneWithPrinting.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Printing;
using System.IO;
using System.Windows.Forms;

class NotepadCloneWithPrinting: NotepadCloneWithFormat
{
 PrintDocument prndoc = new PrintDocument();
 PageSSetupDialog setdlg = new PageSSetupDialog();
 PrintPreviewDialog predlg = new PrintPreviewDialog();
 PrintDialog prndlg = new PrintDialog();
 string strPrintText;
 int iStartPage, iNumPagesi, iPageNNumber;

 public new static void Main()
 {
 System.Threading.Thread.CurrentThread.ApartmentState =

System.Threading.ApartmentState.STA;

 Application.Run(new NotepadCloneWithPrinting());
 }
 public NotepadCloneWithPrinting()
 {
 strProgName = "Notepad Clone with Printing";
 MakeCaption();

 prndoc.PrintPage += new PrintPageEventHandler(OnPrintPage)v;
 setdlg.Document = prndoc;
 predlg.Document = prndoc;
 prndlg.Document = prndoc;

 prndlg.AllowSomePages = true;
 prndlg.PrinterSettings.FromPage = 1;
 prndlg.PrinterSettings.ToPage =

 prndlg.PrinterSettings.MaximumPage;
 }
 protected override void MenuFileSetupOnClick(object obj, EventArgs
ea)
 {
 setdlg.ShowDialog();
 }
 protected override void MenuFilePreviewOnClick(object obj, EventArgs
ea)
 {
 prndoc.DocumentName = Text; // Just in case it's printed

 strPrintText = txtbox.Text;
 iStartPage = 1;
 iNumPages i= prndlg.PrinterSettings.MaximumPage;
 iPageNNumber = 1;

 predlg.ShowDialog();
 }
 protected override void MenuFilePrintOnClick(object obj, EventArgs
ea)
 {
 prndlg.AllowSelection = txtbox.SelectionLength > 0;

 if (prndlg.ShowDialog() == DialogResult.OK)
 {
 prndoc.DocumentName = Text;

 // Initialize some important fields.

 switch (prndlg.PrinterSettings.PrintRange)
 {
 case PrintRange.AllPagesi:
 strPrintText = txtbox.Text;
 iStartPage = 1;
 iNumPages i= prndlg.PrinterSettings.MaximumPage;
 break;

 case PrintRange.Selection:
 strPrintText = txtbox.SelectedText;
 iStartPage = 1;
 iNumPages i= prndlg.PrinterSettings.MaximumPage;
 break;

 case PrintRange.SomePages:
 strPrintText = txtbox.Text;

 iStartPage = prndlg.PrinterSettings.FromPage;
 iNumPages i= prndlg.PrinterSettings.ToPage -
 iStartPage i+ 1;
 break;
 }
 // And commence printing.

 iPageNNumber = 1;
 prndoc.Print();
 }
 }
 void OnPrintPage((object obj, PrintPageEventArgs ppea)
 {
 Graphics grfx = ppea.Graphics;
 Font font = txtbox.Font;
 float cyFont = font.GetHeight(grfx);
 StringFormat strfmt = new StringFormat();
 RectangleF rectfFull, rectfText;
 int iChars, iLines;

 // Calculate RectangleF for header and footer.

 if (grfx.VisibleClipBounds.X < 0) // Print preview
 rectfFull = ppea.MarginBounds;
 else
 rectfFull = new RectangleF(
 ppea.MarginBounds.Left - (ppea.PageBBounds.Width -
 grfx.VisibleClipBounds.Width) / 2,
 ppea.MarginBounds.Top - (ppea.PageBBounds.Height -
 grfx.VisibleClipBounds.Height) / 2,
 ppea.MarginBounds.Width, ppea.MarginBounds.Height);

 // Calculate RectangleF for text.

 rectfText = RectangleF.Inflate(rectfFull, 0, -2 * cyFont);

 int iDisplayLines = (int) Math.Floor(rectfText.Height / cyFont);
 rectfText.Height = iDisplayLines * cyFont;

 // Set up StringFormat object for rectangular display of
text.

 if (txtbox.WordWrap)
 {
 strfmt.Trimming = StringTrimming.Word;
 }

 else
 {
 strfmt.Trimming = StringTrimming.EllipsisCharacter;
 strfmt.FormatFlags |= StringFormatFlags.NoWrap;
 }
 // For printing only "some pagesv," get to the first page.

 while ((iPageNNumber < iStartPage) &&& (strPrintText.Length >
0))
 {
 if (txtbox.WordWrap)
 grfx.MeasureString(strPrintText, font, rectfText.Size,
 strfmt, out iChars, out iLines);
 else
 iChars = CharsInLines(strPrintText, iDisplayLines);

 strPrintText = strPrintText.Substring(iChars);
 iPageNNumber++;
 }
 // If we've prematurely run out of text, cancel print job.

 if (strPrintText.Length == 0)
 {
 ppea.Cancel = true;
 return;
 }
 // Display text for this page.

 grfx.DrawString(strPrintText, font, Brushes.Black,
 rectfText, strfmt);

 // Get text for next page.

 if (txtbox.WordWrap)
 grfx.MeasureString(strPrintText, font, rectfText.Size,
 strfmt, out iChars, out iLines);
 else
 iChars = CharsInLines(strPrintText, iDisplayLines);

 strPrintText = strPrintText.Substring(iChars);

 // Reset StringFormat display header and footer.

 strfmt = new StringFormat();

 // Display filename at top.

 strfmt.Alignment = StringAlignment.Center;
 grfx.DrawString(FileTitle(), font, Brushes.Black,
 rectfFull, strfmt);
 // Display page number at bottom.

 strfmt.LineAlignment = StringAlignment.Far;
 grfx.DrawString("Page i" + iPageNNumber, font, Brushes.Black,
 rectfFull, strfmt);

 // Decide whether to print another page.

 iPageNNumber++;
 ppea.HasMorePages i= (strPrintText.Length > 0) &&
 (iPageNNumber < iStartPage + iNumPagesi);

 // Reinitialize variables for printing from preview form.

 if (!ppea.HasMorePages)
 {
 strPrintText = txtbox.Text;
 iStartPage = 1;
 iNumPages i= prndlg.PrinterSettings.MaximumPage;
 iPageNNumber = 1;
 }
 }
 int CharsInLines(string strPrintText, int iNumLines)
 {
 int index = 0;

 for (int i = 0; i < iNumLines; i++)
 {
 index = 1 + strPrintText.IndexOf('\n', index);

 if (index == 0)
 return strPrintText.Length;
 }
 return index;
 }
}

To make my program just a little better than Notepad, I decided to implement the two options in the
PrintDialog dialog box that let you print a selection or a range of pages.

In this program, the PrintDialog object and all three print dialog boxes are defined as fields. These
are initialized during the program's constructor. Also stored as fields are four variables that assist the
program in printing a document.

The MenuFilePrintOnClick method is more extensive than anything we've seen so far, and it's
primarily a result of implementing the options to print a selection or a range of pages as well as the
entire document. For example, the strPrintText variable must equal the text to be printed. Normally,
this variable is obtained from the Text property of the text box, but if a selection is to be printed, the
variable must be obtained from SelectedText. To put it simply, the purpose of all this code is to set
iStartPage (the first page to be printed) and iNumPages (the number of pages to be printed) to
different values depending on which of the three printing options has been chosen.

The MenuFilePreviewOnClick method (which is invoked when the Print Preview menu item is
clicked) sets strPrintText, iStartPage, iNumPages, and iPageNumber as if it were printing the whole
document.

The PrintPage event handler begins by calculating a display rectangle. If printing normally, that
involves the formula I showed earlier using MarginBounds, PageBounds, and VisibleClipBounds.
However, if the PrintPage event handler is called as a result of a print preview, VisibleClipBounds
indicates a drawing space larger than the bitmap, and the graphics origin is the upper left corner of
the bitmap. In that case, the display rectangle is simply set to the MarginBounds property. When the
word-wrap option is selected, the PrintPage event handler can rely on the word-wrapping abilities of
DrawString. Notice how the method adjusts the calculated text display rectangle (rectfText) so that
only an integral number of lines are displayed. That adjustment avoids clipping problems. Similarly,
setting the Trimming property of the StringFormat object to StringTrimming.Word assures that the
last word on the page isn't truncated. The MeasureString overload that returns the number of
characters displayed is ideal for adjusting the strPrintText variable in preparation for the next page.

Non-word-wrapped text actually proved a little more difficult. The OnPrintPage method sets the
Trimming property of the StringFormat object to StringTrimming.EllipsisCharacter and the
FormatFlags property to StringFormatFlags.NoWrap to get the display of each page right. However,
MeasureString insisted on returning the number of characters actually displayed, not the number that
would have been displayed if each line weren't truncated. I was forced to write a little routine,
CharsInLines, that searches for end-of-line characters and adjust strPrintText in that way.

Another approach to printing non-word-wrapped text would be to use the Lines property to obtain a
string array containing all the individual lines of text. The OnPrintPage method could then simply call
DrawString for each line. However, this approach would have worked only for printing the whole
document or a range of pages. The TextBoxBase class doesn't have a property that returns the
selected text broken down into lines.

The Print Preview dialog box contains a button to print the document before returning to the
application. To handle that eventuality, when OnPrintPage has reached the last page, it also
reinitializes the strPrintText, iStartPage, iNumPages, and iPageNumber fields in preparation for the
regular print job.

Chapter 22: Tree View and List View
Overview
I take it you're familiar with the Microsoft Windows Explorer program. The client area of Windows
Explorer is dominated by two large and sophisticated controls. The tree-view control on the left
displays a hierarchical list of the user's disk drives and directories. The list-view control on the right
displays the subdirectories and files in the selected directory in one of four formats: a simple list, a
table with multiple columns, names with small icons, or names with large icons.

In this chapter, I'll discuss the Windows Forms implementation of the tree-view and list-view controls.
The sophistication and versatility of these controls makes an exhaustive discussion impossible. But
I'll certainly cover them in enough detail to get you started.

Before we begin, however, I'd like to direct your attention to a third control in Windows Explorer: that
thin vertical bar that looks like a sizing border but appears between the tree-view and list-view
controls. You move it sideways with the mouse to adjust how the client area of Windows Explorer is
divided between the two controls. As one control gets larger, the other gets smaller. That's called a
splitter control.
Splitsville
You've probably seen splitters in other applications besides Windows Explorer. In Microsoft Word,
for example, you can choose Split from the Window menu and divide your document into two regions
with a horizontal splitter. This feature allows you to work on one section of a document while keeping
another section in view. Again, the splitter adjusts the relative sizes of the two views. By default,
Microsoft Visual Studio .NET uses splitters to separate its client area into four areas.

Splitters are also used to display Web pages that make use of frames, a feature introduced in HTML
4.0. The HTML 4.0 Specification (Section 16.1) has a good explanation of the rationale behind
frame-based architecture:

HTML frames allow authors to present documents in multiple views, which may be
independent windows or subwindows. Multiple views offer designers a way to keep
certain information visible, while other views are scrolled or replaced. For example,
within the same window, one frame might display a static banner, a second a
navigation menu, and a third the main document that can be scrolled through or
replaced by navigating in the second frame.

Although the size of these frames can be fixed, by default they are adjustable with splitters. Both
horizontal and vertical splitters often appear on the same Web page.

The Windows Forms splitter control is implemented in the Splitter class, which is based on Control.
Once you've correctly created and positioned a splitter, you can generally ignore it. Only rarely will
you need to process splitter events. A splitter affects the size of other controls in much the same way
as a sizing border. If your controls react well to being resized, they will adapt just fine to being
resized with splitters.

A splitter is always associated with a target control, which is the control that the splitter directly alters
the size of, though other controls can also be affected by the splitter's movement. A splitter is
attached to a target control through the mechanism of docking, which I introduced in Chapter 12. As
you'll recall, the Control class implements a property named Dock that can be assigned one of the
following members of the DockStyle enumeration:
DockStyle Enumeration

Member Value

None 0

Top 1

Bottom 2

Left 3

DockStyle Enumeration

Member Value

Right 4

Fill 5

The default is DockStyle.None. When you specify one of the next four members in the table, the
control is positioned flush against that side of its parent and extended to the two adjacent sides. For
example, if control is an instance of any class descended from Control and you set the Dock property
as
control.Dock = DockStyle.Left;

then control will be moved to the far left side of its parent and will be resized to occupy the full space
between the top and the bottom of the parent. Whenever the parent is resized, control will also be
resized accordingly. The Control class performs this magic during the OnResize method. For that
reason (and others), whenever you override OnResize, you should call the base class version of the
method.

The DockStyle.Fill option causes the control to fill up the surface of its parent. I used DockStyle.Fill in
the AnalogClock program in Chapter 10 and in the various Notepad clone programs beginning in
Chapter 18.

What happens when you dock two or more controls against the same side? Or you use
DockStyle.Fill with two or more controls? Or you use DockStyle.Fill with one control and one of the
other nondefault DockStyle members with another control? In all these cases, the behavior is
determined by the z-order of the controls.

I discussed z-order in Chapter 12, but here's a brief review. As you add controls to a parent, they are
assigned a child index beginning with 0. A control with a child index of 0 is said to be at the top of the
z-order. When controls overlap, the child control on the top of the z-order appears on top of the other
controls and receives mouse events when the cursor passes over the control. The child control with
the highest child index is said to be at the bottom of the z-order.

Programs can reorder controls by calling the BringToFront and SendToBack methods implemented
by Control or by calling the SetChildIndex method implemented by Control.ControlCollection. It's
usually easiest just to create the controls in the desired order in the first place.

So, what happens when two or more child controls have a Dock property equal to DockStyle.Fill?
The child control at the top of the z-order—that is, the child control added to the parent earliest and
therefore having the lowest child index—appears on top of the others. For example, consider the
following code, which could appear in the constructor of a class derived from Form:
Panel panel1 = new Panel();
panel1.Parent = this;
panel1.Dock = DockStyle.Fill;

Panel panel2 = new Panel();
panel2.Parent = this;
panel2.Dock = DockStyle.Fill;

The control named panel1 will be visible; panel2 will not. The general rule is that only one child
control should have a Dock property of DockStyle.Fill. (I violate this rule in the ImageDirectory
program later in this chapter. That program has two controls with DockStyle.Fill but at any time only
one of them has a Visible property of true.)

It's possible to add other controls to the parent before the control that has a Dock property of
DockStyle.Fill, for example,
Button btn = new Button();
btn.Parent = this;

Panel panel = new Panel();
panel.Parent = this;
panel.Dock = DockStyle.Fill;

The Button control is at the top of the z-order and appears on top of the Panel control. The Panel
control fills the client area of the parent. It might look as if the Button control is a child of the Panel
control, but it's not. The controls are simply overlapping, and the one at the top of the z-order gets
priority of visibility.

The following case is similar:
Panel panel1 = new Panel();
panel1.Parent = this;
panel1.Dock = DockStyle.Left;

Panel panel2 = new Panel();
panel2.Parent = this;
panel2.Dock = DockStyle.Fill;

Notice that the first Panel control has a Dock property of DockStyle.Left. It's on the top of the z-order,
so it gets priority. The second panel will still fill the client area of its parent, but the left part will be
obscured by panel1. That's probably not a desirable situation.

This case is much more useful and (with the addition of a splitter control) quite common:
Panel panel1 = new Panel();
panel1.Parent = this;
panel1.Dock = DockStyle.Fill;

Panel panel2 = new Panel();
panel2.Parent = this;
panel2.Dock = DockStyle.Left;

All I've done here is switch around the two Dock properties. Now both panels are fully visible. The
first panel appears at the right side of the client area and the second panel appears at the left. As
you make the client area wider and narrower, panel1 at the right changes size because that's the
one with DockStyle.Fill; panel2 on the left side of the client area doesn't change size in that case.

I've already demonstrated this technique in the SimpleStatusBarWithPanel program toward the
beginning of Chapter 20. That program begins by creating a Panel with a Dock property of
DockStyle.Fill and then the StatusBar control, which has a default setting of DockStyle.Bottom.

If you change the last line of the preceding code to be
panel2.Dock = DockStyle.Right;

then panel1 appears at the left of the client area and panel2 at the right. As you change the size of
the client area, panel1 (now at the left) changes size accordingly; panel2 remains the same size. A
splitter control between these two panels would be ideal.

What happens when you use the same Dock property with two controls? Here's an example:
Panel panel1 = new Panel();
panel1.Parent = this;
panel1.Dock = DockStyle.Left;

Panel panel2 = new Panel();

panel2.Parent = this;
panel2.Dock = DockStyle.Left;

As the second control is added to the parent, the control at the top of the z-order (panel1) gets
pushed toward the center of the client area. The control at the bottom of the z-order is positioned at
the left edge of the parent.

Here's an example of two controls that don't have the same Dock property but do have Dock
properties that seem to conflict:
Panel panel1 = new Panel();
panel1.Parent = this;
panel1.Dock = DockStyle.Left;

Panel panel2 = new Panel();
panel2.Parent = this;
panel2.Dock = DockStyle.Top;

The first panel has a Dock property of DockStyle.Left, and the second has DockStyle.Top. Initially,
the first panel is positioned to hug the left of the client area and extend from the top of the parent to
the bottom. The second panel essentially pushes the first panel down. The second panel is
positioned at the top of the client area and extends to the client's full width. The first panel ends up
below the second panel. Both panels are fully visible.

And now we're ready to add splitters to the mix. To keep the discussion general, I'll continue to use
Panel controls in these examples. These panels could, of course, contain other controls, and they
could also be scrollable.

It's important to know what happens when multiple controls are docked against the same edge of a
parent because—if you're not careful—you could very easily end up with splitters at the edge of the
window, where they do no good. The target control of a splitter is the control that's docked to the
same edge as the splitter but with a lower z-order. For this reason, you generally create the splitter
before the target control.

Most commonly, splitter controls are placed between two controls so that moving the splitter causes
one control to increase in size and the other control to get smaller. However, you can use splitters in
an even simpler way to change the size of a single control. Here's a program that uses a splitter to
resize a single panel control.
OnePanelWithSplitter.cs
//---
// OnePanelWithSplitter.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class OnePanelWithSplitter: Form
{
 public static void Main()
 {
 Application.Run(new OnePanelWithSplitter());
 }
 public OnePanelWithSplitter()
 {
 Text = "One Panel with Splitter";

 Splitter split = new Splitter();
 split.Parent = this;
 split.Dock = DockStyle.Left;

 Panel panel = new Panel();
 panel.Parent = this;
 panel.Dock = DockStyle.Left;
 panel.BackColor = Color.Lime;
 panel.Resize += new EventHandler(PanelOnResize);
 panel.Paint += new PaintEventHandler(PanelOnPaint);
 }
 void PanelOnResize(object obj, EventArgs ea)
 {
 ((Panel) obj).Invalidate();
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 Panel panel = (Panel) obj;
 Graphics grfx = pea.Graphics;

 grfx.DrawEllipse(Pens.Black, 0, 0,
 panel.Width - 1, panel.Height - 1);
 }
}

Both the splitter and the panel have a Dock property of DockStyle.Left. But remember that controls at
the bottom of the z-order are closest to the docking edge. That's why the splitter is created first. The
panel essentially pushes the splitter away from the left edge of the parent, so the splitter ends up on
the right edge of the panel.

Normally, a panel is the same color as its parent, so I've deliberately changed the BackColor
property of the panel control so that you won't have to rely on faith that the splitter control is actually
changing its size. Throughout this section, I'll be using colors to indicate positioning: in this case,
lime stands for left. I've also installed handlers for the panel's Resize and Paint events, so you're
additionally assured that you're seeing the entire panel control. Here's what the program looks like:

You can't actually see the splitter in this example because its BackColor property is the same as its
parent's. But if you move the mouse to the right side of the panel, the cursor changes to small
parallel vertical lines. You can then adjust the size of the panel. Splitters don't have a keyboard
interface. The cursor used by splitters is Cursors.VSplit for vertical splitters (like this one) or
Cursors.HSplit for horizontal splitters.

Here's a program that shows you how to make a splitter affect two panels that together fill the client
area. The first panel has a Dock property of DockStyle.Fill, and both the splitter and the second
panel get DockStyle.Right properties.
TwoPanelsWithSplitter.cs
//--
// TwoPanelsWithSplitter.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class TwoPanelsWithSplitter: Form
{
 public static void Main()
 {
 Application.Run(new TwoPanelsWithSplitter());
 }
 public TwoPanelsWithSplitter()
 {
 Text = "Two Panels with Splitter";

 Panel panel1 = new Panel();
 panel1.Parent = this;
 panel1.Dock = DockStyle.Fill;
 panel1.BackColor = Color.Lime;
 panel1.Resize += new EventHandler(PanelOnResize);
 panel1.Paint += new PaintEventHandler(PanelOnPaint);

 Splitter split = new Splitter();
 split.Parent = this;
 split.Dock = DockStyle.Right;

 Panel panel2 = new Panel();
 panel2.Parent = this;
 panel2.Dock = DockStyle.Right;
 panel2.BackColor = Color.Red;
 panel2.Resize += new EventHandler(PanelOnResize);
 panel2.Paint += new PaintEventHandler(PanelOnPaint);
 }
 void PanelOnResize(object obj, EventArgs ea)
 {
 ((Panel) obj).Invalidate();
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 Panel panel = (Panel) obj;
 Graphics grfx = pea.Graphics;

 grfx.DrawEllipse(Pens.Black, 0, 0,
 panel.Width - 1, panel.Height - 1);
 }
}

As you're experimenting with this program, you'll see the lime panel on the left and the red panel on
the right. (Notice the mnemonics.) The splitter is more visible now because it's gray. Here's how the
program starts up:

The target of the splitter is the panel on the right because they both have Dock properties of
DockStyle.Right, but the splitter actually affects the size of both panels. But what happens when you
make the parent form wider or narrower? The first panel—the one on the left—changes size because

that's the one with DockStyle.Fill. This behavior has an additional implication, however: if you make
the client area too narrow, the panel on the left will disappear from view and the panel on the right
will be clipped as well.

When you create a program with two controls (such as panels) separated by a splitter, give some
thought to which control should be affected by changes in the parent's size. Create that one first with
DockStyle.Fill.

Here's a program that uses that rule to create a form with three panels. The center one (colored cyan
for center) has the DockStyle.Fill property, so that's the one that changes size as you change the
client area size.
SplitThreeAcross.cs
//---
// SplitThreeAcross.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SplitThreeAcross: Form
{
 public static void Main()
 {
 Application.Run(new SplitThreeAcross());
 }
 public SplitThreeAcross()
 {
 Text = "Split Three Across";

 Panel panel1 = new Panel();
 panel1.Parent = this;
 panel1.Dock = DockStyle.Fill;
 panel1.BackColor = Color.Cyan;
 panel1.Resize += new EventHandler(PanelOnResize);
 panel1.Paint += new PaintEventHandler(PanelOnPaint);

 Splitter split1 = new Splitter();
 split1.Parent = this;
 split1.Dock = DockStyle.Left;

 Panel panel2 = new Panel();
 panel2.Parent = this;
 panel2.Dock = DockStyle.Left;
 panel2.BackColor = Color.Lime;
 panel2.Resize += new EventHandler(PanelOnResize);
 panel2.Paint += new PaintEventHandler(PanelOnPaint);

 Splitter split2 = new Splitter();

 split2.Parent = this;
 split2.Dock = DockStyle.Right;

 Panel panel3 = new Panel();
 panel3.Parent = this;
 panel3.Dock = DockStyle.Right;
 panel3.BackColor = Color.Red;
 panel3.Resize += new EventHandler(PanelOnResize);
 panel3.Paint += new PaintEventHandler(PanelOnPaint);

 panel1.Width =
 panel2.Width =
 panel3.Width = ClientSize.Width / 3;
 }
 void PanelOnResize(object obj, EventArgs ea)
 {
 ((Panel) obj).Invalidate();
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 Panel panel = (Panel) obj;
 Graphics grfx = pea.Graphics;

 grfx.DrawEllipse(Pens.Black, 0, 0,
 panel.Width - 1, panel.Height - 1);
 }
}

Again, because the center panel changes size when you resize the form, the center panel can also
disappear from view if you make the client area too narrow. As you make the client area even
narrower, the right panel slides under the left panel because the left panel is at the top of the z-order.
To make sure that all panels are visible when the program starts up, at the end of the constructor, I
give them each a width equal to 1/3 the client area.

In an arrangement like this, you don't need to make the center panel the one that changes size with
the client area. The requirements of a particular application will determine which approach seems
most natural.

Perhaps a better approach when designing dual-splitter forms is to begin with a single splitter
controlling the size of two controls and then make two more controls and a splitter as children of one
of those existing controls. You use this approach when you're mixing horizontal and vertical splitters
in a form that resembles an HTML frame, as in the following program.
SplitThreeFrames.cs
//---
// SplitThreeFrames.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SplitThreeFrames: Form
{
 public static void Main()
 {
 Application.Run(new SplitThreeFrames());
 }
 public SplitThreeFrames()
 {
 Text = "Split Three Frames";

 Panel panel = new Panel();
 panel.Parent = this;
 panel.Dock = DockStyle.Fill;

 Splitter split1 = new Splitter();
 split1.Parent = this;
 split1.Dock = DockStyle.Left;

 Panel panel1 = new Panel();
 panel1.Parent = this;
 panel1.Dock = DockStyle.Left;
 panel1.BackColor = Color.Lime;
 panel1.Resize += new EventHandler(PanelOnResize);
 panel1.Paint += new PaintEventHandler(PanelOnPaint);

 Panel panel2 = new Panel();
 panel2.Parent = panel;
 panel2.Dock = DockStyle.Fill;
 panel2.BackColor = Color.Blue;
 panel2.Resize += new EventHandler(PanelOnResize);
 panel2.Paint += new PaintEventHandler(PanelOnPaint);

 Splitter split2 = new Splitter();
 split2.Parent = panel;
 split2.Dock = DockStyle.Top;

 Panel panel3 = new Panel();
 panel3.Parent = panel;
 panel3.Dock = DockStyle.Top;
 panel3.BackColor = Color.Tan;
 panel3.Resize += new EventHandler(PanelOnResize);
 panel3.Paint += new PaintEventHandler(PanelOnPaint);

 panel1.Width = ClientSize.Width / 3;
 panel3.Height = ClientSize.Height / 3;
 }
 void PanelOnResize(object obj, EventArgs ea)
 {
 ((Panel) obj).Invalidate();
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 Panel panel = (Panel) obj;
 Graphics grfx = pea.Graphics;

 grfx.DrawEllipse(Pens.Black, 0, 0,
 panel.Width - 1, panel.Height - 1);
 }
}

The SplitThreeFrames program begins by creating two panels (on the right and the left) with a
vertical splitter between them. The first panel (named simply panel) gets the DockStyle.Fill property. I
don't give it a color because this panel will be a parent to other panels that will entirely cover its

surface. The second panel (named panel1 and colored lime) is created with DockStyle.Left. The
result consists of two panels with a vertical splitter between them.

But wait, there's more! The first panel (named panel) becomes a parent to two more panels and a
splitter. The first child (panel2) of that panel gets the DockStyle.Fill property and a color of blue (for
bottom). The program then creates another splitter and a panel (panel3) colored tan (for top) with
DockStyle.Top properties.

The constructor concludes by setting the initial size of the left and top panels.

As you change the size of the client area, the panel on the bottom right changes size, but that's only
because it has a DockStyle.Fill property and is a child of another panel that has a DockStyle.Fill
property.

The only properties of the Splitter class I've been using so far are Parent and Dock. The following
properties of the Splitter class (with a couple inherited from Control) are probably the most useful:
Splitter Properties (selection)

Type Property Accessibility

int SplitPosition get/set

int MinSize get/set

int MinExtra get/set

int Width get/set

BorderStyle BorderStyle get/set

Color BackColor get/set

The SplitPosition property indicates the width of the target control, if the splitter is vertical, or the
height of the target control, if the splitter is horizontal. If the splitter is not yet bound to a target
control, however, the property will equal −1. When you create splitters in a constructor (such as
we've been doing), the splitters aren't assigned target controls until after the constructor concludes.
For that reason, don't use SplitPosition in the constructor. If you need to initialize the relative sizes of
controls that use splitters, do it by sizing the controls, as the SplitThreeAcross and SplitThreeFrames
programs demonstrate.

The MinSize property indicates the minimum width (or height) to which you can resize the target
control using the splitter. The MinExtra property indicates the minimum width (or height) of the
control on the other side of the splitter. By default, these properties are set to 25 pixels. (You can
easily see the effect of these properties by using any of the programs shown so far in this chapter.) I

wouldn't recommend that you set these properties to 0 because a user might get confused if a
control shrinks down to nothing. But you can set them very low if you want to give the user the
opportunity to move the control almost completely out of the way.

The Width property is the width of the splitter (by default, 3 pixels). By default, the BorderStyle
property of the splitter is BorderStyle.None, which makes the splitter a simple strip of unadorned
BackColor. BorderStyle.Fixed3D is the same as BorderStyle.None. BorderStyle.FixedSingle makes
the splitter stand out more by coloring the outer edges black. The ForeColor property has no effect
on splitters.

The Splitter class adds two events to those implemented in Control:
Splitter Events

Event Method Delegate Argument

SplitterMoving OnSplitterMoving SplitterEventHandler SplitterEventArgs

SplitterMoved OnSplitterMoved SplitterEventHandler SplitterEventArgs

Both events are delivered with an object of type SplitterEventArgs, which has the following
properties:
SplitterEventArgs Properties

Type Property Accessibility Description

int X get Mouse cursor position

int Y get Mouse cursor position

int SplitX get/set Splitter position

int SplitY get/set Splitter position

All positions are relative to the parent window of the splitter. The SplitX and SplitY properties indicate
the position of the upper left corner of the splitter relative to the client area. For vertical splitters,
SplitY equals 0, and for horizontal splitters, SplitX equals 0.

Here's a program that creates two panels with a splitter. Initially, each panel occupies about half the
client area, which, as you know, you can change with the splitter. However, when you resize the
form, the two panels change size proportionally.
SplitTwoProportional.cs
//---
// SplitTwoProportional.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SplitTwoProportional: Form
{
 Panel panel2;
 float fProportion = 0.5f;

 public static void Main()
 {
 Application.Run(new SplitTwoProportional());
 }

 public SplitTwoProportional()
 {
 Text = "Split Two Proportional";

 Panel panel1 = new Panel();
 panel1.Parent = this;
 panel1.Dock = DockStyle.Fill;
 panel1.BackColor = Color.Red;
 panel1.Resize += new EventHandler(PanelOnResize);
 panel1.Paint += new PaintEventHandler(PanelOnPaint);

 Splitter split = new Splitter();
 split.Parent = this;
 split.Dock = DockStyle.Left;
 split.SplitterMoving += new
SplitterEventHandler(SplitterOnMoving);

 panel2 = new Panel();
 panel2.Parent = this;
 panel2.Dock = DockStyle.Left;
 panel2.BackColor = Color.Lime;
 panel2.Resize += new EventHandler(PanelOnResize);
 panel2.Paint += new PaintEventHandler(PanelOnPaint);

 OnResize(EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);
 panel2.Width = (int) (fProportion * ClientSize.Width);
 }
 void SplitterOnMoving(object obj, SplitterEventArgs sea)
 {
 fProportion = (float) sea.SplitX / ClientSize.Width;
 }
 void PanelOnResize(object obj, EventArgs ea)
 {
 ((Panel) obj).Invalidate();
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 Panel panel = (Panel) obj;
 Graphics grfx = pea.Graphics;

 grfx.DrawEllipse(Pens.Black, 0, 0,
 panel.Width - 1, panel.Height - 1);

 }
}

This program retains an instance variable named fProportion equal to the ratio of the panel on the
left to the width of the client area. It's initialized to 0.5 and altered whenever the user moves the
splitter. That's the SplitterOnMoving event. When the user resizes the program's client area, the
OnResize method sets the size of the left panel based on the fProportion value and the new width of
the client. (I used the SplitterMoving event rather than SplitterMoved because the latter wasn't
working as documented at the time I wrote the program.)

Now that we know what kind of control goes between a tree view and a list view, we're ready to look
at these two controls in detail.
Tree Views and Tree Nodes
The TreeView control is most commonly used to display a list of disk drives and directories like the
one at the left side of Windows Explorer. However, you can use TreeView controls for displaying any
hierarchical information. Visual Studio .NET uses a tree view for displaying projects and files, and the
Microsoft Document Explorer (the program that displays the .NET programming documentation) also
uses a tree view for displaying namespaces, classes, members, and so forth.

The bulk of the tree view implementation in Windows Forms consists of the TreeView, TreeNode,
and TreeNodeCollection classes. An object of type TreeNode is a single entry in the tree view. A
TreeNode object is associated with a string and an optional image. In Windows Explorer, the string is
a drive or directory name, and the images resemble disk drives and folders.

The TreeNode class contains a property named Nodes that is a collection of other TreeNode objects:
TreeNode Properties (selection)

Type Property Accessibility

TreeNodeCollection Nodes get

The Nodes property contains all the subnodes (or child nodes) of the node. TreeNodeCollection is a
familiar sort of class. It implements the IList, ICollection, and IEnumerable interfaces, and it lets you
index the collection like an array:
TreeNodeCollection Properties

Type Property Accessibility

TreeNode [] get/set

int Count get

bool IsReadOnly get

The customary way to add child nodes to an existing node is through the Add and AddRange
methods of TreeNodeCollection:

TreeNodeCollection Methods (selection)

TreeNode Add(string strNode)
int Add(TreeNode node)
void AddRange(TreeNode[] anode)

TreeNodeCollection also contains familiar methods named Insert, Remove, Clear, and others. All the
nodes in the same TreeNodeCollection object are sometimes referred to collectively as siblings. The
TreeNode object to which the collection belongs is the parent.

I haven't yet said anything about TreeView. Basically, TreeView is a collection of top-level (or root)
TreeNode objects. Like TreeNode, TreeView contains a Nodes property:

TreeView Properties (selection)

Type Property Accessibility

TreeNodeCollection Nodes get

This Nodes property is a collection of all the root TreeNode objects.

Conceptually, TreeView is similar to MainMenu or ContextMenu, while TreeNode is similar to
MenuItem. (See Chapter 14 for information on menu objects.) That is, just as MainMenu or
ContextMenu is a collection of nested MenuItem objects, TreeView is a collection of nested
TreeNode items. However, as you'll recall, all three of these menu-related classes are derived from
the Menu class. TreeView and TreeNode are not related in that way: TreeView derives from Control,
while TreeNode derives from MarshalByRefObject.

And with this information, we're ready to construct our first tree. Here's a program that has the
beginnings of an animal/mineral/vegetable hierarchy.
SimpleTreeView.cs
//---
// SimpleTreeView.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class SimpleTreeView: Form
{
 public static void Main()
 {
 Application.Run(new SimpleTreeView());
 }
 public SimpleTreeView()
 {
 Text = "Simple Tree View";

 TreeView tree = new TreeView();
 tree.Parent = this;
 tree.Dock = DockStyle.Fill;

 tree.Nodes.Add("Animal");
 tree.Nodes[0].Nodes.Add("Dog");
 tree.Nodes[0].Nodes[0].Nodes.Add("Poodle");
 tree.Nodes[0].Nodes[0].Nodes.Add("Irish Setter");
 tree.Nodes[0].Nodes[0].Nodes.Add("German Shepherd");
 tree.Nodes[0].Nodes.Add("Cat");
 tree.Nodes[0].Nodes[1].Nodes.Add("Calico");
 tree.Nodes[0].Nodes[1].Nodes.Add("Siamese");
 tree.Nodes[0].Nodes.Add("Primate");
 tree.Nodes[0].Nodes[2].Nodes.Add("Chimpanzee");
 tree.Nodes[0].Nodes[2].Nodes.Add("Ape");

 tree.Nodes[0].Nodes[2].Nodes.Add("Human");
 tree.Nodes.Add("Mineral");
 tree.Nodes[1].Nodes.Add("Calcium");
 tree.Nodes[1].Nodes.Add("Zinc");
 tree.Nodes[1].Nodes.Add("Iron");
 tree.Nodes.Add("Vegetable");
 tree.Nodes[2].Nodes.Add("Carrot");
 tree.Nodes[2].Nodes.Add("Asparagus");
 tree.Nodes[2].Nodes.Add("Broccoli");
 }
}

The constructor creates the entire TreeView control through the use of 20 calls to the Add method in
TreeNodeCollection. Three of these calls involve the Nodes property of the TreeView object and
hence create top-level nodes:
tree.Nodes.Add("Animal");

tree.Nodes.Add("Mineral");

tree.Nodes.Add("Vegetable");

Although the program doesn't refer explicitly to any TreeNode objects, they are certainly there. Each
of the Add methods creates a TreeNode object. The second Add call is this one:
tree.Nodes[0].Nodes.Add("Dog");

The first part of that statement (tree.Nodes[0]) refers to the first TreeNode object in the TreeView
object's collection, that is, "Animal". The second Nodes property is the collection of child TreeNode
objects of "Animal", to which the node "Dog" is added. Similarly, the following statement adds a child
node under "Dog":
tree.Nodes[0].Nodes[0].Nodes.Add("Poodle");

Here's the program with some of the nodes expanded:

You'll want to experiment with this program a bit to get the hang of the default user interface
implemented in TreeView controls. Using the up and down cursor-movement keys, you can change
the selected item (indicated by reverse video). If the item has a plus sign to its left, you can use the

right arrow key to view the child nodes. The left arrow key has two functions. When the selected
node doesn't have any children, it causes the selection to jump to the parent node. When the
selected node is already expanded (that is, has a minus sign next to it), the left arrow key collapses
the node. Of course, you can also click with the mouse on the pluses and minuses to expand and
collapse nodes.

Scroll bars are displayed by default when they are needed. If you don't want them, you can set the
Scrollable property of TreeView to false.

Although the SimpleTreeView program creates the entire TreeView control right in its constructor, a
program must often modify the contents of a TreeView control later on, at runtime. You can cause
items to be sorted by setting the following property to true:
TreeView Properties (selection)

Type Property Accessibility

bool Sorted get/set

Regardless of whether or not the items are sorted, to prevent performance problems when modifying
a TreeView control, call the following methods before and after any sequence of statements that
affect multiple nodes:

TreeView Methods (selection)

void BeginUpdate()
void EndUpdate()

Images in Tree Views
As you can see from the SimpleTreeView program, you get the plus signs and minus signs for free.
However, you can suppress them if you want to. The following properties are all true by default:
TreeView Properties (selection)

Type Property Accessibility

bool ShowPlusMinus get/set

bool ShowLines get/set

bool ShowRootLines get/set

If ShowLines is false, all the lines that normally connect the nodes are not displayed. If
ShowRootLines is false, the root items are displayed without any lines or pluses and minuses. The
other items are displayed normally.

TreeView controls often display little pictures to the left of each node. Often these images change
when the node is expanded. For example, Windows Explorer shows a closed folder for a collapsed
directory node and an open folder for an expanded directory node.

Images in a TreeView control are based on a single ImageList object that applies to the entire
control:
TreeView Properties (selection)

Type Property Accessibility

ImageList ImageList get/set

int ImageIndex get/set

int SelectedImageIndex get/set

The ImageIndex property indicates the default image displayed for a node that is not selected.
SelectedImageIndex indicates the default image for a selected node.

