

Beginning ASP.NET 1.1
with Visual C#® .NET 2003

Chris Ullman
John Kauffman

Chris Hart
Dave Sussman

Daniel Maharry

Wiley Publishing, Inc.

Beginning ASP.NET 1.1
with Visual C#® .NET 2003

Beginning ASP.NET 1.1
with Visual C#® .NET 2003

Chris Ullman
John Kauffman

Chris Hart
Dave Sussman

Daniel Maharry

Wiley Publishing, Inc.

Beginning ASP.NET 1.1 with Visual C#® .NET 2003
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Library of Congress Card Number: 2004100135

ISBN: 0-7645-5708-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RW/RS/QU

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, Email:
permcoordinator@wiley.com.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in
the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR
HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION.
YOU SHOULD CONSULT WITH A PROFESSIONAL WHERE APPROPRIATE. NEITHER THE
PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

About the Authors

Chris Ullman
Chris Ullman is a freelance Web developer and technical author who has spent many years stewing in
ASP/ASP.NET, like a teabag left too long in the pot. Coming from a Computer Science background, he
started initially as a UNIX/Linux guru, who gravitated towards MS technologies during the summer of
ASP (1997). He cut his teeth on Wrox Press ASP guides, and since then he has written over 20 books,
most notably as lead author for Wrox's bestselling Beginning ASP/ASP.NET series, and has contributed
chapters to books on PHP, ColdFusion, JavaScript, Web Services, C#, XML and other Internet-related
technologies too esoteric to mention, now swallowed up in the quicksands of the dot.com boom.

Quitting Wrox as a full-time employee in August 2001, he branched out into VB6 programming and ASP
development, maintaining a multitude of sites from http://www.cuasp.co.co.uk, his "work" site, to
http://www.atomicwise.com, a selection of his writings on music and art. He now divides his time
between being a human punchbag for his 29-month-old son Nye, composing electronic sounds on bits
of dilapidated old keyboards for his music project Open E, and tutoring his cats in the art of peaceful
co-existence, and not violently mugging each other on the stairs.

Chris Ullman contributed Chapters 1, 14, 15, 16, 17, and Appendix E to this book.

John Kauffman
John Kauffman was born in Philadelphia, the son of a chemist and a nurse. He received his degrees from
The Pennsylvania State University, the colleges of Science and Agriculture. His early research was for
Hershey foods in the genetics of the chocolate tree and the molecular biology of chocolate production.
Subsequently, he moved to the Rockefeller University, where he cloned and sequenced DNA regions that
control the day and night cycles of plants.

Since 1997, John has written ten books, six of which have been on the Amazon Computer Best Seller
List. His specialty is programming Web front-ends for enterprise-level databases.

In his spare time, John is an avid sailor and youth sailing coach. He represented the USA in the sailing
World Championship of 1985 and assisted the Olympic teams of Belgium and China in 1996. He also
enjoys jazz music and drumming and manages to read the New Yorker from cover-to-cover each week.

My portions of this book are dedicated to the instructors of two drum and bugle corps. These men
taught me about precision, accuracy, and discipline: Ken Green and John Flowers of the Belvederes 1976
and Dennis DeLucia and Bobby Hoffman of the Bayonne Bridgemen 1978.

John Kauffman contributed Chapters 2, 3, 4, 5, 6, and Appendix B to this book.

Chris Hart
Chris Hart is a full-time .NET Developer and part-time author who lives in Birmingham (UK) with her
husband James. While she's most at home in the world of the Web, she's recently been working with the
.NET Compact Framework. In her spare time, Chris spends much of her time playing with beta
technologies, and then attempting to write about them.

Chris has contributed many chapters to a variety of books, including Beginning ASP.NET (Wrox Press),
Beginning Dynamic Websites with ASP.NET Web Matrix (Wrox Press), and most recently, A Programmer's
Guide to SQL (Apress).

When she gets away from computers, Chris enjoys travel, especially when it involves driving along
narrow winding roads to get to out-of-the-way parts of Scotland. She dreams of building her own house
somewhere where she can keep a cat.

Chris Hart contributed Chapters 10, 11, 12, 13, and Appendices C and D to this book.

Dave Sussman
Dave Sussman is a writer, trainer, and consultant, living in the wilds of the Oxfordshire countryside.
He's been working with ASP.NET since before it was first released and still isn't bored with it. You can
contact him at davids@ipona.com.

Dave Sussman contributed Chapters 7, 8, and 9 to this book.

Daniel Maharry
Dan Maharry is a freelance writer, reviewer, speaker, and editor who has, in no particular order, taught
English, Math, and Guitar, directed, crewed, acted in, and produced several plays and short films, been a
film and music columnist for four years, co-founded ASPToday.com, rewritten his own at HMobius.com
several times, opened an office in India, variously edited, reviewed, and written pieces of over 40
programming books, qualified as a sound engineer, and consumed enough caffeine in his lifetime to
keep most of China awake for a week. Occasionally, he sleeps. Sometimes. Contact him at
danm@hmobius.com.

"With deep-felt love to Jane, and in memoriam to John Kauffman's father."

Dan Maharry contributed Chapters 5 and 6 to this book.

Authors
Chris Ullman
John Kauffman
Chris Hart
Dave Sussman
Daniel Maharry

Senior Acquisitions Editor
Jim Minatel

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Bob Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
Mary Richards

Project Manager
Ami Frank Sullivan

Senior Production Manager
Fred Bernardi

Editorial Manager
Mary Beth Wakefield

Book Producer
Peer Technical Services Pvt. Ltd.

Credits

Contents

Introduction xxi

Chapter 1: Getting Started with ASP.NET 1

What Is a Static Web Page? 2
How Are Static Web Pages Served? 3

Limitations of Static Web Pages 4
What Is a Web Server? 5

How Are Dynamic Web Pages Served? 6
Client-Side Dynamic Web Pages 6
Server-Side Dynamic Web Pages 7

What Is ASP.NET? 9
How Does ASP.NET Differ from ASP? 9
Using C# with ASP.NET 10
I'm Still Confused about ASP, ASP.NET, and C# 11

The Installation Process 11
Which Operating System Do You Have? 11
Prerequisites for Installing ASP.NET 12

Try It Out Installing MDAC 2.8 13
Installing ASP.NET and the .NET Framework 13

Try It Out Installing the .NET Framework Redistributable 14
Installing Web Matrix 15

Try It Out Installing Web Matrix 16
Configuring Web Matrix to Run with .NET Framework 1.1 18

Try It Out Configuring Web Matrix 18
Running Web Matrix and Setting Up the Web Server 19

Try It Out Starting the Web Server 19
ASP.NET Test Example 25

Try It Out Your First ASP.NET Web Page 25
ASP.NET Troubleshooting 28

Page Cannot Be Displayed: HTTP Error 403 29
Page Cannot Be Found: HTTP Error 404 30
Web Page Unavailable While Offline 31
I Just Get a Blank Page 31
The Page Displays the Message But Not the Time 31
I Get an Error Statement Citing a Server Error 32
I Have a Different Problem 33

Summary 33

x

Contents

Chapter 2: Anatomy of an ASP.NET Page 35

What Is .NET? 35
From Your Code to Machine Code 37
Introducing Two Intermediate Languages 37
Objects 38
The .NET Base Classes 39
The Class Browser 40

How ASP.NET Works 41
Saving Your ASP.NET Files with an ASPX Suffix 42
Inserting ASP.NET Code into Our Web Pages 42

Try It Out Inserting Server-Side (ASP.NET) Code 44
Try It Out Interweaving ASP.NET Output with HTML 49

ASP.NET in Action 51
Binding to a Database 51

Try It Out Binding to a Database 51
Binding to a Simple XML File 54

Try It Out Binding to a Simple XML Document 54
Summary 57
Exercises 58

Chapter 3: Server Controls and Variables 59

Forms 60
Web Pages, HTML Forms, and Web Forms 60
Request and Response in Non-ASP.NET Pages 61

Where ASP.NET Fits in with the .NET Framework 63
The <form> Tag in ASP.NET 64

Using ASP.NET Server Controls 64
<asp:Label> 65

Try It Out Using the <asp:Label> Control 67
Modifying ASP.NET Controls 68
<asp:DropDownList> 69

Try It Out Using the <asp:DropDownList> Control 69
<asp:ListBox> 73

Try It Out Using the <asp:ListBox> Control 73
<asp:TextBox> 75

Try It Out Using the <asp:TextBox> Control 75
<asp:RadioButtonList> and <asp:RadioButton> 77

Try It Out Using the <asp:RadioButtonList> Control 78
<asp:CheckBox> and <asp:CheckBoxList> 79

Try It Out Using the <asp:CheckBox> Control 80
Storing Information in C# Variables 82

Declaring Value Type Variables 82
Try It Out Using Variables 83

Datatypes 86
Numeric 86
Text Datatypes 88
Other Datatypes 89
Naming Variables 90

xi

Contents

Variable Scope 91
Try It Out Creating Block and Function-Level Variables 92

Constants 97
Conversion Functions 97
Arrays 98

Try It Out Using Arrays 99
Data Collections 103

ArrayList 103
Try It Out Using an ArrayList 105

Hashtables 106
Try It Out Using Hashtables 108

SortedList 110
Summary 111
Exercises 112

Chapter 4: Control Structures and Procedural Programming 113

Operators 113
Assignment Operator 114
Arithmetic Operators 114

Try It Out Tax Calculator Using Arithmetic Operators 115
String Concatenation 118
Numeric Comparison Operators 119
Logical Operators 120

Try It Out Tax Calculator Using Logical Operators 122
Control Structures 125

Overview of Branching Structures 125
Overview of Looping Structures 126
Overview of Jumping Structures 126
Uses of Control Structures 127

Branching Structures 128
The if Structure 129

Try It Out Using the if Structure 134
The switch Structure 138

Try It Out Using the switch Structure 141
Looping Structures 144

The for Loop Structure 144
Try It Out Using the for Loop 146

The while Loop 148
Try It Out Using the while Loop 150

The do...while Structure 151
Try It Out Using do...while 152

The foreach...in Loop 155
Summary 156
Exercises 157

Chapter 5: Functions 159

Overview 159
Modularization 160

xii

Contents

Defining and Using Functions 161
Try It Out Defining and Using a Simple Function 161

Passing Parameters to Functions 164
Try It Out Functions with Parameters 165

Web Controls as Parameters 169
Try It Out Using Web Controls as Parameters 170

Return Values 173
Using Return Values in Your Code 173

Try It Out Handling Function Return Types 175
Value, Reference, and Out Parameters 181

Try It Out Using Value, Reference, and Out Parameters 183
Modularization Best Practices 188
Summary 189
Exercises 190

Chapter 6: Event-Driven Programming and Postback 191

What Is an Event? 192
What Is Event-Driven Programming? 192
HTML Events 193
ASP.NET's Trace Feature 195
ASP.NET Page Events 197
ASP.NET Web Control Events 199

Try It Out Creating Event Handlers with Web Matrix 201
Event-Driven Programming and Postback 202

Try It Out Reacting to Events in HTML and ASP.NET 203
The IsPostBack Test 205

Try It Out Calculator 206
Summary 211
Exercises 212

Chapter 7: Objects 215

Classes and Instances 216
Properties, Methods, and Events 216
Objects in .NET 216
Why Use Objects? 217
Defining Classes 218

Try It Out Creating a Class 218
Property Variables 223
Property Types 224

Try It Out Read-Only Properties 224
Initializing Objects 226

Try It Out Overloading a Constructor 226
Implementing Methods 227

Try It Out Adding Methods to a Class 227
Consolidating Overloaded Methods 230

Advanced Classes 231

xiii

Contents

Shared or Static Properties and Methods 231
Inheritance 232

Try It Out Inheritance 233
Interfaces 237

Try It Out Creating an Interface 238
.NET Objects 243

Namespaces 243
The Class Browser 243

Summary 245
Exercises 245

Chapter 8: Reading from Databases 247

Understanding Databases 247
Tables 248
Normalization 249
SQL and Stored Procedures 251

The Web Matrix Data Explorer 251
Try It Out Connecting to a Database 251

Creating Data Pages 253
Displaying Data Using the Data Explorer 253

Try It Out Creating a Grid 253
Displaying Data Using the Web Matrix Template Pages 256

Try It Out Creating a Data Page 257
Displaying Data Using the Code Wizards 262

Try It Out Creating a Data Page 262
ADO.NET 269

The OleDbConnection Object 271
The OleDbCommand Object 271

Try It Out Using Parameters 273
The OleDataAdapter Object 278
The DataSet Object 278
The DataReader Object 278

Try It Out Using a DataReader 279
Summary 281
Exercises 281

Chapter 9: Advanced Data Handling 283

More Data Objects 283
The DataTable Object 284
The DataRow Object 285

Try It Out The DataTable and DataRow Objects 286
Updating Databases 288

ADO.NET versus ADO 289
Updating Data in a DataSet 289

Try It Out Adding, Editing, and Deleting Rows 289
Updating the Original Data Source 297

Try It Out Auto-Generated Commands 298
Updating the Database 301

xiv

Contents

Try It Out Updating the Database 302
Updating Databases Using a Command 307

Try It Out Executing Commands Directly 307
Summary 310
Exercises 311

Chapter 10: ASP.NET Server Controls 313

The Wrox United Application 314
ASP.NET Web Controls 315
HTML Server Controls 316
HTML Server Controls versus Web Controls 318
Web Controls 319

Rich Object Model 320
Automatic Browser Detection 320
Properties 320

Events 322
Try It Out Creating an Event Handler 322

Page Lifecycle 324
Page_Load() 325
Event Handling 326
Page_Unload() 326

Understanding Web Controls: The Wrox United Application 327
Try It Out Wrox United Main Page – Default.aspx 328

Intrinsic Controls 331
Try It Out Wrox United – Teams.aspx 332

Data Rendering Controls 340
Try It Out Wrox United – Teams.aspx, Part 2 343

Rich Controls 352
Try It Out Wrox United – Default.aspx, Part 2, the Event Calendar 354
Try It Out Wrox United – Displaying Fixture Details 360

Web Matrix Controls 366
Try It Out Wrox United – Players.aspx and the Web Matrix MX DataGrid 367

Validation Controls 372
Try It Out Wrox United – Registering for Email Updates (Default.aspx) 373

Summary 378
Exercises 378

Chapter 11: Users and Applications 381

Remembering Information in a Web Application 382
Cookies 383

Try It Out Using Cookies 386
Sessions 393

Try It Out Using Session State 395
Applications 404

How Do Applications Work? 405
Try It Out Using Application State 405

Reacting to Application and Session Events 410
Global.asax 410

xv

Contents

Try it Out Global.asax – Global Settings 411
Caching 413

Try It Out Wrox United – Caching Objects 415
State Management Recommendations 418

When to Use Cookies 419
When to Use Sessions 419
When to Use Applications 419
When to Use Caching 419
Other State Management Techniques 420
Using Multiple State Management Techniques on a Page 421

Try it Out Wrox United – Adding Some Style! 421
Summary 429
Exercises 430

Chapter 12: Reusable Code for ASP.NET 431

Encapsulation 431
Components 432

Why Use Components? 434
Applying Component Theory to Applications 434

User Controls 435
Try It Out Our First User Control 437
Try It Out Wrox United – Header Control 440
Try It Out Wrox United – Navigation User Control 446

Code-Behind 451
Try It Out Our First Code-Behind File 452
Try It Out Using Code-Behind in Wrox United 457

Summary 459
Exercises 459

Chapter 13: .NET Assemblies and Custom Controls 463

Three-Tier Application Design 464
ASP.NET Application Design 465
.NET Assemblies 466

Try It Out Our First ASP.NET Component 467
What Is Compilation? 470

Try It Out Compiling Our First ASP.NET Component 470
Accessing a Component from within an ASP.NET Page 474

Try It Out Using a Compiled Component 474
XCopy Deployment 476
Accessing Assemblies in Other Locations 477
Writing Code in Other Languages 477

Try It Out Writing a Component in VB.NET 478
Data Access Components 482

Try It Out Encapsulating Data Access Code in a Component 482
Custom Server Controls 489

What Are Custom Controls? 490
Try It Out Our First ASP.NET Custom Control 491

Composite Custom Controls 499

xvi

Contents

Try It Out Wrox United – Custom Composite Control 499
Summary 506
Exercises 507

Chapter 14: Debugging and Error Handling 509

A Few Good Habits 510
Tips on Coding 510

Indent Your Code 511
Structure Your Code 511
Comment Your Code 512
Convert Variables to the Correct Data Types (Validation) 512
Try to Break Your Code 513

Sources of Errors 514
Syntax Errors 514

Try It Out Syntax Error 515
Try It Out Generate a Compiler Error 516

Logical (Runtime) Errors 518
Try It Out Generate a Runtime Error 519
Try It Out Catching Illegal Values 521
Try It Out Using RequiredFieldValidator 524

System Errors 525
Finding Errors 525

Try It Out Viewing the Call-Stack 526
Debug Mode 527

Try It Out Disable the Debug Mode 527
Tracing 529

Try It Out Enabling Trace at the Page Level 529
Try It Out Writing to the Trace Log 532

Handling Errors 535
Try It Out Using try...catch...finally 542
Try It Out Using Page_Error() 548

Error Notification and Logging 550
Try It Out Creating Error Pages 551

Writing to the Event Log 553
Try It Out Writing to the Windows Error Log 554

Mailing the Site Administrator 557
Summary 559
Exercises 559

Chapter 15: Configuration and Optimization 561

Configuration Overview 562
Browsing .config Files 562
The Configuration Files 564
The Structure of the Configuration Files 567

Performance Optimization 574
Caching 574

Try It Out Output Caching 576
The Cache Object 578

xvii

Contents

Expiring Information in the Cache 581
Try It Out Creating a File Dependency 582
Try It Out Creating a Key Dependency 586

Tips and Tricks 590
Summary 591
Exercises 591

Chapter 16: Web Services 593

What Is a Web Service? 594
Try It Out Creating Our First Web Service 595

HTTP, XML, and Web Services 598
HTTP GET 599
HTTP POST 600

Simple Object Access Protocol (SOAP) 601
Building an ASP.NET Web Service 603

Processing Directive 603
Namespaces 603
Public Class 604
Web Methods 604

Try It Out Creating a Web Service with Multiple Web Methods 605
Testing Your Web Service 607

Try It Out Conversions Test Page 607
Using Your Web Service 608

Try It Out Viewing the WSDL Contract 609
Try It Out ISBN Search Web Service 610

Consuming a Web Service 613
How Does a Proxy Work? 613
Creating a Proxy 615

Try It Out Accessing the ISBN Web Service from an ASP.NET Page 615
Creating a Web Service for the Wrox United Application 618

Try It Out Adding a Results Page 619
Try It Out Creating the Web Service 621

Web Service Discovery 626
Securing a Web Service 627

Username-Password Combination or Registration Keys 627
Try It Out Securing a Web Service with Username and Password 627

Secure Sockets Layer (SSL) 630
IP Address Restriction 630
Web Services Enhancements (WSE) 631

Other Web Services Considerations 631
Network Connectivity 631
Asynchronous Method Calls 631
Service Hijacking (or Piggybacking) 632
Provider Solvency 633
The Interdependency Scenario 633

Summary 633
Exercises 634

xviii

Contents

Chapter 17: ASP.NET Security 635

What Is Security? 636
The ASP.NET Security Model 636
Authentication 637

Implementing Forms-Based Authentication 638
Try It Out Forms-Based Authentication 639

Forms-Based Authentication Using a Database 646
Try It Out Authenticating against a Database 646

Authorization 650
Try It Out Authorization for User@MyDomain.com 651

Authentication in Wrox United 653
Try It Out Adding a Login Page to WroxUnited 653

Encryption Using SSL 664
Try It Out Enabling SSL 665

Summary 666
Exercises 666

Appendix A: Exercise Solutions 667

Chapter 2 667
Chapter 3 669
Chapter 4 672
Chapter 5 675
Chapter 6 678
Chapter 7 681
Chapter 8 684
Chapter 9 686
Chapter 10 688
Chapter 11 693
Chapter 12 697
Chapter 13 702
Chapter 14 708
Chapter 15 713
Chapter 16 715
Chapter 17 720

Appendix B: Web Matrix Quick Start 725

What Is Web Matrix? 725
Starting ASP.NET Web Matrix 727

The Screen 727
How to Enter Code 730

Try It Out Code Entry 731
Saving and Viewing Pages 731

Try It Out Formatting Modes, Views, and Serving Pages 733
Reusing Code 735

Try It Out Saving and Using Snippets 735

xix

Contents

Class Browser 735
Try It Out Class Browser Property Look-Up 736

What to Study Next 738
Summary 738

Appendix C: The Wrox United Database 741

The Database Design 741
Players 742
Status 742
Teams 743
PlayerTeams 743
Positions 744
Games 744
GameTypes 745
Locations 745
Opponents 746
Fans 746

Installing the Database 747
Installing the Access Database 747
Installing the MSDE Database 747

Appendix D: Web Application Development Using Visual Studio .NET 753

Creating a Web Application Project 754
Features of the Visual Studio .NET Environment 755
Visual Studio .NET Solutions and Projects 756
Files in a Web Application Project 757

Working with Web Pages 757
Compiling and Running Pages 761

Adding Code to the Code-Behind Class 762
Features of Code View 763
Adding Code to Methods 763

Styling Controls and Pages in Visual Studio .NET 769
Working in HTML View 776
Creating User Controls 777

Formatting Blocks of Code 782
Developing the User Control 784
Creating an XML File 786
Adding a User Control to a Page 789

Adding Custom Classes 791
Working with Databases Using the Server Explorer 794
Debugging in Visual Studio .NET 797

Using Breakpoints 798
Fixing Design-Time Errors 799

Suggested Exercises and Further Reading 801

xx

Contents

Appendix E: Installing and Configuring IIS 803

Try It Out Locating and Installing IIS on Your Web Server Machine 803
Working with IIS 806

The Microsoft Management Console (MMC) 806
Testing Your Installation 807
Identifying Your Web Server's Name 807
Managing Directories on Your Web Server 808

Try It Out Creating a Virtual Directory and Setting Up Permissions 810
Permissions 814

Browsing to a Page on Your Web Server 818

Index 825

Introduction

ASP.NET is a radical update of Microsoft's Active Server Pages (ASP). ASP.NET is a powerful server based
technology designed to create dynamic and interactive HTML pages on demand for your Web site or
corporate intranet. Its design improves upon nearly every feature of classic ASP, from reducing the
amount of code you need to write to giving you more power and flexibility.

ASP.NET is a key element in Microsoft's .NET Framework, providing Web-based access to the
immensely powerful .NET development environment. It allows us to create Web applications in a new,
flexible way by placing commonly used code into reusable controls of various kinds that can fire events
initiated by the users of a site.

ASP.NET branches out into many other technologies, such as Web services, ADO.NET, custom controls,
and security. We will briefly touch upon its relationship with these fields throughout the book to provide
a solid, comprehensive understanding of how ASP.NET can benefit your work in a practical way.

ASP.NET 1.1 itself is a fairly light update to the complete wholesale changes that occurred in ASP.NET
1.0. This book by and large covers features that are available in both 1.0 and 1.1, but it covers the
pertinent new features of 1.1 in additional depth, which will be of interest to both the novice and
experienced users. So if you are already running ASP.NET 1.0, you will be expected to upgrade to 1.1.

By the end of this book you will be familiar with the anatomy of ASP.NET 1.1 and be able to create
powerful, secure, and robust Web sites that can collect and work with information in a multitude of
ways to the benefit of both you and your users.

Who Is This Book For?
The purpose of this book is to teach you from scratch how to use ASP.NET to write Web pages and Web
applications in which content can be programmatically tailored each time an individual client browser
calls them up. This not only saves you a lot of effort in presenting and updating your Web pages, but
also offers tremendous scope for adding sophisticated functionality to your site. As ASP.NET is not a
programming language in its own right, but rather a technology (as we shall explain in the book), we
will be teaching some basic programming principles in Chapters 2 to 7 in C#, our chosen language for
implementing ASP.NET.

This book is therefore ideal for somebody who knows some basic HTML but has never programmed
before, or somebody who is familiar with the basics of old style ASP, but hasn't investigated ASP.NET in
any detail. If you are an experienced programmer looking for a quick crash course on ASP.NET, or
somebody who's worked extensively with ASP, we suggest that you refer to Professional ASP.NET 1.1
Special Edition, Wiley ISBN: 0-7645-58900 instead, as you'll most likely find that the early chapters here
just reiterate things you already know. If are not familiar with HTML, then we suggest that you master
the basics of building Web pages before moving on to learning ASP.NET.

xxii

Introduction

What Does This Book Cover?
This book teaches everything the novice user needs to know, from installing ASP.NET and the relevant
bits and pieces to creating pages and putting together the concepts to create a whole application using
ASP.NET 1.1.

Although ASP.NET 1.1 isn't a huge update on version 1.0, this book has been considerably overhauled
since edition 1.0. Plenty of the old chapters have been removed and many new ones introduced. We've
removed three chapters because we wanted to simplify the experience of learning ASP.NET. We've
created a brand new case study – an amateur sports league Web site – which is then used throughout
the latter chapters in the book to provide a more practical guide on how to implement ASP.NET
applications.

If you see the previous edition, you will find this one to be more cohesive, aimed towards the complete
novice and the developer with some ASP experience, and written with the benefit of hindsight from
experienced developers who have have been employed in creating ASP.NET applications. We trust that
you will find it a great improvement over the last, just as every new edition should be.

In the course of this book you will learn:

❑ What is ASP.NET

❑ How to install ASP.NET and get it up and running

❑ The structure of ASP.NET and how it sits on the .NET Framework

❑ How to use ASP.NET to produce dynamic, flexible, interactive Web pages

❑ Basic programming principles such as variables, controls structures, procedural programming,
and objects

❑ How to use ASP.NET to interface with different data sources, from databases to XML
documents

❑ What ready-made controls ASP.NET offers for common situations

❑ How to create your own controls

❑ How to debug your ASP.NET pages

❑ How to deal with unexpected events and inputs

❑ How to create your own Web application

❑ How to integrate your applications with Web services and how to create your own

❑ Some simple security features and how to create a login for an application

How This Book Is Structured
Here is a quick breakdown of what you will find in this book:

❑ Chapter 1 – Getting Started with ASP.NET: In the first chapter, we introduce ASP.NET and look
at some of the reasons that you'd want to use server-side code for creating Web pages as well as
the technologies that are available to do so. This done, we spend the bulk of the chapter

xxiii

Introduction

explaining the ASP.NET installation process in detail, how to install a Web server to run
ASP.NET on (we will be using the Web server that accompanies Web Matrix), along with the
ancillary installation of MDAC. We finish up with a simple example ASP.NET page to check that
our installation is working correctly.

❑ Chapter 2 – Anatomy of an ASP.NET Page: Having completed the installation in the previous
chapter, we consider the structure of an ASP.NET page and the way that it functions in relation
to the .NET Framework. We use examples to demonstrate how the ASP.NET module parses the
page.

❑ Chapter 3 – Server Controls and Variables: After familiarizing ourselves with the basics of
ASP.NET controls, this chapter considers the use of variables for holding data in C#. We look at
how variables are implemented, what they can contain, and how they can be placed into your
ASP.NET pages.

❑ Chapter 4 – Control Structures and Procedural Programming: This chapter takes a whirlwind tour
of the key building blocks of C# in the context of an ASP.NET page. We learn how to make our
ASP.NET pages more responsive through the use of C# branching and looping structures that
enable us to control the order in which our program's statements execute.

❑ Chapter 5 –Functions: We cover how the modularization and reusable ASP.NET code works in
this chapter. We look at functions and how they are used together with Web controls. We learn
how to pass parameters within ASP.NET pages and the different ways in which ASP.NET can
handle them.

❑ Chapter 6 – Event-Driven Programming and Postback: We talk about how ASP.NET revolves
around an event-driven model, and how things occur in strict order and ways in which the
ASP.NET page can react to user intervention. We also look at the concept of postback and how it
is used to send information back from the user to the Web server for preserving the 'state' of a
page.

❑ Chapter 7 – Objects: This chapter deals with the thorny subject of objects. ASP.NET pages derive
a great deal of their flexibility and power from the object-oriented way they are structured. This
chapter introduces concepts such as properties, methods, constructors, collections, and
overloading with many examples related to real-world objects to aid your understanding. We
also discuss the concepts that make objects very powerful to use such as inheritance and
encapsulation, and how they greatly reduce the amount of code you need to use.

❑ Chapter 8 – Reading from Databases: At this point in the book we're familiar with the basic
anatomy of ASP.NET pages and objects, so we branch out to look at ADO.NET in the context of
ASP.NET. Most specifically we look at the use of the Connection and Command objects for
opening data sources and retrieving information into a DataSet.

❑ Chapter 9 – Advanced Data Handling: After mastering the basics of reading data in the previous
chapter, we take things further by looking in detail at the way we can manipulate the
information in a DataReader and DataSet and store the results back to the data source.

❑ Chapter 10 – ASP.NET Server Controls: This chapter explains how ASP.NET server controls
derive their properties and methods from the various classes and objects that make up the .NET
Framework. It explains the syntax required to make their functionality available along with a
look at the benefits that these controls can give. We also start to create the Wrox United
application case study that is used throughout the rest of the book.

❑ Chapter 11 – Users and Applications: This chapter deals mainly with the process of tracking users
across pages. We look at the objects that ASP.NET uses to enable this. We also tie this into our
case study by creating the facility for adding valid email addresses and passwords to a site via

xxiv

Introduction

an admin interface, and then we play the part of one of those users logging in and viewing
pages.

❑ Chapter 12 – Reusable Code for ASP.NET: Here we consider the great benefits that can be
achieved by encapsulating our code to make it more maintainable. Firstly, we cover the idea of
user controls designed to store sections of your ASP.NET code that are repeated on multiple
pages of your site. Then we go on to consider the idea of code-behind, where the <script>
block of our ASP.NET code is placed in its own file in order to separate the page logic from its
presentation.

❑ Chapter 13 – .NET Assemblies and Custom Controls: We continue the ideas of the previous
chapter here. We cover how to compile a .NET assembly and use it from within our ASP.NET
page, as well as how to encapsulate our business logic into a component that can be reused on
other projects.

❑ Chapter 14 – Debugging and Error Handling: No matter how careful you are, things can always
go wrong within your code. This chapter explains the steps you can take to minimize errors and
how to recover when things go wrong.

❑ Chapter 15 – Configuration and Optimization: We start by explaining how ASP.NET applications
can be managed from a series of XML configuration files, and then our discussion takes a more
general turn as we consider the many ways to streamline and speed-up your ASP.NET
applications.

❑ Chapter 16 – Web Services: You learn how to expose functionality from your Web site to others as
a Web service. We then discuss how this functionality can be discovered by other users of the
Web, and the form that the data exchange takes.

❑ Chapter 17 – ASP.NET Security: We conclude the book with a quick overview of some simple
precautions that you can take using forms authentication and authorization to safeguard your
ASP.NET pages. You can use this to ensure that they're only accessed by authorized users in the
way that you want them to be accessed.

What Do You Need to Use This Book?
The only prerequisite for this book is to have a machine with the .NET Framework installed upon it. This
means that you'll need to be running Windows 2000 Professional or Server, Windows XP (either
Professional or Home edition), or Windows 2003 Server.

The .NET Framework itself is available as a free download from http://www.asp.net/ and
http://www.gotdotnet.com. This download is known as the .NET Framework Redistributable and its
approximate size is 20MB. It includes everything you need to run any .NET application.

Also available is another complementary free download, which might be useful to you throughout the
book, although not essential. This is the .NET Framework SDK (Software Development Kit) and it
contains samples and tutorials that you can refer to in order to learn more about .NET, as well as some
useful tools, some of which we make use of in the book. However it doesn't include the .NET
Framework itself and its size is a rather bulky 130MB.

This book is designed with Web Matrix in mind, so we strongly suggest that you download this as well.
Web Matrix is a free download also available from http://www.asp.net. It will provide you with a Web

xxv

Introduction

server capable of running ASP.NET if you haven't already got one. However, while this book has been
designed with Web Matrix in mind, you will find that all of the examples can be created, run, and
understood using any simple text editor such as Notepad, even though the instructions in this book are
geared to the point of view of someone who is running Web Matrix. You do not need Visual Studio .NET
in order to use this book.

Conventions
To help you get the most from the text and keep track of what's happening, we've used a number of
conventions throughout the book.

While this background style is used for asides to the current discussion.

As for styles in the text:

❑ When we introduce them, we italicize important words

❑ We show filenames and code within the text like so: persistence.properties

❑ We present code in different ways:

The Code Foreground style shows new, important, pertinent code. We indent
the 2nd line to show you should enter both lines as one line.

The Code Background style shows code that's less important in the present
context, or has been shown before.

Occasionally, code that needs to be placed all on one line is split over two because of the layout of the
book, as shown in the preceding highlighted code. However, make sure you type it all on one line.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com. Once at the site, simply locate the book's title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book's
detail page to obtain all the source code for the book. Because many books have similar titles, you may
find it easiest to search by ISBN, which for this book is 0764557084. Once you download the code, just
decompress it with your favorite compression tool. Alternately, you can go to the main Wrox code
download page at http://www.wrox.com/dynamic/books/download.aspx to see the code available for this
book and all other Wrox books.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

xxvi

Introduction

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and you will be helping us provide even higher quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the View Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book's errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don't spot your error on the View Errata page, go to www.wrox.com/contact/techsupport.shtml and
complete the form there to send us the error you have found. We'll check the information and, if
appropriate, post a message to the book's errata page and fix the problem in subsequent editions of the
book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you about topics of your
interest when new posts are made to the forums. Wrox authors, editors other industry experts, and your
fellow readers are present on these forums.

At http://p2p.wrox.com/ you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. You can read messages in the forums
without joining P2P but in order to post your own messages, you must join the forum.

To join the forums:

1. Go to p2p.wrox.com and click the Register link

2. Read the terms of use and click Agree

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit

4. You will receive an email with information describing how to verify your account and complete
the joining process

Once you have joined, you can post new messages and respond to messages other users' post. You can
read messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs; they answer
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

1
Getting Started with

ASP.NET

ASP.NET is a powerful and flexible technology for creating dynamic Web pages. It's a convergence
of two major Microsoft technologies, Active Server Pages (ASP) and the .NET Framework. Active
Server Pages, or ASP (or classic ASP as it's often referred to), is a relative old-timer on the Web
computing circuit and has provided a sturdy, powerful, and effective way of building dynamic
Web pages for seven years or so now. The .NET Framework, on the other hand, is a whole suite of
technologies designed by Microsoft with the aim of revolutionizing the way in which all program
development takes place and the way companies carry out business. ASP.NET is a way of creating
dynamic Web pages while making use of the innovations present in the .NET Framework.

The first important thing to know about ASP.NET is that you don't need any ASP skills to learn it.
All you need is a little HTML knowledge for building Web pages. In fact, knowing ASP could be a
disadvantage in some ways because you may have to unlearn some of the principles you followed
earlier. ASP.NET allows you to build dynamic Web pages and tailors the HTML output to
whatever browser you're using. It also comes with a great set of reusable, predefined, and ready to
use controls for your ASP.NET projects. These reduce the amount of code you have to write, so
you can be more productive while programming.

So what can you do with ASP.NET? It may be easier to list what you can't, as that is arguably
shorter! One of the most eye-catching things about ASP.NET is the way you can use any
programming language based on the .NET Framework, such as C#, JScript.NET, or VB.NET to
create your Web applications. Within these applications, ASP.NET allows you to customize pages
for a particular user and makes it simpler to keep track of a particular user's details as they move
around.

ASP.NET makes storing information to a database or self-describing XML document faster and
easier. You can alter the layout of the page using a free Web page editor – Web Matrix – designed
to be used with ASP.NET, rather than positioning everything manually within code, and even alter
the contents of files on your machine, if you have the correct permissions.

In addition, you can use bits and pieces of other applications without downloading the whole
application. For example, you can access a zip code verifier that is part of another Web site's features
without having to download the whole application or even giving your users the impression that
they've left your site (Chapter 16 will cover Web services as well as accessing specific features of your
application via the Web). With ASP.NET, the applications that you create are only limited by your
imagination.

This chapter will cover the installation process of ASP.NET, Web Matrix, and the .NET Framework. Let's
start with a quick introduction to the world of Web servers, dynamic Web pages, and a little bit about
what ASP.NET is. This will help accomplish the main aim of this chapter – to get you running a fully
functional Web server with a fully functional ASP.NET installation. We will create a short ASP.NET test
page to check that both the Web server and ASP.NET are working as intended. We'll also look at some of
the most common pitfalls encountered, just in case things don't go as planned!

The topics discussed in this chapter are:

❑ Static Web pages

❑ Dynamic Web pages

❑ What is ASP.NET?

❑ Installing the .NET Framework

❑ Installing Web Matrix

❑ Testing and troubleshooting your installation

What Is a Static Web Page?
If you surf the Web, you'll see many static Web pages. Essentially, this type of Web page consists of some
HTML code typed directly into a text or Web page editor and saved as an .htm or .html file. Thus, the
author of the page has already determined the exact content of the page in HTML at some time before
any user visits the page.

Static Web pages are often easy to spot; sometimes you can pick them out by just looking at the content
of the page. The content (text, images, hyperlinks, and so on) and appearance of static Web pages is
always the same – regardless of who visits the page, or how and when they arrive at the page, or any other
factor.

For example, you can create a page called welcome.htm for your Web site, by writing some simple
HTML like this:

<html>
<head><title>A Welcome Message</title></head>
<body>
<h1>Welcome</h1>
Welcome to our humble website. Please feel free to view our

2

Chapter 1

list of contents.

If you have any difficulties, you can
send email to the webmaster.

</body>
</html>

Whenever a client comes to your site and views this page, it will look like the screenshot depicted in
Figure 1-1:

Figure 1-1

The content of the page was determined before the request to view the page was made – in fact, it was
determined at the time the Webmaster saved the .htm file to disk.

How Are Static Web Pages Served?
Let's think for a moment about how a static, pure HTML page finds its way to a client browser (the
process is depicted in Figure 1-2):

1. A Web author writes a page using only HTML and saves it within an .htm file on the Web
server

2. Sometime later, a user types a page request (URL) into a browser, and the request passes from the
browser to the Web server

3. The Web server locates the .htm page and converts it to an HTML stream

4. The Web server sends the HTML stream back across the network to the browser

5. The browser processes the HTML and displays the page

3

Getting Started with ASP.NET

Figure 1-2

Static, pure-HTML files like welcome.htm make perfectly serviceable Web pages. You can even spruce
up the presentation and usability of such pages by adding more HTML to alter fonts and colors.
However, there are limitations with what you can achieve with pure-HTML pages, because their content
is completely determined before the page is requested. There's no facility for user interaction or dynamic
responses (even simple objects like forms and buttons require more than just HTML to make them
work).

Limitations of Static Web Pages
Static Web pages limit you in several ways. For example, suppose you want to enhance your Welcome
page so that it displays the current time or a special personalized message for each user. These are
simple alterations, but they are impossible to achieve using HTML alone. If you're not convinced, try
writing HTML for a Web page that displays the current time as shown in Figure 1-3:

Figure 1-3

4

Chapter 1

As you type in the HTML, you'll soon realize the problem – you know that the user will request the page
sometime, but you don't know what time they will do it! Hard-coding the time into your HTML will
result in a page that always shows the same time (that will almost always be wrong). In other words,
you're trying to write pure HTML for a Web page that displays the time, but you can't be sure of the
exact time that the Web page should display until the time the page is requested. This can't be done using
HTML alone.

HTML offers no features for personalizing your Web pages; the same Web page is served to every user.
There's also no security with HTML; the code is there for everybody to view, and there's nothing to stop
you from copying somebody else's HTML code and using it in your own Web page. Static pages can be
very fast, as quick as copying a small file over a network, but they cannot provide any dynamic features.

Since you can't create this page by saving hard-coded HTML into a file before the page is requested, what
you need is a way to generate the HTML after the page is requested. There are two ways of doing this;
we'll look at both of them in this chapter. However, before going any further let's make sure everybody
is up to speed on the terminology we've introduced here.

What Is a Web Server?
Web servers are software that manage Web pages and make them available to client browsers – via a local
network or over the Internet. In the case of the Internet, the Web server and browser are usually on two
different machines, possibly many miles apart. However, in a local situation you can set up a machine
that runs the Web server software, and then use a browser on the same machine to look at its Web pages.

It makes no difference whether you access a remote Web server (a Web server on a different machine
from your browser) or a local one (Web server and browser on the same machine), since the Web server's
function – to make Web pages available to all - remains unchanged. It may be that you are the only
person with access to your own machine nevertheless the principles remain the same.

While there are many Web servers available (the common ones being Apache, Internet Information
Services (IIS), and iplanet Enterprise Server) we're only going to talk about two in this book, IIS and Web
Matrix, both of which are supplied by Microsoft. Only these Web servers run ASP.NET.

IIS
IIS Web server comes bundled with Windows 2000, Windows XP Professional, and Windows 2003
Server. IIS version 5.0 comes with Windows 2000, IIS version 5.1 with Windows XP Professional, and IIS
version 6.0 with Windows 2003. However, there is little to distinguish between the different versions of
IIS, so we shall treat them as the same product.

Web Matrix
Web Matrix is a free Web page editor tailored specifically for the creation of ASP.NET pages. It came late
to the party as ASP.NET had already been out for a little while before Microsoft decided to release a free
Web page editor to accompany it. Actually, Web Matrix wasn't exactly a new product – more an inspired
resurrection of an old but not quite forgotten product for editing Web pages, namely Visual Interdev.
While Web Matrix is quite different from Visual Interdev, there are enough similarities for people
familiar with Interdev to recognize them.

5

Getting Started with ASP.NET

However, to be able to test Web pages you also need something to run them on, so supplied with Web
Matrix is an integrated Web server. This is ideal as several Windows systems aren't capable of running
IIS, and until Web Matrix was released, it wasn't possible to run ASP.NET on operating systems such as
Windows XP Home Edition. We have used Web Matrix for testing of Web pages throughout the book,
and occasionally made use of its automatic Web page creation facilities as well – although most of the
time we have created the code in the old-fashioned way, by hand.

You will learn about installing Web Matrix shortly (see Appendix B); however, first let's take a look at the
Web server's role in creating dynamic Web pages.

How Are Dynamic Web Pages Served?
To fully understand the nature of dynamic Web pages, let's first understand what you can and can't do
with a static Web page. In this book, you're only going to create dynamic Web pages on the server-side,
because that's where ASP.NET resides. However, it will aid your understanding of the process to look at
how content is served on the client-side because the underlying principles are similar and will give you
a better overview of how Web page content is sent to the browser.

Client-Side Dynamic Web Pages
In the client-side model, modules (or plug-ins) attached to the browser do all the work of creating
dynamic pages. The HTML code is typically sent to the browser along with a separate file containing a
set of instructions, which is referenced from within the HTML page. However, it is also quite common to
find these instructions intermingled with HTML code. The browser then uses them to generate pure
HTML for the page when the user requests the page – in other words, the page is generated dynamically
on request. This produces an HTML page, which is sent back from the plug-in to the browser.

In this model, the set of five steps that we looked at in the static pages section now becomes a set of six
as depicted in Figure 1-4:

1. A Web author writes a set of instructions for creating HTML and saves it within an .htm file.
The author also writes a set of instructions in a different language. This might be contained
within the .htm file or within a separate file.

2. Sometime later, a user types a page request into the browser, and the request is passed from the
browser to the Web server.

3. The Web server locates the .htm page and possibly a second file that contains the instructions.

4. The Web server sends both the newly created HTML stream and instructions back across the
network to the browser.

5. A module within the browser processes the instructions and returns it as HTML within the .htm
page – only one page is returned, even if two were requested.

6. The HTML is then processed by the browser, which displays the page.

6

Chapter 1

Figure 1-4

Client-side technologies have fallen out of favor in recent times as they take a long time to download,
especially if you have to download several pages in a row that use them. A second drawback is that
since each browser interprets client-side scripting code differently, you have no way of guaranteeing that
all browsers will interpret and execute the code in the same way. Another drawback is the problem
associated with writing client-side code that uses server-side resources such as databases, because it is
interpreted at client-side. In addition, client-side scripting code isn't secure and can be easily viewed
with the View | Source Code option on any browser, which is also undesirable.

Server-Side Dynamic Web Pages
With the server-side model, the HTML source is sent to the Web server with an extra set of instructions
(that can be intermingled or sent separately). This set of instructions is again used to generate HTML for
the page at the time the user requests the page. Once again, the page is generated dynamically upon
request. The set of five steps once more becomes one with six steps, as depicted in Figure 1-5:

1. A Web author writes a set of instructions for creating HTML and saves these instructions within
a file.

7

Getting Started with ASP.NET

2. Sometime later, a user types a page request into the browser, and the request is passed from the
browser to the Web server.

3. The Web server locates the file of instructions.

4. The Web server follows the instructions in order to create a stream of HTML.

5. The Web server sends the newly created HTML stream back across the network to the browser.

6. The browser processes the HTML and displays the page.

Figure 1-5

This time, there is a subtle twist regarding where the instructions are processed. The entire processing
takes place on the server before the page is sent back to the browser. One of the key advantages this has
over the client-side model is that only the HTML is sent to the browser. This means that the original
page code is hidden away on the server, and you can safely assume that most browsers should be able to
at least have a go at displaying it.

While neither client-side nor server-side technologies add much in the way of complexities to the normal
process for serving a static Web page (Step 5 on the client, or Step 4 on the server), this single step is
crucial. Here, the HTML that defines the Web page is not generated until after the Web page has been

ASP.NET does its processing on the server-side.

8

Chapter 1

requested. For example, you can use either technique to write a set of instructions for creating a page
that displays the current time:

<html>
<head><title>The Punctual Web Server</title></head>
<body>
<h1>Welcome</h1>
In Webserverland, the time is exactly
<INSTRUCTION: write HTML to display the current time>

</body>
</html>

In this case, you can compose most of the page using pure HTML. It's just that you can't hard-code the
current time. Instead, you write a special code (that would replace the highlighted line here) that
instructs the Web server to generate that bit of HTML during Step 5 on the client, or Step 4 on the server,
at the time the page is requested. Let's return to this example later in the chapter, and see how to write
the highlighted instruction using ASP.NET.

Server-side technologies are installed on the Web server and so the pages are run on the server. With
client-side technologies, the Web page is run on the browser. Consequently, before the server-script can
be sent back to the browser, the Web server must first translate it into HTML. The browser doesn't
understand server-side code and therefore will never get to see any.

What Is ASP.NET?
The original definition of ASP.NET, right at the start of the chapter, portrayed ASP.NET as a powerful
and flexible technology for creating dynamic Web pages, and this still holds true. However, as you now
know, it isn't the only way to deliver dynamic Web pages, so let's refine our definition a little so it reads
as follows:

Secondly, ASP.NET is only one of a set of technologies that comprise the .NET Framework. For now, you
can think of this as a giant toolkit for creating all sorts of applications, and in particular, for creating
applications on the Web. When you install ASP.NET, you will also install the .NET Framework at the
same time. You will use bits and pieces of the .NET Framework throughout this book. In fact, you can
also use the old versions of ASP with the .NET Framework, so why are we not using that instead?

How Does ASP.NET Differ from ASP?
ASP is restricted to using scripting languages, mainly JavaScript or VBScript (although it can be any
scripting language supported by the Windows system). Scripting languages are like cut-down or junior
versions of full programming languages in that they aren't as powerful and don't support all the features
of full programming languages. In addition, when you add ASP code to your pages, you do it in the
same way as you would do client-side script, and this leads to problems such as messy coding and
restricted functionality.

ASP.NET is a powerful and flexible server-side technology for creating dynamic
Web pages.

9

Getting Started with ASP.NET

ASP.NET has no such problems. It allows you to use a far greater selection of full programming
languages and fully utilize the rich potential of the .NET Framework. It helps you create faster, more
reliable, dynamic Web pages with any of the programming languages supported by the .NET
Framework. Typical languages supported natively are C#, VB .NET and JScript.NET (a new version of
Jscript). On top of this, it is expected that third party developers will create versions of Perl, Python, and
many others to work in ASP.NET.

Secondly, ASP.NET comes with a far greater set of controls that you can place on a page without any
extra ASP.NET coding. With classic ASP, programmers tended to rely on six objects, such as Request and
Response to do everything and a couple of extra components that came with ASP. With ASP.NET, things
are more jargon free. If you want to put a button on your page, you put an ASP.NET Button control on
your page, and if you want a text box, you place an ASP.NET TextBox control. ASP.NET comes with a rich
set of controls that can be applied to many common development scenarios.

A third and final reason is the separation of your ASP.NET code from your HTML. It's a commonly cited
reason, if not always a well-explained one. Designers and developers play two very different roles in
Web development. For instance, a developer could program a lottery number generator, but probably
couldn't design a logo for a company. It makes sense to keep these two disciplines separate.

However, in ASP they aren't separate. The ASP code is sprinkled liberally between the HTML lines, like
nuts over an ice cream sundae. That might be fine, unless you happen to be allergic to nuts. Now
stretching this allegory a bit, it's quite common for designers to need to tinker with the actual HTML
code on a Web site, but how can they alter it with confidence, if it's totally interspersed with the ASP
code? In ASP.NET, you can keep the ASP code and HTML in separate files, making both the developer
and the designer's life much simpler.

Using C# with ASP.NET
ASP.NET has been described as a technology and not a language, and this is an important distinction!
ASP.NET pages can be made from one of many languages. However, you are not expected to know
many different languages, nor are we going to teach them to you. This book uses just one language, C#,
to demonstrate ASP.NET. We've chosen C# as it's arguably the most concise, and it can do just about
anything that the other .NET languages can. Lastly and most importantly, C# comes free with ASP.NET –
so when you install ASP.NET you get C# as well!

At this stage you may be thinking, "Hang on, I've got to figure out C#, then I've got to get a handle on
ASP.NET – that sounds like an awful lot to learn." Don't worry; you won't be learning two languages.
ASP.NET, as we said right from the beginning, is not a language – it is a technology. This technology is
accessible via a programming language. What we're going to be doing is teaching you ASP.NET features
as we teach you C#. In other words, you will be creating your Web pages using C# and using ASP.NET
to drive it. However, before you rush out and get a C# book instead, remember that this book will
approach the language from the angle of creating dynamic Web pages only.

ASP.NET is a server-side technology that lets you use fully fledged programming
languages to create your Web pages.

10

Chapter 1

I'm Still Confused about ASP, ASP.NET, and C#
It's really important to get these terms separate and distinct in your mind, so before we move on to
actually installing and running ASP.NET, let's go back and redefine them just to make sure:

❑ ASP: A server-side technology for creating dynamic Web pages that only lets you use scripting
languages

❑ ASP.NET: A server-side technology for creating dynamic Web pages that lets you use any full-
fledged programming language supported by .NET

❑ C#: This book's chosen programming language for writing code in ASP.NET

Now it's time to get it all installed!

The Installation Process
You're going to spend a fair amount of time on the installation process of ASP.NET, because it isn't as
straightforward as ASP. Remember, if you don't get it right then you won't be able to continue to Chapter
2 of this book!

The installation process is done in three stages:

❑ Installation of the prerequisites for .NET

❑ Installation of the .NET Framework 1.1

❑ Installation of Web Matrix (and the Web server)

Before starting the installation process let's talk about the operating system you have, because this affects
some aspects of the process.

Which Operating System Do You Have?
While writing this book, we installed Web Matrix and used the server that comes with it to test code.
However, Windows 2000 and Windows XP Professional already come with a Web server – IIS. You can
use IIS to run ASP.NET pages on just as easily as Web Matrix's Web Server can, and you will get exactly
the same results. However, we recommend that you use Web Matrix to test the examples in this book.

If you have Windows XP Home edition, you have no choice but to install Web Matrix, because it does
not come with a Web server. If you have an older operating system such as Windows ME or Windows 98
then you cannot use ASP.NET or Web Matrix and will have to upgrade. Despite initial claims from
Microsoft about backwards compatibility of the .NET Framework with systems as far back as Windows
95 made in the early days of the .NET Framework's beta program, the list of supported operating
systems that can run ASP.NET and .NET Framework is as follows:

11

Getting Started with ASP.NET

While Windows XP Home edition doesn't natively support ASP.NET, it does support Web Matrix.
However, Windows 98/Windows ME do not support Web Matrix and while in theory they could both
run it, we have not tested this. We will not be covering the use of Web Matrix with these latter two
systems in this book.

If you have an operating system that comes with IIS and wish to use that instead of Web Matrix, then
you need to install IIS before you install ASP.NET. However, most will probably find it easier to install
Web Matrix and use it even if you have IIS already installed. To use Web Matrix correctly you need to
install it after you have installed ASP.NET. The next section assumes that you have chosen to install Web
Matrix and will detail the installation process. You will start by installing the prerequisites for ASP.NET
followed by the .NET Redistributable.

If you wish to install IIS as well as Web Matrix, then you will need to jump to Appendix E found at the
end of this book, where there are complete instructions for the installation and testing of IIS. If you have
either the Windows 2000 Server or Windows 2003 Server operating system, then the good news is that
IIS is automatically installed as part of the operating system.

Prerequisites for Installing ASP.NET
Anybody who is familiar with ASP might be used to ASP being installed automatically with the Web
server, and thereby doing it all in one step. This is true – classic ASP is still installed with the Web server;
however, ASP.NET is only available as a separate download. This means you will have to download
ASP.NET from Microsoft's Web site or from a CD (if you have one), even if you already have IIS
installed.

Before ASP.NET or the .NET Framework is used, you will need to install the Microsoft Data Access
Components (MDAC) version 2.7 or later. This is a set of components that enable you to use ASP.NET to
communicate with databases and display the contents of your database on a Web page. Without these

Supports all of the .NET

Framework except Microsoft

ASP.NET

Supports the entire .NET

Framework

Supports Web Matrix

Windows 98 Windows 2000 (all versions –

no Service Packs required)

Windows 2000

Windows 98 SE Windows XP Professional Windows 2003

Windows ME Windows 2003 Windows XP Professional

and Home Edition

Windows NT 4.0 (all versions

– Service Pack 6a required)

Windows XP Home Edition

12

Chapter 1

components installed, you won't be able to run any of the database examples in this book. This will
affect examples as early as Chapter 2, so please don't skip this stage!

MDAC is a small download (roughly 5 to 6 MB) available free from the Microsoft's site at
http://www.microsoft.com/data. The most recent version at the time of writing is 2.8, although version 2.7 is
also adequate for this book.

The MDAC installation is quite straightforward. Version 2.7 also comes as part of the Windows
Component Update of the .Net Framework and the Windows XP Service Pack, so if you've installed
these you won't need to install it again.

However, in case you haven't installed either of these, we'll run through it quickly just to make sure that
everything is clear.

Try It Out Installing MDAC 2.8
1. MDAC 2.8 comes as a single file MDAC_typ.exe that you will need to download. Run this file to

begin the installation process.

2. After agreeing to the terms of the license, it will scan your hard drive for space. If there's enough
space, you will get to a dialog from which you can begin the installation by clicking Finish as
shown in Figure 1-6:

Figure 1-6

3. Then the installation process will continue without requiring further intervention, although you
may have to reboot the system afterwards. Once MDAC is installed, you are ready to install
ASP.NET.

Installing ASP.NET and the .NET Framework
Before you install ASP.NET, you need to know a couple of important things. The first is that there have
been two full release versions of the .NET Framework – 1.0 and 1.1. ASP.NET is an integral part of the
.NET Framework, and so ASP.NET 1.1 accompanies the .NET 1.1 Framework. If you have previously
installed .NET 1.0, then installing .NET 1.1 won't automatically erase or upgrade your 1.0 installation.

13

Getting Started with ASP.NET

The new Framework installs alongside the old version and you can run both. You need to be aware of
this because unless you have previously created applications in 1.0, it's likely that you only need the
most current version (1.1) and therefore you should probably remove the previous installation using
Add/Remove Programs in the Windows Control Panel. This will avoid any hiccups that may arise when
running both installations together.

The second point is that while there used to be two different types of .NET installation files available
from Microsoft's http://www.asp.net site, there is now only one type. In version 1.0, there was a .NET
redistributable file and a .NET Framework SDK. Both files contained ASP.NET, C#, and the .NET
Framework. With version 1.1, only the .NET Framework Redistributable contains ASP.NET, and the SDK is
entirely devoted to samples, examples, and documentation. As the SDK is a hefty 108MB, don't
download it unless you really want to (although one example in chapter 16 requires a tool present in the
SDK). The .NET Framework Redistributable download contains everything you need to run ASP.NET
and the .NET Framework. There is no accompanying extra documentation or samples in the
redistributable, but this book will take you through all the necessary areas.

Also, don't worry about replacing an existing classic ASP installation, since ASP.NET will be installed
alongside ASP and they will both continue to work fine without any new settings.

The next section walks you through a typical installation of the .NET Framework Redistributable. The
installation process is the same on all versions of Windows, so we're only going to detail the installation
process on Windows XP Home edition. Although the wizard looks a bit different on other versions of
Windows, it asks for exactly the same things.

Try It Out Installing the .NET Framework Redistributable
1. After the download is complete, click on the installation file (currently called dotnetfx.exe).

You are asked to agree to the license agreement and confirm your intent and after a short
interval, you are taken to the setup wizard as shown in Figure 1-7:

Figure 1-7

14

Chapter 1

2. Check I agree to accept the License agreement and click on Install. ASP.NET will now install
without further intervention.

3. You will be notified when the installation is complete. You can now move to the installation of
Web Matrix.

Troubleshooting Hints and Tips
The installation process is straightforward, and works without errors on a majority of machines.
However, sometimes the particular configuration of your machine will prevent it from installing.
Unfortunately, this book can't cover all eventualities, but if the installation doesn't work on yours, you
should check that you have enough hard disk space, as this is the most common cause of such problems.
Also, try to ensure that the installation process isn't curtailed half way, as no installer is foolproof at
removing all the different bits and pieces of the aborted install and this can cause problems when you
try to reinstall. Additionally, check the list of newsgroups and resources later in this chapter; however, as
far as I've seen, the .NET Framework rarely causes problems during installation.

Installing Web Matrix
You should have MDAC and .NET Framework installed on your machine so far. This leaves the last part
of the equation, Web Matrix.

Web Matrix is an application development tool that you can use to create both ASP.NET and ASP pages.
In previous editions of this book, we shied away from using WYSIWYG (what you see is what you get)
development tools as they have a nasty tendency to add extra lines of code to your own code. For
example, FrontPage, a WYSIWYG tool, allows you to create pages easily by dragging and dropping
objects onto your Web page. However, it hides the HTML code away behind the interface, so you never
get to understand any HTML code. Having a tool create ASP.NET code for you isn't the best way to go
about learning ASP.NET – it would be trying to learn French and then getting a translator to speak all
your lines for you!

This viewpoint hasn't changed, but there are some mitigating circumstances as already pointed out. The
first is that without Web Matrix there is no way of running your ASP.NET pages on Windows XP Home
Edition. The second is that there are circumstances under which automatically generated code can make
your life a lot simpler, and it won't ultimately hinder your understanding of the way in which ASP.NET
works.

Therefore, we are using Web Matrix within this book primarily for its Web serving capabilities and not
its Web page creation abilities, although we will be using some of its wizards in certain appropriate
situations.

You can download the latest version of Web Matrix from http://www.asp.net.

If you download the SDK as well, you must load the redistributable first, otherwise
you will only be allowed to load the accompanying documentation and not the
samples and example code.

15

Getting Started with ASP.NET

Try It Out Installing Web Matrix
1. Go to the http://www.asp.net site and download Web Matrix. Save the file to your local drive as

shown in Figure 1-8:

Figure 1-8

2. Once the download is complete, go to Windows Explorer and run the file Web Matrix.msi. The
wizard should start up as shown in Figure 1-9. If it doesn't, verify that you have downloaded
the whole package, roughly 1339KB:

Figure 1-9

3. Click on Next and accept the terms of your license agreement. In the next dialog add your user
name and organization details and choose whether the installation should be just for yourself or
all users of the computer as shown in Figure 1-10:

16

Chapter 1

Figure 1-10

4. Click on Next again and leave the options for ASP.NET Web Matrix exactly as you find them,
checking that you have enough free space on your hard drive as shown in Figure 1-11:

Figure 1-11

5. Click on Next and then click on Install in the final dialog to start the installation as shown in
Figure 1-12:

17

Getting Started with ASP.NET

Figure 1-12

6. When Web Matrix has finished installing, you will be shown a final dialog confirming this.

Configuring Web Matrix to Run with .NET Framework 1.1
Before you can run Web Matrix, you need to configure it to use the 1.1 version of the Framework. If you
have the 1.0 version of the Framework, it will automatically use that instead.

Try It Out Configuring Web Matrix
1. Open the WebMatrix.exe.config file that is located in your installation directory using

Notepad. Typically, this will be found in C:\Program Files\Microsoft ASP.NET
WebMatrix\v0.6.812

2. Scroll down the file and add the following snippet immediately before the <runtime> section
on line 18:

<startup>
<supportedRuntime version="v1.1.4322" />

</startup>

3. After modification, the file should look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

...
</configSections>
<startup>

<supportedRuntime version="v1.1.4322" />
</startup>

18

Chapter 1

<runtime>
...

</configuration>

4. Save the file.

5. Next you need to create a new text file with the name WebServer.exe.config and add the
following code:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<startup>

<supportedRuntime version="v1.1.4322" />
</startup>

</configuration>

6. Save the file and when you run Web Matrix, the .NET Framework version should now be 1.1.x.
Select the About ASP.NET Web Matrix... item from the Help menu. It should confirm this.

Running Web Matrix and Setting Up the Web Server
The next thing to do is to test the Web server to verify that it is working correctly and serving pages, as it
should be. To do this, start Web Matrix and create a new folder, BegASPNET11 (probably on your C:
drive), where you can store files that you use throughout this book.

Try It Out Starting the Web Server
1. Go to Program Files\Microsoft ASP.NET Web Matrix and run Web Matrix. The screen that

appears will resemble Figure 1-13:

If the file already exists then all you need do is insert the <startup> and
<supportedRuntime> tags between the <configSection> and <runtime> tags as you
did with WebMatrix.exe.config.

19

Getting Started with ASP.NET

Figure 1-13

2. Change the Location so that it reads C:\BegASPNET11\and the Filename to test.aspx, and
change the Language option from Visual Basic.NET to read C# as shown in Figure 1-14:

Figure 1-14

20

Chapter 1

3. You are greeted with a blank page with four tabs at the foot of the page as shown in Figure 1-15:

Figure 1-15

4. Without adding any code to the dialog, click on the arrow icon (shown in Figure 1-16) which
appears centrally in the toolbar above this dialog or press F5. You can also access this Start
command from the View menu:

Figure 1-16

5. The dialog in Figure 1-17, will appear and enable you to start up the Web server:

Figure 1-17

If you have already installed IIS or another Web server that uses application port 80,
then the application port may well be 8080 in this dialog and not 80; using 8080 is
perfectly acceptable as well.

21

Getting Started with ASP.NET

6. Click on Start and the browser will appear with a blank page, reading http://localhost/test.aspx.
More importantly, a globe with a ring like the planet Saturn (incidently, Web Matrix was code-
named Project Saturn) as shown in Figure 1-18, will appear in your taskbar:

Figure 1-18

7. This indicates that the Web server is working. Right-click on it and select Open in Web browser
(Figure 1-19):

Figure 1-19

8. At this point, there should only be one file in the folder http://localhost as you've only just created
it!

How It Works
You created a physical folder called BegASPNET11 and a blank file (it isn't literally blank as Web Matrix
has auto-generated some HTML in it) called test.aspx that you placed inside your folder, and the
browser was able to view this file. When you created the physical folder using Web Matrix, it
automatically created a Web directory that can be accessed by a browser.

If you have IIS installed then you will see http://localhost:8080 when this screen
comes up. This means both Web Matrix and IIS are running simultaneously – IIS is
accessible via http://localhost and Web Matrix via http://localhost:8080. From now on,
you will need to add :8080 to localhost if you intend to use Web Matrix as your Web
server.

22

Chapter 1

Normally when you create a new folder, it isn't automatically accessible to all and sundry on the Web. If
this did happen, just about everyone would be able to see the contents of your hard drive, which would
be very insecure. To allow access to files on the Web, you must place them in a specifically allotted area.
Luckily, Web Matrix has done this task automatically for you!

There is something important to note about using browsers to access files as well. When you access files
via the Web, you use the http:// prefix to indicate that you are looking for something on the Web. HTTP
stands for HyperText Transfer Protocol, the protocol by which Web pages are transferred over the Internet.

The role of HTTP is discussed in the next chapter in greater depth. For now, just remember that when
you use the http:// prefix you are also going to a Web server, whether on your own machine or on the
Web. As ASP.NET is attached to the Web server, you must go via the Web server if you wish to use
ASP.NET. For instance, you could type in C:\BegASPNET11\test.aspx into the address bar of the browser,
and the browser will act like Windows Explorer, but this wouldn't let ASP.NET run your file, as you
haven't gone via the Web server. When running any ASP.NET file, you must always go the http:// route.

You'll notice from the Figure 1-19 that the machine is called localhost. When you run the example on
your own machine, it will also be called localhost. It is the term used to refer to your own PC. It tells the
browser not to go onto the Web to search for a particular page.

This raises another question: what happens if you have two computers on the network and you wish to
view ASP.NET files on one machine from the other? Simply typing in http://localhost will just go to the
machine on which you're working. The answer is that each machine has a unique name. If you go to
Control Panel and select the System Option, you'll find a dialog with several tabs. Choose the Computer
Name tab to view a list of identifiers for your computer as shown in Figure 1-20:

Figure 1-20

The full computer name is of particular interest, because you can use this to uniquely identify your
computer on your network. My machine is named 'cuserver;' so instead of typing in http://localhost on

23

Getting Started with ASP.NET

my machine, I could have also typed http://cuserver for the same results. You can always use your
machine name instead of localhost. This name is called an alias.

To recap, you created a folder called BegASPNET11. You can access this via the Web server by using
http://localhost and can see the contents of this folder via the browser. On your own machine, you can
also use your machine name to view the folder. Thus, the folder has two aliases on the Web server.

However, if you try to view your Web server via another machine, you receive an HTTP Error 403. If I
logged on to another machine on my network and tried to view http://cuserver, I would receive an error
as shown in Figure 1-21:

Figure 1-21

This is because the Web Matrix Web server is only intended to be used for testing purposes, and does not
allow other machines on the network to access it. You can use it only to view ASP.NET files on the
machine where it is installed. This has a big advantage in that it makes the server secure.

Troubleshooting the Web Matrix Web Server
Unfortunately, there is no guarantee that everything will install properly, but there is another tool at
your disposal. Within the Web Matrix files is also a file WebServer.exe. You shouldn't need to run this
file separately as it runs automatically when you start Web Matrix.exe. However, if there are any
problems with the installation such as the port number that Web Matrix is trying to use (by default this
is 80), being already taken by another application, then you can run this executable from the command
prompt to try some other configurations.

If you want to use a Web server that allows you to browse ASP.NET files from other
machines on your network, you should use IIS. Check Appendix E for more details
on how to do this.

24

Chapter 1

If you run the WebServer.exe file from Explorer, you will get the following dialog as shown in Figure
1-22:

Figure 1-22

If you already have IIS installed, then you will probably find that you can't use the default port 80 and
may need to change to another port. It should do this automatically, but to do this manually you can go
to the command prompt and type in the following command from the folder in which Web Matrix was
installed.

> WebServer /port:8080 /path:"C:\BegASPNET11"

You should get a popup from a planet icon confirming that you have started this instance of a Web
server. If not, then it should display an error message that instructs you on what has been done
incorrectly, and how it needs to be amended.

ASP.NET Test Example
Ok, you've now reached the crux of the chapter, getting your first ASP.NET page up and working!

Do you remember the 'punctual' Web server code, discussed earlier in the chapter, in which we wanted
to write a Web page that displays the current time? Let's return to that example now. It's quite a simple
bit of code, but should be more than enough to check that ASP.NET is working OK.

Try It Out Your First ASP.NET Web Page
1. Go to Web Matrix and close test.aspx if it is still open. Then select New File... from the File

menu and in the dialog change the Location and Filename details as shown in Figure 1-23:

25

Getting Started with ASP.NET

Figure 1-23

2. We've created another folder for this chapter's code, called Ch01. For each chapter, we will put
the code in a corresponding folder/Web directory. Click on OK.

3. Next, select the Code tab and type in the following code, replacing the Insert code here line,
taking special care to ensure that the case of each letter matches as well:

void Page_Load()
{
time.Text=DateTime.Now.ToString();

}

4. Now select the HTML tab and add the following between the <form> tags:

In WebServerLand the time is currently:
<asp:Label id="time" runat="server" />

5. Click on the arrow button or press F5 to view the page from within Web Matrix. An instance of
Internet Explorer appears as shown in Figure 1-24:

Figure 1-24

26

Chapter 1

6. To view the page outside of Web Matrix, you need to start a browser and specify the URL
(Uniform Resource Locator) of the ASP.NET page into the browser's Address box, as you do
when browsing on the Internet. If you're using a single machine for both Web server and
browser, specifying http://localhost/Ch01/punctual.aspx (or
http://localhost:8080/Ch01/punctual.aspx) should be enough.

7. Notice that there is now a folder in the URL, because you added a folder in Web Matrix.

8. Click on the Refresh button of the browser and the displayed time will change as shown in
Figure 1-25. In effect, the browser is showing a new and different instance of the same page:

Figure 1-25

9. Now on your browser select View Source or something similar, depending on which browser
you're using, to see the HTML source that was sent from the Web server to the browser. The
result is shown in Figure 1-26. Notice that there is no ASP.NET code, and nothing before the first
<html> tag. This is because what happens is the ASP.NET code is processed on the Web server.
The Web server will then generate pure HTML from the ASP.NET. This HTML source is then
sent back to the browser. (Here, you can see the HTML that was sent to the browser when the
page was refreshed at 12.13:01.):

Figure 1-26

10. As mentioned before, you can expect this to work in any browser, because ASP.NET is
processed on the Web server and not on the browser. If you have another browser available,
give it a go!

27

Getting Started with ASP.NET

How It Works
Easy, wasn't it? Even if you didn't get it to work first time, don't rush off to email technical support just
yet – have a look at the next section ASP.NET Troubleshooting. Let's look at the ASP.NET code that makes
this application tick.

There is only one block of ASP.NET code in the whole program, ignoring the server control placed under
the HTML tab. It is as follows:

void Page_Load()
{
time.Text=DateTime.Now.ToString();

}

If you ignore the void Page_Load() and { }lines that are standard to many C# ASP.NET programs and
which are discussed in Chapter 3, you're left with only one line:

time.Text=DateTime.Now.ToString();

This line tells the Web server to run the C# DateTime.Now() function on the Web server. The C#
DateTime.Now() function returns the current time at the Web server. It returns the values of the
DateTime.Now() function divided into hour, minute, and second values along with today's date. The
result of this function is returned as part of the <asp: Label> control. This control is discussed in
Chapter 3.

If the Web server and browser are on different machines, then the time returned by the Web server might
not be the same as the time kept by the machine you're using to browse. For example, if this page is
hosted on a machine in Los Angeles, then you can expect the page to show the local time in Los Angeles
– even if you're browsing to the page from a machine in Cairo.

This example isn't wildly interactive or dynamic, but it illustrates that you can ask the Web server to do
something for you and that the server can return the answer within the context of an HTML page. You
can use this technique with things like HTML forms and other tools to build a more informative and
responsive interface with the user.

ASP.NET Troubleshooting
If you had difficulty in executing the preceding example, perhaps you fell into one of the simple traps
that commonly snare new ASP.NET programmers, but these can easily be rectified. This section will look
at few common errors and reasons due to which your script might not run. If you had problems, this
section may help you identify them. Common errors that you might come across include: 'Program Not
Found', or the result of the ASP.NET page not getting displayed, or the browser trying to download the
file that you have requested for.

You'll have this problem if you try to view the page as a local file on your hard drive with the following:

C:\BegASPNET1.1\Ch01\punctual.aspx

You'll also face this problem if you click on the file in Windows Explorer. If you have Microsoft
FrontPage or Visual Studio .NET installed, then it will start up and attempt to help you to edit the code.

28

Chapter 1

Otherwise, your browser may display a warning message, or (most likely) it will ask you which
application you wish to use to open the ASPX file as depicted in Figure 1-27:

Figure 1-27

Older browsers may try to download the file. This is because you're trying to access the page in a way
that doesn't cause the ASP.NET page to be requested from the Web server. Because of this, the ASP.NET
code isn't processed and that's why you don't get the expected results. To call the Web page through the
Web server and have the ASP.NET code processed, you need to reference the Web server in the URL.
Depending on whether you're browsing to the server across a local network or across the Internet, the
URL should look something like http://localhost/Ch01/punctual.aspx or
http://www.distantserver.com/Ch01/punctual.aspx

Page Cannot Be Displayed: HTTP Error 403
If you get a HTTP Error 403 message as shown in Figure 1-28, it's probably because you don't have
permission to execute the ASP.NET code contained within the page:

29

Getting Started with ASP.NET

Figure 1-28

Recall that it isn't possible to view ASP.NET pages from a place other than the computer on which you
have installed Web Matrix!

Page Cannot Be Found: HTTP Error 404
If you get this error message as shown in Figure 1-29, it means that the browser has managed to connect
to the Web server successfully, but the Web server can't locate the page you asked for. This could be
because you mistyped the URL at the browser prompt. In that case, you'll see a message as shown here.
In this case, we have typed Ch02 instead of Ch01 in the URL:

Figure 1-29

If you get this page, then you might have made the following errors:

❑ A simple typing error in the URL, such as http://localhost/BegASPNET/ch01/punctually.aspx

30

Chapter 1

❑ A wrong directory name, like http://localhost/BegASPNET/punctual.aspx instead of
http://localhost/ch01/punctual.aspx or http://localhost/ch01/punctual.aspx like we have above

❑ Including a directory separator (/) after the file name, like this http://localhost/ch01/punctual.aspx/

❑ Using the directory path in the URL rather than using the alias, such as
http://chrisu//ch01/punctual.aspx

❑ Saving the page as .html or .htm, rather than as an .aspx

Web Page Unavailable While Offline
Very occasionally, you'll come across a message box as shown in Figure 1-30:

Figure 1-30

This happens because you've tried to request a page and you haven't currently got an active connection
to the Internet. This is a misperception by the browser, unless your Web server isn't the same machine as
the one on which you're working. It is trying to get onto the Internet to get your page when there is no
connection, and it's failing to realize that the page you've requested is present on your local machine.
One way of retrieving the page is to hit the Connect button in the dialog; but that's not the most
satisfactory solution, since you might incur call charges if you are using dialup. Alternatively, you need
to adjust the settings on your browser. In IE5 and IE6, select the File menu and uncheck the Work Offline
option.

This could also happen if you're working on a network and using a proxy server to access the Internet.
In this case, you need to bypass the proxy server or disable it for this page, as described earlier in the
chapter. Alternatively, if you're using a modem and you don't need to connect, you can correct this
misperception by changing the way that IE looks for pages. To do this, select the Tools | Connections
option and select Never dial a connection.

I Just Get a Blank Page
If you see an empty page in your browser, it probably means that you saved your punctual.aspx page
without entering any code into it or that you didn't remember to refresh the browser.

The Page Displays the Message But Not the Time
If the Web page displays the message 'In WebServerLand, the time is currently' but doesn't display the
time, you might have mistyped the code. For example, you might have mistyped the name of the
control:

time.Text=DateTime.Now.ToString();

31

Getting Started with ASP.NET

and:

<asp:Label id="hour" runat="server" />

The name of the control (hour) must match the first word in the line of ASP.NET code; otherwise, the
control won't be able to identify it.

I Get an Error Statement Citing a Server Error
If you get a message stating that the page cannot be displayed and citing a server error as shown in
Figure 1-31, it implies that there is an error in the ASP.NET code itself:

Figure 1-31

Usually, there's additional information provided with the message. For example, if you mistyped the
case of the code, then you get the above error. This is because C# is recognizes a function called
DateTime, but doesn't know one called Datetime. You have to be very precise when typing your code
in. To verify that you haven't typed the code incorrectly, use the sample punctual.aspx page from the
Wrox site at http://www.wrox.com.

32

Chapter 1

I Have a Different Problem
If your problem isn't covered in the preceding sections, it's worth testing some of the sample ASP.NET
pages that are supplied with the QuickStart tutorials at http://www.asp.net. They should help you to check
that ASP.NET has actually installed properly. You can always uninstall and reinstall if necessary,
although before you do this, rebooting your server might solve the problem.

You can get support from http://p2p.wrox.com, which is the Web site dedicated to support issues in this
book. Alternatively, there are many Web sites dedicated to ASP and ASP.NET. In fact, you will find very
few sites that focus on just one of the two technologies. Here are a few resources:

❑ http://www.asp.net

❑ http://www.asptoday.com

❑ http://www.asp101.com

❑ http://www.15seconds.com

❑ http://www.4guysfromrolla.com

There are many solutions, discussions, and tips on these pages, plus references to other related pages.
Moreover, you can try the newsgroups available on www.asp.net such as Free For All.

By now, you should have successfully downloaded, set up, and installed both Web Matrix and ASP.NET,
and got your first ASP.NET application up and running. If you've done all that, you can pat yourself on
the back, make a cup of tea, and get ready to learn some of the principles behind ASP.NET in the next
chapter.

Summary
This chapter started with a brief introduction to ASP.NET and dynamic Web pages in general and looked
at some of the reasons you'd want to use a server-side technology for creating Web pages. You looked at
some of the history behind dynamic Web pages, in the form of an overview of the other technologies.
The next chapter will expand on this brief introduction to ASP.NET.

The bulk of the chapter was taken up by descriptions of the various installation processes. You will need
a Web server (preferably Web Matrix), MDAC 2.7/2.8, and the .NET Framework Redistributable to be
able to progress further with this book, so please don't be tempted to skip parts that might not have
worked. We've listed plenty of resources that will help you get everything up and running.

The next chapter will explain in detail what ASP.NET does, what the .NET Framework is, and how the
two work together.

33

Getting Started with ASP.NET

2
Anatomy of an ASP.NET

Page

In this chapter, we'll start by talking about the overall theory around .NET and ASP.NET. In the
second half, we will get down to some coding. This chapter will not cover all the theory and won't
explain every line of the examples, but at the end you will have some theoretical background
about ASP.NET and a few working pages. These will provide a preliminary overview for ASP.NET
that is covered in the remaining chapters in detail.

We will cover the following:

❑ A description of the .NET Framework and its purpose

❑ How ASP.NET fits into the .NET Framework

❑ Role of the Common Language Runtime (CLR)

❑ Core concepts of ASP.NET

❑ Some examples of ASP.NET and the .NET Framework in action

What Is .NET?
I recently attended one of Microsoft's .NET road shows, and between talks, one of the speakers
was giving out free software to anyone in the audience who could answer one of several simple
questions. He challenged the audience by asking them to define what they thought .NET was.
Notably, in a room full of experienced developers, not a single hand was raised. He moved on
quickly, and instead chose to ask what a 'delegate' in the C# language was, and was greeted with a
much larger response, even though describing a delegate is a much more difficult task.

.NET is a catchall term that embraces Microsoft's core strategy, plans, and vision for the near
future. At the heart of this strategy is the .NET Framework, which provides the core technology.
ASP.NET is just one of the several components that are present in the Framework.

.NET is designed to help solve several fundamental problems faced by programmers:

❑ Reduces the hard work involved in building large, reliable applications

❑ Allows programmers to unify two kinds of architectures – applications that run locally on a
machine and applications that are accessed over the Web

❑ Reduces overheads associated with programming frameworks – you don't need to write
complex code with complicated languages to get an impressive performance out of .NET
programs

❑ Allows programmers in different languages to work together on an application

❑ It has been designed with the view to accommodate various end-user tools, including desktops,
PDAs, and cell phones

To sum it up, .NET provides an easier, and thus faster and cheaper way to get efficient programs into the
hands of the users.

Since the aim of this book is to get you writing ASP.NET Web applications, we're not going to go into
every detail of the Framework. In many cases, all you need to know is what its elements can do and what
they need from you to achieve it. Some elements provide us with important functionality, and these will
merit discussion. In this way, you'll gain not only a working knowledge of ASP.NET, but also a sense
for how it fits in with the .NET Framework as a whole.

We can break down our discussion of the entire .NET Framework into several core concepts:

❑ MS Intermediate Language (MSIL): All the code written in .NET is compiled into a more
abstract, trimmed-down form before it is executed. A programmer can use any .NET language
to write the code including Visual Basic (VB), C#, Jscript, and about 20 others. The result is then
compiled to MSIL, the common language of .NET. This level of .NET operates without our
interaction, and so, we haven't covered it in this book.

❑ Common Language Runtime (CLR): This runtime is a complex system responsible for executing
the MSIL code on the computer. It takes care of all the nitty-gritty tasks involved in talking to
Windows and the Internet Information Services (IIS) server. This is also beyond the scope of this
book.

❑ .NET Framework class libraries: These code libraries contain a mass of tremendously useful
functionality, which we can very easily bolt onto our own applications to make complex tasks
much more straightforward. We will explore these functions throughout the book.

❑ .NET languages: These are all the programming languages that conform to certain specific
structural requirements as defined by the Common Language Specification (CLS) and can be
compiled to MSIL. You can develop in any of the languages, such as C# or Visual Basic .NET,
without any restrictions. This gives you the liberty to develop applications constructed from
more than one of these languages. This book will discuss the application of C# to ASP.NET, and
we will use only C# in all code examples.

❑ ASP.NET: This module of code extends the IIS so that it can implement the .NET Framework for
Web pages. The chapters of this book cover almost all of the ASP.NET features.

36

Chapter 2

❑ Web services: Web services are enabled by .NET, even though they are not a part of it. They are
programs that can be accessed via the Web, and can be used within our applications. They can
provide anything from news headlines, weather forecasts, and stock tickers to virus protection
and operating system updates. Chapter 16 discusses Web services in detail.

Before we go into detail, let's look at some fundamental code concepts and terminology.

From Your Code to Machine Code
Computers understand everything in terms of binary bits – sequences of ones and zeros that represent
instructions and data – hence the enthusiastic use of digital to describe anything even vaguely related to
computers. We refer to these binary instructions as machine code. Obviously, for most humans, it's
difficult to remember even a simple binary sequence that prints "Good Morning" (let alone one that
defines a sophisticated Web application). To overcome the problem, we use high-level programming
languages that permit us to write code using English words.

Once we've written some code in a human-friendly language, we need to convert it into machine code.
This process is called compilation. The compiler software translates the human-readable instructions into
machine-readable instructions. Part of this compilation process involves coding information regarding
the local environment into the compiled code, so that the machine code can make efficient use of all the
computer resources available.

For many years, there's been a simple choice between two types of compilation that differ when it comes
to compilation:

❑ Pre-compiled code: The code is compiled when we are done writing it and well before we need
to use it. This makes for very fast execution as the compiler has the opportunity to spend time
considering the full set of code and the machine it will run on. However, because pre-compiled
code is for a specific machine, you are tied to using it on the same machine, or you need to set
up another machine with the same system and resources that the code requires.

❑ Interpreted code: This code is compiled at the time of its execution (when the user requests the
page). This is slower because we do a compilation for each request and the system doesn't have
the chance to fully optimize the code we've written. However, the advantage is that the
interpretation can adapt to the machine hosting the code.

So, developers get confused when selecting a language. They can either select slower interpreted code
that is adapted to the machine, or the programmer can go with the faster pre-compiled code that does
not take advantage of machine-specific benefits.

Introducing Two Intermediate Languages
.NET solves the problem by using a two-step process for compilation. When we write a program to run
on the .NET Framework – generally using Visual Basic.NET or C# – we compile our human-readable
code as we finish writing it. However, .NET's compilers are designed such that this only takes us
halfway to the usual binary code that presents such problems of portability. .NET compiles our code into

37

Anatomy of an ASP.NET Page

a special format, the MSIL. Some optimization can be done as part of this process, since the MSIL's
structure doesn't have to be as easily human-readable as our original code. However, no machine-
specific optimization is done. Thus, MSIL has the benefits of general optimization and of portability to
any .NET server.

When we execute this page compiled to MSIL (when the user requests an ASP.NET page), we pass our
code from MSIL to the CLR, another cornerstone of the .NET Framework. The CLR uses another
compiler – the JIT (Just-In-Time) compiler – to compile to true machine code and make any last minute
machine-specific optimizations to the program, so that it can run as quickly as possible on the local
machine.

Most importantly, MSIL is not machine-specific, so we can execute it on any machine that has the CLR
installed. In essence, once we've written and compiled some .NET code, we can copy it to any machine
with the CLR installed and execute it there. While the CLR is currently only compatible with Windows
(9x, NT, 2000, and XP versions), moves are already afoot to build versions for other operating systems.
You can find more about one of those efforts by searching the Web for information on the Mono Project.

MSIL can be generated from any human-readable language that conforms to CLS. The big three are C#,
VB.NET, and JScript.NET, but many more languages are now supported by MSIL compilers. We can
therefore use all compliant languages interchangeably within our applications – once a set of files have
been compiled to MSIL, they're all effectively written in the same language! This flexibility allows
different teams to work on the same Web site in different languages.

Objects
In order to grasp how .NET works, you need to have a notion of what we mean when we talk about
objects. Just about everything you come across within the .NET Framework is implemented as a software
object – we can, in fact, describe .NET as an object-oriented environment. So what does that mean? Simply
put, an object is a set of code (or data) that we develop or buy once and can easily reuse. An object is
self-contained and offers a set of functions to the rest of your code. Writing code in objects and using
pre-written objects has some important benefits:

❑ We avoid rewriting code for multiple uses.

❑ Objects allow us to buy functionality that may be beyond our ability or resources to develop.

❑ .NET objects are standardized, which means other programmers can easily discover and use an
object's functionality.

❑ Objects can be written in any .NET-compliant language.

Thus, objects are a way to organize code so that programming is more efficient.

MSIL and the CLR together give us the best of both worlds: the structural
optimization of pre-compiled code along with the portability of interpreted code.

38

Chapter 2

An object is a self-contained unit of functionality – almost like a miniature program that holds data (or
code) to achieve specific tasks. Once an object is written, other code can access and manipulate the object
in simple, well-defined ways. The class definition is the model object. We can create as many copies of the
object as we need from this model. We only need to create one class definition (model object) for each
particular task.

For example, consider a publishing company – there are many different jobs defined within the
company, such as Manager, Editor, Proof Reader, and the Layout Assistant. Once we've established the
basic jobs that an Editor needs to do (edit chapters, review chapters, send chapters to authors for
rewrites), we could simply say, "Jim, please edit Chapter 2" and leave it up to him to carry out the job.
We don't need to know all the details of how the Editor does this job. You could also phrase it differently
and ask, "Jim, is the chapter edited yet?" and expect the Editor to give you a true or false response about
the current state of the chapter.

This is essentially how objects make lives of programmers easier – in this instance, let's take the Editor
class, which we use as a template to build an Editor instance called Jim. We can instruct the object to
Edit, Review, or Return To Author. We can also enquire about its state, that is, whether its
EditComplete value is set to true or false. We can create multiple copies of the Editor object as
needed. For example, if we had three editors on books we could create three copies of the Editor object
and name them Jim, Jane, and Joe. Each could handle their own project.

To sum it all up using this example, we can create as many objects as we need. We don't need to know
how the Jim object edits, we can use a standard way of asking the Editor object to do its work or report
to us, and the Editor object can be written in any language that is .NET compliant.

As said earlier, objects can be written or bought. Some come with the .NET Framework; Microsoft
includes a group of objects called ADO.NET that can create a connection to a database and read values
from tables. It would take many weeks for a programmer to write and troubleshoot similar code.
Instead, we get it with ASP.NET and all we have to do is understand how to use it. As an exercise at the
end of this chapter, we will be reading values from a database and writing them onto our ASP.NET Web
pages.

The advantages of this type of programming are fairly obvious. First, we don't need to worry about how
each object does its job, so we are free to focus on the big picture of our application. Second, we can
rapidly create applications by building or buying objects and hooking them together in simple, well-
defined ways. Once you understand how to use (and later, to write) objects, you will be able to produce
more stable code in less time.

The .NET Base Classes
One feature of the .NET Framework that saves us from huge amounts of tedious coding is the base class
library. This contains an enormous amount of code written by Microsoft that you can include in any of
your programs. In order to take advantage of this code, you only have to know how to work with objects
– there is no need to understand the inner workings of the code.

The base Framework classes cover a multitude of different functions. For instance, you'd expect to be
able to display text, but what if you want to perform more specialized graphical operations, such as
drawing a circle or a rectangle or adding an animated image to an ASP.NET page? These functions are

39

Anatomy of an ASP.NET Page

all provided in a number of base classes that are grouped together under a namespace called
System.Drawing.

In terms of our earlier business analogy, this is equivalent to a departmental grouping. For example, all
the jobs directly involved with producing book content (Editor, Author Agent, and Project Manager) are
grouped within the Editorial namespace. Likewise, jobs involving the layout and printing of the physical
book (Layout Assistant, Cover Designer, Illustrator) would be classified within the Production
namespace.

To be able to use the classes contained within a namespace, you need to import the namespace first. We
can import these classes into our ASP.NET pages by simply adding a directive to the top of the file (before
any HTML and before the language tag). For example, to make use of all the classes defined in the
System.Drawing namespace, we just say:

<%@ Import Namespace= "System.Drawing" %>

This literally directs the Framework to apply a specific setting to the page as a whole; in this case, it
makes the classes in System.Drawing available to code in our page.

It is now possible to use the classes in System.Drawing, although you will need to reference this
namespace in front of each class name by indicating which class you want to use. So why does .NET do
this? Why can't you have access to all the classes you need, all of the time? The reason is to keep your
application small. The more you include in an application, the more bloated it becomes and the more
difficult it will be to understand, maintain, and use. It therefore, makes sense to include only the bits you
need to use. ASP.NET includes the most commonly used classes on every page by default.

There are many varieties of .NET classes, from classes that help you in generating graphics to classes
that help simplify data access. We'll see some examples that rely on imported namespaces towards the
end of the chapter. After you've run them, try removing the import command and see the error messages
generated!

The Class Browser
You might be wondering how to get a list of these predefined .NET classes. One great ASP.NET
application that you can use to view these classes is the .NET Framework Class Browser. This tool lists the
Framework classes defined on the IIS serving the page as shown in Figure 2-1. The Class Browser is
available as a part of the QuickStart tutorials that are provided along with the .NET Framework SDK. If
you have these installed, you'll be able to run it locally from:

http://localhost/quickstart/aspplus/samples/classbrowser/cs/classbrowser.aspx

In case of a Type not found compiler error message, execute the setup procedure for QuickStart from the
starthere.htm (in the SDK's "version 1.1" dir). This automatically installs the required classes.

Namespaces are used by .NET to group together classes in functionally similar
groups. Namespaces are not unique to .NET and are found in many non-.NET
languages as well.

40

Chapter 2

Figure 2-1

If you've only installed the .NET Framework Redistributable, then you won't have the Class Browser
installed. It is possible, however, to access the class browser online at:

http://www.gotdotnet.com/quickstart/aspplus/samples/classbrowser/cs/classbrowser.aspx

This will list the System classes available on that site's Web server (the standard set of base classes under
the System namespace). You won't be able to configure the browser application or browse any
additional namespaces, such as custom namespaces or add-ins that you've installed on your server.
Nevertheless, it should cover most of your needs. It really is a very handy tool for students, beginning
programmers, and experienced developers alike. You'll certainly find the class browser useful in later
chapters, as much of the book will be concerned with exploring .NET's various classes.

A form of the class browser is built into Web Matrix, as covered in Appendix B.

So, we have our three sections of .NET Framework: MSIL, the CLR, and the .NET language base classes.
But where and how does ASP.NET fit into this model?

How ASP.NET Works
For most purposes, think of ASP.NET pages as normal HTML pages that have sections marked up for
special consideration. When .NET is installed, the local IIS Web server is automatically configured to
look out for files with the extension ASPX and to use the ASP.NET module (a file called
aspnet_isapi.dll) to handle them.

41

Anatomy of an ASP.NET Page

Technically speaking, this module parses the contents of the ASPX file – it breaks them down into
separate commands in order to establish the overall structure of our code. Having done this, it arranges
the commands within a predefined class definition – not necessarily together and not necessarily in the
order in which we wrote them. That class is then used to define a special ASP.NET Page object. One of
the tasks this object performs is to generate a stream of HTML that can be sent back to IIS, and from
there, back to the client. Simply put, when a user asks the IIS server to provide a page, the IIS server
builds the page based on the text, HTML, and (most importantly) code on that page.

We'll take a detailed look at various aspects of this process as we progress through the book – in
particular, Chapter 7 will explore the Page object and discuss some of the things it can do for us.

For now though, we're more concerned with the immediate business of getting a page up and running.
The first step is to learn to create pages that identify themselves to the Web server as ASP.NET pages.

Saving Your ASP.NET Files with an ASPX Suffix
In the last chapter, we defined an ASPX .NET page simply by saving some appropriate code in a file
with an .aspx extension. This extension identifies the page as one to be processed by the ASP.NET
module. Without it, IIS will just send the page to the user without executing the code.

Although you could use <script> tags in an .htm file, the code between them would not be interpreted
as ASP.NET code. Instead, it will be sent to the browser for client-side execution, which is unlikely to
work because the browser will only be expecting HTML and client-side script.

Students and beginners frequently have a problem with the extension when using Notepad. They get
.txt added to the extension so it looks like MyFile.aspx.txt. You can avoid this by setting the File
type as All Files in the Save dialog box of Notepad. You can also change the file extension in Windows
explorer after saving the file. This is not a problem when using Web Matrix because it is aware of proper
extensions.

Inserting ASP.NET Code into Our Web Pages
If we place any kind of server-side code (not just ASP.NET code) within our Web page source files, we
need to label it so that the server can identify it as server-side code and arrange for it to be handled
correctly. There are three ways of placing ASP.NET code in your Web page:

❑ Inline code blocks

❑ Script tags

❑ Server controls

Inline code blocks (the <% %> delimiters) will seem familiar to the users of classic ASP. However, these
are not the preferred technique in ASP.NET. The latter two techniques offer more robust performance
and easily maintainable code.

The <script> Tags
The best way to identify ASP.NET code within the HTML and text of your pages are <script> tags with
the runat attribute set to server. The default usage of the <script> tag is to enclose code to be

42

Chapter 2

executed on the browser (client-side), so if you're writing a server-side script, remember to specify
runat = "server" with the double quotes.

As we discussed, ASP.NET itself is not a language, but a technology for creating dynamic pages. The
technology allows us to use various programming languages within our pages. The default language for
coding in ASP.NET is Visual Basic .NET. However, that is easily changed by using a Page directive at the
top of the page:

<%@ Page language="C#" %>

To indicate a section of code, we can do the following (note the double quotes around C#):

<script language="C#" runat="server">
... C# statements go here ...
</script>

Since the <%@ Page language> tag specifies C# .NET as our language of choice, the language attribute
of the <script> tag in the above example isn't essential and can be omitted. However, it serves to clarify
which language we're using which makes it easier to maintain the code. The lines of code can go
anywhere in the ASPX page as long as they are within <script> tags; in this book, we put code at the
top of the page because that is how it is done by Web Matrix.

To define a page in a different language, Visual Basic for example, you can do the following:

<%@ Page language="VB" %>
<script language="VB" runat="server">
... Visual Basic statements go here ...
</script>

All code enclosed within the <script> element must be in the language specified. While you can have
an application (multiple pages) with code in more than one language, it isn't physically possible to mix
languages on one page.

Although we put code into a page, it isn't necessarily executed. Each block of code goes within a
declaration, generally called a function or a method and indicated by the keyword void. A method is
executed when some other code triggers it. It may be triggered once, many times, or not at all. We'll
cover that idea in detail over the next few chapters.

A logical question arises: "What if we want some sort of trigger to run the code automatically as soon as
a page is built for the first time?" In other words, what if we want some code to run regardless of what
events may occur? When the page is created, the ASP.NET module executes any code that is written
within one specific method named Page_Load():

<script language="C#" runat="server">
void Page_Load(source As Object, e As EventArgs)
{
... Location for C#.NET code to be run when the page is started

}
</script>

43

Anatomy of an ASP.NET Page

We won't go into detail explaining this format; suffice to say that when the page is loaded, the code
block that we've labeled Page_Load() is triggered automatically. Any code we want to run when the
page starts up should be located here.

Try It Out Inserting Server-Side (ASP.NET) Code
In this example, we're only concerned with how we insert code and not with how the ASP.NET code
works, so the code is trivial. This example demonstrates how Web pages are affected by the placement of
ASP.NET code.

1. Let's start with a file containing just HTML – no code for ASP to execute. Open Web Matrix and
create a new ASPX page named messageHTML.aspx in your test directory. If you've followed
the steps from Chapter 1, this will be C:\BegASPNET11\Ch02\. Go to All view, remove all
existing code, and type in the following code:

<html>
<head>

<title>Inserting ASP.NET code Example</title></head>
<body>

Line1: First HTML Line

Line2: Second HTML Line

Line3: Third HTML Line

</body>
</html>

2. Click on the arrow icon to run messageHTML.aspx from Web Matrix or press the F5 key. An
instance of Internet Explorer appears as shown in Figure 2-2:

Figure 2-2

3. Now go back to Web Matrix and place the following code at the top of the page in the All view:

<%@ Page Language="C#" debug="true"%>
<script runat="server">

void Page_Load()
{

Response.Write ("First ASP.NET Line
");
Response.Write ("Second ASP.NET Line
");
Response.Write ("Third ASP.NET Line
");

}

44

Chapter 2

</script>
<html>
<head>

<title>Inserting ASP.NET code Example</title>
</head>
<body>

Line1: First HTML Line

Line2: Second HTML Line

Line3: Third HTML Line

<form runat="server">

<!-- Insert content here -->
</form>

</body>
</html>

The <script language="C#" runat="server"> line is automatically generated by Web
Matrix for every ASPX page that is created from the C# template, so we never have to put it in
manually. Even if you delete it, it will automatically reappear! However, if you are using a text
editor for you pages, you need to insert this line at the top of all your ASPX pages.

4. Run this file in your browser by typing in the following URL:
http://localhost:8080/messageASPXtop.aspx. You should get a result similar to that shown in
Figure 2-3. However, this time we can see the results from the ASP.NET code we just added
above the HTML:

Figure 2-3

5. Return to your editor and save the file as messageASPXbottom.aspx. Now copy the code
between the <script> tags (including the <script> and </script> tags), and paste it at the
end of the body section as follows:

<html>

<head>

<title>Inserting ASP.NET code Example</title>

</head>

<body>

Line1: First HTML Line

Line2: Second HTML Line

Line3: Third HTML Line

45

Anatomy of an ASP.NET Page

<script runat="server" Language="C#" >

void Page_Load()
{
Response.Write ("First ASP.NET Line
");
Response.Write ("Second ASP.NET Line
");
Response.Write ("Third ASP.NET Line
");

}

</script>
</body>

</html>

6. Call up messageASPXbottom.aspx in your browser. Notice that the browser still displays the
ASP.NET code first, as shown in Figure 2-4:

Figure 2-4

How It Works
The first thing to note is that although this is ASP.NET code, we're not actually creating a dynamic Web
page that can display different pages to different users. All we're doing is demonstrating the order in
which ASP.NET code and HTML are executed. The next point is that all three examples use the .aspx
suffix despite the fact that the first page, messageHTML.aspx, contained only HTML code. So, as far as
the Web server is concerned, all three pages are ASP.NET pages and will be checked for script to be
executed. This also demonstrates that HTML is treated in the same way in both pure HTML pages and
ASP.NET pages.

The code in the first page, messageHTML.aspx, just displays some HTML lines and some plain text.
When the code is parsed in your browser, the lines are displayed in order, as you would expect.

<html>

<head>

<title>Inserting ASP.NET code Example</TITLE>

</head>

<body>

Line1: First HTML Line

Line2: Second HTML Line

Line3: Third HTML Line

46

Chapter 2

</body>
</html>

In the second Web page, messageASPXtop.aspx, we have a combination of some pure HTML, some
plain text, and a little server-side script. By using runat="server", we specified that the following
script should be processed on the server, before the page is sent to the browser:

<script language="C#" runat="server">
void Page_Load()
{

Response.Write ("First ASP.NET Line
");
Response.Write ("Second ASP.NET Line
");
Response.Write ("Third ASP.NET Line
");

}
</script>

Whenever ASP.NET loads a page, it executes any code contained within the Page_Load() method first.
So if you place code that writes to the page in this method, that text will always precede any text from
the HTML part of the file even if you had physically put the code after the HTML lines (as in
messageASPXBottom.aspx). The ASP.NET code uses a Response.Write statement to display three
ASP.NET lines. We'll talk more about Response.Write in Chapter 3.

Take a moment here to understand another important ASP.NET concept. Open messageHTML.aspx in
your browser and look at the source (in Internet Explorer, go to View | Source). You will see a page that
starts with the following line:

First ASP.NET Line
Second ASP.NET Line
Third ASP.NET Line

<html>
...

The ASP.NET module on the server interprets the code Response.Write and performs that writing to
the page on the server. IIS only sends plain HTML to the browser. Thus, no special plug-ins or
interpreters are needed on the browser. Because no browser modifications are needed, any browser can
display the results of ASP.NET code.

Finally, we moved the ASP.NET code to follow the HTML lines. The browser still displays the ASP.NET
code first. The Web server first scans the file to see if there is a <script runat="server"> tag. In case
some script exists, ASP.NET arranges for the script to be processed first. Because the ASP.NET code is in
the Page_Load() subroutine, which always runs as soon as the page is loaded (created), the ASP.NET
output always appears first, even if the <script> tag is not at the top of the code page. In other words,
the server takes no notice of the position of the <script> tag relative to other elements of the page.

There's an important lesson to be learned here – if you place ASP.NET code in the Page_Load()method
within the <script> tag, it will always be processed before the HTML code. Later we will learn how to
execute other methods and functions.

Inline Code Blocks (the <% %> Delimiters)
We now know how to output text to a browser using ASP.NET. Unfortunately, anything we output from
ASP.NET in the Page_Load() sub procedure will always write to the page before the rest of the HTML.

47

Anatomy of an ASP.NET Page

This is pretty awkward if we want to insert ASP.NET output anywhere lower on the page. Thus, we will
now look at a couple of ways we can interweave ASP.NET output with HTML.

It's possible to incorporate code into our pages much more directly. If we specify a render code block (also
known as an inline code block), any code it contains is executed as part of the page rendering process. This
is the process by which we get our Page object to send back HTML for the browser to display. If you try
coding the following block, save it as messageASPXmiddle.aspx. We can write render code blocks as
follows (available as Demo-inLineCodeBlock.aspx from http://www.wrox.com/):

<html>
<head>
</head>
<body>
<%
Response.Write ("Hello!
");
%>
<html>
<body>
Line1: First HTML Line

<% Response.Write ("First ASP.NET Line
"); %>
Line2: Second HTML Line

<% Response.Write ("Second ASP.NET Line
"); %>
Line3: Third HTML Line

<% Response.Write ("Third ASP.NET Line
"); %>

</body>
</html>
<%
Response.Write ("Goodbye!");
%>
</body>
</html>

This gives the result shown in Figure 2-5:

Figure 2-5

48

Chapter 2

We can thus write code that executes wherever you put it, whether it's inside the HTML <head> tags,
inside the <body> tag, or even at the end of the page. Also note in the following line that we can write
both text as well as HTML tags, such as "Hello!" and
, in an ASP.NET write statement:

Response.Write ("Hello!
")

Server Controls
Although using the <% %> inline code delimiters saves on keystrokes, it ultimately produces rather
intractable code. This was one of the problems of classic ASP – the pages became a jumble of text, HTML
tags, and scripting statements, and it was very difficult to follow objectives and troubleshoot. Therefore,
you are encouraged to use alternatives wherever possible, and we'll devote quite a lot of time in Chapter
3 look at one very powerful way of doing this, using server controls.

Separating the ASP.NET code from the HTML and text makes the code easier to read. It also makes it
much easier to strip out either part and reuse it in another page. As we'll see later on in the book, we can
separate code and HTML blocks even further into separate files. For now, we'll keep them in one file for
clarity. We recommend (and will actively practice throughout the book) placing the ASP.NET code in a
declarative code block near the top of the file, just before the first <html> tag, as follows (this is done
automatically when you use the Web Matrix editor):

<script language="C#" runat="server">
... ASP.NET code here ...
</script>
<html>
... HTML code here ...
</html>

Try It Out Interweaving ASP.NET Output with HTML
You may still be wondering, "How do we intersperse static content with dynamic content if the code and
the HTML are separated like this?" Let's take a quick look at how to get round this problem; you'll soon
realize that this doesn't restrict us nearly as much as you might think.

1. Enter the following code into a new page and save it as messageServerControl.aspx:

<script runat="server" language="C#">

void Page_Load()
{

Message.Text="The ASP.NET line";
}

</script>

<html>
<head>
<title>Inserting ASP.NET code Example</title>

</head>
<body>
First HTML Line

<asp:Label id="Message" runat="server"/>

Second HTML Line

49

Anatomy of an ASP.NET Page

<form runat="server">
<!-- Insert content here -->

</form>
</body>
</html>

2. Point your browser to messageServerControl.aspx to see Figure 2-6:

Figure 2-6

How It Works
You might have noticed that we completely avoided the use of <%...%> delimiters to create inline code
blocks. First, we have a difference in the HTML code. Notice that we have added a special <asp:Label>
tag, which creates an HTML tag with the id set to message:

<html>
<head>
<title>Inserting ASP.NET code Example</title>

</head>
<body>
First HTML Line

<asp:Label id="Message" runat="server"/>

Second HTML Line

</body>
</html>

This named object is now available for manipulation by our ASP.NET code. Instead of having
Response.Write statements that send text to the browser as we did in the previous example, we have
code that sets a property (or attribute) of a Label control. This contains text that the label will display:

<script runat="server" language="C#">

void Page_Load()
{

Message.Text="The ASP.NET line";
}

</script>

50

Chapter 2

First, the following HTML has a special tag known as a server control created by the <asp:Label…>. That
control has a runat="server" attribute, which instructs that the code be executed by the ASP.NET
module in IIS and not on the browser:

<asp:Label id="Message" runat="server"/>

Second, we have a method named Page_Load() that changes the text of the label from nothing to "The
ASP.NET line". This leaves us with much cleaner code that is easier to write and easier to maintain.

ASP.NET in Action
This has been a very theoretical chapter until now. Let's now see a couple of examples. Since we've still
not looked at much of ASP.NET code, the commands in these examples won't make a lot of sense at this
stage. However, you will get an overview of the basic tasks that the code performs, and later in the book
you can build up a more detailed picture of the syntax as your understanding grows. We'll do two
exercises, of which both read data and display the information on your ASP.NET page. The first reads
from an Access (.mdb) file, and the second from an XML file.

Binding to a Database
For most people, the key reason for using ASP.NET is the ability to connect a Web page to a database,
and then read and update data from the browser. ASP.NET does this task more easily than classic ASP. In
classic ASP, binding a page to data took many lines of code. ASP.NET provides a set of server controls
that significantly cuts the amount and complexity of coding.

Try It Out Binding to a Database
1. In this exercise, we'll use one of the example databases provided with the .NET Framework, the

grocertogo database (MS Access format), to build a quick Web page that allows us to browse
the contents of the Products table. There's a copy of grocertogo in the code download from
http://www.wrox.com/, but you'll have to alter the path name to point to where you've saved it on
your system. If you don't have the grocertogo database, modify the lines beginning with
strConnect += @"Data Source= to point to any database that you have on your system.

2. If you cannot find the database, search your drives for grocertogo.mdb. Alternatively, you can
download it from http://www.wrox.com/. If you want to become familiar with the database, you
can open it in Access but that is not necessary for this exercise. Copy the .mdb file into the
C:\BegASPNET11 folder. As we will use it for more then one chapter, do not store it in the Ch02
subfolder.

3. Open Web Matrix, create DataControlMDB.aspx, and type in the following:

<%@ Page Language="C#" %>
<%@ import Namespace="System.Data" %>
<%@ import Namespace="System.Data.OleDb" %>
<script runat="server">

void Page_Load(Object sender, EventArgs e)
{

51

Anatomy of an ASP.NET Page

OleDbConnection objConnection;
OleDbDataAdapter objCommand;
String strConnect;
String strCommand;
DataSet DataSet1 = new DataSet();

strConnect = @"Provider=Microsoft.Jet.OLEDB.4.0;";
strConnect += @"Data Source=C:\BegASPNET11\grocertogo.mdb;";
strConnect += @"Persist Security Info=false";

strCommand = "SELECT ProductName, UnitPrice FROM Products";

objConnection = new OleDbConnection(strConnect);
objCommand = new OleDbDataAdapter(strCommand, objConnection);
objCommand.Fill(DataSet1, "products");
DataGrid1.DataSource=DataSet1.Tables["Products"].DefaultView;
DataGrid1.DataBind();

}

</script>
<html>
<head>

<title>Data Grid Control example</title>
</head>
<body>

<asp:DataGrid id="DataGrid1" runat="server"></asp:DataGrid>
</body>
</html>

4. Open DataControlMDB.aspx in your browser as shown in Figure 2-7:

Figure 2-7

52

Chapter 2

How It Works
The ASP.NET code looks quite daunting, but we can understand it when we examine the different
sections. First, let's look at the <body> tag:

<body>
<asp:DataGrid id="DataGrid1" runat="server" />

</body>

We have a tag here that creates a DataGrid object named DataGrid1 in the page. This will be an object
that we can manipulate in our code, but when the page is requested by a user and built by the ASP.NET
module in IIS, the DataGrid object will create in its place the <table>, <th>, <tr>, and <td> HTML
tags so that a table appears in the browser.

Now let's go back up in the code and examine the Page_Load() method. We'll not enter into a detailed
discussion about all of these lines (see Chapters 8 and 9). However, we can break it into several parts.

We start by establishing our language. Second, we import the namespaces (collections of objects) that we
will need for working with the data:

<%@ Page Language="C#" debug="true"%>
<%@ import Namespace="System.Data" %>
<%@ import Namespace="System.Data.OleDb" %>

Then we enter our function and create some variables to hold information that we will need:

void Page_Load(Object sender, EventArgs e)
{

OleDbConnection objConnection;
OleDbDataAdapter objCommand;
String strConnect;
String strCommand;
DataSet DataSet1 = new DataSet();

Next, we create a string of text in a variable called strConnect, which will inform the connection what
kind of database we are using (the Microsoft Jet provider in the case of Access), where to find the file,
and how to handle security settings:

strConnect = @"Provider=Microsoft.Jet.OLEDB.4.0;";
strConnect += @"Data Source=C:\BegASPNET11\grocertogo.mdb;";
strConnect += @"Persist Security Info=false";

Next, ASP.NET needs query that it can use to retrieve data from the database. This is written as a SQL
statement. You don't need to know SQL at this point because the general syntax is obvious. We want to
read (SELECT) values from two fields (ProductName and UnitPrice) located in the Products table:

strCommand = "SELECT ProductName, UnitPrice FROM Products";

The next three lines take the information above and use it to create two objects (Connection and
Command) and fill our DataSet1 object with data read from grocertogo:

53

Anatomy of an ASP.NET Page

objConnection = new OleDbConnection(strConnect);
objCommand = new OleDbDataAdapter(strCommand, objConnection);
objCommand.Fill(DataSet1, "products");

Lastly, we use two lines to instruct the DataGrid (from the HTML section) to use DataSet1 as the
source of its values as follows:

DataGrid1.DataSource=DataSet1.Tables["Products"].DefaultView;
DataGrid1.DataBind();

}
</script>

As always, with ASP.NET, this code is interpreted on the server by the ASP.NET module of IIS to render
the page from pure HTML, which sent to the browser. If you open datacontrol.aspx in your browser
and then view the source, you will see only standard HTML table tags but none of the ASP.NET code.

Binding to a Simple XML File
ASP.NET is not limited to connecting with relational databases. We'll now look at how we can use the
data controls to connect to a short XML document. This book does not go into the theory of XML. In case
you are not familiar with the standard, XML is a format for holding data normally in a text file. The file
is self-describing in that each piece of data has a label that identifies its classification in the scheme of
records and fields. XML is becoming the standard for data exchange. To learn more about XML, refer to
Beginning XML, 2nd Edition (ISBN 0-7645-4394-6) by Wrox Press.

Let's create a short XML document and then an ASPX page that demonstrates the technique to create a
DataGrid control and bind it to the contents of an XML document. Overall, the procedure is even easier
than connecting to a database.

Try It Out Binding to a Simple XML Document
1. Open up your Web page editor and create a document named artists.xml in your Ch02

folder. Type in the following XML document. Alternatively, you can download the file from
http://www.wrox.com/:

<?xml version="1.0" encoding="utf-8" ?>
<artists>
<artist>
<name>Vincent Van Gogh</name>
<nationality>Dutch</nationality>
<movement>Post Impressionism </movement>
<birthdate>30th March 1853</birthdate>

</artist>
<artist>
<name>Paul Klee </name>
<nationality>Swiss </nationality>
<movement>Abstract Expressionism </movement>
<birthdate>18th December 1879</birthdate>

</artist>
<artist>
<name>Max Ernst </name>
<nationality>German </nationality>

54

Chapter 2

<movement>Surrealism </movement>
<birthdate>2nd April 1891</birthdate>

</artist>
</artists>

2. Keeping your Web page editor open, create a second file named DataControlXML.aspx
containing the following lines:

<%@ Page Language="C#" runat="server" debug="true"%>
<%@ import Namespace="System.Data" %>
<%@ import Namespace="System.Xml" %>
<script runat="server">

void Page_Load()
{
String xmlFilename = @"C:\BegASPNET11\ch02\artists.xml";
DataSet newDataSet = new DataSet();
newDataSet.ReadXml(xmlFilename);
DataGrid1.DataSource = newDataSet;
DataGrid1.DataBind();

}

</script>
<html>
<head>
<title>Data Grid Control example</title>

</head>
<body>
<asp:DataGrid id="DataGrid1" runat="server" />

</body>
</html>

3. View this page in your browser; the result should look like Figure 2-8:

Figure 2-8

How It Works
Our XML file is pretty much like a database table. We've kept it simple, so that you can see what is
happening. The first line notifies users that the file is an XML file. An overall pair of tags, <artists>,
encapsulates all of the data:

55

Anatomy of an ASP.NET Page

<?xml version="1.0" encoding="utf-8" ?>
<artists>
...
</artists>

There are three artists. Each artist's individual entry is held with a single set of item tags structured as
follows:

<artist>
<name>Vincent Van Gogh</name>
<nationality>Dutch</nationality>
<movement>Post Impressionism </movement>
<birthdate>30th March 1853</birthdate>

</artist>

Within each artist, we can see four elements (which are like fields or columns in other data systems), one
each for name, nationality, movement, and birthdate. Notice that each data value is inside a pair of
tags and that the same set of tag names is used for each artist. Even without knowledge of XML, it is
easy to see how the file is organized.

Now let's look at the datacontrolXML.aspx ASP.NET page. At the top of the page, we must establish
the language and import the namespaces that hold objects we will need to work with XML data:

<%@ Page Language="C#" runat="server" debug="true"%>
<%@ import Namespace="System.Data" %>
<%@ import Namespace="System.Xml" %>

Next, jump down to the <body>, where we use the DataGrid control to format and display the
information as an HTML table. Again, the code is very neat and simple. It is crucial to include the
attribute runat="server" for ASP.NET to work. Furthermore, every control must have a name
(specified using the id attribute); in this case DataGrid1.

<body>
<asp:DataGrid id="DataGrid1" runat="server" />

</body>

Last, we will examine the ASP.NET code. Because it is in the Page_Load() method, it is automatically
executed when the page is created. The first few lines record the name of the file into a variable:

<script runat="server">

void Page_Load()
{
String xmlFilename = @"C:\BegASPNET11\ch02\artists.xml";

Then we make a DataSet and read into it the contents of the XML file:

DataSet newDataSet = new DataSet();
newDataSet.ReadXml(xmlFilename);

Last, we identify that DataSet as the source of information for the DataGrid control:

56

Chapter 2

DataGrid1.DataSource = newDataSet;
DataGrid1.DataBind();

}
</script>

As you can see, reading from an XML file is even simpler than the code we used for connecting to a
database. However, at this point do not be concerned about the details of each line of code. We will
discuss the exact meaning of each statement in Chapters 8 and 9.

Summary
This chapter has been mostly theoretical, but contained simple applications ranging from a simple
display of text up to two types of data connections. You should now understand several basic points
about .NET and ASP.NET.

The .NET Framework is a guideline and standard for the tools that Microsoft produces for programmers.
It is flexible across languages and is suitable for both desktop and Web-based applications.

.NET is based on objects, a programming convention which puts related code together in a structure that
represents an entity in the real world. The model from which objects are copied is called a class and a
group of related classes is called a namespace.

ASP.NET is a module that adds on to IIS. ASP.NET checks pages for code and executes that code to
create an HTML page. The resulting pages are pure HTML and require no add-ins for the browser
because of which they can be viewed on any browser.

After writing an ASP page, it is partially compiled to MSIL and stored on the server. When requested,
the page is run through the CLR for a final compilation. This two-stage compilation gives both
performance advantages and optimization for different servers.

When we write an ASP.NET page, we must include several key parts, such as:

❑ The .aspx filename extension

❑ A directive to import namespaces and a directive designating the language

❑ HTML and text

❑ ASP.NET controls such as <asp:Label> that have an id and runat="server" attributes

❑ Code scripts

Although scripts can be designated in line by <% %>, it is better to designate them by <script> tags.
Within the script, we create functions and methods. The one we have studied so far is named
Page_Load(), which it automatically executes when an .aspx page is requested. Any Write commands
from Page_Load() will appear on the page above HTML and text.

Once created and named, an object can be manipulated. For example, we used script to change the text
that was displayed by an <asp:Label>. We also observed how easy it is to create and manipulate
objects that Microsoft provides for working with data such as a database connection, command, and

57

Anatomy of an ASP.NET Page

DataGrid objects. However, before exposing objects to this type of manipulation, we must designate
both the script and the control as runat="server".

We can now move on to discuss in detail the various components of the pages we tested. We will start
with how to hold and display information (Chapter 3), and then move on to controlling the lines of code
that are executed (Chapters 4 to 6).

Exercises
1. Describe what .NET Framework provides for programmers.

2. What encompasses more code, a class or a namespace?

3. The ASP.NET module of code adds on to which part of Windows?

4. What special modifications to the browser are required on the client-side in order to view an
ASP.NET page?

5. Why does an ASP.NET page get compiled twice?

6. Why does the first display of an ASP.NET page take several seconds but subsequent views
appear in only milliseconds?

7. What two attributes should always be included in all ASP.NET Web controls?

58

Chapter 2

3
Server Controls and

Variables

One of the most common tasks for any Web developer is collecting and storing of information
from the user. It could simply be a name or an email address, but whatever be the information that
you want to gather, the processing cannot be performed within the confines of HTML on the
browser alone. You need to send the information to the Web server for processing or storage.

Information is transmitted via Web pages by a form. HTML forms contain controls such as
textboxes, checkboxes, and dropdown lists, all of which aid the passage of information from the
user to the server. Moreover, ASP.NET adds its own extra controls for dealing with forms. With
these, ASP.NET introduces some new concepts to the control of forms, such as remembering the
text that you've typed into a textbox or the selection that you have made in a listbox between page
refreshes, which must be carried out on the server.

During the manipulation of user data, variables are used to persist data from one command to
another. C# is a strongly typed language, which means each variable has a datatype associated with
it, such as string, integer, or date. This chapter will look at the main datatypes available in C# as
well as the importance of assigning each variable a particular datatype and the types of errors you
might encounter if you don't. We will also discuss how to use ASP.NET to create powerful forms
with very little programming, and then holding data in variables.

We will cover:

❑ Forms

❑ Client-server model of the Web

❑ ASP.NET server controls (or Web controls)

❑ Theory and practice of variables

❑ Datatypes

❑ Arrays and collections

Forms
The focus of this chapter is on forms and on the transfer of data from the browser to the server. Before
delving into the inner workings of forms, let's see a few situations in which forms would be required in
the business world. If you look at commercial Web sites, you'll find that most forms are for the same
kind of situation. For example:

❑ To obtain information from a user for the purpose of registration, the purchase of a product, or
joining an email list, forum, or a newsgroup

❑ To take note of a user's preferences so that we can customize other pages in the site to include
just the relevant information

❑ To act as the front-end for a forum or newsgroup, where a user can enter and edit their input
online

❑ To capture business transaction and display reports and related information in e-commerce
applications

Let's start with a quick overview of forms, and see the effects that ASP.NET has on them.

Web Pages, HTML Forms, and Web Forms
With the introduction of any new technology comes new terminology and jargon. ASP.NET is no
different in this respect. With ASP.NET, even the terms you use to describe a simple Web page have been
updated to more accurately describe the processes that are going on within them. To avoid confusion,
let's start by defining familiar concepts and their ASP.NET equivalents.

A Web page is a bundle of ASCII characters including HTML code, text to be marked up and beginning
and ending with <html> and </html> tags. The Web page is placed on a machine known as a Web
server, which sends the page to any requestors (users). HTML pages are typically saved with the suffix
.html or .htm.

An HTML form is a Web page that contains one or more form controls (grouped together inside an HTML
<form> element) that allow the user to enter information on the Web page and send that information
back to the Web server. Commonly used form controls include buttons, textboxes, checkboxes, and
dropdown lists. The user fills in details and generally presses a button to send their data back to the Web
server.

Although you don't need anything more than HTML to send form data to the server, the server needs
some sort of extra technology (in this case, ASP.NET) to actually work with the information it receives.

ASP.NET introduces a new concept, the Web form. Behind the scenes, a Web form is much easier and
faster to program than HTML forms. Technically speaking, the term Web form refers to the grouping of
two distinct blocks of code:

60

Chapter 3

❑ HTML template containing page layout information and ASP.NET server controls. This is
responsible for the presentation of the Web form on the browser.

❑ ASP.NET code that holds a script containing the Web form's processing logic. This is responsible
for generating dynamic content to be displayed within the Web form. This content is typically
exposed via server controls defined in the HTML presentation block.

When you start using ASP.NET to create Web forms, you can use a new breed of ASP.NET server controls
within your HTML. Not only do they duplicate the functionality of many HTML elements (including the
form controls), but they also provide additional features. A server control has the appearance of an
HTML element, but it only marks a point in the page at which the server needs to generate a
corresponding true-HTML element. We will be discussing in-depth how to use ASP.NET server controls.

It is possible for Web forms to use normal HTML form controls, but ASP.NET also comes with its own
set of Web form controls that are run on the server. You will be using these most of the time, because
they offer other advantages, such as being able to remember the state of the different controls. These
ASP.NET controls are run within specially modified HTML <form runat="server"> tags, and are
ASP.NET forms.

Let's review the four terms just introduced:

❑ Web page: Any page that contains HTML and they can also contain script or other languages not
covered by this book. In this book, a Web page will refer to pages containing only HTML.

❑ HTML form: An HTML element that contains HTML form controls.

❑ Web form: Any page that combines ASP.NET code with an HTML template.

❑ ASP.NET form: A form that contains ASP.NET server controls inside a Web form.

Let's start by considering the whole process of data transmission on the Web to understand the role of
forms.

Request and Response in Non-ASP.NET
Pages

Chapter 1 discussed the installation of ASP.NET and the concept of a Web server, which makes your Web
pages available to users. Another job of the Web server is to provide an area (typically in a directory or
folder structure) to organize and store your Web pages or the whole Web site.

Although a Web form may also be an HTML form (there's nothing to stop you using
<form> elements inside an ASPX page), remember that these two entities are
defined in quite distinct terms. An HTML form can only use standard HTML tags
while a Web form can use the more powerful ASP.NET server controls.

61

Server Controls and Variables

When a user views a Web page, they will automatically be making contact with a Web server. The
process of submitting the URL is called making a request to the server. The server receives the request
and locates the corresponding page on the disk drive. In the case of a simple page (HTML and text only),
the Web server sends the page back to the user as a response. The browser then takes the code it has
received from the Web server and compiles a viewable page from it. The browser is referred to as a client
in this interaction, and the whole interaction as a client-server relationship. If the Web server cannot find
the requested page, it issues a response that features an appropriate error message and dispatches the
error to the browser.

The term client-server describes the working of the Web by outlining the distribution of tasks. The server
(the Web server) stores pages, interprets scripts, and distributes data (that is compiled into Web pages),
and the client (browser) accesses the server to get at the data.

The Internet is a network of interconnected nodes. It is designed to carry information from one place to
another. When the user tells the browser to fetch a Web page, a message is sent from the browser to the
Web server. This message is sent using HTTP. The World Wide Web uses HTTP for transfer of
information from one machine to another. (When you see a URL prefixed with http://, you know that the
Internet protocol being used is HTTP, as it is the default protocol used by Web browsers.)

Figure 3-1

The process illustrated in Figure 3-1 is as follows:

1. The client requests a Web page by typing a URL into the browser and clicking GO.

2. The Web server hosting that URL locates the HTML page that was requested on its hard drive.
The page is read into a stream of characters.

3. The server sends the stream to the browser.

4. The browser interprets (converts) the HTML code and text into a displayed Web page.

62

Chapter 3

HTTP is known as a stateless protocol. This is because it doesn't know whether the request that has been
made is part of an ongoing correspondence or just a single message (just the same way your postman
won't know whether a letter is the first from your friend or the fifteenth). HTTP is stateless because it
was only intended for the simple task of retrieving pages for display.

The Internet would be very slow and might even collapse if permanent connections (states) needed to be
maintained between clients and servers, as people moved from one page to another. Statelessness makes
the Internet faster, but the downside is that HTTP by itself can't distinguish between different users. A
Web server based on pure HTML will treat all requests with the same status, that of an unknown user.
Obviously, the modern needs of the Internet require that you can identify users and track their moves
through the various pages needed for accomplishing a task on a Web site. As seen later in the book,
ASP.NET creates a state that can be used by programmers.

Where ASP.NET Fits in with the .NET Framework
ASP.NET adds a step to the request-response mechanism; after the server receives the request, it reads
the page from the hard drive. But rather then containing just text and HTML tags, an ASP.NET page also
contains script that is interpreted to build features into the page.

Figure 3-2

The process is illustrated in Figure 3-2 and can be explained as follows:

1. The client requests a Web page by typing an URL into the browser and clicking GO.

2. Web server locates on its hard drive the page that was requested.

63

Server Controls and Variables

3. If the name of the Web page has an .aspx extension, the server processes the page – it runs the
script code. If the ASP.NET code hasn't been compiled before, it is compiled now. The code is
executed to create a pure HTML stream.

4. The HTML stream is returned to the client.

5. The client browser interprets (converts) the HTML code and text into a displayed Web page.

The addition of ASP.NET implies that the HTML is created dynamically. This has many advantages: you
can return information to the user based on their responses in a form, customize Web pages for a
particular browser; or even personalize information for each user. All of this is possible because the code
you write is converted into an HTML page when it is requested.

Now that you have a basic understanding of how ASP.NET pages compare to plain HTML pages, it's
time to start studying forms. Mastery of the concepts of forms allows us to obtain information from
users. The subsequent chapters will discuss manipulation of this information and saving it to databases.

The <form> Tag in ASP.NET
ASP.NET has a set of form controls that are similar to HTML form controls. The main difference is that
ASP.NET controls are actually constructed dynamically on the server at the time of request, and then
sent out. The ASP.NET version requires only a few characters of coding:

<form ID="MyForm" runat="server">
... ASP.NET form...
</form>

It takes only one attribute (runat="server") to tell the Web server that it should process the form itself,
rather than just sending it out to the browser. If you have worked with HTML forms you may wonder
about which METHOD is used. All ASP.NET forms are sent by the POST method.

The <form> tag allows you to process form controls (such as checkboxes and dropdown lists) on the
server. ASP.NET introduces its own customized versions of these controls.

There are several advantages to using the ASP.NET form controls:

❑ .NET automatically creates and handles a sense of state for us. This allows us to know if the
person requesting the form is the same person that requested another page.

❑ ASP.NET offers some very sophisticated controls including calendars and grids for the display
of data.

❑ The content of the controls can be generated from databases or business logic.

❑ The information entered by users into controls can be validated to avoid data entry mistakes.

Using ASP.NET Server Controls
This section demonstrates how some of the ASP.NET server controls work and compares the way in
which they are used to the way in which information is passed in their equivalent HTML form control. It

64

Chapter 3

also shows the separation of the presentation code (HTML) from the code that provides the content
(ASP.NET).

All Web controls have two required attributes. The first is runat="server", which instructs ASP.NET to
handle the control at the server and thus, implement all of the ASP.NET features for the control
including the creation of state. The second is the id="MyControlName", which manipulates the control
in code.

Before going into the details, let's take a look at the most commonly used ASP.NET server controls.
We've included a comparison to the HTML form tags that you have used in the past.

<asp:Label>
Let's start with a small but very useful control, the <asp:Label> control. This control provides an
effective way of displaying text on your Web page in ASP.NET, similar to the HTML tag. By
having a control for text, you can manipulate its contents and visibility from your ASP.NET code.

<asp:Label> Attributes
The <asp:Label> control is just like any normal HTML form control, in that, it has a collection of
attributes you can set; the runat="server" and id attributes are used in every ASP.NET control. Other
attributes are optional including:

ASP.NET Web Control Similar HTML Form Tag Purpose

<asp:Label> , <Div>, simple text Display text

<asp:ListBox> <Select> Offer the user a list of items
from which to select.

<asp:DropDownList> <Select> Offer the user a list of items
from which to select in a
compact format

<asp:TextBox> <Input Type="Text"> Accept typed input from user

<asp:RadioButton> and
<asp:RadioButtonList>

<Input Type="Radio"> Allow user to make one
selection from a list of options.

<asp:CheckBox> and
<asp:CheckBoxList>

<Input Type="CheckBox"> Allow user to turn a feature on
or off

<asp:Button> <Input Type="submit"> Send the user's input to the
server

ASP.NET server controls are also called Web Controls, a term that we'll be regularly
using throughout this book.

65

Server Controls and Variables

❑ Text: Sets the text that you want the label to display

❑ Visible: Sets the visibility of the label on the page (true or false)

❑ BackColor: Sets the background color of the label

❑ ForeColor: Sets the foreground color of the label

❑ Height: Sets the height in pixels of the label

❑ Width: Sets the width of the label

You can use the class browser mentioned in Chapter 2 to see all the properties of any control.

<asp:Label> Examples
The basic syntax of <asp:Label> is simple:

<asp:Label id="lblMyLabel" runat="server">Sale Ends May 2nd</asp:Label>

The <asp:> prefix indicates that this control is part of the set of built-in ASP.NET controls. It is possible
to create custom controls that have prefixes of the developer's choice. We will look at this in Chapter 13.

In the context of a Web page, the <asp:Label> control looks like the following (refer to the file
Ch03\Demo-Label01.aspx in the code download):

<html>

<head>

<title>ASP.NET Controls Demo</title>

</head>

<body>

Demo of the asp:Label control

<form id="frmDemo" runat="server">

<asp:Label id="lblGreeting1" runat="server">Text of asp:Label</asp:Label>

</form>

</body>

</html>

The id attribute is used to uniquely identify this control so that you can refer to it in your ASP.NET
code. The runat="server" attribute tells the server to process the control and generate HTML code to
be sent to the client. The text between the opening and closing labels provides the characters to show up
in the label.

Alternatively, you can specify the text in an attribute. This way, everything can be contained within the
opening tag, in which case, you need to close the tag in the following way:

<asp:Label id="lblGreeting3" runat="server" text="Internal Greeting" />

Here, the closing tag is omitted, and instead a closing / is supplied within the tag itself to indicate that
the tag is closed. Throughout the book we will use this latter notation in preference to having a closing
tag. Let's look at an example to set the color of a text message to red as follows (download file
Ch03\Demo-Label02.aspx):

66

Chapter 3

<asp:Label id="lblGreeting2" forecolor="red" text="Red Text" runat="server"
/>

Let's now look at an example of how you can use the <asp:Label> control to display some text for a
tourism company. In this example, it's assumed that the values of the user's name and desired
destination have already been passed to the server, and that all you need to do is display a message that
confirms that you have received the user's details.

Try It Out Using the <asp:Label> Control
1. Open ASP.NET Web Matrix and create a new folder named Ch03 within C:\BegASPNET11.

Within that folder, create a new item of the type ASP.NET page named TIO-Label.aspx. Enter
code as needed to create the following page. Some lines are pre-typed for you by Web ASP.NET
Web Matrix. (You can learn basic techniques for working with ASP.NET Web Matrix in
Appendix B.)

<html>
<head>

<title>Label Control page</title>
</head>
<body>

<h1>Feiertag Holidays
</h1>
<form runat="server">

<asp:Label id="Message1" runat="server" text="Chris"></asp:Label>,
you have selected to receive information about
<asp:Label id="Message2" runat="server" text="Oslo"></asp:Label>.
The information package will be sent to you.

</form>
</body>
</html>

2. View it from your browser, the page should be displayed as shown in Figure 3-3:

Figure 3-3

How It Works
The text of your <asp:Label> that appears on the page is the same as that obtained as a result of typing
it in a standard HTML tag. More interestingly, take a look at the source code by selecting View |

67

Server Controls and Variables

Source from your browser and notice two things. First, the ASP.DLL has processed your <asp:Label>
controls into tags. Second, ASP.NET has added an extra tag of name="_VIEWSTATE" to your
form with its value set to a long string of characters. The VIEWSTATE tag will be discussed shortly.

Modifying ASP.NET Controls
Although this exercise works, it still does not give us the ability to modify the text in code. Recall from
Chapter 2 where you used code in a Page_Load() event that affected controls. You can do the same here
(you might want to save this file as TIO-Label2.aspx). First delete the Text attribute (shown in bold in
the following code listing) at the end of both <asp:Label> controls:

<asp:Label id="Message1" runat="server" text="Chris"></asp:Label>
, you have selected to receive information about

<asp:Label id="Message2" runat="server" text="Oslo"></asp:Label>
. The information package will be sent to you.

Now add the following ASP.NET script block before your HTML code:

<script runat="server" Language="C#">
void Page_Load()
{
Message1.Text = "Vervain";
Message2.Text = "Madrid";

}

</script>

If you run the example again, you'll see that the output has changed to that shown in Figure 3-4:

Figure 3-4

The Page_Load() section is executed whenever the page is requested or refreshed; we will discuss this
in more detail in Chapter 6. Let's ignore this statement for now, it's the code it contains that's important.
The following line refers to the text contained by your first <asp:Label> control. Here we're changing
the Text attribute of Message1 to Vervain.

Message1.Text = "Vervain"

68

Chapter 3

This example allowed you to change the contents of an <asp:Label> control by modifying code. Future
chapters will discuss how to modify the values in more sophisticated ways, including changing the text
to be values read from a database. All of the ASP.NET control attributes (properties) can be changed in
the code in the same way. For example:

Message1.Text = "Vervain"
Message1.backcolor = Drawing.color.red
Message1.font.italic=true
Message1.font.size = FontUnit.large

<asp:DropDownList>
Before moving onto the <asp:DropDownList> control, let's pause to look at its HTML form control
equivalent. Dropdown listboxes are a series of <option> tags within a pair of <select> tags as shown:

<select name="lstCities">
<option>Madrid</option>
<option>Oslo</option>
<option>Lisbon</option>

</select>

The <asp:DropDownList> control will produce the same output when coded in the following way:

<asp:DropDownList id="lstCities" runat="server">
<asp:ListItem>Madrid</asp:ListItem >
<asp:ListItem >Oslo</asp:ListItem >
<asp:ListItem >Lisbon</asp:ListItem >

</asp:DropDownList >

The three important differences between the ASP.NET control and the HTML form control are:

❑ The <asp:DropDownList> tag directly replaces the <select> tag

❑ The <asp:ListItem> tag replaces the <option> tag

❑ The id attribute replaces the name attribute

Visually, the <asp:DropDownList> control is identical to the HTML dropdown list control; it's what
goes on behind the scene that is different. The best way to explain this is to look at an example. Let's
create a form that asks the user to select the particular holiday destination they wish to know more
about.

Try It Out Using the <asp:DropDownList> Control
1. Create a new ASP.NET page called TIO-DropDownList.aspx in Web Matrix and type in the

following. As always with ASP.NET Web Matrix, some lines are pre-typed for you.

<script runat="server" Language="C#">
void Page_Load()
{
if (Page.IsPostBack)

69

Server Controls and Variables

lblMessage.Text = "You have selected " + list1.SelectedItem.Value;
}

</script>
<html>
<head>
<title>Drop Down List Example</title>

</head>
<body>
<asp:Label id="lblMessage" runat="server"/>

<form runat="server">
Which city interests you?

<asp:DropDownList id="list1" runat="server">
<asp:ListItem>Madrid</asp:ListItem>
<asp:ListItem>Oslo</asp:ListItem>
<asp:ListItem>Lisbon</asp:ListItem>

</asp:DropDownList>
<input type="Submit">
</form>

</body>
</html>

2. Run this file in your browser and the page should be displayed as shown in Figure 3-5:

Figure 3-5

3. Select Oslo and click on Submit Query.

4. Now click on View | Source. You should see something like the following; don't worry if your
version isn't exactly the same – the code is tailored to your personal browser:

<html>
<head><title>Drop Down List Example</title></head>
<body>
You have selected Oslo

<form name="_ctl0" method="post" action="TIO-DropDownList.aspx" id="_ctl0">

<input type="hidden" name="__VIEWSTATE"
value="dDwtMTMyNTU5Mzc0Njt0PDtsPGk8MT47PjtsPHQ8cDxwPGw8VGV4dDs+O2w8WW91IGhhdmU

70

Chapter 3

gc2VsZWN0ZWQgT3Nsbzs+Pjs+Ozs+Oz4+Oz4qihTIIzJYjhyzz+oJsyJ1gevEaQ==" />

Which city interests you?

<select name="list1" id="list1">
<option value="Madrid">Madrid</option>
<option selected="selected" value="Oslo">Oslo</option>
<option value="Lisbon">Lisbon</option>

</select>
<input type="Submit">
</form>

</body>
</html>

How It Works
As you can see, everything that has been sent to the browser is HTML code and text; there are no
proprietary tags or script to run on the browser. Also note that this is a one-page solution, in contrast to
the old two-page approach with HTML forms. This form page submits to itself. To explain how it works,
we're going to reference the source code that we can view in our browser, and compare it to our original
ASPX code.

Let's start from the <form> section of the script. The <form runat="server"> attribute is set that tells
ASP.NET to execute the form on the server. If you compare this line to what has been returned to the
browser, you can see a large difference:

<form name="ctrl0" method="post" action="listpage.aspx" id="ctrl0">

ASP.NET has generated four new attributes. The name and id attributes serve a similar purpose - to
uniquely identify the form. However, it's the other two that are of interest. HTML forms require a page
to receive the form data and a method of transmission. We didn't specify either of these in our ASPX
code, so ASP.NET specified them for us by default to be the same page. It also specifies the POST method
by default.

The main item on the form is the <asp:DropDownList> control:

Which city interests you?

<asp:DropDownList id="list1" runat="server">

<asp:ListItem>Madrid</asp:ListItem>

<asp:ListItem>Oslo</asp:ListItem>

<asp:ListItem>Lisbon</asp:ListItem>

</asp:DropDownList>

It's crucial to note how this is rendered. If you view the source code that's sent back to the browser, you
should see the following:

<input type="hidden" name="__VIEWSTATE"

value="dDwtMTMyNTU5Mzc0Njt0PDtsPGk8MT47PjtsPHQ8cDxwPGw8VGV4dDs+O2w8WW91IGhhdm

Ugc2VsZWN0ZWQgT3Nsbzs+Pjs+Ozs+Oz4+Oz4qihTIIzJYjhyzz+oJsyJ1gevEaQ==" />

Which city interests you?

<select name="list1" id="list1">

<option value="Madrid">Madrid</option>

71

Server Controls and Variables

<option selected="selected" value="Oslo">Oslo</option>

<option value="Lisbon">Lisbon</option>

</select>

It's the first line that is of particular note. It contains a hidden control called VIEWSTATE, which contains
an encoded representation of the overall state of the form when last submitted. This is used by ASP.NET
to keep track of all the server control settings from one page refresh to another. Without this record of the
state of the page controls, the dropdownlist would revert to its default setting every time you submitted
a value.

It may not be immediately obvious how useful this can be – consider a non-ASP.NET registration form
in which you have to enter a full set of personal details. If you forget to fill in a required field, and then
submit the form, you may well be prompted with the same empty form again. ASP.NET solves this
problem for us with the VIEWSTATE; all that data is automatically persisted through to the refreshed
page, and you have barely raised a finger to code this functionality!

The string of characters contained in the value attribute is a condensed and encoded depiction of each
control on the page as it was when the submit button was clicked. When this information is sent back to
IIS on a subsequent submit, it is decoded and ASP.NET can work with the values.

The second half is just a <select> HTML form control; this is the HTML output of a <dropdownlist>.
Note that it had one of the <option> tags altered to reflect the selection you made before submitting the
form.

How ASP.NET Code Works
We've seen that the ASP.NET server control passes form values to the ASP.NET code. Now let's see how
you can use a control's values in your code. Assume that we have a label named lblMessage and a
dropdown list named DropList1 (you can download this code in the file Demo-
HowAspNetCodeWorks.aspx):

<script runat="server" language="C#">
void Page_Load()
{
if(Page.IsPostBack)
lblMessage.Text = "You have selected " + DropList1.SelectedItem.Value;

}
</script>

There are three lines of code here inside Page_Load(). The first line of code (the if(Page.IsPostBack
condition) checks whether the page has been returned by the user before. This check involves using the
Page object, which keeps a record of whether this is the first time a form is shown or it is being
displayed after a submit.

If the form has been submitted, IsPostBack returns true, otherwise false. The code inside if() will
only be run if the form has been posted back by the user. So, if this is the first time the user has seen the
form (Page.IsPostBack would equal false), then ASP.NET will jump over to the second line and, in
this case, end. The page would not show any text in the message control. However, if the user has
submitted the page, then the following line will be run first:

72

Chapter 3

This line lblMessage.Text = "You have selected " +
DropList1.SelectedItem.Value

This code has two parts: the right side of the equals sign picks up the option that the user clicked in the
dropdown list and the left side identifies where to put that text, namely the <asp:Label> control. Note
that the SelectedItem.Value keeps a record of the items that the user selects. On both sides we refer
to the server control by its id value.

<asp:ListBox>
The <asp:ListBox> server control resembles the dropdown list control, except that it doesn't drop
down and is capable of multiple selections. The <asp:ListBox> has the following syntax:

<asp:ListBox id="list1" runat="server" selection mode = "multiple">
<asp:ListItem>Madrid</asp:ListItem>
<asp:ListItem>Oslo</asp:ListItem>
<asp:ListItem>Lisbon</asp:ListItem>

</asp:ListBox>

The selectionmode attribute is used to determine whether you can select multiple or only select single
items from the listbox. By default it is set to single. Let's alter our previous example to use a listbox that
allows multiple selections.

Try It Out Using the <asp:ListBox> Control
1. Create the TIO-ListBox.aspx file in the Ch03 folder, and enter the following code:

<%@ Page Language="C#" %>
<script runat="server">

void Page_Load()
{
string msgCitiesList = "";

if (Page.IsPostBack == true)
if (list1.Items[0].Selected == true)
{
msgCitiesList = msgCitiesList + list1.Items[0].Text + "
";

}
if (list1.Items[1].Selected)
{
msgCitiesList = msgCitiesList + list1.Items[1].Text + "
";

}
if (list1.Items[2].Selected)
{
msgCitiesList = msgCitiesList + list1.Items[2].Text + "
";

}
if (msgCitiesList != "")
{

Message.Text = "You have selected:
" + msgCitiesList;
}
else
{

Message.Text = "";

73

Server Controls and Variables

}
}

</script>
<html>
<head>
<title>ListBox Example</title>

</head>
<body>
<asp:Label id="Message" runat="server"/>

Which city do you wish to look at hotels for?

<form runat="server">
<asp:ListBox id="list1" runat="server" selectionmode="multiple">
<asp:ListItem>Madrid</asp:ListItem>
<asp:ListItem>Oslo</asp:ListItem>
<asp:ListItem>Lisbon</asp:ListItem>

</asp:ListBox>

<input type="Submit">

</form>
</body>

</html>

2. Run this page in your browser, use the Ctrl or Shift key to select multiple choices, and then click
on Submit Query to see the page as depicted in Figure 3-6:

Figure 3-6

How It Works
The controls in this example have hardly changed from the previous listpage.aspx example. All
we've done is switched from DropDownList to a ListBox and set the selectionmode attribute to
allow multiple selections:

<asp:ListBox id="list1" runat="server" selectionmode="multiple">

However, we've had to completely overhaul the ASP.NET code to accommodate the possibility of
several cities selected. We will build the list to be displayed in a variable named msgCitiesList:

string msgCitiesList = "";

74

Chapter 3

Then for each possible city choice, we check if it was selected; if yes, we add the city name to the
msgCitiesList variable. The trick here is to understand that the choices are numbered (indexed) in the
listbox, and if they are selected, the selected property is switched to true. Finally, we assign the value
of the variable msgCitiesList (a string of text and HTML) to the Text attribute of the Message label so
that it can be seen on the page. This is slightly more complicated than handling the results of single
selections.

<asp:TextBox>
This control is ASP.NET's version of the HTML <textbox> and <textarea> controls. In fact, textareas
are simply textboxes that feature multiple lines, thus allowing you to input larger quantities of text. The
TextBox control also provides the functionality of an HTML form password control. To enable these
variations the <asp:TextBox> control needs some extra attributes:

❑ textmode: Specifies whether you want the control to have one line (not set), many lines (set to
multiline), or have a single line of masked content (set to password)

❑ rows: Specifies the number of rows you want the textbox to have and will only work if
textmode is set to multiple

❑ columns: Specifies the number of columns you want the textbox to have and will only work if
textmode is set to multiple

If you wish to provide any default text that appears in the control, you can either place it between the
opening and closing tags or set it in the text attribute of the control:

<asp:TextBox id="text1" runat="server">Default text here...</asp:TextBox>
<asp:TextBox id="text1" runat="server" text="Default text here..."/>

Let's look at an example that uses the TextBox control to ask for the name and address of the user, and a
password as well. Previously in HTML, this would require three different types of controls; here we
shall only use the <asp:TextBox> control.

Try It Out Using the <asp:TextBox> Control
1. In the Ch03 folder, create TIO-TextBox.aspx and type in the following code:

<script runat="server" language="C#">
void Page_Load()
{
if (Page.IsPostBack)
{
lblName.Text = "";
lblAddress.Text = "";
lblPassword.Text = "";

}

if (txtName.Text !="")
lblName.Text = "You have entered the following name: " + txtName.Text;

if (txtAddress.Text !="")
lblAddress.Text = "You have entered the following address: " +

txtAddress.Text;

75

Server Controls and Variables

if (txtPassword.Text !="")
lblPassword.Text = "You have entered the following password: " +

txtPassword.Text;

}
</script>

<html>
<head>
<title>Textbox Example</title>

</head>
<body>
<asp:Label id="lblName" runat="server" />

<asp:Label id="lblAddress" runat="server" />

<asp:Label id="lblPassword" runat="server" />

<form runat="server">
Please enter your name:
<asp:TextBox id="txtName" runat="server" />

Please enter your address:
<asp:TextBox id="txtAddress" runat="server" textmode="multiline" rows=5

/>

Please enter your password:
<asp:TextBox id="txtPassword" runat="server" textmode="password" />

<input type="Submit">

</form>
</body>

</html>

2. Open TIO-TextBox.aspx in your browser, type in some details, and then click on Submit Query
to see the results as shown in Figure 3-7:

Figure 3-7

76

Chapter 3

How It Works
Within the form, we have created three types of TextBox controls:

<asp:TextBox id="txtName" runat="server" />
<asp:TextBox id="txtAddress" runat="server" textmode="multiline" rows=5 />
<asp:TextBox id="txtPassword" runat="server" textmode="password" />

The first is identified as txtName, and requires no attributes other than id and runat. This is displayed
as a single text field. The second control, txtAddress, is a multiline textbox, and requires the textmode
attribute to be set to multiline so that we can set the number of rows we wish this textbox to have.
Here, we have set it to 5 for the address. Lastly, we create a third control, txtPassword, in which the
textmode attribute is set to password. This, again, will display a single line text field, but any text typed
into will be masked by asterisks.

To display the results from the three controls, we have used three separate <asp:Label> controls:

<asp:Label id="lblName" runat="server" />

<asp:Label id="lblAddress" runat="server" />

<asp:Label id="lblPassword" runat="server" />

Each one is identified with a different id attribute so that we can refer to them individually in other lines
of our code. The job of assigning text values to these three label controls falls to the ASP.NET code
contained within <script> tags at the top of the page.

lblName.Text = "";
lblAddress.Text = "";
lblPassword.Text = "";}

First we make sure that blank values are assigned to each of the <asp:Label> controls in the first three
lines. This is because once the page has been posted back, it will display the old messages, unless we
clear them.

Then we check if txtName is not empty (that is if its text value is something other than "") and display
the contents in lblName along with some hard coded text. This is repeated for the other labels.

<asp:RadioButtonList> and <asp:RadioButton>
The <asp:RadioButtonList> control works in the same way as its HTML forms equivalent or the
Windows interface. Choice of one button excludes the selection of another button within the group. Note
that the identifier for the whole group is set only once in the id attribute of the
<asp:RadioButtonList> control:

<asp:RadioButtonList id="radSample" runat="server">
<asp:ListItem id="option1" runat="server" value="Option A" />
<asp:ListItem id="option2" runat="server" value="Option B" />
<asp:ListItem id="option3" runat="server" value="Option C" />

</asp:RadioButtonList>

You can programmatically find out the option that was selected by the user by using
radSample.SelectedItem.Value; if Option A is selected, the value returned will be "Option A".

77

Server Controls and Variables

The following example uses a group of radio buttons to find out the destination selected by a user on an
HTML form, and relays that information back to the user.

Try It Out Using the <asp:RadioButtonList> Control
1. Create TIO-RadioButtonList.aspx within the Ch03 folder and enter the following code:

<%@ Page Language="C#" %>
<script runat="server">
void Page_Load()
{
if (Page.IsPostBack)
Message.Text = "You have selected " + radCity.SelectedItem.Value;
}

</script>

<html>
<head>
<title>Radio Button List Example</title>

</head>
<body>
<asp:Label id="Message" runat="server" />

Which city interests you?

<form runat="server">
<asp:RadioButtonList id="radCity" runat="server">
<asp:ListItem id="optMadrid" runat="server" value="Madrid" />
<asp:ListItem id="optOslo" runat="server" value="Oslo" />
<asp:ListItem id="optLisbon" runat="server" value="Lisbon" />

</asp:RadioButtonList>

<input type="Submit">

</form>
</body>

</html>

2. View it in your browser as shown in Figure 3-8, select a city, and click on Submit Query:

Figure 3-8

78

Chapter 3

How It Works
The TIO-RadioButtonList.aspx page has a form with three radio buttons in a single group with the
ID radCity. Note that we use a different ID and value for each option:

<form runat="server">
<asp:RadioButtonList id="radCity" runat="server">
<asp:ListItem id="optMadrid" runat="server" value="Madrid" />
<asp:ListItem id="optOslo" runat="server" value="Oslo" />
<asp:ListItem id="optLisbon" runat="server" value="Lisbon" />

</asp:RadioButtonList>

<input type="Submit">

</form>

In the Page_Load() section, we have used the three familiar lines to return information from the user to
the form. We can get the selected option by reading the SelectedItem.Value property, which is similar
to reading the selected value in a listbox:

if (Page.IsPostBack)
Message.Text = "You have selected " + radCity.SelectedItem.Value;

If a radio button is selected, then the label named Message will have its text set to "You have selected"
followed by the user's choice returned by SelectedItem.Value.

<asp:CheckBox> and <asp:CheckBoxList>
Checkboxes are similar to radio buttons in that they present multiple choices from a group of buttons.
However, <asp:CheckBox> is for a single option (say, for the answer to, "Do you want to pay $5 more
for quick shipping?") whereas with the <asp:CheckBoxList> control, a user can select more than one
option (for the answer to, "Which free catalogs can we send you: Sports, Clothing, or Shoes?"). Most of
the same principles that you followed in the <asp:RadioButtonList> example apply to checkboxes.
The main difference is the syntax – radio buttons use <options> whereas checkboxes use
<ListItems>.A solo <asp:CheckBox> has a single ID:

<asp:CheckBox id="chkQuickShipping" runat="server" />

An array of checkboxes can be contained inside an <asp:CheckBoxList> control. You need to set an id
attribute for the <asp:CheckBoxList> control itself, and create a <asp:ListItem> control for each
option inside the control as shown here:

<asp:CheckBoxList id="chkCatalogs" runat="server">
<asp:ListItem id="itmSports" runat="server" value="Sports" />
<asp:ListItem id="itmClothes" runat="server" value="Clothes" />
<asp:ListItem id="itmShoes" runat="server" value="Shoes" />

</asp:CheckBoxList>

The next example is a tweaked version of the previous Try-It-Out, where the user is now allowed to
select more than one holiday destination option.

79

Server Controls and Variables

Try It Out Using the <asp:CheckBox> Control
1. Open up the TIO-RadioButtonList.aspx and save it in the Ch03 folder as

TIO-CheckBoxList.aspx and change the highlighted code as follows:

<script runat="server" language="C#">
void Page_Load()
{
string msg = "You have selected the following items:
";
if (chkCities.Items[0].Selected)

msg += chkCities.Items[0].Text + "
";
if (chkCities.Items[1].Selected)

msg += chkCities.Items[1].Text + "
";
if (chkCities.Items[2].Selected)

msg += chkCities.Items[2].Text + "
";
lblCities.Text = msg;

}

</script>

<html>

<head>
<title>Checkbox List Example</title>

</head>
<body>
<asp:Label id="lblCities" runat="server" />

Which city do you wish to look at hotels for?

<form runat="server">
<asp:CheckBoxList id="chkCities" runat="server">
<asp:ListItem id="optMadrid" runat="server" value="Madrid" />
<asp:ListItem id="optOslo" runat="server" value="Oslo" />
<asp:ListItem id="optLisbon" runat="server" value="Lisbon" />

</asp:CheckBoxList>

<input type="Submit">

</form>
</body>
</html>

2. Open TIO-CheckBoxList.aspx in your browser and select several options as shown in Figure
3-9; click on Submit Query:

80

Chapter 3

Figure 3-9

How It Works
Very little has changed with your page – all you've done is changed an HTML control to an
<asp:CheckBoxList> and changed its ID. Notice that within checkbox groups the choices are labeled
as <ListItem> rather than <options>.

Our ASP.NET code is the same as that used for the TIO ListBox example except that here it refers to a
checkbox rather than a listbox. The syntax has also been modified to join the city name onto the end of
the value in msg. Note that we can use the syntax msg+= to get the same result as the syntax msg=msg+.

void Page_Load()
{
string msg = "You have selected the following items:
";
if (chkCities.Items[0].Selected)

msg += chkCities.Items[0].Text + "
";
if (chkCities.Items[1].Selected)

msg += chkCities.Items[1].Text + "
";
if (chkCities.Items[2].Selected)

msg += chkCities.Items[2].Text + "
";
lblCities.Text = msg;

}

With this section, we have covered a set of basic ASP.NET server controls. You have seen how to use
them to gather information from the user and then use that information in your code. In a number of
pages you have used variables; for example, msg in the radio button and checkbox pages. You have also
used control structures such as if ().

All ASP.NET controls start with <asp: >, contain the attribute runat="server",
and each control has an id attribute.

81

Server Controls and Variables

Before going on to chapters with other ASP.NET features, let's pause to look more closely at how to use
variables in ASP.NET pages. Then we will take a closer look at the control structures in the logic being
used.

Storing Information in C# Variables
Variables are fundamental to programming – they let you store information in memory. Once the
information is stored, you can perform mathematical functions, calculate new dates, manipulate text,
count the length of sentences, and perform many such functions. This book discusses the techniques of
using variables in C#. The syntax would be different if you work in VB.NET or another language, but the
theory is very similar.

A variable is a space in memory that is allocated a name and given a datatype by the programmer. These
spaces in memory can be used to store pieces of information that will be used in the program. Think of
variables as you might think of boxes or repositories for information. Different datatypes require
different sizes and shapes of boxes – with different amounts of memory. Any variable is empty until you
put information into it (although the memory space is reserved while the code runs). You can then view
the information inside the variable, get the information out, or replace the information with new data.
Variables have four parts: a name, a space in memory, a datatype, and the value that they hold.

C# is a strongly typed language, which means that every variable has a datatype associated with it, such
as string, integer, or date. Typing tells C# how to deal with the data so that, for example, dates can be
seen as proper dates and not a long 'division' operation such as 5/10/2003.

Declaring Value Type Variables
Good programming practice requires that you explicitly create or declare variables before you use them.
In C#, the simplest type of variable declaration for value types is made with the datatype followed by
the name of the variable. In the following case int implies that we want a variable of the datatype
integer. We will talk at length about the different datatypes later in this chapter.

int NumberOfStates;

This statement performs three tasks. First, the name of the variable is established, second the datatype is
noted, and third a space is allocated in the memory. Until the variable is assigned a value, it contains
nothing (bear in mind that 0 is a value, so it won't contain zero or even a blank space).You can check if a
string variable contains a value by using the following conditional check (MyVariable == null), which
returns true if the variable is empty and false if the variable has a value.

While naming a variable, you have to remember the following rules:

❑ All variable names must begin with a letter (not a number or symbol)

❑ They may not contain an embedded period (full-stop) or a space

❑ They cannot be the same as C# reserved words (keywords) such as if and void

82

Chapter 3

In C#, variable names are case sensitive. In the following example, the first line declares a variable as a
string type with the name strCarType; the second line assigns a string value to that variable:

string strCarType;
strCarType = "Buick";

It's also possible to declare a variable and assign a value to it on a single line:

string strCarType = "Buick";

If you have several variables of the same type, you can set them up with one line of code (see Demo-
VariableDeclare.aspx in the code download):

string strCarType1, strCarType2, strCarType3;
strCarType1 = "Buick";
strCarType2 = "Cadillac";
strCarType3 = "Pontiac";

You can also initialize and assign values to them on one line as follows:

string strCarType1 = "Buick", strCarType2="Cadillac", strCarType3="Pontiac";

However, you can not mix datatypes in one line of initialization or filling. The following line will not
work:

string strCarType1, int strCarType2, date strCarType3;

Now let's use our knowledge of variable declaration and assignment in an example. We'll take the code
above and combine it with ASP.NET server controls.

