

Beginning ASP.NET 2.0
in C# 2005
From Novice to Professional

■ ■ ■

Matthew MacDonald

MacDonald.book Page i Friday, December 30, 2005 12:59 PM

Beginning ASP.NET 2.0 in C# 2005: From Novice to Professional

Copyright © 2006 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-572-5

ISBN-10 (pbk): 1-59059-572-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Contributor of Chapter 27: Julian Templeman
Lead Editor: Jonathan Hassell
Technical Reviewer: Ronald Landers
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan

Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager and Production Director: Grace Wong
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Pat Christenson
Proofreader: Nancy Riddiough
Indexer: Michael Brinkman
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail ���������	�
�������������, or
visit ���
��������
����������������.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail ����	�
��������, or visit ���
��������
��������.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at ���
��������
�������� in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

MacDonald.book Page ii Friday, December 30, 2005 12:59 PM

For my loving wife, Faria

MacDonald.book Page iii Friday, December 30, 2005 12:59 PM

iv

Contents at a Glance

About the Author . xxvi

About the Technical Reviewer. xxvii

Acknowledgments. .xxviii

Introduction . xxix

PART 1 ■ ■ ■ Introducing .NET
■CHAPTER 1 Introducing the .NET Framework . 3

■CHAPTER 2 Learning the C# Language . 23

■CHAPTER 3 Types, Objects, and Namespaces . 59

■CHAPTER 4 Introducing Visual Studio 2005. 91

PART 2 ■ ■ ■ Developing ASP.NET Applications
■CHAPTER 5 Web Form Fundamentals . 125

■CHAPTER 6 Web Controls . 175

■CHAPTER 7 Tracing, Logging, and Error Handling. 219

■CHAPTER 8 Validation and Rich Controls . 267

■CHAPTER 9 State Management. 317

■CHAPTER 10 Master Pages and Themes . 359

■CHAPTER 11 Website Navigation . 389

■CHAPTER 12 Deploying ASP.NET Applications . 427

PART 3 ■ ■ ■ Working with Data
■CHAPTER 13 ADO.NET Fundamentals . 471

■CHAPTER 14 Data Binding. 539

■CHAPTER 15 The Data Controls . 581

■CHAPTER 16 Files and Streams. 625

■CHAPTER 17 XML. 655

MacDonald.book Page iv Friday, December 30, 2005 12:59 PM

v

PART 4 ■ ■ ■ Website Security
■CHAPTER 18 Security Fundamentals . 707

■CHAPTER 19 Membership . 739

■CHAPTER 20 Profiles. 781

PART 5 ■ ■ ■ Web Services
■CHAPTER 21 Web Services Architecture . 813

■CHAPTER 22 Creating Web Services . 831

■CHAPTER 23 Enhancing Web Services . 869

PART 6 ■ ■ ■ Advanced ASP.NET
■CHAPTER 24 Component-Based Programming. 903

■CHAPTER 25 Custom Controls . 937

■CHAPTER 26 Caching and Performance Tuning . 985

■CHAPTER 27 Web Parts . 1029

■INDEX . 1063

MacDonald.book Page v Friday, December 30, 2005 12:59 PM

MacDonald.book Page vi Friday, December 30, 2005 12:59 PM

vii

Contents

About the Author . xxvi

About the Technical Reviewer. xxvii

Acknowledgments. .xxviii

Introduction . xxix

PART 1 ■ ■ ■ Introducing .NET
■CHAPTER 1 Introducing the .NET Framework . 3

The Evolution of Web Development. 3
HTML and HTML Forms . 3
Server-Side Programming . 6
Client-Side Programming. 7
The Problems with ASP . 9

The .NET Framework . 10
C#, VB .NET, and the .NET Languages . 12

The Intermediate Language. 12
Other .NET Languages . 14

The Common Language Runtime . 14
The .NET Class Library. 16
Visual Studio . 17
.NET 2.0 . 18

C# 2.0 . 18
ASP.NET 2.0 . 19
Visual Studio 2005 . 20

The Last Word . 21

MacDonald.book Page vii Friday, December 30, 2005 12:59 PM

viii ■C O N T E N T S

■CHAPTER 2 Learning the C# Language . 23

The .NET Languages . 23
C# Language Basics. 24

Case Sensitivity . 24
Commenting. 25
Line Termination . 26
Block Structures . 26

Variables and Data Types . 27
Assignment and Initializers . 29
Strings and Escaped Characters. 30
Arrays . 31
Enumerations. 33

Variable Operations . 35
Advanced Math . 36
Type Conversions . 36

Object-Based Manipulation. 39
The String Class . 40
The DateTime and TimeSpan Classes. 42
The Array Class . 44

Conditional Structures . 44
The if Block . 45
The switch Block . 46

Loop Structures. 47
The for Block . 48
The foreach Block . 49
The while Block . 50

Methods . 51
Parameters . 53
Method Overloading . 53
Delegates . 54

The Last Word . 57

■CHAPTER 3 Types, Objects, and Namespaces. 59

The Basics About Classes . 59
Static Members . 61
A Simple Class. 62

MacDonald.book Page viii Friday, December 30, 2005 12:59 PM

■C O N T E N T S ix

Building a Basic Class . 62
Creating a Live Object . 63
Adding Properties . 65
Adding a Basic Method . 66
Adding a Constructor . 67
Adding a Basic Event . 68
Testing the Product Class . 70

Value Types and Reference Types. 73
Assignment Operations . 73
Equality Testing . 74
Passing Parameters by Reference and by Value 74
Reviewing .NET Types . 76

Understanding Namespaces and Assemblies . 78
Using Namespaces . 79
Importing Namespaces . 80
Assemblies . 81

Advanced Class Programming . 82
Inheritance . 83
Static Members . 84
Casting Objects . 85
Partial Classes . 87
Generics . 89

The Last Word . 90

■CHAPTER 4 Introducing Visual Studio 2005 . 91

The Promise of Visual Studio . 91
Creating a Website . 93

The Solution Explorer . 96
Designing a Web Page. 98

Adding Web Controls . 99
The Properties Window . 101
Adding Ordinary HTML . 102
HTML Tables . 104

Writing Code . 105
Adding Event Handlers . 106
IntelliSense and Outlining . 107
Assembly References . 114

MacDonald.book Page ix Friday, December 30, 2005 12:59 PM

x ■C O N T E N T S

Visual Studio Debugging . 115
Single-Step Debugging . 116
Variable Watches. 120

The Last Word . 121

PART 2 ■ ■ ■ Developing ASP.NET Applications
■CHAPTER 5 Web Form Fundamentals. 125

The Anatomy of an ASP.NET Application . 125
ASP.NET File Types. 127
ASP.NET Application Directories. 128
Application Updates . 129

A Simple One-Page Applet . 130
The ASP Solution—and Its Problems . 133
The ASP.NET Solution: Server Controls . 133
HTML Server Controls. 134
View State. 136
The HTML Control Classes. 137
Event Handling. 142
Behind the Scenes with the CurrencyConverter 143

Improving the Currency Converter. 146
Adding Multiple Currencies . 146
Storing Information in the List. 148
Adding Linked Images . 149
Setting Styles . 151

A Deeper Look at HTML Control Classes . 152
HTML Control Events . 153
Advanced Events with the HtmlInputImage Control 154
The HtmlControl Base Class . 156
The HtmlContainerControl Class. 157
The HtmlInputControl Class . 158

The Page Class . 158
The Controls Collection . 159
The HttpRequest Class . 160
The HttpResponse Class . 161
The ServerUtility Class . 162