More commonly, you'll want to specify indices for each TreeNode object:
TreeNode Properties (selection)

Type Property Accessibility

int ImageIndex get/set

int SelectedImageIndex get/set

However, TreeNode doesn't have its own ImageList property. The indices refer to the ImageList
property in the TreeView control to which the TreeNode object belongs.

You can also specify these image indices when you create a TreeNode object. Here's a complete list
of the TreeNode constructors:

TreeNode Constructors

TreeNode()
TreeNode(string strNode)
TreeNode(string strNode, TreeNode[] anodes)
TreeNode(string strNode, int indexImage, int indexImageSelected)
TreeNode(string strNode, int indexImage, int indexImageSelected,
 TreeNode[] anodes)

In the SimpleTreeView program, I used the Add method of TreeNodeCollection that has a string
argument. Another version of Add has a TreeNode argument. Thus, it's possible to create a
TreeNode object first and then add it to a TreeNodeCollection object. Two of the TreeNode
constructors let you specify arrays of child TreeNode objects. These constructors let you build up a
TreeView hierarchy from the lowest descendents up to the root.
Tree View Events
The TreeNode class doesn't define any events on its own. However, TreeView implements 11
events in addition to the ones it inherits from Control. Here are the 6 crucial ones:
TreeView Events (selection)

Event Method Delegate Argument

BeforeExpand OnBeforeExpand TreeViewCancel-
EventHandler

TreeViewCancel-
EventArgs

BeforeCollapse OnBeforeCollapse TreeViewCancel-
EventHandler

TreeViewCancel-
EventArgs

BeforeSelect OnBeforeSelect TreeViewCancel-
EventHandler

TreeViewCancel-
EventArgs

AfterExpand OnAfterExpand TreeViewEvent-
Handler

TreeViewEventArgs

AfterCollapse OnAfterCollapse TreeViewEvent-
Handler

TreeViewEventArgs

AfterSelect OnAfterSelect TreeViewEvent-
Handler

TreeViewEventArgs

These events occur when the user (or the program) expands, collapses, or selects a node. As you
can see, the events come in pairs. The events that begin with the word Before occur before the

TreeView carries out the operation. The TreeViewCancelEventArgs object that accompanies these
events has the following properties:
TreeViewCancelEventArgs Properties

Type Property Accessibility

TreeNode Node get

TreeViewAction Action get

bool Cancel get/set

The Node property indicates the TreeNode object that the user is attempting to expand, collapse, or
select. The Action property is a member of the following enumeration:
TreeViewAction Enumeration

Member Value

Unknown 0

ByKeyboard 1

ByMouse 2

Collapse 3

Expand 4

If, for one reason or another, the program decides that it can't let the operation proceed, the event
handler can set the Cancel property (inherited from CancelEventArgs) to true.

Otherwise, the expand, collapse, or select will be carried out by the TreeView control and the events
beginning with the word After will occur. The accompanying TreeViewEventArgs object has the
following properties:
TreeViewEventArgs Properties

Type Property Accessibility

TreeNode Node get

TreeViewAction Action get

I won't be demonstrating any of the other events implemented by TreeView. The BeforeLabelEdit
and AfterLabelEdit events occur only if the LabelEdit property is set to true. This facility lets users
edit the text of a tree node. The BeforeCheck and AfterCheck events occur only if the CheckBoxes
property is true, indicating that check boxes the user can check are placed next to the nodes on the
tree. TreeNode has a property named Checked that indicates whether the node is checked. The
ItemDrag event occurs when something is dragged to the TreeView control.

Keep in mind that TreeView inherits many methods, properties, and events from Control. For
example, if you want to implement a context menu with items based on what node was right-clicked,
you can install a handler for the MouseDown event and pass the mouse coordinates to the
GetNodeAt method of TreeView.
Node Navigation
When a TreeView event handler gets called, it usually must carry out some activity depending on the
particular TreeNode object being expanded, collapsed, or selected. The nodes can be identified in
several ways. Here are some useful basic properties:
TreeNode Properties (selection)

Type Property Accessibility

TreeView TreeView get

int Index get

TreeNode Properties (selection)

Type Property Accessibility

string Text get/set

object Tag get/set

The TreeView property indicates the TreeView control that the TreeNode object is part of. The Index
is the index of the node in the collection of its siblings. The Text property is the text displayed by the
node, obviously, and the Tag property allows the attachment of arbitrary information to the node for
identification (or other) purposes.

The TreeNode class also includes several read-only properties that let a program navigate through
the nodes:
TreeNode Properties (selection)

Type Property Accessibility

TreeNode Parent get

TreeNode FirstNode get

TreeNode LastNode get

TreeNode NextNode get

TreeNode PrevNode get

TreeNode NextVisibleNode get

TreeNode PrevVisibleNode get

The Parent property indicates the parent node. The FirstNode and LastNode properties refer to child
nodes. (These are also available from the node's Nodes property.) The NextNode and PrevNode
properties refer to sibling nodes. The NextVisibleNode and PrevVisibleNode properties could refer to
siblings, children, or parents. These are the next (or previous) nodes that would be selected using
the up and down arrow keys.

The TreeNode class has two properties that let a program determine whether a node is expanded,
collapsed, or selected:
TreeNode Properties (selection)

Type Property Accessibility

bool IsExpanded get

bool IsSelected get

A program can expand or collapse a TreeNode without any help from the user:

TreeNode Methods (selection)

void Expand()
void ExpandAll()
void Collapse()
void Toggle()

The ExpandAll method expands all child nodes of the node for which the method is called. To
expand or collapse the entire tree, you use these methods in TreeView:

TreeView Methods (selection)

void ExpandAll()
void CollapseAll()

You can use this property of TreeView to obtain or set the selected node:
TreeView Properties (selection)

Type Property Accessibility

TreeNode SelectedNode get/set

There is one remaining—and sometimes quite convenient—technique for identifying a particular
node, available from this property of TreeNode:
TreeNode Properties (selection)

Type Property Accessibility

string FullPath get

For any node, FullPath returns a text string that is formed by concatenating the text of the node with
all its parent nodes going back to the root. The text strings are separated by the following character:
TreeView Properties (selection)

Type Property Accessibility

string PathSeparator get/set

By default, PathSeparator is the backslash. In the SimpleTreeView program, the FullPath property
for the "Siamese" node is "Animal\Cats\Siamese".

This FullPath property is ideal when you're working with a TreeView control that displays disks and
directories, which (not coincidentally) is the next task we're going to tackle.
The Directory Tree
As we all know, displaying disks and directories is the most common job of a TreeView control. One
might even expect the Windows Forms library to contain a class descended from TreeView that
implements a standard directory tree. But even if there were, using it surely wouldn't be as much fun
as making our own!

The following DirectoryTreeView class derives from TreeView and is used in the next two programs
in this chapter and in another program (ExplorerLike) at the end of this chapter. The class makes use
of some file I/O classes that I go over in more detail in Appendix A.
DirectoryTreeView.cs
//--
// DirectoryTreeView.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

class DirectoryTreeView: TreeView
{
 public DirectoryTreeView()
 {

 // Make a little more room for long directory names.

 Width *= 2;

 // Get images for tree.

 ImageList = new ImageList();
 ImageList.Images.Add(new Bitmap(GetType(), "35FLOPPY.BMP"));
 ImageList.Images.Add(new Bitmap(GetType(), "CLSDFOLD.BMP"));
 ImageList.Images.Add(new Bitmap(GetType(), "OPENFOLD.BMP"));

 // Construct tree.

 RefreshTree();
 }
 public void RefreshTree()
 {
 // Turn off visual updating and clear tree.

 BeginUpdate();
 Nodes.Clear();

 // Make disk drives the root nodes.

 string[] astrDrives = Directory.GetLogicalDrives();

 foreach (string str in astrDrives)
 {
 TreeNode tnDrive = new TreeNode(str, 0, 0);
 Nodes.Add(tnDrive);
 AddDirectories(tnDrive);

 if (str == "C:\\")
 SelectedNode = tnDrive;
 }
 EndUpdate();
 }
 void AddDirectories(TreeNode tn)
 {
 tn.Nodes.Clear();

 string strPath = tn.FullPath;
 DirectoryInfo dirinfo = new DirectoryInfo(strPath);
 DirectoryInfo[] adirinfo;

 try
 {
 adirinfo = dirinfo.GetDirectories();
 }
 catch
 {
 return;
 }

 foreach (DirectoryInfo di in adirinfo)
 {
 TreeNode tnDir = new TreeNode(di.Name, 1, 2);
 tn.Nodes.Add(tnDir);

 // We could now fill up the whole tree with this statement:
 // AddDirectories(tnDir);
 // But it would be too slow. Try it!
 }
 }
 protected override void OnBeforeExpand(TreeViewCancelEventArgs tvcea)
 {
 base.OnBeforeExpand(tvcea);

 BeginUpdate();

 foreach (TreeNode tn in tvcea.Node.Nodes)
 AddDirectories(tn);

 EndUpdate();
 }
}
35Floppy.bmp Cldsfold.bmp Openfold.bmp

DirectoryTreeView requires three small bitmaps that I copied from the collection provided with Visual
Studio .NET. The directory, by default, is Program Files\Microsoft Visual Studio
.NET\Common7\Graphics\Bitmaps\Outline\NoMask. Although I would have preferred displaying
different images depending on the type of drive (floppy, hard disk, CD-ROM, and so forth), it's not
possible using the Windows Forms classes to obtain the drive type. The construction of the
ImageList object in the constructor assumes that the resource namespace is the empty string.

The DirectoryTreeView class implements one public method, named RefreshTree, that programs
using the class can call to refresh the entire directory structure. (As you probably know, programs
that use tree views displaying directories generally have a menu item named Refresh.) The
constructor also calls RefreshTree to construct the tree.

RefreshTree obtains string representations of the system's disk drives by calling the static
Directory.GetLogicalDrives method. This method returns an array of strings generally beginning with
"A:\", "C:\", and so on. These strings become the root nodes. For each drive, RefreshTree calls
AddDirectories.

AddDirectories has a TreeNode argument and is responsible for creating child nodes consisting of
subdirectory names. The method uses the wonderful FullPath property of TreeNode to create a
DirectoryInfo object. The GetDirectories method of DirectoryInfo then obtains an array of
DirectoryInfo objects that are used to make child nodes.

It's possible that DirectoryInfo will raise an exception. This happens for a floppy disk drive if no
diskette is present, for example, and even for some directories to which access is denied. For that
reason, the method is called in a try block. Unfortunately, if a disk drive is empty (as is so often the
case for drive A), GetDirectories also displays an annoying message box reporting the problem to
the user before raising the exception. (Press Cancel or Continue to make the message box go
away.) The message box is even displayed when console applications call GetDirectories! It's
obviously a design flaw or a bug in GetDirectories, but until it's fixed, there's no way to prevent the
message box from popping up. If it's really intolerable for your application, use the Win32 API
functions FindFirstFile and FindNextFile instead.

I am well aware that every programmer faced with the job of constructing a directory tree
immediately thinks recursive function. In fact, AddDirectories can indeed be called recursively to
construct the entire directory tree. I've even included a statement (commented out, however) that
calls AddDirectories recursively. You're welcome to remove the double slashes and see for yourself
why I rejected this approach: it just takes too much time. It's much more efficient to call
AddDirectories only when it's needed.

So why, you ask, does the RefreshTree method call AddDirectories at all? Initially, the tree needs to
display only the disk drives. Calling AddDirectories for each disk drive seems unnecessary.
However, disk drives that contain directories must be displayed with a plus sign that allows the user
to expand the node. The only way to get the plus signs displayed is to add child nodes. So, even
though only the disk drives are displayed initially, the subdirectories of the root of each drive are also
added to the tree.

The DirectoryTreeView class also overrides the OnBeforeExpand method of TreeView. The first time
this method will be called is when the user expands one of the disk drive nodes. However,
OnBeforeExpand doesn't need to build the child nodes of the disk drive. Those already exist.
Instead, the method needs to build child nodes for each of the newly displayed nodes—again, for the
sole purpose of forcing TreeView to display a plus sign if the directory contains subdirectories.

Here's a program that makes use of DirectoryTreeView in a very simple way. This program creates a
Panel control on the right, a DirectoryTreeView control on the left, and a Splitter in between. It
installs an event handler for the AfterSelect event that DirectoryTreeView inherits from TreeView and
displays a list of files in that directory in the panel.
DirectoriesAndFiles.cs
//--
// DirectoriesAndFiles.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

class DirectoriesAndFiles: Form

{
 DirectoryTreeView dirtree;
 Panel panel;
 TreeNode tnSelect;

 public static void Main()
 {
 Application.Run(new DirectoriesAndFiles());
 }
 public DirectoriesAndFiles()
 {
 Text = "Directories and Files";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 panel = new Panel();
 panel.Parent = this;
 panel.Dock = DockStyle.Fill;
 panel.Paint += new PaintEventHandler(PanelOnPaint);

 Splitter split = new Splitter();
 split.Parent = this;
 split.Dock = DockStyle.Left;
 split.BackColor = SystemColors.Control;

 dirtree = new DirectoryTreeView();
 dirtree.Parent = this;
 dirtree.Dock = DockStyle.Left;
 dirtree.AfterSelect +=
 new
TreeViewEventHandler(DirectoryTreeViewOnAfterSelect);

 // Create menu with one item.

 Menu = new MainMenu();
 Menu.MenuItems.Add("View");

 MenuItem mi = new MenuItem("Refresh",
 new EventHandler(MenuOnRefresh),
Shortcut.F5);
 Menu.MenuItems[0].MenuItems.Add(mi);
 }
 void DirectoryTreeViewOnAfterSelect(object obj, TreeViewEventArgs
tvea)
 {
 tnSelect = tvea.Node;

 panel.Invalidate();
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 if (tnSelect == null)
 return;

 Panel panel = (Panel) obj;
 Graphics grfx = pea.Graphics;
 DirectoryInfo dirinfo = new DirectoryInfo(tnSelect.FullPath);
 FileInfo[] afileinfo;
 Brush brush = new SolidBrush(panel.ForeColor);
 int y = 0;

 try
 {
 afileinfo = dirinfo.GetFiles();
 }
 catch
 {
 return;
 }

 foreach (FileInfo fileinfo in afileinfo)
 {
 grfx.DrawString(fileinfo.Name, Font, brush, 0, y);
 y += Font.Height;
 }
 }
 void MenuOnRefresh(object obj, EventArgs ea)
 {
 dirtree.RefreshTree();
 }
}

Because this is only a demonstration program, the list of files is only one column long, so the list
might be truncated. Here's a view of one of the subdirectories of my WINNT directory:

This program also has a View menu with one item: Refresh. The menu item rebuilds the directory
tree by calling the RefreshTree method in the DirectoryTreeView class.
Displaying Images
In Chapter 23, I'll be delving into metafiles, which are binary collections of graphics drawing
commands that describe an image. In preparation for that chapter, I wanted to look at some metafile
clip art that I had. Generally, when I want to look at a directory full of images, I use a particular
freeware program. The program displays a tree view on the left and thumbnails on the right. You
click on a thumbnail to see the full-size image. But while the program works fine with many different
bitmap formats, it doesn't read metafiles at all. Recent versions of Windows Explorer display
thumbnails of bitmaps and metafiles, but Windows Explorer requires an external program for
displaying the full-size images.

In Windows Forms, both the Bitmap and Metafile classes are descended from Image. Metafiles can
be read from the disk using the static Image.FromFile method just as easily as bitmaps, and
metafiles can also be displayed as easily with DrawImage. In a Windows Forms program that loads
and displays bitmaps, metafile support is free.

Let's set some simple goals. A program named ImageDirectory will display a TreeView control on the
left displaying directories. On the right, the program will display a collection of thumbnails showing all
the image files (bitmaps and metafiles) in the selected directory. Click on a thumbnail to see the
image enlarged to the size of the form.

We've already written a good chunk of this program. That's the DirectoryTreeView control. The other
half of the program's client area will consist of a Panel control. Each thumbnail is a Button control
that displays the image scaled down to the size of a button. Here's an ImagePanel control that
descends from Panel to do this job.
ImagePanel.cs
//---
// ImagePanel.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

class ImagePanel: Panel
{
 const int cxButton = 100, cyButton = 100; // Image button
size

 Button btnClicked;
 ToolTip tooltip = new ToolTip();
 Timer timer = new Timer();

 // Fields for Timer Tick event

 string[] astrFileNames;
 int i, x, y;
 // Public event
 public event EventHandler ImageClicked;
 // Constructor
 public ImagePanel()

 {
 AutoScroll = true;

 timer.Interval = 1;
 timer.Tick += new EventHandler(TimerOnTick);
 }
 // Public
properties
 public Control ClickedControl
 {
 get { return btnClicked; }
 }
 public Image ClickedImage
 {
 get
 {
 try
 {
 return Image.FromFile((string) btnClicked.Tag);
 }
 catch
 {
 return null;
 }
 }
 }
 // Public method
 public void ShowImages(string strDirectory)
 {
 Controls.Clear();
 tooltip.RemoveAll();

 try
 {
 astrFileNames = Directory.GetFiles(strDirectory);
 }
 catch
 {
 return;
 }

 i = x = y = 0;

 timer.Start();
 }
 // Event handlers

 void TimerOnTick(object obj, EventArgs ea)
 {
 Image image;

 if (i == astrFileNames.Length)
 {
 timer.Stop();
 return;
 }
 try
 {
 image = Image.FromFile(astrFileNames[i]);
 }
 catch
 {
 i++;
 return;
 }
 int cxImage = image.Width;
 int cyImage = image.Height;

 // Convert image to small size for button.

 SizeF sizef = new SizeF(cxImage / image.HorizontalResolution,
 cyImage / image.VerticalResolution);

 float fScale = Math.Min(cxButton / sizef.Width,
 cyButton / sizef.Height);
 sizef.Width *= fScale;
 sizef.Height *= fScale;
 Size size = Size.Ceiling(sizef);
 Bitmap bitmap = new Bitmap(image, size);
 image.Dispose();

 // Create button and add to panel.

 Button btn = new Button();
 btn.Image = bitmap;
 btn.Location = new Point(x, y) + (Size) AutoScrollPosition;
 btn.Size = new Size(cxButton, cyButton);
 btn.Tag = astrFileNames[i];
 btn.Click += new EventHandler(ButtonOnClick);
 Controls.Add(btn);

 // Give button a ToolTip.

 tooltip.SetToolTip(btn, String.Format("{0}\n{1}x{2}",

Path.GetFileName(astrFileNames[i]),
 cxImage, cyImage));

 // Adjust i, x, and y for next image.

 AdjustXY(ref x, ref y);
 i++;
 }
 void ButtonOnClick(object obj, EventArgs ea)
 {
 btnClicked = (Button) obj;

 if (ImageClicked != null)
 ImageClicked(this, EventArgs.Empty);
 }
 protected override void OnResize(EventArgs ea)
 {
 base.OnResize(ea);

 AutoScrollPosition = Point.Empty;
 int x = 0, y = 0;

 foreach (Control cntl in Controls)
 {
 cntl.Location = new Point(x, y) + (Size)
AutoScrollPosition;
 AdjustXY(ref x, ref y);
 }
 }
 void AdjustXY(ref int x, ref int y)
 {
 y += cyButton;

 if (y + cyButton > Height -
 SystemInformation.HorizontalScrollBarHeight)
 {
 y = 0;
 x += cxButton;
 }
 }
}

The ImagePanel constructor sets its AutoScroll property to true. If there are more buttons than can fit
in the allotted space for the panel, the scroll bars need to be displayed so that the user can scroll to
the other buttons.

ImagePanel implements a public method named ShowImages that has a single argument specifying
a directory name. ShowImages is responsible for obtaining an array of all the files in that directory,
loading an Image object for each file in the directory that doesn't raise an exception when
Image.FromFile is called, creating a bitmap that contains the image scaled down to the size of the
button, creating the button, and also creating a ToolTip that has the name of the image and its pixel
dimensions.

Actually, that was the first version of the program. It turned out that this job took much too long for
directories containing many large bitmaps. My solution was to spread out the job using a Timer
object. (It's a simple form of multitasking that doesn't require using multiple threads.) The Timer
object is created as a field of the ImagePanel object and given a tick interval of 1 millisecond during
the ImagePanel constructor. After the ShowImages method gets the array of filenames, it initializes a
few variables (an index of the filename array and x and y coordinates for the buttons) and starts the
timer.

The Tick event handler is responsible for calling Image.FromFile and creating a button based on that
image. Notice that Image.FromFile is called for every file in the directory! If Image.FromFile returns
properly, it successfully loaded an image. If it throws an exception, either the file wasn't an image file
supported by the method or the file was corrupted in some way.

You should also notice that this job can be interrupted before the entire directory has been read.
Whenever ShowImages is called, it clears all the buttons and ToolTips and starts over again with the
new directory.

The ImagePanel class also implements a public event named ImageClicked. This event is triggered
whenever one of the buttons is clicked. The two read-only properties ClickedControl and
ClickedImage return the button that was clicked and the image displayed on that button.

Here's the program itself. ImageDirectory makes use of ImagePanel as well as DirectoryTreeView,
with a Splitter control to separate them on the client area. The constructor also creates an object of
type PictureBoxPlus, which is a class I created in Chapter 11 that enhances PictureBox to provide a
NoDistort property that maintains the correct aspect ratio when an image is stretched to the size of
the control. This PictureBoxPlus control is used to display the clicked image stretched to the size of
the client area. The control has its Visible property initially set to false.
ImageDirectory.cs
//---
// ImageDirectory.cs © 2001 by Charles Petzold
//---
using Petzold.ProgrammingWindowsWithCSharp;
using System;
using System.Drawing;
using System.Windows.Forms;

class ImageDirectory: Form
{
 PictureBoxPlus picbox;
 DirectoryTreeView dirtree;
 ImagePanel imgpanel;
 Splitter split;
 TreeNode tnSelect;
 Control cntlClicked;
 Point ptPanelAutoScroll;

 public static void Main()
 {
 Application.Run(new ImageDirectory());
 }
 public ImageDirectory()
 {
 Text = "Image Directory";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 // Create (invisible) control for displaying large image.

 picbox = new PictureBoxPlus();
 picbox.Parent = this;
 picbox.Visible = false;
 picbox.Dock = DockStyle.Fill;
 picbox.SizeMode = PictureBoxSizeMode.StretchImage;
 picbox.NoDistort = true;
 picbox.MouseDown += new
MouseEventHandler(PictureBoxOnMouseDown);

 // Create controls for displaying thumbnails.

 imgpanel = new ImagePanel();
 imgpanel.Parent = this;
 imgpanel.Dock = DockStyle.Fill;
 imgpanel.ImageClicked +=
 new EventHandler(ImagePanelOnImageClicked);

 split = new Splitter();
 split.Parent = this;
 split.Dock = DockStyle.Left;
 split.BackColor = SystemColors.Control;

 dirtree = new DirectoryTreeView();
 dirtree.Parent = this;
 dirtree.Dock = DockStyle.Left;
 dirtree.AfterSelect +=
 new
TreeViewEventHandler(DirectoryTreeViewOnAfterSelect);

 // Create menu with one item (Refresh).

 Menu = new MainMenu();
 Menu.MenuItems.Add("&View");

 MenuItem mi = new MenuItem("&Refresh",
 new EventHandler(MenuOnRefresh),
Shortcut.F5);
 Menu.MenuItems[0].MenuItems.Add(mi);
 }
 void DirectoryTreeViewOnAfterSelect(object obj, TreeViewEventArgs
tvea)
 {
 tnSelect = tvea.Node;
 imgpanel.ShowImages(tnSelect.FullPath);
 }
 void MenuOnRefresh(object obj, EventArgs ea)
 {
 dirtree.RefreshTree();
 }
 void ImagePanelOnImageClicked(object obj, EventArgs ea)
 {
 // Get clicked control and image.

 cntlClicked = imgpanel.ClickedControl;
 picbox.Image = imgpanel.ClickedImage;

 // Save auto-scroll position.

 ptPanelAutoScroll = imgpanel.AutoScrollPosition;
 ptPanelAutoScroll.X *= -1;
 ptPanelAutoScroll.Y *= -1;

 // Hide and disable the normal controls.

 imgpanel.Visible = false;
 imgpanel.Enabled = false;
 imgpanel.AutoScrollPosition = Point.Empty;

 split.Visible = false;
 split.Enabled = false;

 dirtree.Visible = false;
 dirtree.Enabled = false;

 // Make the picture box visible.

 picbox.Visible = true;
 }
 // Event handlers and method involved with restoring controls

 void PictureBoxOnMouseDown(object obj, MouseEventArgs mea)
 {
 RestoreControls();
 }
 protected override void OnKeyDown(KeyEventArgs kea)
 {
 if (kea.KeyCode == Keys.Escape)
 RestoreControls();
 }
 void RestoreControls()
 {
 picbox.Visible = false;

 dirtree.Visible = true;
 dirtree.Enabled = true;

 split.Enabled = true;
 split.Visible = true;

 imgpanel.AutoScrollPosition = ptPanelAutoScroll;
 imgpanel.Visible = true;
 imgpanel.Enabled = true;
 cntlClicked.Focus();
 }
}

Whenever the selection in the DirectoryTreeView control changes (indicated by a call to the
DirectoryTreeViewOnAfterSelect event handler), the program calls the ShowImages method of the
ImagePanel. Here's the program displaying metafiles from one of the directories of Visual Studio
.NET.

Whenever one of the buttons is clicked, the program is notified by a call to its
ImagePanelOnImageClicked event handler. The event handler responds by making the three visible
controls invisible and the invisible control (PictureBoxPlus) visible. The image is stretched to the size
of the client area with its aspect ratio maintained:

The client area can be returned to normal by clicking the client area or pressing the Esc key.
List View Basics
In its most sophisticated form, the ListView control displays textual information in rows and columns
with column headings. The first column of information contains the list view items, and the other
columns contain subitems associated with each item. For example, in Windows Explorer, the
filename is the item, and the file size, modified date, and attributes are all subitems. The ListView
control can also display the simple list of items themselves (without subitems), the items in multiple
columns with small icons, and items in multiple columns with large icons.

A number of different classes are involved in creating a ListView object, but let's begin our tour with
the ListView class itself. ListView has several essential properties:
ListView Properties (selection)

Type Property Accessibility

View View get/set

ImageList SmallImageList get/set

ImageList LargeImageList get/set

ListView.ColumnHeaderCollection Columns get

ListView.ListViewItemCollection Items get

The View enumeration contains members for the four different formats in which a ListView control
can display its data. You're probably familiar with the four options from what you've seen in various
menus, including a toolbar button in the standard OpenFileDialog and SaveFileDialog dialog boxes:
View Enumeration

Member Value

LargeIcon 0

Details 1

SmallIcon 2

List 3

For the LargeIcon option, each item is displayed with a large bitmap (generally 48 pixels square) that
is one of the images stored in the LargeImageList property. For the other View options, the item is
displayed with a small bitmap (generally 16 pixels square) from the SmallImageList property. The
images in these two ImageList objects must coincide; for example, the third image in LargeImageList
should be a larger version of the third image in SmallImageList.

The Columns property is an object of type ListView.ColumnHeaderCollection, which is yet another
implementation of the ICollection, IEnumerable, and IList interfaces. (There are more to come in this
chapter.) Here's a complete list of its properties:
ListView.ColumnHeaderCollection Properties

Type Property Accessibility

ListView.ColumnHeaderCollection Properties

Type Property Accessibility

ColumnHeader [] get

int Count get

bool IsReadOnly get

As you can see, an object of type ListView.ColumnHeaderCollection is basically a collection of read-
only ColumnHeader objects. The class implements the customary Clear, Insert, Remove, Add, and
AddRange methods. Here are those last two methods as implemented in this class:

ListView.ColumnHeaderCollection Methods (selection)

int Add(ColumnHeader colhead)
ColumnHeader Add(string strText, int iWidth, HorizontalAlignment ha)
void AddRange(ColumnHeader[] acolheads)

As you can deduce from the second Add implementation, a ColumnHeader object is basically some
text, an initial width of the column in pixels, and an alignment. You've seen the HorizontalAlignment
enumeration before:
HorizontalAlignment Enumeration

Member Value

Left 0

Right 1

Center 2

The alignment is considered an important element of the column header because it affects not only
the text in the column header but also the items or subitems listed in that column as well.

ColumnHeader itself has a default constructor and only three read/write properties, which are the
same as the arguments to the Add method just shown:
ColumnHeader Properties (selection)

Type Property Accessibility

string Text get/set

int Width get/set

HorizontalAlignment TextAlign get/set

The only other properties of ColumnHeader are read-only, and they indicate the ListView object to
which the ColumnHeader object belongs and the index of that column header among the collection
of column headers.

Let's go back to the table of essential ListView properties. The last item in the table was a property
named Items, which is an object of type ListView.ListViewItemCollection. Here are its properties:
ListView.ListViewItemCollection Properties

Type Property Accessibility

ListViewItem [] get/set

int Count get

ListView.ListViewItemCollection Properties

Type Property Accessibility

bool IsReadOnly get

The Items property of ListView is basically a collection of ListViewItem objects. As usual, we can get
a hint of what a ListViewItem is by looking at the Add and AddRange methods of
ListView.ListViewItemCollection:

ListView.ListViewItemCollection Methods (selection)

ListViewItem Add(ListViewItem lvitem)
ListViewItem Add(string strItem)
ListViewItem Add(string strItem, int indexImage)
void AddRange(ListViewItem[] alvitems)

The strItem argument is the text string associated with the item. Regardless of what view is selected,
this text string is always displayed. The View.Details option also displays subitems, which we haven't
encountered just yet. The indexImage argument is an index into both the LargeImageList and
SmallImageList properties of the ListView control.

ListViewItem has seven different constructors:

ListViewItem Constructors

ListViewItem()
ListViewItem(string strItem)
ListViewItem(string strItem, int indexImage)
ListViewItem(string[] astrItems)
ListViewItem(string[] astrItems, int indexImage)
ListViewItem(string[] astrItems, int indexImage,
 Color clrFore, Color clrBack, Font font)
ListViewItem(ListViewItem.ListViewSubItem[] aSubItems, int indexImage)

When you specify an array of strings in the constructor, you're actually specifying an item and one or
more subitems associated with that item.

The following properties of the ListViewItem class are essential:
ListViewItem Properties (selection)

Type Property Accessibility

string Text get/set

int ImageIndex get/set

object Tag get/set

ListViewItem.ListViewSubItemCollection SubItems get

The ListViewItem object contains text and an image index as well as a Tag property that lets you
attach arbitrary data to the item. ListViewItem also contains a collection of subitems, which are
objects of ListViewItem.ListViewSubItemCollection. Here's a complete list of properties of that class:

ListViewItem.ListViewSubItemCollection Properties

Type Property Accessibility

ListViewItem.ListViewSubItem [] get/set

int Count get

bool IsReadOnly get

As usual, we can get an insight into what constitutes a subitem by looking at the arguments of the
Add and AddRange methods of the class:

ListViewItem.ListViewSubItemCollection Methods (selection)

ListViewSubItem Add(string strText)
ListViewSubItem Add(string strText, Color clrFore, Color clrBack, Font
font)
ListViewSubItem Add(ListViewItem.ListViewSubItem lvsi)
void AddRange(string[] astrText)
void AddRange(string[] astrText, Color clrFore, Color clrBack, Font font)
void AddRange(ListViewItem.ListViewSubItem[] alvsi)

The ListViewItem.ListViewSubItem constructors have similar arguments:

ListViewItem.ListViewSubItem Constructors

ListViewItem.ListViewSubItem()
ListViewItem.ListViewSubItem(ListViewItem lviOwner, string strText)
ListViewItem.ListViewSubItem(ListViewItem lviOwner, string strText,
 Color clrFore, Color clrText, Font font)

The class has only four properties:
ListViewItem.ListViewSubItem Properties

Type Property Accessibility

string Text get/set

Font Font get/set

Color BackColor get/set

Color ForeColor get/set

It's now time to put all this information into service. I trust you'll recall the series of SysInfo (system
information) programs that were the highlight of Chapter 4 and also showed up in some subsequent
chapters. I'd now like to show a version that uses a ListView control. This program also makes use of
the SysInfoReflectionStrings class that provides several public static properties and methods, the
Labels and Values properties being the most important. Both properties return arrays of strings that
indicate (respectively) the names of the static properties in the SystemInformation class and their
current values. The Count property returns the number of strings in the arrays. The MaxLabelWidth
and MaxValueWidth methods return the maximum width of the string in each array. I use those
methods in this program to set the initial column widths.
SysInfoListView.cs
//--

// SysInfoListView.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Windows.Forms;

class SysInfoListView: Form
{
 public static void Main()
 {
 Application.Run(new SysInfoListView());
 }
 public SysInfoListView()
 {
 Text = "System Information (List View)";

 // Create ListView control.

 ListView listview = new ListView();
 listview.Parent = this;
 listview.Dock = DockStyle.Fill;
 listview.View = View.Details;

 // Define columns based on maximum string widths.

 Graphics grfx = CreateGraphics();

 listview.Columns.Add("Property",
 (int) SysInfoReflectionStrings.MaxLabelWidth(grfx,
Font),
 HorizontalAlignment.Left);

 listview.Columns.Add("Value",
 (int) SysInfoReflectionStrings.MaxValueWidth(grfx,
Font),
 HorizontalAlignment.Left);

 grfx.Dispose();

 // Get the data that will be displayed.

 int iNumItems = SysInfoReflectionStrings.Count;
 string[] astrLabels = SysInfoReflectionStrings.Labels;
 string[] astrValues = SysInfoReflectionStrings.Values;

 // Define the items and subitems.

 for (int i = 0; i < iNumItems; i++)
 {
 ListViewItem lvi = new ListViewItem(astrLabels[i]);
 lvi.SubItems.Add(astrValues[i]);
 listview.Items.Add(lvi);
 }
 }
}

As you can see, despite the tongue-twisting long class names involved with the various ListView
collections, the actual code is rather terse. The constructor begins by creating the ListView object,
assigning the form as its parent, giving the object a Dock property of DockStyle.Fill, and then setting
the View property to View.Details. (Anything else would be meaningless for this program.) This
particular ListView object doesn't use any image lists.

Next, the constructor defines the two column headers by calling the three-argument Add method of
the Columns property. The items and subitems are added in the for loop at the bottom. In that for
loop, the program creates a ListViewItem object based on an element of the astrLabels array. It then
uses the Add method of the SubItems property to add a single subitem, which is an element of the
astrValues array. The ListViewItem object is then added to the ListView object using the Add method
of the Items property.

And here's the result:

The scroll bars are provided by default. You'll probably want to experiment with this program a bit to
examine the other features that the default ListView provides and also to try out some properties I
haven't talked about here.
List View Events
When experimenting with the SysInfoListView program, you'll find that you can select an item in the
first column using the mouse or the up and down arrow keys. With the Shift key pressed, you can
extend the selection to multiple items. You can also select and deselect individual items (without
affecting other selected items) by clicking with the mouse while holding down the Ctrl key. (To turn
off the default multiselection feature in a ListView object, set the MultiSelect property to false.)

A program may or may not be interested that the user is changing the selection. However, most
programs that use a ListView object for something other than simple display purposes will almost
definitely be interested in something called item activation. Windows Explorer, for example, launches
applications when the user activates an item. By default, activation occurs when the user double-
clicks an item or a group of items, or presses the Enter key when one or more items have been
selected. However, you can change that behavior by using the following property:
ListView Properties (selection)

Type Property Accessibility

ItemActivation Activation get/set

The ItemActivation enumeration has the following members:
ItemActivation Enumeration

Member Value

Standard 0

OneClick 1

TwoClick 2

Standard is default. Both the OneClick and TwoClick options cause items to change color as the
mouse cursor moves over them. The OneClick option requires one click for activation; the TwoClick
option requires two clicks.

Here are the three most important events implemented by the ListView class:
ListView Events (selection)

Event Method Delegate Argument

SelectedIndex-
Changed

OnSelectedIndex-
Changed

EventHandler EventArgs

ItemActivate OnItemActivate EventHandler EventArgs

ColumnClick OnColumnClick ColumnClick-
EventHandler

ColumnClickEventArgs

None of the other classes associated with the ListView control implement any events. The other
ListView events involve editing, checking, and dragging items.

ListView also supports all the events implemented in Control. If, for example, a program wants to
customize and display a context menu depending on what item the user is clicking with the right
mouse button, it can install a MouseDown event handler and determine what item the user is clicking
by calling the GetItemAt method of ListView.

When the user clicks a column heading, the ColumnClick event is accompanied by the following
information:
ColumnClickEventArgs Property

Type Property Accessibility

int Column get

The SelectedIndexChanged and ItemActivate events aren't accompanied by any information. The
program handling these events will want to use the following two properties of ListView to obtain the
currently selected items:
ListView Properties (selection)

Type Property Accessibility

ListView.SelectedIndexCollection SelectedIndices get

ListView.SelectedListViewItemCollection SelectedItems get

Yes, these are yet two more collections! The first is just a read-only collection of integers:
ListView.SelectedIndexCollection Properties

Type Property Accessibility

int [] get

int Count get

bool IsReadOnly get

The Add and AddRange methods of this class are not public. The second collection has the following
properties:
ListView.SelectedListViewItemCollection Properties

Type Property Accessibility

ListViewItem [] get

int Count get

bool IsReadOnly get

Again, the Add and AddRange methods are not public. To initialize items programmatically, use the
following property of ListViewItem:
ListViewItem Properties (selection)

Type Property Accessibility

bool Selected get/set

You can also use this property instead of SelectedIndices or SelectedItems to obtain the selected
items. You'll need to loop through all the items of the ListView object and check which ones have the
Selected property set.

The following class, FileListView, derives from ListView to display a list of files stored in a given
directory. Unlike the list view in Windows Explorer, FileListView doesn't display subdirectories along
with files.
FileListView.cs
//---
// FileListView.cs © 2001 by Charles Petzold
//---
using System;
using System.Diagnostics; // For Process.Start
using System.Drawing;
using System.IO;
using System.Windows.Forms;

class FileListView: ListView
{
 string strDirectory;

 public FileListView()
 {
 View = View.Details;

 // Get images for file icons.

 ImageList imglst = new ImageList();
 imglst.Images.Add(new Bitmap(GetType(), "DOC.BMP"));
 imglst.Images.Add(new Bitmap(GetType(), "EXE.BMP"));

 SmallImageList = imglst;
 LargeImageList = imglst;

 // Create columns.

 Columns.Add("Name", 100, HorizontalAlignment.Left);
 Columns.Add("Size", 100, HorizontalAlignment.Right);
 Columns.Add("Modified", 100, HorizontalAlignment.Left);
 Columns.Add("Attribute", 100, HorizontalAlignment.Left);
 }
 public void ShowFiles(string strDirectory)
 {
 // Save directory name as field.

 this.strDirectory = strDirectory;

 Items.Clear();
 DirectoryInfo dirinfo = new DirectoryInfo(strDirectory);
 FileInfo[] afileinfo;

 try
 {
 afileinfo = dirinfo.GetFiles();
 }
 catch
 {
 return;
 }

 foreach (FileInfo fi in afileinfo)
 {
 // Create ListViewItem.