Try It Out Using Variables
1. Create a file called TIO-Variable1.aspx and type in the following:

<%@ Page Language="C#" debug="true"%>
<script runat="server">

void Page_Load()
{

string CapitalCityOfUK;
int NumberOfStates;
DateTime IndependenceDay;

CapitalCityOfUK = "London";
NumberOfStates = 50;
IndependenceDay = Convert.ToDateTime("7/4/1776");

lblCapital.Text = CapitalCityOfUK;
lblNumStates.Text = Convert.ToString(NumberOfStates);
lblDateIndependence.Text = Convert.ToString(IndependenceDay);

}
</script>

83

Server Controls and Variables

<html>
<head>
<title>Creating Variables Example</title>
</head>
<body>
The contents of CapitalCityOfUk is:
<asp:Label id="lblCapital" runat="server" />

The contents of NumberOfStates is:
<asp:Label id="lblNumStates" runat="server" />

The contents of IndependenceDay is:
<asp:Label id="lblDateIndependence" runat="server" />

</body>
</html>

2. Open TIO-Variable1.aspx in your browser as shown in Figure 3-10:

Figure 3-10

3. Add to the following line to the code, which uses a variable (NumberofDaysInJuly) that we
have not declared:

CapitalCityOfUK = "London";
NumberOfStates = 50;
IndependenceDay = Convert.ToDateTime("7/4/1776");
NumberOfDaysInJuly = 31;

4. Save this file as TIO-Variable2.aspx and run the example. What you get is an error message
as shown in Figure 3-11:

84

Chapter 3

Figure 3-11

How It Works
The first section of code declares each of the variables we wish to use in the example. Note the difference
in type to match the data we will store:

string CapitalCityOfUK;
int NumberOfStates;
DateTime IndependenceDay;

Having declared the variables, you can assign values to each. We will cover the details of the syntax
(especially for DateTime) when we look at each datatype later in this chapter.

CapitalCityOfUK = "London";
NumberOfStates = 50;
IndependenceDay = Convert.ToDateTime("7/4/1776");

The value for a string datatype must be enclosed within double quotes while
numbers should not be enclosed at all. Dates must be typed as a string within
double quotes, and then that 'string' must be converted to the C# format used to
store dates.

85

Server Controls and Variables

In the last section, we've created three <asp:Label> controls. We then set the Text values of these labels
to the contents of our variables. Note below that only a string type can go directly into a Text property.
Both numbers and dates must be converted using the ToString() function of the Convert class.

lblCapital.Text = CapitalCityOfUK;
lblNumStates.Text = Convert.ToString(NumberOfStates);
lblDateIndependence.Text = Convert.ToString(IndependenceDay);

Your Web form duly displays the contents of your variables. You might be wondering what stops a
control from displaying the literal text CapitalCityOfUK. The answer is the absence of quotation
marks. Anything inside quotation marks is interpreted as literal text. Anything not contained in quotes is
treated as a variable, numeric value, or object. You then amended your example to add another line:

NumberOfDaysInJuly = 31;

This line looks perfectly okay, but this causes an error – because you haven't declared the variable prior
to using it. Variables cannot simply appear within your script or code – they must be explicitly declared
and assigned. An error is generated because the NumberOfDaysInJuly variable used in the script is not
declared.

You've seen how important datatypes are in your ASP.NET Web forms. Let's discuss the C# datatypes
and when you should use them.

Datatypes
C# supports about two-dozen data types. These datatypes can be roughly divided into three groups:
numeric, text, and miscellaneous datatypes.

Numeric
Numeric datatypes represent eleven of the C# datatypes. They are divided into three groups: integers,
floating-point, and decimals.

Integers
Integers are whole numbers (numbers without a decimal component). Examples of integers are 3, -12,
and 0. The various storage formats for integers vary with the size of integer that needs to be stored. You
can use these types as per your requirements to make optimal use of memory resources:

❑ int: The integer datatype is referred to as int in code; can store whole numbers up to about 2
billion (2,147,483,648), both positive and negative.

❑ uint: Stores integers from 0 to 4 billion, but this range can consist of only positive numbers.

❑ byte: Can be used to store integers between the range 0 to 255, but negative values are not
allowed. It's a useful type because a variable can easily be stored by the computer within a
single byte – a computer's basic storage unit – and any processing or arithmetic done with them
is therefore faster.

86

Chapter 3

❑ sbyte: Same as byte but allows negatives, so the range is reduced to –128 to +127.

❑ short: As the name implies, can only accept a limited range of values, from – 32,768 to +32,767.

❑ ushort: is like uint and can be used for unsigned (positive) numbers; since memory space is
not used for the sign, the value can go up to 65,535.

❑ long: Similar to the int type, but supports a much larger range; can contain a value up to
9,223,372,036,854,775,808 (that is 9 x 10^19), either positive or negative.

❑ ulong: Allows positives up to about 18 x 10^18.

Floating-Point Numbers
Floating point datatypes can store numbers with decimal places. The various floating point datatypes
supported by C# are:

❑ float: Holds single precision floating-point numbers. The float type supports values within
the range -3.402823E38 to -1.401298E-45 (for negative values), and 1.401298E-45 to 3.402823E38
(for positive values).

❑ double: Holds double precision floating-point numbers. The range of double is -
1.79769313486232E308 to -4.94065645841247E-324 (for negative values), and 4.94065645841247E-
324 to 1.79769313486232E308 (for positive values).

Decimal
The decimal type accepts numbers with about 28 digits, which you can allocate between the left and
right side of the decimal point. With zero decimal places, it can support large positive or negative
numbers with up to 27 following zeros. Alternatively, you can store a very accurate number with about
27 digits to the right of the decimal point.

Selecting the Correct Numeric Datatype
Given the wide range represented by these eleven types, here is a short guide to selecting the correct
type for your needs. Your code will be most efficient if you use the smallest and simplest type that will
do the job.

❑ If you must use decimal numbers and you need less than 28 digits, you can use decimal. If you
need decimal places and more digits, go to float, and if you need even more, then go to
double. Currency is generally stored as a decimal type.

❑ If you don't need decimal places, then start with byte (0 to 255). Keep in mind that byte does
not handle negative values. If you need to use larger numbers or negative values, then first use
short, then go on to integer, and finally use the long type. If you will only use positive
numbers, then consider the unsigned versions, where you might be able to settle for a smaller
datatype.

If you have violated the limits of a Numeric type you will get an error such as "CS1021: Integral
constant is too large" or "Cannot convert…."

87

Server Controls and Variables

Text Datatypes
Normally text datatypes store words or letters, but you can also use them to store symbols and numbers.
At the same time, you should not store numbers that you plan to use in arithmetic. For example, a
string variable called MyString can hold values like "2.0" or "July 4, 2004". However, you will not
be able to perform any calculations on these values. Numbers usually go into one of the numeric
datatypes.

An exception to this is a number that you will not perform any math with, such as telephone numbers,
social security numbers, and catalog numbers that may contain a mix of numbers and letters; these are
usually better stored as strings.

There are just two datatypes for storing text. The string datatype is almost always used. The other,
char, stores only one character of text and it is in an encoded form.

String
The string type identifies its stored value as text, even if you supply it with a mixture of text and
numerical data, numerical data alone, or even date information. A string variable will grow or shrink
to accommodate any number of characters. However, it does not inherently contain any formatting like
line breaks. See the following example on the string datatype (see Demo-
VariableStringAndChar.aspx):

string CarType;
string CarEngineSize;
string CarModel;
string DatePurchased;

CarType = "Buick";
// this is normal
CarEngineSize = "2.0";
// this works, but is not normal
CarModel = "123-Z-456";
// OK because these numbers do not have a mathematical values
DatePurchased = " July 4, 1999";
// this works, but it is better to use the date type

As mentioned earlier, string values are encapsulated in double quotation marks, so they can be
differentiated visually from numerical values without having to reference their actual declarations.

The .NET Framework provides a number of special methods by which you can manipulate strings.
These methods allow you to measure the length of a string, truncate a string at the beginning or end,
return certain characters from a given string, or even convert a string into its numerical equivalent.
String manipulation and conversion requires the use of the .NET String object, which will be discussed
in later chapters.

We use double quotation marks to encapsulate strings, and never single
quotation marks, because they imply the use of the char datatype.

88

Chapter 3

Char
The char data type is a bit of a strange one, because it stores text as a number! This means you place a
single character in a variable defined as a char, and it is stored as a number between 0 and 65535. The
large storage capacity provides the ability to store characters from non-English languages. You store the
value as follows (see Demo-VariableStringAndChar.aspx in the code download for this chapter):

Char MyLetter;
MyLetter = 'Q';

When you display the contents of a char variable, you see a text character despite the fact that it is
stored as a code number.

Other Datatypes
The next few datatypes don't really fit together, as they have nothing in common other than the fact that
they are not numeric or text.

Date
The date datatype is treated differently than the text or numeric types. You must be accurate in entering
and reading data. The date cannot be entered directly as a string. Rather, it must be converted using a
function Convert.ToDateTime(). Within the parenthesis, place the date string in the format set by the
Server's Windows Regional settings. For example, in the USA, this would be mm/dd/yy, dd/mm/yyyy
in the UK, and dd.mm.yyyy in Germany. Conversely, when reading a date from a variable, you need to
convert it to a string if you want to display it in a label:

DateTime MyDateTime; //declares the variable
MyDateTime = Convert.ToDateTime(txtDateIn.Text); //fills the variable
lblDateOut.Text = Convert.ToString(MyDateTime); //reads the variable

// alternate formats for input
MyDateTime = Convert.ToDateTime("1/1/2005");
MyDateTime = Convert.ToDateTime("4:25:05 PM");
MyDateTime = Convert.ToDateTime("16:25:05");
MyDateTime = Convert.ToDateTime("1/1/2005 16:25:05");

// following line fails - use 24 hour time or AM/PM but not both
MyDateTime = Convert.ToDateTime("16:25:05 PM");

For Western languages, almost all characters are represented by integers ranging
from 0 to 255. This is the ASCII format of representation. However, to support
additional languages (like Chinese) with a large number of characters, we need
more space to store them. Therefore we use 256 squared = 65536 possible
characters in a system called UNICODE.

89

Server Controls and Variables

Boolean
Boolean variables can be set to one of two values: true or false. There are no acceptable alternatives
such as 0 or 1 like in other languages. Note that true or false as a value should not be in quotes and
must be all lower case as shown here:

bool MyBool; //'my variable to indicate membership
MyBool = true; // note lower case, no quotes

Naming Variables
As we've seen earlier, there are four basic rules for naming variables. First, all variable names must begin
with a letter (not a number or symbol). Second, they may not contain an embedded period (or full-stop)
or a space. Third, they cannot be the same as C# reserved words (keywords), such as if and void.
Lastly, C# variables are case sensitive. Some programmers use the following kinds of non-descriptive
variable names:

int i;
bool varBoolean;
int Counter;
DateTime Date;

This is a sloppy way of coding because such variable names increase the cost of creating and
maintaining an application. At the same time, excessively long variable names are unwieldy and easy to
mistype. Good programming practice is to use suitable names for variables that are meaningful to those
who subsequently read the code.

When your variable name has more than one word, you can use two techniques. Some people like to
separate the words with underscores like Name_ First. Some prefer to use 'Pascal case', wherein letters
are lower case except the first of each word used in the variable, like NameFirst. You could also use
'Camel case,' which is the same as Pascal case, but with the first letter of the variable name in lowercase.
Here are some additional naming tips:

❑ DataStart and DateEnd are better than StartDate and EndDate, as these two related
variables will then come next to each other in an alphabetically sorted search.

❑ Variables like Price, Name, and Number are confusing because there are usually more than one
of these. It is better to use a NounAdjective combination like NameFirst and NameLast.

❑ Variable names that coincide with datatypes aren't allowed.

❑ Avoid confusing and non-intuitive abbreviations, such as FDOM for first day of month –FDOM
could stand for anything.

❑ Never use the same variable name for two different variables in a Web site, no matter how sure
you are that they will not conflict.

A very common mistake occurs in programming when a variable of one type is used as if it is of another
type. For example, a line of code tries to subtract a string from a date and throws an error. The sensible
answer is to use a naming convention that identifies the type of a variable. The most common
convention, called the Hungarian notation, is to use the first three letters of a variable's name to
distinguish the type. The fourth letter of the variable is then typed in uppercase, to indicate that this is

90

Chapter 3

where the actual variable name starts. There are variations to this convention that are used by
programmers. The following table lists some examples of the usage of this notation:

Variable Scope
A few simple questions arise when we consider using variables. How widely available is a variable? If a
variable is created, can it be used by other events and methods on the page? Can it be seen by other
pages, or can other users visiting the same Web site see it? These are the issues of scope – a definition of
how widely a variable can be used. We will study three levels of variables: block, function, and global. It is
important to create your variables with the least amount of scope to do the job. Then, when a variable is
no longer needed it is destroyed and memory is freed up. Remember that the more limited the scope of
variables, the faster your programs will run.

Block-Level Variables
The block-level scope is the most limited in nature. A set of statements enclosed by curly braces after an
if (or while) statement is considered a block (these structures are discussed in detail in Chapter 4).
Variables created within the block scope can be used only within that block. When the block ends (say,
after the last loop), the variable is destroyed. In the following example, the scope of the variable
strBlockLevelVariable within the highlighted code and strBlockLevelVariable can no longer be

You can't have two variables with the same name within the same scope. To be
safe, avoid duplicating a variable name anywhere within a Web site. Do not rely
on differences in case to differentiate between two variables.

Datatype Prefix Example

bool bln blnMember

byte byt bytDaysInMonth

char chr chrWang

DateTime dat datDatePurchased

double dbl dblPi

decimal dec decSalary

float Flt fltRate

int int intDistanceToSun

long lng lngDistanceToStar

short sho shoNumberOfAtoms

string str strNameFirst

91

Server Controls and Variables

referenced when execution passes out of the block, so lblMessage1.Text would contain nothing. (See
Demo-ScopeBlockLevel.aspx and Demo-ScopeBlockLevel-Fixed.aspx in the code download.)

if(1==1)
{

string strBlockLevelVariable;
strBlockLevelVariable = "Very Short Lived!";

} // end if(1==1)
// nb: block-level variables now out of scope
lblMessage.Text = strBlockLevelVariable; //This statement will not execute

However, if we try to use strBlockLevelVariable within the block where it was created, as follows,
then our lblmessage shows the message.

if(1==1)

{

string strBlockLevelVariable;

strBlockLevelVariable = "Very Short Lived!";
lblMessage.Text = strBlockLevelVariable;

} // end if(1==1)
// nb: block-level variables now out of scope

The advantage of block variables is that they save resources for variables not needed outside the block.
The disadvantage is that if you aren't careful, you can accidentally declare a variable inside a block and
then try to access it outside the block scope. For this reason, many programmers avoid block declaration
of variables.

Function-Level Variables
The next wider level of scope is the function-level variable. These variables are available to all of the
code within a function (for example, the Page_Load() method). They can also be called local variables
because they are local to the function that created them. Outside that function, the local variable has no
value; this is because the lifetime of the variable ends when the subroutine ends.

Try It Out Creating Block and Function-Level Variables
1. In the Ch03 folder, create the TIO-VariableScope1.aspx file and enter the following code:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">
void Page_Load()
{
string strMyFuncVariable = "Function-Level Variable";
if(Page.IsPostBack)
{

string strMyBlockVariableUsedInside = "Block Variable Used In Block";
lblMessageBlockInBlock.Text = strMyBlockVariableUsedInside;
lblMessageFunction.Text = strMyFuncVariable;

} //end if pagepostback

} //end pageload

92

Chapter 3

</script>

<html>
<head>

<title>Variable Scope</title>
</head>
<body>

<form runat="server">
<asp:Label id="lblMessageBlockInBlock" runat="server"

text="DEFAULT - BlockInBlock"></asp:Label>

<asp:Label id="lblMessageFunction" runat="server"

text="DEFAULT - Function"></asp:Label>

<asp:Button runat="server" Text="Submit"/>

</form>
</body>
</html>

2. Open it in your browser as shown in Figure 3-12 prior to the click:

Figure 3-12

3. Add the following highlighted lines of code to declare a block variable inside a block but use it
outside the block. Rename the file (and later save) as TIO-VariableScope2.aspx and view
the page in your browser. Note the strMyBlockVariable2 not declared error as seenin Figure 3-13:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{
string strMyFuncVariable = "Function Variable";
if(Page.IsPostBack)
{
string strMyBlockVariableUsedInside = "Block Variable Used In Block";
string strMyBlockVariableUsedOutside= "Block Variable Used After Block";
lblMessageBlockInBlock.Text = strMyBlockVariableUsedInside;
lblMessageFunction.Text = strMyFuncVariable;

} // end if(postback)
// note - block variables now out of scope

lblMessageBlockOutBlock.Text = strMyBlockVariableUsedOutside;

} // End page_load

93

Server Controls and Variables

</script>

<html>

<head>

<title>Variable Scope</title>

</head>

<body>

<form runat="server">

<asp:Label id="lblMessageBlockInBlock" runat="server"

text="DEFAULT – BlockInBlock"></asp:Label>

<asp:Label id="lblMessageBlockOutBlock" runat="server"

text="DEFAULT - BlockOutBlock "></asp:Label>

<asp:Label id="lblMessageFunction" runat="server"

text="DEFAULT - Function"></asp:Label>

<asp:Button runat="server" Text="Submit"/>

</form>

</body>

</html>

Figure 3-13

94

Chapter 3

5. Move the offending line up into the block as follows, and modify the following lines of code in
the file. Save the file as TIO-VariableScope2Fixed.aspx; the variable is now available for
use:

void Page_Load()

{

string strMyFuncVariable = "Function Variable";

if(Page.IsPostBack)

{

string strMyBlockVariableUsedInside = "Block Variable Used In Block";

string strMyBlockVariableUsedOutside= "Block Variable Used After Block";

lblMessageBlockInBlock.Text = strMyBlockVariableUsedInside;

lblMessageFunction.Text = strMyFuncVariable;
// moving next line inside block solves the out-of-scope problem
lblMessageBlockOutBlock.Text = strMyBlockVariableUsedOutside;

} //End If(postback)

} //End Page_Load

<form runat="server">

<asp:Label id="lblMessageBlockInBlock" runat="server" text="DEFAULT –

BlockInBlock"></asp:Label>

<asp:Label id="lblMessageBlockOutBlock" runat="server" text="DEFAULT -
BlockOutBlock - fixed "></asp:Label>

<asp:Label id="lblMessageFunction" runat="server" text="DEFAULT -

Function"></asp:Label>

<asp:Button runat="server" Text="Submit"/>

</form>

</body>

</html>

6. Open the page in your browser as shown in Figure 3-14:

Figure 3-14

95

Server Controls and Variables

How It Works
Let's start with the <form> section where we have two labels to show variables in different situations: a
block variable used in a block and a function-level variable. Note that they have a default text, so if we
do nothing we will see the DEFAULT message:

<form runat="server">
<asp:Label id="lblMessageBlockInBLock" runat="server" text="DEFAULT -
BlockInBlock"></asp:Label>

<asp:Label id="lblMessageFunction" runat="server" text="DEFAULT -
Function"></asp:Label>

<asp:Button runat="server" Text="Submit"/>

</form>

Now let's look at our Page_Load() method. We start by declaring a variable within a method (but
outside a block), so this will be a function-level scope (or local) variable. We will use it later towards the
end of the function and it works fine:

void Page_Load()
{
string strMyFuncVariable = "Function Variable";
if(Page.IsPostBack)

{

string strMyBlockVariableUsedInside = "Block Variable Used In Block";

lblMessageBlockInBlock.Text = strMyBlockVariableUsedInside

lblMessageFunction.Text = strMyFuncVariable

} //end if pagepostback

} //end pageload

Then we have a block that is used if Page.IsPostBack is true. So the first time the code is run, you will
just see the default text from the label. However, after clicking on Submit, this other block will run and
the contents of the two variables will be put into the labels.

In step three, we changed three things: we added a new label, declared a variable inside a block, and,
assigned a variable's contents to the new label. However, we performed that assignment outside the
block and thus created an error.

In step five we moved the assignment line inside the block, so now the variable would be available, and
this time the code runs without problems.

Global Variables
If variables created in subroutines are local to the subroutine that created them, how do we go about
ensuring that the value of a variable persists after a subroutine is done and is still available to other
subroutines on the page? The answer comes in the form of a global variable that is simply declared
outside any individual method (this is in Demo-VariableGlobal.aspx in the download files):

<%@ Page Language="C#" debug="true"%>

<script runat="server">

96

Chapter 3

string strVariableGlobal = "Use me anyplace on the page";

void Page_Load()

{

} //end Page_Load

The lifetime of a global variable begins at the start of the ASP.NET page, ends at the end of the page, and
spans all functions within script. In ASP.NET, you can also create variables with a scope beyond the
page, for example, for a user's session or for all of the users at a Web site. These techniques are covered
in Chapter 11.

Constants
There will be occasions when you want the value assigned to a variable to remain constant throughout
the execution of the code, for example sales tax percentage. This value will rarely change, yet when
calculating the total of a shopping basket, you'll probably need to refer to it several times. Even if the tax
is changed, you would not need to change the value during the code execution – rather, you would
change it manually during a design mode edit of the code. C# allows you to store unchanging data in a
constant. The main reason you'd assign a value to a constant is to prevent its alteration by a mistakenly
written line of code.

In C#, we create a constant with the Const keyword followed by the datatype, generally outside of a
function or method like a global variable. By convention, constants are named in uppercase:

Const int ABSOLUTEZERO = -273
Suppose we tried to assign another value to ABSOLUTEZERO, such as:
ABSOLUTEZERO = 0

This change would be rejected and an error message will be produced. Constants remain in force for the
duration of the script, just as global variables do. It isn't possible to amend their value once they have
been set. Constants make code easier to read and maintain, as they require less updating. Also, if you
choose a self-explanatory name, they make your code easily understandable. They also give a
performance increase over variables.

Conversion Functions
A common variable problem in ASP.NET programming arises when a value of one type could be used as
another type, but C# will not allow the crossover. For example, if you have a textbox where a user enters
a date like 1/1/2005, you will not be able to directly use that as a date in C# commands. This is because
textboxes deliver the user's input as string data.

To overcome this problem, C# offers a class of functions that convert data from one type to another. This
class is called Convert and the members all start with 'To' followed by the resulting datatype that you
want to cast a variable to. Put the original value into the parenthesis and the function will return the cast
value (see Demo-ConvertDataType.aspx file in the code download):

DateTime MyDate;
MyDate = Convert.ToDateTime(txtInput.Text);

97

Server Controls and Variables

There are over a hundred methods in the Convert class, all logically named. You can convert any
variable to any type to any type that makes logical sense. The list is available in ASP.NET Web Matrix by
clicking on the class browser in the lower right, then typing Convert in the search box. Select the
Convert Class from the System Namespace and then in the middle of the screen expand the Methods
folder. Note that the group of methods named ToInt32 is the way we normally convert to a number
(ToInt16 and ToInt64 are beyond the scope of this book). Most commonly used conversions include:

MyStringVariable = Convert.ToString(a Number or Boolean or DateTime)

MyLabelControl.Text = Convert.ToString(a Number or Boolean or DateTime)

MyIntegerVariable = Convert.ToInt32(a string from a text control)

MyDateVariable = Convert.ToDateTime(a string from a text control)

Arrays
Arrays are like variables but can store a series of related values. Each value has an identifying number
called an index. You could use an array to store the names of the Marx brothers, for instance (in the code
bundle, see Demo-Array.aspx):

string[] strMarx = new string[6]; // '6' means we can hold six members
strMarx[0] = "Groucho";
strMarx[1] = "Harpo";
strMarx[2] = "Chico";
strMarx[3] = "Zeppo";
strMarx[4] = "Gummo";
strMarx[5] = "Karl";
lblMarx.Text = strMarx[3];

The first thing to note is that when we declare an array in C#, we state the size of the array variable in
terms of the number of elements. As with variables, you must declare which type of data (string, integer,
date, and so on) goes into the array. For example, the string[6] declaration creates a string array
with six elements. However, when we refer to the members within code, we use a zero-based count; the
first member has an index of zero and not one. There are actually six Marx brothers here (even if one isn't
related by family!), and they occupy the positions 0 to 5 in the array. It's not mandatory to store a value
in each item of the array, or to store values sequentially:

string [] strFriends = new string[5]; // up to 5 members
strFriends[1] = "Mr. Jones";
strFriends[4] = "Mr. Goldstein";
strFriends[3] = "Mrs. Soprano";
lblFriend.Text = strFriends[4];

All of the values in an array must be of the same datatype. For example, you could set up an array to
have 50 entries, one for each of the states in the US with the following statement:

string[] StatesInUS = new string[50]

98

Chapter 3

Arrays are particularly useful if you want to manipulate a whole set of data items as though they were
one. The next chapter will discuss looping that can make changes to all the values in an array with just a
few lines of code.

We establish space for 50 states. However, the numbering of the members starts at zero, so the last state
would be number 49.

The following simple page allows a user to submit a shipping company code and get back the actual
name of the shipper. We will hold the shippers' names in an array where a shipper's code number is the
same as its index number in the array.

Try It Out Using Arrays
1. Create a new page named TIO-Array.aspx in the Ch03 folder and enter the following lines:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{
if (Page.IsPostBack)
{

string[] VendorShipping = new string[4];
VendorShipping[0] = "no shipping";
VendorShipping[1] = "Canada Post";
VendorShipping[2] = "UPS";
VendorShipping[3] = "FedEx";
string[] VendorShipping = new string[4];
lblShipper.Text = "Shipper is " +
VendorShipping[Convert.ToInt32(txtShipNum.Text)];
lblShipper.Visible = true;

} //End if (Page.IsPostBack)
} // End Page_Load

</script>
<html>
<head>

<title>Array Example</title>
</head>
<body>

<form runat="server">
Please enter your shipper code number from your invoice

(should be between 0 and 3)
<asp:TextBox id="txtShipNum" runat="server"

width="30px"></asp:TextBox>

<asp:Button id="Button1" runat="server" Text="Submit"></asp:Button>

<asp:Label id="lblShipper" runat="server"></asp:Label>

</form>
</body>
</html>

99

Server Controls and Variables

2. View this page in the browser, then enter a number between 0 and 3, both inclusive, and submit
it to see the results as seen in Figure 3-15:

Figure 3-15

3. Try some test values that are likely to give you an error such as:

❑ Try entering '5' and note the error message that states that the index is outside the bounds
of the array.

❑ Note the results of submitting with no number at all.

❑ Modify your code so that the array entry with the index 2 is not filled, and then ask for it.
You can do that by adding slashes to make a comment as follows:

// VendorShipping[2] = "UPS";

Reactivate the index entry for 2 and save the file again so that it works when you review this chapter.

How It Works
Let's start on the form where the three controls are seen. The first allows the user to enter their shipper
code number and the second submits the form. The third control, a label, displays the answer:

<form runat="server">

Please enter your shipper code number from your invoice

(should be between 0 and 3)

<asp:TextBox id="txtShipNum" runat="server" width="30px"/>

<asp:Button id="Button1" runat="server" Text="Submit"/>

<asp:Label id="lblShipper" runat="server"/>

</form>

Now, we use the Page_Load() method in the script, but we only run the code if the page is a postback. A
postback page means that the page is shown after the user clicks on a submit button (as opposed to the
first time it is requested by the browser's URL Address input tool). Thus, the entire process of creating
and filling the array only occurs with postback. Likewise, the lblShipper only appears on the page in a
postback, not at the first request:

<script runat="server">

100

Chapter 3

void Page_Load()

{

if (Page.IsPostBack)

{

string[] VendorShipping = new string[4];

VendorShipping[0] = "no shipping";

VendorShipping[1] = "Canada Post";

VendorShipping[2] = "UPS";

lblShipper.Text = "Shipper is " +

VendorShipping[Convert.ToInt32(txtShipNum.Text)];

lblShipper.Visible = true;

} //End if (Page.IsPostBack)

} // End Page_Load

</script>

We will assume that the user has entered a number. In the following line, we will set the text of
lblShipper to some value, plus a value from the VendorShipping array. The index will be whatever
number was typed into the txtShipNum. The TextBox control returns text but the index of the array
only accepts an integer. So we run the text control input through the Convert.ToInt32() function to
get an integer.

lblShipper.Text = "Shipper is " +

VendorShipping[Convert.ToInt32(txtShipNum.Text)];

We then looked at three kinds of errors. The first was the result of C# trying to look up an index number
(5) that was not in the array. This is common and requires that you validate user data before trusting it
as an index value. Likewise, you can never assume that a given textbox will actually have data. The error
from the missing index (2) was a little more subtle. Like a variable, an array when created does not have
data. If you request the value of an empty index you will get back nothing.

The Array class also provides us with an IndexOf() method, which returns an integer representing the
first occurrence of a value in a specified array, but only works on single-dimension arrays. For example,
to find out which element contains the first occurrence of the "FedEx" string, we use the following
expression (see Demo-ArrayIndexOf.aspx in the code bundle for this chapter):

IntShipperCode = Array.IndexOf(VendorShiping, "FedEx")

Note that this matching is case sensitive, and if there is no match, C# will return -1.

Multi-Dimensional Arrays
If you need to keep information of a two-dimensional nature, you can do it by declaring a two-
dimensional array. For instance, you might want to store a set of related information separately, such as
a first name, last name, and employee number. A normal (one-dimensional) array would be unsuitable
because all three pieces of information would have to be in one string. You can achieve far better results
by adding another parameter to your array declaration:

101

Server Controls and Variables

string [] strClient = new string[4,3]; // 4 people, 3 properties each

This will set up a two-dimensional array of up to 4 by 3, which can hold a total of 12 values. You can
assign values to a multi-dimensional array by referencing each element of the array through its two-
value index. For example, you could use such an array to store first and last names and the phone
numbers for four people (download Demo-ArrayMultidimensional.aspx):

strClient[0,0] = "John";
strClient[0,1] = "Buck";
strClient[0,2] = "111-111-1111";

strClient[1,0] = "Jane";
strClient[1,1] = "Doe";
strClient[1,2] = "222-222-2222";

strClient[2,0] = "Jill";
strClient[2,1] = "Fawn";
strClient[2,2] = "333-333-3333";

strClient[3,0] = "Jade";
strClient[3,1] = "Cervid";
strClient[3,2] = "444-444-4444";

The first dimension stores the information that is related to one person, while the second dimension
holds data of the same type for each different person. To get the last name of the first client you use
strClients[0,1], which is 'Buck'.

You can also think of the data stored in a table where the first index represents columns and the second
index represents rows. Therefore, the value in strClient[0,1] represents the value in the first column
and the second row, which would be 'Buck'.

Benefits of Arrays
Arrays are a very popular way to group elements together and they have some very important benefits:

❑ Easy to use: Arrays are very easy to use and used in almost every programming language – if
you have done any programming earlier, you will almost certainly have come across them

Array Index 0 1

0 John Jane

1 Buck Doe

2 111-111-1111 222-222-2222

102

Chapter 3

❑ Fast to alter elements: Arrays are just a consecutive list of items, so altering the items is
extremely fast and pretty easy as we can easily locate any element

❑ Fast to move through elements: Because an array is stored continuously in memory, it's quick
and easy to cycle through the elements one-by-one from start to finish in a loop

❑ You can specify the type of the elements: When you create an array, you can define the datatype

Limitations of Arrays
However, as we noted earlier, arrays also have some distinct limitations:

❑ Fixed size: Once you have created an array, it will not automatically resize if you try to add more
items onto the end.

❑ Inserting elements mid-way into a filled array is difficult: If you wanted to add an element
between two existing elements, it can be quite challenging. First, you may have to increase the
size of the array to make space. In addition, you then have to move all the existing elements up
by one index count to make space for a new element.

Data Collections
All in all, arrays are quite simple to understand and very easy to use. However, we often need more
sophisticated ways to group items together. These advanced techniques in C# are grouped as collections
and include the ArrayList, the HashTable, and the SortedList. Collections are characterized by:

❑ A collection can contain an unspecified number of members.

❑ Elements of a collection need to be related only by the fact that they exist in the collection.

❑ Elements of a collection do not have to share the same datatype.

❑ An object's position in a collection can change whenever a change occurs in the collection as a
whole. Therefore, the position of a specific object in the collection can vary.

ArrayList
The ArrayList is a special array that provides us with some functionality over and above that of the
standard Array. Most importantly, you can dynamically resize it by simply adding and removing
elements. Let's see how an ArrayList measures up.

Benefits of ArrayLists
The benefits of ArrayList are as follows:

❑ Supports automatic resizing: When creating an ArrayList, you do not need to specify the array
bounds (size) – as we add elements, the array automatically ensures there's enough space.

❑ Inserts elements: An ArrayList starts with a collection containing no elements. You can add
them as you choose (and in any position you choose for) them.

❑ Flexibility when removing elements: You can remove elements from an ArrayList very easily.

103

Server Controls and Variables

❑ Easy to use: Using an ArrayList requires you to learn some new commands but they are
intuitive.

Limitation of ArrayLists
There is one major limitation to an ArrayList. Given that the ArrayList control seems to offer so
much more than arrays, you may be wondering why we bother using arrays at all – the reason is simply
a matter of speed. The flexibility of an ArrayList comes at a cost, and since memory allocation is a very
expensive business (in performance terms at least), the fixed structure of the simple array makes it a lot
faster to work with.

Using ArrayLists
We create objects from the ArrayList by using a general type of syntax that will be covered in detail
later. Since an ArrayList is an object, we create it as follows:

ArrayList ShippersArrayList = new ArrayList();

You can use whatever name you want instead of ShippersArrayList, but it must follow the rules
defined for naming variables. We use the new keyword since we are creating a new instance of the
ArrayList object. As you can see, you don't need to specify how large it should be. Once you have an
empty ArrayList object, you can use the Add() method to add elements to it:

ShippersArrayList.Add("none");
ShippersArrayList.Add("Canada Post");
ShippersArrayList.Add("UPS");

Each new item in the ArrayList is added to the end of the list, so it has the largest index number. If we
want to insert an item into the middle of the list (in the example below, this is location 2), we can use
Insert() with a numeric argument as follows:

myArrayList.Insert(2,"MyDataNew");

You can also remove members of an ArrayList using either of the following syntaxes. In the following
code snippet, "MyData2" would be the actual data such as "UPS". Notice they use slightly different
keywords; if you are providing an index number, you need to use RemoveAt():

myArrayList.RemoveAt(2);
myArrayList.Remove("MyData2");

Let's create a page that creates an ArrayList of shippers and then shows them in a dropdown listbox.
This will introduce us to some data binding concepts covered later, but they are not difficult.

myArrayList.Add() puts the new member at the end. myArraylist.Insert() lets
you specify a location in the list to insert the new member.

104

Chapter 3

Try It Out Using an ArrayList
1. In your Ch03 folder, create TIO-ArraylList.aspx and enter the following code:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{

ArrayList ShippersArrayList = new ArrayList();
ShippersArrayList.Add("none");
ShippersArrayList.Add("Canada Post");
ShippersArrayList.Add("UPS");

ShippersArrayList.Insert(1,"FedEx");

MyDropDownList.DataSource = ShippersArrayList;
MyDropDownList.DataBind();

} //End Page_Load()

</script>
<html>
<head><title>ArrayList Example</title></head>
<body>
<form id="Form1" method="post" runat="server">
<asp:DropDownList id="MyDropDownList" runat="server" />

</form>
</body>
</html>

2. Run it in your browser as shown in Figure 3-16:

Figure 3-16

How It Works
There are just two changes here from when we used a simple array. First, we are using an array list that
requires us to use the special syntax for creating objects:

ArrayList ShippersArrayList = new ArrayList();

105

Server Controls and Variables

Note that we don't specify a length or a datatype. This is because the elements will be assigned
dynamically (as and when we need them) and can be of any type.

Next, we use the object's Add() method to add three strings as elements that are added to the end:

ShippersArrayList.Add("none");
ShippersArrayList.Add("Canada Post");
ShippersArrayList.Add("UPS");

Now we test the Insert by adding one to the second position (index number 1, since first position is
index number 0):

ShippersArrayList.Insert(1,"FedEx");

Finally, we specify that ShippersArrayList is a data source for the dropdown list, and bind the data:

MyDropDownList.DataSource = ShippersArrayList
MyDropDownList.DataBind()

...
<asp:DropDownList id="MyDropDownList" runat="server" />

Obviously, an ArrayList is much more amenable to manipulation than a simple array, even if it is
slower and a more resource intensive. Read on for an option that moves us completely away from the
use of index numbers.

Hashtables
In some respects, the Hashtable object is quite similar to an ArrayList, except that we don't have to
use a numerical index. Instead, we can use a key that can be numeric, textual, or even in form of a date.
For example, we might want our index to be the text of country codes (such as US and UK) rather than
numbers. Some people refer to Hash keys as an 'index', but it is best to leave the term index for arrays
and arraylists.

Benefits of Hashtables
The benefits of Hashtables are as follows:

❑ Non-numeric indexes allowed: Because you can use text, numbers, or dates as your key (index),
the Hashtable object is flexible for looking up data.

❑ Inserting elements: When you use a Hashtable, you can add as many pairs of key/value
elements as necessary. You do not have to specify the size ahead of time (as simple arrays
require).

❑ Removing elements: You can remove items from Hashtable objects very easily.

❑ Fast Lookup: The Hashtable collection provides very fast lookup.

Limitations of Hashtables
The limitations of Hashtables are:

106

Chapter 3

❑ Performance and speed: Although the lookup is very quick, each time we add and remove items
from a Hashtable, .NET has to do quite a bit of work in order to keep its lookup mechanism
optimized. This work ultimately makes Hashtable objects slower to update but faster to use in a
look-up than ArrayList objects.

❑ Keys must be unique: An array automatically keeps the index values unique. In a Hastable we
must monitor the key uniqueness. If you expect to have duplicate keys (like more then one
person as a salesman for a given company), you should consider using a relational database for
storage of information.

❑ No useful sorting: The items in a Hashtable are sorted internally to make it easy to find objects
very quickly. But it's not done by using the keys or values, so for our purposes, the items may as
well not be sorted at all.

Using a Hashtable
You can create a Hashtable object by using the same syntax as an ArrayList (download Demo-
Hashtables.aspx):

Hashtable myHashtable = new Hashtable();

Once it's created, you can then add the key-value pairs. Remember that the key is like an index for the
entry and the value is the data we're storing. We store each element using the Add() method with the
following syntax:

myHashtable["UK"] = "United Kingdom";
myHashtable["US"] = "United States";

Hashtables with numbers or dates for the keys are written as follows. In general, it is best to use only
one datatype for the index of a hashtable:

myHashtable[Convert.ToDateTime("1/1/2005")] = "Event on January 1st 2005";

To read an element, you just need to specify the key and the value is returned. The following code puts
the value United Kingdom into a variable named CountryName. Remember that the keys are case-
sensitive, so the fourth line in the following code snippet would put nothing into CountryName:

string CountryName;

CountryName = Convert.ToString(myHashtable["UK"]); // works fine

// next line fails because incorrect case won't find a match so returns a

blank

CountryName = Convert.ToString(myHashtable["uk"]);

lblOut.Text = CountryName;

Let's look at an example page that uses Hashtables. Let's build a page that allows users to find out who
is performing on a given date of a concert series.

You need to convert DateTime index values when they are used as an index for a
Hashtable.

107

Server Controls and Variables

Try It Out Hashtables
1. In the Ch03 folder, create TIO-HashTable.aspx and enter the following code:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{
lblShow.Visible = false;
if (Page.IsPostBack)
{
DateTime datDateIn;
Hashtable hashConcerts = new Hashtable();
hashConcerts[Convert.ToDateTime("1/3/2005")] = "Bridgemen";
hashConcerts[Convert.ToDateTime("1/4/2005")] = "Vanguard";
hashConcerts[Convert.ToDateTime("1/2/2005")] = "Blue Devils";
hashConcerts[Convert.ToDateTime("1/1/2005")] = "Belevederes";

datDateIn = Convert.ToDateTime(txtDateIn.Text);
lblShow.Text = "On this date enjoy the: ";
lblShow.Text += hashConcerts[datDateIn];
lblShow.Visible = true;

} //End if (Page.IsPostBack)
} //End Page_Load

</script>
<html>
<head>

<title>HashTable Example</title>
</head>
<body>

<form runat="server">
<h3>2005 Drum and Bugle Corps Concert
</h3>
Please enter a date between 1/1/2005 and 1/4/2005
<asp:TextBox id="txtDateIn" runat="server"></asp:TextBox>

<asp:Button id="Button1" runat="server" Text="Look up"></asp:Button>

<asp:Label id="lblShow" runat="server"></asp:Label>

</form>
</body>
</html>

2. Call up the page in your browser, and enter some dates as shown in Figure 3-17:

108

Chapter 3

Figure 3-17

How It Works
In the form, we have a textbox to receive a date and a label that displays the performer:

<form runat="server">
<h3>2005 Drum and Bugle Corps Concert</h3>
Please enter a date between 1/1/2005 and 1/4/2005
<asp:TextBox id="txtDateIn" runat="server"></asp:TextBox>

<asp:Button id="Button1" runat="server" Text="Look up"></asp:Button>

<asp:Label id="lblShow" runat="server"></asp:Label>

</form>

Up in the script, we start by hiding the lblShow label until we know a date has been requested. We then
check if this is a postback. If not, we don't do anything:

void Page_Load()
{
lblShow.Visible = false;
...
...

} //End Page_Load
</script>

However, if the page is displayed as the result of a postback, it should have a date. We start with two
declarations: the first will hold the incoming date and the second will create our Hashtable:

DateTime datDateIn;
Hashtable hashConcerts = new Hashtable();

Then we fill our Hashtable by using dates as the keys. Note that you must enclose the dates in quotation
marks. Also note that you can add items in any order because .NET will find them by their keys:

hashConcerts[Convert.ToDateTime("1/3/2005")] = "Bridgemen";
hashConcerts[Convert.ToDateTime("1/4/2005")] = "Vanguard";
hashConcerts[Convert.ToDateTime("1/2/2005")] = "Blue Devils";
hashConcerts[Convert.ToDateTime("1/1/2005")] = "Belevederes";

109

Server Controls and Variables

Now we have to take the text that comes from txtDateIn and convert it to a date using the
ToDateTime() function:

datDateIn = Convert.ToDateTime(txtDateIn.Text);

We put some default display text into the label and then add the value returned from the Hashtable to it.
Now we can show the label with the performer:

lblShow.Text = "On this date enjoy the: ";
lblShow.Text += hashConcerts[datDateIn];
lblShow.Visible = true;

SortedList
A SortedList is another collection that stores key-value pairs, in which we can not only insert and
remove items at will, but can also rely on the items being efficiently ordered. In fact it's really just like a
Hashtable object in which the elements are automatically sorted according to their keys. Just like the
ArrayList and Hashtable objects, the SortedList class lives in the System.Collections
namespace.

Since the items in a SortedList are always stored in a well defined order, we get the best aspects of a
Hashtable object (the ability to use key-value pairs) along with the best aspects of an ArrayList (the
ability to sort the items). Remember, however, that the items in a SortedList are sorted on the key, and
not on the value. A SortedList is most useful when we have to sort a list of key-value pairs for which
the ordering of the key is what matters, rather than the order of the values. For example, we might use a
sorted list to hold entries in a dictionary.

We create and use a SortedList collection in the same manner as a HashTable. Remember that we
have to use the new keyword when creating the object. Adding items to a SortedList is exactly the
same as with a Hashtable, the only difference being that each item is automatically inserted in the
correct position in the list, according to the key-based sort order. A value can be read from the
SortedList as follows (you can see this in action in Demo-SortedList.aspx available in the code
download):

SortedList stlShippers = new SortedList();

stlShippers["cp"]="Canada Post";

stlShippers["fe"]="Federal Express";

stlShippers["us"]="United State Postal Service";

lblOut.Text = "The full name of shipper = " + stlShippers[txtCodeIn.Text];

The last dozen pages of this chapter covered four ways to handle sets of related data. First, we used an
array, which gave us indexed access to a group of data. Although fast, it is limited in capabilities. Then
we used the ArrayList object, which gives us more power to arrange the order of items but still within
a numeric index system. The Hashtable object broke free of numeric indexing by using a key, which can
be of numeric, text, or date type. And finally, we used the SortedList object, which added automatic
maintenance of the order of keys that are similar to a Hashtable, but at a performance price.

110

Chapter 3

Summary
The chapter started with a discussion of the difference in the ways in which an HTML and ASPX page
are handled on the server as well as the additional interpretation step required for an ASPX page. ASPX
pages enable building a Web page per request.

Further in the chapter, ASP.NET server controls were introduced and their server-side capabilities
demonstrated. All of these controls require you to use the specific <asp:…> tag and to include the
runat="server" attribute. You should make it a habit to always include the id="ControlName"
attribute so that you can refer to the control in code.

When using a control in code, you can refer to it with the syntax ControlName.Property, where
property is usually Text. All controls have three basic properties: runat, id, and visible in addition to
properties such as text, backcolor, and width.

The most common mistakes with ASP.NET controls arise from radio buttons and list controls. You need
to be careful and use <asp:RadioButtonList> if there is more than one option (as opposed to
<asp:RadioButton>), so that you have one id attribute for the list. Also ensure that you add a different
id for each option. You can use ListBoxes to obtain multiple selections from a user by setting the
control to be in the multiple selection mode.

Creating variables results in four events: creation of a variable name, creation of space in memory for the
variable, allocation of a datatype to the variable, and assigning a value to the variable. When you name a
variable, you must start with a letter and not have spaces or periods (full stops) in the name. It is best to
keep the names descriptive but short. You could consider the use of camel case and you must avoid
using a variable name twice in an application.

We then discussed the types of variables in C#. Three types of numeric datatypes support decimals:
(from smallest to largest) decimal, float, and double. Numeric types that support only integers (no
decimals) include (again, smallest to largest) byte, short, int, and long. These also come in unsigned
types. The ushort, uint, and ulong datatypes can hold only positive numbers but larger in value as
compared to the signed counterpart. Always select the smallest numeric type that will do the job; for
currency, use the decimal type.

Text information is stored in a string type variable. Strings are also used for numeric characters that are
identifiers or codes that have no arithmetic value (for example telephone numbers). When assigning a
text value, you need to enclose it in double quotation marks.

Any true/false data is stored in a Boolean variable (referred to as bool in code). Both dates and times
are stored in the Date variable. Dates are converted prior to storage using the Convert.ToDateTime();
numbers do not require quotes while assignment to variables. The conversion functions (such as
Convert.ToDateTime, Convert.ToInt32 and Convert.ToString) allow you to change data so that it
can be used as a different type.

We also covered the scope of variables. Scope establishes the amount of time for which a variable will
exist, or to put the idea another way, defines limitations on the code that can use the variable. Block
variables are declared within a block and only available to that block. Function-level (local) variables are

111

Server Controls and Variables

limited to the function in which they are declared. Global variables, declared outside of any function, are
available to the entire page. Always use the smallest scope possible.

We studied four ways to store related groups of information of the same datatype. The simplest and
fastest is the array, which tracks members by an index number. ArrayLists have more capabilities to
sort, add, and remove members, but still use a numeric index.A HashTable allows you to use non-
numeric identifiers called keys, such as text or dates, but is slower than an array. Finally, you can use
SortedLists which are even slower, but hold the members in the order of the keys.

Exercises
1. Explain the difference between <form> and <form runat="server"> and describe how each is

handled.

2. What is a variable, and how is it related to datatypes in C#?

3. Use variables of the string, numeric, and date type to create an ASPX file that displays your
name, age, and date of birth.

4. Arrange the following into groups of numeric, textual, and miscellaneous datatypes. Rank the
numeric datatypes according to the size number they can hold. Give an example of a value and
use for each:

❑ integer, char, byte, uint, short, boolean, string

❑ long, sbyte, float, double, ushort, date, decimal, ulong

5. Create an array containing five of your favorite singers. Concatenate the elements of your array
into one string, and after the opening sentence "My 5 favorite singers are:", display them in a clear
way using the <asp:Label> control.

6. Describe a situation in which you would use each of the following and state why that choice is
the best:

❑ Arrays

❑ ArrayLists

❑ Hashtables

❑ SortedLists

112

Chapter 3

4
Control Structures and

Procedural Programming

In this chapter, we continue to explain programming techniques in C#. In the last chapter, we
focused on obtaining and holding information in variables or server controls. Now we will work
on manipulating that data using lines of code. Specifically, we want to know how to control the
order of execution of those lines of code.

First, we will cover the basics of creating expressions. Then we will study two of the three groups
of control structures: branching and looping. We will cover the third group, jumping, in the next
chapter.

This chapter will cover:

❑ Assignments, arithmetic operators, and string concatenation

❑ Comparison operators

❑ Logical operators

❑ Overview of control structures

❑ Branching structures: if and switch

❑ Looping Structures: for, while, do...while, and foreach...in

Operators
We use operators to manipulate values. An operator is a symbol that carries out a predefined
operation on the operands and generates a result. If X=1+2, then X is a variable (or control
property value), = and + are operators and 1 and 2 are operands. We have already seen many
examples of basic data manipulation using operators in the last two chapters, but in this section,
we'll introduce the concepts more formally.

Assignment Operator
The familiar equals sign (=) assigns a value to a variable or control value. (Note that the symbol = = is a
test for equality, different from an assignment.) The variable name goes on the left; the variable value goes
on the right. C# doesn't enforce spaces on either side of the equals sign, but you may prefer to include
some to make your code easier to read:

intMyVariable = 2;
lblMyLabel.Text = "Sale Ends January 15.";

You can also use the assignment operator to change values of variables using the following syntax:

intMyVariable = 2;
intMyVariable = intMyVariable + 1

At the end of these two lines, intMyVariable equals three. Mathematicians will be scratching their
heads, wondering how intMyVariable can be equal to intMyVariable plus 1; it's similar to saying 2 =
2 +1, which is impossible. In C#, variable values are calculated on the right, and then stored on the left of
the equals sign. Thus in this example intMyVariable + 1 is evaluated first, and assigned to
intMyVariable at the end, replacing the old value in intMyVariable.

C# also offers a shorter syntax to perform the above task, at the end of which intMyVariable equals
three:

intMyVariable = 2
intMyVariable += 1

Arithmetic Operators
The arithmetic operators available in C# are:

Operator Symbol

Addition +

Subtraction -

Multiplication *

Division /

Exponentiation ^

Negation -

Modulus %

114

Chapter 4

Here is a very simple example that assigns values to the variables intNumber1 and intNumber2 before
adding them together, and assigns the result to a third variable intNumber3 (See download file in
Chapter 04 folder Demo-Operators.aspx):

int intNumber1;
int intNumber2;
int intNumber3;
intNumber1 = 14;
intNumber2 = 12;
intNumber3 = intNumber1 + intNumber2;
lblResult1.Text = Convert.ToString(intNumber3);

Because of this, intNumber3 will contain the value 26.

You can also use brackets (parentheses) to influence the order in which a calculation is performed. For
example, in the following code we divide the variable intNumber2 by 6 and add the result to the
variable intNumber1:

int intNumber4;
int intNumber5;
int intNumber6;
intNumber4 = 14;
intNumber5 = 18;
intNumber6 = intNumber4 + (intNumber5/6);
lblResult2.Text = Convert.ToString(intNumber3);

First, the computer evaluates the contents of the brackets, following normal mathematical procedure:
intNumber2 is divided by 6 and yields the result 3. This is added to the value of intNumber1, and the
result of this is 17, which is assigned to the variable intNumber3.

As a quick reminder, normal mathematical procedure is to start inside the innermost pair of parentheses
and work from left to right performing exponentiation. Within these parentheses, go left to right
performing multiplication and division and then finally go left to right performing addition and
subtraction. Then repeat the previous steps again for the next innermost set of parentheses, until you've
calculated the expression. All programming languages use these rules for performing arithmetic
operations. Using parentheses is a good idea to make your code more readable, even when they may not
be technically required for the evaluation to occur correctly.

Let's have a go at a quick example that performs a simple tax calculation. To do this you need to create
three variables, one for earnings, one for the tax percentage, and one for the total. We're going to deduct
the earnings by whatever percentage the tax rate is set to, and display the output in the familiar
<asp:label> control.

Try It Out Tax Calculator Using Arithmetic Operators
1. Create a folder named C:\BegAspNet11\Ch04 and within this folder create a new file called

TIO_CalculateTax.aspx. Enter the following code in the All view (deleting the existing code):

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()

115

Control Structures and Procedural Programming

{
if (Page.IsPostBack)
{
lblTax.Text = "Your tax bill would be $";
lblTax.Text +=
Convert.ToString(Convert.ToInt32(txtEarnings.Text)*
Convert.ToInt32(txtTaxRate.Text)/100);
lblTax.Visible=true;

} //end if (Page.IsPostBack)
}// End Page_Load()

</script>
<html>
<head>

<title>Calculate Tax Bill</title>
</head>
<body>

<h3>Tax rates
</h3>
<form runat="server">

Please enter your earnings: $
<asp:TextBox id="txtEarnings" runat="server"
width="80px"></asp:TextBox>

Please enter your tax rate, for example enter '7' for 7%
<asp:TextBox id="txtTaxRate" runat="server"
width="30px"></asp:TextBox>

<asp:Button id="Button1" runat="server" Text="Submit"></asp:Button>

<asp:Label id="lblTax" runat="server" visible="false"></asp:Label>

</form>
</body>
</html>

2. View this in your browser. Note that the output label does not appear. When you enter some
values and click Submit, the calculation is made and the label appears as shown in Figure 4-1:

Figure 4-1

116

Chapter 4

How It Works
The form has two asp:textbox controls to receive data. There is a Submit button and a Label for
output interspersed with some explanatory text. Note that the label is set to be invisible:

<form runat="server">
Please enter your earnings: $
<asp:TextBox runat="server" ID="txtEarnings" width="80px"/>

Please enter your tax rate, for example enter '7' for 7%
<asp:TextBox runat="server" ID="txtTaxRate" width="30px"/>

<asp:Button runat="server" Text="Submit"/>

<asp:Label runat="server" ID="lblTax" visible=false/>

</form></body></html>

In the script, we execute the code during page load, but only if it is a postback. If it’s not a postback, the
user has requested the page and thus the input textboxes would be empty:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{

if (Page.IsPostBack)
{

In the next line, we put some boilerplate text into the lblTax.text:

lblTax.Text = "Your tax bill would be $";

Then we do the calculation inside the parentheses. That result is then converted to a string because a
label can have difficulty with non-string data types:

lblTax.Text += Convert.ToString(Convert.ToInt32(txtEarnings.Text)*
Convert.ToInt32(txtTaxRate.Text)/100);

Finally, we make the label visible:

lblTax.Visible=true;
} //end if (Page.IsPostBack)
}// End Page_Load()

</script>

Some find the modulo operator difficult to understand. Its symbol is the percent sign (%). Modulo will
return the remainder of a division. For example, 10 mod 3 = 1 because 10 divided by 3 gives 3 with a
remainder of 1. It is the value of the remainder that is returned by the modulo operator.

Modulo is useful when you want to identify every nth occurrence. For example, if you numbered your
site visitors using intUser you could identify every 100th visitor with intUser % 100 == 0. This
expression would be true for every hundredth visitor. Each visitor would have their number divided by
100 and most would have a remainder. Only the visitors numbered 0, 100, 200, 300, and so on would
exactly divide by 100 and leave no remainder (modulo = 0). We will present an example later in the

117

Control Structures and Procedural Programming

chapter where it fits in nicely into the while loop exercise. For now, you might want to look at the file
Demo-ModuloSimple.aspx that is available for download at www.wrox.com.

String Concatenation
Programmers frequently need to append new text to old, as you did with the contents of lblTax. You
appended the dollar amount to the end of the string to get "Your tax bill would be $". Programmers
speak of "adding" strings, but that is only a manner of speaking, as there is no mathematical addition
involved. The proper term is concatenation, which means to join or link strings together to make a larger
string. In .NET there are two ways to concatenate strings.

To concatenate two strings, use the plus operator (+). You can concatenate the strings "Spring" and
"Sale", as follows (see this in action in Demo-Concatenation.aspx available at www.wrox.com):

string strSaleNote1;
strSaleNote1 = "Spring" + "Sale";

Here, the result of the concatenation is the string "SpringSale", which will be assigned to the variable
strSaleNote, of type String. You should note that C# doesn't automatically put in spaces. You can
concatenate any number of strings within the same expression. You can also concatenate the contents of
non-string variables, however you should covert them to string using Convert.ToString(). Here, you'll
concatenate three strings, one of which is a space (also a string, since a space is a character):

string strSaleNote2;
DateTime datSaleSpring = Convert.ToDateTime("3/3/2005");
strSaleNote2 = "Spring" + " " + "Sale begins " +
Convert.ToString(datSaleSpring);

C# handles the text value of a control in the same way as a variable or literal string, as follows:

txtSaleEnd.Text = "Spring" + " " + "Sale begins " +
Convert.ToString(datSaleSpring);
<asp:TextBox runat="server" ID="txtSaleEnd"/>

What if you already have information in a variable and want to add to that? As with numeric addition,
you can use the original contents of a variable on the right side of the assignment as follows.

StrSaleNote4 = "Sale starts on 3/1/2005";
StrSaleNote4 = strSaleNote4 " and ends on " + txtSaleEnd.Text;

However, there is a better technique to do this.

Concatenation by Assignment
In addition to the (+) operator, C# supports a second method to concatenate strings, the (+=) operator:

string strSaleNote5;
strSaleNote5 = "Sale starts on 3/1/2005 and ends on ";
strSaleNote5 += txtSaleEnd.Text;

118

Chapter 4

strSaleNote will then contain the string Sale starts on 3/1/2005 and ends on followed by the
value entered by the user in txtSalesEnd.

Numeric Comparison Operators
When you get to control structures in the second half of this chapter, you will have to create expressions
that use comparison operators as follows:

For example, to test if something is true, you can use:

datDatDOB == Convert.ToDateTime("1/1/2005")
intCode == 36
strNameFirst == "John"

These statements say, "If the date value in DatDOB is the date equivalent of "1/1/2005" then consider this
expression to be true." Later you will build control structures that make decisions based on whether an
expression is true or false.

Other comparison operators work in the same way. If you want to compare two numbers to check
whether one is greater than the other, you could do the following:

The equality operator (used for a comparison) is a double equals sign (==). The
single equals sign is the assignment operator which fills a variable or object
property with a value. They are not interchangeable and if interchanged, will cause
errors.

Operator Symbol

Equality ==

Less than <

Less than or equal to <=

Inequality !=

Greater than >

Greater than or equal to >=

String concatenations can be slow. It is recommended that you study and use the
.NET StringBuilder class if you perform many of these operations.

119

Control Structures and Procedural Programming

number1 > number2

This would test whether the first number was greater than the second, and the expression would
evaluate to either true or false, depending on the contents of the variables.

For dates, < means earlier and > means later (test and observe code from the file Demo-
DateComparison.aspx available for download at www.wrox.com). For strings, things are a little trickier
since the comparison is by ASCII code. In general, ASCII codes are lowest for numeric characters, then
they increase through the uppercase letters to the lowercase letters and finish with European diacritics.
The symbols are sprinkled throughout the numbering system. Download and try Demo-
StringComparison.aspx to test various combinations of letters, numbers and symbols. It also generates a
list of ASCII numbers as shown in Figure 4-2:

Figure 4-2

Logical Operators
C# also provides a set of three common logical operators you can use in your code:

❑ &&: used for AND

❑ ||: used for OR

❑ !: used for NOT

Logical operators are used in the same way as comparison operators and the whole expression evaluates
to a Boolean value:

intNumber1 == 1 && intNumber2 == 2

120

Chapter 4

In the above line, if intnumber1 is 1 and intnumber2 is 2, then the whole phrase intNumber1 = 1 AND
intNumber2 = 2 will evaluate to true and the line will become "If true Then" and the code for true will
be executed.

When using && (AND), both expressions have to be true for the whole expression to be true. When using
OR, only one out of the two conditions has to be true for the expression to be true:

intNumber1 == 1 || intNumber2 == 2

The third logical operator, NOT, simply implies the reverse of the condition. If number1 isn't equal to 1
then the expression is true. For example, you have been using a property of the page called IsPostBack.
If the page is posted back then this property will be true. You can use NOT to give a false when the
page is posted back, as follows:

!Page.IsPostBack

If you are using the ! to apply to an entire expression, it is recommended that you put the expression in
parenthesis and the ! before it.

!(intNumber1 == 2)

When a statement contains more than one logical operator, C# decides which operator to execute first
according to a simple rule. Operators are executed in the following order, known as the order of operator
precedence:

❑ NOT

❑ AND

❑ OR

Consider the following code:

if (number1 == 5 || !(number2 == 1) && !(number3 == 1))

What does this expression actually test? Well, first it checks that number2 is not equal to 1, and that
number3 is not equal to 1. It then evaluates the AND operation and uses the result to evaluate the OR
operation. Beware of these kinds of logical 'traps' in the same way as you would with mathematical
operators. Let's look at how the above expression is solved. Assume the following values:

number1 = 1 number2 = 2 number3 = 3

We replace the variable names with their values as follows:

(1 == 5 || !(2 == 1) && !(3 == 1))

A common logical operator mistake is an incomplete syntax such as:
intNumber1 == 1 || 2. This line fails because C# requires a complete expression on
each side of the logical operator. The correct syntax is:
intNumber1 == 1 || intNumber1 == 2

121

Control Structures and Procedural Programming

We then evaluate the equalities:

(false || !(false) && !(false))

We execute the logical operators in the order NOT, AND, OR. Perform the two NOT operators as
follows:

(false || true && true)

We perform the AND operations:

(false || true)

Finally, we perform the OR operations:

(true)

You can check that result, and test others, in the file named Demo-LogicalOperators.aspx that is
available for download at www.wrox.com

Let's now look at three examples. We will create three pages, each demonstrating a logical operator to
determine whether an input date is in the year 2005 or not.

Try It Out Tax Calculator Using Logical Operators
1. In your Ch04 folder create a file named TIO-LogicalAND.aspx as follows:

<%@ Page Language="C#" %>
<script runat="server">

void Page_Load()
{

if (IsPostBack)
DateTime datInput;
datInput = Convert.ToDateTime(txtIn.Text);

if (datInput>=Convert.ToDateTime("1/1/2005")
&&
datInput<=Convert.ToDateTime("12/31/2005")
)

lblOut.Text = "Date inside year 2005. " + datInput;
}

}

</script>
<html>
<head>

<title>Logical AND Example</title>

To ensure that your code works as intended, use parentheses wherever possible.

122

Chapter 4

</head>
<body>

<form runat="server">
Please enter a date, first in 2005.

Next try a date not in 2005

<asp:TextBox id="txtIn" runat="server"></asp:TextBox>

<asp:Button id="Button1" runat="server" Text="Submit"></asp:Button>

<asp:Label id="lblOut" runat="server"></asp:Label>

</form>
</body>
</html>

2. Now save the file as TIO-LogicalNOT.aspx and change the code to the following. Carefully
check the two lines of lblOut.text and the >+ and <+ symbols:

void Page_Load()
{

if (IsPostBack)
{
lblOut.Text="Date inside year 2005";
DateTime datInput;
datInput = Convert.ToDateTime(txtIn.Text);
if (! ((datInput>=Convert.ToDateTime("1/1/2005")) &&

(datInput<=Convert.ToDateTime("12/31/2005"))))
{
lblOut.Text = "Date outside year 2005.";
}

}
}

3. Now save the file as TIO-LogicalOR.aspx and change the code to the following. Carefully
check the two lines of lblOut.text and the >+ and <+ symbols:

void Page_Load()
{

if (IsPostBack)
{
lblOut.Text="Date inside year 2005";
DateTime datInput;
datInput = Convert.ToDateTime(txtIn.Text);
if (

Convert.ToDateTime(datInput)<Convert.ToDateTime("1/1/2005")
||
Convert.ToDateTime(datInput)>Convert.ToDateTime("12/31/2005")
)

{
lblOut.Text = "Date outside year 2005.";
}

}

}

123

Control Structures and Procedural Programming

4. View and test all three pages in your browser. The TIO-LogicalAND.aspx page is shown in
Figure 4-3:

Figure 4-3

How It Works
In the form, we simply pick up a user's date input, offer a Submit button, and create a label for output.
Up in the script we have the lines of interest. There are several points germane to all three pages.

❑ We reset the text of the output label with every page response so that there is no hangover of
text from the last update of the page.

❑ Since all of the lblOut.Text is inserted in script, we do not have to worry about making the
label invisible. When the Page.IsPostBack is false, the script does not run and the label is
empty and thus effectively invisible.

❑ The if block either changes the lblOut.Text or leaves it the same.

❑ Fourth, since we are working with dates, we put the literal dates within double quotation marks
and use the Convert.ToDateTime() function to convert the string input to the Date data type.

Now let's look at the code for TIO-LogicalAND:

if (datInput>=Convert.ToDateTime("1/1/2005") &&
datInput<=Convert.ToDateTime("12/31/2005"))

lblOut.Text = "Date inside year 2005. " + datInput;
}

To be within the year 2005, a date must meet two criteria: it must be after (greater than or equal to)
January 1, 2005, and before (less then or equal to) December 31, 2005. In other words, both of these
conditions must be true in order for a date to be within 2005. Thus we use the logical AND comparator.

In TIO-LogicalNOT, we can reverse the situation with a single logical word, and a reversal of the label
text values. We change the default text to inside year 2005 and the text executed by the if block to
outside year 2005. Then we merely add a NOT around the entire comparison we did on the AND page.
For dates that are in the year 2005, the NOT reverses the TRUE into FALSE.

124

Chapter 4

In TIO-LogicalOR, we start with a text of Date inside year 2005, and want to run code that changes
the text to outside year 2005 if the expression is true. Our expression will test if the date is before
1/1/2005, and after 12/31/2005. If either is true, the date is not in 2005. Only one has to be true in order
to know that the date is not in the year 2005. Thus we can use the OR operator.

As a last note on logical operators, the NOT works to change control properties that are true or false.
For example, you may want use certain actions to switch the visibility of a control between
visible=true and visible=false. Within the action just include the line: MyControl.Visible =
!myControl.Visible. This is shown in DemoLogicalNotToggle.aspx available for download at
www.wrox.com.

Having looked at the types of operators you can use with control structures, it's time to look at the
structures in more detail.

Control Structures
In C# (or just about any other computer language), we have three types of structures (groups of control
statements) to control the order in which the lines of code are executed. These are branching structures,
looping structures, and jumping structures. We'll look at each of these in detail.

❑ Branching structures: decide which of two or more sections of code to run, for example, you can
display either "Good Morning" or "Good Afternoon" depending on the time of day.

❑ Looping structures: consecutively repeat a section of code as many times as needed – for
example, you can write a line to a schedule page repeatedly, once for each upcoming event.

❑ Jumping structures: move out of the code sequence and execute sections of code in another part
of your script – for example, on a library receipt page we run the same few lines to calculate the
due date for each item borrowed. This topic is covered in Chapter 5.

Overview of Branching Structures
Branching structures work by first performing some kind of test. Based on the test results, one set of
code is executed and other sets of code are skipped. Consider a real life example. Imagine you're in a car
and pull up to a set of traffic lights. If the lights are red, you'll have to stop the car and maybe switch it
off, and wait until the lights change before proceeding. If the lights are green, you can drive straight
through. The course of action you take is determined by the result of the test condition (the color of the
traffic light).

C# offers two types of branching structures:

❑ if else: is generally used to select one of two or more sets of lines of code depending on a
condition. For example, in a Web page featuring news stories, you could choose whether to
display the international or regional news headlines, depending on a user's preferences. if

125

Control Structures and Procedural Programming

else is also used for complicated comparisons, such as expressions using the terms && (AND), || (OR),
and ! (NOT).

❑ Switch: is generally used to select which lines to execute based on many possibilities. For
example, in a page featuring news stories, we could choose which of several icons to include in
the page next to the story, depending on whether the story was about politics, business, sport,
entertainment, or technology.

Overview of Looping Structures
Looping structures allow the same block of code to run repeatedly. Instead of skipping code, we repeat
code. Let's go back to our previous real life example. I frequently go to the airport in my car to pick up
my brother. I don't like to pay the parking fee, so he comes out the door to the street for pick up. I go
around the terminal road past the door and check if he is there. If yes, I stop and pick him up and we go
home. However, if he is not out yet I do another loop around the terminal and re-check the door. I
continue to loop (both literally and procedurally) until he comes out the door.

In the holiday booking site example of Chapter 3, you could use a looping structure to generate a page
for each person who is going to be staying at a hotel. The construction of those lines (print the
description, print the quantity, print the price, put in a line break) would be looped to produce one line
for each item ordered:

❑ for: is used to repeat line(s) when, at the beginning of the repetitions, you know exactly how
many repetitions you want. Alternatively, you can use a test, such as the sizeof() function to
determine the number of repetitions needed. For example, if you know there are five trucks
needing a wash, you could repeat the set of steps involved in successfully washing a single
truck.

❑ while: is used to repeat line(s) when you don't know exactly how many repetitions you want at
the time the code is written. You build a test condition into the loop that is checked after each
iteration. The loop will repeat as long as this condition is true.

❑ do...while:is similar to the while loop except that the condition is tested after the loop is
performed. Thus the loop is performed atleast once even if the condition is false.

❑ foreach...in: is a convenient alternative to for when you have a defined collection of items,
but don't know how many, and want to repeat the loop for every item in the collection.

Overview of Jumping Structures
Jumping structures allow the programmer to pause the execution of the current code and jump to
another named code block. For example, we may need directions during our car trip. Therefore, we have
a procedure that is to pull over, dial our friend on the cell phone, write down the directions, and then
proceed. It is good to have this type of code in a separate section for the following reasons.

❑ First, you may never need it.

❑ Second, you might have to perform the code several times but probably not consecutively (thus
it is not amenable to a loop).

126

Chapter 4

❑ Third, it makes sense to have a discrete job such as this in its own section, not mixed into the
main code. This makes the code easier to maintain

For example, a Web page may have a block of code called ShowOrder that produces lines to show the
customer the goods they ordered. Whenever you want C# to show those lines you don't have to rewrite
or copy all of that code. Instead, just have C# jump out of the current code, execute ShowOrder and then
come back and continue executing the original code. The only jumping control (that we cover in this
book) is:

❑ Procedures (also called Methods): run the statements in the subroutine, and then return control
to the line that called them. They may accept information (called parameters) to perform the job.
Procedures may also return information to the main code. For example, a procedure could
change information in a database. Or a procedure could calculate the total of an order and then
return that value to the main block of code.

Branching, looping, and jumping form the backbone of just about every program or application you will
come to write in C# on your ASP.NET pages. This chapter will cover branching and looping and the next
chapter will cover jumping.

Many find it difficult to decide which type of structure to use. This is understandable for several reasons.
First, there are numerous choices. Second, there is some overlap in their functionality. Third, in some
cases the decision of which structure to use is entirely the programmer's discretion, so studying one set
of code may not match the tactics of another code sample. In this chapter, we will spend a lot of time
comparing the options and guiding you in making wise selections.

Uses of Control Structures
The following table lists several programming objectives and suggests which type of structure will help
us achieve the desired results:

Situation Solution Why?

I want ASP.NET to show page A
or page B.

Branching

if

You want to perform only one of two
possible events.

I need to show the user one of
several meetings they should
attend. The meeting displayed is
based on which department they
belong to.

Branching

switch

You want to write to the page only one
out of several possible meeting locations.

I want C# to list each member of a
club. The data about each
member is held in essentially the
same manner, with a name,
photo, address, and other contact
information.

Looping

do...whil

e

You will be performing the same set of
code (that retrieves a member's name)
many times (once for each member, until
all members are listed).

127

Control Structures and Procedural Programming

Let's recap what we've discussed so far. Three kinds of statements control your code's execution:

❑ Branching statements perform a test and then execute some lines of code, but not others.

❑ Looping statements execute a set of code repeatedly.

❑ Jumping statements pause the execution of the current code, jump over to another set of code,
and then return to where they started, sometimes bringing values back with them.

Let's look at branching statements in detail, and see what we can do with them.

Branching Structures
Branching controls perform some type of test called an expression. Based on the test results, a set of code
is executed and other sets of code are skipped. C# offers two techniques for branching. if is used when
there are only a few choices of outcome. Bear in mind that the more lines you use in if, the more
difficult your code will become to follow. It is better to use Switch when there are several outcomes.

For example, if you are making a decision on how to proceed having asked the user "Do you want a
confirmation by telephone?", the outcome is either "Yes" (true) or "No" (false), so you would perform

Situation Solution Why?

I want to present a known
number of records of data in
a table.

Looping

for

You will perform the same code (make a
row for a table) repeatedly until you
have built all of the rows needed.

After placing an item that I
describe in a catalog page, I
want to put in a few lines of
information about 'How to
Order'. There will be several
items across several pages
that I need to do this for.

Jumping

Function

You want to pause the main code and
perform several lines of another set of
code that describes 'How to Order'.
Then you want to resume execution of
the main code. Since the 'How to Order'
set of code will be performed at various
times across the page, it is best to write
it once and call that one piece of code as
needed.

I need to calculate prices in
several places on each page.
The prices will be set
according to input from a
user form.

Jumping

Function

You will pause building the page, jump
out to execute code that calculates the
price of an item, and then return to
building the page and return the
calculated amount. Since you will
calculate many prices it is best to write
the formula once and have it called
when needed.

128

Chapter 4

the branch using if else. However, if you ask the user "Do you want confirmation by telephone, fax,
FedEx, e-mail, voicemail, or telepathy?" given the number of outcomes, it is better to use Switch.

The if Structure
The basic if statement has three parts:

❑ An expression: a test that evaluates to either true or false

❑ An "if true" section of code

❑ An (optional) "if false" section of code

The first part is the expression, which can be a combination of keywords, operators, variables, and
constants. The expression must be Boolean, and evaluates to either true or false. If the test evaluates
true, then only the lines of code in the 'if true' section are executed. If the test evaluates false, then
only the lines of code in the 'if false' section are executed. After either the 'true' or 'false' section is
executed, the execution jumps down to the ending statement and continues with the next line of code.
There is never a situation where both the true and false sections are executed in a given case.

There are four ways of building if statements. Selection of proper syntax depends on two critera:

❑ Do I want to do anything if the test is false?

❑ Do I want to execute more than one statement if the test is true?

if()
The first and the simplest syntax is useful if you only want to run one statement in the case of a true
condition. Using this method, you will not be able to execute any statements if your expression
evaluates to false. For example, if a user checks a box to inform you that they have a fax, you want
them to enter the number. If they don't check the box then you want to take no action. In this case, you
can use a simple one-line syntax:

if (expression) one line of code to execute if expression is true;
if (chkFaxConfirm.Checked = true) lblFax.Text = "We will confirm by fax.";

A two-line form works the same.(note that in this case, there is no need for braces {}).

if (chkFaxConfirm.Checked = true)
lblFax.Text = "We will confirm by fax.";

if() {}
The next most complex syntax is where you want to execute more than one statement in the case of
true, but still nothing if the test is false. For example, if the user wants a telephone confirmation, you
would display a confirmation message and make visible a text box for the user to enter a phone number.
In this case, write the if with these changes from the syntax outlined above. Since there is now more
than one line for the if code, you must use a set of braces:

129

Control Structures and Procedural Programming

if (expression)
{
code to execute if true – line 1;
code to execute if true – line 2;

}

We might want to add text and make visible a label (two commands) when an expression is true:

if (chkTelConfirm.Checked == true)
{
lblTel.Text = "We will confirm by telephone. Please enter your

number";
txtTel.Visible =true;

}

if()…else
The third level is where you want to execute one or more statements in the case of true, and one or
more lines of code if the test is false. For example, if the user has requested a fax confirmation then ask
for the fax number and jump over to the fax entry page. If they haven't requested a fax, then show a line
that says that a fax will not be sent. In this situation, write the if with a line containing the word else to
separate the code that will run in the true case from the code that will run in the false case. For each
section you must include braces if there is more then one line of code in that section.

if (expression)
{
code to execute if true – line 1;
code to execute if true – line 2;

}
else
{
code to execute if false – line 1;
code to execute if false – line 2;

}

An actual example would be as follows.

if (chkShipByGovernment.Checked == true)
{
lblAddress.Text = "Please enter your post office box number";
txtAddress.Visible=true;

}
else
{
lblAddress.Text = "Please enter your street address";
txtAddress.Visible=true;

}

C# supports an alternate syntax for if...else called the Ternary Operator. This construction saves
typing several keywords and reduces the number of lines in the code in the case where you will only
execute one statement for true or one statement if false.

expression ? Statement to execute for true : Statement to execute for false;

130

Chapter 4

The syntax has three parts separated by two symbols. First, is the expression, then a question mark, then
the statement to execute for true, then a colon, and finally the statement to execute for false. Although
not necessary, putting the entire structure in parenthesis helps readability. The same goes for putting the
expression in parenthesis. For example, we could set the text of lblOut depending on the size of the
number entered in txtIn:

lblOut.Text = Convert.ToInt32(txtIn.Text)>100 ? "large" : "small";

Or

lblOut.Text = (Convert.ToInt32(txtIn.Text)>100 ? "large" : "small");

Or

lblOut.Text = ((Convert.ToInt32(txtIn.Text)>100) ? "large" : "small");

The Ternary form employs a different syntax compared to other if structures. You do not use the
keyword if, and you do not code an entire statement to be executed. Rather, the Ternary returns one of
two values to be used by the rest of the command line. If you have to execute full statements, use the full
if...else syntax. A particularly useful application for this syntax is when you need to modify
grammar in a string, for example:

lblOut.Text = "… your product" + (intNumberOfProducts>1 ? "s." : ".");

if()…else if()
The fourth level is quite complex but there are some situations where it cannot be avoided. It allows you
to choose between several different pieces of code to execute according to multiple expressions. To do
this, you need to separate each new expression with the keywords else if(). You can also include a
non-expression else clause that will be executed if none of the other cases were chosen.

if(expression1)
{

statement to execute if expression1 is true – line1;
statement to execute if expression1 is true – line2;

}
else if(expression2) //only tested if expression1 is false
{

statement if expression1 is false and expression2 is true – line1;
statement if expression1 is false and expression2 is true – line2;

}
else
{

statement if expression1 is false and expression2 is false – line1;
statement if expression1 is false and expression2 is false – line2;

}

Here we test the data to see if it meets expression1. If it doesn't, we test it to see if it meets
expression2. If it doesn't meet that either, we execute the code under the else. For example, we might
have two rules about getting free tickets. Members and students get free tickets. So, we have to test two
different conditions, membership and age. This can be done two ways. First would be a single test which
uses the || OR operator. Alternatively we can use the if…else if discussed in this section, as shown below
(see download file Demo-ifElseif.aspx)

131

Control Structures and Procedural Programming

<form runat="server">
<asp:TextBox id="txtAge" runat="server" / >
<asp:CheckBox id="chkIsMember" runat="server" / >
<asp:Label id="lblOut" runat="server" / >

</form>

if(Page.IsPostBack)
{

if(chkIsMember.Checked==true)
{

lblOut.Text = "Members get a free ticket";
lblOut.BackColor=System.Drawing.Color.LightPink;

}
else if(Convert.ToInt32(txtAge.Text)<=18)
{

lblOut.Text = "Students get a free ticket";
lblOut.BackColor=System.Drawing.Color.LightPink;

}
else
{

lblOut.Text = "Price is ¥500";
lblOut.BackColor=System.Drawing.Color.LightSeaGreen;

}
} //end if(Page.IsPostBack)

These if structures are demonstrated in the download file, Demo-if.aspx.There is an alternative
structure (switch), which provides a simpler solution in some cases, and we'll be looking at this shortly.
Generally, if you are testing to see if a variable contains one of several values, you will use Switch rather
than if...else if. The following table contains a summary of the four if control structures:

Situation Syntax Example

If expression is
True

 do one
 statement

Otherwise do
nothing

if

(expression)

statement

if (age < 18) Message.Text = "You

must be 18 or older to order by

credit card."

If the expression is
true

 do two or more
 statements

If the expression is
false do nothing

if

expression {

 true code
line 1;

 true code
line 2;

 ...
}

if (age < 18) {

discount = true;

Message.Text = "You are

eligible for the student rate of

$49.";

}

132

Chapter 4

When executing a single command for an expression case, you do not need braces.
If there is more then one command, you must put them within braces.

Situation Syntax Example

If the expression is
true

 do one or more
 statements

If the expression is
false

 do a different
 set of one or
 more
 statements

if

(expression)

{

 true code
line 1;

 true code
line 2;

}

else

{

 false code
line 1;

 false code
line 2;

}

if (age < 18) {

discount = true;

Message.Text = "You are

eligible for the student rate of

$49.";

}

else

{

Message.Text = "The fee for

this service is $59."

}

If the first
expression is true
 do one or more
 statements

Else if the second
expression is true

 do a different
 set of
 one or more
 statements

If all expressions
are False do

 do a different
 set of
 one or more
 statements

if

(expression)

{

 true code
line 1;

 true code
line 2;

else

if(expressio

n)

True code

line 1;

True code

line 2;

else

 false code
line 1;

 falseTrue
code line 2;

}

if (age < 18) {

discount = true;

Message.Text = "You are

eligible for the student rate of

$49.";

}

else if (age > 65) {

discount = true;

Message.Text = "You are

eligible for the senior rate of

$49.";

}

else

{

Message.Text = "The fee for

this service is $59.";

}

133

Control Structures and Procedural Programming

Try It Out Using the if Structure
It's time for a quick example that involves a number guessing game. The computer 'thinks' of a number
between one and five and you have to guess what it is.

1. In folder Ch04 create a file named TIO-if.aspx and type in the following:

<%@ Page Language="C#" %>
<script runat="server">

void Page_Load()
{

int theNumber, theGuess;
Random objRandom;

objRandom = new Random();
theNumber = Convert.ToInt32(objRandom.Next(5)) + 1;

if (Page.IsPostBack)
{
theGuess = Convert.ToInt32(Guess.SelectedItem.Value);

if (theGuess > theNumber)
{
message.Text = "

Guess was too high
Try again - it was "+

theNumber;
}

if (theGuess < theNumber)
{
message.Text = "

Guess was too low
Try again - it was " +

theNumber;
}

if (theGuess == theNumber)
{
message.Text = "

Guess was correct!";

}

} //end if (Page.IsPostBack)
} //end Page_Load()

</script>
<html>
<head>

<title>IF THEN example - solution 1</title>
</head>
<body>

<form runat="server">
What number am I thinking of?
<asp:dropdownlist id="Guess" runat="server">

<asp:listitem>1</asp:listitem>
<asp:listitem>2</asp:listitem>

134

Chapter 4

<asp:listitem>3</asp:listitem>
<asp:listitem>4</asp:listitem>
<asp:listitem>5</asp:listitem>

</asp:dropdownlist>

<input type="submit" value="Submit guess" />
<asp:label id="message" runat="server"></asp:label>

</form>
</body>
</html>

2. Open TIO-if.aspx in your browser, choose a number, and click Submit guess. See Figure 4-4:

Figure 4-4

How It Works
As it's such a simple example, it doesn't require too much code. We get the user to enter a guess into the
Web form with the <asp:dropdownlist> control:

<asp:dropdownlist id="Guess" runat="server">
<asp:listitem>1</asp:listitem>
…
<asp:listitem>5</asp:listitem>

</asp:dropdownlist>

Using a dropdown list ensures that you get a valid response from the user, as they can only choose from
what you place in the list. You can then interrogate the dropdown list box via its name (Guess), directly
through the code.

The actual C# code is quite interesting. You start by defining two variables:

<%@ Page Language="C#" %>
<script runat="server">

void Page_Load()
{

int theNumber, theGuess;

135

Control Structures and Procedural Programming

The two variables above contain the randomly generated number and the user's guess:

Random objRandom;
objRandom = new Random();
theNumber = Convert.ToInt32(objRandom.Next(5)) + 1;

Next, above, we create an object, which will be of the type Random (this reserves the name and memory
space). Then we instantiate (actually fill the memory space with a new copy of the Random object). Last,
we generate a number with the Random object's Next() method. To get a random number between 1
and 5, we tell the Random.Next() method to generate a number that is 5 or less, which will generate a
number between 0 and 4.999… (not 5 itself). We use the ConvertToInt32() function to cut off the
decimal part so we have a whole number between 0 and 4. We add 1 to it, giving us what we need: a
number from 1 to 5. Any range of random integers in C# can be generated with the following equation:

RandomNumber = Convert.ToInt32(objRandom.Next(UpperBound)) + 1

So we've generated our random number, we've got the guess from the user stored in the variable
(Guess); so all we need to do now is compare them, right? Well, not quite! As this is a Web form with
just one single page, you need to check whether the user has ever been there before. On their first arrival
they won't have entered a number, and you don't want to test the random number against an empty
variable.

The first time the page is run the user hasn't guessed yet, so Page.IsPostBack will return false and
not run the code contained within. The page execution will jump to the end of the if structure, marked
by the closing brace. However, when the user submits a guess, there will be a value and
Page.IsPostBack will be true.

There are three separate if structures inside this code. You can see how useful it is to indent your code
in these structures to keep track of which closing brace applies to which if structure:

if (Page.IsPostBack)

{

theGuess = Convert.ToInt32(Guess.SelectedItem.Value);

if (theGuess > theNumber)

{

message.Text = "

Guess was too high
Try again - it was "

+ theNumber;

}

if (theGuess < theNumber)

{

message.Text = "

Guess was too low
Try again - it was "

+ theNumber;

}

if (theGuess == theNumber)

{

message.Text = "

Guess was correct!";

}

136

Chapter 4

} //end if (Page.IsPostBack)

These are all ignored the first time around because IsPostBack has returned false. Second time
around, the Page.IsPostBack is true (and we assume the user has submitted a guess) so the code inside
will be run. It's worth noting that if the user has not selected a number then the page will process the
default value of 1. Each structure is considered to be a separate test in its own right. Before we do the
test, we set our theGuess variable to be equal to the contents of the SelectedItem.value of the
dropdown list box, to save us a bit of typing each time we refer to the user's guess:

theGuess = Convert.ToInt32(Guess.SelectedItem.Value);

The first test checks to see whether the guess is bigger than the number:

if (theGuess > theNumber)
{

message.Text = "

Guess was too high
Try again - it was " +
theNumber;

}

If so, it sets the <asp:label> control to display a message informing the user that their guess was too
high, along with the number that the user failed to guess.

The second test checks whether the guess is smaller than the number:

if (theGuess < theNumber)
{
message.Text = "

Guess was too low
Try again - it was "

+ theNumber;
}

In this case, we then display a message saying that the guess was too low, and display the number.

The last test checks to see whether the number is correct, and displays an appropriate message in the
<asp:label> control:

if (theGuess == theNumber)
{
message.Text = "

Guess was correct!";

}

You may be wondering how C# knows that this is the correct ending brace, as there are several in the
code. The answer is that they have been nested inside each other. When there is an if statement inside
the block of code belonging to another if statement, the inner if statement has to have a matching end
brace, before the outer block can be ended. This means that if blocks can be treated as completely
separate self-contained entities:

There are other ways to use if and achieve the same goals, for example (TIO-ifAlternate.aspx):

<%@ Page Language="C#" %>
<script runat="server">

137

Control Structures and Procedural Programming

void Page_Load()
{

int theNumber, theGuess;
Random r = new Random();
theNumber = Convert.ToInt32(r.Next(5)) + 1;

if (Page.IsPostBack)
{

theGuess = Convert.ToInt32(Guess.SelectedItem.Value);
if (theGuess > theNumber)
{
message.Text = "

Guess is too high
Try again - it was"+

theNumber;
}

else if (theGuess < theNumber)
{

message.Text = "

Guess is too low
Try again - it was"+
theNumber;

}
else
{

message.Text = "

Guess is correct!";
}

}
}

</script>

This alternative logic uses the elseif clause for if to perform the second test and assumes that
negatives from the first two tests will result in a correct guess.

The switch Structure
The disadvantage with if…else is that it can start getting unwieldy after more than three possible
outcomes. What happens if you want to show a different page to visitors from each of five departments?
What happens if you want to do a calculation based on the user providing one of twelve salary grades?
Or if you have different procedures for confirming an order by telephone, fax and e-mail? Your if
structure code is going to become difficult to maintain with more then a few nested else if code blocks.
In addition, code with many layers of nesting runs slow.

The switch structure is a better alternative for handling branching and it caters much more neatly for
these situations by providing a better structure, better performance, and extra readability.

The syntax for switch has four parts:

❑ The statement of a value to be tested against (the "test value")

Use switch when you need to make a choice among several answers (more than
just true or false).

138

Chapter 4

❑ The statement of a 'possible value' and what to do if that possible value matches the test value
(this part is repeated for all possible values)

❑ An optional catchall default, in case the variable matches a value you haven't anticipated

The following example carries out one of three actions depending on what is contained in the variable
confirmation (see entire page in download file Demo-Switch1.aspx):

string confirmation = txtIn.Text;
switch(confirmation)
{

case "fax":
lblOut.Text = "Fax confirmation takes 12 hours.";
break;

case "telephone":
lblOut.Text = "Telephone confirmation takes 24 hours.";
break;

case "email":
lblOut.Text ="Email confirmation takes 1 hours.";
break;

}

From the first line, C# knows that you want to compare the answers to the contents of the variable
confirmation. Next, it will begin testing the contents of the variable against the values shown in the
Case lines. When C# finds a match, it executes the following code up to the next break line, and then
jumps down to the first line after the closing brace, which defines the end of the cases.

The previous if example used a drop down list to ensure that the user could only enter a valid answer.
When checking user input using switch we often need to do the same thing, as string comparisons in
C# are case-sensitive. If you allow the user to enter text in response to a Yes/No question, be prepared to
handle the fact that Yes, yes, and YES will all be handled differently. Additionally, prepare to handle
unexpected inputs (like the user entering Yeah) as well. This can be done using the default statement
as shown here:

switch (txtIn.Text)
{
case "yes":
lblOut.Text= "Details will be sent.";
break;

case "YES":
lblOut.Text= "Details will be sent.";
break;

case "Yes":
lblOut.Text= "Details will be sent.";
break;

case "no":
lblOut.Text= "We will not contact you.";

139

Control Structures and Procedural Programming

break;

case "NO":
lblOut.Text= "We will not contact you.";
break;

case "No":
lblOut.Text= "We will not contact you.";
break;

default:
lblOut.Text = "Your answer " + txtIn.Text + " is not recognized.";
break;
} //end switch (txtIn.Text)

In this example, a user who decides to type Yeah will receive a custom error message.

You can further refine this code by having C# test for more than one result on each case line. As an
example, for both yes and YES we would do the same thing, so we can handle them together (download
file Demo-SwitchYesNo2.aspx):

switch (txtIn.Text)
{

case "yes":
case "YES":
case "Yes":
case "Y":
lblOut.Text= "Details will be sent.";
break;

case "no":
case "NO":
case "No":
case "N":
lblOut.Text= "We will not contact you.";
break;

default:
lblOut.Text= "Your answer " + txtIn.Text + " is not recognized.";
break;

} //end switch (txtIn.Text)

This will work fine, but do you really want to spend all that time dreaming up possible case variations?
C# offers a completely different way to solve the case problem. If you change all input text to uppercase
before testing, you can reduce the number of tests needed. Any string object (variable typed as string or
object property that is of string type) has a ToString() method that can be added to the end of its
name. In this case, we will apply it to the text entered in the txtIn control (download file Demo-
SwitchYesNo3.aspx):

switch (txtIn.Text.ToUpper())
{
case "YES":

140

Chapter 4

case "Y":
lblOut.Text= "Details will be sent.";
break;

case "NO":
case "N":
lblOut.Text= "We will not contact you.";
break;

default:
lblOut.Text= "Your answer " + txtIn.Text + " is not recognized.";
break;

} //end switch (txtIn.Text)

We've managed to cut down on the number of test statements. However, in some situations, such as the
previous random number guessing example, it proved more beneficial to use a dropdown list control to
limit the range of possible answers.

Let's look at an example that uses switch to make a more detailed set of selections. In Chapter 3, we
used an example that showed how the user could select a holiday from a set of destinations. We're now
going to go one better and provide a brief sales pitch depending on which destination the user selects.
We will use switch to decide which pitch to use.

Try It Out Using the switch Structure
1. Create TIO-Switch.aspx in the Ch04 folder and type the following code in the All view:

<%@ Page Language="C#" debug="true"%>
<script runat="server">

void Page_Load()
{
if (Page.IsPostBack)
{
switch(radDestination.SelectedItem.Value)
{
case "Barcelona":
lblMessage.Text = "You selected Spain's lively Catalan city";
break;

case "Oslo":
lblMessage.Text = "Experience the majesty of Norway's capital

city";
break;

case "Lisbon":
lblMessage.Text = "Portugal's famous seaport and cultural hub";
break;

default:
lblMessage.Text = "you did not select a destination we travel

to";
break;

} //End switch
} // end if (Page.IsPostBack)

} //end Page_Load()

141

Control Structures and Procedural Programming

</script>
<html>
<head>

<title>Switch Example</title>
</head>
<body>

<form runat="server">
Select your choice of destination:

<asp:radiobuttonlist id="radDestination" runat="server">

<asp:listitem>Barcelona</asp:listitem>
<asp:listitem>Oslo</asp:listitem>
<asp:listitem>Lisbon</asp:listitem>

</asp:radiobuttonlist>

<input type="submit" value="Submit Choice" />

<asp:label id="lblMessage" runat="server"></asp:label>

</form>
</body>
</html>

2. View this in your browser, make a choice, and click on Submit Choice as shown in Figure 4-5:

Figure 4-5

How It Works
There's a lot of code here, but it's actually simpler than the last example you studied. The form has a
radiobuttonlist control called destination, which allows the user to select a holiday destination:

<asp:radiobuttonlist id="radDestination" runat="server">
<asp:listitem>Barcelona</asp:listitem>

142

Chapter 4

<asp:listitem>Oslo</asp:listitem>
<asp:listitem>Lisbon</asp:listitem>

</asp:radiobuttonlist>

The Page.IsPostBack test checks whether the page has been run before, as in the last example. If it
hasn't, there will be nothing in either of these values, and you can skip to the end of the program and
wait until the page is run again. If it has been posted back, then you take the contents of the radio
button's SelectedItem.Value and test it for various values:

if (Page.IsPostBack)
{

switch(radDestination.SelectedItem.Value)
{

case "Barcelona":
lblMessage.Text = "You selected Spain's lively Catalan city";
break;

case "Oslo":
lblMessage.Text = "Experience the majesty of Norway's

capital city";
break;

case "Lisbon":
lblMessage.Text = "Portugal's famous seaport and cultural

hub";
break;

} //End switch }
} // end if (Page.IsPostBack)

As the page contains one question with three options, we deal with all of these possibilities within our
single switch structure. So if the user selects Oslo then only the code in the Case "Oslo" section will
run.

There is a default case at the end. This should never be executed unless you have made a mistake in
matching up the cases you can handle with the options presented to the user:

default:
lblMessage.Text = "you did not select a destination we

travel to";
break;

} //End switch }

If they don't select anything, then no message at all is displayed, as this is caught by the default
structure. It's a simple example, but it demonstrates the potential power of case structures. Most
importantly, it should be obvious how easy it is to add additional cases to a structure of this type,
particularly compared to adding additional code to an if…else structure. There is a major drawback of
switch. It doesn't support comparison operators. You can only check for different equality in each case.
You cannot write case >3. This means switching may not work in some situations (such as our age-
range selector previously shown) and you must revert to an unwieldy if…elseif… structure.

143

Control Structures and Procedural Programming

Looping Structures
C# has several types of looping structures:

❑ for

❑ while

❑ do…while

❑ foreach…in

If you can determine the number of loops at the point where the loop begins (for example, the loop will
always be performed exactly ten times, or you have the number of loops stored in a variable), then use
for. If you do not know how many loops you want to perform at design time, and will have to decide
after each loop whether to continue, then use a while or do while loop.

for…each is used only in the case when you have a collection and need to loop through each member. In
this sense, the term 'collection' has a specific definition (not just any old group) such as the collection
objects ArrayList and HashTable that were discussed in Chapter 3.

The for Loop Structure
The for structure has three parts. The first is a line that describes how many times to repeat the loop.
Next, a set of lines with action statements that carry out the task you want repeated. Finally, a brace
indicating the end of the action statements. It also tells C# to go back and repeat the action statements
again:

for(CounterInitialize; expression; CounterIncrement)
{
lines of code to repeat;

Technique When Used

for The code knows before the first loop how many loops will be
performed

while The code does not know how many loops to perform and thus
must decide at the end of each loop whether to perform
another loop.

Expression tested before first loop, so possible for no loops to
be done.

do…while The code does not know how many loops to perform and thus
must decide at the end of each loop whether to perform
another loop.

Expression tested after first loop, so first loop is always done.

foreach…in Only used for collections. Performs one loop for each member
of the collection.

144

Chapter 4

}

Here is a simple example to get started. In the holiday example discussed earlier, some of the adventure
holidays require participants to be over a certain age and so we need a signed age declaration form from
each traveler. The trip organizer wants to get a Web page with a blank line for each person and then
print that page to use as the sign-in sheet. If you imagine we needed a sheet for groups that always have
five people you could use the following code(see download file Demo-for.aspx):

for(int intCounterAttendees=0;intCounterAttendees<5;intCounterAttendees++)
{
Message1.Text += "Attendee Name ___________________
";
Message1.Text += "Attendee Age _________________
<hr />
";

} //end for

Going by the information on the first line, C# begins the process of running the loop five times. In order
to keep count we provide a variable called intcounter. The lines that will be repeated are contained
between the braces ({ }). In this case, two statements are needed to create lines for an attendee to write
their name and their age as shown in Figure 4-6:

Figure 4-6

145

Control Structures and Procedural Programming

One quick point to note in the preceding code is that to get the <asp:label ID="Message1"> control to
display five sections for signatures you concatenated the next name to the contents of Message1.Text.
This is because if you simply assigned the string to Message1.Text each time around the loop it would
replace the previous contents and you would end up with just one line of text.

This example assumes that you would always have five attendees. What if that number varied? In that
event, you could have a list box that asks for the number of attendees, for example,
lstNumberAttendees, and then use that number to determine how many lines to print. You can use
for (instead of while) because when you start the loop you know how many loops to make. You may
not know at design time, but will know when you run the code. A sample follows:

for(int intLineLoopCounter = 1;
intLineLoopCounter<=Convert.ToInt32(NumberAttendees.SelectedItem.Value);
intLineLoopCounter++)

{
lblMessage1.Text += "Attendee Name ___________________

";
lblMessage1.Text += "Attendee Age _________________

<hr />
";
number = numberAttendees.SelectedItem.Value

Let's implement this code into a page that takes a number from the user and supplies the requisite
amount of signature/age lines for a printout.

Try It Out Using the for Loop
1. Within the folder Ch04 create a file TIO-for.aspx and type in the following:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{
if(Page.IsPostBack)
{

lblMessage1.Text = "";
for(int intLineLoopCounter = 1;

intLineLoopCounter<=Convert.ToInt32(NumberAttendees.SelectedItem.Value);
intLineLoopCounter++)

{
lblMessage1.Text += "Attendee Name

";
lblMessage1.Text += "Attendee Age

<hr />
";

} //end for intLineLoopcounter
} //end if(Page.IsPostBack)

} //end Page_Load

</script>
<html>
<head>

<title>For Example</title>
</head>
<body>

<form runat="server">
Select the number of attendees:

146

Chapter 4

<asp:dropdownlist id="NumberAttendees" runat="server">

<asp:listitem>1</asp:listitem>
<asp:listitem>2</asp:listitem>
<asp:listitem>3</asp:listitem>

</asp:dropdownlist>

<input type="submit" value="Submit Query" />

<asp:label id="lblMessage1" runat="server"></asp:label>

</form>
</body>
</html>

2. Open and view this page in your browser. Select a number and check that the sheet that appears
looks like the Figure 4-7:

Figure 4-7

How It Works
The form should not be a problem for you by now – it is a simple <asp.dropdownlist>. This control
makes the selection available to our code as numberAttendees.SelectedItem.Value.

We start by checking for postback, and if true, we blank out whatever was in our lblMessage.

147

Control Structures and Procedural Programming

void Page_Load()
{
if(Page.IsPostBack)
{
lblMessage1.Text = "";

We then create a loop by filling in the three arguments of the for() as shown below. The first creates an
integer counter, which starts at zero. The second is the test for when to stop the loop. The third is how to
increment the counter:

for(int intLineLoopCounter = 1;
intLineLoopCounter<=Convert.ToInt32(NumberAttendees.SelectedItem.Value);
intLineLoopCounter++)

{
lblMessage1.Text += "Attendee Name ___________________

";
lblMessage1.Text += "Attendee Age _________________

<hr />
";
} //end for intLineLoopcounter

Each time the loop is executed, C# automatically increases intLineLoopCounter by one. If that number
is not greater than the value in NumberAttendees.SelectedItem.Value, then the loop runs again.
When the number of the counter goes above the number held in the value C# jumps past the closing
brace } and moves on to the statement after.

The value held in intLineLoopCounter (and automatically increased with each loop) is available to
you just like any other variable. Recall from your study of HTML that
 puts in a line break and
<hr/> adds a horizontal line. Try changing your Message1.Text as follows (TIO-forNumbered.aspx):

for(int intLineLoopCounter = 1;

intLineLoopCounter<=Convert.ToInt32(NumberAttendees.SelectedItem.Value);

intLineLoopCounter++)

{
lblMessage1.Text += Convert.ToString(intLineLoopCounter) + ": ";

lblMessage1.Text += "Attendee Name ___________________

";

lblMessage1.Text += "Attendee Age _________________

<hr />
";

In the highlighted line shown above, C# adds the loop number (which equals the attendee number) to
the lblMessage.Text.

The while Loop
We briefly mentioned the while loop earlier in the chapter. It's used in cases where the number of
iterations it has to carry out is unknown when the loop begins. A Boolean test is made at the beginning
of each cycle. So, it performs a test before each loop, and continues looping as long as the specified
condition is true. If the condition is false from the start, the loop will not perform even a single cycle. The
syntax is written as follows.

while (condition)
{
// looping code here

148

Chapter 4

}

The while loop is perfect for tasks where it is impossible to know how many times you are going to
have to execute the loop. For example, we could write a page which simulates rolling a dice (by coming
up with a random number between one and six) – and keeps rolling it until it gets a six. However, we
don't know at the time of writing our C# code (or even before we roll the dice), how many rolls we need
to get a six. So, for example, we could write:

Random r = new Random();
int diceRoll = 0;
while (diceRoll != 6)
{
diceRoll = Convert.ToInt32(r.Next(6)) + 1;
message1.Text = message1.Text + "Rolled a: " + diceRoll + "
";

}

The code begins by setting up a variable (diceRoll) that will track the value of our last dice roll. We
initialize it to zero at declaration. We have to do this because we immediately test its value in the while
statement, and if it were to have no value, the code would not compile because the diceRoll variable is
unassigned at the point that it is used.

Next, we begin the loop. In order to avoid an infinite loop, we have to make sure that the loop can end
by providing a way for the diceRoll variable to equal 6. We do this by rolling the dice (or more
truthfully, by creating a random number between 1 and 6 using the random number generator we met
earlier) and storing the value in diceRoll. Then we print some text from the loop.

After the loop has executed once, the test is executed again, this time using the value rolled inside the
loop. If it is not a six, then the loop is run again. If it is a six, then the loop exits.

There is a serious trap that every novice programmer (and plenty of more experienced ones, too!) falls
into: if you start a loop and do not provide the means for it to stop, it will continue forever in an infinite
loop. You must include a way for the condition to change to false (somewhere down the line). Most
current servers will eventually cut off a given ASP.NET page, since the server needs to attend to other
visitors and must optimize its resources. If a page seems to be hung and not loading properly, it could be
due to an infinite loop, and it can effectively cause the web server not to respond to page requests.

Here is an example of an infinite loop in pseudocode (code that explains the idea but does not use
proper syntax). We want to print the names of all the members of our club. In Chapter 8, we will discuss
how to connect to the database. Then we would write code along these lines:

. . .Code to connect to database

. . .Code to read the names into a set of records (RecordSet)
do while Not EndOfRecordSet
LblMEssage += (RecordSet.currentrecord.Name) & "
"
Move to next record

Loop

When we start the loop, we do not know how many cycles we need to perform. However, at the
beginning of each cycle we do a test as follows. First, we read the true/false property of the
EndOfRecordset. If we are not at the end then this property returns a false. Since it is not at the end,

149

Control Structures and Procedural Programming

we want to execute the loop, so we change the false into a true using NOT. With that true returned to
C#, it would execute the loop.

Note the second line within the loop – if we don't move to the next record we would just keep printing
the name from the first record. However, with the Move we get, at some point, to the end of the records
and EndOfRecordSet returns a true. That is turned into a false by the NOT and when the do...while
sees a false in its text expression, it ends looping and jumps down to the next line of code below the
loop. We are not ready to read from databases, but we can code a page that involves chance and thus we
do not know the number of loops to execute.

Try It Out Using the while Loop
1. Open your web page editor and type in the following:

<script language="C#" runat="server">
void Page_load()
{
Random r = new Random();
int diceRoll = 0;
while (diceRoll != 6)
{
diceRoll = Convert.ToInt32(r.Next(6)) + 1;
message1.Text = message1.Text + "Rolled a: " + diceRoll + "
";

}
}

</script>

<html>
<head>
<title>While Loop Example</title>
</head>
<body>
<asp:label id="message1" runat="server"/>

</body>
</html>

2. Save this as Demo-While.aspx. and view it in your browser. You will see Figure 4-8:

Figure 4-8

150

Chapter 4

How It Works
We started by declaring a random number, and a variable to hold our diceroll number:

void Page_load()
{

Random r = new Random();
int diceRoll = 0;

Then we run the loop. If the last dice roll is anything other than a six, we want to roll again, so we use
the inequality operator to tell C# to keep running the loop, so long as the dice roll is not equal to six. We
do this because we want the loop to stop once we have a six:

while (diceRoll != 6)
{
diceRoll = Convert.ToInt32(r.Next(6)) + 1;
message1.Text = message1.Text + "Rolled a: " + diceRoll + "
";

}
}

When diceRoll equals 6 the condition will resolve to false, and the while loop will stop looping. In this
case it is the closing brace that will end the C# code. It is possible for this code to enter an infinite loop.
However, it is highly unlikely that the computer will keep on selecting random numbers forever without
selecting a six at some point.

The do...while Structure
You're not restricted to having the condition at the beginning of your loop. If you want your condition at
the end use the do...while syntax. In this case the loop will be run at least once because C# tests the
condition after the loop.

do
{
// looping code here

} while (condition);

Once thing you should note about this syntax is the semicolon after the while statement. It is required
for the code to compile (and is easily forgotten, if, say, you are converting a while loop into a do...while
loop). So, if you go back to the previous example, you can amend it as follows:

void Page_load() {
Random r = new Random();
int diceRoll;
do
{
diceRoll = Convert.ToInt32(r.Next(6)) + 1;
message1.Text = message1.Text + "Rolled a: " + diceRoll + "
";

} while (diceRoll != 6);
}

151

Control Structures and Procedural Programming

Note that you do not have to assign a dummy value to the diceRoll variable before the loops runs.
This is because the variable is set during the first (and possibly only) run of the loop and is tested
afterwards.

If you save your amended Demo-While.aspx file as Demo-DoWhile.aspx, you will see exactly the
same sort of output (but with different numbers, naturally) as shown in Figure 4-9:

Figure 4-9

We will write a page that simulates rolling a dice (by coming up with a random number between one
and six) – and keeps rolling it until it gets a six. A label on the page tells us the results of each try that
was made. However, we don't know – at the time of writing our C# code, or even before we roll the first
dice – how many times we'll have to roll the dice to get a 6. So, we must use a do...while loop.

Try It Out Using do...while
1. Create a new page TIO-DoWhileLoop.aspx in Ch04 folder and type in the following:

<%@ Page Language="c#" Debug="true" %>
<script runat="server">

void Page_load() {
Random r = new Random();
int diceRoll;

message1.Text = "Lets get started.
";

do
{
diceRoll = Convert.ToInt32(r.Next(6)) + 1;
message1.Text = message1.Text + "Rolled a: " + diceRoll + "
";

} while (diceRoll != 6);

message1.Text += "There is our six.";

}

</script>

152

Chapter 4

<html>
<head>
<title>Do While Loop Example</title>
</head>
<body>
<asp:label id="message1" runat="server"/>

</body>
</html>

2. View this page in your browser as shown in Figure 4-10 and click the Refresh button several
times:

Figure 4-10

How It Works
We started by declaring a variable that will hold the result of the diceRoll. Then we put some text into
Message1.text. This line mainly demonstrates a line before a loop – it will only be executed once.
When you start building complex pages you will need to keep a clear idea of what is inside and outside
of the loop:

<script runat="server">
void Page_load()
{

Random r = new Random();
int diceRoll;
message1.Text = "Lets get started.
";

Then we run the loop. If the last dice roll was anything other than a 6, we want to roll again, so we use
the inequality operator to tell C# to keep running the loop, so long as the dice roll is not equal to six. We
do this because we want the loop to stop once we have a six. We finish with a demonstration of a line
after the loop

do
{

153

Control Structures and Procedural Programming

diceRoll = Convert.ToInt32(r.Next(6)) + 1;
message1.Text = message1.Text + "Rolled a: " + diceRoll + "
";
} while (diceRoll != 6);

}
message1.Text += "There is our six.";

</script>

When diceRoll equals six, it will stop and not execute the contents of the loop, instead jumping to the
next statement beyond the loop.

Modulo example
You came across the modulo (%) operator in the last chapter, and early on in this chapter. Recall that
modulo returns the remainder of a division. You can refer to these sections to jog your memory about
what modulo can do. Here we will apply this operator to our dice example. Open TIO-
WhileLoop.aspx, change the code as shown and save as Demo-Modulo.aspx. This modification will
give the user an encouragement message with every third roll:

<%@ Page Language="C#" debug="true"%>
<script runat="server">

void Page_Load()
{

// demo of modulo where every third try displays an encouraging message
Random objRandom = new Random();
int DiceRoll = 0;
byte bytRollCounter = 0;
Message1.Text = "Lets begin. We'll keep trying until we get a six.
";

while (DiceRoll != 6)
{
// check if we need to show the 'keep trying' message

if(bytRollCounter%3 == 0 && !(bytRollCounter==0))
{

Message1.Text += " Keep trying!
";
} // End If

bytRollCounter +=1;
DiceRoll = Convert.ToInt32(objRandom.Next(6)) + 1;
Message1.Text += "Rolled a: " + DiceRoll + "
";

} // end Loop
Message1.Text += "Got it. Press page refresh to try again.";

} //end void Page_Load()

</script>

Use do...while when actions within the loop absolutely have to occur at least
once no matter what the result of the expression. Use while when there are actions
within the loop that should not execute if the expression is false.

154

Chapter 4

<html>
<head>

<title>Modulo example (using a While Loop)</title>
</head>
<body>

<asp:label id="Message1" runat="server"></asp:label>
</body>
</html>

Test it with several refreshes until a try takes at least three rolls. In this code, we start by creating a
variable that will count our rolls. We can use byte data type with the assumption that we will roll a six in
less then 255 tries. Then in each loop, we increase the value in bytRollCounter. Then we check if
bytRollCounter is evenly divisible by 5, in other words the remainder is zero. If true, we concatenate
the encouragement message as shown in Figure 4-11:

Figure 4-11

The foreach...in Loop
C# has a cousin of the for statement named foreach. It works in a similar way to for, except that it's
only used for elements inside an array or a collection. It is a lot like while, since we don't have to know
the number of members in the collection. We've met several collections in the last chapter: Arrays,
ArrayLists, Hashtables, and SortedLists. For example, we could read all elements of a simple array
into a label as follows (see the download file named Demo-forEach.aspx)

void page_Load()
{
string[] arrCities = new string[3];
arrCities[0]=("London");
arrCities[1]=("Paris");
arrCities[2]=("Munich");

foreach (string item in arrCities)
{

155

Control Structures and Procedural Programming

lblOut.Text += item + "
";
} //end foreach

} //end page_Load()

It looks almost identical to the for structure. The only difference is that you don't have to specify the
number of items you want to loop through; C# will simply start with the first item in the array and then
repeat the loop until it reaches the last item.

Summary
This chapter introduced C# control structures, the tools used to determine the order of execution of lines
of code. Sometimes we use a branching control to choose only one of several alternatives of lines to
execute. At other times, we use a looping structure to consecutively repeat lines of code. We may also
use jumping structures, which are covered in the next chapter.

We started with operators. The equal sign (=) assigns a value into a variable or object property. We can
also use += to make an addition to the existing value in a variable or property. We also covered the
concatenation operator, +, which appends a string of text onto an existing string of text.

We then covered the basic math operators for addition, subtraction, etc. Always keep in mind the
precedence of execution if you have many terms: start in the parentheses, work left to right with
multiplication and division, then left to right with addition and subtraction. Then C# moves to the next
higher level of parentheses. Using parentheses often makes the calculation easier to write and maintain.
Modulo provides the remainder value from a division.

There are three commonly used logical operators. && means AND, which uses two complete expressions
and requires both to be true in order to return a value of true. || means OR, which also uses two
complete expressions but only one has to be true in order to get an overall answer of true. ! means NOT
which reverses the logical value of whatever follows it (if the expression is complicated, it is best to put
it in parenthesis).

if allows us to execute just one of two sets of code. The simplest form only takes one line, but can only
execute one statement for the true case. Adding the braces allows multiple lines to be executed in the
case of the expression being true. If you also use else then you can execute lines in the case where the
expression resolves to false. When you have many possible values for a variable then you can use the
switch structure rather than heavily nested if structures.

When looping you must decide on (if you know, at the time the loop starts) the number of loops you
intend to execute. If you can determine the number of loops needed to be performed, use the for loop
structure. Be careful about the lines that go in the loop and the ones that should be before or after the
loop. If you do not know the number of iterations required, you use the while or do loops that perform
a test at each cycle and either loop again, or stop. It never executes a loop if the expression is false. The
do...while looping structure always executes at least once because the test is not performed until the
end of the first loop. If you need to loop through code that affects each member of a collection
(arraylist, hashtable, etc.) then use foreach...in looping structure. C# will automatically perform
the loop once on each member of the collection.

This chapter covered branching and looping structures. The next chapter will cover jumping structures

156

Chapter 4

Exercises
1. For each of the following Boolean expressions, say for what integer values of A each of them will

evaluate to true and when they will evaluate to false:

❑ NOT A=0

❑ A > 0 OR A < 5

❑ NOT A > 0 OR A < 5

❑ A > 1 AND A < 5 OR A > 7 AND A < 10

❑ A < 10 OR A > 12 AND NOT A > 20

2. Suggest a loop structure that would be appropriate for each of the following scenarios and
justify your choice:

❑ Displaying a set of items from a shopping list stored in an array

❑ Displaying a calendar for the current month

❑ Looking through an array to find the location of a specific entry

❑ Drawing a chessboard using an HTML table

3. Write a page that generates ten random numbers between two integers provided by the user in
text boxes.

157

Control Structures and Procedural Programming

5
Functions

In the last chapter, we mentioned three ways to sequence the execution of C# code within your
ASP.NET page: branching, looping, and jumping. We have already discussed branching and
looping and will now discuss jumping structures. Jumping is used when we want to leave the
execution of our main code midway and jump over to execute another block of code. After
executing the block, we return to our main code.

Jumping makes it easier to create and maintain code for many reasons, and is therefore, an
important skill for programmers. This chapter will cover the following topics:

❑ Defining and using simple functions

❑ Passing parameters to functions

❑ Using the return value from a function

❑ Passing parameters by value and by reference

❑ Good practices

Overview
Jumping structures allow the programmer to halt the execution of the main code and jump to
another block of code. This block of code is called a function. ("Later, when we look at classes in
Chapter 7, we will also refer to it as a method.") After the function has run, execution returns to the
main code again. Functions will come in handy as you write more and more ASP.NET code, and
begin to find that you need to use the same code in more than one place. Then you just write a
function containing that particular code, and execute it as many times as you like.

For example, you may have written a function called ShowOrder() that displays the goods that a
customer has ordered. For C# to display this output, you don't have to rewrite or copy all of that
code into the body of code. Instead, just have C# jump out of your current code, execute the
ShowOrder() function, and then come back and continue executing the original code.

Modularization
The process of dividing one large program into several smaller, interlocking parts is called
modularization. This term can be applied to several instances; for example, we already modularize our
page into an HTML section and a script section. Within the script section, we can further modularize our
code by creating functions as described in this chapter. Later, we will discuss moving code to its own
page (covered in Chapter 12). An additional level of modularization is to move code out into objects that
exist completely independently of the page, something that we will cover in Chapter 7. Let's take a
moment to discuss the advantages of modularization.

❑ Easier to write: Instead of trying to organize an entire project in your mind, you can focus on just
code that performs a specific job in a module. Then, you can move on to the specific job of
another module. Many studies show that this type of programming, if properly planned, results
in better code with development done sooner and cheaper.

❑ Easier to read and maintain: A programmer looking at the code for the first time can quickly
grasp the objectives of each section if sections are independent. Not only is each module clearer,
but a reader also has an easier time tracing the flow of a program from section to section.

❑ Facilitates testing and troubleshooting: You can test modules independently without worrying
about errors introduced by the rest of the code. If you know a particular module works without
error and then plug it into an untested module, you can narrow down the causes of any errors
to the untested module or to the interface between the two.

❑ Multiple programmers can work together: Each group of programmers can focus on one
objective that will be self-contained within a module. The important management issue is to
have each module clearly defined in terms of its purpose, input, and output. In more advanced
forms of modularization (particularly objects), different teams can even work in different
languages. .NET provides for a common interface for modules to interchange information.

❑ Code reuse: Many tasks (such as the display of a shopping cart's current value) must be repeated
at many points on a page or on a Web site. If you put 100 lines of code in one module and call it
ten times in your code, that's 890 lines of code you've saved.

❑ Good stepping stone: Ultimately, you will want to use the more sophisticated techniques of
code-behind and objects, but before you get there, it is a good practice to think and act modular
within your simple script tags.

Programmers must keep their designs straight especially if their code calls functions. These calls can be
several layers deep and are easy to conceptualize with a diagram such as Figure 5-1:

160

Chapter 5

Figure 5-1

Defining and Using Functions
Functions are easy to write; let's look at a simple example where we write a function in our Web page
and call it. We'll start with a basic function that doesn't exchange any information with the rest of the
page and then move on to more complex code.

Try It Out Defining and Using a Simple Function
1. Create a new ASP.NET page called SimpleFunction.aspx and save it in your Ch05 folder.

2. Add the following code to the file in the All view:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{

lblMessage.Text = "First Line";
InsertLinebreak();
lblMessage.Text += "Second Line";
InsertLinebreak();
lblMessage.Text += "Third Line";
InsertLinebreak();

}

void InsertLinebreak()
{

lblMessage.Text += "
<hr>";
}

</script>
<html>
<head>

<title>Simple Function Example</title>
</head>

161

Functions

<body>
<form runat="server">

<asp:Label id="lblMessage" runat="server"></asp:Label>
</form>

</body>
</html>

3. Save the code and see the page in your browser (Figure 5-2):

Figure 5-2

How It Works
The layout of SimpleFunction.aspx is very straightforward. It is a blank page containing only a
Label control called lblMessage.

<body>
<form runat="server">

<asp:Label id="lblMessage" runat="server"></asp:Label>
</form>

</body>

In the <script> block, we define a function called InsertLinebreak() to insert a horizontal line and a
line break at the end of the text string displayed in lblMessage.

void InsertLinebreak()
{

lblMessage.Text += "
<hr>";
}

When the page is loaded, ASP.NET calls Page_Load() and the first line of the code is executed. When
the second line of code is executed, Page_Load() calls (or invokes) our function InsertLinebreak().
Call is the term for one line of code running another block of code, after which execution returns to the
calling code.

void Page_Load()
{

lblMessage.Text = "First Line";

162

Chapter 5

InsertLinebreak();
lblMessage.Text += "Second Line";
InsertLinebreak();
lblMessage.Text += "Third Line";
InsertLinebreak();

}

The line of code in InsertLinebreak() is executed, and then control returns to the next line in
Page_Load(). This switching of execution continues until the end of Page_Load(), and then control is
handed back to ASP.NET. InsertLinebreak() will be called three times every time Page_Load()
executes.

Now if we want to change the style of the line break in SimpleFunction.aspx, we only need to change
the code in InsertLinebreak(). If we had not used a function, we would have had to rewrite the line
creation code three times in the main code. Even in such a simple example, we can see the advantages of
using functions.

You would have noticed that Page_Load() looks remarkably similar to InsertLinebreak() in terms
of its structure:

void InsertLineBreak()
{

...
}

void Page_Load()
{

...
}

This is because Page_Load() is, in fact, a function, although of a special type because ASP.NET already
knows about it without any help from us. Inside ASP.NET, there are several functions that can be
executed at times without a call from your code. Page_Load(), for example, is automatically called
whenever a page is loaded from the server. These pre-defined functions are associated with events and
will be discussed in the next chapter.

Before moving on, there are a few more basics to be aware of while using functions:

❑ All function definitions have the same basic structure as Page_Load() and
InsertLinebreak(), although they are usually a little more complicated. The following
snippet shows the general structure of a function in C#:

<accessType> <returnType> FunctionName (<parameter1, parameter2, ...,
parameterX>)

{
...

}

You'll learn more about return types and parameters later on in this chapter. The top line of a
function's definition is called the function's signature.

163

Functions

❑ You can give functions any name you like provided it begins with a letter and only contains
letters, numbers, and underscore characters. So InsertLinebreak(), tequila(), and
z12_y32() are fine, but _hello(), and 28DaysLater() are not. Also, try to give them sensible
and easy to remember names pertinent to the code functionality. Note also that C# is case-
sensitive. This means that calling HELLOMUM() will execute only if the function called is
HELLOMUM(), and not HelloMum() or hellomum()!

❑ Parentheses are used both in the function definition and when we call the function. Their
presence is mandatory. If you don't use them, the page won't run.

The () characters are referred to as parentheses in American English and as brackets in European
English. In American English, brackets imply []. However, we will use the term parentheses in this
chapter to refer to (), which are the characters of interest for writing functions.

❑ If you have more than one function in a <script>, include a line of documentation in your
code so that it is apparent what they do and how they do it. C# uses two slashes (//) to
delineate a single line of documentation and /* ... */ to denote multiple lines. For example:

// InsertLineBreak adds a line break and horizontal rule to the text
void InsertLineBreak()
{

...
}

/* Page_Load is a special type of function. It is associated with a
pre-defined event. In this case it writes some text to a Label control

*/
void Page_Load()
{

...
}

❑ You cannot nest function definitions within one another. Therefore, they go inside our script
tags at the same level as our Page_Load() code.

Right then! On to slightly more complex functions. Our SimpleFunction.aspx example above has a
weakness in that it is inflexible. We can't use it to insert two lines at once or reuse it to change the
contents of any other label. Also, the code will work only when we have a Label control named
lblMessage. Our InsertLinebreak() function is of no use if we want lines added to the text of
another Label control, say lblMessageTwo. Passing parameters can solve this problem.

Passing Parameters to Functions
You can make functions more versatile by including parameters. A parameter (also called an argument) is
a piece of data that is passed to the function. This allows the behavior of the function to be varied from
one execution to the next. The result of calling the function will depend on data sent from the code when
you make the call.

164

Chapter 5

The basic syntax is not too difficult. When creating a function that uses a parameter, we simply declare
the name of the parameter and its type inside the parentheses following the function's name. For
example, you could define a function that takes an integer parameter called MyInteger. The value of
this parameter is then available for use within the function:

void SomeFunction(int MyInteger)
{

... code that uses the value held in MyInteger
}

When you call a function that expects an argument, place the value of the argument in the parentheses
after its name. For example, you could pass the integer 1050 to a function, say, SomeFunction() as
follows:

SomeFunction(1050);

1050 will be stored in the block variable named MyInteger. Functions can receive more than one
argument as long as a comma separates each parameter – a combination of both name and datatype. In
the following example, the code at the bottom calls MyFunction() and passes two values – the first, a
string (in quotes) and the second, a number:

void MyFunction(string MyParameter1, int MyParameter2)
{

... code that uses the values held in MyParameter1 and myParameter2
}

MyFunction("myText", myNumber);

As you can see, variables or strings can both be used as parameters for functions – in fact, you can use
anything that can be evaluated to a value – mathematical or logical expressions, numbers, or an object's
property (like the Text property of a TextBox Web control).

Let's try this out with an example. We're going to expand on our previous example here by giving
InsertLinebreak() two parameters to work with. These will determine the number and width of
horizontal rules to generate between lines.

Try It Out Functions with Parameters
1. Create a new ASP.NET page called FuncWithParameters.aspx and save it in your Ch05

folder.

2. Add the following code to your page in the All view:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{

if (IsPostBack)
{

lblMessage.Text = "First Line";
InsertLinebreak(Convert.ToInt32(NumberOptions.SelectedItem.Value),

165

Functions

Convert.ToInt32(WidthOptions.SelectedItem.Value));
lblMessage.Text += "Second Line";
InsertLinebreak(Convert.ToInt32(NumberOptions.SelectedItem.Value),

Convert.ToInt32(WidthOptions.SelectedItem.Value));
}

}

void InsertLinebreak(int NumLines, int Width)
{

for (int i=1; i<=NumLines; i++)
{

lblMessage.Text += "
<hr width='" + Width.ToString() +
"' align='left'>";

}
}

</script>
<html>
<head>

<title>Using Functions with Parameters</title>
</head>
<body>

Choose the number and width of the linebreaks and then press submit
<form runat="server">

<asp:RadioButtonList id="WidthOptions" runat="server">
<asp:ListItem value="100">100 pixels wide</asp:ListItem>
<asp:ListItem value="300">300 pixels wide</asp:ListItem>
<asp:ListItem value="600">600 pixels wide</asp:ListItem>

</asp:RadioButtonList>
<asp:DropDownList id="NumberOptions" runat="server">

<asp:ListItem value="1">1 Line</asp:ListItem>
<asp:ListItem value="2">2 Lines</asp:ListItem>
<asp:ListItem value="3">3 Lines</asp:ListItem>

</asp:DropDownList>
<asp:Button id="Button1" runat="server" text="Submit"></asp:Button>

<asp:Label id="lblMessage" runat="server"></asp:Label>

</form>
</body>
</html>

3. Save the code and open the page in your browser. It should appear as in Figure 5-3:

166

Chapter 5

Figure 5-3

How It Works
This example builds on the SimpleFunction.aspx page you saw in the previous Try-It-Out section. It
has the same Label control, lblMessage, but more sophisticated input controls have been added to get
the user's preference for how to format the horizontal rules. (Later these will be passed to the function
that creates the rules.) The radio button group offers a choice of widths and the drop down list provides
a choice of the number of lines to produce:

<form runat="server">
<asp:RadioButtonList id="WidthOptions" runat="server">

<asp:ListItem value="100">100 pixels wide</asp:ListItem>
<asp:ListItem value="300">300 pixels wide</asp:ListItem>
<asp:ListItem value="600">600 pixels wide</asp:ListItem>

</asp:RadioButtonList>
<asp:DropDownList id="NumberOptions" runat="server">

<asp:ListItem value="1">1 Line</asp:ListItem>
<asp:ListItem value="2">2 Lines</asp:ListItem>
<asp:ListItem value="3">3 Lines</asp:ListItem>

</asp:DropDownList>

There's also a button that needs to be clicked to indicate that the choices have been made:

<asp:Button id="Button1" runat="server" text="Submit"></asp:Button>

<asp:Label id="lblMessage" runat="server"></asp:Label>

</form>

167

Functions

Now let's take a look at the function in the page. Note that it is within the <script> tags but not inside
any other functions. Furthermore, it has the correct structure as noted earlier. The first line is of interest
because this is where our parameters are set up. The first parameter sets the number of lines to create
and the second sets the line widths. Both parameters are marked as integers. Within the function we do a
simple loop that appends text to the end of lblMessage.Text.

Note how the value from the Width parameter is first cast from an integer into text, and then appended
directly to the string so that it becomes a valid HTML attribute of the <hr> tag:

void InsertLinebreak(int NumLines, int Width)
{

for (int i=1; i<=NumLines; i++)
{

lblMessage.Text += "
<hr width='" + Width.ToString() +
"' align='left'>";

}
}

Now that we have input and output controls on the form and a function to do the work, we are ready to
call the function from our main code. We do this from Page_Load() since we know that it will execute
automatically. Page_Load() first checks if we are in postback mode, which implies that the choice of the
number and width of lines has been made. We then write First Line into lblMessage.Text and call
InsertLinebreak() to add our lines, remembering to pass the two parameters that it requires.

The first parameter for the number of lines to display is the value of the item selected in the drop down list.
The second parameter for the width of the lines is the value of the selection in the Radio button group. Note
that both values are initially strings and must be converted to integers before they are passed to the
function:

void Page_Load()

{

if (IsPostBack)

{

lblMessage.Text = "First Line";
InsertLinebreak(Convert.ToInt32(NumberOptions.SelectedItem.Value),

Convert.ToInt32(WidthOptions.SelectedItem.Value));

We then write Second Line into lblMessage.Text and call InsertLinebreak() again.

lblMessage.Text += "Second Line";

InsertLinebreak(Convert.ToInt32(NumberOptions.SelectedItem.Value),

Convert.ToInt32(WidthOptions.SelectedItem.Value));

}

}

This example demonstrated several points. First, we looked at the syntax of a function that uses
parameters. We also looked at a couple of Web controls (a radio button group and a dropdown list) that
can be used to get information and pass it as a parameter. Within the function, we practiced how to use
this data in code.

168

Chapter 5

Finally, we saw that the values we gave our parameters had to be of the same type as we defined in the
function's signature. In fact, when we call a function, the parameters must exactly match the definitions
specified in the function signature. This means matching the parameter types, the number of
parameters, and the order of the parameters. Thus the following call to InsertLinebreak() is valid:

InsertLinebreak (5, 120);

However, the following calls to InsertLinebreak() are not valid:

InsertLinebreak("five", 120);
InsertLinebreak(5, 120, now!);

There is a technique known as overloading functions that can get around this problem (discussed in
Chapter 7). Likewise, the problem of not knowing how many parameters a function will be sent can be
resolved by using a parameter array in your function definition, but that is outside the scope of this
book.

For more information on function overloading and parameter arrays, take a look at Beginning Visual C#
by Karli Watson, Wrox Press, ISBN 0-7645-4382-2.

Web Controls as Parameters
It's worth noting that when you want to pass the name of a Web control object to a function as a
parameter, you need to be on your toes. Let's say you want to write a generic function that will change
the font size of a Label control and that this function will accept one parameter, the name of the control.
At first, you might think that you need to pass a string containing the name of the Label control to the
function. No. All the function will get is the literal text lblMyLabel. Rather, you want the reference to be
to the Label control object itself.

When passing a Web control reference, you must declare its type as one of the Web controls:

void MyFunction(TextBox target)
void MyFunction(Label target)
void MyFunction(Button target)
void MyFunction(CheckBox target)

Within the function, after we declare a Web control type we can refer to the Web control by the name we
gave it within parentheses. In the following case, this name would be target:

void MakeFancy(Label target)
{

target.BackColor = Drawing.Color.Red;
target.Font.Size = FontUnit.Large;

}

Let's try this out in an example. In this example, we're going to create a simple page containing three
Label controls that already contain text. The text of any of these controls can be changed to italics
according to the state of a checkbox. The process of changing a label's style to italic should be coded once
in a function. This single function can then be used to change any of the three labels to italics:

169

Functions

Try It Out Using Web Controls as Parameters
1. Create a new ASP.NET page called ParameterWebControl.aspx and save it in your Ch05

folder.

2. Add the following code to this page:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{

MakeItalic(Label1, CheckBox1.Checked);
MakeItalic(Label2, CheckBox2.Checked);
MakeItalic(Label3, CheckBox3.Checked);

}

void MakeItalic(Label TargetLabel, bool ItalicYN)
{

TargetLabel.Font.Italic = ItalicYN;
}

</script>
<html>
<head>

<title>Chapter 5 : Parameter Web Controls</title>
</head>
<body>

<form runat="server">
<table>

<tbody>
<tr>

<td>
<asp:CheckBox id="CheckBox1"

runat="server"></asp:CheckBox>
</td>
<td>

<asp:CheckBox id="CheckBox2"
runat="server"></asp:CheckBox>

</td>
<td>

<asp:CheckBox id="CheckBox3"
runat="server"></asp:CheckBox>

</td>
</tr>
<tr>

<td>
<asp:Label id="Label1" runat="server"

text="apple"></asp:Label></td>
<td>

<asp:Label id="Label2" runat="server"
text="banana"></asp:Label></td>

<td>

170

Chapter 5

<asp:Label id="Label3" runat="server"
text="carrot"></asp:Label></td>

</tr>
</tbody>

</table>
<asp:Button id="Button1" runat="server"

Text="Change Font Style"></asp:Button>
</form>

</body>
</html>

3. Save the code and open the page in your browser (see Figure 5-4):

Figure 5-4

How It Works
In this example, we've used a table to align the checkboxes with their corresponding labels. The first row
consists of checkboxes:

<form runat="server">
<table>

<tbody>
<tr>

<td>
<asp:CheckBox id="CheckBox1"

runat="server"></asp:CheckBox>
</td>
<td>

<asp:CheckBox id="CheckBox2"
runat="server"></asp:CheckBox>

</td>
<td>

<asp:CheckBox id="CheckBox3"
runat="server"></asp:CheckBox>

</td>
</tr>

171

Functions

The second row contains labels displaying the names of fruits. Make a mental note of their IDs – these
are used to refer to the controls in your code:

<tr>
<td>

<asp:Label id="Label1" runat="server"
text="apple"></asp:Label></td>

<td>
<asp:Label id="Label2" runat="server"

text="banana"></asp:Label></td>
<td>

<asp:Label id="Label3" runat="server"
text="carrot"></asp:Label></td>

</tr>
</tbody>

</table>

Also notice that underneath the table is a button to notify ASP.NET that you've made your choice of
labels to change:

<asp:Button id="Button1" runat="server"

Text="Change Font Style"></asp:Button>

</form>

Our MakeItalic() function receives two parameters and can be found inside the <script> tags. The
first parameter is a reference to an ASP.NET Label Web control; therefore it must be of the datatype
Label. The second parameter is a Boolean value that will be used to toggle the italicization of the text:

void MakeItalic(Label TargetLabel, bool ItalicYN)

Inside the function, we can refer to the label by using the name assigned to it in the function signature,
in this case, TargetLabel. Observe that we must use the C# object model syntax to refer to the label's
properties. Therefore, we use TargetLabel.Font.Italic to set the style of the label's text rather than
HTML attribute syntax such as <p style="font-style: italic;">.

Lastly, notice how the second parameter has been used. The ItalicYN property has only two settings,
true or false. Since a Boolean variable comes in as true or false, we can directly use that as the value
for a Web control property:

{

TargetLabel.Font.Italic = ItalicYN;

}

Now it is time to actually call the function. As we've seen, we need to pass two variables to
MakeItalic(). The first is the name of the Label control that it should modify. The second is a Boolean
value that conveys whether we want the italicization turned on or off. Conveniently, the CheckBox Web
control's Checked property contains a true if the check is on and a false if the check is off, so we do
not need to do any testing or transformation; we just need to type the object.property reference into
the parameter and its value is passed to the function:

172

Chapter 5

void Page_Load()
{

MakeItalic(Label1, CheckBox1.Checked);
MakeItalic(Label2, CheckBox2.Checked);
MakeItalic(Label3, CheckBox3.Checked);

}

A good question arises when you study this code. In the form, instead of three independent CheckBox
controls, why not use a asp:CheckBoxList and then have the three calls made to MakeItalic() in a
loop with the counter equal to CheckBoxList.Item()? The problem is that we want to present the
page in a table, and table tags like <td> do not co-exist well with code to add items to a CheckBoxList.
An alternate solution would be to use a DataGrid bound to an array. (See Chapter 8 and 9 for more on a
DataGrid.)

Return Values
So far in this chapter, we've only looked at functions that perform a job without returning a value. Now
it's time to look at those that perform a job and then send a piece of information back to the calling code.
If you'll recall, the generic structure of a function looks like this:

<accessType> <returnType> FunctionName (<parameter1, parameter2, ...,
parameterX>)

{
...

}

So then, in order to define a function that returns a value to the calling code, you need to replace
<returnType> with the type of the value the calling code will receive. Previously, we've used void to
indicate there is no return value. We'll also now need to include the return keyword to end the function
and send the return value back to the calling code. As an example, here is a function that adds two
integer parameters together and returns the result:

int Add(int IntegerOne, int IntegerTwo)
{

return IntegerOne + IntegerTwo;
}

Note that functions return only a single piece of data. A common error that a beginning programmer
makes is attempting to write a function that returns multiple values, which isn't possible. It is possible,
however, to return a single custom object that has multiple properties and, consequently, multiple
values. We'll look at this further in Chapter 7.

Using Return Values in Your Code
You can call a function that returns a value by typing its name followed by a pair of parentheses, just like
any other function:

MyFunction();

173

Functions

However, unless you handle the returned value, by assigning it to a variable for example, your code will
not compile and return an error:

MyVariable = MyFunction();

Another mistake, frequently seen with beginners developing functions, is that they fail to handle the
returned value. A function call cannot exist by itself on a line if it returns a value; the returned value
must go into something. The most common receivers of a function's return value are:

❑ A variable

❑ A property of an object

❑ An argument for another function

❑ An expression in a control structure

Let's look at an example of each of the four ways to use a function's return value in pseudo code, and
then we will try them out in an exercise. To cut down on space we won't present the forms below. You
can assume that we have various labels and text boxes in a form as needed by the code. In addition, the
lower portion of each example would be within Page_Load(). Of course the functions would be outside
Page_Load() because we cannot nest one function inside another. However, all the functions would be
within the <script> tags.

The following example demonstrates allocating the return value of a function to a variable named
WholesalePrice:

decimal WholesaleCostLookUp(int CatalogNumber)
{
... code that takes a catalog number and looks up the price in the database
... code that will RETURN the price
}
...
decimal WholesalePrice = WholesaleCostLookUp(txtCatalogNumber.Text);

In the following example, we assign the return value of a function to the value of an object's property,
namely the Text property of lblItemName. Notice that the function expects an integer in the parameter,
but the TextBox.Text property is a string. It must be converted to an integer prior to using it as an
argument for our custom-built function NameLookUp():

string NameLookUp(int CatalogNumber)
{
... code that takes a catalog number and looks up the item's name in the

database
... code that will RETURN the name
}
...
lblItemName.Text = NameLookUp(Convert.ToInt32(txtCatNumber.Text));

The following example demonstrates how the return value of a function can be used as an expression in a
control structure. Note that the value returned is Boolean and can be used as a whole expression; there's
no need for an additional value=true expression:

bool IsMember(int maybeNumber)
{

174

Chapter 5

... code that looks up a number and sees if it is a true member number or not.

... code that will RETURN a Boolean
}
...
if (IsMember(SomeNumber))
{

lblMember.Text = "You are a member";
}
else
{

lblMember.Text = "You are not a member";
}

Our last example demonstrates how the return value of a function can be used as an argument for
another function. In this case, the function retrieves a user's password (because he has forgotten it). In
the latter half of the code, the result of the function (the password) is used as an argument for the
function named EmailPassword() that sends the password to the user through email.
EmailPassword(), in turn, returns a Boolean value to say whether it has completed its task or not and
so must have a receiver for its output, which in this case is the Boolean EmailOnItsWay variable:

string GetPassword(string UserName)
{
... code which retrieves the users password
... code that will RETURN a string
}
...
bool EmailOnItsWay = EmailPassword(GetPassword(user), EmailAddress);

Having seen the pseudo code of several function examples, let's move on to a working exercise. Our
objective in this exercise is to write and use functions that will demonstrate different ways of handling
the results of a function, as explained earlier: assigning the results to a variable, allocating the results to
an object's property, using the result as the argument for another function, and using the result as an
expression in a control structure.

Try It Out Handling Function Return Types
Note that the entire exercise is run on four parallel tracks: four functions, four output labels, and four
sections of code that call the functions. For input, we have just two text boxes and a Submit button.

1. Create a new ASP.NET page called Functions.aspx and save it in your Ch05 folder.

2. Add the four functions to your page. The first function is named Disguise(), and its return
value will be put into a variable. Disguise() performs a simple encoding on a string of
characters by moving each character one up in turn. So for example, a becomes b, b becomes c,
and so on. The input parameters and output are of the string datatype. The results will be
displayed in the lblDisguised control:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

// 'Disguises' a string by adding one to each characters ASCII value
string Disguise(string String1)

175

Functions

{
string DisguisedString;
Byte[] myBytes = System.Text.Encoding.ASCII.GetBytes(String1);
for (int i=0;i<myBytes.Length;i++)
{

myBytes[i] += 1;
}
char[] myChars=System.Text.Encoding.ASCII.GetChars(myBytes);
DisguisedString = new string(myChars);
return DisguisedString;

}

3. The second function is named JoinWithDash(), and its return value will be put into an object's
property. JoinWithDash() takes two text strings and concatenates them with a dash in the
middle. Input parameters and the output are of type string. We use JoinWithDash() to join the
two strings in the textboxes and then we display the results using lblJoinedText:

// Returns a concatenation of two texts with a separating hyphen
string JoinWithDash(string String1, string String2)
{

return String1 + " - " + String2;
}

4. The third function is named Blank(), and its return value will be used as an the argument of
another function. Blank() returns a string of asterisks that is the same length as the string it
receives as a parameter. Both input and output parameters are of type string. We use
JoinWithDash() to join the two strings in the textboxes and then use that long string as the
argument for Blank(). The result is displayed using lblJoinedAndBlanked:

// Returns the string, replacing all characters with asterisks
string Blank(string String1)
{

string BlankString = "";
for (int i=1; i <= String1.Length; i++)
{

BlankString += "*";
}
return BlankString;

}

5. The fourth and final function is named IsString1Longer(), and its return value will be put
into an expression used within a control structure. IsString1Longer() returns a true or
false – true if the first string parameter is longer then the second string parameter, and false
if the first string is smaller or equal in length to the second parameter. IsString1Longer() has
two input parameters of type string and it returns a Boolean value:

// Checks if string1 is longer than string2. Returns true if this is so.
bool IsString1Longer(string String1, string String2)
{

return (String1.Length > String2.Length);
}

176

Chapter 5

6. To finish our code, we need to add the Page_Load() function to call our functions and the
various controls we require to feed our functions and display the results:

void Page_Load()
{

if (IsPostBack)
{

// Assign the result of Disguise() to a variable named
//DisguisedWord
string DisguisedWord = Disguise(txtIn1.Text);
lblDisguised.Text = DisguisedWord;

// Assign the result of JoinWithDash() to the property of an
//object
lblJoinedText.Text = JoinWithDash(txtIn1.Text, txtIn2.Text);
// Use the result of JoinWithDash() as the argument of Blank()
lblJoinedAndBlanked.Text =

Blank(JoinWithDash(txtIn1.Text, txtIn2.Text));

// Use the result of IsString1Longer() as the expression
// in a control structure
if (IsString1Longer(txtIn1.Text, txtIn2.Text))
{

lblCompareLengths.Text = "String one is longer than string
two.";

}
else
{

lblCompareLengths.Text =
"String one is shorter than or the same length as string

two.";
}

}
}

</script>
<html>
<head>

<title>Chapter 5 : Using Functions Which Return Values</title>
</head>
<body>

<form runat="server">
<asp:TextBox id="txtIn1" runat="server"></asp:TextBox>

<asp:TextBox id="txtIn2" runat="server"></asp:TextBox>

<asp:Button id="Button1" runat="server" Text="Submit"></asp:Button>

Function used in a variable:
<asp:Label id="lblDisguised" runat="server"></asp:Label>

Function used as value for an object property:
<asp:Label id="lblJoinedText" runat="server"></asp:Label>

Function used as an argument in another function:
<asp:Label id="lblJoinedAndBlanked" runat="server"></asp:Label>

177

Functions

Function used as an expression:
<asp:Label id="lblCompareLengths" runat="server"></asp:Label>

</form>
</body>
</html>

7. Save the code and open the page in your browser (Figure 5-5)

Figure 5-5

How It Works
Carefully read the documentation in the earlier section, Using Return Values In Your Code, because that
explains our overall purpose and approach. Remember that the code is written in four parallel tracks,
one for each way to use a function's results. We have four functions, four output labels, and four sections
that use the functions. In addition, as good modularization requires good documentation, we have
documented the purpose of each function.

Let's take a quick look at the form. We use two textboxes for accepting input and a Submit button:

<form runat="server">
<asp:TextBox id="txtIn1" runat="server"></asp:TextBox>

<asp:TextBox id="txtIn2" runat="server"></asp:TextBox>

<asp:Button id="Button1" runat="server" Text="Submit"></asp:Button>

Next, let's look at the four functions and how they are used. In each case, we will look at how the
function is called, the function itself, and then the label used to display output.

In the first case, our objective is to demonstrate how to use a variable as a receiver for the function
Disguise(). The function receives a string that is then converted into an array of bytes (numbers

178

Chapter 5

between 0 and 255). Each byte represents the ASCII value for every character in the string. Then we loop
through the array and add one to each value. Finally, we convert the ASCII values back into characters
and assemble them into a string.

Disguise() is called by Page_Load(), which takes its return value and puts it into a variable called
DisguisedWord. This variable is used as the source for the value in lblDisguised.Text:

// Assign the result of Disguise() to a variable named DisguisedWord
string DisguisedWord = Disguise(txtIn1.Text);
lblDisguised.Text = DisguisedWord;

...

// 'Disguises' a string by adding one to each characters ASCII value
string Disguise(string String1)
{

string DisguisedString;
Byte[] myBytes = System.Text.Encoding.ASCII.GetBytes(String1);
for (int i=0;i<myBytes.Length;i++)
{

myBytes[i] += 1;
}
char[] myChars=System.Text.Encoding.ASCII.GetChars(myBytes);
DisguisedString = new string(myChars);
return DisguisedString;

}

...

Function used in a variable:
<asp:Label id="lblDisguised" runat="server"></asp:Label>

In the second example, we use the output of the JoinWithDash() function to set the value in an object's
property. Here our function performs the simple task of taking two string parameters and concatenating
them with a hyphen in the middle. Therefore the text at the top of the following listing must pass two
parameters to the function:

// Assign the result of JoinWithDash() to the property of an object
lblJoinedText.Text = JoinWithDash(txtIn1.Text, txtIn2.Text);

...

// Returns a concatenation of two texts with a separating hyphen
string JoinWithDash(string String1, string String2)
{

return String1 + " - " + String2;
}

...

Function used as value for an object property:
<asp:Label id="lblJoinedText" runat="server"></asp:Label>

179

Functions

The third example joins together the two input texts with JoinWithDash() and uses the output as the
argument of another function called Blank(). This function requires a string as input. Instead of
providing a literal string (like "apple") we provide our string as the return value from the
JoinWithDash() function. Blank() works by using a for loop to create a string called BlankString,
which contains the same number of asterisks as the number of characters in the input string:

// Use the result of JoinWithDash() as the argument of Blank()
lblJoinedAndBlanked.Text = Blank(JoinWithDash(txtIn1.Text, txtIn2.Text));

...

// Returns the string, replacing all characters with asterisks
string Blank(string String1)
{

string BlankString = "";
for (int i=1; i <= String1.Length; i++)
{

BlankString += "*";
}
return BlankString;

}

...

Function used as an argument in another function:
<asp:Label id="lblJoinedAndBlanked" runat="server"></asp:Label>

The last example is the most interesting because it uses the output of a function as a very small and clean
expression. The function IsString1Longer() takes in two strings. If the number of characters in the
first string is greater than the number of characters in the second string, it returns a Boolean value of
true. If not, it returns false:

// Use the result of IsString1Longer() as the expression
// in a control structure
if (IsString1Longer(txtIn1.Text, txtIn2.Text))
{

lblCompareLengths.Text = "String one is longer than string two.";
}
else
{

lblCompareLengths.Text =
"String one is shorter than or the same length as string two.";

}

...

// Checks if string1 is longer than string2. Returns true if this is so
bool IsString1Longer(string String1, string String2)
{

return (String1.Length > String2.Length);
}

...

Function used as an expression:
<asp:Label id="lblCompareLengths" runat="server"></asp:Label>

180

Chapter 5

Note that we do not have to write = or > in the if statement expression. Since IsString1Longer()
returns either true or false, it is sufficient for the if statement to perform its branch.

In addition, bear in mind that it is often worth returning a value even when there isn't a logical result to
return. For example, let's say you wrote a function for adding some values to a database. You could just
say the return type is void, but it could be more useful to return a value indicating the successful
completion of its task. For example, your database function might return a positive integer value
indicating the number of records it successfully affected or an error code of a negative value to reflect
that the task failed. When your main code runs the function, it checks the return value for a positive or
negative value and either carries on or goes into an error-reporting mode.

Value, Reference, and Out Parameters
So far in this chapter, all functions we have written have behaved in the same way. When a value is
passed as a parameter, the value is copied and the copy is passed into a parameter and assigned to an
internal variable. Any changes made to the value in the function have no effect on the value in the
original source. This is known as passing a parameter by value. There are, however, two other ways to
use parameters that we shall investigate.

In the second method, the parameter is passed by reference, which means that instead of passing the
actual value into the function, we just pass a pointer to the original value in the calling code. Any
changes made to the value in the function are actually made to the value in the calling code.

In the third method, the parameter is an out parameter. This is much like a parameter passed by reference
in that any changes made to the value in the function are also made to the value in the calling code but
with a couple of differences.

❑ An out parameter need not have been assigned a value before it is passed to the function. One
passed by reference must necessarily have a value.

❑ Even if it does have a value, the function initially treats it as though it has no value. Any prior
value that an out parameter has in the calling code is lost. However, the function must assign a
value to the out parameter before it finishes executing.

Let's look at some examples and the implications for each of these techniques.

By default, simple data values are passed to functions by value in C#. This means that when the
parameter variables are created inside the function, they are all set up to have the value that was passed
in. This may seem like it goes without saying, but has some subtle consequences. Effectively, it means
that inside a function, we are working with a copy of the original data. Look at the following code
(available in code download as PassingByValue.aspx):

<%@ Page Language="C#" %>
<script runat="server">

void Page_Load()
{

int a = 1;
Increment(a);

181

Functions

lblMessage.Text = a.ToString();
}

void Increment(int Number)
{

Number += 1;
}

</script>

<html>
<head>

<title>Chapter 5 - Demonstration of Passing a Parameter by Value</title>
</head>
<body>

<asp:Label id="lblMessage" runat="server"></asp:Label>
</body>
</html>

This is a function that takes an integer as a parameter and increments it. When you use this function
from Page_Load(), a variable containing the number 1 is passed in, but when you display the contents
of this variable, you'll find that it hasn't been incremented. This is because the data is passed by value.
Passing by value means that a copy is made for the function to play with and that the data in the calling
code is left untouched.

When Increment(a) is called in the preceding code, the value stored in the variable a (which is 1) is
copied into a new variable (called Number) inside the Increment() function. Increment() then adds 1
to the value stored in this variable, but the value stored in a is left untouched. If the Number variable
were called a instead, it would still be a new variable.

What happens if you wanted the calculation within your function to affect the calling code's contents?
Well, then you could pass the parameter by reference. Let's amend the Increment() function to pass
parameters by reference (available in the code download as PassingByReference.aspx):

void Page_Load()
{

int a = 1;
Increment(ref a);
lblMessage.Text = a.ToString();

}

void Increment(ref int Number)
{

Number += 1;
}

Note that you need to use the ref keyword to denote a parameter passed by reference, and that it must
be present in both the function definition and any calls made to that function. Running this amended
code now results in the number 2 as the value of a. When Increment(ref a) is called, instead of a copy
of the value of a, a second variable is created that points to the variable a. This way, whenever the code
inside the function makes a change to the Number variable, it is actually changing the data in the a
variable as well.

182

Chapter 5

Let's try to get the same effect using an out parameter. The syntax for using out parameters is very
similar to passing values by reference, with the out keyword replacing ref in the function definition
and calls:

void Page_Load()
{

int a = 1;
Increment(out a);
lblMessage.Text = a.ToString();

}

void Increment(out int Number)
{

Number += 1;
}

However, this doesn't have the desired effect. If you try and run this code, you'll get an error telling you
that Increment() has tried to 'use the unassigned local variable 'Numbers'. Indeed, we've overlooked
the fact that a function always treats an out parameter as an unassigned variable whether or not it had a
value in the calling code. Trying to add 1 to it the way that the Increment() function does makes no
sense unless we assign it a value first. In order to get the same result as in the earlier examples, we must
change the code as follows (available in code download as PassingOutParameters.aspx):

void Page_Load()
{

int a = 1;
int b;
Increment(a, out b);
lblMessage.Text = b.ToString();

}

void Increment(int Number, out int Result)
{

Result = Number + 1;
}

Increment() now has a second parameter, Result, which is an out parameter and is not originally
initialized in Page_Load(). It is however assigned a value inside the function. It's this value we reflect
on screen, and as expected, it equals 2.

Let's put this into practice. In this last example, we will create a simple page that demonstrates the
effects of passing parameters by value and reference, and also by using out parameters.

Try It Out Using Value, Reference, and Out Parameters
1. Create a new ASP.NET page called ValRefOut.aspx and save it in your Ch05 folder.

2. Add the following code to the file and save it:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

183

Functions

void Page_Load()
{

if (IsPostBack)
{

string s = txtInVal.Text;
byValue(s);
lblAfterValue.Text = s;

byReference(ref s);
lblAfterReference.Text = s;

string o; // o need not be initialised
byOut(s, out o);
lblAfterOut.Text = s;
lblOutValue.Text = o;

}
}

void byValue(string strIn)
{

strIn += " after byValue";
}

void byReference(ref string strIn)
{

strIn += " after byReference";
}

void byOut(string strIn, out string outValue)
{

strIn += " after byOut";
outValue = strIn;

}

</script>
<html>
<head>

<title>Chapter 5 : Passing Parameters By Value and By Reference</title>
</head>
<body>

<form runat="server">
Type a string
<asp:TextBox id="txtInVal" runat="server"></asp:TextBox>

<asp:Button id="Button1" runat="server"

Text="Submit"></asp:Button>

After calling byValue, the string =
<asp:Label id="lblAfterValue" runat="server"></asp:Label>

After calling byReference, the string =
<asp:Label id="lblAfterReference" runat="server"></asp:Label>

After calling byOut, the string =

184

Chapter 5

<asp:Label id="lblAfterOut" runat="server"></asp:Label>

and the output parameter =
<asp:Label id="lblOutValue" runat="server"></asp:Label>

</form>
</body>
</html>

3. View this in your browser. You will see a screen similar to Figure 5-6:

Figure 5-6

How It Works
Let's start with a quick glance at the form, which should be self-explanatory. We have a TextBox for
input and four Label controls for output. The extra Label is to show the values of both parameters after
calling the function with an out parameter:

<form runat="server">
Type a string
<asp:TextBox id="txtInVal" runat="server"></asp:TextBox>

<asp:Button id="Button1" runat="server"

Text="Submit"></asp:Button>

After calling byValue, the string =
<asp:Label id="lblAfterValue" runat="server"></asp:Label>

After calling byReference, the string =
<asp:Label id="lblAfterReference" runat="server"></asp:Label>

After calling byOut, the string =
<asp:Label id="lblAfterOut" runat="server"></asp:Label>

and the output parameter =
<asp:Label id="lblOutValue" runat="server"></asp:Label>

</form>

185

Functions

Now we'll take a look at the three functions written. They all concatenate a short bit of text to an
incoming string parameter. However, they differ in how the parameter is passed to the function.

The first function receives its parameter by value. Thus the original value remains intact in the calling
code. A copy of the value is created in the strIn variable:

void byValue(string strIn)
{

strIn += " after byValue";
}

The second function receives its data by reference. In other words, strIn does not hold a string. Rather
it holds a pointer to a variable or object property in the calling code:

void byReference(ref string strIn)
{

strIn += " after byReference";
}

Finally, the third function receives a parameter by value and uses an out parameter to make a note of the
result.

void byOut(string strIn, out string outValue)
{

strIn += " after byOut";
outValue = strIn;

}

As we start to examine the code that uses these functions, it's worth noting a slight difference here
between VB.NET and C#.

So, for example, instead of calling:

byReference(ref txtInVal.Text)

we need to first assign the value of that property to a variable and pass that by reference instead. This is
the method we use in the examples below.

Now we can examine the code that uses the routines. It picks up text from a TextBox and assigns it to a
string variable that each of the functions will use. The results of the functions are then stored in their
respective labels.

void Page_Load()
{

if (IsPostBack)
{

string s = txtInVal.Text;

In VB.NET, you can pass the property of an object by reference and as an out
parameter, but you cannot do this in C#.

186

Chapter 5

In the first case (passing by value), the function modifies a copy of the string that was passed to it and
not the string itself. Thus the string in s remains unaltered and the result in lblAfterValue.Text is the
same as that typed into txtInVal by the user:

byValue(s);
lblAfterValue.Text = s;

In contrast, the second call is by reference. Within the byReference() function, the concatenation
occurs with the actual text held in s. Therefore, we see a different result. First s is modified, and then the
text in lblAfterReference.Text as well.

byReference(ref s);
lblAfterReference.Text = s;

The third call is by value but uses an out parameter o to retrieve the altered string. Because s is passed
by value, it does not reflect the concatenation made inside byOut() once the function has ceased to
execute. We can see this in the value of lblAfterOut.Text. However, the result of the concatenation is
assigned to the out parameter o before byOut() finishes executing, and so we see a different result in
lblOutValue.Text:

string o; // o need not be initialised
byOut(s, out o);
lblAfterOut.Text = s;
lblOutValue.Text = o;

}
}

Before we leave this topic, let's do a final comparison between passing parameters by value and
parameters by reference.

❑ By default, all parameters can be passed by value except for objects (for example, a Web control
Label object), which are passed by reference.