MacDonald.book Page x Friday, December 30, 2005 12:59 PM

■C O N T E N T S xi

ASP.NET Configuration. 165
The web.config File. 165
Nested Configuration . 166
Storing Custom Settings in the web.config File 167
Modifying web.config Settings Programmatically 171
The Website Administration Tool (WAT) . 172

The Last Word . 174

■CHAPTER 6 Web Controls . 175

Stepping Up to Web Controls . 175
Basic Web Control Classes . 176
The Web Control Tags . 177

Web Control Classes . 179
The WebControl Base Class . 179
Units . 181
Enumerated Values . 182
Colors . 182
Fonts . 183
Focus. 185
The Default Button . 185

List Controls. 186
Multiple-Select List Controls . 187
The BulletedList Control . 190

Table Controls . 191
AutoPostBack and Web Control Events. 197

How Postback Events Work. 201
The Page Life Cycle . 202

A Simple Web Page Applet . 206
Improving the Greeting Card Applet. 212
Generating the Cards Automatically. 214

The Last Word . 217

■CHAPTER 7 Tracing, Logging, and Error Handling . 219

Common Errors . 219
Exception Handling. 221

The Exception Class . 222
The Exception Chain . 224

MacDonald.book Page xi Friday, December 30, 2005 12:59 PM

xii ■C O N T E N T S

Handling Exceptions. 225
Catching Specific Exceptions . 226
Nested Exception Handlers . 227
Exception Handling in Action. 229
Mastering Exceptions . 231

Throwing Your Own Exceptions . 232
Logging Exceptions . 236

Using the EventLog Class . 239
Custom Logs . 241
Retrieving Log Information . 243

Error Pages . 246
Error Modes . 248
A Custom Error Page . 249
Specific Custom Error Pages. 250

Page Tracing . 252
Enabling Tracing . 253
Tracing Information. 254
Writing Trace Information . 259
Reading Trace Information . 263
Application-Level Tracing . 264

The Last Word . 266

■CHAPTER 8 Validation and Rich Controls. 267

Validation . 267
The Validation Controls . 268
The Validation Process . 269
Client-Side Validation . 270
The Validator Classes . 270

A Simple Validation Example . 271
Other Display Options. 274
Manual Validation . 276

Understanding Regular Expressions . 278
Literals and Metacharacters . 278
Finding a Regular Expression . 279
A Validated Customer Form. 282
Validation Groups . 288

Rich Controls . 290
The Calendar Control . 291
The AdRotator . 299

MacDonald.book Page xii Friday, December 30, 2005 12:59 PM

■C O N T E N T S xiii

Pages with Multiple Views . 302
The MultiView Control . 304
The Wizard Control . 310

The Last Word . 316

■CHAPTER 9 State Management . 317

The Problem of State . 317
View State . 318

A View State Example. 318
Making View Sate Secure . 320
Retaining Member Variables . 322
Storing Custom Objects . 324

Transferring Information . 325
Cross-Page Posting. 325
The Query String . 330

Custom Cookies . 334
A Cookie Example . 336

Session State. 337
Session Tracking. 338
Using Session State . 339
A Session State Example . 340

Session State Configuration . 344
Cookieless . 344
Timeout. 347
Mode . 348

Application State. 352
An Overview of State Management Choices . 354
The Global.asax Application File . 356

Application Events. 357
The Last Word . 358

■CHAPTER 10 Master Pages and Themes . 359

Master Page Basics . 359
A Simple Master Page and Content Page . 360
How Master Pages and Content Pages Are Connected 364
A Master Page with Multiple Content Regions 366
Default Content . 369
Master Pages and Relative Paths . 370

MacDonald.book Page xiii Friday, December 30, 2005 12:59 PM

xiv ■C O N T E N T S

Advanced Master Pages . 371
Table-Based Layouts . 372
Code in a Master Page . 375
Interacting with a Master Page Programmatically. 375

Themes. 377
How Themes Work . 378
Applying a Simple Theme . 380
Handling Theme Conflicts . 381
Creating Multiple Skins for the Same Control 383
Skins with Templates and Images . 384

The Last Word . 387

■CHAPTER 11 Website Navigation . 389

Site Maps . 389
Defining a Site Map . 391
Seeing a Simple Site Map in Action . 395
Binding an Ordinary Page to a Site Map . 396
Binding a Master Page to a Site Map . 397
Binding Portions of a SiteMap. 399
Navigating Programmatically . 405
Mapping URLs . 407

The SiteMapPath Control. 409
Customizing the SiteMapPath . 410
Using SiteMapPath Styles and Templates . 410
Adding Custom Site Map Information . 412

The TreeView Control. 413
TreeView Properties . 414
TreeView Styles . 415

The Menu Control . 420
Menu Styles . 421
Menu Templates . 423

The Last Word . 425

■CHAPTER 12 Deploying ASP.NET Applications . 427

ASP.NET Applications and the Web Server . 427
How Web Servers Work . 427
Web Application URLs . 429
Web Farms . 431

MacDonald.book Page xiv Friday, December 30, 2005 12:59 PM

■C O N T E N T S xv

IIS (Internet Information Services) . 433
Installing IIS 5 . 433
Installing IIS 6 . 435
Registering the ASP.NET File Mappings . 436
Verifying That ASP.NET Is Correctly Installed 438

Managing Websites with IIS Manager. 439
Creating a Virtual Directory . 439
Virtual Directories and Web Applications . 442
Configuring an Existing Virtual Directory. 444
Adding a Virtual Directory to Your Neighborhood 451

Deploying a Simple Site. 453
Web Applications and Components . 454
Other Configuration Steps . 455
The ASPNET Account . 456
Code Compilation . 459

Deploying with Visual Studio 2005 . 460
Creating a Virtual Directory for a New Project 460
Copying a Website . 463
Publishing a Website . 466

The Last Word . 468

PART 3 ■ ■ ■ Working with Data
■CHAPTER 13 ADO.NET Fundamentals . 471

ADO.NET and Data Management . 471
The Role of the Database. 472
Database Access in the Internet World . 473
Introducing ADO.NET . 474
SQL Server 2005 Express Edition. 475
Browsing and Modifying Databases in Visual Studio 476

SQL Basics. 478
Running Queries in Visual Studio . 479
The Select Statement . 481
The SQL Update Statement . 485
The SQL Insert Statement . 486
The SQL Delete Statement . 487

ADO.NET Basics . 487
Data Namespaces . 489
The Data Provider Objects . 490

MacDonald.book Page xv Friday, December 30, 2005 12:59 PM

xvi ■C O N T E N T S

Direct Data Access . 492
Importing the Namespaces . 493

Creating a Connection . 493
The Connection String . 495
Windows Authentication. 495
Connection String Tips . 496
Making the Connection . 497

Defining a Select Command . 500
Using a Command with a DataReader. 501
Putting It All Together . 502
Filling the List Box. 503

Updating Data . 507
Enhancing the Author Page . 507
Creating More Robust Commands . 512

Disconnected Data Access . 518
Selecting Disconnected Data . 519
Selecting Multiple Tables. 521
Modifying Disconnected Data . 526
Adding Information to a DataSet. 527

Updating Disconnected Data . 528
The CommandBuilder. 528
Updating a DataTable . 529
Controlling Updates. 530
A Disconnected Update Example . 531
Concurrency Problems . 533
A Concurrency Example . 535

The Last Word . 538

■CHAPTER 14 Data Binding . 539

Introducing Data Binding. 539
Types of ASP.NET Data Binding . 540
How Data Binding Works . 540

Single-Value Data Binding. 541
A Simple Data Binding Example . 542
Simple Data Binding with Properties . 545
Problems with Single-Value Data Binding . 546
Using Code Instead of Simple Data Binding 547