 ListViewItem lvi = new ListViewItem(fi.Name);

 // Assign ImageIndex based on filename extension.

 if (Path.GetExtension(fi.Name).ToUpper() == ".EXE")
 lvi.ImageIndex = 1;
 else
 lvi.ImageIndex = 0;

 // Add file length and modified time subitems.

 lvi.SubItems.Add(fi.Length.ToString("N0"));
 lvi.SubItems.Add(fi.LastWriteTime.ToString());

 // Add attribute subitem.

 string strAttr = "";

 if ((fi.Attributes & FileAttributes.Archive) != 0)
 strAttr += "A";

 if ((fi.Attributes & FileAttributes.Hidden) != 0)
 strAttr += "H";

 if ((fi.Attributes & FileAttributes.ReadOnly) != 0)
 strAttr += "R";

 if ((fi.Attributes & FileAttributes.System) != 0)
 strAttr += "S";

 lvi.SubItems.Add(strAttr);

 // Add completed ListViewItem to FileListView.

 Items.Add(lvi);
 }
 }
 protected override void OnItemActivate(EventArgs ea)
 {
 base.OnItemActivate(ea);

 foreach (ListViewItem lvi in SelectedItems)
 {
 try
 {
 Process.Start(Path.Combine(strDirectory, lvi.Text));
 }
 catch
 {
 continue;
 }
 }
 }
}
Doc.bmp Exe.bmp

Doc.bmp Exe.bmp

Windows Explorer probably uses the API function ExtractAssociatedIcon to obtain an image for each
file it displays. However, that facility isn't exposed in the Windows Forms classes. To provide some
sample images anyway, FileListView loads two bitmaps that I copied from the Program
Files\Microsoft Visual Studio .NET\Common7\Graphics\Bitmaps\Outline\NoMask directory. Both the
SmallImageList and LargeImageList properties get the same pair of small images. The constructor
concludes by creating four columns.

The FileListView class implements a public ShowFiles method that does most of the work of the
class. The method creates an object of type DirectoryInfo based on the specified directory and then
gets an array of FileInfo structures by calling the GetFiles method. Each member of the array
becomes an item and three subitems. Much of the code is devoted to formatting the items. If the
filename extension is .exe, the ImageIndex property is set to 1 for the Exe.bmp image; otherwise, it's
set to 0 for the Doc.bmp image. (I know: What about .dll files? What about .com files? You're
welcome to enhance the images if you wish.)

FileListView also overrides the OnItemActivate method. For each selected item, the program calls
the static Process.Start method. If the file is an executable, the file will be launched directly. If the file
is a document with a known association, the associated file will be launched with the document.

To see what this custom ListView control looks like, we need a Windows Explorer–like program that
combines both DirectoryTreeView and FileListView. ExplorerLike is such a program.
ExplorerLike.cs
//---
// ExplorerLike.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class ExplorerLike: Form
{
 FileListView filelist;
 DirectoryTreeView dirtree;
 MenuItemView mivChecked;

 public static void Main()
 {
 Application.Run(new ExplorerLike());
 }
 public ExplorerLike()
 {
 Text = "Windows Explorer-Like Program";
 BackColor = SystemColors.Window;
 ForeColor = SystemColors.WindowText;

 // Create controls.

 filelist = new FileListView();
 filelist.Parent = this;
 filelist.Dock = DockStyle.Fill;

 Splitter split = new Splitter();
 split.Parent = this;
 split.Dock = DockStyle.Left;
 split.BackColor = SystemColors.Control;

 dirtree = new DirectoryTreeView();
 dirtree.Parent = this;
 dirtree.Dock = DockStyle.Left;
 dirtree.AfterSelect +=
 new
TreeViewEventHandler(DirectoryTreeViewOnAfterSelect);

 // Create View menu.

 Menu = new MainMenu();
 Menu.MenuItems.Add("&View");

 string[] astrView = { "Lar&ge Icons", "S&mall Icons",
 "&List", "&Details" };
 View[] aview = { View.LargeIcon, View.SmallIcon,
 View.List, View.Details };
 EventHandler eh = new EventHandler(MenuOnView);

 for (int i = 0; i < 4; i++)
 {
 MenuItemView miv = new MenuItemView();
 miv.Text = astrView[i];
 miv.View = aview[i];
 miv.RadioCheck = true;
 miv.Click += eh;

 if (i == 3) // Default == View.Details
 {
 mivChecked = miv;
 mivChecked.Checked = true;
 filelist.View = mivChecked.View;
 }
 Menu.MenuItems[0].MenuItems.Add(miv);
 }

 Menu.MenuItems[0].MenuItems.Add("-");

 // View Refresh menu item.

 MenuItem mi = new MenuItem("&Refresh",
 new EventHandler(MenuOnRefresh),
Shortcut.F5);
 Menu.MenuItems[0].MenuItems.Add(mi);
 }
 void DirectoryTreeViewOnAfterSelect(object obj, TreeViewEventArgs
tvea)
 {
 filelist.ShowFiles(tvea.Node.FullPath);
 }
 void MenuOnView(object obj, EventArgs ea)
 {
 mivChecked.Checked = false;
 mivChecked = (MenuItemView) obj;
 mivChecked.Checked = true;

 filelist.View = mivChecked.View;
 }
 void MenuOnRefresh(object obj, EventArgs ea)
 {
 dirtree.RefreshTree();
 }
}
class MenuItemView: MenuItem
{
 public View View;
}

Most of this program is devoted to processing menu commands that let you change the View
property of the FileListView control and refresh the DirectoryTreeView contents. The only connection
between the two controls is implemented in the DirectoryTreeViewOnAfterSelect event handler,
which calls the ShowFiles method of FileListView with the newly selected directory. Here's the
program showing part of the Windows system directory:

Chapter 23: Metafiles
Overview
Metafiles are to vector graphics as bitmaps are to raster graphics. While bitmaps generally originate
from real-world images, metafiles are usually constructed by humans in collaboration with computer
programs. A metafile consists of a series of binary records that correspond to graphics function
calls—to draw lines, curves, filled areas, and text. Metafiles can also contain embedded bitmaps. A
metafile can be stored in a disk file or can reside entirely in memory.

Paint programs create bitmaps; drawing programs create metafiles. In a well-designed drawing
program, you can easily grab on-screen graphical objects with the mouse and move them
somewhere else. That's because all the individual components of the picture are stored as separate
records. In a paint program, such feats aren't possible without a lot of heavy image analysis. Paint
programs generally restrict you to moving or inserting rectangular chunks of the bitmap.

Because a metafile describes an image in terms of graphical drawing commands, the metafile image
can be scaled in size without loss of resolution. Bitmaps don't work that way; if you display a bitmap
at twice the size, you don't get twice the resolution. The bits in the bitmap are simply replicated
horizontally or vertically. Any smoothing that might be imposed on the display might eliminate
jaggies, but at the cost of making the image fuzzier.

A metafile can be converted to a bitmap, but with some loss of information: the graphical objects that
make up the metafile are no longer separate and become blended together in one big image.
Converting bitmaps to metafiles is a much more difficult job, usually restricted to very simple images
and requiring a lot of processing power to analyze edges and outlines. However, as I noted earlier, a
metafile can contain an embedded bitmap.

Metafiles are used most often these days for sharing pictures among programs through the clipboard
and for clip art. Because metafiles describe a picture as a collection of graphics function calls, they
generally take up much less space and are more device independent than bitmaps.

However, rendering a metafile can be slower than rendering a bitmap containing the same image. A
bitmap of a particular size and color format takes the same time to display regardless of the
complexity of the image. The time it takes to display a metafile is directly related to the number of
drawing commands it contains.

Don't confuse metafiles with graphics paths! A path is simply a collection of coordinates; a metafile
includes specifications of pens and brushes as well. A path stores text as a series of character
outlines; a metafile stores the arguments to the actual DrawString call. There are no standard
formats for saving paths to files or passing them through the clipboard. Metafiles have been
designed to be saved as files and passed through the clipboard. (I'll discuss using metafiles with the
clipboard in Chapter 24.)

Metafiles have been supported under Windows since version 1.0 (1985). The original metafile format
is now referred to as the Windows Metafile and is associated with a filename extension of .wmf.
Metafiles were enhanced with the introduction of the 32-bit versions of Windows. The 32-bit versions
of Windows continued to support the old metafile format and also introduced a new metafile format,
called the Enhanced Metafile and associated with a filename extension of .emf.

The GDI+ graphics system in Windows Forms introduces a number of new drawing commands, and
these commands affect metafiles as well. Enhanced metafiles that contain GDI+ drawing commands
are referred to as EMF+ ("EMF plus") metafiles, but the filename extension is still .emf. It's also
possible to create metafiles from a Windows Forms program that are compatible with the original
EMF format and readable by regular old 32-bit Windows programs.
Loading and Rendering Existing Metafiles
You already know from Chapter 11 how to load and display metafiles. You can use the same static
FromFile method of the Image class to load a metafile from disk just as you can load a bitmap image
from disk:
Image image = Image.FromFile("PrettyPicture.emf");

You can also display this metafile in the same way you display a bitmap. Use one of the many
DrawImage or DrawImageUnscaled methods of the Graphics class:
grfx.DrawImage(image, x, y);

If you have any WMF or EMF files on your hard drive (and it's likely you do if you've installed any
application that has a clip art library), you can use the ImageIO program from Chapter 16 to load and
display those metafiles. Even Visual Studio .NET comes with a collection of metafiles located by
default in the C:\Program Files\Microsoft Visual Studio .NET\Common7\Graphics\Metafile directory.

Metafiles are considered to be images because—like the Bitmap class—the Metafile class is
descended from Image:

Also like Bitmap, the Metafile class is sealed and hence can't be inherited. Although the Image and
Bitmap classes are defined in the System.Drawing namespace, Metafile and its related classes and
enumerations are defined in the System.Drawing.Imaging namespace. If you call GetType on the
return value of Image.FromFile, you'll get a type of either System.Drawing.Bitmap or
System.Drawing.Imaging.Metafile.

Watch out for the terminology involving metafiles and Metafile objects. A metafile is a collection of
drawing commands that can exist in a disk file or in memory. A Metafile object is an instance of the
Metafile class. The static FromFile method of the Image class creates a Metafile object based on an
existing metafile.

The bulk of the Metafile class is its 39 constructors, but some constructors are much simpler than
others. To create a Metafile object from an existing metafile referenced by either a filename or a
Stream object, you can use the following two constructors:

Metafile Constructors (selection)

Metafile(string strFileName)
Metafile(Stream stream)

These two constructors are essentially equivalent to the corresponding static FromFile methods of
the Image class except (of course) the constructors explicitly return an object of type Metafile:
Metafile mf = new Metafile("PrettyPicture.emf");

Because Metafile is descended from Image, you use the same methods for displaying the metafile:
grfx.DrawImage(mf, x, y);

Indeed, you can do just about anything with the metafile that is supported by the Image class. If
you've loaded an existing metafile from a file or stream, however, you can't use the static FromImage
method of the Graphics class to obtain a Graphics object for drawing on the metafile. That method is
reserved for metafiles that you create anew in your programs.
Metafile Sizes and Rendering
As you'll recall from Chapter 11, the Image class has several properties that describe the image.
Because Metafile is descended from Image, these properties also apply to metafiles. In particular,
you'll find the following properties useful when working with metafiles:

Image Properties (selection)

Type Property Accessibility

Size Size get

int Width get

int Height get

float HorizontalResolution get

float VerticalResolution get

SizeF PhysicalDimension get

For Bitmap objects, the Size, Width, and Height properties indicate the pixel dimension of the
bitmap—the number of rows and columns of bits. The HorizontalResolution and VerticalResolution
properties report information that's probably encoded in the bitmap: the number of pixels per inch
horizontally and vertically. You can easily calculate a metrical size of the bitmap in inches by dividing
the Width by the HorizontalResolution and the Height by the VerticalResolution. If you convert those
dimensions to millimeters and multiply by 100, you'll get numbers equal to the PhysicalDimension
property, which is the size of the bitmap in units of hundredths of millimeters.

For Metafile objects, the Size, Width, and Height properties are a little different. In many cases, these
properties reflect the extents of the coordinates and sizes of all the objects in the metafile. For
example, if the metafile consisted of a single DrawLine call with endpoint coordinates of (−50, 25)
and (100, 250), the Width would probably be 150 (or thereabouts) and the Height would be 225 (or
so). However, as we'll see shortly, the creator of the metafile can set the Width and Height properties
to something different. Also, wide lines could affect the size of the image and hence the Width and
Height properties. So, even though metafiles don't have pixels, they have something equivalent to a
pixel size.

Metafile objects also have valid HorizontalResolution and VerticalResolution properties that indicate
how the coordinates of the metafile relate to inches. That hypothetical metafile with a single
DrawLine call might have HorizontalResolution and VerticalResolution values of 75, so the image
would be 2 inches wide and 3 inches high. The PhysicalDimension property would be (5080, 7620).

To display a metafile in its metrical size with the upper left corner at the point (x, y), use
DrawImage(mf, x, y);

or one of the DrawImage variants that uses Point or PointF arguments. The displayed size of the
image is not affected by the page transform but is affected by the world transform.

The following DrawImage method—and its variants using Rectangle and RectangleF arguments—
displays a metafile stretched to the rectangle:
DrawImage(mf, x, y, cx, cy);

Both the page transform and the world transform affect the interpretation of the x, y, cx, and cy
arguments. To display a metafile in its pixel size, set page units to pixels and use
DrawImage(mf, x, y, mf.Width, mf.Height);

The Metafile class has no additional public properties beyond what it inherits from the Image class.
However, the metafile itself has a header that provides additional information about the metafile. The
metafile header is encapsulated in the MetafileHeader class. You can obtain an object of
MetafileHeader using the following instance method:

Metafile Nonstatic GetMetafileHeader Method

MetafileHeader GetMetafileHeader()

Or, for a metafile for which you don't have a Metafile object, you can use one of the following static
methods:

Metafile Static GetMetafileHeader Methods (selection)

MetafileHeader GetMetafileHeader(string strFileName)
MetafileHeader GetMetafileHeader(Stream stream)

There are two additional static GetMetafileHeader methods for use with Win32 handles to a metafile
or an enhanced metafile.

The MetafileHeader class has 10 read-only properties. Here are 5 of them:
MetafileHeader Properties (selection)

Type Property Accessibility

MetafileType Type get

int Version get

int MetafileSize get

int EmfPlusHeaderSize get

MetaHeader WmfHeader get

The Type property indicates the type of the metafile based on the MetafileType enumeration:
MetafileType Enumeration

Member Value

Invalid 0

Wmf 1

WmfPlaceable 2

Emf 3

EmfPlusOnly 4

EmfPlusDual 5

The Wmf members identify the old 16-bit metafiles. An Emf metafile was created by a 32-bit
Windows program using the Windows API or MFC. By default (as we'll see), the metafiles created by
a Windows Forms program are of type EmfPlusDual, which means that they contain both GDI and
GDI+ records. Such metafiles are usable by Win32 programs. An EmfPlusOnly metafile contains
only GDI+ records and is usable only by Windows Forms programs.

The MetafileSize property indicates the actual storage size of the entire metafile. For metafiles stored
on disk, it's equal to the file size. For WMF types, the WmfHeader property has additional information
about the metafile.

The following are all the methods of MetafileHeader, which mostly provide a Boolean interface to the
Type property:

MetafileHeader Methods

bool IsWmf()
bool IsWmfPlaceable()
bool IsEmf()
bool IsEmfPlus()

bool IsEmfPlusOnly()
bool IsEmfPlusDual()
bool IsEmfOrEmfPlus()
bool IsDisplay()

For MetafileType.Emf metafiles, the IsEmf and IsEmfOrEmfPlus methods return true. For
MetafileType.EmfPlusOnly metafiles, IsEmfPlus, IsEmfPlusOnly, and IsEmfOrEmfPlus return true.
For MetafileType.EmfPlusDual metafiles, IsEmfPlus, IsEmfPlusDual, and IsEmfOrEmfPlus return
true.

As we'll see, a metafile is always created based on a particular graphics output device. The IsDisplay
method returns true for a metafile based on the video display and false for a metafile based on a
printer.

These are the remaining MetafileHeader properties:
MetafileHeader Properties (selection)

Type Property Accessibility

Rectangle Bounds get

float DpiX get

float DpiY get

int LogicalDpiX get

int LogicalDpiY get

The Width and Height of the Bounds property should agree with the Width and Height properties that
the Metafile object inherits from Image. The DpiX and DpiY properties should agree with the
HorizontalResolution and VerticalResolution properties of the Image class. The LogicalDpiX and
LogicalDpiY properties don't have any relevance for Windows Forms programs, and you should
ignore them.

The X and Y properties of the Bounds property aren't necessarily 0. For example, earlier I discussed
a hypothetical metafile that consisted of a sole DrawLine call with coordinates of (−50, 25) and (100,
250). The Bounds property of the metafile header is generally the smallest rectangle that encloses all
the graphical objects in the metafile. A simple calculation predicts that the Bounds property will be
the rectangle (−50, 25, 150, 225).

Actually, in this case, you're more likely to see a Bounds property of (−51, 24, 153, 228). Because
GDI+ draws lines up to and including the second point, the line is actually a pixel longer than simple
arithmetic would dictate. Also, the line has a finite width, which increases the total dimension by
another pixel on either end. Moreover, the program creating the metafile can set a Bounds property
other than what the contents of the metafile would imply.

The origin of the Bounds rectangle—that is, its X and Y properties—doesn't affect the positioning of
the metafile when you render it. For example, if you draw the hypothetical simple metafile I've been
discussing using the call
grfx.DrawImage(mf, 0, 0);

you'll see the whole metafile. The upper left corner of the Bounds rectangle is displayed at the point
specified in the DrawImage call, in this example, the point (0, 0).

Here's a program that has an OpenFileDialog object configured to load disk-based metafiles and
display them.
MetafileViewer.cs
//---
// MetafileViewer.cs © 2001 by Charles Petzold

//---
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Drawing.Printing;
using System.IO; // For Path class
using System.Windows.Forms;

class MetafileViewer: Form
{
 protected Metafile mf;
 protected string strProgName;
 protected string strFileName;
 MenuItem miFileSaveAs, miFilePrint,
 miFileProps, miViewChecked;

 public static void Main()
 {
 Application.Run(new MetafileViewer());
 }
 public MetafileViewer()
 {
 Text = strProgName = "Metafile Viewer";
 ResizeRedraw = true;

 Menu = new MainMenu();

 // File menu

 MenuItem mi = new MenuItem("&File");
 mi.Popup += new EventHandler(MenuFileOnPopup);
 Menu.MenuItems.Add(mi);

 // File Open menu item

 mi = new MenuItem("&Open...");
 mi.Click += new EventHandler(MenuFileOpenOnClick);
 mi.Shortcut = Shortcut.CtrlO;
 Menu.MenuItems[0].MenuItems.Add(mi);

 // File Save As Bitmap menu item

 miFileSaveAs = new MenuItem("Save &As Bitmap...");
 miFileSaveAs.Click += new EventHandler(MenuFileSaveAsOnClick);
 Menu.MenuItems[0].MenuItems.Add(miFileSaveAs);

 Menu.MenuItems[0].MenuItems.Add("-");

 // File Print menu item

 miFilePrint = new MenuItem("&Print...");
 miFilePrint.Click += new EventHandler(MenuFilePrintOnClick);
 Menu.MenuItems[0].MenuItems.Add(miFilePrint);
 Menu.MenuItems[0].MenuItems.Add("-");

 // File Properties menu item

 miFileProps = new MenuItem("Propert&ies...");
 miFileProps.Click += new EventHandler(MenuFilePropsOnClick);
 Menu.MenuItems[0].MenuItems.Add(miFileProps);

 // Edit menu (temporary until Chapter 24)

 Menu.MenuItems.Add("&Edit");

 // View menu

 Menu.MenuItems.Add("&View");

 string[] astr = { "&Stretched to Window",
 "&Metrical Size", "&Pixel Size" };
 EventHandler eh = new EventHandler(MenuViewOnClick);

 foreach (string str in astr)
 Menu.MenuItems[2].MenuItems.Add(str, eh);

 miViewChecked = Menu.MenuItems[2].MenuItems[0];
 miViewChecked.Checked = true;
 }
 void MenuFileOnPopup(object obj, EventArgs ea)
 {
 miFileSaveAs.Enabled =
 miFilePrint.Enabled =
 miFileProps.Enabled = (mf != null);
 }
 void MenuFileOpenOnClick(object obj, EventArgs ea)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Filter = "All Metafiles|*.wmf;*.emf|" +
 "Windows Metafile (*.wmf)|*.wmf|" +

 "Enhanced Metafile (*.emf)|*.emf|" +
 "All files|*.*";

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 try
 {
 mf = new Metafile(dlg.FileName);
 }
 catch (Exception exc)
 {
 MessageBox.Show(exc.Message, strProgName);
 return;
 }
 strFileName = dlg.FileName;
 Text = strProgName + " - " + Path.GetFileName(strFileName);
 Invalidate();
 }
 }
 protected virtual void MenuFileSaveAsOnClick(object obj, EventArgs
ea)
 {
 MessageBox.Show("Not yet implemented!", strProgName);
 }
 void MenuFilePrintOnClick(object obj, EventArgs ea)
 {
 PrintDocument prndoc = new PrintDocument();

 prndoc.DocumentName = Text;
 prndoc.PrintPage += new PrintPageEventHandler(OnPrintPage);
 prndoc.Print();
 }
 void MenuFilePropsOnClick(object obj, EventArgs ea)
 {
 MetafileHeader mh = mf.GetMetafileHeader();

 string str =
 "Image Properties" +
 "\n\tSize = " + mf.Size +
 "\n\tHorizontal Resolution = " + mf.HorizontalResolution +
 "\n\tVertical Resolution = " + mf.VerticalResolution +
 "\n\tPhysical Dimension = " + mf.PhysicalDimension +
 "\n\nMetafile Header Properties" +
 "\n\tBounds = " + mh.Bounds +
 "\n\tDpiX = " + mh.DpiX +
 "\n\tDpiY = " + mh.DpiY +

 "\n\tLogicalDpiX = " + mh.LogicalDpiX +
 "\n\tLogicalDpiY = " + mh.LogicalDpiY +
 "\n\tType = " + mh.Type +
 "\n\tVersion = " + mh.Version +
 "\n\tMetafileSize = " + mh.MetafileSize;

 MessageBox.Show(str, Text);
 }
 void MenuViewOnClick(object obj, EventArgs ea)
 {
 miViewChecked.Checked = false;
 miViewChecked = (MenuItem) obj;
 miViewChecked.Checked = true;
 Invalidate();
 }
 void OnPrintPage(object obj, PrintPageEventArgs ppea)
 {
 Graphics grfx = ppea.Graphics;
 Rectangle rect = new Rectangle(
 ppea.MarginBounds.Left -
 (ppea.PageBounds.Width -
 (int) grfx.VisibleClipBounds.Width) / 2,
 ppea.MarginBounds.Top -
 (ppea.PageBounds.Height -
 (int) grfx.VisibleClipBounds.Height) / 2,
 ppea.MarginBounds.Width,
 ppea.MarginBounds.Height);

 DisplayMetafile(grfx, rect);
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 if (mf != null)
 DisplayMetafile(pea.Graphics, ClientRectangle);
 }
 void DisplayMetafile(Graphics grfx, Rectangle rect)
 {
 switch (miViewChecked.Index)
 {
 case 0: grfx.DrawImage(mf, rect); break;
 case 1: grfx.DrawImage(mf, rect.X, rect.Y); break;
 case 2: grfx.DrawImage(mf, rect.X, rect.Y, mf.Width,
mf.Height);
 break;
 }
 }

}

This program has a couple features that go beyond the ImageOpen program from Chapter 16 (which
also can load and display metafiles). First, it has a Properties item on the File menu that displays the
most important information about the metafile from the Image and MetafileHeader properties. It also
has a menu item to select three different ways of displaying the metafile using DrawImage. The Print
option lets you print the metafile based on that menu selection.

Several menu items are not yet implemented. The program has an entire Edit menu that I'll show
code for in Chapter 24. The File menu also has an unimplemented Save As Bitmap item that I'll go
over in the next section.
Converting Metafiles to Bitmaps
I mentioned earlier that it's easy to convert a metafile into a bitmap. In fact, the facility is built into
Windows Forms. If you use the ImageIO program to load a metafile, you can save it as a bitmap.

It's possible that you'll want to perform this conversion yourself, either to maintain more control over
the process or when you don't want to save the bitmap to a disk file. Perhaps you're dealing with a
metafile that contains lots of drawing commands and converting it to a bitmap would speed up the
display.

The following program inherits from MetafileViewer and includes a method called MetafileToBitmap
that converts a Metafile object to a Bitmap object. The program ends up saving the bitmap to a disk
file anyway (just as ImageIO does), but you can use the method for other purposes as well.
MetafileConvert.cs
//--
// MetafileConvert.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO; // For Path class
using System.Windows.Forms;

class MetafileConvert: MetafileViewer
{
 public new static void Main()
 {
 Application.Run(new MetafileConvert());
 }
 public MetafileConvert()
 {
 Text = strProgName = "Metafile Convert";
 }
 protected override void MenuFileSaveAsOnClick(object obj, EventArgs
ea)
 {
 SaveFileDialog dlg = new SaveFileDialog();

 if (strFileName != null && strFileName.Length > 0)
 dlg.InitialDirectory = Path.GetDirectoryName(strFileName);

 dlg.FileName = Path.GetFileNameWithoutExtension(strFileName);
 dlg.AddExtension = true;
 dlg.Filter = "Windows Bitmap (*.bmp)|*.bmp|" +
 "Graphics Interchange Format (*.gif)|*.gif|" +
 "JPEG File Interchange Format (*.jpg)|" +
 "*.jpg;*.jpeg;*.jfif|" +
 "Portable Network Graphics (*.png)|*.png|" +
 "Tagged Image File Format (*.tif)|*.tif;*.tiff";

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 Bitmap bm = MetafileToBitmap(mf);

 try
 {
 bm.Save(dlg.FileName);
 }
 catch (Exception exc)
 {
 MessageBox.Show(exc.Message, Text);
 }
 }
 }
 Bitmap MetafileToBitmap(Metafile mf)
 {
 Graphics grfx = CreateGraphics();
 int cx = (int) (grfx.DpiX * mf.Width /
mf.HorizontalResolution);
 int cy = (int) (grfx.DpiY * mf.Height / mf.VerticalResolution);
 Bitmap bm = new Bitmap(cx, cy, grfx);
 grfx.Dispose();

 grfx = Graphics.FromImage(bm);
 grfx.DrawImage(mf, 0, 0, cx, cy);
 grfx.Dispose();

 return bm;
 }
}

To convert a metafile to a bitmap, you must first create a Bitmap object of a particular size. Then you
obtain a Graphics object to draw on the bitmap:
grfx = Graphics.FromImage(bm);

If the size of the bitmap is stored in the variables cx and cy, you can cover the bitmap with the
metafile by using the following code:
grfx.DrawImage(mf, 0, 0, cx, cy);

These two lines of code will work regardless of the size of the bitmap you create. If you need to
display a metafile image on a button, for example, you'll want to make the bitmap the size of the
button.

The MetafileToBitmap method in the MetafileConvert program creates a bitmap that's based on the
metrical size of the metafile. The Bitmap constructor used in this method includes a Graphics object,
in this case a Graphics object for the video display. The bitmap will thus have the same resolution as
the video display. From that resolution—and the size and resolution of the metafile—it's easy to
calculate the pixel size of the bitmap.

The bitmap that MetafileToBitmap creates is the same size as the bitmap the Save method of Image
creates when it converts a metafile to a bitmap.

Another approach to converting a metafile to a bitmap is so simple and straightforward that it eluded
me until this book was almost ready to go to press. As you'll recall, one of the Bitmap constructors
takes a single Image argument. That argument can be a Metafile object:
Bitmap bm = new Bitmap(mf);

The resultant bitmap has the same pixel size as the original metafile but with the resolution of the
video display.
Creating New Metafiles
So far, I've discussed only 2 of the 39 Metafile constructors. Those two constructors are the only
ones that directly load an existing metafile based on a filename or a Stream. Three of the Metafile
constructors create a metafile object based on Win32 metafile handles and are useful for interfacing
with existing code. The remaining 34 constructors to Metafile create a new metafile, which very often
means that the constructors create a new disk file or delete the contents of an existing file in
preparation for creating a new metafile. Here are the two simplest constructors that create a new
metafile:

Metafile Constructors (selection)

Metafile(string strFileName, IntPtr ipHdc)
Metafile(Stream stream, IntPtr ipHdc)

That second argument is quite an oddity. The metafile needs to be associated with a particular
graphics output device in order to obtain resolution information. It would make more sense for the
second argument to be a Graphics object, like so:
Metafile mf = new Metafile("NewFile.emf", grfx); // Wrong,
unfortunately!

This functionality would match that of the Bitmap constructor in the MetafileToBitmap method I just
described.

Instead, the second argument to the Metafile constructor is defined as a Win32 device context
handle. The Graphics object encapsulates the Win32 device context, so you need to use the GetHdc
and ReleaseHdc methods of the Graphics class to obtain and release this handle:
IntPtr ipHdc = grfx.GetDC();
Metafile mf = new Metafile("NewFile.emf", ipHdc);
grfx.ReleaseDC(ipHdc);

In most cases, you'll want to create a metafile that is based on the resolution of the video display, but
you won't be creating a new metafile in your OnPaint method. Instead, as you know, in any class
descended from Control, you can use the CreateGraphics method to obtain such a Graphics object.
You should call Dispose on this Graphics object after you're finished using it, so your creation of a
new metafile will look something like this:
Graphics grfxVideo = CreateGraphics();
IntPtr ipHdc = grfxVideo.GetDC();

Metafile mf = new Metafile("NewFile.emf", ipHdc);
grfxVideo.ReleaseDC(ipHdc);
grfxVideo.Dispose();

This code is certainly wordier than equivalent Win32 code. One option of the Win32 metafile-creation
function lets you specify a null device to indicate the video display, but unfortunately, that option isn't
allowed in the Metafile constructor.

After you've created the metafile, you must obtain another Graphics object to insert drawing
commands in the metafile. You obtain this Graphics object by using the same static method you use
for drawing on a bitmap:
Graphics grfxMetafile = Graphics.FromImage(mf);

For purposes of clarity, I've given these two different Graphics objects different names. But because
they don't overlap, you can use just one Graphics variable if that's convenient.

With the Graphics object obtained from the FromImage method, you can call any drawing method. A
coded record of each method ends up in the metafile. The Graphics class also has a method that
can be used only with metafiles:

Graphics Methods (selection)

void AddMetafileComment(byte[] abyData)

After drawing on the metafile, you'll also want to call Dispose on this second Graphics object:
grfxMetafile.Dispose();

Here's a small program that inherits from PrintableForm and creates a metafile in its constructor. In
its DoPage method, the CreateMetafile program obtains the size of the metafile and uses that to
display multiple copies in its client area or on the printer page.
CreateMetafile.cs
//---
// CreateMetafile.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO; // Not used for anything yet!
using System.Windows.Forms;

class CreateMetafile: PrintableForm
{
 Metafile mf;

 public new static void Main()
 {
 Application.Run(new CreateMetafile());
 }
 public CreateMetafile()
 {
 Text = "Create Metafile";

 // Create the metafile.

 Graphics grfx = CreateGraphics();
 IntPtr ipHdc = grfx.GetHdc();

 mf = new Metafile("CreateMetafile.emf", ipHdc);

 grfx.ReleaseHdc(ipHdc);
 grfx.Dispose();

 // Draw on the metafile.

 grfx = Graphics.FromImage(mf);

 grfx.FillEllipse(Brushes.Gray, 0, 0, 100, 100);
 grfx.DrawEllipse(Pens.Black, 0, 0, 100, 100);
 grfx.FillEllipse(Brushes.Blue, 20, 20, 20, 20);
 grfx.FillEllipse(Brushes.Blue, 60, 20, 20, 20);
 grfx.DrawArc(new Pen(Color.Red, 10), 20, 20, 60, 60, 30, 120);
 grfx.Dispose();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 for (int y = 0; y < cy; y += mf.Height)
 for (int x = 0; x < cx; x += mf.Width)
 grfx.DrawImage(mf, x, y, mf.Width, mf.Height);
 }
}

The image contained in the metafile consists of calls to DrawEllipse, FillEllipse, and DrawArc. These
calls—with the proper pens and brushes—are rendered on the client area by the program's DoPage
method. The program uses DrawImage with width and height arguments to draw the image in its
pixel dimension:

The only peculiarity you might observe is that these multiple images aren't pressed up against each
other. The margin around each image is one of the side effects of the technique that the Metafile
class uses to convert floating-point coordinates in GDI+ curves to integer coordinates in GDI metafile
records. We'll see shortly how you can control the dimensions of this boundary so that the
overindulgent margins go away.

The CreateMetafile program uses this form of the DrawImage method to render the metafile in its
pixel (rather than metrical) size:
grfx.DrawImage(mf, x, y, mf.Width, mf.Height);

For the video display, I could just as easily display the metafile in its metrical size:
grfx.DrawImage(mf, x, y);

Because the metafile has the same resolution as the video display, the results would be the same.
However, the two versions of DrawImage would probably render different-sized images on the
printer. As with bitmaps, it's easier to accurately position metafiles when displaying them in their pixel
size.

An alternative is replacing the entire body of DoPage with the following statement:
grfx.FillRectangle(new TextureBrush(mf), 0, 0, cx, cy);

This statement fills the client area with a TextureBrush object created from the metafile. And you
probably thought texture brushes could only be created from bitmaps!

Every time you run the CreateMetafile program, it re-creates a file named CreateMetafile.emf. But re-
creating that file each time is unnecessary. You might try inserting the following code in the
CreateMetafile constructor right after the assignment of the Text property:
if (File.Exists("CreateMetafile.emf"))
{
 mf = new Metafile("CreateMetafile.emf");
 return;
}

This code loads the metafile if it exists and then exits from the constructor. (The static Exists method
of the File class is defined in the System.IO namespace. The CreateMetafile program conveniently
includes a using statement for this namespace, even though it's not required for anything else in the
program.)

The CreateMetafile program retains the Metafile object (named mf) as a field. Doing so is necessary
for the DoPage method to use the metafile that the constructor creates. But it isn't strictly necessary

to save the Metafile object. The DoPage method itself can load the metafile. The
CreateMetafileReload program is similar to CreateMetafile where the constructor creates the metafile
only if it doesn't exist. But the Metafile object isn't saved as a field. Instead, the filename is stored as
a file and the DoPage method loads the metafile itself.
CreateMetafileReload.cs
//---
// CreateMetafileReload.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Windows.Forms;

class CreateMetafileReload: PrintableForm
{
 const string strMetafile = "CreateMetafileReload.emf";

 public new static void Main()
 {
 Application.Run(new CreateMetafileReload());
 }
 public CreateMetafileReload()
 {
 Text = "Create Metafile (Reload)";

 if (!File.Exists(strMetafile))
 {
 // Create the metafile.

 Graphics grfx = CreateGraphics();
 IntPtr ipHdc = grfx.GetHdc();

 Metafile mf = new Metafile(strMetafile, ipHdc);

 grfx.ReleaseHdc(ipHdc);
 grfx.Dispose();

 // Draw on the metafile.

 grfx = Graphics.FromImage(mf);

 grfx.FillEllipse(Brushes.Gray, 0, 0, 100, 100);
 grfx.DrawEllipse(Pens.Black, 0, 0, 100, 100);
 grfx.FillEllipse(Brushes.Blue, 20, 20, 20, 20);
 grfx.FillEllipse(Brushes.Blue, 60, 20, 20, 20);

 grfx.DrawArc(new Pen(Color.Red, 10), 20, 20, 60, 60, 30,
120);
 grfx.Dispose();
 }
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 Metafile mf = new Metafile(strMetafile);

 for (int y = 0; y < cy; y += mf.Height)
 for (int x = 0; x < cx; x += mf.Width)
 grfx.DrawImage(mf, x, y, mf.Width, mf.Height);
 }
}

I've been demonstrating the use of Metafile constructors with string arguments indicating filenames.
You can also specify a Stream argument. For example, you can replace the constructor in the
DoPage method with the following code and it will work the same:
FileStream fs = new FileStream(strMetafile, FileMode.Open);
Metafile mf = new Metafile(fs);
fs.Close();

What won't work is a FileStream constructor that opens the file for writing only or a FileMode
argument that destroys the contents of the file.

Similarly, you can use a FileStream object in the program's constructor to create the Metafile object:
FileStream fs = new FileStream(strMetafile, FileMode.Create);
Metafile mf = new Metafile(fs, ipHdc);

Notice that this FileMode argument indicates that the file should be re-created. After all the Graphics
calls have been made to insert commands into the metafile, close the stream:
fs.Close();

It's also possible to use a MemoryStream object to create the metafile in memory. Because
MemoryStream objects don't have names, a program must retain either the MemoryStream object or
the Metafile object as a field.

Let's go back to the original CreateMetafile program. If you earlier followed my suggestions by
inserting a block of code that called File.Exists, remove it. Now replace the Metafile constructor
mf = new Metafile("CreateMetafile.emf", ipHdc);

with this one:
mf = new Metafile(new MemoryStream(), ipHdc);

MemoryStream is defined in the System.IO namespace. With this variation of the constructor, the
metafile is created and accessed in memory. No file is left behind.

In the following program, the MemoryStream object (but not the Metafile object) is stored as a field.
CreateMetafileMemory.cs
//---
// CreateMetafileMemory.cs © 2001 by Charles Petzold
//---
using System;

using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Windows.Forms;

class CreateMetafileMemory: PrintableForm
{
 readonly MemoryStream ms = new MemoryStream();

 public new static void Main()
 {
 Application.Run(new CreateMetafileMemory());
 }
 public CreateMetafileMemory()
 {
 Text = "Create Metafile (Memory)";

 // Create the metafile.

 Graphics grfx = CreateGraphics();
 IntPtr ipHdc = grfx.GetHdc();

 Metafile mf = new Metafile(ms, ipHdc);

 grfx.ReleaseHdc(ipHdc);
 grfx.Dispose();

 // Draw on the metafile.

 grfx = Graphics.FromImage(mf);

 grfx.FillEllipse(Brushes.Gray, 0, 0, 100, 100);
 grfx.DrawEllipse(Pens.Black, 0, 0, 100, 100);
 grfx.FillEllipse(Brushes.Blue, 20, 20, 20, 20);
 grfx.FillEllipse(Brushes.Blue, 60, 20, 20, 20);
 grfx.DrawArc(new Pen(Color.Red, 10), 20, 20, 60, 60, 30, 120);
 grfx.Dispose();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)
 {
 ms.Position = 0;
 Metafile mf = new Metafile(ms);

 for (int y = 0; y < cy; y += mf.Height)
 for (int x = 0; x < cx; x += mf.Width)

 grfx.DrawImage(mf, x, y, mf.Width, mf.Height);
 }
}

Notice that the first statement of the DoPage method sets the position of the MemoryStream object
back to 0. Otherwise, an exception is thrown that is very hard to diagnose.

Creating a metafile in memory is useful if you just need to pass a metafile through the clipboard.
You'll see how to use the clipboard to copy and paste metafiles in Chapter 24.
The Metafile Boundary Rectangle
When you insert Graphics drawing commands into a metafile, the metafile calculates a boundary
rectangle. This is the smallest rectangle that encompasses all the objects stored in the metafile. You
can obtain the width and height of this boundary rectangle by using the Size, Width, and Height
properties that the Metafile class inherits from Image. Or you can obtain the complete boundary
rectangle from the Bounds property of the MetafileHeader object associated with the metafile.