❑ Passing parameters by value makes a copy of the actual data within the function block. If the
data is large and thus uses a lot of resources, passing by reference saves resources by simply
pointing to the original holder of the data.

❑ You may not directly name object properties as parameters to be passed by reference in C#. You
may pass them by value however.

❑ Passing parameters by value leads to fewer conflicts in complex pages. Several different
functions using parameters passed by reference (perhaps even written by different authors)
could be changing the original contents of a variable. Programmers may not be sure at a given
moment of the actual value that is supposed to be in a variable.

For example, you may run a DateDue() function that checks if the due date falls on a day the
business is open. That would best be done by value so that programmers writing other
processes that are looking at the date won't be confused if another function modifies this date.
On the other hand, if you write a procedure that modifies the grayscale of a bitmap image, it
would be better to pass the entire image by reference to avoid multiple copies of the large file.

187

Functions

Modularization Best Practices
This section describes several guidelines for breaking your code up into functions, a process we've
referred to as modularization. Chapter 7 covers custom objects, another form of modularization, for
which many of these same ideas apply.

Modularization is good. Whenever practical, divide your code into smaller parts that each perform a single
job. As you improve your skills, try to move your modularization practices into higher levels. Start with
functions and then move to code-behind (Chapter 12) and custom objects.

Successful modularization requires careful planning and definition. You must ensure that each task in your
project can be performed and that all modules have the same definition of data that is passed among
them. Diagramming is often helpful in the planning stages. As a part of the plan, there needs to be a
clear statement of input and output of each module as well as the task that the module performs.

Good modules contain extensive internal documentation – at a minimum, note the purpose of the module,
its creation date, version number, and author. Code maintenance is cheaper if you also include notes on
the purpose of variables. Comments do not slow down execution of code (they are removed at
compilation) so there is no performance overhead for internal documentation.

Much of the planning for modularization can be done with software design and authoring tools. Basic tools
come with Web Matrix, such as the ability to save snippets of code like function signatures and insert
them in code that will call those functions. More sophisticated tools are available in Visual Studio and
third-party software.

Avoid using message boxes or other interfaces which pop-up outside of the HTML page. When you deploy
your code on a server, you may have thousands of pop-ups occurring on a server that isn't even
connected to a monitor.

Avoid variable name conflicts by having a unique naming system. Be especially wary of very common
terms like Price and Date. Scope variables as narrowly as possible. Pass parameters by value to reduce
the chances of a module making a change that is not expected by another module.

Within a function, avoid specific reference to a Web control by name. It is almost always better to use a
parameter to pass to a function than a reference to a Web control.

Passing a parameter by reference is more likely to cause errors in the page as a whole. Therefore,
explicitly document code when parameters are being passed by reference.

In the end, the objective of your main code is to call a series of modules to go through a task. The leaner
the main code the better. The only time to skip modularization is when there is a single, simple, and short
operation executed in the code of a page.

188

Chapter 5

Summary
Modularization is the process of breaking the code for a project into smaller, independent groups of
code. The benefits include faster development, easier testing, and cheaper maintenance. Frequently used
code is written and tested once, put in a module, and can then be reused often. Furthermore, advanced
forms of modularization permit different programmers to work in different languages, according to their
preferences or the best language to achieve a goal.

This chapter covered one of three modularization techniques: functions. The other two are code-behind
(Chapter 12) and custom objects (Chapter 7).

Functions perform a task in a block of code that is separate from the main body of code. The code in a
function is executed when it is called. The function may or may not return a value to the calling code
once it has finished execution.

All function definitions have the same structure. It begins with a function signature that declares the
function's name, its return type, and required parameters. The code for the function is then written
within a block surrounded by curly braces {}. Good practice dictates that each function start with some
comments identifying its purpose, creation date, author, as well as restrictions on incoming data.

Function definitions and function calls must include parentheses after the function's name, regardless of
whether or not the function has any parameters.

If a function has a return value, it must have a receptacle in the calling code. The receiver for a function's
return can be a variable, an object property, an argument for another function, or an expression in a
control structure. Functions that return a Boolean value can be an entire expression; there is no need to
compare them to true or false.

Information can be passed into functions by using parameters. Incoming values are assigned a name,
and datatype upon receipt within the function. They are then available within the function as block-level
variables. Web controls, such as a Labels or a TextBox, can be passed as parameters into a function and
their property values may change within the function.

Data passed by value to a function is copied into a block variable. Any operations occur only on the copy
and the original is untouched. Data passed into a function by reference creates a block variable that
points to the original source of data. Operations within the function will actually modify the contents of
the original holder of the data that is outside the function.

Out parameters work much like parameters passed by reference but their value is always reset when
they are passed into a function. That function must then assign a value to these parameters before it
terminates. Data is passed to a function by value by default, and this is generally best left unchanged
unless there is a need to improve performance.

189

Functions

Exercises
1. Determine whether a function will return a value for each of the following scenarios and justify

your choice:

❑ Calculate the due date of a book being checked out of a library

❑ Find out the day of the week on which a certain date falls on in the future

❑ Display a string, which is determined by the marketing department and stored in a text
file, as a Label

2. List where and when values are held when a variable is a parameter passed by value. Do the
same for a variable is a parameter passed by reference.

3. Write a function that generates a set of random integers. Build an ASP.NET page that allows you
to enter the lower and upper bounds, and then generate a set of random numbers within that
range.

190

Chapter 5

6
Event-Driven Programming

and Postback

A fundamental change from ASP to ASP.NET is the implementation of a robust, event-driven
programming model. In ASP, we had to write many lines of code for reacting to a user's click on a
submit button. With ASP.NET, much of that work is automatically performed for us and we can
focus on writing just the code that implements our business goals.

ASP.NET supports three major groups of events. The first comprises HTML events that are
executed on the browser. The second group includes the ASP.NET page-level events that allow
you to automatically run code at certain stages while the page loads. A particularly important
page-level event is a postback, which is triggered whenever a page is resubmitted to the server after
the user clicks on a submit button. Lastly, you have a group of ASP.NET server control events that
allow you to react to the user clicking on or typing into controls on the Web page.

The great range of events available in ASP.NET improves the user experience, reduces the amount
of code you write, and makes the resulting code much easier to maintain.

This chapter will look at:

❑ The definition of an event

❑ HTML events

❑ ASP.NET page events

❑ ASP.NET Web control events

❑ Event-driven programming

❑ IsPostBack

What Is an Event?
Let's start by comparing an event to actions in real life. A fictional employee, Joe Public, sits in his
cubicle in the marketing department of his company, staring out the window. The phone rings. Joe reacts
by picking it up and answering it with his name. A customer says, "We need to order ten cans of beans."
Joe reacts by placing the order and hanging up the phone. Joe then goes back to staring out the window.
Note the sequence of actions: the ringing of the phone is an event, Joe responds to the event with a set of
actions (answers the phone, states his name, and takes the order), and then the event concludes (hangs up
the phone). After the event is finished, Joe returns to a state of waiting for the next event to occur.

In event-driven programming, we have the same scenario. Your page sits on the browser waiting for the
user to interact. An event occurs when the user clicks on or types into the page. Your program reacts by
executing code to perform some task in reaction to the event. When your code is done executing, the
page goes back to waiting for the next event.

Therefore, you can break down your event-driven environment into four chronological sections:

❑ An event occurs: The user clicks on a button

❑ The system detects the event: ASP.NET registers that an event has occurred

❑ The system reacts to the event: Some code is executed

❑ The system then returns to its original state: Waits for the next event

Knowing this series of activities allows us to understand the usage of events when programming.

What Is Event-Driven Programming?
Event-driven programming is a fundamental change in the nature of the traditional programming model.
We leave behind the idea of sequential pages being processed on a server, and look at a model of
programming where the server responds to events triggered by the user.

Before event-driven programming, your programs would execute from top to bottom as follows:

Line 1
Line 2
Line 3
Line 4

Broadly speaking, traditional programming languages (those over ten years old) start with the first line
of your code, process it, move on to the second line, process that, and then move on to the third. There is
no stopping, pausing, or waiting for interaction with the user. Even when functions are used, they don't
change the timing of execution as one function calls another, which calls another, and so on. There is still
an uninterrupted sequence of execution.

An event is an action taken on your application by some force outside of your code.
This external force is usually the user, but could be another program. An event can
hold code that will run when the action occurs.

192

Chapter 6

The concept of event-driven programming changes all of this; with events, the sequential way of
execution is no longer necessary. The timing of code execution depends on interactions with the user.
Consider the Windows Operating System, which is event-driven. It doesn't execute in a sequential
fashion. Windows starts and waits for an event to occur, such as a user clicking on Start. As soon as an
event occurs, Windows takes appropriate action to deal with that event. If you click on a menu,
Windows provides the menu, and then waits for another user action. Windows is a collection of
numerous sets of code, each waiting to be executed when called by an event.

Similarly, ASP.NET pages display in the browser and wait for user action. When the user types or clicks
on the page, ASP.NET responds by executing some code. After the code execution ends, the page goes
back to waiting for the next user action.

In event-driven programming, when something happens to your page, such as a user's click, the user
typing some text, or the page being served by IIS, an event occurs. An event handler – a function that is
run in reaction to (or fired by) the event – then handles the event.

There are two differences between an event handler and functions. First, the way in which you should
name handlers is different. You can use almost any name, such as MyFunction(), for a handler.
Microsoft recommends creating the handler's name such that it includes the object and the name of the
event it caters to separated by underscores; for example, MyButton_Click(). This logical approach
makes the names easy to remember. The second difference is how an event handler is called. A non-
event handler is executed when it is called from other code. An event handler is executed automatically
in response to its event.

ASP.NET supports three groups of events:

❑ The first group contains HTML events that can occur on the page and are handled by the
browser on the client-side. For example, pop-up tool tips or menu expansions typically run on
the client-side JavaScript. You'll see an example later in this chapter.

❑ The second group contains several events that occur automatically when ASP.NET generates a
page. There is no user involvement; they occur before the user even sees the page. We use these
events to build the page.

❑ The last group is the largest, and contains all the events that occur due to user interaction with
the page.

HTML Events
Let's briefly discuss the events that execute in HTML on the browser (client) that are not part of
ASP.NET. Client-side events are written within pure HTML tags such as <input>. The language is
usually JavaScript or VBScript. An interpreter built into the browser executes the code and there is no
transfer of information to or action on the part of the server.

In the demonstration code that follows (OnClickEventDemo.htm), we create a page that contains only
HTML. For HTML input button tags there is an event called onclick. When the user clicks on the

193

Event-Driven Programming and Postback

button, it executes the short line of code within the tag's onclick attribute. For this HTML event to
work, you must be using a modern version of a browser (at the least IE 4.0, Netscape 6.0, or Opera 5.0).

<html>
<head>

<title>HTML Browser Event Example</title>
</head>
<body>

<form>
<input onclick="alert('You have raised an event!')"

type="button" value="Click Me" />
</form>

</body>
</html>

The code results in the screen shown in Figure 6-1:

Figure 6-1

In this case, the code for the event handler is inside the onclick attribute rather than in a separate
function called inside the onclick attribute. Most HTML tags can react to many events:

Event Occurs When

onmouseup A mouse button is released while clicking over an element

onmousedown A mouse button is pressed and held over an element

onmouseover A mouse is moved over an element

onmousemove A mouse moves over an element

194

Chapter 6

For the events triggered by the keyboard, be sure to have the focus on the button before you strike the
keys to test. We could change the earlier code so that our button reacts to a different event; here, we've
changed it to the OnMouseOver event (OnMouseOverEventDemo.htm):

<html>

<head>

<title>HTML Browser Event Example</title>

</head>

<body>

<form>
<input onmouseover="alert('You have raised an event!')"

type="button" value="Click Me" />

</form>

</body>

</html>

ASP.NET can handle events similar to HTML. However, .NET gives us much more functionality and the
ability to utilize server-side resources such as database connections.

ASP.NET's Trace Feature
Before we dive into the two groups of ASP.NET events, let's preview a technique for debugging, which
will be discussed in detail in Chapter 14. By adding Trace="true" in the Page directive, we can have
ASP.NET create a log of how it built the page. The log is appended to the bottom of the page. Trace does
not conflict with Debug="true".

<%@ Page Language="C#" Debug="true" Trace="true" %>

For example, open the ParameterWebControl.aspx page from Chapter 5 and save it as
TraceDemo.aspx in the Ch06 folder. You can then turn on the trace by adding Trace="true" in the
Page directive and get to the screen depicted in Figure 6-2:

Event Occurs When

onclick A mouse is clicked over an element

ondblclick A mouse is double-clicked while hovering over an element

onkeyup A key is released over an element

onkeypress A key is pressed and released over an element

onkeydown A key is pressed and held down while over an element

195

Event-Driven Programming and Postback

Figure 6-2

In the Trace Information, note the beginning and ending of events such as Init() and PreRender()
under the Message column. We can put a custom message into the trace log with the following lines of
code (TraceDemoWithNotes.aspx):

<script runat="server">
void Page_Load()
{

Trace.Write("NOTE - First line of Page_Load");
MakeItalic(Label1, CheckBox1.Checked);
MakeItalic(Label2, CheckBox2.Checked);
MakeItalic(Label3, CheckBox3.Checked);

}

void MakeItalic(Label TargetLabel, bool ItalicYN)
{

Trace.Write("NOTE - First Line of MakeItalic");
TargetLabel.Font.Italic = ItalicYN;

}
</script>

Our Trace.Write notes will show up in the log in the order they are executed. You can see in
Figure 6-3 that the 'NOTE – First line of MakeItalic' occurs three times as MakeItalic() was called thrice:

196

Chapter 6

Figure 6-3

You can turn off the Trace by setting it to false in the Page directive, thus removing all of your
diagnostic aids in one change. The Trace.Write() methods can remain in the code, they will have no
effect on the output or performance of the page. This is a big advantage for those of us who
programmed in classic ASP and had to remove scores of diagnostic Response.Write notes. We'll talk
more about using Tracing in Chapter 14, but for now we only need to know when events occur and how
our page reacts to those events.

ASP.NET Page Events
This section will address a group of events that are automatically run by ASP.NET when a page loads.
Everything in ASP.NET comes down to objects, and in particular, the Page object mentioned in Chapter 2.
Each Web form you create is a Page object in its own right. You can think of the entire Web form as an
executable program with HTML output. Every time a page is called, the object goes through a series of
stages – initializing, processing, and displaying information. These events occur with every round trip to
the server.

When you request your ASP.NET Web form, a series of events automatically occur on your Web server
as follows:

197

Event-Driven Programming and Postback

❑ The Page_Init event occurs when the page is initialized. You can use the Page_Init()
function associated with it to run code before .NET displays controls on the page. It works in a
way similar to Page_Load(), but earlier.

❑ Page_PreRender() and Page_Render() and some additional events support advanced topics
such as transactions. We will not discuss them in this book.

❑ Page_Load() occurs when the whole page is visible for the first time (when the page has been
read into memory and processed), but after some details about server controls have been
initialized and displayed by Page_Init().

❑ Page_Unload() occurs when the page is unloaded from IIS memory and is sent out to the
browser. This occurs after all control events have been executed and is an ideal place to shut
down database connections. The name is misleading because this event does not occur when the
user in the browser leaves the page or turns off the browser. The term unload is from the
perspective of IIS, not the browser.

Notice the usage of the word event in the preceding list. An event occurs – a page is served up by IIS –
and calls the Page_Load() event handler. The process of an event firing an event handler can be implied
by other terms such as execute, start, invoke, initiate, and somewhat misleadingly, call.

If you want code to execute on your page before anything else occurs, you need to put it within a
Page_Init() event handler. The event of the page loading will automatically fire the Page_Load()
event handler.

The syntax along with some trace writes (PageEventsDemo.aspx) is as follows:

<%@ Page Language="C#" Debug="true" Trace="true" %>
<script runat="server">

void Page_Init()
{

Trace.Write("NOTE - First line of Page_Init");
}

void Page_Load()
{

Trace.Write("NOTE - First line of Page_Load");
}

</script>
<html>
<head>

<title>Chapter 6 - Demonstration of Page Events</title>
</head>
<body>

<form runat="server">
<asp:Button id="Button1" runat="server" Text="Submit"></asp:Button>

</form>
</body>
</html>

This code results in the screen shown in Figure 6-4:

198

Chapter 6

Figure 6-4

The Page_Unload() event fires automatically but when IIS unloads the page from its working space
and sends it to the browser. The Page_Unload() event occurs after all other tasks have been performed
to create the page and can be used to free resources used by the page, such as database connections. As
Page_Unload() executes after the rest of the ASP.NET page has been completed, you cannot use
Page_Unload() to change ASP.NET controls.

ASP.NET Web Control Events
Now we reach the third and richest group of events – those that are associated with ASP.NET Web
controls such as <asp:TextBox> and <asp:Button>. There are three important reasons why ASP.NET
Web control events are more powerful than HTML events run on the browser:

❑ You can execute the event handler code on the server, which means that you have all the server
resources available for the event handler. This includes custom-built objects and connections to
other servers and databases.

❑ You don't have to rely on the browser's capability to recognize and handle HTML events
because the ASP.NET Web server sends only pure HTML back to the browser.

199

Event-Driven Programming and Postback

❑ You can write code for an event handler in any language that is supported by .NET instead of
just the scripting languages that browsers can execute.

You add events to ASP.NET controls in two steps. First, in the control's tag you add an extra attribute
with the name of the event and set its value to an event procedure. For example, in the following code, a
function named Button1ClickEventHandler() will execute when a user clicks on button1.

<asp:Button id="button1"

runat="server"

text="Click me"

onclick="Button1ClickEventHandler"

/>

Second, you create the event handler, which is the function that runs when invoked by an event. The
small difference between this and other handlers we've seen so far is that you have to specify two
incoming parameters (arguments) with the exact syntax as follows:

<script runat="server">

void Button1_Click(object sender, EventArgs e)

{

... Code to handle the click event here ...

}

</script>

The arguments passed to an event handler provide information to the handler. The first argument –
sender – provides a reference to the object that raised the event. The second – e – is an event class that
captures information regarding the state of the event being handled, and passes an object that's specific
to that event.

A common mistake is to not match the handler's name with the name specified as the value for the
event's attribute in the control's tag. The result is that nothing will happen when the event is triggered.
You can call the function whatever name you want, as long as you are consistent in using the same name
in the server control and within the <script> tags. If adding 'EventHandler' or 'EH' to the name helps
you remember the purpose of the function, then do it. Don't forget to document the event handler as
well. You saw how to document functions in Chapter 5.

ASP.NET Web controls have a reduced set (compared to HTML) of events that can be added to controls
as attributes. Those common to all Web controls are as follows:

Event Name Occurs When

ondatabinding A control is bound to a data source (see Chapter 8)

ondispose A control is no longer needed and is being removed
from a window or frame

onload A control has loaded into the window or frame

200

Chapter 6

The difference between HTML controls and ASP.NET Web controls is the way in which they're handled.
With HTML form controls, when the event is raised, the browser handles it by itself. However, with Web
controls, the browser raises the event and the client sends a postback message to the server so that it can
handle the event.

It doesn't matter what kind of event is raised, the client will always return a single postback event to the
server. However, some events such as key presses or mouseovers are impossible to deal with on the
server and there are no equivalent ASP.NET events for these. They will not be passed onto the server
and will have to be handled by the client. We've seen the syntax to add event handlers to ASP.NET
server controls in the section above. If you use Web Matrix, it's even easier. In the following Try It Out,
we'll demonstrate just how simple this is.

Try It Out Creating Event Handlers with Web Matrix
1. In Web Matrix, create a new ASP.NET page called EventsInWebMatrix.aspx and save it in

your Ch06 folder. In Design View, drag a Label control and a Button control onto the blank
page. Now select the Button control with your mouse. In Design View, drag a Label control
and a Button control onto the blank page. Now select the Button control with your mouse.

2. The Properties box on the right hand side of the Web Matrix window displays information about
the control you have selected. Click on the icon that looks like a bolt of lightning near the top of
the box. The Properties box will now show a list of all the events that you can handle for this
control. In Figure 6-5, you can see the possible events for an <asp:Button> control:

Figure 6-5

Event Name Occurs When

onunload A control has been removed from a window or
frame

oninit The Web page is first initialized

onprerender Just before the control is rendered

201

Event-Driven Programming and Postback

4. Click on the blank box next to Click and press Enter. Web Matrix adds the onclick attribute to
the <asp:Button> tag and generates an empty function called Button1_Click() to handle the
event. Fill in this function with the following code:

void Button1_Click(object sender, EventArgs e)

{

Label1.Text = "Web Matrix helped me handle the clicking of this button.";

}

5. Now save this code and run it. When the page loads, click the button. The Label displays the
message as we had expected.

How It Works
The events window in the Web Matrix Properties box lets you hook up events to event handlers in three
different ways. It generates a new handler function for you (as per the recommended naming guidelines
discussed earlier) if you just click into the space next to an event and press Enter. If you haven't written a
function yet but have a specific name for it, say MyButtonEventHandler(), you can just type the name
MyButtonEventHandler into the space next to the event that it will handle and press Enter. Note that
while typing this name you do not need to include parentheses. Web Matrix will create a blank function
with that name and hook it up to the control as you ask. Finally, if you have written the handler function
already, you will be able to select it from the drop down box on the right hand side of the box after
which you need to press Enter. This function will be wired up automatically, and Web Matrix will not
create a new function for you.

On the page itself, when you click the button, the browser posts back to the server to say that the Click
event has occurred and the server responds by resending the page, but altered by the Click handler
function.

Event-Driven Programming and Postback
So far, the issue of postback architecture has not been discussed in detail. In this section, we're going to
consider the theory and practical application of postback in more detail, and then do an exercise that
utilizes multiple buttons and event handlers.

Postback is the process by which the browser sends information back to the server so that the server can
handle the event. The server executes the code in the event handler and sends the resulting HTML back
to the browser again. Postback only occurs with Web forms that have the runat="server" attribute set.
In addition, only ASP.NET Web controls post information back to the server.

Note that ASP.NET doesn't look after the processing of all events. It is still necessary to handle some
events (such as onmouseover) on the client-side because a round trip to the server couldn't possibly
react to them as quickly as the user expects. Ideally, you need a mix of server-side and client-side event
functions in your Web application.

Postback is not available in HTML forms and is implemented only weakly in ASP.

202

Chapter 6

In the following Try It Out, we will create two pages. The first has only simple HTML events and you
will see that there is no postback as the event is handled on the browser. We will then modify the page to
support ASP.NET Web controls and see the postback to the server in effect.

Try It Out Reacting to Events in HTML and ASP.NET
1. Create a new ASP.NET page called NoPostbackInHTML.htm and save it in your Ch06 folder

and add the following code to the page:

<html>
<head>

<title>No Postback In HTML</title>
</head>
<body>

<h2>No Postback In HTML
</h2>
<form method="get">

Select either A, B or C and click the button at the bottom

A<input type="radio" value="a" name="test" />

B<input type="radio" value="b" name="test" />

C<input type="radio" value="c" name="test" />

<input onclick="alert('Button Click event occurred in HTML')"

type="submit" value="Click Me" />
</form>

</body>
</html>

2. Save the page, and ensure you use the HTML suffix. View it in your browser to arrive at the
screen shown in Figure 6-6 and click on a choice. After the click you will be shown an alert that
says "Button Click event occurred in HTML". Click on the OK button and you will lose your
selection on the page:

Figure 6-6

203

Event-Driven Programming and Postback

3. Go back to your editor and save the file as PostbackInAspNet.aspx. Check that the file
extension is .aspx. Make the following changes to convert the HTML code to ASP.NET code:

<%@ Page Language="C#" %>
<html>
<head>

<title>PostBack In ASP.NET</title>
</head>
<body>

<h2>Postback In ASP.NET</h2>
<form runat="server">

Select either A, B, or C and click the button at the bottom

<asp:RadioButtonList id="test" runat="server">

<asp:listitem id="option1" value="a" runat="server" />
<asp:listitem id="option2" value="b" runat="server" />
<asp:listitem id="option3" value="c" runat="server" />

</asp:RadioButtonList>

<input onclick="alert('Button Click event occurred in HTML')"

type="submit" value="Click Me" />
</form>

</body>
</html>

4. Save the file (double check the extension) and surf to PostbackInAspNet.aspx using your
browser. Select an option and click the button to see that option remains selected. You will see
that the page state has been retained by the postback.

5. After clicking the button take a look at the source (in IE, click on View | Source) as shown in
Figure 6-7:

Figure 6-7

204

Chapter 6

How It Works
In the HTML form, you noted the loss of selection when the button was clicked. However, the browser
appended a query string to the request as follows:

http://localhost:8080/NoPostbackInHTML.htm?test=b

However, the server has no intrinsic mechanism to pass that selection through to the refreshed page.
This is normal behavior for HTML.

In our second page, we use ASP.NET postback. Postback is turned on because we use an ASPX extension
on the file name and the form and RadioButtonList controls use the runat="server" attribute.
When you view the source, you will see a new <input> tag:

<input type="hidden" value="dDw0MDk5MTgxNTU7Oz4WyuRHDZk+oHVRnH+Vueg8zM7fnQ=="

name="__VIEWSTATE" />

When postback is used, information about the state of the form is sent back in an associated hidden
control called _VIEWSTATE. This information in _VIEWSTATE is generated by ASP.NET by encrypting the
values of the old state of the form. That state includes user selections for each ASP.NET Web control.
ASP.NET is able to look at the old version and compare it to the current version. With this information,
ASP.NET can persist the state of Web controls between page submissions. If there are differences, such as
a different radio button being selected, internal events are generated by ASP.NET in response to the
difference and the DLL runs code to create a 'current' version of the form. The string of characters
contained in the value attribute will differ.

There are three points to remember about _VIEWSTATE:

❑ It is crucial to ASP.NET for remembering the state of controls between page submissions
without actually maintaining a Page object or HTTP connection throughout.

❑ You never have to program or interpret _VIEWSTATE at all; it is a fully automated part of
ASP.NET.

❑ _VIEWSTATE is passed to the browser as a standard HMTL <input type=hidden> control.
There is no need for any special plug-in or interpretive software on the browser.

The IsPostBack Test
Let's discuss the IsPostBack test introduced in Chapter 3. This test determines whether a user has
returned a form with data or whether it is the first time the form had been displayed. In other words,
our IsPostBack test just checks to see whether any postback information has been generated by an
event. If it hasn't, this test generates false; otherwise it generates true. The syntax is as follows:

if (IsPostBack){
//Code to run to check for and use data

}
else{

//Code to run assuming there is no data
}

205

Event-Driven Programming and Postback

It is not necessary to have code to run in both cases. Many times we do not have code to run if
IsPostBack=false. This is logical since we probably don't have any data to feed into code.

Let's look at an example that draws together all the things we've looked at in the chapter and utilizes
event-driven programming. We'll build a simple calculator on a page. It contains two textboxes to take
numbers from the user, and will perform a calculation depending on whether the user selects the add,
subtract, divide, or multiply button. It will also highlight the button to indicate the type of calculation
just performed. Note that multiple button forms force us to write specific event handlers for the clicking
of each button, as opposed to writing a form with a single button.

In the second part of the example, we will tighten up the code by using a single event handler.

Try It Out Calculator
1. Create a new ASP.NET page called Calculator.aspx and save it in your Ch06 folder with the

following code:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{

btnAdd.BackColor = System.Drawing.Color.LightGray;
btnSubtract.BackColor = System.Drawing.Color.LightGray;
btnMultiply.BackColor = System.Drawing.Color.LightGray;
btnDivide.BackColor = System.Drawing.Color.LightGray;

}

void Add(object sender, EventArgs e)
{

double answer = Convert.ToDouble(txtInput1.Text) +
Convert.ToDouble(txtInput2.Text);

lblAnswer.Text = answer.ToString();
btnAdd.BackColor = System.Drawing.Color.Yellow;

}

void Subtract(object sender, EventArgs e)
{

double answer = Convert.ToDouble(txtInput1.Text) -
Convert.ToDouble(txtInput2.Text);

lblAnswer.Text = answer.ToString();
btnSubtract.BackColor = System.Drawing.Color.Yellow;

}

void Multiply(object sender, EventArgs e)
{

double answer = Convert.ToDouble(txtInput1.Text) *
Convert.ToDouble(txtInput2.Text);

lblAnswer.Text = answer.ToString();
btnMultiply.BackColor = System.Drawing.Color.Yellow;

}

206

Chapter 6

void Divide(object sender, EventArgs e)
{

double answer = Convert.ToDouble(txtInput1.Text) /
Convert.ToDouble(txtInput2.Text);

lblAnswer.Text = answer.ToString();
btnDivide.BackColor = System.Drawing.Color.Yellow;

}

</script>
<html>
<head>

<title>Chapter 6 - Calculator example v1</title>
</head>
<body>

<form runat="server">
<h2>Calculator Version 1
</h2>
<asp:TextBox id="txtInput1" runat="server"></asp:TextBox>
<asp:Button id="btnAdd" onclick="Add"

runat="server" Text=" + "></asp:Button>
<asp:Button id="btnSubtract" onclick="Subtract"

runat="server" Text=" - "></asp:Button>

<asp:TextBox id="txtInput2" runat="server"></asp:TextBox>
<asp:Button id="btnMultiply" onclick="Multiply"

runat="server" Text=" x "></asp:Button>
<asp:Button id="btnDivide" onclick="Divide"

runat="server" Text=" ÷ "></asp:Button>

Answer = <asp:Label id="lblAnswer" runat="server"></asp:Label>

</form>
</body>
</html>

2. Open Calculator.aspx in your browser – it should be as shown in Figure 6-8. Enter two
numbers in the textboxes and select a button to perform a calculation. Note that only the
operation corresponding to the button clicked is performed. Also, notice that the executed
operation's button is highlighted in yellow:

Figure 6-8

207

Event-Driven Programming and Postback

If you don't enter a number into any of the boxes before selecting an operator, you will get an
error. Error handling will be discussed in Chapter 14.

3. After performing a calculation, take a look at the source code and note the existence of a
_VIEWSTATE. You may want to take a look at the _VIEWSTATE after several calculations and
notice the difference in the encrypted value. Do not try to discern a pattern, just note that it
responds to changes in your activities as a user of the page.

4. Now save the page as CalculatorV2.aspx and make the following changes. Start by deleting
the four operator functions and replacing them with a single one as follows:

<%@ Page Language="C#" Debug="true" %>

<script runat="server">

void Page_Load()

{

btnAdd.BackColor = System.Drawing.Color.LightGray;

btnSubtract.BackColor = System.Drawing.Color.LightGray;

btnMultiply.BackColor = System.Drawing.Color.LightGray;

btnDivide.BackColor = System.Drawing.Color.LightGray;

}

void Calc(object sender, EventArgs e)
{

double answer;
Button PressedButton = (Button)sender;
switch (PressedButton.ID)
{

case "btnAdd":
answer = Convert.ToDouble(txtInput1.Text) +

Convert.ToDouble(txtInput2.Text);
lblAnswer.Text = answer.ToString();
break;

case "btnSubtract":
answer = Convert.ToDouble(txtInput1.Text) -

Convert.ToDouble(txtInput2.Text);
lblAnswer.Text = answer.ToString();
break;

case "btnMultiply":
answer = Convert.ToDouble(txtInput1.Text) *

Convert.ToDouble(txtInput2.Text);
lblAnswer.Text = answer.ToString();
break;

case "btnDivide":
answer = Convert.ToDouble(txtInput1.Text) /

Convert.ToDouble(txtInput2.Text);
lblAnswer.Text = answer.ToString();
break;

}
PressedButton.BackColor = System.Drawing.Color.Yellow;

}
</script>

208

Chapter 6

5. Change the code for each button control so that the new handler function is fired when it is
clicked. View the file in your browser and you'll notice that there is no change in behavior:

<html>
<head>

<title>Chapter 6 - Calculator example v2</title>
</head>
<body>

<form runat="server">
<h2>Calculator Version 2</h2>
<asp:TextBox id="txtInput1" runat="server"></asp:TextBox>
<asp:Button id="btnAdd" onclick="Calc"

runat="server" Text=" + "></asp:Button>
<asp:Button id="btnSubtract" onclick="Calc"

runat="server" Text=" - "></asp:Button>

<asp:TextBox id="txtInput2" runat="server"></asp:TextBox>
<asp:Button id="btnMultiply" onclick="Calc"

runat="server" Text=" x "></asp:Button>
<asp:Button id="btnDivide" onclick="Calc"

runat="server" Text=" ÷ "></asp:Button>

Answer = <asp:Label id="lblAnswer"

runat="server"></asp:Label>

</form>
</body>
</html>

How It Works
In Calculator.aspx, we created a function which fires automatically from the Page_Load() event.
This function merely returns all buttons to their original color:

void Page_Load()

{

btnAdd.BackColor = System.Drawing.Color.LightGray;

btnSubtract.BackColor = System.Drawing.Color.LightGray;

btnMultiply.BackColor = System.Drawing.Color.LightGray;

btnDivide.BackColor = System.Drawing.Color.LightGray;

}

Next, look at how we set events to be handled when a button is clicked. These functions are called by the
four ASP.NET button controls we have created:

<asp:Button id="btnAdd" onclick="Add"

runat="server" Text=" + "></asp:Button>

<asp:Button id="btnSubtract" onclick="Subtract"

runat="server" Text=" - "></asp:Button>

....

<asp:Button id="btnMultiply" onclick="Multiply"

runat="server" Text=" x "></asp:Button>

209

Event-Driven Programming and Postback

<asp:Button id="btnDivide" onclick="Divide"

runat="server" Text=" ÷ "></asp:Button>

Each button has a symbol corresponding to its equivalent mathematical operation, and it calls the
relevant event handler function. All four functions work in an identical way. Let's closely look at the
Add() function:

void Add(object sender, EventArgs e)

{

double answer = Convert.ToDouble(txtInput1.Text) +

Convert.ToDouble(txtInput2.Text);

lblAnswer.Text = answer.ToString();

btnAdd.BackColor = System.Drawing.Color.Yellow;

}

The code is wired to the add button's Click event by the onclick attribute of btnAdd. It accepts two
parameters – the contents of the two TextBox controls. Inside the handler, we get the contents of
txtInput1 and txtInput2 by referring to their Text attributes. Because the Text attribute returns its
information as a string, we use Convert.ToDouble() to convert the string to a double. We can then
perform a mathematical operation on these two pieces of data, effectively calculating:

txtInput1 + txtInput2

We store our data in the <asp:Label> control, lblAnswer. We can access its Text attribute, but instead
of getting the information, we need to set it:

lblAnswer.Text = txtInput1 + txtInput2

This result is displayed on the screen. The other three handler functions work in the same way, and will
only be executed if the particular button associated with them is clicked.

In Calculator.aspx, ASP.NET reacts in a different way to each of the buttons on the page by having
four different event handlers for each button. In CalculatorV2.aspx, we build a single event handler
that is called by all four buttons. A click on btnAdd fires the Calc() event handler, not Add():

<asp:Button id="btnAdd" onclick="Calc"
runat="server" Text=" + "></asp:Button>

In order to perform the correct calculation, Calc() needs to know which button was pressed. If you
recall from earlier, the sender parameter passed into an event handler provides a reference to the object
that raised the event. However, it is just a generic object when passed into the handler and must be cast
back to the correct type of server control – a Button – before we can discover which button triggered the
event.

void Calc(object sender, EventArgs e)
{

Button PressedButton = (Button)sender;

210

Chapter 6

Now we can find out which button triggered the event by looking at the ID attribute of the button
passed to Calc(). We can use that information in a switch statement to perform the correct operation
on the two values from the TextBox controls and display the result in lblAnswer:

double answer;
switch (PressedButton.ID)
{

case "btnAdd":
answer = Convert.ToDouble(txtInput1.Text) +

Convert.ToDouble(txtInput2.Text);
lblAnswer.Text = answer.ToString();
break;

case "btnSubtract":

answer = Convert.ToDouble(txtInput1.Text) -

Convert.ToDouble(txtInput2.Text);

lblAnswer.Text = answer.ToString();

break;

case "btnMultiply":

answer = Convert.ToDouble(txtInput1.Text) *

Convert.ToDouble(txtInput2.Text);

lblAnswer.Text = answer.ToString();

break;

case "btnDivide":

answer = Convert.ToDouble(txtInput1.Text) /

Convert.ToDouble(txtInput2.Text);

lblAnswer.Text = answer.ToString();

break;

}

Finally, we change the background color of the button that fired the Calc() event:

PressedButton.BackColor = System.Drawing.Color.Yellow;

In this exercise, you saw two ways to handle multiple buttons. The first is to have individual event
handlers for each button. If the different buttons have parallel tasks, we can employ the second
technique where we create one handler that behaves differently depending on the object that triggers it.

Summary
This chapter presented the theory and practical aspects of event-driven programming. Traditional code
ran all at once through to the end. In event-driven programming, different parts of our code are run at
different times depending on user interactions with the page.

We started with a brief look at HTML events that provide one way of handling user action. HTML
events are executed on the browser and are generally written in VBScript or JavaScript. They are useful
for implementing reactions to events that would take too long to process on a round trip to the server;
for example, the display of tooltips. However, HTML events do not tap the power of the server.

211

Event-Driven Programming and Postback

When you use event-driven programming associated with ASP.NET, you execute your code on the
server. You create blocks of code in functions. The page loads and runs some functions automatically.
Then the page sits and waits for user actions called events. Each event runs the code of an event handler
to perform the desired tasks. When the event handler is finished, the page returns to a state of waiting
for the next user-created event.

We looked at a group of events that occur automatically when a page is created on the server. The most
commonly used event is Page_Load() to populate list boxes and to respond to the user input if the page
displayed is the result of a postback. Postback pages are those that have already been shown to the user
and are now being refreshed, usually with data entered by the user into the ASP.NET Web controls.

We saw another group of events that do not fire automatically. The Web control events are only executed
when a user interacts with the controls. These controls will execute the event handlers specified in their
tag, typically an attribute like onclick="MyOnClickHandler". A handler function named
MyOnClickHandler() must exist on the page for the event to be handled. These event handlers are
written as standard functions; thus, they need a valid function signature and their code should be
enclosed inside curly braces {}. Like any other function, they cannot be nested inside any other function
and must be written within the <script> tags on the page. They must also be written to handle two
incoming parameters: object sender and EventArgs e. The former contains a pointer to the object that
invoked the event handler. The latter is used for passing some special parameters; we haven't covered
these in this chapter.

The OnClick event of the asp:Button is a commonly used event. It triggers a postback, which is a
request to the server to refresh the page. Included in the request is a ViewState (the _VIEWSTATE
attribute) that defines, in a compact and encrypted form, the status of each ASP.NET Web control on the
page. This process only works when the page filename ends in .aspx, and each form and control
contains the runat="server" attribute. Multiple buttons on a page can have their events handled by
multiple event handlers or by one handler that behaves differently depending on the object that
triggered the event.

Exercises
1. Explain why event-driven programming is a good way of programming for the Web.

2. Modify an HTML form to add a set of ASP.NET Web controls so that the information in the form
is retained when the submit button is pressed.

3. Add a Page_Load() event handler to the ASPX code you've just created in Exercise 2 to
confirm the selections made in the following format:

Thank you very much ______.

You have chosen ____ for breakfast. I will prepare it for you ______.

4. Create a very basic virtual telephone using an ASPX file that displays a textbox and a button
named Call. Configure your ASPX file so that when you type a telephone number into the
textbox and press Call, you are:

212

Chapter 6

❑ Presented with a message confirming the number you are calling

❑ Presented with another button called Disconnect, which when pressed, returns
you to your opening page, enabling you to type another number

213

Event-Driven Programming and Postback

7
Objects

When I started writing this chapter, I was struggling for a concise definition of an object. After all,
everything is an object. A door is an object. So is an aardvark. So, being the computer geek that I
am, I went online to one of the numerous dictionary sites, and what I first got was the etymology:

"Middle English, from Medieval Latin objectum, from Latin, neuter of objectus, past participle of
obicere to throw in the way, present, hinder, from ob- in the way + jacere to throw." I didn't
understand any of that, so I tried elsewhere and got this:

"\Ob"ject\, n.: That which is put, or which may be regarded as put, in the way of some of the
senses; something visible or tangible."

OK, that makes a little more sense. So an object is something we can see, feel, hear, touch, taste or
smell. Not much use in the virtual world of computer programming, so here's a more suitable
definition:

An object is a self-contained entity that is characterized by a recognizable set of characteristics and
behaviors.

Taking this concept further, how do you tell the difference between various objects? Well, you do
so through their recognizable characteristics and behaviors. Take a cow for an example, where you
could have the following:

Characteristics Behaviors

They have four legs They moo

They have udders They eat grass

Size They make milk

Color

Breed

These are fairly distinctive characteristics – if you described these everyone should be able to tell you are
describing a cow. What you are describing is not any single cow, but all cows – the template that
specifies the characteristics of a cow. What you need to consider is what makes one cow different from
another.

Classes and Instances
In the world of Object Oriented - Programming (OOP), the following two terms are used:

❑ Class: This is the template for an object and defines the characteristics of the object. In our
bovine example it's what defines the characteristics of a cow.

❑ Instance: This is a real life object – the thing you can interact with. Thus, you only have one class
defining a cow but many instances of it.

Therefore, cows don't exist until they each have an instance created. This is when their characteristics
come into play. A good analogy is making cookies – the cookie cutter is the class (it defines the size and
shape of the cookie), and once cut, the cookie is the instance. In this case, multiple instances are a good
thing.

Properties, Methods, and Events
In OOP, the following terms are used to describe the characteristics of an object:

❑ Property: This is a noun and describes some feature of the object. A cow has a Breed – this
property describes the breed to which a cow belongs, which, in turn, might be indicative of
other characteristics. For example, the Holstein breed produces beer instead of milk. Actually I
made that up, but it's a nice idea, isn't it? In fact, the Holstein is the best milk-producing breed.

❑ Method: This is a verb and describes something the object can do, or that you want the object to
do. The cow can be milked and therefore might have a Milk() method.

❑ Event: This is also a verb and describes something that the object does in response to some
stimuli. For example, your cow would have an event called Moo, which might happen when it is
being milked. Or perhaps a Sleep event for when it's dark or the cow is tired.

The following sections show how these definitions apply to .NET.

Objects in .NET
.NET uses a lot of objects – in fact everything is an object. Variables were discussed in Chapter 3, and in
.NET even these are objects. You don't really need to understand why or how (it's just the way .NET is
built), but it's worth remembering that everything you deal with is an object. Consider the following:

You are actually declaring an object. Just like the real world, where objects are something specific, the
Name variable is also something specific; it's a String – in fact, it's an instance of the String class. The

216

Chapter 7

String class defines characteristics that our Name variable possesses, some of which are shown as
follows:

It has a Length property so we can see how many characters make up the string, and a ToUpper()
method to allow us to convert the characters to uppercase. These are just a few of the methods, but are
enough to give you an idea that a string is an object. Notice that there are no events – the String class
doesn't have any events. This is an important point – classes don't need to have properties, methods, or
events. In this chapter, we'll see how to build up a class in stages, adding the characteristics as you need
them.

Why Use Objects?
Many people think OOP and Object-Oriented Design is a complex subject, but in reality, it's quite simple
and can be explained in four simple terms: abstraction, encapsulation, polymorphism, and inheritance.
Chapter 12 discusses encapsulation in detail, but it's worth having an idea about the other terms as well,
so that when you do more complex programming you'll understand the concepts:

❑ Abstraction: This is the process of hiding the complexity and the inner workings of a class, so
that users don't have to know how it operates. For example, you don't have to know how a TV
works if you only wanted to view a picture; you just switch it on and get the picture. The
On/Off switch abstracts the actual operation. In the String example, you have a Trim()
method that strips off any blank space at the beginning and the end of a string. You don't need
to know how it actually does it – just that it does.

❑ Encapsulation: This is the process of every object containing everything it needs to be able to
operate. Thus, they don't have to rely on other objects to be able to perform their own actions.
For example, a cow contains everything it needs to produce milk – teeth to chew the grass, a
stomach (four of them in fact), udders and so on. A String doesn't have to go elsewhere to
convert all its characters into uppercase when you use the ToUpper() method.

However, encapsulation doesn't mean that you include absolutely everything in your class that
it needs. For example, a class that uses strings would not define its own string object; it would
reuse the standard one. This is acceptable because the String class is a part of the base classes
supplied by .NET. It wouldn't be sensible to rely on a class that might not be present.

❑ Polymorphism: This is the term given to different objects being able to perform the same action,
but through their own implementation. For example, our cow might have a Chew() method.
For that matter, even a Person class could have a Chew() method, but the under-the-hood
implementation might be different.

Property Method

Chars ToUpper()

Length StartsWith()

Trim()

217

Objects

❑ Inheritance: This defines how classes can be related to one another and share characteristics.
Inheritance works by defining classes and subclasses, where the subclass inherits all of the
characteristics of the parent class. For example, if an Animal class were to define the base
characteristics of an animal, there could be subclasses of Cow, Dog, Human, and so on. Each
subclass would not only inherit the characteristics of the Animal class, but could also define
new characteristics.

The importance of inheritance is that it enforces conformance across classes of a similar type,
and allows shared code. If you decide to create a new class called Mouse, you don't have to
reinvent all of the characteristics of the parent class. Inheritance will be discussed in more detail
later in the chapter.

Defining Classes
It's now time to put some of this theory into practice. We're going to create a Person class, with the
following characteristics:

❑ Properties: Name, Age, EyeColor

❑ Methods: Walk(), Talk(), Chew()

This will be done in stages, so that you fully understand each part of the class before moving on. You'll
be creating the class as part of an ASP.NET page and you'll look at how to create classes as separate files
later in the chapter. You can use Web Matrix for these examples if you like (or any other editor as we're
not using any specific Web Matrix features). However, using Web Matrix means you don't have to bother
with any Web server settings as it handles it all for you.

Try It Out Creating a Class
1. Create a new ASP.NET page called FirstClass.aspx in the Ch07 folder. If you are using Web

Matrix you can pick the ASP.NET page template – make sure you pick the correct Location for
the file and Filename as shown in Figure 7-1:

Figure 7-1

218

Chapter 7

2. In Web Matrix select the All tab and delete everything that is in the file before adding the
following code:

<%@ Page Language="C#" %>

<script runat="server">

public class Person
{
private string _Name;
private int _Age;
private string _EyeColor;

public Person() {
}

public string Name {
get {
return _Name;

}
set {
_Name = value;

}
}

public int Age {
get {
return _Age;

}
set {
_Age = value;

}
}

public string EyeColor {
get {
return _EyeColor;

}
set {
_EyeColor = value;

}
}

}

void Page_Load(object Sender, EventArgs E) {

Person myPerson = new Person();
myPerson.Name = "Susan";
myPerson.Age = 25;
myPerson.EyeColor = "Blue";

Name.Text = myPerson.Name;
Age.Text = myPerson.Age.ToString();

219

Objects

EyeColor.Text = myPerson.EyeColor;
}

</script>

<html>
<head>
</head>
<body>

<form runat="server">
Name: <asp:Label runat="server" id="Name" />

Age: <asp:Label runat="server" id="Age" />

Eye Color: <asp:Label runat="server" id="EyeColor" />

</form>
</body>
</html>

3. Save this file, and run it by hitting the F5 key. You should see the result similar to Figure 7-2:

Figure 7-2

Nothing spectacular – it just shows the name, age, and eye color – but you are using a custom class.
Let's see how this works.

How It Works
The first couple of lines define the language used in the page and the start of the server script. This is
where your code will go:

<%@ Page Language="C#" %>
<script runat="server">

Next you see the definition of the class:

public class Person

Unlike variables, where the variable type defines an object, only the class keyword followed by the
class name (in this case, Person) has been used. This is because we are creating a new class. If you refer
to the discussion on variables in Chapter 3, public implies that the class will be available to all other
programs. This is necessary because an ASP.NET page will need to use it.

220

Chapter 7

The lines that initialize the class follow next. This method, called the Constructor, is always named the
same as the class and has no data type. It is the procedure that is run when you create an instance of a
class, and it is a good place to set default values or perform any processing that the class itself requires.
These will be discussed in more detail later.

public Person () {
}

Next in the code are some private variables that will be used to store the properties of the class such as
the Name, Age, and EyeColor:

private string Name;

private int Age;

private string EyeColor;

As these variables are private, they cannot be accessed from outside your class. How in such cases
would one allow external access to them? For this, the code uses the following way of defining
properties:

public string Name {

get {

return _Name;

}

set {

_Name = value;

}

}

Let's break this statement down, starting with the declaration:

public string Name {

As mentioned earlier, public implies that the property can be accessed from outside the class – that's
what we need. We then have the data type (in this case a string), followed by the name of the property.

Next we have the get statement, which is the code that runs when the property is read. Here we just
return the value of the private property variable:

get {

return _Name;

}

The second part of the property is the set statement, which is the code that runs when we want to store
a value in the property:

set {
_Name = value;

}

221

Objects

Here we just set the private property variable to the value passed in. The set statement is unusual in
that you don't have to define an argument to hold the value you are setting the property to – it's
automatically catered for, and the value is available within the property set code as the variable named
value. For example, consider the following:

The value Susan is passed into the property automatically, and is stored in the value variable.

Next we have the property definitions for the Age and EyeColor properties; these follow the same
pattern as Name:

public int Age {
get {
return _Age;

}
set {
_Age = value;

}
}

public string EyeColor {
get {
return _EyeColor;

}
set {
_EyeColor = value;

}
}

Next we have the line that ends the class:

}

Now we come to that part of the page that will use the class, starting with the Page_Load() method
that runs when the page is loaded:

void Page Load(object Sender, EventArgs E) {

When the page loads, an instance of the person class needs to be created; this is done in a manner
similar to that of declaring variables:

Person myPerson = new Person();

We declare the class instance exactly as we would for any other class, by defining the variable type, and
then creating a new instance by using the new keyword followed by the class name. At this stage we
have an instance of the class. But because it doesn't contain anything we set the property values to the
following:

myPerson.Name = "Susan";
myPerson.Age = 25;
myPerson.EyeColor = "Blue";

222

Chapter 7

Now the class instance has some values for its properties. We can read them out and display them in
label controls:

Name.Text = myPerson.Name;
Age.Text = myPerson.Age;
EyeColor.Text = myPerson.EyeColor;

The last bit of code is the end of the Page_Load() routine and the end script tag:

}
</script>

Finally, there are the HTML and server controls: three Label controls used to display the property
values:

<html>
<head>
</head>
<body>
<form runat="server">
Name: <asp:Label runat="server" id="Name" />

Age: <asp:Label runat="server" id="Age" />

Eye Color: <asp:Label runat="server" id="EyeColor" />

</form>
</body>
</html>

That's all there is to it – you've now created and used your first custom class. Let's look at the reasons
behind using private variables for properties.

Property Variables
Why do you need to define variables that are private and then have property statements to allow access
to them? Wouldn't it be easier to just have public variables such as the following:

public string _Name;

Yes it would, but this would break one of the key object oriented features mentioned earlier –
abstraction. The whole idea is that you abstract the inner workings of a class; using the above code
doesn't achieve that. It explicitly exposes how the properties are stored. Therefore, we use private
variables and the property method, ensuring that all access to the property details is controlled.

This also allows you to add any processing, such as validation, to the property. For example, consider
the Age property, where you may wish to add validation:

public int Age {
get {
return _Age;

}
set {
if (value < 1)

223

Objects

_Age = 1;
else
_Age = value;

}
}

This validation checks whether the age is less than zero, and sets it to 1 if it is. This sort of processing
wouldn't be possible had the property method not been used.

Property Types
As of now, the EyeColor property can be both read from and written to. In the real world, you can't
change the color of your eyes (except by using contact lenses, but that's not really changing the color) so
why should your class allow it? You'd certainly want some way of setting the eye color, but a property
can't be the answer, as this would allow the eye color to be changed. However, the property can't be done
away with either; we still want to be able to read the value.

One way to achieve a value that can only be read is to utilize a feature of properties that allows us to
decide whether they can be read from or written to. To allow only reading of a property, we remove the
set section of the property. Similarly, to allow only writing to a property, we remove the get section.
The following code snippets show how this could be applied to the EyeColor property. For a read-only
property, you would use:

public string EyeColor {
get {
return _EyeColor;

}
}

For a write-only property you would use:

public string EyeColor {
set {

_EyeColor = value;
}

}

Let's try making EyeColor a read-only property.

Try It Out Read-Only Properties
1. Edit FirstClass.aspx, and change the property for the EyeColor to the following:

public string EyeColor {
get {
return _EyeColor;

}

}

2. Save the file and run it; you should see something similar to Figure 7-3:

224

Chapter 7

Figure 7-3

Oops, an error! This is fairly obvious because we've made the property read-only and thus can't
set the value.

3. From the Page_Load() method, take out the line that sets the EyeColor and modify the class
constructor so that it looks like the following:

public Person() {
_EyeColor = "Blue";

}

4. Save the file and run it. The error will disappear and the eye color will be displayed.

How It Works
The key to this is simply the removal of the set section of the property, which has the effect of turning
the property into a read-only one. Thus, we can only read the value from the property and not set it. To
set the value, we modify the constructor so that it uses the private variable to set the eye color:

public Person() {

_EyeColor = "Blue";

}

Remember that the constructor is run when the class is instantiated. So when we do the following:

Person MyPerson = new Person();

The new keyword specifies that the object is being created therefore causes the constructor to be run.

225

Objects

Although we can set the eye color by using the internal private variable, it's not a very flexible object, as
the color is hardcoded into the class – this means that the user of the class can't change the eye color.
Thus, every person will have eyes of the same color (and think how dull that would be)! There needs to
be some way to set the color as the object is created, and to do that you need to look at what happens
when objects are initialized.

Initializing Objects
In the previous code, you've seen the following method of creating objects:

Person myPerson = new Person ();

You might also see this sort of coding:

Person myPerson = Person();
myPerson = new Person();

This has the same effect as the single line version, but it is subtly different. The first line declares a
variable of type Person, but doesn't instantiate it. It's only on the second line, when new is used, that the
object instance is created. It's important to understand this so that you know when your object is actually
created. For this example, an object that accesses a database and fetches a lot of data could take a long
time to create, therefore knowing when it happens is important.

None of this, however, solves our problem of being able to set the eye color as the object is created. You
can do this by creating another constructor that allows you to specify the eye color.

Try It Out Overloading a Constructor
1. Open the FirstClass.aspx file and add the following code, just below the existing

constructor:

public Person(string EC) {
_EyeColor = EC;

}

2. Change the line that instantiates the class (the Person myPerson = new Person(); line in the
Page_Load() method) to:

Person myPerson = new Person("Green");

3. Save the file and run it. Notice that the eye color is now displayed as Green.

How It Works
This technique works because .NET allows the same method to be declared more than once as long as
the argument types are different. The description of a method (its name and the number and data types
of its arguments) is called the method signature. In our case we have the method declared twice – once

226

Chapter 7

with no arguments, and once with a single String argument, therefore the method has two signatures.
This is called overloading, and thus both of the following lines are valid:

public Person()
public Person(string EC)

What you can't have in addition to the above lines, however, is the following:

public Person(string NM)

The reason is that it has the same signature as the declaration that accepts EC as its argument. Note that
it's the argument type rather than its name that is important. A different data type indicates a different
signature, but the same data type (even if the variable name is different) is the same signature. So what
you can do is this:

public Person (string NM, string EC)

This declaration has a different signature, and is therefore allowed.

Implementing Methods
Our class doesn't do much so we need to add some methods to round it out. You've already seen
methods – the constructor is one. Adding a method is just the same, although unlike the constructor, you
can pick the method name. A method is simply a public function within the class and follows the same
rules discussed in Chapter 5, so we don't need to cover the basics again. However, it's worth looking at
them within the context of a class, so let's give it a go.

Try It Out Adding Methods to a Class
1. Edit the FirstClass.aspx file, and remove the text and labels from the HTML <form

runat="server"> section. We are using a different form of displaying data in this example.

2. Add the following code to the Person class, just before the end of the class:

public string Walk() {
return _Name +
": you are now walking forwards";

}

3. Change the Page_Load() event so that it looks like the following:

void Page_Load(object Sender, EventArgs E) {
Person Susan = new Person("Green");
Susan.Name = "Susan";

Response.Write(Susan.Walk());

Class constructors always have the same name as the class.

227

Objects

Response.Write("
");
}

4. Save the file and run it. You'll see the name of the person and the direction they are travelling in
displayed on the screen, as shown in Figure 7-4:

Figure 7-4

This is all very well, but what if you want to specify the direction of travel? You can use
overloading for this (as you did with the constructor).

5. Switch back to your editor and add the following code, just underneath the previous Walk()
method:

public string Walk(string Direction) {
if (Direction == "Back")

return _Name +
": you are now walking backwards";

else
return _Name +
": you are now walking forwards";

}
public string Walk(int Direction) {
if (Direction > 0)

return _Name +
": you are now walking forwards";

else
return _Name +
": you are now walking backwards";

}

6. Change the Page_Load() event so that it looks like the following:

void Page_Load(object Sender, EventArgs E)
{
Person Susan = new Person("Green");
Susan.Name = "Susan";

Response.Write(Susan.Walk());
Response.Write("
");

Person Sam = new Person("Blue");
Sam.Name = "Sam";
Response.Write(Sam.Walk("Back"));

228

Chapter 7

Response.Write("
");
Response.Write(Sam.Walk(1));
Response.Write("
");

}

7. Save the file and run it again, and you'll see Figure 7-5:

Figure 7-5

How It Works
The changes made to the FirstClass.aspx class were very simple – just the addition of an
overloading methods. The first variant has no arguments, and just returns a string consisting of the
name of the person and some text indicating that the person is walking forwards:

public string Walk() {
return _Name +
": you are now walking forwards";

}

The second variant takes a string as its argument and uses it to decide upon the direction of travel. If the
string is "Back", the person is deemed to be walking backwards, otherwise it indicates walking
forwards:

public string Walk(string Direction) {
if (Direction == "Back")

return _Name +
": you are now walking backwards";

else
return _Name +
": you are now walking forwards";

}

The third variant also takes an argument to determine the direction of travel, but this time it's a number.
A value greater than 0 implies that the person is travelling forwards, and a negative number as
travelling backwards:

public string Walk(int Direction) {
if (Direction > 0)

return _Name +
": you are now walking forwards";

229

Objects

else
Return _Name +
": you are now walking backwards";

}

Overloading can be useful if you can provide several signatures for a method, and therefore allowing
the method to be called in a variety of ways. One good example of the application of overloading
methods is when you need to look up items in lists. You might have an overloaded method that allows
lookup by name (a string) or by position in the list (a number).

Using these methods is simple, as seen in the Page_Load() event:

void Page_Load(object Sender, EventArgs E)
{
Person Susan = new Person("Green");
Susan.Name = "Susan";

Response.Write(Susan.Walk());
Response.Write("
");

Person Sam = new Person("Blue");
Sam.Name = "Sam";
Response.Write(Sam.Walk("Back"));
Response.Write("
");
Response.Write(Sam.Walk(1));
Response.Write("
");

}

Here we create two instances of the Person object – Susan and Sam. For the Susan instance, we use the
first Walk() method without any arguments and indicate that this instance is walking forwards. For the
Sam instance, we use the other two Walk() methods (the string and the numeric ones).

This example also uses Response.Write to output strings directly onto the page and display them.
Generally, you wouldn't use this method to interact with the page as you'd use server controls, but using
Response.Write allows you to output any amount of text without worrying about creating controls.

Consolidating Overloaded Methods
Using overloaded methods can be beneficial, but it can also lead to repetition of code in the
implementation. As developers, you'd want to minimize the repetition of code in an application:

❑ It saves time – the quicker you can develop applications, the better.

❑ If you want to change any functionality, you have to change it in all the methods.

❑ The more code there is, the greater are the chances of errors.

In the preceding example, we have repeated the following (or similar) code in all methods:

Return _Name + ": you are now walking forwards";

230

Chapter 7

You could just create a private method that performs the actions necessary for walking, which is not
accessible outside of the class. You can then call this method from the three public methods within the
class.

You can also call one overloaded method from another overloaded method. For example, the methods in
the previous example could become:

public string Walk() {
return Walk(1);

}

public string Walk(string Direction) {
if (Direction == "Back")
return Walk(-1);

else
return Walk(1);

}

public string Walk(int Direction) {
string dir;

if (Direction > 0)
dir = "forwards";

else
dir = "backwards";

return _Name +
": you are now walking " +
dir;

}
}

The actual functionality in this example is contained within just one method – the one that takes an
integer as its argument. This method in turn is called by the other methods. All code is in one place and
therefore, can easily be tested or changed if required.

Advanced Classes
So far this chapter has dealt with the basics of classes, which probably covers most of what you'll need
and use. However, it would be worth mentioning a few advanced topics here; they can be useful, and
you may well see them used elsewhere.

Shared or Static Properties and Methods
The chapter began with a discussion on classes and instances, and about how you need to create an
instance of a class before using it. However, the creation of an instance isn't always necessary because
you can create properties and methods that can be used without a class instance. These are called static
properties or methods, and are implemented using the static keyword in C#. For example, consider a
Tools class that contains some central methods, such as error logging. Using the techniques shown
earlier, it could be defined as:

231

Objects

public class Tools {
public void Log(string error) {
// error logging code goes here

}
}

To use this class, we would need the following code:

Tools t = new Tools();
t.Log("Something went wrong");

The use of a class here is just for abstraction and encapsulation purposes – providing a simple way to log
errors and hiding how it's actually done (writing to a file or database, for example). Since this is a single
operation with no other properties or methods involved, the Log() method can be made static:

public class Tools {
public static void Log(string error) {
// error logging code goes here

}
}

To use this static method, you no longer need to instantiate an object and the Log() method can be
called directly as follows:

Tools.Log("Something went wrong");

This technique should be restricted to methods and properties that require no other references –
properties that haven't yet been initialized. It is ideal for "helper" type methods, such as the Log()
method shown above, where the class simply provides a wrapper for the method.

Inheritance
Inheritance was mentioned at the beginning of the chapter when describing why objects are used and
how you can create subclasses that inherit properties from the parent. This is best described with an
example.

Consider an Animal class that defines the Legs and BodyHair properties and a Walk() method. Let's
look at two instances of this class:

Property / Method Instance 1 Instance 2

Legs 4 2

BodyHair Yes No

Walk() Yes Yes

232

Chapter 7

You can make an intelligent guess as to what these two instances could be in real life. Something with
lots of body hair and four legs could be a dog, and something without body hair and two legs is
probably a human being. There could be other shared characteristics, but more importantly, there could
be characteristics that aren't shared and need to be different for each instance. Therefore, you need to
create two new classes (Dog and Person) that inherit from the Animal class and also define distinct
characteristics. For example:

As you can see, dogs Bark(), Bite, and Wag their tails, unlike people, who can Talk(). However, since
both classes inherit from the Animal class, they both have its properties and methods – Legs, BodyHair,
and Walk(). Because Dog and Person inherit from Animal, they don't have to implement the methods
and properties of Animal again.

This has several benefits:

❑ You can create a hierarchy of objects by implementing any functionality where it is most
appropriate. For example, all ASP.NET server controls inherit from a control called
WebControl. This isn't used directly and is simply a way to define all of the common
functionality for server controls. For example, it has a BackColor property to set the
background color of a control, and Height and Width properties to set its height and width. It
doesn't, however, have a Text property because not all server controls require text (the Label
and the TextBox controls do for example, but the Image and the Panel controls don't).

❑ Functionality only needs to be implemented once, in the parent or base class as it is often called.
This not only reduces time, but also reduces the testing time and the possibility of errors.

❑ You can enforce functionality on subclasses by providing base functionality. For example,
consider using a set of classes to provide access to databases. You can code all of the base
functionality, such as security, into the base class and enforce it so that classes inheriting from
the base class have to use it. This would ensure that all the data is accessed in a secure manner.

Although the remainder of the book doesn't involve extensive usage of inheritance, it is an invaluable
technique – give it a go and see how easy it is.

Try It Out Inheritance
1. Create a new ASP.NET page called Inheriting.aspx.

2. Add the following class within the server code block just after the <script runat="server">
line:

Dog Person

Bark() Talk()

Bite

Wag

233

Objects

public class Animal {

private int _Legs;
private string _BodyHair;

public int Legs {
get {
return _Legs;

}
set {
_Legs = value;

}
}

public string BodyHair {
get {
return _BodyHair;

}
set {
_BodyHair = value;

}
}

public string Walk() {
return "I'm walking on " +

_Legs + " legs";
}

}

3. Add the Dog class underneath the Animal class:

public class Dog : Animal {

public Dog() {
Legs = 4;

}

public string Bark() {
return "Woof";

}

public string Bite() {
return "Chomp Chomp";

}

public string Wag() {
return "Wag Wag";

}
}

4. Now, add the Person class underneath the Dog class:

public class Person : Animal {
public Person() {

234

Chapter 7

Legs = 2;
}

public string Talk() {
return "yadda yadda yadda";

}
}

5. Add the Page_Load() event that consists of code that will use our classes:

void Page_Load(object Sender, EventArgs E) {

Dog Rover = new Dog();
Response.Write(Rover.Walk());
Response.Write("
");
Response.Write(Rover.Bark());
Response.Write("
");

Person Susan = new Person();
Response.Write(Susan.Walk());

}

6. Save the file and run it. You'll see the following output as shown in Figure 7-6:

Figure 7-6

How It Works
Let's start by looking at the base class, Animal. It has two properties, Legs and BodyHair, and one
method, Walk():

public class Animal {

private int _Legs;

private string _BodyHair;

public int Legs {

get {

return _Legs;

}

set {

235

Objects

_Legs = value;

}

}

public string BodyHair {

get {

return _BodyHair;

}

set {

_BodyHair = value;

}

}

public string Walk() {

return "I'm walking on " +

_Legs + " legs";

}

}

Next comes the class declaration for the Dog class:

public class Dog : Animal {

Notice the use of the colon (:) here. This indicates that you are inheriting from the Animal class, which
automatically gives the Dog class the properties and methods defined in that class. This is obvious when
we look at the constructor:

public Dog() {

Legs = 4;

}

Notice that this class uses the Legs property without declaring it. That's because it's part of the base
class. Note that you can't use the _Legs variable because that's private to the Animal class, but you can
use the Legs property.

The methods are simple, each returning a string. These have been added to show that you can have
methods additional to those provided by the base class:

public string Bark() {
return "Woof";

}

public string Bite() {
return "Chomp Chomp";

}

public string Wag() {
return "Wag Wag";

}
}

You then defined the Person class, again inheriting from the Animal base class with the Legs property
set to 2:

236

Chapter 7

public class Person : Animal {

public Person() {
Legs = 2;

}

public string Talk() {
return "yadda yadda yadda";

}
}

Finally you create the Page_Load() event where the classes are used:

void Page_Load(object Sender, EventArgs E) {

Within this event, you first create an instance of the Dog class, and then
call the Walk() and Bark() methods:

Dog Rover = new Dog();
Response.Write(Rover.Walk());
Response.Write("
");
Response.Write(Rover.Bark());
Response.Write("
");

Then you create an instance of the Person class and call the Walk() method:

Person Susan = new Person();
Response.Write(Susan.Walk());

}

The Walk() method is called in both the Dog and the Person classes, even though they do not
implement it. It's the base class that implements this class, but because they both inherit from the base
class they can use the Walk() method. As you can see, the same functionality is available in multiple
classes despite being implemented only once.

Interfaces
An interface is a special type of class, but one that doesn't implement any methods or properties – it
defines what a class does, rather than what a class is. The term interface is used to describe the public
view of a class – the public methods and properties.

Why is an interface useful? While developing a large application, you may have a set of classes that all
need to perform some similar action(s). An interface specifies what that similar action should be but
does not implement it. This is different from the concept of inheritance, where the implementation is at
the base class level.

Good examples of interfaces are some of the data handling classes that .NET provides. Data can be
stored in different types of databases and there are special classes for handling data. There are two main

A class can inherit from only one other class.

237

Objects

sets of classes – one for Microsoft SQL Server and one for other databases. Despite the fact that these
databases might require special handling, the data handling classes need to provide a common
implementation. This allows similar code to be used irrespective of the database. This reduces not only
the techniques you need to learn, but also the complexity of code you need to write. Let's look at a
simple example.

Try It Out Creating an Interface
1. Create a new ASP.NET page called Interfaces.aspx.

2. Add the following code that defines the interface below the <script runat="server"> line:

public interface IAnimal {

int Legs { get; set; }

string Walk();
}

3. Add the following code to define the Person class:

public class Person : IAnimal {

private int _Legs;

public Person() {
_Legs = 2;

}

public int Legs {
get {
return _Legs;

}
set {
_Legs = value;

}
}

public string Walk() {
return "I'm walking on " +

_Legs + " legs";
}

}

4. Add the code for the Dog class:

public class Dog : IAnimal {

public int Legs {
get {
return 4;

}
set {

}

238

Chapter 7

}

public string Walk() {
return "I want to run";

}
}

5. And finally, add the code for using these classes:

void Page_Load(object Sender, EventArgs E)
{
Dog Rover = new Dog();
Response.Write(Rover.Walk());
Response.Write("
");

Person Susan = new Person();
Response.Write(Susan.Walk());

}

6. Save the file and run it – you'll see the following output:

Figure 7-7

How It Works
The code is simple even if the concept seems a little strange. Let's start by looking at the Interface:

public interface IAnimal {

int Legs { get; set; }

string Walk();
}

It's similar to the way a class is defined, except that you need to use the interface keyword before the
interface name. By convention, the classname starts with an uppercase I. The properties and methods
are defined within the interface. Notice that there is no implementation – all you are doing is defining
what the interface does and not how it does it. The use of get and set in the Legs property here imply
the read and /write characteristics of the property, respectively. We also have the Walk() method that
returns a string.

239

Objects

Once the interface is defined, you can use a class to implement it in the same manner as inheritance:

public class Person : IAnimal {

This tells .NET that we have a Person class, and that apart from its own properties and methods, it
should also implement the properties and methods defined by the IAnimal interface. Therefore we first
define a private variable to store the number of legs, and then the constructor to set a value for it as
follows:

private int _Legs;

public Person() {
_Legs = 2;

}

Now consider the properties defined in the interface. The definition is the same as for normal properties
except that the interface has already specified this property making its implementation mandatory:

public int Legs {
get {
return _Legs;

}
set {
_Legs = value;

}
}

There's nothing special you have to do to specify that this code is implementing a property defined in
the interface. The C# compiler knows when you are implementing an interface and matches the
properties (and methods) accordingly. The same technique applies to the method:

public string Walk() {
return "I'm walking on " +

_Legs + " legs";
}

}

Now let's look at the Dog class, which also implements the IAnimal interface:

public class Dog : IAnimal {

The Legs property is implemented next. Note that the following implementation is completely different
from that of the Person class. There is no private variable to store the number of legs, setting the
property doesn't do anything, and reading the value always returns 4.

public int Legs {
get {
return 4;

}
set {

}
}

240

Chapter 7

The same applies to the Walk() method, which has an implementation different from that of the Person
class:

public string Walk() {

return "I want to run";

}

}

Finally, we have the code that uses the classes. Notice that we can still call the Walk() method on both
classes in exactly the same manner as in previous examples:

void Page_Load(object Sender, EventArgs E)

{

Dog Rover = new Dog();

Response.Write(Rover.Walk());

Response.Write("
");

Person Susan = new Person();

Response.Write(Susan.Walk());

}

The key to understanding interfaces is remembering that the interface defines what a class can do, not
how it does it. That's clearly seen from the implementation of the Person and Dog classes, where the
Legs property and Walk() method have been implemented differently. The external view of these
classes is the same.

Interfaces as Types
Interfaces could be useful in a scenario where you need to write some generic routines to handle class
instances. For example, consider a function that accepts an object as an argument, does some processing,
and then calls a method on that object. Using the Dog class, you could have the following:

Dog Rover = new Dog();
GoForAWalk(Rover);

public void GoForAWalk(Dog inst) {
// do some processing
...
// go for a walk
inst.Walk();

}

Here you've created an instance of Dog, and passed that into the GoForAWalk() function as an int
argument. This function simply calls the Walk() method of the Dog class instance. What happens if you
now want to have the same sort of thing for a Person object? You could expand your code as follows:

public void GoForAWalk(Dog inst) {

241

Objects

// do some processing
...
// go for a walk
inst.Walk();

}
public void GoForAWalk(Person inst) {
// do some processing
...
// go for a walk
inst.Walk();

}

The only difference in the second routine is the argument definition. All other code is repeated.

A better solution is to realize that both Dog and Person implement IAnimal, and we can use the
interface name as our argument type:

public void GoForAWalk(IAnimal inst)
{ // do some processing
...
// go for a walk
inst.Walk();

}

We now have a single routine that applies to both the Dog and Person objects. In fact it applies to all
objects that implement IAnimal, so if another class is created (Cat for instance), the GoForAWalk()
routine doesn't need to be changed.

The key points are that interfaces:

❑ Provide a class definition that is enforced upon classes that implement the interface. This
ensures that all classes that implement the interface are guaranteed to have the set of properties
and methods defined in the interface.

❑ Don't enforce the implementation, as that is left up to the individual class.

❑ Allow generic routines, because interfaces are data types. This means that instead of using the
actual class as the data type, we can use the interface name, thus allowing the routine to work
with any object that implements the interface.

The last point will be discussed in the next couple of chapters where the topic of data access is
addressed.

Implementing Interface Methods and Properties
One important point to remember is that when implementing an interface in a class, you must
implement all methods and properties of that interface. For example, you cannot implement just the
Walk() method, and not the Legs property. Everything defined in the interface has to be implemented
in the class. If you don't, you'll get a compilation error.

242

Chapter 7

.NET Objects
So far, this chapter has looked at creating classes and objects. Earlier, we talked about everything in .NET
being an object. This is a core point to remember because it will aid you considerably in understanding
.NET. Let's look at a couple of topics to understand how objects are organized and used within .NET.

Namespaces
Namespaces provide a logical separation for classes. The first step towards understanding objects in
.NET is to understand namespaces. If you look at the number of classes that come as a part of .NET,
you'll see why – there are more than 3000 classes! Having that number of classes without any form of
structure would be really difficult to manage, especially when searching through documentation. There
are a couple of places you can look at the available namespaces. The first is the documentation that
comes with .NET as shown in Figure 7-8:

Figure 7-8

Observe the number of namespaces and how they have been broken down. Knowing the classes that
belong in which namespace is essential, not only to help you look up documentation, but also to know
about the namespaces to import into an ASP.NET page.

The Class Browser
Another useful tool is the class browser application, which is available if you have installed and
configured the .NET Framework SDK samples. To access this, navigate to
http://localhost/quickstart/aspplus and scroll to the bottom where you'll see a link to Sample Applications

and A Class Browser Application. Running this sample shows Figure 7-9:

243

Objects

Figure 7-9

On the left you see the namespace; selecting one of these will display the classes in the namespace on the
right side of the screen. Selecting an individual class will show its members. See Figure 7-10:

Figure 7-10

244

Chapter 7

This figure shows all the members of a class – the constructors, properties, methods, and events. It also
shows the object hierarchy (the inheritance used) and the implementation (classes implemented).

Summary
This chapter covered the fundamentals and some complex topics surrounding classes. You could go
deeper into objects and other complex topics, but these are really outside the scope of the book. We've
looked at what objects are, and how OOP is beneficial.

Features such as inheritance and abstraction provide many benefits to programmers, such as reduction
in development time, improved stability of applications, and better structure. These techniques were
used to create some sample classes to show how they work and to see how properties and methods can
easily be added to a class.

This chapter also discussed advanced topics such as overloading and interfaces. The chapter ended with
a quick look at how classes are organized in .NET, and how you can find out what is in a namespace and
a class.

Now it's time to turn attention to data; the next chapter will look at how data can be retrieved from a
database and displayed in your pages.

Exercises
1. The examples covered in the chapter have modelled some simple characteristics of real - world

objects, such as animals. Think about other real world objects that, when turned into classes,
would be useful in programming.

2. In the Animal class, where the Walk() method accepts an argument of type int, expand this to
use this integer as the speed of walking. Think about how you'd store that speed and what
you'd do with it.

3. With the results of Exercise 2, think about how you'd add validation to the speed to ensure that
it doesn't exceed certain set limits.

4. Describe the main differences between class inheritance and interfaces. When would you use
one over the other?

5. Create a class called PieceOfString with a single read/write property (of type int) called
Length. Create an instance of the class and set the Length to 16. Now you can answer that age
old question "How long is a piece of string?"

245

Objects

8
Reading from Databases

So far, you've learnt a lot about programming, and seen those techniques in use in a variety of Web
pages. Now it's time to turn our attention to one of the most important topics of building
Web sites – data. Whatever the type of site you aim to build, data plays an important part. From a
personal site (perhaps a vacation diary or a photo album), to a corporate e-commerce site,
data is key!

There are numerous ways to store data, but most sites use a database. In this chapter, we're going to
look at data stored in databases, and show how easily it can be used on Web pages. For this we are
going to use ADO.NET, which is the data access technology that comes as part of the .NET
Framework.

If the thought of databases sounds complex and scary, don't worry. We're going to show you just
how easy this can be. In particular, we'll be looking at:

❑ Basics of databases and how they work

❑ How to create simple data pages using Web Matrix

❑ Different ADO.NET classes used for fetching data

❑ Basics of ADO.NET and how it fetches data

❑ How to use Web Matrix to simplify developing data access pages

Let's develop some basic understanding of databases first.

Understanding Databases
Understanding some basics about databases is crucial to using data in your pages. You don't need
to be a database expert, but there are certain things you will need to know in order to work with
data in .NET. For a start, you need to understand how data is stored. All types of data on a
computer are stored in files of some sort. Text files, for example, are simple files and just contain

plain text. Spreadsheets, on the other hand, are complex files containing not only the entered text and
numbers, but also details about the data, such as what the columns contain, how they are formatted, and
so on.

Databases also fall into the category of complex files. When using Microsoft Access, you have an MDB
file – this is a database file, but you can't tell anything about the data from the file itself. You need a way
to get to the data, either using Microsoft Access itself, or as we are going to do, using the .NET data
classes. Before you can access the data, you need to know how it is stored internally.

Tables
Within a database, data is stored in tables – these are the key components of all databases. A table is like a
spreadsheet, with rows and columns. You generally have multiple tables for multiple things – each
distinct type of data is stored separately, and tables are often linked together.

Let's look at an example that should make this easier to visualize. Consider an ordering system, for
example, where you store details of customers and the goods they've ordered. The following table shows
rows of customer orders, with columns (or fields) each piece of order information:

Customer Address Order Date Order Item Quantity Item Cost

John 15 High
Street
Brumingham
England
UK

01/07/2003 Widget 10 3.50

John 15 High
Street
Brumingham
England
UK

01/07/2003 Doodad 5 2.95

John 15 High
Street
Brumingham
England
UK

01/08/2003 Thingy 1 15.98

Chris 25 Easterly
Way
Cradiff
Wales
UK

01/08/2003 Widget 1 3.50

Dave 2 Middle
Lane
Oxborough
England
UK

01/09/2003 Doodad 2 2.95

248

Chapter 8

This is the sort of thing you'd see in a spreadsheet, but there are a couple of big problems with this. For a
start, we have repeated information. John, for example, has his address shown three times. What
happens if he moves house? You'd have to change the address everywhere it occurs. Dave has two
addresses, but notice they are slightly different. Which one is correct? Are neither correct?

To get around these problems, we use a process called Normalization.

Normalization
This is the process of separating repeated information into separate tables. There are whole books
dedicated to database design, but we only need to look at the simplest case. A good beginner book on
database design is Database Design for Mere Mortals: A Hands On Guide to Relational Database Design, by
Michael J. Hernandez

What we need to do is split the previous table into three tables, one for each unique piece of information
– Customers, Orders, and OrderDetails. To link the three new tables together, we create ID columns
that uniquely identify each row. For example, we could create a column called CustomerID in the
Customers table. To link the Customers table to the Orders table, we also add this CustomerID to the
Orders table. Let's look at our tables now.

The Customers table is as follows:

The Orders table is as follows:

CustomerID Customer Address

1 John 15 High Street
Brumingham
England UK

2 Chris 25 Easterly Way
Cradiff
Wales UK

3 Dave 2 Middle Lane
Oxborough
England UK

Customer Address Order Date Order Item Quantity Item Cost

Dave 3 Middle
Lane
Oxborough
England
UK

01/09/2003 Thingamajig 1 8.50

249

Reading from Databases

The OrderDetails table is as follows:

We now have three tables that can be linked together by their ID fields as shown in Figure 8-1:

Figure 8-1

We now have links between the tables. The CustomerID field in the Orders table is used to identify
which customer the order is for. Similarly, the OrderID field in the OrderDetails table identifies which
order a particular order line belongs to.

The unique key in a table is defined as its Primary Key – it's what uniquely defines a row. When used in
another table it is called the Foreign Key, so called because it's a key, but one to a foreign table. The

OrderDetailsID OrderID Order Item Quantity Item Cost

1 1 Widget 10 3.50

2 1 Doodad 5 2.95

3 2 Thingy 1 15.98

4 3 Widget 1 3.50

5 4 Doodad 2 2.95

6 4 Thingamajig 1 8.50

OrderID CustomerID OrderDate

1 1 01/07/2003

2 1 01/08/2003

3 2 01/08/2003

4 3 01/09/2003

250

Chapter 8

foreign key is simply a column that is the primary key in another table. Because the values of the
primary key and the foreign key will be the same, we can use them to link the tables together. This
linking of the tables is done in Structured Query Language (SQL), usually as a query or a stored procedure.

SQL and Stored Procedures
Queries are the way in which we deal with data in a database, either to extract data or to manipulate it.
We can use an SQL statement or a stored procedure, which is an SQL statement wrapped to provide a
simple name. It's worth noting that a stored procedure is actually more than just wrapping an SQL
statement in a name, but that's a good enough description for what we need.

In Chapter 5 when we looked at functions, we had a function name encapsulating some code statements.
Think of a stored procedure in a similar way – it wraps a set of SQL statements, allowing us to use the
name of the stored procedure to run those SQL statements. We're not going to focus much on this topic
as it's outside the scope of this book.

To learn more about SQL, read SQL for Dummies (ISBN 0-7645-4075-0) by John Wiley & Sons Inc.

Here are a few reasons why you should always use stored procedures instead of direct SQL:

❑ Security: Using the .NET data classes with stored procedures protects you against certain forms
of hacking.

❑ Speed: Stored procedures are optimised the first time they are called, and then the optimised
code is used in subsequent calls.

❑ Separation: It keeps the SQL separate from your code.

In the remainder of this book, we'll actually be using a mixture of SQL and stored procedures for the
simple reason that sometimes it's easier to use SQL in the context of an example. Remember, our focus is
on ASP.NET. We'll be using Microsoft Access for the samples, and although Access doesn't support
stored procedures, its use of stored queries is equivalent.

Let's get on with some examples.

The Web Matrix Data Explorer
You've already seen how powerful Web Matrix is for creating Web pages, and this power extends to
working with data. Where you've used the Workspace Explorer in the top right hand corner of Web
Matrix to work with files, you can use the Data Explorer to work with data. This provides ways of
creating databases, connecting to existing ones, and working with tables and queries. Let's give this a go.

Try It Out Connecting to a Database
1. Select the Data Explorer tab, and click the Add Database Connection button – the one that's second

in from the right, and will be the only one highlighted, as shown in Figure 8-2, if you haven't
already got a database connection open:

251

Reading from Databases

Figure 8-2

2. Select Access Database from the window that appears and press OK.

3. Enter the following into the Data File text area (use a central location for the database, so that we
can reuse it later in the book):

C:\BegASPNET11\data\Northwind.mdb

4. Press OK to connect to the database. This is the Northwind database, one of the sample
databases that ships with Microsoft Access.

5. Figure 8-3 shows the tables contained in this database:

Figure 8-3

252

Chapter 8

You can double-click on these to open the table, and see and change the data. One thing you might
notice is that you don't see any queries – that's because Web Matrix doesn't support queries in Access.
When connecting to SQL Server, you'll see the stored procedures – you can even create and edit
them – but for Access, you are limited to tables only.

How It Works
There's nothing really to explain about how it works. What we are doing is simply creating a connection
to a database that Web Matrix can use. This isn't required for ASP.NET to fetch data from databases, but
Web Matrix has some great ways to generate code for you, so you don't have to do as much coding.

Creating Data Pages
Pages that display data can be created in a number of ways, and let's first look at the three ways that
Web Matrix uses to save you coding. This is the quickest way to get data into your pages and saves a
great deal of time. However, what it might not do is give you the knowledge to access databases without
using Web Matrix. After we've seen the easy ways, we'll look at the .NET classes that deal with data.
This way you'll have techniques to work with and without Web Matrix.

Displaying Data Using the Data Explorer
You've already seen how easy connecting to a database is using the Data Explorer. Creating pages
directly from this explorer is even easier – all you have to do is drag the table name and drop it onto a
page. This will automatically create a connection on the page and a fully functional data grid. Let's give
this a go.

Try It Out Creating a Grid
1. Create a new ASP.NET page called Grid1.aspx.

2. From the Data Explorer, drag the Suppliers table onto your empty page as shown in
Figure 8-4:

Figure 8-4

253

Reading from Databases

3. Save the page and run it as shown in Figure 8-5:

Figure 8-5

Amazing! A sortable grid full of data and you didn't have to write even a single line of code!

How It Works
The workings rely on two controls – the AccessDataSourceControl that provides the connection to
the database, and an MxDataGrid, which is a Web Matrix control (also covered in Chapter 10) that
displays the data. Looking at the HTML view for these controls gives you a good idea of what they do.

Let's start with the AccessDataSourceControl:

<wmx:AccessDataSourceControl id="AccessDataSourceControl2"
runat="server" SelectCommand="SELECT * FROM [Suppliers]"
ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=-4;

Data Source=C:\BegASPNET11\data\Northwind.mdb"></wmx:AccessDataSourceControl>

The first thing to notice is the way the control is declared. You're used to seeing asp: at the beginning of
controls, but not wmx:. This prefix is the namespace – remember the previous chapter where we said that
namespaces provide a separation between classes. In this case, these controls are part of Web Matrix, and
have thus been given a namespace that is different from the standard server controls.

Apart from the id and runat, two other attributes provide the details regarding which database to
connect to and what data to fetch:

❑ The SelectCommand: Defines the SQL that will return the required data – in this case, it's all
rows and columns from the Suppliers table. This is the default since we dragged this table,
but we can customize the SelectCommand to return only selected rows or columns.

❑ The ConnectionString: Defines the OLEDB connection string. You only need to worry about
the bit with the path of the database file – the Data Source bit (if you move the file, you'll need
to change this). The other parts of the ConnectionString just define the type of database and

254

Chapter 8

some database specific features. You don't need to know about these specifically (they are fully
documented in the .NET help files); just copy them if you ever need to use them again.

At this stage, you have enough details to connect to a database and fetch data, but don't have any way to
display it. For that we are going to use the MxDataGrid control:

<wmx:MxDataGrid id="MxDataGrid2" runat="server"
DataSourceControlID="AccessDataSourceControl2" BorderColor="#CCCCCC"
AllowSorting="true" DataMember="Suppliers" AllowPaging="true"
BackColor="White" CellPadding="3" DataKeyField="SupplierID"
BorderWidth="1px" BorderStyle="None">
<PagerStyle horizontalalign="Center" forecolor="#000066"
backcolor="White" mode="NumericPages"></PagerStyle>

<FooterStyle forecolor="#000066" backcolor="White"></FooterStyle>
<SelectedItemStyle font-bold="true" forecolor="White"
backcolor="#669999"></SelectedItemStyle>

<ItemStyle forecolor="#000066"></ItemStyle>
<HeaderStyle font-bold="true" forecolor="White"
backcolor="#006699"></HeaderStyle>

</wmx:MxDataGrid>

This may seem complex but is actually very simple. Let's look at all of the attributes:

As part of the grid, we also have some style elements:

Attribute Description

DataSourceControlID This contains the ID of the data source control from
which data will be fetched. In this case, it's the ID of
the AccessDataSourceControl we described
earlier.

BorderColor This is the color of the grid border.

AllowSorting Indicates whether or not the grid will support sorting.

DataMember This contains the database table name.

AllowPaging Indicates whether or not the grid supports paging.
The default number of rows in a page is 10, and this
can be changed with the PageSize attribute.

BackColor This is the background color for the grid.

CellPadding This defines the amount of padding between grid
cells. A higher number means the cells will be spaced
further apart.

DataKeyField This is the primary key of the table.

BorderWidth This is how wide the border of the grid is. Here it is 1
pixel (px stands for pixel), which is a thin border.

BorderStyle This is the style of the border.

255

Reading from Databases

❑ PagerStyle: Defines the style of the pager section. In our grid, this is the last row showing the
page numbers, but it appears before the footer if a footer row is being shown.

❑ FooterStyle: Defines the style of the footer row. In our grid, we aren't showing a footer, but
the style is set so that the footer will look correct if it is shown.

❑ SelectedItemStyle: Defines the style of items when they are selected. Our grid isn't selectable
by default, but like the FooterStyle the default style is set in case item selection is added.

❑ ItemStyle: Defines the style for each row of data in the grid.

❑ HeaderStyle: Defines the style for the header row, where the column names are shown.

That's all there is to this example – two controls that are linked together. When the page is loaded, the
AccessDataSourceControl connects to the database and runs the command. The MxDataGrid then
fetches the data stored by the data source control and constructs a grid around it. In fact, the grid is the
most complex piece of code here because of all the properties being set - purely to change the look. At its
simplest, you could have the following:

<wmx:MxDataGrid id="MxDataGrid2" runat="server"

DataSourceControlID="AccessDataSourceControl2">

</wmx:MxDataGrid>

This only contains the attributes required to display data.

Displaying Data Using the Web Matrix Template Pages
You've probably noticed a number of template pages when you add a new page in Web Matrix – some of
those are for data reports. These provide a simple way to get more functionality into grids than the
example earlier used.

The supplied template pages are as follows:

❑ Simple Data Report: Gives a simple grid without paging or sorting

❑ Filtered Data Report: Gives a grid with a filter option, so you can select the rows displayed

❑ Data Report with Paging: Gives a grid with paging enabled

❑ Data Report with Paging and Sorting: Gives a grid with paging and column sorting enabled

❑ Master – Detail Grids: Gives two grids, representing a master table and a child table

❑ Editable Grid: Gives a grid allowing updates to the data

❑ Simple Stored Procedure: Gives a grid that uses a stored procedure for its data source

All of these supplied templates connect to a SQL Server database, and need modification if they are to be
used with a different database. However, they provide a quick way to get pages constructed, allowing
you to make a few simple changes to get what you need, rather than coding from scratch.

Let's look at one of these - the report with paging and sorting.

256

Chapter 8

Try It Out Creating a Data Page

1. Create a new page using the Data Pages templates. Pick the Data Report with Paging and Sorting,
and call it SortPage.aspx.

2. In the design window, select the All tab and change this line:

<%@ import Namespace="System.Data.SqlClient" %>

To:

<%@ import Namespace ="System.Data.OleDb" %>

If this is not done, errors will be encountered while loading the page.

3. In the design window, select the Code tab, find the BindGrid() subroutine, and change the
code so it looks like the following:

void BindGrid()
{
// TODO: update the ConnectionString value for your application
string ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +

"Data Source=C:\BegASPNet11\data\Northwind.mdb";
string CommandText;

// TODO: update the CommandText value for your application
if (SortField == String.Empty)
CommandText = "select * from Suppliers order by CompanyName";

else
CommandText = "select * from Suppliers order by " + SortField;

OleDbConnection myConnection = new OleDbConnection(ConnectionString);
OleDbDataAdapter myCommand = new OleDbDataAdapter(CommandText,

myConnection);

DataSet ds = new DataSet();
myCommand.Fill(ds);

DataGrid1.DataSource = ds;
DataGrid1.DataBind();

}

Use a different path if you've installed the samples in a directory other than C:\BegASPNET11.

4. Save the file and run it; you'll see something like Figure 8-6:

257

Reading from Databases

Figure 8-6

This isn't much different from the drag and drop approach we used in the first example, but it uses the
.NET data classes and a DataGrid control, rather than the Web Matrix controls
(AccessDataSourceControl and MxDataGrid). It means this technique will work even if Web Matrix
isn't installed on the server running the page. Let's see how it works.

How It Works
The first thing to look at is the namespace change:

<%@ import Namespace="System.Data.OleDb" %>

By default, the data pages are configured to use SQL Server and therefore use the SqlClient
namespace. Since we are using Access, we have to use the OleDb namespace.

Now let's look at the declaration of the grid itself. We won't show all the properties, as some are to do
with the visual style. Instead, we'll concentrate on those that are related to the code we'll see:

<asp:datagrid id="DataGrid1" runat="server"

AllowPaging="true" PageSize="6" OnPageIndexChanged="DataGrid_Page"

AllowSorting="true" OnSortCommand="DataGrid_Sort">

Here we have the following properties defined:

❑ AllowPaging: When set to true, allows the grid to page the results. This works in a way
similar to the MxDataGrid where the page numbers are shown at the bottom of the grid.

❑ PageSize: Defines the number of rows to show per page.

❑ OnPageIndexChanged: Defines the event procedure to call when the page number is changed.
When a page number link is clicked, the procedure defined here is run.

258

Chapter 8

❑ AllowSorting: Allows the grid to sort the rows on the basis of column selections. Setting this
to true enables links on the column headings.

❑ OnSortCommand: Defines the event procedure to call when a column heading is clicked.

Now let's look at the code that uses this grid, starting with the Page_Load() event:

void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack) {

// Databind the data grid on the first request only
// (on postback, rebind only in paging and sorting commands)

BindGrid();
}

}

Here we are calling the BindGrid() routine, but only if this is the first time the page has been loaded.
This ensures that the grid, in its initial state, displays data in a default sort order. You'll see how this
works as we go through the code.

Next, we have two events for the grid. The first is for when a page is selected on the grid, and is the
event procedure defined in the OnPageIndexChanged attribute:

void DataGrid_Page(object sender, DataGridPageChangedEventArgs e)
{
DataGrid1.CurrentPageIndex = e.NewPageIndex;
BindGrid();

}

Notice that the second argument to this procedure is of type DataGridPageChangedEventArgs. This is
automatically sent by ASP.NET and contains two properties, of which we are interested in only
one – NewPageIndex. This identifies the number of the page selected, so we set the CurrentPageIndex
property of the grid to the selected page number. We then call the BindGrid() routine to re-fetch the
data and bind it to the grid. Later, we'll look at why you need to do this.

The second event procedure is for sorting the grid, and is defined in the OnSortCommand attribute:

void DataGrid_Sort(object sender, DataGridSortCommandEventArgs e)
{
DataGrid1.CurrentPageIndex = 0;
SortField = e.SortExpression;
BindGrid();

}

The second argument for this procedure is of type DataGridSortCommandEventArgs, which contains
the expression on which the grid is being sorted. In this case, this is automatically set by the DataGrid
as the column headings are sortable, and so contains the column name.

The first line sets the CurrentPageIndex of the grid to 0, having the effect of starting the grid at page 1.
We do this because we are re-sorting. We then set SortField to the sorted field, and rebind the grid.

Notice that SortField hasn't been declared as a variable – in fact it's a property. This might seem
confusing because properties are always attached to objects, prompting the question what object is this

259

Reading from Databases

one attached to. Well, since it hasn't got a named object, ASP.NET takes this as being a property of the
current Page. By default, a Page doesn't have a SortField property, so we define one:

protected String SortField {

get {
object o = ViewState["SortField"];
return (o == null) ? String.Empty : (String)o;

}
set {
ViewState["SortField"] = value;

}
}

The interesting point is that we haven't defined a class. Because we are coding within an ASP.NET page,
the Page is a class, so all we are doing is adding a property to the page (for the purpose of referencing
the sorted field later when we bind the grid). When the page is run, ASP.NET adds your code to the class
for the page. It's not like the examples in the previous chapter, where we were creating a separate
class – here we want our property to be part of the same class as the rest of the code.

The get part of the property first fetches the sort value from the ViewState into an object variable (all
items in ViewState are returned as objects), and then checks to see if the object is null. This would be
the case if the sort hasn't been defined, such as the first time the page is loaded. If it is null, then an
empty string is returned, otherwise the object is converted to a string with the (String) cast and that is
returned. This is a perfectly safe conversion because we know that the ViewState for this item only
contains a string, as that's what the set part of the property does. ViewState was covered in Chapter 6.

Using String.Empty is a special way of defining an empty string, and avoids having to use open and
close quotation marks next to each other, where it's often difficult to see if there is a space between the
quotation marks.

Now let's look at the BindGrid() routine:

void BindGrid() {

The first two lines define string variables to hold the connection string and the text for the command to
run. Notice that the connection string has been changed to an Access one:

string ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Data Source=C:\BegASPNet11\data\Northwind.mdb";

string CommandText;

The use of the @ symbol before part of the string tells the C# compiler to treat the string exactly as it is
typed. We need to do this because in C#, the backward slash character (\) is treated as an escape
sequence, indicating that the following character is something special. To avoid this we can either use to
slash characters together (\\), meaning we really want a slash character, or use the @ symbol. Later in the
chapter, you'll see examples of the \\ style.

Next, we check the SortField property to see if we are sorting the data in the order selected by the user
(that is, if the user has clicked one of the column headings). This is accessing the SortField property of
the Page and therefore calls the get part of the property. If the sort order hasn't been defined, the
String.Empty is the value of SortField. So we set the command string to order by the CompanyName.
If a sort string has been set, then we use that as the sort order. In either case, we are simply selecting all
rows and columns from the Suppliers table:

260

Chapter 8

if (SortField == String.Empty)
CommandText = "select * from Suppliers order by CompanyName";

else
CommandText = "select * from Suppliers order by " + SortField;

These commands use SQL statements, but we could equally have used stored queries or stored
procedures. In practice, you should use stored queries, but using SQL directly here means we don't have
to create the stored query – since we're concentrating on ASP.NET we don't want to distract ourselves
with the stored procedure. We'll be looking at stored procedures later in the chapter.

Now we come to the part where we connect to the database. Don't worry too much about this
code – although we are going to explain it, we're not going to go into too much detail in this section, as
we'll be going over the theory later. To define the connection we use an OleDbConnection object, and as
part of the instantiation we pass in the connection string details. This tells ASP.NET which database to
connect to, but doesn't actually open the connection. It defines where to connect to when we are ready to
connect:

OleDbConnection myConnection = new OleDbConnection(ConnectionString);

Now we use an OleDbDataAdapter to define the command to run – this will be the SELECT query to
fetch the data. The data adapter performs two functions. It provides the link between the database and
the DataSet. It is also how data is fetched from and sent to the database (we'll be looking at the
DataAdapter in detail in the next chapter). The two arguments we pass in are the command text to run
the SQL statement, and the connection object. These define which command to run and which database
to run it against:

OleDbDataAdapter myCommand = new OleDbDataAdapter(CommandText,
myConnection);

Note that we still haven't connected to the database and fetched any data, as we've nowhere to store that
data. For that we use a DataSet object, which you can think of as a mini database (it's not actually a
mini database, but that descriptions works well for the moment). It provides a place for the data to be
held while we manipulate it:

DataSet ds = new DataSet();

Now that we have all of the pieces in place (the connection, the command to run, and a place to put the
data), we can go ahead and fetch the data. For that we use the Fill() method of the data adapter,
passing in the DataSet. This opens the database connection, runs the command, places the data into the
DataSet, and then closes the database connection.

myCommand.Fill(ds);

The data is now in our DataSet so we can use it as the DataSource for the grid, and bind the grid:

DataGrid1.DataSource = ds;
DataGrid1.DataBind();

}

This may look like a complex set of procedures, but it's actually a simple set of steps that is used many
times when you need to fetch data. You'll be seeing this many times during this book, and we'll go over
its theory later so you really understand what's happening. For now though, let's look at another way to
save time, by using the Web Matrix Code Wizards.

261

Reading from Databases

Displaying Data Using the Code Wizards
There are times where both the drag and drop from the Data Explorer and the template pages cannot
provide you with exactly what you need. Perhaps you'd like to customize the query, or just add a
routine to fetch data to an already existing page. The code wizards allow you to add code routines to a
page, giving you a finer control of the data being fetched or updated. Let's give this a go.

Try It Out Creating a Data Page

1. Create a new blank ASP.NET page called CodeWizard.aspx.

2. Switch to Code view and you'll notice that the Toolbox now shows Code Wizards as shown in
Figure 8-7:

Figure 8-7

3. Pick the SELECT Data Method and drag it from the Toolbox, dropping it into your code window.
This starts the wizard, and the first screen as shown in Figure 8-8 is where you pick the database
to connect:

Figure 8-8

262

Chapter 8

4. The drop-down list shows configured data sources (from the Data Explorer) as well as an option
to create a new connection. Pick the existing connection and press Next to go to the screen
shown in Figure 8-9:

Figure 8-9

Now you can select the columns you wish to show. You can pick multiple columns (the * means
all columns from the table) from multiple tables. You simply select them individually. However,
when picking columns from multiple tables, you must join the tables. Remember our discussion
of linked tables and keys from the beginning of the chapter – you need the primary and foreign
key to join the tables.

5. Select the Products table and the ProductName column, and the Categories table and the
CategoryName column. Notice the Preview pane at the bottom of the window shows the SQL
statement, but without the tables joined together, as shown in Figure 8-10:

Figure 8-10

6. To join these tables together, we need a WHERE clause, so press the WHERE button to open the
WHERE Clause Builder window.

7. Select your options the same as shown in Figure 8-11:

263

Reading from Databases

Figure 8-11

8. Click OK and you'll see the WHERE clause part of the window is filled in as shown in
Figure 8-12:

Figure 8-12

9. Press the Next button, and on the Query Preview window press the Test Query button:

Figure 8-13

264

Chapter 8

You can see just the required columns in Figure 8-13.

10. Press Next.

11. From the Name Method window, change the name textbox to GetProductsDataSet. Make sure
the radio button at the bottom is set to DataSet and press Finish. We'll look at the DataReader
later in the chapter.

12. Once the code has been added, you want a way to display it. You can do this by switching to
Design view and dragging a DataGrid onto the page.

13. Switch to Code view and add the following code, after the GetProductsDataSet function:

void Page_Load(Object sender, EventArgs e)
{
DataGrid1.DataSource = GetProductsDataSet();
DataGrid1.DataBind();

}

14. Save the page and run it – you should see Figure 8-14:

Figure 8-14

You can see how we now only have two columns and from two different tables. Let's see how this
works.

How It Works
The key to this is the wizard that allows you to build up an SQL statement. This is great if you are a
newcomer to SQL as you don't have to understand how the SQL language works. Perhaps the most
important part of this wizard is the WHERE Clause Builder shown in Figure 8-11.

265

Reading from Databases

This is where (pun intended) we add the WHERE part of the SQL statement, and this is what filters the
rows and joins tables together. We've selected the Join option allowing us to specify the primary key
(CategoryID in the Categories table) and the foreign key (CategoryID in the Products table). The
WHERE clause becomes:

WHERE [Categories].[CategoryID] = [Products].[CategoryID]

If we wanted to add a third table, perhaps Suppliers, we could use an AND clause. Once you've
declared one WHERE clause, the WHERE button has a different name – AND Clause as shown in
Figure 8-15:

Figure 8-15

Pressing the AND Clause button shows the same WHERE Clause Builder, but this time you'd set the link
between the Suppliers and Products tables as shown in Figure 8-16:

Figure 8-16

266

Chapter 8

Now when you look at the WHERE clause section you see two tables joined together as in Figure 8-17:

Figure 8-17

The WHERE Clause Builder can also be used to filter data so that only selected rows are shown; we'll look
at that later. For now though, let's look at the code the wizard created for us (it may look slightly
different in your page – we've wrapped it so it's easier to read):

System.Data.DataSet GetProductsDataSet() {
string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +

"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +
"data\\Northwind.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

string queryString = "SELECT [Products].[ProductName], " +
"[Categories].[CategoryName] FROM [Products], [Categories] " +
"WHERE ([Categories].[CategoryID] = [Products].[CategoryID])";

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDbDataAdapter dataAdapter =
new System.Data.OleDb.OleDbDataAdapter();

dataAdapter.SelectCommand = dbCommand;
System.Data.DataSet dataSet = new System.Data.DataSet();
dataAdapter.Fill(dataSet);

return dataSet;
}

Let's tackle this systematically. First, we have the function declaration:

System.Data.DataSet GetProductsDataSet() {

This is defined as type System.Data.DataSet, which means it's going to return a DataSet (we'll look
at this in detail in the next chapter). You'll notice that the declaration has the System.Data namespace
before it. This is done because, while declaring variables or functions, ASP.NET needs to know where the
type is stored.

Normally we use the <%@ import Namespace="..." %> page directive to indicate the namespaces being
used in a page, and thus we don't have to specify the namespace when declaring variables. The wizard
isn't sure what namespaces have been set at the top of the page, so it includes the full namespace
just-in-case, ensuring that the code will compile under all situations.

267

Reading from Databases

Next, we have the connection string that simply points to our existing database:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +
"data\\Northwind.mdb";

Notice that this uses two backward slash characters to avoid the problem of the single slash character
being an escape sequence. In our earlier example we used the @ symbol.

Now we have the connection object:

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

One thing that's immediately obvious is the fact that this example doesn't use the OleDbConnection
type to define the connection to the database; it uses IDbConnection. If this seems confusing, refer to
the discussion of interfaces in the previous chapter, where we talked about generic routines.

IDbConnection is an interface that defines what the Connection class must do, and since the wizard is
building a generic routine, it uses this interface. This is because the wizard allows you to connect to
different database types. This is seen on the first screen and is the same as the Data Explorer allowing you
to pick either Access or SQL Server database. To make the wizard simpler, it uses the generic interface as
the type rather than having to use the type for a specific database.

The Interface simply enforces the correct signature on a class implementing the interface. There's no
actual requirement for the implementation to do anything. You could have a class that implements the
Open() method but that actually does something else instead of opening a connection. It would be
dumb, but it could be done.

Next we have the SQL string, as built up by the wizard:

string queryString = "SELECT [Products].[ProductName], " +
"[Categories].[CategoryName] FROM [Products], [Categories] " +
"WHERE ([Categories].[CategoryID] = [Products].[CategoryID])";

Now we have the definition of the command object. In previous examples, we passed the command text
directly into the OleDbDataAdapter. Underneath, ASP.NET actually creates another object – a Command
object. However, you don't see that Command object, as it is used internally. The wizard creates the
Command object directly, by making use of the CommandText property to store the SQL command, and
the Connection property to store the database connection. As with the connection that used the
interface as its type, the command is also defined as an interface type (IDbCommand).

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

Now we have the definition of the data adapter, and as with the connection, the type of the variable is
the interface type:

System.Data.IDbDataAdapter dataAdapter =
new System.Data.OleDb.OleDbDataAdapter();

268

Chapter 8

We mentioned earlier that the data adapter is the link between our page and the data. As part of this
link, the adapter provides not only data fetching, but also data modification. It does so with different
command objects, exposed as properties of the adapter. These allow the different commands to run
depending upon the action being performed. In this example, we are fetching data so we use the
SelectCommand property (so named because we are selecting rows to view).

dataAdapter.SelectCommand = dbCommand;

If you use the data adapter directly, without explicitly creating a Command, this is what it does behind the
scenes.

To fetch the data, we then create a DataSet and use the Fill() method of the adapter:

System.Data.DataSet dataSet = new System.Data.DataSet();
dataAdapter.Fill(dataSet);

And finally, we return the data:

return dataSet;
}

This code is more complex than the previous example, but it follows a similar path. It creates a
connection, creates a command, creates a data adapter, and then a DataSet. A look at these objects and
their relationships in more detail will give you a clearer picture of how they work together.

To find out more about the DataAdapter's properties and methods consult the .NET Documentation.
The OleDbDataAdapter is in the System.Web.OleDb namespace and the SqlDataAdapter is in
the System.Web.SqlClient namespace.

ADO.NET
All of the data access we've seen so far is based upon ADO.NET – the common name for all of the data
access classes. We'll only be looking at a few of these, and the ones you'll use most are:

❑ Connection: Provides details of connecting to the database

❑ Command: Provides details of the command to be run

❑ DataAdapter: Manages the command, and fetchs and updates data

❑ DataSet: Provides a store for data

❑ DataReader: Provides quick read-only access to data

ADO.NET is designed to talk to multiple databases, so there are different objects for different database
types. To keep the separation, ADO.NET classes are contained within different namespaces:

❑ System.Data: Contains the base data objects (such as DataSet) common to all databases.

269

Reading from Databases

❑ System.Data.OleDb: Contains the objects used to communicate to databases via OLEDB.
OLEDB provides a common set of features to connect to multiple databases, such as Access,
DBase, and so on.

❑ System.Data.SqlClient: Provides the objects used to communicate with SQL Server.

For some of the objects there are two copies – one in the OleDb namespace, and one in the SqlClient
namespace. For example, there are two Connection objects – OleDbConnection and SqlConnection.
Having two objects means they can be optimized for particular databases. Look at Figure 8-18 to see
how they relate to each other:

Figure 8-18

270

Chapter 8

On the left we have the database and the connection, in the middle we have four Command objects, and
on the right a DataAdapter and a DataSet. Notice that the DataAdapter contains four Command
objects:

❑ SelectCommand: Fetches data

❑ UpdateCommand: Updates data

❑ InsertCommand: Inserts new data

❑ DeleteCommand: Deletes data

Each of these Command objects has a Connection property to specify which database the command
applies to, a CommandText property to specify the command text to run, and a CommandType property to
indicate the type of command (straight SQL or a stored procedure).

As we said earlier, if you don't explicitly create Command objects and use the DataAdapter directly, a
Command is created for you using the details passed into the constructor of the DataAdapter, and this
Command is used as the SelectCommand.

We'll be looking at the UpdateCommand, InsertCommand, and DeleteCommand in the next chapter.

Let's look at these objects in a bit more detail, concentrating on the OleDb ones as we're using Access. If
you want to use SQL Server, you can simply replace OleDb with SqlClient in the object names; just
change the connection string, and continue working.

The OleDbConnection Object
As we've said earlier, the Connection object provides us with the means to communicate to a database.
Probably the only property you'll use is the ConnectionString property that can either be set as the
object is instantiated:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Data Source=C:\\BegASPNET11\\data\\Northwind.mdb";

OleDbConnection conn = new OleDbConnection(connectionString);

or it can be set with the property:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Data Source=C:\\BegASPNET11\\data\\Northwind.mdb";

OleDbConnection conn = new OleDbConnection();
conn.ConnectionString = connectionString;

The two main methods you'll use are Open() and Close(), which (unsurprisingly) open and close the
connection to the database. When used as we have so far, there is no need to do this explicitly since the
Fill() method of a DataAdapter does it for you.

The OleDbCommand Object
The OleDbCommand has several properties that we'll be looking at:

271

Reading from Databases

The three main methods of the command you'll use are the execute methods:

In the examples so far, we haven't used these methods as the execution of the command is handled
transparently for us. You'll see the ExecuteReader() method in action when you look at the
DataReader, and the ExecuteNonQuery() method in action in the next chapter.

The Parameters Collection
A parameter is an unknown value – a value that ADO.NET doesn't know until the page is being run,
and is often used to filter data based upon some user value. For example, consider a page showing a list

Method Description

ExecuteNonQuery() This executes the command but doesn't return any data.
It is useful for commands that perform an action, such as
updating data, but don't need to return a value.

ExecuteReader() This executes the command and returns a
DataReader object.

ExecuteScalar() This executes the command and returns a single value.

Property Description

 CommandText Contains the SQL command or the name of a stored
procedure.

Indicates the type of command being run, and can be one of
the CommandType enumeration values, which are:

StoredProcedure To indicate a stored procedure is
being run.

TableDirect To indicate the entire contents of
a table are being returned. In this
case, the CommandText property
should contain the table name.
This value only works for Oledb
connections.

CommandType

Text To indicate a SQL text command.
This is the default value.

Connection The Connection object being used to connect to a database.

Parameters A collection or Parameter objects, which are used to pass
details to and from the command.

272

Chapter 8

of products, with a drop-down list showing the product categories. The user could select a category so
that only those categories are shown.

The Parameters collection contains a Parameter object for each parameter in the query. Thus, a
command with three parameters would have objects looking like in Figure 8-19:

Figure 8-19

Let's look at an example to see how this works.

Try It Out Using Parameters

1. Create a new blank ASP.NET page called Parameters.aspx.

2. Add a Label and change the Text property to Category:.

3. Add a DropDownList next to the label and change the ID property to lstCategory.

4. Add a Button next to the DropDownList and change the Text property to Fetch.

5. Add a DataGrid underneath the other controls. Your page should now look like Figure 8-20:

Figure 8-20

273

Reading from Databases

6. Double-click the Fetch button to switch to the Click event procedure. Add the following code:

void Button1_Click(object sender, EventArgs e) {
DataGrid1.DataSource =

GetProducts(Convert.ToInt32(lstCategory.SelectedValue));
DataGrid1.DataBind();

}

7. Underneath that procedure, add the following code:

void Page_Load(Object Sender, EventArgs e)
{
if (!Page.IsPostBack) {
lstCategory.DataSource = GetCategories();
lstCategory.DataValueField = "CategoryID";
lstCategory.DataTextField = "CategoryName";
lstCategory.DataBind();

}
}

8. Underneath the preceding block of code, drag a SELECT Data Method wizard from the toolbox
onto the page. Pick the current database connection and select the CategoryID and
CategoryName columns from the Categories table. Call the procedure that you have created
GetCategories and have it return a DataSet.

9. Drag another SELECT Data Method wizard onto the page, underneath the SELECT Data Method
wizard that you just created. Pick the current database connection, and select ProductName,
QuantityPerUnit, UnitPrice, and UnitsInStock from the Products table.

10. Click the WHERE button and pick the CategoryID from the Products table making it Filter on
@CategoryID, as shown in Figure 8-21:

Figure 8-21

11. Click OK and Next to get to the Name Method screen.

12. Call the procedure GetProducts and have it return a DataSet. Press Finish to insert the code.

274

Chapter 8

13. Save the file and run it.

14. Select a category and then click Fetch to see only the products for that category shown in Figure
8-22:

Figure 8-22

What you've achieved here is two things. First, you've used two controls that are bound to data – the list
of categories and the grid of products. Second, you only fetched the products for a selected
category – you've filtered the list. Let's see how this works.

How It Works
Let's start the code examination with the Page_Load() event, where we fill the Categories list:

void Page_Load(Object Sender, EventArgs e) {

We only want to fetch the data and bind it to the list the first time the page is loaded, so we use the
IsPostBack property of the page to check if this is a postback. If it isn't, it must be the first load, so we
fetch the data. We don't need to do this on subsequent page requests as the list itself stores the data.

if (!Page.IsPostBack) {

lstCategory.DataSource = GetCategories();

Instead of calling the DataBind straight away, we want to tell the list which columns from the data to
use. A DropDownList stores two pieces of information – one is shown on the page (the text field), and
the other is hidden (the value field). The text field is used for what the user needs to see, while the value
field often contains an ID – what the user doesn't need to see. The DropDownList doesn't automatically
know which columns contain these pieces of information, thus we use the DataValueField and
DataTextField properties. The DataValueField is the CategoryID, the unique key for the category,
and this will be used later in our code:

275

Reading from Databases

lstCategory.DataValueField = "CategoryID";

lstCategory.DataTextField = "CategoryName";

lstCategory.DataBind();

}

}

When the Fetch button is clicked, we need to get the value from the DropDownList. For this, we use the
SelectedValue property, which is new to ASP.NET 1.1. This contains the ID of the selected category,
and we pass this into the GetProducts routine, which will return a DataSet of the products.

However, we can't pass this value directly into GetProducts as an integer value is expected, and the
SelectedValue returns a string. So we have to convert it first using the ToInt32 method of the
Convert class. This is a static class method (which doesn't require an instance of the Convert class) and
simply takes a single string argument. The return value from ToInt32 is an integer representation of the
string passed in.

The DataSet returned from GetProducts is set to the DataSource of the grid and the DataBind
method is called to bind the data:

void Button1_Click(object sender, EventArgs e) {
DataGrid1.DataSource =

GetProducts(Convert.ToInt32(lstCategory.SelectedValue));
DataGrid1.DataBind();

}

There are two routines to fetch data, but one of them is the same as we've already seen – using a simple
DataSet to fetch data (in this case the Categories). What we want to see is the GetProducts routine,
which gets filtered data. The first thing to notice is that it accepts an int argument – this will contain the
CategoryID, passed in from the button click event:

System.Data.DataSet GetProducts(int categoryID) {

Next, we define the connection details, as we've seen in previous examples:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +
"data\\Northwind.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

Then we define the query:

string queryString = "SELECT [Products].[ProductName], "
"[Products].[QuantityPerUnit], [Products].[UnitPrice],"+
"[Products].[UnitsInStock] FROM [Products] " +
"WHERE ([Products].[CategoryID] = @CategoryID)";

Note that the WHERE clause is filtering on CategoryID. However, the value used for the filter
(@CategoryID) is not a real value but a placeholder. This tells ADO.NET that the value will be supplied
by a parameter.

276

Chapter 8

Once the query string is set, we define our command to run the query, as follows:

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

Now we come to the definition of the parameter. Like many of the other examples, this uses a database
specific object – an OleDbParameter, which defines what is being passed into the query:

System.Data.IDataParameter dbParam_categoryID =
new System.Data.OleDb.OleDbParameter();

We then set the properties of the parameter. The ParameterName indicates the name of the parameter,
and we set the value to be the same as the placeholder. The Value property stores the value for the
parameter, and is set to the CategoryID passed into the procedure from the button click event – it's the
ID of the category selected from the list. The DbType property indicates the database type – Int32 is the
database equivalent of an Integer:

dbParam_categoryID.ParameterName = "@CategoryID";
dbParam_categoryID.Value = categoryID;
dbParam_categoryID.DbType = System.Data.DbType.Int32;

At this point, even though we have a Parameter object, it's not associated with the command, so we
add it to the Parameters collection of the command:

dbCommand.Parameters.Add(dbParam_categoryID);

When ADO.NET processes the command, it matches parameters in the collection with the placeholders
in the query and substitutes the placeholder with the value in the parameter.

The rest of the code is as we've seen it before. We create a DataAdapter to run the command, and use
the Fill() method to fetch the data into our DataSet:

System.Data.IDbDataAdapter dataAdapter =
new System.Data.OleDb.OleDbDataAdapter();

dataAdapter.SelectCommand = dbCommand;
System.Data.DataSet dataSet = new System.Data.DataSet();
dataAdapter.Fill(dataSet);

return dataSet;
}

As you can see, there really isn't that much code; even though we've introduced a new object, much of
the code remains the same.

Filtering Queries
There's a very important point to know about filtering data, as you may see code elsewhere that uses a
bad method of doing it – it simply builds up the SQL string (as we've done), but instead of using
parameters, it just appends the filter value to the SQL string. For example, you might see this:

277

Reading from Databases

string queryString = "SELECT [Products].[ProductName], "
"[Products].[QuantityPerUnit], [Products].[UnitPrice]," +
"[Products].[UnitsInStock] FROM [Products] " +
"WHERE ([Products].[CategoryID] = " + CategoryID + ")";

This simply appends the CategoryID value (from the function argument) into the SQL string. Why is
this bad when it achieves the same objectives while using lesser code? The answer has to do with
hacking. This type of method potentially allows what are known as SQL Injection Attacks, which are 'very
bad things' (do a Web search for more details on SQL Injection). If you have a scale for 'bad things to do',
then this is right up there, at the top!

Using Parameters protects you from this. Although it has the same effect, the processing ADO.NET does
secure you against this type of attack.

Although using Parameters involves a little more work, it's much safer and should always be used.

The OleDataAdapter Object
The OleDbDataAdapter contains the commands used to manipulate data. The four Command objects it
contains are held as properties; SelectCommand, UpdateCommand, InsertCommand, and
DeleteCommand. The SelectCommand is automatically run when the Fill() method is called. The
other three commands are run when the Update method is called – we'll be looking at this in the next
chapter.

The DataSet Object
While the other objects we've looked at have different classes for different databases, the DataSet is
common to all databases, and is therefore in the System.Data namespace. It doesn't actually
communicate with the database – the DataAdapter handles all communication.

The DataSet has many properties and methods; we'll look at them in the next chapter. Since this chapter
is concentrating on displaying data, all you need to remember is that when we fetch data it is stored in
the DataSet, and then we bind controls to that data.

The DataReader Object
The DataReader, an object that we haven’t come across yet, is optimised for reading data. When dealing
with databases, connecting to them and fetching the data can often be the longest part of a page,
therefore we want to do it as quickly as possible. We also want to ensure that the database server isn't
tied up – we want not only to get the data quickly, but also stay connected to the database for as little
time as possible.

For this reason we aim to open the connection to the database as late as possible, get the data, and close
the connection as soon as possible. This frees up database resources, allowing the database to process
other requests. This is the technique that the DataAdapter uses when filling a DataSet. If you manually
open a connection, it isn't automatically closed.

278

Chapter 8

Many times, when fetching data we simply want to display it as it is, perhaps by binding it to a grid. The
DataSet provides a local store of the data, which is often more than we need, so we can use an
OleDbDataReader to stream the data directly from the database into the grid. Let's give this a go.

Try It Out Using a DataReader
1. Create a new blank ASP.NET page called DataReader.aspx.

2. Drag a DataGrid control from the Toolbox onto the page.

3. Switch to Code view and start the code wizard by dragging the SELECT Data Method onto the
code page.

4. Select the existing database connection from the first screen and press Next.

5. Select the Products table, and from the Columns select ProductName, QuantityPerUnit, UnitPrice,
and UnitsInStock.

6. Click Next, and Next again, to go past the Query Preview screen.

7. Enter GetProductsReader as the method name, and select the DataReader option on the Name
Method screen.

8. Press Finish to insert the code into your page.

9. Underneath the newly inserted method, add the following:

void Page_Load(Object sender, EventArgs e) {
DataGrid1.DataSource = GetProductsReader();
DataGrid1.DataBind();

}

10. Save the page and run it.

You'll see a grid containing just the selected columns. This doesn't look very different from the other
examples, but it's how the data is fetched that's important. Let's look at this.

How It Works
Let's start by looking at the code that the wizard generated for us. The declaration of the function returns
an IDataReader – the interface that data readers implement:

System.Data.IDataReader GetProductsReader() {

Next we have the connection details – these are the same as you've previously seen (although they might
look different in your code file, as this has been formatted to fit on the page):

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +
"data\\Northwind.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

Next, we have the query string and the command details:

string queryString = "SELECT [Products].[ProductName], " +
"[Products].[QuantityPerUnit], [Products].[UnitPrice], " +

279

Reading from Databases

"[Products].[UnitsInStock] FROM [Products]";
System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

Once the command details are set, we can open the database connection:

dbConnection.Open();

Even though the database connection has been opened for us when using a DataSet, we still have to
open it manually because we are using an OleDbCommand and a data reader.

Next, we declare the data reader. It is of type IDataReader and the object is created by the return value
of the ExecuteReader() method of the command:

System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

Remember that the command has the SQL statement, so ExecuteReader() tells ADO.NET to run the
command and return a data reader. The argument indicates that as soon as the data is finished with the
connection to the database, the connection should be closed. When using ExecuteReader(), you
should always add this argument to make sure the connection is closed as soon as it is no longer
required.

Finally, we return the reader object:

return dataReader;
}

To bind to the grid, we simply use this function as the DataSource for the grid. Since the function
returns a stream of data, the grid just binds to that data:

void Page_Load(Object sender, EventArgs e) {
DataGrid1.DataSource = GetProductsReader();
DataGrid1.DataBind();

}

DataReader Methods and Properties
The DataReader exists as SqlDataReader (for SQL Server) and OleDbDataReader (for other
databases), as well as a common IDataReader interface. If you are not using generic code, you can
create the reader as follows:

System.Data.OleDbDataReader dataReader = new _
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

Using data readers is the most efficient way of fetching data from a database, but you don't have to bind
to a grid. You can use the properties and methods to fetch the data directly. If you do this, it's best to use
the OleDbDataReader rather than the interface, as the OleDbDataReader contains more properties that
make it easier to use. For example, consider the following code:

280

Chapter 8

System.Data.OleDbDataReader dataReader = new _
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

if (!dataReader.HasRows)
Response.Write("No rows found");

else
while (dataReader.Read())
Response.Write(dataReader("ProductName") + "
";

dataReader.Close();

This first uses the HasRows property to determine if there are any rows, and then uses the Read method
to read a row. This is done within a loop, with Read returning the true if there is a current row and
moving onto the next, and false if there are no rows.

Summary
The results of the examples in this chapter have been relatively simple, but you've actually learned a lot.
The first three main topics looked at how to use the Web Matrix to reduce your development time,
taking away much of the legwork you'd normally have to do. We looked at the using the Data Explorer to
drag and drop tables directly onto page, using the Web Matrix template pages, and using the code
wizards.

After looking at the quick way of getting data, you saw the theory behind it, examining the objects. Even
though we continued to use the wizards to generate code, you were now able to see how this wizard
code worked (just because we understand how it works doesn't mean we abandon anything that makes
our job easier).

Now it's time to look at taking your data usage one step further by showing how to update data, and
how to manage your data-handling routines.

Exercises
1. In this chapter we created a page that showed only the products for a selected category. Try and

think of ways to enhance this to show products for either a selected category or all categories.

2. In Exercise 1, we wanted to bind data from a database to a DropDownList as well as manually
add an entry. There are two ways to solve this issue – using techniques shown in this chapter,
and using techniques not yet covered. Try and code the solution using the known technique, but
see if you can think of a way to solve it using a new technique.

281

Reading from Databases

9
Advanced Data Handling

In the previous chapter, we looked at various ways of reading data, how Web Matrix saves us
some of the effort involved in writing code, and how ADO.NET objects work. Displaying data on
a Web page is only half the story, as there are many times when you want to update the data as
well. As we saw in the previous chapter, there are several ways in which this can be achieved;
some more suitable in certain situations than others.

In this chapter, we will look at ways of updating data, as well as some advanced topics that didn't
really fit in the previous chapter. In particular, this chapter covers:

❑ A close look at the DataTable and DataRow objects

❑ Updating data in a DataSet

❑ Using the DataSet to update the original database

Let's start with a detailed look at some of the ADO.NET objects.

More Data Objects
In the previous chapter, we looked at the DataSet, but didn't really examine it in depth. It was
used as a repository of data to which we could bind grids. In this chapter, we will not only discuss
DataSet in detail, but also look at the objects that the DataSet contains. In the examples until
now, we've only fetched one set of data from a database, but the DataSet has the ability to hold
more than one set of data. It does this by having a Tables collection containing a Table object for
each set of data. Each table in turn has a Rows collection with a Row object for each row of data.
Let's look at this in more detail.

The DataTable Object
The DataTable object is held in the Tables collection as part of the DataSet, as shown in Figure 9-1:

Figure 9-1

In the previous chapter, our DataSet contained just a single table; we need to know how to get more
than one table into a DataSet. This is done by using different text for the command to be run, and
calling the Fill() command of the DataAdapter again – if the table name in the command text is
different then a new table in the DataSet will be created. For example, you can do this:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +

"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +

"data\\Northwind.mdb";

System.Data.IDbConnection dbConnection =

new System.Data.OleDb.OleDbConnection(connectionString);

string queryString = "SELECT * from Products"

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();

dbCommand.CommandText = queryString;

dbCommand.Connection = dbConnection;

System.Data.IDbDataAdapter dataAdapter = new

System.Data.OleDb.OleDbDataAdapter();

dataAdapter.SelectCommand = dbCommand;

System.Data.DataSet dataSet = new System.Data.DataSet();

dataAdapter.Fill(dataSet);

dataAdapter.SelectCommand.CommandText = "SELECT * FROM Employees";

dataAdapter.Fill(dataset);

Most of this code is exactly as you've seen it in the previous chapter – creating a connection and setting
the command before using Fill(). However, we then change the CommandText of the SelectCommand
to a new SQL command and call the Fill() method again. This gives two tables to our Tables
collection, and we could access them as follows:

DataTable tblProducts = data.Tables[0];

DataSet

Table

Table

Table

Tables
Collection

284

Chapter 9

Here we are just indexing into the Tables collection to get the first table. To make this easier to read, we
could name the tables as they are filled from the data adapter. For example:

dataAdapter.Fill(dataset, "Products");

dataAdapter.SelectCommand.CommandText = "SELECT * FROM Employees"

dataAdapter.Fill(dataset, "Employees");

This form of Fill() takes two arguments. The first is the same as before – the DataSet into which the
data is put, and the second is the name of the table, once it's in the collection. Realizing that each table in
the DataSet has a name allows us to do the following:

DataTable tblProducts = data.Tables["Products"];

There's no difference between this version and the one where we access the table by its index number,
but this version is clearer – it's much easier to see which table you are dealing with in the collection. To
use this method of accessing the Tables collection, you don't have to specify the name when you use
the Fill() method. If you leave it out, the name of the source table is used as the name in the collection.
Thus the SQL string SELECT * FROM Products would result in Products being used as the table name.

Since Tables is a collection, you can also loop through it if required:

foreach (DataTable tbl in data.Tables)

DoSomethingToTable(tbl);

So far in our examples, we've used a DataGrid bound to a DataSet:

DataGrid1.DataSource = data;

DataGrid1.DataBind();

This automatically binds to the first table in the collection. To bind to an explicit table, simply specify the
table name:

DataGrid1.DataSource = data.Tables["Products"];

DataGrid1.DataBind()

In fact, because the DataSet contains multiple tables, they can each be bound to different controls:

DataGrid1.DataSource = data.Tables["Products"]

DataGrid1.DataBind();

DataGrid2.DataSource = data.Tables["Employees"];

DataGrid2.DataBind();

The DataRow Object
In the same way that the DataSet contains a Tables collection, each DataTable contains a Rows
collection, as shown in Figure 9-2:

285

Advanced Data Handling

Figure 9-2

Like the Tables collection, the Rows collection can be indexed:

DataRow row = data.Tables["Products"].Rows[0];

They can also be enumerated in a loop:

foreach (DataRow row in data.Tables["Products"].Rows)

DoSomethingToRow(row);

Let's now look at an example using these two objects.

Try It Out The DataTable and DataRow Objects
1. Create a blank ASP.NET page called TableAndRow.aspx into a new directory called Ch09.

2. In the All view, add the following code at the top of the page:

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

3. Add the following code to the server code block:

void Page_Load(Object sender, EventArgs e) {

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +

"Ole DB Services=-4; " +

"Data Source=C:\\BegASPNET11\\data\\Northwind.mdb";

OleDbConnection dbConnection = new OleDbConnection(connectionString);

string queryString = "SELECT * FROM Categories";

OleDbCommand dbCommand = new OleDbCommand();

dbCommand.CommandText = queryString;

dbCommand.Connection = dbConnection;

OleDbDataAdapter dataAdapter = new OleDbDataAdapter();

dataAdapter.SelectCommand = dbCommand;

DataSet data = new DataSet();

DataTable

DataRow

DataRow

Rows
Collection

DataRow

286

Chapter 9

dataAdapter.Fill(data, "Categories");

dataAdapter.SelectCommand.CommandText = "SELECT * FROM Shippers";

dataAdapter.Fill(data, "Shippers");

DataGrid1.DataSource = data.Tables["Categories"];

DataGrid1.DataBind();

DataGrid2.DataSource = data.Tables["Shippers"];

DataGrid2.DataBind();

Label1.Text = data.Tables["Categories"].Rows[1]["CategoryName"].ToString();

Label2.Text = data.Tables[1].Rows[2][2].ToString();

}

4. Switch to Design view and drag the two DataGrid controls onto the page. Also drag two the
Label controls onto the page and position them as headings to describe the contents of the
Datagrid controls.

5. Save the page and run it to see the result shown in Figure 9-3:

Figure 9-3

How It Works
You have seen most of this code in Chapter 8, so let's concentrate on the new bits of it, starting with the
filling of the DataSet:

287

Advanced Data Handling

dataAdapter.Fill(data, "Categories");

dataAdapter.SelectCommand.CommandText = "SELECT * FROM Shippers";
dataAdapter.Fill(data, "Shippers");

Here we fill the DataSet with the first table, change the CommandText, and then fill the DataSet with
the next table, binding both tables to different grids:

DataGrid1.DataSource = data.Tables["Categories"];

DataGrid1.DataBind();

DataGrid2.DataSource = data.Tables["Shippers"];

DataGrid2.DataBind();

Next we extract some details from the individual lines. The code demonstrates two different ways of
indexing into the Tables and Rows collections, so you can see them in practice:

Label1.Text = data.Tables["Categories"].Rows[1]["CategoryName"].ToString();

Label2.Text = data.Tables[1].Rows[2][2].ToString();

For the first line we use the table name to get to the correct table, and then pick the second row
(remember that collections in .NET are zero-based). This gives us:

data.Tables["Categories"].Rows[1]

At this stage we are pointing to an individual row. The DataRow can be indexed allowing us to extract
the column, so we just specify the column name and then use the ToString() method to convert this to
a string.

The second line does exactly the same thing, but in a different way:

Label2.Text = data.Tables[1].Rows[2][2].ToString();

Instead of using names for collection indexes, we are using numbers. So we pick the second table in the
Tables collection and find the second row. You can use either form but using column names makes it
clearer to read as well as not relying upon the column order, so it's probably best to stick to this form.

Updating Databases
Pages that display data are all very well, but we also often need to update data. There are two main
ways to do this – by modifying data in the DataSet and using the DataAdapter to send the data back
to the database, or by simply running a SQL command to update the data directly.

Which method you should pick depends on what you are doing. If you are making several changes to
multiple rows, the DataSet method is best. Using this translates into less work for you because you only

288

Chapter 9

have to specify the commands and tell the DataAdapter to perform the update. If you are only making
changes to a single row, the direct command method is often the best.

ADO.NET versus ADO
One thing that you must know is that ADO.NET works in a disconnected manner. This means that when
you have a DataSet, you are completely disconnected from the database. You can make changes, add
rows, and so on, but you are only working within the DataSet, and until you explicitly force those
changes back onto the database, it remains unchanged. This means that even in something like a grid,
where it seems natural to use a DataSet because you might change multiple rows, you are only
changing a single row at a time.

This is also similar to the way Web applications work – remember they are stateless, meaning that the
server doesn't remember things between requests. If you change some data in a DataSet and then
postback to the server, those changes will be lost.

The reason for designing such a (disconnected) model is better performance – the less time you spend
connected to the database, the better the database can run. This is not the way ADO worked, where
(unless explicitly stated) you were always connected to the database, and thus the database generally
had to do more work. Although you can work in a fully connected mode with ADO.NET, you can only
read data this way, but cannot update data.

This disconnected model is an important point to remember about ADO.NET. Let's look at this in detail,
starting with the DataSet method.

Updating Data in a DataSet
Updating data in a DataSet is a two-step process. First, you need to know how to get access to the data
within the DataSet and then alter it. This doesn't just mean changing values, but also includes adding
and deleting rows. Then you have to know how to get those changes back into the database. We'll be
doing the following example in stages, showing three simple ways to manipulate the data held in a
table.

These examples change the data in the database, so rerunning them will fail unless the data is reset. To
reset the data, the downloadable samples for this chapter contain an ASP.NET page called
DataReset.aspx.

Try It Out Adding, Editing, and Deleting Rows

1. Create a new file called EditingData.aspx in the Ch09 folder and in the All view delete the
existing code, and add the following code:

<%@ Page language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

289

Advanced Data Handling

<script runat="server">

void Page_Load(Object sender, EventArgs e) {

string connectionString;

string queryString;

DataSet data = new DataSet();

OleDbConnection dbConnection;

OleDbDataAdapter dataAdapter;

connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +

"Data Source=C:\\BegASPNet11\\data\\Northwind.mdb";

queryString = "SELECT FirstName, LastName FROM Employees";

dbConnection = new OleDbConnection(connectionString);

dataAdapter = new OleDbDataAdapter(queryString, dbConnection);

dataAdapter.Fill(data, "Employees");

DataGrid1.DataSource = data;

DataGrid1.DataBind();

// ---

// Marker 1

// ---

// Marker 2

// ---

// Marker 3

}

</script>

<html>

<body>

<table width="100%">

<tr>

<td>Original Data</td>

<td>Data with new Row</td>

<td>Data with edited Row</td>

<td>Data with deleted Row</td>

</tr>

<tr>

<td valign="top"><asp:DataGrid id="DataGrid1" runat="server" /></td>

<td valign="top"><asp:DataGrid id="DataGrid2" runat="server" /></td>

<td valign="top"><asp:DataGrid id="DataGrid3" runat="server" /></td>

290

Chapter 9

<td valign="top"><asp:DataGrid id="DataGrid4" runat="server" /></td>

</tr>

</table>

</body>

</html>

The Marker 1, 2, and 3 comments will help you add code as we expand this example.

2. Run the file and you'll see the result shown in Figure 9-4:

Figure 9-4

This is no different from some of the examples you saw in the previous chapter, but it serves as
a foundation for showing the changes we'll be making.

3. Switch to your editor and add the following code after Marker 1. This will add a row to the
table and display it in another grid:

DataTable table;

DataRow newRow;

table = data.Tables["Employees"];

newRow = table.NewRow();

newRow["FirstName"] = "Norman";

newRow["LastName"] = "Blake";

table.Rows.Add(newRow);

// bind the second grid to the new data

DataGrid2.DataSource = table;

291

Advanced Data Handling

DataGrid2.DataBind();

4. In the browser, click the Refresh button (or F5) to see the new page, as shown in Figure 9-5:

Figure 9-5

Here you can see that another row has been added to the end of the table.

5. Let's look at editing a row. Switch back to the code and add the following after Marker 2:

DataRow[] selectedRows;

// find the row to change

selectedRows = table.Select("FirstName='Margaret' AND

LastName='Peacock'");

selectedRows[0]["FirstName"] = "John";

selectedRows[0]["LastName"] = "Hartford";

// bind the third grid to this new data

DataGrid3.DataSource = table;

DataGrid3.DataBind();

6. Back in the browser, click the Refresh button (or F5) to see the new page as shown in Figure 9-6:

292

Chapter 9

Figure 9-6

You can see that the row for Margaret Peacock has been changed to John Hartford.

7. Make the last addition to the code by adding the following after Marker 3:

// The Rows collection is 0 indexed, therefore

// this deletes the sixth row

table.Rows[5].Delete();

// bind the fourth grid to the new data

DataGrid4.DataSource = table;

DataGrid4.DataBind();

8. Back in the browser, click the Refresh button (or F5) to see the new page as shown in Figure 9-7:

293

Advanced Data Handling

Figure 9-7

Here you can see that the row for Michael Suyama has been deleted, and doesn't appear in the fourth
table.

Let's see how all this code works. We don't need to examine the code that gets the data from the
database or binds it to the grid, as it's the same as the code we used in the previous example. We
concentrate here on how we changed the data and the code fragments we put in the markers to do that.

How It Works – Adding Rows
The first section of code adds a new row to the table. The first thing we do is to declare two variables –
one to point to the DataTable containing the data, and another to hold the data for the new row:

DataTable table;
DataRow newRow;

We point the table variable to the Employees table:

table = data.Tables["Employees"];

Next, we use the NewRow() method of the DataTable object to create a new DataRow:

newRow = table.NewRow();

This doesn't create a new DataRow in the table – it just provides a new DataRow object into which we
can add data. We can then add this new row to the table once the data is filled. Note that you could
add the empty row and then fill in the details – doesn't matter which way round you do it, but I prefer
this way. The new row we've just created is empty, so we need to add some details. The rows in our
table only hold first and last name information, but if you have tables with more columns, you can just
fill in their values too. The DataRow has only those columns requested in the SelectStatement when
we filled the DataSet:

294

Chapter 9

newRow["FirstName"] = "Norman";
newRow["LastName"] = "Blake";

Now that we've filled in the details, we need to add the new row to the existing table. Using the
NewRow() method only creates a new DataRow object for us, and we have to add it to the table
ourselves. This isn't done automatically as ADO.NET doesn't know what we want to do with the new
row, so it leaves us to make the choice. If you flip back to Figure 9-2, you'll notice that each DataTable
has a Rows collection. The collection has an Add method, into which we pass the DataRow that we want
to add to the table:

table.Rows.Add(newRow);

Now that the new row is in the table, all that's left to do is bind the table to the second DataGrid on the
page, allowing us to see the results:

DataGrid2.DataSource = table;
DataGrid2.DataBind();

One thing to remember is that you are still disconnected from the database. This means that if your
database has constraints, they won't be enforced when adding the data to the DataSet. It's only when
you update the original data store (which we'll discuss later) that this becomes an issue. You can also
create constraints on the DataSet, but we won't be covering it here.

How It Works – Editing Rows
The first thing we do in this code section is to declare a variable that can hold the rows we want to edit:

DataRow[] selectedRows;

Notice that this is an array, because the method we use to find selected rows returns an array of DataRow
objects.

Next we use the Select() method of the table to find the row we want:

selectedRows = table.Select("FirstName='Margaret' AND
LastName='Peacock'");

The string we pass is the same as a SQL WHERE clause.

Finally, we update the data for the selected row. There could be many rows returned by the Select()
method, so we index into the array. In this case we know that there is only one row returned:

selectedRows[0]["FirstName"] = "John";
selectedRows[0]["LastName"] = "Hartford";

Constraints are rules held in the database to ensure that the data is correct. For
example, a constraint would stop you from deleting an order if there were order
lines attached to it.

295

Advanced Data Handling

It isn't necessary to use the Select() method, since you can edit the data directly, but using this method
here makes it clear which row we are editing. What you can also do is just index into the Rows collection,
using this code:

DataRow row;

row = table.Rows[3];

row["FirstName"] = "John";

row["LastName"] = "Hartford";

First we declare a variable to hold the row to be edited:

DataRow row;

Now you can point this variable at the row we are going to edit by indexing into the Rows collection. It's
important to note that the Rows collection (like any other collection) is zero-based, so the following line
of code refers to the fourth row:

row = table.Rows[3];

Once the row variable is pointing to the correct row, we can just update the values for the appropriate
columns:

row["FirstName"] = "John";
row["LastName"] = "Hartford";

Now that the data has been changed, we bind the data to a new grid so we can see the results:

DataGrid3.DataSource = table;
DataGrid3.DataBind();

How It Works – Deleting Rows
Deleting a row from a table is simple – just use the Delete() method of the DataRow. In the following
code we index into the Rows collection (each member of which is a DataRow), specifying the row
number as the index. Once again, remember that the Rows collection is zero-based, so this removes the
sixth row:

table.Rows[5].Delete();

And as we saw before, we bind the data to a new grid:

DataGrid4.DataSource = table;
DataGrid4.DataBind();

As you saw in the Editing Rows section of this Try-It-Out, we could have used the Select() method of
the table to return the rows to delete.

296

Chapter 9

Updating the Original Data Source
Now that you've seen how to change data with a DataSet, you need to get that data back into the
database, and to do that we use the DataAdapter. Remember in the previous chapter we said that the
DataAdapter contains a Command object for each type of database operation, as shown in Figure 9-8:

Figure 9-8

The question is how to set these commands, and what to set them to. You've seen the SelectCommand
being used, but what about the other commands? Well, instead of learning SQL and worrying about this
you can automate the process by using the CommandBuilder.

Command

Connection

CommandText

CommandType

Command

Connection

CommandText

CommandType

Command

Connection

CommandText

CommandType

Command

Connection

CommandText

CommandType

DataAdapter

SelectCommand

UpdateCommand

InsertCommand

DeleteCommand

DataSet

Connection

ConnectionString

Database

297

Advanced Data Handling

The CommandBuilder object automatically generates SQL commands using the SelectCommand as
basis. This way you can concentrate on just coding without worrying about the actual way the
commands are constructed.

The CommandBuilder is good for simple scenarios, but more advanced SQL code may pose a problem.
For a good description of these problems go to MSDN (http://msdn.microsoft.com/) and search for the
article titled 'Weaning Developers from the CommandBuilder'.

Let's see in an example, how easy it is to use CommandBuilder object:

Try It Out Auto-Generated Commands
1. Create a new blank ASP.NET page called CommandObjects.aspx.

2. Switch to All view and delete everything on the page.

3. Add the following code:

<%@ Page Language="C#" %>
<%@ import Namespace="System.Data" %>
<%@ import Namespace="System.Data.OleDb" %>
<script runat="server">

void Page_Load(Object sender, EventArgs e) {

string connectionString;
string queryString;
DataSet data = new DataSet();
OleDbConnection dbConnection;
OleDbDataAdapter dataAdapter;
OleDbCommandBuilder commandBuilder;

connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Data Source=C:\\BegASPNet11\\data\\Northwind.mdb";

queryString = "SELECT EmployeeID, FirstName, LastName FROM Employees";

// open the connection and set the command
dbConnection = new OleDbConnection(connectionString);
dataAdapter = new OleDbDataAdapter(queryString, dbConnection);

// set the other commands
commandBuilder = new OleDbCommandBuilder(dataAdapter);
dataAdapter.UpdateCommand = commandBuilder.GetUpdateCommand();
dataAdapter.InsertCommand = commandBuilder.GetInsertCommand();
dataAdapter.DeleteCommand = commandBuilder.GetDeleteCommand();

// now display the CommandText property for each command
lblSelectCommand.Text = dataAdapter.SelectCommand.CommandText;
lblUpdateCommand.Text = dataAdapter.UpdateCommand.CommandText;
lblInsertCommand.Text = dataAdapter.InsertCommand.CommandText;
lblDeleteCommand.Text = dataAdapter.DeleteCommand.CommandText;

}

298

Chapter 9

</script>
<html>
<head>
</head>
<body>
<form runat="server">
<table width="100%" border="1">
<tr>
<td>Command</td>
<td>CommandText</td>

</tr>
<tr>
<td>SelectCommand</td>
<td><asp:Label id="lblSelectCommand" runat="server" />

</tr>
<tr>
<td>UpdateCommand</td>
<td><asp:Label id="lblUpdateCommand" runat="server" />

</tr>
<tr>
<td>InsertCommand</td>
<td><asp:Label id="lblInsertCommand" runat="server" />

</tr>
<tr>
<td>DeleteCommand</td>
<td><asp:Label id="lblDeleteCommand" runat="server" />

</tr>
</table>

</form>
</body>
</html>

4. Save the file and run it to see the result as shown in Figure 9-9:

Figure 9-9

299

Advanced Data Handling

You can see that the SQL statements that perform updates have been generated automatically. Let's see
how this works.

How It Works
The start of this code is the same as we've seen before – creating a connection and an adapter. The only
difference is the declaration of an OleDbCommandBuilder object. Like the DataAdapter, this deals
directly with databases and therefore is in the OleDb namespace:

OleDbCommandBuilder commandBuilder;

Now create the CommandBuilder object, using the DataAdapter as the argument to the constructor.
This ensures that the CommandBuilder picks up the SelectCommand:

commandBuilder = new OleDbCommandBuilder(dataAdapter);

Next we use the Get methods to fill the other commands – there is a Get command for each type of
Command object that we need to generate:

dataAdapter.UpdateCommand = commandBuilder.GetUpdateCommand();
dataAdapter.InsertCommand = commandBuilder.GetInsertCommand();
dataAdapter.DeleteCommand = commandBuilder.GetDeleteCommand();

Finally we display the CommandText for each of the Command objects:

lblSelectCommand.Text = dataAdapter.SelectCommand.CommandText;
lblUpdateCommand.Text = dataAdapter.UpdateCommand.CommandText;
lblInsertCommand.Text = dataAdapter.InsertCommand.CommandText;
lblDeleteCommand.Text = dataAdapter.DeleteCommand.CommandText;

You can see that the GetUpdateCommand simply generates a SQL UPDATE statement, and so on. Let's
look at these in more detail.

How It Works - The SelectCommand Property
You've already seen this before, but there is a reason we need to further talk about this. Our initial
SelectCommand contained:

SELECT EmployeeID, FirstName, LastName FROM Employees

A unique key is required for the command builder to generate the other commands, so this time we have
included the EmployeeID in the SelectCommand.

How It Works - The UpdateCommand Property
The UpdateCommand is built to use a SQL UPDATE statement, for updating a row of data:

UPDATE Employees
SET FirstName = ?, LastName = ?
WHERE ((EmployeeID = ?)
AND ((? = 1 AND FirstName IS NULL)
OR (FirstName = ?))

300

Chapter 9

AND ((? = 1 AND LastName IS NULL)
OR (LastName = ?)))

This consists of three parts:

❑ The UPDATE command followed by the table.

❑ The SET command indicating fields that are to be updated. Here we are updating the
FirstName and LastName fields (the EmployeeID field is a primary key and therefore can't be
updated). The question marks are placeholders into which ADO.NET will place the updated
values.

❑ The WHERE clause that filters data, ensuring that the correct row is updated.

How It Works - The InsertCommand Property
The InsertCommand property is built to use a SQL INSERT statement, for inserting a new row of data:

INSERT INTO Employees(FirstName, LastName) VALUES(?, ?)

This consists of two parts:

❑ The INSERT INTO statement, specifying the table name and, in parenthesis, the columns being
updated.

❑ The VALUES statement, where the question marks are placeholders into which ADO.NET will
place the column values for the new row.

How It Works - The DeleteCommand Property
The DeleteCommand is built to use a SQL DELETE statement, for deleting a row of data:

DELETE FROM Employees
WHERE ((EmployeeID = ?)
AND ((? = 1 AND FirstName IS NULL)
OR (FirstName = ?))

AND ((? = 1 AND LastName IS NULL)
OR (LastName = ?)))

This consists of two parts:

❑ The DELETE FROM statement followed by the table name.

❑ The WHERE clause, which filters the data, ensuring that the correct row is deleted.

Updating the Database
Our examples so far have shown us how to modify data within a DataSet and how to generate the
commands that will force these changes back to the database. What we now need to consider is how the
database is actually updated. We've previously said the DataAdapter does this, and it's the Update
method we need to use. So let's combine the examples in this page.

301

Advanced Data Handling

In the following Try-It-Out, you'll update some data, use the CommandBuilder to generate the update
commands, and then send those changes back to the database.

Try It Out Updating the Database
1. Create a new blank ASP.NET page called UpdateDatabase.aspx.

2. Switch to All view and delete everything that's there.

3. Add the following code (or if you're all fingers and thumbs like me, download it from
www.wrox.com):

<%@ Page language="C#" %>
<%@ import Namespace="System.Data" %>
<%@ import Namespace="System.Data.OleDb" %>
<script runat="server">

void Page_Load(Object sender, EventArgs e) {

string connectionString;
string queryString;
DataSet data = new DataSet();
OleDbConnection dbConnection;
OleDbDataAdapter dataAdapter;

connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Ole DB Services=-4; " +
"Data Source=C:\\BegASPNET11\\data\\Northwind.mdb";

queryString = "SELECT EmployeeID, FirstName, LastName FROM Employees";

// set the connection and command
dbConnection = new OleDbConnection(connectionString);
dbConnection.Open();
dataAdapter = new OleDbDataAdapter(queryString, dbConnection);

// fetch the data
dataAdapter.Fill(data, "Employees");

// display the data
DataGrid1.DataSource = data.Tables["Employees"];
DataGrid1.DataBind();

// ---
// start transaction
// only to ensure example can be run multiple times
OleDbTransaction dbTrans = dbConnection.BeginTransaction();

//---
// add a new row to the table
DataTable table;
DataRow newRow;

302

Chapter 9

table = data.Tables["Employees"];
newRow = table.NewRow();
newRow["FirstName"] = "Norman";
newRow["LastName"] = "Blake";

table.Rows.Add(newRow);

// add another new row. We'll be deleting the one above later

// and we can't delete existing rows from the database because

// of referential integrity (every employee also has orders)

newRow = table.NewRow();

newRow["FirstName"] = "Beth";

newRow["LastName"] = "Hart";

table.Rows.Add(newRow);

// bind the second grid to the new data

DataGrid2.DataSource = table;

DataGrid2.DataBind();

//---

// edit an existing row in the table

DataRow row;

// the Rows collection is 0 indexed

// so this will change the fourth row

row = table.Rows[3];

row["FirstName"] = "John";

row["LastName"] = "Hartford";

// bind the third grid to the new data

DataGrid3.DataSource = table;

DataGrid3.DataBind();

//---

// delete a row from the table

table.Rows[table.Rows.Count - 2].Delete();

// bind the fourth grid to the new data

DataGrid4.DataSource = table;

DataGrid4.DataBind();

//---

// generate the update commands

OleDbCommandBuilder commandBuilder = new

303

Advanced Data Handling

OleDbCommandBuilder(dataAdapter);

dataAdapter.UpdateCommand = commandBuilder.GetUpdateCommand();

dataAdapter.InsertCommand = commandBuilder.GetInsertCommand();

dataAdapter.DeleteCommand = commandBuilder.GetDeleteCommand();

//---

// updqate the data store

dataAdapter.Update(data, "Employees");

//---

// refresh the data in the DataReader and bind it to a new grid

// to prove that the data store has been updated

queryString = "SELECT EmployeeID, FirstName, LastName FROM Employees";

dbConnection.Open();

OleDbCommand cmd = new OleDbCommand(queryString, dbConnection);

DataGridUpdated.DataSource =

cmd.ExecuteReader(CommandBehavior.CloseConnection);

DataGridUpdated.DataBind();

// ---

// Rollback transaction, to reset the data

dbTrans.Rollback();

}

</script>

<html>

<head>

</head>

<body>

<form runat="server">

<table width="100%">

<tr>

<td>Original Data</td>

<td>Data with new Row</td>

<td>Data with edited Row</td>

<td>Data with deleted Row</td>

</tr>

<tr>

<td valign="top"><asp:DataGrid id="DataGrid1" runat="server" /></td>

<td valign="top"><asp:DataGrid id="DataGrid2" runat="server" /></td>

<td valign="top"><asp:DataGrid id="DataGrid3" runat="server" /></td>

<td valign="top"><asp:DataGrid id="DataGrid4" runat="server" /></td>

304

Chapter 9

</tr>

</table>

<hr />

Data fetched from the database after the update:

<asp:DataGrid id="DataGridUpdated" runat="server" />

</form>

</body>

</html>

4. Save the page, run it, and you'll see the results as shown in Figure 9-10:

Figure 9-10

How It Works
You've seen most of this code before; the only new parts are the data update and the transactions. Let's
look at the update first, since this is what actually changes the data in the database

dataAdapter.Update(data, "Employees");

305

Advanced Data Handling

Calling the Update() method of the DataAdapter sends any pending changes back to the database.
The two arguments are:

❑ The DataSet containing the pending changes

❑ The name of the table within the DataSet

This actually looks through the table for rows that have changed, and then executes the appropriate
Command object. If a new row has been added, the InsertCommand is run using the values from the new
row.

In reality, you wouldn't update your data in the Page_Load() event – you'd probably have a button on
the page allowing the users to send their edits back to the database, and you'd have an event procedure
for that button. It's at that stage that you'd update the data. However, this example works fine for the
purpose of explaining how simple it is to send the changes back to the database.

How It Works – Transactions
Transactions are not part of the example we are focusing on, but we need to explain what they are and
why they've been used. In operations involving multiple actions, a transaction ensures that either all the
actions of an operation complete, or none of them complete. For example, consider a bank transaction,
where you transfer money from one account to another. This actually involves two distinct actions – the
removal of the money from one account, and the addition of the money to the other. Either both parts
must take place, thus ensuring the money has moved, or neither must take place, in which case the
money hasn't moved. You can't have a situation where only one part happens!

In databases, transactions work in the same manner. We can wrap many database actions within a
transaction to ensure that they all take place. The way this works is:

1. Start a transaction.

2. Make changes to the database.

3. If all changes are correct, commit all the changes.

4. If all changes are not correct, abandon all the changes.

In our example, we actually want to abandon all of the changes. Although we are modifying data in this
example, we want to be able to run the sample several times. One way to achieve this would be to reset
the data by changing it back to the way it was by running commands again – adding in the deleted
rows, etc.

A simpler way however, is to wrap our actions in a transaction. Before we modify any data, we start the
transaction, which tells the database that we are performing multiple changes, and that the database
should keep track of those changes. The changes are actually made in the database, but because they
have been kept track of, we can abandon them if necessary. After we have finalized our changes, we tell
the database that we do want to abandon the changes, so the data is returned to its state when the
transaction started. It's a simple way to perform multiple changes but not keep any of them
permanently.

The transaction is started with this code:

306

Chapter 9

OleDbTransaction dbTrans = dbConnection.BeginTransaction();

This defines a new OleDbTransaction object, which is the transaction started from the connection's
BeginTransaction method. Transactions can only be started on an open connection, which is why we
explicitly opened the connection (it was automatically opened for us in earlier examples). Once the
transaction is started, we can perform data edits until we want to abandon the changes, where we use
the following line of code:

dbTrans.Rollback();

This tells the database to rollback the changes to the point at which the transaction started. If we wanted
to commit those changes, we would have used the Commit method of the transaction.

In the real world, you wouldn't automatically rollback changes, as you'd only do it if some exception
occurred. This topic is really outside the scope of this book. Check the .NET Documentation for more
details on transactions.

Updating Databases Using a Command
The preceding examples show the modification of data by use of a DataSet and a DataAdapter, but
this isn't the only way it can be done. In the previous chapter, you saw the use of the Command object for
running SQL commands and we mentioned the use of the ExecuteNonQuery method. Let's look at how
to use this.

Try It Out Executing Commands Directly
1. Create a new blank ASP.NET page called CommandExecute.aspx.

2. Add a Label and a TextBox control. Change the Text property of the Label to First Name,
and the ID property of the TextBox to txtFirstName.

3. Underneath the first two controls add a second Label and a second TextBox control. Change
the Text property of the Label to Last Name, and the ID property of the TextBox to
txtLastName.