MacDonald.book Page xvi Friday, December 30, 2005 12:59 PM

■C O N T E N T S xvii

Repeated-Value Data Binding. 547
Data Binding with Simple List Controls . 548
A Simple List Binding Example . 549
Generic Collections . 550
Multiple Binding. 551
Data Binding and View State. 553
Data Binding with a Dictionary Collection . 553
Using the DataValueField Property . 555
Data Binding with ADO.NET. 557
Creating a Record Editor . 559

Data Source Controls . 564
The Page Life Cycle with Data Binding . 565
The SqlDataSource . 566
Selecting Records . 568
Parameterized Commands . 570
Handling Errors . 574
Updating Records . 574

The Last Word . 578

■CHAPTER 15 The Data Controls. 581

The GridView . 581
Automatically Generating Columns . 582
Defining Columns . 584

Formatting the GridView . 588
Formatting Fields . 588
Using Styles . 590
Formatting-Specific Values . 593

Selecting a GridView Row . 595
Adding a Select Button. 596
Using Selection to Create a Master-Details Form 598

Editing with the GridView . 600
Sorting and Paging the GridView . 603

Sorting. 603
Paging . 606

Using GridView Templates . 608
Using Multiple Templates . 610
Editing Templates in Visual Studio . 611
Handling Events in a Template . 612
Editing with a Template . 613

MacDonald.book Page xvii Friday, December 30, 2005 12:59 PM

xviii ■C O N T E N T S

The DetailsView and FormView . 618
The DetailsView. 618
The FormView . 621

The Last Word . 623

■CHAPTER 16 Files and Streams . 625

Files and Web Applications . 625
File System Information. 626

The Directory and File Classes . 627
The DirectoryInfo and FileInfo Classes . 633
The DriveInfo Class . 635
A Sample File Browser . 636

Reading and Writing with Streams . 640
Text Files . 640
Binary Files. 642
Shortcuts for Reading and Writing Files . 643
A Simple Guest Book . 645

Allowing File Uploads . 650
Dissecting the Code… . 653

The Last Word . 654

■CHAPTER 17 XML . 655

XML’s Hidden Role in .NET . 655
Configuration Files . 655
ADO.NET Data Access . 656
Web Services . 656
Anywhere Miscellaneous Data Is Stored. 656

XML Explained. 656
Improving the List with XML . 659
XML Basics. 660
Attributes . 662
Comments . 663

The XML Classes . 663
The XML TextWriter . 664
The XML Text Reader . 666
Working with XML Documents . 673
Reading an XML Document . 677
Searching an XML Document . 680

MacDonald.book Page xviii Friday, December 30, 2005 12:59 PM

■C O N T E N T S xix

XML Validation. 681
XML Namespaces . 681
XSD Documents. 683
Validating an XML File . 684

XML Display and Transforms . 687
The Xml Web Control . 690

XML Data Binding . 692
Nonhierarchical Binding. 692
Hierarchical Binding with the TreeView. 695
Binding to XML Content from Other Sources 697

XML in ADO.NET . 698
Accessing a DataSet As XML . 699
Accessing XML Through the DataSet . 701

The Last Word . 702

PART 4 ■ ■ ■ Website Security
■CHAPTER 18 Security Fundamentals . 707

Determining Security Requirements . 707
Restricted File Types . 708
Security Concepts . 708

The ASP.NET Security Model . 709
Security Strategies . 712
Certificates . 713
Secure Sockets Layer. 715

Forms Authentication . 716
Web.config Settings . 718
Authorization Rules . 719
The WAT . 722
The Login Page . 726

Windows Authentication . 729
IIS Settings . 730
Web.config Settings . 732
A Windows Authentication Test . 734

Impersonation . 735
Programmatic Impersonation . 737

The Last Word . 738

MacDonald.book Page xix Friday, December 30, 2005 12:59 PM

xx ■C O N T E N T S

■CHAPTER 19 Membership. 739

The Membership Data Store . 740
Membership with SQL Server 2005 Express 741
Configuring the Membership Provider . 744
Manually Creating the Membership Tables 749
Creating Users with the WAT . 751
The Membership and MembershipUser Classes 753
Authentication with Membership . 757
Disabled Accounts. 758

The Security Controls. 759
The Login Control . 760
The CreateUserWizard Control . 766
The PasswordRecovery Control . 770

Role-Based Security. 773
Creating and Assigning Roles . 773
Restricting Access Based on Roles . 777
The LoginView Control . 778

The Last Word . 780

■CHAPTER 20 Profiles . 781

Understanding Profiles. 782
Profile Performance . 782
How Profiles Store Data . 783

Using the SqlProfileProvider . 785
Enabling Authentication . 786
Profiles with SQL Server 2005 Express Edition 787
Configuring the Profile Provider to Use a Different Database 787
Manually Creating the Profile Tables . 789
The Profile Databases. 790
Defining Profile Properties . 793
Using Profile Properties . 794
Profile Serialization . 796
Profile Groups . 798
Profiles and Custom Data Types. 799
The Profile API . 804
Anonymous Profiles . 807

The Last Word . 809

MacDonald.book Page xx Friday, December 30, 2005 12:59 PM

■C O N T E N T S xxi

PART 5 ■ ■ ■ Web Services
■CHAPTER 21 Web Services Architecture . 813

Internet Programming Then and Now. 813
The Era of Monolithic Applications. 813
Components and the COM Revolution . 814
Web Services and the Programmable Web 815
When Web Services Make Sense . 816
The Open-Standards Plumbing. 816

Web Services Description Language. 817
The <definitions> Element . 818
The <types> Element. 818
The <message> Elements . 820
The <portType> Elements. 821
The <binding> Elements . 821
The <service> Element . 823

SOAP . 824
A Sample SOAP Message . 824

Communicating with a Web Service . 825
Web Service Discovery . 827

The DISCO Standard . 827
Universal Description, Discovery, and Integration 828

WS-Interoperability. 829
The Last Word . 830

■CHAPTER 22 Creating Web Services . 831

Web Service Basics . 831
Configuring a Web Service Project. 832

The StockQuote Web Service . 834
Understanding the StockQuote Service. 835
Web Services with Code-Behind . 836
The ASP.NET Intrinsic Objects . 837

Documenting Your Web Service. 838
Descriptions . 839
The XML Namespace . 840
Conformance Claims . 840

MacDonald.book Page xxi Friday, December 30, 2005 12:59 PM

xxii ■C O N T E N T S

Testing Your Web Service . 842
The Web Service Test Page. 842
Service Description . 843
Method Description. 845
Testing a Method . 845

Web Service Data Types . 847
The StockQuote Service with a Data Object 848

Consuming a Web Service . 853
Configuring a Web Service Client in Visual Studio. 853
The Role of the Proxy Class. 854
Creating a Web Reference in Visual Studio 855
Creating a Proxy with WSDL.exe . 857
Dissecting the Proxy Class . 859
Dynamic Web Service URLs . 862

Using the Proxy Class . 863
Waiting and Timeouts. 864
Web Service Errors . 865
Connecting Through a Proxy . 866

The Last Word . 867

■CHAPTER 23 Enhancing Web Services . 869

State Management . 869
The StockQuote Service with State Management 870
Consuming a Stateful Web Service . 872

Web Service Security . 877
Windows Authentication with a Web Service 878
Ticket-Based Authentication . 882
Ticket-Based Authentication with SOAP Headers 885
Using SOAP Headers in the Client . 888

Web Service Transactions. 888
An Example with TerraService . 891

Adding the Reference . 892
Testing the Client . 893
Searching for More Information . 895
Displaying a Tile . 896