The programs shown so far in this chapter demonstrate that the metafile often calculates a boundary
rectangle that is larger than the contents would imply. If you want total control over the boundary,
you can use alternative versions of the Metafile constructor. Here are four versions that let you
specify a boundary rectangle when creating a metafile stored in a file:

Metafile Constructors (selection)

Metafile(string strFileName, IntPtr ipHdc, Rectangle rect)
Metafile(string strFileName, IntPtr ipHdc, RectangleF rectf)
Metafile(string strFileName, IntPtr ipHdc, Rectangle rect,
 MetafileFrameUnit mfu)
Metafile(string strFileName, IntPtr ipHdc, RectangleF rectf,
 MetafileFrameUnit mfu)

MetafileFrameUnit is an enumeration defined in the System.Drawing.Imaging namespace. The
enumeration indicates the units of the boundary rectangle specified in the constructor.
MetafileFrameUnit plays no other role in the metafile, and the argument you specify is not retained:
MetafileFrameUnit Enumeration

Member Value Description

Pixel 2 Units of pixels

Point 3 Units of 1/72 inch

Inch 4 Units of inches

Document 5 Units of 1/300 inch

Millimeter 6 Units of millimeters

GdiCompatible 7 Units of 1/100 millimeter

If you specify no MetafileFrameUnit argument, the default is GdiCompatible. This is probably not
what you want!

For simple metafile creation, the easiest MetafileFrameUnit is definitely Pixel. For example, here's
the metafile-creation statement in the original version of CreateMetafile:
mf = new Metafile("CreateMetafile.emf", ipHdc);

Try replacing it with this one:
mf = new Metafile("CreateMetafile.emf", ipHdc,

 new Rectangle(0, 0, 101, 101), MetafileFrameUnit.Pixel);

That rectangle is defined in accordance with the coordinates later passed to the various Graphics
methods. Now the Width and Height properties of the Metafile object obtained during the DoPage
method are 101 and 101. Thus, the displayed images are 101 pixels apart:

"Why 101?" you ask. Because the largest object in the metafile was created using this call:
grfx.DrawEllipse(Pens.Black, 0, 0, 100, 100);

As you'll recall, when the pen is 1 pixel wide, the total width and height of such an object will be 101
pixels.

It isn't necessary for the boundary rectangle to have an origin at (0, 0), nor for the boundary
rectangle to accurately describe the coordinates of the drawing methods in the metafile. For
example, if you change the rectangle argument to
mf = new Metafile("CreateMetafile.emf", ipHdc,
 new Rectangle(-25, -25, 75, 75),
MetafileFrameUnit.Pixel);

the images are displayed like so:

The metafile image has a width and height of 75 pixels, but the origin is (−25, −25). Because no
negative coordinates were used in the graphics objects inserted in the metafile, the top and left sides
of the image are empty. When displaying the metafile, the image is clipped to the Bounds rectangle.

It's also possible to specify the rectangle in combination with a Stream argument:

Metafile Constructors (selection)

Metafile(Stream stream, IntPtr ipHdc, Rectangle rect)
Metafile(Stream stream, IntPtr ipHdc, RectangleF rectf)
Metafile(Stream stream, IntPtr ipHdc, Rectangle rect,
 MetafileFrameUnit mfu)
Metafile(Stream stream, IntPtr ipHdc, RectangleF rectf,
 MetafileFrameUnit mfu)

For example, you can replace the metafile constructor in the original version of the CreateMetafile
program with the following:
mf = new Metafile(new MemoryStream(), ipHdc,
 new Rectangle(0, 0, 101, 101), MetafileFrameUnit.Pixel);

It's also possible to create a new metafile without specifying either a filename or a Stream:

Metafile Constructors (selection)

Metafile(IntPtr ipHdc, Rectangle rect)
Metafile(IntPtr ipHdc, RectangleF rectf)
Metafile(IntPtr ipHdc, Rectangle rect, MetafileFrameUnit mfu)
Metafile(IntPtr ipHdc, RectangleF rectf, MetafileFrameUnit mfu)

When you specify neither a filename nor a Stream, the metafile is created in memory but you don't
have access to the memory buffer as you do with a MemoryStream object. Here's another alternative
metafile-creation statement for CreateMetafile:
mf = new Metafile(ipHdc,

 new Rectangle(0, 0, 101, 101), MetafileFrameUnit.Pixel);

This last set of constructors would seem to imply that it should be possible to create a new metafile
by specifying only a device context handle, but such a constructor doesn't exist.

You can use a MetafileFrameUnit other than Pixel, but doing so probably makes sense only if you're
also drawing on the metafile in units other than pixels. Let's examine how the metafile and the page
transform interact.
Metafiles and the Page Transform
A metafile has a width and a height that are available from the Size, Width, and Height properties of
the Image class and the Bounds property of the MetafileHeader class. It is convenient to think of the
width and height of the metafile in terms of pixels, much like a bitmap. But the metafile's width and
height are really more closely related to the extents of all the coordinates and sizes used in the
graphics functions that went into the metafile.

A metafile also has a resolution in dots per inch that is available from the HorizontalResolution and
VerticalResolution properties of the Image class and the DpiX and DpiY properties of the
MetafileHeader class. These resolutions indicate how the coordinates and sizes encoded in the
metafile correspond to inches.

In addition, a metafile has a metrical dimension, which you can calculate from the pixel dimension
and the resolution. Or you can use the PhysicalDimension property of the Image class to obtain the
size in hundredths of millimeters.

The resolution of a metafile is set when the metafile is created. The Metafile constructor requires a
device context handle, and that output device provides a resolution for the metafile. All the
coordinates and sizes in the graphics calls encoded within the metafile must be consistent with that
resolution. As you add graphics calls to the metafile, coordinates and sizes are adjusted based on
any page transform in effect.

Let's take a look at a program that creates a metafile containing four overlapping rectangles. Each
rectangle is 1-inch square and is drawn with a 1-point-wide pen, but each rectangle is created with a
different page transform in effect.
MetafilePageUnits.cs
//--
// MetafilePageUnits.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Drawing.Printing; // Not used for anything yet!
using System.Windows.Forms;

class MetafilePageUnits: PrintableForm
{
 Metafile mf;

 public new static void Main()
 {
 Application.Run(new MetafilePageUnits());
 }
 public MetafilePageUnits()
 {
 Text = "Metafile Page Units";

 // Create metafile.

 Graphics grfx = CreateGraphics();
 IntPtr ipHdc = grfx.GetHdc();

 mf = new Metafile("MetafilePageUnits.emf", ipHdc);

 grfx.ReleaseHdc(ipHdc);
 grfx.Dispose();

 // Get Graphics object for drawing on metafile.

 grfx = Graphics.FromImage(mf);
 grfx.Clear(Color.White);

 // Draw in units of pixels (1-point pen width).

 grfx.PageUnit = GraphicsUnit.Pixel;
 Pen pen = new Pen(Color.Black, grfx.DpiX / 72);
 grfx.DrawRectangle(pen, 0, 0, grfx.DpiX, grfx.DpiY);

 // Draw in units of 1/100 inch (1-point pen width).

 grfx.PageUnit = GraphicsUnit.Inch;
 grfx.PageScale = 0.01f;
 pen = new Pen(Color.Black, 100f / 72);
 grfx.DrawRectangle(pen, 25, 25, 100, 100);

 // Draw in units of millimeters (1-point pen width).

 grfx.PageUnit = GraphicsUnit.Millimeter;
 grfx.PageScale = 1;
 pen = new Pen(Color.Black, 25.4f / 72);
 grfx.DrawRectangle(pen, 12.7f, 12.7f, 25.4f, 25.4f);

 // Draw in units of points (1-point pen width).

 grfx.PageUnit = GraphicsUnit.Point;
 pen = new Pen(Color.Black, 1);
 grfx.DrawRectangle(pen, 54, 54, 72, 72);

 grfx.Dispose();
 }
 protected override void DoPage(Graphics grfx, Color clr, int cx, int
cy)

 {
 grfx.DrawImage(mf, 0, 0);
 }
}

Despite the fact that the four rectangles are drawn in units of pixels, inches, millimeters, and points,
it's comforting to see how these rectangles are stored and rendered in a consistent manner:

The first rectangle (the one at the top left) is drawn in units of pixels:
grfx.PageUnit = GraphicsUnit.Pixel;
Pen pen = new Pen(Color.Black, grfx.DpiX / 72);
grfx.DrawRectangle(pen, 0, 0, grfx.DpiX, grfx.DpiY);

The default PageUnit property setting for a metafile based on the video display is GraphicsUnit.Pixel,
so that first statement isn't strictly required. But it's necessary if you try the variation I'm going to
describe next.

So far, all the metafiles we've created have been based on the video display resolution. You can also
base a metafile on the printer. Simply replace the statement
Graphics grfx = CreateGraphics();

near the top of the constructor with these statements that obtain a PrinterSettings object for the
default printer and then a Graphics object suitable for creating a metafile:
PrinterSettings prnset = new PrinterSettings();
Graphics grfx = prnset.CreateMeasurementGraphics();

As the resultant metafile is rendered on the screen and the printer, it appears to be the same as the
original one based on the video display. However, a little exploration will reveal that the new metafile
resolution is now consistent with your default printer. In addition, all the coordinates and sizes
encoded in the metafile reflect this higher resolution.
The Metafile Type
A metafile consists of a header and records. We'll examine how to view metafile records toward the
end of this chapter, but for now you should know that each record is identified by a member of the
EmfPlusRecordType enumeration, which is defined in the System.Drawing.Imaging namespace. At
253 members, EmfPlusRecordType is the largest enumeration in all of the .NET Framework. Here
are three related members of the enumeration:
EmfPlusRecordType Enumeration (selection)

Member Value

EmfPolyline 4

DrawLines 16397

WmfPolyline 66341

The third item in this little list has a prefix of Wmf, which stands for Windows Metafile and indicates
the 16-bit metafile format. This particular record identifies a GDI function call of Polyline using points
with 16-bit coordinates. You'll find WmfPolyline records in metafiles created before the advent of the
32-bit versions of Windows or in metafiles created by 32-bit programs to be backward compatible
with earlier code. Such metafiles are still much-used in libraries of clip art.

The EmfPolyline member has a prefix of Emf, which stands for Enhanced Metafile and indicates the
32-bit metafile format. Again, the record identifies a function call of Polyline, but the points have 32-
bit coordinates. You'll find such records in enhanced metafiles created by 32-bit versions of
Windows.

The DrawLines record identifies the DrawLines method of the Graphics class. You'll find such
records only in EMF+ metafiles created by Windows Forms programs.

For backward compatibility with 32-bit Windows programs, the default behavior of the Metafile class
results in metafiles that actually have two sets of records: EMF records (such as EmfPolyline) and
EMF+ records (such as DrawLines). The EMF records mimic the functionality of the EMF+ records.

However, you can create shorter metafiles if you're using the metafiles in a more restricted way. For
example, if you intend the metafiles to be read only by Win32 programs, the metafiles don't need the
EMF+ records. If the metafiles will be read only by other Windows Forms programs, the metafiles
don't need EMF records.

Here are some simple Metafile constructors that have EmfType arguments in conjunction with an
optional description string:

Metafile Constructors (selection)

Metafile(string strFileName, IntPtr ipHdc, EmfType et)
Metafile(string strFileName, IntPtr ipHdc, EmfType et, string
strDescription)
Metafile(Stream stream, IntPtr ipHdc, EmfType et)
Metafile(Stream stream, IntPtr ipHdc, EmfType et, string strDescription)
Metafile(IntPtr ipHdc, EmfType et)
Metafile(IntPtr ipHdc, EmfType et, string strDescription)

The description string usually describes the image, possibly with a copyright notice. It's embedded in
the metafile header. The EmfType enumeration is defined like so:
EmfType Enumeration

Member Value

EmfOnly 3

EmfPlusOnly 4

EmfPlusDual 5

When you specify an EmfType argument of EmfOnly, the metafile contains only EMF records. You
should use this option if the metafiles your program creates will be used only by non–Windows
Forms programs.

When you specify an EmfType argument of EmfPlusOnly, the metafile contains only EMF+ records.
Such metafiles have the advantage of being comparatively small, but they are usable only by other
Windows Forms programs.

The EmfType argument of EmfPlusDual is the default. The metafile contains both EMF and EMF+
records. Consequently, the metafile is just about equal to the size of a corresponding EmfOnly
metafile plus an EmfPlusOnly metafile.

If you want to create a 16-bit WMF from a Windows Forms program, you must create a WMF handle
using Win32 code and pass that handle to the appropriate Metafile constructor. You can also create
a Metafile object based on an EMF handle obtained using Win32 code.

So far, I've shown you 22 of the 39 constructors and described the three that create Metafile objects
from Win32 metafiles handles. The remaining 14 constructors let you specify both a boundary
rectangle and a metafile type.

Ten of these constructors begin with a filename or Stream followed by an IntPtr to a device context
handle. Next is either a Rectangle or RectangleF object with a MetafileFrameUnit member. The
constructor concludes with an EmfType member, a description string, or both. But if the constructor
begins with a Stream, it must have an EmfType member.

The other four constructors begin with an IntPtr to a device context handle. Next is a Rectangle or
RectangleF object with a MetafileFrameUnit member. The constructor concludes with an EmfType
member and an optional description string.

Here are the three most generalized, most inclusive, and longest Metafile constructors:

Metafile Constructors (selection)

Metafile(string strFileName, IntPtr ipHdc, RectangleF rectf,
 MetafileFrameUnit mfu, EmfType et, string strDescription)
Metafile(Stream stream, IntPtr ipHdc, RectangleF rectf,
 MetafileFrameUnit mfu, EmfType et, string strDescription)
Metafile(IntPtr ipHdc, RectangleF rectf,
 MetafileFrameUnit mfu, EmfType et, string strDescription)
Enumerating the Metafile
Because metafiles are often stored on disk, the inquisitive programmer can be tempted to open them
as regular files and go poking around inside. That sounds like fun to me, but there's also a method of
the Graphics class that lets you examine metafile records in a more structured manner. Basically,
you provide a method in your program that is called for each record in the metafile.

The EnumerateMetafile method comes in 36 versions, of which this is the simplest:

Graphics EnumerateMetafile Methods (selection)

void EnumerateMetafile(Metafile mf, Point pt,
 Graphics.EnumerateMetafileProc emp)

It may seem odd that EnumerateMetafile is a method of our old friend the Graphics class. But you'll
see shortly that the method not only enumerates a metafile but also provides a way to render it on a
record-by-record basis. As your method gets access to every record of the metafile, it can decide to
let the record be rendered, skip the record, or (if you're particularly brave) modify the record and
render it. And that's also why there are so many versions of the EnumerateMetafile method. The
methods are similar to the various overloads of DrawImage.

Rather than list all 36 versions of EnumerateMetafile, here's a summary of the required and optional
arguments:

§ The first argument is always a Metafile object.
§ The second argument is always a destination. You can specify a Point, a PointF, an array of

three Point or PointF structures, a Rectangle, or a RectangleF. Just as in DrawImage, when you
specify an array of three Point or PointF structures, the points represent the destination of the
top left, top right, and bottom left corners of the image.

§ Next can be an optional argument that indicates a source rectangle within the metafile. If the
destination argument is a Point, a Point array, or a Rectangle, the source rectangle must be a
Rectangle. If the destination argument is a PointF, a PointF array, or a RectangleF, the source
rectangle must be a RectangleF. The destination rectangle must be followed by a GraphicsUnit
value indicating the units of the source rectangle.

§ The next argument is required. It's a method in your program that you've defined in accordance
with the Graphics.EnumerateMetafileProc delegate. This is the method that gets called for each
record in the metafile.

§ The next argument is optional. It's an IntPtr that is defined as a pointer to programmer-defined
data that's supposed to be passed to the enumeration method defined in the previous argument.
However, there is no argument in the Graphics.EnumerateMetafileProc delegate for this
programmer-defined data.

§ If the optional IntPtr argument is present, it can be followed by another optional argument,
which is an ImageAttributes object that determines certain aspects of how the image is
displayed.

Here's that simplest call to EnumerateMetafile as it might appear in an actual program:
grfx.EnumerateMetafile(mf, new Point(0, 0),
 new Graphics.EnumerateMetafileProc(EnumMetafileProc));

The last argument makes reference to a method named EnumMetafileProc that is defined in
accordance with the Graphics.EnumerateMetafileProc delegate. Such a method appears in your
program looking something like this:
bool EnumMetafileProc(EmfPlusRecordType eprt, int iFlags,
 int iDataSize, IntPtr ipData,
 PlayRecordCallback prc)
{

 return bContinue;
}

This metafile enumeration method returns true to continue enumerating the metafile and false
otherwise.

The arguments to the enumeration method (which I'll identify briefly here and discuss in more detail
shortly) begin with a member of the EmfPlusRecordType enumeration that identifies the record. The
iFlags argument is undocumented.

The iDataSize argument indicates the number of bytes that the ipData argument points to. This data
is unique for each record type. For example, a record type that indicates a polyline would store a
point count and multiple points in ipData.

The last argument is of type PlayRecordCallback, which is a delegate defined in the
System.Drawing.Imaging namespace. You recall that EnumerateMetafileProc is also a delegate. It's
very unusual for an argument of a delegate to be another delegate. Here's how the
PlayRecordCallback delegate is defined:
public delegate void PlayRecordCallback(EmfPlusRecordType eprt, int
iFlags,
 int iDataSize, IntPtr ipData);

Instead of defining a method in your program in accordance with the PlayRecordCallback delegate
(which is what you usually do with a delegate), the last argument to your enumeration method
indicates the method you're supposed to call to render that particular metafile record. The delegate
indicates the arguments to that method. So you could define your enumeration method like so:

bool EnumMetafileProc(EmfPlusRecordType eprt, int iFlags,
 int iDataSize, IntPtr ipData,
 PlayRecordCallback prc)
{
 prc(eprt, iFlags, iDataSize, ipData);
 return true;
}

Notice the call to the PlayRecordCallback delegate. When you call EnumerateMetafile with this
EnumMetafileProc method, EnumerateMetafile should function just like DrawImage, except perhaps
a bit slower because EnumMetafileProc is getting access to each metafile record.

Alas, PlayRecordCallback doesn't work, and you should probably ignore the last argument to the
enumeration method. Instead, use this method of the Metafile class to render a metafile record in
your enumeration method:

Metafile PlayRecord Method

void PlayRecord(EmfPlusRecordType eprt, int iFlags, int iDataSize,
 byte[] abyData)

This method looks a lot like the PlayRecordCallback delegate except that the last argument is an
array of bytes instead of an IntPtr. For converting between the IntPtr argument to the enumeration
method and the array of bytes required by PlayRecord, you can use the static Copy method in the
Marshal class of the System.Runtime.InteropServices namespace.

Because you call PlayRecord in your enumeration method and PlayRecord is a method of the
Metafile class, the Metafile object must be stored as a field in your program. Here's an enumeration
method that simply renders the metafile:
bool EnumMetafileProc(EmfPlusRecordType eprt, int iFlags,
 int iDataSize, IntPtr ipData,
 PlayRecordCallback prc)
{
 byte[] abyData = new Byte[iDataSize];
 Marshal.Copy(ipData, abyData, 0, iDataSize);
 mf.PlayRecord(eprt, iFlags, iDataSize, abyData);
 return true;
}

The following program creates a write-only text box and a panel control, with a splitter control
between them. It also implements an OpenFileDialog dialog box to open a metafile. The metafile is
displayed normally on the panel. When the metafile is first loaded, the program creates a
StringWriter object and then calls EnumerateMetafile to enumerate the metafile using the
EnumMetafileProc method defined in the program. EnumMetafileProc formats the information into
the StringWriter object. On return from EnumerateMetafile, the program puts the resultant string into
the text box.
EnumMetafile.cs
//---
// EnumMetafile.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;

using System.Drawing.Imaging;
using System.IO;
using System.Runtime.InteropServices;
using System.Windows.Forms;

class EnumMetafile: Form
{
 Metafile mf;
 Panel panel;
 TextBox txtbox;
 string strCaption;
 StringWriter strwrite;

 public static void Main()
 {
 Application.Run(new EnumMetafile());
 }
 public EnumMetafile()
 {
 Text = strCaption = "Enumerate Metafile";

 // Create the text box for displaying records.

 txtbox = new TextBox();
 txtbox.Parent = this;
 txtbox.Dock = DockStyle.Fill;
 txtbox.Multiline = true;
 txtbox.WordWrap = false;
 txtbox.ReadOnly = true;
 txtbox.TabStop = false;
 txtbox.ScrollBars = ScrollBars.Vertical;

 // Create the splitter between the panel and the text box.

 Splitter splitter = new Splitter();
 splitter.Parent = this;
 splitter.Dock = DockStyle.Left; // Right;

 // Create the panel for displaying the metafile.

 panel = new Panel();
 panel.Parent = this;
 panel.Dock = DockStyle.Left;
 panel.Paint += new PaintEventHandler(PanelOnPaint);

 // Create the menu.

 Menu = new MainMenu();
 Menu.MenuItems.Add("&Open!", new EventHandler(MenuOpenOnClick));
 }
 void MenuOpenOnClick(object obj, EventArgs ea)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Filter = "All Metafiles|*.wmf;*.emf|" +
 "Windows Metafile (*.wmf)|*.wmf|" +
 "Enhanced Metafile (*.emf)|*.emf";

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 try
 {
 mf = new Metafile(dlg.FileName);
 }
 catch (Exception exc)
 {
 MessageBox.Show(exc.Message, strCaption);
 return;
 }
 Text = strCaption + " - " + Path.GetFileName(dlg.FileName);
 panel.Invalidate();

 // Enumerate the metafile for the text box.

 strwrite = new StringWriter();
 Graphics grfx = CreateGraphics();

 grfx.EnumerateMetafile(mf, new Point(0, 0),
 new Graphics.EnumerateMetafileProc(EnumMetafileProc));

 grfx.Dispose();
 txtbox.Text = strwrite.ToString();
 txtbox.SelectionLength = 0;
 }
 }
 bool EnumMetafileProc(EmfPlusRecordType eprt, int iFlags,
 int iDataSize, IntPtr ipData,
 PlayRecordCallback prc)
 {
 strwrite.Write("{0} ({1}, {2})", eprt, iFlags, iDataSize);

 if (iDataSize > 0)
 {
 byte[] abyData = new Byte[iDataSize];
 Marshal.Copy(ipData, abyData, 0, iDataSize);

 foreach (byte by in abyData)
 strwrite.Write(" {0:X2}", by);
 }
 strwrite.WriteLine();
 return true;
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 Panel panel = (Panel) obj;
 Graphics grfx = pea.Graphics;

 if (mf != null)
 grfx.DrawImage(mf, 0, 0);
 }
}

Although this program mysteriously doesn't work with any of the metafiles created in this chapter (or
with metafiles created by programs from my book Programming Windows), here's the program
displaying one of the metafiles included with Visual Studio .NET:

The metafile records are shown at the right. Following the record type, the flag and the number of
bytes of data are in parentheses. The hexadecimal bytes follow. No attempt has been made in this
program to convert the bytes into meaningful information.

As you can see, the metafile records are of variable size. Each record type corresponds to a
particular GDI function call or a Graphics method call. The data that accompanies each record
corresponds to the arguments of the call. Obviously, this data is dependent on the record type.

The new metafile records that correspond to methods of the Graphics class are currently
undocumented (at the time I'm writing this) but will undoubtedly be documented sometime in the
future. If you're interested in getting a head start on metafile enumeration, you can begin by
exploring the format of the older WMF and EMF records. Each record type corresponds to a
structure beginning with the letters EMR ("enhanced metafile record") defined in the Win32 header
files.

The EMR structure is part of every record. It contains the record type and a size:
typedef struct tagEMR
{

 DWORD iType;
 DWORD nSize;
}
EMR;

Here's the structure for a polyline. It begins with an EMR structure.
typedef struct tagEMRPOLYLINE
{
 EMR emr;
 RECTL rclBounds;
 DWORD cptl;
 POINTL aptl[1];
}
EMRPOLYLINE;

Everything following the EMR field corresponds to the data that accompanies the record in the
Windows Forms enumeration.

If you're not familiar with Win32 structures, be aware that RECTL and POINTL have long fields (but
those are 32-bit C long integers, not 64-bit C# long integers), and RECTS and POINTS structures
have short fields, which are 16-bits in length. Moreover, a rectangle is defined in terms of the upper
left corner and lower right corner, not in terms of the upper left corner and the width and height.

Chapter 24: Clip, Drag, and Drop
Overview
The Windows clipboard allows data to be transferred from one application to another. The clipboard
is a relatively simple mechanism that doesn't require much overhead in either the program that
places data on it or the program that later gets access to it. Most applications use the Windows
clipboard even when cut-and-paste operations involve the transfer of data solely within the
application.

Programs that deal with documents or other data give the user access to the clipboard through the
standard menu options Cut, Copy, and Paste, duplicated by the keyboard shortcuts (inherited from
the Apple Macintosh) Ctrl+X, Ctrl+C, and Ctrl+V. When a user selects Cut or Copy, the program
transfers selected data from the application to the clipboard. The data is in a particular format or
formats, usually text, bitmap, metafile, or binary. The Cut command has the additional effect of
deleting the selection from the document. When a user selects Paste from the menu, the program
determines whether the clipboard contains data in a format that the program can use. If it does, the
program transfers the data from the clipboard to the program.

Programs should not transfer data to the clipboard without an explicit instruction from the user. For
example, a user who performs a Cut or Copy (or a Ctrl+X or Ctrl+C) operation in one program should
be able to assume that the data will remain on the clipboard until the next Cut or Copy operation.

As you may recall from Chapter 18, the TextBox and RichTextBox controls implement their own
clipboard interfaces. A program using these controls need only call the appropriate methods
implemented in TextBoxBase. In the general case, however, you don't have that convenience. You
must instead access the clipboard yourself.

The drag-and-drop facility in Windows is closely related to the clipboard, so I'll be discussing that in
this chapter as well.
Items and Formats
Only one item is stored on the clipboard at any time. Whenever a program copies an item to the
clipboard, the new item replaces what was there before.

However, an application can copy a particular item to the clipboard in multiple formats. For example,
consider a spreadsheet program in which the user selects an array of rows and columns, and then
triggers the Copy command. The spreadsheet program will probably use a variety of formats for
storing those rows and columns on the clipboard. Of most importance to the application is probably a
binary format known only to the application itself; this private format allows the program to retrieve
the exact data (with any formatting that is present) when the user triggers Paste.

The spreadsheet program can also copy the selected rows and columns into the clipboard in a text-
based comma-separated format that other spreadsheet or database programs can use. It could also
format the data into text using tabs between the columns; this format is suitable when you paste the
data into a word processing program. Perhaps the spreadsheet application could even create a
bitmap or a metafile containing an image of the rows and columns.

The application pasting data from the clipboard doesn't need to handle all these different formats. It
can simply select the format it can use most efficiently.

As you might expect, the existence of clipboard items in multiple formats adds a layer of complexity
to clipboard programming.
The Tiny (But Powerful) Clipboard Class
The Clipboard class is part of the System.Windows.Forms namespace. The class is sealed and has
no public constructors. You can't instantiate it, and you can't inherit from it. The class has no
properties and just two static methods, one of which comes in two versions. You use these methods
to set data to the clipboard or get data out:

Clipboard Static Methods

void SetDataObject(object obj)
void SetDataObject(object obj, bool bRemainAfterExit)
IDataObject GetDataObject()

As long as you're using only one data format, putting data on the clipboard is the easier of the two
operations. For example, if you have a string named str that you want to copy to the clipboard,
simply call
Clipboard.SetDataObject(str, true);

Whatever was on the clipboard before is deleted and replaced with this item. Similarly, you can put a
bitmap on the clipboard:
Clipboard.SetDataObject(bitmap, true);

You can also put a metafile on the clipboard:
Clipboard.SetDataObject(metafile, true);

In all three of these cases, a copy is made of the object for the clipboard's purposes. It's OK if you
change the object after the SetDataObject call. It won't change what's on the clipboard. This
sequence of statements won't cause any problems:
Clipboard.SetDataObject(str, true);
str = null;

Once something is on the clipboard, the only way you can affect it is with another call to
SetDataObject; that second call to SetDataObject replaces the clipboard item with a new one.

I've set the second argument of SetDataObject to true in these examples because that's probably
what you'll want to use whenever you put a string, a bitmap, or a metafile on the clipboard. If you set
the second argument to false,
Clipboard.SetDataObject(str, false);

or if you don't include the argument at all,
Clipboard.SetDataObject(str);

the item that you put on the clipboard disappears when your program terminates. It's probably best
for the user if the item is still on the clipboard regardless of whether or not your program is still
running.

However, the items you put on the clipboard are not limited to strings, bitmaps, and metafiles. You
can put any object on the clipboard. Here's some code that creates a new Button object, sets the
Text property, and then copies the object to the clipboard:
Button btn = new Button();
btn.Text = "OK";
Clipboard.SetDataObject(btn);

In cases where the object passed to SetDataObject is not a string, a metafile, or a bitmap, you must
use the short form of SetDataObject or specify false as the second argument. The reason for this
restriction is that the clipboard can't be used for transferring arbitrary objects (such as Button
objects) between applications. Only the application that put the Button object on the clipboard can
retrieve it. Thus, it makes no sense for the object to be on the clipboard after the program terminates.
Like I said, putting data on the clipboard is easiest if you restrict yourself to one format. Later in this
chapter, I'll demonstrate how you can put multiple data formats on the clipboard.

Getting data from the clipboard isn't quite as simple as putting data on the clipboard. The
GetDataObject method is defined as returning an instance of a class that implements the
IDataObject interface, which means that you call GetDataObject like so:
IDataObject data = Clipboard.GetDataObject()

The object called data now contains everything you need to know about the contents of the
clipboard, and our attention must now focus on the IDataObject interface.
Getting Objects from the Clipboard
I'm first going to show you a fairly simple and straightforward way to get objects from the clipboard, a
job you'll probably perform in response to the user selecting Paste from the menu.

The static GetDataObject method of the Clipboard class isn't documented as returning an object of a
particular class. It's documented only as returning an instance of a class that implements the
IDataObject interface. That gives us enough information to use the methods defined in IDataObject
using the object returned from GetDataObject. IDataObject defines four methods (12 if you count
overloads). Here are two of them in their simplest forms:

IDataObject Methods (selection)

bool GetDataPresent(Type type)
object GetData(Type type)

The GetDataPresent method should probably be named IsDataPresent to be more consistent with
the rest of the Windows Forms methods and properties. If you have an object named data returned
from Clipboard.GetDataObject, the expression
data.GetDataPresent(typeof(String))

returns true if the clipboard contains a String object. Notice the use of the typeof operator to get the
Type object that identifies the String class. Similarly,
data.GetDataPresent(typeof(Bitmap))

returns true if there's a Bitmap object on the clipboard, and
data.GetDataPresent(typeof(Metafile))

returns true if a Metafile object is available. If you're in the habit of putting nonstandard objects on
the clipboard, you can also make calls like this:
data.GetDataPresent(typeof(Button))

It's possible to make these calls without actually saving the return value from the
Clipboard.GetDataObject call. For example,
Clipboard.GetDataObject().GetDataPresent(typeof(Bitmap))

returns true if the clipboard contains a Bitmap object.

It's customary to use the GetDataPresent method during the Popup event of the Edit menu. You
enable the Paste item only if GetDataPresent returns true for the data type you're interested in.

By the way, the fact that
data.GetDataPresent(typeof(String))

returns true doesn't imply that GetDataPresent will return false for other types. Like I said, the
clipboard can contain multiple formats of the same clipboard item. The clipboard could contain a
String object with some text, a Metafile object containing a DrawString call displaying that same text
string, and a Bitmap rendition of the same text. The application getting data from the clipboard
should check for the most useful format.

To get an object from the clipboard, you call the GetData method. For example,
string str = (string) data.GetData(typeof(string));

Because GetData returns an object, the return value must be cast to the desired data type. Similarly,
Bitmap bitmap = (Bitmap) data.GetData(typeof(Bitmap));

Getting an object from the clipboard doesn't affect the contents of the clipboard. The return value of
GetData is a copy of the object stored on the clipboard.

It's time to see how this all works in actual code. The following program does little more than copy
String objects to and from the clipboard.
ClipText.cs
//---------------------------------------
// ClipText.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;
using System.Windows.Forms;

class ClipText: Form
{
 string strText = "Sample text for the clipboard";
 MenuItem miCut, miCopy, miPaste;

 public static void Main()
 {
 Application.Run(new ClipText());
 }
 public ClipText()
 {
 Text = "Clip Text";
 ResizeRedraw = true;

 Menu = new MainMenu();

 // Edit menu

 MenuItem mi = new MenuItem("&Edit");
 mi.Popup += new EventHandler(MenuEditOnPopup);
 Menu.MenuItems.Add(mi);

 // Edit Cut menu item

 miCut = new MenuItem("Cu&t");
 miCut.Click += new EventHandler(MenuEditCutOnClick);
 miCut.Shortcut = Shortcut.CtrlX;
 Menu.MenuItems[0].MenuItems.Add(miCut);

 // Edit Copy menu item

 miCopy = new MenuItem("&Copy");
 miCopy.Click += new EventHandler(MenuEditCopyOnClick);

 miCopy.Shortcut = Shortcut.CtrlC;
 Menu.MenuItems[0].MenuItems.Add(miCopy);

 // Edit Paste menu item

 miPaste = new MenuItem("&Paste");
 miPaste.Click += new EventHandler(MenuEditPasteOnClick);
 miPaste.Shortcut = Shortcut.CtrlV;
 Menu.MenuItems[0].MenuItems.Add(miPaste);
 }
 void MenuEditOnPopup(object obj, EventArgs ea)
 {
 miCut.Enabled =
 miCopy.Enabled = strText.Length > 0;
 miPaste.Enabled =

Clipboard.GetDataObject().GetDataPresent(typeof(string));
 }
 void MenuEditCutOnClick(object obj, EventArgs ea)
 {
 MenuEditCopyOnClick(obj, ea);
 strText = "";
 Invalidate();
 }
 void MenuEditCopyOnClick(object obj, EventArgs ea)
 {
 Clipboard.SetDataObject(strText, true);
 }
 void MenuEditPasteOnClick(object obj, EventArgs ea)
 {
 IDataObject data = Clipboard.GetDataObject();

 if (data.GetDataPresent(typeof(string)))
 strText = (string) data.GetData(typeof(string));

 Invalidate();
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;
 StringFormat strfmt = new StringFormat();
 strfmt.Alignment = strfmt.LineAlignment =
StringAlignment.Center;

 grfx.DrawString(strText, Font, new SolidBrush(ForeColor),
 ClientRectangle, strfmt);

 }
}

The ClipText program maintains a string variable named strText that it displays centered in its client
area. The constructor creates an Edit menu with Cut, Copy, and Paste items. The Popup event
handler enables the Cut and Copy items only if the string has a nonzero length. The Paste item is
enabled only if the clipboard contains a string object.

The Click event handler for the Copy command uses the SetDataObject method of Clipboard to copy
strText to the clipboard. The Cut event handler calls the Copy event handler and also deletes the
string from the program by setting strText to the empty string.

The Click event handler for the Paste command first checks whether the clipboard still contains an
object of type string. (You might find that check redundant considering that the Paste item isn't
enabled if the clipboard isn't storing text. However, given that Windows is a multitasking
environment, it's possible for the clipboard contents to change between the time a submenu is
displayed and an item is clicked. Calling GetData for an object type that no longer exists on the
clipboard won't cause an exception to be raised, but GetData will return a null value, and ClipText
isn't quite prepared for that eventuality.) If the clipboard contains text, the Paste event handler calls
GetData to obtain the string object and then assigns that string to strText.

You can experiment with ClipText in conjunction with Microsoft Notepad, word processors, and Web
browsers. As you'll see, when you copy text from a word processor or a Web browser and paste it
into ClipText, the text loses any formatting it had. That result isn't unexpected: you know that string
objects normally don't include any formatting, and you'd probably be startled to see ClipText display
a block of text with rich text format (RTF) or HTML tags. I'll explain shortly how you can go beyond
plain text with the clipboard.

In Chapter 23, I introduced the MetafileViewer program and the MetafileConvert program, which
inherited from MetafileViewer. The following program inherits from MetafileConvert and implements
an Edit menu to transfer metafiles to and from the clipboard.
MetafileClip.cs
//---
// MetafileClip.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Windows.Forms;

class MetafileClip: MetafileConvert
{
 MenuItem miCut, miCopy, miPaste, miDel;

 public new static void Main()
 {
 Application.Run(new MetafileClip());
 }
 public MetafileClip()
 {
 Text = strProgName = "Metafile Clip";

 // Edit menu

 Menu.MenuItems[1].Popup += new EventHandler(MenuEditOnPopup);

 // Edit Cut menu item

 miCut = new MenuItem("Cu&t");
 miCut.Click += new EventHandler(MenuEditCutOnClick);
 miCut.Shortcut = Shortcut.CtrlX;
 Menu.MenuItems[1].MenuItems.Add(miCut);

 // Edit Copy menu item

 miCopy = new MenuItem("&Copy");
 miCopy.Click += new EventHandler(MenuEditCopyOnClick);
 miCopy.Shortcut = Shortcut.CtrlC;
 Menu.MenuItems[1].MenuItems.Add(miCopy);

 // Edit Paste menu item

 miPaste = new MenuItem("&Paste");
 miPaste.Click += new EventHandler(MenuEditPasteOnClick);
 miPaste.Shortcut = Shortcut.CtrlV;
 Menu.MenuItems[1].MenuItems.Add(miPaste);

 // Edit Delete menu item

 miDel = new MenuItem("De&lete");
 miDel.Click += new EventHandler(MenuEditDelOnClick);
 miDel.Shortcut = Shortcut.Del;
 Menu.MenuItems[1].MenuItems.Add(miDel);
 }
 void MenuEditOnPopup(object obj, EventArgs ea)
 {
 miCut.Enabled =
 miCopy.Enabled =
 miDel.Enabled = mf != null;
 miPaste.Enabled =
 Clipboard.GetDataObject().GetDataPresent(typeof(Metafile));
 }
 void MenuEditCutOnClick(object obj, EventArgs ea)
 {
 MenuEditCopyOnClick(obj, ea);
 MenuEditDelOnClick(obj, ea);
 }
 void MenuEditCopyOnClick(object obj, EventArgs ea)
 {

 Clipboard.SetDataObject(mf, true);
 }
 void MenuEditPasteOnClick(object obj, EventArgs ea)
 {
 IDataObject data = Clipboard.GetDataObject();

 if (data.GetDataPresent(typeof(Metafile)))
 mf = (Metafile) data.GetData(typeof(Metafile));

 strFileName = "clipboard";
 Text = strProgName + " - " + strFileName;
 Invalidate();
 }
 void MenuEditDelOnClick(object obj, EventArgs ea)
 {
 mf = null;
 strFileName = null;
 Text = strProgName;
 Invalidate();
 }
}

Besides Cut, Copy, and Paste, this program also includes a Delete item on the Edit menu. (In some
applications, an item named Clear is essentially the equivalent of Delete.) The Delete option doesn't
actually involve the clipboard because (unlike Cut) it deletes without first copying to the clipboard.
However, if you're already implementing Cut and Copy, adding Delete is usually trivial. In fact, you
can think of a Cut operation as a Copy followed by a Delete. That's exactly how the Click event
handler for the Cut option is written:
void MenuEditCutOnClick(object obj, EventArgs ea)
{
 MenuEditCopyOnClick(obj, ea);
 MenuEditDelOnClick(obj, ea);
}

Because the MetafileClip program deals with files as well as the clipboard, the other complication
involves dealing with the form's caption bar. In the earlier versions of the program, I set the Text
property of the form to the program name (separated into words) stored in the strProgName field
along with the currently loaded filename stored in the strFileName field:
Metafile Viewer - Picture.emf

In the MetafileClip version, the strProgName text is "Metafile Clip".