4. Underneath these add a button, changing the Text property to Run and the ID property to
btnRun. Your page should look like Figure 9-11:

Figure 9-11

307

Advanced Data Handling

5. Double-click the Run button to create the event handler and add the following code:

void btnRun_Click(object sender, EventArgs e) {

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; "+

"Ole DB Services=-4; " +

"Data Source=C:\\BegASPNET11\\data\\Northwind.mdb";

OleDbConnection dbConnection = new OleDbConnection(connectionString);

dbConnection.Open();

string commandString = "INSERT INTO Employees(FirstName, LastName) " +

"Values(@FirstName, @LastName)";

OleDbCommand dbCommand = new OleDbCommand(commandString, dbConnection);

OleDbParameter fnParam =

new OleDbParameter("@FirstName", OleDbType.VarChar, 10);

fnParam.Value = txtFirstName.Text;

dbCommand.Parameters.Add(fnParam);

OleDbParameter lnParam =

new OleDbParameter("@LastName", OleDbType.VarChar, 20);

lnParam.Value = txtLastName.Text;

dbCommand.Parameters.Add(lnParam);

dbCommand.ExecuteNonQuery();

dbConnection.Close();

}

6. Switch to All view and add the following, either at the top of the page, or underneath the
<%@ Page %> directive:

<%@ Import Namespace="System.Data.OleDb" %>

7. Save the file and run it.

8. Enter a first and last name and press the button.

9. Switch to Web Matrix and open the Data Explorer. Pick the Employees table, open it, and you'll
see the newly added data, as shown in Figure 9-12:

308

Chapter 9

Figure 9-12

You can see that I entered Kasey Chambers and Beth Hart as my new names (I just happen to be listening
to their albums at the moment!).

How It Works
You've seen most of the code before, but there are a couple of differences. We first start with the
connection, which we open explicitly. That's because we are going to run a command directly, which
needs the connection to be open:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; "+
"Ole DB Services=-4; " +
"Data Source=C:\\BegASPNET11\\data\\Northwind.mdb";

OleDbConnection dbConnection = new OleDbConnection(connectionString);
dbConnection.Open();

We then define the command we are going to run. Notice that although this is an SQL INSERT statement,
it uses placeholders for parameters. We do so because the user is going to supply the values, and using
parameters is the secure method of doing this:

string commandString = "INSERT INTO Employees(FirstName, LastName) " +
"Values(@FirstName, @LastName)";

We then create the Command object, using the command string shown earlier and the opened connection:

OleDbCommand dbCommand = new OleDbCommand(commandString, dbConnection);

Now we can define our parameters. The first argument defines the parameter name and must match one
of the parameter names defined in the SQL statements. The second argument defines the type of the
parameter, and in this case, they are both character strings (VarChar is what we use for general strings
that have a variable length). The final argument is the length of the column.

Once the parameter object has been created, we set the Value property to be the contents for that
parameter, and these are the values of the TextBox controls:

309

Advanced Data Handling

OleDbParameter fnParam =
new OleDbParameter("@FirstName", OleDbType.VarChar, 10);

fnParam.Value = txtFirstName.Text;
dbCommand.Parameters.Add(fnParam);

OleDbParameter lnParam =
new OleDbParameter("@LastName", OleDbType.VarChar, 20);

lnParam.Value = txtLastName.Text;
dbCommand.Parameters.Add(lnParam);

Now we run the command using its ExecuteNonQuery() method. This simply instructs ADO.NET to
run the command but without expecting a result. This way it doesn't have to worry about creating a
DataSet or a DataReader for the data. This gives us a slight performance increase – if no data is going
to be returned, there's no point creating an object just in case some data is returned.

dbCommand.ExecuteNonQuery();

Finally, we close the connection:

dbConnection.Close();

As you can see, this method is much simpler than the DataSet method of updating data, and is
certainly the best method to use for small amounts of data.

Note that we haven't used transactions in this example so that you can see the newly added rows in the
Web Matrix Data Explorer. You therefore might like to delete any new rows you've added, just to keep
your database data clean.

Summary
In this chapter, we extended our knowledge of ADO.NET, moving from data reading to advanced topics
in data handling. We looked at the DataSet in more detail, seeing how it's really a container object,
having a collection of Tables, and it's these tables, which provide us with access to the data by way of
the Rows collection. We also saw that data can be updated within the DataSet, but is still disconnected
from the database.

We then looked at ways in which to update the data in database, first using the changes made to a
DataSet, and then by using commands to directly update data.

Now it's time to combine the techniques we've seen in this book, as we move on to creating a sample
application.

310

Chapter 9

Exercises
1. Load a DataSet with the Shippers table from Northwind and add the following data into it:

❑ Company Name: FastShippers

❑ Phone: (503) 555-9384

2. Using the CommandBuilder object, create an InsertCommand to insert this new data, and send
the changes back to the database.

3. Using direct SQL commands change the phone number of FastShippers to (503) 555-0000.

4. Use the Web Matrix data templates to create an Editable DataGrid. Have a look at the code and
see how many familiar techniques you see.

311

Advanced Data Handling

10
ASP.NET Server Controls

So far the book has covered a lot of theory about how to create Web pages and use .NET's
object-oriented approach to create some interesting pages, including those that display data from a
database. While creating these pages, we've used some common server controls (the Button and
Label controls, for example). However, we haven't explored their characteristics in great
detail – now's our chance! In this chapter we'll start building a simple Web site using a wide
variety of controls.

You should now be familiar with the fact that ASP.NET has a control-based, event-driven
architecture. Pages are built using controls (textboxes, buttons, data lists, grids, and so on), and
these controls generate and can react to events (the clicking of a hyperlink, the selecting of items).
This chapter concentrates on two key concepts: controls and events, and how they are an integral
part of every ASP.NET application you will write.

Server controls are reusable components that can render plain output to the browser, just like
standard HTML tags, but they have the additional ability to be processed on the server and can be
accessed like any other .NET object. They can respond to events, get and set properties, and so on.
These controls are processed on the server. For example, data from a data source can be retrieved
and combined with a server control when the page is compiled. When that page is requested, the
appropriate HTML or JavaScript content is sent back to the browserthat displays the finished page.
This process is known as rendering.

There are two main types of server controls available to us: Web controls
(the <asp:Button ... > control) and HTML server controls (simple HTML elements with a
runat="server" attribute). This chapter will concentrate on Web controls for the most part,
though we'll briefly discuss how HTML server controls work.

Web controls are declared using tag syntax like normal HTML tags but with a stronger adherence
to XML formatting rules. The following example declares an ASP.NET Button control and assigns
values to three of the control's properties:

<asp:Button id="SampleButton" runat="server"
Text="I'm A Sample Button!"/>

One of the unique qualities of Web controls is that even though their tag syntax is different from that of
HTML tags, every Web control is rendered (processed and converted) to standard HTML after being
processed on the server. Some of the Web controls also provide the ability to render rich Web content –
for example, a Calendar control for displaying dates, a DataGrid control for displaying data, as well as
other controls that will be explored later in this chapter.

As we delve into the world of controls and events, you would benefit greatly from having a copy of
ASP.NET Web Matrix installed on your system. Web Matrix is a superb tool for putting together simple
sites, like the one we will create soon.

In this chapter, we will look at:

❑ A review of the syntax and benefits of Web controls

❑ A brief recap of the lifecycle of an ASP.NET page

❑ Using a variety of Web controls on a Web form that starts the Wrox United application that we'll
be developing in the following chapters

❑ Introducing data rendering controls – a very powerful group of controls for displaying data

❑ Using rich controls like the Calendar control to render complex HTML with minimal code

❑ The extra controls offered by Web Matrix that we could use in our applications

❑ Validating user input using validation controls

Server controls are such a major part of ASP.NET that we won't be able to cover everything here, but you
will gain a good understanding of how they work and how to use them.

The Wrox United Application
Whether you call it soccer or football, you'll no doubt be familiar with this game – eleven players, a ball,
two goals, and a legion of dedicated supporters! Our application will be the Web site of a fictitious
soccer team known as Wrox United that competes in a small league. Figure 10-1 shows the finished
application home page:

314

Chapter 10

Figure 10-1

As we work through this chapter and the following three chapters, we'll build up the core of this site
using Web Matrix. In Appendix D, we will duplicate some of the features of the Wrox United application
when we discuss creating Web applications using Visual Studio .NET.

ASP.NET Web Controls
Day-to-day usage of the different types of controls is possibly the best way to realize how useful they
are. Whenever we add a single line of code to an ASP.NET page to add a simple control, we're actually
adding a lot of functionality that has been hidden away from us. The end result is that the complicated
inner workings of the control are abstracted away from us, leaving us to worry about designing pages,
without having to write mountains of code to make pages functional. Anyone who has experience of
developing with older Web technologies like ASP will appreciate how simple Web development
becomes when they have a full set of controls at their fingertips!

315

ASP.NET Server Controls

ASP.NET has a broad set of Web controls that can be grouped into four broad categories:

❑ Basic controls: This group (sometimes referred to as intrinsic controls) contains controls that,
when rendered, look and feel like standard HTML elements but are processed on the server.
They have a standard set of properties and events that are common to all of these controls and
can be accessed by the server. Examples include the Button, CheckBox, and TextBox controls,
all of which have Text, Font, ForeColor, and Visible properties among many others.

❑ Data rendering controls: These controls are used for binding and displaying data from a data
source; for example, the DataGrid and DataList controls.

❑ Rich controls: These controls have no direct HTML counterparts. Rich controls like the
Calendar control are made up of multiple components, and the HTML generated typically
consists of numerous HTML tags (as well as client-side script) to render the control in the
browser.

❑ Validation controls: These controls are designed to improve user interaction with pages. They
can be used in a wide range of situations, from ensuring that a password is entered correctly to
ensuring that only valid data is entered into textboxes and submitted to a database server.
Hackers can bring down entire sites that use Textboxes to get data into databases without
applying any validation logic! Examples of validation controls include the
RequiredFieldValidator that can be used to ensure that data is provided in all mandatory
fields. We'll see these controls in action in the next chapter.

As you start to build the Wrox United example in this chapter, you will gain experience of working with
each type of control listed above. You will also learn to write event handlers for the various events raised
by each of these controls, for example, the clicking of a button, or the selection of an item in a drop down
box.

The introduction briefly mentioned that you can add a runat="server" attribute to HTML tags to
process them on the server, so let's take a look now at what this means and how it works. We'll then
compare HTML server controls with Web controls.

HTML Server Controls
HTML server controls are simple HTML tags with a runat="server" attribute, which enables
developers to access them programmatically and work with them in a similar way to Web controls. So,
why include these types of controls when we have Web controls? Well, HTML server controls do have
some advantages over Web controls, including:

❑ Web developers coming from an ASP3 or similar background may prefer to work with the
HTML-style of control that they're used to

❑ Developers can convert existing HTML tags to HTML server controls fairly easily, thus gaining
some server-side programmatic access to the control

316

Chapter 10

When a runat="server" attribute is added to an HTML tag, the tag becomes a control. Each of these
controls derives its functionality from the System.Web.UI.HtmlControls.HtmlControl base class.

Compare the following lines of code:

<input id="MyHTMLTextBox" type="text"
name="MyHTMLTextBox">

<input id="MyHTMLTextBox" type="text"
name="MyHTMLTextBox" runat="server">

The first tag is a simple HTML tag that the server doesn't particularly care about; it will be rendered
exactly as it appears here. The second snippet of code adds the magic words runat="server", which
means that the following code can be added to our page:

void Page_Load()
{
MyHTMLTextBox.Value = "Hello world!";

}

This would produce the output shown in Figure 10-2:

Figure 10-2

There is an HTML server control object for every corresponding HTML tag, so any standard HTML tag,
from a <div> to an , can be processed on the server.

Like Web controls, HTML server controls offer a variety of features that include:

❑ Programmatic object model: HTML server controls can be accessed programmatically on the
server. Each HTML server control is an object and you can access its various properties and get
(and /set) them in your method or event-handler code.

❑ Event processing: HTML server controls provide a mechanism to write event handlers in much
the same way as you would for a client-based form. The only difference is that the event is
handled in the server code.

Note that you always need to add an identifier for all server-side controls (for
example, id="MyHTMLTextBox") to provide a unique name for the object, which
enables you to reference it in your server-side code.

317

ASP.NET Server Controls

❑ Automatic value caching: When form data is posted to the server, the values that the user enters
into the HTML server controls are automatically maintained when the page is sent back to the
browser. The magic behind this functionality is the result of a property called ViewState that all
ASP.NET Web controls inherit.

❑ Custom attributes: You can add any attribute you need to an HTML server control. The .NET
Framework will render them to the client browser without any changes. This enables you to add
browser-specific attributes to your controls.

❑ Validation: You can actually assign an ASP.NET validation control to do the work of validating
an HTML server control. Validation controls are covered in the next chapter.

One situation where you might consider using HTML server controls in your ASP.NET pages is when
you have an existing HTML page that you would rather not rewrite from scratch but would like to write
some server-side code to access properties of the various controls on the page.

HTML Server Controls versus Web Controls
Given that Microsoft has provided two categories of server controls (HTML and Web), with both sets
sharing some functionality, you may be a bit confused as to which set of controls you should use within
your Web forms. The short answer is simply: you can use both! It's perfectly fine to mix the usage of
HTML server controls and ASP.NET server controls within your Web forms – using one set of controls
does not restrict you to that control type. Despite the overlap in functionality, there are some clear
distinctions between these controls that you should be aware of when developing your ASP.NET pages:

Control
Feature

HTML Server Control
Behavior

ASP.NET Web Control Behavior

Control
abstraction

Provide a one-to-one mapping
with a corresponding HTML
tag and offer no real
abstraction.

Offer a high level of abstraction – they don't
necessarily map directly to any existing
HTML control. For example, an ASP.NET
Calendar control has no equivalent HTML
control– it's actually made up of a collection
of several controls. As such, you will often
hear the phrase Rich control associated with
many ASP.NET server controls.

A neat trick – if you want to edit the properties of a plain HTML tag on your Web
page using the Web Matrix properties editor, you can add a runat="server" attribute
to the tag you want to edit, which makes the control appear in the list of available
controls in the Properties pane. All you have to do then is select the control and edit
the properties. When you have finished, you can simply remove the runat="server"
attribute to change the control back into a tag.

318

Chapter 10

Web Controls
ASP.NET's Web controls are the building blocks for creating ASP.NET Web forms. Like their HTML
counterparts, Web controls provide all the basic controls necessary for building Web forms (Button,
ListBox, CheckBox, TextBox, and many more), as well as a collection of rich controls, such as the
Calendar and DataGrid controls. As we discussed earlier, these controls have a rich object model, such
as the ability to detect which browser is displaying them and a set of properties and events that we can
use as we develop sites.

Control
Feature

HTML Server Control
Behavior

ASP.NET Web Control Behavior

Object
model

Utilize a very HTML-centric
object model. In addition, the
HTML attribute convention is
not strongly typed, so you
could set <div
width="huge" ...>. This
would be sent to the browser,
but the browser would not be
able to render it to be "huge"
(there is no such attribute)
and it will revert to a standard
width.

Provide a consistent and type-safe
programming model, meaning that the
server will prevent an invalid page from
being rendered. An error page will be
displayed when you run a page that contains
a control with a property that is set to an
invalid value.
In addition, code design environments such
as Web Matrix or Visual Studio won't let you
set the properties in the Properties panel to an
invalid value (for example, attempting
<asp:panel width="huge"...> will cause
an error message to be displayed in the
designer).
All ASP.NET Web controls inherit a set of
base properties and methods (such as
ForeColor, BackColor, Font, and so on).

Target
browser

Cannot automatically detect
the capabilities of the browser
loading the page. It's up to
you to make sure that the
HTML controls you use are
compatible with the browsers
that might be rendering your
page.

Automatically detect the client browser
requesting the page and render the controls
based on the browser's capabilities.

How the
control
renders

Provide complete control over
what gets rendered and is sent
to the client browser.

Provide a higher level of abstraction in terms
of how the controls are rendered. The
properties you choose to set for a control
how it is actually rendered, but the process
of rendering is handled by the ASP.NET
runtime. If you really need complete control
over the output, you can dig deep into .NET
and customize controls or write your own – a
topic that is briefly covered in Chapter 13.

319

ASP.NET Server Controls

Rich Object Model
Web controls draw from the rich features of the .NET Framework. As such, they inherit their base
methods, properties, and events from either the System.Web.UI.WebControls.Control or
System.Web.UI.WebControls.WebControl base classes.

As discussed in Chapter 7, inheritance is a key feature of object-oriented design and programming. When
instantiating a Web control, you're really creating an instance of an object that gives you access to the
properties, methods, and events of its base class and interface. Web controls have style properties that
are instances of CssStyle objects. We can set colors using standard .NET Color objects, and specify
dimensions using strongly typed Web measurement objects. By comparison, HTML controls generally
have weakly-typed properties mapping to their attributes, allowing any string to be set as a value.

Automatic Browser Detection
Web controls detect client browser capabilities and create the appropriate HTML and client-side script
for the client browser. The difference in rendering won't be apparent with a control such as a Button
control, but you might find that a script-rich control such as a validation control renders differently on
different browsers. Or you may find that older non-CSS compliant browsers may have style rendered as
old style attributes, instead of style="" attributes. The HTML (or the script) rendered for different
browsers is all handled by the Web control, and by and large, the developer does not have to worry too
much about client browser capabilities or limitations.

Properties
All Web controls share a common set of base properties and also have their own class-specific properties.
These properties allow you to change the look and behavior of the control. Some of the common base
class properties shared by all ASP.NET server controls include:

❑ BackColor: The background color of the control, for example, AliceBlue, AntiqueWhite, or
even a hexadecimal value like #C8C8C8.

❑ ForeColor: The foreground color of the control.

❑ BorderWidth: The width of the border of the control, in units of either exs, ems, pixels, points,
picas, inches, centimeters (or millimeters), or a percentage value.

❑ Visible: If set to true (the default for all controls), the control will be displayed. If set to
false, the control will be hidden. This property is useful for when you want to hide a
particular control on the Web form. For example, if you were obtaining details from a user, and
in one control they had declared their nationality as British, you might want to hide another
control that asks them for their Social Security Number (or SSN; only US residents have an SSN)
while displaying a third that asks for their National Insurance number (only UK residents have
an NI number).

❑ Enabled: Whether on not the control is enabled. If set to false, the control will appear grayed
out and will not process or respond to events until its Enabled property is set to true.

❑ Height: Height of the control.

❑ Width: Width of the control.

320

Chapter 10

❑ ToolTip: Hover text displayed dynamically on mouse rollover. Typically used to supply
additional help without taking up space on the form.

❑ Font-Size:–The font size of the control.

The above properties are merely an abbreviated listing; many more common properties are available
(you can investigate these in depth in the SDK documentation).

The following code snippet is an example of an ASP.NET Button Web control with several of the
common base class properties assigned to give it a distinctive look:

<asp:Button id="MyButton" runat="server"
Text="I'm an ASP.NET server control Button!"

BackColor="purple"
ForeColor="white"
BorderWidth="4"
BorderStyle="Ridge"
ToolTip="Common Properties Example!"
Font-Name="Tahoma"
Font-Size="16"
Font-Bold="true"

/>

When rendered and displayed in the client browser, the button will look something like Figure 10-3:

Figure 10-3

The HTML generated for this control (for Internet Explorer 6.0) looks like this:

<input type="submit" name="MyButton"
value="I'm an ASP.NET server control Button!"
id="MyButton" title="Common Properties Example!"
style="color:White;background-color:Purple;

border-width:4px;border-style:Ridge;
font-family:Tahoma;font-size:16pt;font-weight:bold;" />

To look at the HTML, just select View | Source from your browser.

As an alternative method of adding styles, all Web controls have a style property. This property acts in
a similar manner to the style attribute of an HTML tag, and makes it possible to apply any CSS-
compatible style to a control. Using this property, the code used to generate this control would be as
follows:

<asp:Button id="MyButton" runat="server"
Text="I'm an ASP.NET server control Button!"
style="color:White;background-color:Purple;

border-width:4px;border-style:Ridge;
font-family:Tahoma;font-size:16pt;font-weight:bold;"

/>

321

ASP.NET Server Controls

Note that this code looks very similar to the code produced when the control is rendered.

Finally, you can also use the CssClass attribute of any Web control to specify that the control inherits
styling information from the appropriate class in the underlying stylesheet for the page. For example,
the button could also have been written as follows:

<asp:Button id="MyButton" runat="server"
Text="I'm an ASP.NET server control Button!"
CssClass="StylishButton"

/>

The appropriate CSS stylesheet would then need to contain the following declaration:

.StylishButton{
color:White;
background-color:Purple;
border-width:4px;
border-style:Ridge;
font-family:Tahoma;
font-size:16pt;
font-weight:bold;

}

These three variations on the same button are included in the code download for this chapter, along with
a very simple stylesheet. They demonstrate that despite the code written in each of the three cases being
different, the rendered appearance is the same.

Events
As seen in Chapter 3, an event handler is essentially the code you write to respond to a particular event.
For example, a Button control raises a Click event after being clicked; a ListBox control raises a
SelectedIndexChanged event when its list selection changes; a TextBox control raises a TextChanged
event whenever its text has changed and the active focus on the form changes, and so on. ASP.NET Web
controls support the ability to assign event handlers that execute specific code in response to specific
events raised by an ASP.NET Web control.

Events and event handlers are extremely useful to Web developers because they provide a mechanism
for responding dynamically to events in our Web pages. For example, let's say you were asked to write a
page containing a button that listed the current date and time to the latest second. For demonstration
purposes, when the user clicks on the button, you might want the date and time to be displayed as the
button's new text. To achieve this result, you'll need to "wire up" an event handler for our Button
control. Let's do this in Web Matrix.

Try It Out Creating an Event Handler
1. Fire up Web Matrix and create a new ASP.NET page called SimpleButton.aspx within your

C:\BegASPNET11\Ch10 folder. Switch to HTML view, and enter the following code:

<form runat="server">

322

Chapter 10

<asp:Button id="CurrentTimeButton" runat="server"
Text="Click for current time..." OnClick="UpdateTime" />

</form>

2. Switch to Code view and add the following method to handle the clicking of the button:

void UpdateTime (object sender, EventArgs e)
{
// update the button text with current time
CurrentTimeButton.Text = DateTime.Now.ToLongTimeString();

}

3. If you run the code in your browser, you'll see the button we created, and when you click on it
you'll see the current time, as shown in Figure 10-4:

Figure 10-4

How It Works
In this example, we added a Button control to a form and named it CurrentTimeButton. We also set
its Text property to Click for current time..., which is the first thing you see when you run the
page:

<asp:Button id="CurrentTimeButton" runat="server"

Text="Click for current time..." OnClick="UpdateTime" />

In addition, we set the OnClick property to UpdateTime, the name of the method that we added to
handle the Click event. We then added the event handler to update the button text with the current
time whenever the button is clicked:

void UpdateTime (object sender, EventArgs e)
{
// update the button text with current time
CurrentTimeButton.Text = DateTime.Now.ToLongTimeString();

}

The body of this method has just one line of code, which assigns the value
DateTime.Now.ToLongTimeString () to the Text property of the CurrentTimeButton. This is
basically saying, "when the UpdateTime() method is run, display the current time in the Text property
of CurrentTimeButton (which is a string datatype)."

323

ASP.NET Server Controls

The DateTime class is a standard .NET class, which has a Now() method that returns the current date
and time. This date/time value can be displayed in many ways by using different methods, including
ToShortDateString() and ToLongTimeString().

Page Lifecycle
Let's take a moment to consider the series of events that occur whenever an ASP.NET page is requested,
how it is loaded, when the events are raised, and when controls are rendered. When you create a page,
you are really creating a new Page object (instantiating a new instance of the Page class). The Page class
defines a series of methods, properties, and events that are available to all ASP.NET pages. When
loading a page for the first time, you might, for example, want to preload the Page object controls with
values from a database, or set property values of various controls on the page dynamically.

Let's quickly look at the order of events that happen on the server every time a page is requested. This is
shown in Figure 10-5:

Figure 10-5

When a page is requested, the server runs through the page lifecycle as it prepares the page for the
browser. Let's quickly run through the main items in this list:

❑ Init event: This is the first stage in the page lifecycle. If you so want, you could add code to the
Page_Init() method to handle this event. The code in this method will then be processed
before any code in the Page_Load() method and before any event handlers are processed. You
can use it to initialize variables or objects that you may need later.

❑ Load ViewState and Postback data: This stage is at which any data sent back from the client
related to the state of the page and the information being requested is handled.

324

Chapter 10

❑ Load event: The Page_Load() method handles the Load event of the page and usually contains
any code that needs to be processed each time the page is loaded. We'll soon look at this in more
detail.

❑ Handle control events: From the clicking of a button to the selection changing in a listbox, this is
the stage where any event handler method is processed. We've seen many of these events in
action already and we'll soon see many more. Remember that at this point any code in your
Page_Load() method will have already been run.

❑ PreRender event: The Page_PreRender() method is processed when this event is fired. You can
add code here to perform any last minute processing after all the control events are processed.
We'll see an example of how to use this event in the next chapter.

❑ Render method called: At this stage, the ASP.NET processor starts converting the ASP.NET code
into HTML. It's at this stage that the HTML sent to the browser is produced. It's possible to add
code to cause controls to be rendered differently, thereby customizing their appearance. We'll
look at this in detail when we learn more about creating custom server controls in Chapter 13.

❑ Unload event: This stage is used for last minute cleanup of any objects that you may have used,
such as database connections. We'll see an example of this in just a moment. Note that because
this event is handled after the render method is called, you can't now affect the appearance of
the page.

❑ Dispose method called: This is where the page object that was processed is removed from the
.NET managed memory space on the Web server. This method is called behind the scenes when
any .NET object falls out of scope and is no longer needed. Therefore, once a page is sent to the
client, the server can forget about how that page was rendered on that occasion and free up
memory.

The following code listings provide an overview of some methods that are commonly overridden in an
ASPX Page object implementation that allow you to perform processing during the various stages of the
page's lifetime.

Page_Load()
The Page_Load() method is invoked anytime the ASP.NET page is requested – in other words, when
the page is loaded for the first time, refreshed, or reloaded. The following is a sample implementation of
the Page_Load() method:

void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
// First time page loads -
// perform initialization here!

}
}

The most interesting part of the preceding listing is the reference to the Page object's IsPostBack
property. The IsPostBack property is significant because it can be used to distinguish whether a page is
being loaded for the very first time, or if it's being loaded as the result of a postback. If a Button control

325

ASP.NET Server Controls

was clicked, a Click event would be raised and the form data would be posted (sent) back to the server
– hence the term postback. You have already used this technique several times in the past few chapters.

The most common uses of implementing the Page_Load() method in your ASPX pages are to:

❑ Check whether this is the first time the page is being processed, or to perform processing after
the page is refreshed

❑ Perform data binding the first time the page is processed, or re-evaluate data binding
expressions on subsequent round trips to, for example, display the sorted data differently

❑ Read and update control properties

You'll often use the if (!Page.IsPostBack) construct in your pages when binding data to controls on
a page. Minimizing the number of times you query a database is essential for a site with good
performance, and in many cases you will only want to bind data once because the data is stored in the
page's ViewState.

Event Handling
The next major part in the lifecycle of a page is the event handling stage. After an ASPX page is loaded
and displayed, additional event handlers are invoked when control events are raised. For example, after
a user clicks an ASP.NET Button control, the Click event is raised, which causes a postback to the
server so that the event can be handled. If an event handler is written and assigned to process the Click
event for that particular control, it will be invoked whenever the Button control is clicked.

Not all controls perform this type of automatic posting-back to the server when an event is raised. For
example, the TextBox control does not, by default, post back notification to the server when its text
changes. Similarly, the ListBox and CheckBox server controls do not, by default, post back event
notifications to the server every time their selection state changes. For these controls, the AutoPostBack
property (which can be set to either true or false) needs to be explicitly set to true in the control's
declaration (or set programmatically within the code) to enable automatic post back of events (or state
changes) to the server for processing.

If you create an ASP.NET Web control that performs server-side processing whenever the control's state
changes (such as when a CheckBox is checked), and you don't seem to be getting the results you expect,
check if the control has an AutoPostBack property and whether it is set to true. This property
typically defaults to false if not explicitly declared when the control is defined.

Page_Unload()
Page_Unload() serves the opposite purpose to the Page_Load() method. The Page_Unload()
method is used to perform any cleanup just before the page is unloaded. You would want to implement
the Page_Unload() method in cases where any of the following actions need to be performed:

❑ Closing files

❑ Closing database connections

❑ Any other cleanup or discarding of server-side objects or resources

326

Chapter 10

The following is an example implementation of the Page_Unload() method:

void Page_Unload(object sender, EventArgs e)
{
// Perform any post-load processing here!

}

One thing to note is that the unloading of a page doesn't occur when you close the browser or move to
another page. The Page_Unload() event occurs after the page has been processed by ASP.NET and
before it's sent to the browser, by which time it is too late to do anything that will affect the appearance
of the page.

Right then – now that we've spent time looking at how pages and basic controls work, let's put it
together by starting our Wrox United application.

Understanding Web Controls: The Wrox
United Application

The Wrox United application that we'll be building up over the next few chapters has a database with
some sample data and a series of pages that query and display that data. We'll be using a variety of
controls and events, and examine each of these in turn as we encounter them.

Let's take a quick look at the database structure for the application. This is shown in Figure 10-6:

Figure 10-6

The key tables in this database are Players, Teams, Games, and Opponents. Players have a Status
(Active, Injured, or Retired), and can play in different positions in more than one Wrox team (they can be
a forward in one team, and a goalkeeper in another). Each team has many players. Games are held
between one of the Wrox teams and an opposing team. Each game can take place either at home (at the

327

ASP.NET Server Controls

Wrox location) or away (at the opposing team's ground). Finally, games can be either friendly or league
games.

For a more thorough investigation of the Wrox United database and its data structures, and creating it,
please refer to Appendix C – The Wrox United database. The Access and MSDE versions of this database
are available for download from the Wrox Web site.

So, let's have a go at displaying some of this data using some server controls.

Try It Out Wrox United Main Page – Default.aspx
The first page we'll build in our site is the Default.aspx page. This page will be the first thing that
visitors will see when they visit the site. For now, don't worry too much about styling – as you work
through these chapters, we'll refine this page step by step until it looks and feels like a Web site. For now,
let's start by adding a heading or two and some links to other pages that we'll be building.

1. Open up your ASP.NET Web Matrix editor, and create a new ASP.NET page called
Default.aspx in a folder that lives within your BegASPNET11 directory
(C:\BegASPNET11\WroxUnited, for example), as shown in Figure 10-7. Web Matrix will then
display this page in the main window, ready to be worked on:

Figure 10-7

2. Start off in Design view. Type in Wrox United and make this text Heading 1 style, using the block
format drop-down menu on the main toolbar at the top of the environment. On a new line,

To run this code, you need to download the Wrox United database. Download the
version of the database that you prefer (the samples in the book assume you are
using the Access version) before starting this exercise. For more information on the
Wrox United database, refer to Appendix C.

328

Chapter 10

change the paragraph style back to Normal and type in Welcome to the Wrox United Website!
Please select one of the following:

3. Select the Web Controls tab on the left (if it isn't already selected), and drag four Hyperlink
controls onto your form, pressing the Return key after each link to place them on separate lines.
Your page screen should appear as shown in Figure 10-8:

Figure 10-8

4. Notice that when you select one of the Hyperlink controls, the properties available for that
control appear in the Properties pane on the right hand side. Select each Hyperlink control in turn
and assign the following properties using the Properties pane:

Property Link 1 Link 2 Link 3 Link 4

Text Teams Players Upcoming Games Results

ID lnkTeams lnkPlayers lnkGames lnkResults

NavigateUrl Default.aspx Default.aspx Default.aspx Default.aspx

329

ASP.NET Server Controls

5. As we continue to build pages in this site, we'll add a separate NavigateUrl property for each
of these controls, but for now we keep them all pointing to the same page. If you run this page
now, you will see that these controls are rendered almost exactly like an HTML <a href ...>

hyperlink would be; see Figure 10-9:

Figure 10-9

How It Works
In Web Matrix, go to the HTML view and you will see that the following code has been created:

<h1>Wrox United
</h1>
<p>
Welcome to the Wrox United Website! Please select one of the following:
</p>
<p>
<asp:HyperLink id="lnkTeams" runat="server"

NavigateUrl="Default.aspx">Teams</asp:HyperLink>
</p>
<p>
<asp:HyperLink id="lnkPlayers" runat="server"

NavigateUrl="Default.aspx">Players</asp:HyperLink>
</p>
<p>
<asp:HyperLink id="lnkGames" runat="server"

NavigateUrl="Default.aspx">
Upcoming Games

</asp:HyperLink>
</p>
<p>
<asp:HyperLink id="lnkResults" runat="server"

NavigateUrl="Default.aspx">Results</asp:HyperLink>
</p>

330

Chapter 10

This isn't a lot of code, but we would have had to type it all by hand, so we've saved time by using the
Web Matrix editor (with the added advantage of no typos).

Now, view the page in your browser, and select View | Source from the main menu. You will see the
following code:

<h1>Wrox United
</h1>
<p>
Welcome to the Wrox United Website! Please select one of the following:
</p>
<p>
Teams

</p>
<p>
Players

</p>
<p>
Upcoming Games

</p>
<p>
Results

</p>

The ASP.NET Hyperlink control is one of the simplest Web controls in our toolbox and acts in a very
similar way to the <a href ... > HTML anchor control. As you can see, the changes between the code
we've created and the rendered code are very small, but this is not always the case.

When you click on each link in turn, notice that the browser window flickers as it follows the link to the
page. These controls don't cause a postback to the server in the same way as a Button control does –
these controls simply transfer you to a new page, without firing any server-side events. We didn't need
to add an OnClick attribute like we did with the Button control.

So what's so useful about the ASP.NET Hyperlink control? First, they have the same basic set of
properties that every Web control has. Second, they're simple and just as easy to use as a normal anchor
tag. Later on, we'll use the Visible property of the Hyperlink controls to display or hide links,
depending on whether or not you're logged in as a user – a very useful trick!

Let's take a quick look at several other simple controls available to you for developing ASP.NET pages.

Intrinsic Controls
These are controls that correspond directly to HTML tags and include the Button, Checkbox,
DropDownList, and TextBox controls. By now you must be familiar with these controls, as they've been
used throughout the book. Here is a list to remind you of the controls that fall into this group:

331

ASP.NET Server Controls

Let's take a look at some more interesting controls. Here we'll create the Teams.aspx page, and examine
a different type of control, the DataList control. This control enables you to display repetitive elements
on a page based on rows of data that are stored in a database.

Try It Out Wrox United – Teams.aspx

1. Create a new ASP.NET page and call it Teams.aspx. On this page, in the Design view, add a
Heading 1 that displays the text Wrox United again. Underneath that, add a Heading 2 that
displays the text Teams. On a new line, switch back to Normal paragraph style. Now you can
add some content.

2. You can add a simple table to the form to lay the form out a bit more clearly. Navigate to the
HTML menu and select Insert Table. Create a 1-row, 2-column table, with no specified width or
height, as shown in Figure 10-10:

Control Purpose

Button General-purpose button – you typically use the Click event handler

CheckBox Single check box

DropDownList Drop-down list box, also known as a combo box, for selecting from a list
of items

Hyperlink Similar to the HTML <a> tag for displaying a hyperlink

Image Displays a GIF, JPG, or other image files

Label Provides a way to display text on a page; corresponds to the HTML
 tag

ListBox Provides a scrollable list of items, single or multiple selection

Panel Similar to the <DIV> tag – typically serves as a container for other
controls

RadioButton Single radio button, similar to a checkbox, except that you need to handle
its de-selection programmatically

Table Similar to an HTML table

TableCell A cell within a table

TableRow A row within a table

TextBox Text box – single or multiple lines – similar to an <input ... > or a
<textarea ... > control

332

Chapter 10

Figure 10-10

3. Drag a DataList control into the first cell of the table from the Web Controls panel on the left, as
shown in Figure 10-11:

Figure 10-11

4. Let's do some work on the code in the page. First, switch to HTML view and enter the following
code:

<asp:DataList id="TeamList" runat="server">
<ItemTemplate>
<asp:linkbutton

text='<%# DataBinder.Eval(Container.DataItem, "TeamName") %>'
CommandArgument='<%# DataBinder.Eval(Container.DataItem, "TeamID") %>'
id="TeamNameLink" style="color:darkred" runat="server" />

<asp:Label text='<%# DataBinder.Eval(Container.DataItem, "Notes") %>'

id="teamnotes" runat="server" />
</ItemTemplate>
<SeparatorTemplate>

<hr color="#b0c4de" width="200px"/>

</SeparatorTemplate>
</asp:DataList>

We've entered some data binding expressions in here, but not yet created a data source for this
control. Next, you'll need to grab the name of each of the teams from the database, and create an
ID for each team. This ID will come in handy when you need to get more information about

333

ASP.NET Server Controls

each of the teams. In addition, you'll need to grab data from the Notes field that describes each
of the teams. Both of these tasks will be carried out next.

5. The first step is to add some data source information to the page. We're going to use the neat
data wizard feature of Web Matrix to generate some database access code. In Code view, drag a
SELECT Data Method wizard onto the page from the Code Wizards panel on the left, which shows
up as shown in Figure 10-12:

Figure 10-12

6. Create a new database connection to the WroxUnited database by selecting your preferred
database type, and clicking on the Create button. If you are using Access, you will be prompted
to enter the path to the database. If you are using MSDE, you will be prompted to select the
WroxUnited database from your database list; see Figures 10-13, 10-14, and 10-15:

Figure 10-13

If you are using Microsoft Access, ensure that a copy of the database is placed into
the BegASPNET11\WroxUnited\Database folder (you need to create this folder if it
doesn't already exist).

334

Chapter 10

Figure 10-14

Figure 10-15

Now that you have a connection to your database, you can go ahead with the Code Wizard.

7. Click Next, and the Code Wizard is launched. All you need is data from the Teams table, so
select the Teams table, then select each field from that table, as shown in Figure 10-16:

In this book, the examples use the Access version of the database, but you can
obviously use the SQL Server version. In fact, in Appendix D, a SQL Server
connection has been used instead.

335

ASP.NET Server Controls

Figure 10-16

8. Click Next, and you can test out the query. You should see a screen similar to Figure 10-17:

Figure 10-17

9. In the final screen, save this method as GetTeams(), ensure that the DataReader type is selected,
and then click Finish, as shown in Figure 10-18:

336

Chapter 10

Figure 10-18

Back in Code view, you will now see the following:

System.Data.IDataReader GetTeams()
{
string connectionString =
"Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=-4;" +
"Data Source=C:\\BegASPNET11\\WroxUnited\\Database\\WroxUnited.mdb";

System.Data.IDbConnection dbConnection = new
System.Data.OleDb.OleDbConnection(connectionString);

string queryString = "SELECT [Teams].[TeamID], [Teams].[TeamName], " +
"[Teams].[Notes] FROM [Teams]";

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;
dbConnection.Open();
System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;
}

Phew – that's a lot of code! These code builders are very useful, and we'll be using these quite
often as we build up the site. We now have a function that returns a DataReader object that we
can use to populate the DataList control. However, before we continue, we need to change this
code a bit. The database connection string can be stored in a central location in the web.config
file. Since we'll be doing a fair amount of database work for this application, let's change the
code so that we use this technique.

10. Create a new web.config file for your Wrox United application and in the code that is
generated, add the highlighted line of code.

Due to page width limitations, the highlighted line in the following code snippet has
been wrapped to two lines. You must ensure that the following statement is not
wrapped in your code and is all on one line!

337

ASP.NET Server Controls

<?xml version="1.0" encoding="UTF-8" ?>

<configuration>

<appSettings>
<add key="ConnectionString"

value="Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=-4;
Data Source=C:\BegASPNET11\WroxUnited\Database\WroxUnited.mdb"/>

</appSettings>

<system.web>

11. Modify the GetTeams() method as follows to make use of this global connection string:

System.Data.IDataReader GetTeams()
{
string connectionString =
ConfigurationSettings.AppSettings["ConnectionString"];

System.Data.IDbConnection dbConnection = new
System.Data.OleDb.OleDbConnection(connectionString);

...

12. Add the following code block above the GetTeams() function:

void Page_Load()
{
TeamList.DataSource = GetTeams();
TeamList.DataBind();

}

That's it for this page. Run the page; the output is as shown to Figure 10-19:

Figure 10-19

338

Chapter 10

How It Works
This exercise used many different types of ASP.NET controls to display team information on the page.
Let's look at each of these controls, in turn, starting with the DataList control.

The DataList control is a powerful way to display repeated values from a database. It uses templates to
present the data. In this example, we added content for the ItemTemplate and SeparatorTemplate
elements within the DataList.

The ItemTemplate section is used to display each row of data retrieved and gives you the option of
adding some layout and styling code:

<asp:DataList id="TeamList" runat="server">
<ItemTemplate>
<asp:linkbutton

text='<%# DataBinder.Eval(Container.DataItem, "TeamName") %>'
CommandArgument='<%# DataBinder.Eval(Container.DataItem, "TeamID") %>'
id="TeamNameLink" style="color:darkred" runat="server" />

<asp:Label text='<%# DataBinder.Eval(Container.DataItem, "Notes") %>'

id="teamnotes" runat="server" />

</ItemTemplate>

The SeparatorTemplate is where we added a horizontal line to clearly separate the results:

<SeparatorTemplate>

<hr color="#b0c4de" width="200px"/>

</SeparatorTemplate>
</asp:DataList>

Inside the ItemTemplate, we used two different controls – an ASP.NET LinkButton control and a
Label control. Let's first look at the LinkButton control:

<asp:linkbutton
text='<%# DataBinder.Eval(Container.DataItem, "TeamName") %>'
CommandArgument='<%# DataBinder.Eval(Container.DataItem, "TeamID") %>'
id="TeamNameLink" style="color:darkred" runat="server" />

The Text property is set to display the value stored in the TeamName field for each row in the database.
The CommandArgument property stores the TeamID that represents the currently selected team. This
property will be very useful later on when we use the LinkButton control to display more information
on the page. Later in this chapter, we'll use it to retrieve a list of players that play for the selected team.

Now, let's look at the Label control:

<asp:Label text='<%# DataBinder.Eval(Container.DataItem, "Notes") %>'
id="teamnotes" runat="server" />

339

ASP.NET Server Controls

This control is a little simpler than the LinkButton control. The interesting bit is the Text property that
is set to the value stored in the database for the notes for the currently selected team.

Each of these controls will be rendered once for each row in the database. Six teams would result in six
links and six notes. Each result will have the same separator between items.

The code used to access the data stored on the database should be familiar to you from working through
the exercises in Chapters 8 and 9. The Web Matrix data wizard takes a lot of hard work away and
produces neat functions that you can use in your code. However, the Web Matrix wizards don't allow
you to specify a centralized database connection string, so we added a line to the default web.config
file created for this exercise:

<add key="ConnectionString"

value="Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=-4;

Data Source=C:\BegASPNET11\WroxUnited\Database\WroxUnited.mdb"/>

Once this was added, the connectionString created by the data access wizard was changed as
follows:

string connectionString =

ConfigurationSettings.AppSettings["ConnectionString"];

This line of code looks up the value stored in the central web.config file and uses that value to connect
to the database.

Linking to the Teams.aspx Page
Before you finish this example completely, flip back to Default.aspx and change the following line of
code as shown:

<asp:HyperLink id="lnkTeams" runat="server" NavigateUrl="Teams.aspx">

Teams

</asp:HyperLink>

Changing the NavigateUrl property means that you can link to the newly created Teams.aspx page
from the main front page.

The DataList control is one of the numerous data controls available to ASP.NET developers. Here's a
quick look at the other controls available to us.

Data Rendering Controls
These controls are extremely feature-rich (they have numerous properties to choose from) and greatly
simplify the work of displaying a variety of data, particularly database-related data. The definition of

340

Chapter 10

data in the context of these controls is very broad. It could include database records, an ArrayList, an
XML data source, or even custom collection of objects containing custom class instances. There are two
important concepts you need to know:

❑ Data binding: This is the term used to describe the process of associating a server control with
information in a data store. Binding data to a server control is a two-step process in ASP.NET –
first assign the server control's DataSource property to the data you want to bind to and then
call the control's DataBind() method. Controls can be bound to a variety of data sources,
ranging from tables retrieved from the database to values stored in an object, such as an Array
or a Hashtable.

❑ Templates: These are used to define the various layout elements of a particular control.
Templates describe how data is displayed in the browser.

The following table lists the available data controls:

The DataGrid Control
The DataGrid control provides a wealth of functionality for displaying data in columns and rows and
has many properties that you can use to control the layout of your grid. For example, you could
alternate the colors for the rows of data being displayed. Some useful properties for the DataGrid
control include:

❑ AllowSorting: Allows you to dynamically sort and re-display the data based on the values in a
selected column. For example, if you have a table in a database containing employees' surnames
and salaries, enabling sorting would allow you to sort the rows in your table according to either
column.

Control Purpose

DataGrid Creates a multi-column, data-bound grid. This control allows you to define
various types of columns, lay out the contents of the grid, and add specific
functionality (edit button columns, hyperlink columns, and so on).

DataList Displays items from a data source by using templates and renders them as a
structured table. You can customize the appearance and contents of the
control by manipulating the templates that make up its different components.

Repeater The Repeater control is very similar to the DataList, except that results are
not rendered in a table. Each row in the data source is rendered in a format
that you specify in the ItemTemplate. Given the lack of structure in the
rendered output, you may find that you use the ItemSeparatorTemplate
more often. Unlike DataList, the Repeater control does not have any built-
in selection or editing support.

341

ASP.NET Server Controls

❑ AllowPaging: Allows you to view subsets of the data called by the DataGrid control on
different pages. The number of items displayed on the page is determined by the PageSize
property.

❑ AlternatingItemStyle: Sets the style (such as background color) of every other item listed.

❑ ItemStyle: The style of individual items. If no AlternatingItemStyle is defined, all the
items will render with this style.

❑ FooterStyle: The style of the footer (if any) at the end of the list.

❑ HeaderStyle: The style of the header (if any) at the beginning of the list.

To use the DataGrid control, declare it like the other server controls you've seen (using the
<asp:DataGrid> start and end tags), set the relevant properties, define the columns in your table, and
then apply the relevant template for those columns. Within the template tags, include the information to
which the template must be applied:

<asp:DataGrid id="EventData"
AllowSorting="true"
<Columns>
<asp:TemplateColumn HeaderText="Column1">
<ItemTemplate>
<%# DataBinder.Eval(Container.DataItem, "ShortDesc") %>

</ItemTemplate>
</asp:TemplateColumn>
<asp:TemplateColumn HeaderText="Column2">
<ItemTemplate>
<%# DataBinder.Eval(Container.DataItem, "DetailDesc") %>

</ItemTemplate>
</asp:TemplateColumn>

</Columns>
</asp:DataGrid>

The DataList Control
The DataList control used in the previous example is useful for displaying rows of database
information (which can become columns in DataGrid tables) in a format that you can control using
templates and styles. Manipulating various template controls changes the way your data is presented. The
DataList control enables you to select and edit the data that is presented. Here is a list of the supported
templates:

342

Chapter 10

You can actually make a DataList render like a DataGrid by arranging data in columns. You can do
this by changing the RepeatDirection property from Vertical to Horizontal. We recommend
trying this out yourself and taking a look at the source for the rendered page – you'll soon see where you
need to add or remove layout data to customize the appearance of your data.

The Repeater Control
The Repeater control is very similar to the DataList control with one very important distinction: the
data displayed is always read-only. You cannot edit the data being presented. It is particularly useful for
displaying repeating rows of data. Like the DataGrid and DataList controls, it utilizes templates to
render its various sections. The templates it uses are generally the same as the ones used with the
DataList control, with a similar syntax. The next Try-It-Out illustrates the Repeater control in action.

We've completed the first part of the Teams page, but it would be really useful to see the players on each
team. For that part of the example, we'll work with some more Web controls (including a Repeater
control) that bind to data.

Try It Out Wrox United – Teams.aspx, Part 2
In this example, we'll make the TeamNames from the previous example "clickable", so that when a team
is selected, the players of that team are listed on the right-hand side of the table.

Templates Purpose

ItemTemplate This is a required template that provides the content and
layout for items referenced by DataList.

AlternatingItemTemplate If defined, this template provides the content and layout for
alternating items in the DataList. If it is not defined,
ItemTemplate is used.

EditItemTemplate If defined, this template provides editing controls, such as
text boxes, for items set to 'edit' in the DataList. If it is not
defined, ItemTemplate is used.

FooterTemplate If defined, the FooterTemplate provides the content and
layout for the footer section of the DataList. If it is not
defined, the footer section will not be displayed.

HeaderTemplate If defined, this provides the content and layout for the
header section of the DataList. If it is not defined, the
header section will not be displayed.

SelectedItemTemplate If defined, this template provides the content and layout for
the currently selected item in the DataList. If it is not
defined, ItemTemplate is used.

SeparatorTemplate If defined, this provides the content and layout for the
separator between items in the DataList. If it is not defined,
a separator will not be displayed.

343

ASP.NET Server Controls

1. Reopen Teams.aspx, and go straight to Code view. We need to get some more data from the
database. Start by dragging another SELECT query onto the page and launching the wizard.

2. This time, select PlayerName from the Players table and PositionName from the Positions
table as the two columns to be displayed, as shown in Figure 10-20:

Figure 10-20

3. Before you can exit the wizard, you need to add some WHERE clause data to link the data that
you're gathering. This data comes from two different tables, Players and Positions. You also
need to ensure that player data is only retrieved for the specific team that you're interested in.

4. Click the WHERE button to start adding a WHERE clause, which selects only those rows where
the PlayerID column in the PlayerTeam join table matches the PlayerID column in the
Players table as shown in Figure 10-21:

Figure 10-21

344

Chapter 10

5. Repeat this process to join the following sets of tables and columns: the Position column in the
PlayerTeam table to the PositionID column in the Positions table, and the TeamID column
in the PlayerTeam table to the TeamID column in the Teams table.

6. Finally, set the TeamID column in the PlayerTeam table to be equal to the TeamID parameter, as
shown in Figure 10-22. This will be passed in when the function is called:

Figure 10-22

You should now see the screen shown in Figure 10-23:

Figure 10-23

345

ASP.NET Server Controls

7. Click Next to test the query. When prompted, enter an integer that corresponds to a valid
TeamID, as shown in Figure 10-24 (1 is a safe bet!):

Figure 10-24

You should now see the screen shown in Figure 10-25:

Figure 10-25

8. Save the query as a DataReader called GetPlayersByTeam. You can now exit the wizard. The
following code should have been inserted (we've added a few line breaks in the longer strings
to make it easier to read):

System.Data.IDataReader GetPlayersByTeam(int teamID)
{
string connectionString =
"Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=-4; " +
"Data Source=C:\\BegASPNET11\\WroxUnited\\Database\\WroxUnited.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

string queryString =
"SELECT [Players].[PlayerName], [Positions].[PositionName] " +
"FROM [Players], [Positions], [PlayerTeam], [Teams] "+

346

Chapter 10

"WHERE (([PlayerTeam].[PlayerID] = [Players].[PlayerID]) " +
"AND ([PlayerTeam].[Position] = [Positions].[PositionID]) " +
"AND ([PlayerTeam].[TeamID] = [Teams].[TeamID]) " +
"AND ([PlayerTeam].[TeamID] = @TeamID))";

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDataParameter dbParam_teamID =
new System.Data.OleDb.OleDbParameter();

dbParam_teamID.ParameterName = "@TeamID";
dbParam_teamID.Value = teamID;
dbParam_teamID.DbType = System.Data.DbType.Int32;
dbCommand.Parameters.Add(dbParam_teamID);

dbConnection.Open();
System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;
}

Again, the wizard has done a great job of creating complex code with only a few mouse clicks!
You need to make one slight adjustment though, so that the code uses the centralized
connection string added to the web.config file earlier. Change the following highlighted line of
code to use this central connection string:

System.Data.IDataReader GetPlayersByTeam(int teamID)
{
string connectionString =
ConfigurationSettings.AppSettings["ConnectionString"];

Dim dbConnection As System.Data.IDbConnection = _
New System.Data.OleDb.OleDbConnection(connectionString)

Now, add some controls that can use this code. Switch back to HTML view and add another cell
to the table that contains a Repeater control:

</td>
<td style="vertical-align:top">
<asp:Repeater id="PlayersList" runat="server">
<ItemTemplate>
<asp:linkbutton

text='<%# DataBinder.Eval(Container.DataItem, "PlayerName") %>'
style="color:darkred" runat="server"
width="120"/>

<asp:Label

text='<%# DataBinder.Eval(Container.DataItem, "PositionName") %>'
id="playerposition" runat="server" />

</ItemTemplate>
<headerTemplate>
Players in: <%= SelectedTeam %>
<hr color="#b0c4de" width="200px">

347

ASP.NET Server Controls

</headerTemplate>
<footerTemplate>
<hr color="#b0c4de" width="200px">

</footerTemplate>
</asp:Repeater>

</td>
</tr>
</table>

With this, you've got a Repeater control and a function to fill it with data. However, a few
things are missing. The Repeater control should only be filled with data when a team is
selected. We do this in three steps. First, you wire up an event handler so that when the name of
the team is clicked, the respective team players will be displayed. Then, you pass the TeamID
parameter to the GetPlayerByTeam() function. Here, you should remember the name of the
team that has been selected, so that you can display it in the Repeater's header template.

9. Head back to the DataList control and edit the LinkButton control as follows:

<asp:linkbutton
text='<%# DataBinder.Eval(Container.DataItem, "TeamName") %>'
CommandArgument='<%# DataBinder.Eval(Container.DataItem, "TeamID") %>'
id="TeamNameLink" style="color:darkred"
CommandName="ShowTeam" runat="server" />

10. Add the following to the DataList control tag:

<asp:DataList id="TeamList" runat="server"
OnItemCommand="TeamList_ItemCommand">

11. Add the following line of code outside all the methods in the page (this is a public variable):

string selectedTeam;

12. Finally, add the following code in the Code view of the page:

void TeamList_ItemCommand(object sender, DataListCommandEventArgs e)
{
if (e.CommandName == "ShowTeam")
{
LinkButton button = (LinkButton)e.CommandSource;
selectedTeam = button.Text;
PlayersList.DataSource =
GetPlayersByTeam(int.Parse((string)e.CommandArgument));

PlayersList.DataBind();
}

}

The page is now ready, so run the page in your browser. You should see the screen shown in
Figure 10-26:

348

Chapter 10

Figure 10-26

How It Works
We extended the first part of the example to incorporate an event handler that runs some specific code
when the name of a team is clicked. This code is used to populate the Repeater control. Let's run
through it bit-by-bit:

<asp:DataList id="TeamList" runat="server"
OnItemCommand="TeamList_ItemCommand">

Adding the OnItemCommand property to the DataList control ensures that when the LinkButton
within the DataList is clicked, the ItemCommand event of the Repeater is raised and code in the
TeamList_ItemCommand() event handler is run. However, we need to pass the CommandArgument of
the LinkButton, so we assign a CommandName property to the LinkButton:

<asp:linkbutton
text='<%# DataBinder.Eval(Container.DataItem, "TeamName") %>'
CommandArgument='<%# DataBinder.Eval(Container.DataItem, "TeamID") %>'
id="TeamNameLink" style="color:darkred"

CommandName="ShowTeam" runat="server" />

In the event handler that runs when the ItemCommand event is fired, we can use the CommandArgument
property of the LinkButton:

void TeamList_ItemCommand(object sender, DataListCommandEventArgs e)

The event handler takes two parameters. e is an object of the type DataListCommandEventArgs. This
means that we can access certain properties of e in our code that relate back to the control that originally
fired the event.

349

ASP.NET Server Controls

First, we can use the CommandName property of the LinkButton that was set to ShowTeam earlier:

if (e.CommandName == "ShowTeam")
{

We test whether the argument passed into the event handler has a CommandName set to ShowTeam. If it
does, we process some more code. The next two lines extract the name of the currently selected team.
This is used to set the value of the public string variable selectedTeam:

LinkButton button = (LinkButton)e.CommandSource;
selectedTeam = button.Text;

Notice that we first have to create a new LinkButton object and use it to work with the properties of the
button that originally fired the method. We can identify the button that the request originated from by
using the CommandSource property of the EventArgs (e) passed into the method. Once we have the
newly-created button object, we can access its Text property.

The next section binds data to the PlayersList Repeater control. Here, we access the
CommandArgument property of the e object, which is the CommandArgument property of the
LinkButton control that raised the event and is passed into the event handler. Because this argument is
passed across as a string and we require an integer, we must first specify that the argument is a string
and then convert it to an integer:

PlayersList.DataSource =
GetPlayersByTeam(int.Parse((string)e.CommandArgument));

PlayersList.DataBind();
}

}

We've seen how the event is handled. Now let's look at the control that is populated when the event
handler runs:

<asp:linkbutton
text='<%# DataBinder.Eval(Container.DataItem, "PlayerName") %>'
style="color:darkred" runat="server"
width="120"/>

<asp:Label
text='<%# DataBinder.Eval(Container.DataItem, "PositionName") %>'
id="playerposition" runat="server" />

</ItemTemplate>

This control contains a LinkButton and a Label control in its ItemTemplate. We also define a header
and footer for our player list. Notice that the string value stored in the SelectedTeam variable adds the
name of the team to the header of the control:

This event handler is quite complicated, but is a great example of how to handle
events raised by child controls (the LinkButton) via a parent control (the DataList).
This is a process known as Event Bubbling, in which the events raised by the child
control bubble up to their parent control where they can be intercepted and handled.

350

Chapter 10

<headerTemplate>

Players in: <%= SelectedTeam %>

<hr color="#b0c4de" width="250px">

</headerTemplate>

<footerTemplate>

<hr color="#b0c4de" width="250px">

</footerTemplate>

</asp:Repeater>

The data for the items in the Repeater control comes from the GetPlayersByTeam() method:

System.Data.IDataReader GetPlayersByTeam(int teamID)

{

string connectionString =

"Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=-4; " +

"Data Source=C:\\BegASPNET11\\WroxUnited\\Database\\WroxUnited.mdb";

System.Data.IDbConnection dbConnection =

new System.Data.OleDb.OleDbConnection(connectionString);

This method contains the following large SQL statement to retrieve the data we're interested in:

string queryString =

"SELECT [Players].[PlayerName], [Positions].[PositionName] " +

"FROM [Players], [Positions], [PlayerTeam], [Teams] "+

"WHERE (([PlayerTeam].[PlayerID] = [Players].[PlayerID]) " +

"AND ([PlayerTeam].[Position] = [Positions].[PositionID]) " +

"AND ([PlayerTeam].[TeamID] = [Teams].[TeamID]) " +

"AND ([PlayerTeam].[TeamID] = @TeamID))";

This query is followed by some code that creates a Command object, and a parameter that passes the
TeamID.

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDataParameter dbParam_teamID =
new System.Data.OleDb.OleDbParameter();

dbParam_teamID.ParameterName = "@TeamID";
dbParam_teamID.Value = teamID;
dbParam_teamID.DbType = System.Data.DbType.Int32;
dbCommand.Parameters.Add(dbParam_teamID);

Using a parameter ensures that the data passed into the method doesn't violate any
database constraints. For example, using a parameter removes our obligation to
escape text that would be invalid in a SQL statement, worry about inserting dates in
an unsuitable format, and so on. Catching data type errors in code before data is
passed to the database is a good way to work.

351

ASP.NET Server Controls

Finally, the data is read from the database and the DataReader object is returned by the function:

dbConnection.Open();
System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;
}

Our page is a bit more interesting now. Try clicking on different teams and see how the list of players
changes. You could also add more code that responds to the clicking of the link button in the
PlayersList control, which transfers the user to more information about the selected player, but we
recommend that you this yourselves.

The Repeater control has produced results similar to the DataList control, and in many cases, you
might find yourself wondering which controls to use for different purposes. The end result is subtly
different. The DataList control actually renders as an HTML table with cells for each item in the
template. The Repeater is much less structured and simply spits back rendered versions of exactly what
was put into the templates with no extra hidden tags. This is why we had to add a line break to this
control to split the content onto different lines (we could also have used a separator template).

The only functionality difference between the two is that the DataList can be used to edit data, whereas
the Repeater is always read-only. For more information and some great examples, refer to Professional
ASP.NET 1.0, Special Edition, Wrox Press, ISBN 0-7645-4396-2.

Data-oriented controls have many different properties and events that we could discuss in depth here,
but it's time to move on and look at other topics. I highly recommend that you play and experiment with
these controls. Check out the rendered HTML in your browser using View | Source – you'll find that
it's a great way to understand how the rendering process works, and how you can optimize your code to
work with, not against, the ASP.NET compiler to produce the results you want.

You've now gained some experience of using a DataList, a Repeater, and a LinkButton while putting
together one of the pages in the site. As you saw at the end of the previous example, the DataList
control is a data rendering control. The LinkButton control, however, is a rich control. Let's find out more
about this type of control.

Rich Controls
Rich controls are compound in nature and provide extended functionality. In other words, rich controls
are typically combinations of two or more simple or intrinsic controls that compose a single functional
unit, for example, an AdRotator control. Another distinguishing trait of these controls is that they don't
have a direct correlation to any single HTML control, even though they render to HTML when displayed
in the client browser. The following table discusses various rich controls and their functions:

352

Chapter 10

The nice thing about this family of rich controls is that they are just as easy to use as the other ASP.NET
server controls. They may boast of more features and properties, but the basic way of defining them and
interacting with them is programmatically the same as for all the other ASP.NET server controls.

The Calendar Control
The Calendar control produces some really complex HTML when rendered, but you'll find that adding
this control to a Web page is as simple as adding any other Web control! This control is designed to
present date information in the form of a calendar and allows a user to select a particular date. You can
configure the control via the SelectionMode property to allow the user to select a range of dates. You
can also completely customize how this control is presented using the many different properties that it
has access to. Let's take a quick look at some of these properties:

FirstDayOfWeek=[Default|Monday|Tuesday|Wednesday|
Thursday|Friday|Saturday|Sunday]

The FirstDayOfWeek property enables you to choose the day of the week your calendar starts from.
Some calendars default to Sunday as the first day of the week. For business purposes, however, it's more
practical to have the week starting from Monday.

SelectionMode=[None|Day|DayWeek|DayWeekMonth]

By default, the Calendar control's SelectionMode defaults to Day. This is useful when you want your
user to be able to select only a single day. However, you can select multiple days by setting the
SelectionMode property to either DayWeek, which will allow you to select a single day or an entire
week, or DayWeekMonth, which will allow you to select a single day, an entire week, or the entire month.

Control Purpose

AdRotator Displays advertisement banners on a Web form. The displayed
advertisement is randomly changed each time the form is loaded or
refreshed.

Calendar Displays a one-month calendar for viewing/selecting a date, month, or
year.

CheckBoxList Multiple-selection checkbox group; can be dynamically generated with
data binding.

ImageButton Provides a clickable image with (optional) access to the clicked
coordinates to support image-map functionality.

LinkButton Hyperlink-style button that posts back to the page of origin. We've seen
a couple of these in action already.

RadioButtonList Mutually exclusive radio button group. Can be dynamically generated
with data binding.

353

ASP.NET Server Controls

The Calendar control's SelectMonthText and SelectWeekText properties enable you to customize
the HTML that is rendered at the browser – use these properties if you're really going for a customized
look:

SelectMonthText="HTML text"
SelectWeekText="HTML text"

You need not define all of the properties of the ASP.NET Calendar control to display the control. In fact,
the following declaration will create an efficient ASP.NET Calendar server control that looks good and
displays quite well:

<asp:Calendar id="MyCalendarControl" runat="server" />

When delivered to the client browser, the result is an HTML calendar as shown in Figure 10-27 that
enables you to navigate through the various days, months, and years:

Figure 10-27

Take a look at the HTML that ASP.NET produced to create this page – over 100 lines of HTML and
JavaScript, while you wrote only a single line!

Let's now add a calendar that will highlight the days on which matches are scheduled and then display
the details of those matches when that date is selected.

Try It Out Wrox United – Default.aspx, Part 2, the Event Calendar
1. Reopen Default.aspx and add the following HTML table in the HTML view to change the

layout of the new and improved front page:

<p>
Welcome to the Wrox United Website! Please select one

354

Chapter 10

of the following:
</p>
<table style="WIDTH: 800px">
<tr>
<td style="WIDTH: 200px">
<p>
<asp:HyperLink id="lnkTeams" runat="server"

NavigateUrl="Default.aspx">
Teams

</asp:HyperLink>
</p>

...
<p>
<asp:HyperLink id="lnkResults" runat="server"

NavigateUrl="Default.aspx">
Results

</asp:HyperLink>
</p>

</td>
<td style="VERTICAL-ALIGN: top; width: 350px;"> </td>
<td style="VERTICAL-ALIGN: top; width: 250px;"></td>

</tr>
</table>
</form>

2. Switch to Design view and drag a Calendar control into the third cell of the table, as shown in
Figure 10-28. Name this calendar EventCalendar:

355

ASP.NET Server Controls

Figure 10-28

3. Click the lightning bolt in the Properties pane to display the available events, and double-click
on the DayRender() event's textbox to be taken back to Code view, where you need to enter
more code. Before filling in the DayRender() event handler, let's take a moment to consider
what we're trying to achieve. We want to highlight the days of the games and store dates of the
games in the Games table in the database. If we want to display more information about a
particular day, we also need to store the GameID so that we can again query the database later.

4. The next task is to add another DataReader to this page using the wizard, and then store that
data in a Hashtable (where we can store details of dates and games in key-value pairs, as we saw
in Chapter 8). At the top of the page, add the following line of code:

System.Collections.Hashtable DateList;

5. Drag a SELECT data wizard onto the page. Select the GameID and Date fields from the Games
table, save this function with the name Dates(), and specify that it returns a DataReader
object:

System.Data.IDataReader Dates()
{
string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +

356

Chapter 10

"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +
"WroxUnited\\Database\\WroxUnited.mdb";

System.Data.IDbConnection dbConnection = new
System.Data.OleDb.OleDbConnection(connectionString);

string queryString = "SELECT [Games].[Date], [Games].[GameID] FROM [Games]";
System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

dbConnection.Open();
System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;
}

6. Change the following code to use the central connection string stored in web.config:

System.Data.IDataReader Dates()
{
string connectionString =
ConfigurationSettings.AppSettings["ConnectionString"];

System.Data.IDbConnection dbConnection = new
System.Data.OleDb.OleDbConnection(connectionString);

7. Add a Page_Load() event handler to the page, just below the hashtable declaration:

public void Page_Load(object sender, EventArgs e)
{
DateList = new System.Collections.Hashtable();

// we need to run this each time the page is loaded, so that
// after a date is selected and the page is posted back, the
// active dates will still be highlighted.
System.Data.IDataReader DateReader = Dates();

while (DateReader.Read())
{
DateList[DateReader["Date"]] = DateReader["Date"];

}
DateReader.Close();

}

8. Finally, add code to the DayRender() event handler that checks if a match has been scheduled
for a specific day and highlights it in such a case:

public void EventCalendar_DayRender(object sender, DayRenderEventArgs e)
{
if (DateList[e.Day.Date] != null)
{
e.Cell.Style.Add("font-weight", "bold");
e.Cell.Style.Add("font-size", "larger");

357

ASP.NET Server Controls

e.Cell.Style.Add("border", "3 dotted darkred");
e.Cell.Style.Add("background", "#f0f0f0");

}
else
{
e.Cell.Style.Add("font-weight", "lighter");
e.Cell.Style.Add("color", "DimGray");

}
}

9. Run the page. You should see the screen shown in Figure 10-29:

Figure 10-29

How It Works
The Calendar control is one of the most complex controls in the ASP.NET toolbox, and without writing
too much code, we've managed to get the calendar to highlight dates that are stored in a database! Let's
take a look at how we did this, and consider how this code can be improved.

First, we added a Calendar control to our page by simply dragging it onto the page and then wired it
up to an event handler:

<asp:Calendar id="EventCalendar" runat="server"
OnDayRender="EventCalendar_DayRender"></asp:Calendar>

358

Chapter 10

The OnDayRender property ensures that when each day is rendered in the calendar, the event handler is
fired. This means that we can test each date as it is rendered, and compare it with the dates stored in the
database. Let's take a look at the event handler:

public void EventCalendar_DayRender(object sender, DayRenderEventArgs e)
{
if (DateList[e.Day.Date] != null)
{

This is where we check whether the date being rendered (e.day.date) matches a date in the DateList
hashtable that is declared at the top of the page.

e.Cell.Style.Add("font-weight", "bold");
e.Cell.Style.Add("font-size", "larger");
e.Cell.Style.Add("border", "3 dotted darkred");
e.Cell.Style.Add("background", "#f0f0f0");

}

If a matching date is found, some formatting is added to the cell as shown in the preceding code. We
make the date slightly larger, bold, and add a border and background shading.

However, if the date being rendered doesn't match, we apply different formatting as follows:

else
{
e.Cell.Style.Add("font-weight", "lighter");
e.Cell.Style.Add("color", "DimGray");

}
}

At the top of the page, as mentioned earlier, is the hashtable declaration:

System.Collections.Hashtable DateList;

Adding this to the top of the page implies that all methods in the code have access to the data stored in
the hashtable for as long as the page exists.

public void Page_Load(object sender, EventArgs e)
{
DateList = new System.Collections.Hashtable();

// we need to run this each time the page is loaded, so that
// after a date is selected and the page is posted back, the
// active dates will still be highlighted.
System.Data.IDataReader DateReader = Dates();

The first part of the Page_Load() method is where we create a new DataReader using the Dates()
function that is built using the wizard. We can then loop through this data, and store key and value pairs
in the Hashtable. In this case, we can store just the date information in both the key and the value parts
of the Hashtable:

while (DateReader.Read())

359

ASP.NET Server Controls

{
DateList[DateReader["Date"]] = DateReader["Date"];

}
DateReader.Close();

}

As the comment in the code states, we need to run this code each time the page is loaded, because the
values in the Hashtable do not persist between postbacks. The problem with this method is that every
time the page is loaded, we have to go back to the database to get the same data over and over again,
which isn't very efficient! In the next chapter, we'll look at a better way to store this data, when we
introduce the Cache object.

The function that retrieves the data from the database is really quite simple and looks very similar to the
code we've seen previously – let's just recap the SQL that was generated to get the data we're interested
in:

string queryString = "SELECT [Games].[Date], [Games].[GameID] FROM [Games]";

In the final example of this chapter, we'll extend the calendar example so that the details of the match are
displayed whenever the selected date corresponds to a match day.

Try It Out Wrox United – Displaying Fixture Details
In this example, we need to respond to a different type of event to display the details of a match. The
Calendar control has many different events that can be handled, and the one we need to handle in this
example is the SelectionChanged() event, which fires whenever a date is selected. The user should be
able to click on a highlighted date in the calendar and view the details of any matches scheduled for that
day. Clicking on a different date will cause the SelectionChanged() event to fire, which we can handle
and add code to display the data for the selected day.

1. Let's start by adding some more controls to the page for displaying the results. Start by adding a
paragraph and an ASP.NET Panel control. Set the Panel ID to pnlFixtureDetails, and its
Visible property to false:

<asp:Calendar id="EventCalendar" runat="server"
OnDayRender="EventCalendar_DayRender"></asp:Calendar>

<p>
<asp:Panel id="pnlFixtureDetails" runat="server" visible="false">
</asp:Panel>

</p>

2. Inside the Panel control, add the following Repeater control:

<asp:Repeater id="MatchesByDateList" runat="server">
<headertemplate>
Date:

<%# EventCalendar.SelectedDate.ToShortDateString() %>

</headertemplate>

360

Chapter 10

<itemtemplate>
Wrox Team

<%# DataBinder.Eval(Container.DataItem, "TeamName") %>

Opposing Team

<%# DataBinder.Eval(Container.DataItem, "OpponentName") %>

Venue

<%# Venue((string)DataBinder.Eval(Container.DataItem, "OpponentLocation"),
(int)DataBinder.Eval(Container.DataItem, "Location")) %>

</itemtemplate>
<separatortemplate>
<hr color="#b0c4de" width="200" />

</separatortemplate>
</asp:Repeater>

We will bind this control to some data to display it on the page. As there could be more than one
match on a certain day, we need to use a repeater control to display all the matches on that day.
One last item to note at this stage is the last span in the ItemTemplate:

<%# Venue((string)DataBinder.Eval(Container.DataItem, "OpponentLocation"),

(int)DataBinder.Eval(Container.DataItem, "Location")) %>

Another piece of code needs to be added to render an appropriate value for the match venue.
We'll add a venue function in just a moment, and we'll examine why we need this in the How It
Works section.

3. While you're in the HTML view, modify the Calendar control to add an event handler for the
SelectionChanged() event:

<asp:Calendar id="EventCalendar" runat="server"
OnDayRender="EventCalendar_DayRender"
OnSelectionChanged="EventCalendar_SelectionChanged">

</asp:Calendar>

4. Add the following event handler to the page:

public void EventCalendar_SelectionChanged(object sender, EventArgs e)
{
if (DateList[EventCalendar.SelectedDate] != null)
{
MatchesByDateList.DataSource = GamesByDate(EventCalendar.SelectedDate);
pnlFixtureDetails.Visible = true;
MatchesByDateList.DataBind();

}
else
{

361

ASP.NET Server Controls

pnlFixtureDetails.Visible = false;
}

}

5. Add the Venue() function:

public string Venue(string OpponentLocation, int MatchVenue)
{
if (MatchVenue == 1)
{
// match is at home
return "Wroxville";

}
else
{
return OpponentLocation;

}
}

6. Finally, we need to add a function that gets the data that we're interested in. We need to display:

1. The name of the team (the TeamName field from the Teams table)

2. The name of the opposing side (the OpponentName field from the Opponents table)

3. The location of the game (the Location field from the Games table)

4. The home location of the opposing team (the OpponentLocation from the Opponents
table)

We also need to add some WHERE clauses to link together the related tables, so select the WHERE
clause and add the following relationships:

1. OpponentID from the Opponents table is equal to the OpposingTeam field in the Games
table

2. TeamID from the Teams table is equal to the WroxTeam field in the Games table

3. Date from the Games table is equal to a parameter that we input called @Date

Save the method as GamesByDate(), and have it return another DataReader object. If it all
goes according to plan, you will end up with the following code:

System.Data.IDataReader GamesByDate(System.DateTime date)
{
string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; Ole DB

Services=-4; Data Source=C:\\BegASPNET11\\" +
"WroxUnited\\Database\\WroxUnited.mdb";
System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

string queryString =
@"SELECT [Teams].[TeamName], [Opponents].[OpponentName], " +

362

Chapter 10

"[Games].[Location], [Opponents].[OpponentLocation] " +
"FROM [Teams], [Opponents], [Games] " +
"WHERE (([Opponents].[OpponentID] = [Games].[OpposingTeam]) " +
"AND ([Teams].[TeamID] = [Games].[WroxTeam]) " +
"AND ([Games].[Date] = @Date))";

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDataParameter dbParam_date =
new System.Data.OleDb.OleDbParameter();

dbParam_date.ParameterName = "@Date";
dbParam_date.Value = date;
dbParam_date.DbType = System.Data.DbType.DateTime;
dbCommand.Parameters.Add(dbParam_date);

dbConnection.Open();
System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;
}

7. Change this code to use the central connection string as follows:

System.Data.IDataReader GamesByDate1(System.DateTime date)

{
string connectionString =
ConfigurationSettings.AppSettings["ConnectionString"];

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

8. Run the page and take a look at the results; they should be as seen in to Figure 10-30:

363

ASP.NET Server Controls

Figure 10-30

How It Works
We've added another panel to the page to display details of matches on a specific day. We first added the
Panel control itself, and then started to build up another Repeater control:

<asp:Panel id="pnlFixtureDetails" runat="server" visible="false">
<asp:Repeater id="MatchesByDateList" runat="server">
<headertemplate>
Date:

<%# EventCalendar.SelectedDate.ToShortDateString() %>

</headertemplate>

To write out the selected date in the header of the control, we use the SelectedDate property of the
calendar, and write it out as a short date. After the header template comes the item template. Here, to
render the results, we add plain HTML tags as follows:

<itemtemplate>
Wrox Team

<%# DataBinder.Eval(Container.DataItem, "TeamName") %>

364

Chapter 10

Notice how the text within the span contains a data binding expression that takes the TeamName column
from the data source and places it as text within the control.

We repeat the process of building up the template for the rest of the columns:

Opposing Team

<%# DataBinder.Eval(Container.DataItem, "OpponentName") %>

Venue

<%# Venue((string)DataBinder.Eval(Container.DataItem, "OpponentLocation"),

(int)DataBinder.Eval(Container.DataItem, "Location")) %>

In the final item in the list, we call the Venue() function that we declared in our code, which displays
text detailing the location of the game (depending on whether it's a home or away match). We pass two
parameters into the function – the location of the opponent's pitch and the location flag from the Games
table that states whether the game is at home (Wrox location) or away (opponent's location).

Finally, after finishing with the items in the Repeater, we add a SeparatorTemplate:

</itemtemplate>
<separatortemplate>
<hr color="#b0c4de" width="200" />

</separatortemplate>
</asp:Repeater>

</asp:Panel>

Let's head back to the Venue() function and look at how it works:

public string Venue(string OpponentLocation, int MatchVenue)
{

The function takes two input parameters – the location of the opposing team's pitch and the flag that
states whether the match is at home or away. It returns a string that writes out either the name of the
home pitch, or the name of the opposing teams pitch:

if (MatchVenue == 1)
{
// match is at home
return "Wroxville";

}
else
{
return OpponentLocation;

}
}

The rest of the code for this exercise deals with getting the match data from the database and displaying
it when an event happens. We want to display details when the currently selected date in the calendar
changes, so we added an OnSelectionChanged attribute to the Calendar control:

365

ASP.NET Server Controls

OnSelectionChanged="EventCalendar_SelectionChanged">

Then we added the event handler code:

public void EventCalendar_SelectionChanged(object sender, EventArgs e)
{
if (DateList[EventCalendar.SelectedDate] != null)
{
MatchesByDateList.DataSource = GamesByDate(EventCalendar.SelectedDate);
pnlFixtureDetails.Visible = true;
MatchesByDateList.DataBind();

}
else
{
pnlFixtureDetails.Visible = false;

}
}

In this event handler, we call the GamesByDate() function to retrieve match details by passing the
selected date as a parameter. This function will retrieve the information and the resulting DataReader
will be used as the data source for the MatchesByDateList repeater control. The DataReader in the
panel is data bound only if matches are scheduled for the selected date – if not, the panel is hidden.

The actual code that retrieved the data included quite a substantial SELECT query:

string queryString =
"SELECT [Teams].[TeamName], [Opponents].[OpponentName], " +
"[Games].[Location], [Opponents].[OpponentLocation] " +

"FROM [Teams], [Opponents], [Games] " +
"WHERE (([Opponents].[OpponentID] = [Games].[OpposingTeam]) " +
"AND ([Teams].[TeamID] = [Games].[WroxTeam]) " +
"AND ([Games].[Date] = @Date))";

Because we are gathering data from multiple tables, the query used is a bit long-winded. As the end
result, it retrieves the required data fields from three tables and displays them on the page. There are
two more types of controls that we need to look at in this chapter. First, we're going to look at the Web-
Matrix-specific controls, and produce another quick and simple ASP.NET page. In the second example,
we'll take a quick look at validation controls.

Web Matrix Controls
There are some extra controls that you can use when working with Web Matrix to develop Web
applications. They are designed to make life very simple when you want to create data-driven pages.

The MX DataGrid
This control is a lot like a normal DataGrid control, except that you can use it in conjunction with a Web
Matrix DataSource control. There are two data source controls, one for SQL Server connections and one
for Access connections. There is only one extra property on the MX DataGrid control – the
DataSourceControlID property. This is how you tell the MX grid to get its data from the appropriate
data source control.

366

Chapter 10

The Data Source Controls
These controls have three simple properties:

❑ ConnectionString: The string for connecting to the database

❑ SelectCommand: The SQL used to get the data into the grid

❑ EnableViewState: To determine whether the data stored in the control has persisted between
postbacks

Let's see a quick example of this in action.

Try It Out Wrox United – Players.aspx and the Web Matrix MX DataGrid
1. Create a new ASP.NET page and call it Players.aspx. In the Design view, add a Heading 1 that

displays the text Wrox United. Underneath this, add a paragraph underneath a Heading 2 that
displays the text Players. On a new line, switch back to the Normal paragraph style. Now we can
add some content. Then in in the Workspace | Data panel at the top left of the Web Matrix
environment, switch to Data view. Now drag the Players table onto the form, below the two
headings as shown in Figure 10-31:

Figure 10-31

367

ASP.NET Server Controls

You can actually run the page at this stage – with one click and drag operation, you can display
an entire table of data on the screen. If you run the page now, you will see the screen shown in
Figure 10-32:

Figure 10-32

Although this is very cool, we don't necessarily want just anyone to view the site login or
password details. Also, a status flag of 1, 2, or 3 doesn't mean much whereas Active, Injured, or
Retired would mean more to visitors. Let's amend the example slightly.

3. Switch to Design view in Web Matrix, select the DataSource control, and in the Properties panel
set the SelectCommand to the following:

SELECT PlayerID, PlayerName, Profile, JoinDate FROM [Players]

4. Select the MxDataGrid control and change the AutoGenerateFields property to false, then
back to true to refresh the grid. Run the page again to see the screen shown in Figure 10-33:

368

Chapter 10

Figure 10-33

How It Works
This simple example demonstrates how Web Matrix can make life easy for us! The results of this quick
and simple page aren't exactly brilliant, but the information we want to display is on the form with
minimal fuss. The MxDataGrid control can be customized to a great extent like the.NET DataGrid
control, so that you can better control how the data is rendered.

Let's take a quick look at the code that was generated for us:

<wmx:AccessDataSourceControl id="AccessDataSourceControl1"
runat="server"
ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=- 4;
Data Source=C:\BegASPNET\WroxUnited\Database\WroxUnited.mdb"
SelectCommand="SELECT PlayerID, PlayerName, Profile, JoinDate FROM

[Players]">
</wmx:AccessDataSourceControl>

The first control added to the page was the DataSourceControl that is either a
SQLDataSourceControl or an AccessDataSourceControl, depending on the database that you are
using. This control contains a connection string, and a SELECT statement to retrieve the data that we're
interested in. This control is accompanied by the MxDataGrid:

<wmx:MxDataGrid id="MxDataGrid1" runat="server" BorderStyle="None"
BorderWidth="1px" DataKeyField="PlayerID"
CellPadding="3" BackColor="White" AllowPaging="true"
DataMember="Players" AllowSorting="true"
BorderColor="#CCCCCC"

369

ASP.NET Server Controls

DataSourceControlID="AccessDataSourceControl1">
<SelectedItemStyle font-bold="true" forecolor="White"
backcolor="#669999">

</SelectedItemStyle>
<ItemStyle forecolor="#000066"></ItemStyle>
<FooterStyle forecolor="#000066" backcolor="White"></FooterStyle>
<HeaderStyle font-bold="true" forecolor="White"
backcolor="#006699"></HeaderStyle>

<PagerStyle horizontalalign="Center" forecolor="#000066"
backcolor="White" mode="NumericPages"></PagerStyle>

</wmx:MxDataGrid>

As you can see, this control contains templates just like any other repetitive data-bound control. In
addition, this grid has a few properties different from the DataGrid control:

❑ DataKeyField: The unique identifier for each row in the table

❑ DataMember: The name of the table you want to view

❑ DataSourceControlID: The name of the control that contains the data

Also included in the default implementation of this grid is a considerable amount of styling information
that you might want to remove. When it comes to styling a site, it makes sense to remove this
information to ensure that all pages follow the same style sheet.

To further improve this page, you could manually specify the columns that appear in the grid and add
formatting information for the JoinDate field. For example, you might want to remove the time portion
of the date.

To try this out, you can manually set the AutoGenerateFields property to false and then specify
each field individually using the Fields collection editor. You could also alter the code as follows:

<wmx:MxDataGrid id="MxDataGrid1" ...
AutoGenerateFields="false">
<SelectedItemStyle font-bold="true" forecolor="White"
backcolor="#669999"></SelectedItemStyle>

<ItemStyle forecolor="#000066"></ItemStyle>
<FooterStyle forecolor="#000066" backcolor="White"></FooterStyle>
<HeaderStyle font-bold="true" forecolor="White"
backcolor="#006699"></HeaderStyle>

<PagerStyle horizontalalign="Center" forecolor="#000066"
backcolor="White" mode="NumericPages"></PagerStyle>

<Fields>
<wmx:BoundField Visible="false" DataField="PlayerID">
</wmx:BoundField>
<wmx:BoundField DataField="PlayerName" HeaderText="Name">
</wmx:BoundField>
<wmx:BoundField DataField="Profile" HeaderText="Profile">
</wmx:BoundField>
<wmx:BoundField DataField="JoinDate" HeaderText="Join Date"
DataFormatString="{0:d}">

</wmx:BoundField>
</Fields>

370

Chapter 10

</wmx:MxDataGrid>

This will change the appearance of the page as shown in Figure 10-34:

Figure 10-34

If you want to use the centralized connection string, you could alter the code as follows:

<wmx:AccessDataSourceControl id="AccessDataSourceControl1" runat="server"
SelectCommand="SELECT PlayerID, PlayerName, Profile, JoinDate FROM [Players]"
ConnectionString='<%# ConfigurationSettings.AppSettings("ConnectionString")%>'
</wmx:AccessDataSourceControl>

For this code to work correctly, you need to call the DataBind() method of the page object – you can do
this by adding a simple Page_Load() method to your page as follows:

void Page_Load()
{
Page.DataBind();

}

Before we finish this section, flip back to Default.aspx and alter the following line of code as shown
here:

<asp:HyperLink id="lnkPlayers" runat="server"
NavigateUrl="Players.aspx">

Players
</asp:HyperLink>

With this code, we can now link to the Players.aspx page from the main front page of the site.

371

ASP.NET Server Controls

Let's move on to the final part of this chapter, where we take a brief look at validation controls.

Validation Controls
Validation controls are designed to help ensure that data entered into a form conforms to some specific
criteria. This reduces the chances of random gibberish being sent back to the server. Validation controls
also demonstrate how ASP.NET Web controls abstract common tasks. Without validation controls, we
would typically need to write our own client-side validation code (for example, client-side JavaScript) –
a time consuming task indeed!

By using validation controls within ASP.NET Web forms, our work is greatly simplified. Although
validation involves a bit of overhead and some thought (for instance, what type of validation control to
use and some knowledge of how to implement it), the benefits are that we end up with:

❑ Easier code base to maintain

❑ Better control over the user interface and the data that gets passed to our servers

❑ Better experience for our users or customers

For example, using these controls, you can ensure that a user registration form contains valid data in all
appropriate fields. This is done using the RequiredFieldValidator control before posting it to the
server. You can also verify that an email address is in a valid format.

The following is a complete list of validation controls that will give you an idea of what is possible:

Control Purpose

CompareValidator Compares a user's entry against a constant value
(less than, equal to, greater than, and so on). For
example, you can use this to check that a Password
and a Confirm Password textbox contain identical
data.

CustomValidator Checks the data entered by the user using validation
logic from a custom method that you write –
processed on the server or the client.

RangeValidator Checks that data entered by the user falls between
specified lower and upper boundaries. Checks for
ranges between pairs of numbers, alphabetic
characters, and dates. Boundaries can be expressed
as constants or as values derived from another
control.

372

Chapter 10

Let's take a quick look at how we can add validation controls to the site.

Try It Out Wrox United – Registering for Email Updates (Default.aspx)
We are going to add a textbox to the front page of the Web site to collect email addresses of fans who
may want to receive information about upcoming events or emails containing match reports. In this
example, we will simply add the textbox, a button for submitting the data, and some validation controls.
We won't store the email address in this part of the example, since we'll be coming back to this example
in the next chapter.

1. Start by re-opening Default.aspx. At the moment, we have code that displays a welcome
message:

<p>
Welcome to the Wrox United Website! Please select one of the following:

</p>

2. Change the following section of code as shown here:

<table width="800">
<tr>
<td width="580">
<h2>Welcome to the Wrox United Website! Please select one of the

following:
</h2>

</td>
<td width="220" border="1">
</td>

</tr>
</table>

3. Switch back to Design view and you will see the screen shown in Figure 10-35:

Control Purpose

RegularExpressionValidator Checks that the entry matches a pattern defined by a
regular expression. This type of validation allows
you to check for predictable sequences of characters,
such as those in social security numbers, e-mail
addresses, telephone numbers, postal codes, IP
addresses, and so on.

RequiredFieldValidator Ensures that the user does not skip an entry.

373

ASP.NET Server Controls

Figure 10-35

4. Drag a Label control into the second cell of the top table, then a TextBox control, a Button
control, and finally a RegularExpressionValidator control. Set their properties as follows:

Control Property Value

Label Id lblRegister

Text Register for email updates

TextBox Id txtEmailAddress

Button Id btnRegister

Text Register

Width 60

RegularExpressionValidator Id validEmail

ErrorMessage Please enter a valid email address

ControlToValidate txtEmailAddress

374

Chapter 10

Notice that when you set the ControlToValidate property of the
RegularExpressionValidator, the property box displays a combo box that lists all the
available controls that can be validated (in this case, the only control that can be validated by
this control is txtEmailAddress).

5. We need to enter a validation expression, or else, not much will happen when we run the page.
In the properties for the validEmail control, select the ValidationExpression property and
click the ... button in the box to go to the expression builder.

Select Internet E-mail Address from the list, as shown in Figure 10-36, and click OK:

Figure 10-36

You should now have the following code on your page:

<asp:Label id="lblRegister"
runat="server">Register for email updates</asp:Label>

<asp:TextBox id="txtEmailAddress" runat="server"></asp:TextBox>
<asp:Button id="btnRegister" runat="server" Text="Register"

Width="60px"></asp:Button>
<asp:RegularExpressionValidator id="validEmail" runat="server"

ErrorMessage="Please enter a valid email address"
ControlToValidate="txtEmailAddress"
ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

</asp:RegularExpressionValidator>

6. Run the page and try to enter different values into the textbox. You'll notice that if you enter
some text that is not a valid email address, an error message appears when you click the button
as shown in Figure 10-37. Also notice that the page doesn't reload when you click the button –
the error message is generated using client-side script!

375

ASP.NET Server Controls

Figure 10-37

Alternatively, if you enter a valid email address, you will notice that a postback occurs when
you click the button but no new information displays on the form. This is because we haven't
yet handled the button click event on the server.

How It Works
Once again, we managed to create quite an interesting result using minimal code. Let's look at the code
that was created when we added the validation control:

<asp:RegularExpressionValidator id="validEmail" runat="server"
ErrorMessage="Please enter a valid email address"

The first interesting property is the ErrorMessage property, which contains the text that is displayed if
the validation fails.

ControlToValidate="txtEmailAddress"

The ControlToValidate property is quite self-explanatory. Notice, that the only control we could
select in the Web Matrix Properties pane was the textbox. The textbox is the only control on the form that
allows free text input, so it is the only one that can possibly be validated by this control.

The final property contains the validation expression that we saw briefly when we were using the
expression browser. The RegularExpressionValidator control works by comparing text that has
been entered against this pattern. If it matches the rules specified by the pattern, validation is successful.
If the text does not match this pattern, validation will fail:

376

Chapter 10

ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

While a full explanation of regular expressions would take a long time, let's quickly look at what this
expression means:

❑ \w+ match one or more alphanumeric characters

❑ (...)* match zero or more instances of the contents of the brackets:

❑ [-+.] match a hyphen, a plus sign, or a period

❑ \w+ match one or more alphanumeric characters

❑ @ matches an @ sign

❑ \w+ match one or more alphanumeric characters

❑ (...)* match zero or more instances of the contents of the brackets:

❑ [-.] an instance of a hyphen or a period

❑ \w+ match one or more alphanumeric characters

❑ \. matches a period

❑ (...)* match zero or more instances of the contents of the brackets:

❑ [-.] an instance of a hyphen or a period

❑ \w+ match one or more alphanumeric characters

Ok, so no one said these things were going to be too easy! However, a lot of this expression is repeated,
and it means that all the following (and many more) are valid:

❑ me@here.com

❑ someone-else@somewhere.co.uk

❑ thing.2@elsewhere-thing.com

If you are a full time developer, it's definitely worth spending time looking at how
regular expressions work – they are extremely powerful and extremely useful. The
.NET Framework SDK includes information on all of the regular expression patterns
available to .NET developers.

377

ASP.NET Server Controls

Summary
In this chapter, we spent a fair bit of time looking at different types of controls and how they work.
We've started putting together a small Web site using these controls, and we'll be building on this Web
site in the next few chapters. Let's take a look at what we've achieved in this chapter.

❑ We looked at what a Web control is, and we discussed the relative merits of both Web controls
and HTML controls (HTML tags with a runat="server" attribute).

❑ We saw how a page is rendered and looked at when (and how) events are handled.

❑ We looked at some simple intrinsic controls, particularly the Hyperlink control, which we used
to add some links to the Wrox United application. We returned to this control twice to add links
to the Players and Teams pages.

❑ We used a DataList control and a Repeater control to display information about teams, and
we covered Event Bubbling and saw how to handle events raised by controls that live within
other controls.

❑ We used the Calendar control to display date information on our pages and learned about two
of the events it raises that we can handle, thus providing a customized appearance and
behavior.

❑ We looked at validation controls, particularly the RegularExpressionValidator control.
We'll be learning more about these controls in the following chapters.

We've covered a lot of information, but given that ASP.NET is designed to work around controls and
events, it's understandable that there's still a lot to discuss! The in-built-in controls provide us with a lot
of rich functionality that we can use in our sites to display data, arrange information, and make the site
user friendly.

In the next chapter, we'll look at different methods of storing information outside the scope of a page
(including that hashtable of dates from the Calendar control that we saw earlier). We'll also look at
adding other validation controls, as well as extending the Default.aspx page to actually store an email
address when the Register button is clicked.

Exercises
1. Consider the use of an HTML tag with runat="server" in the Wrox United application

instead of one of the existing Web controls and explain why the HTML control is able to achieve
the same result as the Web control.

2. Add some code to Default.aspx that makes sure that only match days (days when there is a
match scheduled) are selectable in the calendar. You may find that the Day.IsSelectable
property comes in handy here.

3. Add another event handler to the Teams.aspx page that reacts to the selection of the name of a
player and takes the reader to the Players.aspx page.

378

Chapter 10

4. Have a go at customizing Players.aspx and change the field to displays the name of the
player as a hyperlink. When clicked, this hyperlink should reveal a panel lower in the page that
lists the team or teams that the selected player is a member of. You will find that the Fields
editor of the MxDataGrid is very useful for this (select the Fields property builder when in
Design view). You need to ensure that the clicking of the player name is handled correctly. You
also need to add another method to extract team information (you will find that the
DataReader function that returned the list of teams from the Teams.aspx page is useful here).

379

ASP.NET Server Controls

11
Users and Applications

Moving from a series of Web pages connected together by links to a fully functional Web
application is an essential step when developing a site. Once you can share information across all
the pages in a site, the term application really starts to take hold. From the users' perspective,
whenever they log in to a site, they receive some amount of personalization in the pages they
view. From a developer's point of view, once users log in, certain details related to them can be
tracked as they navigate the site. All this is made possible using centralized configuration settings
with reusable code, reducing development time and increasing reusability.

This chapter will look at tracking users across pages using sessions, and will start to add some
application-specific configuration. We will work with the Wrox United application started in the
previous chapter and add extra functionality and features to demonstrate key concepts.

ASP.NET stores information about a user session in a Session object. From the moment the user
first starts to browse a site, you can access any code with the Session scope and use this, for
example, to store information about the currently logged-in user. You can also add code that will
remain in memory as long as the application is running. This could contain some in-memory data
objects that are accessed frequently but don't often change. This technique protects the database
from repeat requests for the same data, thereby improving the performance of the application.

Another means of remembering information is using cookies – small text files that are created and
stored on the client computer (assuming cookies are enabled on the client). A cookie can store
information such as the number of times that a user has visited a site, whether the user has
registered to receive email notifications, and so on.You can also add Application or Session scope
configuration information that can store global settings, such as the length of a session until it
expires or the connection string to a database. This information is stored in the web.config file. In
addition, the application's security model can be configured using the information stored in this
file.

This chapter will cover:

❑ Using a cookie to store user-related information

❑ Remembering information relating to user actions as they browse the Web site

❑ Storing data in a variable that is accessible by any piece of code in the Web application

❑ Storing commonly used data in memory to improve application performance

❑ Writing code that will respond to application or session events

❑ Adding some skinning functionality to the Wrox United site by using state management
techniques discussed in the chapter

Remembering Information in a Web
Application

Whenever you browse to a Web page, you establish a connection with the Web server for a brief moment
while the page is sent to your browser. After this, the Web server forgets all about you. This is because
HTTP, the protocol used for surfing the Web, is a stateless protocol. A stateless protocol is used where it is
impractical to maintain a constant connection between the server and the client. Messages are sent back
and forth using a request-response mechanism. The client makes requests and the server sends
responses. After each response is sent by the server, the connection is dropped.

Unless some external mechanism is in place to associate a client with a known list of clients stored on the
server, proactive client-specific communication from the server is not possible. One of the reasons for
which HTTP is stateless is that it would be impossible for a Web server to remember everything about
every single visitor to the site – imagine how the BBC news Web site would cope with remembering the
details of every one of the millions of readers that visit to catch up with the headlines! Statelessness
essentially means that you cannot log in to a site using only HTTP. Thankfully, there are tools available
that make it possible for the Web server to remember information.

When you browse any Web site, you leave a trail of information with the Web server about the pages
you are viewing and where you are connecting from. This information, combined with some code on the
server (and some help from the client), enables Web servers to remember visitor information. What Web
servers do with that data depends on how you configure them, but as a user, you are most likely to see
the result of this process in the form of a personalized browsing experience. For example, you can buy
stuff from online stores or log in to community Web sites and participate in online forums.
Personalization comes as a result of being able to remember user information and making it useful.

It's not just information about users that needs to be stored – often you might need to access common
code that uses data stored in memory from every page on the site. This data could be any kind of object,
from a simple string variable to a DataSet. Because of the stateless mechanism used to serve pages to
browsers (the HTTP protocol), pages have a limited lifespan. Thus, persisting information is a problem
you are likely to encounter as you develop ASP.NET sites. Learning to overcome the stateless nature of
HTTP is important, and not very difficult, as you'll see when you work through examples in this chapter.

There are four different mechanisms for remembering information:

❑ Cookies: Identifying previous visitors to a site by storing data on the client machine

❑ Sessions: Remembering information for the duration that a user browses a site

❑ Applications: Remembering information that exists for as long as the application runs

❑ Caching: Storing data for as long as is necessary to improve performance

382

Chapter 11

Each of these mechanisms fulfills a different purpose, so it is important to understand which mechanism
should be used to remember information and not just how each mechanism works. Let's start the
discussion by looking at how cookies work.

Cookies
Cookies are used throughout the Web to store small pieces of information on the client machine. They
are small text files that usually store persistent data, which is useful whenever you revisit a site. This can
be data such as user preferences and login tokens, whether a user has voted in an online poll, details of
the last time you browsed a site, and so on. In short, cookies contain dat that allows a Web server to
identify users based on their visiting history. Cookies are designed so that only the site that created them
can read them. If you look at the <drive>\Documents and Settings\<UserName>\Cookies folder on
your hard drive, you'll notice that many cookies reside on your system. Each of them has some kind of
identifier in its name that indicates the site that created them.Figure 11-1 shows that I've visited the BBC,
Computer Manuals, and Firebox.com sites. You can open a cookie using MS Notepad. The information
contained in any of these cookies, usually some text, will give you clues about the site that created it.

Figure 11-1

Taking the BBC news site as an example, I've in the past checked a button to say that I'm in the UK (so I
get the UK front page by default whenI visit the site). I've also specified that when I view the
http://www.bbc.co.uk/weather site, my hometown be set to Birmingham, UK. If I look inside the BBC
cookie, I can see bits and pieces of text (among the other text) that look as if they correspond to those
choices:

... BBCNewsAudienceDomestic ... BBCWEACITYuk1045 ...

383

Users and Applications

If I change the default page preference to BBC News Audience International and the hometown to
Nottingham, the relevant information in the cookie changes as follows:

... BBCNewsAudienceInternational ... BBCWEACITYuk2803 ...

By modifying preferences on the Web site, a file on my hard drive has been updated. This means that
when I next visit the site, it will remember my preferences. Let's look at how this happens.

How Do Cookies Work?
Cookies are linked to the request-response mechanism of HTTP and are passed back and forth along
with other data between the client and the server. Let's look at what happens where a site uses cookies to
remember whether a user wants a certain popup when they visit a site.In Figure 11-2, Stage 1 is about a
user visiting a page on the site. Stage 2 is when the contents of that site are sent to the browser. These
contents happen to include a popup. At Stage 3, anyone browsing the site could check a box on a form
that states, "Do not show the advert popup again." When they click a button to submit their request, they
send data back to the server. Finally, the server sends a small cookie to the client machine. Figure 11-3
represents what happens when the user requests the page again.:

Figure 11-2

Figure 11-3

384

Chapter 11

1. Client requests the page, knowing that it has
visited the site before. Therefore, it sends the
cookie that says, "Please show me the site
without the annoying popup!" along with the
request.

2. Server responds: "OK, here is the front page
of the site, without the popup."

1. Client requests a page.

2. Server responds, "Here's your page, and
here's a popup you might be interested in."

3. Client requests, "Please don't show me
the popup again."

4. Server responds: "OK, here's a small
cookie that will make sure you don't see it
again."

Client

Client Server

Server

This time round, the user won't see the popup ad when browsing the site. This is because the server will
have read the cookie that the client sends across while requesting the page and know that the user
expressed a preference not to see the popup. The client sends this cookie each time the user visits the
site.

At this point, you need to understand that the client cannot be trusted. The client may not send the
cookie, send a dodgy cookie, or a cookie that has prematurely expired. Different Internet settings and
browsers mean that you can't always rely on cookies. If they were reliable, you could store all kinds of
login data in a cookie. However, in practice, you should treat the information contained within them as
'it would be nice if you could remember this.' For secure and reliable storage of information, use cookies
in combination with features such as sessions and data stored in a database.

When you save a cookie onto the client machine, you can specify how long it should exist. Cookies can
persist indefinitely, or they can be set to expire after a certain time. In the popup example, you could
specify that the cookie will expire after a month, by which time a new advert will have appeared. The
user will have to recreate the cookie if they wanted to block the popup.

Note that users also can manually delete cookies from their system. If you have Internet Explorer, you
can delete all the cookies on your machine by selecting Tools | Internet Option from the main IE window,
and then clicking Delete Cookies, as shown in Figure 11-4:

Figure 11-4

Of course, if I do this, I would need to tell the BBC site again that I wanted the UK version of the site and
weather details for Birmingham. Moreover, you will find you have to log on to all the sites where you
have selected the Remember my details option.

385

Users and Applications

As the earlier lifecycle diagrams hinted, you can set the cookie state using the Response object and read
the existing cookie state using the Request object. It's quite simple to do this, so let's look at an example
and see these objects working their magic!

Try It Out Using Cookies
In this example, we're going to add to the Wrox United application once again. In the previous chapter,
we added a box that enabled the user to register for email updates about changes made to the
Default.aspx page. However, this page didn't do anything with this information other than validate it.
Let's get this working now.

1. Open up Default.aspx in Web Matrix and you will see the page in its current state, as shown
in Figure 11-5:

Figure 11-5

In the WroxUnited database there is a simple table called Fans that will contain email
addresses of fans of the team. When the Register button is clicked, we need to do three things:

❑ Check that the address hasn't been added to the database. If it has, create a cookie and
update the display to indicate that the user has registered for updates.

386

Chapter 11

❑ If the address hasn't already been added, add it to the database, create a cookie, and
indicate that the user has been registered for updates.

❑ When the page is loaded, if the client has a cookie indicating that they have already
registered for updates, display a message confirming this.

2. Switch to Code view – it's time to add some database code to check whether a user has
registered already or not. Drag a SELECT Data Method wizard onto the page and select the
FanEmail field from the Fans table where the FanEmail field matches the @FanEmail
parameter. Call this method CheckFanEmailAddresses and save it as a DataReader. Pass this
into the function:

System.Data.IDataReader CheckFanEmailAddresses(string fanEmail)
{
string connectionString =
"Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=-4; " +
"Data Source=C:\\BegASPNET11\\WroxUnited\\Database\\WroxUnited.mdb";
System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

string queryString = "SELECT [Fans].[FanEmail] FROM [Fans]" +
" WHERE ([Fans].[FanEmail] = @FanEmail)";

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDataParameter dbParam_fanEmail =
new System.Data.OleDb.OleDbParameter();

dbParam_fanEmail.ParameterName = "@FanEmail";
dbParam_fanEmail.Value = fanEmail;
dbParam_fanEmail.DbType = System.Data.DbType.String;
dbCommand.Parameters.Add(dbParam_fanEmail);

dbConnection.Open();
System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;
}

This code needs to be altered slightly to fit our needs. Firstly, we need to change the connection
string to use the database connection details stored in the web.config file. Then we need to
find out if a user has already registered, so let's modify this code to retrieve a count of the
number of times that a particular email address appears in the database. If all goes well, this
should never exceed 1. We can then use this value to return a Boolean true (if the user already
exists) or false.

3. To alter this code, change the following highlighted lines:

bool CheckFanEmailAddresses(string fanEmail)
{
string connectionString =

ConfigurationSettings.AppSettings["ConnectionString"];
System.Data.IDbConnection dbConnection =

387

Users and Applications

new System.Data.OleDb.OleDbConnection(connectionString);
string queryString = "SELECT COUNT([Fans].[FanEmail]) FROM [Fans]" +

"WHERE ([Fans].[FanEmail] = @FanEmail)";
System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDataParameter dbParam_fanEmail =
new System.Data.OleDb.OleDbParameter();

dbParam_fanEmail.ParameterName = "@FanEmail";
dbParam_fanEmail.Value = fanEmail;
dbParam_fanEmail.DbType = System.Data.DbType.String;
dbCommand.Parameters.Add(dbParam_fanEmail);
int result = 0;
dbConnection.Open();
try
{
result = (int)dbCommand.ExecuteScalar();

}
finally
{
dbConnection.Close();

}

if (result > 0)
{
return true;

}
else
{
return false;

}
}

Notice the changes made to the return type of the function, the SQL, and the method used to
query the data source. This will be discussed in a moment.

4. Switch back to the Design view and double-click the Register button at the top left to create an
event handler for the Click() event of the button. Add the following code:

void btnRegister_Click(object sender, EventArgs e)
{
string FanEmail = txtEmailAddress.Text;

//Check whether the email address is already registered
//If not, we need to register it by calling the AddNewFanEmail() method
if (!CheckFanEmailAddresses(FanEmail))
{

AddNewFanEmail(FanEmail);
}

// Email has been registered, so update display and attempt write to cookie
txtEmailAddress.Visible = false;
lblRegister.Text = "You have successfully registered for email updates";
btnRegister.Visible = false;

388

Chapter 11

HttpCookie EmailRegisterCookie = new HttpCookie("EmailRegister");
EmailRegisterCookie.Value = FanEmail;
EmailRegisterCookie.Expires = DateTime.Now.AddSeconds(20);
Response.Cookies.Add(EmailRegisterCookie);

}

Here, make note of the call to a function called AddNewFanEmail() – let's create this now.

5. Drag an Insert Data Method code wizard onto the page, select the Fans table, click Next, and save
the method as AddNewFanEmail().

Let's take a look at the code:

int AddNewFanEmail (string fanEmail)
{
string connectionString =
"Provider=Microsoft.Jet.OLEDB.4.0;Ole DB Services=-4;" +
"Data Source=C:\\BegASPNET11\\WroxUnited\\Database\\WroxUnited.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

string queryString = "INSERT INTO [Fans] ([FanEmail]) VALUES (@FanEmail)";
System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDataParameter dbParam_fanEmail =
new System.Data.OleDb.OleDbParameter();

dbParam_fanEmail.ParameterName = "@FanEmail";
dbParam_fanEmail.Value = fanEmail;
dbParam_fanEmail.DbType = System.Data.DbType.String;
dbCommand.Parameters.Add(dbParam_fanEmail);

int rowsAffected = 0;
dbConnection.Open();
try
{
rowsAffected = dbCommand.ExecuteNonQuery();

}
finally
{
dbConnection.Close();

}
return rowsAffected;

}

6. Change the connection string to use the central connection string:

Don’t check the box next to the FanEmail field when you are building this method.
The correct parameter information will be created automatically if you totally ignore
the field. All you need to do is select the Fans table, click Next, and save the method.

389

Users and Applications

int AddNewFanEmail (string fanEmail)
{
string connectionString =
ConfigurationSettings.AppSettings["ConnectionString"];
System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

7. Finally, check whether a cookie is present when the page is loaded, so that you can change the
display if the user has already registered. Add the following to the Page_Load() method:

if (Request.Cookies["EmailRegister"] == null)
{
txtEmailAddress.Visible = false;
lblRegister.Text = "You have registered for email updates";
btnRegister.Visible = false;

}

Run the page now, enter your email ID, and click Register. The message will change (as long as
you enter a valid email address) to indicate that you've registered, as shown in Figure 11-6.

Figure 11-6

Note that the expiration time on the cookie was set to 20 seconds, which resulted in your email
address not being remembered for long. Quickly close your browser and reopen the page. You
should see the message shown in Figure 11-7:

390

Chapter 11

Figure 11-7

If you keep clicking Refresh after every 20 seconds, the textbox and button will reappear along
with a message asking you to register.

How It Works
Let's start the discussion by looking directly at what happens when a user clicks the Register button. This
is when the cookie is created on the client:

void btnRegister_Click(object sender, EventArgs e)
{
string FanEmail = txtEmailAddress.Text;

//Check whether the email address is already registered
//If not, we need to register it by calling the AddNewFanEmail() method
if (!CheckFanEmailAddresses(FanEmail))
{
AddNewFanEmail(FanEmail);

}

If the email address is already stored in the database, the CheckFanEmailAddresses() method will
return true. However, if it returns false, the email address is new and needs to be added to the
database.

Once the email address has been stored in the database, we can go ahead and change the displayed text
on the screen:

// Email has been registered, so update the display and attempt write to a
cookie
txtEmailAddress.Visible = false;

391

Users and Applications

lblRegister.Text = "You have successfully registered for email updates";
btnRegister.Visible = false;

Next we attempt to add a cookie at the client end:

HttpCookie EmailRegisterCookie = new HttpCookie("EmailRegister");
EmailRegisterCookie.Value = FanEmail;
EmailRegisterCookie.Expires = DateTime.Now.AddSeconds(20);
Response.Cookies.Add(EmailRegisterCookie);

The first line of code creates a new instance of the HttpCookie class and names it EmailRegister.
Once the cookie has been successfully created on the client, you can refer to the cookie by name later on
in the code. The value of the cookie was set to be the email address entered into the textbox, and the
Expires property also was set. In this example, the cookie was set to expire 20 seconds from the time at
which it was created, which isn't practical in a real world application! The Expires property can be any
DateTime value, so you could, for example, change this to AddMonths(6) so that the cookie persists for
6 months.

The DateTime.Now property is the easiest way to get the current date and time on the server, so by
calling the AddSeconds() method, we can easily specify that a cookie will expire after a set amount of
time from when it was created. For example, you may want to display this box every 6 months to fans in
case their email address has changed, to ensure that they are registered correctly. Alternatively, you can
hard-code a date (for example, if you wanted to create a monthly special).

We also added two data methods to check the status of the cookie. The first method was used to add a
new email address to the database:

string queryString = "INSERT INTO [Fans] ([FanEmail]) VALUES (@FanEmail)";

The second data method queried the database to check whether the email address exists in the database.
Let's look at the code:

bool CheckFanEmailAddresses(string fanEmail)
{

The first thing altered was the function return type. After all, we don't want a DataReader in this case –
we want a simple yes or no answer to whether the email address exists already, so the return type is set
to return a Boolean true or false.

The next change is to the query used:

string queryString = "SELECT COUNT([Fans].[FanEmail]) FROM [Fans]" +
" WHERE ([Fans].[FanEmail] = @FanEmail)";

The COUNT statement literally counts the number of results matched by the SELECT statement. You
should never end up with the result of a count being more than one because this check is performed
every time we attempt to add a new email address. To be on the safe side, return true to the calling code
if you retrieve any rows at all:

int result = 0;
dbConnection.Open();

392

Chapter 11

try
{
result = (int)dbCommand.ExecuteScalar();

}
finally
{
dbConnection.Close();

}

if (result > 0)
{
return true;

}
else
{
return false;

}

Hee, we added a quick test to the Page_Load() event handler to see if a cookie exists on the client:

if (Request.Cookies["EmailRegister"] == null)
{

The Request object is used to read the cookie; you can refer to a cookie by the name given to it earlier. If
the cookie exists, this will return true and you can hide the unnecessary registration functionality:

txtEmailAddress.Visible = false;
lblRegister.Text = "You have registered for email updates";
btnRegister.Visible = false;

}

OK, so we've learned a lot about cookies and seen how to use cookies in a site. To recap, the general
rules of thumb for using cookies are:

❑ Use them to store small pieces of data that aren't crucial to your application.

❑ Use them wisely – don't be tempted to store large objects in a cookie, because every request a
client makes to your site will be accompanied by the cookie data.

❑ Don't rely on them for storing secure user details; instead, keep them simple to help with
preliminary identification. The Amazon Web site is a good example of how to use cookies. It
uses cookies to remember information about you when you visit the site, but actually to buy
stuff, you need to retype your password details. These are passed to secure servers that
authenticate you.

Sessions
A session can be thought of as the total amount of time you spend browsing a site. For example, in an
online store, you first visit the site, log on, buy some stuff, and then leave. A user session pertains to the
interactions that occur when a single user browses a site. Information in a session is accessible only for
as long as the session is active. You could, for example, store the name of the currently logged-in user in
the Session object specific to that user, and any of the pages in the site could then take this value and
display it. Sessions are useful for features such as shopping baskets or any application that stores

393

Users and Applications

information on whether or not a user is logged in. They are tied in to a specific instance of a browser, so
another instance of the browser on the same machine would not be able to access the same data.

It's a bit tricky to evaluate when a session ends, since when a browser closes, this information is not
usually sent to the server (imagine having to wait for a 'close' signal to be sent whenever you closed a
Web page!) To solve this problem, you can specify a timeout value for sessions. The default value is
usually 20 minutes, which means that the session ends after 20 minutes of inactivity. This value can be
changed; for example, if you created a financial Web site, you may want sessions to end after five
minutes of inactivity. This minimizes the chances of sensitive information leaking even if a user forgets
to log out or leaves the browser window open after a banking transaction.

How Do Sessions Work?
When a session starts, you can store data that will exist during that session. This could be simple text
information about a user or an object such as an XML file. A 120-bit session identifier identifies each
session. This session identifier is passed between ASP.NET and the client either by using cookies or by
placing the identifier in the URL of the page (a technique that can be used for clients that have cookies
turned off). Let's look at a session identifier – the following is an example of embedding a session
identifier in the URL of a page:

http://www.mysite.com/(vgjgiz45ib0kqe554jvqxw2b)/Default.aspx

The extra data in the URL is only the session identifier – the actual data stored in the session is stored on
the server. As a session can hold a variety of objects (a string, an ArrayList, even a DataSet object),
only the identifier is passed between the client and the server. Figure 11-8 shows how sessions work:

Figure 11-8

394

Chapter 11

1. Client requests a page

2. Server responds, "Here's your page."

3. Client requests,"Log me in and
remember me - I want to buy some
thing."

4. Server responds, "Welcome to the site,
Chris here's your shopping basket."

5. Client requests,"I want to buy this
book."
6. Server responds, "Sure, Chris, I've got
some details here from the database,
including your address and credit card
details."

7. Client requests,"Details look fine, I
want to buy that book now."

8. Server responds, "No problem, Chris.
You'll have your book withen the week."

Active Session

Client

Server

After the user logs on to an online store, the server knows who the user is and can relate each request
from that user to the details specific to the user that are stored in the session. Therefore, the server can
maintain a shopping basket and checkout functionality without asking the user to log back in with every
request. Once the user has finished browsing the site, the server will eventually destroy the information
stored in session memory and free up resources that it might need for other clients.

ASP.NET, by default, stores session information in the memory and in the same process as ASP.NET.
This means that if the application crashes, session data will be lost. However, you do have the option to
store session state information in a different process, on a different machine, or even in a database. This
flexibility allows you to make your applications more robust in large-scale deployment scenarios.

The Session object has quite a few methods that you can use:

❑ Session.Add: Adds a new item to the Session object

❑ Session.Remove: Removes a named item from the session

❑ Session.Clear: Clears all values from the session but leaves the session active

❑ Session.Abandon: Ends the current session

Perhaps the simplest way to add data to a session is to use the following syntax:

Session["ItemName"] = Contents

After creating a new item in the session, you can use ItemName to refer to the contents of its
corresponding Session object. The item is an identifying feature of the contents of the session, so you
could store all the following in the session, where the first item is a simple string, the second is the string
entered into a textbox, and the third is a Hashtable object:

Session["Name"] = "Chris"
Session["Email"] = txtEmailAddress.Text
Session["ShoppingBasket"] = HashtableOfBasketItems

Let's look at sessions in action by using an example.Before you run this example, you will need three
images – shirt.gif, hat.jpg, and mascot.jpg. These three files are available along with the rest of
the source code for this book from the Wrox Web site.

Try It Out Using Session State
1. This example will add another new page called Merchandise.aspx to the site. Add this new

blank ASP.NET page to the Wrox United application folder.

2. Add a heading 1 with the text Wrox United at the top of the page, and directly underneath that,
add a heading 2 with the text Official Merchandise Store. If you switch to HTML view, you'll see
that the following code has been added:

<form runat="server">
<h1>Wrox United</h1>
<h2>Official Merchandise Store</h2>

3. Add an HTML table of width 600 pixels to the page, with three columns and three rows. In each
row, insert an ASP.NET Image control, some text, and an ASP.NET Button, with the following
properties, and you should see the Design view as shown in Figure 11-9

395

Users and Applications

Figure 11-9

Column 1: Image Control Column 2: Text Column 3: Button Control

Row 1 ImageUrl="images/shirt.gif" "The Wrox United
shirt, available in
one size only"

id="btnBuyShirt"
onclick="AddItemToBasket"
width="100px"
text="Buy a shirt!"
CommandArgument="Shirt"

Row 2 ImageUrl="images/hat.jpg" "The official Wrox
United hat!"

id="btnBuyHat"
onclick="AddItemToBasket"
width="100px"
text="Buy a hat!"
CommandArgument="Hat"

Row 3 ImageUrl="images/mascot.j
pg"

"The Wrox United
cuddly mascot – a
must-have for the
younger
supporters!"

id="btnBuyMascot"
onclick="AddItemToBasket"
width="100px"
text="Buy a Mascot!"
CommandArgument="Mascot"

396

Chapter 11

4. In HTML view, you should have the following code generated for you automatically
(alternatively, instead of dragging and dropping, you could type this lot in by hand if you
wanted to):

<table width="600">
<tr>
<td><asp:Image id="imgCap" runat="server" ImageUrl="images/shirt.gif">

</asp:Image></td>
<td>The Wrox United shirt, available in one size only</td>
<td><asp:Button id="btnBuyShirt" onclick="AddItemToBasket"

runat="server" Text="Buy a shirt!" Width="100px"
CommandArgument="Shirt"></asp:Button> </td>

</tr>
<tr>
<td><asp:Image id="imgShirt" runat="server" ImageUrl="images/hat.jpg">

</asp:Image></td>
<td>The official Wrox United hat!</td>
<td><asp:Button id="btnBuyHat" onclick="AddItemToBasket"

runat="server" Text="Buy the hat!" Width="100px"
CommandArgument="Hat"></asp:Button> </td>

</tr>
<tr>
<td><asp:Image id="imgMascot" runat="server"

ImageUrl="images/mascot1.jpg">
</asp:Image></td>

<td>The Wrox United cuddy mascot - a must-have for the younger
supporters!
</td>
<td><asp:Button id="btnBuyMascot" onclick="AddItemToBasket"

runat="server" Text="Buy the mascot!" Width="100px"
CommandArgument="Mascot"></asp:Button> </td>

</tr>
</table>

5. Add the following code below the table, while still in HTML view:

<p>
Your basket contains:
<asp:label id="lblBasketMessage" runat="server"></asp:label>

</p>
<p>
<asp:Repeater id="basketlist" runat="server">
<itemTemplate>
<asp:Label width="70" runat="server"

text='<%# ((DictionaryEntry)Container.DataItem).Key + "s: " %>'>
</asp:Label>

<asp:Label runat="server"
text='<%# ((DictionaryEntry)Container.DataItem).Value %>'>
</asp:Label>

397

Users and Applications

</itemTemplate>
</asp:Repeater>

</p>
<p>
<asp:Button id="btnCheckOut" runat="server" Text="Checkout"></asp:Button>
<asp:Button id="btnEmptyBasket" onclick="btnEmptyBasket_Click"

runat="server" Text="Empty Basket"></asp:Button>
</p>

</form>

6. That's it for the HTML side of things! Switch to the Code view and enter the following methods:

Note that the method signature for the AddItemToBasket() function is already generated for you, so
make sure you don't add another copy of this or the page won't compile properly.

void Page_Load()
{
if (Session["Basket"] == null)
{
InitializeBasket();

}
}

void btnEmptyBasket_Click(object sender, EventArgs e)
{
InitializeBasket();

}

void AddItemToBasket(object sender, EventArgs e)
{
// Each time this is run, get the CommandArgument property of the button
//that fired the event, and use this to populate the Session object
System.Web.UI.WebControls.Button theButton =
(System.Web.UI.WebControls.Button)sender;
string itemName = (string)theButton.CommandArgument;

System.Collections.Hashtable basketTable =
(System.Collections.Hashtable)Session["Basket"];

// Check whether the session contains an entry for that item
// if no entry exists, create one with value 0
if (basketTable[itemName] == null)
{
basketTable[itemName] = 0;

}

// Increment the counter for the selected item
int itemCount = (int)basketTable[itemName];
basketTable[itemName] = itemCount + 1;

}

void InitializeBasket()
{
System.Collections.Hashtable basketTable = new

System.Collections.Hashtable();

398

Chapter 11

Session["Basket"] = basketTable;
}

void Page_Prerender()
{
System.Collections.Hashtable basketTable =
(System.Collections.Hashtable)Session["Basket"];
basketlist.DataSource = basketTable;
basketlist.DataBind();

if ((basketTable.Count) == 0)
{
lblBasketMessage.Text = "nothing - please buy something!";

}
else
{
lblBasketMessage.Text = "";

}
}

You'll notice that there are quite a few methods in here, which we'll look at in detail in just a
moment; these are designed to make the application more scalable Let's see how the page
works, then the purpose of these methods will become a bit clearer. It's time to run the page and
try it out! You should see the screen depicted in Figure 11-10:

Figure 11-10

399

Users and Applications

How It Works
This simple example uses quite a few techniques to store data about the items in the shopping basket.
The data stored in the Session object is a hashtable that stores name-value pairs. The key field for the
hashtable is the name of the item added to the basket and the value is the quantity of that item. The
event handlers on that page all perform different actions on the data stored in the session. Let's start by
looking through the added code.

First, we added an HTML table and some simple controls to the page. Notice that the onClick attribute
of each button in the table was set to fire the same event handler – AddItemToBasket(). Each button
has a unique CommandArgument property that describes what is added to the basket:

<table width="600">
<tr>
<td><asp:Image id="imgCap" runat="server" ImageUrl="images/shirt.gif">

</asp:Image></td>
<td>The Wrox United shirt, available in one size only</td>
<td><asp:Button id="btnBuyShirt" onclick="AddItemToBasket"

runat="server" Text="Buy a shirt!" Width="100px"
CommandArgument="Shirt"></asp:Button> </td>

</tr>
<tr>
<td><asp:Image id="imgShirt" runat="server" ImageUrl="images/hat.jpg">

</asp:Image></td>
<td>The official Wrox United hat!</td>
<td><asp:Button id="btnBuyHat" onclick="AddItemToBasket"

runat="server" Text="Buy the hat!" Width="100px"
CommandArgument="Hat"></asp:Button> </td>

</tr>
<tr>
<td><asp:Image id="imgMascot" runat="server"

ImageUrl="images/mascot1.jpg">
</asp:Image></td>

<td>The Wrox United cuddy mascot - a must-have for the younger
supporters!

</td>
<td><asp:Button id="btnBuyMascot" onclick="AddItemToBasket"

runat="server" Text="Buy the mascot!" Width="100px"
CommandArgument="Mascot"></asp:Button> </td>

</tr>
</table>

Next, we added some more controls to display the contents of the basket and to provide the option of
either clearing the basket or checking out via a checkout and payment process:

<p>
Your basket contains:
<asp:label id="lblBasketMessage" runat="server"></asp:label>

</p>
<p>
<asp:Repeater id="basketlist" runat="server">
<itemTemplate>

400

Chapter 11

The basketlist Repeater control will be data-bound to a Hashtable object (as we'll see in just a
moment). This enables us to do some interesting data binding in this control. The first label in this
control includes an interesting statement:

<asp:Label width="70" runat="server"
text='<%# ((DictionaryEntry)Container.DataItem).Key + "s: "%>'>

</asp:Label>

Notice that the text property has a data-binding statement in it. Here, the Key of the current item in the
Hashtable, which is used to populate this control, is displayed in this label along with some text. In this
way, we take the name of each item, and we can pluralize it by adding "s" to the end of it. The colon is
there to add a neat grammatical separator between the name of the item and the quantity. So we have
Mascots: 3 as the displayed text, having obtained the key Mascot from the Hashtable. Notice that we
have to add a cast to this statement to tell the C# compiler that the DataItem is of type
DictionaryEntry, because Hashtables are collections of DictionaryEntry data types.

The rest of the code in the HTML view of the page includes another data-binding expression to obtain
the quantity of the current item in the shopping basket.

<asp:Label runat="server"

text='<%# ((DictionaryEntry)Container.DataItem).Value %>'>
</asp:Label>

</itemTemplate>

</asp:Repeater>
</p>
<p>
<asp:Button id="btnCheckOut" runat="server" Text="Checkout"></asp:Button>
<asp:Button id="btnEmptyBasket" onclick="btnEmptyBasket_Click"

runat="server" Text="Empty Basket"></asp:Button>
</p>

The online payment procedures that you would associate with the Checkout button hasn't been
implemented in the code – that's a bit beyond the scope of this chapter. For more information on online
payments, you might want to consult www.paypal.com, one of many online payment service providers.

It's time to work through the methods in the code. They are presented in roughly the same order in
which they will be processed when a page is requested by the browser (following the chain of events as
they correspond to the page lifecycle).

Firstly, the Page_Load() event handler:

void Page_Load()
{
if (Session["Basket"] == null)
{
InitializeBasket();

}
}

401

Users and Applications

Each time the page is loaded, this method will check whether the Session object contains a basket. If it
doesn't, a new empty basket is created. We'll look at the InitializeBasket() method that does this in
just a moment.

void btnEmptyBasket_Click(object sender, EventArgs e)
{
InitializeBasket();

}

The btnEmptyBasket_Click() method also calls the InitializeBasket() method to clear out any
existing basket data. The AddItemToBasket() method comes next, and this one is quite interesting. For
starters, all the three item buttons call this method, and they each pass a CommandArgument property.

void AddItemToBasket(object sender, EventArgs e)
{
// Each time this is run, get the CommandArgument property of the button

that
// fired the event, and use this to populate the Session object
System.Web.UI.WebControls.Button theButton =
(System.Web.UI.WebControls.Button)sender;
string itemName = (string)theButton.CommandArgument;

These two lines of code are all that's needed to get the string information that specifies which button the
user clicked. Once you have this string (which is set to either Shirt, Hat, or Mascot), you can use it to
add data to the session.

First, create a local Hashtable object to temporarily store the contents of the Session's basket item. This
will make the code easier to understand.

System.Collections.Hashtable basketTable =
(System.Collections.Hashtable)Session["Basket"];

The remainder of the code for this method uses basketTable, which is the hashtable representation of
the contents of the Session object's Basket item, to add items to the session. Now, the fun thing is that
because you didn't add a New keyword to the basketTable, you don't get a new Hashtable object.
Instead, you refer to an existing Hashtable object, specifically the one that is stored in the Session object.
This is an example of working with reference types. Because you are working with the contents of the
Session's Basket item via the basketTable Hashtable; anything you do to the basketTable will affect
the contents of the Session.

A full discussion of value and reference types is beyond this chapter. For more information, you should
read Professional ASP.NET 1.1, Wrox Press, ISBN: 0-7645-5890-0.

We check to see if the item added to the basket has been added before:

// Check whether the session contains an entry for that item
// if no entry exists, create one with value 0
if (basketTable[itemName] == null)

The New keyword is not included in the Hashtable's declaration – this is very
important, as you'll see in a moment!

402

Chapter 11

{
basketTable[itemName] = 0;

}

If the item has never been in the basket before, it is added to the basket and initialized to 0 to make it
ready to receive a new quantity. In the next piece of code, one more of the selected item is added to the
basket. Thus, if there were already three Mascots in the basket, clicking this button will add another one
to the basket, resulting in a basket that contains four Mascots.However, if this were the first mascot you
bought, you would end up with one mascot.

// Increment the counter for the selected item
int itemCount = (int)basketTable[itemName];
basketTable[itemName] = itemCount + 1;

}

Let's look at the InitializeBasket() method mentioned earlier:

void InitializeBasket()
{
System.Collections.Hashtable basketTable = new

System.Collections.Hashtable();
Session["Basket"] = basketTable;

}

In just two lines of code, a new Hashtable object is created and the Session's Basket item is set to point
to it. The new object doesn't have any items in it, so it will be an 'empty' basket.

If this method was called in response to clicking the Empty Basket button, it's likely that you originally
had a full basket, so where do all the original contents of the basket go?

Well, the answer is that by changing the Hashtable that the Basket item is pointing to, we change which
Hashtable is referenced by the Session. Thus, the old Hashtable (the old basket) is no longer pointed to
by anything, and the .NET garbage collector sweeps the Hashtable away. The Hashtable is no longer
wanted because no one is using it, so we can get rid of it to clear out some memory. New objects can
now use the memory that was used by the old hashtable. The garbage collector is very efficient and gets
rid of unreferenced objects on a regular basis. The memory that the old Hashtable object was taking up
is recycled, which means that you are less likely to run out of memory.

There is one last event handler to look at. This one handles the Prerender() event of the page. This
event is always fired when a page is loaded and is your last chance to change anything just before the
page is displayed:

void Page_Prerender()
{
System.Collections.Hashtable basketTable =
(System.Collections.Hashtable)Session["Basket"];
basketlist.DataSource = basketTable;
basketlist.DataBind();

This code uses the same Hashtable that is stored in the Session object's Basket item by pointing
another Hashtable towards the same data. This data is stored in your computer's memory, so what
you're doing is telling your program where to find that data. Again, any changes made to the

403

Users and Applications

basketTable will change the contents of the Basket (because you are changing the same object!) The
basketList control is a simple Repeater control, like the ones used in the previous chapter. In this
example, we bind the contents of the Hashtable to the Repeater to display the contents of the basket on
the page:

if ((basketTable.Count) == 0)
{
lblBasketMessage.Text = "nothing - please buy something!";

}
else
{
lblBasketMessage.Text = "";

}
}

Lastly, a message is displayed if the basket is empty. If the count of all the items in the basketTable
Hashtable is 0, the Hashtable or the virtual basket is empty. All this is done by the Prerender() event
handler to ensure that only the most recent data is displayed after any items that may have been added.

Remember that when you click a button, a postback is initiated and the page is reloaded. If we'd have
displayed the contents of the basket by adding code to the Page_Load() event handler, we would not
be displaying the most current data, but the data of what happened that last time the button was clicked,
because the Page_Load() event handler will run before the button click event is handled. You can easily
try this out for yourself – if you move all the contents of this method into the Page_Load() event
handler, you'll see that the count of the number of items in the basket is one behind the actual count.

That's it for now – Sessions will be back later when we put together a fun example that adds some style
to the Wrox United site. Let's move on to applications.

Applications
One step up from the session is the application. From the time an ASP.NET application is first loaded, to
when the application is restarted, which could be due to a configuration change or the restarting of the
Web server, you can store information related to that application in the Application object. When the
application is restarted, any information stored in the Application object will be lost, so you need to
decide carefully what to store in the application state.

For larger data or for data that doesn't often change, the ASP.NET Cache object can be very useful, as
you'll see in the Caching section later in the chapter.

It's best to only store small amounts of data in the application state to minimize
memory usage on the server. Small bits of data that change frequently but don't need
to be saved when the application is restarted are best kept in the Session object.

The actual order of events is: Page_Load() --> Control Events --> Prerender()

404

Chapter 11

How Do Applications Work?
Applications are a bit simpler than sessions, since they run entirely on the server. When the application
is running, you can use the same method of storing data in an application object as used with sessions
All you need to do is enter an identifier and a value that can be of any type, even a dataset. The best way
to look at how application state can be used is through an example. Let's take this opportunity to add
another page to your site that has more interactivity than the previous pages!

Try It Out Using Application State
In this example, you will construct the world's simplest chat room! All you need is a new ASP.NET page
on the Wrox United site, a few controls, and a bit of code, and you can then chat with anyone around the
world.

1. The first step is to reopen Default.aspx and add a new hyperlink to the list of links on the left.
Call it lnkChat, and set its NavigateUrl property to Chat.aspx.

2. Create a new ASP.NET page called Chat.aspx. Switch to HTML view and enter the following
code within the <form> tags:

<h1>Wrox United
</h1>
<h2>Online Chat
</h2>
<asp:TextBox id="txtChatBox" runat="server"

TextMode="MultiLine"
Height="200px" Width="550px" ReadOnly="true">

</asp:TextBox>

<table width="550">
<tbody>
<tr>
<td width="150">
Enter your name:

</td>
<td>
<asp:TextBox id="txtName" runat="server"></asp:TextBox>

</td>
</tr>
<tr>
<td width="150">
Enter your message:

</td>
<td>
<asp:TextBox id="txtMessage" runat="server"

MaxLength="100" Width="402px">
</asp:TextBox>

</td>
</tr>
<tr>
<td>

</td>
<td>

405

Users and Applications

<asp:Button id="btnPost" onclick="btnPost_Click"
runat="server" Text="Post message">

</asp:Button>
<asp:Button id="btnClearLog" onclick="btnClearLog_Click"

runat="server" Text="Clear log">
</asp:Button>

</td>
</tr>

</tbody>
</table>

Quickly flip to the Design view and look at the page; it should be as shown in Figure 11-11:

Figure 11-11

3. Switch to the Code view and enter the following code:

void btnPost_Click(object Sender, EventArgs e)
{
string tab = "\t";
string newline = "\r";
string newMessage = txtName.Text + ":" + tab + txtMessage.Text + newline +

Application["ChatLog"];

406

Chapter 11

if (newMessage.Length > 500)
{
newMessage = newMessage.Substring(0,499);

}

Application["ChatLog"] = newMessage;

txtChatBox.Text = (string)Application["ChatLog"];
txtMessage.Text = "";

}

This event handler runs when someone clicks the Post message button on the page. It saves the
name of the person who posted the message and the message itself in the Application object.

4. Add the following two methods, followed by running the page to see Figure 11-12 (you'll be
able to have a conversation with yourself!). The first is a Page_Load() event handler that loads
the details of the current chat. The second clears the log when the Clear log button is pressed:

void Page_Load()
{
txtChatBox.Text = (string)Application["ChatLog"];

}
void btnClearLog_Click(object sender, EventArgs e)
{
Application["ChatLog"] = "";
txtChatBox.Text = (string)Application["ChatLog"];

}

Figure 11-12

407

Users and Applications

New messages in the chat will always be added at the top of the window. If you increase the
size of the chat log, you could store a lot more text that would start to disappear off the bottom
of the textbox (you view this by scrolling down the box). Keeping the newly added messages at
the top ensures that new content is always visible.

Also notice that after a certain amount of text has appeared in the main chat window, characters
start to disappear from the end of the chat – this is intentional, and it saves on server resources
as we'll see in a moment. Additionally, clicking the Clear log button will wipe the entire chat log
instantly. Browsers new to the page will see the current chat as soon as they get to the page.

How It Works
We've constructed a page that any visitor to the site can use to chat with their friends. There isn't a
permanent store for chat logs, but you can at least get instant communication working, which could be
really useful for a quick Internet team chat (especially if one member of the team works at an office
where instant messaging programs like MSN Messenger or AOL Instant Messenger are banned!)

Let's look through the added code. The front-end of the site is quite simple, so let's directly look at the
properties of the three textboxes on the form:

<asp:TextBox id="txtChatBox" runat="server"
TextMode="MultiLine"
Height="200px" Width="550px" ReadOnly="true">

</asp:TextBox>

Because the first textbox holds the entire chat transcript so far, we've made it a ReadOnly, MultiLine
textbox that has a specified width and height. The second textbox is very simple indeed:

<asp:TextBox id="txtName" runat="server"></asp:TextBox>

The third textbox has an interesting feature:

<asp:TextBox id="txtMessage" runat="server"
MaxLength="100" Width="402px">

</asp:TextBox>

We specified a maximum length for this textbox, to prevent anyone from entering really long messages.

In the Code editor, we added two button-click event handlers and a Page_Load() event handler. Let's
look at them in turn:

void btnPost_Click(object Sender, EventArgs e)
{
string tab = "\t";
string newline = "\r";
string newMessage = txtName.Text + ":" + tab + txtMessage.Text +

newline + Application["ChatLog"];

The first event handler reacts to the posting of a new message. A new String object is created to hold
the message and the name of the person posting the message, and also to apply some formatting. The
string displayed consists of the name of the person posting the message, followed by a colon:

408

Chapter 11

txtName.Text + ":"

Then a tab character is added to space out the name from the message, before adding the message itself:

+ tab + txtMessage.Text

Finally, we add a line break followed by the current contents of the chat log. This is done in a manner
such that any new message will always appear at the top of the textbox, one line above the previous
message:

+ newline + Application["ChatLog"];

The existing chat log is saved in the Application object and is retrieved by using the following syntax:

Application["ChatLog"]

If there is no data in the log yet, this value will be null and a new message will simply contain a
formatted version of the new post. You can refer to the contents of an item in the Application store by its
name, in this case, ChatLog. This will return the contents of the item, which in this example is the string
of the existing messages.

Note that you don't want to store too much data in the Application object or your Web server will
grind to a halt! In the example, this has been limited to 500 characters. Any text beyond this point is
removed (working from the oldest to the newest text):

if (newMessage.Length > 500)
{
newMessage = newMessage.Substring(0,499);

}

The Substring() method grabs all the string data between the two specified points, in this case, from
the first character (at index 0) to the 500th character (at index 499). If you want a longer log of chat
transcript, increase the two larger numbers to higher values.

Finally, the new transcript is saved back to the Application object:

Application["ChatLog"] = newMessage;

In addition, the new transcript is displayed in the transcript textbox:

txtChatBox.Text = (string)Application["ChatLog"];
txtMessage.Text = "";

}

The application works quite well, but without any mechanism to refresh the page, other people
browsing the page would have to either keep refreshing the page manually or post new messages

Note that the end point of the substring is always one less than the length of the
message because the items in the string are zero-indexed.

409

Users and Applications

regularly to see any new messages. The most common solution to this problem would be to split the
page into two frames. The top frame could contain the chat box and the bottom frame could contain the
textboxes and buttons. You could then add an auto-refresh to the top page to force it to refresh every 10
seconds or so.

Application state is quite a useful feature, as is session state, but one of the coolest things that ASP.NET
has to offer when it comes to applications and sessions is the ability to react to events raised by both of
these. The next section looks at this process in more detail.

Reacting to Application and Session Events
An event is fired every time an application or a session starts, ends, or when an error occurs. As an
ASP.NET developer, you have the ability to intercept these events and write event handlers for them.

These event handlers have numerous useful features. For example, when an application starts, you can
create an item with a default value in the application state, which can be updated later. Event handlers
are placed in a special application-specific file called Global.asax.

Global.asax
This file exists at the root of a Web application and can contain event handlers for all the application-
and session-level events that are fired when an application is run. If you open up Web Matrix and create
a new Global.asax file, you will see the following:

<%@ Application language="C#" %>

<script runat="server">

public void Application_Start(Object sender, EventArgs e)
{
// Code that runs on application startup

}

public void Application_End(Object sender, EventArgs e)
{
// Code that runs on application shutdown

}

public void Application_Error(Object sender, EventArgs e)
{
// Code that runs when an unhandled error occurs

}

public void Session_Start(Object sender, EventArgs e)
{
// Code that runs when a new session is started

}

public void Session_End(Object sender, EventArgs e)

410

Chapter 11

{
// Code that runs when a session ends

}

</script>

The helpful comments in the code give you an idea of what belongs in each part of the file. Note that
you can add code that runs in these event handlers. Suppose you add the following line to the
Application_Start() event handler:

public void Application_Start(Object sender, EventArgs e)
{
Application["ChatLog"] = "Hello, and welcome to the Wrox United Chat
page!";

}

Adding this one line means that the very first time the application is started, there will be some default
text in the chat page.

With the event handlers available in the Global.asax page, you could add some global event handling
code to the Application_Error() event handler, or you could add some cleanup code to the
Session_End section to ensure that all memory is freed up when a session ends.

Let's add a Global.asax page to the application now and have a go at adding global code.

Try it Out Global.asax – Global Settings
1. Head back into Web Matrix and create a new file. Select the Global.asax file type from the

options, as shown in Figure 11-13:

Figure 11-13

411

Users and Applications

2. You'll find that Web Matrix automatically creates the skeleton of the file, so you don't need to
add much code. In your Global.asax page, add the following highlighted lines of code in the
appropriate event handlers:

<%@ Application language="C#" %>
<script runat="server">

public void Application_Start(Object sender, EventArgs e)
{
Application["ChatLog"] = "Hello, and welcome to the Wrox United Chat
page!";

}
...
public void Session_Start(Object sender, EventArgs e)
{
System.Collections.Hashtable basketTable = new
System.Collections.Hashtable();
Session["Basket"] = basketTable;

}
...
</script>

Shut down the Web Matrix Web server. This can be done by right-clicking on the Web Matrix
Web Server icon in the System tray at the bottom right of the screen, and then clicking Stop.
Relaunch the Chat.aspx page and the application will restart and fire the Application's Start
event. Notice that default text appears when you open the chat page for the first time, as shown
in Figure 11-14:

Figure 11-14

412

Chapter 11

The other change made doesn't really have a discernable impact on the basket example, except
that it handles the creation of a new instance of the basket Hashtable that was used in the
Merchandise.aspx page. This means that you could theoretically remove the code from the
Page_Load() event for the page that checks whether the basket exists or not. It will always
exist, even for new sessions, if this code runs as intended without affecting the basket.

3. Once you have added this code to Global.asax, remove the contents of the Page_Load()
event handler for the Merchandise.aspx page and you will find that the page will still run
without errors.

How It Works
Let's quickly run through the newly added code:

public void Application_Start(Object sender, EventArgs e)
{
Application["ChatLog"] = "Hello, and welcome to the Wrox United Chat
page!";

}

In the Application_Start() event handler, we set the Application object's ChatLog item to have
some default text. Whenever the application is restarted, there will be some text in the chat room.

Note that when you click the Clear log button on that page, the default text will not be displayed,
because the application is still running. Clicking the Clear Log button clears the contents of the existing
object, without reinitializing it.

The next change made was to the Session_Start() event handler:

public void Session_Start(Object sender, EventArgs e)
{
System.Collections.Hashtable basketTable = new
System.Collections.Hashtable();
Session["Basket"] = basketTable;

}

In this case, we duplicated the code that was used in the InitializeBasket() method in the
Merchandise.aspx page code and placed it in the event handler. This means that every new session
will run this code before the user even browses to that page, so the basket will always exist for each
session until the session ends (which is when all Session objects will be cleared out).

Global.asax is a very useful tool for storing default application-wide settings, but there is another way
to remember information for the entire duration of an application, caching.

Caching
In addition to Application state, ASP.NET provides another way to share objects across an application –
the Cache object. Any object, from XML data to a simple variable can be stored in the Cache object. If
you are thinking that this sounds quite similar to the Application object, you are right. In general

413

Users and Applications

terms, you can use the Cache object in exactly the same way. However, the Cache object also has some
additional features, notably the ability to store data about dependencies.

So, what are dependencies? Well, imagine you wanted to store the contents of a Hashtable in the cache.
For example, this Hashtable could hold a set of dates corresponding to the dates when a soccer team is
playing a match. You could save this to the cache with a dependency set to the value of a global variable;
this could be a DateTime field representing when the list of dates was last updated. If the contents of that
variable change (if a new match is scheduled), the cached hashtable would immediately expire and need
to be regenerated to display the new date.

ASP.NET allows you to have dependencies between items placed in the cache and files in the file system.
If a file targeted by a dependency changes, ASP.NET automatically removes dependent items from the
cache. This allows for the development of fast applications where developers do not have to worry
about stale data remaining in the cache.

To add an object to the cache, all you need to do in the simplest case is:

Cache["MyCachedThing"] = ThingToBeCached;

An example of this would be:

Cache["TeamNickname"] = txtNickname.Text;

In this example, you created a new item that stores a value that comes from the Text property of a
textbox, and stored it in the Cache collection.

As you might be able to tell, the Cache stores data in the form of a collection of name-value pairs. To
retrieve the value of an item in the Cache, all you need to do is refer to the item by its name, casting it to
the appropriate type:

lblDisplayNickname.Text = (string)Cache["TeamNickname"];

To add a dependency to the object being cached, you need to add some more parameters when adding
the item to the cache.

There are two ways for adding an object to the cache, with a dependency or a specified expiration
(which works in a similar way to the other state management mechanisms encountered in this chapter).

The Insert() method adds an item to the cache. The Add() method also adds an item to the cache, but
it returns an object representing the item you add to the cache. Let's see what this means:

Cache.Insert("TeamNickname", txtNickname.Text, null,
DateTime.Now.AddMinutes(20), NoSlidingExpiration);

This statement will add a new entry to the cache called TeamNickname. The value will come from the
Text property of a TextBox. There are no dependencies for this item (which is why you include null in
the parameter list). The last two options are where the expiration for the item is set. In this example, the
expiration is set to an absolute value (using the DateTime object) whereas the second parameter accepts
sliding time values (specified using the TimeSpan object).

414

Chapter 11

The Add() method works exactly the same way, except that it returns an object representing the cached
item. Therefore, instead of inserting the new item into the cache on one line and using it on a following
line of code, you could do the following:

lblDisplayNickname.Text = Cache.Add ("TeamNickname",
txtNickname.Text, null,
DateTime.Now.AddMinutes(20),
NoSlidingExpiration);

You can't add a new item to the cache using the Add() method if an item with the same key already
exists – in that situation, you would need to use the Insert() method.

Finally, you can be notified when an item in the cache expires, enabling you to code event handlers that
react to this, a feature that could come in very handy! Let's say you cache that Hashtable of match dates
in a cache object – you could intercept the event that fires when the cache expires, and automatically
repopulate the cache with an updated set of data. Scheduling this sort of action for times when the site is
not too busy ensures that visitors will not be inconvenienced by these updates.

We won't be looking at how to implement this in the examples in this book. If you are interested in
learning more about this process, you should consult the documentation and learn about using the
CacheItemRemovedCallback delegate. Refer to Professional ASP.NET 1.1 Special Edition, Wiley
ISBN: 0-7645-5890-0 for information more on this subject.

Let's look at an example. If you remember, in the previous chapter we added the calendar control to
the front page of the site. It used a Hashtable to store the list of dates on which matches were scheduled.
This Hashtable had to be refreshed every time the page was hit, which meant that each request opened
up a fresh connection to the database to retrieve the active dates. However, the list of dates isn't likely to
change all that often, so remembering that data for subsequent hits would be a great idea. We'll
implement this functionality here.

Try It Out Wrox United – Caching Objects
1. Reopen Default.aspx in Web Matrix and modify the following lines of code in the

Page_Load() event:

public void Page_Load(object sender, EventArgs e)
{
if (Cache["DateList"] == null)
{
System.Data.IDataReader DateReader = Dates();

while (DateReader.Read())
{
DateList[DateReader["Date"]] = DateReader["Date"];

}

DateReader.Close();

Cache.Insert("DateList", DateList, null, DateTime.Now.AddMinutes(1),
Cache.NoSlidingExpiration);

Response.Write ("Added to cache");

415

Users and Applications

}
else
{
Response.Write ("Already in cache - nothing added");
}

...
}

Notice that a couple of Response.Write statements were added to the code – these are crude
but effective ways of quickly testing whether some code worked or not, and since the caching
won't really produce any visible results, you can use these to confirm that the newly
implemented caching mechanism is working, then remove them at a later date.

2. Change the following highlighted line of code from the DayRender() event handler for the
Calendar control:

public void EventCalendar_DayRender(object sender, DayRenderEventArgs e)
{
if (((Hashtable)Cache["DateList"])[e.Day.Date] != null)
{
e.cell.style.add("font-weight", "bold")

...
}

3. Run the code and you should see Figure 11-15 the first time the page is loaded:

Figure 11-15

416

Chapter 11

Now refresh the page or launch a new browser instance to view the page as shown in Figure 11-
16:

Figure 11-16

This message will appear in the top left of the page if you keep refreshing the page for a whole
minute. Any hits received by the server after that minute is over will reload the Hashtable into
the cache.

How It Works
Every connection opened to a database is a costly maneuver. Reducing the frequency of such actions is
essential for any site to perform well under high user loads. Therefore, this simple example could
considerably improve the performance of the Wrox United application.

So what did we actually do? Look at the code added to the Page_Load() event handler:

if (Cache["DateList"] == null)
{

The first addition checks whether there is an object called DateList in the cache. If there isn't one, we
populate the Hashtable object like before:

System.Data.IDataReader DateReader = Dates();

while (DateReader.Read())
{
DateList[DateReader["Date"]] = DateReader["Date"];

}

417

Users and Applications

DateReader.Close();

Then you can add this newly created Hashtable to the cache:

Cache.Insert("DateList", DateList, null, DateTime.Now.AddMinutes(1),
Cache.NoSlidingExpiration);

In this example, we specified that the DateList Hashtable object should be stored in the cache with
the name DateList. We didn't specify a dependency for this object, but we did specify that it only exists
for one minute before expiring. In a real life situation, you could increase this to whatever you like –
once every couple of hours, once a day, or whatever is appropriate depending on how often the data
changes.

Finally, we added some quick debugging statements to the code to help see what was going on. Remove
these or at least comment them out once you're happy with the way your code works.

Response.Write ("Added to cache");
}
else
{
Response.Write ("Already in cache - nothing added");
}

The only other change made was to the DayRender() event handler for the Calendar control:

if (((Hashtable)Cache["DateList"])[e.Day.Date] != null)
{

This statement looks a little complicated, so let's break it into pieces. Instead of referring to the Hashtable
directly, we can now refer to the version stored in the Cache object, substituting Cache["DateList"]
for DateList in the code, and adding the appropriate casting. In this case, the cache object called
DateList is a Hashtable:

((Hashtable)Cache["DateList"])

We can then access an item in the Hashtable as before, using the passed in date as the key value:

Hashtable[e.Day.Date]

Resulting in:

((Hashtable)Cache["DateList"])[e.Day.Date]

State Management Recommendations
In this chapter, we looked at several different methods for storing state information, but the question is,
which is the right one to use? Well, it depends on what you want to achieve. The Microsoft MSDN
documentation has a great discussion on this topic available to view online at

418

Chapter 11

http://msdn.microsoft.com/library/default.asp?url=/library/enus/vbcon/html/vbconchoosingserverstateoption.asp
However, to round off this chapter, let's look at the important considerations to keep in mind which
method to use.

When to Use Cookies
Cookies are great for storing small pieces of identification data but not complete authentication details.
They can be configured to expire after any length of time, but most cookies on your system are likely to
last a long time. After you log on to Amazon.com for the first time, you will be presented with a
personalized front page on every subsequent trip to the site. Because cookies are stored on the client, it
takes the burden off the server.

Cookies, however, can be blocked at the client end, so you can't rely on your users being able to (or even
choosing to) use them. Also, cookies should never be used to store sensitive information, since cookies
can be tampered with – all you have to do is open a cookie, change its contents, and save it again, and
the Web site that created the cookie may not be able to use that cookie any more.

When to Use Sessions
Sessions are used to maintain information about users across a series of pages in a site. The Session
object can store any object you choose and therefore, is a very flexible way to remember information. If
you need to remember any information relating to a user session, the Session object is the right choice
for you. You can also react to session-wide events, which gives you even more flexibility.

However, extreme flexibility comes with a price – you must take care not to store too much information
in the Session object, because you'll quickly find it can be a drain on server resources. Store only
essential data in a session.

When to Use Applications
Applications are very powerful and flexible, just like sessions. You can store any object in application
state. Also, you can react to events raised (such as the Start and End of the application, as well as a
global Error event) and add custom event handler code so that you can store information globally, and
have it accessible by any code in the application.

The two main disadvantages of applications are that they too can drain your server's resources and since
they don't exist after the application ends, they shouldn't be used to store anything you need to keep.
You can specify default values for both the Session and Application objects using the Global.asax
file, but if you need to store data, use something more permanent, such as a database.

When to Use Caching
Caching is often considered more of a performance-enhancement tool than a way to store application
data. When you find yourself spending many precious server resources accessing the same data
repeatedly, use caching instead! Caching data can bring huge performance benefits, so whenever you
find that you need to frequently access data that doesn't often change, cache it in the Cache object and
your application's performance will improve.

419

Users and Applications

The trick with caching is to use the highest possible value that won't negatively impact the required
behavior of the page. Taking the example we looked at earlier to both extremes (caching match dates),
specifying that the cache never expires (or has a very long duration) would mean that newly added
dates would not be visible to visitors to the site unless the application was restarted. On the other hand,
using a very small length of time before the cache expires would mean that the performance
improvements gained by using caching are reduced, since the code has to keep going back to the
database to get new data.

Other State Management Techniques
Aside from the main state management methods used in this chapter, there are several other ways to
remember data. Let's take a quick look at these now.

ViewState
ViewState is a concept first discussed back in Chapter 3, and it's been with us on every page that has
server controls on it! If you use the View | Source command on any page with a Web control, you'll see a
large block of code:

<input type="hidden" name="__VIEWSTATE" value="dDw0MTMzOTEzMDM7O2w8Y2hrUmVt
...

ViewState can be enabled or disabled on a control-by-control basis. The more controls you have on your
page that have ViewState enabled, the more data your page will have to store in this hidden field. On
complex pages, this field can grow to be quite large and will increase download times, so take care to
only enable ViewState on those controls that need it. For example, if you wanted to disable ViewState on
a TextBox control, you could do so using the following syntax:

<asp:textbox id="myTextBox" runat="server" EnableViewState="false" />

You'll soon find out if you need to enable ViewState for a control or not if you try disabling it for all
controls on a page. If you try this and run your page, you may find that it no longer behaves as expected.
At this point, you can start re-enabling it control-by-control (using EnableViewState="true"), until
your site behaves as intended. This will help you understand which controls require ViewState on your
site.

Hidden Form Fields
ViewState uses hidden form fields to store its data, but by default a standard hidden control is sent to
the client unencrypted. Even if you do encrypt this data, the encryption methods available for such
fields are not the most rigorous available, so you should never store sensitive data in them.

Database
Never underestimate the power of the database! Storing bits and pieces of data that relate to the session
or application in a database is one way to move away from the standard server-based state management
models. However, too much reliance on the database for this type of information could cause bottlenecks
at the database-end instead of the server-end!

420

Chapter 11

As you can see, most of the drawbacks to each of the methods discussed here boil down to performance.
Performance enhancement techniques will be covered in Chapter 15.

Using Multiple State Management Techniques on a Page
Right, we've looked at many different concepts in this chapter, so let's put together one more example
using a couple of those concepts. This example will use both Sessions and Cookies to add some simple
skinning functionality to the Web site. Once you complete this example, you will be able to add
stylesheets to improve the look of every page on the site. If you've not worked with CSS before, don't
worry – it's all quite simple. Once you complete this exercise, you'll be able to alter the look of the entire
site by altering the values stored in one central location.

Try it Out Wrox United – Adding Some Style!
In this example, we're going to add some styling to the Wrox United site, and at the same time, make use
of session state. It's going to take a bit of preparation, so let's work through it piece by piece.

1. Start by re-opening Default.aspx. Switch to HTML view and add the following line of code
near the top of the page:

<html>
<head>

<link id="css" href='<%= (string)Session["SelectedCss"] %>'
type="text/css" rel="stylesheet" />

</head>

2. Add the following code further down the page, after the last HyperLink control:

<p>
<asp:HyperLink id="lnkChat" runat="server" NavigateUrl="Chat.aspx">
Chat</asp:HyperLink>

</p>
<hr />

<p>
Choose a theme:

<asp:DropDownList id="ddlTheme" runat="server">
<asp:ListItem Value="WroxUnited.css" Selected="true">
Home Kit</asp:ListItem>
<asp:ListItem Value="WroxUnited2.css">Away Kit</asp:ListItem>

</asp:DropDownList>
<asp:Button id="btnApplyTheme" onclick="btnApplyTheme_Click"

runat="server" Text="Apply"></asp:Button>

<asp:CheckBox id="chkRememberStylePref" runat="server"

Text="Remember preference"></asp:CheckBox>
</p>
</td>

3. Switch to the Design view; Figure 11-17 shows what you should see in the left hand column:

421

Users and Applications

Figure 11-17

4. Double-click on the Apply button to switch back to the Code view. Notice that Sessions and
Cookies have both been used in this event handler:

void btnApplyTheme_Click(object sender, EventArgs e)
{
Session["SelectedCss"] = ddlTheme.SelectedItem.Value;

if (chkRememberStylePref.Checked)
{
HttpCookie CssCookie = new HttpCookie("PreferredCss");
CssCookie.Value = ddlTheme.SelectedItem.Value;
CssCookie.Expires = DateTime.Now.AddSeconds(20);
Response.Cookies.Add(CssCookie);

}
}

5. We need to add some code to the Page Load() method to set the style for the page when it is
first loaded:

public void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
if (Session["SelectedCss"] == null)
{
if (Request.Cookies["PreferredCss"] == null)

422

Chapter 11

{
Session["SelectedCss"] = "WroxUnited.css";

}
else
{
Session["SelectedCss"] = Request.Cookies["PreferredCss"].Value;

}
}

}
...

That's quite a lot of Ifs! Don't worry – we will come to this in just a moment. However, before
you can run the code, you need to include some stylesheets or nothing will be displayed! You
will also need to make some minor adjustments to some of the code on the page, notably to the
Calendar control's DayRender event handler, to make the page look a bit nicer when the
stylesheet is applied.