Windows Clients . 898
The Last Word . 900

MacDonald.book Page xxii Friday, December 30, 2005 12:59 PM

■C O N T E N T S xxiii

PART 6 ■ ■ ■ Advanced ASP.NET
■CHAPTER 24 Component-Based Programming . 903

Why Use Components? . 903
Component Jargon . 905

Three-Tier Design . 905
Encapsulation. 907
Data Objects. 907
Business Objects . 907

Creating a Simple Component . 908
The Component Class . 908

Classes and Namespaces . 910
 Adding a Reference to the Component. 912
Using the Component . 914

Properties and State. 916
A Stateful Account Class . 917
A Stateless AccountUtility Class . 918

Database Components. 919
A Simple Database Component . 920
Consuming the Database Component . 924
Enhancing the Component with Error Handling 927
Enhancing the Component with Aggregate Information 928

The ObjectDataSource . 930
Making Classes the Object Data Source Can Understand 930
Selecting Records . 931
Using Method Parameters . 932
Updating Records . 933

The Last Word . 936

■CHAPTER 25 Custom Controls . 937

User Controls . 937
Creating a Simple User Control. 939
Independent User Controls . 941
Integrated User Controls . 943
User Control Events. 946
Using Events with Parameters . 949
User Control Limitations. 952

MacDonald.book Page xxiii Friday, December 30, 2005 12:59 PM

xxiv ■C O N T E N T S

Derived Custom Controls. 953
Creating a Simple Derived Control . 953
Using a Derived Control . 955
Creating a Custom Control Library . 957
Custom Controls and Default Values . 958
Changing Control Rendering . 961
Creating a Web Control from Scratch . 964
Maintaining State Information. 967
Design-Time Support . 969
Creating a Composite Control . 971
Custom Control Events and Postbacks . 973

Dynamic Graphics. 977
Basic Drawing . 978
Drawing Custom Text . 980
Placing Custom Images Inside Web Pages. 981

The Last Word . 983

■CHAPTER 26 Caching and Performance Tuning . 985

Designing for Performance . 986
ASP.NET Code Compilation . 986
Server Controls . 986
ADO.NET Database Access . 987
Session State . 989

Profiling . 989
Stress Testing . 990
Performance Counters . 990

Caching . 994
Output Caching . 995

Caching on the Client Side. 997
Caching and the Query String . 997
Caching with Specific Parameters . 998
A Multiple Caching Example . 999
Custom Caching Control . 1001
Fragment Caching. 1002
Cache Profiles . 1003
Output Caching in a Web Service . 1004

MacDonald.book Page xxiv Friday, December 30, 2005 12:59 PM

■C O N T E N T S xxv

Data Caching . 1004
Adding Items to the Cache. 1005
A Simple Cache Test. 1006
Caching to Provide Multiple Views . 1007
Data Caching in a Web Service. 1010
Caching with the Data Source Controls. 1012

Caching with Dependencies . 1016
Cache Notifications in SQL Server 2000 or SQL Server 7 1019
Cache Notifications in SQL Server 2005 . 1024

The Last Word . 1027

■CHAPTER 27 Web Parts . 1029

Introducing Web Part Basics. 1030
Using Web Parts . 1032

Getting Started. 1033
Adding Web Parts to a Page . 1033
Controlling Page Modes . 1040
Making Pages Editable . 1044
Creating Custom Web Parts . 1051
Connecting Parts . 1056

The Last Word . 1061

■INDEX . 1063

MacDonald.book Page xxv Friday, December 30, 2005 12:59 PM

32d088203d70df39442d18a2c1065d0c

xxvi

About the Author

■MATTHEW MACDONALD is an author, educator, and MCSD developer. He’s a regular contrib-
utor to programming journals and the author of more than a dozen books about .NET
programming, including Pro ASP.NET 2.0 in C# 2005 (Apress, 2005), Microsoft .NET
Distributed Applications (Microsoft Press, 2003), Programming .NET Web Services
(O’Reilly, 2002), and ASP.NET: The Complete Reference (Osborne McGraw-Hill, 2002). In a
dimly remembered past life, he studied English literature and theoretical physics. You can
read about his new books at �������������	
�������	.

MacDonald.book Page xxvi Friday, December 30, 2005 12:59 PM

xxvii

About the Technical Reviewer

■RONALD LANDERS is the president and senior technical consultant for
IT Professionals (ITP), a Los Angeles, California–based IT staffing,
development, and project services company. Mr. Landers has worked
in the IT field for the past 20 years specializing in database design and
implementation, application architecture and development, busi-
ness process engineering, and web-based technologies that include
web services, electronic commerce, and web portals.

In addition to his work at ITP, Mr. Landers has been teaching IT classes at UCLA
Extension for the past 13 years. Currently, his courses include beginning and advanced
classes in SQL Server, ASP.NET, web services, and object-oriented programming.

MacDonald.book Page xxvii Friday, December 30, 2005 12:59 PM

xxviii

Acknowledgments

No author could complete a book without a small army of helpful individuals. I’m deeply
indebted to the whole Apress team, including Grace Wong and Kelly Winquist, who
helped everything move swiftly and smoothly; Kim Wimpsett, who performed the copy
edit; Ronald Landers, who performed the most recent round of technical review; Julian
Templeman, who contributed Chapter 27; and many other individuals who worked
behind the scenes indexing pages, drawing figures, and proofreading the final copy. I owe
a special thanks to Gary Cornell, who always offers invaluable advice about projects and
the publishing world. He has helped build a truly unique company with Apress.

I’d also like to thank those who were involved with previous editions of this book. This
includes Emma Acker and Jane Brownlow at Osborne McGraw-Hill and previous tech
reviewers Gavin Smyth, Tim Verycruysse, and Julian Skinner. I also owe a hearty thanks to
all the readers who caught errors and took the time to report problems and ask good ques-
tions. Keep sending in the feedback—it helps make better books!

Finally, I’d never write any book without the support of my wife and these special indi-
viduals: Nora, Razia, Paul, and Hamid. Thanks, everyone!

MacDonald.book Page xxviii Friday, December 30, 2005 12:59 PM

xxix

Introduction

ASP (Active Server Pages) is a relatively new technology that’s already leapt through
several stages of evolution. It was introduced about seven years ago as an easy way to add
dynamic content to ordinary web pages. Since then, it’s grown into something much more
ambitious: a platform for creating advanced web applications, including e-commerce
shops, data-driven portal sites, and just about anything else you can find on the Internet.

ASP.NET 2.0 is the latest version of ASP, and it represents the most dramatic change yet.
With ASP.NET, developers no longer need to paste together a jumble of HTML and script
code in order to program the Web. Instead, you can create full-scale web applications
using nothing but code and a design tool such as Visual Studio 2005. The cost of all this
innovation is the learning curve. Not only do you need to learn how to use an advanced
design tool (Visual Studio) and a toolkit of objects (the .NET Framework), you also need to
master a programming language such as C#.

Beginning ASP.NET 2.0 in C# 2005 assumes you want to master ASP.NET, starting from
the basics. Using this book, you’ll build your knowledge until you understand the
concepts, techniques, and best practices for writing sophisticated web applications. The
journey is long, but it’s also satisfying. At the end of the day, you’ll find that ASP.NET
allows you to tackle challenges that are simply out of reach on many other platforms.
You’ll also become part of the fast-growing ASP.NET developer community.

About This Book
This book explores ASP.NET, which is a core part of Microsoft’s .NET Framework. The
.NET Framework is not a single application—it’s actually a collection of technologies
bundled into one marketing term. The .NET Framework includes languages such as
C# and VB .NET, an engine for hosting programmable web pages and web services
(ASP.NET), a model for interacting with databases (ADO.NET), and a class library stocked
with tools for everything from writing files to reading XML. To master ASP.NET, you need
to learn about each of these ingredients.