When the Delete option is selected, the strFileName variable must be set to null and Text set to just
the strProgName. That much is obvious. The more difficult problem is what should be done when a
metafile is loaded from the clipboard. I decided to set the strFileName field to "clipboard". Other
possibilities are "untitled" or "metafile".

In Chapter 16, "Dialog Boxes," I introduced the ImageOpen program to load Image objects from files
and the ImageIO program to save them. In Chapter 21, "Printing," the ImagePrint program added
printing capabilities. Now the ImageClip program inherits from ImagePrint to add clipboard capability.
ImageClip.cs
//--

// ImageClip.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Windows.Forms;

class ImageClip: ImagePrint
{
 MenuItem miCut, miCopy, miPaste, miDel;

 public new static void Main()
 {
 Application.Run(new ImageClip());
 }
 public ImageClip()
 {
 Text = strProgName = "Image Clip";

 // Edit menu

 MenuItem mi = new MenuItem("&Edit");
 mi.Popup += new EventHandler(MenuEditOnPopup);
 Menu.MenuItems.Add(mi);
 int index = Menu.MenuItems.Count - 1;

 // Edit Cut menu item

 miCut = new MenuItem("Cu&t");
 miCut.Click += new EventHandler(MenuEditCutOnClick);
 miCut.Shortcut = Shortcut.CtrlX;
 Menu.MenuItems[index].MenuItems.Add(miCut);

 // Edit Copy menu item

 miCopy = new MenuItem("&Copy");
 miCopy.Click += new EventHandler(MenuEditCopyOnClick);
 miCopy.Shortcut = Shortcut.CtrlC;
 Menu.MenuItems[index].MenuItems.Add(miCopy);

 // Edit Paste menu item

 miPaste = new MenuItem("&Paste");
 miPaste.Click += new EventHandler(MenuEditPasteOnClick);
 miPaste.Shortcut = Shortcut.CtrlV;

 Menu.MenuItems[index].MenuItems.Add(miPaste);

 // Edit Delete menu item

 miDel = new MenuItem("De&lete");
 miDel.Click += new EventHandler(MenuEditDelOnClick);
 miDel.Shortcut = Shortcut.Del;
 Menu.MenuItems[index].MenuItems.Add(miDel);
 }
 void MenuEditOnPopup(object obj, EventArgs ea)
 {
 miCut.Enabled =
 miCopy.Enabled =
 miDel.Enabled = image != null;

 IDataObject data = Clipboard.GetDataObject();

 miPaste.Enabled = data.GetDataPresent(typeof(Bitmap)) ||
 data.GetDataPresent(typeof(Metafile));
 }
 void MenuEditCutOnClick(object obj, EventArgs ea)
 {
 MenuEditCopyOnClick(obj, ea);
 MenuEditDelOnClick(obj, ea);
 }
 void MenuEditCopyOnClick(object obj, EventArgs ea)
 {
 Clipboard.SetDataObject(image, true);
 }
 void MenuEditPasteOnClick(object obj, EventArgs ea)
 {
 IDataObject data = Clipboard.GetDataObject();

 if (data.GetDataPresent(typeof(Metafile)))
 image = (Image) data.GetData(typeof(Metafile));

 else if (data.GetDataPresent(typeof(Bitmap)))
 image = (Image) data.GetData(typeof(Bitmap));

 strFileName = "Clipboard";
 Text = strProgName + " - " + strFileName;
 Invalidate();
 }
 void MenuEditDelOnClick(object obj, EventArgs ea)
 {

 image = null;
 strFileName = null;
 Text = strProgName;
 Invalidate();
 }
}

The enhancements here are similar to those in MetafileClip, but the ImageClip program adds another
complexity. It's actually dealing with an Image object (stored as the field image), which can be either
a Bitmap or a Metafile object. There's no problem with using an Image object in the SetDataObject
method:
Clipboard.SetDataObject(image, true);

The SetDataObject method probably calls GetType on the first argument to determine the type of the
object. Depending on what type the image object is, GetType will return System.Drawing.Bitmap or
System.Drawing.Imaging.Metafile.

However, you can't use typeof(Image) in the GetDataPresent or GetData method of the IDataObject
interface. If your program has the ability to paste either a bitmap or a metafile, you should enable the
Paste menu item if the clipboard contains either a bitmap or a metafile:
miPaste.Enabled = data.GetDataPresent(typeof(Bitmap)) ||
 data.GetDataPresent(typeof(Metafile));

It's possible that the clipboard contains both a Bitmap and a Metafile representing the same image.
When the user selects Paste, the program has to decide which one to load.

I decided that the Metafile object should take priority:
if (data.GetDataPresent(typeof(Metafile)))
 image = (Image) data.GetData(typeof(Metafile));

else if (data.GetDataPresent(typeof(Bitmap)))
 image = (Image) data.GetData(typeof(Bitmap));

This was not an arbitrary choice! Ask yourself, What kind of program puts both a metafile and a
bitmap on the clipboard? It's probably a drawing program—a program that essentially works with
metafiles. When such an application copies an image to the clipboard, it also converts the image to a
bitmap. That way the image is available to applications that can't handle metafiles.

It's highly unlikely that the metafile originated with a paint program. Paint programs don't usually
have the ability to convert bitmaps to metafiles. Such conversions are rather specialized and work
only with very simple images.

Thus, the metafile is the real image and the bitmap is only a conversion. A program that can deal
with both metafiles and bitmaps should load metafiles from the clipboard in preference to bitmaps.
Clipboard Data Formats
At first, it seems so simple: you put an object of type String, Bitmap, Metafile, or even Button on the
clipboard, and you extract an object of type String, Bitmap, Metafile, or Button from the clipboard.

But not every application running under Windows is a Windows Forms program! Some Windows
programs place objects on the clipboard that don't directly correspond to Windows Forms types. The
problem goes both ways: Windows applications that make use of the Win32 API or MFC are not
prepared to deal directly with Windows Forms objects.

Let's examine the seemingly simple data type known as text. Some existing Windows programs
store text in Unicode, but most of them don't. If a Windows program passes 8-bit ANSI text strings to
the clipboard, a Windows Forms program should be able to read the text as a normal String object.
Likewise, when a Windows Forms program puts a String object on the clipboard, it should be

readable by programs that know only the ANSI character set. There's even another text encoding
known as OEM text that dates back to the character-mode environment of MS-DOS. OEM stands for
"original equipment manufacturer," but in the United States, it really refers to the 8-bit character set
IBM used in the original PC. (You may remember the line-drawing characters used by character-
mode programs.) ANSI text and OEM text differ in the upper 128 characters.

These requirements suggest that the clipboard must perform conversions among multiple text
encodings. Regardless of the encoding of the text that goes on the clipboard, the clipboard must
make several additional encodings available to other applications.

It's already fairly clear that these conversions between different encodings are taking place. The
ClipText program successfully transfers text to and from regular Windows programs that use either
ANSI or Unicode text encoding.

However, the problems of text don't stop with character encodings. Consider a word processor that
copies a block of text to the clipboard. What happens to the formatting of the text? If the user wants
to paste such text back into the same word processing program (perhaps in the same document or in
a different one), the text certainly shouldn't lose its formatting. On the other hand, if the user wants to
paste the text into Notepad, all the formatting should be stripped from the text. What should happen
if you paste the text into another word processing program? You probably want the formatting to be
preserved, and that implies that the text on the clipboard should be stored in a way that includes
formatting in an application-independent manner (RTF, for example, or possibly HTML).

Or suppose you copy text from a Web browser to the clipboard. The HTML formatting should be
preserved for applications that understand HTML, but it shouldn't be imposed on applications that
can't deal with it. Most users probably don't want to see HTML tags when they copy text from a Web
browser to Notepad!

Some text is intended to be read by programs rather than people. For example, many database and
spreadsheet programs can copy and paste information in a comma-separated value (CSV) text
format. This format provides an application-independent way of sharing database records or numeric
tables.

So, the simple statement that copies a text string to the clipboard,
Clipboard.SetDataObject(str);

probably doesn't quite do what you want if str is a text string that consists of RTF, HTML, or CSV
text. Preferably there should be some way for an application to specify what type of text it's actually
putting on the clipboard.

When a word processing application copies text to the clipboard, the application itself is probably in
the best position to convert its internal format into RTF and plain, unformatted text. The implication is
that applications should be able to set data on the clipboard in several different formats at once. (At
first, that doesn't seem possible. When you call SetDataObject, the object passed as an argument
replaces the current contents of the clipboard. You can't call SetDataObject multiple times to put
multiple formats of the same text on the clipboard. However, as we'll soon see, the argument to
SetDataObject can be an object that itself specifies several different objects.)

To a Windows Forms program, bitmaps and metafiles are objects of type Bitmap and Metafile. To a
non–Windows Forms program, however, there are two types of bitmaps: the old-style, device-
dependent bitmaps that were introduced in Windows 1.0 and the DIBs (device-independent bitmaps)
introduced in Windows 3.0. And, as I discussed in Chapter 23, non–Windows Forms programs deal
with the original metafile format (WMF) and the enhanced metafile format (EMF).

Here's the key to making all this work: the clipboard stores not only chunks of data but also
identifications of the data formats. To a Windows Forms program, a particular clipboard format is
usually identified by a text string, such as "DeviceIndependentBitmap" or "Text". These text strings
are also associated with ID numbers, such as 8 for "DeviceIndependentBitmap" and 1 for "Text". The
ID numbers are the same as the identifiers beginning with CF ("clipboard format") defined in the
Win32 header files.

The GetFormats method defined in the IDataObject interface provides a list of all the data formats
currently stored on the clipboard:

IDataObject GetFormats Methods

string[] GetFormats()
string[] GetFormats(bool bIncludeConversions)

The call
string[] astr = data.GetFormats();

is equivalent to
string[] astr = data.GetFormats(true);

Both calls return string identifications of all the clipboard formats currently available from the
clipboard. Some of these formats represent conversions from the data currently stored on the
clipboard. To restrict the list to just unconverted formats, use
string[] astr = data.GetFormats(false);

Sometimes data is converted as it's put on the clipboard. Those formats will be returned regardless
of the GetFormats argument.

For example, if a Windows Forms program puts a String object on the clipboard, GetFormats
(regardless of the argument) returns the strings
System.String
UnicodeText
Text

The "UnicodeText" and "Text" types allow a Win32 API or MFC program to obtain the clipboard text
in either Unicode or an 8-bit ANSI encoding.

When Notepad puts text on the clipboard, GetFormats with a false argument returns these four
strings:
UnicodeText
Locale
Text
OEMText

A call to GetFormats with no arguments or a true argument returns those four strings and this one as
well:
System.String

When a Windows Forms program puts a Bitmap object on the clipboard, then regardless of the
arguments, GetFormats returns the strings
System.Drawing.Bitmap
WindowsForms10PersistentObject
Bitmap

When a Windows Forms program puts a Metafile object on the clipboard, then regardless of the
arguments, GetFormats returns the strings
System.Drawing.Imaging.Metafile
WindowsForms10PersistentObject

It's also possible to use the format strings in the GetDataPresent and GetData methods defined in
the IDataObject interface:

IDataObject Methods (selection)

bool GetDataPresent(string strFormat)
bool GetDataPresent(string strFormat, bool bAllowConversions)
object GetData(string strFormat)
object GetData(string strFormat, bool bAllowConversions)

The call
string str = (string) data.GetData(typeof(string))

is equivalent to
string str = (string) data.GetData("System.String");

That's pretty obvious. But those two calls are also equivalent to this one:
string str = (string) data.GetData("UnicodeText");

The GetData method always converts the clipboard data into a .NET Framework data type, so in this
case GetData returns a string object.

Consider the following call:
string str = (string) data.GetData("Text");

Is this one equivalent as well? Maybe, maybe not. If a Unicode-aware program put a string on the
clipboard that contained Hebrew, Arabic, or Cyrillic characters, for example, the string identified with
"Text" is an 8-bit ANSI version of the original Unicode text. The Unicode characters that have no
equivalents in the ANSI character set are replaced by question marks.

In any event, if you set the second argument of GetDataPresent or GetData to false, you won't get a
converted type. The call
(string) data.GetData("Text", false)

returns null if Unicode text was put on the clipboard.

If you prefer not to hard-code those text strings in your program, you can make use of the
DataFormats class. This class contains 21 static read-only fields that return the text strings for those
clipboard formats directly supported by the .NET Framework. Here are the clipboard formats that
originated in the Win32 API. The column at the right shows the Win32 clipboard ID number
associated with each format.
DataFormats Static Fields (selection)

Type Field Value ID

string Text "Text" 1

string Bitmap "Bitmap" 2

string MetafilePict "MetaFilePict" 3

string SymbolicLink "SymbolicLink" 4

string Dif "DataInterchangeFormat" 5

string Tiff "TaggedImageFileFormat" 6

string OemText "OEMText" 7

string Dib "DeviceIndependentBitmap" 8

string Palette "Palette" 9

string PenData "PenData" 10

DataFormats Static Fields (selection)

Type Field Value ID

string Riff "RiffAudio" 11

string WaveAudio "WaveAudio" 12

string UnicodeText "UnicodeText" 13

string EnhancedMetafile "EnhancedMetafile" 14

string FileDrop "FileDrop" 15

string Locale "Locale" 16

For example, the expression
DataFormats.Text

returns the string "Text", and the expression
DataFormats.Dib

returns the string "DeviceIndependentBitmap". I'll be referring to these formats by their text names
because the text versions most accurately reflect the manner in which the clipboard identifies the
data format.

The "Text" and "OEMText" formats are both 8-bit encodings. The "Text" format is the ANSI encoding
used by most Windows programs. The "OEMText" encoding is the character set used in character-
mode MS-DOS programs. The "OEMText" format is provided so that you can copy, cut, and paste in
the MS-DOS Command Prompt window. A clipboard item identified by the format "Locale" is a
number that usually accompanies 8-bit character encodings to identify the character set. The
"UnicodeText" format identifies Unicode text.

The "SymbolicLink" string identifies text in the Symbolic Link (SYLK) format created by Microsoft for
the MultiPlan spreadsheet program, and the "DataInterchangeFormat" string identifies text in the
Data Interchange Format (DIF) devised by Software Arts for the VisiCalc spreadsheet program. Both
these clipboard formats were introduced in Windows 1.0 and, as you might expect, aren't used much
these days.

When a Windows Forms program specifies a clipboard format of "Text", "OEMText", "UnicodeText",
"SymbolicLink", or "DataInterchangeFormat" in the GetData method, the method returns an object of
type String.

The "Bitmap" and "DeviceIndependentBitmap" strings identify the device-dependent and the device-
independent bitmaps, respectively. The "Palette" format identifies a color palette format used in
conjunction with 256-color DIBs. The "TaggedImageFileFormat" string identifies the TIFF bitmap
format.

The "MetaFilePict" and "EnhancedMetafile" strings represent the old and enhanced metafile formats,
respectively.

When a Windows Forms program specifies a clipboard format of "Bitmap" or
"DeviceIndepedentBitmap" in the GetData method, the method returns an object of type Bitmap. For
"Enhanced Metafile", GetData returns an object of type Metafile. However, for "MetaFilePict",
GetData returns an object of type MemoryStream. That's simply a block of memory that a program
can access using ReadByte and Read methods defined by the MemoryStream class. GetData
returns a MemoryStream object for "MetaFilePict" because old-style metafiles are not stored in the
clipboard directly. Instead, the clipboard stores a small C structure that references a handle to the
metafile.

The "PenData" string is used in conjunction with the (now abandoned) pen extensions to Windows.
"RiffAudio" identifies multimedia data in the Resource Interchange File Format, and "WaveAudio"
identifies waveform audio files. The first release of Windows Forms has no multimedia support. For
these clipboard formats (and for "Palette"), GetData returns an object of type MemoryStream.

Finally, "FileDrop" identifies a list of files that probably originated in Windows Explorer. (Select one or
more files, and then perform a Copy or Cut to place a "FileDrop" object on the clipboard.) To a
Windows Forms program, a "FileDrop" item is an array of strings. Although you can use "FileDrop"
items with the clipboard, the format is used more often in conjunction with drag-and-drop operations
(which I'll discuss toward the end of this chapter).

So far, most of these additional formats are not very useful to the Windows Forms programmer.
When a Windows Forms program puts a String object on the clipboard, the String object is
automatically converted to the "Text" and "UnicodeText" formats for other applications. If another
application puts text (of whatever type) on the clipboard, that text is automatically converted to a
String object for a Windows Forms program.

Similarly, as we've seen, Windows Forms programs can transfer bitmaps and metafiles to and from
the clipboard without getting involved with the conversions necessary for non–Windows Forms
programs.

Five additional static fields are defined in the DataFormats class that are of more use to Windows
Forms programs:
DataFormats Static Fields (selection)

Type Field Value

string CommaSeparatedValue "Csv"

string Html "HTML Format"

string Rtf "Rich Text Format"

string Serializable "WindowsForms10PersistentObject"

string StringFormat "System.String"

These formats are not currently defined in the Win32 clipboard interface, but some Win32 programs
use the first three.

"Csv" is a text format used by spreadsheet and database programs for exchanging data. In a block
of spreadsheet rows and columns, columns are separated by commas and rows are separated by
end-of-line characters. When a database uses "Csv", fields are separated by commas and records
are separated by end-of-line characters. Numbers are stored in a readable ASCII format; text is
delimited by quotation marks.

Although "Csv" is a text format, a call to GetData with a "Csv" argument does not return an object of
type string. It returns a MemoryStream object that contains null-terminated text. To extract the string
object from this MemoryStream object, you can use the following code:
MemoryStream memorystream = (MemoryStream) data.GetData("Csv");
StreamReader streamreader = new StreamReader(memorystream);
string str = streamreader.ReadToEnd();

You'll also need a using statement for the System.IO namespace. (See Appendix A for more
information about the MemoryStream and StreamReader classes.) The string object will probably
end with a '\x0000' character.

When a Windows Forms program specifies "HTML Format" or "Rich Text Format", the GetData
method returns an object of type string. However, in the former case, the string object will contain
HTML tags along with the text. In the latter case, the string object may or may not contain RTF tags.
Because plain text is a subset of RTF, the string object could contain just plain text.

The "WindowsForms10PersistentObject" format shows up when a Windows Forms program has
copied a Bitmap or Metafile object to the clipboard. The return type of GetData is either Bitmap or
Metafile. You don't generally need to use this format.

As I mentioned earlier, the "System.String" format causes GetData to return an object of type String.
It's exactly like using an argument of typeof(String).

Here's a program that expands its Paste menu to include options to paste plain text, RTF, HTML, or
CSV.
RichTextPaste.cs
//--
// RichTextPaste.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

class RichTextPaste: Form
{
 string strPastedText = "";
 MenuItem miPastePlain, miPasteRTF, miPasteHTML, miPasteCSV;

 public static void Main()
 {
 Application.Run(new RichTextPaste());
 }
 public RichTextPaste()
 {
 Text = "Rich-Text Paste";
 ResizeRedraw = true;

 Menu = new MainMenu();

 // Edit menu

 MenuItem mi = new MenuItem("&Edit");
 mi.Popup += new EventHandler(MenuEditOnPopup);
 Menu.MenuItems.Add(mi);

 // Edit Paste Plain Text menu item

 miPastePlain = new MenuItem("Paste &Plain Text");
 miPastePlain.Click += new
EventHandler(MenuEditPastePlainOnClick);
 Menu.MenuItems[0].MenuItems.Add(miPastePlain);

 // Edit Paste RTF menu item

 miPasteRTF = new MenuItem("Paste &Rich Text Format");
 miPasteRTF.Click += new EventHandler(MenuEditPasteRTFOnClick);
 Menu.MenuItems[0].MenuItems.Add(miPasteRTF);

 // Edit Paste HTML menu item

 miPasteHTML = new MenuItem("Paste &HTML");
 miPasteHTML.Click += new EventHandler(MenuEditPasteHTMLOnClick);
 Menu.MenuItems[0].MenuItems.Add(miPasteHTML);

 // Edit Paste CSV menu item

 miPasteCSV = new MenuItem("Paste &Comma-Separated Values");
 miPasteCSV.Click += new EventHandler(MenuEditPasteCSVOnClick);
 Menu.MenuItems[0].MenuItems.Add(miPasteCSV);
 }
 void MenuEditOnPopup(object obj, EventArgs ea)
 {
 miPastePlain.Enabled =
 Clipboard.GetDataObject().GetDataPresent(typeof(string));
 miPasteRTF.Enabled =
 Clipboard.GetDataObject().GetDataPresent(DataFormats.Rtf);
 miPasteHTML.Enabled =
 Clipboard.GetDataObject().GetDataPresent(DataFormats.Html);
 miPasteCSV.Enabled =
 Clipboard.GetDataObject().GetDataPresent
 (DataFormats.CommaSeparatedValue);
 }
 void MenuEditPastePlainOnClick(object obj, EventArgs ea)
 {
 IDataObject data = Clipboard.GetDataObject();

 if (data.GetDataPresent(typeof(string)))
 {
 strPastedText = (string) data.GetData(typeof(string));
 Invalidate();
 }
 }
 void MenuEditPasteRTFOnClick(object obj, EventArgs ea)
 {
 IDataObject data = Clipboard.GetDataObject();

 if (data.GetDataPresent(DataFormats.Rtf))
 {
 strPastedText = (string) data.GetData(DataFormats.Rtf);
 Invalidate();
 }
 }
 void MenuEditPasteHTMLOnClick(object obj, EventArgs ea)

 {
 IDataObject data = Clipboard.GetDataObject();

 if (data.GetDataPresent(DataFormats.Html))
 {
 strPastedText = (string) data.GetData(DataFormats.Html);
 Invalidate();
 }
 }
 void MenuEditPasteCSVOnClick(object obj, EventArgs ea)
 {
 IDataObject data = Clipboard.GetDataObject();

 if (data.GetDataPresent(DataFormats.CommaSeparatedValue))
 {
 MemoryStream memstr = (MemoryStream) data.GetData("Csv");
 StreamReader streamreader = new StreamReader(memstr);
 strPastedText = streamreader.ReadToEnd();
 Invalidate();
 }
 }
 protected override void OnPaint(PaintEventArgs pea)
 {
 Graphics grfx = pea.Graphics;

 grfx.DrawString(strPastedText, Font, new SolidBrush(ForeColor),
 ClientRectangle);
 }
}

Try selecting some text in a Web browser, copying it to the clipboard, and then using this program to
see what formats are available. For CSV, the code to convert the MemoryStream object to a string is
similar to the code I showed earlier. For RTF and HTML, the program simply displays the text without
attempting to parse the formatting tags.
Clipboard Viewers
A clipboard viewer is a program that displays the current contents of the clipboard. Here's a
clipboard viewer that contains 21 radio buttons corresponding to the 21 fields of the DataFormats
class. The program sets a 1-second timer and checks the clipboard contents during the Tick event.
(The Win32 messages that inform an application when the clipboard contents have changed are not
directly available to a Windows Forms program.) The radio buttons are enabled according to what
formats are available. When you click a button, the clipboard item in that format is rendered on the
right side of the form.
ClipView.cs
//---------------------------------------
// ClipView.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.Drawing;

using System.Drawing.Imaging;
using System.IO;
using System.Windows.Forms;

class ClipView: Form
{
 string[] astrFormats =
 {
 DataFormats.Bitmap, DataFormats.CommaSeparatedValue, DataFormats.Dib,
 DataFormats.Dif, DataFormats.EnhancedMetafile, DataFormats.FileDrop,
 DataFormats.Html, DataFormats.Locale, DataFormats.MetafilePict,
 DataFormats.OemText, DataFormats.Palette, DataFormats.PenData,
 DataFormats.Riff, DataFormats.Rtf, DataFormats.Serializable,
 DataFormats.StringFormat, DataFormats.SymbolicLink, DataFormats.Text,
 DataFormats.Tiff, DataFormats.UnicodeText, DataFormats.WaveAudio
 };

 Panel panelDisplay;
 RadioButton[] aradio;
 RadioButton radioChecked;

 public static void Main()
 {
 Application.Run(new ClipView());
 }
 public ClipView()
 {
 Text = "Clipboard Viewer";

 // Create variable-width panel for clipboard display.

 panelDisplay = new Panel();
 panelDisplay.Parent = this;
 panelDisplay.Dock = DockStyle.Fill;
 panelDisplay.Paint += new PaintEventHandler(PanelOnPaint);
 panelDisplay.BorderStyle = BorderStyle.Fixed3D;

 // Create splitter.

 Splitter split = new Splitter();
 split.Parent = this;
 split.Dock = DockStyle.Left;

 // Create panel for radio buttons.

 Panel panel = new Panel();
 panel.Parent = this;
 panel.Dock = DockStyle.Left;
 panel.Width = 200;

 // Create radio buttons.

 aradio = new RadioButton[astrFormats.Length];
 EventHandler eh = new EventHandler(RadioButtonOnClick);

 for (int i = 0; i < astrFormats.Length; i++)
 {
 aradio[i] = new RadioButton();
 aradio[i].Parent = panel;
 aradio[i].Location = new Point(4, 12 * i);
 aradio[i].Size = new Size(300, 12);
 aradio[i].Click += eh;
 aradio[i].Tag = astrFormats[i];
 }
 // Set autoscale base size.

 AutoScaleBaseSize = new Size(4, 8);

 // Set time for 1 second.

 Timer timer = new Timer();
 timer.Interval = 1000;
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Enabled = true;
 }
 void TimerOnTick(object obj, EventArgs ea)
 {
 IDataObject data = Clipboard.GetDataObject();

 for (int i = 0; i < astrFormats.Length; i++)
 {
 aradio[i].Text = astrFormats[i];
 aradio[i].Enabled = data.GetDataPresent(astrFormats[i]);

 if (aradio[i].Enabled)
 {
 if (!data.GetDataPresent(astrFormats[i], false))
 aradio[i].Text += "*";

 object objClip = data.GetData(astrFormats[i]);

 try
 {
 aradio[i].Text += " (" + objClip.GetType() + ")";
 }
 catch
 {
 aradio[i].Text += " (Exception on GetType!)";
 }
 }
 }
 panelDisplay.Invalidate();
 }
 void RadioButtonOnClick(object obj, EventArgs ea)
 {
 radioChecked = (RadioButton) obj;
 panelDisplay.Invalidate();
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 Panel panel = (Panel) obj;
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(panel.ForeColor);

 if (radioChecked == null || !radioChecked.Enabled)
 return;

 IDataObject data = Clipboard.GetDataObject();

 object objClip = data.GetData((string) radioChecked.Tag);

 if (objClip == null)
 return;

 else if (objClip.GetType() == typeof(string))
 {
 grfx.DrawString((string)objClip, Font, brush,
 panel.ClientRectangle);
 }
 else if (objClip.GetType() == typeof(string[])) // FileDrop
 {
 string str = string.Join("\r\n", (string[]) objClip);

 grfx.DrawString(str, Font, brush, panel.ClientRectangle);
 }

 else if (objClip.GetType() == typeof(Bitmap) ||
 objClip.GetType() == typeof(Metafile) ||
 objClip.GetType() == typeof(Image))
 {
 grfx.DrawImage((Image)objClip, 0, 0);
 }
 else if (objClip.GetType() == typeof(MemoryStream))
 {
 Stream stream = (Stream) objClip;
 byte[] abyBuffer = new byte[16];
 long lAddress = 0;
 int iCount;
 Font font = new Font(FontFamily.GenericMonospace,
 Font.SizeInPoints);
 float y = 0;

 while ((iCount = stream.Read(abyBuffer, 0, 16)) > 0)
 {
 string str = HexDump.ComposeLine(lAddress, abyBuffer,
 iCount);
 grfx.DrawString(str, font, brush, 0, y);
 lAddress += 16;
 y += font.GetHeight(grfx);

 if (y > panel.Bottom)
 break;
 }
 }
 }
}

During the Tick event handler, the button text is set to the text version of the clipboard format. If the
format is available, the button text also includes an asterisk if the format has been converted from
another clipboard format. The .NET data type of the clipboard format is enclosed in parentheses.

Here's what the program looks like after I've copied part of the program text from Visual C# .NET to
the clipboard:

The PanelOnPaint method is responsible for updating the panel at the right. It can handle several
.NET data types. For string, the text is simply displayed using DrawText. DrawText is also used for
an array of string objects, which is the case for the "FileDrop" clipboard type. For data types of
Bitmap and Metafile, the PanelOnPaint method uses DrawImage. And for the data type of
MemoryStream, PanelOnPaint uses the static ComposeLine method from the HexDump program in
Appendix A.

The ClipView program doesn't list every format of data on the clipboard. It shows only those formats
that are directly supported within Windows Forms by virtue of being represented by a field in the
DataFormats class. As I mentioned earlier, it's possible to use the GetFormats method defined by
the IDataObject interface to get a string array of all the formats of the current clipboard item. That's
what the ClipViewAll program uses.
ClipViewAll.cs
//--
// ClipViewAll.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Windows.Forms;

class ClipViewAll: Form
{
 Panel panelDisplay, panelButtons;
 RadioButton radioChecked;
 string[] astrFormatsSave = new string[0];

 public static void Main()
 {
 Application.Run(new ClipViewAll());
 }
 public ClipViewAll()
 {
 Text = "Clipboard Viewer (All Formats)";

 // Create variable-width panel for clipboard display.

 panelDisplay = new Panel();
 panelDisplay.Parent = this;
 panelDisplay.Dock = DockStyle.Fill;
 panelDisplay.Paint += new PaintEventHandler(PanelOnPaint);
 panelDisplay.BorderStyle = BorderStyle.Fixed3D;

 // Create splitter.

 Splitter split = new Splitter();
 split.Parent = this;
 split.Dock = DockStyle.Left;

 // Create panel for radio buttons.

 panelButtons = new Panel();
 panelButtons.Parent = this;
 panelButtons.Dock = DockStyle.Left;
 panelButtons.AutoScroll = true;
 panelButtons.Width = Width / 2;

 // Set time for 1 second.

 Timer timer = new Timer();
 timer.Interval = 1000;
 timer.Tick += new EventHandler(TimerOnTick);
 timer.Enabled = true;
 }
 void TimerOnTick(object obj, EventArgs ea)
 {
 IDataObject data = Clipboard.GetDataObject();

 string[] astrFormats = data.GetFormats();
 bool bUpdate = false;

 // Determine whether clipboard formats have changed.

 if (astrFormats.Length != astrFormatsSave.Length)
 bUpdate = true;
 else
 {
 for (int i = 0; i < astrFormats.Length; i++)
 if (astrFormats[i] != astrFormatsSave[i])

 {
 bUpdate = true;
 break;
 }
 }
 // Invalidate display regardless.

 panelDisplay.Invalidate();

 // Don't update buttons if formats haven't changed.

 if (!bUpdate)
 return;

 // Formats have changed, so re-create radio buttons.

 astrFormatsSave = astrFormats;
 panelButtons.Controls.Clear();
 Graphics grfx = CreateGraphics();
 EventHandler eh = new EventHandler(RadioButtonOnClick);
 int cxText = AutoScaleBaseSize.Width;
 int cyText = AutoScaleBaseSize.Height;

 for (int i = 0; i < astrFormats.Length; i++)
 {
 RadioButton radio = new RadioButton();
 radio.Parent = panelButtons;
 radio.Text = astrFormats[i];

 if (!data.GetDataPresent(astrFormats[i], false))
 radio.Text += "*";

 try
 {
 object objClip = data.GetData(astrFormats[i]);
 radio.Text += " (" + objClip.GetType() + ")";
 }
 catch
 {
 radio.Text += " (Exception on GetData or GetType!)";
 }
 radio.Tag = astrFormats[i];
 radio.Location = new Point(cxText, i * 3 * cyText / 2);
 radio.Size = new Size((radio.Text.Length + 20) * cxText,
 3 * cyText / 2);

 radio.Click += eh;
 }
 grfx.Dispose();
 radioChecked = null;
 }
 void RadioButtonOnClick(object obj, EventArgs ea)
 {
 radioChecked = (RadioButton) obj;
 panelDisplay.Invalidate();
 }
 void PanelOnPaint(object obj, PaintEventArgs pea)
 {
 Panel panel = (Panel) obj;
 Graphics grfx = pea.Graphics;
 Brush brush = new SolidBrush(panel.ForeColor);

 if (radioChecked == null)
 return;

 IDataObject data = Clipboard.GetDataObject();
 object objClip = data.GetData((string) radioChecked.Tag);

 if (objClip == null)
 return;

 else if (objClip.GetType() == typeof(string))
 {
 grfx.DrawString((string)objClip, Font, brush,
 panel.ClientRectangle);
 }
 else if (objClip.GetType() == typeof(string[])) // FileDrop
 {
 string str = string.Join("\r\n", (string[]) objClip);

 grfx.DrawString(str, Font, brush, panel.ClientRectangle);
 }
 else if (objClip.GetType() == typeof(Bitmap) ||
 objClip.GetType() == typeof(Metafile) ||
 objClip.GetType() == typeof(Image))
 {
 grfx.DrawImage((Image)objClip, 0, 0);
 }
 else if (objClip.GetType() == typeof(MemoryStream))
 {
 Stream stream = (Stream) objClip;

 byte[] abyBuffer = new byte[16];
 long lAddress = 0;
 int iCount;
 Font font = new Font(FontFamily.GenericMonospace,
 Font.SizeInPoints);
 float y = 0;

 while ((iCount = stream.Read(abyBuffer, 0, 16)) > 0)
 {
 string str = HexDump.ComposeLine(lAddress, abyBuffer,
 iCount);
 grfx.DrawString(str, font, brush, 0, y);
 lAddress += 16;
 y += font.GetHeight(grfx);

 if (y > panel.Bottom)
 break;
 }
 }
 }
}

Every second, this program checks whether the clipboard formats have changed and, if they have,
re-creates a collection of radio buttons, one for each format. Like the ClipView program, the text for
each radio button also indicates whether the format is native and the .NET type of the data.

Here's what the program looks like after I've copied some text from Microsoft Word to the clipboard:

Yes, this display does indeed reveal that the clipboard contains 13 different formats of the same text
item.

Because the clipboard provides a medium for applications to exchange data, it's essential that you
test your clipboard code with other applications. You'll find the ClipView and ClipViewAll programs
useful for exploring the clipboard from the perspective of a Windows Forms program, but the data
your program copies to the clipboard must also make sense to non–Windows Forms programs.

If you begin exploring the various clipboard formats that some applications use (such as the list in
the ClipViewAll display from Word), you'll find that some of them originated in the OLE (object linking
and embedding) specification, while others (like "HyperlinkWordBkmk") are obviously private to the
application.

Using a private clipboard format is simple. You just make up a name for the format, store it in a
string, and use that string as the clipboard format. You'll want to avoid collisions with other
applications using their own private formats, so give the format a name you're sure will be unique. It's

pretty easy if you use the name of the application as part of the clipboard format name, for example,
"WriteALot Version 2.1 Formatted Text".

Win32 programs generally refer to clipboard formats using ID numbers. (The first table of the
DataFormats fields earlier in this chapter shows the ID numbers associated with the standard
clipboard formats.) Windows also assigns identification numbers when applications use nonstandard
formats. The DataFormats class has a static method named GetFormat that essentially translates
the format name and the format ID:

DataFormats Static Methods

Format GetFormat(int id)
Format GetFormat(string strName)

Format is another class defined within DataFormats, so it appears in the class library documentation
as DataFormats.Format. The class has just two, read-only properties:
Format Properties

Type Property Accessibility

int Id get

string Name get

For example, the call
DataFormats.GetFormat("DeviceIndependentBitmap").Id

returns 8, and the call
DataFormats.GetFormat(8).Name

returns the string "DeviceIndependentBitmap". Nonstandard formats return numbers that can vary
from session to session, so you shouldn't hard-code them in your programs.

If you use a private clipboard format, you should supplement it with standard formats. That requires
that you use multiple clipboard formats for the same clipboard item.
Setting Multiple Clipboard Formats
As you've seen, you use the static SetDataObject method of the Clipboard class to put data on the
clipboard. Here's a call that puts text on the clipboard:
Clipboard.SetDataObject(strText);

You use similar calls for putting objects of type Bitmap or Metafile on the clipboard.

But what if the strText variable contains a block of RTF or HTML text? How do you indicate that fact
in the SetDataObject call? And what if you need to put multiple formats on the clipboard? Because
each call to SetDataObject replaces the item already on the clipboard, that doesn't seem possible.

The solution to both these problems is the DataObject class. Recall that the static GetDataObject
method of Clipboard is documented as returning an object of a class that implements the
IDataObject interface. DataObject is the only class in the .NET Framework that implements the
IDataObject interface. (This doesn't necessarily mean that Clipboard.GetDataObject returns an
object of type DataObject. It could create a new class dynamically. But you'll find that
Clipboard.GetDataObject often does return an object of type DataObject.)

DataObject has three constructors:

DataObject Constructors

DataObject()

DataObject(object objData)
DataObject(string strFormat, object objData)

For example, the call
Clipboard.SetDataObject(strText);

is equivalent to
Clipboard.SetDataObject(new DataObject(strText));

or
Clipboard.SetDataObject(new DataObject(DataFormats.StringFormat,
strText));

If strText actually contains a block of HTML, you can use
Clipboard.SetDataObject(new DataObject(DataFormats.Html, strText));

if the item shouldn't remain on the clipboard after the program terminates, and
Clipboard.SetDataObject(new DataObject(DataFormats.Html, strText), true);

if it should remain.

DataObject implements the IDataObject interface, so it supports all the methods defined for
IDataObject; the class doesn't support any other methods or properties. I've already discussed the
GetDataPresent, GetData, and GetFormats methods. The only remaining method is SetData, and
that's the one you'll use when you use DataObject for defining multiple formats:

DataObject SetData Method

void SetData(object objData)
void SetData(Type typeFormat, object objData)
void SetData(string strFormat, object objData)
void SetData(string strFormat, bool bConvert, object objData)

You create an object of type DataObject, use calls to SetData to store multiple formats of a single
item, and then pass the DataObject object to Clipboard.SetDataObject. By default, items are
converted to compatible formats unless you use the last overload in the table and set the bConvert
argument to false.

For example, suppose strText is a string of plain text you want to copy to the clipboard, strHtml
contains the same text with HTML formatting, and strRtf is the same string with RTF formatting.
Here's a sequence for storing these multiple formats on the clipboard:
DataObject data = new DataObject();
data.SetData(strText);
data.SetData(DataFormats.Html, strHtml);
data.SetData(DataFormats.Rtf, strRtf);
Clipboard.SetDataObject(data, true);

Watch out: Nobody's checking whether strHtml and strRtf are really blocks of HTML and RTF!
Likewise, any data that your program obtains from the clipboard might not necessarily be what it's
labeled. You'll want to parse HTML and RTF text strings from the clipboard very carefully.