6. First, change the DayRender event handler as follows (remove the original style settings and
replace them with a single class statement):

public void EventCalendar_DayRender(object sender, DayRenderEventArgs e)
{
if (((Hashtable)Cache["DateList"])[e.Day.Date] != null)
{
e.Cell.CssClass = "selecteddate";
// e.Cell.Style.Add("font-weight", "bold");
// e.Cell.Style.Add("font-size", "larger");
// e.Cell.Style.Add("border", "3 dotted darkred");
// e.Cell.Style.Add("background", "#f0f0f0");

// The following line will exist in your code if you completed the
// exercises at the end of the last chapter
e.Day.IsSelectable = true;

}
else
{
// This line of code is part of the solution to one of the exercises at
// the end of chapter 10
e.Day.IsSelectable = false;
e.Cell.CssClass = "normaldate";
// e.Cell.Style.Add("font-weight", "lighter")
// e.Cell.Style.Add("color", "DimGray")

}
}

7. Change the code for the calendar in the HTML view:

<asp:Calendar id="EventCalendar" runat="server"
OnSelectionChanged="EventCalendar_SelectionChanged"
OnDayRender="EventCalendar_DayRender" CssClass="calendar">

<DayStyle cssclass="normaldate"></DayStyle>
<OtherMonthDayStyle cssclass="othermonthdate"></OtherMonthDayStyle>

423

Users and Applications

</asp:Calendar>

8. Now create a new blank stylesheet, and call it WroxUnited.css, as shown in Figure 11-18:

Figure 11-18

9. In this new stylesheet, enter the following code:

BODY {
{
background-image:url(images/background.gif);
color:"#000000";
font-family: georgia;

}

a {
color:"#8b0000";
font-weight:bold;

}

.selecteddate{
font-weight: bold;
font-size: larger;
border: 3 dotted darkred;
background:#f0f0f0;

}

.normaldate{
font-weight:lighter;
color:dimgray;

}

.calendar a{
text-decoration:none;
font-size: 10pt;

}

424

Chapter 11

.othermonthdate{
font-weight:lighter;
color:#d3d3d3;

}

10. Save this as WroxUnited.css in the WroxUnited folder. Then, change the following lines and
save the file with a different name, WroxUnited2.css:

BODY {
background-image:url(images/awaybackground.gif);
color:"#ffffff";

font-family: georgia;

}

a {

color:"yellow";

font-weight:bold;

}

.calendar a{

text-decoration:none;

}

.selecteddate

{

font-weight: bold;

font-size: larger;
border: 3 dotted white;
background:#c0c0c0;

}

.normaldate

{

font-weight:lighter;

color:#d3d3d3;

}

.othermonthdate

{

font-weight:lighter;

color:dimgray;

}

11. Finally, you need to get hold of the two background images that are used in the two stylesheets,
background.gif and awaybackground.gif. Both are available for download from the Wrox
site. They are extremely small images, so they will not take long to download.

12. It's about time to run the page and try it out for yourself! The first style you'll see is the Home
style page, as shown in Figure 11-19, the away kit that is shown in Figure 11-20, is fairly
different, as you’ll no doubt notice!

425

Users and Applications

Figure 11-19:

Figure 11-20

426

Chapter 11

13. If you check the Remember Preference box before clicking Apply, the style you are applying will
be remembered for you in a cookie. Next time you open the site, this stylesheet will be the
default.

How It Works
This example rolled together two different techniques, sessions and cookies, and gave a unified look and
feel that you can apply to all the pages in this site.

The first thing done was to use the contents of the Session object to provide a filename for the <Link
... > tag in the head section of the ASP.NET page:

<html>
<head>

<link id="css" href='<%= (string)Session["SelectedCss"] %>'
type="text/css"

rel="stylesheet" />
</head>

You'll recall that the <%= ... %> syntax is used to access ASP.NET objects from the HTML side of the
page. This technique is certainly adequate for this example, and is a simple way to get to the contents of
the Session object.

The next step was to add some controls to the page to select and apply the stylesheet to the page:

<hr />

<p>
Choose a theme:

<asp:DropDownList id="ddlTheme" runat="server">
<asp:ListItem Value="WroxUnited.css" Selected="true">
Home Kit</asp:ListItem>
<asp:ListItem Value="WroxUnited2.css">Away Kit</asp:ListItem>

</asp:DropDownList>
<asp:Button id="btnApplyTheme" onclick="btnApplyTheme_Click"

runat="server" Text="Apply"></asp:Button>

<asp:CheckBox id="chkRememberStylePref" runat="server"

Text="Remember preference"></asp:CheckBox>
</p>

We set the details of the drop down list manually, assigning each item a Text property and a Value
property. The Text property (the bit between the tags) is the text that displays in the control. The value
is the underlying code value for the selected item, and we use this value to update the session. Clicking
the Apply button will fire the Click event of the button, taking you neatly to the event handler for this
event:

void btnApplyTheme_Click(object sender, EventArgs e)
{
Session["SelectedCss"] = ddlTheme.SelectedItem.Value;

Set the value of the session to be the value of the currently selected drop down list item (not the
displayed text). This value is the filename for the stylesheet.

427

Users and Applications

if (chkRememberStylePref.Checked)
{
HttpCookie CssCookie = new HttpCookie("PreferredCss");
CssCookie.Value = ddlTheme.SelectedItem.Value;
CssCookie.Expires = DateTime.Now.AddSeconds(20);
Response.Cookies.Add(CssCookie);

}
}

If the ChkRememberStylePref checkbox is checked when the button is clicked, a cookie is added to the
user's machine, specifying their preference for subsequent visits to the site. Again, we set a short expiry
time for this cookie so that you can see it working and also see what happens when it expires. You can
set this to be whatever time interval you prefer.

OK, so you have a session and a cookie – the next stage is to read those values in when the page is
loaded:

public void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
if (Session["SelectedCss"] == null)
{

If the Session does not yet exist, we set a default value for the selected stylesheet using the value in the
cookie if one exists on the client machine, or set it to a specific value if there is no cookie present:

if (Request.Cookies["PreferredCss"] == null)
{
Session["SelectedCss"] = "WroxUnited.css";

}
else
{
Session["SelectedCss"] = Request.Cookies["PreferredCss"].Value;

}
}

}

Now that we have applied the stylesheet, we need to manually alter the styling of the Calendar control
(if you skip this step, you'll notice that the calendar doesn't follow the stylesheet like the rest of the
page):

public void EventCalendar_DayRender(object sender, DayRenderEventArgs e)
{
if (((Hashtable)Cache["DateList"])[e.Day.Date] != null)
{
e.Cell.CssClass = "selecteddate";
e.Day.IsSelectable = true;

}
else
{
e.Day.IsSelectable = false;
e.Cell.CssClass = "normaldate";

428

Chapter 11

}
}
...
<DayStyle cssclass="normaldate"></DayStyle>
<OtherMonthDayStyle cssclass="othermonthdate"></OtherMonthDayStyle>

Finally, we declare some stylesheet information. Let's run through the values of just a couple of these
definitions:

BODY {
background-image:url(images/background.gif);
color:"#000000";
font-family: georgia;

}

The BODY tag controls the way the bulk of the page is rendered, including any background coloring or
styling, as well as the font color and style.

The .selecteddate style is the style added in the DayRender() event handler for the calendar:

.selecteddate{
font-weight: bold;
font-size: larger;
border: 3 dotted darkred;
background:#f0f0f0;

}

Notice how the styles here are similar to the styles used in the code for the DayRender() event handler
previously? Well, that's the joy of stylesheets! You've now centralized this code so that you only have to
alter it in one place.

Summary
We covered quite a bit of ground in this chapter. We used cookies, sessions, and applications and cached
data for enhancing performance. We also had some fun with interactive examples in this chapter that
demonstrated these concepts.

The important points covered in this chapter are:

❑ Cookies are a neat way to store small pieces of identifying data, but cannot be relied upon (users
may have them disabled in their browser preferences).

❑ Sessions are an extremely powerful way to store data that exists for as long as a user is
connected to the site, and you can use them to store data for online shopping examples.

❑ Application-scope objects are accessible by any page in an application and are a great way to
centralize objects that need to be shared.

❑ Caching data is crucial to improving application performance, but it's also similar to storing
data in the Application object. However, the Cache object has some neat features such as

429

Users and Applications

linking to a dependency, and you can control when items in the cache expire and react to the
events raised when those items expire.

The next chapter will look at encapsulating commonly used page elements into reusable sections known
as user controls. You'll also learn how the code-behind technique can be used to cleanly separate HTML
code from C# code.

Exercises
1. Add the text, Current Topic, and a label control to the Chat.aspx page above the main chat box

that contains the text of the current topic (stored in the Application object). Add some default
topic text to the Global.asax file, and also another box and button to the page, allowing you to
change the current topic.

2. Add the session initialization code from the Stylesheet example to your Global.asax file.

3. Add a link to the Merchandise.aspx page from the front page of the site, then apply the
stylesheet used in the Default.aspx page to all the other pages in the site. You will need to
add the <link ... > tag to the <head ... > section of each page, and you will need to ensure
that the session initialization code is correctly configured in the Global.asax file from the
previous exercises.

430

Chapter 11

12
Reusable Code for ASP.NET

So far, most of the ASP.NET pages we've built were quite specialized and self-contained. We've put
a lot of functionality into each page, but only retained the benefits of our hard work from one page
to another by copying the entire contents into a new ASPX page.

This isn't an ideal way to write functionality-rich Web sites, particularly if you're on a salary and
expected to deliver results before the next millennium! We'll now look at writing reusable code for
ASP.NET. Note that we're not just talking about objects here (although, yet again, objects play a
crucial role in the reusability story), but about code components – totally independent files that
encapsulate groups of useful functionality.

This chapter will look at two specific ways of using components in ASP.NET:

❑ User control: A Web form that is encapsulated in a reusable server control

❑ Code-behind: Used for separating HTML user interface design (color, aesthetics, and so
on) from page code

First, let's take a careful look at what is meant by components and consider the various advantages
they offer.

Encapsulation
As discussed in Chapter 7, an object essentially is a software construct that bundles together data
and functionality. You can define interfaces to use the functionality that an object contains, for
example, by creating methods and properties that can be accessed programmatically.

By hiding everything that doesn't concern task-specific usage of an object, implementation details
are hidden from the consumer, which makes it a lot easier to robustly plug an object together with
other objects. This makes it far easier for large teams of developers to build complex applications
that don't fall prey to lots of low-level weaknesses.

Crucial information about an object is held in its class definition, and any code with access to this class
should be able to instantiate an instance of this class and store it in an object. The way in which the
object works is encapsulated, so that only the public methods and properties are available to the
consumers of the class.

In a similar way, a code component is reusable code stored in a location that is accessible to many
applications. Like an object, it encapsulates functionality, but while an object is an implementation unit,
a component is a deployment or packaging unit. A component could be a single class or could hold
multiple class definitions. Figure 12-1 considers a quick example:

Figure 12-1

The first ASP.NET page creates a new object of type Class1 that resides within the Component1
component. The second ASP.NET page creates two new objects – one of type Class1 and one of type
Class2. Class2 also resides within Component1.

All code written so far has been held in specific ASPX pages. So, what's the point in having all this
reusable code if it can only be reached from within a single page? We need to break our reusable code
into separate components that we can reference from other ASPX pages.

A component packages a set of classes and interfaces to isolate and encapsulate a specific functionality,
and can provide a well-specified set of publicly available services. It is designed for a specific purpose
rather than for a specific application.

Components
A component is a self-contained unit of functionality with external interfaces that are independent of its
internal architecture. In other words, it is code packaged as a black box that can be used in as many
different applications as required.

432

Chapter 12

Microsoft Windows is an example of componentization. If you spend a lot of time working with
Windows, you're almost certain to have come across Dynamic Link Libraries (DLL) files. These files
contain components that define most of the functionality that you're likely to come across in Windows,
including that of any applications you've installed.

For example, every time you start an instance of Internet Explorer, you're actually running a small
program called iexplore.exe. This program accesses numerous DLLs that reside in your system
directory (C:\WinNT or C:\Windows), and most of the browser's functionality is defined within these
files. This directory also contains the Explorer.exe file, which is the executable for Windows Explorer.
Note that both these applications feature an identical Address bar, where you type in the URL of a Web
site or the path to a local directory. This user interface element has been implemented once and
packaged inside a component, so that it can now be used by both programs.

What's more, if you enter the URL for a Web page in the Windows Explorer address bar, you can view
that page and even browse the Web in the main pane without having to use iexplore.exe at all.
Likewise, you can use iexplore.exe to view and browse your files by entering a file path in the
address bar.

What we can deduce from this is that either there's a lot of duplication between the two executable files,
or that the two sets of browser functionality are actually implemented as standalone components that
can be accessed by both applications.

Another case to consider is the Microsoft Office suite, which features many components that are shared
among individual Office applications, as also throughout Windows. For example, there is a component
that handles the Save As dialog used by Word, Excel, Outlook, and the rest – this is why the Save As
dialog looks the same, no matter which application you run it from. This component is actually a
Windows component and the Office package uses it whenever you save or load a file. You can also use
this from any other application that lets you save or load files, for example, Internet Explorer or even
Microsoft Notepad as shown in Figure 12-2:

Figure 12-2

433

Reusable Code for ASP.NET

This component probably includes some presentation code for the buttons and code logic that governs
what happens when you click on each of these buttons. For example, changing the selection in the Save
option in dropdown box changes the files listed in the main window to show the contents of the selected
directory.

Throughout this book, the aspnet_isapi component has been working away behind IIS to process all
of our ASP.NET pages. When IIS detects a request for a page with a .aspx extension, it uses this
component to process the page and communicate with the .NET Framework.

DLLs are classified as system files and are hidden by default. They can only be seen in Windows
Explorer if the 'Show hidden files and folders' option in your Folder Options is set. The DLLs talked
about in these examples are COM DLLs. .NET DLLs differ slightly in what they contain and the
underlying technology, but the concept of componentization used is the same.

Why Use Components?
You should start thinking of components as small, self-contained nuggets of functionality that can
potentially make life a lot simpler when building any sort of non-trivial application. In components,
behind-the-scenes functionality is encapsulated so that only certain specific interfaces are available to the
programmer. It can contain class definitions that specify which objects can be created and which ones
can be used for behind-the-scenes code. The benefits of using components include:

❑ An individual component is a lot simpler than a fully-blown application. It is restricted to a set
of predefined functionality.

❑ As components are self-contained, they can be seamlessly upgraded (or fixed) simply by
replacing one component with another that supports the same interfaces (methods, properties,
and so on).

❑ Since using components is a good way of dividing your application into serviceable chunks,
sometimes the functionality of a component might be reusable in other applications. You could
even make it available to other programmers, or incorporate some of their components into
your applications.

Ultimately, components reduce the amount of code you write and make your code easier to maintain.
Moreover, you can even obtain components from third party component vendors, which is a very
popular way to enhance the functionality of ASP.NET sites. For example, if you need components that
utilize the drawing capabilities of .NET to their limit, and your existing knowledge does not cover this,
you can consider looking for a third-party solution that you can bolt onto your application.

Applying Component Theory to Applications
Let's look at how componentization relates to our application models. So far in this book, we've made
ASP.NET pages that do all sorts of things ranging from working with information input via a form to
connecting to a database and working with data. Throughout the book, you've been encouraged to keep
your code separated into distinct blocks – the dynamically generated content (ASP.NET code) and
presentation (HTML and various controls) – so that it's easy to change the look of your page without
affecting what it does. Web Matrix simplifies this process with its separate HTML and Code views.

434

Chapter 12

In addition, we've written a lot of C# code in our pages for accessing and working with data stored in a
central database. C# provides a framework of logical operations between the data and presentation code.

Let's consider an example. Imagine a team of developers creating a Web site that sells books. Some of
these developers would be concerned with the look, feel, and usability of the site. They'd be responsible
for the public image of the company on the Web, so they'd be more concerned about design, color, and
usability. This group will include designers who probably use HTML and graphics tools such as
Macromedia Flash for fancy loading screens. Another set of developers would be mainly interested in
providing nifty blocks of code that do cool things, such as such as validating the information entered
into a form by the customers when they click a button. These developers would also be responsible for
generating the code required to connect to the database of different books and preparing information on
individual titles for display on the site. The designers would then make use of that information and
display it in an aesthetically pleasing fashion.

If you were to constantly use ASP.NET pages that had all of the code and HTML on the same page, it
would be awkward for both sets of people to work on the site at once. Simple mistakes could easily be
made if people overwrote each other's code. In addition, every page would have to be hand-made, and
code would have to be copied, pasted, and amended as appropriate. If you made one change to the
functionality of your site, you'd have to remember to make that change to all the appropriate pages.

However, if you could separate out the HTML and design-focused code from the ASP.NET code blocks,
and then reuse bits of that code, it would be much easier to update a single piece of code to change
functionality – every page that used it would be automatically updated.

This style of work would make everyone happy – Web designers get to play with color and layout as
much as they like, and the ASP.NET developers can fine-tune their code without affecting the look and
feel of the site. Code separation and reuse implies that the designers and developers can work in
parallel, allowing applications to be developed much more quickly. This is called Rapid Application
Development.

This chapter will look at two ways of dividing code into reusable sections – user controls and code-behind
files. In the next chapter, we'll take this one step further and look at compiled components and custom
server controls.

Let's look at user controls, the first application of this code-separation concept.

User Controls
When the ASP.NET team first devised the concept of user controls, they were called pagelets, a term that
many people disliked. They were later renamed, but many felt that pagelet, or a mini-page, was a good
descriptive term for these controls.

User controls are Web forms encapsulated into a reusable control. They hold blocks of code that are
repetitively required by many pages in a Web site. For example, consider the Microsoft Web site where
each page has the same header style – a menu bar and a logo. This is a common feature for many Web
sites; our own http://www.wrox.com/ shown in Figure 12-3 has this kind of style, for example:

435

Reusable Code for ASP.NET

Figure 12-3

The Wrox site has the same kinds of menu bars visible on the screen at all times. These panes, panels, or
frames (depending on what you call them and how you code them) form just one example of what user
controls can provide.

Instead of having to copy and paste chunks of repeated code to provide the header on all of our pages,
we can create a simple user control that will have this code inside it, ready to be used. It's a way of
accessing the same functionality repeatedly throughout an application.

If you've ever programmed with ASP 3.0, you'll probably be familiar with include files. User controls
are similar to these files, but because ASP.NET is different from ASP 3.0, these controls are now created
and used in a different manner, and include advanced features such as caching (covered in Chapter 11).

User controls can also do a lot more than simply produce headers and footers. We can give these controls
the ability to look and function like ASP.NET Server controls. We can code properties so that the control
can adapt according to its set attributes. A user control can be used repetitively on a site when many
pages have similar blocks of functionality. Take, for example, a user login control. This control could be
created as a user control by using a couple of textboxes and labels.

Another example is a menu control that applies different formatting to a page link if the page is
currently being viewed, or displays a submenu for that page. A user control is saved with a .ascx file
extension, and can be called from any of the ASP.NET pages in our application by using just two lines of
code. The main principle of user controls is that you essentially cut out a portion of code from your

436

Chapter 12

ASP.NET page and paste it into a user control, where it will work just fine as long as the ASP.NET page
knows where to find the code and where to put it.

Let's look at a few pros and cons of using user controls in your applications. User controls are ideal for:

❑ Using repetitive elements (such as headers, menus, login controls, and so on) on pages

❑ Reducing the amount of code per page by encapsulating repetitive elements

❑ Improving page performance by using caching functionality available to user controls for
frequently viewed

However, some situations aren't ideal for using user controls. These include:

❑ Separation of presentation HTML from the code blocks (use code-behind, discussed later in this
chapter)

❑ Encapsulation of data access methods in a reusable package (use pre-compiled assemblies,
discussed in the next chapter)

❑ Creating a control that can be reused more widely than in just your application (use custom
server controls, discussed in the next chapter)

It's time to start looking at code. This chapter and the next will look at creating custom reusable elements
in ASP.NET pages, showing how these elements can all be plugged together with minimal fuss, to
produce a very clean .aspx file by hiding advanced functionality within reusable components. The next
example demonstrates user controls in action.In this example, we will discuss a very basic example (to
show the theory), which will be followed by a more complex example. We'll add a simple header control
to the default page of the Wrox United application.

Try It Out Our First User Control
1. Start by creating a new ASP.NET user control within the Wrox United folder as shown in Figure

12-4 and name it SimpleHeader.ascx (note the different file extension – .ascx, not .aspx):

Figure 12-4

437

Reusable Code for ASP.NET

2. In the new file, switch to HTML view – notice that there is hardly anything in the file when it's
first created! All you need to do here is add one line of code:

<h1>Wrox United</h1>

3. Save this file and reopen Default.aspx from the Wrox United application. We'll replace the
heading in this page with the newly created user control. To do this, Switch to All view – notice
the yellow highlighted lines (which aren't visible in any other view) at the top of the file. This is
where you need to add the first piece of code. Add the following highlighted line of code:

<%@ Page Language="C#" %>
<%@ Register TagPrefix="WroxUnited" TagName="SimpleHeader"

Src="SimpleHeader.ascx" %>

5. Switch back to HTML view. Replace the <h1> ... </h1> section with the highlighted code:

<form runat="server">
<WroxUnited:SimpleHeader id="HeaderControl" runat="server"/>
<table width="800">
...

6. That's about all you need to add to the code! If you switch over to the Design view as shown in
Figure 12-5, you'll see that the control has been added:

Figure 12-5

438

Chapter 12

7. It's time to try it out – run the page and you should see the familiar front page of the site as
shown in Figure 12-6:

Figure 12-6

Notice that the front page looks the same as before, and the new title has the correct style applied to it as
if it were still a part of the main page.

How It Works
Having completed this example, you won't see any difference in the rendered page when it is run and
the page that we built in the last chapter. However, the technique that we implemented behind the
scenes (changing the hard-coded HTML to a reusable control) can prove to be very useful, as you'll see
for yourself later in this chapter.

If you open up SimpleHeader.ascx in the All view in Web Matrix, you'll see the following:

<%@ Control Language="C#" %>
<script runat="server">

// Insert user control code here
//

</script>
<!-- Insert content here -->
<h1>Wrox United
</h1>

439

Reusable Code for ASP.NET

The default code that Web Matrix added is quite light. There are a couple of comments, an unused script
block, and a special directive at the top of the code. The first line of code tells the compiler that we wrote
this control in C#. The only code added to the page was the <h1>Wrox United</h1> line. This line of
code can be displayed on any code that uses this control.Let's look at the 'consumer' of our ASCX user
control, the Default.aspx page:

<%@ Page Language="C#" %>
<%@ Register TagPrefix="WroxUnited" TagName="SimpleHeader"

Src="SimpleHeader.ascx" %>

The first line of code links the ASCX control to the ASPX page. This tag must appear at the top of your
page, before any HTML code. Two attributes have been set for the Register directive:

❑ TagPrefix

❑ TagName

TagPrefix is the collective name for our group of controls, and TagName is the name of this specific
control. For example, to use an ASP.NET textbox control on an ASPX page, we use the syntax
<asp:textbox />. A TagPrefix precedes the colon and a TagName follows the colon. For an ASP.NET
textbox, <asp:...> would be the TagPrefix, and <...:textbox>would be the TagName.

In this example, the TagPrefix for the new user control was set to WroxUnited, and the TagName was
set to SimpleHeader. To use the control on a page, you use the <WroxUnited:SimpleHeader /> tag.
You could have a whole library of WroxUnited tags, each identified by a different TagName in the code.

The final part of the directive specifies the source file of the user control. Note that ASP.NET expects this
file to be in the same place as the .aspx file. If this is not the case, then add either a relative or an
absolute path here.Then we embedded the user control into the Default.aspx page:

<WroxUnited:SimpleHeader id="HeaderControl" runat="server"/>

Here you can see the WroxUnited:SimpleHeader syntax discussed earlier. The control is added to the
page using the TagName and TagPrefix specified in the attribute declaration at the top of the page.

Web Matrix can provide a preview of pages that include user controls, so you could see the output of the
user control that you have added in Design view. The result is that the page is rendered in exactly the
same way as before. The HTML code from the control is rendered within the HTML of the page.

While this user control could be implemented on every page in the site easily, this isn't exactly the most
exciting control that we could use. Let's work on a visually appealing header control that can be
displayed at the top of every page in the site.Let's create a user control that forms a header for the Wrox
United Web site. Our example used a few images, including a team logo and pictures of the players.
These images are available for download, along with the rest of the code for the book, from
http://www.wrox.com/.

Try It Out Wrox United – Header Control
1. Open up Web Matrix and create a new ASP.NET user control called header.ascx. Enter the

following code in the HTML view:

<table width="100%">

440

Chapter 12

<tr style="BACKGROUND-IMAGE: url(images/headbg.gif);"><td>
<table width="800">
<tr style="VERTICAL-ALIGN: middle">
<td style="TEXT-ALIGN: left" width="200">

</td>
<td style="TEXT-ALIGN: center" width="400">

</td>
<td style="TEXT-ALIGN: right" width="200">
<asp:AdRotator id="AdRotator1" runat="server"

Height="95px" Width="100px"
AdvertisementFile="faces.xml"></asp:AdRotator>

</td>
</tr>

</table>
</td></tr>

</table>
<h2><%= PageTitle %></h2>

2. Switch to Code view and enter the following line of text:

public string PageTitle = "";""

3. Save this file as header.ascx. You'll notice an ASP.NET AdRotator control in this file. This
control depends on the contents of an XML file. Let's create this. by creating a new blank XML
page called faces.xml and adding the following code to it:

<?xml version="1.0" encoding="utf-8" ?>
<Advertisements>

<Ad>
<ImageUrl>images/chrish_s_t.gif</ImageUrl>
<NavigateUrl>players.aspx</NavigateUrl>
<AlternateText>Player: Chris Hart</AlternateText>
<Impressions>80</Impressions>
<Keyword>ChrisH</Keyword>

</Ad>
<Ad>
<ImageUrl>images/chrisu_s_t.gif</ImageUrl>
<NavigateUrl>players.aspx</NavigateUrl>
<AlternateText>Player: Chris Ullman</AlternateText>
<Impressions>80</Impressions>
<Keyword>ChrisU</Keyword>

</Ad>

<Ad>
<ImageUrl>images/dave_s_t.gif</ImageUrl>
<NavigateUrl>players.aspx</NavigateUrl>
<AlternateText>Player: Dave Sussman</AlternateText>
<Impressions>80</Impressions>
<Keyword>Dave</Keyword>

</Ad>

441

Reusable Code for ASP.NET

<Ad>
<ImageUrl>images/john_s_t.gif</ImageUrl>
<NavigateUrl>players.aspx</NavigateUrl>
<AlternateText>Player: John Kauffman</AlternateText>
<Impressions>80</Impressions>
<Keyword>John</Keyword>

</Ad>

</Advertisements>

We'll examine how the AdRotator control works in just a few moments, but for now, add the
new header control to the default page by altering a couple of lines.

5. Change the declaration at the top of the page in Default.aspx:

<%@ Page Language="C#" %>
<%@ Register TagPrefix="WroxUnited" TagName="Header" Src="header.ascx" %>

6. Change the code that embeds the header control in the page as follows:

<form runat="server">
<WroxUnited:Header id="HeaderControl" runat="server"></WroxUnited:Header>
<table width="800">
...

7. Save the file again and view it in your browser. The page is shown in Figure 12-7:

Figure 12-7

442

Chapter 12

How It Works
In this example, we implemented another simple user control and introduced the AdRotator control.
This control is traditionally used to store banner advertisements and rotate the visible advertisement
according to a random algorithm. Each time the page is refreshed, an advertisement is selected for
display. The frequency with which each advert appears on the page depends on the weightage we give
to each advertisement. In this example, each ad is given equal weightage so adverts display for equal
intervals of time but in a random fashion whenever the page is refreshed.

In this example, the AdRotator control was used to display images of the members of the team (instead
of displaying ads) and to change the image on subsequent visits to the site. The information that controls
which images to display and how often to display them is stored in an XML file.

Let's break down the code and work through what we did. First, the header.ascx control:

<table width="100%">
<tr style="BACKGROUND-IMAGE: url(images/headbg.gif);"><td>

<table width="800">
<tr style="VERTICAL-ALIGN: middle">
<td style="TEXT-ALIGN: left" width="200">

</td>
<td style="TEXT-ALIGN: center" width="400">

</td>
<td style="TEXT-ALIGN: right" width="200">
<asp:AdRotator id="AdRotator1" runat="server"

Height="95px" Width="100px"
AdvertisementFile="faces.xml"></asp:AdRotator>

</td>
</tr>

</table>
</td></tr>

</table>
<h2><%= PageTitle %></h2>

This control is made up of one large table that contains a sub-table with three cells. We applied a style to
the single row in the parent table. The addition of a background image to this row resulted in this style
being applied as a solid background for the whole header. The inner table helps to organize the contents
of the header. The contents of the row were centered along a horizontal axis:

<tr style="VERTICAL-ALIGN: middle">

Then, each of the three cells were aligned to the left, center, or right of the vertical axis of each cell
respectively:

<td style="TEXT-ALIGN: left" width="200">

In the first two cells, a couple of static images were added. Notice that the image in the first cell is
wrapped in an HTML anchor (<A ... >) tag, which will turn the image into a hyperlink. In this case,
clicking the first image would take the user to the front page, thus making it a handy 'home' button that
users can use to return to the default page.

443

Reusable Code for ASP.NET

In the third cell, we added an AdRotator control:

<asp:AdRotator id="AdRotator1" runat="server"
Height="95px" Width="100px"
AdvertisementFile="faces.xml"></asp:AdRotator>

The control declaration is very simple, but the most interesting part is the link to the
AdvertisementFile XML file, which controls how AdRotator works. Let's look at an extract of that
file:

<?xml version="1.0" encoding="utf-8" ?>

<Advertisements>

<Ad>

<ImageUrl>images/chrish_s_t.gif</ImageUrl>

<NavigateUrl>players.aspx</NavigateUrl>

<AlternateText>Player: Chris Hart</AlternateText>

<Impressions>80</Impressions>

<Keyword>ChrisH</Keyword>

</Ad>

<Ad>

...

</Ad>

</Advertisements>

The settings that control what is displayed and what functionality is available each time the page is
loaded, are contained within an <Advertisements> ... </Advertisements> tag. Each displayed item
is defined within an <Ad> ... </Ad> element. In this example, you can see the element definition for
Chris Hart. Let's work through each of the tags for this player. The first tag specifies the image to be
displayed for this player. Here, the image is a small one with a transparent background (available along
with the code downloads for this book):

<ImageUrl>images/chrish_s_t.gif</ImageUrl>

The <NavigateUrl> tag specifies the path to which the browser will navigate when the image is
clicked. Here we specified the Players.aspx page:

<NavigateUrl>players.aspx</NavigateUrl>

The <AlternateText> tag controls the text that is displayed when the mouse pointer hovers over the
image, as well as the text that is read out to assist visually-impaired surfers:

<AlternateText>Player: Chris Hart</AlternateText>

The <Impressions> tag controls the weightage that affects how often this advertisement (or image) is
displayed as compared to other advertisements. In this example, all players have equal weighting, but
you could indicate a preference for your favorite player by increasing the number for that particular
image element:

444

Chapter 12

<Impressions>80</Impressions>

The last tag controls the keyword for the advert. This element is optional, but you can use it to filter
advertisements by including a KeywordFilter attribute to the <ASP:AdRotator ... > tag in your
ASP.NET pages:

<Keyword>ChrisH</Keyword>

The last piece of the puzzle involves including this header on the Default.aspx page. You only need to
make a couple of minor changes (including adding a directive at the top of the page) to specify that you
want to use the new header file in the page:

<%@ Register TagPrefix="WroxUnited" TagName="Header" Src="Header.ascx" %>

You can then use the control in the page by including the following line of code:

<WroxUnited:Header id="HeaderControl" runat="server"></WroxUnited:Header>

Before we move on, don't forget that you could include this header control on all the pages of the Wrox
United site in the same way. With this in mind, we added an interactive element to this header control.
Recall the last line in the Header control itself:

<h2><%= PageTitle %></h2>

This line of text will create a Heading 2 style paragraph, and add the text contents of the PageTitle
public variable to the page:

public string PageTitle = "";""

Take the Chat application as an example; add two lines of code to the Chat.aspx page to see this in
action (assuming that you've already added code to add the selected CSS theme to the page). First, at the
top of the page, add the following:

<%@ Register TagPrefix="WroxUnited" TagName="Header" Src="Header.ascx" %>

Then add the following tag (instead of the Heading 1 and 2 tags) to the HTML view of the page:

<form runat="server">

<WroxUnited:Header id="HeaderControl" runat="server" PageTitle="Online

Chat"></WroxUnited:Header>

<asp:TextBox id="txtChatBox" runat="server" TextMode="MultiLine"

Height="200px" Width="550px" ReadOnly="true"></asp:TextBox>

When you view this page in your browser, it should appear as shown in Figure 12-8:

Keep the total of all the values in the <Impressions> tags under 2 billion to avoid a
runtime error.

445

Reusable Code for ASP.NET

Figure 12-8

Heading 2 text has been included on the page, thanks to the PageTitle attribute in the control's
declaration. This is a neat trick for making header controls a bit more interactive, removing standard
code from the main pages, and also ensuring that the look and feel of all pages is maintained centrally.

Let's look at a slightly different type of user control. This control can be used as a navigation bar, like the
links on the left of the front page. An advantage is that it can be added to all the pages in the site with
minimal code reuse.

Try It Out Wrox United – Navigation User Control
In this example, we will take the ASP.NET hyperlink controls from Default.aspx along with the
associated code from the left-hand side of the page and place it in a user control.

1. Create a new user control called Navbar.ascx and add the following code:

<div class="navbar">

</div>

We will add code between these tags in just a moment.

446

Chapter 12

2. Reopen Default.aspx and head straight to the All view. Add the following highlighted line of
code to the top of the page:

<%@ Page Language="C#" %>
<%@ Register TagPrefix="WroxUnited" TagName="Header" Src="Header.ascx" %>
<%@ Register TagPrefix="WroxUnited" TagName="NavBar" Src="NavBar.ascx" %>

3. Back in HTML view, find the section that contains code pertaining to the left hand column of
hyperlinks (the first <td> element in the big layout table). This column contains the links and
the CSS selector. Copy this section and paste it into Navbar.ascx within the <div> tag:

<div class="navbar">
<p>
<asp:HyperLink id="lnkTeams" NavigateUrl="Teams.aspx" runat="server">
Teams</asp:HyperLink>

</p>
<p>
<asp:HyperLink id="lnkPlayers" NavigateUrl="Players.aspx" runat="server">
Players</asp:HyperLink>

</p>
<p>
<asp:HyperLink id="lnkGames" NavigateUrl="Default.aspx" runat="server">
Upcoming Games</asp:HyperLink>

</p>
<p>
<asp:HyperLink id="lnkResults" NavigateUrl="Default.aspx" runat="server">
Results</asp:HyperLink>

</p>
<p>
<asp:HyperLink id="lnkChat" NavigateUrl="Chat.aspx" runat="server">
Chat</asp:HyperLink>

</p>
<p>
<asp:HyperLink id="lnkMerchandise" NavigateUrl="Merchandise.aspx"
runat="server">
Official Merchandise</asp:HyperLink>

</p>
<hr width="95%"/>

<p>
Choose a theme:

<asp:DropDownList id="ddlTheme" runat="server">
<asp:ListItem Value="WroxUnited.css" Selected="true">Home
Kit</asp:ListItem>
<asp:ListItem Value="WroxUnited2.css">Away Kit</asp:ListItem>

</asp:DropDownList>
<asp:Button id="btnApplyTheme"

onclick="btnApplyTheme_Click" runat="server" Text="Apply">
</asp:Button>

<asp:CheckBox id="chkRememberStylePref" runat="server"

Text="Remember preference"></asp:CheckBox>
</p>
</div>

447

Reusable Code for ASP.NET

4. Now replace the original left hand column of the main layout table in Default.aspx with the
following:

<table style="WIDTH: 800px">
<tr>
<td style="VERTICAL-ALIGN: top; WIDTH: 200px">

<WroxUnited:NavBar id="NavigationLinks" runat="server">
</WroxUnited:NavBar>

</td>

5. You will need to copy the event handler for the button that applies different themes. Cut and
paste the btnApplyTheme_Click() method from Default.aspx and place it in the Code view
of Navbar.ascx:

void btnApplyTheme_Click(object sender, EventArgs e)
{
Session["SelectedCss"] = ddlTheme.SelectedItem.Value;

if (chkRememberStylePref.Checked)
{
HttpCookie CssCookie = new HttpCookie("PreferredCss");
CssCookie.Value = ddlTheme.SelectedItem.Value;
CssCookie.Expires = DateTime.Now.AddSeconds(20);
Response.Cookies.Add(CssCookie);

}
}

In the last part of this Try-It-Out, we'll add some styling to the control. We don't have a
stylesheet declaration in the code for this control, but that's not a problem. Once a control is
added to a page, the control will inherit the current stylesheet information from the parent
page.

6. Reopen WroxUnited.css and add the following style declaration to the bottom of the
stylesheet definition:

.navbar{
width:185px;
border-bottom-width:4;
border-bottom-color:#c0c0c0;
border-bottom-style:solid;
border-right-width:2;
border-right-color:#c0c0c0;
border-right-style:solid;
padding-right:1;
padding-bottom:0;
padding-top:0;

}

7. Run the page and you should now see the page looking pretty much the same as it did before,
except that it now has a border around the control as shown in Figure 12-9:

448

Chapter 12

Figure 12-9

8. Add the control to the Chat.aspx page in exactly the same way as before. First, add the
following line to the top of the page:

<%@ Register TagPrefix="WroxUnited" TagName="NavBar" Src="NavBar.ascx" %>

9. Then add the navigation bar control to the page. Note, however, that you need to add a layout
table to make space for this control:

<form runat="server">
<WroxUnited:Header id="HeaderControl" runat="server" PageTitle="Online Chat">
</WroxUnited:Header>

<table width="800">
<tr>
<td width="200" style="vertical-align:top;">
<WroxUnited:NavBar id="NavigationBar" runat="server">
</WroxUnited:NavBar>

</td>
<td style="vertical-align:top;">
<asp:TextBox id="txtChatBox" runat="server" TextMode="MultiLine"

Height="200px" Width="550px"ReadOnly="true">
</asp:TextBox>

...

449

Reusable Code for ASP.NET

<asp:Button id="btnClearLog" onclick="btnClearLog_Click"
runat="server" Text="Clear log"></asp:Button>

</td>
</tr>

</table>
</td>

</tr>
</table>
</form>
</body>

10. Once the control has been added, you can view the results of your hard work as shown in
Figure 12-10:

Figure 12-10

How It Works
Once again, we've seen how to encapsulate some useful code into a reusable control and add it to our
pages. Also, notice how we added a full event handler to our control, to handle the clicking of the
stylesheet selector button. Go ahead and try out this button for yourself, and you'll see the stylesheet
selection changes appropriately. You can then navigate back to Default.aspx and see that your
selection has been saved in the Session object. If you check the box, you can also add a cookie to the
client machine – if it allows cookies.

Just like in the previous examples, to add a user control to a page, you include two extra lines in the
.aspx page:

450

Chapter 12

<%@ Register TagPrefix="WroxUnited" TagName="NavBar" Src="NavBar.ascx" %>
...
...
<WroxUnited:NavBar id="NavigationBar" runat="server"></WroxUnited:NavBar>

In our example, the code in the ASP.NET user control also contained an event handler that was taken
from Default.aspx. This event handler is run whenever the button in the user control is clicked. It
changes in the same way as the stylesheet used on the page, on every page that includes the control. This
holds true as long as each of these pages contains a stylesheet reference in the HTML view of the page:

<link id="css" href='<%= (string)Session["SelectedCss"] %>' type="text/css"
rel="stylesheet" />

If you completed the exercises at the end of the previous chapter, you'll already have this statement at
the top of each of the pages in the site.

We're now going to move on to code-behind and how to neatly separate our code into separate,
manageable sections.

Code-Behind
When we were creating simple forms in Chapter 3, we simply created textboxes and worked with
buttons that sent data on a round trip to the server. To enhance these forms, we added code that handled
validating input, and so on. The extra code that enabled validation in small functions was put at the
bottom of our pages to avoid cluttering the presentation code. However, there is a cleaner way of doing
this – move all of this code into a code-behind file.

A code-behind file can be used to store all of the script blocks of an ASP.NET page. While it's perfectly
possible to include this in the same page as the presentation HTML code, separating out the script blocks
is a good way to separate presentation from the code. All the presentation code remains in one ASPX file
(or, if you've got a couple of user controls for repetitive presentation elements, it can partly reside in
ASCX files), and the code-behind code lives in a language-specific file. For example, a .cs file is a C#
code-behind file, and a .vb file is a Visual Basic .NET code-behind file. The ASPX file is the central point
for the application from which the code-behind file and any user controls are referenced.

Code-behind files are easy to deploy – all you need to do is copy over the code-behind file along with
the ASPX page. You can even compile your code-behind files into an assembly to reuse the functionality
contained within them over more than one page or application. In the next chapter, we'll introduce
compilation. You'll learn how to compile components and why this is a useful technique to employ in
your applications.

A code-behind file can be written in any .NET-compatible language, some good examples being C#
(which we've used throughout this book so far), VB.NET, and JScript .NET. This concept will be explored
in the next chapter, when we talk about .NET assemblies – don't worry if you haven't got any
experience with the other languages, as we'll stick with C# for the rest of this book.

In Visual Studio .NET, Web Forms applications are always created with a code-behind file, rather than placing code
on the same page. In addition, code-behind files in Visual Studio .NET are named the same as the ASPX page, with

451

Reusable Code for ASP.NET

an additional .cs or .vb on the end of the filename. For example, MyPage.aspx would have an associated C#
code-behind page named MyPage.aspx.cs.

Let's look at a simple example of a code-behind file. In this example we're going to create a very simple
Web Form with a textbox and a button, and give this simple arrangement extra functionality by adding a
code-behind file.

Try It Out Our First Code-Behind File
1. In Web Matrix, create a new C# class file and call it SimpleCodeBehind.cs. Set the class name

to MyCodeBehind and the namespace to Wrox as shown in Figure 12-11:

Figure 12-11

2. In this file, you will see the following generated code:

// SimpleCodeBehind.cs
//

namespace Wrox
{
using System;

/// <summary>
/// Summary description for MyCodeBehind.
/// </summary>
public class MyCodeBehind
{
/// <summary>
/// Creates a new instance of MyCodeBehind
/// </summary>
public MyCodeBehind()
{
}

452

Chapter 12

}
}

This basic code contains many comments to help you to place code in the file correctly. Let's
look at the file without comments for a moment to make it a bit clearer to see what we've got:

namespace Wrox
{
using System;

public class MyCodeBehind
{
public MyCodeBehind()
{
}

}
}

3. Notice how Web Matrix has put the using statement after the namespace declaration. Other
editors, such as Visual Studio .NET, often place the using statements before the namespace
declaration. This is really a matter of choice, since this code will compile and run no matter
which way we have the code. To demonstrate this, switch these around by changing the order
as follows:

using System;

namespace Wrox
{

4. Now change the code by adding the following highlighted lines:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
namespace Wrox
{
public class MyCodeBehind : Page
{
public TextBox Name;
public Label Message;

public void SubmitBtn_Click(object sender, EventArgs e)
{
Message.Text = "Hello " + Name.Text;

}
}

}

5. The public MyCodeBehind() method needs to be removed (notice that this method has
already been removed in the preceding code listing).

453

Reusable Code for ASP.NET

The public MyCodeBehind() method is a constructor, a type of method used when creating a class.
However, we don't need this method in a code-behind file.

6. Create a new ASP.NET page called SimpleCodeBehind.aspx, and save it in the same directory
as the code-behind page. Switch to the All view and add the following code:

<%@ Page Language="C#" Inherits="Wrox.MyCodeBehind" Src="SimpleCodeBehind.cs"
%>

<html>
<head><title>Simple Code-Behind Page</title>
</head>
<body>
<form runat="server">

Please enter your name then click the button below:

<asp:textbox id="Name" runat="Server" />
<asp:button text="ClickMe!" OnClick="SubmitBtn_Click" runat="server" />

<asp:label id="Message" runat="Server" />

</form>
</body>
</html>

7. Run the ASP.NET page. You should see the page in your browser as shown in Figure 12-12:

Figure 12-12

How It Works
This example did a very basic job of passing information from the .aspx file to the .cs file and back
again. We entered a name into a textbox on the .aspx page. The .cs code-behind file took this name
and passed it into a string along with some text, and then outputted this string to a label control that was
sitting almost invisibly on our page. Let's look at the stages step-by-step to fully understand this process.

<%@ Page Inherits="Wrox.MyCodeBehind" Src="SimpleCodeBehind.cs" %>

This line of code is essential when working with code-behind. The first part of the statement specifies
that we will be using the functionality in the MyCodeBehind class, which is a member of the Wrox

454

Chapter 12

namespace. The page will inherit the functionality defined in the MyCodeBehind class (refer to Chapter 7
for more information on inheritance). The second part of this statement specifies where to find the class
– in this case, in the SimpleCodeBehind.cs file. Only one of these declarations can be used for any
given ASPX page.

The rest of this ASP.NET page is simple with a textbox, a button, and a Label control. These controls
are the same as the ones introduced in Chapter 3:

<form runat="server">

Please enter your name then click the button below:

<asp:textbox id="Name" runat="Server" />
<asp:button text="ClickMe!" OnClick="SubmitBtn_Click" runat="server" />

<asp:label id="Message" runat="Server" />
</form>

Let's move on to the code-behind file and see how this works. The syntax in this file looks different from
the sort of code used so far, because this is a purely C# .NET file and not an ASP.NET page.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

This first block of code lays the foundation for the code-behind file. These three lines of code import
namespaces from the .NET Class Library. These namespaces are used to access all of the functionality of
ASP.NET pages. Actually, these are loaded by default into any ASP.NET page, though we never get to
see this because it's all done behind the scenes. As mentioned in Chapter 7, these namespaces provide
easy access to the classes they contain. To make use of one of their classes, you can simply refer to the
class by name instead of typing out the full path that includes all of the namespace.

The next line of code assigns a Namespace and names the class in the code-behind file. If you remember,
the first line in our ASP.NET page mentioned Wrox.MyCodeBehind. Well, this is what the ASP.NET page
is looking for – the MyCodeBehind class in the Wrox namespace.

namespace Wrox
{
public class MyCodeBehind : Page
{

The second part of this line indicates that the MyCodeBehind class is inheriting functionality from the
ASP.NET Page object. This means, "Take the Page class, combine it with the one defined below, and call
it MyCodeBehind."

Essentially, both inheritance statements in the two files are like a kind of glue – they make the two files
stick together as if they were one single file. This statement is essential when working with code-behind
on an ASP.NET page.

public TextBox Name;
public Label Message;

455

Reusable Code for ASP.NET

These lines are simply variable declarations and mimic the names of the controls on the ASP.NET page.
You need to use this technique for any code-behind file – all controls on a page that you want interacting
with the code-behind file need to have a corresponding local variable.

public void SubmitBtn_Click(object sender, EventArgs e)
{
Message.Text = "Hello " + Name.Text;

}
}

}

We then move on to the practical details of the code-behind file. The preceding block of code is where
the action happens. A method is created to handle the onClick() event of our Click Me! button. A
welcome message string is built by adding some standard text to the string object, and then appending
the value entered and held in the textbox by the user. The text attribute of the Label control can then
be changed to display the welcome message that is constructed whenever the button is clicked.

This example was very simple, and it didn't really show off the benefits of using code-behind to the
fullest. However, it did illustrate the principle of encapsulation. This technique can be used to
encapsulate a lot of logic to deal with user input, thereby separating the jobs of the designer and the
programmer, which is one of the goals of ASP.NET.

Code behind can be used on any ASPX page with a <script ... > block on it. The code portion of the
page can be cleanly moved out to the code-behind file.

If you use or intend to use Visual Studio .NET, you will notice that this is the default behavior. Using
code-behind is good practice since it neatly separates presentation from code – using it outside of the
Visual Studio .NET environment is optional but is still a good idea.

The key steps to remember when switching to using code-behind are:

❑ Reference the code-behind file from your ASPX page by using the single line at the top of the
page, specifying the class that the ASPX page is inheriting from, and the source file that contains
that class definition.

❑ In the code-behind file, ensure to add : Page on the same line as the class definition, after the
name of the class.

❑ Again, in the code-behind file, add variable declarations corresponding to each of the controls
on the page that you will be working with programmatically. Ensure that you make each
variable Public in scope.

❑ Finally, in the code-behind file, enter the code that formerly resided in the script block on the
ASPX page. Ensure that all the essential Imports statements are added at the top of the page to
reference the appropriate class libraries so that the code runs as intended.

It's worth noting that the principle of code-behind can be applied to user controls in exactly the same
manner as to normal ASPX pages. All you need to do is add a statement to the top of the ASCX control,
with the same syntax that the ASPX statement used in the preceding example, to link the .ascx to an
associated .ascx.cs code-behind file.

456

Chapter 12

Let's try using code-behind in the Wrox United site. In the next example, we'll look at how we could
separate the script code contained in the Default.aspx page into a separate file.

Try It Out Using Code-Behind in Wrox United
1. Create a new class file called Default.aspx.cs with a namespace of WroxUnited, and a class

name of DefaultCodeBehind.

2. In this file, you will need to copy over all the lines of code from the Code view of
Default.aspx. These are mostly methods and one public hashtable. These lines are not
highlighted in the following listing (we've not included all the code from the methods in this
listing; just their signatures, to give you an idea how many methods we're moving). The
highlighted lines below need to be added to the code-behind page to make it work:

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Caching;
using System.Collections;
using System.Configuration;

namespace WroxUnited
{
public class DefaultCodeBehind : Page
{

public TextBox txtEmailAddress;
public Label lblRegister;
public Button btnRegister;
public Panel pnlFixtureDetails;
public Repeater MatchesByDateList;
public Calendar EventCalendar;
System.Collections.Hashtable DateList;

public void Page_Load(object sender, EventArgs e)
{
...

}

public void EventCalendar_DayRender(object sender, DayRenderEventArgs e)
{
...

}

public System.Data.IDataReader Dates()
{
...

}

public void EventCalendar_SelectionChanged(object sender, EventArgs e)
{
...

457

Reusable Code for ASP.NET

}

public string Venue(string OpponentLocation, int MatchVenue)
{
...

}

public System.Data.IDataReader GamesByDate(DateTime date)
{
...

}

bool CheckFanEmailAddresses(string fanEmail)
{
...

}

public void btnRegister_Click(object sender, EventArgs e)
{
...

}

public int AddNewFanEmail(string fanEmail)
{
...

}
}

}

Notice that all the methods are marked as public.

3. Once you've created the code-behind page, save the file. Ensure that you have removed all code
from the Code view of the Default.aspx page, and then add the following line to the top of
the page while in the All view:

<%@ Page Inherits="WroxUnited.DefaultCodeBehind" Src="Default.aspx.cs"
Language="C#" %>

That's it! Run the page and you shouldn't notice any difference – the page will look and feel the
same, but we now have two files that store the code for the page instead of one.

How It Works
This example is a great demonstration of moving a large amount of code to a code-behind page. The
main additions that had to be made were the inclusion of some additional namespace directives at the
top of the file and declarations referring to the controls on the page:

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Caching;
using System.Collections;
using System.Configuration;

458

Chapter 12

namespace WroxUnited
{
public class DefaultCodeBehind : Page
{

public TextBox txtEmailAddress;
public Label lblRegister;
public Button btnRegister;
public Panel pnlFixtureDetails;
public Repeater MatchesByDateList;
public Calendar EventCalendar;
System.Collections.Hashtable DateList;

Once these additions were made, all that remained was to transfer all the methods, ensuring that each
method was marked as public.

If you were to now switch back to Default.aspx, you will find that you can't flick to the Code view to
edit the methods that handle events like in the past. Instead, you have to open the code-behind file and
edit it separately. This is a bit of a pain – why bother separating the code?

Well, for creating Web applications a natural progression is to switch to Visual Studio .NET from Web
Matrix. Visual Studio .NET uses code-behind by default. Using code-behind is also good practice if you
have multiple developers working on an application, because it forces you to keep presentation code
separate from functionality code, leaving you with cleaner and more understandable code.

Summary
This chapter introduced two methods of encapsulating sections of code into separate files, so that our
code remains as maintainable as possible:

❑ User Controls: Designed to hold code for sections of ASPX files that are repeated on numerous
pages in a site

❑ Code-behind: Designed for containing all of the script code in one file, leaving the ASPX file
purely for the HTML and control placement to be done by designers

These two methods are relatively straightforward, and simply involve moving code into different areas
to improve readability, reduce complexity, and reduce errors caused by mixing presentation and script.

The next chapter will look at more advanced methods of encapsulating code functionality into reusable
components, namely .NET assemblies and custom server controls.

Exercises
1. Add the header control and navigation bar control to each page in the site. Remember to add

the following code at the top of each page:

459

Reusable Code for ASP.NET

<%@ Register TagPrefix="WroxUnited" TagName="Header" Src="Header.ascx" %>
<%@ Register TagPrefix="WroxUnited" TagName="NavBar" Src="NavBar.ascx" %>

2. Move the C# code for each page (visible in the Code view in Web Matrix) into an associated
code-behind file, making sure each control has a corresponding declaration in the code-behind
file. Note that the Players.aspx page will be a bit more tricky. Firstly, you will need to create a
folder (if it doesn't already exist) within your WroxUnited directory called bin. Into this
directory, you need to copy the following file: C:\Program Files\Microsoft ASP.NET Web
Matrix\v0.6.812\Framework\Microsoft.Matrix.Framework.dll

This file contains the code that the guys at Microsoft provided for you to use if you want to
deploy any of the Web Matrix custom controls, like the MxDataGrid that we used in the
previous chapters. You'll learn more about .dll files and the bin directory in the next chapter.

3. Move the C# code from the navbar.ascx control (which contains an event handler) into an
associated .ascx.cs code-behind file, following exactly the same technique that you used for
the other pages on the site.

4. Create a user control for the Merchandise.aspx page that enables you to easily add new items
to the list. You will need to copy a row of the table from Merchandise.aspx into a new ASCX
user control file. Make the properties on the image and button controls generic, then add some
public properties to programmatically set the values on each web control in the user control.

Here's some code to get you started. Firstly, here's some code that is currently in
Merchandise.aspx that could be placed in the control:

<tr>
<td>
<asp:Image id="imgCap" runat="server" Height="100px"
ImageUrl="images/shirt.gif" Width="100px"></asp:Image>

</td>
<td>
The Wrox United shirt, available in one size only</td>

<td>
<asp:Button id="btnBuyShirt" onclick="AddItemToBasket" runat="server"
Width="100px" CommandArgument="Shirt" Text="Buy a shirt!"></asp:Button>

</td>
</tr>

If you change the ImageUrl of the image, the Text of the button, and the CommandArgument to
empty strings "", then you can set those in the Page_Load() event. Consider the previous
example – the word 'shirt' features in all three of these attributes, so you could add a property
like the following that would store the name of the item (in this case, shirt), then use this value
to construct the appropriate values for these attributes:

private string _itemName = "";

public string ItemName
{
get{return _itemName;}
set{_itemName = value;}

}

460

Chapter 12

Here's an example of using this property to update another private variable:

if (_imageName == "")
{
_imageName = _itemName & ".jpg";

}

This could be used, for example, to provide a default image name.

You would also need to move the AddItemToBasket method to the control because the buttons
now reside within this control. Since the name of the session is globally available, it's possible to
set or update session values from the control just as easily as from a page.

You will need three properties in all. The first, ItemName is shown in the preceding code. You
can include an optional property, to override the default value (in case you want to use a .gif, for
example). Finally, you need to store the text that describes the item in a Text property, and
include the value stored in this property in the page using the following syntax:

<td><%=Text%></td>

All that remains then is to add the item to the page:

<WroxUnited:Product id="Shirt" runat="server"
ItemName="Shirt"
ImageName="shirt.gif"
Text="The Wrox United shirt, available in one size only"/>

5. Move the new code in Product.ascx into a code-behind file.

461

Reusable Code for ASP.NET

13
.NET Assemblies and

Custom Controls

In the previous chapter, we discussed user controls and code-behind as two different ways to
break up our code into manageable sections. These two methods are used for encapsulating
commonly used chunks of ASP.NET code, and for separating the script sections of our page into
separate files. In this chapter, we will concentrate on some more advanced techniques of
componentization, namely, creating .NET assemblies and custom server controls.

.NET gives us the ability to pre-compile code components into a central location that we can then
access from all the pages in a site. Each component can contain one or more classes encapsulated
into a compiled assembly. .NET assemblies can be written in any .NET-compliant language, and are
pre-compiled into a file with a .dll extension. ASPX pages can then reference this file to gain
access to the classes and methods contained within the assembly.

An assembly can store one or many different components within one physical file on your system.
You can create a separate assembly for each component if you require, enabling you to distribute
your components separately. Alternatively, you can compile all of your components into one
central assembly if you prefer to have fewer files to distribute with your application.

Assemblies can contain any kind of required functionality. They can be used, for example, to store
a set of classes relating to accessing and working with data, all compiled into one file. Or they can
even store a custom server control, which is designed to render a custom user interface element
that can be used on an ASPX page as easily as an ASP.NET Datagrid control. An assembly is a
.NET construct that contains reusable functionality required in your applications, and applies to
all kinds of .NET applications, not just Web Forms.

.NET assemblies are groups of related classes and interface definitions encapsulated
in a compiled file that can be accessed programmatically from ASP.NET Web Forms,
Windows Forms, or any .NET application.

In this chapter, we will consieder:

❑ What assemblies are and how they work, including details of how to compile assemblies.

❑ Creating an assembly that contains a data access component.

❑ Creating a simple custom server control that adds a Match of the Day message to the site.

❑ Customizing the default calendar control using a composite control.

We'll take a closer look at assemblies after we consider when and why we'd want to use them.

Three-Tier Application Design
Let us take the concept of separating content from presentation one step further. Once we've separated
the elements of an application into distinct, purpose-specific categories (often referred to as layers), it
becomes much easier to structure them efficiently. In many respects, everything we've said in the book
so far about structured code has served as a preparation for what we're about to do – breaking out this
application logic code into separate components that we can use both here and elsewhere. So, in
traditional application design terms, our ASP.NET pages comprise the top Presentation Layer, a database
stores content in a bottom Data Layer, and components sit in between to marshal the flow of data
between them. These components provide the core logic of our application, and are collectively referred
to as the Application Logic layer. Figure 13-1 represents the three layers we've just described:

Figure 13-1

464

Chapter 13

An application built using this sort of architecture is often referred to as a three-tier application. How do
these fit together? Consider a Web site offering low priced holidays. A user might click a button on this
Web site that says, "Show me all available hotels in Gran Canaria," which in a two-tier situation, would
call a class in one of our application logic components that is connected to the database and query it for
all hotels matching the criterion. In a three-tier scenario, this application logic may talk to data logic that,
in turn, talks to the database. In either case, we're looking for hotels in Gran Canaria, but we could
expand this to match hotels available on a certain date, or hotels of a certain style.

The three tiers in generic three-tier applications can be broken down as follows:

❑ Data: This could be any type of data store, for example, a database, an XML file, an Excel work
sheet, or even a text file.

❑ Application Logic: This contains all the code that is used to query the database, manipulate
retrieved data, pass data to the user interface, and handle any input from the UI.

❑ Presentation: This comprises all user interface code, containing a mixture of static HTML, text
and graphics, user controls, and server controls.

Let's see how this relates to the concepts we've met so far, and how assemblies and server controls fit
into the mixture.

ASP.NET Application Design
User controls are used to encapsulate frequently used sections of ASP.NET code into separate files to
improve manageability and make it easier to reuse code within one application. In the previous chapter,
we chose to use code-behind files to separate the code that processed our Web Form. Consider
Figure 13-2:

Figure 13-2

465

.NET Assemblies and Custom Controls

In this structure, each ASPX page as well as a user control can have a code-behind file. These user
controls can be used by any of your ASP.NET pages. You can create data access components stored in
assemblies that can be used by any of your user controls, ASP.NET pages, or custom server controls. You
can also create custom server controls that can be used again by any of your user controls or ASP.NET
pages. Your data access code can be accessed and used in your other assemblies, code-behind files,
ASP.NET pages, server controls, or user controls, so the traditional three-tier application design
paradigm doesn't really seem so clear. However, once you decide how you're going to structure your
application, the process becomes much clearer:

1. First decide what part of your code does what. One scenario is that you keep your ASPX files
purely for HTML and control elements.

2. Use code-behind to handle any page-level events (the clicking of a button, or the loading of a
page).

3. You can then apply exactly the same process to the user controls, separating presentation and
code as appropriate.

4. Create data access components that plug in to the ASPX and ASCX pages, which contain all
your data connectivity and data processing code.

5. Finally, server controls could also make use of data-handling classes from another assembly, so
you're left with a very interlinked but compact model. This process is entirely up to you.

You could theoretically keep all of your code in ASPX pages. This isn't recommended, given the benefits
that encapsulating functionality into different components brings to your applications, including
increased ease of manageability, increased portability, and so on.

Since we've looked at the user interface design using ASPX and ASCX files, and we've seen how we can
encapsulate page logic into a code-behind file, let's look at how to encapsulate some of our application
logic into a .NET assembly.

.NET Assemblies
An assembly is a logical grouping of functionality contained in a physical file. Assemblies are designed
to solve the problem of versioning and make your code extremely simple to deploy. An assembly
consists of two main parts:

❑ The Assembly Manifest: This contains the assembly metadata. This can be thought of as a table
of contents that describes what's in the assembly and what it does, including the version
number and culture information. It is generated when the assembly is compiled.

❑ The MSIL (Microsoft Intermediate Language) code: The source code (pre-compilation) is
written in a .NET language, for example, VB.NET, or C#. At compile time, this source code is
translated into MSIL code, which is the language .NET uses to communicate.

In the remainder of the chapter, we'll look at some examples of what can be put into assemblies. This
ranges from very basic components to components containing classes that can be used to work with

466

Chapter 13

data. We'll also look at a simple custom server control that renders its own custom user interface. We'll
do this by writing code in C#, compiling it into DLLs using the C# compiler (csc.exe), and calling it
from our applications. We'll also look at how we can create an assembly in a different language that can
be used in exactly the same way, so the language difference is transparent in the end result.

In our first ASP.NET assembly, we'll create a component with just one method – the SayHello()
method.

Try It Out Our First ASP.NET Component
To start with, let's create a simple component outside of the Wrox United application to demonstrate
how components can be created and compiled into assemblies.

1. Ensure that you have a Chapter13 folder within your BegASPNET11 directory and then open
up Web Matrix.

2. Create a new Class file called HelloWorld.cs. Set its Class property to HelloCS, and its
Namespace property to WroxComponents as shown in Figure 13-3:

Figure 13-3

3. The file will be created when you click OK. The following code is generated automatically:

// HelloWorld.cs
//

namespace WroxComponents
{
using System;

/// <summary>
/// Summary description for HelloCS.
/// </summary>

467

.NET Assemblies and Custom Controls

public class HelloCS
{
/// <summary>
/// Creates a new instance of HelloCS
/// </summary>
public HelloCS()
{
}

}
}

4. We need to make one modification to finish this example. Add the following method to the
code:

// HelloWorld.cs

//

namespace WroxComponents

{

using System;

/// <summary>

/// Summary description for HelloCS.

/// </summary>

public class HelloCS

{

/// <summary>

/// Creates a new instance of HelloCS

/// </summary>

public HelloCS()

{

}
/// <summary>
/// Custom method that returns a string
/// </summary>
public String SayHello()
{
return "Hello World - I'm a C# component!";
}

}
}

5. Save the file. Let's pause for a moment and look at how this code works before continuing with
the example.

How It Works
Let's take a brief look at what this simple component does, concentrating on the lines of code, ignoring
the comments (lines that begin with // or ///). The first line qualifies all of the following classes into a
namespace that we'll use to corral together components under a single banner:

namespace WroxComponents
{

468

Chapter 13

You can use the same namespace for each of your components – as long as each method name in each
component is unique, this is a good way of combining specific groups of functionality.

In this example, we've used the WroxComponents namespace. In the Wrox United application, we'll
use WroxUnited as the root namespace for all of the components in the later examples.

Once the component is compiled, other pages and applications can import this namespace, and all the
classes it contains can easily be accessed. It doesn't matter which DLL contains each class since ASP.NET
automatically loads all classes for each application, as long as they reside in a specific location (the /bin
directory) when the application is started.

The next line declares the first and only class in our component called HelloCS. Once you have
imported the WroxComponents namespace into an ASPX page and created a new instance of this class,
you will be able to access the HelloCS class from within an ASP.NET page:

public class HelloCS
{

Speaking of creating instances of the class, let's look at the next part of the code:

public HelloCS()
{
}

The HelloCS() method shown in the preceding code snippet is a constructor, and is called whenever a
new instance of this class is created. If you wanted to, you could add code here to set some default
properties or to run specific initialization code. Let's move on and look at the custom method added:

public String SayHello()
{
return "Hello World - I'm a C# component!";
}

These lines are where our method is created. The SayHello() method is declared, and we specified that
it will return a string. By declaring this function as public, we're making it available to the outside
world as an interface. We'll be able to call a SayHello() method on any object derived from this class
once we're in our ASPX page. We're going to be simplistic and explicitly tell our function to return the
text Hello World – I'm a C# component! whenever the method is called, but in a more complex component,
you can obviously do a lot more, as you will see later.

The last lines of code in our component simply close up the class declaration and the namespace
declaration:

}
}

This component must now be compiled, and the compiled version must be saved to the bin directory of
your Web application. If the directory isn't there already, don't worry – the code you will use to compile
the component will create this automatically.

469

.NET Assemblies and Custom Controls

Previously, when using COM, any components that were created had to be registered with the system
registry. With .NET, all you need to do is save your files in the right place and compile them.

Let's take a closer look at what is meant by compile before compiling the component.

What Is Compilation?
When we create an ASP.NET page, we write code using an editor, and save the code as an ASPX file
somewhere on our system. When that ASPX page is requested, the code is compiled into Intermediate
Language (IL) behind the scenes when the page is first run and stored in a cache until the Web server is
restarted, or until the page (the ASPX file) has been changed in some way (for example, if you added
some code and re-saved the file). The cached Intermediate Language code is then Just-In-Time (JIT)
compiled into the native machine code at runtime.

When we use an ASP.NET page, we suffer a performance hit the first time the page is accessed because
the page has to be compiled to IL, and then JIT compiled. Once the page has been accessed, the process
of accessing the page is much quicker because all that needs to be done then is for the JIT compiler to
run. However, when we create a .NET assembly, we do the compilation to IL in advance, saving us from
even more of this initial performance hit. This means that components are slightly faster than an ASPX
page the first time a page is run – though subsequent page hits will perform about the same.

The compiled assembly is more discreet than the raw source code we put into it. It's much harder now to
look through the compiled code and see how the classes are structured in the assembly without using a
specialist tool. Simply opening the DLL in Microsoft Notepad will display gibberish, so alternative
methods have to be used to see the code in its true IL form (they are outside the scope of this book).

Now let's move on to compiling our first component.

Try It Out Compiling Our First ASP.NET Component
To compile our component, we need to create a file that will perform this compilation by running a
series of specified commands.

1. Open Notepad, type in the following code, and save the file in the
C:\BegASPNET11\Chapter13 folder as Compile.bat. Remember to set the Save as type: to All
Files, otherwise the file will be saved as a text file and not a batch file. We can use this batch file
to execute the shell commands within it:

cd c:\BegASPNET11\Chapter13
md bin
csc /t:library /r:System.dll /out:bin/HelloWorldCS.dll HelloWorld.cs
pause

2. Double-click this file and you should see the following window:

470

Chapter 13

Figure 13-4

We'll examine how this works in just a moment. However, if you received any error messages when you
ran this command, and the output looked different from what you can see in Figure 13-4, double check
your code to make sure it's typed in correctly (especially the spacing in the .bat file).

If this doesn't solve your problem, or if you're getting an error that reads System Cannot find file csc.exe,
you will need to check whether your environment variables are configured correctly. There is a tutorial
on how to do this available with the code download from www.wrox.com.

How It Works
What did this do? Let's first look at what's been created, and then at the compilation batch file in detail.

If you browse your hard drive and look at the C:\BegASPNET11\Chapter13 directory, you'll notice a
new folder called bin that was created as one of the steps we performed when running the compile file.
Open the bin folder and you'll notice that there's the HelloWorldCS.dll file in here as shown in Figure
13-5. This is our compiled assembly, ready for use!

Figure 13-5

Let's look through the compilation batch file, step-by-step. First, here's the code we entered:

cd c:\BegASPNET11\Chapter13
md bin
csc /t:library /r:System.dll /out:bin/HelloWorldCS.dll HelloWorld.cs
pause

471

.NET Assemblies and Custom Controls

Let's start at the beginning. The first line of code sets the active directory for the following commands to
be the directory containing the code we're using. This line means that you could place the compile.bat
physical file anywhere on your system and run it successfully:

cd c:\BegASPNET11\Chapter13

The next line of code creates a subdirectory (if one doesn't already exist) that will contain the compiled
code. This location is quite important in that it must be named bin and be a folder within the root of a
Web application for the assemblies to be loaded correctly:

md bin

In this example, the application directory is C:\BegASPNET11\Chapter13, and this line of code will
create a folder within here that resides at C:\BegASPNET11\Chapter13\bin.

The next line of code actually performs the compilation. The first part of the command is the name of the
C# compiler – csc.exe:

csc /t:library /r:System.dll /out:bin/HelloWorldCS.dll HelloWorld.cs

The next part provides additional information that the compiler needs:

csc /t:library /r:System.dll /out:bin/HelloWorldCS.dll HelloWorld.cs

This is known as a switch or an option. We're telling the C# compiler that when it compiles, we want it to
produce a library file or assembly, and not an executable. If we'd not included this switch, the default
value would have been used instead – and the compiler would have attempted to produce an
executable.

Attempting to create an executable file in this situation would have failed since EXE files must be coded
so that they have a method called Main(). This method is called when the EXE is run. Our code doesn't
have this method in it, so we would see an error.

Next we have a reference to the main .NET library file, System.dll:

csc /t:library /r:System.dll /out:bin/HelloWorldCS.dll HelloWorld.cs

The /r: switch indicates to the compiler that any DLL files immediately following this switch are to be
referenced in the final compiled file, because they contain functionality that is necessary to the compiled
assembly. The assembly referenced in this example, System.dll, is one of the core .NET assemblies that
are installed along with .NET itself. In this example, the C# file that was compiled doesn't actually use
any of the System classes, so this part could have been omitted, but to demonstrate a more complete
example, we've kept this reference in:

csc /t:library /r:System.dll /out:bin/HelloWorldCS.dll HelloWorld.cs

472

Chapter 13

This statement includes the /out: switch, which indicates that the code that immediately follows it is
the name and location of the compiled assembly. In this case, we're creating HelloWorldCS.dll and
placing it in the bin directory that we created earlier.

The last part of the statement is the name of the file we are compiling, which in our case is
HelloWorld.cs:

csc /t:library /r:System.dll /out:bin/HelloWorldCS.dll HelloWorld.cs

The last statement in the file, pause, tells the operating system to wait for the user to press a key before
closing the command prompt window that's popped up. This gives us the chance to wait and see what
happens before the window disappears so we know that our code executed correctly, or if not, get a
chance to read the error message.

When we're working with the .NET command line compiler, there are several options available to us
other than those we've already seen. When we compiled our component, we used the /t parameter to
specify the type of output the compiler would create – in our case, we used /t:library switch to
produce a DLL library file. This option, a shortened form of /target, can also take the following
arguments:

Two other compilers supplied by default with the .NET Framework are used to compile C# and
JScript.net components. These compilers are in the same directory as the csc.exe compiler, and are
called vbc.exe and jsc.exe respectively. They take the same parameters.

Option Effect

/target:exe Tells the compiler to create a command-line executable program. This is
the default value, so if the /target parameter is not included, an EXE
file will be created.

/target:library Tells the compiler to create a DLL file that will contain an assembly
consisting of all source files passed to the compiler. The compiler will
also automatically create a manifest for this assembly.

/target:module Tells the compiler to create a DLL, but not to create a manifest for it. This
means that in order for the module to be used by the .NET Framework,
it will need to be manually added to an assembly using the Assembly
Generation tool (al.exe). This tool allows you to create the assembly
manifest information manually, and then add modules to it.

/target:winexe Tells the compiler to create a Windows Forms application. This is not
covered in this book. (For more information about Windows Forms, you
can refer to Professional Windows Forms, Wrox Press, ISBN 1 8610 0554 7.)

473

.NET Assemblies and Custom Controls

Accessing a Component from within an ASP.NET Page
So far, we have a simple component that contains code that displays Hello World – I'm a C# component!
Let's access this from a simple ASP.NET page.

Try It Out Using a Compiled Component
1. Create a new ASP.NET page in Web Matrix called HelloWorldExample.aspx in the

C:\BegASPNET\Ch13 directory. In HTML view, enter the following code:

<form runat="server">
<p>Our component says:</p>
<p><asp:Label id="lblMessageCS" runat="server" /> """"</p>

</form>

2. Switch to Code view and enter the following code:

public void Page_Load()
{
WroxComponents.HelloCS MyCSComponent = new WroxComponents.HelloCS();
lblMessageCS.Text = MyCSComponent.SayHello();

}

3. Save the page and then run it in your browser to see the screen shown in Figure 13-6:

Figure 13-6

How It Works
Let's look at our ASP.NET page, starting with the code we added in HTML view:

<form runat="server">
<p>Our component says:</p>

474

Chapter 13

<p><asp:Label id="lblMessageCS" runat="server" /></p>
</form>

Within the two paragraph tags on the form, we added some text and a label control respectively. The
label control's ID property was set to lblMessagecs.

In Code view, we added a Page_Load() event handler method:

public void Page_Load()
{
WroxComponents.HelloCS MyCSComponent = new WroxComponents.HelloCS();

The first line of code in this method creates a new instance of the HelloCS class within the
WroxComponents namespace. Recall that we've used syntax like this previously, whenever we created
new hashtable objects or DataReader objects. Since the HelloCS class is a .NET class, and since the
method within the class is an instance method, an active instance of the class needs to be created before
the method within the class can be run. We instantiated a new instance of the HelloCS class by creating
an object, in this case MyCSComponent, and specifying that this object will hold a new instance of the
HelloCS class. MyCSComponent now has all the functionality of our class available to it as its own
methods and properties. In this case, it has only one method – the SayHello() method.

The next line of code calls this method (which, as you will recall, returns a string) and uses the string
value to populate the Text property of the Label control:

lblMessageCS.Text = MyCSComponent.SayHello();
}

Returning briefly to the line of code that created the new instance of the HelloCS class, you will notice
that we prefixed the HelloCS class with the namespace in which it resides. However, this could have
been omitted by adding one simple line of code to the top of the page. If you switch to All view, you
could add the following code:

<%@ Page Language="C#" %>
<%@ Import Namespace="WroxComponents" %>
<script runat="server">
...

Remember that this line refers to the namespace declared in the component. Back in the component, we
had the following lines of code:

namespace WroxComponents
{
...
}

This is what we are referring to here. The namespace declaration is different from the class declarations
in that a namespace can contain more than one class. These classes can then be referenced with the
notation namespace.class, but if you use the Import Namespace command, you can simply refer to
the class by name. It's a form of shorthand, and is the same as the syntax we used in the previous

475

.NET Assemblies and Custom Controls

chapter when we imported System.Web.UI and similar namespaces. They act as shortcuts to commonly
used classes. Note that if you use a code-behind file in conjunction with the ASPX page, the namespace
would have to be imported into the code-behind file.

Once this is added, you can change the line of code that creates the object as follows:

HelloCS MyCSComponent = new HelloCS();

No doubt, some of you will be using Visual Studio. Creating and using an assembly in Visual Studio is
a little different from the command line method. For a discussion on how to create components from
Visual Studio .NET, please refer to Appendix D.

XCopy Deployment
If you've ever worked with Windows in detail, you've probably heard of the Registry. The registry is a
database that holds all the information about your computer, hardware, setup, and software. It provides
Windows with a way of locating DLL files or components. In this sense, it's a bit like the Yellow Pages of
your computer. Any traditional DLL that is created has to have an entry in the registry so that the
computer can locate it when it's needed. This process is called Registration. With basic ASP.NET
components, there's no longer any need to do this – all you need to do is have the right directory in the
right place, and ASP.NET will know where to look and what to do with it.

When we created our DLL, we had to place our compiled component into a /bin directory. This is a
subdirectory of our Web application, or virtual directory.

In the good old days of DOS, copying from one location to another was done with a command called
xcopy: hence, the term that is often used when referring to deploying .NET assemblies is XCopy
deployment.

When a component is created, it can be accessed by any Web pages in that application space. All you
need to do is place the component in the correct directory, create a new instance of the component, and
include an <%@ Import Namespace ... > declaration in your code if you want to add a shortcut to the
classes contained within that namespace. If, however, you need to alter the functionality in the
component in any way, all you need to do is go back to your original source file, alter the code, and
recompile it. Once that process is complete, the new component will be used by any Web site hits that
require it. This is very different to the scenario faced by old ASP developers, who had to stop and restart
their Web application to update components, thereby losing uptime.

When a change is made to a component, ASP.NET allows any requests that are currently executing to
complete, and directs all new incoming requests to the new component, so the users of a site barely
notice any change.

Any time you need to use an assembly with .NET Web applications, the easiest
way is to place your assembly in a /bin directory, and your ASP.NET application
will now be able to use it.

476

Chapter 13

Accessing Assemblies in Other Locations
In the previous example, we stated that all we needed to do to access our assembly was to place it within
the /bin directory in the root of our Web application. What if we wanted to use an assembly in different
location?

ASP.NET has a default configuration setup so that each created application knows how to access its
required functionality. Occasionally, we may want to override or alter this default functionality to tailor
it more to our specific application configuration. We can accomplish this using the web.config file. This
file, as you will recall, resides within the root of our Web application. It can be used to help pages to find
the required components.

To recap briefly, web.config is an XML-based file that specifies important configuration information
that every ASP.NET application will need. It can store everything from information on debug settings
and session state timeout values, to references and ASP.NET components. Being XML-based, it's human-
readable, and this makes it very easy to add, remove, and change settings. Any changes to configuration
that we make are instantaneous; they take effect as soon as the file is saved.

Let's take a quick look at an example of a web.config file with a directive detailing where to find an
assembly:

<configuration>
<system.web>
<sessionState timeout="10" />
<compilation>
<assemblies>
<add assembly="AssemblyName" />

</assemblies>
</compilation>

</system.web>
</configuration>

This simple configuration file sets the session state timeout of a page to be 10 minutes, and it references
an assembly called AssemblyName using the <add assembly="AssemblyName" /> tag. Here,
AssemblyName refers to the assembly we require that resides outside of the bin directory. For example,
we could reference System.Data if we wanted to use the classes within the System.Data namespace
on a regular basis throughout our application, or c:\somedirectory\somefile.dll to locate a
custom assembly in a different directory to the current working directory.

Writing Code in Other Languages
Since the .NET Framework is happily language-agnostic, we can write our components in any language.
Throughout this book, we've been writing code in C#. Indeed, our first component in this chapter was
written in C#. Now we'll look at that first component again, but this time written in VB.NET, to show
how easy it is to work with any language to create your components.

A quick word of warning – web.config files are case-sensitive, so all the tag names
must be typed in with care.

477

.NET Assemblies and Custom Controls

Although the following example is written in VB.NET, don't worry if you've never looked at Visual
Basic code. It's just to illustrate the cross-language compatibility of .NET and, as you'll see, there are
many similarities between the two languages since they have to follow the same sorts of rules in order to
be .NET-compliant.

Try It Out Writing a Component in VB.NET
1. Create a new class file HelloWorld.vb in Web Matrix. Set the language to VB.NET in the drop-

down box, the Class name to be HelloVB, and the Namespace to be WroxComponents as shown
in Figure 13-7:

Figure 13-7

2. A chunk of standard code will be created. In this code, enter the following highlighted lines:

' NewFile.vb
'

Imports System

Namespace WroxComponents

Public Class HelloVB

Public Sub New()
End Sub

Public Function SayHello() As String
Return "Hello World - I'm a VB.NET component!"

End Function

End Class
End Namespace

478

Chapter 13

Because C# is case-sensitive, you must take particular care to copy this example letter-by-letter.

3. We need to compile this code. A simple way to do this is to reopen Compile.bat, amend some
of the code, then save it with a new name. Amend the following code and save it as
CompileVB.bat:

cd c:\BegASPNET11\Chapter13
md bin
vbc /t:library /r:System.dll /out:bin/HelloWorldVB.dll HelloWorld.vb
pause

4. Double-click this batch file from an Explorer window and you should see Figure 13-8:

Figure 13-8

5. Let's import the namespace for the components in this example. Open up
HelloWorldExample.aspx and amend the file by inserting the highlighted line to the top of
the page in All view:

<%@ Page Language="C#" %>
<%@ Import Namespace="WroxComponents" %>

6. Add the following line of code while in HTML view:

<form runat="server">
<p>Our component says:</p>
<p><asp:Label id="lblMessageCS" runat="server" /></p>
<p><asp:Label id="lblMessageVB" runat="server" /></p>

</form>

7. Switch to Code view, modify/add the following highlighted lines, and save the file:

public void Page_Load()
{
HelloCS MyCSComponent = new HelloCS();
HelloVB MyVBComponent = new HelloVB();
lblMessageCS.Text = MyCSComponent.SayHello();
lblMessageVB.Text = MyVBComponent.SayHello();

}

479

.NET Assemblies and Custom Controls

Notice that we've removed the WroxComponents before the HelloCS class name and HelloVB class
name since we added a reference to the namespace at the top of the file.

8. Reopen HelloWorldExample.aspx in your browser to see Figure 13-9:

Figure 13-9

How It Works
Although the syntax was somewhat unfamiliar in this example, it's not too hard to compare the two
versions of our component. The lines prefixed by ' are comment lines, so ignoring those, let's look at the
actual code in this example:

Imports System
Namespace WroxComponents

The Imports statement is the VB.NET equivalent of the C# using clause. The namespace declaration is
no longer followed by a curly bracket. Visual Basic has a more verbose syntax, and uses pairs of
statements to contain blocks of code. So, the Namespace ... End Namespace pair contain all the code in
the namespace, Class ... End Class contains class code, and so on'. The next line is the start of the class
block:

Public Class HelloVB

There is one default method in this class, which is the default constructor:

Public Sub New()
End Sub

Unlike C#, VB.NET uses the New() method to act as the default constructor for the containing class. The
code within the constructor works in exactly the same way, only the name of the constructor is changed.
Notice that the word Sub is used to declare the constructor. You'll find that VB.NET uses two different
words for methods. A Sub (a word derived from the old Visual Basic Subroutine) is a method that has
no return type, equivalent to a method that has a void return type in C#. A method that has a return
value in VB.NET is declared using the Function keyword, and the return type is stated after the
method arguments using the As return type syntax:

Public Function SayHello() As String

480

Chapter 13

The SayHello() method returns a string, so the words As String are added to the end of the method
declaration.

The next line is the body of the method:

Return "Hello World - I'm a VB.NET component!"

The return statement has barely changed, except for the content of the message. You'll notice that there
is no semicolon at the end of the line. Where C# only finishes a line when it reaches a semicolon, VB.NET
doesn't allow line wrapping, hence each physical line is the end of a line of code unless the physical line
has a continuation character at the end. The VB.NET continuation character is the underscore (_).

Instead of using simple brackets to close up the method, class, and namespace respectively, the VB.NET
syntax is rather more verbose:

End Function

End Class
End Namespace

Let's briefly look at the new lines we encountered in our ASP.NET page:

<p><asp:Label id="lblMessageVB" runat="server" /></p>

We need to add another paragraph containing another label, which we'll use to store the output of our
component, just as we did with the C# component. We also added the namespace import directive to the
top of the page:

<%@ Import Namespace="WroxComponents" %>

This means that we can declare the two instances of the components without having to explicitly
mention which namespace the classes reside in:

HelloCS MyCSComponent = new HelloCS();
HelloVB MyVBComponent = new HelloVB();

Finally, we set the second Label control to display the string returned by the C# component:

lblMessageCS.Text = MyCSComponent.SayHello();
lblMessageVB.Text = MyVBComponent.SayHello();

As you'll see, the ASP.NET page hardly looks any different – there are no verbose VB.NET statements in
here, because that's all held in the VB.NET version of the component. We have referenced two
components, one written in VB, one written in C#, by using just one namespace import statement in our
ASPX, and they've both been integrated seamlessly into our page, which only contains C# code in the
script section. We could have written other components in other languages, and the results would be the
same. This is one of the great features of .NET, and it's one that many developers have grown to love.
Imagine, if you're a Visual Basic .NET developer, working on a project with a C# developer, and a JScript
.NET developer – you could all write components to be used in ASP.NET pages, with no need to worry
about which language the original component code was written in, as long as it has been compiled into
Intermediate Language code.

481

.NET Assemblies and Custom Controls

The only way this is possible is to have a compiler that is supported by the CLR. The .NET Framework
only includes a handful of compilers by default (VB.NET, C#, JScript .NET, and J#). There are many
languages which have compilers for .NET, and many more are planned. For information on languages
such as Perl, Python, Fortran, Cobol, along with other languages planned for use with the .NET
Framework, check out the languages section of www.gotdotnet.com.

Data Access Components
A common use for components is to contain code for accessing data, or application logic. Our previous
example of using an assembly didn't exactly push the boundaries very far, so in the next example, we're
going to be slightly more adventurous and include some code to work with a database.

In the following example, we will create a component that combines the data access methods we've been
using in the Wrox United application into a central component that can be accessed by all pages in the
site. This will mean that we can reuse standard data access methods stored in this central component
from any of the pages on the site. This will save us time in the long run, and it means that to change the
returned data, you only need to change the code once in the central component, and not in every single
page that needs to access that data.

Try It Out Encapsulating Data Access Code in a Component
In this example, we will move some of the data access code used in the Default.aspx and Teams.aspx
pages from the Wrox United site into a component. If you recall, in the previous chapter, we moved a lot
of data access code from Default.aspx into a code-behind file called Default.aspx.cs. This file
contains most of code that we'll be putting in the component. The rest of the methods will come from
Teams.aspx.

1. Start by creating a new class file called DataAccessComponent.cs within the
BegASPNET11\WroxUnited directory. Set its Class name to DataAccessCode, and its
Namespace to be WroxUnited as shown in Figure 13-10:

Figure 13-10

482

Chapter 13

2. You will see that the following code has been automatically generated for you:

// DataAccessCode.cs
//

namespace WroxUnited
{
using System;

/// <summary>
/// Summary description for DataAccessCode.
/// </summary>
public class DataAccessCode
{

/// <summary>
/// Creates a new instance of DataAccessCode
/// </summary>
public DataAccessCode()
{
}

}
}

3. The next step is to move over all the data access methods from the code-behind file to this new
class. Reopen Default.aspx.cs and copy the following methods into this class:

❑ Dates()

❑ GamesByDate()

❑ CheckFanEmailAddresses()

❑ AddNewFanEmail()

4. You should now have the following code in your new class file (the body of each method has
been omitted from the following listing to save space):

namespace WroxUnited
{
using System;
using System.Data;
using System.Collections;
using System.Configuration;

public class DataAccessCode
{
public DataAccessCode()
{
}

// From Default.aspx

//Dates() returns a DataReader containing the date and ID of every game

483

.NET Assemblies and Custom Controls

public System.Data.IDataReader Dates()
{
...
}

// GamesByDate(date) returns all games scheduled for a specified date
public System.Data.IDataReader GamesByDate(DateTime date)
{
...
}

// CheckFanEmailAddresses(fanEmail) verifies if an email address exists
// in the Fans table in the database. If the email already exists, a

boolean
// true is returned, otherwise, boolean false is returned
public bool CheckFanEmailAddresses(string fanEmail)
{
...
}

// AddNewFanEmail(fanEmail) adds a new email address to the Fans table.
// The fanEmail parameter is a string representing the new email address.
public int AddNewFanEmail(string fanEmail)
{
...
}

// That's the last of the functions from Default.aspx''''''''''''
}

}

In the preceding code, comments have been added before each method. This is a great idea to make data
components easy to use by other developers in a team, and it only takes a few minutes.

5. Teams.aspx also contains several methods for retrieving data, so let's add those now. You will
be transferring the following methods:

❑ GetTeams()

❑ GetPlayersByTeam()

If you successfully completed the exercises at the end of the previous chapter, these methods would be in
Teams.aspx.cs.

6. Add these two methods to the component, below the ones added previously:

...
''// That's the last of the functions from Default.aspx

// From Teams.aspx

// GetTeams retrieves the ID, Name, and Notes for each team from the
database

// and returns them in a DataReader

484

Chapter 13

public System.Data.IDataReader GetTeams()
{
...
}

// GetPlayersByTeam gets the details for all members of the specified team
// The teamID parameter is an integer, and the data is returned in a

DataReader
public System.Data.IDataReader GetPlayersByTeam(int teamID)
{
...
}

}
}

7. Default.aspx.cs now only contains event handler methods and just one other method,
Venue(), which is used to display the correct fixture location for either home or away matches.
Teams.aspx.cs now only contains event handler methods.

8. The next stage is to compile this component. The easiest way to do this is to create a batch file,
as we did before. Open Microsoft Notepad and enter the following lines of code. Save the file as
compile.bat, making sure that the Save as type is set to All Files.

cd c:\BegASPNET11\WroxUnited
md bin
csc /t:library /r:System.dll,System.Data.dll
/out:bin/DataAccessCode.dll DataAccessCode.cs
pause

The two lines starting with csc, shown in the preceding code snippet, should all be typed on one line
with no line break in your code.

9. Back in Windows Explorer, double-click on this file and you should see Figure 13-11:

Figure 13-11

10. If you rerun this code, you'll see a message stating that the bin directory already exists, but this
won't affect the compile process at all, so it's worth keeping that line in to ensure that the bin
directory always exists.

485

.NET Assemblies and Custom Controls

11. The data access component is now compiled, so it's time to make some changes to the ASP.NET
pages so that they can still find the functions that they need! Reopen Default.aspx.cs and
add the following lines of code:

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Caching;
using System.Collections;
using System.Configuration;
using WroxUnited;

namespace WroxUnited
{
public class DefaultCodeBehind : Page
{

public TextBox txtEmailAddress;
public Label lblRegister;
public Button btnRegister;
public Panel pnlFixtureDetails;
public Repeater MatchesByDateList;
public Calendar EventCalendar;
System.Collections.Hashtable DateList;
public DataAccessCode Data = new DataAccessCode();

public void Page_Load(object sender, EventArgs e)
{

...

The first line is a simple namespace import; however, the second changed line of code creates a
new instance of the data component that we've just created. We need to have an instance of this
component before we can call any methods on this object, in the same way that we need to have
instances of Web controls before we can call methods on those.

12. Now that there is an active instance of the DataAccessCode component on the page, we can
call methods on that object. The method names are the same as they were before, but you will
need to prefix each method call with the name of this object (because we are now calling
methods of that object). Change the following lines of code:

In the Page_Load() method:

if (Cache["DateList"] == null)
{
System.Data.IDataReader DateReader = Data.Dates();

while (DateReader.Read())
{
DateList[DateReader["Date"]] = DateReader["Date"];

}

486

Chapter 13

In the calendar control's SelectionChanged() event handler:

public void EventCalendar_SelectionChanged(object sender, EventArgs e)
{
if (((Hashtable)Cache["DateList"])[EventCalendar.SelectedDate] != null)
{
MatchesByDateList.DataSource =
Data.GamesByDate(EventCalendar.SelectedDate);

pnlFixtureDetails.Visible = true;
MatchesByDateList.DataBind();

...

And in the btnRegister_Click method:

if (!Data.CheckFanEmailAddresses(FanEmail))

{

Data.AddNewFanEmail(FanEmail);

}

...

At this stage, you can view Default.aspx (we've not yet amended Teams.aspx). If you run
the page, you should see the same as in Figure 13-12:

Figure 13-12

487

.NET Assemblies and Custom Controls

13. You need to make a couple of small adjustments to Teams.aspx and then the whole site should
be up and running. In the code of this page (whether it's still in your ASPX page or in a
code-behind page), you need to make the following changes:

...
using WroxUnited;
...
public string selectedTeam;
public DataAccessCode Data = new DataAccessCode();

...
public void Page_Load()
{
TeamList.DataSource = Data.GetTeams();
TeamList.DataBind();

}
public void TeamList_ItemCommand(object sender, DataListCommandEventArgs e)
{
if (e.CommandName == "ShowTeam")
{
LinkButton button = (LinkButton)e.CommandSource;
selectedTeam = button.Text;
PlayersList.DataSource =
Data.GetPlayersByTeam(int.Parse((string)e.CommandArgument));
PlayersList.DataBind();

}
}

14. At this point, you can run the Teams.aspx page, and it should look the same as before.

How It Works
This example didn't introduce any new functionality in the Wrox United site, but it did succeed in
centralizing the data access methods and removing clutter from the pages themselves. Let's look through
the most important parts.

At the top of the component, the namespace for the component was declared, followed by a series of
using statements that referenced the necessary namespaces:

namespace WroxUnited
{
using System;
using System.Data;
using System.Collections;
using System.Configuration;

The next lines of code declared the name of the class and the default constructor for the class:

public class DataAccessCode
{
public DataAccessCode()
{
}

488

Chapter 13

After the default constructor was added to the code, we added all the different data access methods
we've used so far from both the default and the teams pages. We won't look through these again here.

In the compilation file, we used the following statement to compile the component:

csc /t:library /r:System.dll,System.Data.dll
/out:bin/DataAccessCode.dll DataAccessCode.cs

In this example, because we are using classes that do a lot of work with data, we need to reference the
.NET System.Data.dll component that contains class definitions for things like the IDataReader
interface that we've used quite often.

In the ASPX pages, we made a few changes. We added a using statement for the WroxUnited
namespace so that we could access the DataAccessCode class without having to prefix it with the name
of the namespace:

using WroxUnited;

We then created an instance of the new class so that we could call methods on this new object:

public DataAccessCode Data = new DataAccessCode();

Whenever we needed to call data access methods, we added the name of the object to the line of code,
indicating that we were calling methods on that object:

System.Data.IDataReader DateReader = Data.Dates();
...

Data.AddNewFanEmail(FanEmail);
...

If you actually compare what we did in this example to what we've done in the two previous examples,
you will notice that the bulk of the work has been the same – create the component, compile it, add it
and instantiate it in the page, and then call methods on that object. That's all there is to it, really.
Components are a convenient way to break up the code we work on to make it more maintainable and
developer friendly. If you work as a full time developer, you probably encounter many components on a
daily basis, so it's important to document them by adding comments, as we did in this example.

Once you understand how to put together components using class files, you can take this knowledge
one step further and create custom controls. It takes a bit more coding, but the results are not just
reusable code (as shown in the examples in this chapter so far), but reusable visual components.

Custom Server Controls
ASP.NET pages revolve around the concept of server controls. Control-based development is the new
'big thing', as you may have gathered by now. The previous chapters discussed how to use the built-in
ASP.NET Server Controls, and we saw how to create our own user controls for reuse in our Web pages.
Now we're going to look at what ASP.NET custom controls are, how they differ from user controls and
standard components, and how they are created.

489

.NET Assemblies and Custom Controls

What Are Custom Controls?
Custom controls are a specific type of component – they also contain classes and are compiled. However,
the main difference between a custom control and an application logic or data access component is that a
custom control generates a visible user interface. When we place a server control on our page, we can
see it and interact with it. As an example, consider the simple TextBox server control that is available to
us out of the box when we create Web applications. This control was originally developed by someone at
Microsoft who coded the methods and properties available to instances of that control. The .NET
Framework enables us to create custom controls, which gives us the flexibility to create controls like
these ourselves.

How Are Custom Controls Different from User Controls?
User controls encapsulate user interface elements of a site into easily reusable portions. However, they
are usually site specific – they aren't meant to be used outside of the application in which they're based,
and this is where the more universal custom control fits in. Custom controls inherit from the
System.Web.UI.Control namespace, and are compiled. These controls can combine the functionality
of other pre-existing server controls (in which case they are referred to as composite controls), or can be
completely new controls, developed from the ground up. They are fully compiled and have no UI code
contained in an ASPX page, as all rendering is controlled programmatically. They are designed to
provide functionality that can be reused across many applications; for example, a tree view control for
representing file systems or XML file structures.

While we won't be looking at how to achieve this here, you can see it in action whenever you drag a
TextBox, DataGrid, or any other Web control onto a page – these may be built-in controls, but the
theory behind them is the same as a custom control.

How Are Custom Controls Different from Standard Components?
While a standard component is designed to hold application logic or database access methods, custom
controls are designed to produce viewable output. They are compiled to make it easier to deploy
components on other systems or applications. They can also inherit from other assemblies and
components themselves, yet their visual appearance is defined by the control-specific code they contain.
A lot of functionality that is taken for granted when working with existing ASP.NET server controls,
such as the ability for a control to maintain its visual state (known as its viewstate) across a postback, has
to be coded by hand. This does mean a lot of coding when you get into advanced controls, but it gives
the developer a very powerful reusable tool that works the way you want, rather than having to hack
about to produce a less-than-ideal solution.

Let's have a go at creating a simple custom control, and displaying it in an ASP.NET page.

If you use Visual Studio .NET, you'll notice a difference between these two types of
controls. A user control does not display completely in design view, and you can't set
properties on this control via the property tab. However, a custom control can be
coded to work with Visual Studio .NET so that you see a visual representation of the
rendered page at design-time and you are able to make use of the property toolbox to
work with the control at design-time.

490

Chapter 13

Try It Out Our First ASP.NET Custom Control
We're going to create a simple custom control that will output some text to the Default.aspx page on
Wrox United. The text that will be displayed will be a Match of the Day message. We will add a small
method to the DataAccessCode.cs class that we created earlier and recompile it. This method can then
be called from within the server control, which formats the message and renders it in the browser.

1. Fire up Web Matrix and reopen DataAccessCode.cs. Add the following method to the class,
which we'll look at in more detail once we finish the example:

// GetMotd() builds an Arraylist containing strings that detail any
// scheduled matches for the current day.
// If there are no matches, an appropriate message is added instead.
public ArrayList GetMotd()
{
IDataReader myReader;
// Call the GamesByDate function in this class
// to retrieve fixture information for today
myReader = GamesByDate(System.DateTime.Now.Date);

ArrayList motdMessage = new ArrayList();
string individualMessage = "";
int resultCount = 0;

while (myReader.Read())
{
individualMessage = (string)myReader["TeamName"] + " v " +

(string)myReader["OpponentName"];

if ((int)myReader["Location"] == 1)
{
individualMessage += ", home";

}
else
{
individualMessage += ", away";

}

motdMessage.Add(individualMessage);
resultCount = resultCount + 1;

}

if (resultCount < 1)
{
motdMessage.Add("No games scheduled today.");

}

return motdMessage;
}

2. If you like, you can recompile this class now by simply double-clicking on Compile.bat from
explorer as you did before. If all went well, no errors will be produced. After building the

491

.NET Assemblies and Custom Controls

custom control in this exercise, we'll add some more commands to Compile.bat, enabling us to
compile all custom controls and classes in one step.

3. Time to build the control itself! Create a new class in Web Matrix named
CustomMotdControl.cs, and specify that it belongs to the WroxUnited namespace.

4. Enter the following code into the newly created file:

// CustomMotdControl.cs
//

namespace WroxUnited
{
using System;
using System.Collections;
using System.Web.UI;
using WroxUnited;

/// <summary>
/// Summary description for MotdControl.
/// </summary>
public class MotdControl : Control
{

/// <summary>
/// Creates a new instance of MotdControl
/// </summary>
public MotdControl()
{
}

private string _name = "MOTD";

public string Name
{
get{return _name;}
set{_name = value;}

}

protected override void Render(HtmlTextWriter writer)
{
DataAccessCode data = new DataAccessCode();
ArrayList motdMessages = new ArrayList();
motdMessages = data.GetMotd();

writer.Write("<div class='motd'>" + _name + ", " +
DateTime.Now.ToShortDateString() + ":
");

foreach (string message in motdMessages)
{
writer.Write(message + "
");

}
writer.Write("</div>");

}
}

}

5. Make sure that you save this code before you continue. Reopen Compile.bat and add the
following highlighted line of code (again, make sure it is all on one line in your code):

492

Chapter 13

cd c:\BegASPNET11\WroxUnited
md bin
csc /t:library /r:System.dll,System.Data.dll
/out:bin/DataAccessCode.dll DataAccessCode.cs

csc /t:library /r:System.dll,System.Web.dll,bin/DataAccessCode.dll
/out:bin/CustomMotdControl.dll CustomMotdControl.cs

pause

Make sure you keep the statement that compiles the DataAccessCode.cs file – this is needed in the
custom control. We've added the DataAccessCode.dll file in the compile statement for the custom
control – this will ensure that we can access the methods stored in the data access component from the
server control.

6. Run this file by double-clicking it in Explorer view.

7. Open Default.aspx and at the top of the file and the following line:

<%@ Register TagPrefix="WroxUnited" TagName="NavBar" Src="NavBar.ascx" %>

<%@ Register TagPrefix="WroxUnitedMotd" Namespace="WroxUnited"
Assembly="CustomMotdControl" %>

8. In the central table cell (that you can use to store general introductory text), enter the following
highlighted line of code:

The bar on the left will take you to different parts of the site. If you are
a player, you can log in to the site and gain access to the administration
section.

You can view our upcoming matches at-a-glance via the calendar to the right.

<WroxUnitedMotd:MotdControl id="WuMotd"

Name="Matches today" runat="server" />

9. So, the extra data method has been added, the control has been created, and both components
have been compiled. We've also added code to use this control from Default.aspx, so it's
nearly time to run the page and see the results. However, before you do so, reopen
WroxUnited.css (and WroxUnited2.css) and add a new element to the stylesheet.

❑ In WroxUnited.css, add the following:

.motd {
color: #8b0000;

}

❑ In WroxUnited2.css, add the following:

.motd {

493

.NET Assemblies and Custom Controls

color: "yellow";
}

10. Now it's time to run the page! If you run the page on a day when there is a game (or several
games) scheduled, you'll see something like in Figure 13-13:

Figure 13-13

11. However, if you run the code on a day when no matches are scheduled, you'll see a default
message saying No games scheduled today.

If you want to see different results, you can edit the contents of the Games table in the WroxUnited
database. If matches are scheduled for the current day, you will see a message on the default.aspx
page. However, if you change the date of each match, you can change the message that is displayed on
the front page accordingly. In the above example, I manually changed the date of two scheduled
matches to the previous day, in order to demonstrate what is displayed on days when there are no
matches scheduled.

How It Works – The Control
We created a control with a property that rendered very limited output to demonstrate how simple
custom controls can be created. Let's look at how we put it together:

494

Chapter 13

namespace WroxUnited
{
using System;
using System.Collections;
using System.Web.UI;
using WroxUnited;

We added four namespaces at the top of the file. We will be using an ArrayList in this example, hence
the System.Collections namespace. We will also be creating a Web control. So we've added a using
statement for the System.Web.UI namespace, because we'll probably want to use classes within this
namespace. We also added a using statement for the WroxUnited namespace, which is the namespace
within which the data access class resides.

The next part of the code declares the MotdControl class:

public class MotdControl : Control
{

Notice that there is a : Control statement immediately after the class definition, indicating that this
class inherits functionality defined in the Control class. This is an important part of custom control
development, because all custom controls must inherit from either the System.Web.UI.Control or
System.Web.UI.WebControl class. The Control class is the leaner class of the two, and while it
provides a lot of basic functionality behind the scenes that any control needs in order to work, it doesn't
provide many methods implemented in the WebControl class. This isn't a problem, because we don't
need any of these methods in this example. Inheriting from Control means that we have more control
over how the control is rendered at runtime.

The next part of the code creates the only public property of the control:

private string _name = "MOTD";

public string Name
{
get{return _name;}
set{_name = value;}

}

The first line of code creates a private variable called _name that is only accessible by the rest of the code
in this class. The next block is where the public property is declared. This property can be set
programmatically (MyControl.Name = thing), and also read programmatically (thing =

MyControl.Name). The get and set blocks are used to specify how this works. Each time a new value
is set via the public property, the private variable is updated. Conversely, whenever the public property
is read, the returned value is stored in the private variable. The public property sits between the outside
world and the internal variable. In this case, we are setting or getting the value of a string variable with
some text that we'll use as we build up the displayed message. If we don't set the property in our code,
the _name variable will store the default value of MOTD.

protected override void Render(HtmlTextWriter writer)
{

495

.NET Assemblies and Custom Controls

We're creating one method in this class. There are a couple of new terms in here that you may not be
familiar with. There is a method in the Control class called Render. What we're doing here is altering
how that method works by overriding its functionality with our own functionality. While we don't want
to go too far into the world of VB programming here, you need to know that this statement is required to
provide the output we specify, instead of the default output from the Control class. We will be using an
HtmlTextWriter to display the output of our control.

However, we can render much more than just plain text using these controls. In this example, the output
contains some HTML tags.

The next part of the code gets the complete set of daily match details from the data access component:

DataAccessCode data = new DataAccessCode();
ArrayList motdMessages = new ArrayList();
motdMessages = data.GetMotd();

We created a new object called data and set it to contain a new instance of the DataAccessCode class.
We then created a new ArrayList called motdMessages and retrieved the ArrayList of the day's
fixtures from the database using the GetMotd() method.

The next line is where the magic starts – the Write() method of the writer object that was declared in
the method signature is used to write the required output to the Web page when the control is rendered:

writer.Write("<div class='motd'>" + _name + ", " +
DateTime.Now.ToShortDateString() + ":
");

This first line builds up an HTML string and inserts the string stored in the _name private variable (the
one that is set programmatically using the public Name property), and also the current date. Notice that
this HTML string is in the form of a <div ... > element, which has an associated class definition – this
enables us to style the output of the control in a CSS file.

The remainder of this method loops through the individual strings in the ArrayList and adds them
(and a line break after each one) to the output. The last call to the Write() method writes the closing
</div> tag to the browser (a sample of the rendered HTML output is shown in just a moment):

foreach (string message in motdMessages)
{
writer.Write(message + "
");

}
writer.Write("</div>");

}
}

}

If you view the source of Default.aspx you will find the following text about halfway down the page:

The only difference between this example and the previous one is that the control is
rendering (writing) the text directly to the page, while our previous tests required a
Label control or similar to display any returned text from our components.

496

Chapter 13

<div class='motd'>Matches today, 07/09/2003:
No games scheduled
today.
</div>

This should give you a clear indication of how this code fits together. The result is clean and simple, and
has been produced programmatically.

The Component
The GetMotd() method that we added to the DataAccessCode component provides the custom control
with details of any matches on that particular day in the form of an ArrayList:

public ArrayList GetMotd()
{

The first part of this function retrieves all fixture details for the current day by passing in the current
date, using the DateTime.Now.Date property to the GamesByDate() method that was created earlier:

IDataReader myReader;
// Call the GamesByDate function in this class
// to retrieve fixture information for today
myReader = GamesByDate(System.DateTime.Now.Date);

Next, we created some variables to hold various items of data, including the ArrayList of messages,
the individual messages, and a count of how many matches are happening on the current day:

ArrayList motdMessage = new ArrayList();
string individualMessage = "";
int resultCount = 0;

Looping through the results stored in the myReader object, we built up a string containing details about
the fixture:

while (myReader.Read())
{
individualMessage = (string)myReader["TeamName"] + " v " +

(string)myReader["OpponentName"];

if ((int)myReader["Location"] == 1)
{
individualMessage += ", home";

}
else
{
individualMessage += ", away";

}

motdMessage.Add(individualMessage);
resultCount = resultCount + 1;

}

At this point, if there are no matches on the current day, the count of the results will still be zero; hence
we can output a specific message to the array instead of match details:

497

.NET Assemblies and Custom Controls

if (resultCount < 1)
{
motdMessage.Add("No games scheduled today.");

}

Finally, we return the ArrayList of messages to the calling code:

return motdMessage;
}

The Batch File
The command that we used to compile this component is very similar to the one that we used to compile
the DataAccessCode.vb file:

csc /t:library /r:System.dll,System.Web.dll,bin/DataAccessCode.dll
/out:bin/CustomMotdControl.dll CustomMotdControl.cs

Notice that we have referenced System.Web.dll this time around (we needed this so that we could use
the classes it contains, including the System.Web.UI.Control class). We also referenced the
DataAccessCode.dll compiled assembly – needed as a reference so that the GetMotd() method could
be called to return the required ArrayList. Since the DataAccessCode compilation statement should
still be in this file, this will be compiled before the custom control is compiled, hence the custom control
will be able to make use of any changes to the DataAcccessCode when the custom control itself is
compiled.

The ASPX Page
We didn't make too many changes to the Default.aspx page itself – all the hard work was kept
completely separate from this code file, which is exactly what we're after! Firstly, we registered the
custom control so that the page knows about the assembly and the code it contains:

<%@ Register TagPrefix="WroxUnitedMotd" Namespace="WroxUnited"
Assembly="CustomMotdControl" %>

We set a TagPrefix as we did with user controls, however, we do not set a TagName – we'll see why in a
moment. We specified the namespace to be used as the WroxUnited namespace, and that we're using
the CustomMotdControl assembly. Later in the code, we added the control to the page:

<WroxUnitedMotd:MotdControl id="WuMotd"
Name="Matches today" runat="server" />

This is where we place our control on the page. We call it by the TagPrefix we set earlier, followed by
the class name we specified in the control. We specify a runat="server" attribute, set the Name
property of the control, and close the tag. The Name property relates directly to the Name property we
added to the custom control, so when we set this property, the Set block in the property in the custom
control is run, and the local _name property has its value changed to the string we specify here. This
value is then added to the output string, and hey presto! – we've just used our first custom control.

We mentioned earlier that one of the main reasons for using custom server controls was reusability, well,
as long as our control can access a GetMotd() method in a class called DataAccessCode, we can use

498

Chapter 13

this control to display "message of the day" notices on a site. It's a good thing that MOTD could be an
acronym for either "match" or "message" of the day!

Composite Custom Controls
In the last example, we created a completely new control that inherited some basic functionality from the
Control base class, but the rest of the control was completely our own work. While it's possible to
create all custom controls in this way, there are situations where you might find yourself saying,
"Wouldn't it be great if I had a textbox that only allowed numeric input?" or perhaps, "I'd really like a
custom calendar that highlighted specific dates instead of having to add event handlers and code every
time!" Composite controls will solve these problems for you. A composite control is a custom control that
contains an existing control within its definition, and allows you to customize how that existing control
is rendered.

Let's have a look at this in action by creating a neat custom calendar class that will highlight specific
dates for us automatically, and then use this as part of Default.aspx.

Try It Out Wrox United – Custom Composite Control
1. Start the example by creating a new class file, setting its namespace to be WroxUnited, and its

class name to be CustomCalendar. Save the file as CustomCalendar.cs.

2. In the file, add the following code:

// CustomCalendar.cs
//
namespace WroxUnited
{
using System;
using System.ComponentModel;
using System.Web.UI;
using System.Collections;
using System.Web.UI.WebControls;

public class CustomCalendar : Control, INamingContainer
{
private Calendar calendar;
public event EventHandler SelectionChanged;
private Hashtable _dateList;

public Hashtable DateList
{
get
{
return _dateList;

}
set
{
_dateList = value;

}
}

499

.NET Assemblies and Custom Controls

public DateTime SelectedDate
{
get
{
return calendar.SelectedDate;

}
}

protected override void CreateChildControls()
{
calendar.CssClass = "calendar";
calendar.DayStyle.CssClass = "normaldate";
calendar.OtherMonthDayStyle.CssClass = "othermonthdate";
this.Controls.Add(calendar);

}

protected override void OnInit(EventArgs e)
{
base.OnInit(e);

calendar = new Calendar();

calendar.DayRender +=
new DayRenderEventHandler(this.EventCalendar_DayRender);

calendar.SelectionChanged +=
new EventHandler(this.EventCalendar_SelectionChanged);

}

private void EventCalendar_DayRender(object sender, DayRenderEventArgs e)
{
if (_dateList != null)
{
if (_dateList[e.Day.Date] != null)
{
e.Cell.CssClass = "selecteddate";
e.Day.IsSelectable = true;

}
else
{
e.Day.IsSelectable = false;

}
}
else
{
e.Day.IsSelectable = false;

}
}

private void EventCalendar_SelectionChanged(object sender, EventArgs e)
{
if (SelectionChanged != null)
{
SelectionChanged(this, e);

}

500

Chapter 13

}
}

}

3. We need to compile this control. In the Compile.bat file, add the following line of code
(ensuring that this is all on one line in the file):

csc /t:library /r:System.dll,System.Web.dll /out:bin/CustomCalendar.dll
CustomCalendar.cs

4. Double-click Compile.bat from an Explorer window to compile the control.

5. Add this control to the page by adding the following directive to the top of the page In
Default.aspx:

<%@ Register TagPrefix="WroxUnitedCalendar" Namespace="WroxUnited"
Assembly="CustomCalendar" %>

6. Add the following code in place of the original calendar control:

<td style="VERTICAL-ALIGN: top; WIDTH: 250px">
<WroxUnitedCalendar:CustomCalendar id="EventCalendar" runat="server"

OnSelectionChanged="EventCalendar_SelectionChanged" />
<p>
<asp:Panel id="pnlFixtureDetails" runat="server" visible="false">

7. Switch to the code-behind for this page and alter the calendar control declaration to refer to
the new CustomCalendar class:

public TextBox txtEmailAddress;

public Label lblRegister;

public Button btnRegister;

public Panel pnlFixtureDetails;

public Repeater MatchesByDateList;
public WroxUnited.CustomCalendar EventCalendar;
System.Collections.Hashtable DateList;
public DataAccessCode Data = new DataAccessCode();

8. Further down the page, in the Page_Load() method, add the following line of code:

if (Cache["DateList"] == null)
{
...

}
else
{
...

}

EventCalendar.DateList = (Hashtable)Cache["DateList"];""""

501

.NET Assemblies and Custom Controls

9. Delete the EventCalendar_DayRender from the code-behind page – we don't need this
method any more because the functionality it contained is now encapsulated in the new custom
control.

10. Run Default.aspx in your browser and you will see the same results as before, shown in
Figure 13-14. You will be able to click on the different match dates in the calendar, and see the
fixture details for a particular day:

Figure 13-14

How It Works – The Control
This control may appear a bit complex at first, so let's step through it piece by piece. We start with a
namespace declaration and some using statements:

namespace WroxUnited
{
using System;
using System.ComponentModel;
using System.Web.UI;
using System.Collections;
using System.Web.UI.WebControls;

502

Chapter 13

Next we declared the class:

public class CustomCalendar : Control, INamingContainer
{

Notice that in addition to inheriting the functionality in the Control class, we have implemented an
interface called INamingContainer. This interface (a special type of class) enables ASP.NET to assign a
name to the calendar that we'll be adding to this control in just a moment. Interfaces are discussed in
Chapter 7.

The next lines of code create a new object called calendar of type WebControls.Calendar, and an event
handler that will be used for the SelectionChanged() event:

private Calendar calendar;
public event EventHandler SelectionChanged;

Next comes some more familiar code. We declare a private Hashtable (which we'll use to store the
dates that will be highlighted in the calendar). This Hashtable has its value set via the public property
DateList:

private Hashtable _dateList;

public Hashtable DateList
{
get
{
return _dateList;

}
set
{
_dateList = value;

}
}

The next block of code creates a second property, but this time, we're only going to allow consumers of
this control to read the value in this property. When you want a property to be read only, you should
omit the set block:

public DateTime SelectedDate
{
get
{
return calendar.SelectedDate;

}
}

This property returns the value of the currently selected date in the calendar, which allows us to use this
value to populate the panel below the calendar on the Default.aspx page.

503

.NET Assemblies and Custom Controls

The next part of the code is where we add the calendar control to the main Parent container. The
calendar control is what is known as a Child control (it has a parent control; the custom control). To
add this Child control, we override the CreateChildControls method of the Control class:

protected override void CreateChildControls()
{

The first part of the body of this method is where we instantiate a new calendar control. The reason we
have added the WebControls prefix is that we have only imported System.Web.UI, not
System.Web.UI.WebControls. Next, we specify three CSS class properties:

calendar.CssClass = "calendar";
calendar.DayStyle.CssClass = "normaldate";
calendar.OtherMonthDayStyle.CssClass = "othermonthdate";

Adding these properties to this control mean that, as long as we include a CSS stylesheet with the
appropriate definitions in our pages, we'll be able to style our calendar control automatically. The last
part of this method adds this control to the Controls collection of the parent control:

this.Controls.Add(calendar);
}

The next method is necessary in any C# custom control that uses events. In order to successfully connect
the control to the event handler methods (known as "wiring up" the event handlers), you need to
override the page's OnInit event, as we have done here:

protected override void OnInit(EventArgs e)
{
base.OnInit(e);

The first part of the method indicates that we'll be overriding the OnInit() event of the base class,
which is the page on which this control is consumed. The next section is where we create a new instance
of the calendar and wire up the event handlers for the two events we're dealing with:

calendar = new Calendar();

calendar.DayRender +=
new DayRenderEventHandler(this.EventCalendar_DayRender);

calendar.SelectionChanged +=
new EventHandler(this.EventCalendar_SelectionChanged);

}

The third method in this file is the first event handler for this control, the DayRender() event handler:

private void EventCalendar_DayRender(object sender, DayRenderEventArgs e)
{

We then test whether any date information has been passed into the control. If it has, then _dateList
will contain something (not null), and we can proceed to test whether the day that is being rendered
matches any of the days in the _dateList Hashtable:

504

Chapter 13

if (_dateList != null)
{
if (_dateList[e.Day.Date] != null)
{
e.Cell.CssClass = "selecteddate";
e.Day.IsSelectable = true;

}

If the day that is being rendered is not a match day, we ensure that it isn't selectable. Likewise, if the
_dateList Hashtable is empty, then we ensure that none of the dates are selectable:

else
{
e.Day.IsSelectable = false;

}
}
else
{
e.Day.IsSelectable = false;

}
}

The final method in this control is the SelectionChanged() event handler. This method is fired
whenever the calendar control's SelectionChanged() event is fired. Whenever this event is fired, we
pass that event to the public SelectionChanged() event object that was declared earlier. This ensures
that the SelectionChanged() event exists for the newly created custom control, and can be handled in
the consuming page:

private void EventCalendar_SelectionChanged(object sender, EventArgs e)
{
if (SelectionChanged != null)
{
SelectionChanged(this, e);

}
}

}
}

After this method closes, we close up the last of the control with the last remaining closing brackets. So,
time to look at the compile statement for this control!

The Batch File
The compile statement for this file isn't too different from the statements we've used in the other controls
and components in this chapter:

csc /t:library /r:System.dll,System.Web.dll /out:bin/CustomCalendar.dll
CustomCalendar.cs

This time, we only needed to reference the System.Web.dll in addition to the System.dll assembly.
We didn't access any data in this example.

505

.NET Assemblies and Custom Controls

The ASPX Page
We made only a couple of changes to the Default.aspx page to use this new calendar. First, we added
a reference to the new control:

<%@ Register TagPrefix="WroxUnitedCalendar" Namespace="WroxUnited"
Assembly="CustomCalendar" %>

Next, we changed the code in the page to use the custom calendar in place of the default calendar, which
turned out to involve less code than before (we've added a lot of this code to the custom control
already):

<WroxUnitedCalendar:CustomCalendar id="EventCalendar" runat="server"
OnSelectionChanged="EventCalendar_SelectionChanged" />

Notice that we still set the OnSelectionChanged attribute as we did before to point to the event
handler that fires whenever the selection in the calendar changes.

In the code-behind page itself, we changed the EventCalendar's data type from Calendar to
CustomCalendar:

public WroxUnited.CustomCalendar EventCalendar;

Then we added a line to the Page_Load() event handler that passed in the DateList Hashtable
(stored in the cache) to the CustomCalendar control. This is the data that we need to highlight specific
dates!

EventCalendar.DateList = (Hashtable)Cache["DateList"];""

Summary
In this chapter, we have continued the thread from the previous one, and discussed creating .NET
assemblies that can be used to store classes that handle data access code, or custom server control code.
We've even seen an example of using a C# component from within a VB.NET ASPX page, demonstrating
how .NET handles components written in different languages. We've also created two different custom
server controls, and taken a first look into the world of custom control creation.

In this chapter, we looked at:

❑ Compiling a .NET assembly

❑ Using classes contained in a compiled assembly on a page

❑ Encapsulating data access code into a compiled component

❑ Creating simple custom controls that render custom HTML to the browser

❑ Enhancing an existing ASP.NET control using a composite control

506

Chapter 13

Exercises
These exercises are separate from the Wrox United application, but you will find that concepts learned in
this chapter will come in very handy when completing these exercises.

To help, we've included a tiny Access database in the code download for this chapter called
Travel.mdb. It's a small database that contains a list of locations, temperatures, and weather conditions.
We've also included some images that correspond to various different weather conditions.

1. Build a data access component that connects to the Travel.mdb access database and retrieves
data filtered by location, about the weather at that location. You may find the following SQL
useful:

SELECT [Locations].[LocationName], [Locations].[CurrentTemperature],
[WeatherTypes].[WeatherType]

FROM [Locations], [WeatherTypes]
WHERE (([WeatherTypes].[WeatherTypeID] = [Locations].[CurrentWeather])
AND ([Locations].[LocationName] = @LocationName))

If you use the Web Matrix SELECT data wizard, you can create a method called
GetWeatherByCity that takes the LocationName as a parameter, and returns a DataReader.

2. Add another method to this data access component called GetCities that selects all the
LocationNames from the database and returns a DataReader.

3. Create a simple custom control that has one property, a temperature property that takes a
temperature in Celsius and renders a string of text that displays the temperature in both Celsius
and Fahrenheit:

Fahrenheit temperature = Celsius temperature * (9/5) + 32

The control should render a tag that has a style=color:<color> attribute that can be
used to change the color of the text for different temperature ranges. If the temperature is below
0 degrees Celsius, you should make the text blue, above 30 degrees it should be red, and all
others should be orange.

4. Create another control that takes the code built in the first two examples to produce a composite
control that displays temperature data stored in the database for a specific city. Your control
should render the following output:

❑ The name of the city

❑ The temperature at the specified city (use an instance of the control created in the
previous example)

❑ An image control <ASP:Image ...> that displays one of a series of images (available in
the code download for this chapter) that represents the style of weather currently being
experienced at the specified city, for example, an image of a cloud if the weather is
overcast.

5. Finally, add the following to an ASP.NET page:

❑ Add a DropDownList box and databind that to the data reader returned by the
GetCities method in the data access component. Enable auto-postback for this control
so that a Postback occurs whenever the selection changes.

❑ Add a copy of the weather control created in the previous exercise to the page, and pass in
the name of the currently selected city to the control to display the weather for that city.

507

.NET Assemblies and Custom Controls

14
Debugging and Error

Handling

One of the fundamental facts about organized systems is that the more complex they become, the
more likely they are to go wrong. While most of the examples in this book have been quite simple,
the principles behind the .NET Framework make it easier for you to build larger and more
complex systems.

Once you have planned and created your program, the steps involved in ensuring that your code
runs smoothly at all times can be broken down into two main categories:

❑ Debugging: Regardless of the painstaking attention to detail that we give to our code,
mistakes will occur. We can minimize their effects by identifying the portions of our code
that are most prone to errors, and by adhering to good coding practices that facilitate
troubleshooting.

❑ Error Handling: Even if we produce flawless code, there is no guarantee that everything
will operate smoothly at runtime. Things can (and at times do) go wrong. Problems such
as network connection failures or power failures may occur in the operating environment.
There may be problems with unexpected data types, or data may not have been properly
prepared. Third-party programs may return unexpected data. Good programming
practices dictate that we anticipate as many problems as we can before they occur so that
we may apply a graceful solution.

This chapter will help you identify problems, fix them, and prevent them from occurring in future.
Specifically, we'll look at the following topics:

❑ Good coding practices

❑ Different types of errors

❑ Locating errors in the page

❑ Tracing

❑ Exceptions

❑ Handling Exceptions

❑ Handling errors

❑ Notifying and logging errors

A Few Good Habits
Whether you're an expert developer or a beginner, you can significantly reduce the probability of an
error's occurrence by adopting some very straightforward habits. Finding an error in your application is
not a cause for panic – it just indicates that an effective error handling strategy is needed. We will
provide you with the information needed to design and implement an effective error handling strategy.

Before getting into detail about the different kinds of errors that may afflict your code, let's talk about
how you may reduce the time and effort required to identify and fix an error.

❑ Understand your code: Make a clean distinction between server-side and client-side
functionality. Adopt naming conventions and use them consistently. Write headers for methods
explicitly stating their purpose and give variables meaningful names. These habits will go a
long way in producing self-documenting code. If sections or routines in your code are still
unclear after implementing these practices , document some more. Clear and concise code will
be an invaluable asset when it’s time to locate where, and understand why, an error has
occurred.

❑ Identify where it might break: Identify the potential problem areas before even loading the page
and testing its functionality. For instance, say you have developed a page that communicates
with a database and pulls a set of records. You must create a connection to the database,
formulate a query, and then execute that query to retrieve the records. Connecting to the
database or the execution of the query may throw an error. You need to look out for potential
problems at an early stage (we will discuss different kinds of errors later in this chapter.)

❑ Amend identified error conditions: Once you have identified areas that could break within your
page, the next step is to make sure that the conditions under which your error might occur are
as stable as possible. Remember the old adage: an ounce of prevention is worth a pound of cure.

Mistakes in your code are not the end of the world. What matters is how quickly you can identify them
and fix them. With that in mind, let's start by looking at the habits that should be cultivated.

Tips on Coding
It may not be possible to have completely error-free programs, but there are some precautions we can
take to reduce or avoid common mistakes. These include indenting and structuring the code as well as
adding comments to increase its comprehensibility. We will look at these and other good coding
practices.

510

Chapter 14

Indent Your Code
This is quite an obvious and straightforward step. Although it will not ensure an error-free program, it
will really help to improve the readability of your code, for yourself and for others. Indenting your code
will help you detect errors faster. The following example lays out some code in two different ways. See
the difference for yourself:

<html>
<head>
<title>Syntax Error Example </title>
</head>
<body>
<form method="post" action="sytntaxerror.aspx" runat="server">
<asp:TetBox id="txtQuantity" runat="server" />
</form>
</body>
</html>

This code can be indented as follows to make it clearer:

<html>
<head>
<title>Syntax Error Example </title>
</head>
<body>
<form method="post" action="sytntaxerror.aspx" runat="server">
<asp:TetBox id="txtQuantity" runat="server" />
</form>

</body>
</html>

Structure Your Code
Use functions in your code to implement specific tasks. This is even more important for tasks that are
used several times in your applications. For instance, consider a situation when you need to format the
display of a date. The database might store a date in the form CCYYMMDD, whereas you might need to
display it on the screen as MM/DD/CCYY. You could then create a function, such as the one shown below:

public string FormatDate(string CCYYMMDD)
{
int intYear, intMonth, intDay;
intYear = left(CCYYMMDD,4);
intMonth = mid(CCYYMMDD,5,2);
intDay = right(CCYYMMDD,2);
return (Cstr(intMonth) &"/"& Cstr(intDay) &"/"& Cstr(intYear));

}

If you need to format the display of your date at different places in the program, you can simply call this
function each time you need to do so, rather than writing code for the whole process repeatedly. It's
fairly obvious that this will save time, but the real beauty is that if there's an error in the code (or if you
need to change it), you only need to change the code once.

511

Debugging and Error Handling

Comment Your Code
Commenting your code is another simple and easy-to-implement technique that increases the
readability of your code. Without appropriate comments, your code will look extremely confusing.
Writing comments in your code will help you remember exactly what your code is doing, which will be
invaluable when you try to debug or modify it. Look again at the method from the previous section:

//**
public string FormatDate(string CCYYMMDD)
//*Purpose: convert date from CCYYMMDD format to MM/DD/CCYY format
//*Input: String date in the format CCYYMMDD
//*Returns: String string that represents a date in the format MM/DD/CCYY
//**
{
int intYear, intMonth, intDay;
intYear = left(CCYYMMDD,4);
intMonth = mid(CCYYMMDD,5,2);
intDay = right(CCYYMMDD,2);
return (Cstr(intMonth) &"/"& Cstr(intDay) &"/"& Cstr(intYear));

}

The commenting in this example may seem excessive for such a small method. However, the small
investment in time that it takes adequately to comment your code will pay huge dividends upon
revisiting that code. In addition, habits such as writing method headers and providing general
comments facilitate the reuse of code.

Convert Variables to the Correct Data Types (Validation)
Converting the values provided in your Web page to an appropriate data type before using them in your
program will prevent some compilation errors from occurring. For example, if the user assigns 12.23 for
a numeric field for which you're expecting an integer value, this assignment will result in an error. To
prevent this error, convert the value entered to an integer before assigning the value to a variable of
integer data type. You could use the Convert class in the System namespace provided by the .NET
Framework. The following table shows the syntax of using the ToString() method of the Convert
class:

Conversion Function Return Datatype

Convert.ToBoolean Boolean

Convert.ToByte Byte

Convert.ToChar Char

Convert.ToDateTime Date

Convert.ToDouble Double

512

Chapter 14

The following code shows the syntax for using the ToString() method of the Convert class:

SomeVariable = Convert.ToString(SomeInteger);
'Convert Integer to String

Try to Break Your Code
This can be a more difficult task than expected. It is often difficult for the developer to anticipate all the
unusual things a user might attempt to do with the application, such as accidentally typing in letters
when numbers are required, or supplying an answer that was longer than anticipated, or even
deliberately trying to break it.

So, when it is time to test your application, try to think like a user who isn't too computer literate. You
can break down your testing strategy into two main approaches:

❑ Be nice to your program: Supply your program with legal values, or values that your program is
designed to expect and handle. For instance, if your program contains an age field, supply only
numbers, not letters. Watch how your program behaves – does it respond as you expect it to
with the legal values supplied to it?

❑ Try to break your program: This is the fun part. Supply your program with illegal values. For
instance, provide string values where integers are expected. This ensures that your program
handles all illegal values appropriately. Depending on the kind of data you are expecting in
your program, you could to do anything from a simple numeric or alphabetic check to a validity
check (such as inserting invalid dates into a date field). If your program spans several pages,
then surf to some of the pages out of the expected sequence.

Both these techniques can be used to help standardize and improve the readability of your code. Many
basic errors can be avoided in this way. However, even if you follow all these suggestions, your code still
can't be guaranteed to be bug-free. Let's look at some of the errors that may plague your code.

Conversion Function Return Datatype

Convert.ToDecimal Decimal

Convert.ToInt16 16 bit signed Integer

Convert.ToInt32 32 bit signed Integer

Convert.ToInt64 64 bit signed Integer

Convert.ToSingle Single

Convert.ToString String

513

Debugging and Error Handling

Sources of Errors
The errors that occur in an ASP.NET page can be grouped into four categories:

❑ Parser errors: These occur because of incorrect syntax or bad grammar within the ASP.NET page.

❑ Compilation errors: These are also syntax errors, but they occur due to statements that are not
recognized by the language compiler, rather than ASP.NET itself. For example, using If (capital
I) instead of if, or not providing a closing bracket to a for loop, will result in a compilation
error. The difference between the parser error and compilation error is that the parser error
occurs when there is a syntax error in the ASP.NET page, and the ASP.NET parser catches it,
whereas the compilation error occurs when there is a syntax error in the C# code block.

❑ Configuration errors: These occur because of the incorrect syntax or structure of a configuration
file. An ASP.NET configuration file is a text file in XML format, and contains a hierarchical
structure that stores application-wide configuration settings. There can be one configuration file
for every application on your Web server. These configuration files are all named web.config,
irrespective of the application's name. There is also a single configuration file called
machine.config that contains information that applies to every application on a single
machine. We will discuss configuration files in detail in Chapter 15, although we do touch
upon them again later in this chapter.

❑ Runtime or logical errors: As the name implies, these errors are not detected during compilation
or parsing, but occur during execution. For example, when the user enters letters into a field
that expects numbers, and your program assigns that entry to an integer variable, you will get a
runtime error when the code tries to execute. These are also known as logical errors.

Now let's look at some specific examples that fall into the above categories.

Syntax Errors
As the name suggests, these errors occur when there are problems in the syntax of the code. Parser and
compilation errors fall under this category. These are usually the first errors encountered when
developing ASP.NET pages. There are several reasons why these errors occur:

❑ A typo or bad grammar in the code syntax: For example, instead of typing <asp:textbox> for
creating a TextBox control in your page, you type <asp:textbx>, then the browser shows an
error.

❑ Incorrect code syntax: For instance, when creating a textbox control, you might forget to close the
tag (as <asp:TextBox id="txtName" runat="server"> when it should actually be
<asp:TextBox id="txtName" runat="server" />)

❑ Combining or splitting keywords between languages: I make this error quite a lot. If you've been
coding in another language and come back to coding in C#, you might forget brackets, or type
keywords in the wrong case.

❑ Not closing a construct properly: This error occurs if we forget to close a construct, such as a for
loop or a nested if statement. Take a look at this example:

if condition1 {

514

Chapter 14

//do this
}
else condition2 {
//do this
if condition2a {
//do this

}
else {
//do this

}

Did you catch the error in the above code? We're missing a closing-bracket. Imagine how difficult it
would be to spot this if we had the above code block set amongst hundreds of other lines of code. It's
another good argument for formatting your code correctly too. If it had been indented, it would have
been easier to spot the error.

Let's look at an example of creating a syntax error (a parser error) and then see how ASP.NET responds
to it.

Try It Out Syntax Error
1. Open Web Matrix and type the following lines of code into the All Window. Make a spelling

mistake when creating the textbox control, as highlighted in the following code:

<html>
<head>
<title>Syntax Error Example </title>

</head>
<body>
<form method="post" action="syntaxerror.aspx" runat="server">
<asp:TetBox id="txtQuantity" runat="server" />
</form>

</body>
</html>

2. Save this file as syntaxerror.aspx and load the file using a browser. You expect to see a
textbox in the browser, as shown in Figure 14-1:

Figure 14-1

515

Debugging and Error Handling

However, what you actually see is Figure 14-2:

Figure 14-2

How It Works
As the error message clearly states, the ASP.NET parser points to Line 7, and asks us to check the details.
You can see that a spelling mistake exists, Tetbox instead of TextBox. If you correct the spelling mistake
and rerun the code, you'll get the expected result.

Errors of this kind are very common but are usually quick and easy to fix, since the error message
provides a detailed breakdown of the error and the line on which it occurs.

Now we will look at a syntax error that will generate a compilation error.

Try It Out Generate a Compiler Error
1. Create a new file called compilationerror.aspx, and type the following code into the Web

Matrix All window:

516

Chapter 14

<%@ Page language="C#" Debug="true" %>
<script language="C#" runat="server">

public void CompleteOrder(Object sender, EventArgs e)

{
If (txtQuantity.Text == "")
{
lblOrderConfirm.Text = "Please provide an Order Quantity.";

}
else if (Convert.ToInt32(txtQuantity.Text) <= 0)
{
lblOrderConfirm.Text = "Please provide a Quantity greater than 0.";

}
else if (Convert.ToInt32(txtQuantity.Text) > 0)
{

lblOrderConfirm.Text = "Order Successfully placed.";
}

}

</script>

<html>
<head>
<title>Compiliation Error Example</title>

</head>
<body>

<form method="post" action="manualtrapping.aspx" runat="server">
<asp:Label text="Order Quantity" runat="server" />
<asp:TextBox id="txtQuantity" runat="server" />

<asp:Button id="btnComplete_Order" Text="Complete Order"

onclick="CompleteOrder"
runat="server"/>

<asp:Label id="lblOrderConfirm" runat="server"/>

</form>

</body>

</html>

2. Save and view the compilationerror.aspx file with a browser. The page displayed is as
shown in Figure 14-3:

517

Debugging and Error Handling

Figure 14-3

How It Works
We typed If at the beginning of our control block instead of if. As expected, when we tried to run the
compilationerror.aspx file in the browser, we got an error message. It tells us we have a compiler
error in Line 5 and even attempts to tell us how to fix it. (In this case it is rather misleading as it tells us
we are missing a semicolon, when in fact, the if statement is the part that is incorrect!)

These are just a few common examples of syntax errors. There is no way we could provide a list of all
possible syntax errors that you might encounter, but the good news is that syntax errors are easy to find
and fix.

Logical (Runtime) Errors
The second type of error is the Logical Error. Unfortunately, it is relatively more difficult to find and fix.
Logical errors become apparent during runtime. As the name implies, these errors occur due to mistakes
in programming logic. Some of the more common reasons for these errors are:

518

Chapter 14

❑ Division by zero: This dreaded error that has been around since the days of valve-based
computers. It occurs when your program divides a number by zero. But why in the world do
we divide a number by zero? In most cases, this occurs because the program divides a number
by an integer that should contain a non-zero number, but for some reason, contains a zero.

❑ Type mismatch: Type mismatch errors occur when you try to work with incompatible data types
and inadvertently try to add a string to a number, or store a string in a date data type. It is
possible to avoid this error by explicitly converting the data type of a value before operating on
it. We will talk about variable data type conversion later in this chapter.

❑ Incorrect output: This type of error occurs when you use a function that returns output that's
different from what you are expecting in your program.

❑ Use of a non-existent object: This type of error occurs when you try to use an object that was
never created, or when an attempt to create the object failed.

❑ Mistaken assumptions: This is another common error, and should be corrected during the
testing phase (if one exists). This type of error occurs when the programmer uses an incorrect
assumption in the program. This can happen, for instance, in a program that adds withdrawal
amounts to a current balance, instead of subtracting them.

❑ Processing invalid data: This type of error occurs when the program accepts invalid data. An
example of this would be a library checkout program that accepts a book's return date as
February 29, 2003, in which case, you may not have to return the book for a while!

While this is far from being a complete list of all possible logical errors, it should give you a feel for what
to look out for when testing your code.

Try It Out Generate a Runtime Error
1. Open compilationerror.aspx in Web Matrix, go to the All Window, and make the following

change to the case of the if statement:

public void CompleteOrder(Object sender, EventArgs e)
{
if (txtQuantity.Text == "")

{
lblOrderConfirm.Text = "Please provide an Order Quantity.";

}
else if (Convert.ToInt32(txtQuantity.Text) <= 0)
{
lblOrderConfirm.Text = "Please provide a Quantity greater than 0.";

}
else if (Convert.ToInt32(txtQuantity.Text) > 0)
{

lblOrderConfirm.Text = "Order Successfully placed.";
}

}

2. Save the file as runtimeError.aspx.

3. View the runtimeError.aspx file using the browser. Provide a non-numeric value, such as
ABC, to the order quantity textbox, and click the Complete Order button. Figure 14-4 shows the
result:

519

Debugging and Error Handling

Figure 14-4

How It Works
Our control block validates input for null values, and for numeric values that are equal to or less than
zero. It does not check input for other non-numeric input values. The code generated a runtime error
when the ConvertTo.Int32() function tried to convert a non-numeric entry to an integer field. The
process of checking for this type of errors is called validation. To validate the data entry values, your
control block should have an extra couple of lines as follows:

else if (Convert.ToInt32(txtQuantity.Text) <= 0)
{
lblOrderConfirm.Text = "Please provide a Quantity greater than 0.";

}

Let's take a closer look at validating user input.

Trapping Invalid Data
Testing your code by supplying both legal and illegal values is crucial for the proper functioning of your
program. Your program should return expected results when providing legal values, and handle errors
when supplied with illegal values. In this section, we'll talk about ways to handle the illegal values
supplied to your program. We have two objectives here:

520

Chapter 14

❑ Prevent the occurrence of errors that may leave you with many disgruntled users

❑ Prevent your program from accepting and using illegal values

There are two main techniques used to fulfill these objectives: manual trapping and using validation
controls.

Manual Trapping
When building the application, you could create error traps to catch illegal values before they get into the
page execution, where they might halt the execution of the page or provide invalid results. How do you
block illegal values from sneaking into page processing? Let's develop a page that accepts order quantity
from the user.

Try It Out Catching Illegal Values
1. Open runtimeError.aspx in Web Matrix and make the following changes in the All Window:

<%@ Page Language="c#" Debug="true" %>
<script Language="c#" runat="server">
void CompleteOrder(object sender, EventArgs e)
{
if (txtQuantity.Text!= "")
{
if (!(Char.IsNumber(txtQuantity.Text,0)))
{
if (txtQuantity.Text.Substring(0,1)!= "-")
{
lblOrderConfirm.Text =

"Please provide only numbers in Quantity field.";
}
else
{
lblOrderConfirm.Text =

"Please provide a Quantity greater than 0.";
}

}
else if (Convert.ToInt32(txtQuantity.Text) == 0)
{
lblOrderConfirm.Text = "Please provide a Quantity greater than 0.";

}
else if (Convert.ToInt32(txtQuantity.Text) > 0)
{
lblOrderConfirm.Text = "Order Successfully placed.";

}
}
else
{
lblOrderConfirm.Text = "Please provide an Order Quantity.";

}
}

</script>
<html>
<head>

<title>Manual Trapping Example</title>
</head>

521

Debugging and Error Handling

2. Save the file as manualtrapping.aspx.

3. Load this file using your browser. Figure 14-5 shows the result of providing an order quantity of
10:

Figure 14-5

4. Supply different values to the order quantity textbox and check whether the page behaves as
expected.

How It Works
Notice that we have added an extra directive to the page calls:

<%@ Page language="C#" Debug="true" %>

This will enable us to view detailed error messages throughout the course of the chapter. How this
works will become clearer as we progress.

We are using two Label controls: a TextBox control and a Button control. The first Label control is the
label for the order quantity textbox:

<asp:Label text="Order Quantity" runat="server" />

The second label control called lblOrderConfirm is used to display a message after processing the
order, indicating whether the order was successfully placed or not:

<asp:Label id="lblOrderConfirm" runat="server"/>

The textbox accepts an entry from the user – the order quantity:

<asp:TextBox id="txtQuantity" runat="server" />

The button calls the CompleteOrder() function when clicked:

<asp:Button id="btnComplete_Order" Text="Complete Order"
onclick="CompleteOrder"

522

Chapter 14

runat="server"/>

Within the CompleteOrder() function, we create a series of checks to avoid illegal values. First, we
check for 'no entry' to the textbox:

if (txtQuantity.Text!= "")
{
...
}
else
{
lblOrderConfirm.Text = "Please provide an Order Quantity.";

}

This is followed by the numeric check and checks to ensure that the quantity is greater than zero:

if (!(Char.IsNumber(txtQuantity.Text,0)))
{
if (txtQuantity.Text.Substring(0,1)!= "-")
{
lblOrderConfirm.Text =

"Please provide only numbers in Quantity field.";
}
else
{
lblOrderConfirm.Text =

"Please provide a Quantity greater than 0.";
}

}
else if (Convert.ToInt32(txtQuantity.Text) == 0)
{
lblOrderConfirm.Text = "Please provide a Quantity greater than 0.";

}

Finally, the code for accepting the order:

else if (Convert.ToInt32(txtQuantity.Text) > 0)
{
lblOrderConfirm.Text = "Order Successfully placed.";

}
}

Using Validation Controls
The second technique is to use one or more of several validation controls provided by ASP.NET (refer to
Chapter 10 for a detailed discussion on validation controls.)

Validation controls are used to validate user input. For instance, you could use the
RequiredFieldValidator control to ensure that users enter a value to a textbox. By doing this, you
could avoid runtime errors that occur because of your program using a null (unknown value), when it is
expecting an ’entry’ from the user.

523

Debugging and Error Handling

By using one of the many validation controls provided by ASP.NET, you could present the users with a
message informing them about the incorrect value supplied, and the value your program is expecting.
This prevents the program from processing an illegal value and developing an error.

Let's look at an example to demonstrate how to use these controls. We'll use the
RequiredFieldValidator to ensure that the user provides a value for the Order Quantity field.

Try It Out Using RequiredFieldValidator
1. Open manualtrapping.aspx (from the previous exercise) in Web Matrix, and make the

following changes in the All Window:

<form method="post" action="usingvalidationcontrol.aspx" runat="server">
<asp:Label text="Order Quantity" runat="server" />
<asp:TextBox id="txtQuantity" runat="server" />
<asp:RequiredFieldValidator ControlToValidate="txtQuantity" runat="server"

ErrorMessage="Please enter a value in the Order Quantity Field">
</asp:RequiredFieldValidator>

<asp:Button id="btnComplete_Order" Text="Complete Order"_

onclick="CompleteOrder" runat="server"/>

<asp:Label id="lblOrderConfirm" runat="server"/>

</form>

2. Save this file as usingvalidationcontrol.aspx.

3. Use your browser to open usingvalidationcontrol.aspx. If you try to complete the order
without entering anything, you're presented with the request that you see in Figure 14-6:

Figure 14-6

How It Works
In this example, we have used a RequiredFieldValidator control. The ControlToValidate
property is used to specify the control that we are validating:

<asp:RequiredFieldValidator ControlToValidate="txtQuantity" runat="server"

524

Chapter 14

In this case, we are validating the order quantity textbox. The ErrorMessage property is used to
provide an error message when the user does not enter a value to the order quantity field.

ErrorMessage="Please enter a value in the Order Quantity Field">

The validation control saves us the extra second guessing of typical mistakes a user might make.

System Errors
These errors are generated by ASP.NET itself. They may be due to malfunctioning code, a bug in
ASP.NET, or even one in the CLR. Although you could find this type of error, rectifying it is usually not
possible – particularly if it is an ASP.NET or CLR error.

Other errors that can be placed in this category are those that arise due to the failure of a Web server or
component, a hardware failure, or a lack of server memory.

When an error occurs in an ASP.NET page, the error details are sent to the client. However, ASP.NET by
default shows detailed error information only to a local client.

A local client is a browser running on the same machine as the Web server and therefore only viewable
by the site administrator. For instance, if you create the ASP.NET examples in this book on a machine
running a Web server, and access them using a browser on the same machine (as you would do with
Web Matrix), then the browser is a local client. If this was deployed on a network using IIS, you might
see the error, but other users on the network would just receive a generic "something's wrong" kind of
message.

So, the fact that ASP.NET sends detailed information about errors to local clients is actually very helpful
to the developer during the development phase.

Finding Errors
Having adopted the good coding practices and different techniques to trap invalid data in our programs,
why are we still talking about finding errors? Even after taking precautions, our program might still end
up with an error page. It could be because we did not cover all possible error scenarios in our testing
(point the fingers at the testers), or another program did not behave as expected (refer it to the other
team) or worse, the server administrators did not set up the server right (blame it on the network
administrators).

However well you plan, it is difficult, if not impossible, to catch every bug in advance. So, what do we
do if our well-constructed code still doesn't work? We will discuss this topic next.

Let's go back to the local client scenario. ASP.NET displays a call-stack when a runtime error occurs. A
call-stack contains a series of function calls that lead up to an error. Before you do this, delete (or
rename) any web.config files residing with your samples; otherwise all errors generated will be
handled by this file.

Let's create a page that causes a runtime error.

525

Debugging and Error Handling

Try It Out Viewing the Call-Stack
1. Open Web Matrix and create a file called callStack.aspx. Then type the following code into

the All Window:

<%@ Page Language="c#" Debug="true" %>
<script language="c#" runat="server">
void CreateRunTimeError()
{
int[] array = new int[5];
int arrayIndex = 5;
array[arrayIndex] = 5;

Response.Write("This should never be reached");
}

</script>

<%
CreateRunTimeError();

%>

2. Save the file and open it in your browser. You should see something like Figure 14-7 (as long
you haven't got a web.config file in the same folder as the .aspx file):

Figure 14-7

526

Chapter 14

How It Works
In the block of code we entered, we set up an array of five elements, numbered from 0 to 4, and tried to
access an element with the number 5, which is an element beyond the end of the array:

int[] array = new int[5];
int arrayIndex = 5;
array[arrayIndex] = 5;

On running this code, an error was generated when the program tried to execute an integer data type
containing a string. We were presented with the error page above. The error page contains different
sections, such as Exception Details (we'll discuss exceptions shortly), Source Error, Stack Trace,
and so on. The Stack Trace contains the call-stack that says that the value we are trying to assign to an
integer variable is not valid. If you look through the call-stack, you can see the series of functions that
led to the exception.

The information provided under the Source Error section is useful in locating the line in which the
error occurred. The display of this information is controlled by the Debug mode.

Debug Mode
If Debug mode is enabled, the Source Error section of the error message is displayed as part of the error
message that pinpoints the location in the code that generated the error. If Debug mode is disabled, the
Source Error section is not displayed.

Now the question is: where and how can we set the value for Debug mode?

It can be set in two different places. The first place should be familiar as we have used it twice already
within this chapter. You can set it at every page within the Page directive at the top of the page, as
shown below:

<%@ Page Debug="true" %>

To disable it, you can set it to false:

<%@ Page Debug="false" %>

If the Debug mode is set like this (at the page level), the setting is applied only to that specific page.

Let's return to our previous example, and disable the Debug mode at the page level:

Try It Out Disable the Debug Mode
1. Open the callstack.aspx file in Web Matrix, and in the All window, insert the following line

at the top of the page – don't replace the existing declaration:

<%@ Page Language="C#" Debug="false" %>

527

Debugging and Error Handling

2. Save the file as debugmode.aspx and access the page using the browser. You will see an error
page as shown in Figure 14-8:

Figure 14-8

How It Works
We disabled the Debug mode in our debugmode.aspx by adding the following line at the top of the
page:

<%@ Page Debug="false" %>

On running our new file in the browser, we saw a new error message. Under the Source Error section,
there are instructions to enable the Debug mode for displaying the source code that generated the
exception, but the actual source code is not there.

As mentioned a moment ago, there are two ways to set the Debug mode. The second way is to set it at
the application level, using the <compilation> configuration section in the configuration file (see Chapter
15).

528

Chapter 14

Setting the Debug mode at the application level will display the Source Error section in the error message
for all the files under the application. This has a performance overhead though, so before moving your
application to a production environment, make sure you disable the Debug mode.

Tracing
When developing an application, we execute the page at different levels of development, and for
effective debugging, we always need to see the values assigned to variables and the state of different
conditional constructs at different stages of execution. In ASP, developers used the ubiquitous
Response.Write statement to display this information. The downside of this is that while completing
the application development, the developer had to go to every page and either comment or remove the
Response.Write statements they created for testing purposes. ASP.NET provides a new feature to
bypass all of this. It is the Trace capability.

The Trace feature provides a range of information about the page, including request time, performance
data, server variables, and most importantly, any message added by the developers. It is disabled by
default. Like the debug mode, tracing can be either enabled or disabled at either the page (or the
application) level. We'll now consider these levels in more detail.

Page-Level Tracing
Tracing can be enabled at the page level to display trace information using the Page directive's Trace
attribute, as shown below:

<%@ Page Trace = "true" %>

Tracing can be disabled using:

<%@ Page Trace = "false" %>

When tracing is enabled, the trace information is displayed underneath the page's contents. Let's create a
simple ASP.NET page with a TextBox and a Label control, and enable tracing at the page level.

Try It Out Enabling Trace at the Page Level
1. Open Web Matrix, create a page called pageleveltracing.aspx, and type in the following

code to the All Window:

<%@ Page Trace="true"%>
<html>
<head>
<title>Page Level Tracing</title>

</head>
<body>

<form method="post" action="pageleveltracing.aspx" runat="server">
<asp:label text="Name" runat="server" />
<asp:textbox name="txtName" runat="server" />
</form>

</body>
</html>

529

Debugging and Error Handling

2. Save this file and view it using the browser as shown in Figure 14-9:

Figure 14-9

How It Works
First, we enabled the page trace with the line:

<%@ Page Trace="true"%>

We then created a textbox with some text beside it. What we got was the textbox plus a whole load of
tracing. Let's look at each section of the trace output to get a fuller understanding of what they display:

❑ Request Details: This section contains information pertaining to the page request, such as the
Session ID for the current session, the request type (whether it is GET or POST), the time at
which the request was made, the encoding type of the request among others, as shown in Figure
14-10:

Figure 14-10

530

Chapter 14

❑ Trace Information: This is the section in which the actual trace information is displayed along
with the messages written by developers. As shown in Figure 14-11, this section displays the
category, the message, the time since the first message, and the most recent message displayed:

Figure 14-11

❑ Control Tree: This section displays details about the different controls used in the page. The
details include the ID provided for the control, the type of control used, and its position among
other controls, as shown in Figure 14-12:

Figure 14-12

❑ Cookies Collection: This section displays all cookies used in the page. Figure 14-13 shows only
the SessionID because it is the only member of the cookies collection used in our page:

Figure 14-13

❑ Headers Collection: As shown in Figure 14-14, this section displays the various HTTP headers
sent by the client to the server, along with the request:

Figure 14-14

531

Debugging and Error Handling

❑ Server Variables: This section displays all the members of the Server Variables collection as
shown in Figure 14-15:

Figure 14-15

Now that we've introduced the information displayed in the trace page, let's talk about techniques used
to write a message to the Trace Information section, and get updates on what goes on behind the scenes as
your code is executed.

Writing to the Trace Log
Each ASP.NET page provides a Trace object that can be used to write messages to the trace log. You can
use two methods to write messages to the trace log:

❑ Trace.Write()

❑ Trace.Warn()

The messages are only displayed when tracing is enabled.

Both methods are used to write messages to the trace log, but when using the Trace.Warn() method,
the messages are displayed in red. You may want to use Trace.Warn() for writing (and highlighting)
unexpected results or incorrect values for variables in your program. Let's create an example that shows
how to use these methods.

Try It Out Writing to the Trace Log
1. Open Web Matrix, create a file called writetotrace.aspx, and type the following code into All

Window:

532

Chapter 14

<%@ Page Trace="true"%>
<script Language="c#" runat="server">
void WriteToTrace()
{
// This is where messages are written to Trace Log
// Syntax as follows:
// Trace.Write ["Category", "Message to be displayed"];
// Trace.Warn ["Category", "Message to be displayed"];
int intCounter=1;
Trace.Write("FirstCategory", "Variable is initialized");
while (intCounter > 10)
{
intCounter++;

}
if(intCounter < 10)
{

Trace.Warn("ErrorCategory", "Value of intCounter is not incrementing");
}

}
</script>
<%
WriteToTrace();

%>

2. Save this file and open it in your browser. The message we wrote using the Trace.Warn()
method is shown in Figure 14-16. It's the ErrorCategory line and is displayed in red:

Figure 14-16

533

Debugging and Error Handling

How It Works
The first thing we do is declare intCounter (which we're using as a label) as an integer data type, and
assign a value of 1 to it:

int intCounter=1;

We write a message to the trace log, which says our variable has been initialized:

Trace.Write ("FirstCategory", "Variable is initialized");

The next three lines of code constitute a loop, so that while intCounter is greater than 10, it will be
incremented:

while (intCounter > 10)
{
intCounter++;

}

This looks like a programming error. As we initialized intCounter to 1, it cannot be greater than 10. We
then introduce our Trace.Warn() statement that displays a warning message if intCounter is less
than 10 (which it is). This is what we want because, in order for the loop to work, intCounter must be
greater than 10:

if(intCounter < 10)
{

Trace.Warn("ErrorCategory","Value of intCounter is not incrementing");
}

Note that we've specified category information in both, Trace.Write() and Trace.Warn(), methods.

Application-Level Tracing
As stated earlier, tracing can also be enabled or disabled at the application level, in which case the
tracing information is processed for all the pages under the application.

A page-level trace setting always overrides the application-level trace setting. For instance, if tracing is
enabled at the application level but disabled for a page, then the tracing information will not be
displayed for that page.

Application-level tracing is set using the <trace> section in the configuration file (web.config)
discussed earlier. The following is an example of the <trace> section:

<configuration>
<system.web>
<trace enabled="true" requestLimit="10" pageOutput="true"
traceMode="SortByTime" localOnly="true" />

</system.web>
</configuration>

The use of tracing in web.config is discussed in more detail in Chapter 15.

534

Chapter 14

Trace.axd: The Trace Information Log
When application-level tracing is enabled (there has to be a web.config file present for this – you can
copy the previous code and save it as web.config just to test it), the trace information is logged to the
rrace.axd file. This file can be accessed using the URL for your application, followed by trace.axd –
for example, http://yourwebservername/applicationname/trace.axd

Figure 14-17 shows how the trace.axd file looks in the browser, after another browser has made a
request to manualtrapping.aspx and received a response from the server:

Figure 14-17

trace.axd provides a summary of each page requested, and a View Details hyperlink takes you to the
trace information page for that particular screen.

Handling Errors
We've seen the kind of errors that can occur, how to avoid them, and how to find them if things do go
wrong. But what if the errors just won't go away; annoyingly, this happens all the time! Don't worry
though, because there is a way of dealing with this – we can use an error handling technique to catch
them. Even though we can't write a 'magical' program to fix all the bugs on the fly, we can let users
know that there is a bug and not to worry if things don't look right. In this section, we will talk about
different error handling techniques that can be used to catch errors.

On Error Goto?
If you have a background in Visual Basic, you might be asking yourself whether you can use syntax like
On Error Resume Next in C#, and the short answer is, no you cannot! C#'s built-in error handling syntax
is based on structured exception handling. Structured exception handling in C# does not allow you to
simply skip the line of code producing the error and proceed with the next one. Such a function is OK
for a script-based application such as a traditional ASP page, but for the object-oriented world of C# and
ASP.NET, you need something more robust. Structured exception handling also largely replaces the

535

Debugging and Error Handling

crude error handling offered by On Error Goto Label syntax as well. C# also does not have any
equivalent to the Visual Basic Err object.

Structured Error Handling
We have already come across structured exception handling in this book wherever we have actually
needed it:

❑ We used it to deal with situations where conversion between data types might fail and generate
a run-time error.

❑ We mentioned it as a means of dealing with situations where conversion between object types
might fail and generate a runtime error.

❑ We used it when dealing with databases. Runtime errors can occur for many reasons including
the unavailability of the database, trying to access a non-existent data field, or trying to update a
read-only data field.

In all cases, we referred to this point in the book where we look closely at implementing error handling.
However, to provide a complete picture of what C# error handling can achieve, we are going right back
to the basics.

So what do we mean by structured error handling? Pretty much just that: handling errors via a
particular structure. Lines of code are grouped together, and different handlers are provided to handle
different errors within those groups. The following list shows the sequence of events that take place
when using structured error handling:

1. We execute one or more lines of code in a group. They might execute without an error, or they
might generate one or many different kinds of errors.