This book covers all these topics from the ground up. As a result, you’ll find yourself
learning many techniques that will interest any .NET developer, even those who create
Windows applications. For example, you’ll learn about component-based programming,
you’ll discover structured error handling, and you’ll see how to access files, XML, and rela-
tional databases. You’ll also learn the key topics you need for web programming, such as

MacDonald.book Page xxix Friday, December 30, 2005 12:59 PM

xxx ■I N T R O D U C T I O N

state management, web controls, and web services. By the end of this book, you’ll be ready
to create your own rich web applications and make them available over the Internet.

■Note This book has a single goal: to be as relentlessly practical as possible. I take special care not to leave
you hanging in the places where other ASP.NET books abandon their readers. For example, when encoun-
tering a new technology, you’ll not only learn how it works but also why (and when) you should use it. I also
highlight common questions and best practices with tip boxes and sidebars at every step of the way. Finally,
if a topic is covered in this book, it’s covered right. This means you won’t learn how to perform a task without
learning about potential drawbacks and the problems you might run into—and how you can safeguard your-
self with real-world code.

Who Should Read This Book

This book is aimed at anyone who wants to create dynamic websites with ASP.NET.
Ideally, you have experience with a previous version of a programming language such as
C or Java. If not, you should be familiar with basic programming concepts (loops, condi-
tional structures, arrays, and so on), whether you’ve learned them in Java, C, Pascal,
Turing, or a completely different programming language. This is the only requirement for
reading this book. Understanding HTML helps, but it’s not required. ASP.NET works at a
higher level, allowing you to deal with full-featured web controls instead of raw HTML.
You also don’t need any knowledge of XML, because Chapter 17 covers it in detail.

This book will also appeal to programmers who have some experience with C# and
.NET but haven’t worked with ASP.NET in the past. However, if you’ve used a previous
version of ASP.NET, you’ll probably be more interested in a faster-paced look with a book
such as Pro ASP.NET 2.0 in C# 2005 (Apress, 2005) instead.

■Note This book begins with the fundamentals: C# syntax, the basics of object-oriented programming,
and the philosophy of the .NET Framework. If you’ve never worked with C#, you can spend a little more time
with the syntax review in Chapter 2 to pick up everything you need to know. If you aren’t familiar with the ideas
of object-oriented programming, Chapter 3 fills in the blanks with a quick, but comprehensive, review of the
subject. The rest of the book builds on this foundation, from ASP.NET basics to advanced examples that show
the techniques you’ll use in real-world web applications.

What You Need to Use This Book

The main prerequisite for this book is a computer with Visual Studio 2005. You can also use
the scaled-down Visual Studio Web Developer 2005 Express Edition, but you’ll run into a

MacDonald.book Page xxx Friday, December 30, 2005 12:59 PM

■I N T R O D U C T I O N xxxi

few minor limitations. Most significantly, you can’t use Visual Studio Web Developer to
create class libraries (separate components), a technique discussed in Chapter 24.
(However, you still use the sample code directly in your web projects.)

To run ASP.NET pages, you need Windows 2000 Professional, Windows XP
Professional, Windows 2000 Server, or Windows Server 2003. You also need to install IIS
(Internet Information Services), the web hosting software that’s part of the Windows oper-
ating system, if you want to try web services or test deployment strategies.

Finally, this book includes several examples that use SQL Server. You can use any
version of SQL Server to try these, including SQL Server 2005 Express Edition, which is
included with some versions of Visual Studio. If you use other relational database engines,
the same concepts will apply; you will just need to modify the example code.

Code Samples
To master ASP.NET, you need to experiment with it. One of the best ways to learn ASP.NET
is to try the code samples for this book, examine them, and dive in with your own modifi-
cations. To obtain the sample code, surf to �������������	
�������	 or the publisher’s
website at ���������������

��	. You’ll also find some links to additional resources and
any updates or errata that affect the book.

Chapter Overview
This book is divided into six parts. Unless you’ve already had experience with the .NET
Framework, the most productive way to read this book is in order from start to finish.
Chapters later in the book sometimes incorporate features that were introduced earlier in
order to create more well-rounded and realistic examples. On the other hand, if you’re
already familiar with the .NET platform, C#, and object-oriented programming, you’ll
make short work of the first part of this book.

Part 1: Introducing .NET

You could start coding an ASP.NET application right away by following the examples in
the second part of this book. But to really master ASP.NET, you need to understand a few
fundamental concepts about the .NET Framework.

Chapter 1 sorts through the Microsoft jargon and explains what the .NET Framework
really does and why you need it. Chapter 2 introduces you to C# with a comprehensive
language reference, and Chapter 3 explains the basics of modern object-oriented
programming. Chapter 4 introduces the Visual Studio design environment.

MacDonald.book Page xxxi Friday, December 30, 2005 12:59 PM

xxxii ■I N T R O D U C T I O N

Part 2: Developing ASP.NET Applications

The second part of this book delves into the heart of ASP.NET programming and intro-
duces its new event-based model. In Chapters 5 and 6, you learn how to program a web
page’s user interface through a layer of objects called server controls.

Next, you’ll explore the fundamentals of ASP.NET programming. Chapter 7 presents
different techniques for handling errors, and Chapter 8 introduces some of the most
remarkable ASP.NET controls, such as the input validators. Chapter 9 describes different
strategies for state management. Chapter 10 shows how you can standardize the appear-
ance of an entire website with master pages, and Chapter 11 shows you how to add
navigation to a website. Finally, Chapter 12 walks you through the steps for deploying your
application to a web server. Taken together, these chapters contain all the core concepts
you need to design web pages and create a basic ASP.NET website.

Part 3: Working with Data

Almost all software needs to work with data, and web applications are no exception. In
Chapter 13, you begin exploring the world of data by considering ADO.NET—Microsoft’s
new technology for interacting with relational databases. Chapters 14 and 15 explain how
to use data binding and the advanced ASP.NET data controls to create web pages that inte-
grate attractive, customizable data displays with automatic support for paging, sorting,
and editing.

Chapter 16 moves out of the database world and considers how to interact with files.
Chapter 17 broadens the picture even further and describes how ASP.NET applications
can use the XML support that’s built into the .NET Framework.

Part 4: Website Security

Every public website needs to deal with security—making sure that sensitive data cannot be
accessed by the wrong users. In Chapter 18, you’ll start out learning how ASP.NET provides
different authentication systems for dealing with users. You can write your own custom
logic to verify user names and passwords, or you can use existing Windows account infor-
mation on your web server. In Chapter 19, you’ll learn about a new model that extends the
basic authentication system with prebuilt security controls and objects that automate
common tasks. If you want, you can even get ASP.NET to create and manage a database with
user information automatically. Finally, Chapter 20 deals with another add-on—the profiles
model that lets you store information for each user automatically, without writing any data-
base code.

MacDonald.book Page xxxii Friday, December 30, 2005 12:59 PM

■I N T R O D U C T I O N xxxiii

Part 5: Web Services

Web services are a new feature of ASP.NET and are one of Microsoft’s most heavily
promoted new technologies. Using web services, you can share pieces of functionality on
your web server with other applications on other computers. Best of all, the whole process
works with open standards such as XML, ensuring that applications written in different
programming languages and running on different operating systems can interact without
a hitch.

Chapter 21 presents an overview of web service technology. Chapter 22 shows how to
create a basic web service and use it in a client. Chapter 23 shows you how to enhance
your web service with caching, security, and transactions.