Here's a program, MultiCopy, that copies a two-dimensional array of float values (defined as a field
named afValues) to the clipboard in three different formats: a private format, the CSV format, and a
plain text format.
MultiCopy.cs
//--
// MultiCopy.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

class MultiCopy: Form
{
 const string strFormat = "MultiCopy.InternalFormat";

 float[,] afValues = {{ 0.12f, 3.45f, 6.78f, 9.01f },
 { 2.34f, 5.67f, 8.90f, 1.23f },
 { 4.56f, 7.89f, 0.12f, 3.45f }};

 public static void Main()
 {
 Application.Run(new MultiCopy());
 }
 public MultiCopy()
 {
 Text = "Multi Copy";
 Menu = new MainMenu();

 // Edit menu

 MenuItem mi = new MenuItem("&Edit");
 Menu.MenuItems.Add(mi);

 // Edit Copy menu item

 mi = new MenuItem("&Copy");
 mi.Click += new EventHandler(MenuEditCopyOnClick);
 mi.Shortcut = Shortcut.CtrlC;
 Menu.MenuItems[0].MenuItems.Add(mi);
 }
 void MenuEditCopyOnClick(object obj, EventArgs ea)
 {
 DataObject data = new DataObject();

 // Define internal clipboard format.

 MemoryStream memorystream = new MemoryStream();
 BinaryWriter binarywriter = new BinaryWriter(memorystream);

 binarywriter.Write(afValues.GetLength(0));
 binarywriter.Write(afValues.GetLength(1));

 for (int iRow = 0; iRow < afValues.GetLength(0); iRow++)
 for (int iCol = 0; iCol < afValues.GetLength(1); iCol++)
 binarywriter.Write(afValues[iRow, iCol]);

 binarywriter.Close();

 data.SetData(strFormat, memorystream);

 // Define CSV clipboard format.

 memorystream = new MemoryStream();
 StreamWriter streamwriter = new StreamWriter(memorystream);

 for (int iRow = 0; iRow < afValues.GetLength(0); iRow++)
 for (int iCol = 0; iCol < afValues.GetLength(1); iCol++)
 {
 streamwriter.Write(afValues[iRow, iCol]);

 if (iCol < afValues.GetLength(1) - 1)
 streamwriter.Write(",");
 else
 streamwriter.WriteLine();
 }
 streamwriter.Write("\0");
 streamwriter.Close();
 data.SetData(DataFormats.CommaSeparatedValue, memorystream);

 // Define String clipboard format.

 StringWriter stringwriter = new StringWriter();

 for (int iRow = 0; iRow < afValues.GetLength(0); iRow++)
 for (int iCol = 0; iCol < afValues.GetLength(1); iCol++)
 {
 stringwriter.Write(afValues[iRow, iCol]);

 if (iCol < afValues.GetLength(1) - 1)
 stringwriter.Write("\t");

 else
 stringwriter.WriteLine();
 }
 stringwriter.Close();
 data.SetData(stringwriter.ToString());

 Clipboard.SetDataObject(data, false);
 }
}

Most of what this program does takes place during the MenuEditCopyOnClick event handler. That
method begins by defining an object of type DataObject and concludes by calling
Clipboard.SetDataObject to copy the object to the clipboard. In between, the data is formatted in
three different ways.

A private format is identified by the string "MultiCopy.InternalFormat". The array of float values
(preceded by the integer number of rows and columns) is stored in a binary format in a
MemoryStream object. The method uses the BinaryWriter class (discussed in Appendix A) to
facilitate the writing of binary objects to the stream. The method adds the memory stream to the
DataObject object using the call
data.SetData(strFormat, memorystream);

where strFormat is the string "MultiCopy.InternalFormat".

Next the method formats the data in CSV. Again, it creates a MemoryStream object for storing the
data, and this time it creates a StreamWriter object to facilitate the addition of formatted text strings
to the stream. Values in the same row are separated by commas; lines are separated by carriage
returns and line feeds. The method adds this memory stream to the DataObject object using the call
data.SetData(DataFormats.CommaSeparatedValue, memorystream);

Finally, the information is formatted into plain text. The process is much like CSV formatting except
that tabs are used rather than commas to separate values in the same row. Another difference is that
the text isn't put into a memory stream. Instead, the program uses a StringWriter object to construct
a string containing formatted text. This format is added to the DataObject object using the call
data.SetData(stringwriter.ToString());
Drag and Drop
The drag-and-drop facility in Windows allows a user to grab something with the mouse and drag it to
another part of the same application or a different application. Usually what the user grabs is one or
more files or a block of text, although images and other types of data can also be dragged and
dropped.

The application from which you drag an object is called the drag-and-drop source. The application
that you drag the object to is the drag-and-drop target. Drag-and-drop usually requires that the left
mouse button be pressed, although some applications allow dragging with the right button pressed.

The Windows Explorer application is very often a drag-and-drop source for a list of files (referred to
as the clipboard type "FileDrop"). For example, if you select a file in Windows Explorer and then drag
it to the client area of Notepad, Notepad will open the file and display it. The Microsoft WordPad
program can be a drag-and-drop source and target for text. If you select some text in WordPad, you
can drag it to another application that serves as a drag-and-drop target. Similarly, WordPad can be a
target for dragged text.

Data dragged from one application to another is generally moved, copied, or linked, depending on
the status of the Shift and Ctrl keys:
Drag-and-Drop Actions

Key Pressed Action

Drag-and-Drop Actions

Key Pressed Action

None Move

Ctrl Copy

Shift+Ctrl Link

In a Move operation, the drag-and-drop source deletes the object. In a Copy, the target receives a
copy of the object. In a Link, the source and target each get references to the same object.

If you use the mouse to grab a file list in Windows Explorer or a block of text in WordPad, and you
drag that to the client area of any program shown in this book so far, the cursor will change to a
circle with a slash—the international no-no sign. To become a drag-and-drop target, a control or form
must first have its AllowDrop property set to true:
Control Properties (selection)

Type Property Accessibility

bool AllowDrop get/set

The following four events are associated with being a drag-and-drop target:
Control Events (selection)

Event Method Delegate Arguments

DragEnter OnDragEnter DragEventHandler DragEventArgs

DragOver OnDragOver DragEventHandler DragEventArgs

DragDrop OnDragDrop DragEventHandler DragEventArgs

DragLeave OnDragLeave EventHandler EventArgs

A DragEnter event occurs when a control or form has its AllowDrop property set to true and the
mouse pointer dragging an object first enters the control or the form's client area. After that
DragEnter event, as the mouse is moved within the control or the client area, DragOver events
occur. If the mouse is then moved outside the control or the client area, a DragLeave event occurs.

A control or form can signal its receptiveness to being a target for the dragged data during the
DragEnter event or during one of the subsequent DragOver events. (We'll see how shortly.) At that
point, the cursor changes from a slashed circle to an arrow with a little box on its tail, possibly
accompanied by a plus sign (for a Copy) or a curved arrow (for a Link). If the mouse is then released
over the client area, a DragDrop event occurs.

If the control or form doesn't signal its receptiveness to the data, the cursor remains a slashed circle.
If the mouse is released over the client area, a DragLeave event occurs, not a DragDrop.

Generally, you'll want to handle the DragOver and DragDrop events. During the DragOver event, you
decide whether you can accept the data that's being dragged to your control or form. If only certain
areas of the control or form are valid for a drop, you can signal when the drop is valid and when it's
not. During the DragDrop event, you actually get access to the data. (It's just like a clipboard paste.)

The DragEnter, DragOver, and DragDrop events are all accompanied by an object of type
DragEventArgs, which has the following properties:
DragEventArgs Properties

Type Property Accessibility

int KeyState get

int X get

int Y get

DragEventArgs Properties

Type Property Accessibility

IDataObject Data get

DragDropEffects AllowedEffect get

DragDropEffects Effect get/set

The first three properties give you some information about the keyboard and mouse at the time of the
event. The KeyState property uses a set of bit flags to indicate which mouse buttons and modifier
keys are currently pressed:
KeyState Bit Flags

Key or Button Bit Flag

Left mouse button 0x01

Right mouse button 0x02

Shift key 0x04

Ctrl key 0x08

Middle mouse button 0x10

Alt key 0x20

The X and Y properties indicate the location of the mouse pointer in screen coordinates. (Use the
PointToClient method of Control to convert to client area coordinates.)

The next property is named Data, and it's an object of a class that implements the IDataObject
interface, just as in the GetDataObject method of the Clipboard class. During the DragEnter or
DragOver event, you can use the GetFormats or GetDataPresent methods to determine whether the
data is of a type your program can handle. During the DragDrop event, you use the GetData method
to obtain a copy of the data.

The AllowedEffect property contains one or more members of the DragDropEffects enumeration:
DragDropEffects Enumeration

Member Value

None 0x00000000

Copy 0x00000001

Move 0x00000002

Link 0x00000004

Scroll 0x80000000

All 0x80000003

The AllowedEffect property is effectively set by the drag-and-drop source to indicate the options
available to a drag-and-drop target. Most commonly, a drag-and-drop source will set AllowedEffect to
DragDropEffects.Copy | DragDropEffects.Move | DragDropEffects.Link

During the DragEnter and DragOver events, and based on the KeyState, X, Y, Data, and
AllowedEffect properties of the DragEventArgs object, the potential drag-and-drop target decides
whether it can accept the dropped data. If it can, it sets the Effect property to one of the members of
the DragDropEffects enumeration, a member that is included in the AllowedEffect property.
Generally, the target uses the KeyState property to determine whether Effect should be set to the
Copy, Move, or Link member. (That's what controls the appearance of the cursor.) Setting the Effect
property to DragDropEffects.None signals that the target can't accept the data. After the user drops

the object, the drag-and-drop source is informed which member of the enumeration the target
specified.

For any particular drag-and-drop operation, the potential drag-and-drop target needs to set the Effect
property only once; that value will be reflected in the DragEventArgs argument of subsequent
DragOver and DragDrop events. It's as if a single DragEventArgs object were used for the entire
drag-and-drop operation. However, the DragOver event handler will probably want to change Effect
based on the current status of the Ctrl and Shift keys.

In Chapter 18, "Edit, List, and Spin," I began a series of programs that progressively attempted to
emulate Notepad. The adventure continued in Chapter 21, "Printing," and is now about to come to a
conclusion. The following file makes the program a drag-and-drop target for text or a "FileDrop" list.
(The real Notepad is only a target for "FileDrop".) The file is called simply NotepadClone.cs because
the program is as finished as it's going to get in this book.
NotepadClone.cs
//---
// NotepadClone.cs © 2001 by Charles Petzold
//---
using System;
using System.Drawing;
using System.Windows.Forms;

class NotepadClone: NotepadCloneWithPrinting
{
 public new static void Main()
 {
 // This needs to be done for drag-and-drop to work.

 System.Threading.Thread.CurrentThread.ApartmentState =

System.Threading.ApartmentState.STA;

 Application.Run(new NotepadClone());
 }
 public NotepadClone()
 {
 strProgName = "NotepadClone";
 MakeCaption();

 txtbox.AllowDrop = true;
 txtbox.DragOver += new DragEventHandler(TextBoxOnDragOver);
 txtbox.DragDrop += new DragEventHandler(TextBoxOnDragDrop);
 }
 void TextBoxOnDragOver(object obj, DragEventArgs dea)
 {
 if (dea.Data.GetDataPresent(DataFormats.FileDrop) ||
 dea.Data.GetDataPresent(DataFormats.StringFormat))
 {
 if ((dea.AllowedEffect & DragDropEffects.Move) != 0)

 dea.Effect = DragDropEffects.Move;

 if (((dea.AllowedEffect & DragDropEffects.Copy) != 0) &&
 ((dea.KeyState & 0x08) != 0)) // Ctrl key
 dea.Effect = DragDropEffects.Copy;
 }
 }
 void TextBoxOnDragDrop(object obj, DragEventArgs dea)
 {
 if (dea.Data.GetDataPresent(DataFormats.FileDrop))
 {
 if (!OkToTrash())
 return;

 string[] astr = (string[])
 dea.Data.GetData(DataFormats.FileDrop);

 LoadFile(astr[0]); // In NotepadCloneWithFile.cs
 }
 else if (dea.Data.GetDataPresent(DataFormats.StringFormat))
 {
 txtbox.SelectedText =
 (string)
dea.Data.GetData(DataFormats.StringFormat);
 }
 }
}

During the constructor, the program sets the AllowDrop property of the TextBox control to true and
sets handlers for the text box's DragOver and DragDrop events. During the DragOver event, the
program checks for data formats of "FileDrop" or "System.String" and then sets the Effect property of
the DragEventArgs object to either DragDropEffects.Move or DragDropEffects.Copy, depending on
what the drag-and-drop source supports and the status of the Ctrl key.

During the DragDrop event, the program does something different, depending on the data format. A
format of "FileDrop" causes the program to load the file. Although "FileDrop" usually indicates a list
of files, NotepadClone can use only one file. For a format of "System.String", the program performs
an operation similar to a Paste.

You can experiment with transferring text into NotepadClone by using the program in conjunction
with a drag-and-drop source such as WordPad. As you drag something from WordPad to
NotepadClone, you can control the appearance of the cursor by pressing and releasing the Ctrl key.
When the DragDrop event finally occurs, WordPad is notified of the last setting of the Effect property.
WordPad is responsible for deleting or not deleting the selected text.

Let's now examine what's involved in becoming a drag-and-drop source. Any class descended from
Control can initiate a drag-and-drop operation by calling the following method, generally in response
to a MouseDown event:

Control Methods (selection)

DragDropEffects DoDragDrop(object objData, DragDropEffects dde)

The first argument is the object that the drag-and-drop source has to offer. This argument could be
an object of type DataObject if the drag-and-drop source can provide data in multiple formats or if it
wants to be more explicit about the format of the data (for example, specifying "HTML Format" for a
string type). The second argument is one or more members of the DragDropEffects enumeration.

The method doesn't return until the drag-and-drop operation has completed. At that point,
DoDragDrop returns a member of the DragDropEffects enumeration specified by the drag-and-drop
target or DragDropEffects.None if the target didn't accept the data or the operation was aborted in
some way.

Although DoDragDrop doesn't return until the operation has completed, a control or form can be
periodically notified during the process by handling the QueryContinueDrag event. In the following
table, ellipses are used to indicate the event name in the method, delegate, and event argument
names:
Control Events (selection)

Event Method Delegate Argument

QueryContinueDrag On… …EventHandler …EventArgs

The QueryContinueDragEventArgs object that accompanies the event has the following properties:
QueryContinueDragEventArgs Properties

Type Property Accessibility

int KeyState get

bool EscapePressed get

DragAction Action get/set

The drag-and-drop source can set the Action property to one of the following members of the
DragAction enumeration:
DragAction Enumeration

Member Value

Continue 0

Drop 1

Cancel 2

Normally, the drag-and-drop operation will be cancelled if the user presses the Esc key. You can
override that behavior—or cancel the operation for other reasons—by handling this event.

Here's a program that overrides and enhances ImageClip to become both a drag-and-drop source
and target.
ImageDrop.cs
//--
// ImageDrop.cs © 2001 by Charles Petzold
//--
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Windows.Forms;

class ImageDrop: ImageClip
{
 bool bIsTarget;

 public new static void Main()
 {
 Application.Run(new ImageDrop());
 }
 public ImageDrop()
 {
 Text = strProgName = "Image Drop";

 AllowDrop = true;
 }
 protected override void OnDragOver(DragEventArgs dea)
 {
 if (dea.Data.GetDataPresent(DataFormats.FileDrop) ||
 dea.Data.GetDataPresent(typeof(Metafile)) ||
 dea.Data.GetDataPresent(typeof(Bitmap)))
 {
 if ((dea.AllowedEffect & DragDropEffects.Move) != 0)
 dea.Effect = DragDropEffects.Move;

 if (((dea.AllowedEffect & DragDropEffects.Copy) != 0) &&
 ((dea.KeyState & 0x08) != 0)) // Ctrl key
 dea.Effect = DragDropEffects.Copy;
 }
 }
 protected override void OnDragDrop(DragEventArgs dea)
 {
 if (dea.Data.GetDataPresent(DataFormats.FileDrop))
 {
 string[] astr = (string[])
 dea.Data.GetData(DataFormats.FileDrop);
 try
 {
 image = Image.FromFile(astr[0]);
 }
 catch (Exception exc)
 {
 MessageBox.Show(exc.Message, Text);
 return;
 }
 strFileName = astr[0];
 Text = strProgName + " - " + Path.GetFileName(strFileName);

 Invalidate();
 }
 else
 {
 if (dea.Data.GetDataPresent(typeof(Metafile)))
 image = (Image) dea.Data.GetData(typeof(Metafile));

 else if (dea.Data.GetDataPresent(typeof(Bitmap)))
 image = (Image) dea.Data.GetData(typeof(Bitmap));

 bIsTarget = true;
 strFileName = "DragAndDrop";
 Text = strProgName + " - " + strFileName;
 Invalidate();
 }
 }
 protected override void OnMouseDown(MouseEventArgs mea)
 {
 if (image != null)
 {
 bIsTarget = false;

 DragDropEffects dde = DoDragDrop(image,
 DragDropEffects.Copy |
DragDropEffects.Move);

 if (dde == DragDropEffects.Move && !bIsTarget)
 image = null;
 }
 }
}

The OnDragOver and OnDragDrop methods are similar to the DragOver and DragDrop event
handlers in NotepadClone. ImageDrop also becomes a drag-and-drop source by calling DoDragDrop
during the OnMouseDown method. The program allows Copy and Move actions; if DoDragDrop
returns DragDropEffects.Move, the program effectively deletes its copy of the Image object by
setting the image variable to null.

An earlier version of this program that I attempted didn't quite work right when I used the program to
perform a Move operation on itself. That's because DoDragDrop returns after the OnDragDrop
method returns, and the program would delete the image it had just obtained! I defined the bIsTarget
variable for this one special case: the program no longer deletes an image moved from itself.

Appendix A: Files and Streams
Overview
Most file I/O support in the .NET Framework is implemented in the System.IO namespace. On first
exploration, however—and even during subsequent forays—System.IO can be a forbidding place. It
doesn't help to be reassured that the .NET Framework offers a rich array of file I/O classes and tools.
For a C programmer whose main arsenal of file I/O tools consists of library functions such as fopen,
fread, fwrite, and fprintf, the .NET file I/O support can seem excessively convoluted and complex.

This appendix is intended to provide a logical progression to guide you through System.IO. I want to
identify the really important stuff and also let you know some of the rationale for the multitude of
classes.

The .NET Framework distinguishes between files and streams. A file is a collection of data stored on
a disk with a name and (often) a directory path. When you open a file for reading or writing, it
becomes a stream. A stream is something on which you can perform read and write operations. But
streams encompass more than just open disk files. Data coming over a network is a stream, and you
can also create a stream in memory. In a console application, keyboard input and text output are
also streams.
The Most Essential File I/O Class
If you learn just one class in the System.IO namespace, let it be FileStream. You use this basic class
to open, read from, write to, and close files. FileStream inherits from the abstract class Stream, and
many of its properties and methods are derived from Stream.

To open an existing file or create a new file, you create an object of type FileStream. These five
FileStream constructors have a nice orderly set of overloads:

FileStream Constructors (selection)

FileStream(string strFileName, FileMode fm)
FileStream(string strFileName, FileMode fm, FileAccess fa)
FileStream(string strFileName, FileMode fm, FileAccess fa, FileShare fs)
FileStream(string strFileName, FileMode fm, FileAccess fa, FileShare fs,
 int iBufferSize)
FileStream(string strFileName, FileMode fm, FileAccess fa, FileShare fs,
 int iBufferSize, bool bAsync)

There are four additional FileStream constructors based on the operating system file handle. Those
are useful for interfacing with existing code. FileMode, FileAccess, and FileShare are all
enumerations defined in the System.IO namespace.

The FileMode enumeration indicates whether you want to open an existing file or create a new file
and what should happen when the file you want to open doesn't exist or the file you want to create
already exists:
FileMode Enumeration

Member Value Description

CreateNew 1 Fails if file exists

Create 2 Deletes file contents if file already exists

Open 3 Fails if file does not exist

OpenOrCreate 4 Creates new file if file does not exist

FileMode Enumeration

Member Value Description

Truncate 5 Fails if file does not exist; deletes contents of file

Append 6 Fails if file is opened for reading; creates new file if file does not
exist; seeks to end of file

By fail, I mean that the FileStream constructor throws an exception such as IOException or
FileNotFoundException. Almost always, you should call the FileStream constructor in a try block to
gracefully recover from any problems regarding the presumed existence or nonexistence of the file.

Unless you specify a FileAccess argument, the file is opened for both reading and writing. The
FileAccess argument indicates whether you want to read from the file, write to it, or both:
FileAccess Enumeration

Member Value Description

Read 1 Fails for FileMode.CreateNew, FileMode.Create,
FileMode.Truncate, or FileMode.Append

Write 2 Fails if file is read-only

ReadWrite 3 Fails for FileMode.Append or if file is read-only

There's one case in which a FileAccess argument is required: when you open a file with
FileMode.Append, the constructor fails if the file is opened for reading. Because files are opened for
reading and writing by default, the following constructor always fails:
new FileStream(strFileName, FileMode.Append)

If you want to use FileMode.Append, you also need to include an argument of FileAccess.Write:
new FileStream(strFileName, FileMode.Append, FileAccess.Write)

Unless you specify a FileShare argument, the file is open for exclusive use by your process. No
other process (or the same process) can open the same file. Moreover, if any other process already
has the file open and you don't specify a FileShare argument, the FileStream constructor will fail.
The FileShare argument lets you be more specific about file sharing:
FileShare Enumeration (selection)

Member Value Description

None 0 Allow other processes no access to the file; default

Read 1 Allow other processes to read the file

Write 2 Allow other processes to write to the file

ReadWrite 3 Allow other processes full access to the file

When you only need to read from a file, it's common to allow other processes to read from it also; in
other words, FileAccess.Read should usually be accompanied by FileShare.Read. This courtesy
goes both ways: if another process has a file open with FileAccess.Read and FileShare.Read, your
process won't be able to open it unless you specify both flags as well.
FileStream Properties and Methods
Once you've opened a file by creating an object of type FileStream, you have access to the following
five properties implemented in Stream that the FileStream class overrides:
Stream Properties

Type Property Accessibility

bool CanRead get

Stream Properties

Type Property Accessibility

bool CanWrite get

bool CanSeek get

long Length get

long Position get/set

The first two properties depend on the FileAccess value you used to create the FileStream object.
The CanSeek property is always true for open files. The property can return false for other types of
streams (such as network streams).

The Length and Position properties are applicable only to seekable streams. Notice that both Length
and Position are long integers, and in theory allow file sizes up to 9 × 1012, or 9 terabytes, which
should be a sufficient maximum file size for at least a couple years.

Setting the Position property is a straightforward way of seeking in the file. (I'll discuss a more
conventional Seek method shortly.) For example, if fs is an object of type FileStream, you can seek
to the 100th byte in the file with the statement
fs.Position = 100;

You can seek to the end of a file (for appending to the file) with the statement
fs.Position = fs.Length;

All the following methods implemented by Stream are overridden by FileStream:

Stream Methods (selection)

int ReadByte()
int Read(byte[] abyBuffer, int iBufferOffset, int iCount)
void WriteByte(byte byValue)
void Write(byte[] abyBuffer, int iBufferOffset, int iCount)
long Seek(long lOffset, SeekOrigin so)
void SetLength(long lSize);
void Flush()
void Close()

You can read either individual bytes with ReadByte or multiple bytes with Read. Both methods return
an int value, but that value means different things to each of the methods. ReadByte normally returns
the next byte from the file cast to an int without sign extension. For example, the byte 0xFF becomes
the integer 0x000000FF, or 255. A return value of −1 indicates an attempt to read past the end of the
file.

Read returns the number of bytes read into the buffer, up to iCount. For files, Read returns the same
value as the iCount argument unless iCount is greater than the remaining number of bytes in the file.
A return value of 0 indicates that there are no more bytes to be read in the file. For other types of
streams (network streams, for example), Read can return a value less than iCount but always at
least 1 unless the entire stream has been read. The second argument to Read and Write is an offset
into the buffer, not an offset into the stream!

The Seek method is similar to the file-seeking functions in C. The SeekOrigin enumeration defines
where the lOffset argument to the Seek method is measured from:
SeekOrigin Enumeration

Member Value

Begin 0

Current 1

End 2

If the stream is writable and seekable, the SetLength method sets a new length for the file, possibly
truncating the contents if the new length is shorter than the existing length. Flush causes all data in
memory buffers to be written to the file.

Despite what may or may not happen as a result of garbage collection on the FileStream object, you
should always explicitly call the Close method for any files you open.

If you ignore exception handling, in most cases, you can read an entire file into memory—including
allocating a memory buffer based on the size of the file—in just four statements:
FileStream fs = new FileStream("MyFile", FileMode.Open,
 FileAccess.Read, FileShare.Read);
Byte[] abyBuffer = new Byte[fs.Length];
fs.Read(abyBuffer, 0, (int) fs.Length);
fs.Close();

I say "in most cases" because this code assumes the file is less than 231 bytes (or 2 gigabytes). That
assumption comes into play in the casting of the last argument of the Read method from a 64-bit
long to a 32-bit int. If the file is larger than 2 gigabytes, you'll have to read it in multiple calls to Read.
(But you probably shouldn't even be trying to read a multigigabyte file entirely into memory!)

FileStream is an excellent choice for a traditional hex-dump program.
HexDump.cs
//--------------------------------------
// HexDump.cs © 2001 by Charles Petzold
//--------------------------------------
using System;
using System.IO;

class HexDump
{
 public static int Main(string[] astrArgs)
 {
 if (astrArgs.Length == 0)
 {
 Console.WriteLine("Syntax: HexDump file1 file2 ...");
 return 1;
 }
 foreach (string strFileName in astrArgs)
 DumpFile(strFileName);

 return 0;
 }
 protected static void DumpFile(string strFileName)
 {

 FileStream fs;

 try
 {
 fs = new FileStream(strFileName, FileMode.Open,
 FileAccess.Read, FileShare.Read);
 }
 catch (Exception exc)
 {
 Console.WriteLine("HexDump: {0}", exc.Message);
 return;
 }
 Console.WriteLine(strFileName);
 DumpStream(fs);
 fs.Close();
 }
 protected static void DumpStream(Stream stream)
 {
 byte[] abyBuffer = new byte[16];
 long lAddress = 0;
 int iCount;

 while ((iCount = stream.Read(abyBuffer, 0, 16)) > 0)
 {
 Console.WriteLine(ComposeLine(lAddress, abyBuffer,
iCount));
 lAddress += 16;
 }
 }
 public static string ComposeLine(long lAddress, byte[] abyBuffer,
 int iCount)
 {
 string str = String.Format("{0:X4}-{1:X4} ",
 (uint) lAddress / 65536, (ushort) lAddress);

 for (int i = 0; i < 16; i++)
 {
 str += (i < iCount) ?
 String.Format("{0:X2}", abyBuffer[i]) : "
";
 str += (i == 7 && iCount > 7) ? "-" : " ";
 }
 str += " ";

 for (int i = 0; i < 16; i++)
 {

 char ch = (i < iCount) ? Convert.ToChar(abyBuffer[i]) : '
';
 str += Char.IsControl(ch) ? "." : ch.ToString();
 }
 return str;
 }
}

This program uses the version of Main that has a single argument. The argument is an array of
strings, each of which is a command-line argument to the program. Unlike the main function in C, the
Main method in C# doesn't include an argument count and also doesn't include the program name
among the arguments. If you run the program like so:
HexDump file1.cs file2.exe

then the argument to Main is a string array with two elements. Any wildcards in the arguments are
not automatically expanded. (I'll get to wildcard expansion later in this appendix.)

Once HexDump successfully opens each file, the program uses the Read method to read 16-byte
chunks from the file, and then HexDump's ComposeLine method displays them. I've reused the
ComposeLine method in the HeadDump program in Chapter 16.

FileStream has a couple more features I want to mention briefly. For file sharing, you can lock and
unlock sections of the file for exclusive use:

FileStream Methods (selection)

void Lock(long lPosition, long lLength)
void Unlock(long lPosition, long lLength)

If the file system supports asynchronous reading and writing, and if you use the last constructor in
the table shown earlier with a last argument of true, you can use the BeginRead, EndRead,
BeginWrite, and EndWrite methods to read from and write to the file asynchronously.
The Problem with FileStream
I asserted earlier that FileStream is the most essential class in System.IO because it opens files and
lets you read and write bytes. What could be more basic and vital than that?

The problem, however, is that C# is not nearly as flexible as C in casting. For example, a C
programmer might read an int from a file by taking the address of an integer variable and casting it to
a byte pointer for the fread function. But casting something else to a byte array won't work in C#. The
Read and Write methods in FileStream work with byte arrays and nothing but byte arrays.

Of course, because the byte is the lowest common denominator, you can always read bytes and
assemble them into other basic data types (such as char or int), and you can disassemble basic
types into bytes in preparation for writing. Would you like to do this yourself? I didn't think so.

So, unless reading and writing arrays of bytes is entirely satisfactory to you, you probably can't limit
your knowledge of file I/O to the FileStream class. As I'll explain shortly, you use the StreamReader
and StreamWriter classes for reading and writing text files, and BinaryReader and BinaryWriter for
reading and writing binary files of types other than byte arrays.
Other Stream Classes
The FileStream class is one of several classes descended from the abstract class Stream. For a
class that can't be instantiated, Stream plays a very important role in the .NET Framework. This
hierarchy diagram shows six classes descended from Stream:

The stream classes with an asterisk are defined in namespaces other than System.IO.

In addition, a number of methods in other classes scattered throughout the .NET Framework return
objects of type Stream. For example, as I'll demonstrate later in this appendix, a .NET program that
reads files from the Web does so using a Stream object. A program in Chapter 11 demonstrates that
you can also load image files (such as JPEGs) from streams.

For performance purposes, the FileStream class creates a buffered stream. An area of memory is
maintained so that every call to ReadByte, Read, WriteByte, and Write doesn't necessarily result in a
call to the operating system to read from or write to the file.

If you have a Stream object that isn't a buffered stream, you can convert it to a buffered stream using
the BufferedStream class.

The MemoryStream class lets you create an expandable area of memory that you can access using
the Stream methods. I demonstrate how to use the MemoryStream class in the
CreateMetafileMemory program in Chapter 23 and in several programs in Chapter 24.
Reading and Writing Text
One important type of file is the text file, which consists entirely of lines of text separated by end-of-
line markers. The System.IO class has specific classes to read and write text files. Here's the object
hierarchy:

Although these classes are not descended from Stream, they almost certainly make use of the
Stream class.

The two classes I'm going to focus on here are StreamReader and StreamWriter, which are
designed for reading and writing text files or text streams. The two other nonabstract classes are
StringReader and StringWriter, which are not strictly file I/O classes. They use similar methods to

read to and write from strings. I discuss these classes briefly at the end of Appendix C and
demonstrate the StringWriter class in the EnumMetafile program in Chapter 23.

Text may seem to be a very simple form of data storage, but in recent years, text has assumed a
layer of complexity as a result of the increased use of Unicode.

The System.Char data type in .NET—and the char alias in C#—is a 16-bit value representing a
character in the Unicode character set. The .NET System.String type (and the C# string alias)
represents a string of Unicode characters. But what happens when you write strings from a C#
program to a file? Do you want to write them as Unicode? That makes sense only if every application
that reads the file you create expects to be reading Unicode! You probably want to avoid Unicode if
you know that other applications reading the file are anticipating encountering 8-bit ASCII characters.

The first 256 characters in Unicode are the same as the 128 characters of ASCII and the 128
characters of the ISO Latin Alphabet No. 1 extension to ASCII. (The combination of these two
character sets is often referred to in Windows API documentation as the ANSI character set.) For
example, the capital A is 0x41 in ASCII and 0x0041 in Unicode. Unicode strings that contain
exclusively (or mostly) ASCII contain a lot of zeros. These zeros cause problems for a lot of
traditional C-based and UNIX-based programs because those programs interpret a zero byte as a
string-termination character.

To alleviate these problems, the StreamWriter class lets you have control over how the Unicode
strings in your C# program are converted for storage in a file. You assert this control via classes
defined in the System.Text namespace. Similarly, StreamReader lets your program read text files in
various formats and convert the text from the files to Unicode strings in your program.

Let's look at StreamWriter first. You use this class to write to new or existing text files.

Four of the StreamWriter constructors let you create an object of type StreamWriter based on a
filename:

StreamWriter Constructors (selection)

StreamWriter(string strFileName)
StreamWriter(string strFileName, bool bAppend)
StreamWriter(string strFileName, bool bAppend, Encoding enc)
StreamWriter(string strFileName, bool bAppend, Encoding enc, int
iBufferSize)

These constructors open the file for writing, probably using a FileStream constructor internally. By
default, if the file exists, the contents will be destroyed. The bAppend argument allows you to
override that default action. The remaining constructors create an object of type StreamWriter based
on an existing Stream object:

StreamWriter Constructors (selection)

StreamWriter(Stream stream)
StreamWriter(Stream stream, Encoding enc)
StreamWriter(Stream stream, Encoding enc, int iBufferSize)

If you use a constructor without an Encoding argument, the resultant StreamWriter object will not
store strings to the file in a Unicode format with 2 bytes per character. Nor will it convert your strings
to ASCII. Instead, the StreamWriter object will store strings in a format known as UTF-8, which is
something I'll go over shortly.

If you use one of the StreamWriter constructors with an Encoding argument, you need an object of
type Encoding, which is a class defined in the System.Text namespace. It's easiest (and in many
cases, sufficient) to use one of the static properties of the Encoding class to obtain this object:
Encoding Static Properties

Type Property Accessibility

Encoding Default get

Encoding Unicode get

Encoding BigEndianUnicode get

Encoding UTF8 get

Encoding UTF7 get

Encoding ASCII get

The Encoding argument to the StreamWriter constructor can also be an instance of one of the
classes in System.Text that derive from Encoding, which are ASCIIEncoding, UnicodeEncoding,
UTF7Encoding, and UTF8Encoding. The constructors for these classes often have a few options, so
you may want to check them out if the static properties aren't doing precisely what you want.

When you specify an encoding of Encoding.Unicode, each character is written to the file in 2 bytes
with the least significant byte first, in accordance with the so-called little-endian architecture of Intel
microprocessors. The file or stream begins with the bytes 0xFF and 0xFE, which correspond to the
Unicode character 0xFEFF, which is defined in the Unicode standard as the byte order mark (BOM).

An encoding of Encoding.BigEndianUnicode stores the most significant byte of each character first.
The file or stream begins with the bytes 0xFE and 0xFF, which also correspond to the Unicode
character 0xFEFF. The Unicode character 0xFFFE is intentionally undefined so that applications can
determine the byte ordering of a Unicode file from its first two bytes.

If you want to store strings in Unicode but you don't want the byte order marks emitted, you can
instead obtain an Encoding argument for the StreamWriter constructor by creating an object of type
UnicodeEncoding:
new UnicodeEncoding(bBigEndian, bIncludeByteOrderMark)

Set the two Boolean arguments appropriately.

UTF-8 is a character encoding designed to represent Unicode characters without using any zero
bytes (and hence, to be C and UNIX friendly). UTF stands for UCS Transformation Format. UCS
stands for Universal Character Set, which is another name for ISO 10646, a character-encoding
standard with which Unicode is compatible.

In UTF-8, each Unicode character is translated to a sequence of 1 to 6 nonzero bytes. Unicode
characters in the ASCII range (0x0000 through 0x007F) are translated directly to single-byte values.
Thus, Unicode strings that contain only ASCII are translated to ASCII files. UTF-8 is documented in
RFC 2279. (RFC stands for Request for Comments. RFCs are documentations of Internet standards.
You can obtain RFCs from many sources, including the Web site of the Internet Engineering Task
Force, http://www.ietf.org.)

When you specify Encoding.UTF8, the StreamWriter class converts the Unicode text strings to UTF-
8. In addition, it writes the three bytes 0xEF, 0xBB, and 0xBF to the beginning of the file or stream.
These bytes are the Unicode BOM converted to UTF-8.

If you want to use UTF-8 encoding but you don't want those three bytes emitted, don't use
Encoding.UTF8. Use Encoding.Default instead or one of the constructors that doesn't have an
Encoding argument. These options also provide UTF-8 encoding, but the three identification bytes
are not emitted.

Alternatively, you can create an object of type UTF8Encoding and pass that object as the argument
to StreamWriter. Use
new UTF8Encoding()

http://www.ietf.org

or
new UTF8Encoding(false)

to suppress the three bytes, and use
new UTF8Encoding(true)

to emit the identification bytes.

UTF-7 is documented in RFC 2152. Unicode characters are translated to a sequence of bytes that
has an upper bit of 0. UTF-7 is intended for environments in which only 7-bit values can be used,
such as e-mail. Use Encoding.UTF7 in the StreamWriter constructor for UTF-7 encoding. No
identification bytes are involved with UTF-7.

When you specify an encoding of Encoding.ASCII, the resultant file or stream contains only ASCII
characters, that is, characters in the range 0x00 through 0x7F. Any Unicode character not in this
range is converted to a question mark (ASCII code 0x3F). This is the only encoding in which data is
actually lost.

The StreamWriter class has a few handy properties:
StreamWriter Properties (selection)

Type Property Accessibility

Stream BaseStream get

Encoding Encoding get

bool AutoFlush get/set

string NewLine get/set

The BaseStream property returns either the Stream object you used to create the StreamWriter
object or the Stream object that the StreamWriter class created based on the filename you supplied.
If the base stream supports seeking, you can use that object to perform seeking operations on that
stream.

The Encoding property returns the encoding you specified in the constructor or UTF8Encoding if you
specified no encoding. Setting AutoFlush to true performs a flush of the buffer after every write.

The NewLine property is inherited from TextWriter. By default, it's the string "\r\n" (carriage return
and line feed), but you can change it to "\n" (line feed). If you change it to anything else, the files
won't be readable by StreamReader objects.

The versatility of the StreamWriter class involves the Write and WriteLine methods that the class
inherits from TextWriter:

TextWriter Methods (selection)

void Write(...)
void WriteLine(...)
void Flush()
void Close()

TextWriter supports (and StreamWriter inherits) 17 versions of Write and 18 versions of WriteLine
that let you specify any object as an argument to the method. The object you specify is converted to
a string by the use of its ToString method. The WriteLine method follows the string with an end-of-
line marker. A version of WriteLine with no arguments writes just an end-of-line marker. The Write
and WriteLine methods also include versions with formatting strings, just as the Console.Write and
Console.WriteLine methods do.

Here's a tiny program that appends text to the same file every time you run the program.
StreamWriterDemo.cs
//---
// StreamWriterDemo.cs © 2001 by Charles Petzold
//---
using System;
using System.IO;

class StreamWriterDemo
{
 public static void Main()
 {
 StreamWriter sw = new StreamWriter("StreamWriterDemo.txt",
true);

 sw.WriteLine("You ran the StreamWriterDemo program on {0}",
 DateTime.Now);

 sw.Close();
 }
}

Notice the true argument to the constructor, indicating that the file will be appended to. The Unicode
strings in the program are converted to UTF-8, but they will appear to be ASCII.

I mentioned the Console class a moment ago. The input and output devices in that class are defined
as objects of type TextWriter. Try inserting the following lines at the beginning of the Main method in
HexDump:
StreamWriter sw = new StreamWriter("prn", false, Encoding.ASCII);
Console.SetOut(sw);

You'll also need to add a using statement:
using System.Text;

Now all the output from the program goes to the printer.