2. If errors are generated, a handler (which you will have defined) corresponding to the error will
be called. If there is no error, no handler will be called.

Two important things need to be done for effectively using structured error handling:

❑ Creating a group of lines or a block of code.

❑ Creating handlers for the different kinds of errors that could occur when the code block is
executed.

Before launching into this subject, we need to introduce the concept of exceptions.

Exceptions
An exception is any error condition or unexpected behavior that occurs during the execution of a
program, and consequently disrupts the normal flow of execution – in fact, the term is just shorthand
for exceptional event. If an error occurs within a method call, the method creates an exception object and

You can also define a generic handler that handles any errors for which you did not
define a specific handler.

536

Chapter 14

hands it off to the runtime system. This object contains information detailing the type of exception that
was raised and the state of the program at the time.

The exception event is thrown by the code that calls the event. The code can either catch the exception
(and try to handle the problem), or pass it on up to the code that called that code, and so on up the
invocation stack. If it reaches the top of the stack without being caught by a handler somewhere along
the way, the program will crash. Before talking about how to handle exceptions, we'll briefly introduce
you to the exception class, and its properties.

The Exception Class
.NET Framework provides a System.Exception class, which acts as the base class for all exceptions.
The Exception class contains properties that aid our understanding of the exception. The following
table summarizes the different properties within Exception class:

Property Description

StackTrace This property contains the stack trace (which shows the sequence of
nested function calls your program has executed.) This can be used to
determine the location of the error occurrence.

Message This property contains a message about the error.

InnerException This property is used to create and store a series of exceptions during
exception handling. For example, imagine if a piece of your code
threw an exception. The exception, and its handler, could be stored in
the InnerException property of that handler. You could then
reference the exception, see how it was handled, and, based on that
information, perhaps create a more effective handler. This can be
very useful when you are reviewing the execution of a piece of
troublesome code. InnerException can also be used to store an
exception that occurred in a previous piece of code.

Source This property contains information about the application that
generates the error.

TargetSite This property contains information about the method that throws the
exception.

HelpLink This property is used to provide the URL for a file containing help
information about an exception that occurs.

Depending on whether the exception stems from the program itself or from the CLR,
you may or may not be able to recover from the exception. While you can recover
from most application exceptions, you can seldom recover from a runtime exception.

537

Debugging and Error Handling

The two important exception classes that inherit from System.Exception are ApplicationException
and SystemException. The SystemException class is thrown by the runtime while the
ApplicationException class is thrown by an application. Let's now look at some actual code that
makes structured error handling possible.

Using try...catch...finally
The general C# syntax for error handling is as follows:

try
{
// statement or statements which might fail at runtime

}
catch (Exception e)
{
// error handing block

}
catch
{
// optional second error handling block

}
finally
{
// Code must be run regardless of what happens above

}

Let's explain what each block means.

The try block contains all the code that might cause a runtime exception. This can be a single line of
code or multiple lines. There is not much more to say on this, as there are no parameters to consider, nor
any limitations on the code you can wrap in a try block. However, a try block by itself is not valid code
and immediately after the closing brace, you must have a catch (or finally) block to handle any
exceptions that could be raised. Therefore, the code construct that fulfils the minimum requirements for
structured exception handling would look like this (we have seen many instances of this earlier on tin
this book):

try
{
// statement or statements which might fail at runtime

}
catch (Exception e)
{
// error handing block

}

Multiple catch Blocks
A try block can be followed by more than one catch blocks. We said earlier on, that you can write
exception handlers that respond to different types of errors as well as a general purpose error handler,
that is able to deal with any error at all. In C#, this is achieved by stacking catch blocks one after
another. If an exception is thrown from the try block, the code will pass the Exception object created
down the chain of catch blocks until there is a match. On the other hand, if there is no match, the
exception is passed to the.NET runtime and you will get an unhandled exception error page as we saw
earlier.

538

Chapter 14

Let's illustrate this by using some pseudo-code:

try
{
// Error generated here, Exception object created

}
catch (SystemException e)
{
// If Exception type matches SystemException, then this code is run

}
catch (Exception e)
{
// If Exception type matches Exception, then this code is run

}
// If Exception doesn't match either SystemException or Exception, then code
// execution is aborted

One important thing to note here is that only one catch block is executed at any one time, and this is the
very first one that matches the exception object type being thrown. Therefore, you have to be careful
when implementing more than one handler. Error handlers of specific nature should always come before
any general error handler. We have already mentioned three types of the Exception object: Exception,
ApplicationException, and SystemException; the last two are derived from the first. The correct
sequence for the catch blocks is as follows:

try
{
// Error generated here, Exception object created

}
catch (SystemException s)
{
// If Exception type matches SystemException, then this code is run

}
catch (Exception e)
{
// If Exception type matches Exception, then this code is run

}

The catch block dealing with objects of the derived class, SystemExeception, comes first and the one
dealing with the base Exception object comes last. If you reversed the two, the code will not compile:

try
{
// Error generated here, Exception object created

}
catch (Exception e)
{
// If Exception type matches Exception, then this code is run

}

Any variables declared in the code blocks in C# are local in scope, so if you want
variables to be available to the try, catch, and finally blocks, they must be
declared before the try block starts.

539

Debugging and Error Handling

catch (SystemException se)
{
// If Exception type matches SystemException, then this code is run

}

Why is this code wrong? The catch block that is executed as the result of an error is the very first one
that matches the exception object type. The first catch block in the above code would thus be called for
any .NET exception that is thrown, including system exceptions. In other words, if a SystemException
is thrown, it will be caught by the catch (Exception e), because it is first in the list, and because
derived exception types can be caught by error handlers matching the base Exception type. Therefore,
the second and more specific error handler can never be executed because it is unreachable code. The
compiler will flag this up as an error.

The rule is that you place all error handlers in order, from the most specific to the least specific. So, does
that mean that code blocks preceded with catch (Exception e) always come last in the set? Well, no –
you can define a catch block that is even more general that this one. The catch (Exception e) block
can deal with any .NET-related exception but it cannot deal with any exceptions thrown by objects
outside .NET, such as the ones from the Windows operating system (OS). To trap any error at all,
regardless of its origin, C# allows you to use a catch with no parameter at all:

catch
{
// Code here

}

As this type of catch block is as general as you can get, it has to be placed at the very end of a sequence
of catch blocks.

What You Can Put in a catch Block
There is no limit to what you can put in a catch block. Normally, you would generate some message to
inform the user that something exceptional had occurred or write the information to an error log.
Alternatively, you could add some recovery code to deal with the error and bring the application back to
a normal state, without the user even knowing that anything happened at all. In most cases, you will
want to make use of the contents of the exception object that was created when the exception was
thrown.

The general Exception object only provides general information on an error, which may or may not be
useful to you. A more specific exception object that uses one of the derived classes would contain more
specific information about the error, which would also make it easier to deal with. For this reason, it is
always best to include as many specific error handlers as you deem reasonable, when you know
beforehand what kind of exceptions are likely to occur.

The following code example would display the contents of the Message property of an
IndexOutOfRangeException object:

catch (IndexOutOfRangeException e)
{
Response.Write (e.Message)

}

540

Chapter 14

The general-purpose error handler should only be used if you do not know what type of exception is
likely to occur, or as a catch-all error handler for any unlikely exceptions. You can also use this error
handler if you are only outputting a simple error message:

catch (Exception e)
{
Response.Write("You must type your name in the box");

}

Here the compiler may warn you that you are not using the Exception object e (it's not necessary that
you have to use this). If you want to eliminate this compiler warning altogether, you can use the ultimate
general-purpose error handler:

catch
{
Response.Write("You must type your name in the box");

}

Because the latter error handler receives no error information at all, you cannot retrieve any error-
specific information.

finally Block
The finally block, if defined, will be executed either after the error has been handled, or after the code
in the try block has been executed, depending on whether an error occurred or not. The finally block
is typically used to do cleanup tasks, such as releasing resources, closing objects, and so on. The syntax is
very simple:

finally
{
// Clean-up code here for example calling Close() on previously opened

objects
// for example database connections

}

Generating Exceptions Using throw
Up until now, we have assumed that we only handle exceptions that are thrown by the .NET runtime
and that we create error handlers that are matched to the various exception objects that could be
produced. We have even considered exceptions that are thrown by code outside the control of the .NET
runtime. However, we can take control of the exception generation process ourselves by manually
generating an exception in response to a given set of conditions. Any code can be configured to generate
an exception, and the syntax for doing this is as follows:

if (something happens)
{
throw new Exception("An error has occurred");

}

An exception is generated whenever the above condition evaluates to true and will contain the message
An error has occurred. If left alone, the program execution will immediately terminate, therefore the code

541

Debugging and Error Handling

containing the throw statement should be enclosed in a try block, and followed by an appropriate
catch block. However, this need not be the case.

A throw statement could well be included in a function without any try and catch blocks defined at
all. This means that the function call itself must be placed in a try block, and the code calling the
function must take responsibility for handling any error that could be generated by the function. Say we
have a function like this:

double MayThrowError(double a, double b)
{
if(b == 0)
{

throw new DivideByZeroException();
}
return a/b;

}

Here, if we pass zero as the second parameter, we will get an exception that is not handled in the
function itself, and must be handled by the calling code. Because you know what type of exception will
be thrown – you created it in the first place – you can implement a catch block that matches it:

try
{
double result = MayThrowError(50,0);

}
catch (DivideByZeroException dbz)
{

Response.Write(dbz.Message);
}

Let's consider a different scenario. Rather than creating a function that contains a throw statement, you
might have called it from an external class. And it's also conceivable that you do not know that the
chosen function throws an exception, until it actually happens! Therefore, it is normal for the
documentation for a class to inform you whether an exception could be thrown by a function, and if so,
what kind. If you should go on to create a function for general use that can throw an exception, you
should inform your potential users of this in order to prevent them from receiving a nasty surprise!

Another way of manually generating exceptions is by using the checked keyword. It is applied to a
statement that can fail, to make sure that a runtime exception is thrown. We saw this when considering
overflows of variable types, but it can also be applied to other potential problem areas such as data type
conversions. If you use checked in your code, you must also use try...catch blocks.

Now we've done the theory, let's try an example.

Try It Out Using try...catch...finally
1. Create a new file called structuredErrorHandling.aspx in Web Matrix and add the

following code within the All Window:

<script Language="C#" runat="server" >

542

Chapter 14

void StructuredErrorHandling ()
{
try
{
int [] array = new int[9];
for(int intCounter=0; intCounter <= 9; intCounter++)
{
array[intCounter] = intCounter;
Response.Write("The value of the counter is:" + intCounter +

"
");
}

}

// Handler for index out of range exception

catch (IndexOutOfRangeException ex)
{

Response.Write("Error Occurred"+ "
" + ex.ToString() + "
");
}

// Handler for generic exception

catch (Exception e)
{

Response.Write("Generic Error Occurred" + "
");
}
finally
{

Response.Write("The Page Execution is completed" + "
");
}

}
</script>

<%
StructuredErrorHandling();
Response.Write("Function call completed" + "
");

%>

2. Save this file and load it in your browser. Figure 14-18 shows the result:

543

Debugging and Error Handling

Figure 14-18

How It Works
In the StructuredErrorHandling() function, the try block encloses all the code we want to execute.
We create an integer array and we attempt to loop through it:

void StructuredErrorHandling ()
{
try
{

{
int [] array = new int[9];
for(int intCounter=0; intCounter <= 9; intCounter++)
{
array[intCounter] = intCounter;
Response.Write("The value of the counter is:" + intCounter + "
");

}
}

We have made a deliberate mistake in the code, in that we are attempting to loop through ten elements
in an array whereas there actually are only nine. An exception will be thrown.

There are two catch blocks defined. One for the expected IndexOutOfRangeException object:

catch (IndexOutOfRangeException ex)
{
Response.Write("Error Occurred"+ "
" + ex.ToString() + "
");

}

544

Chapter 14

The other one is a generic catch-all handler, which should not be executed in this code, but is there just
as a precaution:

catch (Exception e)
{

Response.Write("Generic Error Occurred" + "
");
}

The finally block is there just to confirm that it was actually run:

finally
{

Response.Write("The Page Execution is completed" + "
");
}

At the end, once the function has been called, a line is sent to inform the user that the whole function is
complete:

Response.Write("Function call completed" + "
");

Nested Try Blocks
Structured exception handling can be extended to allow for multiple levels of error handling using
nested try blocks. This enables you to exert more control over the error handling process than can be
achieved using a single try block. You can do two things with nested try blocks that may not be
achievable using just one. You can modify the type of exception thrown, and you can enable different
types of exception to be handled in different places in your code. The syntax for implementing nested
try blocks looks like this:

try
{
// main try code block [1]
try
{
// code block that needs closer attention [2]

}
catch (SystemException se)
{
// [3]

}
catch (ApplicationException ae)
{
// [4]

}
finally
{
}
// more code

}
catch
{
// main catch block code [5]

545

Debugging and Error Handling

}
finally
{
}

This is a very simplified representation as there are only two try blocks (there can be any number of
them). The inner block has two catch blocks and a finally block, the outer one has one catch block
and a finally block.

This is how it works. If the code at the point marked [1] fails, then the catch block marked [5] will be
called upon to handle it. This corresponds with the behavior already outlined for a single try block. In
case of a failure occurring before the inner try block starts, the page will not even be aware that the
inner try block exists, as all code from the point where the exception occurs is ignored.

If, however, the code in the inner try block fails, marked by [2], then control passes to catch blocks
[3] or [4], which will process the error. Then the inner finally block is executed and the code
execution continues as normal until the end of the outer try block, where the outer finally block is
executed.

This is all well and good, but what if none of the inner catch blocks can handle the error? What
happens then? Well, the .NET runtime will keep looking for a handler to deal with the exception
generated. It will run the code in the inner finally block before leaving the outer try block (passing
over any code that occurs after the end of the inner try block). The set of catch blocks following the
outer try block are examined for a match and, if there is one, then the code for that particular catch
block is executed. If even at this point there is no match, the outer finally block is run and control
passes to the .NET runtime.

So what happens if the code in the catch blocks [3] and [4] fails? We have not considered this before
in this section, but code can fail even in error handlers! In such situations, .NET runtime will, in the first
instance, look for an error handler in any catch block associated with the outer try block (block [5] in
this case).

This passing around of exception objects between catch blocks can actually be used to our advantage.
We have said before, that the benefit of using nested try blocks is that you can modify the exception that
was originally thrown. You might want to do this because the exception object that was thrown might
not be the root cause of the problem; you might want to look at other possibilities.

So if you have code like that shown in the following snippet and an ApplicationException is thrown,
it will be caught by the appropriate catch block. However, on further investigation, you might find that
the real problem lies with a missing file. Then, you can generate a new exception to deal with this
situation by using throw. In the code, the line marked in bold achieves this. The new exception is
thrown with an appropriate message as well as a reference to the original ApplicationException
stored in the InnerException property:

try
{
// main code block [1]
try
{
// code block that needs closer attention [2]

}
catch (SystemException se)

546

Chapter 14

{
// [3]

}
catch (ApplicationException ae)
{
if (something happens)
{
// [4]
throw new FileNotFoundException("File does not exist", ae);

}
}
finally
{
}
// more code

}
catch
{
// [5]

}
finally
{
}

If, however, you want manually to re-throw an exception from a catch block without modifying it, you
can use the throw keyword by itself:

catch (ApplicationException ae)
{
if (something happens)
{
// [4]
throw;

}
}

This code passes control back to the outer try block where its can be dealt with by any of its associated
catch blocks. This method enables the same exception to be handled by more than one error handler.
You might be thinking that this is all a bit complicated, but nested try blocks are actually more common
than you realize. This is because nested try blocks do not have to be in the same code block at all; they
don't even have to be in the same class. When you call a function A() from within a try block, the
function itself might include a try block of its own. Any exception thrown by A() that is not handled by
A(), will be caught by the error handlers in your code.

Handling Errors Programmatically
We can now handle errors using try…catch blocks, but some exceptions may still sneak through.
ASP.NET provides us with two more methods that can be used to handle any errors that are
unaccounted for, and provide a friendly message to the user, instead of the default runtime error screen.

The exception handler might not be defined in your class at all – it might be a .NET
Framework base class function; the rules for passing exceptions around are handled
by the .NET Framework and so are not dependent on the way the code is structured.
Indeed, it is possible for code written in Visual Basic .NET to throw an exception
that is then handled by code written in C#.

547

Debugging and Error Handling

The two methods are:

❑ Page_Error()

❑ Application_Error()

Page_Error()
The Page class provides this method. (Refer to Chapter 10 for more information on the Page class and its
members.) The Page_Error() method can be used to handle errors at the page level. Every time an
unhandled exception occurs, this event is called.

To see how it works, let's take our previous example and modify it to use the Page_Error() method.
Here, we created an error by storing a string to an integer datatype, and we used the Try statement to
handle exceptions. This time, we'll just use the Page_Error() method to handle the exception:

Try It Out Using Page_Error()
1. Open structuredErrorHandling.aspx in Web Matrix, and make the following adjustments

within the All Window:

<script Language="c#" runat="server">
void PageLevelErrorTest()
{
// Remove opening try
int[] array = new int[9];
for(int intCounter=0; intCounter <= 9;intCounter++)
{

array[intCounter] = intCounter;
Response.Write("The value of the counter is:" + intCounter + "
");

}
// Remove catch and finally blocks

}
void Page_Error(object sender, EventArgs e)
{
Response.Write("Error occurred: " + Server.GetLastError().ToString());
Server.ClearError();

}
void Page_Load()
{
PageLevelErrorTest();

}
</script>
<%
PageLevelErrorTest();
Response.Write("Function call completed" + "
");

%>

2. Save the file as pageLevelError.aspx, and open it in your browser. You should see something
like Figure 14-19:

548

Chapter 14

Figure 14-19

How It Works
We already know about the first half of this code, as it is the same as for the previous example. However,
it's the Page_Error() function that we're interested in:

void Page_Error(object sender, EventArgs e)

Within the Page_Error() method, we write a message to the user to say that an error has occurred, and
get detailed error information from the server using the GetLastError() method of the
Server object:

Response.Write("Error occurred: " + Server.GetLastError().ToString());

After displaying the message, we free up the server by using the ClearError() method of the Server
object.

The Page_Error() method is called whenever an unhandled exception is thrown within the page. This
method could be used to catch the error, log the error to a log file, notify the administrator of the error
using e-mail, or store the error information to a database. We will talk about this in the Notification and
Logging section.

Application_Error()
This too can be used to handle any errors unaccounted for. The Application_Error() method is
similar to the Page_Error() method – that are if it is enabled, it is called whenever an unhandled
exception is thrown, from any page under the application. This method is part of the global.asax file.
Another similarity with the Page_Error() method is that Application_Error() can also be used to
log the errors to a log file, notify an administrator using e-mail, or store the error information to a
database.

549

Debugging and Error Handling

The following example shows the usage of this method:

void Application_Error(object sender, EventArgs e)
{
//Handle the Error
//Provide code to log the error or send an email

}

Error Notification and Logging
In this section, we will talk about the techniques that are used to log errors to the Windows event log,
and notify a site manager or administrator of the occurrence of the error.

Customized Error Messages
The next question is: what if the development server is on a different machine? ASP.NET allows you to
specify whether you want the detailed message to be displayed on the local client, on remote clients, or
both. You can specify this information using the <customErrors> section in the Web configuration file,
web.config. We'll discuss the web.config file later in the book (see Chapter 15 for more details); for
now, just create a new file in your application folder called web.config, so that you can demonstrate
how to handle custom errors. The following example shows a sample setting for the <customErrors>
section:

<configuration>
<system.web>
<customErrors defaultRedirect="userError.aspx" mode="On">
<error statusCode="404" redirect="PagenotFound.aspx" />
</customErrors>

</system.web>
</configuration>

As shown, the <customErrors> configuration section has two attributes. The first is the
defaultRedirect attribute, and specifies the URL for the page to be redirected to when an error
occurs. The above configuration setting will redirect the user to a default error page, userError.aspx
when an error occurs.

The second attribute is the mode attribute, which takes three values: On, Off, and RemoteOnly On,
specifies that the custom error is enabled; the users will be redirected to the custom error page specified
in the defaultRedirect attribute. Off specifies that the custom error is disabled; the users will not be
redirected to a customized error page, but to a general non-informative one. RemoteOnly, the default
setting, specifies that only remote (and not local) clients should be redirected to the custom error page.

The <customError> configuration section contains an <error> sub tag, which is used to specify error
pages for different errors. In the above example, the PagenotFound.aspx page has been specified as the

All settings in web.config file have to be enclosed with <configuration> and
<system.web> tags. In addition, make sure that you copy the upper and lower case of
this code exactly as web.config is case-sensitive.

550

Chapter 14

error page when HTTP 404 error occurs. You could provide multiple <error> sub tags for different error
codes.

Let's create the two friendly error pages, userError.aspx and PagenotFound.aspx, specified in the
configuration file.

Try It Out Creating Error Pages
1. Create a Web configuration file in BegASPNet11/ch14. To do this, go to Web Matrix and choose

the Web.config option in the third row of the Add New File dialog. Don't worry if there is already
a web.config file there; it is OK to overwrite it.

2. Delete all of the code that is automatically generated, as it only needs to consist of the following
<customErrors> section, which you should type in as follows:

<configuration>
<system.web>
<customErrors defaultRedirect="userError.aspx" mode="On">
<error statusCode="404" redirect="PagenotFound.aspx" />
</customErrors>

</system.web>
</configuration>

3. Create the userError.aspx page. Open up Web Matrix, and enter the following code into the
All Window:

<html>
<head>
<title> Friendly Error Page</title>
</head>
<body>
<h2> An error has occurred in executing this page. Sorry for the
inconvenience. The site administrator is aware of this error occurrence.
</h2>
</body>

</html>

4. Create the PagenotFound.aspx page. Create another file in Web Matrix and enter the
following code into the All Window:

<html>
<head>
<title> Friendly Error Page</title>
</head>
<body>
<h2> Sorry, the resource you are requesting is not available. Please
verify the address.
</h2>

</body>
</html>

551

Debugging and Error Handling

5. Load the userError.aspx file, using your browser. Figure 14-20 shows the userError.aspx
file (and not the detailed error message):

Figure 14-20

6. Try to access a file that does not exist in your application folder. Type into the URL address
section of your browser something like thispagedoesntexist.aspx. Figure 14-21 shows the
result of accessing a file that is not found in the application (what you see is the file with the
friendly error message and not the default Page not found message from the Web server):

Figure 14-21

How It Works
We created a <customErrors> section in the Web configuration file. This section pointed to the correct
file. We did this by setting the default error page displayed to userError.aspx, and the error page for
status code 404 to PagenotFound.aspx:

<customErrors defaultRedirect="userError.aspx" mode="RemoteOnly">
<error statusCode="404" redirect="PagenotFound.aspx" />

</customErrors>

Once this was done, we created our own text for the error messages in userError.aspx and
PagenotFound.aspx files. If we had been using a pre-existing web.config file, we would have also
had to ensure that <customErrors> was set to On, so that our new error pages were sent to the local

552

Chapter 14

browser. Otherwise, we wouldn't have been able to view them when we triggered them by using files
containing mistakes.

In the example, we saw how to redirect users to a friendly error page using the different attributes in the
<customErrors> section of web.config. There is also a way to redirect users to different error pages
based on which page the error has occurred on. You can do this by using the ErrorPage property in the
Page directive as shown below:

<% @ Page ErrorPage="ErrorPage.aspx" %>

If you have this directive in runtimeerror.aspx, the users will be redirected to ErrorPage.aspx
when an error occurs in runtimeerror.aspx.

Now let's go back to the local client scenario. ASP.NET displays a call-stack (a series of function calls that
lead up to an error) when a runtime error occurs. Before doing this, we suggest you delete the
web.config file; if you don't, all errors generated will be handled by this file.

Writing to the Event Log
We now know that any exceptions that are not handled can call the Application_Error() and
Page_Error() methods. There is another step we can take in handling these unforeseen errors, which
involves finding out when they occurred, or logging them, as this could provide vital clues as to how we
handle them in the future.

For instance, say a customer who is ordering a few items from your online shopping center receives an
error that the order could not be completed. The site manager should be able to see that an error has
occurred, so they can take steps to avoid this error in the future. To achieve this, errors can be logged in
to the Windows event log where they can be reviewed on a periodic basis. Depending on the nature of
the application, the event log could be reviewed every hour, day, or week.

System.Diagnostics Namespace
The tool that the.NET Framework provides for us here is the System.Diagnostics namespace. This
namespace contains classes that can be used for reading and writing to event logs. Before using the class
for accessing event logs, we have to import the System.Diagnostics namespace into the program, as
follows:

<%@ Import Namespace="System.Diagnostics" %>

EventLog Class
We use the EventLog class to read and write to the event log. We can create a new log, or write entries to
an existing log.

First, you need to create a log that you can write to, and then specify an event source. A source is a string
identifying an individual entry to the log. Creating an event source opens some space in the log for the
entry to be recorded. The CreateEventSource() method can be used to create both a source and a log.
In the following example, we create a log called MyApplicationLog, and a source called
MyApplicationSource.

553

Debugging and Error Handling

To actually write an entry to the log, we use the WriteEntry() method, and as in our last example,
provide detailed error information by using the GetLastError() method of the Server object.

Try It Out Writing to the Windows Error Log
1. Type the following code into Web Matrix All Window:

<%@ Import Namespace="System.Diagnostics" %>
<script Language="c#" runat="server" >

void EntrytoLog()
{
int[] array = new int[9];
for(int intCounter=0; intCounter <= 9;intCounter++)
{

array[intCounter] = intCounter;
Response.Write("The value of the counter is:" + intCounter + "
");

}
}
void Page_Error(object sender, EventArgs e)

{
string errorMessage = "Error occurred" + Server.GetLastError();
Server.ClearError();
string LogName = "MyApplicationLog";
string SourceName = "MyApplicationSource";
if (!(EventLog.SourceExists(SourceName)))
{

EventLog.CreateEventSource(SourceName, LogName);
}

// Insert into Event Log;
EventLog MyLog = new EventLog();
MyLog.Source = SourceName;
MyLog.WriteEntry(errorMessage, EventLogEntryType.Error);

}

</script>

<%
EntrytoLog();
%>

2. Save this file as entryToLog.aspx and load it in the browser. After the page has loaded, you
will see the screen shown in Figure 14-22:

554

Chapter 14

Figure 14-22

3. It's not really the display we interested in, but the fact that it was written to a log. To view the
contents of the log, you will need to open the Event Viewer. Click Start from the Windows tool
bar, and select Settings. Select Control Panel and double-click on the Administrative Tools icon.
This will launch the Administrative Tools window. Double-click on the Event Viewer icon to open
the Event Viewer window. Figure 14-23 shows the Event Viewer:

Figure 14-23

4. Double-click on the MyApplicationLog (listed under the Name column after System Log) to open
it. You will see the Error entry that we made. Figure 14-24 shows the entry:

Figure 14-24

555

Debugging and Error Handling

5. Double-click on the Error entry to open the Event Properties window, as shown in Figure 14-25.
This shows the date and time at which the entry was made, and the description we provided
using the WriteEntry() method:

Figure 14-25

How It Works
As before, the main function in the code creates an array of nine elements and attempts to loop through
ten. After this, you create the Page_Error() function. You start by creating the errorMessage variable
as a string, and supply it with a line of text to display along with error information from the server.
Finally, erase the error from the server:

void Page_Error(object sender, EventArgs e)
{
string errorMessage = "Error occurred" + Server.GetLastError();
Server.ClearError();

Next we define the name of our log, and this particular source of the error, but before creating them, we
check to see if the source already exists:

string LogName = "MyApplicationLog";
string SourceName = "MyApplicationSource";
if (!(EventLog.SourceExists(SourceName)))
{
EventLog.CreateEventSource(SourceName, LogName);

}

556

Chapter 14

If the source does not already exist, we proceed to create the log object and set the Source property
before displaying the error message:

// Insert into Event Log;
EventLog MyLog = new EventLog();
MyLog.Source = SourceName;
MyLog.WriteEntry(errorMessage, EventLogEntryType.Error);

In the above example, we have used the EventLog class to make an entry to the log file using the
Page_Error() method. Alternatively, you could use this class within the Application_Error()
method in global.asax. Doing this will create an entry to the log files for any unhandled errors
occurring in any of the pages within the application.

Mailing the Site Administrator
In the last example, we made an entry to a log file after the occurrence of an error. In a real world
scenario, a Web site manager or administrator could review this log file at regular intervals. However,
this may not be prudent for certain applications. Depending on the nature of the application, the
manager or administrator may need to be informed of an error right away. To do this, we could notify
the site administrator by sending an e-mail with the details of the error as soon as it occurs.

System.Web.Mail Namespace
The .NET Framework provides a namespace with a set of classes to do this. The System.Web.Mail
namespace contains three classes that can be used to create and send an e-mail using SMTP:

❑ MailMessage

❑ MailAttachment

❑ SmtpMail

Before using these classes in our page, we need to import the System.Web.Mail namespace, just as we
did with the System.Diagnostics namespace in the last example. Let's look at our three classes in
more detail.

MailMessage
The MailMessage class provides properties that are used to create an e-mail. The following table lists
the name and purpose of some of the more commonly used members of this class:

557

Debugging and Error Handling

The syntax for using this class is as shown in the following code

mailMessage.From = "senders email address";
mailMessage.To = "recipients email address";
mail.Message.Subject = "subject line";
mailMessage.Body = "body of email message";

MailAttachment
This class contains members that are used to create an attachment that is to be sent with the e-mail.

SmtpMail
This class provides properties that are used to send an email using the SMTP Service. The method we
are interested in, at the moment, is the Send() method of this class. This method is used to send an
email, and the code looks like this:

SmtpMail.Send(mailMessage);

To show you how a working piece of code based on the System.Web.Mail namespace, would look, we
have modified the previous example so that it sends an email instead of writing to the log file:

<%@ Import Namespace="System.Web.Mail" %>
<script language="c#" runat="server" >
void sendMailTest()
{
int[] array = new int[9];
for(int intCounter=0; intCounter <= 9;intCounter++)
{

array[intCounter] = intCounter;
Response.Write("The value of the counter is:" + intCounter + "
");

}

Name Use

Encoding This property specifies the type of encoding of the e-mail
attachment.

Filename This property specifies the file name of the mail attachment.

Name Use

From This property specifies the sender's e-mail address

To This property specifies the recipient's e-mail address.

Subject This property specifies the subject line for the e-mail message.

Body This property is used to set the body of the e-mail message.

558

Chapter 14

}

void Page_Error(object sender, EventArgs e)
{
string errorMessage = "Error occurred" + Server.GetLastError();
Server.ClearError();

// Create an email message
MailMessage newMail = new MailMessage();
newMail.From = "fromaddress@yourserver.com";
newMail.To = "administrator@yourserver.com";
newMail.Subject = "Error Occurred";
newMail.Body = errorMessage;
// send the mail to the administrator.
SmtpMail.Send(newMail);

}
</script>
<%
sendMailTest();
%>

This code allows email to be sent to the administrator of the server in the event of an error being
generated. We haven't stepped through this code in the Try It Out fashion, because unless you have a
working SMTP server on your machine, it won't send emails from or to your address.

Summary
In this chapter, we talked about error handling techniques that can be used when developing
ASP.NET applications. We discussed the different kinds of errors that can occur, techniques for handling
errors (including the new tracing features), handling exceptions using structured error handling, and
finally, techniques to log the error messages to a log file and notify the site administrator through email.

We saw that adopting good coding practice helps reduce the number of errors in your code, and that the
time spent in testing helps us create handlers for recurring errors before the application is moved to the
production environment. Using different error handling techniques helps us to develop applications
with fewer bugs, which are, therefore, more successful and competitive.

Exercises
1. How are parser errors different from compilation errors? Is there any difference between the

ways in which they are displayed by ASP.NET?

2. Here are three code snippets – what is wrong with each section and what type of error does it
contain? How would you fix it?

❑ Section A:

<html>
<head>

559

Debugging and Error Handling

<title>Syntax Error Example </title>
</head>
<body>
<form method="post" action="syntaxerror.aspx" runat="server">
<asp:TextBox id="txtQuantity" runat="Server />
</form>

</body>
</html>

❑ Section B:

<script language="C#" runat="server">
void Page_Load()
{
int intCounter, intLoop;
intCounter=0;
intLoop=0;
while (intCounter<10)
{

intLoop = intLoop +1;
}
}
</script>

❑ Section C:

<script language="C#" runat="server">
void Page_Load()
{
string a;
int b;
string c;
a = "Hello";
b = "World";
c = a + b;

}
</script>

3. Create a form with four textboxes and a submit button. Make the first textbox accept a user
name, the second accept an email address, the third accept a phone number, and the last accept
the user's gender. Use validation controls to make sure there are no blank entries, that you can
only enter numbers into the phone field, and that you can only enter a number between 1 and
140 in the age field. Also, but not necessarily with validation controls, make sure that the gender
textbox only accepts male or female and that the email address contains a "@". In what ways
could this form be improved further?

4. Write a try…catch error handler that will handle errors specifically for a divide by zero
exception.

Hint: We haven't mentioned the specific class involved, you can find a list of classes using the class
browser.

5. Create a custom error page for an HTTP 403 error Access is forbidden. and get it working for this
chapter's code folder.

560

Chapter 14

15
Configuration and

Optimization

ASP.NET makes important and dramatic changes to configuration management. With ASP, a lot of
configuration was done via the Web server's interface, whereas in ASP.NET, the configuration
information is located within XML files that are separate from the Web server. These configuration
files are directly accessible from ASP.NET and offer the user greater control over the workings of
both the Web server and the Web page. They eliminate the need to restart your Web server after
configuration changes are made, because once you alter the configuration files and recompile your
application code, the change has already been made. In addition, you don't have to worry about
whether you are running Web Matrix or IIS; you have the ability easily to alter the configuration
settings.

With the greater level of customization that we can exercise over our applications, it is crucial that
our code runs quickly and efficiently. In addition to the configuration aspects, optimization of
your code is equally vital to ensure that everything runs as expected on the Web server. Up until
now, we've only really been concerned with demonstrating a particular concept and the ways it
can be used, but from now on, we need to be concerned with the efficiency of our code too.

This chapter will cover how to configure your applications in ASP.NET, and how to increase the
performance of your pages through general code optimization techniques. We will consider the
effects of installing .NET Framework 1.1 as it doesn't replace the old version of the .NET
Framework but runs alongside it. We will also look at other aspects of optimization to improve
security, user-friendliness, and to make debugging and managing applications easier.

In particular, this chapter covers:

❑ The structure and function of the configuration files, machine.config and web.config

❑ Customization of the machine.config and web.config files

❑ Using caching to improve server performance

❑ Monitoring the resources used by an application and gathering basic operation statistics

These advanced topics are covered in Professional ASP.NET 1.1, Wiley ISBN: 0-7645-5890-0.

Configuration Overview
IIS has long been a powerhouse for ASP and continues that role in ASP.NET. In the earliest days of ASP,
IIS offered only limited functionality beyond the ability to switch its Web serving capabilities on and off.
This is because initially IIS was only expected to render static HTML pages. Everything was different
about it, right down to the name. IIS used to stand for Internet Information Server. However, just like the
jump from the early browsers that couldn't display tables or frames to the multimedia-saturated
monsters we see today, IIS has had to adapt to the changing environment and the changing needs of its
users.

It quickly grew to control many of ASP's features via a point-and-click interface, such as those normally
accessed by the Server and Response objects, so a name change was in order. To alter aspects of the
Web server's operation in ASP, you could point and click via IIS's management console and then restart
the IIS service to refresh and resume operations. You could assign permissions for different users and
implement security policies. IIS was able to handle e-commerce transactions and much more than it was
ever designed for. However, if you were running ASP via Personal Web Server (PWS), your ability to
make changes was severely restricted by the rudimentary nature of the interface, which offered you little
more than a Stop/Start button.

ASP.NET has made configuration even more powerful and flexible by removing the reliance on the Web
server front-end by the adoption of XML-based configuration files. These files can be used to configure
any component of ASP.NET by editing the file in a text editor. You just need to write a piece of code to
explain how you'd like ASP.NET to perform a certain operation, and then configure ASP.NET to run
your code instead of its built-in code. You no longer have to worry about understanding IIS and its
different settings, because now you can alter the code itself.

You're not restricted to just defining configuration settings at design or run time, either. You can add or
change them at any time. The new configuration settings you supply will simply be activated, with no
loss of efficiency for the server.

This chapter will look at two configuration files:

❑ The machine configuration file: machine.config

❑ The application configuration file: web.config

Let's look at how you can view configuration files using Internet Explorer.

Browsing .config Files
The configuration files are stored as XML documents in plain text format. This means you can view
them with any text editor. When viewed in the Internet Explorer, you have the ability to expand and

The .NET Framework has two other configuration files, which are beyond the scope
of this book. They are the security configuration files, enterprisesec.config and
security.config that deal with the tiers of a Web server's security policy.

562

Chapter 15

collapse different nodes of the document to make the tree easier to read. To view a configuration file,
type its location into Internet Explorer's address bar.

A Quick Word on .NET Framework Versions
Before looking at the machine.config file, you need to ascertain the exact location of the configuration
file on your machine and its version. This book assumes that you are using .NET Framework 1.1.

Having .NET 1.0 installed along with .NET 1.1 is not a problem though, because .NET gives you the
ability to run an application against a particular version of the Framework. As the .NET Framework
evolves, certain aspects of a class could be removed entirely. This may cause older applications built
with a particular version of the framework to malfunction. If you have more than one version of
machine.config on your machine, you need to ascertain exactly which version of the Framework is
Web Matrix using, and therefore which version of the file you need to use.

It is already mentioned in Chapter 1 that you need to alter settings in the WebServer.exe.config file.
It's possible (although unlikely) that you didn't do this and got this far. However, in this chapter it will
be essential to change this file if you have both versions installed. So, if you haven't already changed the
settings, find Webserver.exe.config, which should be located at C:\Program Files\Microsoft
ASP.NET Web Matrix\v.0.6812 (the version number is liable to change). Open it in Web Matrix and
add the following settings after the </configSections> and before the <runtime> section, roughly
around line 17:

<startup>
<supportedRuntime version="v1.1.4322" />

</startup>

Save the changes and restart the Web Matrix Web server.

Finding the Correct machine.config File
Right then – now that we have ensured that everybody is using the same version, let's now look at the
machine.config file. You will find this file at the following location:

%SystemRoot%\Microsoft.NET\Framework\v1.1.4322\CONFIG\machine.config

If you have both versions of the Framework installed, you will find a second
machine.config at this location:
%SystemRoot%\Microsoft.NET\Framework\v1.0.3705\CONFIG\machine.config.
Ignore this version, as it is now redundant for the examples in this book.

When .NET Framework 1.1 is installed on a machine that already has .NET 1.0, the
older installation is not removed automatically. To remove the older version, you
need to uninstall it manually.

563

Configuration and Optimization

Copy this file and save it as machine.config.xml anywhere on your system, and then open it in your
browser. You'll see your machine.config file displayed in the same way as an XML document. If you
collapse the major nodes, you'll get a graphical display of the basic elements as shown in Figure 15-1:

Figure 15-1

The Configuration Files
Your system will have only one machine.config file per installation of the .NET Framework, but it
could possibly contain many web.config files. machine.config contains machine-specific settings
that ASP.NET needs to function, whereas web.config contains configuration information for a specific
Web application. The web.config settings can override default functionality defined in the
machine.config file to provide a customized environment for each application.

The configuration sequence of events runs as follows. When a page is initialized, the information in
machine.config is read. Once this has been done, ASP.NET descends to the next level of the hierarchy
and reads the individual web.config files stored in your Web application's root directories. These files
supply additional configuration information to augment or override settings inherited from
machine.config. Then, ASP.NET descends further to the next level a+nd reads the web.config files
stored in your application's child directories below the root. These are used to augment or override
information given either in machine.config or in the root web.config. Next, any web.config files in
subdirectories below this level are read and acted upon in a similar manner.

This will continue until all web.config files in the tree have been processed. Some of your directories
may not have a web.config file. In this case, they will inherit their settings from the closest
configuration file node.

Do not rename the original machine.config – ASP.NET relies on this file for its
configuration, and will not run properly without it!

564

Chapter 15

This can be seen more clearly in Figure 15-1, which shows the virtual directories in IIS. Don't worry if
you are using Web Matrix – this diagram is purely for illustrative purposes and only demonstrates the
hierarchical organization of the .config file.

A well-structured setup would store the general settings that are to be taken into account at a machine
level in the machine.config file, and then override them when necessary by using web.config files
specific to the application page or pages. This approach is beneficial because if any changes need to be
made to the general structure of your application, you would only need to alter the machine.config
file. Likewise, if an individual page needs special settings to function, it can be placed in a child
directory with its own web.config file. Any changes you make there will affect just that page and not
your whole application or machine.

At runtime, ASP.NET uses the information provided by the configuration files to compute the settings
for each application resource. The settings are then cached (covered later in the chapter) to allow faster
access on subsequent calls. ASP.NET can detect changes made to the configuration files while the Web
server is running and can apply these changes immediately without requiring the server to be stopped
or rebooted.

Configuration files are protected from unauthorized snooping because both Web Matrix and IIS are
automatically configured to prevent HTTP access to them. A server error will be returned if any attempt
is made to browse these files over HTTP, even if the file does not exist. You can try this for yourself by
directing your browser to http://localhost/web.config, where you will see an error message as depicted in
Figure 15-2:

Figure 15-2

You'll get the same result if you try to browse to global.asax or any file that has the following
extensions: .ascx, .cs, .csproj, .vb, .vbproj, and .webinfo. This is because all these files are set up
in the same way

Configuration File Rules
Let's look at the basic rules of XML that apply to the configuration files:

565

Configuration and Optimization

❑ They must have a single unique root element that encloses all other elements within it. The root
element for both machine.config and web.config is <configuration>.

❑ Elements must be enclosed between the corresponding start (<tag>) and end (</tag>) tags.
These tags are case-sensitive, so <Tag> and <tag> will be treated differently.

❑ Any attributes, keys, or values must be enclosed in double quotes: <add key="data" />.

❑ Elements must be nested and not overlap.

In the .config files, you will also find that a couple of rules of thumb follow. Note that these are general
methods (not XML-related):

❑ Tag names and attribute names are camel-cased; in other words, the first character of a tag name
is lowercase and the first letter of any subsequent concatenated word is uppercase.

❑ Attribute values are Pascal-case, that is, the first character is uppercase and the first letter of any
subsequent concatenated word is also uppercase. Exceptions to this are true and false, both of
which are lowercase.

Configuration File Format
Now that we've refreshed our memory about the basic XML rules that apply to configuration files, let's
look at the way these files are structured.

As the .NET Framework uses a set of XML classes to access and alter the configuration files, it forces
developers to use a common structure for each of the configuration files. The XML structure is most
noticeable in machine.config, where all the XML elements are declared and their values set. The
web.config file is a smaller file because it only contains a subset of the settings already found in
machine.config.

The configuration files are structurally divided into two main areas:

❑ Declarations: Individual classes are defined to manipulate information. This section is delimited
by <configSections> tags.

❑ Settings: Values are assigned to the classes declared in the first section. This section is delimited
by <sectionGroup> tags.

In web.config files, we can override the values of classes defined in the machine.config file. Within
these two main groups are several subgroups that divide the information into manageable chunks. Let's
now consider the system.web group, because this is the only section that contains the ASP.NET-specific
material.

Figure 15-3 shows a screenshot of the declarations section, with the system.web group expanded:

Be very careful when editing configuration files, as they affect your server's
behavior – always make a backup before modifying them.

566

Chapter 15

Figure 15-3

Beneath the declarations sections in the hierarchy, you will find a settings section. This section
establishes the attributes and properties for each of the declared classes, such as CustomError. The
settings of the elements don't have to be declared in the same order as they are found in the
<configSections> tags, but there must be settings defined for every handler declared, otherwise
exceptions will be thrown when applications are run.

The Structure of the Configuration Files
As mentioned earlier, the structures of machine.config and web.config are similar. In fact, the
web.config file is strictly a subset of the machine.config file. To explain the subset division, let's first
consider the machine.config file.

machine.config
A typical machine.config file has the following outline:

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>

<configSections>
</configSections>
<appSettings>
</appSettings>
<system.diagnostics>
</system.diagnostics>
<system.net>

All tags must be properly closed and nested, and any values specified must fall
within the correct range.

567

Configuration and Optimization

</system.net>
<system.web>
</system.web>
<system.runtime.remoting>
</system.runtime.remoting>

</configuration>

The different sections deal with matters such as the manner in which settings are specified at runtime
and the settings used to define the elements required for tracing and routing.

Most of the settings within the machine.config file have some preliminary explanation or examples
within comment tags demonstrating the use of the element involved. For example, under the pages
Attributes section, you'll find the following:

<!-- pages Attributes:
buffer="[true|false]" // Default: true
enableSessionState="[true|false|ReadOnly]" // Default: true
enableViewState="[true|false]" // Default: true
enableViewStateMac="[true|false]" // Default: false
smartNavigation="[true|false]" // Default: false
autoEventWireup="[true|false]" // Default: true
pageBaseType="[typename]" //Default: System.Web.UI.Page
userControlBaseType="[typename]"//Default: System.Web.UI.UserControl
-->
<pages buffer="true" enableSessionState="true" enableViewState="true"

enableViewStateMac="true" autoEventWireup="true" />

This example should give you a reasonable idea about how each of the settings work, and how they can
be specified. The top-level system.net section deals with .NET network class settings, while the
system.web section deals with all the ASP.NET class settings. We're only interested in the system.web
section because it deals specifically with ASP.NET configuration and controls all of the aspects of the
behavior of a typical ASP.NET application.

The Settings of system.web
There are over thirty settings in the system.web section. Some of the more commonly used settings are:

❑ Page settings: Allows a user to alter options related to the ASP.NET page, such as Web page
buffering

❑ Session-handling: Handles options related to sessions, such as the length of a session or whether
cookie-less support should be enabled

❑ Application settings: Allows a user to create name-value pairs within this section and access
data from within a specific application

❑ Tracing: Sets the level to which execution should be traced (used in debugging)

❑ Custom errors: Allows a user to create error pages for particular situations or change settings
altering whether users can see different types of error messages

❑ Web services: Stores options that affect the operation of the Web service such as the method of
transmission of the Web service (HTTPGET, HTTPPOST, or SOAP)

568

Chapter 15

❑ Security: Alters security-related aspects such as modes of authentication, encryption, user access
and so on

❑ Compilation: Provides options for setting/altering the default language for ASP.NET as well as
the way in which the page is compiled

❑ Globalization: Contains options to specify the character encoding to be used in the requests to
and responses from the server

❑ General settings: Contains general information relating to the request and options affecting what
happens to the page at runtime

There is a great deal more structure and detail in these files than we've covered here. Our aim has been
to give you a general idea of what these files are and what they look like, so that when we move on to the
next section you'll be able to find your way around and tune your system.

web.config File
As web.config files govern the settings of specific applications, they are much smaller than the
machine.config file.

The sections of a typical web.config file are as follows:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation />
<customErrors />
<authentication />
<trace />
<sessionState />
<globalization />

</system.web>
</configuration>

Here you find only the <system.web> section present within the <configuration> element that has a
much reduced set of elements. You can deduce from this that it is possible to set only these attributes
independently for each application.

In the next section, we will have a quick overview of five of the most useful settings and point out some
simple alterations that you can make to improve the functioning of your Web application. In particular,
we will look at: general configuration settings, page configuration, application settings, custom errors
settings, and trace settings.

General Configuration
This section of the configuration files contains general application configuration settings, such as the
interval for which a request is processed before it times out, the maximum size of a request, and whether
or not to use a fully qualified URL when re-directing pages. Using these settings, you can control some
specific aspects of application execution. They are contained within the <httpRuntime> tags and occur
within the <system.web> tags. Here's how you'd set them up in your web.config file:

569

Configuration and Optimization

<configuration>
<system.web>
<httpRuntime executionTimeout="120"
maxRequestLength="8192"
useFullyQualifiedRedirectUrl="false"
/>

</system.web>
</configuration>

Let's look at these settings in more detail:

❑ executionTimeout: Controls the time in seconds for which a resource is allowed to try to
execute before ASP.NET cancels (times out) the execution of the request. The default value is 90
seconds. If you know that a process (such as a complex database query) is likely to take longer
than 90 seconds to execute, you should increase this value. This is a very useful feature because
if your database returns an error during the code's execution, ASP.NET will know how long to
wait before delivering an error message – it will not wait forever!

❑ maxRequestLength: Specifies the maximum length of a request. The default value is 4MB. If
you think that the content requested from the application would be larger than 4MB (4096 KB),
you need to increase this value. If the content requested never exceeds a lesser value, use that
value instead. If your code has a bug, this setting will prevent it from dumping great quantities
of data on a client, as it will stop transmission of data when it hits the maxRequestLength limit.
It also prevents a client from requesting too much information at once and hogging the server's
processing time at the expense of other users.

❑ useFullyQualifiedRedirectUrl: This setting is not often used. One example of when you
need to use this parameter is when you are working with mobile controls. It indicates whether
client-side redirects are fully qualified, or whether relative redirects should be used (which is
the default). Certain mobile controls require that you use fully qualified redirects.

There are also settings such as minFreeThreads, minLocalFreeThreads,
appRequestQueueLimit, and enableVersionHeader, but these are beyond the scope of this book.
If you wish to learn more about these, we recommend reading up Professional ASP.NET 1.1, Wiley
ISBN: 0-7645-5890-0.

Page Configuration
Page configuration settings give us control over the default behavior of ASP.NET pages. This can include
specifications about whether we should buffer output before sending it, and whether or not session state
is enabled for pages within your application. The information is housed within the <pages> element in
your configuration files. Here's how you'd set it up in your web.config file. All values are set to their
default values:

<configuration>
<system.web>
<pages buffer="true"
enableSessionState="true"
enableViewState="true"
autoEventWireup="true" />

</system.web>
</configuration>

570

Chapter 15

Let's take a closer look at what these settings do:

❑ buffer: Indicates the code execution processing mode. When it is set to true, all code is
executed before any HTML data in the page is rendered. When it is set to false, all code is
rendered as it executes. For example, you could turn off buffering if you're running a complex
data query that returns results with a slight delay between each record. You could display such
a table line by line while the page is loading, so that the user is aware that something is
happening.

❑ enableSessionState: Indicates whether server session variables are available. The default
value is true, enabling session state. To disable it, set its value to false. We recommend that
you set it to true only if you need to use session variables in your page, as disabling session
state improves performance.

❑ enableViewState: Indicates whether server controls should maintain state when the page
request ends. This is a global setting for all server controls used on the page. You can, however
control the ViewState setting of individual server controls by changing the property value.
When EnableViewState is set to true, the server controls maintain state (they 'remember'
their value). This is the default setting. If it is set to false, the server controls don't maintain
state. Setting it to true hampers performance, so do it only if you need your controls to
maintain state.

❑ autoEventWireup: Indicates whether ASP.NET fires page events such as the Page_Load()
automatically or not. The default setting is True. Changing it to false allows custom
assemblies to control the firing of page events. The default setting for Visual Studio .NET IDE is
false, as it uses an internal mechanism to control event firing. If you are not using VB.NET,
you should leave it at the default true.

Application Settings
Application settings allow us to store application configuration details in configuration files without the
need to write custom section handlers for them. The data is stored in the form of key-value pairs. You've
come across them earlier in the book, so we won't linger too long on them. Here we have a typical add
key:

<add key="XMLFileName" value="myXmlFileName.xml" />

You can see that the add tag has both a key attribute and a value attribute. The key attribute is like the
name of the variable and the value attribute can be whatever you wish to set it to. In this example, you
are assigning the key XMLFileName a value of myXmlFilenName.xml, just like the line XMLFileName =
"myXmlFileName.xml" would in ASP.NET code.

We can use key-value pairs to store the connection string for database access. This connection string
typically contains the database user ID and password that can be accessed from within applications. This
is a great benefit; configuration files are not accessible over HTTP so it keeps your database connection
strings (and other such important aspects) away from prying eyes. Here's how you'd set it up in
web.config:

<configuration>
<appSettings>
<add key= "DSN"

571

Configuration and Optimization

value="server=LSERV; uid=user; pwd=password; database=data" />
</appSettings>
</configuration>

Here a key called DSN is being added to the table, and the values in the value attribute are being
associated with it. We can now access this information from inside our application. This is done in your
ASP.NET script as follows:

strDataSource = ConfigurationSettings.AppSettings("DSN")

Custom Errors
While developers do their best to ensure their pages are thoroughly tested before they are deployed in a
full application, errors still occur. When a page has errors that are caught during compilation by a .NET
Framework compiler (remember that ASP.NET pages are compiled), ASP.NET generates a syntax error
report with information about the error and sends this information to the browser. On the other hand, if
an error occurs while a page is being executed, ASP.NET sends a stack trace containing information about
the error to the browser. This stack trace contains information about what was going on when the error
occurred. While this information is convenient for the developer to debug his code, it's not something
you'd want visitors to your site to see. The stack trace can reveal detailed information about how your
code works, thus potentially allowing malicious users to find loopholes and exploit them.

That aside, we don't want this information to be displayed to users of our application because this 'raw'
information will disconcert them and bring the quality of our coding into question. It'll spoil your
client's experience. Furthermore, they have no way of finding out whether the error is in the application
or their computer. Therefore, if there is a friendly message in plain English, with a look and feel similar
to your site, the users will know that there is a problem and that the problem is not with the client
machines, but with the application. This means it is far better for us to make some changes to the way
our application handles errors, so that the user can be redirected to some place else on the site.

You can configure custom error pages for your application using the <customErrors> section of your
web.config file inside the <system.web> tags:

<customErrors
defaultRedirect="url"
mode="On|Off|RemoteOnly">
<error statusCode="statuscode" redirect="url"/>

</customErrors>

Let's look at the important settings in this section:

❑ defaultRedirect: Used to specify the default URL to which the browser is redirected if an
error occurs. This allows your application to recover if a page fails by sending your users
elsewhere, so that they're not confronted with a broken page.

❑ mode: Indicates whether custom errors are On, Off, or RemoteOnly. On shows your custom error
to everyone when it occurs, regardless of where they are. Off never shows a custom error to
anyone, and RemoteOnly shows your custom error to browsers that are not located on your
server.

572

Chapter 15

❑ error subtags: Can appear as often as required throughout your custom error element. They
are used to define special conditions above and beyond the redirect we set up with the
defaultRedirect value. They are assigned an HTTP status code that they react to and a
redirect URL if that status code occurs. This gives you the flexibility to react to different errors
differently; for example, reacting to 404 Page Not Found and 403 Access Forbidden errors
differently.

By default, the customErrors configuration option for ASP.NET is set to RemoteOnly, which means
that detailed ASP.NET error information is only shown at the server end and remote users are directed
to a custom error page. However, since no redirect page is specified as the defaults, the redirection won't
work until you set it up in web.config:

<configuration>
<system.web>
<customerrors
defaultRedirect = "customerror.aspx"
mode = "RemoteOnly"

/>
</system.web>

</configuration>

Trace Settings
Chapter 14 discussed how tracing was a very useful feature that enables you to follow the execution of
your code and review it afterwards. It helps you tighten up loose code and fix bugs. Tracing can also be
set up in your web.config files as shown here:

<configuration>
<system.web>
<trace
enabled="true"
requestLimit = "10"
pageOutput="false"
traceMode="SortByTime"
localOnly = "true"

/>
</system.web>

</configuration>

When we set up tracing in this way (the default value for trace inherited from machine.config is
false), we can view our trace output using a special tool called trace.axd. This file is a log file that
can be used to store the trace results for the last page viewed. It can be called from your browser in the
directory for which you have enabled tracing. This method is useful if you don't want to display the
actual trace information at the bottom of your page, but want to keep a record of it in a separate file that

You'll need to set mode to On in order to test your custom error pages (unless you've
access to a browser off the server). After this, we recommend you change it to
RemoteOnly, so that your users will see the custom error page while you'll get the
standard error page with all the debugging information that it contains.

573

Configuration and Optimization

is overwritten each time a page is called. Setting the pageOutput directive to true appends this
information back to the bottom of your page.

The options for the web.config file are:

❑ enabled: Switches tracing on when set to true and off when set to false at the application
level. When it is switched off, you can still set traces for individual pages using the page
directive. By default, this is set to false in machine.config.

❑ requestLimit: This is the total number of trace requests to maintain for viewing later with
trace.axd. By default, it is set to 10.

❑ pageOutput: Allows you to specify whether you want trace information to be displayed on
every page. When it is set to true, the tracing information is added to every page. By default, it
is set to false.

❑ traceMode: Allows you to specify if the trace information is to be sorted by time or by category.
If you sort by category, it will be group information based on the system and Trace.Write()
settings. By default, this is set to SortByTime.

❑ localOnly: Specifies that only requests made through http://localhost/ will be allowed to see the
trace information and is set to true by default. This prevents users from viewing trace
information, while letting you see exactly what's going on at the same time.

You can embed Trace.Write statements in your code to provide useful information about debugging
your pages. If you turn tracing off for the page, these statements get hidden and need not be removed as
they do not affect the final page output. However, if you find that your application isn't performing as it
should, all you need to do is re-enable tracing and these statements can be used again.

Performance Optimization
Some of the options discussed in the previous section help in improving your system's security (storing
database connection strings using configuration files). Others increase user-friendliness (creating
customized error pages). Some simply improve the speed at which your applications perform (enabling
page buffering while disabling session state will speed up your pages).

Let's focus on some more ways to make your application perform faster.

Caching
Caching is the process of storing frequently accessed Web pages or data. The data can then be accessed
from the cache faster than from its original location. What effect does this have on you? Well, imagine
that you're working on your home PC and it's connected to the Internet via a modem. When you browse
a Web page for the first time, you may find that the page takes a while to load. Subsequent visits to that
page may well be a lot quicker, because the page has been cached on your machine. Similarly, if a person
on a corporate network visits a Web site, the page may take a while to load. But, if someone else visits
the same page, depending on the settings on the network, they may find the page loads a lot more
quickly because a network proxy has cached it. Caching is used by ASP.NET to store frequently used

574

Chapter 15

portions of ASP.NET pages on the Web server so they don't need to be compiled every time a page is
accessed.

However, you probably don't want certain items to be cached indefinitely – for example, if you're
running a news site, you want the content on your site to be refreshed at regular intervals to display any
new news items. Depending on the nature of your news, you might want it to refresh every half an hour,
ten minutes, or even every minute. Any requests that get served during the cached period see the same
page. After the cache duration expires, the old cache content is destroyed and a new page is retrieved
from its original location and cached once again. Simply checking for an absent item in a cache causes
the recreation of data in the cache. This content is then cached for the required duration and the cycle
starts again.

Setting an appropriate time period for cache expiry is very important. A list of cities or ZIP codes won't
need a short expiration period, while a list of clients or a product list will need regular refreshing over
relatively short periods of time.

Let's look at the three types of caching that you can set up. These are:

❑ Output caching

❑ Fragment caching

❑ The Cache object

Output Caching
Output caching allows caching of any response generated by any request for any application resource. It
is very useful when you want to cache the contents of an entire page. On a busy site, caching frequently
accessed pages for even as little as a minute, can result in substantial performance gains. While the page
lives in the output cache, additional requests for that page are served from the cache without executing
and recompiling the code that created the page. Output caching is especially useful for static pages on
busy sites.

The complete syntax for the OutputCache directive is as follows:

<%@ OutputCache Duration="#ofseconds" Location="Any | Client |
Downstream | Server | None" VaryByControl="controlname"
VaryByCustom="browser | customstring" VaryByHeader="headers"
VaryByParam="parametername" %>

Let's look at the parameters of this directive in detail:

❑ Duration: Specifies the duration in seconds that the content should be cached for.

❑ Location: This is used to specify the locations at which pages can be cached. When set to
Server, only the server running the application is allowed to cache the page. The Downstream

Keep in mind that anything you place in the cache consumes memory, so use this
feature judiciously.

575

Configuration and Optimization

setting implies that any intervening network proxies are allowed to cache a copy of the page.
When set to Client, the browser is allowed to cache the page locally. When set to Any, any of
these caches may be used. Alternatively, you could specify a setting of None, which prevents
caching from being used.

❑ VaryByControl: Allows controls to be cached on the server, so that they do not have to be
rendered every time a page is requested. Using this parameter caches the specified control as it
appears on the page. For example, if you have a control that displays a list of news items, these
could be cached for ten minutes simply by caching the control.

❑ VaryByCustom: Allows you to specify whether you want to create different cache versions for
different browsers, or to vary by a specified string. If this parameter is given the value browser,
different caches are created by browser name and major versions, which allows you to have
different cached versions of a page for each page. This is particularly useful when you need to
target output differently for different browsers or different devices. It allows you to specify in
detail the parts of a page that you want to cache. If the browser is given the setting
CustomString, then you can use VaryByCustom to distinguish between different versions of
cached pages by using the Vary HTTP header's content. It works by matching any word you
store there against a semicolon-separated list contained within VaryByCustom. Whenever
VaryByCustom finds a match, it will cache a new version of the page.

❑ VaryByHeader: Enables you to cache pages by different HTTP headers by using a semicolon-
separated list. When this parameter is set to cache multiple headers, the output cache will
contain a different version of the requested document for each specified header.

❑ VaryByParam: Allows you to vary the caching requirements by specific parameters in the form
of a semicolon-separated list of strings. By default, these strings correspond to a querystring
value or to a parameter sent via the POST method. When this parameter is set to multiple
values, the output cache will contain a different version of the requested document for each
specified value. Possible values include none, *, or any valid querystring or POST parameter
name. This attribute is required when you output cache ASP.NET pages (or user controls). A
parser error will occur if you don't include it. If you want the complete page cached at all times
then set the value to none. If you want to have a new output cache created for each of the
possible setting of the parameters, then set the value to *.

Let's take a look at how this works in a simple example.

Try It Out Output Caching
1. Open Web Matrix, create a new ASPX file, and call it Servertime.aspx. Type the following

code into the All window:

<%@ Page Language="C#" %>
<script runat = "server">
string ServerTime()
{
return System.DateTime.Now.ToLongTimeString();

}
</script>

The time on your web server is : <% Response.Write(ServerTime());%>

576

Chapter 15

2. This code displays the current time on your Web server. Call it up in your browser and verify
that the code is working as depicted in Figure 15-4. After a couple of seconds, click your
browser's Refresh button and watch the numbers change:

Figure 15-4

3. Now add the following page directive at the top of your code:

<%@ OutputCache Duration="60" VaryByParam="none" %>
<%@ Page Language="C#" %>
<script runat = "server">
string ServerTime()
{
return System.DateTime.Now.ToLongTimeString();

}
</script>

The time on your web server is : <% Response.Write(ServerTime());%>

4. Save your file as CachedServerTime.aspx and call it up in your browser again. To begin with,
everything looks the same – the code displays the time as before. But when you click the refresh
button, the time doesn't change and remains the same. In fact, it will remain the same for 60
seconds. Try it and see!

How It Works
The Servertime.aspx code example is very simple. It runs a function called ServerTime() on your
server to get the server's time, and then returns it formatted as a string. This returned information is then
displayed on the screen using a line of HTML and some inline ASP.NET tags:

string ServerTime()
{
return System.DateTime.Now.ToLongTimeString();

}

The time on your web server is : <%=ServerTime %>

This code does not specify that the page should be cached, so the server processes it freshly each time
the page is called. When you click your browser's Refresh button, it processes the code and gives you the
newly processed result. The time changes every time you press the Refresh button.

577

Configuration and Optimization

When the following page directive is added, this is no longer the case:

<%@ OutputCache Duration="60" VaryByParam="none" %>

We're instructing the server to cache the output generated by your request for a period of 60 seconds.
Any subsequent page requests within that period will be served with the cached version, so the
displayed time will remain the same until the cached page expires, after which it is processed afresh. The
VaryByParam attribute you saw earlier is set to none in this example, meaning that the same page will
be delivered from the cache regardless of the parameters delivered with the request (although our
example is quite basic, and as a result, doesn't have any parameters).

Fragment Caching
This allows the caching of sections of a response generated by any request that includes user controls.
Sometimes it's not practical to cache an entire page, (for example, if you've got a section for
advertisements on a page, or some personalization features that have to be unique to every user). In
such cases, you may still want portions of the page to be cached and the remainder to be generated
programmatically for each user. For such pages, it is worthwhile to create user controls that do not
change, so that they can be created once and cached for a defined time period.

For example, to cache all the controls defined in an ASCX (user control) source file, just include this
directive in the control itself:

<%@ OutputCache Duration="60" VaryByParam="none" %>

You don't have to place the OutputCache directive in the page in which the controls are called (the
ASPX page). All other controls included in the ASCX will automatically be cached for 60 seconds.

If you want to cache each of the possible variations of your control's properties, you need to use this
directive:

<%@ OutputCache Duration="60" VaryByParam="*" %>

The asterisk (*) directs the output cache to cache a page for every parameter property returned by your
control.

The Cache Object
The third and most complex method of caching is to use the ASP.NET Cache object. Unlike the first two
methods of caching, the Cache object doesn't store pages. Instead it stores data that is frequently viewed
and doesn't change often between views.

The Cache object came into being as developers continually used the Application object as a cache.
This was because ASP provided little support for caching mechanisms above and beyond the
Application and Session objects. When developers used the Application or Session objects, they
had to write code to manage the creation and disposal of the data. In ASP.NET, advanced caching
capabilities were introduced in the form of a programmable Cache object. Efficient use of ASP.NET's
caching capabilities can allow you to balance the use of resources such as PC memory and database
connections against the need to generate client pages quickly.

578

Chapter 15

The Cache object provides a temporary repository for information along with the ability to refresh the
cache (and to expire old information depending on different policies). The first policy is based on a date
or timestamp – when a particular date or time is reached, the cache is expired. The second involves
linking the cache to a file and expiring it if the file is updated or amended in any way. The third policy is
to link the cache to another cache via a master key, and then expire the items in all linked caches if an
item changes in just one of them. As the Cache object has quietly sneaked in through the backdoor in
ASP.NET, we'll take a little time discussing it now.

Cache Creation
When creating a cache, you'll find the Cache object uses the same syntax as the other ASP objects:

Cache["NewCache"] = "Confidential Information";

Here we create an instance of the Cache object called NewCache and store the value Confidential
Information in it. It's more effectively used when it's storing objects though. If we created an
Addressbook class that contains the name, address, phone, and email properties, we could store the
contents of this class in our cache as follows:

AddressBook newAddressBook = new AddressBook();
newAddressBook.name = "Rheingold Cabriole";
newAddressBook.address = "673 Chellingworth Place, Morningtown";
newAddressBook.email = "Rheingold.Cabriole@fabemails.com";
newAddressBook.phone = "333-444-555";
Cache["address"] = newAddressBook;

One major application of the Cache object is using it to store datasets. For example, the Cache object
could point to the contents of an XML document, such as the following address.xml file:

<?xml version="1.0"?>
<address>
<name> Rheingold Cabriole </name>
<address>673 Chellingworth Place, Morningtown </address>
<email>Rheingold.Cabriole@fabemails.com</email>
<phone>333-444-555</phone>
</address>

If this was saved on the root of the C:\ drive, then the following code could be used to store it in the
Cache object:

DataSet XMLFileDataSet;
XMLFileDataSet.ReadXml("C:\\address.xml");
Cache["XMLDoc"] = XMLFileDataSet;

This is known as the implicit method of insertion, where key-value pairs are inserted into the cache – the
key being XMLDoc and the value being the contents of XMLFileDataset. However, there is also another
method of insertion, known as explicit insertion. To do an explicit insert, use the Cache.Insert()
method to add the XML file you created:

DataSet XMLFileDataSet;
XMLFileDataSet.ReadXml("C:\\address.xml");
Cache.Insert("XMLDoc", XMLFileDataSet, null);

579

Configuration and Optimization

It does exactly the same thing as the implicit method, but uses a more powerful syntax. You might notice
that there is a third argument present in the method, null. This third parameter allows us to specify a
parameter setting up a dependency (in this example we set it to nothing). Dependencies allow us to
create expiration policies for the cache. We're also not just restricted to inserting datasets; we can add
files or any other objects or items that don't change regularly. Let's now talk about retrieving information
from the cache.

Cache Data Retrieval
When retrieving information, all you need to do is follow the exact reverse of the procedure we just
outlined. With the AddressBook class, you'd create an instance of the class and read the contents of the
cache into it:

AddressBook newAddressBook = new AddressBook();
newAddressBook = (AddressBook)Cache.Item["address"];

We cast the cache data into something that can be stored in the AddressBook class; you have to ensure
that you store the contents of a class into a class of the correct type.

You could then display the contents of the Cache object in a Label control called MyLabel1 as follows:

myLabel1.Text = newAddressBook.Name + "
" + newAddressBook.Address + "
"
+ newAddressBook.Phone + "
" + newAddressBook.Email;

Due to the transient nature of caches, it is a good practice to first check if anything is present in the
cache:

if (!(Cache.Item("address") == null))
{
newAddressBook = (AddressBook)Cache.Item["address"];
myLabel1.Text = newAddressBook.Name + "
" +
newAddressBook.Address + "
" + newAddressBook.Phone + "
" +
newAddressBook.Email

}
else
{
mylabel1.Text = "Cache is Empty";

}

Having seen how we can place and retrieve items from the cache, it's time to move on to the crux of the
tutorial – how things can be removed from the Cache object.

Cache Data Removal
To remove items from the Cache object, you just need to use the Cache.Remove[] method:

Cache.Remove["address"];

However, this would mean using the Cache object just like an Application object and nullifying the
main advantages that the Cache object enjoys over the Application object – expiration policies. It is

580

Chapter 15

more beneficial to be able to tell the Cache object when or under what circumstances to expire the
contents of the cache.

Expiring Information in the Cache
There are three common ways in which information can be expired and we shall look briefly at each of
them:

❑ Timestamp expiration: Information is deleted when a pre-specified time or date is reached.

❑ File dependency: Information is expired when a specified file is updated or amended in some
way.

❑ Key dependency: Cache items are commonly linked together and when information is expired in
one cache, it is desirable that information in the linked cache should be cleared. This linking can
be achieved via a set of cache keys.

Timestamp Expiration
The most straightforward type of expiration policy is via a timestamp. There are two ways in which
cached information can be removed via a timestamp. The first is by the setting an absolute date or time
when the cache must expire. The second is by the means of a timescale within which the cache must be
updated. For instance, you can specify that a cache needs to be updated 30 minutes after the object was
last updated or accessed.

The absolute method of expiration takes two extra arguments. One is for the absolute time of expiration
and the second specifies the time within which the cache must have been last visited. To insert our XML
file into the cache and expire it in five minutes time, you use the following code:

Cache.Insert("XMLDoc", XMLFileDataSet, null, DateTime.Now.AddMinutes(5),
TimeSpan.Zero);

The syntax for Cache.Insert() is as follows:

Cache.Insert(FileName, DataSet, Dependency, DateTime, TimeSpan);

The five parameters specified here are:

❑ FileName: Name of the XML document

❑ DataSet: Name of the DataSet

❑ Dependency Type: The type of dependency

❑ DateTime: Date and time at which the cache should expire

❑ TimeSpan: The period of time that should elapse after the cache was last accessed for the cache
to expire

After specifying the file name and DataSet contents, the dependency type is set to null, as there are no
dependencies. We use the AddMinutes() method to specify a time 5 minutes in advance of the current
time. As we don't wish to expire the cache if it isn't updated, the second argument is set to

581

Configuration and Optimization

TimeSpan.Zero, which is the syntax used to indicate that we don't wish to use a time period within
which the cache must have been last updated.

When specifying a time within which the cache must have been visited, the method looks very similar;
it's just that we tweak the last two argument's values as follows:

Cache.Insert("XMLDoc", XMLFileDataSet, null, Cache.NoAbsoluteExpiration,
TimeSpan.FromSeconds(300));

Here the absolute expiration value is set to NoAbsoluteExpiration (in other words it will never
expire) while the maximum value is set to 300 seconds (5 minutes) from when the cache was last
refreshed. In this way the cache, will expire when it hasn't been accessed within the last five minutes. If
it is accessed again (even at 4 minutes 59 seconds), it will have a lifespan of 5 minutes. This is called
sliding time expiration.

File Dependency
With a file dependency, things get a little more complex. You have to create a CacheDependency object.
This object is given an argument that specifies the file that you wish to associate with your cache. We can
set up this dependency by creating an instance of the CacheDependency object and reading the filename
into it. We must then read the contents of the file into a DataSet:

CacheDependency FileDepend = new CacheDependency("C:\address.xml");
DataSet XMLDataSet;
XMLDataSet.ReadXml("C:\address.xml");
Cache.Insert("address", XMLDataSet, FileDepend);

Instead of setting the third argument to null as in the time expiration policy, we set it to the name of our
CacheDependency object. Thus the contents of the cache expire whenever the file is amended. We can
demonstrate the use of file dependency now. In the next Try-It-Out, we will cache an XML document
relating to our fictitious entrant, Rheingold Cabriole, and then change the document and use a file
dependency to force the expiration of the contents of the cache.

Try It Out Creating a File Dependency
1. Open up Web Matrix and create an XML document called address.xml in the

C:\BegASPNet11\Ch15 folder. Enter code as follows:

<?xml version="1.0"?>
<address>
<name>Rheingold Cabriole</name>
<address>673 Chellingworth Place, Morningtown </address>
<phone>333-444-555</phone>
<email> Rheingold.Cabriole@fabemails.com</email>

</address>

2. Create the following ASP.NET page and name it cachefile.aspx:

<%@ Page Language="C#" Debug="true" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Xml" %>

582

Chapter 15

<html>
<head>
<script runat="server">

public void Create(Object sender, EventArgs e)
{
DataSet XMLFileDataSet = new DataSet();
XMLFileDataSet.ReadXml("C:\\BegASPNet11\\ch15\\address.xml");
CacheDependency filedependency = new

CacheDependency("C:\\BegASPNet11\\ch15\\address.xml");
Cache.Insert("address",XMLFileDataSet, filedependency);
mylabel1.Text="Cache Full";

}

public void Display(Object sender, EventArgs e)
{
DataSet myAddressBook = new DataSet();
if (Cache["address"] == null)
{

grid1.DataSource = null;
grid1.DataBind();
mylabel1.Text = "Cache Empty";

}
else
{

myAddressBook = (DataSet)Cache["address"];
grid1.DataSource = myAddressBook;
grid1.DataBind();

}
}

</script>
</head>
<body>
<form id="form1" runat="server">
<asp:label id="mylabel1" runat="server" />
<asp:datagrid id="grid1" runat="server" />

<input type="submit" Value="Create Cache" OnServerClick="Create"

runat="server" />
<input type="submit" Value="Display Cache" OnServerClick="Display"

runat="server" />
</form>

</body>
</html>

3. Run this on your browser and press the Create Cache button, followed by the Display Cache
button. You will see the screen depicted in Figure 15-5:

583

Configuration and Optimization

Figure 15-5

4. Keeping the browser open, go back and change the code in address.xml to read as follows:

<?xml version="1.0?>
<address>
<name>Rheingold Cabriole</name>

<address>135 Tabletop Drive, Workville </address>

<phone>333-444-555</phone>
<email>Rheingold.Cabriole@fabemails.com</email>
</address>

5. Save it and go back to the browser and click the Display Cache button only (without refreshing).
View the browser and you will see the screen depicted in Figure 15-6:

Figure 15-6

As you have updated the file, it automatically expired the contents of the cache. You must then reload
the cache object using the Create Cache button to see the updated contents.

584

Chapter 15

How It Works
Basically, the code is very straightforward. For the event code for the Create Cache button, we create a
DataSet and read into it the contents of the address.xml file:

DataSet XMLFileDataSet = new DataSet();
XMLFileDataSet.ReadXml("C:\\BegASPNet11\\ch15\\address.xml");

We then create a CacheDependency object and link it to this file:

CacheDependency filedependency = new
CacheDependency("C:\\BegASPNet11\\ch15\\address.xml");

After this we create an address item using the DataSet and filedependency, and set the Label
control text to Cache Full:

Cache.Insert("address",XMLFileDataSet, filedependency);
mylbel1.Text="Cache Full";

For the code for the Display Cache button, we create a new DataSet called Addressbook and then check
to see if there is an item present in the cache:

DataSet myAddressBook = new DataSet();
if (Cache["address"] == null)

If there is no item, we bind the grid to nothing and display Cache empty:

grid1.DataSource = null;
grid1.DataBind();
mylabel1.Text = "Cache Empty";

If there is an item in the cache, we convert it into a DataSet and bind it to our DataGrid control:

else
{

myAddressBook = (DataSet)Cache["address"];
grid1.DataSource = myAddressBook;
grid1.DataBind();

}

It's only a simple usage, but we can see how the Cache object can be used to monitor an XML document
and see when it has been changed so as to update the cache with every change. In fact, in this example
the cached object is created from an XML file and file dependency is also placed on the same XML file. It
is also possible to cache content from a different file, and expire the cache based on updates made to
another file – the cache need always be dependent on the same source file.

It is possible to use file and key dependencies together, so that if the contents of one file changed and
several files were affected, all files could be expired automatically from all linked caches. This is beyond
the scope of our tutorial, but you now have a solid grounding in the fundamentals of the Cache object.

585

Configuration and Optimization

Key Dependency
The last method of expiration is key dependency. It is similar to file dependency, but is slightly more
complex. It is known as key dependency because it is based upon a key rather than the cached item
itself. If you wanted to expire something from the cache when another related item in the cache had been
changed, you would use a key dependency to do this. It is done in two stages:

❑ Creation of the key based upon a cached item

❑ Mapping the key to another dependent item

For instance, if you had an address and a phone number for that address in the cache, and if the address
changed, you'd want the phone number changing in all likelihood. You could use a key dependency to
do this.

The following code would create a key dependency:

Cache["addressKey"] = "1273 Abledown Road ";
string[] keydepend;
keydepend[0] = "addressKey";
CacheDependency keydependency = new CacheDependency(null, keydepend);
Cache.Insert("phone","123-456-789", keydependency);

We create a cache item for the phone and link this to a cache item for the address. This means that if the
phone item changes, the address item should also be expired. You don't have to restrict yourself to
creating one key dependency, you could create many dependencies so that other details such as fax
number and zipcode are removed automatically when the address item in the cache is changed.

To create a key dependency, once again we have to create a CacheDependency object, but this time we
pass it two parameters. The first parameter is left blank deliberately, because it is normally used to pass
a filename or path and this information isn't needed here. Then we can insert a name/value pair into the
Cache object along with an argument that specifies our CacheDependency key. So in effect, when we
create a second cache item, we add the CacheDependency key to specify a link to the first cache item.
The second parameter passed is an array containing the dependency key, the key itself being the name of
the first cache we created (address). Let's develop a fully working example based on key dependency.

Try It Out Creating a Key Dependency
Let's create an ASPX page with three buttons, one that fills the cache with two items, one that displays
the contents, and one that removes one of the cache items.

1. Open Web Matrix, create an ASP.NET page called cachekey.aspx and enter the following code
into the All view, removing all existing code:

<%@ Page Language="c#" Debug="true" %>
<html>
<head>
<script runat="server">

public void Create(Object sender, EventArgs e)
{
Cache["address"] = "444 Horror House";

586

Chapter 15

string[] keydep;
keydep = new string [1];
keydep[0] = "address";
CacheDependency keydependency = new CacheDependency(null, keydep);
Cache.Insert("phone","123-456", keydependency);
mylabel1.Text="Cache Full";

}

public void Display(Object sender, EventArgs e)
{
if (Cache["phone"] == null)
{
mylabel1.Text = "Cache Empty";

}
else
{
mylabel1.Text = "Address:" + Cache["address"] + "
Phone: " +

Cache["phone"];
}

}

public void Change(Object sender, EventArgs e)
{
Cache.Remove("address");
mylabel1.Text = "Address removed";

}
</script>

</head>
<body>
<form id="form1" runat="server">
<asp:label id="mylabel1" runat="server" />

<input type="submit" Value="Create Cache" OnServerClick="Create"

runat="server" />
<input type="submit" Value="Display Cache" OnServerClick="Display"

runat="server" />
<input type="submit" Value="Change Cache" OnServerClick="Change"

runat="server" />
</form>

</body>
</html>

2. Run this page in the browser and you should see the screen depicted in Figure 15-7. Click on the
Create Cache and Display Cache buttons in turn:

Take care that Cache["address"] and keydep(0)="address" both have the same
case, otherwise you will get an error.

587

Configuration and Optimization

Figure 15-7

3. You can see quite clearly that there are two items in the cache. Press Change Cache followed by
Display Cache, and you will see that nothing is in the cache now as shown in Figure 15-8:

Figure 15-8

How It Works
Our Create Cache event handler starts by creating a Cache["address"] item:

Cache["address"] = "444 Horror House";

Next we create a key dependency based on Cache["address"]:

string[] keydep;
keydep = new string [1];
keydep[0] = "address";

We create a second cache item phone and link it to the first and display the message Cache Full:

CacheDependency keydependency = new CacheDependency(null, keydep);
Cache.Insert("phone","123-456", keydependency);
mylabel1.Text="Cache Full";

The Display() method just checks to see if there is anything in the cache phone item and if present,
displays it; it displays the message Cache Empty if nothing is found:

public void Display(Object sender, EventArgs e)

588

Chapter 15

{
if (Cache["phone"] == null)
{

mylabel1.Text = "Cache Empty";
}
else
{

mylabel1.Text = "Address:" + Cache["address"] + "
Phone: " +
Cache["phone"];

}
}

The third event handler deletes one of the cache items. Pressing the Change Cache button removes the
address item only:

public void Change(Object sender, EventArgs e)
{
Cache.Remove("address");
mylabel1.Text = "Address removed";

}

However, when we press Display Cache, we check only the contents of the phone item:

...
if (Cache["phone"] == null)
{

mylabel1.Text = "Cache Empty";
}
...

Nothing is displayed in the output; the key dependency has ensured that both items have been deleted
from the cache.

Cache Priorities
Apart from the expiration policies, it is also possible to set the relative importance of items within the
cache to each other, so that items can be quickly dumped if memory is low or if performance is really
dragging. When you create an item, there are a couple of extra arguments you can add, which specify in
relative terms the priority of a cache item and how slowly that priority should decline:

Cache.Insert("XMLFile", XMLDataSet, null, DateTime.Now.AddMinutes(5),
TimeSpan.Zero, CacheItemPriority.High, CacheItemPriorityDecay.Slow);

The items in the cache can be set to the priorities: Low, BelowNormal, Normal, AboveNormal, High, and
NotRemovable. The speed at which they decay can be set to Fast, Medium, Default, Slow, or Never.
This means that the cache expiration can be determined separately from the expiration policies of the
system, if necessary, and the contents of the caches can be managed dynamically.

The Cache object offers a lot of features above the Application object, such as the creation of
dependencies on files or other caches as well as the setting of priorities. It's possible to link file
dependencies and key dependencies, so that when an item in one file changes, a whole load of files can
be expired from the cache. Judicious use of this object in place of the Application object could make
your applications a whole lot faster and more efficient.

589

Configuration and Optimization

Tips and Tricks
No configuration guidelines would be complete without offering a list of optimization tips. Here's a
brief listing of the tips and examples included in the Microsoft QuickStart samples. If you've not got
these installed, they're available from the following sites:

❑ http://www.gotdotnet.com/quickstart/aspplus/

❑ http://docs.aspng.com/quickstart/aspplus/default.aspx

❑ http://aspalliance.com/quickstart/aspplus/

❑ http://www.dotnetjunkies.com/quickstart/default.aspx

Don't worry if you don't understand them all! They are included here so that you can refer back to them
throughout your development as a programmer. Think of them as a quick reference guide that you'll still
be able to use as a refresher in the years to come.

To round off this chapter, let's look at a few tips you could use to optimize the performance of your
application and use configuration settings to your benefit:

❑ Disable session state when not needed. Maintaining session state consumes memory and
processing time. If you don't need to recall or modify session variables in a page, disable session
state for that page.

❑ Choose your session state provider carefully. If you are running just one Web server, the fastest
and most economical mode of maintaining state is 'in-process'. Only if you are running a Web
farm on more than one machine should you even consider using SQL Server or the State Server.

❑ Avoid excessive round trips to the server. Round tripping to the server takes time and server
resources. You should make a round-trip to the server only when storing or retrieving data. You
can program your controls to generate client-side code, and still use ASP.NET's efficient server
controls. Use client-side processing to save server-processing time as much as you can.

❑ Use Page.IsPostback to avoid extra work on a round trip. For example, you can use
IsPostback to determine whether a DataSet needs to be generated. Generating data is
expensive in terms of processing time. Generating one query on first access and another one on
a POST can cost you processing time.

❑ Use server controls sparingly and appropriately. Even though server controls are very cool and
afford you incredible event-handling capabilities, a simple rendering using Response.Write
for simple displays will be far more efficient.

❑ Avoid excessive server control ViewState. The more data you're passing back and forth between
the client and the server, the larger the ViewState gets, and the longer it takes for the more
resources you're consuming. Like session state, turn this feature off if you don't need to keep
state on a page.

❑ Use System.Text.StringBuilder for string concatenation. When you modify a string object
using the traditional concatenation methods, you add a new string object for every modification
made. This adds up! The new StringBuilder object is much more efficient because you use
only one object no matter how many modifications you perform on the string.

590

Chapter 15

❑ Use the page Strict setting. The line <%@ Page Language="C#" Strict="true" %> can be
your best friend! This forces early-binding of your code, which in turn forces your code to be
more efficient. In other words, all of the variables are checked to see if they have been declared
up front. By having correct typing enforced you prevent costly, inefficient, late-binding (waiting
until a variable is used before checking to see it is bound to a data type). A side benefit is that
Strict forces you to declare your variables, preventing misplaced values in your code.

❑ Use SQL stored procedures for data access. In the .NET Framework, the SqlConnection class
allows you to have even larger performance gains, since it can actually execute native SQL
Server code. Not only do you gain the speed of stored procedures, they also are natively
executed. Performance gains are estimated at 200 to 300% over OleDb or Odbc connections!

❑ Use SqlDataReader for a fast-forward, read-only data cursor. SqlDataReader provides what is
known in the ASP world as a 'firehose' cursor, which is much faster than other cursors available.
In addition, SqlDataReader reads data directly from a database connection using Tabular Data
Streams (TDS), and allows you to bind server controls directly to data.

❑ Use caching features wherever possible. In high-traffic situations, caching data can save you a lot
of processing time, since the data will be served from RAM instead of using precious processing
cycles.

❑ Enable Web gardening for multiprocessor computers. Enabling the use of all processors available
makes sense, since the more the processing power available to your applications, the more
efficient your Web server will be.

❑ Do not forget to disabled debug mode. Having a compiler watching for errors is the most
expensive process that a processor can undertake! Never enable debugging in a production
environment!

Summary
This chapter has covered a lot of ground in the vast topic of configuration and optimization. We looked
at machine.config and web.config and saw how they were structured and their settings were
hierarchically inherited. Then we looked in more detail at some of the specific settings within those files
that you could use to improve the performance, security, and user-friendliness of your applications.

Next, we moved on to look at how we could increase our Web server's performance through the use of
output and fragment caching so that our pages didn't need to be compiled as frequently, before looking
at how the Cache object can be used to store information that is frequently visited. We also looked at
various methods of expiring caches by specifying dependencies. The chapter concluded with a list of
recommended performance optimization tips.

Exercises
1. If you didn't know how to set a particular element in the .config file, where would you look to

find them?

2. Create a "friendly" custom error page for a File Not Found error and set the relevant .config file
so that it appears whenever a 404 error message is generated.

591

Configuration and Optimization

3. Create a page with two Label controls that both display the time and create an output cache
that lasts for 30 minutes and caches just one of the controls.

4. Create a cache that stores the following information "MyFavouriteColour = Orange" and expires
the cache if it hasn't been updated for 3 minutes.

5. Create a cache that will expire whenever the contents of one of three files, XMLDoc1.xml,
XMLDoc2.xml, and XMLDoc3.xml is changed. Note they can all contain the following code:

<?xml version="1.0"?>
<address>
<name>Rheingold Cabriole</name>
<address>673 Chellingworth Place, Morningtown </address>
<phone>333-444-555</phone>
<email> Rheingold.Cabriole@fabemails.com</email>
</address>

592

Chapter 15

16
Web Services

In the days before the Internet, if you wanted to research a subject, you would visit a library to
find a book on the topic, or browse the relevant periodicals to find the latest articles. While this is
still quite possible (if you like that sort of thing), it isn't usually necessary. As the Internet connects
computers containing all sorts of different data sources, it frequently provides us with a one-stop
shop for whatever information we might need. In a sense, the Internet has become a 'virtual
library' for Web users.

Over the years, Web developers created isolated Web applications and would often produce code
that merely duplicated what many other programmers had already done elsewhere. To overcome
this, many developers began using technologies (such as COM and DCOM) that would allow
them to build code components once and bundle them up so they could be shared across multiple
applications by many developers. However, in practice, these components had some fundamental
drawbacks. They had to be physically distributed, and then explicitly registered on each user's
machine. It was possible to share logic, but it wasn't easy.

The next step was using the infrastructure to make specific bits of the information available
without requiring a user to download a whole component or application. The ASP.NET Web
services model provides a simple, straightforward way to do this. For example, if a developer
wanted a weather forecast for their flight simulator, or the latest currency rates for their economic
models, rather than having to program the logic, or download a component, they can access the
relevant Web service and glean the necessary information for their own application. Web services
enable developers to share application logic and therefore reduce the overall amount of code
duplication. They also provide us with the ability to easily access information from different
sources because Web services make information available as pure text. Web services truly make
the Web a 'virtual library' for Web developers. This chapter will show how easy it is to create and
use ASP.NET Web services. The topics covered are:

❑ What a Web service is, and its role in the .NET Framework.

❑ How to create and use a Web service.

❑ How to describe a Web service's behavior using WSDL.

❑ How users can discover which Web services are available using UDDI.

❑ What you need to consider when building a Web service.

What Is a Web Service?
Technically speaking, a Web service is a component of the programmable application logic that can be
accessed using standard Web protocols. It's quite similar to the server controls considered earlier on in
the book. The major difference is that it lets you access all of its functionality across the Web, whereas
server controls only access functionality on the "local" Web server. For example, if I browsed a calendar
control, this would be all done on the local Web server, whereas if I accessed a stock price, this could
come from any remote Web site that exposed stock prices as a Web service. In principle, anyone who can
browse the Web can see, and use a Web service.

Think of a Web service as a 'black box' resource that accepts requests from a consumer (an application
running on the Web client), performs a specific task, and returns the results of that task. In some
respects, a search engine such as Google (www.google.com) is a kind of Web service – you submit a search
expression, and it compiles a list of matching sites, and returns the list to your browser.

Currently, the term Web service is something of a buzzword within the sphere of software development
thanks to a number of new protocols that have opened up the scope of what we can expect Web services
to do. XML plays a central role in all these technologies, and XML Web Services are something you can
expect to hear a great deal about, now and well into the future.

Most of the time, you'll find that when people talk about Web services, they're implicitly referring to
XML Web services. This is now so prevalent that many people believe that all Web services use XML by
definition.

There's a very important distinction between a Web service like Google and the kind of XML Web
service that will be discussed here: on Google, you submit the search expression, and read the list of sites
that are sent back. The browser provides you with a textbox, and parses the response stream so that it
looks nice –it doesn't actually understand the information you've submitted, let alone the HTML that
Google sends back.

If you're using an XML Web service, you can assume the results will be returned as some kind of XML
document, with information that's explicitly structured and self-describing. It's therefore quite
straightforward to write a program that interprets these results and perhaps even uses the results to
formulate a new submission.

ASP.NET makes it very easy to build XML Web services, and just as easy to use them. Ultimately you
only need to reference the Web service in your code, and you can use it just as if it were a local
component. As with normal components, you don't need to know anything about how the service
functions, only the tasks it can do, the type of information it needs to do them, and the type of results
you'll be getting back.

You can use Web service methods to do just about anything from adding two numbers together to
writing information to a database. The logic they use can be as simple or as complex as we need it to be.

Let's create a simple Web service to demonstrate just how easy it is.

594

Chapter 16

Try It Out Creating Our First Web Service
In this example, we'll make a Web service that takes a string input and returns a greeting that includes
the name specified in the input.

1. Open up Web Matrix and choose the XML Web service option. Create a file called
greetings.asmx and enter Greetings into the Class textbox and Ch16 into the namespace
textbox, as shown in Figure 16-1:

Figure 16-1

2. In the window that opens up, add the following code:

<%@ WebService Language="c#" Class="Greetings"%>

using System;

using System.Web.Services;

using System.Xml.Serialization;
public class Greetings
{
[WebMethod]
public string Hello(string strName)
{
return "Hello, " + strName + ". Have a great day!";

}
}

3. Open the file in your browser, and you should see something like Figure 16-2:

595

Web Services

Figure 16-2

4. Following the Hello hyperlink, this page will also include a warning message about using the
http://tempuri.org default namespace. It will also display information on how to use the Web
service directly from SOAP, and from HTTP GET and HTTP POST requests.

5. Click on the bulleted Hello hyperlink – this is the name of the method defined in the Greetings
class. A new page will be displayed that allows us to enter a name as shown in Figure 16-3:

Figure 16-3

6. Enter your name in the textbox adjacent to the Name parameter, and hit the Invoke button to call
your Web service's Hello method. The screen shown in Figure 16-4 should now appear in a
new browser window:

596

Chapter 16

Figure 16-4

7. That's it! The Web service is now working on our local machine.

How It Works
The first line shows that the Web service is written in C#. We also declare our class name as Greetings,

which will be important when a consumer wants to use it:

<%@ WebService Language="c#" Class="Greetings"%>

The next lines give us access to objects that are needed to build a Web service:

using System;
using System.Web.Services;
using System.Xml.Serialization;

Next, we have some logic to actually define the Web service's functionality. Within the public class
Greetings declaration (notice the name here matches the one in the WebService declaration), we
define a Hello function that simply returns a string based on the parameter strName. We prefix this
method declaration with a [WebMethod] attribute – this is how we specify that it's to be exposed as a
Web method, making the function visible to the outside world:

public class Greetings
{
[WebMethod]
public string Hello(string strName)
{
return "Hello, " + strName + ". Have a great day!";

}
}

With just a few lines of code, we've created a functioning Web service. We didn't need to specify a format
for the result, or write any code to handle any network connections. We didn't even have to register it on
the client – all we needed to know was the URL.

To conclude the first example, let's touch upon the warning message that appeared on the first page of
the Web service. It reads as follows:

This Web service is using http://tempuri.org/ as its default namespace. Recommendation: Change the default
namespace before the XML Web service is made public.

597

Web Services

This warning means that if you do not make a practice of changing this namespace, your Web service
will be organized within the default tempuri.org namespace, which can become difficult to manage if
there are multiple developers on a project who all use this default.

Namespaces were discussed in detail back in Chapter 7, but let's recap here. A namespace allows us, as
developers, to organize our programming components into categories. For instance, imagine multiple
Web services that perform various tasks for specific parts of an application. If you were working on a
'Purchasing' module for an accounting system, you could specify a Purchasing namespace within all of
your Web service files pertaining to purchasing-related tasks.

That way, if you have a Web service called Reporting, and Joe, in the 'Accounts Receivable' module, has
a similarly named service, you can declare your namespace (in applications that use it) as
Purchasing.ReportingWS. Joe can declare his namespace as AccountsReceivable.ReportingWS,
and the two will not conflict.

Now, let's take a look at how the requests and responses are sent to and from a Web service.

HTTP, XML, and Web Services
Chapter 3 discussed the basic mechanism by which information is passed back and forth across the Web.
We can pop a URL in our browser's address bar and request a Web page from a remote server. We also
pointed out that ASP.NET Web services rely on the same mechanism – namely the HTTP Request-
Response system. All the information submitted to a Web service is sent as an HTTP Request. Likewise,
any information received from the Web service is via HTTP Response (see Figure 16-5):

Figure 16-5

598

Chapter 16

You've already seen that a typical Web service operates by accepting input from a consumer, and using it
to produce a result that is sent back to the consumer as XML. When a consumer makes use of Web
service logic, it takes the form of an HTTP Request – that's why it's so easy to access from a Web browser,
which is tailor-made for such requests. An HTTP Request consists of packets of information that are sent
to the Web service (wherever it may reside). These packets contain:

❑ Vital information such as the Web service's URL and the fact that we're submitting a Request
(that is, initiating a data exchange that requires a Response, rather than simply Responding to
someone else's Request).

❑ Details regarding the amount of information being sent.

❑ The type of document we require back from the Web service.

❑ Information about the consumer, the request date, general configuration statistics, and the data
itself.

The Web service will return an HTTP Response with:

❑ A return address for the consumer, and the fact that it's submitting a Response and hence
doesn't expect any further action from the recipient.

❑ A success or failure status code indicating whether or not the Web service received a valid
Request from the consumer.

❑ Configuration information.

❑ Any appropriate data.

We can transmit HTTP Requests and Responses between a Web service and a consumer as many times
as we like, depending on how the interaction between the two has been designed.

So, how exactly does the submitted data get wrapped up in this bundle of HTTP information? As
discussed in Chapter 3, there are two ways to submit information within an HTTP Request, using the GET
and POST methods respectively – let's do a quick recap.

HTTP GET
This is the simplest way to send data to the client, and probably the most familiar to users of the Web.
Simple, unstructured information is bundled in with the page as a sequence of name-value pairs. These
pairings are a simple way to combine all the values into a single string. We can use the
Request.QueryString collection in our ASP.NET code to access these name-value pairs on the server.

When you tested the Greetings.Hello Web method, the built-in testing mechanism provided by
ASP.NET used HTTP GET to submit the string Vervain to the Web service. Here's the actual GET request
that your browser used to access the Web service:

GET /BegASPNET11/Ch16/greetings.asmx/Hello?Name=Vervain HTTP/1.1
Host: localhost

It specifies the GET method, states the requested page (including the directory path) along with your
query string, and declares that it has structured the HTTP Request according to version 1.1 of HTTP. It

599

Web Services

then states the name of the host to which it wants the request submitted – in this case, the local machine.
The resource requested is:

/BegASPNET11/Ch16/greetings.asmx/Hello?Name=Vervain

This path along with the Host value to get a full URL:

localhost/BegASPNET11/Ch16/greetings.asmx/Hello?Name=Vervain

The corresponding Response simply specifies the content type we're returning (text/xml) along with
the character set and content length. The body of the Response also contains the XML we saw earlier:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 112
<?xml version="1.0" encoding="utf-8"?>
<string xmlns="http://tempuri.org/">
Hello, Vervain. Have a great day!</string>

The Response from the server is a 200 message, which is the HTTP's success message.

Note that it's very easy to make a new request to our Web service by simply editing the query string in
the browser's address bar. You might like to try calling up your page again as follows:

http://localhost/BegASPNET11/Ch16/greetings.asmx/Hello?Name=my%20fine%20fellow

HTTP POST
While HTTP GET uses the end of the URL to pass its information from resource to resource, HTTP POST

uses the body of the Request to carry the same name-value pairs. You can retrieve these values using the
Request.Form collection in ASP.NET. If you use the POST method to send the information, it means that
the information isn't visible in the URL. This provides a slightly more secure method, since it is possible
to manipulate the name-value pairs when using the GET method, by just typing names and values into
the query string in the address bar.

Here is an example of an equivalent POST message being sent to the Web server:

POST /57084/ch16/greetings.asmx/Hello HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded

Another common return code is 404, which indicates 'File not found'. Our HTTP
Response from the server can also give us information such as the Web server
software, the number of bytes to expect, content type, and the type of cookie that will
be set.

Notice that the Response contains our desired message within a <string> tag, which
is the return type specified in the function.

600

Chapter 16

Content-Length: 15
Name=Vervain
HTTP/1.1 200 OK

This time, the HTTP Request specifies the POST method before stating the page requested and the HTTP
version. It states the host name and content type (usually this is application/x-www-form-
urlencoded) and the content length, which now tells the server how many bytes of name-value pairs
are there. This is followed by the name-value pairs themselves placed on a separate line. The
corresponding response from the Web server is exactly the same as you saw when using the GET
method, returning a simple XML document in the Response body, along with the result that our Web
method placed inside a <string> element.

That's all well and good so far, but using either HTTP POST or GET is rather limiting. Since we ultimately
want to use these Web methods to replace various local method calls in applications, we surely need to
be able to pass data sets and other complex objects.

This is where XML comes into the picture. XML plays a vital role in Web services, as it allows us to send
simple, structured, self-describing data between many different computer platforms and setups.

Web services, therefore, use XML to describe data sent from the consumer, as well as data being
returned. It can also be used to describe the parameters that a Web service expects, and how to find
information on Web services that is available to consumers on the Internet. We will look into these topics
in detail later in the chapter.

While XML is very easy to read and understand – handy when you debug the code – it can often be
verbose. This is because even the simplest of data exchanges requires a significant amount of description
(since while exchanging all types and structures of data, we must cater to the lowest common
denominator). With a common protocol (HTTP/ HTTPS, or even SMTP) and a common language (XML)
that transcends individual machine platforms and operating systems (OSs), Web services can be a
potentially powerful tool

However, a drawback is that the common protocol HTTP was only designed for calling up Web pages,
and returning information as HTML. Web services were built with the aim of returning more complex
information than just Web pages. To handle the call and response of Web services, another protocol was
needed.

Simple Object Access Protocol (SOAP)
The Simple Object Access Protocol provides an effective way to call Web services remotely and to return
information either in the form of numeric, string variables, datasets, images, or even files. It wraps up
the information inside an XML element known as a SOAP envelope, and frees us from most of the
structural limitations imposed by the HTTP methods discussed earlier. You can send a request and also
receive a response using a SOAP envelope. Here's what a SOAP envelope making a request looks like:

POST /57084/ch16/greetings.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/Hello"

601

Web Services

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<Hello xmlns="http://tempuri.org/">
<Name>Vervain</Name>

</Hello>
</soap:Body>

</soap:Envelope>

The submitted string value Vervain is held in a <Nazme> element (identifying the specific parameter
being specified in the Web method call) and this is nested within a <Hello> element (identifying the
name of the method called). Admittedly, at this stage it hardly looks more complex than our previous
Requests, but that's largely due to the fact that you're only passing a single string value. Once you start
sending more complex items of data there will be more to see. When items such as data sets are sent, the
SOAP envelope needs to be larger and more detailed to describe the information contained within.

Apart from being somewhat more explicit about your request, this approach also allows you to submit
data in a well defined structure. Even if you wanted to submit a huge array of complex data objects, the
flexibility inherent within this SOAP envelope allows you to do it. Although the SOAP Request is
submitted as part of an HTTP POST Request, it's totally separate and selfcontained.

The SOAP response takes a form similar to our request:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<HelloResponse xmlns="http://tempuri.org/">
<HelloResult>Hello, Vervain. Have a great day!</HelloResult>

</HelloResponse>
</soap:Body>

</soap:Envelope>

You can see that the Response string is the result of a call to the Hello method. Again, this result could
just as easily take the form of some sort of structured data, and isn't tied to the HTTP response in any
way.

As SOAP allows us to use other protocols, we're not tied to HTTP as a transport
protocol. For example, it's quite possible to send this envelope to the Web service via
SMTP (that is, simply e-mail it to the Web service). While this is a fascinating and
extremely useful option, it's beyond the scope of this book. If you're interested in
finding out more about this topic, refer Professional ASP.NET 1.1 (Wrox Press, ISBN 0-7645-
5890-0).

602

Chapter 16

When you use Web services within your ASP.NET logic, SOAP is used as the default protocol. Although
it seems a little more bulky than the other options, it's the only mechanism that makes it possible to use
Web methods directly, in a flexible manner , and seamlessly from within the code.

Building an ASP.NET Web Service
Let's take a more detailed look at putting a Web service together. We'll also begin to explore the possible
uses for Web services.

You can define a Web service by simply writing a few lines of code and placing them inside a file with a
.asmx extension. This extension tells Web Matrix that a Web service is being defined. You can create a
Web service just like a standard ASP.NET page, using Web Matrix (as we did earlier in the chapter) or
any text editor. A Web service must contain four essential parts:

❑ Processing directive.

❑ Namespaces.

❑ Public class.

❑ Web methods.

Let's look at each of these in turn.

Processing Directive
Within the empty ASMX file (the required file type for an ASP.NET Web service page), you must let the
Web server know that you're creating a Web service. To do this, enter a directive at the top of your page
with the following syntax (in fact, Web Matrix creates this automatically based on the information
submitted in the startup dialog):

<%@ WebService Language="language" Class="classname"%>

This statement appears at the top of an ASP.NET source file to tell the .NET Framework about any
settings or constraints that should be applied to whatever object is generated from the file. In this case,
the directive tells the compiler the language in which the Web service is written, and the name of the
class in which it is defined. This class might reside in the same file, or within a separate file (which must
be in the \bin directory, immediately beneath the Web application root in which the Web service lives).

Namespaces
You can make use of other file's logic within your ASMX page by specifying appropriate namespaces. In
this case, you can use the C# using command:

using System;
using System.Web.Services;
using System.Xml.Serialization;

Web services require importing these namespaces as an absolute minimum, because they contain the
classes needed for Web services to handle network connection issues and other OS-related tasks.

603

Web Services

Public Class
A public class acts as a container for the methods in our Web service:

public class ClassName
{
...

}

Essentially, we're just defining an object whose methods will be exposed over the Web. This will
ultimately allow us to make remote method calls over the Internet. To our server, these calls look like
method calls to the same machine where the consuming application resides.

Web Methods
The methods exposed for consumption over the Internet are known as Web-callable methods or simply
Web methods. By definition, a Web service will expose one or more Web methods – of course it can have
other non-Web methods as well, and these can be protected as needed so that consumers cannot use
them directly. The syntax varies slightly depending upon the language used, but they all tend to follow a
similar structure. In C#, it is as follows:

[WebMethod]
public string Hello(string strName)

WebMethod attribute can take parameters of its own. Thus you can set various properties that modify the
activity of the attribute. This allows us to customize our Web methods in various ways; for example, we
can use CacheDuration to set the number of seconds for which the WebMethod will cache its results. If a
consumer requests a result from the Web Service within the time specified in this attribute, WebMethod
will retrieve the cached copy of these values instead of retrieving them from the original source:

[WebMethod(CacheDuration:= 5)]
public string Hello(string strName)
{
...

For more information on WebMethod attributes, such as CacheDuration, please visit:
www.microsoft.com/library/default.asp.

When you build a Web service, a lot of time will be spent creating a Web method for the Web service. It
is possible to include more than one Web method in an ASMX file, as you'll see in the next example.

We only place the WebMethod declaration before the functions that we wish to expose
to consumers. Those without this declaration cannot be seen.

The name of this class is effectively the name of the Web service. Therefore, it should
correspond to the Class value specified in the processing directive.

604

Chapter 16

Try It Out Creating a Web Service with Multiple Web Methods
This Web service contains four Web methods that convert inches to centimeters, centimeters to inches,
miles to kilometers, and kilometers to miles.

1. Create an XML Web service in Web Matrix called measurementconversions.asmx and enter
MeasurementConversions as the class, Ch16 as the namespace, and add the following code:

<%@ WebService language="C#" class="MeasurementsConversions" %>

using System;
using System.Web.Services;
using System.Xml.Serialization;
public class MeasurementsConversions
{

[WebMethod(Description="Convert Inches To Centimeters")]
public decimal InchesToCentimeters(decimal decInches) {
return decInches * 2.54m;

}
[WebMethod(Description="Convert Centimeters to Inches")]
public decimal CentimetersToInches(decimal decCentimeters) {
return decCentimeters / 2.54m;

}
[WebMethod(Description="Convert Miles to Kilometers")]
public decimal MilesToKilometers(decimal decMiles) {
return decMiles * 1.61m;

}
[WebMethod(Description="Convert Kilometers to Miles")]
public decimal KilometersToMiles(decimal decKilometers) {
return decKilometers / 1.61m;

}
}

2. Call it up in your browser and you should see something like Figure 16-6:

Figure 16-6

605

Web Services

Let's look at the code for a moment. We'll get back to the testing of our Web service after this.

How It Works
In this example, we created a Web service that converts between Imperial (English) measurements and
Metric measurements. The first line tells us that the file is a Web service written in C#. We have a class
name of MeasurementConversions that will be used by consumers to make references to the Web
service:

<%@ WebService language="C#" class="MeasurementsConversions" %>

Next, we import the namespace that allows us to refer to Web service objects without using fully
qualified names:

using System;
using System.Web.Services;
using System.Xml.Serialization;

We then name our class to match the processing directive class name. We'll need to know this when we
are ready to make remote calls to the Web service through a consumer:

public class MeasurementConversions

Finally, consider the actual Web methods. These are separate functions that can be called within a Web
service to return a result. The first Web method receives a Decimal value in inches and converts it to a
Decimal value in centimeters using the standard conversion formula. The second receives a Decimal in
centimeters and converts it to inches in the same manner:

[WebMethod(Description="Convert Inches To Centimeters")]
public decimal InchesToCentimeters(decimal decInches) {
return decInches * 2.54m;

}
[WebMethod(Description="Convert Centimeters to Inches")]
public decimal CentimetersToInches(decimal decCentimeters) {
return decCentimeters / 2.54m;

}

The third and fourth Web methods perform similar conversions from miles to kilometers and kilometers
to miles respectively:

[WebMethod(Description="Convert Miles to Kilometers")]
public decimal MilesToKilometers(decimal decMiles) {
return decMiles * 1.61m;

}
[WebMethod(Description="Convert Kilometers to Miles")]
public decimal KilometersToMiles(decimal decKilometers) {
return decKilometers / 1.61m;

}

We've now created a complete Web service by using the processing directive, adding namespaces, and
creating Web methods. Now the big question is 'How do we know it works?' It's time to put it through
its paces.

606

Chapter 16

Testing Your Web Service
To test Web services, all you need is an Internet connection and a browser. In the browser address bar,
just enter the URL of the Web service in the following format:

http://[path]/[webservice].asmx

The first time the Web service is accessed, the code will compile on the Web server, and a new browser
window will appear containing some very helpful diagnostic information. This Web service Description
page allows us to impersonate a consumer and enter input values to send to the Web service. The page
contains the following information about the Web service:

❑ Web method names: Names of the Web service's Web-callable functions.

❑ Request parameters: The names of all the inputs that the Web service expects a consumer to
supply.

❑ Response Type: The data type of the result sent by the Web service to a consumer (such as
integer, string, float, and object).

❑ Fields: These can be used to enter test values.

You'll also see the following message at the top of the test page:

The following operations are supported. For a formal definition, please review the Service Description.

The Service Description is a comprehensive technical description of all the functionality exposed by the
Web service. You'll be taking a closer look at it later on in the chapter. For the time being, we're only
interested in testing our Web service. Let's now go back and see what happens when we test our
measurementconversions Web service.

Try It Out Conversions Test Page
1. Assuming your browser is still open, just click on the MilesToKilometers hyperlink and enter a

test value of 60 in the decMiles value field, as shown in Figure 16-7:

Figure 16-7

607

Web Services

2. Click Invoke, and a new browser window appears, containing our result in kilometers in XML
format. This is shown in Figure 16-8:

Figure 16-8

3. In the original .asmx page, click on the word here at the top of the test page, and you'll return to
the original test screen. You can now repeat this procedure for the other methods shown on the
page.

How It Works
When we browse to the test page, we see a screen containing the name of our Web service and
underneath it, a list of the methods that it exposes. These method names are hyperlinks. When we click
on MilesToKilometers, the Web method test section will appear in the browser window. We are given the
name of the parameter (decMiles), and an associated field to enter the test value.

Once the value is entered, we can press the Invoke button to execute the Web method. By doing this, we
are impersonating a consuming application. The entered test value (60) is passed using HTTP as a
request, to the MilesToKilometers Web method. The value will be multiplied by 1.61 and returned as
a decimal. The result is in XML.

You might say, "Sure, our test page tells us what the Web service's expectations are. But how would a
consumer know what they are?" This consumer might not necessarily be another user, it could be an
application and then the expectations need to be explicitly defined.

The next section discusses how to know what a Web service requires, what it produces, and how a
consumer can communicate with it.

Using Your Web Service
As you've learned, it's essential for consumers to know what parameters to send to a Web service and
what values to expect it to return. To accomplish this, a Web service Description Language (WSDL) file is
used. This is an XML file that defines how the interaction between a Web service and its consumer will
occur. WSDL is a standard managed by the W3 standards organization, and you can find more details
about it at http://www.w3.org/TR/wsdl.

The impact of this WSDL standard is enormous. WSDL is able to define all the interactions of a Web
service regardless of whether the service is running in ASP.NET or Java, and regardless of whether it is
running on Windows or UNIX.

The data type for MilesToKilometers is a decimal. This is the value that our
measurementconversions Web service expects from a consumer.

608

Chapter 16

It means that in future you won't need to be concerned with whether our services, or languages, are
compatible across platforms. This would allow us to concentrate on the real issue of writing robust and
functional code. WSDL will take care of declaring the interaction for us.

For instance, if a Web service expects two specific parameters and returns a single value, the WSDL
defines the names, order, and data types of each input and output value. Since we know where to find
the Web service using its URL, we don't need to know the physical location or the internal logic of the
Web service. With WSDL, we have all the information necessary to begin making use of the Web service
functionality within our applications. It's really that simple!

Let's take a quick look at what a WSDL contract looks like using our MeasurementConversion Web
service.

Try It Out Viewing the WSDL Contract
1. Enter the path http://localhost/measurementconversions.asmx in your browser's address bar and

click on the Service Description hyperlink at the top of the page. You should see a screen similar
to Figure 16-9:

Figure 16-9

How It Works
As you can see, there's a lot of information in here and this is just the collapsed view! Our Web method
message names along with the various HTTP GET, HTTP POST, and SOAP message structures are
displayed. These message formats contain the requirements for a consumer to know what parameters
are needed to communicate with a Web service using each message structure.

609

Web Services

At the top, the following declaration indicates that the WSDL file is in XML format:

<?xml version="1.0" encoding="utf-8" ?>

Below that declaration is the <definitions> element, which contains various namespaces. Most of
these namespaces make a reference to SOAP, which we discussed earlier. These must be included in the
file for SOAP to work correctly:

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:s0="http://tempuri.org/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://tempuri.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

Next, the <types> element defines each of the data types that the Web service expects to receive and
return after completion. This is very complex, and almost a science in itself. It is written in XML Schema
Definition (XSD) language. You can't see the definitions in the screenshot as its section is collapsed (like
the others). All you need to do is click on the node in Internet Explorer in order to view them.

After this are the various one-way transmissions from a consumer to the Web service and back again.
Our Web method message names are in here, and the various SOAP message structures are laid out. For
example, on expanding the <message> element, we can see the InchesToCentimeters Web method
message structures for SOAP:

<message name="InchesToCentimetersSoapIn">
<part name="parameters" element="s0:InchesToCentimeters" />
</message>
<message name="InchesToCentimetersSoapOut">
<part name="parameters" element="s0:InchesToCentimetersResponse" />
</message>:

In short, this file contains all of the information necessary to communicate with our Web service. Now
that you've seen the process of building and communicating with XML Web services in detail, let's create
something a bit more complex.

The next example will accept a value, and return a result using ADO.NET to retrieve data from an
Access database.

Try It Out ISBN Search Web Service
Let's create a Web service that returns the title of a book, based on an ISBN that the consumer provides.
This will allow our librarian to add a function on the library's Web page that enables users to search by
consuming this Web service.

This particular service will access a database of books. The database contains information on ISBN and
book titles. Once the details are received from the database, the results will be inserted into a
DataReader and returned to the consumer in XML.

610

Chapter 16

This example uses the Library.mdb Access database, which you can download along with the code
samples for this book from www.wrox.com. You should ensure that the file is in the same location as the
Web service that you create.

1. Create an XML Web service called ISBN.asmx in Web Matrix, entering ISBN as the class name
and Ch16 as the Namespace.

2. Add the following using statements to the beginning of the file:

<%@ WebService Language="C#" Class="ISBN" %>
using System;
using System.Web.Services;
using System.Xml.Serialization;
using System.Data;
using System.Data.OleDb;

3. Add the following code to enable the Web service:

public class ISBN : System.Web.Services.WebService
{
[WebMethod]
public string BookDetail(string strIsbn)
{
return GetBookDetails(strIsbn);

}

4. Enter the following code directly after the BookDetail Web method. This function performs the
database lookup and returns the book title string:

private string GetBookDetails(string strIsbn)
{

OleDbDataReader objLibraryDR = null;
OleDbConnection objLibraryConn = null;
OleDbCommand objLibraryCmd = null;
string strConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" +

Server.MapPath("Library.mdb") + ";";
string strSQL = "SELECT Title FROM Books WHERE ISBN = '" + strIsbn +

"'";
string strBookTitle;
objLibraryConn = new OleDbConnection(strConn);
objLibraryCmd = new OleDbCommand(strSQL, objLibraryConn);
objLibraryConn.Open();
objLibraryDR =

objLibraryCmd.ExecuteReader(CommandBehavior.CloseConnection);
if (objLibraryDR.Read())
{

strBookTitle = objLibraryDR[0].ToString();
}
else
{

strBookTitle = "Book not found in the database";
}
objLibraryDR.Close();
return strBookTitle;

}
}

611

Web Services

5. Once you have completed this code entry, test your Web service. Save the file, and then browse
to http://localhost/ISBN.asmx.

6. Within the Isbn field, enter the ISBN 0764557076. A new browser window will appear,
containing XML shown in Figure 16-10:

Figure 16-10

How It Works
Our Web service provides what is technically known as a 'level of abstraction'. This means that the code
that does the work of finding our information isn't taken care of by the Web-callable BookDetails
method. Instead, BookDetails calls another internal function that consumers can't see. This function,
GetBookDetails, does the work of finding the book information, and then returns it to BookDetails,
which returns it to us:

[WebMethod]

public string BookDetail(string strIsbn)

{

return GetBookDetails(strIsbn);

}

private string GetBookDetails(string strIsbn)

{

...

}

This is done because the job of the GetBookDetails function remains the same, regardless of the source
making the request. The same function may be called from a non-Web service source. Also, we certainly
wouldn't want to maintain two separate functions that do the same thing, the difference being only the
[WebMethod] declaration.

We're using ADO.NET to connect to the Library.mdb database, retrieve a book title from its Books
table based on the ISBN, and store it in a string variable. Keeping the data request simple, we define a
connection string (Conn), and then open the connection to the database (with LibraryConn):

objLibraryConn = new OleDbConnection(strConn);
objLibraryCmd = new OleDbCommand(strSQL, objLibraryConn);
objLibraryConn.Open();

612

Chapter 16

Using the LibraryCmd object, we execute the query for a specific ISBN, placing the results in the
LibraryDr DataReader. Then we close the connection:

objLibraryDR =

objLibraryCmd.ExecuteReader(CommandBehavior.CloseConnection);

We then check whether a row was returned, by calling the Read method of our DataReader,
LibraryDr. If it returns true, we take the first column (column zero, the Title column of the database)
from the DataReader and place it into BookTitle. If it returns false, we know that the book was not
found, and we place a 'not found' message in the title value. Then we close our DataReader and return
the book title string:

if (objLibraryDR.Read())

{

strBookTitle = objLibraryDR[0].ToString();

}

else

{

strBookTitle = "Book not found in the database";

}

objLibraryDR.Close();

return strBookTitle;

For more information on working with data sources, please refer to Chapters 8 and 9.

Consuming a Web Service
You've created some Web services from start to finish using a variety of technologies. The next step is to
understand how to include this functionality within a consumer application. To do this, you must first
create an interface that will allow the consumer to see all of the Web-callable methods and properties
exposed by the Web service. This saves the headache of ensuring that your parameters are the correct
type and having to create our own protocol request and response handlers. This interface is called a Web
service proxy.

How Does a Proxy Work?
A proxy resides on the consumer's machine and acts as a relay between the consumer and the Web
service. When building a proxy, we use a WSDL file (we'll examine the source shortly) to create a map
that tells the consumer what methods are available and how to call them. The consumer then calls the
Web method that is mapped in the proxy, which in turn, makes calls to the actual Web service over the
Internet. The proxy (and not the consumer) handles all of the network related work, the sending of data,
as well as managing the underlying WSDL. When we reference the Web service in the consumer
application, it looks as if it's part of the consumer application itself. Figure 16-11 illustrates this process:

613

Web Services

Figure 16-11

The function works as follows:

1. The application executes a function in the proxy code, passing any appropriate parameters to it,
without being concerned that the proxy is going to call a Web service.

2. The proxy receives this call, and formulates the request that will be sent to the Web service,
using the parameters the consumer has specified.

3. This function call is sent from the proxy to the Web service. This call can be within the confines
of the same machine, across a Local Area Network (LAN), or across the Internet. The method of
calling remains the same.

4. The Web service uses the parameters provided by the proxy to execute its Web-callable function
and build the result in XML.

5. The resulting data from the Web service is returned to the proxy at the consumer end.

6. The proxy parses the XML returned from the Web service to retrieve the individual values
generated. These values may be as simple as integers and strings, or they may define more
complex data types.

7. Your application receives the expected values from the proxy function, completely unaware that
they resulted from a Web service call.

To make use of a Web service from an ASP.NET page, your proxy must be created and compiled
appropriately. You can create a proxy to a Web service using either Web Matrix or a command line tool
called WSDL.exe provided in the .NET Framework SDK. Both of these methods make use of WSDL to
create a proxy, built in the language of your choice. We'll create a new ASP.NET application, which will
access our new ISBN Web service using Web Matrix as it is easier to use.

614

Chapter 16

Creating a Proxy
Building a proxy is a two-step process:

1. Generate the proxy source code automatically.

2. Compile the proxy into a runtime library.

Try It Out Accessing the ISBN Web Service from an ASP.NET Page
In this example, you will build the proxy and a simple page for retrieving book titles from the ISBN Web
service, demonstrating how quickly your Web service applications can be up and running.

1. Open the ISBN.asmx file you just created in Web Matrix.

2. Go to the Tools menu and select Web service Proxy Generator.

3. Fill in the dialog that appears, as shown in Figure 16-12:

Figure 16-12

4. You've created the proxy class in C#, and defined the ISBNService namespace. By selecting a
namespace, you will be able to reference your proxy class from within your consuming
application. The proxy is contained in a file called ISBNProxy.cs. At the same time, Web
Matrix has also performed the second stage. It has taken the ISBNProxy.cs and compiled it to
create a DLL file that can be referenced within the code. Once this process is finished, you
should see the dialog shown in Figure 16-13:

Figure 16-13

615

Web Services

5. Now that we have a proxy class and a DLL. We're ready to make use of the ISBN Web service
from within an ASP.NET page. We'll call the BookInfo.aspx page, and use it to call the Web-
callable function BookDetail in ISBN.asmx. By using a proxy, the reference to the function's
namespace will appear as if it was a function within the same page. So, create a new ASPX file
called BookInfo.aspx in Web Matrix, in the folder C:\BegASPNET11\Ch16.

6. Click on the All window and enter the following code:

<%@ Page Language="C#" Debug="true"%>
<%@ Import namespace="ISBNService" %>
<script Language="C#" runat="server">
private void RetrieveBook(object sender, EventArgs e)
{
ISBNService.ISBN ws = new ISBNService.ISBN();
lblBookTitle.Text = ws.BookDetail(txtISBN.Text);

}
</script>
<html>
<body>
<form id="Form1" method="post" runat="server">

Enter an ISBN number to search on:

<asp:TextBox id="txtISBN" runat="server"></asp:TextBox>

<asp:Button id="Button1" runat="server" Text="Submit" _

OnClick="RetrieveBook"></asp:Button>

<asp:Label id="lblBookTitle" runat="server" Width="152px" _

Height="23px"></asp:Label>
</form>

</body>
</html>

7. Save the file and run it in your browser. You should see the screen shown in Figure 16-14:

Figure 16-14

8. Enter an ISBN that we know is in the Books table, like the ISBN for this book (0764557084) and
you'll see something like Figure 16-15:

616

Chapter 16

Figure 16-15

9. Now try an ISBN that you know will not be found, to ensure that the proxy is actually working;
see Figure 16-16:

Figure 16-16

How It Works
Before Web Matrix came along, we had to use WSDL.exe to generate a proxy class and use a command
line compiler to compile the proxy class, and to create the ISBNProxy.dll. This is no longer the case as
we can use Web Matrix to perform these two distinct operations in one step. Set the options in the dialog
as follows:

❑ WSDL URL: The location of the Web service.

❑ Namespace: The name by which you can reference the Web service in your ASP.NET code.

❑ Language: The language the proxy class should be generated in.

❑ OutputDirectory: The place where both the proxy class and the assembly should be placed.

❑ SourceFile: The name of the proxy class.

❑ GenerateAssembly: The name of the DLL.

These options ensured that we create the DLL so that it works correctly, and can be added to our
ASP.NET page.

617

Web Services

In our ASP.NET page, we made use of Web Form controls. These controls – <asp:TextBox>,
<asp:Label>, and <asp:Button> – make up the simple form that makes a very specific call to the
BookDetail function.

Upon clicking the Submit button, the RetrieveBook event fires, as specified in the OnClick attribute of
<asp:Button>:

<asp:Button id="Button1" runat="server" Text="Submit"
OnClick="RetrieveBook" /></asp:Button>

Within the RetrieveBook function, first of all, we create an instance of the proxy class that we'll be
using:

ISBNService.ISBN ws = new ISBNService.ISBN();

Then it's simply a matter of calling the BookDetail function of the ws object. Remember the previous
example where we created the Web method:

[WebMethod]
public string BookDetail(string strIsbn)
{
return GetBookDetails(strIsbn);

}

Here we are actually accessing the same Web Method from our ASPX page. ISBNService.ISBN refers
to our automatically created DLL file, which is used to communicate with the ASMX Web service file
created from the previous example. So once we've created our ws object using the DLL, we can use all
the Web methods of the object as though they were normal methods.

With a single line of code, we pass the string contents of txtISBN.text to the Web service and receive
the book title, placing that string into the label lblBookTitle.text:

lblBookTitle.Text = ws.BookDetail(txtISBN.Text);

Once again, this example proved the simplicity and power of Web services.

Creating a Web Service for the Wrox United
Application

The process for creating a Web service, although relatively easy, can be quite lengthy. So far the examples
have been kept as simple as possible. In fact, the previous example might seem like a long winded way
to go about just returning a single string from our database. The power of Web services lies in the ability
to return more complex items than just single items of data.

We'll now build a Web Method that links back to the Wrox United application and use it to return a set
of results. In fact, the Web service will prompt you for the name of a team, scour the database for the
score from the most recent game, and return that to the user. For the sake of simplicity and compatibility,

618

Chapter 16

we'll still take these results and output them as a single string. However, this string will be created from
a concatenation of both integer and string values that have been gleaned from the database. It is possible
to return this information as a dataset. There isn't a standard way to return a dataset, so by returning our
information as a string, we make it easily consumable to users on all platforms, because a dataset on
Windows can be completely different from a dataset returned by a database on a UNIX server.

Before building the Web method though, we're going to add a results page to the Wrox United
application. This page's functionality is unrelated to Web services, so let's see how it works. We'll borrow
some of the data-reading routines from this page and use this within our Web method to extract a single
result from the database.

Try It Out Adding a Results Page
1. Open up Web Matrix and create a new .aspx page called results.aspx.

2. Next, download the code for results.aspx from http://www.wrox.com – we're not going to
reproduce it here as it is over five pages long!

3. Alter the navbar.ascx navigation bar, so that it points to the new results.aspx page. Amend
the code as follows:

...

<p>

<asp:HyperLink id="lnkGames" runat="server"

NavigateUrl="Default.aspx">Upcoming Games

</asp:HyperLink>

</p>

<p>

<asp:HyperLink id="lnkResults" runat="server"

NavigateUrl="results.aspx">Results

</asp:HyperLink>

</p>

<p>

<asp:HyperLink id="lnkChat" runat="server"

NavigateUrl="Chat.aspx">Chat

</asp:HyperLink>

</p>

...

4. Now, open the Wrox United Application and browse to the results.aspx page, as shown in
Figure 1617:

619

Web Services

Figure 16-17

5. You can now see a complete list of the results of the games played. If you click on the column
heading, it will sort the results by the appropriate column.

How It Works
We're only going to look at the data reading routine in the TeamResults function. We create a seemingly
massive variable query string that takes an enormous SQL statement. The SQL statement isn't as scary as
it looks:

string queryString = "SELECT [Games].[Date], [Games].[WroxGoals], " +
"[Games].[OpponentGoals], [Teams].[TeamName], " +
"[Opponents].[OpponentName], [GameTypes].[GameType],"+
"[Games].[GameID] [GameTypes]" +
"FROM [Games], [Teams], [Opponents]," +
"WHERE (([Games].[WroxTeam] = [Teams].[TeamID]) AND " +
"([Games].[OpposingTeam] = [Opponents].[OpponentID])" +
"AND ([Games].[GameType] = [GameTypes].[GameTypeID])" +
"AND ([Games].[Date] < now())) ORDER BY " +
"+ SortExp + SortDir;"

620

Chapter 16

Basically the SQL statement gets the date, opponent goals, team-name, opponent name, type of game
and game identifier from the Games table. However, as this information is spread across the Games,
Teams, Opponents, and GamesType tables, we have to perform joins to the Games table to extract this
information. If you're not familiar with SQL don't worry, you don't need to be. You just need to
understand that this query (a slightly modified version) will form the heart of our Web service, as this is
exactly the information we need to extract. The only difference is that we want to extract only one result
as opposed to a whole set of results.

The rest of the code in this function just creates a Command object and supplies the QueryString variable
as the CommandText. It then runs the ExecuteReader method and returns the dataset as a DataReader
object:

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();

dbCommand.CommandText = queryString;

dbCommand.Connection = dbConnection;

dbConnection.Open;

System.Data.IDataReader dataReader =

dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;

}

This is exactly what we'll be doing .

Try It Out Creating The Web Service
1. Open Web Matrix and create a new latestscore.asmx XML Web service with the class name

as LatestScore and the namespace as WroxUnited.

2. Add the following code into the window making sure that it replaces all of the default code
created by Web Matrix:

<%@ WebService language="c#" class="LatestScore" %>
using System;
using System.Web.Services;
using System.Xml.Serialization;
using System.Data;
using System.Data.OleDb;
using System.Configuration;
//Inherit the WebService class that provides all the built-in features
//that are needed to create a Web Service.
public class LatestScore : System.Web.Services.WebService
{

[WebMethod]
public string ReturnScore(string Team)
{

return GetLatestScore(Team);
}
private string GetLatestScore(string Team)

621

Web Services

{
//Declare the database access objects
OleDbDataReader LibraryDr;
OleDbConnection LibraryConn;
OleDbCommand LibraryCmd;

//Declare the connection string that grants access to the database
string Conn = ConfigurationSettings.AppSettings["ConnectionString"];

//Declare the SQL that will be executed.
string SQL = "SELECT [Games].[WroxGoals], [Games].[OpponentGoals], "+

"[Opponents].[OpponentName], [Games].[Date] "+
"FROM [Games], [Teams], [Opponents] "+
"WHERE (([Games].[WroxTeam] = [Teams].[TeamID]) AND "+
"([Games].[OpposingTeam] = [Opponents].[OpponentID]) AND "+
"([Teams].[TeamName] = \"" + Team + "\")) "+
"ORDER BY [Games].[Date] DESC";

string MaxDate,LatestScore, WroxGoals, OpponentGoals, TeamName,
OpponentName;

//Open the connection to the database.
LibraryConn = new OleDbConnection(Conn);
LibraryCmd = new OleDbCommand(SQL, LibraryConn);
LibraryConn.Open();
LibraryDr = LibraryCmd.ExecuteReader(CommandBehavior.CloseConnection);

if (LibraryDr.Read())
{

MaxDate = Convert.ToString(LibraryDr["Date"]);
WroxGoals = Convert.ToString (LibraryDr["WroxGoals"]);
OpponentGoals = Convert.ToString (LibraryDr["OpponentGoals"]);
OpponentName = Convert.ToString (LibraryDr["OpponentName"]);
LatestScore = MaxDate + " - " + Team + " " + WroxGoals + " " +

OpponentName + " " + OpponentGoals;
}
else
{

//A row was not returned; this book does not exist.
LatestScore = "The team cannot be found in the database";

}

LibraryDr.Close();
return LatestScore;

}

}

3. You can now test the Web service to see if it is working correctly. Go to
http://localhost/latestscore.asmx and browse the LatestScore link that appears, as shown in Figure
16-18. You should be asked for a single parameter – the team. This can be either The A team or
The B Team:

622

Chapter 16

Figure 16-18

4. When you invoke this service, you should see the result shown in Figure 16-19:

Figure 16-19

5. You'll get the score from the A Team vs Kernel Coders match that was played on the 7th of
September. Go back to the results.aspx page and sort the columns by date. At the foot of the
screen as shown in Figure 16-20, you'll see that this is indeed the most recent match played:

Figure 16-20

623

Web Services

Go back and check the Web service for the B team and you'll see the result against the Script Kiddies,
which is a 0-1 loss.

How It Works
Our Web service has a single Web Method that calls the GetLatestScore function and supplies it with
a single parameter: the team name:

[WebMethod]
public string ReturnScore(string Team)
{

return GetLatestScore(Team);
}

The GetLatestScore function does all the work. We start by initializing three objects that will return
the data from the database: OleDbDataReader, OleDbConnection, and OleDbCommand .

OleDbDataReader LibraryDr;
OleDbConnection LibraryConn;
OleDbCommand LibraryCmd;

Next we create a connection string to the database, using the AppSettings from our Web.Config file:

string Conn = ConfigurationSettings.AppSettings["ConnectionString"];

The following line should also be familiar – it's where we create the query string that will be used to
extract our results from the database:

string SQL = "SELECT [Games].[WroxGoals], [Games].[OpponentGoals], "+
"[Opponents].[OpponentName],[Games].[Date] FROM "+
"[Games], [Teams], [Opponents] WHERE (([Games].[WroxTeam] = "+
"[Teams].[TeamID]) AND ([Games].[OpposingTeam] = "
"[Opponents].[OpponentID]) AND ([Teams].[TeamName] = \"" +
"Team + "\")) ORDER BY [Games].[Date] DESC";

What's different here is that we have added a clause that orders the columns returned by the final date.
SQL provides its own parameters for returning maximum values, but in our case, it's easier to "cheat" by
just sorting the data ourselves into the order that we want and then taking the last value only. This
variable contains a query that gets the goals, opponent's goals, opponent team's name, and game date
from the database, so it's a little bit simpler than the one used in results.aspx.

We create a condition so that only teams that match the team name supplied in the Team variable are
returned. So if we have supplied the A Team, then it will only return the A team's results. In fact, we
don't even need to return our own team name, as we already have been supplied that by the user, when
they entered the team parameter to the Web service. Once we've created the query, we need to create a
set of variables to store each of the different items of information in. Notice that they are all created as
strings, although they don't have to be; it's just that we want to concatenate the information into one big
string and it's easier to do it this way:

string MaxDate,LatestScore, WroxGoals, OpponentGoals, TeamName, OpponentName;

We open a connection to the database, and supply our SQL query to the Command object and run it
against the database:

624

Chapter 16

LibraryConn = new OleDbConnection(Conn);
LibraryCmd = new OleDbCommand(SQL, LibraryConn);
LibraryConn.Open();
LibraryDr = LibraryCmd.ExecuteReader(CommandBehavior.CloseConnection);

Now we're going to "cheat" to keep the code short. As mentioned in results.aspx, we return a dataset.
Now in the last example, we performed a check for a single row of data. If we're returning a dataset,
then more than a single row is returned. However, to avoid having to create an array of information,
most of it unwanted, we read each row into the variables, and then overwrite each row:

if (LibraryDr.Read())
{

MaxDate = Convert.ToString(LibraryDr["Date"]);
WroxGoals = Convert.ToString (LibraryDr["WroxGoals"]);
OpponentGoals = Convert.ToString (LibraryDr["OpponentGoals"]);
OpponentName = Convert.ToString (LibraryDr["OpponentName"]);

So the first row will read the dates, goals, and name information into our four variables. However, as
pointed out earlier, we sorted the information in the SQL query. We sorted our information in ascending
order, by date, and restricted it to the results of only one team. Thus, we know that the last line of
information in the dataset must be the most recent line. Plenty of information is read into the variables,
but it is overwritten. Only the most recent set of information is kept. As data readers move through
datasets sequentially, and we have already sorted the dataset into ordered data, we know that only
information from the last row – the one with the most recent date – is stored.

We concatenate this into the LatestScore variable:

LatestScore = MaxDate + " - " + Team + " " + WroxGoals + " " + OpponentName +
" " + OpponentGoals;

We perform a check to make sure that the DataReader isn't empty. It would be empty only if someone
supplied a team name that wasn't found in the database. Just in case this is true, the LatestScore
variable is supplied with an appropriate message instead:

else
{

//A row was not returned; this book does not exist.
LatestScore = "The team cannot be found in the database";

}

Lastly, we close the DataReader and return the contents of the function to the Web method:

LibraryDr.Close();
return LatestScore;

It's now a straightforward task to create a proxy client using the same method from our ISBN example
and change the class so that it queries the ReturnScore Web method instead. We're not going to supply
the code here to do that, but instead leave that as an exercise for the reader to complete, as the code
changes needed are minimal and WebMatrix can do most of the work for you.

We have a Web service that takes a team name and returns as a string, the date of the latest game played
by the team and the score for that team. That information is widely available to be used in anybody's
application now, and not just ours. But how would someone else go about discovering this information
so as to be able to use it?

625

Web Services

Web Service Discovery
As you begin to build Web Service-integrated applications, it will become increasingly important to
locate services that provide the functions you need, or alternatively post your own Web services so that
others can make use of them. Universal Description, Discovery, and Integration (UDDI) is a Microsoft
backed initiative that allows you to do this.

Whenever an industry initiative gains the support of several major players, it will usually become
mainstream. For this reason, UDDI is positioned to dominate the Web service discovery field in the
future. The UDDI service (accessible from http://uddi.microsoft.com or http://www-3.ibm.com/services/uddi/)
lets businesses register themselves and list their existing Web services at no charge. Anyone can browse
and search the UDDI database for a service that may suit their needs. UDDI provides information such
as contact details (address, phone number, e-mail address, Web site), business details (DUNS number
and industry sector), and a discovery URL for each service. WSDL is a key component of the UDDI
project.

By using http://uddi.microsoft.com/, you can search for businesses that provide Web services, select the
WSDL appropriately, and build your proxies (see Figure 16-21):

Figure 16-21

626

Chapter 16

Securing a Web Service
Whether your Web service is made available on a subscription basis or is completely free to the public, it
is important to consider security. The reasons for securing Web services can range from simple usage
logging to strict access control. If your Web service provides a very useful feature (of course it will!), it's
helpful to keep track of who's using it. While you can log the usage of a Web service that provides
privileged information, more stringent security measures should be taken to make sure that the use of
your Web service is consistent with your purposes.

There are many options for securing Web applications and services. The following are the most common
techniques and will be discussed over the next sections:

❑ Username-password: Used to provide custom database based access control. This is an
authentication service.

❑ Secure Sockets Layer (SSL): Used to ensure that the data transfer across the Web is encrypted.
However, it does not protect access to the Web service itself.

❑ IP address restriction: Used to specify valid IP addresses that can access the service. However,
you need user's authentication even if the IP is the same.

❑ Web services Enhancements: A toolkit from Microsoft that adds a whole new set of specifications
for making your Web services secure.

Please remember that these methods are not mutually exclusive, and can be combined to provide a
higher level of security.

Username-Password Combination or Registration Keys
By requiring either a username-password pair or a registration key code as an input parameter, you can
provide a way to track which consumers are using your Web service. A simple database table or XML
file containing each username-password pair or registration key code is all that's required to provide this
kind of security. Considering that no authentication of the consumer takes place in this scenario, it is
very simple for the client to share the username and password (or registration key) with others.
However, when the data provided by the Web service is not sensitive or proprietary in nature, this
security method provides us with a quick and effective option.

Let's examine how you might apply this type of security to the ISBN Web service.

Try It Out Securing a Web Service with Username and Password
You will be using the security.mdb database (provided with the code for this book and can be
downloaded from http://www.wrox.com/). This contains a very simple Users table consisting of
usernames and passwords. Ensure this database is in the same location as the isbn.asmx file created
earlier. Our security will only attempt to match details from the user with an entry in the security
database.

627

Web Services

1. Re-open the ISBN Web service (isbn.asmx) in Web Matrix, and make the following
modifications to the BookDetail Web method:

[WebMethod]
public string BookDetail(string strIsbn, string strUsername, string

strPassword)
{
OleDbDataReader objSecurityDR = null;
OleDbConnection objSecurityConn = null;
OleDbCommand objSecurityCmd = null;
string strConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" +

Server.MapPath("Security.mdb") + ";";
string strSQL = "SELECT Username FROM Users WHERE username = '" +

strUsername + "' AND password = '" + strPassword + "'";
objSecurityConn = new OleDbConnection(strConn);

objSecurityCmd = new OleDbCommand(strSQL, objSecurityConn);
objSecurityConn.Open();
objSecurityDR =

objSecurityCmd.ExecuteReader(CommandBehavior.CloseConnection);
if (objSecurityDR.Read())
{

objSecurityDR.Close();
return GetBookDetails(strIsbn);

}
else
{
objSecurityDR.Close();
return "Login to library failed.";

}
}

2. Save the result as ISBNSecurity.asmx. Notice that no changes have been made to the
GetBookDetails function, as the core functionality of retrieving the book title from the
database hasn't changed. The goal in this scenario is to provide a gatekeeper that prevents
access to the internal logic if the consumer's username and password pair is not found in the
database.

3. Browse to the ISBNsecurity.asmx Web service to test this newly applied security. You will
now see two extra textboxes: one for strUserName and one for strPassword, as shown in
Figure 16-22:

628

Chapter 16

Figure 16-22

4. If you put in a number without specifying the correct security details, you will get the response
shown in Figure 16-23:

Figure 16-23

The only entry in our security database has the username librarian and the password secret. This is
the only user that is permitted to access our Web service. However, you can add more registered users
by modifying the Users table.

How It Works
We have used nearly the same logic validating the login as previously used in GetBookDetails to look
up a book. By adding this logic to the Web-callable BookDetail function, we completely prevent access
to the internal GetBookDetails function if the login fails. First, we create a connection to the security
database and run the SQL command that retrieves the username if the user name and password
supplied to the Web service match any of those in the database.

string strConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" +
Server.MapPath("Security.mdb") + ";";

string strSQL = "SELECT Username FROM Users WHERE username = '" +

629

Web Services

strUsername + "' AND password = '" + strPassword + "'";
objSecurityConn = new OleDbConnection(strConn);
objSecurityCmd = new OleDbCommand(strSQL, objSecurityConn);
objSecurityConn.Open();
objSecurityDR =
objSecurityCmd.ExecuteReader(CommandBehavior.CloseConnection);

Now, if anything is returned, we run the BookDetails function and return the answer to the Web
method:

if (objSecurityDR.Read())
{

objSecurityDR.Close();
return GetBookDetails(strIsbn);

}

However, upon failure to login correctly, we return a simple string:

else
{
objSecurityDR.Close();
return "Login to library failed.";

}

If the username and password combination is successfully located in the database, the result of the
GetBookDetails function is returned just as before.

Secure Sockets Layer (SSL)
The most common method of securing information on the Web is the Secure Sockets Layer (SSL). When
you make an online purchase, you'll typically see a lock or key icon displayed in the browser's status bar
to let you know your communication is secure. Information passed between the browser and the Web
site travels in an encrypted form. In the case of Web services, applying SSL ensures that the data
traveling between the consumer and the endpoint is encrypted hence difficult to intercept.

SSL has no effect on the integrity of the data provided by your Web service. When a value is returned to
the consumer, it remains the same regardless of the encryption used in its transportation. The only
downside is that it affects the overall performance of your site, as more processing is required. You can
get more information about verifying your identity for use with SSL from a Certificate Authority like
Verisign (www.verisign.com). We discuss SSL in more detail in the next chapter.

IP Address Restriction
Maintaining an IP address list of all registered users can help control the use of a Web service. This
approach presents a number of potential issues, the greatest being the never-ending maintenance of IP
address ranges for each client. IP address restriction can take place at both hardware and software levels.
A hardware application of this security typically involves firewall restrictions to specific IP addresses.
Restricting IP access using software security often involves keeping a database table of clients and
another with associated IP addresses.

630

Chapter 16

Each time a Web service is accessed, you can get the client's IP address (using the HTTP headers) and
confirm that it exists in the security tables. If a match is located, the Web service executes normally.
Another option for software-based IP-address security is at the Web server level. Most Web server
software permits any number of IP addresses to be restricted or enabled. Within IIS, it's as simple as
selecting the properties of a given site and changing the IP restrictions. Since maintaining IP addresses of
clients can be terribly cumbersome, as well as overly restrictive (if a consumer's IP address changes
frequently), this option is generally not recommended.

Web Services Enhancements (WSE)
The Web services Enhancements (WSE) toolkit is a set of classes that allow developers to build Web
services using specifications from the Global XML Architecture (GXA). The GXA specs are a set of
specifications that cover security, Web service discovery, routing, and attachments that were developed
jointly by Microsoft and IBM with the aim of building a framework by which all Web services would be
developed in the future. The largest part of the WSE is the WS Security specification, and this contains
classes that can enable you to use authorization and authentication (both discussed in the next chapter)
with your Web services, as well as being able to sign and verify services and details for their encryption.

The WSE toolkit can be downloaded for free from http://msdn.microsoft.com/webservices/. Further
discussion of WSE is beyond the scope of this book.

Other Web Services Considerations
Web services are bringing about a major paradigm shift, not seen since the early days of the Internet.
Because of this, it's important to recognize that these new conveniences have their own set of advantages
and disadvantages. We won't talk about all the ways to avoid the pitfalls (which would require a book in
itself), but will consider some of key issues.

Network Connectivity
A few years ago, the idea of calling a remote function and retrieving a value from it seemed unlikely.
Now that we have Web services, this newfound ability to use or purchase a given function from any
organization on the Web causes us to think about the issue of Internet connectivity. It's important to
realize that as must your company's Internet connection be reliable, so should your Web service
provider's connection. Furthermore, if a Web service requires any additional Internet resources, their
service vendor's network must also be stable. There are many potential failure points in this
arrangement. Often, this can be compounded if a Web service provider hesitates, or refuses, to disclose
who their providers are, since they don't want you going directly to them!

Asynchronous Method Calls
Since SOAP can be transported using SMTP (the e-mail protocol), we can write Web services that make
use of asynchronous method calls. Asynchronous communication is a sort of disconnected, two way
interaction that doesn't require an immediate response. Most programming deals with synchronous
communication, where you call a function and wait for it to complete and return a value:

631

Web Services

Distance_To_Rome = DistanceBetween("Los Angeles", "Rome", "meters");

In a situation like this, our application will not continue until the DistanceBetween function completes
its logic and returns a value, which is placed in Distance_To_Rome. While this suits our needs most of
the time, it is not always appropriate, especially when dealing with Web programming.

Batch processing, slowing down of applications, and anticipated disconnections are three situations
where we should consider the possible advantages of asynchronous communication. The great news is
that your Web service need not be tailored specifically for synchronous or asynchronous
communication; this is the proxy's duty.

The following C# code snippet illustrates how you might implement asynchronous function calls, using
events:

...
DistanceBetween("Los Angeles", "Rome", "meters");
...
private void DistanceBetween_CalculationComplete(integer Distance)
{
Distance_To_Rome = Distance;

}
...

If the application contains code such as this, we will issue a request to DistanceBetween to calculate
the distance between two cities, and then move on with our code. When the DistanceBetween object
completes its calculation, it fires the DistanceBetween_CalculationComplete event, which allows us
to handle the returned value without making the rest of the application wait.

Because we can call a remote function without the need for an immediate response (without breaking an
application), our applications can support longer time intervals and handle poorer network conditions,
such as dial-up situations. In the case of SMTP, the SOAP request is packaged in an e-mail format and
delivered to a mailbox on the server, just as if it were an e-mail composed and addressed to another
individual. The specification for SOAP over SMTP defines a process of retrieving this message from the
mail server, executing the function required, and mailing the SOAP results to the consumer, again using
SMTP.

Service Hijacking (or Piggybacking)
Once your Web service is available to the public, you may attract a client who is particularly interested
in the service you provide. They're so interested, in fact, that they consider wrapping your powerful Web
service inside one of their own and representing it as their own product. Without security safeguards in
place (and legal documents as well), a client may repackage your Web service as if it were their own
function, and there's no way for you to detect that this is being done (though you may become
suspicious by examining your usage log when your client who occasionally uses your Web service
suddenly shows an enormous increase in activity). Given the level of abstraction that Web services
provide, it would also be nearly impossible for any customers of your unethical client to know who
really owns the functionality.

Some organizations use a combination of usage logging and per-use charges. In my opinion, a smarter
way to avoid piggybacking is by using false data tests. Within your Web service, you could create an
undocumented function that creates a result that only your logic could produce. You would then be able

632

Chapter 16

to determine whether this code is really yours and the client is piggybacking the Web service, or if the
client is truly using its own logic.

An example of implementing a false data test would be a Web service that provides book information
for a given ISBN. As in the ISBN Web service, we may return some arbitrary details if a certain ISBN is
provided and is not associated with a real book. If the ISBN ABCDEFGHI were entered, special codes or
copyright information could be sent as the resulting book title. You could then test this on the
piggybacking company suspected of stealing your Web service. Since this hidden functionality would
not be published, it would provide a great way to prove that a company was reselling your Web
service's logic without your legal approval.

Provider Solvency
Since the Web service model is a viable solution, you're probably eager to add its functionality to your
core information systems and mission-critical applications. As Web services become more and more
interdependent, it becomes increasingly necessary to research the companies from whom you consume
Web services. You'll want to make sure these providers have what it takes to remain in business. UDDI
goes a long way towards helping you with this research by providing company information for each
registered Web service provider (including their DUNS number).

In the business world, nothing seems to impact and force sweeping changes more than insolvency, and if
you find yourself in the unfortunate circumstance of lost functionality due to a bankrupt Web Service
provider, you'll realize how painful the hurried search for a new vendor can be (with little room to
bargain with your ex-service's competitors). Although the initial work can be a bit tedious, it is
important to consider whether a potential Web service vendor will still be in business five years from
now.

The Interdependency Scenario
The basis for all these and other Web service considerations is the issue of interdependency. It's possible
that you wake up a given morning, start an application that has worked for years, and find that the Web
service that it relies on is no longer available.

To some extent, thanks to the UDDI search capabilities, you can investigate and assess potential
providers, but at the end of the day a degree of faith needs to be put into the services of each provider
you choose to consume.

Summary
In this chapter, you've seen that a Web service exposes its functions as a service that other applications
can use. We began by discussing what a Web service is and how it is used. We recapped XML and HTTP
and their uses within the Web services architecture. We then delved into the process of building Web
services, and creating and compiling a Web service proxy. You learned how to use Web services in an
application by incorporating a defined namespace and making use of its methods. Afterwards, we saw
how to discover what Web services we have available to consume, and finally, considered some of the
ways to make a Web service secure.

633

Web Services

As .NET makes programmatic interfaces over the Web more commonplace, you'll gradually be able to
see applications sharing and building upon the contributions made by the community of Web service
providers. Web services will provide a powerful means of seamlessly assembling applications that can
span multiple platforms and languages. For the user, a transition is on the horizon from the browser to
the more specific applications that make use of Web services. For the developer, ASP.NET Web services
will make the Internet a programmer's toolbox, with a greater assortment of tools than ever before.

Exercises
1. Explain the role of the Simple Object Access Protocol (SOAP) in Web services.

2. What is the purpose of the WSDL file?

3. How would you locate a Web service that provides the functions you require?

4. Create a Web service with a class name of circles, that calculates the area of a circle, the
circumference of a circle and the volume of a sphere. (Area = (Pi)r2; Circumference = 2(Pi)r;
Volume of a sphere = 4/3(Pi)r3.)

5. Create a Web service that connects to the Northwind database and returns employee's addresses
based on their last names.

6. Create an ASP.NET page containing a drop-down listbox in which a user can select names of
Northwind employees to return their addresses.

7. Secure the Northwind employee Addresses Web service so that no unauthorized users have
access to it.

634

Chapter 16

17
ASP.NET Security

As soon as you start making information available on the Web, you've got to stop and ask
yourself, "Who do I want seeing this?" Chances are that unless you actively do something to
protect your site's resources, they'll be available to anyone who cares to look for them. Unlike
corporate intranets, the Web is a public forum; many people out there could be interested in what
your ASP.NET pages have to offer. You need to take considered action to prevent your pages and
Web services being used and consumed by people who have not been authorized to do so.

Fortunately, there are many ways of controlling who's looking at your information. However,
security doesn't stop with access policies; it's equally important that the applications you write are
themselves secure. It's no good having a secure authentication procedure if your homepage has a
list of the users' passwords on it, or if a password entered by a user is stored in a non-encrypted
form by the ASP.NET page.

Security is about the strict enforcement of such access policies and about common sense. If you
were asked to create a secure application, you might face situations where the users and
administrators themselves don't update their passwords, choose passwords that are easy to crack,
don't patch their servers with the latest Windows updates, or don't use firewalls to protect their
systems. How can you effectively deal with this? You must be aware of the situation your
application is likely to be deployed in, the kind of people who are likely to access it, and the kind
of system it is likely to be maintained on. A secure system requires careful planning and you have
to be certain of these issues when storing confidential and valuable information within the
application.

This chapter covers the most common and effective ways of creating secure applications. In
addition, we will also discuss some guidelines and best practices. However, our usage of Web
Matrix will restrict what we can demonstrate.

Specifically, this chapter will cover:

❑ What is security?

❑ Forms authentication

❑ Forms database authentication and authentication against our case study

❑ Authorization

❑ SSL and encryption

What Is Security?
First of all let's discuss what security actually is.

For example, you protect the possessions in your home by fitting a lock to your front door. You will be
able to decide who has access to your property, and who does not (provided you give the key only to the
approved people). Further, you could fit a different lock on the door of your study, and place a second
set of access permissions with regard to who could enter that area.

The ASP.NET Security Model
When you are implementing a security solution, the first thing you need to consider is the type of
security most appropriate for your site. This will depend on the type of resources that you're exposing to
users (whether your data is sensitive, or you just want to keep a track of who's viewing what) and the
nature of the users that visit your site.

Many sites traditionally feature three levels of user security:

❑ Anonymous Users: For anyone visiting the site

❑ Registered Users: For users who have logged into the site with a user name and password

❑ Administrators: For users who have logged into the site with an administrative username and
password

Having levels of user security on your site is a very powerful tool. It allows you to grant people access to
your site without giving them "carte blanche" to go anywhere they like.

Preventing anonymous access to key areas of your site is one of the simplest ways to reduce the
likelihood of people viewing information that they are not authorized to view. By restricting access to
just a select set of registered users and administrators, you can drastically cut down on the number of
people that can view specific areas of your site. However, sites such as www.usatoday.com are happy to
allow anonymous access. It is the nature of their business to let people pop in and read the newspaper
without having to give details about who they are.

Security is a process that protects private property from the general public, and
permits access based only upon being able to verify that each individual's identity
is in accord with the access permissions granted to him or her.

636

Chapter 17

You should choose a level of security that is appropriate for your site, and perhaps combine the three
levels to create a complete solution. For example, www.amazon.com allows you anonymous access to
browse its products, but requires you to be a registered user to place an order or request account
information.

Apart from general security, we're also interested in how security measures are applied in the .NET
Framework. In ASP.NET, the process of securing an application is split into two separate (but related)
stages:

❑ Authentication: The process of checking whether users are who they claim to be. The process of
authentication involves requesting details (such as a user name and password and maybe even
a zip code or mother's maiden name) from a user. These details are then checked against a
relevant authority, such as a database or a Windows domain server.

❑ Authorization: The process of granting a user (or a group of users) the permission to use a
resource, or denying them access to a resource or a group of resources.

Primarily, this chapter will cover authentication. We will also cover authorization and look at a simple
tiered approach to building Web sites, so as to allow normal users to see one level of the site, and an
administrator to see another. We'll add a simple authentication and authorization system to the Wrox
United application later in the chapter.

Lastly, we'll look very briefly at an issue that affects both of these processes – encryption. Encryption is
the practice of using mathematical formulae to scramble information and make it unreadable to anyone
who might intercept it. There are several types of encryption, all of which require the use of shared
secret information between the Web site and the intended recipient. This information is known as a key.
As discussed in earlier chapters, the HTTP protocol sends information as pure text, so if someone was
able to intercept an HTTP request or response that hadn't been encrypted, they'd be able to read the
details contained within. These could range from usernames and passwords to credit card details and
account numbers.

In ASP.NET, encryption is typically implemented through the use of the Secure Sockets Layer (SSL),
which is used to encrypt the information that you are passing back and forth and protect it from
eavesdroppers. However, the task of building secure Web sites can be a lengthy one, and as it requires
the IIS Web, server we're not going to cover it in detail. We recommend that anyone setting out to build a
secure Web site refer to other more detailed texts on encryption, because its complexities are beyond the
scope of this book.

Authentication
There are several methods of authenticating whether visitors to your site have permission to access the
information that they are requesting. There are four types of authentication:

❑ Forms-based authentication: A powerful and flexible means of taking control of the presentation
of your security features to the user. We'll discuss how you can use this to authenticate user
details stored both in web.config and in a database.

637

ASP.NET Security

❑ Basic authentication: A simple method of verifying users, mostly used for customization options,
rather than restricting access.

❑ Integrated Windows authentication: A very simple, quick, and easy means of authenticating
users, but can only be used with Internet Explorer browsers higher than version 5.0.

❑ Passport authentication: Microsoft also has its own separate and centralized authentication
service. It provides a single login for all registered member sites of http://www.passport.com and
is in use on sites such http://www.ebay.com. To implement it on your server you would require
the Passport SDK to be downloaded first, which in turn requires IIS.

Unless you are using IIS, you will only have access to forms-based authentication. This isn't an issue to
worry about though. Forms-based authentication provides all of the aspects needed for good security.
Also as demonstrated in the first chapter, Web Matrix isn't a Web server that is intended for deployment
over networks. By default, you can view pages on the Web Matrix server only via the machine that is
actually running the server. Web Matrix's limited security options are not a problem because no one else
outside has access to the machine anyway.