Part 6: Advanced ASP.NET

This part includes the advanced topics you can use to take your web applications that
extra step. Chapters 24 and 25 cover how you can create reusable components and web
controls for ASP.NET applications. Chapter 26 demonstrates how careful use of caching
can boost the performance of almost any web application. Chapter 27 introduces the new
model for building advanced portal sites, called Web Parts.

Feedback
This book has the ambitious goal of being the best tutorial and reference for ASP.NET.
Toward that end, your comments and suggestions are extremely helpful. You can send
complaints, adulation, and everything in between directly to ����

���	
�������	. I
can’t solve your ASP.NET problems or critique your code, but I do benefit from informa-
tion about what this book did right and wrong (and what it may have done in an utterly
confusing way). You can also send comments about the website support for this book.

MacDonald.book Page xxxiii Friday, December 30, 2005 12:59 PM

MacDonald.book Page xxxiv Friday, December 30, 2005 12:59 PM

■ ■ ■

P A R T 1

Introducing .NET

MacDonald.book Page 1 Wednesday, December 7, 2005 8:39 PM

MacDonald.book Page 2 Wednesday, December 7, 2005 8:39 PM

3

■ ■ ■

C H A P T E R 1

Introducing
the .NET Framework

Microsoft has a time-honored reputation for creating innovative technologies and
wrapping them in buzzwords that confuse everyone. Now that developers are finally
sorting out ActiveX, COM (Component Object Model), and Windows DNA (Distributed
interNet Architecture), Microsoft has a whole new technology called .NET, with a whole
new set of technical jargon. So, exactly what does it all mean?

This chapter examines the technologies that underlie .NET. First, you’ll take a quick
look at the history of web development and learn why the .NET Framework was created.
Next, you’ll get a high-level overview of the different parts of .NET and see how ASP.NET
fits into the wider world of development. Finally, you’ll see what new frills and features
ASP.NET adds to the programmer’s toolkit with version 2.0.

The Evolution of Web Development
The Internet began in the late 1960s as an experiment. Its goal was to create a truly
resilient information network—one that could withstand the loss of several computers
without preventing the others from communicating. Driven by potential disaster scenar-
ios (such as nuclear attack), the U.S. Department of Defense provided the initial funding.

The early Internet was mostly limited to educational institutions and defense contrac-
tors. It flourished as a tool for academic collaboration, allowing researchers across the
globe to share information. In the early 1990s, modems were created that could work over
existing phone lines, and the Internet began to open up to commercial users. In 1993, the
first HTML browser was created, and the Internet revolution began.

HTML and HTML Forms

It would be difficult to describe early websites as web applications. Instead, the first gen-
eration of websites often looked more like brochures, consisting mostly of fixed HTML
pages that needed to be updated by hand.

MacDonald.book Page 3 Wednesday, December 7, 2005 8:39 PM

4 C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K

A basic HTML page is a little like a word-processing document—it contains formatted
content that can be displayed on your computer, but it doesn’t actually do anything. The
following example shows HTML at its simplest, with a document that contains a heading
and single line of text:

������

�������	
�

����������������	���������	����������

��������	
�

�������
��

�������������	���������	�����	
��������

������������������	��	��������	������

��������
��

�������

An HTML document has two types of content: the text and the tags that tell the browser
how to format it. The tags are easily recognizable, because they occur inside angled brack-
ets (< >). HTML defines tags for different levels of headings, paragraphs, hyperlinks, italic
and bold formatting, horizontal lines, and so on. For example, <h1>Some Text</h1> tells
the browser to display Some Text in the Heading 1 style, which uses a large, bold font.
Figure 1-1 shows the simple HTML page in a browser.

Figure 1-1. Ordinary HTML: the “brochure” site

MacDonald.book Page 4 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K 5

■Tip You don’t need to master HTML to program ASP.NET web pages, although it’s often useful. For a
quick introduction to HTML, refer to one of the excellent HTML tutorials on the Internet, such as
���������������������������� or ������	���� �����	�!�!���
!�"����	��#��������
������$%�����������.

HTML 2.0 introduced the first seed of web programming with a technology called
HTML forms. HTML forms expand HTML so that it includes not only formatting tags but
also tags for graphical widgets, or controls. These controls include common ingredients
such as drop-down lists, text boxes, and buttons. Here’s a sample web page created with
HTML form controls:

������

�������
��

���������&����

���������������!�����'(����)��*(����������������+�����

���������������!�����'(����)��*(����������������+,��������

���������������!�����'(�!����(� 	�!�'(�!����(�

����������&����

��������
��

�������

In an HTML form, all controls are placed between the <form> and </form> tags. The pre-
ceding example includes two check boxes (represented by the <input type="checkbox">
tags) and a button (represented by the <input type="submit"> tag). In a browser, this page
looks like Figure 1-2.

Figure 1-2. An HTML form

MacDonald.book Page 5 Wednesday, December 7, 2005 8:39 PM

6 C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K

HTML forms allow web application developers to design standard input pages. When
the user clicks the Submit button on the page shown in Figure 1-2, all the data in the input
controls (in this case, the two check boxes) is patched together into one long string and
sent to the web server. On the server side, a custom application receives and processes the
data. Amazingly enough, the controls that were created for HTML forms more than ten
years ago are still the basic foundation that you’ll use to build dynamic ASP.NET pages!
The difference is the type of application that runs on the server side. In the past, when the
user clicked a button on a form page, the information might have been e-mailed to a set
account or sent to an application on the server that used the challenging CGI (Common
Gateway Interface) standard. Today, you’ll work with the much more capable and elegant
ASP.NET platform.

Server-Side Programming

To understand why ASP.NET was created, it helps to understand the problems of other
web development technologies. With the original CGI standard, for example, the web
server must launch a completely separate instance of the application for each web
request. If the website is popular, the web server must struggle under the weight of hun-
dreds of separate copies of the application, eventually becoming a victim of its own
success.

To counter this problem, Microsoft developed ISAPI (Internet Server Application
Programming Interface), a higher-level programming model. ISAPI solved the perfor-
mance problem but at the cost of significant complexity. Even after ISAPI developers
master the tricky C++ programming language, they still lie awake at night worrying about
confounding issues such as multithreading. ISAPI programming is definitely not for the
fainthearted.

ISAPI never really went away. Instead, Microsoft used it to build higher-level develop-
ment platforms, such as ASP and ASP.NET. Both of these technologies allow developers
to program dynamic web pages without worrying about the low-level implementation
details. For that reason, both platforms have become incredibly successful. The original
ASP platform garnered a huge audience of nearly one million developers. When ASP.NET
was first released, it generated even more interest as the centerpiece of the .NET Frame-
work. In fact, ASP.NET 1.0 was enthusiastically put to work in dozens of large-scale
commercial websites even when it was only in late beta.

MacDonald.book Page 6 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K 7

Despite having similar underpinnings, ASP and ASP.NET are radically different. ASP is
a script-based programming language that requires a thorough understanding of HTML
and a good deal of painful coding. ASP.NET, on the other hand, is an object-oriented pro-
gramming model that lets you put together a web page as easily as you would build a
Windows application. In many respects, it’s easier to learn ASP.NET than to master ASP,
even though ASP.NET is far more powerful.

■Tip Don’t let the version numbers confuse you. ASP.NET 1.x and ASP.NET 2.0 share the same underlying
plumbing and use essentially the same technology. Although they run on different versions of the .NET Frame-
work, the changes are evolutionary, not revolutionary. This similarity doesn’t hold for classic ASP, which is
based on older Microsoft technologies such as COM.