The StreamReader class is for reading text files or streams. There are five constructors for opening a
text file for reading:

StreamReader Constructors (selection)

StreamReader(string strFileName)
StreamReader(string strFileName, Encoding enc)
StreamReader(string strFileName, bool bDetect)
StreamReader(string strFileName, Encoding enc, bool bDetect)
StreamReader(string strFileName, Encoding enc, bool bDetect, int
iBufferSize)

There is an additional set of five constructors for creating a StreamReader object based on an
existing stream:

StreamReader Constructors (selection)

StreamReader(Stream stream)
StreamReader(Stream stream, Encoding enc)
StreamReader(Stream stream, bool bDetect)
StreamReader(Stream stream, Encoding enc, bool bDetect)
StreamReader(Stream stream, Encoding enc, bool bDetect, int iBufferSize)

If you set bDetect to true, the constructor will attempt to determine the encoding of the file from the
first two or three bytes. Or you can specify the encoding explicitly. If you set bDetect to true and also
specify an encoding, the constructor will use the specified encoding only if it can't detect the
encoding of the file. (For example, ASCII and UTF-7 can't be differentiated by inspection because
they don't begin with a BOM and both contain only bytes in the range 0x00 through 0x7F.)

The StreamReader class has the following two, read-only properties:
StreamReader Properties

Type Property Accessibility

Stream BaseStream get

Encoding CurrentEncoding get

The CurrentEncoding property may change between the time the object is constructed and the first
read operation performed on the file or stream because the object has knowledge of identification
bytes only after the first read.

Here are the methods to peek, read, and close text files:

StreamReader Methods (selection)

int Peek()
int Read()
int Read(char[] achBuffer, int iBufferOffset, int iCount)
string ReadLine()
string ReadToEnd()
void Close()

The Peek and the first Read methods both return the next character in the stream or −1 if the end of
the stream has been reached. You must explicitly cast the return value to a char if the return value is
not −1. The second Read method returns the number of characters read or 0 if the end of the stream
has been reached.

The ReadLine method reads the next line up to the next end-of-line marker and strips the end-of-line
characters from the resultant string. The method returns a zero-length character string if the line of
text contains only an end-of-line marker; the method returns null if the end of the stream has been
reached.

ReadToEnd returns everything from the current position to the end of the file. The method returns
null if the end of the stream has been reached.

Here's a program that assumes the command-line argument is a URI (Universal Resource Identifier)
of an HTML file (or other text file) on the Web. It obtains a Stream for that file using some boilerplate
code involving the WebRequest and WebResponse classes. It then constructs a StreamReader

object from that stream, uses ReadLine to read each line, and then displays each line using
Console.WriteLine with a line number.
HtmlDump.cs
//---------------------------------------
// HtmlDump.cs © 2001 by Charles Petzold
//---------------------------------------
using System;
using System.IO;
using System.Net;

class HtmlDump
{
 public static int Main(string[] astrArgs)
 {
 if (astrArgs.Length == 0)
 {
 Console.WriteLine("Syntax: HtmlDump URI");
 return 1;
 }

 WebRequest webreq;
 WebResponse webres;

 try
 {
 webreq = WebRequest.Create(astrArgs[0]);
 webres = webreq.GetResponse();
 }
 catch (Exception exc)
 {
 Console.WriteLine("HtmlDump: {0}", exc.Message);
 return 1;
 }

 if (webres.ContentType.Substring(0, 4) != "text")
 {
 Console.WriteLine("HtmlDump: URI must be a text type.");
 return 1;
 }

 Stream stream = webres.GetResponseStream();
 StreamReader strrdr = new StreamReader(stream);
 string strLine;
 int iLine = 1;

 while ((strLine = strrdr.ReadLine()) != null)

 Console.WriteLine("{0:D5}: {1}", iLine++, strLine);

 stream.Close();
 return 0;
 }
}
Binary File I/O
By definition, any file that's not a text file is a binary file. I've already discussed the FileStream class,
which lets you read and write bytes. But most binary files consist of data types that are stored as
multiple bytes. Unless you want to write code that constructs and deconstructs integers and other
types from their constituent bytes, you'll want to take advantage of the BinaryReader and
BinaryWriter classes, both of which are derived solely from Object:

The constructors for these classes require a Stream object. If you want to use a file with these
classes, create a new FileStream object (or obtain one from some other means) first. For the
BinaryWriter class, the Encoding you optionally specify affects the storage of text in the stream:

BinaryWriter Constructors

BinaryWriter(Stream stream)
BinaryWriter(Stream stream, Encoding enc)

The constructors for BinaryReader are identical:

BinaryReader Constructors

BinaryReader(Stream stream)
BinaryReader(Stream stream, Encoding enc)

Both classes have a single read-only property named BaseStream that is the Stream object you
specified in the constructor.

The Write methods in BinaryWriter are defined for all the basic types as well as for arrays of bytes
and characters.

BinaryWriter Public Methods

void Write(...)
void Write(byte[] abyBuffer, int iBufferOffset, int iBytesToWrite)
void Write(char[] achBuffer, int iBufferOffset, int iBytesToWrite)
long Seek(int iOffset, SeekOrigin so)
void Flush()

void Close()

You can use an object of any basic type (bool, byte, sbyte, byte[], char, char[], string, short, ushort,
int, uint, long, ulong, float, double, or decimal) as an argument to Write.

These methods do not store any information about the type of the data. Each type uses as many
bytes as necessary. For example, a float is stored in 4 bytes. A bool requires 1 byte. The sizes of
arrays are not stored. A 256-element byte array is stored in 256 bytes.

Strings stored in the file are preceded by the byte length stored as a 7-bit encoded integer. (The 7-bit
integer encoding uses as many bytes as necessary to store an integer in 7-bit chunks. The first byte
of storage is the lowest 7 bits of the integer, and so forth. The high bit of each byte is 1 if there are
more bytes. The BinaryWriter class includes a protected method named Write7BitEncodedInt that
performs this encoding.)

The Close method closes the underlying stream that the BinaryWriter object is based on.

The BinaryReader class has separate methods to read all the various types.

BinaryReader Methods (selection)

bool ReadBoolean()
byte ReadByte()
byte[] ReadBytes(int iCount)
sbyte ReadSByte()
char ReadChar()
char[] ReadChars(int iCount)
short ReadInt16()
int ReadInt32()
long ReadInt64()
ushort ReadUInt16()
uint ReadUInt32()
ulong ReadUInt64()
float ReadSingle()
double ReadDouble()
decimal ReadDecimal()

These methods throw an exception of type EndOfStreamException if the end of the stream has been
reached. In most cases, your program will know the format of a binary file it's accessing and can
avoid end-of-stream conditions. However, for maximum protection, you should put your read
statements in try blocks in case you encounter corrupted files.

You can also read individual characters, or arrays of bytes or characters:

BinaryReader Methods (selection)

int PeekChar()
int Read()
void Read(byte[] abyBuffer, int iBufferOffset, int iBytesToRead)
void Read(char[] achBuffer, int iBufferOffset, int iBytesToRead)
void Close()

The PeekChar and Read methods involve characters, not bytes, and will assume that the file is UTF-
8 encoded if you don't explicitly indicate an encoding in the constructor. The methods return −1 if the
end of the stream has been reached.

If you have experience with file I/O in C programs, you're probably familiar with common techniques
to read and write data structures in a binary format. For example, you may define a structure like so:
typedef struct
{
 int i;
 float f;
 char ch[10];
 int j;
 float g;
}
STRUCTDEF;

and a variable of type STRUCTDEF like this:
STRUCTDEF mystruct;

If you open a file with fopen and name the FILE pointer file, you can then write out the contents of
the structure using fwrite, as here,
fwrite(&mystruct, sizeof(STRUCTDEF), 1, file);

and read it back in similarly:
fread(&mystruct, sizeof(STRUCTDEF), 1, file);

This job is so easy because C stores the contents of a structure as just a block of memory. The first
argument of the fwrite and fread functions is defined as a void pointer, so you can specify a pointer
to anything.

With C#, you don't have quite this much casting freedom. You'll probably want to take a completely
different (and more structured) approach to reading and writing binary data. Instead of defining
structures such as STRUCTDEF, you'll be defining classes. When you save an instance of a class to
a file, you want to save sufficient information to re-create that object when you read the file. In a well-
designed C# class, you'll probably be saving all the properties of the class that are necessary to re-
create the object.

Let's assume you have a class named SampleClass that has three properties necessary to re-create
the object: a float named Value, a string named Text, and an object of type Fish stored as a property
named BasicFish. (Fish is another class you've created.) SampleClass also has a constructor
defined to create a new object from these three items:
public SampleClass(float fValue, string strText, Fish fish)

Let's also assume that you need to use a binary file to store information that consists of many
objects, including objects of type SampleClass. Each class you create can implement both an
instance method named Write and a static method named Read. Here's the Write method for
SampleClass. Notice the BinaryWriter argument.
public void Write(BinaryWriter bw)
{
 bw.Write(Value);
 bw.Write(Text);
 BasicFish.Write(bw);
}

Because the Value and Text properties are basic types, this method can simply call the Write
method of BinaryWriter for them. But for the BasicFish property, it must call the similar Write method
you've also implemented in the Fish class, passing to it the BinaryWriter argument.

The Read method is static because it must create an instance of SampleClass after reading binary
data from the file:
public static SampleClass Read(BinaryReader br)
{
 float fValue = br.ReadSingle();
 string strText = br.ReadString();
 Fish fish = Fish.Read(br);
 return new SampleClass(fValue, strText, fish);
}

Notice that the Fish class must also have a similar static Read method.
The Environment Class
Let's leave the System.IO namespace briefly to take a look at the Environment class, which is
defined in the System namespace. Environment has a collection of miscellaneous properties and
methods that are useful for obtaining information about the machine on which the program is running
and the current user logged on to the machine. As its name suggests, the Environment class also
allows a program to obtain environment strings. (I make use of this latter facility in the
EnvironmentVars program in Chapter 18.)

Two methods in Environment provide information about the file system:

Environment Static Methods (selection)

string[] GetLogicalDrives()
string GetFolderPath(Environment.SpecialFolder sf)

I have a fairly normal system with a CD-ROM drive and an Iomega Zip drive, so on my machine,
GetLogicalDrives returns the following four strings, in this order:
A:\
C:\
D:\
E:\

The argument to GetFolderPath is a member of the Environment.SpecialFolder enumeration. The
rightmost column in the following table indicates the return string from GetFolderPath on a machine
running the default installation of Windows 2000, where I've used an ellipsis to indicate that the
return string includes the user's name (which is the same as the value returned from the static
property Environment.UserName).
Environment.SpecialFolder Enumeration

Member Value Common Return Values

Programs 2 C:\Documents and Settings\...\Start Menu\Programs

Personal 5 C:\Documents and Settings\...\My Documents

Favorites 6 C:\Documents and Settings\...\Favorites

Startup 7 C:\Documents and Settings\...\Start
Menu\Programs\Startup

Recent 8 C:\Documents and Settings\...\Recent

Environment.SpecialFolder Enumeration

Member Value Common Return Values

SendTo 9 C:\Documents and Settings\...\SendTo

StartMenu 11 C:\Documents and Settings\...\Start Menu

DesktopDirectory 16 C:\Documents and Settings\...\Desktop

Templates 21 C:\Documents and Settings\...\Templates

ApplicationData 26 C:\Documents and Settings\...\Application Data

LocalApplicationData 28 C:\Documents and Settings\...\Local Settings\Application
Data

InternetCache 32 C:\Documents and Settings\...\Local Settings\Temporary
Internet Files

Cookies 33 C:\Documents and Settings\...\Cookies

History 34 C:\Documents and Settings\...\Local Settings\History

CommonApplicationData 35 C:\Documents and Settings\All Users\Application Data

System 37 C:\WINNT\System32

ProgramFiles 38 C:\Program Files

CommonProgramFiles 43 C:\Program Files\Common Files

Oddly enough, the SpecialFolder enumeration is defined within the Environment class. Instead of
calling GetFolderPath as
Environment.GetFolderPath(SpecialFolder.Personal) // Won't work!

you need to preface SpecialFolder with the class in which it's defined:
Environment.GetFolderPath(Environment.SpecialFolder.Personal)

The Environment class also includes a couple properties that relate to the file system and file I/O:
Environment Static Properties (selection)

Type Property Accessibility

string SystemDirectory get

string CurrentDirectory get/set

The SystemDirectory property returns the same string as the GetFolderPath method with the
Environment.SpecialFolder.System argument.

The CurrentDirectory property lets a program obtain or set the current drive and directory for the
application. When setting the directory, you can use a relative directory path, including the ".." string
to indicate the parent directory. To change to the root directory of another drive, use the drive letter
like so:
Environment.CurrentDirectory = "D:\\";

If the current drive and directory are on a drive other than C and you use
Environment.CurrentDirectory = "C:";

the current directory is set to the last current directory on drive C before the current drive was
changed to something other than C. This technique doesn't seem to work with other drives. The call
Environment.CurrentDirectory = "D:";

always seems to set the current directory as the root directory of drive D.

As you'll see shortly, other classes defined in the System.IO namespace have equivalents to
GetLogicalDrives and CurrentDirectory.
File and Path Name Parsing
At times, you need to parse and scan filenames and path names. For example, your program may
have a fully qualified filename and you may need just the directory or the drive. The Path class,
defined in the System.IO namespace, consists solely of static methods and static read-only fields
that ease jobs like these.

In the following table, the right two columns show sample return values from the methods when the
strFileName argument is the indicated string at the top of the column. In these examples, I'm
assuming the current directory is C:\Docs.
Path Static Methods (examples)

Method \DirA\MyFile DirA\MyFile.txt

bool IsPathRooted(string
strFileName)

true false

bool HasExtension(string
strFileName)

false true

string GetFileName(string
strFileName)

MyFile MyFile.txt

string GetFileNameWithoutExtension
(string strFileName)

MyFile MyFile

string GetExtension(string
strFileName)

 .txt

string GetDirectoryName
(string strFileName)

\DirA DirA

string GetFullPath(string
strFileName)

C:\DirA\MyFile C:\Docs\DirA\MyFile.txt

string GetPathRoot(string
strFileName)

\

What's interesting here is that neither DirA nor MyFile has to exist for these methods to work. The
methods are basically performing string manipulation, possibly in combination with the current
directory.

The following two methods return a new path and filename:

Path Static Methods (selection)

string Combine(string strLeftPart, string strRightPart)
string ChangeExtension(string strFileName, string strNewExtension)

The Combine method joins together a path name (on the left) with a path and/or filename (on the
right). Use Combine rather than string concatenation for this job. Otherwise, you have to worry about
whether a backslash is the end of the left part or the beginning of the right part. The
ChangeExtension method simply changes the filename extension from one string to another. Include
a period in the new extension. Set the strNewExtension argument to null to remove the extension.

The following methods obtain an appropriate directory for storing temporary data and a fully qualified
unique filename the program can use to store temporary data:

Path Static Methods (selection)

string GetTempPath()
string GetTempFileName()

If you must do your own file and path name parsing, don't hard-code characters that you think you'll
encounter in the strings. Use the following static read-only fields of Path instead:
Path Static Fields

Type Field Accessibility Windows Default

char PathSeparator read-only ;

char VolumeSeparatorChar read-only :

char DirectorySeparatorChar read-only \

char AltDirectorySeparatorChar read-only /

char[] InvalidPathChars read-only " < > |

Parallel Classes
Another common file I/O job is obtaining a list of all files and subdirectories in a directory. Historically,
this job has always been a bit awkward. The standard libraries associated with the C programming
language didn't include such a facility, probably because UNIX directory lists were text files that
programs could directly access and parse.

Four classes provide you with information about files and directories: Directory, File, DirectoryInfo,
and FileInfo. All four of these classes (as well as the Path class I just described) are sealed and can't
be inherited. Here's the class hierarchy:

Directory and File can't be instantiated; the two classes consist solely of static methods.

DirectoryInfo and FileInfo contain no static methods or properties, and you must obtain an object of
type DirectoryInfo or FileInfo to use these classes. Both classes derive from the abstract class
FileSystemInfo, so they share some properties and methods.

As the names suggest, Directory and DirectoryInfo provide similar methods, except that the Directory
methods are static and require an argument that is a directory name. The DirectoryInfo properties
and methods are not static; the constructor argument indicates the directory name to which the
properties and methods apply.

Similarly, File and FileInfo provide corresponding methods, except that you indicate a particular
filename in the static File method calls and you create an instance of File by specifying a filename in
the constructor.

If you need information about a particular file, you may wonder whether it's best to use File or
FileInfo (or similarly for directories, whether to use Directory or DirectoryInfo). If you need only one

item of information, it's probably easiest to use the appropriate static method in File or Directory.
However, if you need multiple items, it makes more sense to create an object of type FileInfo or
DirectoryInfo and then use the instance properties and methods. But don't feel pressured to use one
class in preference to the other.
Working with Directories
Let's begin with the Directory and DirectoryInfo classes. The following three static methods of the
Directory class have no equivalents in the DirectoryInfo class:

Directory Static Methods (selection)

string[] GetLogicalDrives()
string GetCurrentDirectory()
void SetCurrentDirectory(string strPath)

These methods essentially duplicate the static GetLogicalDrives method and the CurrentDirectory
property of the Environment class.

To use any of the properties or methods of the DirectoryInfo class, you need a DirectoryInfo object.
One of the ways in which you can obtain such an object is by using the DirectoryInfo constructor:

DirectoryInfo Constructor

DirectoryInfo(string strPath)

The directory doesn't have to exist. Indeed, if you want to create a new directory, creating an object
of type DirectoryInfo is a first step.

After creating an object of type DirectoryInfo, you can determine whether the directory exists. Even if
the directory doesn't exist, you can obtain certain information about the directory as if it did exist. The
two rightmost columns of the following table show examples. The column heading is the string
passed to the DirectoryInfo constructor. The current directory is assumed to be C:\Docs.
DirectoryInfo Properties (selection)

Type Property Accessibility DirA DirA\DirB.txt

bool Exists get

string Name get DirA DirB.txt

string FullName get C:\Docs\DirA C:\Docs\DirA\DirB.txt

string Extension get .txt

DirectoryInfo Parent get C:\Docs C:\Docs\DirA

DirectoryInfo Root get C:\ C:\

FullName and Extension are inherited from the FileSystemInfo class.

A few of these properties are also duplicated as static methods in the Directory class. Because they
are static methods, they require an argument indicating the path name you're interested in:

Directory Static Methods (selection)

bool Exists(string strPath)
DirectoryInfo GetParent(string strPath)

string GetDirectoryRoot(string strPath)

I mentioned earlier that you can create a DirectoryInfo object based on a directory that doesn't exist.
You can then create that directory on the disk by calling the Create method, or you can create a
subdirectory of the directory:

DirectoryInfo Methods (selection)

void Create()
DirectoryInfo CreateSubdirectory(string strPath)
void Refresh()

Notice that the CreateSubdirectory call returns another DirectoryInfo object with information about
the new directory. If the indicated directory already exists, no exception is thrown. The directory used
to create the DirectoryInfo object or passed to CreateSubdirectory can contain multiple levels of
directory names.

If the directory doesn't exist when you create the DirectoryInfo object and you then call Create, the
Exists property won't suddenly become true. You must call the Refresh method (inherited from
FileSystemInfo) to refresh the DirectoryInfo information.

The Directory class also has a static method to create a new directory:

Directory Static Methods (selection)

DirectoryInfo CreateDirectory(string strPath)

You can delete directories using the Delete method of DirectoryInfo:

DirectoryInfo Delete Methods

void Delete()
void Delete(bool bRecursive)

The methods have corresponding static versions in the Directory class:

Directory Delete Static Methods

void Delete(string strPath)
void Delete(string strPath, bool bRecursive)

If you use the second version of Delete in either table and you set the bRecursive argument to true,
the method also erases all files and subdirectories in the indicated directory. Otherwise, the directory
must be empty or an exception will be thrown.

Although the following information is more useful in connection with files, this table of four properties
completes our survey of the DirectoryInfo properties:
DirectoryInfo Properties (selection)

Type Property Accessibility

FileAttributes Attributes get/set

DateTime CreationTime get/set

DateTime LastAccessTime get/set

DateTime LastWriteTime get/set

These properties are all inherited from the FileSystemInfo class, and except for Attributes, they are
all duplicated by static methods in the Directory class:

Directory Static Methods (selection)

DateTime GetCreationTime(string strPath)
DateTime GetLastAccessTime(string strPath)
DateTime GetLastWriteTime(string strPath)
void SetCreationTime(string strPath, DateTime dt)
void SetLastAccessTime(string strPath, DateTime dt)
void SetLastWriteTime(string strPath, DateTime dt)

The DateTime structure is defined in the System namespace. FileAttributes is a collection of bit flags
defined as an enumeration:
FileAttributes Enumeration

Member Value

ReadOnly 0x00000001

Hidden 0x00000002

System 0x00000004

Directory 0x00000010

Archive 0x00000020

Device 0x00000040

Normal 0x00000080

Temporary 0x00000100

SparseFile 0x00000200

ReparsePoint 0x00000400

Compressed 0x00000800

Offline 0x00001000

NotContentIndexed 0x00002000

Encrypted 0x00004000

Directories always have the Directory bit (0x10) set.

To move a directory and all its contents to another location on the same disk, you can use the
MoveTo method:

DirectoryInfo Methods (selection)

void MoveTo(string strPathDestination)

Or you can use the static Move method in the Directory class:

Directory Static Methods (selection)

void Move(string strPathSource, string strPathDestination)

With either method call, the destination must not currently exist.

The remaining methods of DirectoryInfo and Directory obtain an array of all the files and
subdirectories in a directory, or only those directories and files that match a specified pattern using
wildcards (question marks and asterisks). Here are the six methods of DirectoryInfo:

DirectoryInfo Methods (selection)

DirectoryInfo[] GetDirectories()
DirectoryInfo[] GetDirectories(string strPattern)
FileInfo[] GetFiles()
FileInfo[] GetFiles(string strPattern)
FileSystemInfo[] GetFileSystemInfos()
FileSystemInfo[] GetFileSystemInfos(string strPattern)

The GetDirectories method returns a collection of directories as an array of DirectoryInfo objects.
Likewise, the GetFiles method returns a collection of files as an array of FileInfo objects. The
GetFileSystemInfos method returns both directories and files as an array of FileSystemInfo objects.
You'll recall that FileSystemInfo is the parent class for both DirectoryInfo and FileInfo.

The Directory class has a similar set of six methods, but these all return arrays of strings:

Directory Static Methods (selections)

string[] GetDirectories(string strPath)
string[] GetDirectories(string strPath, string strPattern)
string[] GetFiles(string strPath)
string[] GetFiles(string strPath, string strPattern)
string[] GetFileSystemEntries(string strPath)
string[] GetFileSystemEntries(string strPath, string strPattern)

We're now fully equipped to enhance the HexDump program shown earlier so that it works with
wildcard file specifications on the command line. Here's WildCardHexDump.
WildCardHexDump.cs
//--
// WildCardHexDump.cs © 2001 by Charles Petzold
//--
using System;
using System.IO;

class WildCardHexDump: HexDump
{
 public new static int Main(string[] astrArgs)
 {
 if (astrArgs.Length == 0)
 {
 Console.WriteLine("Syntax: WildCardHexDump file1 file2
...");
 return 1;
 }
 foreach (string str in astrArgs)
 ExpandWildCard(str);

 return 0;
 }
 static void ExpandWildCard(string strWildCard)
 {
 string[] astrFiles;

 try
 {
 astrFiles = Directory.GetFiles(strWildCard);
 }
 catch
 {
 try
 {
 string strDir = Path.GetDirectoryName(strWildCard);
 string strFile = Path.GetFileName(strWildCard);

 if (strDir == null || strDir.Length == 0)
 strDir = ".";

 astrFiles = Directory.GetFiles(strDir, strFile);
 }
 catch
 {
 Console.WriteLine(strWildCard + ": No Files found!");
 return;
 }
 }
 if (astrFiles.Length == 0)
 Console.WriteLine(strWildCard + ": No files found!");

 foreach(string strFile in astrFiles)

 DumpFile(strFile);
 }
}

Besides normal wildcards, I wanted to be able to specify just a directory name as an argument. For
example, I wanted
WildCardHexDump c:\

to be the equivalent of
WildCardHexDump c:*.*

The ExpandWildCard method begins by attempting to obtain all the files in the particular command-
line argument:
astrFiles = Directory.GetFiles(strWildCard);

This call will work if strWildCard specifies only a directory (such as "c:\"). Otherwise, it throws an
exception. That's why it's in a try block. The catch block assumes that the command-line argument
has path and filename components, and it obtains these components using the static
GetDirectoryName and GetFileName methods of Path. However, the GetFiles method of Directory
doesn't want a first argument that is null or an empty string. Before calling GetFiles, the program
avoids that problem by setting the path name to ".", which indicates the current directory.
File Manipulation and Information
Like the Directory and DirectoryInfo classes, the File and FileInfo classes are very similar and share
many properties and methods. Like the Directory class, all the methods in the File class are static,
and the first argument to every method is a string that indicates the path name of the file. The
FileInfo class inherits from FileSystemInfo. You create an object of type FileInfo based on a filename
that could include a full or a relative directory path.

FileInfo Constructor

FileInfo(string strFileName)

The file doesn't have to exist. You can determine whether the file exists, and also some information
about it, with the following read-only properties:
FileInfo Properties (selection)

Type Property Accessibility

bool Exists get

string Name get

string FullName get

string Extension get

string DirectoryName get

DirectoryInfo Directory get

long Length get

Only one of these properties is duplicated in the File class:

File Methods

bool Exists(string strFileName)

FileInfo has four additional properties that reveal the attributes of the file and the dates the file was
created, last accessed, and last written to:
FileInfo Properties (selection)

Type Property Accessibility

FileAttributes Attributes get/set

DateTime CreationTime get/set

DateTime LastAccessTime get/set

DateTime LastWriteTime get/set

These properties, all of which are inherited from FileSystemInfo, are all duplicated by static methods
in the File class:

File Static Methods (selection)

FileAttributes GetAttributes(string strFileName)
DateTime GetCreationTime(string strFileName)
DateTime GetLastAccessTime(string strFileName)
DateTime GetLastWriteTime(string strFileName)
void SetAttributes(string strFileName, FileAttributes fa)
void SetCreationTime(string strFileName, DateTime dt)
void SetLastAccessTime(string strFileName, DateTime dt)
void SetLastWriteTime(string strFileName, DateTime dt)

The following methods let you copy, move, or delete the file. I've included the Refresh method here,
which refreshes the object's properties after you've made a change to the file:

FileInfo Methods (selection)

FileInfo CopyTo(string strFileName)
FileInfo CopyTo(string strFileName, bool bOverwrite)
void MoveTo(string strFileName)
void Delete()
void Refresh()

The copy, move, and delete facilities are duplicated in the File class:

File Static Methods (selection)

void Copy(string strFileNameSrc, string strFileNameDst)
void Copy(string strFileNameSrc, string strFileNameDst, bool bOverwrite)
void Move(string strFileNameSrc, string strFileNameDst)
void Delete(string strFileName)

And finally, the File and FileInfo classes have several methods to open files:

FileInfo Methods (selection)

FileStream Create()
FileStream Open(FileMode fm)
FileStream Open(FileMode fm, FileAccess fa)
FileStream Open(FileMode fm, FileAccess fa, FileShare fs)
FileStream OpenRead()
FileStream OpenWrite()
StreamReader OpenText()
StreamWriter CreateText()
StreamWriter AppendText()

These are handy if you've just obtained an array of FileInfo objects from a GetFiles call on a
DirectoryInfo object and you want to poke your nose into each and every file.

You can also use the corresponding static methods implemented in the File class:

File Static Methods (selection)

FileStream Create(string strFileName)
FileStream Open(string strFileName, FileMode fm)
FileStream Open(string strFileName, FileMode fm, FileAccess fa)
FileStream Open(string strFileName, FileMode fm, FileAccess fa, FileShare
fs)
FileStream OpenRead(string strFileName)
FileStream OpenWrite(string strFileName)
StreamReader OpenText(string strFileName)
StreamWriter CreateText(string strFileName)
StreamWriter AppendText(string strFileName)

However, these methods don't provide any real advantage over using the appropriate constructors of
the FileStream, StreamReader, or StreamWriter class. Indeed, their very presence in the File class
was initially one of the aspects of the entire System.IO namespace that I found most confusing. It
doesn't make sense to use a class like File merely to obtain an object of type FileStream so that you
can then use FileStream properties and methods. It's easier to use just a single class if that's
sufficient for your purposes.

Appendix B: Math Class
Working with numbers is the most fundamental programming task. The Microsoft .NET Framework
and C# add a few features to numbers that may be new to veteran C programmers. In this appendix,
I'll discuss those features as well as the all-important Math class, which contains methods that are
equivalents of functions declared in the C Math.h header file.

Numeric Types
The C# language supports 11 numeric types that fall into three categories: integral, floating point,
and decimal:
C# Numeric Types
 Integers

Bits Signed Unsigned Floating Point Decimal

8 sbyte byte

16 short ushort

32 int uint float

64 long ulong double

128 decimal

In a C# program, an integer literal (that is, a number written without a decimal point) is assumed to
be an int unless its value is larger than a maximum int, in which case the value of the number is used
to determine its type. The number is assumed to be a uint, long, or ulong (in that order) depending
on its value. A literal with a decimal point (or that includes an exponent indicated with an E or e
followed by a number) is assumed to be a double. You can use the following suffixes on numeric
literals to clarify your intentions.
Suffixes for Numeric Literals

Type Suffix

uint u or U

long l or L

ulong ul, uL, Ul, UL, lu, lU, Lu, or LU

float f or F

double d or D

decimal m or M

The C# type names are aliases for structures defined in the System class of the .NET Framework.
These structures are all derived from ValueType, which itself derives from Object:
.NET Numeric Types
 Integers

Bits Signed Unsigned Floating Point Decimal

8 SByte Byte

16 Int16 UInt16

32 Int32 UInt32 Single

64 Int64 UInt64 Double

128 Decimal

The SByte, UInt16, UInt32, and UInt64 types are not compliant with the Common Language
Specification (CLS). What that means is that a programming language can be compliant with the
CLS without supporting these types. If you write code that you want to be usable by all CLS-
compliant languages (such as in DLLs), do not use signed bytes or unsigned 16-bit, 32-bit, or 64-bit
integers.
Checking Integer Overflow
Consider the following code:
short s = 32767;
s += 1;

Here's another one:
ushort us = 0;
us -= 1;

These are examples of integer overflow and underflow, and both these snippets of code are perfectly
legal in C as well as C# (by default anyway).

In the first case, a signed integer is being incremented past its maximum value. Due to the manner in
which integers are stored in memory, the result will be −32768. In the second case, an unsigned
integer is being decremented below zero, and the result is 65535.

Sometimes programmers take advantage of integer overflow and underflow, and sometimes
programmers fall victim to overflow and underflow bugs. To separate clever techniques from nasty
bugs, C# allows you to optionally check for integer overflow and underflow.

To subject an entire program to runtime checking of overflow and underflow, use the following
compiler switch:
/checked+

The following compiler switch results in the default option:
/checked-

In Visual C# .NET, you can set this compiler switch by first invoking the Property Pages dialog box
for the project. On the left side of the dialog box, select Build from Configuration Properties. On the
right side of the dialog box, set the option Check For Arithmetic Overflow/Underflow to True.

When you enable runtime checking of overflow and underflow, the increment and decrement
operations just shown will raise an exception of type OverflowException.

Within your C# program, you can override the compiler setting by using the keywords checked and
unchecked. You follow the keyword with an expression enclosed in parentheses, or a statement or
group of statements in curly brackets. For example, the code
short s = 32767;
checked
{
 s += 1;
}

will raise an exception regardless of the compiler switch. You'll probably want to enclose checked
blocks within try blocks.

So far, I've been speaking solely of runtime checking of integer overflow and underflow. By default,
the compiler will flag compile-time overflow and underflow as an error regardless of the compiler
switch you use. For example, the statement
short s = 32767 + 1;

is always a compile-time error because the addition is evaluated during compilation. However, it is
possible to use the unchecked keyword to override compile-time overflow and underflow checking.
For example, suppose you define two const integers like so:
const int i1 = 65536;
const int i2 = 65536;

The expression
int i3 = i1 * i2;

will normally cause a compile-time error. Because i1 and i2 are both const values, the compiler
attempts to evaluate the expression and encounters an overflow. A compiler switch won't override
that behavior, but the unchecked keyword will:
int i3 = unchecked (i1 * i2);

That statement will compile fine and execute without raising an exception.

You should probably write your program to compile and run correctly under either compiler option.
Whenever there's a danger of overflow or underflow that you want to catch, enclose the statement in
a checked block within a try block. Whenever you don't care about overflow or underflow, or you
want to exploit overflow or underflow in some way, enclose the statement in an unchecked block.

Regardless of any compiler switches or the presence of the checked and unchecked keywords,
integer division by zero always raises a DivideByZeroException.
The Decimal Type
The C# numeric type that is entirely new to C programmers is the decimal type, which uses 16 bytes
(128 bits) to store each value. The 128 bits break down into a 96-bit integral part, a 1-bit sign, and a
scaling factor that can range from 0 through 28. Mathematically, the scaling factor is a negative
power of 10 and indicates the number of decimal places in the number.

Don't confuse the decimal type with a binary-coded decimal (BCD) type. In a BCD type, each
decimal digit is stored using 4 bits. The decimal type stores the number as a binary integer.

For example, if you define a decimal equal to 12.34, the number is stored as the integer 0x4D2 (or
1234) with a scaling factor of 2. A BCD encoding would store the number as 0x1234.

As long as a decimal number has 28 significant digits (or fewer) and 28 decimal places (or fewer),
the decimal data type stores the number exactly. This is not true with floating point! If you define a
float equal to 12.34, it's essentially stored as the value 0xC570A4 (or 12,939,428) divided by
0x100000 (or 1,048,576), which is only approximately 12.34. Even if you define a double equal to
12.34, it's stored as the value 0x18AE147AE147AE (or 6,946,802,425,218,990) divided by
0x2000000000000 (or 562,949,953,421,312), which again only approximately equals 12.34.

And that's why you should use decimal when you're performing calculations where you don't want
pennies to mysteriously crop up and disappear. The floating-point data type is great for scientific and
engineering applications but often undesirable for financial ones.

If you want to explore the internals of the decimal, you can make use of the following constructor:

Decimal Constructors (selection)

Decimal(int iLow, int iMiddle, int iHigh, bool bNegative, byte byScale)

Although defined as integers, the first three arguments of the constructor are treated as unsigned
integers to form a composite 96-bit unsigned integer. The byScale argument (which can range from
0 through 28) is the number of decimal places. For example, the expression
new Decimal(123456789, 0, 0, false, 5)

creates the decimal number

1234.56789

The largest positive decimal number is
new Decimal(-1, -1, -1, false, 0)

or
79,228,162,514,264,337,593,543,950,335

which you can also obtain from the MaxValue field of the Decimal structure:
Decimal.MaxValue

The smallest decimal number closest to 0 is
new Decimal(1, 0, 0, false, 28)

which equals
0.0000000000000000000000000001

or
1 × 10–28

If you divide this number by 2 in a C# program, the result is 0.

It's also possible to obtain the bits used to store a decimal value:

Decimal Static Methods (selection)

int[] GetBits(decimal mValue)

This method returns an array of four integers. The first, second, and third elements of the array are
the low, medium, and high components of the 96-bit unsigned integer. The fourth element contains
the sign and the scaling factor: bits 0 through 15 are 0; bits 16 through 23 contain a scaling value
between 0 and 28; bits 24 through 30 are 0; and bit 31 is 0 for positive and 1 for negative.

If you have a decimal number named mValue, you can execute the statement
int[] ai = Decimal.GetBits(mValue);

If ai[3] is negative, the decimal number is negative. The scaling factor is
(ai[3] >> 16) & 0xFF

I already indicated how floating-point representation is often only approximate. When you start
performing arithmetic operations on floating-point numbers, the approximations can get worse.
Almost everyone who has used floating point is well aware that a number that should be 4.55 (for
example) is often stored as 4.549999 or 4.550001.

The decimal representation is much better behaved. For example, suppose m1 is defined like so:
decimal m1 = 12.34;

Internally, m1 has an integer part of 1234 and a scaling factor of 2. Also, suppose m2 is defined like
this:
decimal m2 = 56.789;

The integer part is 56789, and the scaling factor is 3. Now add these two numbers:
decimal m3 = m1 + m2;

Internally, the integer part of m1 is multiplied by 10 (to get 12340), and the scaling factor is set to 3.
Now the integer parts can be added directly: 12340 plus 56789 equals 69129 with a scaling factor of
3. The actual number is 69.129. Everything is exact.

Now multiply the two numbers:
decimal m4 = m1 * m2;

Internally, the two integral parts are multiplied (1234 times 56789 equals 70,077,626), and the
scaling factors are added (2 plus 3 equals 5). The actual numeric result is 700.77626. Again, the
calculation is exact.

When dividing…well, division is messy no matter how you do it. But for the most part, when using
decimal, you have much better control over the precision and accuracy of your results.
Floating-Point Infinity and NaNs
The two floating-point data types—float and double—are defined in accordance with the ANSI/IEEE
Std 754-1985, the IEEE Standard for Binary Floating-Point Arithmetic.

A float value consists of a 24-bit signed mantissa and an 8-bit signed exponent. The precision is
approximately seven decimal digits. Values range from
–3.402823 × 1038

to
3.402823 × 1038

The smallest possible float value greater than 0 is
1.401298 × 10-45

You can obtain these three values as fields in the Single structure:
Single Structure Constant Fields (selection)

Type Field

float MinValue

float MaxValue

float Epsilon

A double value consists of a 53-bit signed mantissa and an 11-bit signed exponent. The precision is
approximately 15 to 16 decimal digits. Values range from
–1.79769313486232 × 10308

to
1.79769313486232 × 10308

The smallest possible double value greater than 0 is
4.94065645841247 × 10-324

The MinValue, MaxValue, and Epsilon fields are also defined in the Double structure.

Here's some code that divides a floating-point number by 0:
float f1 = 1;
float f2 = 0;
float f3 = f1 / f2;

If these were integers, a DivideByZeroException would be raised. But these are IEEE floating-point
numbers. An exception is not raised. Indeed, floating-point operations never raise exceptions.
Instead, in this case, f3 takes on a special value. If you use Console.WriteLine to display f3, it will
display the word
Infinity

If you change the initialization of f1 to −1, Console.WriteLine will display

-Infinity

In the IEEE standard, positive infinity and negative infinity are legitimate values of floating-point
numbers. You can even perform arithmetic on infinite values. For example, the expression
1 / f3

equals 0.

If you change the initialization of f1 in the preceding code to 0, then f3 will equal a value known as
Not a Number, which is universally abbreviated as NaN and pronounced "nan." Here's how
Console.WriteLine displays a NaN:
NaN

You can also create a NaN by adding a positive infinity to a negative infinity or by a number of other
calculations.

Both the Single and Double structures have static methods to determine whether a float or double
value is infinity or NaN. Here are the methods in the Single structure:

Single Structure Static Methods (selection)

bool IsInfinity(float fValue)
bool IsPositiveInfinity(float fValue)
bool IsNegativeInfinity(float fValue)
bool IsNaN(float fValue)

For example, the expression
Single.IsInfinity(fVal)

returns true if fVal is either positive infinity or negative infinity.