Lastly, basic and integrated Window authentication have serious limitations with regard to the way they
present themselves to your users, and the kind of information you can use with them (all your users
need accounts in the Windows user account database). Thus, we will concentrate on forms-based
authentication.

Implementing Forms-Based Authentication
Forms-based authentication uses cookies. When a user logs into your ASP.NET application using forms-
based authentication, ASP.NET issues an authentication cookie that will be sent back and forth between the
server and client during the ensuing Web requests. If the authentication cookie is persistent, a copy will
be stored on the user's hard drive and whenever they revisit your ASP.NET application, they can be pre-
authenticated based on it, until the cookie expires. If the authentication cookie type is non-persistent, the
authentication cookie will be destroyed at the end of each browser session. In this case, when they visit
your ASP.NET application again, you can't pre-authenticate them and they will have to provide their
credentials all over again.

You can use persistent and non-persistent cookies very flexibly. Whenever you log in on most sites, such
as www.amazon.com, there will be a link beneath the password text box labeled Remember my password.
If you check this box during login, it will place a persistent cookie on your local computer and will be
able to pre-authenticate you on your subsequent visits to the site. If you don't check it, then a non-
persistent cookie is used and you'll have to login each time you visit.

You'll be pleased to hear that forms-based authentication is also easy to implement. All you have to do is
create a configuration file (web.config), a login page to accept (and then verify) the credentials from
the user, and a default page where you'll display the content you wish to restrict. Let's look at how this is
used.

In the following example, we'll create a form that accepts two pieces of information from the user via
two ASP.NET textbox server controls – the first will be the username and the second their password. For
good measure we'll also include some validation controls to make sure that the boxes are not left blank.
An additional validation control will display any messages there may be from the server-side code.

638

Chapter 17

Finally, we'll add a button server control to allow us to submit the form using the Login_Click()
event.

We'll send this to a form that will display the username of the currently logged in user, the type of
authentication that we've used, and an option for them to logout.

Try It Out Forms-Based Authentication
1. Create a folder called Ch17 under the path C:\BegASPNET11\ and within this folder, create a

new web.config file.

2. Overwrite the automatically generated code as follows, save the file and close it:

<configuration>
<system.web>
<authentication mode="Forms">
<forms name=".WroxDemo" loginUrl="login.aspx"
protection="All" timeout="60" />

</authentication>
<machineKey validationKey="AutoGenerate" decryptionKey="AutoGenerate"
validation="SHA1"/>
<authorization>
<deny users="?" />

</authorization>
</system.web>

</configuration>

In authentication mode="Forms", Forms is case-sensitive.

3. Next create a file called login.aspx in the Ch17 folder, and insert the following code in the All
window:

<%@ Page Language="C#" %>
<%@ import Namespace="System.Web.Security " %>
<script runat="server">

void Login_Click(Object Src, EventArgs E)
{
if (txtEmail.Text == "Wrox" && txtPwd.Text == "MyPass")
{
FormsAuthentication.RedirectFromLoginPage(txtEmail.Text,false);

}
else
{
lblLoginMsg.Text = "Use Wrox as user name and MyPass as password.

Please try again";
}

}

</script>
<html>
<head>
</head>
<body>

<form runat="server">
<h1>Using Form-Based Authentication with Pre-Defined Credentials

639

ASP.NET Security

</h1>
<hr />
Users Name:

<asp:textbox id="txtEmail" runat="server"></asp:textbox>
 *

Password:

<asp:textbox id="txtPwd" runat="server"

TextMode="Password"></asp:textbox>
*

<asp:Label id="lblLoginMsg" runat="server" forecolor="Red" font-

name="Verdana" font-size="10"></asp:Label>

<asp:button id="btnLogin" onclick="Login_Click" runat="Server"

Text="Login"></asp:button>
</form>

</body>
</html>

4. Save the file and close it.

5. Create another new file called default.aspx. Add the following code into the All window of
this file:

<%@ Import Namespace="System.Web.Security " %>
<html>
<head>
<script language="C#" runat=server>
void Page_Load(Object S, EventArgs E)
{
lblUser.Text = User.Identity.Name;
lblType.Text = User.Identity.AuthenticationType;

}

void Logout_Click(Object S, EventArgs E)
{

FormsAuthentication.SignOut();
Server.Transfer("login.aspx");

}
</script>
</head>
<body>
<form runat="server">

Forms Authentication<hr>
<table border=1 bordercolor="#FFFFFF" bgcolor="Silver"
cellspacing=0 cellpadding=4>
<tr>
<td>Current Users Name</td>
<td><asp:label id=lblUser runat=server/></td>

</tr>
<tr>
<td>Current Authentication Type</td>
<TD><asp:label id=lblType runat=server/></TD>

</tr>
</table>

<asp:button text="Logout" OnClick="Logout_Click" runat=server/>

640

Chapter 17

</form>
</body>
</html>

6. When you request default.aspx from the browser, you should automatically be redirected to
the login page shown in Figure 17-1:

Figure 17-1

7. If you enter the login credentials incorrectly, you will receive the (rather insecure) error shown
in Figure 17-2:

Figure 17-2

641

ASP.NET Security

8. If you login correctly (taking care to enter the user name and password in the correct case) you
will be granted access to the restricted page as shown in Figure 17-3:

Figure 17-3

Hardcoding login details, as we have done here, within this file is not recommended.

How It Works
When the browser requests the default.aspx file, the Web server first checks to see if we've logged in.
Since we haven't, it serves us with the login.aspx page instead and passes the authentication request
to the ASP.NET runtime. This reads the web.config file and discovers that we're using forms-based
authentication. The runtime will then look for the authentication cookie named in the web.config file
(in the name element of the <forms> tag). Note that in this file, we are using the :<forms> tag to set the
forms authentication properties.

<authentication mode="Forms">
<forms name=".WroxDemo" loginUrl="login.aspx"
protection="All" timeout="60" />

</authentication>

The following table describes the possible attributes for the <forms> tag:

Attribute Description

Name Name of the authentication cookie. If you are hosting
more than one ASP.NET application from your Web
server, make sure you give different names to each of
the authentication cookies that you're using.

LoginUrl The login page to which unauthenticated users should
be redirected. This loginUrl can be on the same
server, or a different one. If the loginUrl is on a
different server then both servers should use the same
decryptionKey parameter in the machineKey tag.

642

Chapter 17

Next, the <machineKey> tag configures the encryption, decryption, and validation level for the
authentication cookies. These values can be set for the machine-level, site-level, and application-level.
The value can't be set for the sub-directory level. The <machineKey> tag supports three attributes. Don't
worry if these attributes don't make much sense now; we will talk about encryption later in the chapter.

Attribute Description

Protection This attribute is used to protect the authentication
cookie. The protection attribute has four possible
values: All, Encryption, Validation, None.
Validation is the process of checking that the value
decoded using the user key matches the value when
decoded using the server's key – we look at it later in
the chapter.
When you set the value as All, both validation and
encryption will be performed against the
authentication cookie to protect it. For validation and
decryption, the values specified in the validationKey
and decryptionKey of the machineKey tag will be
used. The All value is the default and suggested value
for this parameter.
When you set the value to None, the cookie will be
transferred between the client and the server as plain
text and you can turn off the encryption and validation
with the machineKey tag.
When you set the value as Encryption, the cookie will
be decrypted as per the value specified in the
decryptionKey of the machineKey tag and the
content of the cookie will not be validated.
When you set the value as Validation, the cookie will
be validated, when received from the client, as per the
value specified in the validationKey of the
machineKey tag and the content of the cookie will not
be encrypted and decrypted.

Timeout The timeout value for the cookie to expire. The default
value is 30 minutes.

slidingExpiration This can be set to true or false, and is by default set
to false. If it is set to true, then it indicates that the
value in the timeout is to be renewed, whenever
another request is made that accesses the cookie.

643

ASP.NET Security

The <authorization> tag is used to enable or disable access to an application. It can contain the
following tags, which in turn have their own attributes:

Tag Description

Deny This can take three attributes:

USER – the user name can be set to a particular user name or *
(meaning all) or ? (meaning anonymous users)

ROLE – this describes a particular role such as an administrator

VERB – this can be set to a particular type of request such as HTTP
GET or HTTP POST.

Allow This can take three attributes:

USER – the user name can be set to a particular user name or *
(meaning all) or ? (meaning anonymous users)

ROLE – this describes a particular role such as an administrator

VERB – this can be set to a particular type of request such as HTTP
GET or HTTP POST.

Attribute Description

validationKey Specifies the validation key to be used when
validating the authentication cookie data. The
possible values for this element are either
AutoGenerate or a manually assigned key.

The minimum and maximum length of the key
should be 40 characters (20 bytes) and 128
characters (64 bytes). AutoGenerate is the default.

decryptionKey Specifies the encryption key to be used when
validating the authentication cookie.

Permitted values are the same as for
validationKey.

validation Specifies the type of encryption used for the data
validation. The possible values are SHA1, MD5, and
3DES.
SHA1 and MD5 are hashing algorithms, and 3DES is
an algorithm used to encrypt and decrypt data.

644

Chapter 17

The <authorization> tag can be used to deny or allow access to particular users, groups of users, or
types of request, within the section of the file. An authentication cookie is only issued if it meets the
requirements of this section.

If an authentication cookie is present, the ASP.NET runtime checks the protection attribute of the
<forms> element, and takes appropriate action based on its value. The protection attribute's settings
of validation, encryption, or none, are all connected to the <machineKey> settings. So if the
protection attribute is set to encryption, ASP.NET will check the web.config <machineKey> tag for
the encryption setting. Validation forms the first level of protection and then encryption can form the
second level if needed.If the cookie is valid, the requested page will be served back to the client. If the
authentication cookie is not present (or invalid), the runtime will transfer the browser to the login page.

We specified the following in the web.config file:

<authorization>

<deny users="?">

</authorization>

This means that anonymous users are redirected to the login page.

The page URL holds a QueryString called ReturnUrl with a reference to the previous page
(default.aspx) that we requested from the Web server. That's how the RedirectFromLoginPage()
method of the FormsAuthentication class knows where to transfer the browser back to once the user
has successfully logged in. When you click the Login button without entering the username and
password, the validation controls display their error messages (refer to Chapter 14 for more information
on this topic.)

login.aspx
Let's look at the logic in the <script> block in the login.aspx file.

Firstly, we compare the txtEmail textbox value with the hardcoded value (Wrox), and the txtPwd
textbox value with the hardcoded value (MyPass):

void Login_Click(Object Src, EventArgs E)
{
if (txtEmail.Text == "Wrox" && txtPwd.Text == "MyPass")
{

If the values match, we call the RedirectFromLoginPage() method of the FormsAuthentication
class. This method takes two parameters: the username and whether the cookie used is persistent or not.
As the attribute for this is set to false, our cookie will be non-persistent:

FormsAuthentication.RedirectFromLoginPage(txtEmail.Text,false);

If the login details don't match these values, we display a message via the lblLoginMsg label to the user
telling them to use Wrox as the username and MyPass as the password with the following code:

else
{

645

ASP.NET Security

lblLoginMsg.Text = "Use Wrox as user name and password as MyPass.
Please try again";

}
}

</script>

default.aspx
When using forms-based authentication, the authentication via login is only necessary when somebody
who hasn't been identified tries to access the protected resource. The following code just displays the
user name and authentication type as we saw in Figure 17-3:

<script language="C#" runat=server>
void Page_Load(Object S, EventArgs E)
{
lblUser.Text = User.Identity.Name;
lblType.Text = User.Identity.AuthenticationType;

}

Then we add a Logout button to log the user out and redirect them back to the login page:

void Logout_Click(Object S, EventArgs E)
{
FormsAuthentication.SignOut();
Server.Transfer("login.aspx");

}
</script>

When we click this button, the SignOut() method of the FormsAuthentication class is called. This
will remove the authentication cookie from the client regardless of the persistence of the cookie. The user
is then transferred back to the login page.

Forms-Based Authentication Using a Database
Forms-based authentication is a very flexible and secure approach to authenticating users. However, the
previous example had a major weakness – authentication took place against values hardcoded into the
ASPX file. While this is fine for demonstration purposes, it is no good at all for production
environments. We'll fix this weakness in the following authentication example.

Try It Out Authenticating against a Database
For this example, you'll need to download the WroxDBAuth.mdb database that's available with this
book's code samples on www.wrox.com.

1. Create a new folder called DB in C:\BegASPNET11\Ch17 and place the WroxDBAuth.mdb
database in it.

2. Create a web.config file containing the following information and place it in the Ch17 folder,
overwriting the previous one:

<configuration>
<system.web>

646

Chapter 17

<authentication mode="Forms">
<forms name=".WroxDemo2" loginUrl="login.aspx"
protection="All" timeout="20" />

</authentication>
<authorization>
<deny users="?" />

</authorization>
</system.web>

</configuration>

3. Modify the login.aspx file used in the previous example from the All window and save it:

<%@ Page Language="C#" %>
<%@ Import Namespace="System.Web.Security " %>
<%@ Import Namespace="System.Data.OleDb" %>
<html>
<head>
<script language="C#" runat=server>
void Login_Click(Object Src, EventArgs E)
{
string strConn ="PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=" +

Server.MapPath("DB\\WroxDBAuth.mdb") + ";";
OleDbConnection Conn = new OleDbConnection(strConn) ;
Conn.Open();

string strSQL = "SELECT Pwd FROM Tbl_MA_Users WHERE Email = '" +
txtEmail.Text + "'";

OleDbCommand Cmd = new OleDbCommand(strSQL,Conn);

//Create a datareader, connection object

OleDbDataReader Dr =
Cmd.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

//Get the first row and check the password.
if (Dr.Read())
{
if (Dr["Pwd"].ToString() == txtPwd.Text)
{
FormsAuthentication.RedirectFromLoginPage(txtEmail.Text, false);

}
else
{
lblLoginMsg.Text = "Invalid password.";

}
}
else
{
lblLoginMsg.Text = "Login name not found.";
Dr.Close();

}
}
</script>
...

647

ASP.NET Security

4. Don't do anything to the default.aspx page from the previous example; it doesn't need
changing at all for this one. Call up the default.aspx page in your browser and enter the login
credentials as shown in Figure 17-4:

Figure 17-4

The login details from the database are User Name = User@MyDomain.com and Password =
MyPass or User Name = NewUser@MyDomain.com and Password = MyPass. Either of these
will work.

5. If you've entered the details correctly, you'll be shown the default.aspx page as depicted in
Figure 17-5:

Figure 17-5

648

Chapter 17

6. If you make a mistake, you'll be shown the login.aspx page again as shown in Figure 17-6,
with an error message highlighted in red:

Figure 17-6

How It Works
The login.aspx page is the only one that has changed substantially from the previous example.

First of all, we include the "System.Web.Security" and "System.Data.OLEDB" namespaces for
Security and Microsoft Access data access respectively:

<%@ Import Namespace="System.Web.Security" %>
<%@ Import Namespace="System.Data.OLEDB" %>

After the Login_Click() event, we build a connection string for the Access database and declare an
OLEDBConnection object to connect to the Access database and open the connection:

string strConn ="PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=" +

Server.MapPath("DB\\WroxDBAuth.mdb") + ";";

OleDbConnection Conn = new OleDbConnection(strConn) ;

Conn.Open();

Then we build a dynamic SQL statement into the strSQL variable, before creating an OLEDBCommand
object by passing the dynamic SQL statement and the OLEDBConnection object to its constructor:

string strSQL = "SELECT Pwd FROM Tbl_MA_Users WHERE Email = '" +
txtEmail.Text + "'";

OleDbCommand Cmd = new OleDbCommand(strSQL,Conn);

649

ASP.NET Security

Next, we create an OLEDBDataReader object and initialize it with the executed result of the
OLEDBCommand object. We specify the CommandBehavior as CloseConnection. This makes sure that
when we close the OLEDBDataReader object, the associated database connection will be closed.

OleDbDataReader Dr =

Cmd.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

Next, we must read the first record from the OLEDBDataReader object and compare the username and
password with that entered by the user. If there are no rows in the OLEDBDataReader object, then the e-
mail address entered by the user doesn't exist in the database (if it did, it would have been selected.) As
there can only be one unique e-mail address per entry, our database query can only return one row at
maximum. If no rows are returned, we display the error message Login name not found. in the label
control. If the password doesn't match, we display the error message Invalid password in the label control.
If they both match we then transfer the user to the page that they originally requested:

//Get the first row and check the password.

if (Dr.Read())

{

if (Dr["Pwd"].ToString() == txtPwd.Text)

{

FormsAuthentication.RedirectFromLoginPage(txtEmail.Text, false);

}

else

{

lblLoginMsg.Text = "Invalid password.";

}

}

After looking at some simple authentication pages, we're now nearly ready to see how we can integrate
an authentication process into the existing Wrox United application, and see how it can be used to affect
the functionality offered to the user. Before we do this, let's look at the associated process of
authorization.

Authorization
As you have seen by now, it's possible to deny users access to all files on my Web site via the deny
section, or allow individual users access. You might just be wondering now, "... but what if I want to
allow users to access only parts of my Web site?"

For example, what if you wanted to allow access to your site in general, but you have an "admin" section
that you want to keep private to everybody except the administrators? It is possible to use web.config
to provide a solution once again, by introducing some simple authorization. It was mentioned earlier
that authorization is the process of checking whether a particular user should be granted or denied
permission to a particular resource. This means by default, authentication must have already been
performed before we first authorize a user. If you think about it, this is logical, as we have to confirm
who a user is before we can check what things they are allowed to see.

650

Chapter 17

In previous examples, you were actually using authorization to provide access to the applications, but
rather than doing any checking, you were just letting all users though, and granting them full
authorization. However, just about all security systems will need to be more sophisticated than this.
You'll probably only want to let a few users have authorization to certain areas and deny the same to
others.

So let's see how our web.config file can be changed to allow access to only the User@MyDomain.com,
and deny the other account NewUser@MyDomain.com.

Try It Out Authorization for User@MyDomain.com
1. Go to Web Matrix, open the web.config file, and change the following highlighted code:

<configuration>

<system.web>

<authentication mode="Forms">

<forms name=".WroxDemo" loginUrl="login.aspx"

protection="All" timeout="60" />

</authentication>

<machineKey validationKey="AutoGenerate" decryptionKey="AutoGenerate"

validation="SHA1"/>

<authorization>

<deny users="?" />
<deny users="NewUser@MyDomain.com " />
<allow users="User@MyDomain.com" />

</authorization>

</system.web>

</configuration>

2. Go back and run default.aspx again and enter the details for NewUser@MyDomain.com. This
time, it directs you straight back to the login page. However, if you supply the details for
User@MyDomain.com, it works just fine.

How It Works
In the web.config file, we've put in two extra lines:

<deny users="NewUser@MyDomain.com " />
<allow users="User@MyDomain.com" />

The first denies access to our NewUser account, while the second allows access to our User account. The
line preceding these extra lines makes sure that no anonymous users are allowed access:

<deny users="?" />

We can use authorization to allow or deny access to our application for specific users.

You might even wish to go further and allow all users access to one section of your site and deny them
access (and force them to login) to say an admin area. First, create a separate subfolder underneath your
main application. For example, if you had all your examples in C:\BegASPNET11, you could create a

651

ASP.NET Security

folder C:\BegASPNET11\admin. Then, to allow preferential or selective access, you can split the
web.config file into two separate sections. If you look at the previous examples, you can see that we
have denied access to all users:

<configuration>
<system.web>
<authentication mode="Forms">
<forms name=".WroxDemo" loginUrl="login.aspx"

protection="All" timeout="60" />

</authentication>

<machineKey validationKey="AutoGenerate" decryptionKey="AutoGenerate"

validation="SHA1"/>

<authorization>

<deny users="?" />

</authorization>

</system.web>

</configuration>

However, to enable access to the main site and deny access only to the files contained within the admin
folder, you could change the file as follows:

<configuration>

<system.web>

<authentication mode="Forms">

<forms name=".WroxDemo" loginUrl="login.aspx"

protection="All" timeout="60" />

</authentication>

<machineKey validationKey="AutoGenerate" decryptionKey="AutoGenerate"

validation="SHA1"/>

<authorization>

<allow users="?" />

</authorization>

</system.web>

<location path="admin">

<system.web>

<authorization>

<deny users="?" />

</authorization>

</system.web>

</location>

</configuration>

First, we've changed the authorization tags in the main part to allow access to the main site, and then
added a new section under the <location> tag. The <location> tag has a path attribute, which is set
to the name of the folder that is to be denied access to. Then we have a new set of <system.web> tags.
This is a vital feature. The <location> tag can only be set outside the <system.web> section, but inside
the configuration tags. It contains a <system.web> section that only applies to that one folder. Inside the
new <system.web> section is a set of <authorization> tags and a deny attribute, that takes
precedence in the admin folder, over the previously specified ones.

652

Chapter 17

It was mentioned in Chapter 15 that the web.config settings take priority over machine.config
settings. Here the principle is the same – the settings for the individual folder in the location tag take
precedence over the settings for the main site.

With these settings, we can now deny or allow users access to only specific parts of our site. Let's see a
practical demonstration in the next example, where we add authentication to the WroxUnited
application.

Authentication in Wrox United
We'll add a password login system to the Wrox United application, which we created over the course of
Chapters 10 to 13. This will enable a user to log in to the application. It will then detect whether a user is
an administrator or not, and if so, will display an extra panel in the user control navigation bar which
will allow administrators to see special links that are hidden from users.

However, the Wrox United application isn't a members-only club; it's something that all people should
have access to. Therefore, we only want to block access to the administration section.

We can achieve this by adding forms-based authentication to the web.config file, and then by adding a
login page (as in our previous examples), but only allowing access to the login page via the main
navigation bar. We'll use the same forms-based authentication process as in the previous example and
show how it neatly dovetails with the existing application functionality. We'll then add a login panel to
the NAVBAR control and some code behind to generate the panel contents. We'll also add a Logout button.

Try It Out Adding a Login Page to WroxUnited
1. Create a new web.config file and add the following code over the auto-generated code and

save the file in the WroxUnited folder:

<configuration>
<appSettings>

<add key="ConnectionString" value="Provider=Microsoft.Jet.OLEDB.4.0;Ole DB
Services=-4;Data Source=C:\BegASPNET11\WroxUnited\Database\WroxUnited.mdb" />

</appSettings>
<system.web>
<authentication mode="Forms">
<forms name=".WroxUnited"

loginUrl="admin\login.aspx"
protection="Validation"
timeout="999999" />

</authentication>
<authorization>

<allow users="*" />
</authorization>

</system.web>
<location path="admin">
<system.web>

653

ASP.NET Security

<authorization>
<allow users="*"/>
<deny users="*" />

</authorization>
</system.web>

</location>
</configuration>

2. Next create an admin folder and download playeradmin.aspx, teamadmin.aspx, and
gamesadmin.aspx into the folder.

3. Now, in the admin folder, create a login form called login.aspx with two text boxes called
UserName and UserPass, a button called LoginBtn, and a label called Msg:

<html>
<head>

<link id="css" href='<%= Session["SelectedCss"]%>' type="text/css"
rel="stylesheet" />
</head>
<body>

<form runat="server">
<WROXUNITED:HEADER id="HeaderControl"

runat="server"></WROXUNITED:HEADER>
<h2>Login Page
</h2>
<table width="800">
<tbody>
<tr>

<td style="VERTICAL-ALIGN: top; WIDTH: 165px">
<WROXUNITED:NAVBAR id="NavBar"

runat="server"></WROXUNITED:NAVBAR>
</td>
<td style="VERTICAL-ALIGN: top">
<table>
<tbody>

<tr>
<td>

Username:</td>
<td>

<asp:TextBox id="UserName"
runat="server"></asp:TextBox>

</td>
</tr>
<tr>

<td>
Password:</td>

<td>
<asp:TextBox id="UserPass" runat="server"

TextMode="Password"></asp:TextBox>
</td>

</tr>
</tbody>

</table>
<asp:button id="LoginBtn" onclick="LoginBtn_Click"

654

Chapter 17

runat="server"
text="Login"></asp:button>

<p>
<asp:Label id="Msg" runat="server"

forecolor="red"></asp:Label>
</p>

</td>
</tr>

</tbody>
</table>

</form>
</body>
</html>

4. Add the following code in the Web Matrix Code window:

private void LoginBtn_Click(object Sender, System.EventArgs e)
{
System.Data.IDataReader PlayersDB;
PlayersDB = Players();
while (PlayersDB.Read())
{
string PlayerLogin = Convert.ToString(PlayersDB["SiteLogin"]);
string PlayerPassword = Convert.ToString(PlayersDB["SitePassword"]);
string AdminLevel = Convert.ToString(PlayersDB["AdminLevel"]);

if (UserName.Text == PlayerLogin && UserPass.Text == PlayerPassword)
{

HttpCookie UserNameCookie = new HttpCookie("UserNameCookie");
UserNameCookie.Value = UserName.Text;
Response.Cookies.Add(UserNameCookie);

HttpCookie UserLevelCookie = new HttpCookie("UserLevelCookie");
UserLevelCookie.Value = AdminLevel;
Response.Cookies.Add(UserLevelCookie);

FormsAuthentication.RedirectFromLoginPage(UserName.Text, true);
}
else
{
Msg.Text = "Invalid Credentials: Please try again";

}

}

PlayersDB.Close();
}

public System.Data.IDataReader Players()
{
string connectionString =

ConfigurationSettings.AppSettings["ConnectionString"];
System.Data.IDbConnection dbConnection = new

System.Data.OleDb.OleDbConnection(connectionString);

655

ASP.NET Security

string queryString = "SELECT [Players].[SiteLogin], " +
"[Players].[SitePassword], [Players].[AdminLevel] FROM [Players]";

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

dbConnection.Open;
System.Data.IDataReader dataReader =

dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;
}

5. In the All window, add the two registration tags to the top of the code after the <@Page> tag:

<%@ Register TagPrefix="WroxUnited" TagName="Header" Src="..\header.ascx"%>
<%@ Register TagPrefix="WroxUnited" TagName="Navbar" Src="..\navbar.ascx"%>

6. Next, add the login details to the navigation bar. Open navbar.ascx and add the following
code to the existing code in the HTML window:

<p>

<asp:HyperLink id="lnkMerchandise" runat="server"

NavigateUrl="Merchandise.aspx">Official

Merchandise</asp:HyperLink>

</p>
<asp:panel id="pnlLogin" runat="server" visible="true">
<p>

<asp:HyperLink id="lnkLogin" runat="server"
NavigateUrl="\admin\login.aspx">Login</asp:HyperLink>

</p>
</asp:panel>
<hr width="95%" />

<p>

Choose a theme:

<asp:DropDownList id="ddlTheme" runat="server">
<asp:ListItem Value="WroxUnited.css" Selected="true">Home Kit
</asp:ListItem>
<asp:ListItem Value="WroxUnited2.css">Away Kit</asp:ListItem>
</asp:DropDownList>
<asp:Button id="btnApplyTheme" onclick="btnApplyTheme_Click"

runat="server"
Text="Apply">

</asp:Button>

<asp:CheckBox id="chkRememberStylePref" runat="server" Text="Remember

preference">
</asp:CheckBox>

</p>
<asp:panel id="pnlEdit" runat="server" visible="false">
<hr width="95%" />

656

Chapter 17

<p>

Login Details:
<asp:Label id="lblStatus" runat="Server"></asp:Label>

</p>
<asp:Button id="btnLogout" onclick="btn_Logout" runat="server"

Text="Logout"></asp:Button>
</asp:panel>

</div>

7. Now, add both the following functions to the Code window of navbar.ascx in Web Matrix:

private void Page_Load()
{
string check = Request.ServerVariables["APPL_PHYSICAL_PATH"];
if (Request.IsAuthenticated == true){
pnlEdit.Visible = true;
pnlLogin.Visible = false;
lblStatus.Text = "
You are logged in as: " +
Request.Cookies["UserNameCookie"].Value;
if (Request.Cookies["UserLevelCookie"].Value == "Admin" &&

check.Substring(check.Length-11)=="WroxUnited\\")
{
lblStatus.Text += "

Player

Admin Page
";
lblStatus.Text += "
Team Admin

Page
";
lblStatus.Text += "
Games Admin

Page
";
}
else if (Request.Cookies["UserLevelCookie"].Value == "Admin" &&

check.Substring(check.Length-6) =="admin\\")
{
lblStatus.Text += "

Player Admin

Page
";
lblStatus.Text += "
Team Admin

Page
";
lblStatus.Text += "
Games Admin

Page
";
}

public void btn_Logout(object sender, System.EventArgs e)
{

string check = Request.ServerVariables["PATH_INFO"];
FormsAuthentication.SignOut;
pnlLogin.Visible= true;
pnlEdit.Visible=false;
if (check.Substring(check.Length-10)=="admin.aspx")
{
Response.Redirect("\\default.aspx");

}
else
{
Response.Redirect("\\default.aspx");

}
}

657

ASP.NET Security

8. Open default.aspx and go to the login page via the new link as shown in Figure 17-7:

Figure 17-7

9. Login with the username ChrisU and the password secret, and scroll down to see the login
details panel on the navigation bar as shown in Figure 17-8:

Figure 17-8

658

Chapter 17

10. Click on the Player Admin Page link. As you can see in Figure 17-9, you have access to the
administration screen and can make changes by adding and deleting new players:

Figure 17-9

11. Scroll down the page and click on the logout button at the bottom of the login details panel.
You're redirected back to the login page. This time enter the details DaveS and the password
dave, and scroll down once logged in to arrive at the view depicted in Figure 17-10:

Figure 17-10

659

ASP.NET Security

This time you can't see any links, just the user details. You should be unable to use the admin links.
However, entering the URL would still take you to the relevant page; we haven't shut that door!

How It Works
The login system is able to offer a two-tiered view of the site because our code is able to detect who the
user is from the user details, authorize them, and then offer a different view of the Web site. If you go to
WroxUnited database and check the Players table, you should find that:

Let's go back to the code we created. The web.config file is almost identical to the one in the
Authorization section. We use forms-based authentication and allow access to the main site using the
<allow user="?"> tag, but we redirect access to the login.aspx page for the entire contents of the
admin folder. We deny authorization to any anonymous user, using the ?:

<authentication mode="Forms">
<forms name=".WroxUnited"

loginUrl="admin\login.aspx"
protection="Validation"
timeout="999999" />

</authentication>
<authorization>
<allow users="*" />

</authorization>

</system.web>
<location path="admin">
<system.web>

<authorization>
<allow users="*"/>
<deny users="?" />

</authorization>
</system.web>

</location>

The web.config file handles most of the security.

login.aspx
The login page is where the authentication against the WroxUnited.mdb takes place. The HTML part of
it is of no interest to us; it's the code-behind where the work is done. We have two functions. The first is
activated when the user clicks on the Login button. We start by creating an instance of a data reader
called playersDb, and then read in information from it by calling the IDataReader function:

private void LoginBtn_Click(object Sender, System.EventArgs e)

SiteLogin SitePassword AdminLevel

ChrisU Secret Admin

DaveS Dave User

660

Chapter 17

{
System.Data.IDataReader PlayersDB;
PlayersDB = Players();
while (PlayersDB.Read())
{

We are interested in are the SiteLogin, the SitePassword, and the AdminLevel. We create three
variables to store each of the items in as they are read back from the WroxUnited database:

string PlayerLogin = Convert.ToString(PlayersDB["SiteLogin"]);

string PlayerPassword = Convert.ToString(PlayersDB["SitePassword"]);

string AdminLevel = Convert.ToString(PlayersDB["AdminLevel"]);

Next we check if the username and password match a record in the database:

if (UserName.Text == PlayerLogin && UserPass.Text == PlayerPassword)
{

If they do, we create two cookies. The first cookie stores the corresponding user name in a cookie called
UserNameCookie, with no expiry date specified:

HttpCookie UserNameCookie = new HttpCookie("UserNameCookie");

UserNameCookie.Value = UserName.Text;

Response.Cookies.Add(UserNameCookie);

The second cookie stores the corresponding admin level in a cookie called UserLevelCookie, also with
no expiry date specified:

HttpCookie UserLevelCookie = new HttpCookie("UserLevelCookie");
UserLevelCookie.Value = AdminLevel;
Response.Cookies.Add(UserLevelCookie);

We then authenticate the login and redirect the user back to the original URL they requested:

FormsAuthentication.RedirectFromLoginPage(UserName.Text, true);

If we don't have any matches for the UserName and Password in the Players table in the WroxUnited
database, we display an appropriate message, refusing them entry and urging them to try again:

else
{
Msg.Text = "Invalid Credentials: Please try again";

}

}

We finish the function by closing the Players table. , we call the iDataReader function. This function
creates an instance of a DataReader object and populates it with the results of the following SQL query:

string queryString = "SELECT [Players].[SiteLogin]," +
"[Players].[SitePassword], [Players].[AdminLevel] FROM [Players]";

661

ASP.NET Security

This SQL query returns the site login, password, and admin level for every player in the Players table.
This is the information against which we check the contents of the textname and password textboxes in
the Login_Click() function.

Basically, the login.aspx page checks a user's entry credentials and either allows them to move on to
the default page, or stops them at the login page depending on whether they enter valid details. If they
do enter valid details, the username and admin level are stored in two cookies for use in the next section
of the code.

Navbar.ascx
In the navigation bar, we created an extra <asp:panel> that contained a button and a label control. By
default, the panel was made invisible:

<asp:panel id="pnlEdit" runat="server" visible="false">

This is because we wanted to enable it only once someone had correctly logged in. Behind the
<asp:panel> are functions. The first is a Page_Load() function, which is executed whenever the
navigation bar is loaded. When the bar is loaded, we check to see if the user has been authenticated:

private void Page_Load()
{
string check = Request.ServerVariables["APPL_PHYSICAL_PATH"];
if (Request.IsAuthenticated == true)
{

If the user has been authenticated, the panel is made visible and the Login link is made invisible:

pnlEdit.Visible = true;
pnlLogin.Visible = false;

The only place this panel shouldn't be visible is on the login page. To get to the main application,
someone needs to have logged in correctly. Also, we set the contents of the label control here. First we
display the name of the contents of our UserNameCookie:

lblStatus.Text = "
You are logged in as: " +
Request.Cookies["UserNameCookie"].Value;

Then we check if the user is an administrator, by checking the contents of the UserLevelCookie. If the
user is an administrator, we display three extra links to the admin control in our login panel. However
we have a small problem here. These files are already in the admin folder. So we stick a \admin in front
of our ASPX page name. However, if we are in the admin folder already, then this will stick an extra
admin in front of our admin folder: for example, admin\admin. This would cause a file not found error.
So we have to check to see our location in the application as well:

if (Request.Cookies["UserLevelCookie"].Value == "Admin" &&
check.Substring(check.Length-11)=="WroxUnited\\")

{
lblStatus.Text += "

Player

Admin Page
";
lblStatus.Text += "
Team Admin

662

Chapter 17

Page
";

lblStatus.Text += "
Games Admin

Page
";

}

else if (Request.Cookies["UserLevelCookie"].Value == "Admin" &&

check.Substring(check.Length-6) =="admin\\")

{

lblStatus.Text += "

Player Admin

Page
";

lblStatus.Text += "
Team Admin Page
";

lblStatus.Text += "
Games Admin

Page
";

}

}

We use a pruned version of the server variable's APPL_PHYSICAL_PATH to determine whether we are in
the WroxUnited folder or the admin folder. If it's located in C:\BegASPNET11\WroxUnited, for
example, we need to add an admin folder to our ASPX admin page links. If this variable contains
C:\BegASPNET11\WroxUnited\admin, we are already in the admin folder, and we can create a link
straight to our ASPX admin page just by mentioning the page name. In other words, the links would
read if we were in WroxUnited:

Href="Admin\playeradmin.aspx"
Href="Admin\teamadmin.aspx"
Href="Admin\gamesadmin.aspx"

While if we were located in the admin folder they would just read:

Href="playeradmin.aspx"
Href="teamadmin.aspx"
Href="gamesadmin.aspx"

We create three links, and add them to the control's text property to send them straight to the screen.

The second function just handles the logout process. This is triggered when the logout button is pressed,
and it simply uses the FormsAuthentication.SignOut method to automatically revoke
authentication. We make the login panel invisible and the login link visible on the navigation bar. Then
as we no longer want the user to be logged in, we redirect them to the login page:

public void btn_Logout(Object sender, EventArgs e)

{

string check = Request.ServerVariables["PATH_INFO"];

FormsAuthentication.SignOut();

pnlLogin.Visible= true;

pnlEdit.Visible=false;

if (check.Substring(check.Length-10)=="admin.aspx")

{

Response.Redirect("..\\default.aspx");

}

else

{

663

ASP.NET Security

Response.Redirect("default.aspx");
}

There is one little caveat here; if we are in the admin section, the URL back to the home page is once
again slightly different (it has an extra admin folder in). Aswith the APPL_PATH variable, we use the
PATH_INFO server variable to determine whether or not we are in the admin folder. If we are in such a
folder, we jump up one in the hierarchy; if we are not, we can go straight back to the home page. And
there you have it, we have used authentication to create a very simple two-tiered approach to our Wrox
United application. Let's now quickly consider encryption of data on the Web and how it works with
authentication.

Encryption Using SSL
The amount of business conducted over the Internet has grown exponentially. This business, known as e-
commerce, comprises of online banking, online brokerage accounts, and Internet shopping. Today you
can book plane tickets, make hotel reservations, rent a car, transfer money, and buy clothes using your
PC. Unfortunately, this convenience comes at a price. Simply entering your credit card number on the
Internet leaves you wide open to fraud as your information can be intercepted and read. This is because
when information is transmitted between the client and server via the HTTP protocol, it is sent as
normal text that could be viewed by anyone who is trying to listen in on the transactions you make.

You can use encryption to code the message. In encryption, the sender of the message uses a secret key
to scramble (or encrypt) the message and the receiver needs the same key to be able to unscramble and
understand. However, this method, known as secret-key encryption has a drawback. The sender and
receiver must agree on the secret key without anyone else discovering it. Anyone who intercepts the key
in transit can decipher and read the encrypted messages.

In more recent times, secret-key encryption has been replaced with a method called public-key encryption.
This method gives each user a pair of keys: a public key and a private key. Each person's public key is
made available to public but the private key is kept under wraps. It works along these lines: if a user
named Vervain wanted to send an encrypted message to another user named Rheingold, he can look up
Rheingold's public key in a directory, and use it to encrypt the message before sending it. Rheingold can
then use his own private key to decrypt the message and read it. This means that it's possible for
anybody to send an encrypted message to Rheingold using the public key, but only Rheingold can use
the private key to decrypt and read the message.

In ASP.NET, SSL is used to encrypt information that you send over to the server (not just your credit
card number, but the entire message) with a public key system. The server then receives this data,
decrypts it, and proceeds with the transaction without fear of your personal information being used by
the wrong people. The SSL protocol uses hashing keys to encrypt the message, and authenticating servers
before data is exchanged by the higher-level application. It maintains the security and integrity of the
transmission channel by using encryption, authentication, and message authentication codes. SSL uses
sophisticated hashing algorithms like MD5 and SHA1, which are very tough to break. You can enable
SSL in forms-based authentication very simply by using the requireSSL attribute. This was introduced
in ASP.NET 1.1. By default, it is set to false, but if changed to true in web.config, it sets a secure
property in ASP.NET. The browser connected to it will return a cookie only if it is using SSL.

664

Chapter 17

Try It Out Enabling SSL
You cannot create an SSL link with Web Matrix (it can only be done in ASP.NET with IIS, and this is
beyond the scope of the book) but you can prevent your normal user from logging in by altering the
requireSSL attribute, which is what we'll do now.

1. In web.config created in the forms authentication databases example, add the attribute as:

<configuration>
<system.web>
<authentication mode="Forms">
<forms name=".WroxDemo2" loginUrl="login.aspx"
protection="All" timeout="20"
requireSSL="true" />
</authentication>
<authorization>
<deny users="?" />

</authorization>
</system.web>

</configuration>

2. Now go back to default.aspx and try to login now via http://localhost/default.aspx and supply
the correct credentials. You'll find that instead of letting you in, it dumps you back to the login
screen.

How It Works
This example code won't allow us access to our main default.aspx page in any circumstances, because
we are using a straight http:// link, which, as we've just stressed, sends requests and receives responses in
pure text. We would have to enable a secure http link to do this, but it isn't possible to enable a secure
link with Web Matrix, as Web Matrix isn't intended to be deployed in a production setting. To identify a
secure link, the URL would have to be prefixed with https://, and Internet Explorer would have a small
lock icon in the bottom right hand corner as shown in Figure 17-11:

Figure 17-11

Typically you supply sensitive details over a secure https:// link. Enabling SSL via the requireSSL
attribute forces users to use the secure link. When you connect to a secure Web server using SSL, the
server sends a certificate to you. This certificate is created by one of many Certificate Authorities (CAs):

❑ Verisign: http://www.verisign.com

❑ Belsign: http://www.belsign.be

❑ Xcert: http://www.xcert.com

These businesses provide a validation service performing a yearly validation to check if the business is a
legitimate functioning one. So when you log on, you can be confident that a CA on your behalf has
checked the business. Once the browser receives the certificate, it extracts a public key, which can be
used to encrypt or decrypt information. To create a secure link using SSL, you would need to be using

665

ASP.NET Security

IIS. We don't really need to go any further into this complicated process, but it gives you a feel for how
standard secure transactions are conducted on the Internet. Further discussion of SSL is beyond the
scope of this book, but you could find out more about if from a CA such as www.verisign.com. You can
also buy an SSL certificate to prove your server's identity.

Summary
In this chapter we've covered a few of the most important aspects of basic ASP.NET security.

We looked at how we can secure our applications flexibly using the more complex method of forms-
based security that allows us to build our own user interfaces, and how we can improve upon the basic
ideas of this approach by storing the user's details in a database. We then looked at how the associated
process of authorization could be used to restrict access to specific areas of the site, or to specific users.
We created a login panel for the Web site, with a simple two-tier system for normal users and for
administrators. Lastly, we touched upon the idea of encryption and finally we talked about the basic
premises upon which SSL works.

With security, we complete our tour of ASP.NET. We've covered a lot of subjects within this book, and
hope that you've enjoyed it. If you're wondering what to do next, go back and learn each of the subjects
the chapters focused on in more detail. Each chapter forms a stepping-stone from which you can go on
to build sections of your own applications. Application building is something that can only be learned
from experience. You can go back and add extra sections to the application presented in this book. We
provide some extra pages on the Web site. Try adding those to the application. You can then customize it
and play around with the code. See what effects you can have by tweaking it.

Next, you can try building your own applications from scratch. It can be quite daunting at first, but
you've already covered all of the main areas, so you've no need to worry. Base your own applications on
the framework presented here, and don't be afraid to experiment. ASP.NET is a powerful tool and takes
time to master. It's also something you can develop an individual approach for. We've presented a
recommended way to do it, but within this framework there is plenty of room for you to create your
own approach. Most of all, have fun. Happy developing!

Exercises
1. What is the difference between authorization and authentication?

2. Create an application that uses forms-based authentication that requires a username, password,
and a zip code before you can go to the main login page. Hardcode the username, password,
and the zip code. Call it zipcodelogin.aspx.

3. Upgrade the application from Exercise 2 to use the WroxAuth.mdb used in this chapter.

4. Create an account for a user named John@MyDomain.com, but deny him access in web.config.
What happens when you try to log in as him? Can you think of a way of displaying a message
to accompany this?

5. Create a new page called newpage.aspx on the example, and use web.config to ensure that
only John has access to it. HINT: Create a subfolder for this page.

666

Chapter 17

A
Exercise Solutions

Chapter 2
This chapter discusses the structure of an ASP.NET page and the way that it functions in relation
to the .NET Framework.

Exercise 1
Describe what the .NET Framework provides for programmers.

Solution
The .NET Framework offers the following:

❑ A single tool for creating Windows-based applications and Web-based applications

❑ Object Oriented Programming (OOP), which simplifies application development

❑ Reduction in the number of lines of code required to achieve a task

❑ Ability to use multiple languages within a single application

❑ Tools to automatically accommodate devices beyond the desktop, including PDAs, mobile
phones, and wrist PCs.

Exercise 2
Which encompasses more code, a class or a namespace?

Solution
A namespace is made of one or more classes, so a namespace is larger.

Exercise 3
The ASP.NET module of code adds on to which part of Windows?

Solution
The ASP.NET module of code adds on to IIS Web server.

Exercise 4
What special modifications must be made to the browser on the client-side in order to view an ASP.NET
page?

Solution
None – a browser (by definition) displays HTML, and ASP sends out pure HTML. No special tags,
software or plug-ins are required on the browser.

Exercise 5
Why does an ASP.NET page get compiled twice?

Solution
The first time, the page gets compiled to the Intermediate Language, which compiles as much of the
code as possible except for those that are dependent on the specific capabilities of a server. The second
time, the code is compiled to the CLR to make optimal use of the server resources that will actually host
the page.

Exercise 6
Why does the first display of an ASP.NET page take several seconds but subsequent views appear in
only milliseconds?

Solution
The first time the page is requested, it must be compiled to the CLR which isn't necessary on subsequent
requests.

Exercise 7
What two attributes should always be included in all ASP.Net Web controls?

Solution
Always include the runat="server" and ID="MyControlName" attributes in all ASP.Net Web controls.

668

Appendix A

Chapter 3
This chapter discusses the use of variables for holding data in C#.

Exercise 1
Explain the difference between <form> and <form runat="server"> and describe how each is
handled.

Solution
The HTML <form> tag provides space for user input and any input is sent back to the server without
specific instructions for handling the input. The ASP.NET tag <form runat="server"> will send the
information back to an IIS .NET server that is able to handle many basic functions of the user's input.

Exercise 2
What is a variable and how is it related to data types in C#?

Solution
A variable is a place to temporarily hold information that can be used in the code. All variables in C#
must be declared as a datatype, a designation that identifies the kind of information the variable holds.

Exercise 3
Use string, numeric, and date variables to create an ASPX file that displays your name, age, and date of
birth.

Solution
See file 57084_Ch03_Ans03.aspx, available with the code download:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{
if (Page.IsPostBack)
{
string strName;
byte bytAge;
DateTime datDOB;

strName = txtName.Text;
bytAge = Convert.ToByte(txtAge.Text);
datDOB = Convert.ToDateTime(txtDOB.Text);

lblOut.Text = "Your Name is " + strName;
lblOut.Text += "
Your Age is " + Convert.ToString(bytAge);

669

Exercise Solutions

lblOut.Text += "
Your Birthdate was " + Convert.ToString(datDOB);

} //End if (Page.IsPostBack)
} //End Page_Load()

</script>
<html>

<head>
</head>
<body>
<form runat="server">
Please enter your Name:
<asp:TextBox runat="server" ID="txtName"/>

Please enter your Age: <asp:TextBox runat="server" ID="txtAge"/>

Please enter your Date of Birth:
<asp:TextBox runat="server" ID="txtDOB"/>

<asp:Button runat="server" Text="Submit"/>

<asp:Label runat="server" ID="lblOut"/>

</form>
</body>

</html>

Exercise 4
Arrange the following into groups of Numeric, Textual, and Miscellaneous data types. Rank the
Numerics according to the size number they can hold. Give an example of a value and use for each.

Integer, Char, Byte, Uint, Short, Boolean, String

Long, Sbyte, Float, Double, Ushort, Date, Decimal, Ulong

Solution
The data types can be grouped in the following manner:

❑ Numeric (small to large):

❑ Byte and sbyte are good for people's ages or school grade levels

❑ Integer and uint can be used for storing numbers such as quantity of goods
sold if the amount does not go over 2 billion and does not have decimals

❑ Short could be used for the quantity of goods sold that needs decimals but does
not go over 32,000

❑ Ushort would be useful for storing the back log of sold items, providing the
values do not go lower then 65,000

❑ Long and Ulong could hold distances to stars in kilometers

❑ Decimal could hold the value of an exchange rate to several dozen decimal
places

670

Appendix A

❑ Float could hold the exact amount of load on a structural beam (including the
decimal value)

❑ Double could hold a representation of ? to hundreds of decimal places

❑ Text (small to large):

❑ Char could hold the value for a single Chinese character that represents a
person's family name

❑ String could hold a person's family name in a western language

❑ Miscellaneous:

❑ Boolean could hold a true if a box in a form has been filled in

❑ Date can hold a person's date of birth or the date when an order is shipped

Exercise 5
Create an array containing five of your favorite singers. Concatenate the elements of your array into one
string and, after the opening sentence "My 5 favorite singers are:", display them using the <asp:label>
control.

Solution
See file 57084_Ch03_Ans05.aspx, available with the code download:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{

if (Page.IsPostBack)
{
String[] strSingers = new String[5];

strSingers[0] = txtSinger0.Text;
strSingers[1] = txtSinger1.Text;
strSingers[2] = txtSinger2.Text;
strSingers[3] = txtSinger3.Text;
strSingers[4] = txtSinger4.Text;

lblOut.Text = "Your names of your favorite singers are:";
lblOut.Text += "
" + strSingers[0];
lblOut.Text += "
" + strSingers[1];
lblOut.Text += "
" + strSingers[2];
lblOut.Text += "
" + strSingers[3];
lblOut.Text += "
" + strSingers[4];

} //End if (Page.IsPostBack)
} // End Page_Load

</script>
<html>

<head>

671

Exercise Solutions

</head>
<body>
<form runat="server">
Please enter the names of your five favorite singers

<asp:TextBox runat="server" ID="txtSinger0"/>
<asp:TextBox runat="server" ID="txtSinger1"/>

<asp:TextBox runat="server" ID="txtSinger2"/>
<asp:TextBox runat="server" ID="txtSinger3"/>

<asp:TextBox runat="server" ID="txtSinger4"/>

<asp:Button runat="server" Text="Submit"/>

<asp:Label runat="server" ID="lblOut"/>

</form>
</body>

</html>

Exercise 6
Describe a situation in which you would use each of the following and state why that choice is the best:

❑ Arrays

❑ Arraylists

❑ Hashtables

❑ Sorted lists

Solution
❑ Arrays: Storing the words of a document while looking for patterns in phrasing. This is a

situation where we need a high processing speed but do not need to sort or add to an index.

❑ Arraylists: Creating a list of items in an order. At the beginning of the order we are not sure how
many kinds of items there will be. Speed is an issue, but we the flexibility of adding any number
of items is of higher importance.

❑ Hashtables: Storing country names and codes and reading the names by referring to the codes.
Hashtables are best because they avoid the use of a numbering index system, we can use the
country codes directly for indexing.

❑ Sorted lists: Displaying a glossary of abbreviations in alphabetically ascending or descending
order. A sorted list allows you to use abbreviations to read the list and avoid a numeric index.

Chapter 4
This chapter looks at the key building blocks of C# in the context of an ASP.NET page.

Exercise 1
In each of the following Boolean expressions, identify the integer values for A for which each expression
will evaluate to true, as well as those for which each will evaluate to false:

672

Appendix A

Solution
You can test your answers using the page named 57084_Ch04_Ans01.aspx in the download files.

1. NOT A=0

True for all integers except 0.

Without the NOT, the answer would be only zero. When we add the NOT, it reverses to be all
numbers except zero.

2. A > 0 OR A < 5

True for all integers.

The left side alone would be true for all integers greater than zero (only zero and negative
integers would be false). The right side includes all integers that are less than five, including
zero and negative integers. With the OR clause an integer has to be within one of the two
expressions in order for the whole expression to be true. When we combine these two sets of
answers we get all integers. (The integers 1 to 4 are included by both expressions)

3. NOT A > 0 OR A < 5

True for integers 5 and below. Integers 6 and above will evaluate to false.

The issue here is precedence between the NOT and OR. The NOT is only applied to the expression
on the left of the OR. Think of this problem as (NOT A > 0) OR (A < 5). On the left we have true
for any numbers that are not greater then zero, so true is for zero and negative numbers. On the
right we have true for any number that is less then five. With the two sides of the OR combined,
we have true for all negative numbers and zero and positive numbers up to 5. Numbers greater
than and including 6 are true for neither side and thus resolve to false.

4. A > 1 AND A < 5 OR A > 7 AND A < 10

True for 2,3,4, 8, and 9 only.

Like the last problem, the issue is to establish the precedence of the operators. Think of this as
(A > 1 AND A < 5) OR (A > 7 AND A < 10). On the left of the OR we can see that only integers 2,3,
and 4 would fit both criteria. On the right side of the OR the situation is similar; only 8 and 9
meet both criteria. When you consider the OR you have to combine those two answer sets.

5. A < 10 OR A > 12 AND NOT A > 20

True for all integers 9 and below (including zero and negatives) and for 13 through 20 inclusive. False for
10, 11, 12, and all integers above (and inclusive of) 21.

Think of this problem with some parentheses. The OR is the last to be evaluated, so our
parentheses are (A < 10) OR (A > 12 AND NOT A > 20). First look at the right side of the OR.
Integers must meet both tests when there is an AND clause so that would be 13 through 20 are
true. Now look at the left side of the OR. Any number less then 10 will be true. The final answer
is the combination of those two answer sets.

Exercise 2
Suggest a loop structure that would be appropriate for each of the following scenarios and justify your
choice:

673

Exercise Solutions

Solution
1. Displaying a set of items from a shopping list stored in an array

This depends on whether we know the array is full or not. We can get the value of the upper
bound of an array, but it is harder to know if all of the members have values. In most cases, we
would use a while loop.

2. Displaying a calendar for the current month

We can know how many days are in a month, so we know how many loops we will have to
perform before we start looping. Therefore, we can use the for loop.

3. Looking through an array to find the location of a specific entry

Assuming that we do not know the number of members when we start the loop it is best to use
a while loop. If we can find out the number of members before the loop starts, we can use a for
loop.

4. Drawing a chess board using an HTML table

Before we start the loop, we know a chess board is 8 by 8 squares, so we can use a for loop. You
can access the code file named 57084_Ch04_Ans2.aspx for code that generates a chess board.

Exercise 3
Write a page that generates a few random numbers between two integers provided by the user in
textboxes.

Solution
See file 57084_Ch04_Ans03.aspx, available with the code download:

<%@ Page Language="C#" Debug="true" %>
<script runat="server">

void Page_Load()
{

if (IsPostBack)
{

lblOut.Text = "";
Random MyRand = new Random();
byte intOutputCounter;
for (intOutputCounter=1; intOutputCounter< 11; ++intOutputCounter)
{
lblOut.Text += "
";
lblOut.Text += Convert.ToInt32((Convert.ToSByte(txtHigh.Text) -

Convert.ToSByte(txtLow.Text)) *
MyRand.NextDouble() +
Convert.ToSByte(txtLow.Text));

} // end loop
} //End If

} //end Page_Load()

</script>

674

Appendix A

<html>
<head>
</head>
<body>
<form runat="server">

Please enter integers for range of random numbers.

Lowest number (min = -128):
<asp:TextBox runat="server" ID="txtLow" Text="-5"/>

Highest number (max = +127):
< asp:TextBox runat="server" ID="txtHigh" Text="+5"/>

<asp:Button runat="server" Text="Submit"/>

<asp:Label runat="server" ID="lblOut"/>

</form>

</body>
</html>

Chapter 5
This chapter covers the basics of functions and their implementation in ASP.NET using C#.

Exercise 1
Determine whether a function will return a value for each of the following scenarios and justify your
choice:

Solution
❑ Calculate the due date of a book being checked out of a library: The function should return a

value because we will execute some code and return a value (the due date).

❑ Find out on which day of the week (Monday, Tuesday, and so on) does a certain date fall in the
future: The function should return a value because we will execute some code and return a
value (the day of the week).

❑ Display a string determined by the marketing department and stored in a text file in a label: The
function should not return a value because we will only execute some code to perform an
action.

Exercise 2
List where and when are values held when a variable is used as a parameter passed by value. Do the
same for a variable for a variable that is a parameter passed by reference.

Solution
Passing a parameter by value holds the value in the original place and in the function. So while the
function is running, two copies of the value exist of which one may be modified in the function. The copy
in the function will be destroyed when the function finishes executing.

675

Exercise Solutions

Passing a parameter by reference holds the value in only one place. Changes made to the value during
the function will affect the sole copy and will be useable by both the function and the calling code.
Although the function will stop using the value when it finishes executing, the value will persist in the
calling code.

Exercise 3
Write a function that generates a set of random integers. Build an ASP.NET page that allows you to enter
the lower and upper bounds, and generate a set of random numbers within that range.

Solution
The ASP.NET page could be written as follows (available in the code download as
57084_Ch05_Ans03.aspx:

<%@ Page Language="C#" Debug="True" %>
<script runat="server">

void Page_Load()
{

if (IsPostBack)
{

/* The easiest way to see if people have written numbers in the
textbox is to try and convert them to integers as required.
If an error occurs, they aren't. We use the try catch to write
them a note to use numbers. See Chapter 14 on handling errors for
more on the try catch statement */

try
{

int Bound1 = Convert.ToInt32(txtBound1.Text);
int Bound2 = Convert.ToInt32(txtBound2.Text);
int NumberOfNumbers = Convert.ToInt32(txtQty.Text);

/* Check first if the numbers are the same. If they are, tell the
user off. If not, find out which is larger and pass that as the
upper bound to RowOfNumbers. Pass the other number as the lower
bound. */

if (!(Bound1 == Bound2))
{

if (Bound1 < Bound2)
{

RowOfNumbers(Bound1, Bound2, NumberOfNumbers);
}
else
{

RowOfNumbers(Bound2, Bound1, NumberOfNumbers);
}

}
else
{

lblOut.Text = "<hr>The two numbers must be different!";
}

} // end of try statement

676

Appendix A

catch
{

lblOut.Text = "<hr>Please enter three numbers. No tricks now!";
}

} // End of if postback
CleanUI();

}

/*
Cleans up the input boxes after the random numbers have been displayed

*/

void CleanUI()
{

txtBound1.Text = "";
txtBound2.Text = "";
txtQty.Text = "";

}

/*
Generates a random number. Uses a seed value to make sure the number is
random each time.

*/

int GenerateRandomNumber(int LowerBound, int UpperBound, int seed)
{

Random objRandom = new Random(seed);
int RandomNumber = objRandom.Next(LowerBound, UpperBound);
return RandomNumber;

}

/* Generates the row of as many numbers as requested*/

void RowOfNumbers(int LowerBound, int UpperBound, int Quantity)
{

lblOut.Text = "<hr>" + Quantity.ToString() +
" random numbers between " + LowerBound.ToString();

lblOut.Text += " and " + UpperBound.ToString() + " inclusive: ";

for (int i=1; i<=Quantity; i++)
{
lblOut.Text += GenerateRandomNumber(LowerBound, UpperBound,

i).ToString();
lblOut.Text += " ";

}
}
</script>

<html>
<head>

<title>Random Number Generator</title>
</head>
<body>

<form runat="server">

677

Exercise Solutions

Number 1:
<asp:TextBox id="txtBound1" runat="server"></asp:TextBox>

Number 2:
<asp:TextBox id="txtBound2" runat="server"></asp:TextBox>

Quantity of Numbers:
<asp:TextBox id="txtQty" runat="server"></asp:TextBox>

<asp:Button id="Button1" runat="server" Text="Submit"></asp:Button>

<asp:Label id="lblOut" runat="server"></asp:Label>

</form>
</body>
</html>

Chapter 6
This chapter discusses how ASP.NET revolves around an event-driven model, how things occur in strict
order, and ways in which the ASP.NET page can react to user intervention. The solution files for some of
the exercises are too long to be included here – these have been put up for download on the Wrox Web
site.

Exercise 1
Explain why event-driven programming is such a good way of programming for the Web.

Solution
Event-driven programming is a good way of programming for the Web because it mirrors user
interaction with Web pages.

Exercise 2
Modify an HTML form to add a set of ASP.NET Server Controls so that the information in the form is
retained when the submit button is pressed.

Solution
The following code solves this problem (available in the code download as 57084_Ch06_Ans2.aspx):

<%@ Page Language="C#" %>
<html>
<head>

<title>Chapter 6 Question 2 Solution</title>
</head>
<body>

<form runat="server">
<p>

678

Appendix A

Please enter your name:
<asp:TextBox id="txtName" runat="server"></asp:TextBox>

</p>
<p>

What would you like for breakfast?
<asp:CheckBoxList id="cblWhatToEat" runat="server">

<asp:ListItem Value="Cereal">Cereal</asp:ListItem>
<asp:ListItem Value="Eggs">Eggs</asp:ListItem>
<asp:ListItem Value="Pancakes">Pancakes</asp:ListItem>

</asp:CheckBoxList>
</p>
<p>

When would you like breakfast?
<asp:RadioButtonList id="rblWhenToEat" runat="server">

<asp:ListItem Value="Now">Now</asp:ListItem>
<asp:ListItem Value="Later">Later</asp:ListItem>

</asp:RadioButtonList>
</p>
<p>

<asp:Button id="Button1" runat="server"
Text="Place Your Order"></asp:Button>

</p>
</form>

</body>
</html>

Exercise 3
Add a Page_Load() event handler to the ASPX code you've just created for Exercise 2, to confirm the
selections made in the following format:

Thank you very much ______.

You have chosen ____ for breakfast. I will prepare it for you ______.

Solution
The required changes are highlighted below.

<%@ Page Language="C#" %>
<script runat="server">

void Page_Load()
{

if (IsPostBack)
{

lblConfirmation.Text = "Thank you very much "
+ txtName.Text + ".
";

lblConfirmation.Text += "You have chosen " +
cblWhatToEat.SelectedValue + " for breakfast. ";

lblConfirmation.Text += "I will prepare it for you " +
rblWhenToEat.SelectedValue + ".";

}

679

Exercise Solutions

}

</script>
<html>
<head>

<title>Chapter 6 Question 3 Solution</title>
</head>
<body>

<form runat="server">
...
...

<asp:Button id="Button1" runat="server"
Text="Place Your Order"></asp:Button>

</p>
<p>

<asp:Label id="lblConfirmation" runat="server"></asp:Label>
</p>

</form>
</body>
</html>

Exercise 4
Create a very basic virtual telephone using an ASPX file that displays a textbox and a button named Call.
Configure your ASPX file so that when you type a telephone number into the textbox and press Call, you
are:

❑ Presented with a message confirming the number you are calling

❑ Presented with another button called Disconnect, which when pressed, returns you to your
opening page, leaving you ready to type another number

Solution
The following code will generate these results for you (also available as 57084_Ch06_Ans4.aspx):

<%@ Page Language="C#" %>
<script runat="server">

void DialNumber(object sender, EventArgs e) {
lblConfirmation.Text = "Dialling " + txtPhoneNumber.Text;
btnDisconnect.Visible = true;

}

void DisconnectNumber(object sender, EventArgs e) {
lblConfirmation.Text = "";
btnDisconnect.Visible = false;

}

</script>
<html>
<head>

<title>Chapter 6 Question 4 Solution</title>

680

Appendix A

</head>
<body>

<form runat="server">
<p>

Number to Dial:
<asp:TextBox id="txtPhoneNumber" runat="server"></asp:TextBox>
<asp:Button id="btnCall" onclick="DialNumber"

runat="server" Text="Call"></asp:Button>
</p>
<p>

<asp:Label id="lblConfirmation" runat="server"></asp:Label>
</p>
<p>

<asp:Button id="btnDisconnect" onclick="DisconnectNumber"
runat="server" Text="Disconnect"
Visible="False"></asp:Button>

</p>
</form>

</body>
</html>

Chapter 7
This chapter introduces concepts such as properties, methods, constructors, collections, and overloading
by making use of examples related to real-world objects.

Exercise 1
In our examples, we've modelled some simple characteristics of real world objects, such as animals.
Think about other real world objects that when turned into classes would be useful in programming.

Solution
You've probably used one of these objects without thinking about it. What happens when you go to the
supermarket? You put items in a shopping basket. Ever bought anything online? How many of those
online sites have a shopping basket? Yep, pretty much all of them. In fact, the shopping basket is one
thing where the concept maps really well from the real world into the virtual one.

Creating a shopping basket in .NET is actually a little more complex than you'd think because it has to
contain multiple items. You don't know in advance the number of items people will put into it, therefore
you can't define properties for each item. What you need is a collection of some sort which expands as
items are added. There are several collections supplied in the System.Collections namespace. It's
worth experimenting with them.

Exercise 2
In the Animal class where the Walk() method accepts an argument of type Integer, expand this to use it
as the speed of walking. Think about how you'd store that speed and what you could do with it.

681

Exercise Solutions

Solution
Storing the speed internally in the class can be achieved simply by declaring a private variable, and
modifying the Walk() method:

private int _Speed;

public string Walk(int Direction) {
_Speed = Direction;
if (Direction > 0)

Return _Name +
": you are now walking backwards at a speed of " + _Speed;

else
Return _Name +

": you are now walking forwards at a speed of " + _Speed;
}

What you could also consider is providing a property to access or set the speed. Other options include
adding methods to speed up and slow down the speed. For example:

public void SpeedUp(int SpeedUpBy) {
_Speed += SpeedUpBy;

}

public void SlowDow(int SlowDownBy) {
_Speed -= SlowDownBy;

}

Exercise 3
Taking the results of Exercise 2, think about how you'd add validation to the speed to ensure that it
doesn't exceed some set limits.

Solution
The interaction between methods and properties can be seen very clearly when we need to validate
values. Consider the addition of speed to our Person class, which can be set via three methods: Walk(),
SpeedUp(), and SlowDown(). If you want to ensure that the speed never exceeds the range -100 to 100,
where would you do this? Should you do this in each method that accesses the _Speed variable? No,
because you don't want to have lots of repeated code. Remember how we said encapsulation is one of
the key points of classes – we should encapsulate the speed as a property and do the checking there:

public int Speed {
get {
return _Speed;

}
set {
if (Value < -100)
_Speed = -100;

else
_Speed = Value;

682

Appendix A

if (Value > 100)
_Speed = 100;

else
_Speed = Value;

}
}

All accesses to the _Speed variable should be replaced with the property name:

public string Walk(int Direction) {
Speed = Direction;

If you don't want to expose the speed as a public property you can make it private:

private int Speed {

You still get the advantages of encapsulation but without exposing the property.

Exercise 4
Describe the main differences between inheritance and interfaces. When would you use one over the
other?

Solution
The main difference between inheritance and interfaces is that interfaces don't implement any
functionality. They only define what the class must implement and not how it is done. Inheritance on the
other hand provides a way to supply implementation to classes that inherit from a base class. It's
important to understand this difference and understand where you'd use one method over another.

Interfaces are good if you need to define the structure of a class for others to implement – perhaps in a
team environment where you are writing common routines and require certain features to be present on
the objects that will use those routines. Inheritable classes are good when you have to supply
functionality to multiple child classes. The ASP.NET Server controls are a perfect example, where much
of the implementation is provided in the base WebControl class. An interface wouldn't be any use
because each control would then have to implement the same functionality.

Exercise 5
Create a class called PieceOfString with a single read / write property (of type int) called Length.
Create an instance of the class and set Length to 16. Now you can answer that age old question, "How
long is a piece of string?"

Solution
OK, OK, so it's not a real exercise. But I thought it was funny!!!

683

Exercise Solutions

Chapter 8
This chapter looks at the use of the Connection and Command objects for opening data sources and
retrieving information into DataSets.

Exercise 1
In this chapter, we created a page that showed the products for a single selected category. Try and think
of ways to enhance this to show products for either a selected category or all categories.

Solution
The simplest solution to this would seem to be adding another button to fetch all of the products.
However, this isn't the best approach because it can easily confuse the user. The best approach is to have
a dropdown list showing all categories. Two things are required to implement this: you need to add the
All Categories selection to the list and you need to customize the data retrieval so that it fetches all rows.

The first part is fairly simple, as we can simply add a new item to the list after we add the categories
from the database. We can't add it to the list before this because if we bind data to the list, the manually
added item would get overwritten. Our code now becomes:

void Page_Load(Object Sender, EventArgs e) {

if (!Page.IsPostBack) {
lstCategory.DataSource = GetCategories();
lstCategory.DataValueField = "CategoryID";
lstCategory.DataTextField = "CategoryName";
lstCategory.DataBind();
lstCategory.Items.Add(new ListItem("<all categories>", "-1"));

}
}

This works by adding a new ListItem to the DropDownList control. Every item in the list is a
ListItem that is contained within an Items collection. So we create a new ListItem (the arguments
are the text and the value), and add it to the collection. This item appears at the end of the list.

To handle this ListItem, you can use the GetProducts() function. We can automatically build an SQL
string with the placeholder and parameters, but these aren't required if we are showing all products.
Since we've added the ListItem with a value of -1 (which isn't a real CategoryID) we can use that to
change our SQL string:

System.Data.DataSet GetProducts(int categoryID) {
string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +

"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +
"data\\Northwind.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

string queryString;
if (categoryId == -1){
queryString = "SELECT [Products].[ProductName], " +

684

Appendix A

"[Products].[QuantityPerUnit], [Products].[UnitPrice], " +
"[Products].[UnitsInStock] FROM [Products]";

}
else {
queryString = "SELECT [Products].[ProductName], " +

"[Products].[QuantityPerUnit], [Products].[UnitPrice], " +
"[Products].[UnitsInStock] FROM [Products] " +
"WHERE ([Products].[CategoryID] = @CategoryID)";

}
System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

if (categoryID != -1) {
System.Data.IDataParameter dbParam_categoryID =

new System.Data.OleDb.OleDbParameter();
dbParam_categoryID.ParameterName = "@CategoryID";
dbParam_categoryID.Value = categoryID;
dbParam_categoryID.DbType = System.Data.DbType.Int32;
dbCommand.Parameters.Add(dbParam_categoryID);

}
System.Data.IDbDataAdapter dataAdapter =

new System.Data.OleDb.OleDbDataAdapter();
dataAdapter.SelectCommand = dbCommand;
System.Data.DataSet dataSet = new System.Data.DataSet();
dataAdapter.Fill(dataSet);

return dataSet;
}

Here, we simply create a different SQL string if we are showing products for all categories. If the
CategoryID is not -1, it implies that a category has been selected so we add the Parameter.

Exercise 2
In Exercise 1 we encountered the problem of wanting to bind data from a database to a DropDownList as
well as manually adding an entry, where adding the manual entry could only be done at the end of the
list. You could use techniques shown in this chapter or using techniques that have not yet been covered.
Try and code the solution using the known technique, but see if you can think of a way to solve it with
code we haven't covered yet.

Solution
The first solution to this problem is to not use data binding; simply add the data manually. We could do
this by not using a DataSet and using a DataReader instead, looping through all of the records. This
would allow you to manually add a category first, and then all of the data. For example, assuming our
GetCategories() function returns a DataReader, we could do this as follows:

void Page_Load(Object sender, EventArgs e) {

if (!Page.IsPostback) {
lstCategory.Items.Add(new ListItem("<all categories>", "-1"));

685

Exercise Solutions

System.Data.IDataReader dr = GetCategories();

while (dr.Read())
lstCategory.Items.Add(new ListItem(dr["CategoryName"].ToString(),

dr["CategoryID"].ToString()))
}

}

Here, we simply add all of the items from the DataReader in the same manner as for the All Categories
item.

The other solution to this would be to add the item to the first row of the data in the DataSet and then
use the existing data binding. This is more difficult to achieve and we are not going to cover this solution
here.

Chapter 9

Exercise 1
Load a DataSet using the Shippers table from the Northwind database and add the following data
into it:

❑ Company Name: FastShippers

❑ Phone: (503) 555-9384

Solution
This isn't too hard and can easily be done in the Page_Load() method of an ASP.NET page:

string connectionString;
string strSQL;
DataSet data = new DataSet();
OleDbConnection dbConnection;
OleDbDataAdapter dataAdapter;
OleDbCommandBuilder commandBuilder;

// set the connection and query details
connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +

"Data Source=C:\\BegASPNET11\\data\\Northwind.mdb";
strSQL = "SELECT * FROM Shippers";

// open the connection and set the command
dbConnection = new OledbConnection(connectionString);
dataAdapter = new OledbDataAdapter(strSQL, dbConnection);

// fill the dataset with the data
dataAdapter.Fill(data, "Shippers");

686

Appendix A

// add a new row to the table
DataTable table;
DataRow newRow;

table = data.Tables["Employees"];
newRow = table.NewRow();
newRow["CompanyName"] = "FastShippers";
newRow["Phone"] = "(503) 555-9384";
table.Rows.Add(newRow);

Exercise 2
Using the CommandBuilder object, create an InsertCommand to insert this new data.

Solution
Create an OleDbCommandBuilder object, use the GetInsertCommand() method, and send the changes
back to the database:

// create the other commands
commandBuilder = new OleDbCommandBuilder(dataAdapter);
dataAdapter.InsertCommand = commandBuilder.GetInsertCommand();

// update the database
dataAdapter.Update(data, "Shippers");

Notice that we didn't specify other commands, as we are only adding a row of data. If we had changed a
row or deleted one, then those changes would be reflected in the database as we haven't specified the
UpdateCommand or DeleteCommand.

Exercise 3
Using direct SQL commands, change the phone number of FastShippers to (503) 555-0000.

Solution
This is quite similar to the previous examples, only in those we added a row. In this case, we use the SQL
UPDATE command to set the Phone column to the value of the supplied parameter.

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Data Source=C:\BegASPNET11\data\Northwind.mdb";

OleDbConnection dbConnection = new OleDbConnection(connectionString);
dbConnection.Open();

string commandString = "UPDATE Shippers SET Phone = @Phone " +
"WHERE CompanyName = 'FastShippers'";

OleDbCommand dbCommand = new OleDbCommand(commandString, dbConnection);

OleDbParameter firstNameParam =
new OleDbParameter("@Phone", OleDbType.VarChar, 24);

firstNameParam.value = "(503) 555-0000";

687

Exercise Solutions

dbCommand.Parameters.Add(firstNameParam);

dbCommand.ExecuteNonQuery();

dbConnection.Close();

Exercise 4
Use the Web Matrix Data templates to create an Editable DataGrid. Have a look at the code and see how
many familiar techniques you see.

Solution
This uses many advanced features of the DataGrid, but the ADO.NET code is similar to what you've
been working with. Take the DataGrid_Update() method for example, which caters for new and
updated data. It either builds a SQL INSERT or UPDATE statement, uses Parameters to set the values,
and then uses the ExecuteNonQuery() method of the DataAdapter to send changes back to the
database.

The DataGrid_Delete() method does a similar thing, constructing a SQL DELETE statement.

The AddNew_Click() method uses an interesting technique – it adds a new row to a table but doesn't
update the database. Instead, it sets a flag indicating that a new row is being added. This means that the
user can modify the data in the new row, or even cancel the addition before sending changes to the
database.

Chapter 10
This chapter explains how ASP.NET server controls derive their properties and methods from the
various classes and objects that make up the .NET Framework. This chapter is where you see the Wrox
United application taking shape.

Exercise 1
Consider a use for an HTML tag with runat="server" in the Wrox United application in place of one
of the existing Web controls and explain why the HTML control is able to achieve the same result as the
Web control.

Solution
You can make this change in several places in Default.aspx – for example, the asp:Hyperlink
controls could be replaced with HTML anchor tags with a runat="server" attribute. You could also
change the panel which displays match details and replaces it with a <div> tag:

<div id="pnlFixtureDetails" runat="server" visible="false">
<asp:Repeater id="MatchesByDateList" runat="server">
<headertemplate>
...

688

Appendix A

</headertemplate>
<itemtemplate>
...
</itemtemplate>
<separatortemplate>
...
</separatortemplate>

</asp:Repeater>
</div>

This works because the only property of the Panel control used in this example is the Visible
property; a property that is available to all server controls, including HTML controls. A <div> is a direct
replacement for a Panel in this case.

Exercise 2
Add another event handler to the Teams.aspx page that reacts to the selection of a player's name and
takes the reader to the Players.aspx page.

Solution
Add the following event-handling code to Players.aspx:

void PlayersList_ItemCommand(object sender, RepeaterCommandEventArgs e)
{
if(e.CommandName == "ShowPlayers")
{
Response.Redirect("Players.aspx");

}
}

Change the HTML as follows:

<asp:Repeater id="PlayersList" runat="server"
OnItemCommand="PlayersList_ItemCommand">

<ItemTemplate>
<asp:linkbutton

text='<%# DataBinder.Eval(Container.DataItem, "PlayerName") %>'
style="color:darkred"
runat="server" width="120" CommandName="ShowPlayers" />

<asp:Label

text='<%# DataBinder.Eval(Container.DataItem, "PositionName") %>'
id="playerposition" runat="server" />

</ItemTemplate>
<headerTemplate>
Players in: <%= selectedTeam %>
<hr color="#b0c4de" width="250px" />

</headerTemplate>
<footerTemplate>
<hr color="#b0c4de" width="250px" />

</footerTemplate>

689

Exercise Solutions

</asp:Repeater>

Exercise 3
Amend the code in Default.aspx so that if a user selects a date in the calendar for which there are no
matches, nothing is displayed in the panel.

Solution
There are two ways you can achieve this result. The first of these is to modify the
EventCalendar_SelectionChanged() event handler as follows:

public void EventCalendar_SelectionChanged(object sender, EventArgs e)
{
if (DateList[EventCalendar.SelectedDate] != null)

{

MatchesByDateList.DataSource = GamesByDate(EventCalendar.SelectedDate);

pnlFixtureDetails.Visible = true;

MatchesByDateList.DataBind();

}
else
{
pnlFixtureDetails.Visible = false;

}
}

Alternatively, you can change how non-match days are rendered in the calendar:

public void EventCalendar_DayRender(object sender, DayRenderEventArgs e)

{

if (DateList[e.Day.Date] != null)

{

e.Cell.Style.Add("font-weight", "bold");

e.Cell.Style.Add("font-size", "larger");

e.Cell.Style.Add("border", "3 dotted darkred");

e.Cell.Style.Add("background", "#f0f0f0");

// ensure match dates are hyperlinks
e.Day.IsSelectable = true;

}

else

{

e.Cell.Style.Add("font-weight", "lighter");

e.Cell.Style.Add("color", "DimGray");

// ensure non-match dates are not selectable
e.Day.IsSelectable = false;

}
}

690

Appendix A

Using the IsSelectable property, we can control whether or not a date is selectable. Setting this to
false means that non-match days are not rendered as hyperlinks and therefore, will cause the panel to
not be displayed. The code in the following chapters uses this property to achieve this result.

Exercise 4
Have a go at customizing Players.aspx: change the field that displays the name of the player into a
hyperlink that, when clicked, will reveal a panel lower down on the page that lists the team or teams
that the selected player is a member of. You will find that the Fields editor of the MxDataGrid is very
useful for this (select the Fields property builder when you are in the Design view). You need to ensure
that the clicking of the player name is handled correctly. You also need to add another method to extract
team information (you may find that the DataReader that returns the list of teams from the
Teams.aspx page is useful here).

Solution
First, we need to change the BoundField into a ButtonField:

<Fields>
<wmx:BoundField Visible="False" DataField="PlayerID"></wmx:BoundField>
<wmx:ButtonField DataTextField="PlayerName"
HeaderText="Name" CommandName="ShowPlayer"></wmx:ButtonField>

<wmx:BoundField DataField="Profile" HeaderText="Profile"></wmx:BoundField>
<wmx:BoundField DataField="JoinDate" HeaderText="Join Date"
DataFormatString="{0:d}"></wmx:BoundField>

</Fields>

Notice we set a CommandName property on the field as well to be able to intercept and handle commands.
Let's now add a repeater that will show the teams for a particular player:

<p>
<asp:Repeater id="TeamList" runat="server" Visible="False">
<ItemTemplate>
<asp:Label

style="color:darkred"
text='<%# DataBinder.Eval(Container.DataItem, "TeamName") %>'
runat="server" width="120" />

<asp:Label

text='<%# DataBinder.Eval(Container.DataItem, "PositionName") %>'
id="playerposition"
runat="server" />

</ItemTemplate>
<headerTemplate>
<%= selectedPlayer %>'s Teams:
<hr color="#b0c4de" width="250px" />

</headerTemplate>
<footerTemplate>
<hr color="#b0c4de" width="250px" />

</footerTemplate>
</asp:Repeater>

691

Exercise Solutions

</p>

The resultant page looks almost identical to the repeater from the Team page.

We also need to tell the DataGrid that we'll be writing an ItemCommand() event handler for it:

<wmx:MxDataGrid id="MxDataGrid1" runat="server"

BorderStyle="None"

BorderWidth="1px"

DataKeyField="PlayerID"

CellPadding="3"

BackColor="White"

AllowPaging="True"

DataMember="Players"

AllowSorting="True"

BorderColor="#CCCCCC"

DataSourceControlID="AccessDataSourceControl1"

AutoGenerateFields="False"
OnItemCommand="MxDataGrid1_ItemCommand">

Now, in the Code view, we need to change the whole page script:

private string selectedPlayer;

void Page_Load()
{
Page.DataBind();

}

private void MxDataGrid1_ItemCommand(object sender,
MxDataGridCommandEventArgs e)

{
if (e.CommandName.Equals("ShowPlayer"))
{
LinkButton thing = (LinkButton)e.CommandSource;
selectedPlayer = thing.Text;

TableCell cell = (TableCell)e.Item.Controls[0];

int SelectedPlayerID = int.Parse(cell.Text);

TeamList.DataSource = GetTeamsByPlayer(SelectedPlayerID);
TeamList.DataBind();
TeamList.Visible = true;

}
else
{
TeamList.Visible = false;

}
}

private System.Data.IDataReader GetTeamsByPlayer(int playerID)
{

692

Appendix A

string connectionString =
ConfigurationSettings.AppSettings["ConnectionString"];

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

string queryString = "SELECT
[Players].[PlayerName],[Positions].[PositionName],[Teams].[TeamName]
FROM [Players], [Positions], [PlayerTeam], [Teams]
WHERE (([PlayerTeam].[PlayerID] = [Players].[PlayerID])
AND ([PlayerTeam].[Position] = [Positions].[PositionID])
AND ([PlayerTeam].[TeamID] = [Teams].[TeamID])
AND ([Players].[PlayerID] = @PlayerID))";

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDataParameter dbParam_teamID =
new System.Data.OleDb.OleDbParameter();

dbParam_teamID.ParameterName = "@PlayerID";
dbParam_teamID.Value = playerID;
dbParam_teamID.DbType = System.Data.DbType.Int32;
dbCommand.Parameters.Add(dbParam_teamID);

dbConnection.Open();
System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;
}

The GetTeamsByPlayer() method is a very simple alteration of GetPlayersByTeam() from the Teams
page. The really tricky part on this page is that we need to obtain the ID of the player that the user
selects. In the Team page, that was easy – we packaged up each team's ID as the CommandArgument for
the LinkButton in the teams DataList. But a DataGrid won't let us do that, so we need to find
another solution. Remember the fields we set up on the players DataGrid? At the left hand side there
was an invisible column that contained the player ID. This is how we get it:

TableCell cell = (TableCell)e.Item.Controls[0];
int SelectedPlayerID = int.Parse(cell.Text);

Chapter 11
This chapter deals with tracking users across pages and looks at the ASP.NET objects that are used to
enable this feature.

Exercise 1
Add some text, Current Topic, and a Label control to the Chat.aspx page above the main chat box,
which contains the text of the current topic (stored in the Application object). Add some default topic

693

Exercise Solutions

text to the Global.asax file and also another box and button to the page, allowing you to change the
current topic.

Solution
You should start this exercise by adding the text and Label control to the top of the page. This is a
simple addition that you can do either in the Design view, HTML view, or the All view.

❑ In Design view, type some text directly below the sub-heading that says Current topic:.

❑ Drag a Label control onto the page and set its ID to lblCurrentTopic.

Alternatively, enter the following code below the sub-heading:

<h2>Online Chat</h2>
Current topic:
<asp:Label id="lblCurrentTopic" runat="server">
</asp:Label>

...

In Global.asax, you need to enter code that will store the details of the default topic when the
application is first started:

public void Application_Start(Object sender, EventArgs e)
{
Application["ChatLog"] = "Hello, and welcome to the Wrox United Chat page!";
Application["CurrentTopic"] = "General free-for-all chat!";

}

Back in Chat.aspx, add the following line to the Page_Load event handler:

void Page_Load()
{
txtChatBox.Text = (string)Application["ChatLog"];
lblCurrentTopic.Text = (string)Application["CurrentTopic"];

}

You can run the page at this stage and the default topic, 'General free-for-all chat!', will be displayed at the
top of the page.

To make this exercise interactive, you need to add a couple of controls and another event handler. Below
the two buttons, you need to add another row to your table.

❑ In the first cell, enter some text to tell the user what to do (for example, Enter a new topic).

❑ In the next cell, drag a TextBox control into the cell and name it txtTopic.

❑ Add another row and in the first cell, enter a non-breaking space. In the second, add a button
control with its ID set to btnUpdateTopic. Double-click this button to wire up an event handler
for the click event.

694

Appendix A

Alternatively, enter the following code:

<asp:Button id="btnPost" onclick="btnPost_Click" runat="server"

Text="Post message"></asp:Button>

<asp:Button id="btnClearLog" onclick="btnClearLog_Click" runat="server"

Text="Clear log"></asp:Button>
<hr />

</td>
</tr>
<tr>
<td width="150">
Enter a new topic:

</td>
<td>
<asp:TextBox id="txtTopic" runat="server" MaxLength="100" width="402px">
</asp:TextBox>

</td>
</tr>
<tr>
<td>

</td>
<td>
<asp:Button id="btnUpdateTopic"

onclick="btnUpdateTopic_Click" runat="server" text="Update Topic">
</asp:Button>

</td>
</tr>

Finally, you need to add some code to update the contents of the Application object when the button is
clicked:

void btnUpdateTopic_Click(object sender, EventArgs e)
{
Application["CurrentTopic"] = txtTopic.Text;
lblCurrentTopic.Text = (string)Application["CurrentTopic"];
txtTopic.Text = "";

}

Exercise 2
Add the session initialization code from the stylesheet example to your Global.asax file.

Solution
You'll recall that, during the CSS example, the following code was included in the Page_Load() method
of Default.aspx:

if (Session["SelectedCss"] == null)
{
if (Request.Cookies["PreferredCss"] == null)
{

695

Exercise Solutions

Session["SelectedCss"] = "WroxUnited.css";
}
else
{
Session["SelectedCss"] = Request.Cookies["PreferredCss"].Value;

}
}

This code can be shortened considerably by adding the following statement to the Global.asax file:

public void Session_Start(Object sender, EventArgs e)
{
System.Collections.Hashtable basketTable =
new System.Collections.Hashtable();

Session["Basket"] = basketTable;

Session["SelectedCss"] = "WroxUnited.css";
}

The code in Page_Load() method can now be changed to the following:

if (Request.Cookies["PreferredCss"] != null)
{
Session["SelectedCss"] = Request.Cookies["PreferredCss"].Value;

}

Exercise 3
Add a link to the Merchandise.aspx page from the front page of the site, and then apply the stylesheet
used in the Default.aspx page to all the other pages in the site. You will need to add the <link ... >
tag to the <head ... > section of each page and you will need to ensure that the session initialization
code is correctly configured in the Global.asax file from the previous exercise.

Solution
Adding the link to the Default.aspx page is quite simple – just add the following code to the list of
links:

<p>
<asp:HyperLink id="lnkMerchandise" runat="server"

NavigateUrl="Merchandise.aspx">
Merchandise

</asp:HyperLink>
</p>

Now you can add the css link to each of the other pages in the site:

<head>
<link id="css" href='<%= (string)Session["SelectedCss"] %>'

type="text/css" rel="stylesheet" />
</head>

696

Appendix A

Having said this, it's not always quite as simple as it looks – take a look at the output of Teams.aspx
when using the Away scheme and you'll notice that the red links remain red, because the color was hard-
coded when the page was created. You need to remove the color information from the tag:

<asp:linkbutton
text='<%# DataBinder.Eval(Container.DataItem, "TeamName") %>'
CommandArgument='<%# DataBinder.Eval(Container.DataItem, "TeamID") %>'
id="TeamNameLink"
style="color:darkred"
runat="server"
CommandName="ShowTeam" />

Once you delete the style="color.darkred" attribute, the links will inherit the styling defined for all
hyperlinks.

Players.aspx has some additional styling that will need to be amended. The font color and header bar
are blue and since the theme for the site is red, white, and black, these colors need altering. First, delete
all the hard-coded styles from the control – you may find that the Properties pane is the most useful tool
for this.

Next, you can add some custom styling. Here is some CSS code you can add to WroxUnited.css:

.datatablebody {
background-color:"#ffffff";
color:black;
font-size:smaller;

}

.datatablebody td{
padding:3;

}

.datatablehead {
background-color:"#c0c0c0";
color:black;
font-weight:bold;

}

.datatablehead td{
padding:3;

}

Once these styles are added, you can apply them to the control:

<ItemStyle cssclass="datatablebody"></ItemStyle>
<HeaderStyle font-bold="True" cssclass="datatablehead"></HeaderStyle>

Chapter 12
This chapter covers the concepts of user controls and code-behind. The first three exercises for this
chapter don't really have any new type code to them; it's only practicing adding user controls to pages

697

Exercise Solutions

and switching to using code-behind. The completed code for these pages is available for download from
the Wrox website.

Exercise 1
Add the header control and navigation bar control to each page in the site. Remember to add the
following code at the top of each page:

<%@ Register TagPrefix="WroxUnited" TagName="Header" Src="Header.ascx" %>
<%@ Register TagPrefix="WroxUnited" TagName="NavBar" Src="NavBar.ascx" %>

Solution
Refer 57084_Ch12_Ans01.aspx for the code for this question.

Exercise 2
Move the C# code for each page (visible in the Code view in Web Matrix) into an associated code-behind
file, making sure each control has a corresponding declaration in the code-behind file.

Solution
See 57084_Ch12_Ans02.aspx for the solution.

Exercise 3
Move the C# code from the navbar.ascx control (containing an event-handler) into an associated .cs
code-behind file, following the same technique as you used for the other pages on the site.

Exercise 4
Create a user control for the Merchandise.aspx page that enables you to easily add new items to the
list. You will need to copy a row of the table from Merchandise.aspx into a new ASCX user control file.
Make the properties on the image and button controls generic and add some public properties to
programmatically set the values on each Web control in the user control.

Firstly, here's some code (currently in Merchandise.aspx) that could be placed in the control:

<tr>
<td>
<asp:Image id="imgCap" runat="server" Height="100px"
ImageUrl="images/shirt.gif" Width="100px"></asp:Image>

</td>
<td>
The Wrox United shirt, available in one size only</td>

<td>
<asp:Button id="btnBuyShirt" onclick="AddItemToBasket" runat="server"
Width="100px" CommandArgument="Shirt" Text="Buy a shirt!"></asp:Button>

698

Appendix A

</td>
</tr>

If you change the ImageUrl of the image, the Text of the button, and the CommandArgument to empty
strings "", then you can set those in the Page_Load() event. Consider the earlier example – the word
"Shirt" features in all three of these attributes, so you could add a property like the following to store
the name of the item (in this case, shirt), then use this value to construct the appropriate values for these
attributes:

private string _itemName = "";

public string ItemName
{
get{ return _itemName; }
set{ _itemName = value; }

}

Here's an example of using this property to update another private variable. This could be used, for
example, to provide a default image name:

:

if (_imageName == "")
{
_imageName = _itemName + ".jpg";

}

You would also need to move the AddItemToBasket() function to the control because the buttons now
reside within this control. Since the name of the session is globally available, it's possible to set or update
session values from the control just as easily as from a page.

You will need three properties in all. The first, ItemName is shown above. You can include an optional
ImageName property to override the default value (in case you want to use a .gif, for example). Finally,
you need to store the text that describes the item in a Text property and include the value stored in this
property in the page using the following syntax:

<td><%=Text%></td>

All that remains then is to add the item to the page:

<WroxUnited:Product id="Shirt" runat="server"
ItemName="Shirt"
ImageName="shirt.gif"
Text="The Wrox United shirt, available in one size only"/>

Solution
Firstly, the HTML of the Product.ascx user control:

<tr>
<td>

699

Exercise Solutions

<asp:Image id="image1" Width="120px" ImageUrl="<%=imageLink%>"
Height="120px" runat="server"></asp:Image>

</td>
<td>
<%=Text%></td>

<td>
<asp:Button id="button1" onclick="AddItemToBasket" Width="100px"

runat="server"
Text="<%=buttonText%>"
CommandArgument="<%=ItemName%>"></asp:Button>

</td>
</tr>

Next, the code for the Product.ascx user control:

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Caching;
using System.Collections;
using System.Configuration;

namespace WroxUnited
{
public class Product : UserControl
{
public Image image1;
public Button button1;

private string _itemName = "";

public string ItemName
{
get{ return _itemName; }
set{ _itemName = value; }

}

private string _imageName = "";

public string ImageName
{
get { return _imageName; }
set { _imageName = value; }

}

private string _text = "";

public string Text
{
get { return _text; }
set { _text = value; }

}

public void Page_Load()
{

700

Appendix A

if (_imageName == "")
{
_imageName = _itemName + ".jpg";

}

string imageLink = "images/" + _imageName;
string buttonText = "Buy the " + _itemName + "!";

image1.ImageUrl = imageLink;
button1.Text = buttonText;

}

public void AddItemToBasket(object sender, EventArgs e)
{
System.Collections.Hashtable basketTable = (Hashtable)Session["Basket"];

if (basketTable[_itemName] == null)
{
basketTable[_itemName] = 0;

}

int itemCount = (int)basketTable[_itemName];
basketTable[_itemName] = itemCount + 1;

}
}

}

In Merchandise.aspx add the following:

<%@ Register TagPrefix="WroxUnited" TagName="Product" Src="Product.ascx" %>
...
<table width="600">
<WroxUnited:Product id="Shirt" runat="server"
ItemName="Shirt"
ImageName="shirt.gif"
Text="The Wrox United shirt, available in one size only"/>

<WroxUnited:Product id="Hat" runat="Server"
ItemName="Hat"
ImageName="hat.jpg"
Text="The official Wrox United hat!"/>

<WroxUnited:Product id="Mascot" runat="Server"
ItemName="Mascot"
ImageName="mascot1.jpg"
Text="The Wrox United cuddly mascot - a must-have for the younger

supporters!"/>
<WroxUnited:Product id="Plate" runat="server"
ItemName="Plate"
ImageName="team_s_b.gif"
Text="This is a strange square collector's plate of the team!"/>

</table>

701

Exercise Solutions

Exercise 5
Move the new code in Product.ascx into a code-behind file.

Chapter 13
This chapter covered how to compile a .NET assembly and use it from within our ASP.NET page. It also
discussed the encapsulation of business logic into a reusable component.

Exercise 1
Build a data access component that connects to the Travel.mdb access database and retrieves data
about the weather at that location (filtered by location). You may find the following SQL useful:

SELECT [Locations].[LocationName], [Locations].[CurrentTemperature],
[WeatherTypes].[WeatherType]

FROM [Locations], [WeatherTypes]
WHERE (([WeatherTypes].[WeatherTypeID] = [Locations].[CurrentWeather])
AND ([Locations].[LocationName] = @LocationName))

If you use the Web Matrix SELECT Data Wizard, you can create a method called GetWeatherByCity()
that takes the LocationName as a parameter, and returns a DataReader.

Exercise 2
Add another method called GetCities() to this data access component, which selects all the
LocationNames from the database and returns a DataReader.

Solution (1 and 2)
Once you have created the two methods using the data wizards in Web Matrix, all that remains is to
ensure that everything is in place for compilation. Note that we've used the BegASPNET namespace and
a Class named TravelData – these will come handy for the rest of the exercise solutions. The following
code is available in the file called DataAccessCode.cs in the code download.

// DataAccessCode.cs
//

using System;

namespace BegASPNET
{

public class TravelData
{
public TravelData()
{
}

public System.Data.IDataReader GetWeatherByCity(string locationName)

702

Appendix A

{
string connectionString =
"Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=-4;
Data Source=C:\\BegASPNET11\\Chapter13Code\\Exercises\\travel.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

string queryString =
"SELECT [Locations].[LocationName], [Locations].[CurrentTemperature],"+
"[WeatherTypes].[WeatherType] "+
"FROM [Locations], [WeatherTypes] "+
"WHERE (([WeatherTypes].[WeatherTypeID] = " +
"[Locations].[CurrentWeather])" +
"AND ([Locations].[LocationName] = @LocationName))";
System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDataParameter dbParam_locationName =
new System.Data.OleDb.OleDbParameter();

dbParam_locationName.ParameterName = "@LocationName";
dbParam_locationName.Value = locationName;
dbParam_locationName.DbType = System.Data.DbType.String;
dbCommand.Parameters.Add(dbParam_locationName);

dbConnection.Open();
System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;
}

public System.Data.IDataReader GetCities() {
string connectionString =
"Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=-4;
Data Source=C:\\BegASPNET11\\Chapter13Code\\Exercises\\travel.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

string queryString = "SELECT [Locations].[LocationName] FROM " +
"[Locations]";

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

dbConnection.Open();
System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

return dataReader;
}

}
}

703

Exercise Solutions

We'll see how to compile this file along with the two server controls once after we have seen the
solutions for the next two exercises.

Exercise 3
Create a simple custom control that has a temperature property, which takes the temperature in Celcius
and renders a string of text that displays the temperature in both Celcius and Fahrenheit:

Fahrenheit temperature = Celsius temperature * (9/5) + 32

The control should render a tag that has a style=color:<color> attribute that can be used to
change the color of the text for different temperature ranges. If the temperature is below 0 degrees
Celcius, you should make the text blue, above 30 degrees it should be red, and all others should be
orange.

Solution
The code for this control isn't too different from the code we used in the chapter. In the following code,
you'll see that there are two properties in this control, one for Celcius and one to convert that value into
Fahrenheit. The Render() method then creates a control when the control is rendered.
Notice that we've used a string formatter to render the control exactly as we intended (adding a degrees
symbol after each temperature value. This file is called 57084_Ch13_Ans03.cs in the code download:

using System;
using System.Web;
using System.Web.UI;

namespace BegASPNET
{

public class TemperatureControl : Control
{
private double _tempInCelcius;

public double TempInCelcius
{
get{return _tempInCelcius;}
set{_tempInCelcius = value;}

}

public double TempInFahrenheit
{
get {return _tempInCelcius * (9.0 / 5.0) + 32.0;}
set {_tempInCelcius = (value - 32.0) * (5.0 / 9.0);}

}

protected override void Render(System.Web.UI.HtmlTextWriter writer)
{
string color;

if (_tempInCelcius <= 0.0)
{

704

Appendix A

color = "blue";
}
else if (_tempInCelcius >= 30.0)
{
color = "red";

}
else
{
color = "orange";

}

writer.Write("<span style='color:");
writer.Write(color);
writer.Write("'>");

writer.Write("{0:##0.#}°C ({1:##0.#}°F)", TempInCelcius,
TempInFahrenheit);

writer.Write("");
}

}
}

Exercise 4
Create another control that takes the code built in the first two examples to produce a composite control
that displays temperature data stored in the database for a specific city. Your control should render the
following output:

❑ The name of the city

❑ The temperature at the specified city (use an instance of the control created in the previous
example)

❑ An image control <ASP:Image ...> that displays one of a series of images (available in the
code download for this chapter) that represents the style of weather currently being experienced
at the specified city – for example, an image of a cloud if the weather is overcast

Solution
This control only has one property, the name of the city to display. The tricky bit is to get it to render the
output we're after. In the following code, you'll see that the output will be rendered in an HTML table.
Also, notice also that it's very simple to nest the first control within this control. This file is called
57084_Ch13_Ans04.cs in the code download:

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Data;

namespace BegASPNET
{

705

Exercise Solutions

public class CityWeatherControl : Control
{
private Label _cityNameLabel = new Label();
private TemperatureControl _temperatureControl = new TemperatureControl();
private Image _weatherImage = new Image();
private TravelData _travelData = new TravelData();

private string _city;

public string City
{
get{return _city;}
set{_city = value;}

}

protected override void CreateChildControls()
{
Controls.Clear();

IDataReader cityData = _travelData.GetWeatherByCity(City);

try
{
if (cityData.Read())
{
double currentTemperature = (int)(cityData["CurrentTemperature"]);
string weatherType = (string)(cityData["WeatherType"]);

_cityNameLabel.Text = City;
_temperatureControl.TempInCelcius = currentTemperature;
_weatherImage.AlternateText = weatherType;
_weatherImage.ImageUrl = weatherType + ".gif";

Table layoutTable = new Table();

TableRow topRow = new TableRow();
TableRow bottomRow = new TableRow();

TableCell cell1 = new TableCell();
cell1.Controls.Add(_cityNameLabel);

TableCell cell2 = new TableCell();
cell2.Controls.Add(_weatherImage);
cell2.RowSpan = 2;

topRow.Cells.Add(cell1);
topRow.Cells.Add(cell2);

TableCell cell3 = new TableCell();
cell3.Controls.Add(_temperatureControl);

bottomRow.Cells.Add(cell3);

layoutTable.Rows.Add(topRow);

706

Appendix A

layoutTable.Rows.Add(bottomRow);

Controls.Add(layoutTable);
}
else
{
Literal errorLiteral = new Literal();
errorLiteral.Text = "No data available for city " + City;

Controls.Add(errorLiteral);
}

}
finally
{
cityData.Close();
cityData.Dispose();

}

ChildControlsCreated = true;
}

}
}

These three components now need to be compiled. In the download for these solutions, you'll find that
there's a file called Compile.bat that contains the following code:

CD C:\BegASPNET11\Chapter13Code\Exercises
md bin

csc /t:library /r:System.dll,System.Data.dll,System.Web.dll
/out:bin/TravelSite.dll DataAccessCode.cs TemperatureControl.cs
CityWeatherControl.cs
pause

This code will compile all three components into an assembly called TravelSite.dll. They are all
based in the same namespace, so this is a fairly logical thing to do in real life applications.

Exercise 5
Finally, add the following to an ASP.NET page:

❑ Add a drop-down ListBox and bind it to the DataReader returned by the GetCities()
method in the data access component. Enable auto-postback for this control so that a postback
occurs whenever the selection changes.

❑ Add a copy of the weather control created in the previous exercise to the page, and pass the
name of the currently selected city to the control for displaying the weather for that city.

Solution
All that remains is to add the CityWeatherControl to a web page. In this page, we've used a drop
down ListBox for selecting a city, which automatically posts back to the server to refresh the page. This
page is called travel.aspx:

707

Exercise Solutions

<%@ Page Language="C#" %>
<%@ Register TagPrefix="TravelControl" Namespace="BegASPNET"

Assembly="TravelSite" %>
<%@ import Namespace="BegASPNET" %>
<script runat="server">

void Page_Load()
{

if (!Page.IsPostBack)
{
TravelData data = new TravelData();
System.Data.IDataReader reader = data.GetCities();
ddlLocations.DataSource = reader;
ddlLocations.DataValueField = "LocationName";
ddlLocations.DataTextField = "LocationName";
ddlLocations.DataBind();

}
CityWeather.City = ddlLocations.SelectedItem.ToString();

}

</script>
<html>
<head>
</head>
<body>
<form runat="server">
<asp:DropDownList id="ddlLocations" runat="server" AutoPostBack="True">
</asp:DropDownList>

<TRAVELCONTROL:CITYWEATHERCONTROL id="CityWeather" runat="server" />

</form>
</body>
</html>

As long as you have the images in the same directory as the ASPX page, you should be able to see the
results of your efforts.

Chapter 14
This chapter explains the steps you can take to debug your code, minimize errors, handling errors as
well as how to recover when things go wrong.

Exercise 1
How are parser errors different from compilation errors? Is there any difference between the ways they
are displayed by ASP.NET?

708

Appendix A

Solution
When a page has errors that are caught during compilation by a .NET Framework compiler (remember
that ASP.NET pages are compiled), ASP.NET generates a syntax error report with information about the
error and sends this information to the browser. When an error occurs while a page is being executed, it
gives rise to a parser error. The difference is that ASP.NET sends a Stack Trace to the browser; it that
contains information about what was going on when the error occurred.

Exercise 2
Here are three sections of code – what is wrong with each section and what type of error does it contain?
How would you fix it?

❑ Section A:

<html>
<head>
<title>Syntax Error Example </title>

</head>
<body>
<form method="post" action="syntaxerror.aspx" runat="server">
<asp:TextBox id="txtQuantity" runat="Server />
</form>

</body>
</html>

❑ Section B:

void Page_Load()
{
int intCounter, intLoop;
intCounter=0;
intLoop=0;
while (intCounter<10)
{
intLoop = intLoop +1;

}
}

❑ Section C:

<script language="C#" runat="server">
void Page_Load()
{

string a;
int b;
string c;
a = "Hello";
b = "World";
c = a + b;

}
</script>

709

Exercise Solutions

Solution
The sections, the errors they would generate, and a possible solution have been provided as follows:

❑ In section A, see the following line:

<asp:TextBox id="txtQuantity" runat="Server />

It is missing a closing quotation mark after Server.

❑ Section B is an infinite loop. We check the contents of intCounter to see if it has reached 10,
but increment the variable called intLoop:

while (intCounter<10)
{

intLoop = intLoop +1;
}

To correct this, change intLoop to intCounter (or vice versa).

❑ In section C, b is declared as an integer, yet a string value is read into it:

int b;
...
b = "World";

b should be declared as a string.

Exercise 3
Create a form with four textboxes and a submit button. Each of the textboxes accepts a user name, an
email address, a phone number, and the user's gender. Use validation controls to make sure that there
are no blank entries, that you can only enter numbers into the phone field, and that you can only enter a
number between 1 and 140 in the age field. Also, but not necessarily with validation controls, make sure
that the gender textbox only accepts male or female and that the email address contains the '@' character.
In what ways could this form be improved further?

Solution
The code should read as follows (available in the code download as 57084_Ch14_Ans03.aspx:

<form method="post" action="usingvalidationcontrol.aspx" runat="server">

<asp:Label text="Name" runat="server" />
<asp:TextBox id="txtUserName" runat="server" />
<asp:RequiredFieldValidator ControlToValidate="txtUserName" runat="server"

ErrorMessage="Please enter a value in the Name Field">
</asp:RequiredFieldValidator>

<asp:Label text="Email" runat="server" />
<asp:TextBox id="txtEmail" runat="server" />
<asp:RequiredFieldValidator ControlToValidate="txtEmail" runat="server"

710

Appendix A

ErrorMessage="Please enter a value in the Email Field">
</asp:RequiredFieldValidator>
<asp:RegularExpressionValidator ControlToValidate="txtEmail"
ValidationExpression="^\w+[\w-\.]*\@"
ErrorMessage="This isn't a valid email address!"
runat="server" />

<asp:Label text="Age" runat="server" />
<asp:TextBox id="txtPhone" runat="server" />
<asp:RequiredFieldValidator ControlToValidate="txtPhone" runat="server"

ErrorMessage="Please enter a value in the Phone Field">
</asp:RequiredFieldValidator>
<asp:CompareValidator id="numbervalidatior"
ControlToValidate="txtPhone"
Type="Integer"
Operator="DataTypeCheck"
ErrorMessage="You must enter a number!"
runat="server" />

<asp:Label text="Age" runat="server" />
<asp:TextBox id="txtAge" runat="server" />
<asp:RequiredFieldValidator ControlToValidate="txtAge" runat="server"

ErrorMessage="Please enter a value in the Age Field">
</asp:RequiredFieldValidator>
<asp:RangeValidator id="Range1"

ControlToValidate="txtAge"
MinimumValue="1"
MaximumValue="140"
Type="Integer"
EnableClientScript="false"
Text="The value must be between 1 and 140!"
runat="server"/>

<asp:Button id="btnComplete_Order" Text="Submit Form"

onclick="Submit Form" runat="server"/>

<asp:Label id="lblOrderConfirm" runat="server"/>

</form>

There are many ways that this could be improved; here are a few:

❑ The email address could be checked to see that it took a format text@text.text, or you could
even check to see if it was a valid email. There are plenty of pre-written regular expressions for
email validation. You can download some from http://www.regexplib.com/.

❑ You could use an authentication tool such as Passport to check these details and not worry about
the user having to input them! You should be aware that there isn't a set of hard and fast rules
when creating forms, just that some ways of doing things will be more sensible than others.

Exercise 4
Write a try…catch error handler that will handle errors specifically for a divide-by-zero handler (as we
did for invalid casts).

711

Exercise Solutions

Hint: We haven't mentioned the specific class involved, you can find a list of classes using the class
browser.

Solution
There are many ways of doing this, as long as you include a DivideByZeroException. Here is a
suggested method, complete with an example divide-by-zero error (available in the code download as
57084_Ch14_Ans04.aspx:

<script language="C#" runat="server" >
void StructuredErrorHandling()
{
try
{
int a;
int b
int c;
a=1;
b=0;
c=a/b;

}
//Handler for DivideByZero Exception
catch (DivideByZeroException excep)
{
Response.Write ("Error Occurred"+ "
" + excep.ToString + "
");
}
finally
{
Response.Write ("The Page Execution is completed" & "
")

}
}

}
</script>

Exercise 5
Create a custom error page for an HTTP 403 error Access is forbidden error and get it working for this
chapter's code folder.

Solution
The following section should go in web.config in the ch14 folder:

<configuration>
<system.web>
<customErrors defaultRedirect="userError.aspx" mode="On">
<error statusCode="403" redirect="PageForbidden.aspx" />
</customErrors>
</system.web>

</configuration>

The page Forbidden.aspx can just say something like:

712

Appendix A

<html>
<head>
</head>
<body>
<h1> You are not allowed access to this page.</h1>

</body>
</html>

Chapter 15
This chapter explains how ASP.NET applications can be managed from a series of XML configuration
files.

Exercise 1
If you didn't know how to specify a particular setting of an element in the config file, where would you
look to find them?

Solution
In the machine.config file itself, which has examples of how to use many of the commonly used
settings.

Example 2
Create a friendly custom error page for a file not found error and set the relevant config file so that it
appears whenever a 404 error message is generated.

Solution
The following section should go in web.config in the ch14 folder:

<configuration>
<system.web>
<customErrors defaultRedirect="userError.aspx" mode="On">
<error statusCode="404" redirect="PageNotFound.aspx" />
</customErrors>
</system.web>

</configuration>

The page PageNotFound.aspx can just say something like:

<html>
<head>
</head>
<body>
<h1> Sorry but this page cannot be found on our web server.</h1>

</body>
</html>

713

Exercise Solutions

Example 3
Create a page with two Label controls that both display the time, and create an output cache that lasts
for 30 minutes and caches just one of the controls.

Solution
When using fragment caching, you cache only in the ASCX file; so create an ASPX page that isn't cached
containing two user controls:

<%@ Page Language="C#" %>
<%@ Register TagPrefix="l1" TagName="mylabel1" Src="label1.ascx" %>
<%@ Register TagPrefix="l2" TagName="mylabel2" Src="label2.ascx" %>
<script runat = "server">
string ServerTime()
{
return ServerTime = System.DateTime.Now.ToLongTimeString();

}
</script>
<l1:mylabel1 text="ServerTime()" runat="server"/>
<l2:mylabel1 text="ServerTime()" runat="server"/>

Then create two ASCX files, and cache only one of them. Consider Label1.ascx:

<%@ OutputCache Duration="1800" VaryByParam="none" %>
<asp:label id="mylabel1" text="ServerTime()" runat="server"/>

Label2.ascx:

<asp:label id="mylabel2" text="ServerTime()" runat="server"/>

Exercise 4
Create a cache that stores the following information "MyFavouriteColour = Orange", and expires it if
it hasn't been updated for three minutes.

Solution
The following lines of code serves this purpose:

Cache.Insert("MyFavoriteColor", "orange", null, DateTime.Now.AddMinutes(3),
NoSlidingExpiration);

Exercise 5
Create a cache that will expire whenever the contents of one of three files – XMLDoc1.xml,
XMLDoc2.xml, and XMLDoc3.xml – change. They all contain the following code:

<?xml version="1.0"?>
<address>
<name>Rheingold Cabriole</name>
<address>673 Chellingworth Place, Morningtown </address>

714

Appendix A

<phone>333-444-555</phone>
<email> Rheingold.Cabriole@fabemails.com</email>

</address>

Solution
DataSet XMLFileDataSet = New DataSet();
XMLFileDataSet.ReadXML("C:\\BegASPNet11\\ch15\\address.xml");
CacheDependency filedependency1 = New

CacheDependency("C:\\BegASPNet11\\ch15\\xmldoc1.xml");
CacheDependency filedependency2 = New

CacheDependency("C:\\BegASPNet11\\ch15\\xmldoc2.xml");
CacheDependency filedependency3 = New

CacheDependency("C:\\BegASPNet11\\ch15\\xmldoc3.xml");
Cache.Insert("address",XMLFileDataSet, filedependency1);
Cache.Insert("address",XMLFileDataSet, filedependency2);
Cache.Insert("address",XMLFileDataSet, filedependency3);

Chapter 16
This chapter teaches you how to expose functionality from your Web site to others as a Web service.

Exercise 1
Explain the role of the Simple Object Access Protocol (SOAP) in Web services.

Solution
SOAP is the protocol with which functions are called remotely in Web services.

Exercise 2
What is the purpose of the WSDL file?

Solution
The WSDL file is an XML file that specifies the parameters that are used in the Web services. With this
file, consumers know what parameters to send to the Web service and the values they will receive.

Exercise 3
How would you locate a Web service that provides the functions you require?

Solution
To locate a Web service, you can use the UDDI service. Businesses register their Web services on the
UDDI database, which can then be searched for a service that suits your needs.

715

Exercise Solutions

Exercise 4
Create a Web service with a class name of circles that calculates the area and circumference of a circle
and the volume of a sphere.

* Area = (Pi)r2

* Circumference = 2(Pi)r

* Volume of a sphere = 4/3(Pi)r3.

Solution
See 57084_Ch16_Ans04.asmx available in the code download:

<%@ WebService Language="C#" Class="Circles"%>

using System.Web.Services;
public class Circles
{
[WebMethod] _
public decimal Areaofcircle(Decimal radius)
{

return radius*radius*3.142;
}

[WebMethod] _
public decimal CircumferenceofCircle(Decimal radius)
{
return 2 * 3.142 * radius;

}

[WebMethod] _
public decimal VolumeofSphere(Decimal radius)
{

return (4 / 3) * 3.142 * radius * radius * radius;
}

}

We create a WebMethod to calculate each of these values. Each method takes one parameter –the circle
radius – and returns one value. They are all encapsulated within the public class Circles.

Exercise 5
Create a Web service that connects to the Northwind database and returns employees' addresses based
on their last names.

Solution
See 57084_Ch16_Ans05.aspx:

<%@ WebService Language="C#" Class="Addresses" %>

using System.Web.Services;

716

Appendix A

using System.Data;
using System.Data.OleDb;

public class Addresses :System.Web.Services.WebService
{

[WebMethod] _
public string NorthwindAddresses(string strLastName)
{
return GetAddress(strLastName);

}

private string GetAddress(string strLastName)
{
OleDbDataReader objDataReader;
OleDbConnection objConnection;
OleDbCommand objCommand;
string strConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=C:\\BegASPNET\\ch16\\Northwind.mdb;"
string strSQL = "SELECT Address FROM Employees WHERE lastName = '" +

strlastName + "'";
string strAddress;

objConnection = New OleDbConnection(strConn);
objCommand = New OleDbCommand(strSQL, objConnection);
objConnection.Open();
objDataReader = objCommand.ExecuteReader(CommandBehavior.CloseConnection);

If (objDataReader.Read())
{
strAddress = objDataReader(0);

}
else
{
strAddress = "Address not found in the database";

}
objDataReader.Close();

return strAddress;
}

}

We create two methods, one that returns the address (from Northwind), and the other that connects to
the database and queries it for a given address (GetAddress). GetAddress() creates a connection and
uses a single line of SQL to return a matching address. If no matches are found, you display an
appropriate message instead. We create a DataReader and read the data into this object, and return the
first occurrence in the DataReader as our string.

Exercise 6
Create an ASP.NET page containing a drop-down ListBox in which a user can select names of
Northwind employees to return their addresses.

717

Exercise Solutions

Solution
<%@ Page Language="C#" Debug="true"%>
<%@ Import namespace="AddressService" %>

<script language="C#" runat="server">
private void RetrieveAddress(System.Object sender, System.EventArgs e)
{
AddressService.Addresses adr = New AddressService.Addresses();
lblAddress.Text = adr.NorthwindAddresses(Request.Form("list"));

}
</script>
<html>
<body>
<form runat="server">
<asp:dropdownlist id="list" runat="server">
<asp:listitem>Davolio</asp:listitem>
<asp:listitem>Fuller</asp:listitem>
<asp:listitem>Leverling</asp:listitem>
<asp:listitem>Peacock</asp:listitem>
<asp:listitem>Buchanan</asp:listitem>
<asp:listitem>Suyama</asp:listitem>
<asp:listitem>King</asp:listitem>
<asp:listitem>Callahan</asp:listitem>
<asp:listitem>Dodsworth</asp:listitem>
</asp:dropdownlist>
<asp:Button id="Button1" runat="server" Text="Submit"

onClick="RetrieveAddress"></asp:Button>

<asp:Label id="lblAddress" runat="server" />

</form>
</body>

</html>

Here, we created an instance of our proxy class that will call our WebMethod and then we read the
returned value into the Text property of our Label control. We create a separate server-side
DropDownList control and only call our Web Method when a selection has been submitted.

Exercise 7
Secure the Northwind employee Addresses Web service so that no unauthorized users have access to
it.

Solution
using System.Data;
using System.Data.OleDb;

public class Addresses : System.Web.Services.WebService
{
[WebMethod] _
public string NorthwindAddresses(string strLastName, string strUsername,

string strPassword)

718

Appendix A

{
OleDbDataReader objSecurityDR;
OleDbConnection objSecurityConn;
OleDbCommand objSecurityCmd;

string strConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
strConn += Server.MapPath("Security.mdb") + ";";

string strSQL = "select Username from Users where username = '";
strSQL += strUsername + "' and password = '" + strPassword + "'";

objSecurityConn = New OleDbConnection(strConn);

objSecurityCmd = New OleDbCommand(strSQL, objSecurityConn);
objSecurityConn.Open();

objSecurityDR =
objSecurityCmd.ExecuteReader(CommandBehavior.CloseConnection);

if (objSecurityDR.Read())
{
objSecurityDR.Close()
return GetAddress(strLastName)

}
else
{
objSecurityDR.Close();
return "Login to Northwind Employees Directory failed.";

}
}

public string GetAddress(string strLastName)
{
OleDbDataReader objDataReader;
OleDbConnection objConnection;
OleDbCommand objCommand;
string strConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:\\BegASPNET\\ch16\\Northwind.mdb;"
string strSQL = "SELECT Address FROM Employees WHERE lastName = '" +

strlastName + "'";
string strAddress;
objConnection = New OleDbConnection(strConn);
objCommand = New OleDbCommand(strSQL, objConnection);
objConnection.Open();
objDataReader = _

objCommand.ExecuteReader(CommandBehavior.CloseConnection);

if (objDataReader.Read())
{
strAddress = objDataReader[0];

}
else
{
strAddress = "Address not found in the database";

719

Exercise Solutions

}

objDataReader.Close();
return strAddress;
}

}

In this answer, we merely add the code from the security section of the Web services chapter that checks
a security database before giving someone access to our Web meethods.

Chapter 17

Exercise 1
What is the difference between authorization and authentication?

Solution
Authentication is the process that verifies if a user is who they claim they are, while authorization is the
process of checking whether a particular user has access to a particular resource.

Exercise 2
Create an application that uses forms-based authentication and requires you to enter a username,
password, and zip code before you can go to the main login page. Hard code the username, password,
and the zip code. Call it zipcodelogin.aspx.

Solution
The web.config file should be changed as follows:

<configuration>
<system.web>
<authentication mode="Forms">
<forms name=".WroxDemo" loginUrl="login.aspx"
protection="All" timeout="60" />

</authentication>
<machineKey validationKey="AutoGenerate" decryptionKey="AutoGenerate"
validation="SHA1"/>
<authorization>
<deny users="?" />

</authorization>
</system.web>

</configuration>

The login.aspx file should contain the following code:

<%@ Import Namespace="System.Web.Security " %>

720

Appendix A

<html>
<head>
<script language="C#" runat=server>
void Login_Click(System.Object Src, EventArgs E)
{
if (txtEmail.Text == "Wrox") && (txtPwd.Text == "MyPass") &&

(txtZipCode.Text = "12345")
{

FormsAuthentication.RedirectFromLoginPage(txtEmail.Text,false);
}
else
{

lblLoginMsg.Text = "Use user name, password and zip as " +
"Wrox, MyPass and 12345 . Please try again";

}
}
</script>
</head>
<body>
<form runat="server">
<h1>Using Form based Authentication
with Pre-Defined Credentials</h1>
<hr>
Users Name:

<asp:textbox id="txtEmail" runat=server />
*

Password:

<asp:textbox TextMode="Password" id="txtPwd" runat=server />
 *

<asp:textbox id="txtZipCode" runat=server />
 *

<asp:Label id="lblLoginMsg" ForeColor="Red" Font-Name="Verdana" Font-
Size="10"
runat=server />

<asp:button id="btnLogin" Text="Login" OnClick="Login_Click" runat=Server

/>
</form>

</body>
</html>

Exercise 3
Upgrade the application from Exercise 2 to use the WroxAuth.mdb used in this chapter.

Solution
First, add an extra field to the database for zip code and insert 12345 for each record in it. Then change
the login.aspx file as follows:

721

Exercise Solutions

<%@ Page Language="C#" %>
<%@ Import Namespace="System.Web.Security " %>
<%@ Import Namespace="System.Data.OleDB" %>
<script language="C#" runat=server>
void Login_Click(System.Object Src, System. EventArgs E)
{
string strConn ="PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=" &
server.mappath("DB/WroxDBAuth.mdb") + ";";

OLEDBConnection Conn = New OLEDBConnection(strConn);
Conn.Open();
string strSQL = "SELECT Pwd FROM Tbl_MA_Users WHERE Email = '" +

txtEmail.Text
+ "'" + "ZipCode = '" + txtZipCode.Text + "'";

OLEDBCommand Cmd = New OLEDBCommand(strSQL,Conn);
//Create a datareader, connection object
OLEDBDataReader Dr =
Cmd.ExecuteReader(System.Data.CommandBehavior.CloseConnection);
//Get the first row and check the password.
if (Dr.Read())
{
if (Dr("Pwd").ToString == txtPwd.text)
{
FormsAuthentication.RedirectFromLoginPage(txtEmail.Text, false);

}
else
{
lblLoginMsg.text = "Invalid password.";

}
else
{
lblLoginMsg.text = "Login name not found.";

}
Dr.Close;

}
</script>

Exercise 4
Create an account for a user named 'John@MyDomain.com', but deny him access in web.config. What
happens when you try to log in as him? Can you think of a way of displaying a message to accompany
this?

Solution
Trying to log in as 'John@MyDomain' com bounces you back to the login page without an error message.
You could use the login process with an exception handler, and if it returns to the login page, you could
handle the exception and display an error.

Exercise 5
Create a new page called newpage.aspx on the example, and use web.config to ensure that only John
has access to it.

722

Appendix A

HINT: Create a subfolder for this page.

Solution
Place newpage.aspx in the admin folder and then change web.config as follows:

<configuration>
<system.web>
<authentication mode="Forms">
<forms name=".WroxDemo" loginUrl="login.aspx"
protection="All" timeout="60" />

</authentication>
<machineKey validationKey="AutoGenerate" decryptionKey="AutoGenerate"
validation="SHA1"/>
<authorization>
<allow users="?" />

</authorization>

723

Exercise Solutions

B
Web Matrix Quick Start

To write ASP.NET pages, you can choose from several software tools. They range from the simple
Notepad to the powerful and expensive (Visual Studio .NET). In this book, we use a tool called
Web Matrix, because it is easy to learn, powerful enough, and most importantly, free. If you haven't
used Web Matrix before, this appendix will lead you through the basics in about an hour. We
assume that you have downloaded and installed the software as described in Chapter 1.

This appendix will cover:

❑ ASP.NET Web Matrix and its uses

❑ Starting Web Matrix

❑ The screen

❑ Entering code

❑ Saving and viewing pages

❑ Reusing code

❑ Class browser

What Is Web Matrix?
Web Matrix is a development environment. This basically means it helps you to write new software
(in this case, the ASP.NET pages). Web Matrix helps application development by providing:

❑ A group of tools that reduce the amount of typing needed to create a page

❑ Several ways to view your Web pages during development

❑ Workspace, a small Windows Explorer-like interface that lets you view the pages in your
site

❑ Automatic color-coding within your code to identify keywords, comments, and other kinds of
code

❑ A simple server that can compile and display pages in the same way as the more complex IIS or
.NET Framework

In short, Web Matrix is a great tool that can support almost everything we do in this book.

Web Matrix is developed and distributed under a different model from most development tools. It is an
Open Source tool, which means that anybody can see and improve the code that makes the tool. There is
no charge for getting or using ASP.NET Web Matrix. Many add-ins and changes for this product are
expected in the next few years.

For this book, we selected ASP.NET Web Matrix as our editor for the following reasons:

❑ It is free, an important factor for many students starting in ASP.NET

❑ It is small and simple, making it easy to download and install

❑ Its interface is very similar to Visual Studio .NET, which you may need to use in the future.

Although the best things in life are free, that is not necessarily the case with development tools. There
are some serious limitations to ASP.NET Web Matrix, particularly if you have used a more advanced tool
such as Visual Studio or Visual Studio .NET:

❑ IntelliSense, a Visual Studio tool that uses pop-ups to help in function and statement completion,
is missing in Web Matrix.

❑ There is no F1 option for quick help.

❑ Web Matrix does not have collaborative tools to help teams of programmers.

❑ The basic coding model is not code-behind (which we encourage you to use in the later part of
the book). Web Matrix generates inline code.

❑ You do not get line-by-line error checking like in Visual Studio .NET (a big help if you are prone
to typing and syntax mistakes).

❑ Web Matrix does not have a built-in debugger, watch windows, or immediate windows, all of
which are useful troubleshooting tools available in Visual Studio.

❑ As you develop more complex pages, you might have to manually compile assemblies using the
DOS command line. Some of these features may be implemented in future versions of Web
Matrix as people create different add-ins.

Overall, ASP.NET Web Matrix is a fine choice for a beginner. When you want to work faster and on
larger projects, you can upgrade to Visual Studio .NET.

726

Appendix B

Starting ASP.NET Web Matrix
First download and install ASP.NET Web Matrix as described in Chapter 1. If it is already running, then
exit the software. Before starting ASP.NET Web Matrix, create your BegASPNET11 folder as described in
Chapter 1. Within that folder, create a MatrixPractice folder and then start ASP.NET Web Matrix. After
it loads, you get a wizard to create a new document. For now, change the location to the nascent
MatrixPractice folder and then change the filename to NewFile. You do not need to type an
extension.

Keep all other options the same, especially the selection of Template = General, and in the top right
graphical selector keep the choice of an ASP.NET page. Click OK to create the page. You will see a
window with the title NewFile.aspx. Double-click on the title bar to maximize the window.

The Screen
Let's start with a quick tour of the areas on the screen. The Web Matrix screen looks similar to Figure B-1:

Figure B-1

727

Web Matrix Quick Start

The screen has six broad regions. First is the menu toolbar as shown in Figure B-2. This has the standard
File, Edit, Window, and Help options as well as some choices discussed later in this appendix.

Figure B-2

There are one or more toolbars below the menu as shown in Figure B-3. Again, many of these tools are
familiar to you from other Windows applications. We will cover most of the new ones in this tutorial.

Figure B-3

To the left is a Toolbox with five subsections (as seen in Figure B-4), which shows an expanded view of
the Web Controls toolbox: HTML Elements, Web Controls, Custom Controls, Code Builders, and My Snippets.
Click on one of these to expand a group of options.

Figure B-4

728

Appendix B

The center of the screen is the Page Space, where you type in the code for the page. Later we will discuss
the four tabs at the bottom that change the view between Design, HTML, Code, and All as shown in Figure
B-5:

Figure B-5

The Workspace is similar to Windows Explorer as you can see in Figure B-6. You should see all currently
connected drives, local and networked. This area of the screen can switch to display available database
connections by clicking on the Data tab:

Figure B-6

The Properties space at the bottom-right can display one of three sets of information: properties, the class
browser, or a connection to the ASP.NET Web Matrix community. When you first open your page, the
Properties box will be empty as shown in Figure B-7:

729

Web Matrix Quick Start

Figure B-7

When you have controls on your Web pages, you will be able to select a control and view its properties
as shown in Figure B-8:

Figure B-8

Each area can be resized. In addition, the toolbar can be removed completely by hitting F2. Now that
you know your way around the screen, let's begin to use Web Matrix to create ASP.NET Web pages.

How to Enter Code
You can add code to an ASP.NET page in four ways:

❑ Web Matrix automatically generates some code on your page. You have already observed this
technique when you created the NewFile.aspx (Figure B-1) file. The automatic code includes a
page designator (in yellow), the <script> and <form> tags, and dividers for the HTML, head,
and body of your page.

❑ You can type code directly into the page space at the center of the screen. Notice the four tabs at
the bottom of the page space. If you click on All, you will see the page presented in the same
way as if you were working in Notepad.

❑ You can add code using the Toolbox on the left side. Position your insertion bar on the page,
open a group in the Toolbox, and double-click an option. Under Web Controls there are ASP.NET-
enabled controls, and under HTML Elements there are various tags.

730

Appendix B

❑ You can select a control and make changes in the Properties table. Code will be written or re-
written automatically to the page.

In the following Try It Out, we will try adding code to our page in each of the four possible ways:

Try It Out Code Entry
1. Open NewFile.aspx and choose the All view. Observe that ASP.NET Web Matrix has already

entered some standard code. That is the first method of code entry.

2. Position your text insertion cursor just after the <body> tag, and type a simple line of text to
practice the second code-entry method:

<body>

Text for the page

<form runat="server">

3. Now position cursor in the <form> tag. You can keep the green comments or delete them – it
doesn't matter. In the Toolbox, expand the Web Controls and double-click on TextBox. The code
for the textbox is inserted in the page, demonstrating the third code entry method.

4. At the bottom of the page space, click on the Design tab. Select the new textbox with a single
click. When selected, there are eight gray handles around the object. The Properties section at the
lower right corner of the screen shows the table of properties for the textbox. (You may want to
drag up the top of this area to see more of the table.) Scroll down to the Width property and in
the right hand side column, type the number 50 and press Enter. Note the change in textbox
size. Switch back to the All view and observe the change to the TextBox tag in the form. That
was the fourth way to enter code, using the Properties box. There is no need to save the page
after entering the properties.

We have just demonstrated all four ways to enter text: automatically, by typing, by clicking a control in
the Toolbox, and by changing a value in the Properties table.

Saving and Viewing Pages
Pages are saved in the same way as in all Windows applications, by going to File | Save | Save As.
Always save files before attempting to view them in your browser. A common mistake is to make
changes to a page and view it without saving. The changes are not visible and you can easily get
frustrated. Also be sure that if you save a page called MyPage1 with a new name (say, MyPage2), then
switch to the browser, double check that you are looking at MyPage2 and not the original version.

A list of pages is visible in the Workspace in the right central area the screen. This area requires manual
refreshes using the tool provided. Select a folder (not a file) prior to clicking on the refresh icon.

As with all document windows within application windows, you can maximize or minimize your page
window. Multiple pages can be open at once and they can be tiled or cascaded using the Window menu.

731

Web Matrix Quick Start

Most programmers adjust the sizes of areas to suit the amount of screen they want to devote to code and
to the various tools.

You can work on pages in one of two modes, depending on whether or not you want Web Matrix to
revise your code to conform to XHTML standards. These revisions will not affect the appearance of the
page in the browser; it just changes the indenting, tabs, returns, and the use of closing tags.

❑ Design Mode will have code layout revised to meet the XHMTL standards.

❑ Preview Mode leaves your spacing, indents, tabs, and returns as is.

The Web Matrix mode can be set using Tools | Preferences | WebEditing | General. If you select Preview
Mode, the formatting will never change. If you pick Design Mode, the code will be reformatted. Within
Design Mode, you can start your pages in either the Design view (which means they will be automatically
reformatted to XHTML before being displayed to you) or you can set the pages to open by default in
Source (the Code) view. The word design is used two ways. Design mode reformats code layout to meet
XHTML standards. The Design view is a way to look at a page. In either case, your change to the mode
only takes effect the next time you open a page; it does not apply to currently open page windows.

You have six options for viewing your work in the page screen. Four are available in Design Mode and
two in Preview Mode. In the Design Mode, you will find:

❑ The Design view that shows the page similar to how it will appear in a browser. In this view,
you can use various layout tools, such as absolute position. A page shown in Design view will
always be reformatted to XHTML.

❑ The All view that shows all of the code on the page.

❑ The HTML view that shows only the non-script part of the page – the HTML tags.

❑ The Code view that shows only the script part of the page.

The Preview Mode supports two other types of views:

❑ The Preview view is similar to Design view in that it shows approximately what the page will
look like in a browser. The Toolbox is not available, but you can type in text.

❑ The Source view displays all of the code and the toolbox is available.

None of these view options will display the result of executing code. For example, if you set the text of a
label in the code of the Page_Load() event procedure to Bingo, you would still see the default label text
in all the preceding views.

If you don't want XHTML reformatting, use the Preview Mode. If you use the Design
view, select a default of Preview and don't switch to Design view manually. If you do
want reformatting to XHTML format and want the design tools, use the Design Mode.

732

Appendix B

To run scripts, you must actually serve the page through IIS+ASP.NET or a substitute. Web Matrix
includes a substitute (similar to the classic ASP Personal Web Server). To run a page, first save it (Ctrl+S)
then strike F5 or select View | Start. Web Matrix will provide a Start Web Application dialog box for which
you can accept the default port. We recommend that you change the application directory to the root of
your project, C:\BegAspNet11 as shown in Figure B-9. Now you can serve pages from anywhere in
your Web application.

Figure B-9

Your computer will start a server process and display your page. Its scripts will be processed. You will
see a pop-up notice stating that the service has started along with an icon in the tray as shown in Figure
B-10. Once the server is running, you can view other pages without restarting the server.

Figure B-10

Try It Out Formatting Modes, Views, and Serving Pages
In this exercise, we will look at a simple page in various views and in a browser. In each case we will pay
attention to our capabilities to work on the page.

1. Start Web Matrix but don't create a new file. Choose the Design Mode | Source setting by going
to Tools | Preferences | Web Editing | General. Note that in Design Mode, your code will be
reformatted to XHTML whenever you view a page in the Design view.

2. In the MatrixPractice folder create a file named Exercise-Views.aspx. Double-click the
title bar to maximize the page. Confirm that you are in the All view. You can leave the green
comments or delete them.

3. Staying in All view, add a <title> into the header. Then type View Exercises in the <body>
section. Position your cursor within the <form> tag and use the toolbar to add a label within the
form. Add an attribute for ID="lblTest". Change to the Design view, select lblTest, and
change its Text property (in the property box) to Default text. Save the file. You have now added

733

Web Matrix Quick Start

code to your page in several ways, and the section of interest in the All view should be as
follows:

<body>

View Exercises

<form runat="server">

<asp:Label id="lblTest" runat="server">Default Text</asp:Label>

</form>

</body>

4. Now let's experiment with the feature that reformats to XHTML. In the All view, change the
style in which the tags are typed as follows. Start by removing the spaces to the left of the
<asp:Label…> tag. Then change the label to the single tag form. Your label tag should look like
the following:

<form runat="server">

<asp:Label id="lblTest" runat="server"/>

</form>

5. Switch to the Design view and back to All view. Note that whenever you switch to the Design
view, the formatting of your code is changed to conform to XHTML standards.

6. Close the page. Change your preference to Preview Mode and reopen the page. There are now
two different views available: Preview and Source. Note that in Preview Mode there is no
reformatting to XHTML. Also, in Preview Mode, you lose the toolbox and most of the icons on
the toolbars.

7. Close the page, change your preference back to Design Mode | Source, and reopen the page.
Staying in the All view, type the following between the <script> tags. Pay careful attention to
the punctuation. This script code (as you will learn when you read the early chapters of the text)
changes the text in lblText when a server serves the page:

<script runat="server">
void Page_Load()
{

lblTest.Text = "New Text";
}

</script>

8. Switch to HTML view; you will only see the non-script part of the page. Switch to the Code view
and you will see just the code. Switch to the Design view. Note that even though we have the
new line of code in the script, the label's text does not change. Scripts are only executed (carried
out) when the page is actually served by a server; in Design and Preview views it is only being
displayed within ASP.NET Web Matrix.

9. With the page open in any mode and any view, click F5 to start the ASP.NET Web Matrix server
and see the page in your browser. Accept the port, but change the Application Directory to
C:\BegAspNet11. It could take up to two minutes for the server to start and prepare the page.
Note that when you view the page in your browser, the server is actually serving it and thus the
script is run and the text of the label changes.

734

Appendix B

Reusing Code
You will probably find yourself using the same small section of code on many pages. You can write it
once, save it in Web Matrix, and then drag and drop it into subsequent pages. Once it is written, select
the code and drag it into the toolbox category named My Snippets. After this, you can right-click and
rename the snippet. To insert a snippet into a new page, merely position the page cursor and double-
click on the snippet's name in the toolbox. Select the text with your mouse cursor in the ASPX code on
the left edge of the lines so that you are selecting whole lines. Selecting partial lines leads to formatting
inconsistencies when you later paste the code.

In the following exercise, you will create a snippet to put a title in your pages.

Try It Out Saving and Using Snippets
1. Open Web Matrix. In the workspace, select C:\BegASPNET11\MatrixPractice. Right-click

and choose Add New File. In the top left corner, ensure that Templates: (General) is selected, and
on the right side, the ASP.NET Page icon is selected. Confirm that the location is
C:\BegASPNET11\MatrixPractice, then enter the file name as SnippetSource.aspx. The
page should open in the page space; double-click on its title bar to maximize the page.

2. Switch to the All view using the tab at the bottom and add a title as follows:

<html>
<head>
<title>Example</title>

</head>
<body>

3. Select the entire title line by clicking in the left margin and then drag the selection to the My
Snippets section of the Toolbox. Right-click on the new snippet in the toolbox and rename it
Title.

4. Now that our model of code is saved, we can customize the actual title in this page, as follows:

<head>
<title>Snippet Source Example</title>

</head>

5. Now let's use the snippet in a new page. Create a new page named SnippetTarget.aspx
following the same actions as in Step 1 of this Try It Out. Position the insertion bar after the head
tag and then double-click on the Title snippet in the Toolbox. Finish the job by adding the text
Snippet Target to the <title> of SnippetTarget.aspx.

Class Browser
In Visual Studio .NET you automatically get a display of various options as you type (IntelliSense). But
in Web Matrix you have to find the names of those properties and their values on your own. The process
is somewhat cumbersome and non-intuitive. After a few months of writing pages, the lack of intellisense
may be the number one reason you pay the money for Visual Studio .NET.

735

Web Matrix Quick Start

The names of properties and their values are held in the class browser. It shares screen space with the
properties window in the lower right of the Web Matrix screen. Click on the Classes tab, and then you
will probably want to make the window wider and higher while you use it. F2 toggles the Toolbox on
and off to make more room. In the class browser, you will see a list of the names of classes, many of
which will be completely foreign to your experience. Let's run through an example that shows how to
use the tool.

Some of these examples use vocabulary and theory covered in the book, so if you've just started reading,
you may have to follow the steps without a complete understanding of the terminology.

The technique to use the class browser consists of five steps:

1. In the Properties window, switch to the Class tab

2. Expand a class until you see the object of interest, and then double-click on the object to open its
description in the central screen

3. In the central screen, expand the members of the object until you see the item of interest

4. Double-click on that item to see a description

5. Click on the hyperlink to read further documentation

Note that when you open a class browser page, it is a sister to your ASP.NET pages in the center of the
screen. You can switch between the windows with Ctrl+F6 or by going to Windows and then selecting
your page. You can also tile the ASP.NET page and the class browser page.

In this exercise, we will use the class browser to see if we can set the Text property of a checkbox to a
certain alignment.

Try It Out Class Browser Property Look-Up
1. Create a page named ExerciseClassBrowser1.aspx in your MatrixPractice folder. Add

an asp:CheckBox (from the Toolbox Web Controls). Be sure you use CheckBox, and not
CheckBoxList. Now you need to find out if you can align the text.

2. Open the class browser by selecting the Class tab at the lower right. Recall that all <asp: >
controls are part of the ASP.NET Web Controls class. Find that class in the list (near the top) and
expand it by clicking on the + sign. In the list you see your <asp:CheckBox>. Double-click on it
to open information on the control in the central part of the screen. On the left is a tree that gives
you options to view the properties, methods, and other members of the CheckBox control. If you
expand Properties, you see a TextAlign property available (see Figure B-11):

736

Appendix B

Figure B-11

3. To know the syntax and possible values, double-click on the TextAlign property in the left side
of the page (Figure B-11) and you get some details in the center panel. These details are not of
much use so click on the link to read MSDN documentation on the Web.

4. The Web page gives many details that are of little use to you. However, if you scroll down you
can see an example that shows the proper syntax. Near the top of the page is a section on
property values with a link that takes you to a table of values, including Left and Right.

5. Now that you know that the asp:CheckBox control supports alignment of text and have learnt
the acceptable values, add the following to your page. Remember to use Ctrl+F6 to switch
between the ASPX page and the class browser information page. Take a look at the Design view
or Preview view in the tab at the bottom of the page space. Change the TextAlign value to
right to see the difference:

<form runat="server">
<asp:CheckBox id="CheckBox1"

runat="server"
textalign="right">

</asp:CheckBox>
</form>

737

Web Matrix Quick Start

What to Study Next
Web Matrix is introduced in detail through a free on-line book in PDF format. You can access the book
by going to Help | Help Topics, and then scrolling down to Finding Answers and clicking the link to the
book. There is also a guided tour of ASP.NET Web Matrix available on the same page. Additional
resources are listed in the Web Community option tab below the Properties area.

ASP.NET Web Matrix offers many layout options that we did not cover here because they are not
germane to the coding focus of this book. It is well worth your time to learn about absolute position,
alignment, snap-to-grid, and making controls the same size. All of these options are only available in the
Design view when the page is in Design Mode (they rely on XHTML).

Another important feature is the find and replace facility under the Edit menu. Find... is invaluable when
trying to locate a given variable on a page. Likewise, you can save a lot of time by using Replace... when
you have to change a variable name. This also prevents mistakes while retyping manually. Many times
you will be working on pages on a remote site and transferring the pages using FTP. ASP.NET Web
Matrix workspace supports FTP connections to look like a local drive.

Summary
ASP.NET Web Matrix is a free tool for developing ASP.NET Web pages. However, ASP.NET Web Matrix
has limitations, including lack of tools that speed page development and reduce the number of errors.
ASP.NET Web Matrix also lacks troubleshooting and debugging tools. The logical upgrade path is Visual
Studio .NET.

The ASP.NET Web Matrix environment includes panes displaying tools, properties of objects, an
explorer-like view of your site, and a central area called the page space, where you type. The Toolbox
actually has five or more toolboxes overlaid.

You can enter code by typing, by double-clicking a tool icon, or by pasting a saved snippet of code. The
characters of your page will automatically color-code according to their purpose. Code is edited and
saved in essentially the same way as when you work with Word.

You can work in one of two modes. The Design mode will reformat your code to meet the XHTML
standards. Although the reformatting does not affect functionality, it changes tabs and enters, and may
add certain closing tags. The other mode, Preview, does not change your code but does limit the tools
ASP.NET Web Matrix makes available. You can view the page space using one of five options, ranging
from just the code, to just the user interface, to a preview of the entire page.

By clicking F5 you can start the ASP.NET Web Matrix Web server to enable you to view a page without
actually serving it on a dedicated server. Once the Web server is started, Web Matrix allows you to
create, serve, and browse a page all on one machine.

738

Appendix B

Code that you write and expect to reuse on other pages can be saved to the My Snippets toolbar. A
double-click on a saved snippet makes a copy into the current page at the location of the insertion bar.

Web Matrix includes a class browser that provides the members of almost all objects. The class browser
can be difficult for programmers new to .NET, but as your knowledge increases, the class browser can
prove to be very useful.

739

Web Matrix Quick Start

C
The Wrox United Database

Starting from Chapter 10 in this book, we worked through examples that were based around a
fictitious soccer league team called Wrox United. These examples relied on a database for match
and team information. In this appendix, we'll look at:

❑ How the Wrox United database is structured

❑ Downloading the database from the Wrox Web site and preparing it for use

The Database Design
As we've seen in the examples in Chapters 10 to 13, the Wrox United database has several different
tables that store data about teams, players, matches, and much more. Let's take a look at a diagram
of the database. The Figure C-1 was produced in the Relationships view in Microsoft Access:

Figure C-1

Let's look at each of the different tables in turn, and see what columns they contain.

Players
This table holds the details for each player in the club. These players can be members of one or more
teams and can play in different positions. The Players table holds the core information for each player
and the foreign key information to link to the Status table, which means that each player can be flagged
as active, injured, or retired. This is a one-to-many relationship, where each player can be one of many
possible status types.

Primary key-foreign key one-to-many relationships are a core part of relational database design, and
enable us to minimize repetition of data in the database. It also aids consistency, and avoids several
different variations of the same data being stored.

For example, without this relationship, we could include a Status column in the Players table to
store text describing the active status of a player. This is a fine solution if you have tight control over the
data that's inserted into the database, but if you allow users to enter custom strings of text for the values
in this column, you could end up describing a player as being injured using the text "injured",
"Injured", "sick", or "ill" instead of simply selecting the Injured status from the Status table.

Status
The Status table stores the availability and status information that each player can select from or
specify. The available status types in the samples provided in the code download are Active, Injured,
or Retired. However, you can enter whichever type you like in your database.

 Column Type Description

PlayerID Integer / AutoNumber

Primary Key, Unique

Unique identifier for each row in the
database, generated automatically by
the database whenever a new row is
inserted.

PlayerName String / Text, 50 characters The name of the player.

JoinDate DateTime The date that the player joined the club.

Status Integer / Number

Foreign Key (to the StatusID
column on the Status table)

A link to the Status table, used for
specifying whether a player is active,
injured, or retired.

Profile String / Text, 255 characters A brief description of the player.

SiteLogin String / Text, 20 characters A login name used to access restricted
parts of the site.

SitePassword String / Text, 20 characters A password used to access restricted
parts of the site.

742

Appendix C

Teams
The Teams table stores information about each team in the Wrox United club. The name of the team and
any associated notes can be stored here.

PlayerTeams
This is a join table between the Players table and the Teams table. One player can be in many teams,
and each team consists of many players. In this situation, we have a many-to-many relationship, and
thus need to include a join table between these two tables to store information about both sides. In this
way, the PlayerTeams table now stores many unique combinations of players and teams (hence if you
were one of the players, you could join Team A only once but you could also join Team B).

The other item of interest in this table is the Position column, which is a foreign key link to the
Positions table. This enables you to specify the position for each player in a given team.

 Column Type Description

PlayerID Integer / Number

Part of Primary Key

Link to the ID of the Player.

 Column Type Description

TeamID Integer / AutoNumber

Primary Key, Unique

Unique identifier for each row in the
database, generated automatically by
the database whenever a new row is
inserted.

TeamName String / Text, 50 characters The name of the team.

Notes String / Memo Description of the team, plus any
additional information that may be
useful. This field is long enough to hold
several thousand characters of data.

 Column Type Description

StatusID Integer / AutoNumber

Primary Key, Unique

Unique identifier for each row in the
database, generated automatically by
the database whenever a new row is
inserted.

Status String / Text, 50 characters Description of the status (injured, active,
retired). Each player in the Players team
has to select one of these values.

743

The Wrox United Database

Positions
This table stores details of the available positions that a player can assume in a particular team.

Games
The Games table stores information about each match, including who is playing the match, where the
match will take place, what type of match it is, when the match is scheduled, and the score, when
known. Many columns in this table are foreign keys to other tables, reusing data and centralizing
information where possible.

 Column Type Description

GameID Integer / AutoNumber

Primary Key, Unique

Unique identifier for each row in the
database, generated automatically by
the database whenever a new row is
inserted.

Location Integer / Number

Foreign Key (to the
LocationID column on the
Locations table)

Used to choose a location for the game,
from the list defined in the Locations
table (for example, home or away.)

 Column Type Description

PositionID Integer / AutoNumber

Primary Key, Unique

Unique identifier for each row in the
database, generated automatically by
the database whenever a new row is
inserted.

PositionName String / Text, 50 characters Name of a position (left wing, defence,
and so on).

 Column Type Description

TeamID Integer / Number

Part of Primary Key

Link to the ID of the Team. Used
together with the PlayerID column, the
Primary Key constraint specifies that
each combination of PlayerID and
TeamID must be unique.

Position Integer / Number

Foreign Key (to the
PositionID column on the
Position table)

Used to specify, for each combination of
Player and Team, the position the player
plays in on that team.

744

Appendix C

GameTypes
This table is used to store the 'type' of games – for example, friendly or league.

Locations
This table stores types of location for a game – for example, home or away.

 Column Type Description

LocationID Integer / AutoNumber

Primary Key, Unique

Unique identifier for each row in the
database, generated automatically by
the database whenever a new row is
inserted.

 Column Type Description

GameTypeID Integer / AutoNumber

Primary Key, Unique

Unique identifier for each row in the
database, generated automatically by
the database whenever a new row is
inserted.

GameType String / Text, 50 characters The type of a match, for example,
friendly or league.

 Column Type Description

WroxTeam Integer / Number

Foreign Key (to the TeamID
column on the Teams table)

Link to the Teams table to select which
Wrox team is participating in the game.

OpposingTeam Integer / Number

Foreign Key (to the
OpponentID column on the
Opponents table)

Link to the Opponents table to select
which opposing team is participating in
the game.

GameType Integer / Number

Foreign Key (to the
GameTypeID column on
GameTypes table)

Link to the GameTypes table to select
the type of game (for example, a
friendly or league match.)

Date DateTime The date of the match.

WroxGoals Integer / Number The number of goals scored by the
Wrox team.

745

The Wrox United Database

Opponents
The Opponents table stores details of the other teams in the league, and details of where they are based.

Fans
This table is completely standalone compared to the other tables. It has only one column and is used for
storing email addresses of fans. You could expand this table to store more details about each of the fans
registered in the database. Since email addresses are unique to an individual (in most cases), we can
make this column the primary key for the table without the need for an additional key column.

 Column Type Description

FanEmail String / Text, 255 characters

Primary Key, Unique

The email address of a fan. Since
email addresses are individual, this
field can be given a unique
constraint and assigned as a
primary key for the table.

 Column Type Description

OpponentID Integer / AutoNumber

Primary Key, Unique

Unique identifier for each row in
the database, generated
automatically by the database
whenever a new row is inserted.

OpponentName String / Text, 50 characters The name of the opponent.

OpponentDescription String / Memo A description of the opponent that
could be used, for example, to
describe their strengths and
weaknesses.

OpponentLocation String / Text, 50 characters The name of the home location of
the opponent.

 Column Type Description

LocationType String / Text, 50 characters The type of location (for example, home
or away.)

746

Appendix C

Installing the Database
The quickest and simplest way to obtain a copy of this database is to download and install the
appropriate database from the code download section of this book on http://www.wrox.com/. Access and
MSDE are quite different in structure, so the process for installing each of them is also different. Let's
look at how to install the Access version of the database first.

Installing the Access Database
Access is a simple database storage format. It's not designed for heavy usage, or for storing large
amounts of data. However, for small database projects, it's very easy to use and distribute.

To install this database, obtain a copy of WroxUnited.mdb from the code download for this book, and
save it in the appropriate folder on your hard drive. As long as the path to the .mdb file is specified
correctly in your connection string, you will be able to read data from the database.

There is, however, one adjustment you will need to make if you want to make changes to the database
programmatically. Once you have downloaded the database, you need to right-click on the database file
and select Properties to get the dialog shown in Figure C-2:

Figure C-2

Ensure that the Read-only checkbox is unchecked, and you will be able to make modifications to the
contents of the database.

Installing the MSDE Database
MSDE databases are more tricky to install than Access databases, but since they are based on the more
powerful SQL Server database engine, they are much more robust and scalable.

747

The Wrox United Database

MSDE databases are registered with the MSDE database server. The main database data file has a file
extension of .mdf, and it has a corresponding log file with an extension of .ldf. To install the database,
you need to have copies of the WroxUnited.mdf and WroxUnited_log.ldf files from the code
download section.

The easiest and most reliable way to install a new MSDE database from these two files is as follows:

1. Open up Web Matrix and switch to the Data view in the pane at the top right. In here, click the
Add Database Connection button, which is the second button from the right in the top panel of
buttons (see Figure C-3):

Figure C-3

2. In the window that appears, create a new MSDE database as shown in Figure C-4:

Figure C-4

3. A dialog will pop up asking for the name of the database. Click the Create a new database link at
the bottom of the dialog as shown in Figure C-5:

You must have a copy of MSDE/SQL Server installed before you can install the
WroxUnited MSDE version of the database. SQL Server is a full-scale product that is
available for purchase or as part of some MSDN subscription options. MSDE is a
free download from Microsoft and is the same as SQL Server, but with a more
restrictive license. For more information, you can consult the Microsoft Web site
(http://www.microsoft.com). Alternately, you can download MSDE from
http://www.asp.net/msde/default.aspx?tabindex=0&tabid=1.

748

Appendix C

Figure C-5

4. Finally, when prompted, enter WroxUnited as the name for the new database and click OK as
shown in Figure C-6:

Figure C-6

5. You will now see the new empty database appear in the Data pane as in Figure C-7:

Figure C-7

6. This is where the fun begins – close down Web Matrix. Now, on the bottom right of your screen
– your system tray – you will see a SQL Server/MSDE icon with a green arrow next to it (you
may have to click the round button with an arrow in it, to unhide the SQL Server icon). Right-
click this icon and select MSSQLServer – Stop as shown in Figure C-8:

Figure C-8

749

The Wrox United Database

7. Once the service has stopped, open an Explorer window, and navigate to C:\Program

Files\Microsoft SQL Server\MSSQL\Data.

This location may be slightly different on your system. If, for example, you are running a named
instance of SQL Server, you will need to navigate to the MSSQL$InstanceName directory.

8. In this folder, you need to replace the two WroxUnited files (WroxUnited.mdf and
WroxUnited_log.ldf) with the files available in the code download as shown in Figure C-9:

Figure C-9

9. Once you have done this, restart your SQL Server (again, by right-clicking on the icon in the
System Tray), and then reopen Web Matrix. Note that it may take a couple of moments for your
SQL Server to restart completely (hover your mouse over the icon in the System Tray for the
exact status of the service – once it says Running - \\MachineName - MSSQLServer, you know
that the service has fully restarted.

10. Expand the (local).WroxUnited node in the Data pane in Web Matrix, and the tables should have
been imported successfully as shown in Figure C-10:

750

Appendix C

Figure C-10

751

The Wrox United Database

D
Web Application

Development Using Visual
Studio .NET

This appendix is a brief overview of the key elements of Visual Studio .NET that you can use to
create Web applications. You should work through the examples in Chapters 10-13 to understand
the sample application demonstrated in this appendix, and to understand the programming
concepts we'll be using.

Visual Studio .NET is a huge tool. In the same way that you can start using Microsoft Word as a
beginner one day and still be learning about its many different features several years later, Visual
Studio .NET has numerous wizards and tools available if you know where to look. This appendix
concentrates on the core features that you'll use as a Visual Studio .NET Web developer.

Visual Studio .NET comes in many different packages. The lowest end, designed for developers on
a budget, is the language-specific edition (Visual C# Standard or Visual Basic .NET Standard).
Those with MSDN subscriptions or larger wallets may use Visual Studio .NET Professional or
Visual Studio .NET Enterprise Architect. Each edition has a different subset of features available.
The language editions are not only language-specific, but also have the following key restrictions:

❑ No option to create Class Library or Server Control projects.

❑ No option to modify the structure of SQL databases (to create or edit tables in the Data
Explorer). However, you can still view information in the database.

There are ways around each of these limitations – you can add classes to other projects (as we will
do in this appendix) for adding compiled data access components or server controls to your Web
applications. You can even modify the structure of SQL Server databases in Visual Studio .NET by
using the SQL window and executing SQL commands directly against the database. However, a
better idea is to edit databases using Web Matrix – it's a free tool, and you can edit existing
databases or even create new databases using the Web Matrix Data pane.

In this appendix, we'll recreate some of the functionality built across Chapters 10-13 of this book,
concentrating on how to achieve similar results using the Visual Studio .NET environment and
associated tools. We'll look at:

❑ Creating a Web application project, and the files that are created by default.

❑ Visual Studio .NET's Solution and Project based architecture.

❑ The main features of the environment that you'll need to be familiar with.

❑ Adding HTML and Web controls to pages and adding some interactivity.

❑ Creating custom user controls and adding them to pages.

❑ Moving data access code into a separate class file (a technique that can be duplicated for any
custom server controls you may need to write).

We won't be discussing how any of the code in this appendix works, because this is covered in depth in
the earlier chapters.

Creating a Web Application Project
Open up Visual Studio .NET and create a new ASP.NET Web Application by clicking on either the New
Project button on the Start page, or by selecting File | New Project from the main menu as shown in Figure
D-1:

Figure D-1

Name the new project WroxUnited and click OK. Wait a few moments for Visual Studio .NET to create
the new project and you will end up with the screen as shown in Figure D-1:

In this appendix, all of the exercises will assume that you only have Visual C# .NET
Standard Edition. This will ensure that you can try out these exercises for yourself on
any of the Visual Studio .NET range of products.

754

Appendix D

Figure D-2

Features of the Visual Studio .NET Environment
❑ Solution Explorer: Contains the root Solution and any sub-projects represented in a hierarchical

(tree) arrangement. Because we only created a project, a root solution was created automatically.
This is where you can double-click files to open them, right-click to rename them, or select
different views on the same file.

❑ Toolbox: Contains all the controls you'll need to use to create Web pages – simply drag and
drop, or double-click, to add each control.

❑ Server Explorer (not shown): Clicking the tab for the Server Explorer opens up another
hierarchical tree representation of the server – you can use this to create connections to
databases and view data held in these databases.

❑ File Selector Tabs: Contains a corresponding tab for each open file – simply click to make the
selected file visible.