Client-Side Programming

At the same time that server-side web development was moving through an alphabet
soup of technologies, a new type of programming was gaining popularity. Developers
began to experiment with the different ways they could enhance web pages by embed-
ding multimedia and miniature applets built with JavaScript, DHTML (Dynamic HTML),
and Java code. These client-side technologies don’t involve any server processing.
Instead, the complete application is downloaded to the client browser, which executes it
locally.

The greatest problem with client-side technologies is that they aren’t supported
equally by all browsers and operating systems. One of the reasons that web development
is so popular in the first place is because web applications don’t require setup CDs, down-
loads, and other tedious (and error-prone) deployment steps. Instead, a web application
can be used on any computer that has Internet access. But when developers use client-
side technologies, they encounter a few familiar headaches. Suddenly, cross-browser
compatibility becomes a problem. Developers are forced to test their websites with differ-
ent operating systems and browsers, and they might even need to distribute browser
updates to their clients. In other words, the client-side model sacrifices some of the most
important benefits of web development.

For that reason, ASP.NET is designed as a server-side technology. All ASP.NET code
executes on the server. When the code is finished executing, the user receives an ordinary
HTML page, which can be viewed in any browser. Figure 1-3 shows the difference
between the server-side and client-side model.

MacDonald.book Page 7 Wednesday, December 7, 2005 8:39 PM

8 C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K

Figure 1-3. Server-side and client-side web applications

These are some other reasons for avoiding client-side programming:

Isolation: Client-side code can’t access server-side resources. For example, a client-
side application has no easy way to read a file or interact with a database on the server
(at least not without running into problems with security and browser compatibility).

Security: End users can view client-side code. And once malicious users understand
how an application works, they can often tamper with it.

MacDonald.book Page 8 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K 9

Thin clients: As the Internet continues to evolve, web-enabled devices such as mobile
phones, palmtop computers, and PDAs (personal digital assistants) are appearing.
These devices can communicate with web servers, but they don’t support all the
features of a traditional browser. Thin clients can use server-based web applications,
but they won’t support client-side features such as JavaScript.

In some cases, ASP.NET allows you to combine the best of client-side programming
with server-side programming. For example, the best ASP.NET controls can intelligently
detect the features of the client browser. If the browser supports JavaScript, these controls
will return a web page that incorporates JavaScript for a richer, more responsive user
interface. However, no matter what the capabilities of the browser, your code is always
executed on the server.

The Problems with ASP

The original ASP became more popular than even Microsoft anticipated, and it wasn’t
long before it was being wedged into all sorts of unusual places, including mission-critical
business applications and highly trafficked e-commerce sites. Because ASP hadn’t been
designed with these uses in mind, a number of problems began to appear. What began as
a simple solution for creating interactive web pages became a complicated discipline that
required knowledge in several fields as well as some painful experience.

If you’ve programmed with ASP before, you may already be familiar with some or all of
these problems:

Scripting limitations: ASP applications rely on the VBScript language, which suffers
from a number of limitations, including poor performance. To overcome these prob-
lems, developers usually need to add separately developed components, which add a
new layer of complexity. In ASP.NET, web pages are designed in a modern .NET
language, not a scripting language.

No application structure: ASP code is inserted directly into a web page along with the
HTML markup. The resulting tangle of code and HTML has nothing in common with
today’s modern, object-oriented languages. As a result, web form code can rarely be
reused or modified without hours of effort.

Headaches with deployment and configuration: If you want to update a component
used in an ASP website, you often need to manually stop and restart the server. This
process just isn’t practical on a live website. Changing configuration options can be
just as ugly. Thankfully, ASP.NET includes a slew of features that allow websites to be
dynamically updated and reconfigured.

State limitations: To ensure optimum performance, the Web is built on stateless proto-
cols, which means as soon as a page is sent to a user, the connection is closed and any
user-specific information is discarded. ASP includes a session state feature that allows

MacDonald.book Page 9 Wednesday, December 7, 2005 8:39 PM

10 C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K

programmers to work around this problem. Using session state, a web application can
retain temporary information about each client in server memory. However, session
state is useless in scenarios where a website is hosted by several separate web servers.
In this scenario, a client might access server B while its session information is trapped
on server A and essentially abandoned. ASP.NET corrects this problem by allowing
state to be stored in a central repository, such as a separate process or a database that
all servers can access.

ASP.NET deals with these problems (and many more) by introducing a completely new
model for web pages. This model is based on a remarkable piece of technology called the
.NET Framework.

The .NET Framework
You should understand that the .NET Framework is really a cluster of several
technologies:

The .NET languages: These include C# and VB .NET (Visual Basic .NET), the object-
oriented and modernized successor to Visual Basic 6.0; these languages also include
JScript .NET (a server-side version of JavaScript), J# (a Java clone), and C++ with
Managed Extensions.

The CLR (Common Language Runtime): The CLR is the engine that executes all .NET
programs and provides automatic services for these applications, such as security
checking, memory management, and optimization.

The .NET Framework class library: The class library collects thousands of pieces of
prebuilt functionality that you can “snap in” to your applications. These features are
sometimes organized into technology sets, such as ADO.NET (the technology for
creating database applications) and Windows Forms (the technology for creating
desktop user interfaces).

ASP.NET: This is the engine that hosts web applications and web services, with almost
any feature from the .NET class library. ASP.NET also includes a set of web-specific
services.

Visual Studio: This optional development tool contains a rich set of productivity and
debugging features. The Visual Studio setup CDs (or DVD) include the complete .NET
Framework, so you won’t need to download it separately.

MacDonald.book Page 10 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K 11

Sometimes the division between these components isn’t clear. For example, the term
ASP.NET is sometimes used in a narrow sense to refer to the portion of the .NET class
library used to design web pages. On the other hand, ASP.NET also refers to the whole
topic of .NET web applications, which includes .NET languages and many fundamental
pieces of the class library that aren’t web-specific. (That’s generally the way we use the
term in this book. Our exhaustive examination of ASP.NET includes .NET basics, the C#
language, and topics that any .NET developer could use, such as component-based pro-
gramming and database access.)

Figure 1-4 shows the .NET class library and CLR—the two fundamental parts of .NET.

Figure 1-4. The .NET Framework

MacDonald.book Page 11 Wednesday, December 7, 2005 8:39 PM

12 C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K

C#, VB .NET, and the .NET Languages
This book uses C#, Microsoft’s .NET language of preference. C# is a new language that was
designed for .NET 1.0. It resembles Java and C++ in syntax, but no direct migration path
exists from Java or C++.

The other language that’s commonly used to create ASP.NET applications is Visual
Basic (VB). Somewhat schizophrenically, Microsoft renamed VB twice, calling it VB .NET
when .NET 1.0 hit the scene and renaming it as VB 2005 in .NET 2.0.1 These name changes
can’t hide that the .NET versions of VB are dramatically different from the language that
classic VB 6 developers know. In fact, VB .NET is a redesigned language that improves on
traditional VB 6 and breaks compatibility with existing VB 6 applications. Migrating to
VB .NET is a stretch—and a process of discovery for the most seasoned VB developer.

Interestingly, C# and VB .NET are actually far more similar than Java and C# or than
VB 6 and VB .NET. Though the syntax is different, both C# and VB .NET use the .NET
class library and are supported by the CLR. In fact, almost any block of C# code can be
translated, line by line, into an equivalent block of VB .NET code. An occasional language
difference pops up (for example, C# supports a language feature called anonymous meth-
ods, while VB .NET doesn’t), but for the most part, a developer who has learned one .NET
language can move quickly and efficiently to another.

In short, both C# and VB .NET are elegant, modern languages that are ideal for creating
the next generation of web applications.