The Single structure also has constant fields that represent these values:
Single Structure Constant Fields (selection)

Type Field

float PositiveInfinity

float NegativeInfinity

float NaN

Identical fields are defined in the Double structure. These values correspond to specific bit patterns
defined in the IEEE standard.
The Math Class
The Math class in the System namespace consists solely of a collection of static methods and the
following two constant fields:
Math Constant Fields

Type Field Value

double PI 3.14159265358979

double E 2.71828182845905

Math.PI, of course, is the ratio of the circumference of a circle to its diameter, and Math.E is the limit
of

as n approaches infinity.

Most of the methods in the Math class are defined only for double values. However, some methods
are defined for integer and decimal values as well. The following two methods are defined for every
numeric type:

Math Static Methods (selection)

type Max(numeric-type n1, numeric-type n2)
type Min(numeric-type n1, numeric-type n2)

The two values must be the same type.

The following two methods are defined for float, double, decimal, and all signed integer types:

Math Static Methods (selection)

int Sign(signed-type s)
type Abs(signed-type s)

The Sign method returns 1 if the argument is positive, −1 if the argument is negative, and 0 if the
argument is 0. The Abs method returns the argument if it's 0 or positive, and the negative value of
the argument if the argument is negative.

The Abs method is the only method of the Math class that can throw an exception, and then only for
integral arguments, and only for one particular value for each integral type. If the argument is the
MinValue of the particular integral type (for example, −32768 for short), then an OverflowException is
raised because 32768 can't be represented by a short.

The following methods perform various types of rounding on double and decimal values:

Math Static Methods (selection)

double Floor(double dValue)
double Ceiling(double dValue)
double Round(double dValue)
double Round(double dValue, int iDecimals)
decimal Round(decimal mValue)
decimal Round(decimal mValue, int iDecimals)

Floor returns the largest whole number less than or equal to the argument; Ceiling returns the
smallest whole number greater than or equal to the argument. The call
Math.Floor(3.5)

returns 3, and
Math.Ceiling(3.5)

returns 4. The same rules apply to negative numbers. The call
Math.Floor(-3.5)

returns −4, and
Math.Ceiling(-3.5)

returns −3.

The Floor method returns the nearest whole number in the direction of negative infinity, and that's
why it's sometimes also known as rounding toward negative infinity; likewise, Ceiling returns the
nearest whole number in the direction of positive infinity and is sometimes called rounding toward
positive infinity. It's also possible to round toward 0, which is to obtain the nearest whole number
closest to 0. You round toward 0 by casting to an integer. The expression
(int) 3.5

returns 3, and
(int) –3.5

returns −3. Rounding toward 0 is sometimes called truncation.

The Round methods with a single argument return the whole number nearest to the argument. If the
argument to Round is midway between two whole numbers, the return value is the nearest even
number. For example, the call
Math.Round(4.5)

returns 4, and
Math.Round(5.5)

returns 6. You can optionally supply an integer that indicates the number of decimal places in the
return value. For example,
Math.Round(5.285, 2)

returns 5.28.
Floating-Point Remainders
Much confusion surrounds functions that calculate floating-point remainders. The C# remainder or
modulus operator (%) is defined for all numeric types. (In C, the modulus operator is not defined for
float and double, the fmod function must be used instead.) Here's a C# statement using float
numbers with the remainder operator:
fResult = fDividend % fDivisor;

The sign of fResult is the same as the sign of fDividend, and fResult can be calculated with the
formula
fResult = fDividend – n * fDivisor

where n is the largest possible integer less than or equal to fDividend / fDivisor. For example, the
expression
4.5 % 1.25

equals 0.75. Let's run through the calculation. The expression 4.5 / 1.25 equals 3.6, so n equals 3.
The quantity 4.5 minus (3 times 1.25) equals 0.75.

The IEEE standard defines a remainder a little differently, where n is the integer closest to fDividend
/ fDivisor. You can calculate a remainder in accordance with the IEEE standard using this method:

Math Static Methods (selection)

double IEEERemainder(double dDividend, double dDivisor)

The expression
Math.IEEERemainder(4.5, 1.25)

returns −0.5. That's because 4.5 / 1.25 equals 3.6, and the closest integer to 3.6 is 4. When n equals
4, the quantity 4.5 minus (4 times 1.25) equals −0.5.
Powers and Logarithms
Three methods of the Math class involve powers:

Math Static Methods (selection)

double Pow(double dBase, double dPower)
double Exp(double dPower)
double Sqrt(double dValue)

Pow calculates the value
dBasedPower

The expression
Math.Exp(dPower)

is equivalent to
Math.Pow(Math.E, dPower)

and the square root function
Math.Sqrt(dValue)

is equivalent to
Math.Pow(dValue, 0.5)

The Sqrt method returns NaN if the argument is negative.

The Math class has three methods that calculate logarithms:

Math Static Methods (selection)

double Log10(double dValue)
double Log(double dValue)
double Log(double dValue, double dBase)

The expression
Math.Log10(dValue)

is equivalent to
Math.Log(dValue, 10)

and
Math.Log(dValue)

is equivalent to
Math.Log(dValue, Math.E)

The logarithm methods return PositiveInfinity for an argument of 0 and NaN for an argument less
than 0.
Trigonometric Functions
Trigonometric functions describe the relationship between the sides and angles of triangles. The trig
functions are defined for right triangles:

For angle α in a right triangle where x is the adjacent leg, y is the opposite leg, and r is the
hypotenuse, the three basic trigonometric functions are

sin(α) = y / r
cos(α) = x / r
tan(α) = y / x

Trigonometric functions can also be used to define circles and ellipses. For constant r and α ranging
from 0 degrees to 360 degrees, the set of coordinates (x, y) where

x = r · sin(α)
y = r · cos(α)

define a circle centered at the origin with radius r. Chapter 5 shows how to use trigonometric
functions to draw circles and ellipses. Trig functions also show up in various graphics exercises in
Chapters 13, 15, 17, and 19.

The trigonometric functions in the Math class require angles specified in radians rather than degrees.
There are 2π radians in 360 degrees. The rationale for using radians can be illustrated by
considering the following arc l subtended by angle α:

What is the length of arc l? Because the circumference of the entire circle equals 2πr, the length of
arc l equals (α/360)2πr, where α is measured in degrees. However, if α is measured in radians, then
the length of arc l simply equals αr. For a unit circle (radius equal to 1), the length of arc l equals the
angle α in radians. And that's how the radian is defined: in a unit circle, an arc of length l is
subtended by an angle in radians equal to l.

For example, an angle of 90 degrees in a unit circle subtends an arc with length π/2. Thus, 90
degrees is equivalent to π/2 radians. An angle of 180 degrees is equivalent to π radians. There are
2π radians in 360 degrees.

Here are the three basic trigonometric functions defined in the Math class:

Math Static Methods (selection)

double Sin(double dAngle)
double Cos(double dAngle)
double Tan(double dAngle)

If you have an angle in degrees, multiply by π and divide by 180 to convert to radians:
Math.Sin(Math.PI * dAngleInDegrees / 180)

The Sin and Cos methods return values ranging from −1 to 1. In theory, the Tan method should
return infinity at π/2 (90 degrees) and 3π/2 (270 degrees), but it returns very large values instead.

The following methods are inverses of the trigonometric functions. They return angles in radians:
Math Static Methods (selection)

Method Argument Return Value

double Asin(double dValue) −1 through 1 −π/2 through π/2

double Acos(double dValue) −1 through 1 π through 0

double Atan(double dValue) −∞ through ∞ −π/2 through π/2

double Atan2(double y, double
x)

−∞ through ∞ −π through π

To convert the return value to degrees, multiply by 180 and divide by π.

The Asin and Acos methods return NaN if the argument is not in the proper range. The Atan2
method uses the signs of the two arguments to determine the quadrant of the angle:
Atan2 Return Values

y Argument x Argument Return Value

Positive Positive 0 through π/2

Positive Negative π/2 through π

Negative Negative π through 3π/2

Negative Positive 3π/2 through 2π

Less commonly used are the hyperbolic trigonometric functions. While the common trigonometric
functions define circles and ellipses, the hyperbolic trig functions define hyperbolas:

Math Static Methods (selection)

double Sinh(double dAngle)

double Cosh(double dAngle)
double Tanh(double dAngle)

The angle is expressed in hyperbolic radians.

Appendix C: String Theory
Overview
Just about every programming language ever invented implements text strings a little differently.
Unlike floating-point numbers, strings are not blessed (or cursed) with an industry standard. The C
programming language doesn't even have a separate data type for strings. A string is simply an
array of characters terminated with a zero byte. A program references the string by a pointer to the
first character in the array. C programmers appreciate the ease with which strings can be
manipulated in memory. C programmers are also quite familiar with the ease in which seemingly
innocent string manipulations can become nasty bugs.

In C#, the text string is its own data type named string, which is an alias for the class System.String.
The string data type is related to the char data type, of course: a string object can be constructed
from an array of characters and also converted into an array of characters. But a string and a char
array are two distinct data types.

C# strings are not zero-terminated. A string has a specific length, and once a string is created, its
length can't be changed. Nor can any of the individual characters that make up a string be changed.
A C# string is thus said to be immutable. Whenever you need to change a string in some way, you
must create another string. Many methods of the String class create new strings based on existing
strings. Many methods and properties throughout the .NET Framework create and return strings.

Here's a common pitfall: you might expect that there's a method of String named ToUpper that
converts all the characters in a string to uppercase, and that's precisely the case. But for a string
instance named str, you can't just call the method like so:
str.ToUpper(); // Won't do anything!

Syntactically, this statement is valid, but it has no effect on the str variable. Strings are immutable,
and hence the characters of str can't be altered. The ToUpper method creates a new string. You
need to assign the return value of ToUpper to another string variable:
string strUpper = str.ToUpper();

Or you could assign it to the same string variable:
str = str.ToUpper();

In the second case, the original string (the one containing lowercase letters) still exists, but since it's
probably no longer referenced anywhere in the program, it becomes eligible for garbage collection.

Here's another example. Suppose you define a string like so:
string str = "abcdifg";

You can access a particular character of the string by indexing the string variable:
char ch = str[4];

In this case, ch is the character 'i'. But you can't set a particular character of a string:
str[4] = 'e'; // Won't work!

The indexer property of the String class is read-only.

So, how do you replace characters in a C# string? There are a couple ways. The method call
str = str.Replace('i', 'e');

will replace all occurrences of 'i' with 'e'. Alternatively, you can first call Remove to create a new
string with one or more characters removed at a specified index with a specified length. For example,
the call
str = str.Remove(4, 1);

removes one character at the fourth position (the 'i'). You can then call Insert to insert a new string,
which in this case is a single character:

str = str.Insert(4, "e");

Or you can do both jobs in one statement:
str = str.Remove(4, 1).Insert(4, "e");

Despite the use of a single string variable named str, the two method calls in this last statement
create two additional strings, and the quoted 'e' is yet another string.

Another approach is also possible. You can convert the string into a character array, set the
appropriate element of the array, and then construct a new string based on the character array:
char[] ach = str.ToCharArray();
ach[4] = 'e';
str = new String(ach);

Or you can patch together a new string from substrings:
str = str.Substring(0, 4) + "e" + str.Substring(5);

I'll discuss all these String class methods more formally in the course of this appendix.
The char Type
Each element of a string is a char, which is an alias for the .NET structure System.Char. A program
can specify a single literal character using single quotation marks:
char ch = 'A';

Although Char is derived from ValueType, a char variable isn't directly usable as a number. To
convert a char variable named ch to an integer, for example, requires casting:
int i = (int) ch;

Character variables have numeric values from 0x0000 through 0xFFFF and refer to characters in the
Unicode character set. The book The Unicode Standard Version 3.0 (Addison-Wesley, 2000) is the
essential reference to Unicode.

As in C, the backslash (\) is a special escape character. The character following the backslash has a
special interpretation, as shown in the following table:
C# Control Characters

Character Meaning Value

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\t Tab 0x0009

\n New line 0x000A

\v Vertical tab 0x000B

\f Form feed 0x000C

\r Carriage return 0x000D

\" Double quote 0x0022

\' Single quote 0x0027

\\ Backslash 0x005C

In addition, you can specify a single Unicode character using the preface \x or \u followed by a four-
digit hexadecimal number. The characters '\x03A9' and '\u03A9' both refer to the Greek capital
omega (Ω).

In C, as you know, you can use functions defined in the ctype.h header file to determine whether a
particular character is a letter, number, control character, or whatever. In C#, you use static methods
defined in the Char structure. The argument is either a character or a string with an index value.

Char Static Methods (selection)

bool IsControl(char ch)
bool IsControl(string str, int iIndex)
bool IsSeparator(char ch)
bool IsSeparator(string str, int iIndex)
bool IsWhiteSpace(char ch)
bool IsWhiteSpace(string str, int iIndex)
bool IsPunctuation(char ch)
bool IsPunctuation(string str, int iIndex)
bool IsSymbol(char ch)
bool IsSymbol(string str, int iIndex)
bool IsDigit(char ch)
bool IsDigit(string str, int iIndex)
bool IsNumber(char ch)
bool IsNumber(string str, int iIndex)
bool IsLetter(char ch)
bool IsLetter(string str, int iIndex)
bool IsUpper(char ch)
bool IsUpper(string str, int iIndex)
bool IsLower(char ch)
bool IsLower(string str, int iIndex)
bool IsLetterOrDigit(char ch)
bool IsLetterOrDigit(string str, int iIndex)
bool IsSurrogate(char ch)
bool IsSurrogate(string str, int iIndex)

The call
Char.IsControl(str[iIndex])

is equivalent to
Char.IsControl(str, iIndex)

You might be able to avoid using these methods for ASCII characters (character values 0x0000
through 0x007F), but these methods also apply to all Unicode characters. The IsSurrogate method
refers to the area of Unicode with values 0xD800 through 0xDFFF that is reserved for expansion.

The Char structure also defines a couple other handy methods. One returns a member of the
UnicodeCategory enumeration (defined in System.Globalization), and the other returns the numeric
value of the character converted to a double:

Char Static Methods (selection)

UnicodeCategory GetUnicodeCategory(char ch)
UnicodeCategory GetUnicodeCategory(string str, int iIndex)
double GetNumericValue(char ch)

double GetNumericValue(string str, int iIndex)
String Constructors and Properties
In many cases, you'll define a string variable using a literal:
string str = "Hello, world!";

or a literal inserted right in a function call:
Console.WriteLine("Hello, world!");

or as the return value from one of the many methods that return string variables. One ubiquitous
string-returning method is named ToString and converts an object to a string. For example, the
expression
55.ToString();

returns the string "55".

If you preface a string literal with the @ sign, the backslash is not interpreted as an escape
character. This technique is handy for specifying directories:
string str = @"c:\temp\my file";

To include a double quotation mark in such a string, use two double quotation marks in succession.

One of the less common methods of creating a string is by using one of the eight String constructors.
Five of the String constructors involve pointers and are not compliant with the Common Language
Specification (CLS). The remaining three String constructors create a String object by repeating a
single character or converting from an array of characters:

String Constructors (selection)

String(char ch, int iCount)
String(char[] ach)
String(char[] ach, int iStartIndex, int iCount)

In the third constructor, iStartIndex is an index into the character array and iCount indicates a
number of characters beginning at that index. The length of the resultant string will equal iCount.

The String class has just two properties, both of which are read-only:
String Properties

Type Property Accessibility

int Length get

char [] get

The first indicates the number of characters in the string; the second is an indexer that lets you
access the individual characters of the string.

You can define a string variable without initializing it:
string str1;

Any attempt to use that string will cause the compiler to report that the string variable is unassigned.
Because String is a reference type, you can assign a string variable the value null:
string str2 = null;

What the null value means is that no memory has been allocated for the string. Having a null value is
different from having an empty string:
string str3 = "";

An empty string has memory allocated for the instance of the string, but the str3.Length property
equals 0. Attempting to determine the length of a null string—making reference to str2.Length, for
example—causes an exception to be thrown.

You can also initialize a string variable to an empty string using the only public field of the String
class:
String Static Field

Type Field Accessibility

string Empty read-only

For example,
string str = string.Empty;

You can define an array of strings like so:
string[] astr = new string[5];

An array of five strings is created, each of which is null. You can also create an array of initialized
strings:
string[] astr = { "abc", "defghi", "jkl" };

This statement creates an array with three elements; that is, astr.Length returns 3. Each string has a
specific length; for example, astr[1].Length returns 6.

The String class implements the IComparable, ICloneable, IConvertible, and IEnumerable interfaces,
which implies that the String class contains certain methods defined in these interfaces. Because
String implements the IEnumerable interface, you can use String with the foreach statement to
enumerate the characters in a string. The statement
foreach (char ch in str)
{

}

is equivalent to (and quite a bit shorter than)
for (int i = 0; i < str.Length; i++)
{
 char ch = str[i];

}

In the foreach block, ch is read-only. In the for block, ch is not read-only but (as usual) the string
characters can't be altered.

After IEnumerable, perhaps the next most important interface that String implements is IComparable,
which means that the String class implements a method named CompareTo that lets you use arrays
of strings with the BinarySearch and Sort methods defined in the Array class. I'll go over these
methods later in this appendix.
Copying Strings
There are several ways to copy a string. Perhaps the simplest is using the equals sign:
string strCopy = str;

Like every class in the .NET Framework, the String class inherits the ToString method from Object.
Because the String class implements ICloneable, it also implements the Clone method. These
methods provide additional (if somewhat redundant) methods to copy strings:

String Methods (selection)

string ToString()
object Clone()

If you use Clone, you must cast the result to a string:
string strCopy = (string) str.Clone();

The String class also implements a static method that copies a string:

String Copy Static Method

string Copy(string str)

Because string is an alias for System.String, you can preface the method name with the lowercase
string:
string strCopy = string.Copy(str);

or with the fully qualified class name:
string strCopy = System.String.Copy(str);

If you have a using System statement in the program, you can prefix the method name with the
uppercase String class name:
string strCopy = String.Copy(str);

Two of the String constructors convert a character array to a string. You can also convert a string
back to a character array:

String Methods (selection)

char[] ToCharArray()
char[] ToCharArray(int iStartIndex, int iCount)
void CopyTo(int iStartIndexSrc, char[] achDst, int iStartIndexDst,
 int iCount)

The ToCharArray methods create the character array. The iStartIndex argument refers to a starting
index in the string. To use the CopyTo method, the achDst array must already exist. The first
argument is a starting index for the string; the third argument is a starting index in the character
array. The CopyTo method is the equivalent of
for (int i = 0; i < iCount; i++)
 achDst[iStartIndexDst + i] = str[iStartIndexSrc + i];

The Substring methods create a new string that is a section of an existing string:

String Substring Method

string Substring(int iStartIndex)
string Substring(int iStartIndex, int iCount)

The first version returns a substring that begins at the index and continues to the end of the string.

Converting Strings
Two methods, each with two versions, convert strings to lowercase or uppercase:

String Methods (selection)

string ToUpper()
string ToUpper(CultureInfo ci)
string ToLower()
string ToLower(CultureInfo ci)

The CultureInfo class is defined in System.Globalization and in this case refers to a particular
language as used in a particular country.
Concatenating Strings
It's often necessary to tack together two or more strings, a process known as string concatenation. In
C, you use the library functions strcat and strncat. For convenience, the C# addition operator is
overloaded to perform string concatenation:
string str = str1 + str2;

The concatenation operator is convenient for defining a string literal that's a little too long to fit on a
single line:
string str = "Those who profess to favor freedom and yet depreciate " +
 "agitation. . .want crops without plowing up the ground, they
" +
 "want rain without thunder and lightning. They want the ocean
" +
 "without the awful roar of its many waters. \x2014 Frederick
" +
 "Douglass";

You can also use the += operator to append a string to the end of an existing string:
str += "\r\n";

The String class also defines a static Concat method:

String Concat Static Method (selection)

string Concat(string str1, string str2)
string Concat(string str1, string str2, string str3)
string Concat(string str1, string str2, string str3, string str4)
string Concat(params string[] astr)

Notice the params keyword in the last version of Concat. What that keyword means in this case is
that you can specify either an array of strings or any number of strings. For example, if you have an
array of strings defined as
string[] astr = { "abc", "def", "ghi", "jkl", "mno", "pqr" };

and you pass that array to the Concat method
string str = string.Concat(astr);

the result is the string "abcdefghijklmnopqr". Alternatively, you can pass the individual strings directly
to the Concat method:
string str = string.Concat("abc", "def", "ghi", "jkl", "mno", "pqr");

Although the String class defines Concat versions with two, three, four, or a variable number of
arguments, only the version with the params argument is necessary. That method actually
encompasses the other three methods.

Another set of Concat methods are the same except with object arguments:

String Concat Static Method (selection)

string Concat(object obj)
string Concat(object obj1, object obj2)
string Concat(object obj1, object obj2, object obj3)
string Concat(params object[] aobj)

The object arguments are converted to strings by the objects' ToString methods. The call
string.Concat(55, "-", 33, "=", 55 - 33)

creates the string "55-33=22".

It's sometimes necessary to concatenate an array of strings but with some kind of separator between
each array element. You can do that using the Join static method:

String Join Static Method

string Join(string strSeparator, string[] astr)
string Join(string strSeparator, string[] astr, int iStartIndex, int
iCount)

For example, if you have an array of strings defined as
string[] astr = { "abc", "def", "ghi", "jkl", "mno", "pqr" };

you might want to create a composite string with end-of-line indicators between each pair. Call
string str = string.Join("\r\n", astr);

The result is the string
abc\r\ndef\r\nghi\r\njkl\r\nmno\r\npqr

The separator is not appended following the last string.

The second version of Join lets you select a contiguous subset of strings from the array before
joining them.
Comparing Strings
String is a class (not a structure), and string is a reference type (not a value type). Normally that
would imply that the comparison operators (== and !=) wouldn't work correctly for strings. You'd be
comparing object references rather than characters. However, the == and != operators have been
redefined for strings and work as you'd expect. The expressions
(str == "New York")

and
(str != "New Jersey")

return bool values based on a case-sensitive character-by-character comparison.

There are several methods defined in the String class that return bool values indicating the result of
a case-sensitive string comparison:

String Methods (selection)

bool Equals(string str)
bool Equals(object obj)
bool StartsWith(string str)
bool EndsWith(string str)

If a string is defined as
string str = "The end of time";

then
str.StartsWith("The")

returns true but
str.StartsWith("the")

returns false.

There's also a static version of the Equals method:

String Static Methods (selection)

bool Equals(string str1, string str2)

For example, instead of
if (str == "New York")

you can use
if (Equals(str, "New York"))

Methods like this one are provided primarily for languages that don't have operators for comparison.

The remaining comparison methods implemented in String, which I'll discuss momentarily, return an
integer value that indicates whether one string is less than, equal to, or greater than another string:
String Comparison Method Return Values

Return Value Meaning

Negative str1 < str2

Zero str1 == str2

Positive str1 > str2

Watch out: the comparison methods are defined as returning negative, zero, or positive integers, not
−1, 0, or 1.

Usually if you're interested in whether one string is less than or greater than another, it's because
you're sorting the strings in some way. And that implies that you probably don't want to perform a
comparison based on the strict numeric values of the character codes. For example, you probably
want the characters e and é to be regarded as less than F, despite the higher values of their

character codes. Such a comparison is known as a lexical comparison rather than a numeric
comparison.

Here's the relationship among a few select characters when compared numerically:

D < E < F < d < e < f < È < É < Ê < Ë < è < é < ê < ë

And here's the lexical comparison:

d < D < e < E < é < É < è < È < ê < Ê < ë < Ë < f < F

Is a lexical comparison also case insensitive? Mostly it is. For example, the string "New Jersey" is
considered less than "new York" despite the lowercase 'n' in the second string. But when two strings
are identical except for case, lowercase letters are considered less than uppercase letters, that is,
"the" is less than "The". However, "Them" is less than "then".

In other words, by default, a lexical comparison is case sensitive only when a method must decide
whether or not to return 0. Otherwise, it's case insensitive.

The lexical comparison also implies a certain relationship among letters, numbers, and other
characters. In general, control characters are considered to be less than single quotes and dashes,
which are less than white-space characters. Next comes punctuation and other symbols, digits (0
through 9), and finally letters. A null string is less than the empty string, which is less than any other
character. For example,

"New" < "New York" < "Newark"

The nonstatic method CompareTo performs a lexical comparison between a string instance and an
argument:

String CompareTo Method

int CompareTo(string str2)
int CompareTo(object obj2)

The first string is the string object you're calling CompareTo on, for example,
str1.CompareTo(str2)

The CompareTo method with the object argument is necessary to implement the IComparable
interface. The CompareTo method is used by the static Array.BinarySearch and Array.Sort methods,
as I'll discuss shortly.

All the other comparison methods are static. The CompareOrdinal methods perform a strict numeric
comparison based on the character value:

String CompareOrdinal Static Method

int CompareOrdinal(string str1, string str2)
int CompareOrdinal(string str1, int iStartIndex1, string str2,
 int iStartIndex2, int iCount)

The static Compare methods perform a lexical comparison:

String Compare Static Method

int Compare(string str1, string str2)

int Compare(string str1, string str2, bool bIgnoreCase)
int Compare(string str1, string str2, bool bIgnoreCase, CultureInfo ci)
int Compare(string str1, int iStartIndex1, string str2, int iStartIndex2,
 int iCount)
int Compare(string str1, int iStartIndex1, string str2, int iStartIndex2,
 int iCount, bool bIgnoreCase)
int Compare(string str1, int iStartIndex1, string str2, int iStartIndex2,
 int iCount, bool bIgnoreCase, CultureInfo ci)

The bIgnoreCase argument affects the return value only when the two strings are the same except
for case. Case-insensitive comparisons are much more useful for searching rather than sorting. The
method calls
string.Compare("ë", "Ë")

and
string.Compare("ë", "Ë", false)

both return negative values, but
string.Compare("ë", "Ë", true)

returns 0. The calls
string.Compare("e", "ë", bIgnoreCase)

and
string.Compare("e", "Ë", bIgnoreCase)

always return negative values, regardless of the presence or value of the bIgnoreCase argument.

There is no comparison method implemented in the String class that reports that "André" equals
"Andre".
Searching the String
The C library functions strchr and strstr search a string for the first occurrence of a specific character
or another string and return a pointer to that occurrence. The C# equivalents—which are all versions
of the IndexOf method—return an index in the source string rather than a pointer.

String IndexOf Methods

int IndexOf(char ch)
int IndexOf(char ch, int iStartIndex)
int IndexOf(char ch, int iStartIndex, int iCount)
int IndexOf(string str)
int IndexOf(string str, int iStartIndex)
int IndexOf(string str, int iStartIndex, int iCount)

You can search for a specific character or another string. The search is case sensitive. The method
returns −1 if the character or string isn't found. You can optionally include a starting index and a
character count. The return value is measured from the beginning of the string, not from the starting
index.

With a string defined as

string str = "hello world";

then
str.IndexOf('o')

returns 4, and
str.IndexOf("wo")

returns 6.

You can also perform the search starting at the end of the string:

String LastIndexOf Methods

int LastIndexOf(char ch)
int LastIndexOf(char ch, int iStartIndex)
int LastIndexOf(char ch, int iStartIndex, int iCount)
int LastIndexOf(string str)
int LastIndexOf(string str, int iStartIndex)
int LastIndexOf(string str, int iStartIndex, int iCount)

Although the methods search from the end of the string, the returned index is still measured from the
beginning of the string. For the string shown above, the call
str.LastIndexOf('o')

returns 7, and
str.LastIndexOf("wo")

returns 6.

The following methods have a first argument that is an array of characters. The methods determine
the first or last index in the string of a character that matches any character in the array:

String Methods (selection)

int IndexOfAny(char[] ach)
int IndexOfAny(char[] ach, int iStartIndex)
int IndexOfAny(char[] ach, int iStartIndex, int iCount)
int LastIndexOfAny(char[] ach)
int LastIndexOfAny(char[] ach, int iStartIndex)
int LastIndexOfAny(char[] ach, int iStartIndex, int iCount)

If a character array and a string are defined like so:
char[] achVowel = { 'a', 'e', 'i', 'o', 'u' };
string str = "hello world";

then
str.IndexOfAny(achVowel)

returns 1, and
str.LastIndexOfAny(achVowel)

returns 7.
Trimming and Padding
Sometimes when processing text files (such as program source code files), it's convenient to remove
white space, which is the nonvisible characters that separate other elements in the string. The String
class has methods to do so. For purposes of these methods, white-space characters are assumed to
be the following Unicode characters:
Unicode White-Space Characters

0x0009 (tab) 0x2003 (em space)

0x000A (line feed) 0x2004 (three-per-em space)

0x000B (vertical tab) 0x2005 (four-per-em space)

0x000C (form feed) 0x2006 (six-per-em space)

0x000D (carriage return) 0x2007 (figure space)

0x0020 (space) 0x2008 (punctuation space)

0x00A0 (no-break space) 0x2009 (thin space)

0x2000 (en quad) 0x200A (hair space)

0x2001 (em quad) 0x200B (zero-width space)

0x2002 (en space) 0x3000 (ideographic space)

You can either use the predefined white-space characters or define your own array of characters.

String Methods (selection)

string Trim()
string Trim(params char[] ach)
string TrimStart(params char[] ach)
string TrimEnd(params char[] ach)

To remove the predefined white-space characters from the beginning and end of a string named str,
use
str.Trim()

or
str.Trim(null)

You can also remove the predefined white-space characters from the beginning of a string, as here:
str.TrimStart(null)

or the end, as here:
str.TrimEnd(null)

Alternatively, you can specify the characters (not necessarily white-space characters) you want
removed from the beginning or end of a string. You can either define a character array and pass that
to the Trim (or TrimStart or TrimEnd) method
char[] achTrim = { ' ', '-', '_' };
str.Trim(achTrim)

or list the characters explicitly in the method call:
str.Trim(' ', '-', '_');

Both method calls cause these three characters to be stripped from the beginning and end of the
string.

You can also add spaces (or any other character) to the beginning or end of a string to achieve a
specified total width:

String Methods (selection)

string PadLeft(int iTotalLength)
string PadLeft(int iTotalLength, char ch)
string PadRight(int iTotalLength)
string PadRight(int iTotalLength, char ch)

String Manipulation
Here are some miscellaneous methods that let you insert one string into another, remove a range of
characters, and replace a particular character or string within a string. I showed examples of all these
methods at the beginning of this appendix:

String Methods (selection)

string Insert(int iIndex, string strInsert)
string Remove(int iIndex, int iCount)
string Replace(char chOld, char chNew)
string Replace(string strOld, string strNew)

You may have had occasion to use the C library function strtok. This function is intended to break a
string down into tokens, which are substrings delimited by certain fixed characters, usually white-
space characters. In C, you call strtok repeatedly until the source string has no more tokens. In C#,
you can do the work of strtok with a single call to the Split method:

String Split Method

string[] Split(params char[] achSeparators)
string[] Split(params char[] achSeparators, int iReturnCount)

If you set the first argument to null, the method uses the set of white-space characters shown earlier.
Formatting Strings
As you know from Chapter 1, the first argument of the Console.Write or Console.WriteLine method
can be a string that describes the formatting of the remaining arguments. If these two methods are
the C# equivalent of the C printf function, the static Format method of String is the C# equivalent of
the C sprintf function:

String Format Static Method (selection)

string Format(string strFormat, object obj0)
string Format(string strFormat, object obj0, object obj1)
string Format(string strFormat, object obj0, object obj1, object obj2)
string Format(string strFormat, params object[] aobj)

For example, the following call to Format,
string str = String.Format("The sum of {0} and {1} is {2}", 2, 3, 2 + 3);

creates the string "The sum of 2 and 3 is 5".
Array Sorting and Searching
The String class implements the IComparable interface, which merely requires that it implement the
following method:

IComparable Method

int CompareTo(object obj)

This method is called by two useful static methods of Array named Sort and BinarySearch. You can
use these two methods with arrays of objects of any class that implements IComparable.

Here are the two basic Sort methods:

Array Sort Static Methods (selection)

void Sort(Array arr)
void Sort(Array arr, int iStartIndex, int iCount)

The second version allows you to use a subset of the array. Suppose you define an array of strings
like so:
string[] astr = { "New Jersey", "New York", "new Mexico", "New Hampshire"
};

Notice the lowercase n in the third string. After calling
Array.Sort(astr);

the elements of the array are reordered to be "New Hampshire", "New Jersey", "new Mexico", and
"New York". Because the Sort method uses the CompareTo method of String, the sorting is case
insensitive. However, if the array also included "New Mexico" (with an uppercase N), "New Mexico"
would be appear after "new Mexico" in the sorted array.

The next two versions of the Sort method require two corresponding arrays of equal size, optionally
with a starting index and an element count:

Array Sort Static Methods (selection)

void Sort(Array arrKeys, Array arrItems)
void Sort(Array arrKeys, Array arrItems, int iStartIndex, int iCount)

The method sorts the first array and reorders the second array accordingly. I use this version of the
Sort method in the SysInfoReflectionStrings program in Chapter 4 to sort an array of
SystemInformation property names stored in astrLabels:
Array.Sort(astrLabels, astrValues);

The corresponding array of SystemInformation values stored in astrValues is also reordered so that
the array elements still correspond to each other.

If you want to perform a sort using a method other than CompareTo, you use one of the following
Sort methods:

Array Sort Static Methods (selection)

void Sort(Array arr, IComparer comp)
void Sort(Array arr, int iStartIndex, int iCount, IComparer comp)
void Sort(Array arrKeys, Array arrItems, IComparer comp)
void Sort(Array arrKeys, Array arrItems, int iStartIndex, iCount,
 IComparer comp)

The argument of type IComparer can be an instance of any class that implements the IComparer
interface. That's not the String class! String implements the IComparable interface, not IComparer.

The IComparer interface is defined in the System.Collections namespace. A class that implements
IComparer must define the following method:

IComparer Method

int Compare(object obj1, object obj2)

This method is not static, and hence, is not defined in the String class. (The only methods named
Compare implemented in String are static methods.)

The System.Collections namespace contains two classes that implement IComparer, which are
Comparer (to perform a case-sensitive comparison just like the default) and
CaseInsensitiveComparer (for a case-insensitive string comparison). Both these classes have a
static member named Default that returns an instance of the class.

For example, to perform a case-sensitive sort of the string array astr, call
Array.Sort(astr);

or
Array.Sort(astr, Comparer.Default);

To perform a case-insensitive sort, call
Array.Sort(astr, CaseInsensitiveComparer.Default);

The case-insensitive compare is much more useful in the BinarySearch method rather than the Sort
method (or when sorting in preparation for a binary search):

Array BinarySearch Static Method

int BinarySearch(Array arr, object obj)
int BinarySearch(Array arr, int iStartIndex, int iCount, object obj)
int BinarySearch(Array arr, object obj, IComparer comp)
int BinarySearch(Array arr, int iStartIndex, int iCount, object obj,
 IComparer comp)

To perform a binary search, the array must be sorted. The sorted array of four state names contains
the elements

"New Hampshire", "New Jersey", "new Mexico", "New York"

The call
Array.BinarySearch(astr, "New York")

returns 3 because the string is identical to astr[3]. The call
Array.BinarySearch(astr, "New Mexico")

returns −4. The negative number indicates that the string isn't in the array. (Remember, by default
the search is case sensitive!) The complement of the return value is 3, which means that astr[3] is
the next highest element of the array.

The call
Array.BinarySearch(astr, "new Mexico"));

returns 2 because the argument matches astr[2]. The call
Array.BinarySearch(astr, "New Mexico", CaseInsensitiveComparer.Default));

performs a case-insensitive search and also returns 2.
The StringBuilder Class
You may wonder if there's a performance penalty associated with frequent re-creations of String
objects. Sometimes there is. Consider the following program, which uses the += operator in 10,000
string-appending operations to construct a large string.
StringAppend.cs
//---
// StringAppend.cs © 2001 by Charles Petzold
//---
using System;

class StringAppend
{
 const int iIterations = 10000;

 public static void Main()
 {
 DateTime dt = DateTime.Now;
 string str = String.Empty;

 for (int i = 0; i < iIterations; i++)
 str += "abcdefghijklmnopqrstuvwxyz\r\n";

 Console.WriteLine(DateTime.Now - dt);
 }
}

The program calls the Now method of the DateTime class at the beginning and end to calculate an
elapsed time, which is displayed in hours, minutes, seconds, and units of 100 nanoseconds. (See
Chapter 10 for information about DateTime and related classes.) Each string-appending operation
causes a new String object to be created, which requires another memory allocation. Each previous
string is marked for garbage collection.

How fast this program runs depends on how fast your machine is. It could take about a minute or so.

A better solution in a case like this is the appropriately named StringBuilder class, defined in the
System.Text namespace. Unlike the string maintained by the String class, the string maintained by
StringBuilder can be altered. StringBuilder dynamically reallocates the memory used for the string.
Whenever the size of the string is about to exceed the size of the memory buffer, the buffer is
doubled in size. To convert a StringBuilder object to a String object, call the ToString method.

Here's a revised version of the program, which uses StringBuilder.
StringBuilderAppend.cs
//--
// StringBuilderAppend.cs © 2001 by Charles Petzold
//--
using System;
using System.Text;

class StringBuilderAppend
{
 const int iIterations = 10000;

 public static void Main()
 {
 DateTime dt = DateTime.Now;
 StringBuilder sb = new StringBuilder();

 for (int i = 0; i < iIterations; i++)
 sb.Append("abcdefghijklmnopqrstuvwxyz\r\n");

 string str = sb.ToString();

 Console.WriteLine(DateTime.Now - dt);
 }
}

You'll probably find that this program does its work in well under a second. It seems to run in under
1/1000 the time of the original version.

Another efficient approach is to use the StringWriter class defined in the System.IO namespace. As I
mentioned in Appendix A, both StringWriter and StreamWriter (which you use for writing to text files)
derive from the abstract TextWriter class. Like StringBuilder, StringWriter assembles a composite
string. The big advantage with StringWriter is that you can use the whole array of Write and
WriteLine methods defined in the TextWriter class. Here's a sample program that performs the same
task as the previous two programs but using a StringWriter object.
StringWriterAppend.cs
//---
// StringWriterAppend.cs © 2001 by Charles Petzold
//---
using System;
using System.IO;

class StringWriterAppend

{
 const int iIterations = 10000;

 public static void Main()
 {
 DateTime dt = DateTime.Now;
 StringWriter sw = new StringWriter();

 for (int i = 0; i < iIterations; i++)
 sw.WriteLine("abcdefghijklmnopqrstuvwxyz");

 string str = sw.ToString();

 Console.WriteLine(DateTime.Now - dt);
 }
}

The speed of this program is comparable to StringBuilderAppend.

There's a lesson in all this. As operating systems, programming languages, class libraries, and
frameworks provide an ever increasingly higher level of abstraction, we programmers can sometimes
lose sight of all the mechanisms going on beneath the surface. What looks like a simple addition in
code can actually involve many layers of low-level activity.

We may be insulated from this low-level activity, but we must train ourselves to still feel the heat. If a
particular operation seems slow to you, or to require too much memory, or to involve inordinately
convoluted code, try to determine why and then search for an alternative. It's likely that someone has
already provided exactly what you need.