755

Web Application Development Using Visual Studio .NET

❑ Properties Pane: Contents change dynamically to reflect the properties available to the currently
selected object. These properties change dynamically. In the screenshot shown in figure D-2, the
properties for the Web page itself are visible. Try clicking on items in the Server Explorer to view
properties on each item in there. Later on, you'll see how to view properties on controls and edit
them in this pane.

❑ HTML / Design View: Switch between the Design Surface or HTML view of a web page, similar
to the behaviour seen in Web Matrix. Code view can be displayed by right-clicking on a page in
server explorer and clicking View Code.

❑ Design Surface: In Design view, you can drag and drop controls from the toolbox onto the page.
By default, elements are placed using absolute positioning (wherever you place them, they stay,
and have x and y coordinates to place them on a page). Normally, we use Flow view (like in
Web Matrix by default) to add controls to the top left of a page and work downwards, then use
tables to arrange elements.

Visual Studio .NET Solutions and Projects
When you develop Web applications in Visual Studio .NET, you need to move conceptually from
creating individual files to creating Web projects. You can create many different projects, and combine
them into a solution. A solution is a collection of related projects. For example, you may have a solution
that contains four projects. One project could be a Web application that is accessed by general visitors to
a site. Another project could be a Web application that has user or role level access restrictions (an
administration site that updates the application created in the first project). The third project could be a
web service that exposes some of the functionality from the central web server, and the fourth project
could be a setup project that can be used to install all of the other applications onto a Web server.

If you create a new project, without first creating a blank solution, a solution file will be created at the
same time, and stored in a central location. By default, solution files for Web applications are created in
the \My Documents\Visual Studio Projects\ folder., hence you will find a folder within this
location called WroxUnited that contains WroxUnited.sln and WroxUnited.suo. A .sln file is the
solution file, and contains information about which projects exist within the solution. A .suo stores user
preferences associated with the solution, including information on which files were open in the editor
when you last opened the solution.

In contrast, all ASP.NET code associated with a project (and each individual project file) will be created
within your web root by default (c:\Inetpub\wwwroot\). If you look at the
C:\Inetpub\wwwroot\WroxUnited folder on your system, you'll see (among other files)
WroxUnited.vbproj. This is the project file for the web application.

One Visual Studio .NET solution can consist of one or many projects. The solution file itself (the .sln) is
a simple text file that describes which projects exist in the solution, and information about how they are
compiled. Creating a new project without first creating a solution means that a new solution file will be
created. However, you may prefer to first create a new blank solution and then add new projects to that
central solution (for example, having a solution called "BigWebSite", consisting of several projects
including "SitePages" and "Administration Site" projects).

756

Appendix D

A project can be a member of more than one solution – the solution is simply a handy way of collecting
together related projects so that the appropriate projects are all loaded when you open a solution in
Visual Studio.

Files in a Web Application Project
By default, Visual Studio .NET will create many files whenever a new Web application is created
including the following:

❑ A Default.aspx web page (or web form, as Visual Studio .NET refers to it).

❑ A relatively empty web.config file containing basic site configuration options.

❑ A relatively empty Global.asax file containing event handler placeholders to which you can
later add code.

❑ A Styles.css template stylesheet that you can use, if you choose, to instantly add some style
to your pages.

❑ An AssemblyInfo.cs file that you'll rarely (if ever) need to amend in order to customize how
your applications work.

You will also notice that the Solution Explorer contains a References tab that contains the names of
various DLL files that are referenced whenever Visual Studio .NET compiles your code.

Visual Studio .NET only uses the code-behind method of creating Web applications, so although you
can't see it by default, Default.aspx has an associated code-behind file called Default.aspx.cs.

Working with Web Pages
In the Solution Explorer, right-click on WebForm1.aspx and rename it to Default.aspx. Then, click on
the design surface and look at the Properties pane. Find the entry for pageLayout and change it to Flow
Layout as shown in Figure D-3:

Figure D-3

757

Web Application Development Using Visual Studio .NET

Now let's add some basic content. In the toolbar just above the main pane is a drop-down box, much like
in Web Matrix, where you can select a text style. Select Heading 1 from this menu as shown in Figure D-4:

Figure D-4

Type in Wrox United as the header and press Enter. We'll be replacing this later with a user control, but for
now, it helps to have a placeholder heading to identify the page.

Next, place your cursor directly below this heading, then select the Table menu and select Insert | Table to
add a table that we can use to arrange the items on the page that appear below the heading as shown in
Figure D-5:

Figure D-5

Add a table that has 1 row, 2 columns, and is 800 pixels wide as shown in D-6:

758

Appendix D

Figure D-6

Click inside the first cell and set its width to 580px in the Properties pane, then enter some Heading 2
style text that says Welcome to the Wrox United Web Site! as shown in Figure D-7:

Figure D-7

Next, click to place the cursor in the second cell. From the Toolbox, ensure that the Web Forms controls
are visible (click on the Web Forms bar if they aren't and they'll pop into view). Double-click a Label
control in the toolbox, then a TextBox, followed by a Button, and finally a RegularExpressionValidator (you
may have to scroll down to see this control using the down arrow at the bottom right of the active
control toolbox).

For each of these controls, name them lblRegister, txtEmailAddress, btnRegister, and
validEmail respectively. Set their text properties as shown in Figure D-8:

759

Web Application Development Using Visual Studio .NET

Figure D-8

Make sure you set the ControlToValidate property of the RegularExpressionValidator control to the
textbox control (txtEmailAddress).

You need to select an appropriate validation expression for the validator control. In the Properties pane,
select the ValidationExpression property, and click the ... icon. In the dialog that appears, select the
Internet Email Address expression and click OK:

Figure D-9

760

Appendix D

Compiling and Running Pages
This process is very simple to initiate – just click the Start button (the Play button on the main toolbar) to
run the page. Whereas Web Matrix simply ran the page, allocating a port if necessary, Visual Studio
.NET actually compiles the pages in the application, and you'll see this compilation process in action as
shown in Figure D-10:

Figure D-10

The Output tab will pop up whenever you compile and run your applications. If any errors occur, you'll
see them in here, and in the Tasks tab as well (located next to the Output tab at the bottom of the screen).
We'll see this in action later on.

Once the page has loaded, you will find that, without entering any code, you can see the validation
control in action as shown in Figure D-11:

761

Web Application Development Using Visual Studio .NET

Figure D-11

Adding Code to the Code-Behind Class
It's time to add some code to the page. The simplest way to display the code-behind file for this page is
to double-click the Button control as shown in Figure D-12:

Figure D-12

762

Appendix D

Notice that, similarly to Web Matrix, a Click event handler method signature has been generated
automatically in response to double-clicking the button.

Features of Code View
Notice the + and – signs next to each method. If you click on these, you'll see them expand and contract
the code contained within them – this makes it much easier to navigate through big code blocks.

Notice the gray box labelled Web Forms Designer Generated Code – this contains code that is created for
you behind the scenes to relate the controls on the page to the code-behind file (as we saw in Chapter 12).
This appears in a gray box because the code within it is in a region. You can add custom regions to your
code files by adding the following lines at the top and bottom of the section you want to add to a region:

#region My Region
...
// Code to be contained in region goes here
...
#endregion

Once you add these statements, you can expand and contract the code contained between these two tags
using the + and – boxes next to the #Region line.

Adding Code to Methods
If you refer back to the version of Default.aspx in Chapter 11, you may recall adding code that reacts
to a user clicking the Register button on the page. Take the body of the btnRegister_Click method
from the Chapter 11 version of Default.aspx the in Chapter 11 and paste it in to VS.NET. Add the
highlighted lines to the sub, either by copying and pasting or typing (we'll discuss what happens when
you type in code in just a moment):

private void btnRegister_Click(object sender, System.EventArgs e)
{
string FanEmail = txtEmailAddress.Text;

//Check whether the email address is already registered
//If not, we need to register it by calling the AddNewFanEmail() method
if (!CheckFanEmailAddresses(FanEmail))
{
AddNewFanEmail(FanEmail);

}

// Email has been registered, so update the display and attempt write to a
//cookie
txtEmailAddress.Visible = false;
lblRegister.Text = "You have successfully registered for email updates";
btnRegister.Visible = false;

HttpCookie EmailRegisterCookie = new HttpCookie("EmailRegister");
EmailRegisterCookie.Value = FanEmail;
EmailRegisterCookie.Expires = DateTime.Now.AddSeconds(20);
Response.Cookies.Add(EmailRegisterCookie);

}

763

Web Application Development Using Visual Studio .NET

Notice that we haven't defined two important data-access functions yet, and these have been underlined
for us using blue squiggly lines. Also, the code has been highlighted appropriately as shown in Figure
D-13:

Figure D-13

We need to add the code that accesses the database in order to add a new user to the database,
depending on whether their email address has already been added to the database or not. However,
unlike Web Matrix, there aren't any useful data wizards on the left – unfortunately, we have to add the
code by hand, but don't worry, because Visual Studio .NET has a useful feature known as IntelliSense
that makes it all very easy. This will be discussed shortly. Let's look at the two methods we need to add.

Let's amend the code slightly from the way it is presented in the chapters (because we will be using the
SQL Server version of the database in this appendix), we will need to add the following code. For the
CheckFanEmailAddresses function:

In this example, we will connect to the SQL Server version of the WroxUnited
database, created in the previous appendix. For installation instructions and more
details, please refer to Appendix C.

764

Appendix D

public bool CheckFanEmailAddresses(string fanEmail)
{
string connectionString =

ConfigurationSettings.AppSettings["ConnectionString"];
System.Data.IDbConnection dbConnection =
new System.Data.SqlClient.SqlConnection(connectionString);

string queryString = "SELECT COUNT([Fans].[FanEmail]) FROM [Fans]" +
" WHERE ([Fans].[FanEmail] = @FanEmail)";

System.Data.IDbCommand dbCommand = new System.Data.SqlClient.SqlCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;
System.Data.IDataParameter dbParam_fanEmail =
new System.Data.SqlClient.SqlParameter();

dbParam_fanEmail.ParameterName = "@FanEmail";
dbParam_fanEmail.Value = fanEmail;
dbParam_fanEmail.DbType = System.Data.DbType.String;
dbCommand.Parameters.Add(dbParam_fanEmail);
int result = 0;
dbConnection.Open();
try
{
result = (int)dbCommand.ExecuteScalar();

}
finally
{
dbConnection.Close();

}

if (result > 0)
{
return true;

}
else
{
return false;

}
}

And for the AddNewFanEmail function:

public int AddNewFanEmail (string fanEmail)
{
string connectionString =

ConfigurationSettings.AppSettings["ConnectionString"];
System.Data.IDbConnection dbConnection =
new System.Data.SqlClient.SqlConnection(connectionString);

string queryString = "INSERT INTO [Fans] ([FanEmail]) VALUES (@FanEmail)";
System.Data.IDbCommand dbCommand = new System.Data.SqlClient.SqlCommand();

dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDataParameter dbParam_fanEmail =
new System.Data.SqlClient.SqlParameter();

dbParam_fanEmail.ParameterName = "@FanEmail";
dbParam_fanEmail.Value = fanEmail;
dbParam_fanEmail.DbType = System.Data.DbType.String;

765

Web Application Development Using Visual Studio .NET

dbCommand.Parameters.Add(dbParam_fanEmail);

int rowsAffected = 0;
dbConnection.Open();
try
{
rowsAffected = dbCommand.ExecuteNonQuery();

}
finally
{
dbConnection.Close();

}
return rowsAffected;

}

Just try typing in the first line of one of the methods, and press ctrl+space after the opening bracket and
you'll see that Visual Studio .NET will try to help you as shown in Figure D-14:

Figure D-14

Complete writing the first line, press Return, and add the opening and closing curly braces. You'll notice
now that you can expand and collapse the method, which will be useful once you have many different
methods in the code. You'll find that these kind of features save you a lot of time! Continue to add the

766

Appendix D

code for these two methods and see what happens as you type – IntelliSense will pop up with helpful
suggestions with each line you add. To accept a suggestion, either click on the appropriate suggestion
from the list, scroll through the list using up or down, and press Tab or Enter when the appropriate
statement is highlighted. To request IntelliSense, just use the ctrl+space combination as before.

There's one thing left to do before the page can run – we need a connection string! Open the
web.config that is created by default (double-click on it from the server explorer) and add the
following code to the top:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="ConnectionString"
value="server='(local)'; trusted_connection=true; integrated
security=SSPI; database='WroxUnited'" />

</appSettings>
<system.web>

...

You should see the screen as shown in Figure D-15:

Figure D-15

767

Web Application Development Using Visual Studio .NET

Finally, add another using statement to the top of the page:

using System;
...
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Configuration;
namespace WroxUnited
{

You can now run the page again, enter an email address as shown in Figure D-16, and add it to the
database:

Figure D-16

When you click the button, the display will change accordingly as shown in Figure D-17:

Figure D-17

Notice that invalid email addresses will cause the validation control to fire as seen in Figure D-18:

768

Appendix D

Figure D-18

Styling Controls and Pages in Visual Studio
.NET

So far, we've not looked at the HTML source for the page. You can do this by clicking the HTML tab at the
bottom of the main design area. In here, you'll see the HTML representation of all of the controls mixed
in with the default HTML code for the page.

Let's add a stylesheet to the application to give it a more familiar look and feel. Right click on the
WroxUnited project (the entry just below the main root Solution 'WroxUnited' node in the tree), and select
Add | Add New Item from the context menu as shown in Figure D-19:

Figure D-19

In the popup dialog that appears, scroll down the types of files until you find a .css, and enter
WroxUnited as the name for the .css file as shown in Figure D-20:

769

Web Application Development Using Visual Studio .NET

Figure D-20

Note there's a Styles.css stylesheet that's created by default with every new Web project. If you look
at this file, you'll see a wide range of styles that you can use 'out of the box' for new Web applications.
Since you already have all the styling needed for the current version of the Wrox United application, you
can remove this file from the project. If you right-click on this file, you can either select Exclude From
Project or Delete. Exclude From Project will remove the entry in the solution file for this file, but will leave
the physical file on your file system. Delete will permanently delete the file.

Back in the editor, you will see the newly-created stylesheet displayed in code form. To the left is the CSS
tree – select the Body style node and click the Build Style... button directly above this panel. This is shown
in Figure D-21:

Figure D-21

The style builder dialog will pop up as shown in Figure D-22. This is what you can use to apply a wide
range of styling attributes to the body element:

770

Appendix D

Figure D-22

You may recall that the CSS we used for the body element in Chapter 11 was as follows:

BODY {
background-image:url(images/background.gif);
color:"#000000";
font-family: georgia;

}

Let's build the style using the dialog. Set the Color to be black, then you could either enter the name
Georgia in the Family box as shown in Figure D-23:

Figure D-23

771

Web Application Development Using Visual Studio .NET

Or click the ... button to launch the Font Picker as shown in Figure D-24:

Figure D-24

To select a background image, you first need to exit this dialog, so click OK. Now in the Solution
Explorer, right-click on WroxUnited project and select Add Folder, name it Images. Highlight the folder,
right-click and select Add Existing Item to get the screen shown in Figure D-25. Select background.gif
from the Images folder of the Wrox United application built in Chapters 10-13 of the book (it's a very
small GIF file that, when repeated, applies a set of pale vertical stripes to the page, a bit like a soccer
shirt!):

Figure D-25

You should now have Figure D-26 in the Solution Explorer:

772

Appendix D

Figure D-26

Back in Style Builder for the body tag, select the Background icon on the left, and then click the ... button
next to the background image box as shown in Figure D-27 to select the image:

773

Web Application Development Using Visual Studio .NET

Figure D-27

Select the image from the dialog as shown in Figure D-28:

Figure D-28

Click OK twice to exit the Style Builder and the style will be built successfully. You can either build the
rest of the styles in this manner, or you can copy in the rest of the stylesheet from the code from the rest
of the book. For now, let's just add the code for the a tag. The original code for this was as follows:

a {
color:"#8b0000";
font-weight:bold;

}

774

Appendix D

Right-click on the Elements node in the CSS Browser and select Add Style Rule. Select the A tag as shown
in Figure D-29 and click OK:

Figure D-29

Back in Code view, if you attempt to type in the style, IntelliSense will help you as shown in Figure D-30:

Figure D-30

775

Web Application Development Using Visual Studio .NET

Working in HTML View
Once you have built the basic stylesheet, you need to add it to the page. In the <head> section of the
page (shown in HTML source view), add the <link ... > tag as shown below:

<meta name="vs_targetSchema"
content="http://schemas.microsoft.com/intellisense/ie5">

<link rel="stylesheet" id="css" type="text/css" href="WroxUnited.css" />
</head>

You could change the href to point to a Session object, like we did in Chapter 11, but we'll not be
implementing that in this example.

While you're in HTML view, change the <title> element of the page as shown below:

<head>
<title>Welcome to Wrox United</title>

This will ensure that the title bar of the page will have some more useful text in it for visitors to the site.

Switching back to Design view, you'll see the stylesheet has been applied as shown in Figure D-31:

If ever IntelliSense disappears, you can view it by pressing Ctrl+Space.

776

Appendix D

Figure D-31

Creating User Controls
It's time to replace the temporary header text in the page with a header control. Adding a user control is
again performed via the Solution Explorer. Right-click on the WroxUnited project and select Add | Add
Web User Control... as shown in Figure D-32:

777

Web Application Development Using Visual Studio .NET

Figure D-32

Name this control Header.ascx as shown in Figure D-33:

Figure D-33

778

Appendix D

The code used in the earlier chapters to create this control can be entered in HTML view, but first, you
need to add the images that we'll need. Right-click on the images folder and add the following files:

❑ headbg.gif.

❑ logo.gif.

❑ teamlogo.gif.

❑ chrish_s_t.gif.

❑ chrisu_s_t.gif.

❑ dave_s_t.gif.

❑ john_s_t.gif.

You can make multiple selections by holding down Ctrl when you click on each file.

Add a table to the header control that is 100% wide, with one row and one column. Delete the standard
values for the spacing and border attributes as shown in Figure D-34:

Figure D-34

For the row in this table, switch to HTML view and add a Style attribute. As you type, IntelliSense will
offer the Style Builder as shown in Figure D-35, so click on this as it appears:

779

Web Application Development Using Visual Studio .NET

Figure D-35

In the style builder, select the headbg.gif image as shown in Figure D-36, to use as the background for
this row:

Figure D-36

780

Appendix D

Once this style has been added, you can add the inner table. You don't need to be in Design view for this
– you can add a table in just the same way from HTML view. Position your cursor between the <td> and
the </td> and use the Table | Insert | Table... command from the main menu as shown in Figure D-37:

Figure D-37

Add a table that is 800 pixels wide, with one row and three columns. Again, delete the standard values
for the spacing and border attributes as shown in Figure D-38:

781

Web Application Development Using Visual Studio .NET

Figure D-38

Formatting Blocks of Code
I often find Visual Studio .NET a bit messy at times – after adding this table, you can see that the code
generated on my system was hardly tidy. In my default preferences (you can specify your own
preferences via Tools | Options from the main menu) I specified that I wanted all tags to be in lowercase
when editing HTML code, and I wanted to use two spaces indentation for all lines of code, yet the editor
added the code shown in Figure D-39:

782

Appendix D

Figure D-39

The solution to this problem is to select all the code and use the Edit | Advanced | Format Document menu
option. After running this, my code was spaced out a bit better, and my preferred capitalization rules
were followed as can be seen in Figure D-40:

783

Web Application Development Using Visual Studio .NET

Figure D-40

You will find that the results of this will vary according to the default preferences you have on your
system, but once you have set up the defaults as you like them, you'll find that this feature can be very
handy!

Developing the User Control
In this table, set the row and cell attributes as shown in the code below. Leave the last cell empty for the
moment:

<tr style="VERTICAL-ALIGN: middle">
<td style="TEXT-ALIGN: left" width="200">

</td>
<td style="TEXT-ALIGN: center" width="400">

</td>
<td style="TEXT-ALIGN: right" width="200">

784

Appendix D

</td>
</tr>

If you switch back to Design view, you'll see that the page taking shape as shown in Figure D-41:

Figure D-41

Recall from the chapters that the header control had an AdRotator control that displayed different
pictures of authors each time the page was requested. It's now time to add the AdRotator to the page.
Either drag and drop this control into the right-most cell, or click to position your cursor in this cell and
double-click the AdRotator control to add it to the page. This is shown in Figure D-42:

785

Web Application Development Using Visual Studio .NET

Figure D-42

By default, the control is created with standard width and height attributes. To fit our images, you
should change these attributes in the Properties pane so that the width is 100 pixels and the height is
95 pixels. To select the source for the AdRotator control, you need to first create the XML source file.

Creating an XML File
Right click on the WroxUnited project and create a new file. In the dialog that appears (shown in Figure
D-43), create a new XML file and call it faces.xml:

786

Appendix D

Figure D-43

In the newly created file, enter the code that we used previously and save the file:

<?xml version="1.0" encoding="utf-8" ?>
<Advertisements>

<Ad>
<ImageUrl>images/chrish_s_t.gif</ImageUrl>
<NavigateUrl>players.aspx</NavigateUrl>
<AlternateText>Player: Chris Hart</AlternateText>
<Impressions>80</Impressions>
<Keyword>ChrisH</Keyword>

</Ad>

<Ad>
<ImageUrl>images/chrisu_s_t.gif</ImageUrl>
<NavigateUrl>players.aspx</NavigateUrl>
<AlternateText>Player: Chris Ullman</AlternateText>
<Impressions>80</Impressions>
<Keyword>ChrisU</Keyword>

</Ad>

<Ad>
<ImageUrl>images/dave_s_t.gif</ImageUrl>
<NavigateUrl>players.aspx</NavigateUrl>
<AlternateText>Player: Dave Sussman</AlternateText>
<Impressions>80</Impressions>
<Keyword>Dave</Keyword>

</Ad>

<Ad>
<ImageUrl>images/john_s_t.gif</ImageUrl>
<NavigateUrl>players.aspx</NavigateUrl>
<AlternateText>Player: John Kauffman</AlternateText>
<Impressions>80</Impressions>

787

Web Application Development Using Visual Studio .NET

<Keyword>John</Keyword>
</Ad>

</Advertisements>

That's all you need to do to create an XML file. Notice that with each element, Visual Studio .NET assists
you by adding closing tags.

Back in the header.ascx file, head to the Properties for the advertisement file again. Select the
AdvertisementFile attribute and click on the ... button that appears. In the popup dialog shown in
Figure D-44, select the Faces.xml file and click OK:

Figure D-44

The header needs one last thing before it's finished, and that's the custom text. In HTML view, add the
following code to the bottom of the control (below the last </table> statement):

<h2><%= PageTitle %></h2>

788

Appendix D

Finally, right-click on Header.ascx and select View Code. You are now in the code-behind page for the
header control. Add the following line of code directly above the Page_Load sub, as shown in Figure D-
45:

public string PageTitle = "";

Figure D-45

Time for a quick File | Save All and that's the control done! Time to add it to the page!

Adding a User Control to a Page
Switch to the Design view for Default.aspx. Click and drag Header.ascx from the Solution Explorer
onto the page, right before the main header. This is shown in Figure D-46:

789

Web Application Development Using Visual Studio .NET

Figure D-46

You'll notice that this will add the control its reference to the HTML of the page. Also, notice that the
control appears as a gray box, with no design-time appearance (Web Matrix, you will recall, provided a
sample of the appearance of each user control as it was added to a page).

The newly added control is added with a default TagName of Header and TagPrefix of UC1. You can
change this prefix to WroxUnited (if you prefer) by editing the HTML of the page. Since we need to tidy
up this page in any case, let's do that now. Amend the highlighted lines of code (notice that you need to
remove the <h1> tag and the default header text):

<%@ Register TagPrefix="WroxUnited" TagName="Header" Src="Header.ascx" %>
<%@ Page Language="vb" AutoEventWireup="false" Codebehind="Default.aspx.vb"

debug="true" Inherits="WroxUnited.WebForm1"%>
...
<body>
<form id="Form1" method="post" runat="server">
<WroxUnited:header id="Header1" runat="server">
</WroxUnited:header>

790

Appendix D

<table id="Table1" cellspacing="0" cellpadding="0" width="800"
border="0">
...

The PageTitle attribute isn't used on this page, but it exists for use on other pages where the email
update registration box doesn't appear.

Running the page now will produce a more familiar screen, as shown in Figure D-47:

Figure D-47

Adding Custom Classes
It's time to look at adding a data access component. Right-click on the WroxUnited project and select
Add New Item.... In the dialog shown in Figure D-48, select the Class template, and name the file
DataAccessCode.cs.

Figure D-48

791

Web Application Development Using Visual Studio .NET

In the code, add some using statements at the top of the code:

using System;
using System.Data;
using System.Collections;
using System.Configuration;

Now cut and paste over the data access methods from the Default.aspx.cs code-behind page that we
produced earlier. Figure D-49 shows the code so far. Again, notice that the + and – icons on the left can
be clicked to expand or contract blocks of code to make it easier to see which methods exist in the code:

Figure D-49

Back in the code-behind for Default.aspx, we've managed to break the code by removing the two
data access methods. If you select Build | Build WroxUnited, you'll see Visual Studio attempt to compile
the project, but this process will now fail. The blue squiggly underlines in Figure D-50 indicate method
calls that VS.NET can no longer find:

792

Appendix D

Figure D-50

Add the following line of code directly above the Page_Load method:

public DataAccessCode Data = new DataAccessCode();

Then prefix each underlined method with "Data.". The code should now be able to locate the methods
in question. Notice that as you do this, IntelliSense locates the list of available methods in this class and
gives you hints about what their signatures look like. This is shown in Figure D-51:

793

Web Application Development Using Visual Studio .NET

Figure D-51

Complete adding each method call with the Data object prefix, and you will be able to run the page,
which should look and feel the same as before.

You can duplicate this methodology to create custom server controls in exactly the same way.

Professional and higher editions of Visual Studio .NET allow you to create entire custom class library
projects and custom server control projects, but this functionality isn't available in the Standard
language-specific editions.

Working with Databases Using the Server
Explorer

If you click the Server Explorer tab (at the bottom of the Toolbox), you can see the database connectivity
functionality of Visual Studio .NET. By default, this will look at little empty. Click on the Connect to
Database button to add a new connection, as shown in Figure D-52:

794

Appendix D

Figure D-52

In the dialog that appears, select your SQL Server database server, and then select the WroxUnited
database from the list as shown in Figure D-53:

795

Web Application Development Using Visual Studio .NET

Figure D-53

In the Server Explorer, you will now see the newly added database connection in the list. Expand this
connection, and double-click the Games table to view the contents of the table as shown in Figure D-54:

Figure D-54

796

Appendix D

In Standard edition, you can edit the data contained in the table, but cannot edit the structure of an
existing table or create a new table. However, you can enter SQL as shown in Figure D-55, and if you
know how to write SQL, you can enter any valid SQL statement, including CREATE TABLE, DROP TABLE,
or even CREATE DATABASE statements:

Figure D-55

If you are using Professional or higher editions of Visual Studio .NET, you can simply right-click on a
table and create a new table, or alter the design of a table using the context menu. You can also create
stored procedures and views in this way.

Debugging in Visual Studio .NET
One of the most powerful and indispensable features of Visual Studio .NET is its ability to debug code
and fix errors. First, we'll look at break points and stepping through code line-by-line at run-time to fix
run-time errors or exceptions, then we'll look at fixing errors at compile time.

797

Web Application Development Using Visual Studio .NET

Using Breakpoints
In Default.aspx.cs (the code-behind for the web page), click in the margin next to one of the lines of
code, for example, the first line of code in the event-handler for the clicking of the button on the page
shown in Figure D-56:

Figure D-56

This has added a breakpoint to the code, which means that when that line of code is processed, you can
step inside and see what's happening. To demonstrate this, run the page – notice that when you click the
button on the page, you automatically switch back to the screen shown in Figure D-57:

You can only debug if the compilation mode of your solution is set to Debug (see the
drop down box next to the Run button on the main toolbar). Once you finish
debugging and are ready to deploy your site, set this to Release – you'll notice a
significant performance boost on higher-traffic sites because debug code is much
more processor intensive. If you're not debugging, turn it off!

798

Appendix D

Figure D-57

At the bottom left of the screen, you can see the value entered into the textbox when the button was
clicked. You can watch the values of controls on the page using this window. You can step through this
code line by line to see what happens when each line of code is run by pressing F11. When you reach a
method call, you can either press F11 to jump into the code where that method is defined and watch as
the code in that method is executed line by line (Step Into), or you can press F10 to Step Over this method
and continue with the next line of code in the current code block.

Pressing the Start button again will continue execution of the page, taking you back to the browser
window, as if no interruption had occurred. This feature is particularly useful when fixing broken code.
All you have to do is add a break point before the piece of code that is broken and step into the code,
watching to see where the code breaks. This will often give you a clear idea as to why the code is not
running as expected.

Fixing Design-Time Errors
You will often find that errors at design time will prevent a page from compiling correctly. For example,
if you forgot to prefix one of the methods on the page with the Data. object reference, you would see an
error message when you tried to run the page, as shown in Figure D-58:

799

Web Application Development Using Visual Studio .NET

Figure D-58

If you click No, you will see an entry in the Task list shown in Figure D-58. It will give you a hint as to
why the code would not compile:

800

Appendix D

Figure D-59

It's now fairly obvious that the compiler can't deduce where the AddNewFanEmail method is declared,
but once you add the Data., prefix, it'll soon find what it's looking for.

Suggested Exercises and Further Reading
After completing this appendix, you will probably feel a bit more confident with creating web
applications in Visual Studio .NET. The best way to increase your confidence further is to try out adding
more controls and pages yourself. You may want to try to implement the whole of the Wrox United
application in Visual Studio .NET – this would give you experience of working with many different
controls in the Visual Studio .NET environment, as well as programming with many different ASP.NET
techniques.

Visual Studio .NET is a large product, so if you really want to learn more about this tool, visit
http://msdn.microsoft.com/vstudio/using/.

801

Web Application Development Using Visual Studio .NET

E
Installing and Configuring

IIS

The installation processes for IIS on Windows 2000 Professional, Windows XP Professional, or
Windows Server 2003 don't differ significantly. The main difference is that Windows 2000 installs
IIS 5.0, while Windows XP Professional Edition installs IIS 5.1, and Windows Server 2003 installs
IIS 6.0. The options for installing are exactly the same; the only thing that might differ is the look
of the dialog boxes.

Before you install it though, it's worth noting that you might not have to do much in this initial
stage, as it's possible you're already running IIS. We'll describe a process for checking whether this
is the case as part of the installation process. Note that to install anything (not just ASP.NET, but
literally anything) on Windows 2000, XP, and 2003 you need to be logged in as a user with
administrative rights. If you're uncertain about doing this, please consult your Windows
documentation. Right, let's get started!

Try It Out Creating a Virtual Directory and Setting Up Permissions
1. Go to the control panel (Start | Settings | Control Panel) and select the Add/Remove Programs

icon. The dialog will appear, displaying a list of your currently installed programs as
shown in Figure E-1:

You cannot install IIS on Windows XP Home Edition. It will only work on Windows
XP Professional.

Figure E-1

2. Select the Add/Remove Windows Components icon on the left side of the dialog to get to the
screen that allows you to install new windows components:

Figure E-2

3. Locate the Internet Information Services (IIS) entry in the dialog, and note the checkbox that
appears to its left. Unless you installed Windows 2000 or XP via a custom install and specifically
requested IIS, it's most likely that the checkbox will be unchecked.

804

Appendix E

4. If the checkbox is unchecked, check it and click Next on the screen shown in Figure E-2 to load
Internet Information Services. You might be prompted to place your Windows 2000 or XP
installation disk into your CD-ROM drive. It will take a few minutes to complete. Then go to
Step 5.

OR

If the checkbox is checked, you won't need to install the IIS component – it's already present on
your machine. Go to the Working With IIS section instead.

5. Click on the Details button – this will take you to the dialog shown in Figure E-3.

Figure E-3

6. There are a few options here for the installation of various optional bits of functionality. For
example, if the World Wide Web Server option is checked then your IIS installation will be able to
serve and manage Web pages and applications. If you're planning to use FrontPage 2000 or
Visual Studio.NET to write your Web page code, then you'll need to ensure that the FrontPage
2000 Server Extensions checkbox is checked. The Internet Information Services Snap-In is also very
helpful, as you'll see later in the chapter, so ensure that this is checked too; the other options
(although checked here) aren't necessary for this book:

How It Works
IIS starts up automatically as soon as its installation is complete, and thereafter whenever you boot up
Windows. Thus you don't need to run any startup programs or click on any short cuts.

IIS installs most of its components on your hard drive, under the \WinNT\system32\inetsrv
directory; however, we are more interested in the \InetPub directory that is also created at this time.
This directory contains subdirectories that will provide the home for the Web page files that we create.

If you expand the InetPub directory, you'll find that it contains several subdirectories:

❑ \iissamples\homepage contains some examples of classic ASP pages.

805

Installing and Configuring IIS

❑ \iissamples\sdk contains a set of subdirectories that hold classic ASP pages which
demonstrate the various classic ASP objects and components.

❑ \scripts is an empty directory, where ASP.NET programs can be stored.

❑ \webpub is also empty. This is a special virtual directory, used for publishing files via the Publish
wizard. Note that this directory only exists if you are using Windows 2000 Professional Edition.

❑ \wwwroot is the top of the tree for your Web site. This should be your default Web directory. It
also contains a number of subdirectories that contain various bits and pieces of IIS. This
directory is generally used to contain subdirectories that hold the pages that make up our Web
site – although, in fact, there's no reason why you can't store your pages elsewhere. The
relationship between physical and virtual directories is discussed later in this appendix.

❑ \ftproot, \mailroot and \nntproot should form the top of the tree for any sites that use
FTP, mail or news services, if installed.

❑ In some versions of Windows, you will find a \AdminScripts folder that contains various
script files for performing some common 'housekeeping' tasks on the Web server, allowing you
to stop and start services.

Working with IIS
Having installed IIS Web server software, you'll need some means of administering its contents and
settings. In this section, we see the user interface that is provided by IIS.

In fact, some versions of IIS provide two user interfaces, the Microsoft Management Console (MMC) and
the Personal Web Server (PWS) interface (which is just included for those people familiar with PWS from
Windows 98 and looking to migrate to IIS). Let's look at MMC, as the other interface is now obsolete.

The Microsoft Management Console (MMC)
The best part of MMC is that it provides a central interface for administrating all sorts of services that
are installed on your machine. We can use it to administer IIS. In fact, when we use it to administer other
services, the interface looks roughly the same. The MMC is provided as part of the Windows 2000
operating system – in fact, the MMC also comes with older Windows server operating systems.

The MMC itself is just a shell – on its own, it doesn't do much at all. If you want to use it to administer a
service, you have to add a snap-in for that service. The good news is that IIS has its own snap-in.
Whenever you need to administer IIS, simply call up the Internet Services Manager MMC console by
selecting Start | Control Panel | Administrative Tools | Internet Services Manager:

Figure E-4

806

Appendix E

Having opened the IIS snap-in within the MMC, you can perform all of your Web management tasks
from this window as seen in Figure E-4. The properties of the Web site are accessible via the Default Web
Site node. We'll be using the MMC more a little later in the chapter.

Testing Your Installation
The next thing to do is test the Web server to see if it is working correctly, and serving pages as it should
be. We've already mentioned that the Web services should start as soon as IIS has been installed, and will
restart every time you start your machine. In this section, we'll try that out.

In order to test the Web server, we'll start up a browser and try to view some Web pages that you know
are already placed on the Web server. In order to do that, you need to type a URL (Uniform Resource
Locator) into the browser's Address box, as you often do when browsing on the Internet.

What URL do you use in order to browse to your Web server? If your Web server and Web browser are
connected by a local area network, or if you're using a single machine for the Web server and the
browser, then it should be enough to specify the name of the Web server machine in the URL.

Identifying Your Web Server's Name
By default, IIS will take the name of your Web server from the name of the computer. You can change
this in the machine's network settings. If you haven't set one, then Windows will generate one
automatically – note that this automatic name won't be terribly friendly; probably something along the
lines of P77RTQ7881. To find the name of your own Web server machine, select Start | Settings | Network
and Dial-up Connections or Start | Settings | Control Panel | System (depending on which operating system
you are using – if it isn't in one, try the other) and from the Advanced menu select Network Identification.
This tab will display your machine name under the description Full computer name as shown in Figure E-
5:

Figure E-5

807

Installing and Configuring IIS

My machine has the name chrisuhome, and (as you can see here and in Figure E-4) my Web server has
adopted the same name. On a computer within a domain, for example a WROX_UK domain, it would be
like WROX_UK/chrisuhome. However, this doesn't alter operation for ASP.NET. Browsing to pages on this
machine across a local area network (or even from the same machine), I can use a URL that begins
http://chrisuhome/…

There are a couple of alternatives if you're using the same machine as both Web server and browser. Try
http://127.0.0.1/…. Here, 127.0.0.1 is a default that causes requests to be sent to a Web server on the local
machine. Alternatively, try http://localhost/… where localhost is an alias for the 127.0.0.1 address. You may
need to check the LAN settings (in your browser's options) to ensure that local browsing is not through a
proxy server (a separate machine that filters all incoming and outgoing Web traffic employed at most
workplaces, but not something that affects you if you are working from home).

Managing Directories on Your Web Server
Before installing ASP.NET, you need to make one last pit stop in IIS. This is because when you run your
ASP.NET pages, you need to understand where to place your pages, and how to make sure you have the
permission to access them. As this is governed by IIS, let's look at it now.

These days, many browsers are sufficiently advanced that you can use them to locate and examine files
and pages that exist on your computer's hard disk. For example, you can start up your browser, type in
the physical location of a Web page (or other file) such as C:\My Documents\mywebpage.html, and the
browser will display it. However, this isn't real Web publishing at all.

First, Web pages are transported using HTTP protocol. Note that the http:// at the beginning of a URL
indicates that the request is being sent by HTTP. Requesting C:\My Documents\mywebpage.html in
your browser doesn't use HTTP, and this means that the file is not delivered and handled in the way a
Web page should be. No server processing is done in this case. HTTP is discussed in Chapter 2.

Second, consider the addressing situation. The C:\My Documents\mywebpage.html string tells us that
the page exists in the \My Documents directory of the C: drive of the hard disk of the machine on which
the browser is running. In a network situation, with two or more computers, this simply doesn't give
enough information about the Web server.

However, when a user browses (via HTTP) to a Web page on some Web server, the Web server will need
to work out where the file for that page is located on the server's hard disk. In fact, there's an important
relationship between the information given in the URL, and the physical location (within the Web
server's file system) of the file that contains the source for the page.

Throughout the book, in any examples that require you to specify a Web server
name, the server name will be shown as localhost, implicitly assuming that your Web
server and browser are being run on the same machine. If they reside on different
machines, then you simply need to substitute the computer name of the appropriate
Web server machine.

808

Appendix E

Virtual Directories
So how does the relationship between the information given in the URL, and physical location work? It
works by creating a second directory structure on the Web server machine, which reflects the structure
of your Web site.

The first directory structure is what you see when you open Windows Explorer on the Web server –
these directories are known as physical directories. For example, the C:\My Documents folder is a
physical directory.

The second directory structure is the one that reflects the structure of the Web site. This consists of a
hierarchy of virtual directories. We use the Web server to create virtual directories, and to set the
relationship between the virtual directories and the real (physical) directories.

When you try to visualize a virtual directory, it's probably best not to think of it as a directory at all.
Instead, just think of it as a nickname or alias for a physical directory that exists on the Web server
machine. The idea is that when a user browses to a Web page that is contained in a physical directory on
the server, they don't use the name of the physical directory to get there. Iinstead, they use the physical
directory's nickname.

To see how this might be useful, consider a Web site that publishes news about different sporting events.
In order to organize his Web files carefully, the Webmaster has built a physical directory structure on his
hard disk, which looks like Figure E-6:

Figure E-6

Now, suppose you visit this Web site to get the latest news on the javelin event in the Olympics. If the
URL for this Web page were based on the physical directory structure, the URL for this page would be
something like this:

http://www.oursportsite.com/sportsnews/athletics/field/javelin/default.asp

That's okay for the Webmaster, who understands his directory structure; however it's a fairly
unmemorable Web address! So, to make it easier for the user, the Webmaster can assign a virtual
directory name or alias to this directory – it acts just like a nickname for the directory. Here, let's suppose
we've assigned the virtual name javelinnews to the C:\inetpub\...\javelin\ directory. Now, the
URL for the latest javelin news is:

http://www.oursportsite.com/javelinnews/default.asp

809

Installing and Configuring IIS

By creating virtual directory names for all the directories (such as baseballnews, 100mnews, 200mnews,
and so on) it's easy for the user to type in the URL and go directly to the page they want:

http://www.oursportsite.com/baseballnews/default.asp

http://www.oursportsite.com/100mnews/default.asp

http://www.oursportsite.com/200mnews/default.asp

Not only does this save the user from long, unwieldy URLs – it also serves as a good security measure,
because it hides the physical directory structure from all the Web site visitors. This is good practice;
hackers may be able access your files if they knew what the directory structure looked like. Moreover, it
allows the Webmaster's Web site structure to remain independent of the directory structure on the hard
drive – so he can move files on his disk between different physical folders, drives, or even servers,
without having to change the structure of his Web pages. There is a performance overhead to think
about as well, as IIS has to expend effort translating the physical path. It can be a pretty costly
performance-wise to have too many virtual directories.

Let's have a crack at setting up our own virtual directories and permissions (please note that these
permissions are set automatically if you use the FrontPage editor to create a new site – so don't use
FrontPage to set up this site for you unless you know what you're doing).

Try It Out Creating a Virtual Directory and Setting Up Permissions
It's time to create our own virtual directory. We'll use this directory to store the examples that we'll be
creating in this book. We don't want to over complicate this example by creating lots of directories, so
we'll demonstrate this by creating a single physical directory on the Web server's hard disk, and using
the IIS admin tool to create a virtual directory and make the relationship between the two:

1. Start Windows Explorer and create a new physical directory named BegASPNET11, in the root
directory of your hard drive. For example, C:\BegASPNET11 as shown in Figure E-7:

810

Appendix E

Figure E-7

2. Next, start up the IIS admin tool (using the MMC, as described earlier). Right-click on Default
Web Site, and from the menu that appears select New | Virtual Directory. This starts the Virtual
Directory Creation Wizard, which handles the creation of virtual directories for you and the
setting up of permissions as well. You'll see the splash screen first as shown in Figure E-8. Click
on Next:

Figure E-8

3. Type BegASPNET11 in the Alias text box as shown in Figure E-9; then click Next:

811

Installing and Configuring IIS

Figure E-9

4. As shown in Figure E-10, click on the Browse button and select the directory C:\BegASPNET11
that you created in Step 1. Then click Next:

Figure E-10

5. Make sure that the Read and Run scripts checkboxes are checked, and that the Execute checkbox
is empty. Click on Next in Figure E-11, and in the subsequent page click on Finish:

Figure E-11

812

Appendix E

6. The BegASPNET11 virtual directory will appear on the tree in the IIS admin window as shown
in Figure E-12:

Figure E-12

How It Works
You just created a physical directory called BegASPNET11. This directory has been used throughout the
book to store our code examples. The download files from www.wrox.com are also designed to follow this
structure. Within this directory we recommend that you create a subdirectory for each of the chapters in
order to keep things tidy (this needn't be a virtual directory – just a physical one.)

You've also created a virtual directory called BegASPNET11 as an alias for the physical BegASPNET11
directory. If while creating Chapter 1 examples you place the ASP.NET files in the physical
C:\BegASPNET11\ch01 directory, you can use the browser to access pages stored in this folder. You'll
need to use the URL http://my_server_name/BegASPNET11/ch01/…

Also you note that the URL uses the alias /BegASPNET11; IIS knows that this stands for the directory
path C:\BegASPNET11. When executing ASP.NET pages, you can reduce the amount of typing you need
to do in the URL, by using virtual directory names in your URL in place of the physical directory names.

We also set the permissions read and run – these must be set or the IIS security features will prevent you
from running any ASP.NET pages. The Execute checkbox is left unselected as allowing others to run
applications on your own machine is a sure way of getting viruses or getting hacked. We'll take a closer
look at permissions now, as they are very important. If you don't assign them correctly you may find
that you're unable to run any ASP.NET pages at all. Worse still, anybody can access your machine, and
alter (even delete) your files via the Web.

813

Installing and Configuring IIS

Permissions
As you've just seen, we can assign permissions to a new directory as you create it, by using the options
offered in the Virtual Directory Wizard. Alternatively, you can set permissions at any time, from the IIS
admin tool in the MMC. To do this, right-click on the BegASPNET11 virtual directory in the IIS admin
tool, and select Properties. You'll get the dialog shown in Figure E-13:

Figure E-13

Access Permissions
The four checkboxes on the left (see Figure E-13) govern the types of access for the given directory and
dictate the permissions allowed on the files contained within that directory. Let's have a look at what
each of these options means:

❑ Script source access: This permission enables users to access the source code of an ASP.NET
page. It's only possible to allow this permission if the Read or Write permission has already been
assigned. But we generally don't want our users to be able to view our ASP.NET source code, so
we would usually leave this checkbox unchecked for any directory that contains ASP.NET
pages. By default, all directories created during setup have Script Source Access permission
disabled. You should leave this as is.

❑ Read: This permission enables browsers to read or download files stored in a home directory or
a virtual directory. If the browser requests a file from a directory that doesn't have the Read
permission enabled, then the Web server will simply return an error message. Note that when
the folder has Read permission turned off, HTML files within the folder cannot be read;
however, ASP.NET code within the folder can still be run. Generally, directories containing
information that you want to publish (such as HTML files, for example) should have the Read
permission enabled, as we did in our earlier example.

814

Appendix E

❑ Write: If the write permission on a virtual directory is enabled, then users will be able to create
or modify files within the directory, and change the properties of these files. This is not normally
turned on, for reasons of security and we don't recommend you alter it.

❑ Directory browsing: If you want to allow people to view the contents of the directory (that is, to
see a list of all the files that are contained in that directory), check the Directory Browsing option.

If someone tries to browse the contents of a directory that has Directory Browsing enabled but Read
disabled, then they will receive the message seen in Figure E-14:

Figure E-14

Execute Permissions
There's a dropdown list box near the foot of the Properties dialog, labeled Execute permissions – this
specifies what level of program execution is permitted on pages contained in this directory. There are
three possible values here – None, Scripts only, or Scripts and Executables:

❑ Setting Execute permissions to None means that users can only access static files, such as image
files and HTML files. Any script-based files of other executables contained in this directory are
inaccessible to users. If you tried to run an ASP.NET page, from a folder with the permission set

For security reasons, we recommend disabling this option unless your users
specifically need it – such as when transferring files using FTP (file transfer
protocol), from your Web site.

815

Installing and Configuring IIS

to None, you would get the following – note the Execute Access Forbidden message in the page
shown in Figure E-15:

Figure E-15

❑ Setting Execute permissions to Scripts Only means that users can also access any script-based
pages, such as ASP.NET pages. So if the user requests an ASP.NET page that's contained in this
directory, the Web server will allow the ASP.NET code to be executed, and the resulting HTML
to be sent to the browser.

❑ Setting Execute permissions to Scripts and Executables means that users can execute any type of
file type that's contained in the directory. It's generally a good idea to avoid using this setting, in
order to prohibit users from executing potentially damaging applications on your Web server.

For any directory containing ASP.NET files that you're publishing, the appropriate setting for the
Execute permissions is Scripts Only. There is one last bit about directory that needs pointing out though
for users of Windows 2000.

Configuring Directory Security in Windows 2000
If you're running Windows 2000 Server, you might have one extra bit of configuration to do. In ASP.NET
all ASPX pages run under a special user account named ASPNET. For security reasons this account has
restricted permissions by default; ordinarily, this isn't a problem. The database samples in this chapter
use Access. When updating data in a database Access creates a separate file (with a .ldb suffix), which
holds the locking information. These are the details that stores who is updating records, and the locking
file is created and removed on demand.

The security problem encountered is that we are running pages under the ASPNET account, which
doesn't have write permissions in the samples directory. Consequently, any ASP.NET pages that update
a sample Access .mdb database will fail. Setting the write permission is simple – just follow these steps:

816

Appendix E

1. In Windows Explorer, select the BegASPNET11 directory, where the samples are located.

2. Using the right mouse button, select the Properties menu option, and from the Properties dialog
that appears, select the Security tab as shown in Figure E-16:

Figure E-16

3. Click the Add button to display the Select Users or Groups dialog. In the blank space enter
ASPNET and click the Check Names button. This checks the name you've entered and adds the
machine name to it:

Figure E-17

4. Click the OK button to return to the Properties dialog, and you'll see that the ASPNET user is
now shown in the list of users. In the Permissions area, at the bottom of this screen, select the

817

Installing and Configuring IIS

Write permission and tick it. This gives the ASPNET user write permission to the BegASPNet11
directory tree:

Figure E-18

5. Click the OK button to save the changes, and to close the dialog.

The security issue arises only if you need write access to a directory, in the same manner as required by
our examples (which use Access). Most production Web sites wouldn't use Access as their database
store, since Access isn't designed for a high number of users. In these cases SQL Server would be a more
likely choice. The .NET SDK documentation has examples of connection strings for SQL Server.

Browsing to a Page on Your Web Server
You can test the installation by viewing some classic ASP pages hosted on your Web server, by browsing
to them with your Web browser. Let's test out this theory by viewing our default home page, which is
http://localhost and should appear something like Figure E-19 (this was taken on Windows XP
Professional, so it might appear a little differently):

818

Appendix E

Figure E-19

If you see the screen as shown in Figure E-19, it means the install has worked and you can jump back to
Chapter 1 and the section on creating your first ASP.NET page.

What Do You Do if This Doesn't Work?
If it's not working correctly, then you are most likely to be greeted with the screen similar to Figure E-20:

819

Installing and Configuring IIS

Figure E-20

If you get this page, it can mean a lot of things; however, one of the most likely problems is that your
Web services under IIS are not switched on. To switch on Web services, you'll first need to start the IIS
admin snap-in that we described earlier in the chapter (select Start | Run, type MMC and hit OK; then
select Open from the MMC's Console menu and locate the iis.msc file from the dialog. Alternatively,
just use the shortcut that you created there).

Now, click on the + of the root node in the left pane of the snap-in, to reveal the Default sites. Then right-
click on Default Web Site, and select Start as shown in Figure E-21:

820

Appendix E

Figure E-21

If it's still not working then here are a few more suggestions, which are based on particular aspects of
your PC's setup. If you're running on a network and using a proxy server (a piece of software that
manages connections from inside a firewall to the outside world – don't worry if you don't have one,
they're mainly used by big businesses), there's a possibility that this can prevent your browser from
accessing your Web server. Most browsers will give you an opportunity to bypass the proxy server.

❑ If you're using Internet Explorer, you need to go to View | Internet Options (IE4) or Tools | Internet
Options (IE5/IE6) and select the Connections tab. In IE5/IE6 press the LAN Settings button and
select Bypass the proxy server for local addresses. In IE6, this section forms part of the
Connections dialog and can be accessed by pressing the LAN settings dialog as shown in Figure
E-22:

Figure E-22

821

Installing and Configuring IIS

❑ If you're using Netscape Navigator (either version 4.x or 6.x) and you are having problems then
you need to turn off all proxies and make sure you are accessing the Internet directly. To do this,
select Edit | Preferences; in the resulting dialog select Advanced | Proxies from the Category box
on the left. Then on the right, select the Direct Connection to Internet option, and hit OK. Although
you won't be browsing online to the Internet, it'll allow Netscape Navigator to recognize all
variations of accessing local ASP.NET pages – such as http://127.0.0.1, http://localhost, and so on.

If you get the message displayed in Figure E-23, it means the install has succeeded but you have some
old install files on your machine:

Figure E-23

This may happens if you have an old installation of Visual Studio. To get rid of this, simply go to
C:\inetpub\wwwroot, delete the default.asp file, and then run http://localhost. What is happening is
that IIS will use default.asp as the home page, and not IIS's home page localstart.asp. If there is
no default.asp then IIS will automatically use localstart.asp.

Alternatively if you have customized default.asp, just go to http://localhost/localstart.asp to see that IIS
has in fact installed correctly. So, you can jump back to Chapter 1 and build an ASP.NET page and all the
examples will work just fine.

Lastly, if your Web server is running on your home machine with a modem, and you get an error
message informing you that your Web page is offline, this could in fact be a misperception on the part of
the Web server.

This can be corrected by changing the way that your browser looks for pages. To do this, select View |
Internet Options (IE4) or Tools | Internet Options (IE5/IE6), choose the Connections tab and select Never dial
a connection.

822

Appendix E

Of course, you might encounter problems that aren't covered here. In this case, the chances are that they
would be related to your own particular system setup. We can't possibly cover all the different possible
configurations here; but if you can't track down the problem, you may find some help at one of the Web
sites and newsgroups listed in Chapter 15.

823

Installing and Configuring IIS

Symbols
(negation) operator, 114
- (subtraction) operator, 114
!= inequality operator, 119
* (multiplication) operator, 114
/ (division) operator, 114
/t, /target switch

see target switch
@ character, 260
\ character, 260
^ (exponential) operator, 114
+ (addition) operator, 114
< Less than operator, 118
<% %> delimiters, 47
<= Less than or equal to operator, 118
== equality operator, 118
> greater than operator, 118
>= greater than or equal to operator, 118
3-tier application design, 464

application layer, 464, 465
data layer, 464, 465
fitting the layers together, 465
presentation layer, 464

A
abstraction, objects, 217
access permissions, 814
AccessDataSourceControl control

see also MxDataGrid control
ConnectionString attribute, 254
data grid example, 254
SelectCommand attribute, 254

Add () method
ArrayList class, 104, 106
caching, dependencies, 414
DataRow object, 295
Hashtable class, 107

addition (+) operator, 114
administrators, user security level, 636
ADO and ADO.NET compared, 289
ADO.NET, 245

ADO, compared to, 289
data access classes, 269

relationship diagram, 271
disconnected model, 289
ISBN search Web service example, use in, 612
namespaces, 269
.NET Framework, database connection for, 39
parameters collection, 272
Web services, using within, 610

AdRotator control, 353
see also rich controls
simple header control example, use within, 443
user control, used in example of, 441
Wrox United example, Visual Studio .NET, 785

allow sub-tag, authorization tag, 644
AllowPaging property, DataGrid control, 342
AllowSorting property, DataGrid control, 341
AlternatingItemStyle property, DataGrid control, 342
AND (&&) logical operator, 120

see also logical operators
implementation example, 122

code workthrough, 124
page view, 124

operator precedence, 121
anonymous users,user level security, 636

Index

A Guide to the Index
The index is arranged hierarchically, in alphabetical order, with symbol preceding the letter A.
Most second-level entries and many third-level entries also occur as first-level entries. This is to
ensure that users find the information they require however they choose to search for it.

In
de

x

application configuration file, 562
application design, 465

3-tier application design, 464
structuring process, 466
user controls, 465

application exceptions, 536
application layer, 3-tier application design, 465
application level tracing

Trace.axd file, information storage within, 534
web.config file, setting within, 534

<trace> section, 534
application logic layer

3-tier application design, 464
determining location, 466

application settings, configuration files
key-value pairs, information storage in, 571
web.config file, within, 571

Application_Error() method, 549
event logs, making entries within, 557
handling errors programatically, 547

ApplicationExeption class
Exeption class, inheritance from, 537
nested try block, handing using, 546

applications, 382
see also caching; cookies; sessions
ASP.NET, reacting to events within

Global.asax file, using, 410
Chat page, state usage within, 409
database, state management using, 420
definition, 404
disadvantages, 419
operation mechanism, 405
usage guidelines, 419
ViewState, state management using, 420
web.config file, configuration information in, 381

arithmetic operators, 113
Tax calculation example, 115-118

code workthrough, 117
Label control, use of, 117
modulo, use of, 117
postback, use of, 117
TextBox control, use of, 117

mathematical precedence, 114
types, 114

ArrayList class
Add() method, 104, 106
advantages, 103
definition, 103
disadvantages, 104
implementation example, 105-106
Insert() method, 104, 106

826

application configuration file

new keyword, creating objects using, 104
syntax, 104

arrays
advantages, 102
Array class, 100
declaration, 98
declaring, 98
disadvantages, 103
implementation example, 99–101

code workthrough, 100
error handling, 100,101
Page_Load() method, use of, 100
page view, 100
postback, use of, 100

IndexOf() method, 100
multi-dimensional arrays, 101
using, 99

ASCX files, 451
ASP (Active Server Pages)

ASP.NET, compared to, 9, 561, 562
introduction, 1

ASP.NET
advantages, 1
ASP, compared to, 9, 561, 562
C#, use of, 10
Cache object, 578
configuration files, 561
control-based, event-driven architecture, 313
cross language compatibility, 1, 481
custom controls, 489
database binding, 51
databases, ease of use with, 1
definition, 9, 11
dependencies, handling, 413
dynamic content, 1, 64
events, 191

calculator example, 206
definition, 192
event driven programming model, 191, 192
Page class, handling using, 197
types, 193

form definition, 61
<form> tag, 64
HTML

seperating code from, 49
mixing with, 49

HTTP, compared to, 64
IIS

compatibility, 803
installation, 12

installation, 11
.NET Framework installation, 14
pre-requisites, 12
Web Matrix installation, 15

introduction, 1
native languages, 9
.NET Framework

composition, 36
using features of, 1, 9
versioning, 13

operating systems compatibility, 11
operation mechanism, 63
Page class, 324
page lifecycle

handling control events, 325
page cleanup, 325
page disposal, 325
page initialization, 324
page loading, 325
page prerendering, 325
page rendering, 325
Postback data loading, 324
ViewState loading, 324

server-side processing, 8, 10, 11
sessions

default information storage with, 395
storing user information in, 381

test page example, 26–29
code workthrough, 28
Now() method, use of, 28

tracing, 195
troubleshooting, 28

additional problems, 33
blank page, 31
Page Cannot Be Displayed error, 29
Page Cannot Be Found error, 30
referencing problems, 28server error, 32
sever control mistyping, 31
Web page unavailable while offline message, 31

VB.NET, default language, 43
ViewState, 205
Web controls, 315
Web Matrix

application development using, 15
Class Browser, 735
code entry, 730
development screen, 727
error handling, 738
installation, 15

827

assembly manifest

introduction, 725
layout options, 738
references for usage, 738
reusable code, using, 735
saving pages, 731
starting, 727
usage advantages/disadvantages, 726
viewing pages, 731

Web pages, inserting code into, 42
<script> tag, using, 42
inline code blocks, using, 47
Inserting ASP.NET code example, 44
server controls, using, 49

XML, 1
binding to, 54
Web services, ease of use in, 594

ASP.NET pages
compilation errors, 572
custom errors, 572
execution errors, 572
IIS, role of, 41
importing namespaces, 40
operation mechanism, 41
saving, 42

ASP.NET security
see security

ASP.NET Web controls
see Web controls

ASP.NET Web services
see Web services

ASPX page
code-behind files, use of, 466
components, 432
Register directive, 440

assemblies
assembly, compiling to, 472
components, use of, 463, 470
definition, 466
HelloWorld example, 474–476

code workthrough, 474
main parts

assembly manifest, 466
MSIL code, 466
page view, 474

pre-compilation, 470
simple component example, 467–470

code workthrough, 468, 469
web.config file, accessing using, 477

assembly manifest, 466
see also MSIL

In
de

x

assignment (+=) operator, string concatenation, 118
assignment (=) operator, 114
asynchronous method calls, 631–632
authentication

see also security
cookies, 638
database , use with, 646
definition, 637
Login page, Wrox United example, 660
System.Web.Security namespace, 649
types

Basic, 638
Forms-based, 637
Integrated Windows, 638
Passport, 638

user authentication, 637
authorization

see also security
definition, 637
login example, within, 651
selective folders, 651
web.config configuration file, using, 650

authorization tag, web.config configuration file
definition, 644
allow sub tag, 644
deny sub tag, 644

AutoEventWireup parameter, configuration settings, 571
auto-generated commands example, 298-302

code workthrough, 300
DeleteCommand property, use of, 301
InsertCommand property, use of, 301
page view, 299
SelectCommand property, use of, 300
UpdateCommand property, use of, 300

automatic browser detection, Web controls, within, 320
automatic value caching, HTML server controls, 318
AutoPostback property, 326

B
BackColor attribute, Label control, 66
base class library, .NET Framework

definition, 39
namespaces, 39

Basic authentication, 638
basic controls

see intrinsic controls
binding, 591

see also early binding
binding Web pages to database, 51
black box concept, Web services, 594

828

assignment (+=) operator, string concatenation

block level variables, 90-91
Body property, MailMessage class, 558
boolean data types, 90
brackets

see parentheses
branching structures

see also jumping structures; looping structures
definition, 125
expressions, 128
if else statement, 125
if statement, 129

implementation example, 134
structure, 129
types, 129
usage table, 132

switch statement
implementation example, 141
structure, 138

table of uses, 127
breakpoints, debugging, 798
browsers, 23
buffer parameter, configuration settings, 571
Button control, 332, 618

see also intrinsic controls
calculator example, use in events, 210
events, use with, 199
Hyperlink control, compared to, 331
manual trapping example, use within, 522
Web controls, ASP.NET, 319

Byte data type, 86

C
C#

@ character, 260
\ character, 260
\\ character, 260
ASP.NET, use in, 10
collections, 103
constants, 96
control structures, 125

branching structures, 125
jumping structures, 126
looping structures, 126

conversion functions, 97
data types

numeric, 86
other, 89
text, 88

definition, 11

Err object, absence of, 535
int variable, 82
On Error Resume Next statement, absence of, 535
strongly typed language, 81
stronly typed language, 59
Visual Basic.NET

compared to, 481
cross language compatibility, 477

cache key example, 587–89
code workthrough, 588
page view, 588

cache object, 579
cache priorities, 589
creation, 579

Cache.Insert() method, 580
explicit insertion of key-value pairs, 580
implicit insertion of key-value pairs, 579

data removal, 580
data retrieval, example, 580
dataset storage, 579
expiration policies, 581

file dependency, 581, 582
key dependency, 581, 586
timestamp expiration, 581

Cache.Insert() method
cache object, creation, 580
syntax, 581
timestamp expiration, setting, 581

caching, 382, 413
see also applications; cookies; sessions
automatic value caching, 318
cache object, 578
dependencies, 413

Add() method, addition using, 414
Insert() method, addition using, 414

expiration, setting, 415, 575
fragment caching, 578
output caching, 575
performance optimization, 575, 591
retrieving data, 414
syntax, 414
usage guidelines, 419
WroxUnited example, use within, 415–418

code workthrough, 417
Calendar controls, use of, 416, 418
Hashtable object, use of, 417
page view, 417

CacheDuration attribute, 604
calculator example, 206–211

Button controls, event calling using, 210
code workthrough, 210

829

CheckBox control

page view, 207
switch statement, using, 211
viewstate, source view using, 208

Calendar controls
see also rich controls
custom calendar example, 503
definition, 353
Event calendar, use in, 358
implementation example, 354
OnDayRender property, 359
OnSelectionChanged attribute, 365
properties

FirstDayOfWeek, 353
SelectionMode, 353
SelectMonthText, 353
SelectWeekText, 353

Wrox United example,
caching, 416, 418
Style sheets, use within, 423, 428

call stack
definition, 525
runtime errors, viewing, 525

implementation example, 526–527
case sensitivity, elements, 566
catch block

contents of, 540
example, 539
Exeption/SystemExeption class, sequence of error

handling, 539
multiple catch blocks, 538
parameterless catch blocks, 540

Certificate Authority, verification, 665
char data type, 89
character, 260
Chat page, Wrox United example, 405-410

code workthrough, 408
Global.asax, global settings using, 411
navigation user control example, applying, 449
Page_Load() method, use of, 408
page view, 407
posting new messages, 408
refreshing page content, 409
setting chat log length, 409
simple header control example, applying, 445
testbox properties, 408

CheckBox control, 79, 332
see also intrinsic controls
Class Browser, Web Matrix, implementation exam-

ple, 736
parameters, Web controls, implementation exam-

ple, 171,172

In
de

x

CheckBox control (continued)
RadioButton control, compared to, 79
syntax, 79
Web controls, ASP.NET, 319

CheckBoxList control, 79, 353
see also rich controls
implementation example, 80-82

code workthrough, 81
page view, 81

syntax, 79
checked statement, exceptions, 542
class browsers, 40
Class Browser, .NET Framework, 243
Class Browser, Web Matrix

implementation example using CheckBox control,
736–738

introduction, 735
usage technique, 736

Class Libraries, .NET Framework, 36
classes

see also objects
class browser, viewing using, 40
class definition, 39
constructor methods, 221

initializing objects, 226
overloading, 226

creation, 218
first class example, 218–24

definition, 216
inheritance,

advantages, 233
implementation example, 234–238

interfaces
definition, 237
guidelines, 242
implementation example, 238
methods & properties implementation, 241
types, as, 241

methods, 227
first class example, 227
overloading, 229
static methods, 231

namespaces declaration, compared to, 475
settings section, attributes & properties, 221, 567
static properties, 231

ClearError() method, Server object, 549
client browsers, 5, 808
client-server relationship, Web pages, 62
client-side dynamic Web pages

see also sever-side Web pages
coding problems, 7

830

CheckBox control (continued)

disadvantages, 7
operation mechanism, 6
server-side dynamic Web pages, compared to, 9

CLR (Common Language Runtime), 482
definition, 38
JIT compiler, use of, 38
.NET Framework, composition, 36

CLS (Common Language Specification), 36, 38
see also MSIL

code breakage, good coding practice, 513
code comments, good coding practice, 512
code view features, Visual Studio .NET, 763
code wizards, Web Matrix, 262

implementation example, 262–269
code workthrough, 265
DataSet object, use of, 267, 269
OleDbDataAdapter data adapter, use of, 268
page view, 265
WHERE Clause builder section, 266

code-behind, 451
ASPX pages, use within, 466
deploying files, 451
reusable assemblies, 451
simple code-behind example, 452–457

code workthrough, 454
inheritance, 454
namespace handling, 455
page view, 454

usage guidelines, 456
user controls, use within, 466
Visual Studio .NET

default use within, 459
Web applications development, 757
web forms applications within, 451

Wrox United example, applying to, 457–459
Wrox United example, Visual Studio .NET, 762

coding
see good coding practices

collections
ArrayList

Add () method, 104
advantages, 103
definition, 103
disadvantages, 104
implementation example, 105
Insert() method, 104
new keyword, creating objects using, 104
syntax, 104

definition, 103
Hashtables

advantages, 106
definition, 106
disadvantages, 106
implementation example, 108
key-value pairs, adding, 107
syntax, 107

SortedList class
definition, 110
syntax, 110

columns attribute, Textbox control, 75
COM DLLs, .NET DLL files compared to, 434
Command class

ADO.NET, data access classes, 269
code wizards, implementation example, 268
command execute example, 307–310

code workthrough, 309
ExecuteNonQuery() method, use of, 310

database binding example, 53
database updation, 307
properties

CommandText, 271
Connection, 271

command execute example, 307–310
code workthrough, 309
ExecuteNonQuery() method, use of, 310
page view, 309
Parameters, setting, 309

CommandArgument property, LinkButton control, 339
CommandBuilder, 298

auto-generated commands example, 298-301
code workthrough, 300
DeleteCommand property, use of, 301
InsertCommand property, use of, 301
page view, 299
SelectCommand property, use of, 300
UpdateCommand property, use of, 300

SelectCommand property, based on, 298
CommandText property

DataTable object, use within, 284
OleDbCommand object, 272

CommandType property, OleDbCommand object, 272
CompareValidator control, 372
compiling

see also MSIL
assembly/library file, producing, 472
compilation errors, 514, 516
definition, 37
executable file, producing, 472
IL, use of, 470
interpreted code, 37

831

configuration files

JIT (Just-In-Time) compiler, 38, 470
pre-compiled code, 37
process mechanism, 37, 470
switches, 472
target switch, 473
types, 37

components, 431
assemblies, use within, 463
benefits of using, 434
compiling, example, 469-470
cross-language compatibility, 482
custom controls, compared to, 490
data access, 482
definition, 432
documenting, 489
encapsulation, 432
HelloWorld example, 474–476
internal workings, 434
Internet Explorer Address bar, 433
MS Office Save As dialog, 433
objects, compared to, 432
rapid application development, 435
resuable visual components, 489
separation of presentation and functionality, 434
simple component example, 467–470
System.Data.dll component, 489
third party applications, imported, 434
Visual Basic .NET, writing using, 477
Web pages, accessing by, 476
Windows explorer Address bar, 433

components, reusable code
code-behind, 431
definition, 431
user controls, 431

composite controls, 490
custom calendar example, 499–506

code workthrough, 502
page view, 502

definition, 499
System.Web.UI.Control namespace, inheritance from,

499
<configSections> tags, configuration file format, 566
configuration errors, 514
configuration files, 564

<configSections> elements, 566
<sectionGroup> elements, 566
application configuration file, 562
configuration settings

application settings, 571
custom errors, 572
general configuration settings, 570

In
de

x

configuration files (continued)
page configuration settings, 570

customizing ASP.NET, 562
declarations section, 566
defining configuration settings, 562
determining correct settings, 565
guidelines, 566
IIS, virtual directories, 565
important blocks examined, 569
inheritance, 564
machine.config file, 562, 563
security configuration files, 562
security of, 565
settings section, 566
settings list, system.web group, 568
structure, 566
system.web group, 566
viewing, 562
XML

configuration files based on XML, 562
element rules, 565

<configuration> root element, 566
Connection class

ADO.NET, data access classes, 269
ConnectionString property, 271
database binding example, 53
OleDbConnection object, 270, 271
SqlConnection object, 270

Connection property, OleDbCommand object, 272
ConnectionString attribute

AccessDataSourceControl control, 254
Web services example, used in, 624

ConnectionString property
Connection Class, 271
Data Source controls, 367

constants, 97
Const keyword, 97
constraints, DataSet class, 295
construct closure errors, 514
constructor methods, 221

first class example, use within, 226
HelloCS() method, 469
initializing objects, 226
New() method, 480
overloading, 226
signatures, 226

continuation character, Visual Basic .NET, 481
control structures, 125

branching structures
definition, 125
expressions, 128

832

configuration files (continued)

if statement, 129
if...else statement, 125
switch statement, 126

choice of usage, 127
jumping structures, 159

definition, 126
functions, 159
procedures, 127

looping structures, 126, 144
do...while statement, 144, 151
for statement, 126, 144
foreach...in statement, 126, 144, 154
usage table, 144
while statement, 126, 144, 148

table of uses, 127
Control Tree section, page level tracing, 531
control-based, event-driven architecture, ASP.NET, 313
controls

ASP.NET, control based architecture within, 313
HTML/Web controls compared, 201
server controls, 313

HTML server controls, 313
Web controls, 313

Convert class
conversion functions, 97
implementation example, 97

cookies, 381, 382
see also applications; caching; sessions
BBC news site example, 383
definition, 383
deleting, 385
disadvantages, 385, 419
displaying information within, 383
expiry limit, 385
Forms-based authentication, use within, 638
login example, 642
Login page, Wrox United example, 661

UserLevelCookie, 661
UserNameCookie, 661

non-persistent, 638
operation mechanism, 384
persistent, 638
time frame, setting, 385
usage guidelines, 393, 419
WroxUnited example, use within, 386–393

code workthrough, 391
checking user registration, 387, 388
confirming presence of cookies, 390
expiry limit, 390
Now property, setting expiry limit using, 392

Page_Load() method, use of, 393
page view, 390
Style sheets, use within, 422, 428
registering the user, 388

Cookies Collection section, page-level tracing, 531
CreateEventSource() method, EventLog class, 553
CSS (Cascading style sheets)

custom calendar example, 502
Web control properties, adding using, 321
Wrox United example, use within, 421–429

code workthrough, 427
page view, 426

Wrox United example, Visual Studio .NET, 769
custom calendar example, 499–506

code workthrough, 502
Calendar control, use of, 502
CSS, use of, 504
Hashtable object, use of, 503
page view, 502

custom controls, 489
components, compared, 490
composite controls, 490, 499
creating, 490
data access components, compared to, 490
definition, 490
match of the day example, 491–99

code workthrough, 494
data access component, adding, 497
overriding, 496
System.Web.dll, referencing, 498

reusability, 498
page view, 494

System.Web.UI.Control namespace, inheritance from,
490, 495

System.Web.UI.WebControl namespace, inheritance from,
495

user controls, compared to, 490
<customErrors> element

ASP.NET page execution errors, 572
defaultdirect attribute, 550
error handling, notification and logging, 549
<error> subtag, 550
implementation example, 549
mode attribute, 550

custom errors, configuration files, 572
<customErrors> element, 572

RemoteOnly setting, 573
defaultRedirect parameter, 572
error parameter, 573
mode parameter, 572

833

data types, C#

web.config file, within, 572
customized error messages, 550

<customErrors> element, 550
implementation example, 551

Page not found error example, 551
User error example, 547–549

CustomValidator control, 372

D
data access components, 482

custom controls, compared to, 490
match of the day example, 497
Wrox United example, use within, 482–489

code workthrough, 488
page view, 487

data binding, 341
Data explorer, Web Matrix, 251

data grid example, 253–56
databases, accessing, 251

data grid example, 253
AccessDataSourceControl control, use of, 254
code workthrough, 254
page view, 254
MxDataGrid control, use of, 254

data layer, 3-tier application design, 464, 465
data rendering controls, 316

data binding, 341
templates, 341
types

DataGrid, 341
DataList, 341
Repeater, 341, 343

Data Source controls, Web Matrix, 367
properties, 367
Wrox United example, Players page, 369

data types, C#
numeric

byte, 86
decimal, 87
double, 87
integer, 86
long, 86
short, 86
single, 87

other
boolean, 90
date, 89

textual
char, 88
string, 88

In
de

x

DataAdapter class
ADO.NET, data access classes, 269
auto-generated commands example, 298-302

code workthrough, 300
DeleteCommand property, use of, 301
InsertCommand property, use of, 301
page view, 299
SelectCommand property, use of, 300
UpdateCommand property, use of, 300

data source updation, 297
database updation, 288
database updation example, 302–307

code workthrough, 305
page view, 305

Fill() method, 284
Parameters object, implementation example, 277
properties

DeleteCommand, 271, 301
InsertCommand, 271, 301
UpdateCommand, 271, 300
SelectCommand, 271, 298, 300

database binding example, 51–54
see also XML binding example
code workthrough, 53
Command object, use of, 53
Connection object, use of, 53
DataGrid object, use of, 53
Page_Load() method, use of, 53
page view, 52
strConnect variable, 53

database connection strings
application settings, 571
security, 571

database updation example, 302–307
code workthrough, 305
page view, 305

databases
ASP.NET

binding within, 51
easy storage using, 1

complex files, 248
data storage, 247
Forms-based authentication, use with, 646
normalization, 249
Primary key/foreign key one-to-many relationships, 742
tables, used in example, 248
transactions, 306
updation, 288

Command class, using, 307

834

DataAdapter class

data source updation, 297
implementation example, 302–7

Web Matrix Data explorer, use of, 251
Web pages, storage within, 247
Wrox United example

database design, 741
installing Access database, 747
installing MSDE database, 747

Wrox United example, Visual Studio .NET, 794
DataGrid class

database binding example, 53
properties

AllowPaging, 258
AllowSorting, 259
CurrentPageIndex, 259
OnPageIndexChanged, 258
OnSortCommand, 259
PageSize, 258

XML binding example, 56
DataGrid control

DataList control, interchangability with, 343
definition, 341
implementation example, 342
properties, 341

DataList control, 342
DataGrid control, interchangability with, 343
definition, 341
ItemTemplate element, 339
OnItemCommand property, 349
Repeater control, compared to, 352
SeperatorTemplate element, 339
Teams page, Wrox United example, use within, 333, 339
templates

AlternatingItemTemplate, 343
EditItemTemplate, 343
FooterTemplate, 343
HeaderTemplate, 343
ItemTemplate, 343
SelectedItemTemplate, 343
SeperatorTemplate, 343

DataReader class, 278
ADO.NET, data access classes, 269
implementation example, 279–281
ISBN search Web service example, 610
latest score Web service, use in, 625
OleDbDataReader object, 280
Results page, Wrox United example, 621
SqlDataReader object, 280

DataRow class, 285
Add() method, 295
Delete() method, 296

Rows collection, 285
Tables and Rows example, 286–288

code workthrough, 287
page view, 287

DataSet class, 278, 283
ADO.NET, data access classes, 269
binding multiple tables, 285
code wizards, implementation example, 267, 269
constraints, 295
data fetching, 284
data source updation, DataAdapter class, 297
database updation, 288, 289
DataRow object, 285
DataTable object, 284
Sort Page example, use in, 261
System.Data namespace, 267
Tables and Rows example, 286–288

code workthrough, 287
page view, 287

XML binding example, 56
DataTable class, 284

binding multiple tables, 285
CommandText property, use of, 284
DataSet, fetching data for, 284
NewRow() method, 294
Select() method, 295
Tables and Rows example, 286–288

code workthrough, 287
page view, 287

date data types, 89
DateTime class

event handler, creation example, 323
Expires property, 392
Now() method, 323
ToLongTimeString() method, 323
ToShortDateString() method, 323

DayRender() method, Event calendar, Wrox United
example, 357

Debug mode
disabling at page level, example, 527
performance optimization tips, 591
setting at application level, 528
setting at page level, 527
source errors, displaying using, 527

debugging, 509
RemoteOnly value, mode parameter, 573
XML in Web services, 601

decimal data type, 87
declarations section

<configSection> element, 566
configuration files, 566
system.web group, 567

835

DropDownList control

decryptionKey attribute, machineKey tag, 644
defaultdirect attribute, <customErrors> element, 550
defaultRedirect parameter, configuration settings,

572
<definitions> element, 610
Delete() method, DataRow object, 296
DeleteCommand property, auto-generated commands

example, 301
deny sub-tag, authorization tag, 644
dependencies, caching, 413

addition of
Add() method, using, 414
Insert() method, using, 414

file dependency, 582
Design Mode, Web Matrix, 732
Design Surface feature, Visual Studio .NET, 756
directives

namespace importing, 40
processing directives, Web services, 603

directories
management of, 808
physical directories, 809
security setting, 816
virtual directories, 809, 810

directory browsing access, access permission, 815
disconnected model, ADO.NET, 289
division (/) operator, 114
division by zero errors, 519
DLL (Dynamic Link Libraries), 433

COM DLLs, 434
ISBN search Web service example, 617
.NET DLLs, 434
Registry, locating within, 476
system files, 433
System.dll file, 472
System.Web.dll, 498

do...while statement, 151
see also looping structures
implementation example, 153-155

code workthrough, 153
page view, 153

syntax, 151
usage table, 144

double data type, 87
DropDownList control, 69, 332

see also intrinsic controls
attributes

id, 71
method, 71
name, 71

for statement, implementation example, 147

In
de

x

DropDownList control (continued)
HTML form control, compared to, 69
if statement, implementation example, 135
implementation example, 69–72

code workthrough, 71
id attribute, setting, 71
page view, 70
runat=server attribute, setting, 71
viewstate, setting, 71

Parameters object, implementation example, 275
using, 69

Duration property
fragment caching example, 578
OutputCache directive, 575

dynamic Web pages
ASP.NET, creation using, 1
client-side model

disadvantages, 7
operation mechanism, 6

server-side model, 7

E
early binding, performance optimization tips, 591
e-commerce, 664
editing data example, 289–297

row addition, 291
Add() method, use of, 295
code workthrough, 294
NewRow() method, use of, 294
page view, 292

row deletion, 291
code workthrough, 294
Delete() method, 296
page view, 294

row editing, 292
code workthrough, 295
page view, 292
Select() method, use of, 295

elements
<configuration> root element, 566
<customErrors> element, 572
<httpRuntime> element, 570
<pages> element, 570
case sensitivity, 566

Email updates, Wrox United example,, 373–377
code workthrough, 376
page view, 376
RegularExpressionValidator control, use of, 376

enabled parameter, tracing, configuration files, 574

836

DropDownList control (continued)

EnableSessionState parameter, configuration settings,
571

EnableViewState parameter, configuration settings, 571
EnableViewState property, Data Source controls, 367
encapsulation, 431

objects, within, 217
public methods and properties, 432

Encoding property, MailAttachment class, 558
encryption, 664

cookies, first level of security with, 645
definition, 637
e-commerce, importance in, 664
hashing algorithms, 665
keys, use of, 637
public-key encryption, 665
secret-key encryption, 664
SSL, use of, 637, 665

enterprisesec.config file, security, 562
Err object, absence in C#, 535
error handling, 509

custom errors, configuration files, 572
Debug mode, 527

disabling at page level, 527
setting at application level, 528
setting at page level, 527

exceptions, 536
finding errors, 525
logical errors, 514, 518
notification and logging, writing to event logs, 553
programmatically, 547

Application_Error() method, 547, 549
Page_Error() method, 547

specific error handlers, using, 540
structured error handling, 536
syntax errors, 514
system errors, 525
tracing, page level, 529
unstructured error handling, 535

error parameter, custom errors, configuration settings,
573

ErrorPage property, Page directive, 553
Event calendar, Wrox United example, 354–360

code workthrough, 358
Calendar controls, use of, 358
DayRender() method, 357
hashtables, use of, 359
Page_Load() method, 357
page view, 358

event driven programming, 192

event handlers
creation example, 322–324
definition, 193
documenting code, 200
functions, compared to, 193
implementation example, 201–203

Web matrix Properties section, adding event handlers
using, 202

page lifecycle, within, 326
Page_Load() method, 198
Prerender event handler, 404
Teams page, Wrox United example, 350
Web controls, adding events to, 200
Web pages, use within, 322

event logs
Application_Error() method, using, 557
error handling,notification and logging, 553
implementation example, 554–557
Page_Error() method, using, 557
System.Diagnostics namespace, use of, 553

EventLog class, System.Diagnostics namespace
CreateEventSource() method, 553
WriteEntry() method method, 553

events
ASP.NET, event driven architecture within, 313
calculator example, 206–211

Button controls, event calling using, 210
code workthrough, 210
page view, 209
switch statement, using, 211
viewstate, source view using, 208

definition, 192
event driven programming, 192
event handlers, 193
event-driven programming, 191
HTML server controls, processing within, 317
objects, describing characteristics, 216
operation mechanism, 192
page lifecycle

handling control events, 326
Init event, 324
Load event, 325
PreRender event, 325
Unload event, 325

page loading mechanism, 197
implementation example, 198
methods used, 198

postback, implementation example, 202-205
sessions & applications, handling, 410

837

expiration policies

Global.asax file, using, 410
types, 193

HTML events, 193
page events, 197

Web controls, 199
adding events, 200
attributes, adding as, 200
HTML events, compared to, 199

Web pages, use within, 322
Windows Operating System, 193

Exception class, System namespace, 537
properties

HelpLink, 537
InnerException, 537
Message, 537
Source, 537
StackTrace, 537
TargetSite, 537

exceptions
definition, 536
checked statement, generation of, 542
documentation of classes, 542
.NET Framework, handling by, 547
throw statement, generation using, 541
try . . catch . . . finally statements, 537

implementation example, 542–544
Exception class

ApplicationExeption class, inheritance for, 537
catch block, exeption catching using, 539
SystemExeption class, inheritance for, 537

execute permissions
None, 815
Scripts and Executables, 816
Scripts Only, 816

ExecuteNonQuery() method
command execute example, 310
database updation, 307
OleDbCommand object, 272

ExecuteReader() method, OleDbCommand class, 272
ExecuteScalar() method, OleDbCommand class, 272
executionTimeout parameter, general configuration

settings, 570
expiration policies

cache priorities, 589
file dependency

concept, 582
implementation example, 582-585

key dependency
concept, 581, 586
example, 586–589

timestamp expiration, 581

In
de

x

Expires property, DateTime class, 392
exponentiation (^) operator, 114
expressions, branching structures, 128

F
Fans table, Wrox United example, 746
file dependency

cache object, expiration policies, 582
implementation example, 583–586

code workthrough, 585
page view, 584

key dependencies, linking with, 589
File Selector Tabs feature, Visual Studio .NET, 755
Filename property, MailAttachment class, 558
Fill() method, DataAdapter class, 284
finally block, 541

see also try…catch…finally statement
firehose cursor, performance optimization tips, 591
first class example, 218–24

code workthrough, 220
constructor methods, use of, 226
Label controls, use of, 223
methods, defining, 228–231
page view, 220

code workthrough, 229
page view, 229
Response.Write statement, use of, 230

new keyword, use of, 226
Page_Load() method, use of, 223
private variables, use of, 221
properties setting, 221
public variables, 221
read-only property, use of, 224

Fixture details, Wrox United example, 360–366
code workthrough, 364
page view, 364
Panel controls, use of, 364
Repeater controls, use of, 364

FooterStyle property, DataGrid control, 342
for statement, 126

see also foreach...in statement; while statement
implementation example, 145

code workthrough, 146
DropDownList control, use of, 147
IsPostback property, use of, 147
page view, 147

Label control example, use within, 144
structure, 144
usage table, 144

838

Expires property, DateTime class

foreach...in statement, 126, 155
see also for statement; while statement
syntax, 155
usage table, 144

ForeColor attribute, Label control, 66
Foreign key, 250
<form> tag

ASP.NET, form controls, 64
authentication cookie, use in, 2nd level 642
runat=server attribute, 64
web.config configuration file
loginUrl attribute, 642
Name attribute, 642
Protection attribute, 643
slidingExpiration attribute, 643
Timeout attribute, 643

formatted code, good coding practice, 511
forms

see Web forms
Forms.Authentication.SignOut method, 664
FormsAuthentication class

RedirectFromLoginPage method, 645
Signout() method, 646, 664

Forms-based authentication, 637
cookies, use of, 638
database, use with, 646
login example, 639–646

cookies, checking for, 642
databases, using, 646–650
login page creation, 639
main page creation, 640
selective folder authorization, 650
SSL, use of, 664
user authorization, 650
web.config file creation, 639

Login page, Wrox United example, use in, 660
SSL, enabling, 665

login example, 665
requireSSL attribute, 665

web.config configuration file, use of, 638
Wrox United example, 653

fragment caching, performance optimization, 578
From property, MailMessage class, 557
functions, 43, 159

calling, 173
returning value as argument for another function, 174,

180
returning value as expression in control structure, 174,

180
returning value into a variable, 174, 179

returning value into value of objects property, 174, 179
calls, 162
defining, 161

simple function example, 161
event handlers, compared to, 193
functions with return values example, 175–181

code workthrough, 178
page view, 178
string concatenation, use of, 179

modularization, 160
parameters, use of, 164

implementation example, 165–169
parameter matching, 168
syntax, 165

return keyword, returning values using, 172
usage guidelines, 163
Visual Basic .NET, 480

G
Games table, Wrox United example, 744
GameTypes table, Wrox United example, 745
garbage collector, .NET Framework, 403

Merchandise page, Wrox United example, use within, 403
general configuration settings, configuration files, 570

<httpRuntime> element, 570
executionTimeout parameter, 570
maxRequestLength parameter, 570
useFullyQualifiedRedirectUrl, 570
web.config file, within, 570

get statement, properties, 221
GetLastError() method, Server object, 549

event logs, detailing information from, 554
global variables, 96
Global.asax file

definition, 410
Visual Studio .NET web application development, 757
Wrox United example, global settings within, 411–413

good coding practice, 510
amend identified error conditions, 510
code breakage, 513
code comments, 512
converting variables to the correct data types, 512
documenting code, 510
formatting code, 511
identify potential problem areas, 510
structuring code, 511

Greetings example, Web services, 595–598
code workthrough, 597
HTTP GET method, use of, 599
page view, 596

839

HTML (Hyper Text Markup Language)

GXA (Global XML Architecture) specifications
WSE toolkit, use with, 631

H
handling errors programatically

Application_Error() method, 547
Page_Error() method, 547

hashing algorithms, 644
hashing algorithms, SSL, 665
Hashtable class

Add() method, 107
advantages, 106
custom calendar example, 503
definition, 106
disadvantages, 106
Event calendar, Main page, Wrox United example, 359
implementation example, 108-110

code workthrough, 109
IsPostBack property, use of, 109
page view, 109

key-value pairs, adding, 106
syntax, 107

Headers Collection section, page level tracing, 531
HeaderStyle property, DataGrid control, 342
Height attribute, Label control, 66
HelloCS() method, 469
HelloWorld example, 474–476

code workthrough, 474
component compiling, 472
Label control, use of, 475
Page_Load() method, using, 475
page view, 474
Visual Basic .NET, writing using, 478–482

code workthrough, 480
page view, 480

HelpLink property, Exception class, 537
hidden form fields, ViewState, information storage

within, 420
high level programming languages, 37
HTML (Hyper Text Markup Language)

ASP.NET
mixing with, 49
separating code from, 49
separation from ASP code in, 9

disadvantages, 4
postback, lack of support for

explanation, 202
implementation example, 203

security, lack of adequacy, 5
Static Web pages, use within, 2

In
de

x

HTML events, 193
implementation example, 193
Web control events, compared to, 199

HTML form controls
ASP.NET server controls, compared to, 64
DropDownList control,compared to, 69

HTML forms, 60
definition, 60, 61
form controls, 60
Web form, compared to, 61

HTML server controls, 313
advantages, 316
definition, 316
features

automatic value caching, 318
custom attributes, 318
event processing, 317
Programmatic Object Model, 317
validation, 318

HtmlControl class, functionality derived from, 317
runat=server attribute, concept and example, 316-317
Web controls, ASP.NET, compared to, 201, 318

HTML Web services
XML Web services, compared to, 594

HTML/Design View feature, Visual Studio .NET, 756
HtmlControl class

HTML server controls, providing functionality to, 317
HTTP (Hyper Text Transfer Protocol), 23

ASP.NET, compared to, 64
configuration files, security, 565
cookies, Request/Response mechanism within, 384
disadvantage, 63, 382, 601
HTTP Request, 62
HTTP Response, 62
Request-Response system, 62
security, problems with, 637
stateless, 63
Web server, accessing, 808
Web services, use of HTTP within, 599
Web pages, accessing, 808

HTTP Error 403 (Page cannot be displayed), 24, 29
HTTP Error 404 (Page cannot be found), 30, 600
HTTP GET method, 599

Greetings example, use within, 599
HTTP Request, 599
HTTP Response, 600

HTTP POST method, 600
HTTP Request, 600

example, 600
name-value pairs, passing on, 601

HTTP Response, 601

840

HTML events

HTTP Request
HTTP GET method, 599
HTTP POST method, 600
Web services, use within, 599

HTTP Response
HTTP GET method, 600
HTTP POST method, 601

<httpRuntime> element, settings, 570
Hyperlink control

see also intrinsic controls
Button control, compared to, 331
Web controls, ASP.NET, 331

I
id attribute

databases, providing details for, 254
DropDownList control, implementation example, 71
Label controls, ASP.NET server controls, 66

if else statement, 125
see also branching structures

if statement
see also branching structures
alternate usage example, 137
disadvantage, 138
implementation example, 134–139

code workthrough, 135
DropDownList control, use of, 134
IsPostback property, use of, 136
Label control, use of, 137
Next() method, Random object, use of, 136
page view, 135

nested if statements, 137
structure, 128
types

if() statement, 129
if() {} statement, 129
if()...else if() statement, 131
if()...else statement, 130

usage table, 132
if(!Page.IsPostBack) construct, 326
if() {} statement, 129

example, 130
syntax, 130
usage table, 132

if() statement, 129
usage table, 132

if()...else if() statement, 131
example, 131
syntax, 131
usage table, 132

if()...else statement, 130
example, 131
syntax, 130
usage table, 132

IIS (Internet Information Services)
ASP.NET, role in, 41, 562, 733
history, 562
InetPub directory, 805
installation, 803–6

installation testing, 807
operating system compatibility, 803

MMC, working with, 806
permissions, 814
security of configuration files, 565
virtual directories, 565, 810
versioning, 5
Web server

installation testing, 818
managing directories, 808
name identification, 807

Windows operating system, versioning within, 803
IL (Intermediate Language)

see also MSIL
compilation process, 470

Image control, intrinsic controls, 332
ImageButton control, rich controls, 353
incorrect code syntax errors, 514
incorrect output errors, 519
IndexOf() method, Array class, 101
InetPub directory, IIS, 805
inheritance

configuration files, within, 564
implementation example, 234–238
interfaces, functionality compared to, 237
objects, within, 218
simple code-behind example, 454
stylesheet information, an example, 448

Injection Attacks, SQL, 277
inline code blocks, 47

disadvantage, 49
implementation example, 48
use in example, 50

InnerException property, Exception class, 537
Insert () method

ArrayList class, 104, 106
caching, dependencies, 414

InsertCommand property
auto-generated commands example, 301
DataAdapter class, 271

Inserting ASP.NET code example, 44–47
code workthrough, 46

841

invalid data errors

<script> tag, use of, 47
inline code blocks, using, 48
Page_Load() method, use of, 47
page view, 46
Response.Write statement, use of, 47
runat= server attribute, HTML server controls, 47

installation, .NET Framework, 13
.NET Framework Redistributable, using, 14
troubleshooting, 15

installation, ASP.NET, 11
MDAC, 12
operating systems compatibility, 11
pre-requisites, 12

installation, Web Matrix, 15, 16–18
instances, 216
int variable, C#, 82
integer data type, 86
Integrated Windows authentication, 638
IntelliSense, Visual Studio .NET, 726

Wrox United example, VS.NET, 764
interfaces

definition, 237
guidelines, 242
implementation example, 238–241

code workthrough, 239
defining properties, 240
page view, 239

inheritance, functionality compared to, 237
methods & properties implementation, 242
types, as, 241

interpreted code, 37
intrinsic controls

definition, 331
types

Button, 332
CheckBox, 332
DropDownList, 332
Hyperlink, 332
Image, 332
Label, 332
ListBox, 332
Panel, 332
RadioButton, 332
Table, 332
TableCell, 332
TableRow, 332
TextBox, 332

invalid data errors, 519
manual trapping, example, 521–523
validation, 520
validation controls, reducing using, 523

In
de

x

IP address restriction, security, 630
IP address restriction, Web services security, 627, 630
ISBN search Web service example, 610–613

accessing from ASP.NET page, 615–618
code workthrough, 612
page view, 612

code workthrough, 617
DLL creation, 617
page view, 617

ADO.NET, using, 612
DataReader object, use of, 610
Username password, using, 627–30

code workthrough, 629
page view, 628, 629

IsPostback property, 275, 590
DropDownList control, implementation example, 72
for statement, implementation example, 147
Hashtable class, implementation example, 109
if statement, implementation example, 136
performance optimization tips, 590
Page_Load() method, 325
postback, use for, 205
procedure-level variables, implementation example, 95
switch statement, implementation example, 143

ItemStyle property, DataGrid control, 342
ItemTemplate element, DataList control, 339

Label control, use with, 339
LinkButton control, use with, 339

J
JIT (Just-In-Time) compiler, 38

compilation process, 470
CLR, 38

jumping structures, 159
see also branching structures; looping structures
functions, 159
procedures, 127
table of uses, 127

K
key dependency, 586

cache key example, 586
code workthrough, 588
page view, 588

file dependencies, linking with, 589
syntax, 586

keys
see encryption

842

IP address restriction, security

keyword errors, combining or splitting between languages,
514

L
Label control, 332, 618

see also intrinsic controls
control attributes, 65
definition, 65
first class example, 223
HelloWorld example, use within, 475
if statement, implementation example, 137
implementation example, 67–69

code workthrough, 67
for statement, use of, 144
page view, 67
Text attribute, modifying, 68

ItemTemplate element, use within, 339
Login page, Wrox United example, navigation bar, 662
manual trapping example, use within, 522
runat=server, attributes id, 66
simple function example, 162
Tax calculation example, 117
Text property, 66, 456

Merchandise page, Wrox United example, 401
variables, implementation example, 85
syntax, 66

language attribute, Page directive, 43
latest score web service

code workthrough, 624
DataReader object, use of, 625
page view, 623
Results page, Wrox United example, 621–625

layers, 3-tier application design, 464
library files

see assemblies
LinkButton control, 353

see also rich controls
CommandArgument property, 339, 349, 350
CommandName property, 349, 350
ItemTemplate element, use within, 339

ListBox control, 332
see also intrinsic controls
definition, 72
implementation example, 72–74
selectionmode attribute, 73
syntax, 73
Web controls, ASP.NET, 319

local variables
see procedure-level variables

localhost
Web server, accessing, 23, 808, 818

localOnly parameter,
tracing, configuration files, 574

Location property, OutputCache element, 576
Location table, Wrox United example, 745
<location> tag, web.config configuration file, 652
logical errors, 514

call stack, viewing using
implementation example, 526–527
Stack Trace section, 527

invalid data errors, manual trapping, 520
runtime error example, 519
types, 518

logical operators
definition, 119
implementation example, 122–125
operator precedence, 121
syntax errors, 121

login example, security, 639–646
cookies, checking for, 642
databases, using, 646–650

System.Data.OLEDB namespace, use of, 649
System.Web.Security namespace, use of, 649

login page creation, 639
code workthrough, 645
databases, using, 647, 649
page view, 641
RedirectFromLoginPage method, use of, 645

main page creation, 640
code workthrough, 646
page view, 642
databases, using, 647
Signout() method, use of, 646

selective folder authorization, 651
SSL, use of, 664
user authorization, 651
web.config file, creation, 639, 642

Login page, Wrox United example, 653–664
administrator level page view, 659
authentication, with cookies, 661
code workthrough, 660
navigation bar, 662–664
page view, 658

Label control, using, 662
Page_Load() method, using, 662
Panel control, creation using, 662
Signout() method, use of, 664

user level page view, 660
web.config configuration file, authentication using, 660

843

MailMessage class, System.Web.Mail namespace

LoginUrl attribute, <forms> tag, 642
long data type, 86
looping structures, 144

see also branching structures; jumping structures
do...while statement, 144

implementation example, 151
syntax, 151

for statement, 126, 144
Label control, implementation example, 145
implementation example, 147-149
structure, 143

foreach...in statement, 126, 144, 155
syntax, 154

table of uses, 127
usage table, 144
while statement, 126, 144, 148

implementation example, 150
syntax, 148

M
machine code, 37
machine.config file, 562

configuration sequence of events, 564
contents, 564
examining, 563
important blocks examined, 569
.NET Framework, versioning, 563
overriding other machine.config file settings, 565
structure, 567

page settings, 568
web.config file, overridden by, 564, 566

machineKey tag, web.config configuration file
attributes

decryptionKey, 644
validation, 644
validationKey, 644

definition, 643
MailAttachment class

properties
Body, 558
Encoding, 558
Filename, 558
From, 558
Subject, 558
To, 558

System.Web.Mail namespace, 557
MailMessage class, System.Web.Mail namespace,

557

In
de

x

Main page, Wrox United example, 328–331
code workthrough, 330
components, encapsulating data access code into,

482–489
page view, 330

code workthrough, 488
page view, 487

custom calendar example
code workthrough, 502
page view, 502

custom calendar example, applying, 499
Email updates, 373–377

code workthrough, 376
page view, 376

Event calendar, 354
code workthrough, 358
Calendar controls, use of, 358
DayRender() method, use of, 357
hashtables, use of, 359
Page_Load() method, use of, 357, 359
page view, 358

Fixture details, 360–366
code workthrough, 364
page view, 364
Panel controls, use of, 364
Repeater controls, use of, 364

match of the day example, 491
code workthrough, 494
data access component, adding, 497
overriding, 496
page view, 494
System.Web.dll, referencing, 498

navigation user control example, applying, 446
simple header control example, applying, 445
Teams page, linking to, 340

match of the day example, 491–499
code workthrough, 494
data access component, adding, 497
Main Page, Wrox United example, 491
overriding, 496
page view, 494
System.Web.dll, referencing, 498

mathematical precedence, operators, 115
maxRequestLength parameter, general configuration set-

ting, 570
MD5 encryption algorithm, 665
MDAC (Microsoft Data Access Components)

ASP.NET installation pre-requisite, 12
installation, 13
site for downloading, 12

844

Main page, Wrox United example

MeasurementsConversion example, 605–607
code workthrough, 606
namespaces, defining, 606
page view, 605
Public Class, naming, 606
testing, 607–8
web methods, defining, 606
WSDL, contracts, 609

Menu section, Web Matrix, 728
Merchandise page, WroxUnited example, 396–405

code workthrough, 400
page view, 399
Page_Load() method, use of, 401
reference types, working with, 402
Repeater controls, use of, 401, 404

Message property, Exception class, 537
methods

see also functions
classes, defining within, example of, 227
consolidation, overloading, 230
keeping names unique, 469
objects, describing characteristics, 216
overloading, 229
signatures, 230
static methods, 231
static keyword, 231

Microsoft Access
Web Matrix, lack of support for queries by, 253

mistaken assumption errors, 519
MMC (Microsoft Management Console)

IIS, working with, 806
permissions, 814
service snap-ins, 806
Windows operating system, within, 806

mode attribute, <customErrors> element, 550
mode parameter, configuration settings, 573
modularization

advantages, 160
best practices, 188
definition, 160

modulo (%) operator, 114
Tax calculation example, 117
while statement, implementation example, 154

MSDE (Microsoft Data Engine), Wrox United example, 747
MSIL (Microsoft Intermediate Language)

see also assembly manifest; CLS
CLS, generation from, 38
definition, 37, 466
.NET Framework, composition, 36

multi-dimensional arrays, concept and example, 101-102
multiplication (*) operator, 114

MxDataGrid control, 366
see also AccessDataSourceControl control
attributes, 255
data grid example, 254
Players page, Wrox United example, use within, 369
properties used, 370
style elements, 255

N
Name attribute, <forms> tag, 643
name value pairs

HTTP POST method, passing on using, 601
Web services, use within, 599

namespaces
class declarations, compared to, 475
definition, 39
documentation, 243
importing, using directives, 40
MeasurementsConversion example, defining within, 606
.NET Framework, within, 243
syntax, 603
System namespace, 41
Web services

components, 603
used in, 598

navigation user control example, 446–451
code workthrough, 450
Chat page, Wrox United page, applying to, 450

page view, 450
Main page, Wrox United example, applying to, 446

page view, 448
negation (-) operator, 114
.NET assemblies

see assemblies
.NET Framework

ADO.NET, database connection using, 39
advantages, 36
ASP.NET, feature usage within, 1, 9
assemblies, 463
base class library, 39
class browser, 40
Class Browser, 243
CLS, definitions for, 36
COM DLLs, DLL files compared to, 434
composition

ASP.NET, 36
Class Libraries, 36
CLR, 36, 482
languages, 36
MSIL, 36
Web services, 36

845

notification and logging errors

cross language compatibility, 481
definition, 35
exeption handling, 547
garbage collector, 403
important aspects, 36
introduction, 1
installation, 14
namespaces, 39, 243
.NET Framework Redistributable, 14, 41
.NET Framework SDK, 40
objects, 216, 217
OOP, implementation using, 38
QuickStart tutorials, 40
System.dll file, 472
System.Data.dll component, 489
troubleshooting of installation, 15
versioning, 14, 563
Web controls, features used in, 320

.NET Framework 1.1
Web Matrix, setting for use with, 19

.NET Languages
.NET Framework, composition, 36
brief introduction, 36

nested try blocks, 545
ApplicationExeption object, handling, 546
implementation example, 545

network connectivity, 631
new keyword

first class example, 226
objects, initializing, 226

New() method, constructor, as, 480
NewRow() method, DataTable object, 294
Next() method, Random object, 136
no-existent object errors, 519
nondescript variable names, 90
normalization

definition, 249
keys, 250
ordering system example, 249

NOT (!) logical operator, 120
see also logical operators
implementation example, 123
operator precedence, 121

notification and logging errors, 552
customized error messages, 549

<customErrors> element, 549
Page not found error example, 550
User error example, 547–549

event logs

In
de

x

notification and logging errors (continued)
Application_Error() method, using, 556
implementation example, 553–556
Page_Error() method, using, 556
System.Diagnostics namespace, use of, 553

mailing the site administrator, 557
Now property, DateTime class

Wrox United example, cookies, use within, 392
Now() method, Date time class

ASP.NET, test page example, 28
event handler, creation example, 323

numeric comparison operators, 119
numeric data types

see also data types, C#
byte, 86
decimal, 87
double, 87
integer, 86
long, 86
short, 86
single, 87

O
objects

see also classes
abstraction, 217
built-in with ASP.NET, 39
classes, 39, 216
components, compared to, 432
definition, 38, 215
describing characteristics

events, 216
methods, 216
properties, 216

encapsulation, 217, 431
inheritance, 218, 232

advantages, 233
implementation example, 234–38

initializing with new keyword, 226
instances, 216
namespaces, 243
OOP, 38, 216
polymorphism, 217
String example, 216, 217
variables, 216, 217

OleDataAdapter object, 278
OleDbCommand object, 271

methods
ExecutableNonQuery, 272

846

notification and logging errors (continued)

ExecuteReader, 272
ExecuteScalar, 272

properties
CommandText, 272
CommandType, 272
Connection, 272
Parameters, 272

OleDbConnection object, 270
OleDbDataAdapter data adapter, 261
OleDbDataReader object, 650
On Error Resume Next statement, absence in C#, 535
OnSelectionChanged attribute, Calendar controls, 365
OOP (Object Oriented Programming), 38

advantages, 38, 39
classes, 216
instances, 216
.NET Framework, implementation within, 38

operator precedence, logical operators, 120
operators

arithmetic operators, 114
assignment (=) operator, 114
definition, 113
logical operators, 1209
mathematical precedence, 114
modulo operators, 116
numeric comparison operators, 119
Tax calculation example, arithmetic operators, 114
string concatenation, 118

Opponents table, Wrox United example, 746
options

see switches
OR (||) logical operator, 120

see also logical operators
implementation example, 123
operator precedence, 121

ordering system example, normalization, 248, 249
other data types, 89

boolean, 90
date, 89

out parameter
see also passing parameters by reference; passing

parameters by value
definition, 181
example, 182
implementation example, 183–187

code workthough, 185
page view, 184

output caching
see also caching
example, 576

OutputCache directive, syntax, 575
performance optimization, 575
Servertime example, 577–578

code workthrough, 578
page view, 577

OutputCache directive
Duration property, 575
Location property, 575
VaryByControl property, 576
VaryByCustom property, 576
VaryByHeader property, 576
VaryByParam property, 576

overloading, methods, 168
consolidation, concept and example, 230
disadvantage, 230
first class example, use within, 229
signatures, defining, 230

overriding, match of the day example, 496

P
Page class

ASP.NET, page lifecycle, 324
event handling, 197
IsPostback property, 275, 590

DropDownList control, implementation example, 72
for statement, implementation example, 146
Hashtable class, implementation example, 108
if statement, implementation example, 136
performance optimization tips, 590
Page_Load() method, 325
postback, use for, 205
procedure-level variables, implementation example, 96
switch statement, implementation example, 143

methods
Page_Error, 547
Page_Init, 324
Page_Load, 325
Page_PreRender, 325
Page_Unload, 326

properties
ErrorPage, 552
SortField, 259
Trace, 529

page configuration settings, configuration files, 571
AutoEventWireup parameter, 571
buffer parameter, 571
EnableSessionState parameter, 571
EnableViewState parameter, 571
web.config file, within, 570

Page directive, 43

847

Page_Load() method, Page class

page initialization, configuration sequence of events,
564

page level tracing
Control Tree section, 531
Cookies Collection section, 531
Headers Collection section, 531
Server Variables section, 532
Trace Information, 531

page lifecycle, ASP.NET
methods

Page_Init, 324
Page_Load, 325
Page_PreRender, 325
Page_Unload, 325

operation mechanism, 324
handling control events, 325
page cleanup, 325
page disposal, 325
page initialization, 324
page loading, 325
page prerendering, 325
page rendering, 325

Postback data loading, 324
ViewState loading, 324

Page not found error example, 547–549
<customErrors> element, use of, 552

Page_Error() method, Page class
event logs, making entries within, 557
error handling, programmatically, 547
implementation example, 547–549

code workthrough, 548
page view, 548

Page_Init() method, Page Class
events, page loading mechanism, 198
page lifecycle, ASP.NET, 324

Page_Load() method, Page class, 43, 72, 325
<script> tag, working with, 47
arrays, implementation example, 100
Chat page, use within, 408
database binding example, 53
Event calendar, Main page, Wrox United example,

357, 359
event handlers, use as, 198
events, page loading mechanism, 198
first class example, 223
functions with return values example, 178
HelloWorld example, use within, 475
implementation example, 325
implementation uses, 326
Inserting ASP.NET code example, 47

In
de

x

Page_Load() method, Page class (continued)
IsPostback property, 325
Login page, Wrox United example, navigation bar, 662
Merchandise page, WroxUnited example, use within, 401
page lifecycle, ASP.NET, 325
Parameters object, implementation example, 275
parameters, implementation example, 168
Players page, Wrox United example, use within, 371
procedure-level variables, implementation example, 96
simple function example, 163
Sort Page example, 259
Wrox United example

cookies, use within, 390, 393
Style sheets, use within, 422

XML binding example, 56
Page_PreRender() method, Page class

page lifecycle, ASP.NET, 325
Page_Render() method, Page class

events, page loading mechanism, 198
Page_Unload() method, Page class

definition, 326
events, page loading mechanism, 198, 199
implementation example, 327
page lifecycle, ASP.NET, 325

pagelets
see user controls

pageOutput parameter, tracing, configuration files, 574
<pages> element, page configuration settings, 570
Panel control, 332

see also intrinsic controls
Login page, Wrox United example, navigation bar, 662

parameters
definition, 164
functions, use with, 164

implementation example, 165–169
matching contents of, 168
syntax, 165

out parameter
definition, 181
implementation example, 183

passing by reference
definition, 181
implementations example, 183

passing by value
definition, 181
implementation example, 183

Teams page, Team players listing, 352
Web controls, referencing, 169, 170–172
Width parameter, 167

848

Page_Load() method, Page class (continued)

Parameters object
command execute example, 309
definition, 272
filtering queries, 277
implementation example, 165–69

code workthrough, 275
DataAdapter object, use of, 277
DropDownList control, use of, 275
Page_Load() method, use of, 275
page view, 275

Parameters collection, 272
properties, 277

Parameters property, OleDbCommand object, 272
parentheses, mathematical precedence, 115
parsers, 42
parser errors, 515
passing parameters by reference

see also out parameter; passing parameters by value
definition, 181
implementation example, 183-187

code workthough, 185
page view, 184

passing parameters by value, compared to, 186
passing parameters by value

see also out parameter; passing parameters by reference
definition, 181
implementation example, 183–187

code workthough, 185
page view, 184

passing parameters by reference, compared to, 186
Passport authentication, 638

see also authentication
authentication site of microsoft, 638

performance optimization, 561, 574
Cache object, 578
caching, 574

fragment caching, 578
output caching, 575

disconnected model, ADO.NET, 289
references, 590
tips, 590
tracing, 573

permissions
access permissions, 814
directory security, 816
execute permissions, 815
IIS admin tool, setting within, 814
virtual directories, creation, 812

physical directories
virtual directories relationship, 809

Players page, Wrox United example, 367–372

code workthrough, 369
DataSourceControl, use of, 369
MxDataGrid control, use of, 369
Page_Load() method, use of, 371
page view, 369

Players table, Wrox United example, 742
PlayerTeams table, Wrox United example, 743
plus (+) operator, string concatenation, 118
polymorphism, objects, 217
Position table, Wrox United example, 744
postback, 325

arrays, implementation example, 100
ASP.NET, page lifecycle, 324
definition, 202
implementation example, 203–205

ASP.NET page view, 204
code workthrough, 205
No postback in HTML page view, 203
viewstate, viewing information using, 205

IsPostBack property, using, 205
runat=server attribute, usage with, 202
Tax calculation example, 117

pre-compiled code, 37
see also interpreted code

Prerender event handler
Merchandise page, Wrox United example, 404

presentation layer, 3-tier application design, 464, 465
Preview Mode, Web Matrix, 732–733
Primary key, 250
Primary key/foreign key one-to-many relationships,

database design, 742
private variables

first class example, 221
properties, working with, 223

procedure-level variables, 92
implementation example, 92–96

code workthrough, 95
IsPostback property, use of, 96
Page_Load() method, use of, 96
page view, 95

processing directive
syntax, 603
worked example, 606
Web services, components, 603

Programmatic Object Model, HTML server controls, 316
projects, Visual Studio .NET, 756

see also solutions, Visual Studio .NET

849

RedirectFromLoginPage method

Properties Pane feature, Visual Studio .NET, 754
Properties section, Web Matrix, 729
properties, classes, 221

get statement, 221
private variables, working with, 223
read-only, example, 222
set statement, 221
write-only, 224

Protection attribute, <forms> tag, 643
provider solvency using UDDI, 633
Public Class

syntax, 604
MeasurementsConversion example, defining within,

606
Web services, components, 604

public keys/private keys, 665
public methods, encapsulation of objects, 432
public properties, encapsulation of objects, 432
Public Sub New() method, a constructor, 454
public variables, example, 220
public-key encryption, 665

Q
QueryString collection, Request object, 599

R
RadioButton control, 77

see also intrinsic controls
Checkbox control, compared to, 79

RadioButtonList control, 78
see also rich controls
implementation example, 78–79

code workthrough, 79
page view, 78
SelectedItem.Value property, use of, 79

parameters, implementation example, 167
SelectedItem.Value property, 142
switch statement, implementation example, 143
syntax, 76

Random object
if statement, implementation example, 136
Next() method, 136

RangeValidator control, 372
rapid application development, 435
read access, access permission, 814
read-only property, classes, 224
RedirectFromLoginPage method, 645

In
de

x

reference types
Merchandise page, WroxUnited example, 402

Register directive
TagName attribute, 440
TagPrefix attribute, 440

registered users,user security level, 636
Registry, 476

DLL files, locating, 476
XCopy deployment, 476

RegularExpressionValidator control, 373

ControlToValidate property, 760
Email updates, use within, 376
properties, 374

ControlToValidate, 376
ErrorMessage, 376

validation expressions, 377
Wrox United example, Visual Studio .NET, page creation,

759
RemoteOnly attribute, <customErrors> element, 573
render code block

see inline code block
rendering, of Web controls, 313
Repeater control

see also data rendering controls
DataList control, compared to, 352
definition, 341
Merchandise page, Wrox United example, use within, 401,

404
Team players listing, Teams page, Wrox United example,

349
templates, use within, 343

Request Details section, page level tracing, 530
Request.Query collection, HTTP requests, 599
requestLimit parameter, tracing, 574
RequiredFieldValidator control, 373

ControlToValidate property, 524
ErrorMessage property, 524
validating illegal data, 524
System.Web.UIWebControls namespace, 523

Response.Write statement
disadvantage in testing, 529
first class example, methods, 230
Inserting ASP.NET code example, 47

response-request mechanism, 599
return keyword, functions, 172
reusable code, 431

ASPX pages, 432
code-behind, 451

850

reference types

COM and DCOM, 593
components, 431
encapsulation, 431
modularization, use within, 160
rapid application development, 435
usage guidelines, 456
user controls, 435
Web Matrix, using within, 735
Web services, 593

rich controls, 316
definition, 352
types

AdRotator, 353
Calendar, 353
CheckBoxList, 353
ImageButton, 353
LinkButton, 353
RadioButtonList, 353

rich object model, Web controls, 320
root element, configuration files rules, 566
rows attribute, Textbox control, 75
Rows collection, 285
runat= server attribute, HTML server controls, 316

implementation example, 317
Inserting ASP.NET code example, 47
tag to control conversion, 318

runat=server attribute

ASP.NET server controls, attributes, 65
databases, providing details for, 254
DropDownList control, implementation example, 71
<form> tag, 64
Label controls, ASP.NET server controls, 66
postback, usage with, 202

runtime errors
see logical errors

runtime exceptions, 536

S
Sbyte data type, 86
Script source access, access permission, 814
<script> tags

inserting ASP.NET code, 42, 44
Page_Load() method, working with, 47

<sectionGroup> tags, configuration file format, 566
security, 635

access policies, 635
authentication, 635, 637
authorization, 637
configuration files, 565
database connection strings, 571

definition, 636
directories, within, 816
encryption, 637, 664
HTML, lack of adequacy within, 5
user level security, 636
virtual directories, advantage of, 810
Web services, of, 627, 635

security, Web services, 627
security.config file, 562
Select() method, DataTable object, 295
SelectCommand attribute

AccessDataSourceControl control, 254
Data Source controls, 367

SelectCommand property
auto-generated commands example, 300
CommandBuilder, basis for, 298
DataAdapter class, 271

SelectedItem.Value property
DropDownList control, implementation example, 73
RadioButtonList control, implementation example, 79

SelectedValue property, 276
selectionmode attribute, ListBox control, 73, 74
Send() method, SmtpMail class, 558
SeperatorTemplate element

DataList controls, 339
Repeater controls, Wrox United example, 365

server controls, 49
definition, 313
HTML server controls, 313
mixing HTML and ASP.NET code, 49
performance optimization tips, 590
seperating ASP.NET and HTML, 49
Web controls, 313

Server Explorer, Visual Studio .NET, 755
example, 794

server hits, performance optimization tips, 590
Server object

ClearError method, 549
GetLastError() method, 549, 554

Server Variables section, page level tracing, 532
server-side dynamic Web pages, 7

see also client-side dynamic Web pages
advantages, 8
ASP.NET, processing model within, 8
client-side dynamic Web pages, compared to, 9
operation mechanism, 7

Servertime example, 577–578
code workthrough, 577
page view, 577

851

simple header control example

service hijacking, 632
sessions, 381, 382

see also applications; caching; cookies
adding data to, 395
ASP.NET

default information storage within, 395
reacting to events within, 410

database, state management using, 420
definition, 393
operation mechanism, 394
session scope, web.config file, 381
session state, performance optimization tips, 590
Sessions class, 395
usage guidelines, 419
uses, 393
ViewState, state management using, 420
Wrox United example

Merchandise page, using session state within, 395
Style sheets, use within, 422, 427

set statement, properties, 221
settings section

<sectionGroup> element, 566
classes, establishing attributes & properties for, 567
configuration files, 566
important blocks examined, 569

SHA1 encryption algorithm, 665
Shared keyword, static methods, example, 232
short data type, 86
signatures, methods

overloading, defining using, 230
Signout() method, FormsAuthentication class, 646

Login page, Wrox United example, navigation bar, 664
simple code-behind example, 452–457

code workthrough, 454
inheritance, 454
namespace handling, 455
page view, 454

simple function example, 161–64
code workthrough, 162
Label control, use of, 162
Page_Load() method, use of, 163
page view, 162

simple header control example, 440–446
AdRotator control, use of, 443
chat page, Wrox United example, applying to, 445
code workthrough, 443
creating .ascx file, 443
Main page, Wrox United example, applying to, 445
page view, 442

In
de

x

simple user control example, 437–40
code workthrough, 439
page view, 439

single data type, 87
site administrator mailing, 557
sliding time expiration, 582
slidingExpiration attribute, <forms> tag, 643
SmtpMail class, example, 558
SmtpMail class, System.Web.Mail namespace, 558
SOAP SOAP (Simple Object Access Protocol), 601

ASP.NET Web services, default protocol for, 603
delayed response, 632
envelope, 601

SOAP envelope, 601
HTTP Request, not tied to, 602
HTTP Response, not tied to, 602
implementation example, 601

request code, 601
response code, 602

usage flexibility, 602
Solution Explorer, Visual Studio .NET, 755
solutions, Visual Studio .NET, 756
Sort Page example, 257–262

code workthrough, 258
DataSet object,use of, 261
OleDb class, use of, 258
OleDbDataAdapter data adapter, use of, 261
Page_Load() method, use of, 259
page view, 258
SortField property, use of, 259
String.Empty element, 260

SortedList class
definition, 110
syntax, 110

SortField property, Sort page, example, 259
Source property, Exception class, 537
SQL (Structured Query Language)

Injection Attacks, 277
stored procedures, 251
tables, linking of, 251
VS.NET, modifying server database using, 753

SqlConnection object, 270
SqlDataReader class, System.Data.SqlClient

performance optimization tips, 590
SSL (Secure Sockets Layer)

Certificate Authority, verifying identity using, 665
encryption, implemented within, 637, 665
Forms-based authentication, use in, 664

login example, 665

852

simple user control example

requireSSL attribute, 665
hashing keys, using, 665
Web services security, within, 627, 630

StackTrace property, Exception class, 537, 572
stateless protocol, 382
static methods

definition, 231
static keyword, 231

Static Web pages
see also dynamic Web pages
definition, 2
disadvantages, 4
dynamic features, lack of, 5
HTML, use of, 2
implementation example, 2
operation mechanism, 3

Status table, Wrox United example, 742
stored procedures

advantages, 251
definition, 251
performance optimization tips, 590

strConnect variable, database binding, 53
string concatenation

assignment (+=) operator, using, 118
definition, 118
functions with return values example, 179
performance optimization tips, 590
plus (+) operator, using, 118

string variables/data type, 88
String.Empty element, Sort Page example, 260
StringBuilder class, System.Text namespace, 590
strong typing, C#, 82
structured code, good coding practice, 511
structured error handling

definition, 536
exceptions, 536
try . . . catch . . . finally statements, 538
usage methods, 535

Subject property, MailMessage class, 558
subroutines, Visual Basic .NET, 480
subtraction (-) operator, 114
switch statement, 126, 138

see also branching structures
calculator example, 211
case statement, 139
implementation example, 143–144

code workthough, 142
IsPostback property, use of, 143
page view, 142

RadioButtonList control, use of, 143
numeric comparison operators, lack of support for, 143
structure, 138

switches, 472
syntax errors, 514

common mistakes, 514
compilation errors, 514

example, 516
configuration errors, 514
parser errors, 514

system errors
definition, 525
local client, viewable only on, 525

System namespace
DateTime class, 323
Exeption class, 537

System.Collections namespace
ArrayList class

Add() method, 103, 105
advantages, 102
definition, 102
disadvantages, 103
implementation example, 104–105
Insert() method, 103, 105
new keyword, creating objects using, 103
syntax, 103

Hashtable class
Add() method, 106
advantages, 105
custom calendar example, 503
definition, 105
disadvantages, 105
Event calendar, Main page, Wrox United example, 359
implementation example, 107–109
key-value pairs, adding, 106
syntax, 106

SortedList class, 109
System.Data namespace, ADO.NET, 269
System.Data.dll component, 489
System.Data.OleDb namespace

ADO.NET, classes contained for, 269
login example, databases, 649

System.Data.SqlClient namespace
ADO.NET, classes contained for, 269
SqlDataReader class, 591

System.Diagnostics namespace
event log, writing to, 553
EventLog class, 553

System.dll file, component compiling, 472

853

tables, databases

System.Text namespace, StringBuilder class, 590
System.Web group

configuration files, 566
declarations section expanded, 567
settings list, 568

system.web tag, web.config configuration file,
authorization sub-tag, 652
deny attribute, 652

System.Web.dll, example of use, 498
System.Web.Mail namespace

MailAttachment class, 558
MailMessage class, 558
site administrator, mailing, 557
SmtpMail class, 558

System.Web.Security namespace, example, 649
System.Web.UI.Control namespace

composite controls, inheritance to, 499
custom controls, 489, 490

components, compared, 490
creating, 490
data access components, compared to, 490
definition, 490
inheritance to, 495
match of the day example, 491–499
reusability, 498
user controls, compared to, 490

System.Web.UI.HtmlControls namespace, HtmlControl
class, 317

System.Web.UI.WebControls namespace
custom controls, inheritance to, 499
RequiredFieldValidator control, 523

SystemExeption class
catch block, exeption catching using, 539
Exeption class, inheritance from, 537

T
Table control, intrinsic controls, 332
TableBox control, intrinsic controls, 332
TableCell control, intrinsic controls, 332
TableRow control, intrinsic controls, 332
Tables and Rows example, 286–88

code workthrough, 287
page view, 287

Tables collection, 284
tables, databases

definition, 248
normalization, 249
ordering system example, 248
SQL, linking using, 251

In
de

x

tables, Wrox United example
Fans, 746
Games, 744
GameTypes, 745
Locations, 745
Opponents, 746
Players, 742
PlayerTeams, 743
Position, 744
relationship diagram, 741
Status, 742
Teams, 743

TagName attribute, Register directive, 440
TagPrefix attribute, Register directive, 440
target switch, compilation options, 473
TargetSite property, Exception class, 537
Tax calculation example, 115–118

code workthrough, 117
Label control, use of, 117
modulo operators, use of, 117
page view, 116
postback, use of, 117
TextBox control, use of, 117

Teams page, Wrox United example, 332–340
code workthrough, 339
components, encapsulating data access code into,

482–489
page view, 338

code workthrough, 488
DataList control, use of, 333, 339
Main page, linking to, 340
Team players listing, 343–352

code workthrough, 349, 350
event handlers, using, 350
page view, 349
parameters, use of, 352
Repeater control, use of, 349

Teams table, Wrox United example, 743
template pages, Web Matrix, 256

Sort Page example, 257–262
code workthrough, 258
DataSet object,use of, 261
OleDb class, use of, 258
OleDbDataAdapter data adapter, use of, 261
Page_Load() method, use of, 259
page view, 258
SortField property, use of, 259
String.Empty element, 260

templates
DataList control, use within

AlternatingItemTemplate, 343

854

tables, Wrox United example

EditItemTemplate, 343
FooterTemplate, 343
HeaderTemplate, 343
ItemTemplate, 343
SelectedItemTemplate, 343
SeperatorTemplate, 343

definition, 341
Repeater control, use within, 343

test page example, ASP.NET, 26–29
testing Web services, 607
Text attribute, Label controls, 66, 456

Merchandise page, Wrox United example, 401
textual data types, 88

string, 88
char, 89

Textbox control, 618
see also intrinsic controls
attributes

columns, 75
rows, 75
textmode, 75

definition, 75
events, use with, 199
implementation example, 74–76

code workthrough, 77
page view, 75

manual trapping example, use within, 522
multiline setting, 76
Tax calculation example, 116
Web controls, ASP.NET, 319

textmode attribute, Textbox control, 74
throw statement

exeptions, generating, 541
syntax, 541
try...catch...finally statements, use with, 541

tiered access to Web sites
see authorization

Timeout attribute, <forms> tag, 643
timestamp expiration, cache object, 581

Cache.Insert() method, setting using, 581
sliding time expiration, 582

To property, MailMessage class, 558
ToLongTimeString() method, Date time class, 323
Toolbox feature, Visual Studio .NET, 755
Toolbox section, Web Matrix, 728

MySnippets option, reusable code using, 735
example, 735

Web Matrix, code entry, 730
ToShortDateString() method, Date time class

event handler, creation example, 323
Trace attribute, Page directive, 529

Trace class
Warn() method, 532, 534
Write() method, 532
writing to the trace log, 532

trace element, Page directive, example, 195
trace log, Trace class, writing using methods of, 532
<trace> section, application level tracing, 534

example, 534
Trace.axd file, 535, 573
Trace.Write() method, Page directive, 197, 574
traceMode parameter, tracing, configuration files, 574
tracing, 195, 529

application level tracing, 534
configuration files, within

enabled parameter, 574
localOnly parameter, 574
pageOutput parameter, 574
requestLimit parameter, 574
traceMode parameter, 574

page level tracing, 529
Control Tree section, 531
Cookies Collection section, 531
Headers Collection section, 531
implementation example, 529–32
Request Details section, 530
Server Variables section, 532
Trace information section, 531

performance optimization, 573
trace element, Page directive, 195
trace log, writing to, 532
Trace.Write() method, 574
web.config file, 573
writing to the trace log, 532

transactions
definition, 306
operation mechanism, 306

try . . . catch . . . finally statements
catch blocks

contents of, 540
example, 539
exeption handling, 540
multiple catch blocks, 538
parameterless catch blocks, 540

exceptions, catching, 538
finally block, 541
implementation example, 542–544
nested try blocks, 544
syntax, 538
throw statement, use with, 541
try block, 538

855

user security levels

try block, 538
concept, 538
implementation example, 542–544

type mismatch errors, 519
typo errors, 514

U
UDDI (Universal Description, Discovery, and Integration)

provider solvency, 633
solving interdependency, 633
Web services, locating, 626
WSDL, use of, 626

UpdateCommand property
auto-generated commands example, 300
DataAdapter class, 271

URL (Uniform Resource Locator), 27
Web Server, for, 807

useFullyQualifiedRedirectUrl parameter, general
configuration setting, 570

user controls
application design, 465
code-behind files, use of, 466
custom controls, compared to, 490
definition, 435
mechanism of working, 436
navigation user control example, 446–451

Chat page, Wrox United page, applying to, 449
Main page, Wrox United page, applying to, 446

simple header control example, 440–446
AdRotator control, use of, 443
code workthrough, 443
page view, 442

simple user control example, 437–440
code workthrough, 439
page view, 439

tag libraries, using, 440
usage examples, 436
usage guidelines, 437
Wrox site example, 435
Wrox United example, Visual Studio .NET

developing user controls, 784
user control creation, 777

User error example, 547–549
<customErrors> element, use of, 552

user level security
administrators users, 636
anonymous users, 636
registered users, 636

user security levels, 636

In
de

x

user sessions
see sessions

Username password, Web services security, 627
ISBN search Web service example, 627–630

code workthrough, 629
page view, 628, 629

username-password, security technique
worked example, 627

Ushort data type, 86

V
validation

cookies, first level of security with, 645
definition, 643
good coding practice, 512
hashing algorithms, 644
HTML server controls, within, 318

validation attribute, machineKey tag, 644
Validation controls, 316

advantages, 372
definition, 372
invalid data errors, eliminating, 523

example, 524
types

CompareValidator, 372
CustomValidator, 372
RangeValidator, 372
RegularExpressionValidator, 373
RequiredFieldValidator, 373

validationKey attribute, machineKey tag, 644
variable scope, 91

block level variables, 91
global variables, 96
procedure-level variables, 92

variables
assigning values, 85
conversion functions, 97
declaration, 90

example, 83
guidelines, 82-90
nondescript variable names, effect of, 90

definition, 82
example using, 83
implementation example, 83–86

code workthrough, 85
compilation error page view, 85
Label control, use of, 85
page view, 84

naming conventions, 90

856

user sessions

objects, as, 216, 217
public variables, 220
scope, 91

VaryByControl property, OutputCache directive, 576
VaryByCustom property, OutputCache directive, 576
VaryByHeader property, OutputCache directive, 576
VaryByParam attribute, OutputCache directive, 576

fragment caching example, 578
Servertime example, 578

ViewState, 318
ASP.NET, page lifecycle, 324
definition, 71
DropDownList control, implementation example, 71
performance optimization tips, 590
postback, implementation example, 205
hidden form fields, information storage using, 420
state management, 420

virtual directories
creation, 810–813

IIS admin tool, using, 810
permissions, setting, 812

definition, 808
IIS

configuration files, 564
security within, 810

Web server, within, 808, 809
Visible attribute, Label control, 66
Visual Basic .NET

ASP.NET, default language for, 43
C#

compared to, 481
cross language compatibility, 477

class definitions, 480
components, writing, 477
continuation character, 481
functions, 480
HelloWorld example, within, 478–482

code workthrough, 480
page view, 480

subroutines, 480
Visual Interdev, 5
Visual Studio .NET

code block formatting, 782
code view features, 763
code-behind

default use of, 459
web forms applications using, 451

features, 755
IntelliSense tool, 726, 764
introduction, 753

language edition drawbacks, 753
projects, 756
reference reading, 801
solutions, 756
SQL, modifying server database of, 753
Web applications development

code-behind, use of, 757
generated files, 757

Web Matrix, compared to, 459, 726
Wrox United example, 754

adding code to code-behind class, 762
adding code to methods, 763–769
custom classes, using, 791–794
databases, working with, 794–797
debugging, 797–801
page compiling, 761–762
page creation, 757–761
stylesheets, use of, 769–776
user control creation, 777–782

W
Warn() method, Trace class

trace log,writing to, 534
writing to the trace log, 532

Web applications, 381
COM and DCOM, 593
information storage, 382, 404

applications, 382
caching, 382, 413
cookies, 382, 383
sessions, 382, 393

Visual Studio .NET, development using
code-behind, use of, 757
generated files, 757

Web controls, 9, 313, 315
attributes

id, 65
runat=server, 65

intrinsic, 316, 331
Button control, 319
CheckBox, 319
CheckBoxList, 78
Label, 65
ListBox, 319
RadioButton, 76
RadioButtonList, 76
TableCell, 332
Textbox, 74, 319

automatic browser detection, 320

857

Web gardening, performance optimization tips

data rendering controls, 316, 341
DataGrid, 341
DataList, 341
Repeater, 341

definition, 319
events, 199

adding events, 200
attributes, adding as, 200
HTML events, compared to, 199

event handling, 322
HTML

form controls, compared to, 64
server controls, compared to, 201, 318

Hyperlink control, 331
inheritance, 320
modifying, 68
.NET Framework, features drawn from, 320
parameters, as, 169, 170–173
postback, 202
properties, 320

AutoPostBack, 326
CSS stylesheet, adding, 321
implementation example, 321

rendering, 314
rich controls, 316

AdRotator, 353
Calendar, 353
CheckBoxList, 353
ImageButton, 353
LinkButton, 353
RadioButtonList, 353

rich object model, 320
Validation controls, 316, 372

CompareValidator, 372
CustomValidator, 372
RangeValidator, 372
RegularExpressionValidator, 373
RequiredFieldValidator, 373

variables, assigning values using, 84
Web forms

composition
ASP.NET code, 61
HTML templates, 61

definition, 60
HTML forms, compared to, 61
information transmission, 59
uses, 60
Web services proxy example, use in, 618

Web gardening, performance optimization tips, 591

In
de

x

Web Matrix
Microsoft Access, lack of support for queries in, 253
ASP.NET

application development for, 15
installation, 15

built-in class browser, 41
Class Browser, 735

implementation example, 736
usage technique, 736

code entry, example, 730-731
code wizards, example, 262-269
configuring for.NET Framework 1.1, 118
Data explorer, 251

data grid example, 253
databases, accessing, 251

Data Source controls, 367
properties, 367
Wrox United example, Players page, 369

development screen, 727
Menu section, 728
page view, 727
Properties section, 729
Toolbox section, 728
Workspace section, 729

error handling, 738
event handler, implementation example, 201–203
installation, 15, 16–18
introduction, 5, 725
layout options, 738
MxDataGrid control

attributes, 255
data grid example, 254
Players page, Wrox United example, 369
properties used, 370
style elements, 255

.NET Framework versioning, 563
Properties section, 202
references for usage, 738
reusable code, using, 735
saving pages, 731
starting, 727
template pages, 256
usage advantages/disadvantages, 726
viewing pages, 731

Design Mode, 732
Preview Mode, 732

Visual Interdev, inspired by, 5
Visual Studio .NET, compared to, 459
Web server

built-in feature, 5
introduction, 725

858

Web Matrix

limited security options, 638
page loading, example, 733
starting, 20–24
troubleshooting, 24

Web services proxy, in example, 614, 616
Web methods

CacheDuration attribute, 604
MeasurementsConversion example

code workthrough, 606
namespaces, defining, 606
page view, 605
Public Class, defining, 606

syntax, 604
Web services, components, 604
Wrox United example, use within, 618

Web pages, 60
accessing pages locally, 808
ASP.NET, dynamic content creation using, 1
browsers, role of, 23
client-server relationship, 62
components, accessing, 476
databases, storage using, 247
definition, 60
dynamic Web pages, 6

client-side model, 6
server side model, 7

HTTP, access role of, 808
inserting ASP.NET code, 42

inline code blocks, using, 47
Inserting ASP.NET code example, 44
server controls, using, 49

static Web pages
definition, 2
disadvantages, 4
implementation example, 2
operation mechanism, 3

Web Server, placed within, 60
Web server

ASP.NET, server error, 32
client browsers, 5
common types, 5
definition, 5
HTTP Error 403, 24
IIS, 5

managing directories, 808
name identification, 807
testing installation, 807

installation testing, 818
Internet Explorer, troubleshooting within, 821
Netscape Navigator, troubleshooting within, 822
other errors, 822
page not found error, 819

localhost, access using, 23
virtual directories, 809

example, 809
Web server, Web Matrix, 5

introduction, 725
limited security options, 638
page loading, example, 733
starting, 20–25
troubleshooting, 24

Web service Description page, 607
Web service proxy, 613

creating, 615
definition, 613
operation mechanism, 613
WSDL, managing, 613

Web services, 593
ADO.NET, using, 610
asynchronous method calls, 631
black box concept, 594
components, 603

namespaces, 603
processing directives, 603
Public Class, 604
Web methods, 604, 605

consuming, 613
accessing the ISBN Web service from a ASP.NET page,

615
proxy, using, 613

definition, 594
Discovery, 626
Greetings example, 595–598

code workthrough, 597
page view, 596

HTML Web services, 594
HTTP Request-Response system, 598

HTTP Request information, 599
HTTP Response information, 599

interdependency, 633
ISBN search Web service example, 610–613

code workthrough, 612
page view, 612

namespaces, use of, 598
.NET Framework, use of, 36
network connectivity, 631
provider solvency, 633
security, 627

common techniques, 627
IP address restriction, 630
registration keys, using, 627
SSL, using, 630
WSE toolkit, using, 631

859

web.config configuration file

service hijacking, 632
sharing application logic, 593
SOAP, 601
SOAP, default protocol for, 603
UDDI, locating using, 626
Web controls, compared with, 594
Web server installation testing, 818

Internet Explorer, troubleshooting within, 821
Netscape Navigator, troubleshooting within, 820
other errors, 820
page not found error, 818

Web service Description page, 607
Wrox United example

applying to, 618
latest score web service, 621
Results page, creation of, 619

WSDL file, 608
XML, use of, 599

usage advantages, 601
Web services, 594

XSD, writing data types using, 610
Web services security, 627
web.config configuration file, 562

application level tracing, settings for, 534
application settings, 572
AppSettings, used in example, 624
assemblies, accessing in other locations, 477

example, 477
authorization tag, 644
authorization, use within, 650
configuration sequence of events, 564
contents, 564
custom errors, 572

<customErrors> element, 550
error handling, 525
<forms> tag, 642
Forms-based authentication, 638, 639

Wrox United example, 653
general configuration settings, 570
latest score web service, within, 624
location tag, 652
login example, 642
login page example

authentication against database, 646
user authentication, 639, 642
user authorization, 651

Login page, Wrox United example, 653–664
administrator level page view, 659
authentication, 661
code workthrough, 660
navigation bar, 662–664

In
de

x

web.config configuration file (continued)
page view, 658
user level page view, 660
web.config configuration file, authentication using, 660

machineKey tag, 643
machine.config file, overriding settings of, 564, 566
overriding other web.config file settings, 564
page configuration settings, 570
structure, 569
system.web tag, 652

authorization sub-tag, 652
deny attribute, 652

tracing, 573
web-callable methods

see Web methods
Website references (URL)

Certification Authority, SSL, 630
class browser, 40
UDDI service, 626

WHERE Clause builder section
AND Clause button, 266
code wizards, Web Matrix, 266
Parameters object, implementation example, 276

while statement, 126
see also for statement; foreach..in statement
implementation example, 150

code workthough, 151
modulo (%) operator, using, 154
page view, 150

infinite looping problem, 149
example, 148

syntax, 148
usage table, 144

Width attribute, Label control, 66
Windows 2000 operating system

directory security, 816
Windows operating system

ASP.NET, compatibility with, 11
event driven model, 193
IIS

versioning of, 803
compatibility, 803

MMC, 806
Workspace section, Web Matrix, 729

saving pages, 731
write access, access permission, 814
Write() method, Trace class

writing to the trace log, 532
WriteEntry method method, EventLog class, 554

860

web.config configuration file (continued)

write-only property, classes, 224
Wrox United Application

authentication, adding to, 653
creating a Web service for, 618

Wrox United example, 314
caching, using, 415–418

code workthrough, 417
Calendar controls, use of, 416, 418
Hashtable object, use of, 417
page view, 417

Chat page
code workthrough, 408
page view, 407
posting new messages, 408
refreshing page content, 409
setting chat log length, 409
simple header control example, applying, 445
testbox properties, 408

code-behind, applying, 457–59
code work through, 458

cookies, using, 386–394
code workthrough, 391
checking user registration, 387
confirming presence of cookies, 390
expiry limit, 391
Page_Load() method, use of, 390
page view, 390
registering the user, 388

database design, 741
Fans table, 746
Games table, 744
GameTypes table, 745
installing Access database, 747
installing MSDE database, 747
Location table, 745
Opponents table, 746
Players table, 742
PlayerTeam table, 743
Position table, 744
Primary key/foreign key one-to-many relationships, 742
relationship diagram, 741
Status table, 742
Teams table, 743

database structure, 327
Forms-based authentication, use of, 653
global settings, 411–413

Global.asax, using, 411
Login page, 653–64

861

XML (eXtensible Markup Language)

administrator level page view, 659
authentication, 661
code workthrough, 660
navigation bar, 662–664
page view, 658
user level page view, 660
web.config configuration file, authentication using, 660

Main page, 328–31
adding Web controls, 329
browser code view, 331
code workthrough, 330
components, encapsulating data access code into, 482
composite controls, using, 499
Email updates, 373–377
Event calendar, 354
page view, 330
Fixture details, 360
setting Web control properties, 329
Teams page, linking to, 340
Web Matrix HTML code view, 330
Web Matrix, creating new page using, 328

Merchandise page, using session state within, 396–405
code workthrough, 400
page view, 399

opening page view, 314
Players page, 367–372

code workthrough, 369
DataSourceControl, use of, 369
MxDataGrid control, use of, 369
Page_Load() method, use of, 371
page view, 369

Results page, 619–621
code workthrough, 620
page view, 620

simple header control example, 440–446
AdRotator control, use of, 443
code workthrough, 443
page view, 442

Style sheets, 421–429
Calendar controls, use of, 423, 428
code workthrough, 427
cookies, use of, 422, 428
Page_Load() method, use of, 422
page view, 426
sessions, use of, 422
Sessions, use of, 427

Teams page, 332–340
code workthrough, 339

components, encapsulating data access code into,
482

DataList control, use of, 333, 339
Main page, linking to, 340
page view, 338
Team players listing, 343–352

Web services, applying, 618
Wrox United example, Visual Studio .NET, 754

adding code to code-behind class, 762
adding code to methods, 763–769
custom classes, 791–794
databases, working with, 794–797
debugging, 797–801

breakpoints, using, 798
design-time errors, fixing, 799

page compiling, 761–762
page creation, 757–761

RegularExpressionValidator control, use of, 759
stylesheets, use of, 769–776

HTML view, adding in, 776
user controls

adding control to page, 789–791
creation, 777–782
development, 784–786
XML file creation, 786–789

WSDL (Web services Description Language), 608

contracts, 609
MeasurementsConversion example, 609

elements
<definitions> element, 610
<types> element, 610

UDDI, key component of, 626
Web service, defining interactions for, 608
Web service proxy, handling by, 613

WSE (Web services enhancements) toolkit, 627, 631
GXA specifications, 631
WSE toolkit, 631

WS-Security specification, 631

X
XCopy deployment, 476
XML (eXtensible Markup Language)

ASP.NET
binding to, 54
configuration files, basis for, 5621

configuration files, structure in, 566
user control, used in example of, 440

In
de

x

XML (eXtensible Markup Language) (continued)
Web services

usage advantages, 601
use within, 599

Wrox United example, Visual Studio .NET, 784
XML binding example, 54–57

see also database binding example
code workthrough, 55
DataGrid object, use of, 56
DataSet object, use of, 56
Page_Load() method, use of, 56
page view, 55

XML element rules, 564
XML Web services, 594

see also Web services.
ASP.NET, easy deployment using, 594
HTML Web services, compared to, 594

XSD (XML Schema Definition)
Web service data types, writing, 610

XML (eXtensible Markup Language) (continued)

862

	Cover
	Contents
	Introduction
	1: Getting Started with ASP.NET
	What Is a Static Web Page?
	How Are Static Web Pages Served?
	Limitations of Static Web Pages
	What Is a Web Server?

	How Are Dynamic Web Pages Served?
	Client-Side Dynamic Web Pages
	Server-Side Dynamic Web Pages

	What Is ASP.NET?
	How Does ASP.NET Differ from ASP?
	Using C# with ASP.NET
	I'm Still Confused about ASP, ASP.NET, and C#

	The Installation Process
	Which Operating System Do You Have?
	Prerequisites for Installing ASP.NET
	Try It Out Installing MDAC 2.8

	Installing ASP.NET and the .NET Framework
	Try It Out Installing the .NET Framework Redistributable

	Installing Web Matrix
	Try It Out Installing Web Matrix

	Configuring Web Matrix to Run with .NET Framework 1.1
	Try It Out Configuring Web Matrix

	Running Web Matrix and Setting Up the Web Server
	Try It Out Starting the Web Server

	ASP.NET Test Example
	Try It Out Your First ASP.NET Web Page

	ASP.NET Troubleshooting
	Page Cannot Be Displayed: HTTP Error 403
	Page Cannot Be Found: HTTP Error 404
	Web Page Unavailable While Offline
	I Just Get a Blank Page
	The Page Displays the Message But Not the Time
	I Get an Error Statement Citing a Server Error
	I Have a Different Problem

	Summary

	2: Anatomy of an ASP.NET Page
	What Is .NET?
	From Your Code to Machine Code
	Introducing Two Intermediate Languages
	Objects
	The .NET Base Classes
	The Class Browser

	How ASP.NET Works
	Saving Your ASP.NET Files with an ASPX Suffix
	Inserting ASP.NET Code into Our Web Pages
	Try It Out Inserting Server-Side (ASP.NET) Code
	Try It Out Interweaving ASP.NET Output with HTML

	ASP.NET in Action
	Binding to a Database
	Try It Out Binding to a Database

	Binding to a Simple XML File
	Try It Out Binding to a Simple XML Document

	Summary
	Exercises

	3: Server Controls and Variables
	Forms
	Web Pages, HTML Forms, and Web Forms
	Request and Response in Non-ASP.NET Pages
	Where ASP.NET Fits in with the .NET Framework
	The <form> Tag in ASP.NET

	Using ASP.NET Server Controls
	<asp:Label>
	Try It Out Using the <asp:Label> Control

	Modifying ASP.NET Controls
	<asp:DropDownList>
	Try It Out Using the <asp:DropDownList> Control

	<asp:ListBox>
	Try It Out Using the <asp:ListBox> Control

	<asp:TextBox>
	Try It Out Using the <asp:TextBox> Control

	<asp:RadioButtonList> and <asp:RadioButton>
	Try It Out Using the <asp:RadioButtonList> Control

	<asp:CheckBox> and <asp:CheckBoxList>
	Try It Out Using the <asp:CheckBox> Control

	Storing Information in C# Variables
	Declaring Value Type Variables
	Try It Out Using Variables

	Datatypes
	Numeric
	Text Datatypes
	Other Datatypes
	Naming Variables
	Variable Scope
	Try It Out Creating Block and Function-Level Variables

	Constants
	Conversion Functions
	Arrays
	Try It Out Using Arrays

	Data Collections
	ArrayList
	Try It Out Using an ArrayList

	Hashtables
	Try It Out Using Hashtables

	SortedList

	Summary
	Exercises

	4: Control Structures and Procedural Programming
	Operators
	Assignment Operator
	Arithmetic Operators
	Try It Out Tax Calculator Using Arithmetic Operators

	String Concatenation
	Numeric Comparison Operators
	Logical Operators
	Try It Out Tax Calculator Using Logical Operators

	Control Structures
	Overview of Branching Structures
	Overview of Looping Structures
	Overview of Jumping Structures
	Uses of Control Structures

	Branching Structures
	The if Structure
	Try It Out Using the if Structure

	The switch Structure
	Try It Out Using the switch Structure

	Looping Structures
	The for Loop Structure
	Try It Out Using the for Loop

	The while Loop
	Try It Out Using the while Loop

	The do...while Structure
	Try It Out Using do...while

	The foreach...in Loop

	Summary
	Exercises

	5: Functions
	Overview
	Modularization
	Defining and Using Functions
	Try It Out Defining and Using a Simple Function

	Passing Parameters to Functions
	Try It Out Functions with Parameters

	Web Controls as Parameters
	Try It Out Using Web Controls as Parameters

	Return Values
	Using Return Values in Your Code
	Try It Out Handling Function Return Types

	Value, Reference, and Out Parameters
	Try It Out Using Value, Reference, and Out Parameters

	Modularization Best Practices
	Summary
	Exercises

	6: Event-Driven Programming and Postback
	What Is an Event?
	What Is Event-Driven Programming?
	HTML Events
	ASP.NET's Trace Feature
	ASP.NET Page Events
	ASP.NET Web Control Events
	Try It Out Creating Event Handlers with Web Matrix

	Event-Driven Programming and Postback
	Try It Out Reacting to Events in HTML and ASP.NET

	The IsPostBack Test
	Try It Out Calculator

	Summary
	Exercises

	7: Objects
	Classes and Instances
	Properties, Methods, and Events
	Objects in .NET
	Why Use Objects?
	Defining Classes
	Try It Out Creating a Class
	Property Variables
	Property Types
	Try It Out Read-Only Properties

	Initializing Objects
	Try It Out Overloading a Constructor

	Implementing Methods
	Try It Out Adding Methods to a Class

	Consolidating Overloaded Methods

	Advanced Classes
	Shared or Static Properties and Methods
	Inheritance
	Try It Out Inheritance

	Interfaces
	Try It Out Creating an Interface

	.NET Objects
	Namespaces
	The Class Browser

	Summary
	Exercises

	8: Reading from Databases
	Understanding Databases
	Tables
	Normalization
	SQL and Stored Procedures

	The Web Matrix Data Explorer
	Try It Out Connecting to a Database

	Creating Data Pages
	Displaying Data Using the Data Explorer
	Try It Out Creating a Grid

	Displaying Data Using the Web Matrix Template Pages
	Try It Out Creating a Data Page

	Displaying Data Using the Code Wizards
	Try It Out Creating a Data Page

	ADO.NET
	The OleDbConnection Object
	The OleDbCommand Object
	Try It Out Using Parameters

	The OleDataAdapter Object
	The DataSet Object
	The DataReader Object
	Try It Out Using a DataReader

	Summary
	Exercises

	9: Advanced Data Handling
	More Data Objects
	The DataTable Object
	The DataRow Object
	Try It Out The DataTable and DataRow Objects

	Updating Databases
	ADO.NET versus ADO
	Updating Data in a DataSet
	Try It Out Adding, Editing, and Deleting Rows

	Updating the Original Data Source
	Try It Out Auto-Generated Commands

	Updating the Database
	Try It Out Updating the Database

	Updating Databases Using a Command
	Try It Out Executing Commands Directly

	Summary
	Exercises

	10: ASP.NET Server Controls
	The Wrox United Application
	ASP.NET Web Controls
	HTML Server Controls
	HTML Server Controls versus Web Controls
	Web Controls
	Rich Object Model
	Automatic Browser Detection
	Properties

	Events
	Try It Out Creating an Event Handler

	Page Lifecycle
	Page_Load()
	Event Handling
	Page_Unload()

	Understanding Web Controls: The Wrox United Application
	Try It Out Wrox United Main Page – Default.aspx
	Intrinsic Controls
	Try It Out Wrox United – Teams.aspx

	Data Rendering Controls
	Try It Out Wrox United – Teams.aspx, Part 2

	Rich Controls
	Try It Out Wrox United – Default.aspx, Part 2, the Event Calendar
	Try It Out Wrox United – Displaying Fixture Details

	Web Matrix Controls
	Try It Out Wrox United – Players.aspx and the Web Matrix MX DataGrid

	Validation Controls
	Try It Out Wrox United – Registering for Email Updates (Default.aspx)

	Summary
	Exercises

	11: Users and Applications
	Remembering Information in a Web Application
	Cookies
	Try It Out Using Cookies

	Sessions
	Try It Out Using Session State

	Applications
	How Do Applications Work?
	Try It Out Using Application State

	Reacting to Application and Session Events
	Global.asax
	Try it Out Global.asax – Global Settings

	Caching
	Try It Out Wrox United – Caching Objects

	State Management Recommendations
	When to Use Cookies
	When to Use Sessions
	When to Use Applications
	When to Use Caching
	Other State Management Techniques
	Using Multiple State Management Techniques on a Page
	Try it Out Wrox United – Adding Some Style!

	Summary
	Exercises

	12: Reusable Code for ASP.NET
	Encapsulation
	Components
	Why Use Components?
	Applying Component Theory to Applications

	User Controls
	Try It Out Our First User Control
	Try It Out Wrox United – Header Control
	Try It Out Wrox United – Navigation User Control

	Code-Behind
	Try It Out Our First Code-Behind File
	Try It Out Using Code-Behind in Wrox United

	Summary
	Exercises

	13: .NET Assemblies and Custom Controls
	Three-Tier Application Design
	ASP.NET Application Design
	.NET Assemblies
	Try It Out Our First ASP.NET Component
	What Is Compilation?
	Try It Out Compiling Our First ASP.NET Component

	Accessing a Component from within an ASP.NET Page
	Try It Out Using a Compiled Component

	XCopy Deployment
	Accessing Assemblies in Other Locations
	Writing Code in Other Languages
	Try It Out Writing a Component in VB.NET

	Data Access Components
	Try It Out Encapsulating Data Access Code in a Component

	Custom Server Controls
	What Are Custom Controls?
	Try It Out Our First ASP.NET Custom Control

	Composite Custom Controls
	Try It Out Wrox United – Custom Composite Control

	Summary
	Exercises

	14: Debugging and Error Handling
	A Few Good Habits
	Tips on Coding
	Indent Your Code
	Structure Your Code
	Comment Your Code
	Convert Variables to the Correct Data Types (Validation)
	Try to Break Your Code

	Sources of Errors
	Syntax Errors
	Try It Out Syntax Error
	Try It Out Generate a Compiler Error

	Logical (Runtime) Errors
	Try It Out Generate a Runtime Error
	Try It Out Catching Illegal Values
	Try It Out Using RequiredFieldValidator

	System Errors

	Finding Errors
	Try It Out Viewing the Call-Stack
	Debug Mode
	Try It Out Disable the Debug Mode

	Tracing
	Try It Out Enabling Trace at the Page Level
	Try It Out Writing to the Trace Log

	Handling Errors
	Try It Out Using try...catch...finally
	Try It Out Using Page_Error()

	Error Notification and Logging
	Try It Out Creating Error Pages
	Writing to the Event Log
	Try It Out Writing to the Windows Error Log

	Mailing the Site Administrator

	Summary
	Exercises

	15: Configuration and Optimization
	Configuration Overview
	Browsing .config Files
	The Configuration Files
	The Structure of the Configuration Files

	Performance Optimization
	Caching
	Try It Out Output Caching

	The Cache Object
	Expiring Information in the Cache
	Try It Out Creating a File Dependency
	Try It Out Creating a Key Dependency

	Tips and Tricks
	Summary
	Exercises

	16: Web Services
	What Is a Web Service?
	Try It Out Creating Our First Web Service

	HTTP, XML, and Web Services
	HTTP GET
	HTTP POST

	Simple Object Access Protocol (SOAP)
	Building an ASP.NET Web Service
	Processing Directive
	Namespaces
	Public Class
	Web Methods
	Try It Out Creating a Web Service with Multiple Web Methods

	Testing Your Web Service
	Try It Out Conversions Test Page

	Using Your Web Service
	Try It Out Viewing the WSDL Contract
	Try It Out ISBN Search Web Service

	Consuming a Web Service
	How Does a Proxy Work?
	Creating a Proxy
	Try It Out Accessing the ISBN Web Service from an ASP.NET Page

	Creating a Web Service for the Wrox United Application
	Try It Out Adding a Results Page
	Try It Out Creating the Web Service

	Web Service Discovery
	Securing a Web Service
	Username-Password Combination or Registration Keys
	Try It Out Securing a Web Service with Username and Password

	Secure Sockets Layer (SSL)
	IP Address Restriction
	Web Services Enhancements (WSE)

	Other Web Services Considerations
	Network Connectivity
	Asynchronous Method Calls
	Service Hijacking (or Piggybacking)
	Provider Solvency
	The Interdependency Scenario

	Summary
	Exercises

	17: ASP.NET Security
	What Is Security?
	The ASP.NET Security Model
	Authentication
	Implementing Forms-Based Authentication
	Try It Out Forms-Based Authentication

	Forms-Based Authentication Using a Database
	Try It Out Authenticating against a Database

	Authorization
	Try It Out Authorization for User@MyDomain.com

	Authentication in Wrox United
	Try It Out Adding a Login Page to WroxUnited

	Encryption Using SSL
	Try It Out Enabling SSL

	Summary
	Exercises

	Appendix A: Exercise Solutions
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	Appendix B: Web Matrix Quick Start
	What Is Web Matrix?
	Starting ASP.NET Web Matrix
	The Screen
	How to Enter Code
	Try It Out Code Entry

	Saving and Viewing Pages
	Try It Out Formatting Modes, Views, and Serving Pages

	Reusing Code
	Try It Out Saving and Using Snippets

	Class Browser
	Try It Out Class Browser Property Look-Up

	What to Study Next
	Summary

	Appendix C: The Wrox United Database
	The Database Design
	Players
	Status
	Teams
	PlayerTeams
	Positions
	Games
	GameTypes
	Locations
	Opponents
	Fans

	Installing the Database
	Installing the Access Database
	Installing the MSDE Database

	Appendix D: Web Application Development Using Visual Studio .NET
	Creating a Web Application Project
	Features of the Visual Studio .NET Environment
	Visual Studio .NET Solutions and Projects
	Files in a Web Application Project

	Working with Web Pages
	Compiling and Running Pages
	Adding Code to the Code-Behind Class
	Features of Code View
	Adding Code to Methods

	Styling Controls and Pages in Visual Studio .NET
	Working in HTML View
	Creating User Controls
	Formatting Blocks of Code
	Developing the User Control
	Creating an XML File
	Adding a User Control to a Page

	Adding Custom Classes
	Working with Databases Using the Server Explorer
	Debugging in Visual Studio .NET
	Using Breakpoints
	Fixing Design-Time Errors

	Suggested Exercises and Further Reading

	Appendix E: Installing and Configuring IIS
	Try It Out Locating and Installing IIS on Your Web Server Machine
	Working with IIS
	The Microsoft Management Console (MMC)
	Testing Your Installation
	Identifying Your Web Server's Name
	Managing Directories on Your Web Server
	Try It Out Creating a Virtual Directory and Setting Up Permissions

	Permissions

	Browsing to a Page on Your Web Server

	Index
	Dog Ear