■Note .NET 1.0 introduced completely new languages. However, the changes in the .NET 2.0 languages
are much more subtle. Both C# 2005 and VB 2005 add a few new features, but most parts of these languages
remain unchanged. As a result, any code written according to version 1.0 of the C# language will work iden-
tically with version 2.0. In Chapters 2 and 3, you’ll sort through the syntax of C# and learn the basics of object-
oriented programming. By learning the fundamentals before you start creating simple web pages, you’ll face
less confusion and move more rapidly to advanced topics such as database access and web services.

The Intermediate Language

All the .NET languages are compiled into another lower-level language before the code is
executed. This lower-level language is the MSIL (Microsoft Intermediate Language), or
just IL. The CLR, the engine of .NET, uses only IL code. Because all .NET languages are
designed based on IL, they all have profound similarities. This is the reason that the C#
and VB .NET languages provide essentially the same features and performance. In fact,

1. This chapter uses VB .NET to refer to the .NET versions of the VB language (either VB .NET 1.x or
VB 2005).

MacDonald.book Page 12 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K 13

the languages are so compatible that a web page written with C# can use a VB .NET com-
ponent in the same way it uses a C# component, and vice versa.

The .NET Framework formalizes this compatibility with something called the CLS
(Common Language Specification). Essentially, the CLS is a contract that, if respected,
guarantees that a component written in one .NET language can be used in all the others.
One part of the CLS is the CTS (common type system), which defines data types such as
strings, numbers, and arrays that are shared in all .NET languages. The CLS also defines
object-oriented ingredients such as classes, methods, events, and quite a bit more. For the
most part, .NET developers don’t need to think about how the CLS works, even though
they rely on it every day.

Figure 1-5 shows how the .NET languages are compiled to IL. Every EXE or DLL file
that you build with a .NET language contains IL code. This is the file you deploy to other
computers.

Figure 1-5. Language compilation in .NET

MacDonald.book Page 13 Wednesday, December 7, 2005 8:39 PM

14 C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K

The CLR runs only IL code, which means it has no idea which .NET language you orig-
inally used. Notice, however, that the CLR actually performs another compilation step—it
takes the IL code and transforms it to native machine language code that’s appropriate for
the current platform. This step occurs when the application is launched, just before the
code is actually executed. In an ASP.NET application, these machine-specific files are
cached while the web application is running so that they can be reused, ensuring opti-
mum performance.

■Note You might wonder why .NET compilers don’t compile straight to machine code. The reason is that
the machine code depends on several factors, including the CPU. For example, if you create machine code for
a computer with an Intel processor, the compiler may be able to use Hyper-Threading to produce enhanced
code. This machine-specific version isn’t suitable for deployment to other computers, because no guarantee
exists that they’re using the same processor.

Other .NET Languages

C# and VB aren’t the only choices for ASP.NET development. Developers can also use J#
(a language with Java-like syntax). You can even use a .NET language provided by a third-
party developer, such as a .NET version of Eiffel or even COBOL. This increasing range of
language choices is possible thanks to the CLS, which defines basic requirements and
standards that allow other companies to write languages that can be compiled to IL.

Although you can use any .NET language to create an ASP.NET web application, some
of them do not provide the same level of design support in Visual Studio, and most
ASP.NET developers use C# or VB .NET. For more information about third-party .NET
languages, check out the website ����������
������	��!	�������.

The Common Language Runtime
The CLR is the engine that supports all the .NET languages. Many modern languages use
runtimes. In VB 6, the runtime logic is contained in a DLL file named msvbvm60.dll. In
C++, many applications link to a file named mscrt40.dll to gain common functionality.
These runtimes may provide libraries used by the language, or they may have the addi-
tional responsibility of executing the code (as with Java).

Runtimes are nothing new, but the CLR represents a radical departure from Microsoft’s
previous strategy. For starters, the CLR and .NET Framework are much larger and more
ambitious than the VB 6 or C++ runtime. The CLR also provides a whole set of related ser-
vices such as code verification, optimization, and garbage collection.

MacDonald.book Page 14 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K 15

■Note The CLR is the reason that some developers have accused .NET of being a Java clone. The claim is
fairly silly. It’s true that .NET is quite similar to Java in key respects (both use a special managed environment
and provide features through a rich class library), but it’s also true that every programming language “steals”
from and improves on previous programming languages. This includes Java, which adopted parts of the
C/C++ language and syntax when it was created. Of course, in many other aspects .NET differs just as radi-
cally from Java as it does from VBScript.

All .NET code runs inside the CLR. This is true whether you’re running a Windows
application or a web service. For example, when a client requests an ASP.NET web page,
the ASP.NET service runs inside the CLR environment, executes your code, and creates a
final HTML page to send to the client.

The implications of the CLR are wide-ranging:

Deep language integration: C# and VB .NET, like all .NET languages, compile to IL. In
other words, the CLR makes no distinction between different languages—in fact, it has
no way of knowing what language was used to create an executable. This is far more
than mere language compatibility; it’s language integration.

Side-by-side execution: The CLR also has the ability to load more than one version of a
component at a time. In other words, you can update a component many times, and
the correct version will be loaded and used for each application. As a side effect,
multiple versions of the .NET Framework can be installed, meaning that you’re able to
upgrade to new versions of ASP.NET without replacing the current version or needing
to rewrite your applications.

Fewer errors: Whole categories of errors are impossible with the CLR. For example, the
CLR prevents many memory mistakes that are possible with lower-level languages
such as C++.

Along with these truly revolutionary benefits, the CLR has some potential drawbacks.
Here are three issues that are often raised by new developers but aren’t always answered:

Performance: A typical ASP.NET application is much faster than a comparable ASP
application, because ASP.NET code is compiled natively. However, other .NET appli-
cations probably won’t match the blinding speed of well-written C++ code, because
the CLR imposes some additional overhead. Generally, this is a factor only in a few
performance-critical high-workload applications (such as real-time games). With
high-volume web applications, the potential bottlenecks are rarely processor-related
but are usually tied to the speed of an external resource such as a database or the web
server’s file system. With ASP.NET caching and some well-written database code, you
can ensure excellent performance for any web application.

MacDonald.book Page 15 Wednesday, December 7, 2005 8:39 PM

16 C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K

Code transparency: IL is much easier to disassemble, meaning that if you distribute a
compiled application or component, other programmers may have an easier time
determining how your code works. This isn’t much of an issue for ASP.NET applica-
tions, which aren’t distributed but are hosted on a secure web server.

Questionable cross-platform support: No one is entirely sure whether .NET will be
adopted for use on other operating systems and platforms. Ambitious projects such as
Mono (a free implementation of .NET on Linux, Unix, and Windows) are currently
underway (see ������������-��������). However, .NET will probably never have the
wide reach of a language such as Java because it incorporates too many different
platform-specific and operating system–specific technologies and features.

■Tip Although implementations of .NET are available for other platforms, they aren’t supported by Microsoft,
and they provide only a subset of the total range of features. The general consensus is that these implementa-
tions aren’t ideal for mission-critical business systems.

The .NET Class Library
The .NET class library is a giant repository of classes that provide prefabricated function-
ality for everything from reading an XML file to sending an e-mail message. If you’ve had
any exposure to Java, you may already be familiar with the idea of a class library. However,
the .NET class library is more ambitious and comprehensive than just about any other
programming framework. Any .NET language can use the .NET class library’s features by
interacting with the right objects. This helps encourage consistency among different .NET
languages and removes the need to install numerous components on your computer or
web server.

Some parts of the class library include features you’ll never need to use in web applica-
tions (such as the classes used to create desktop applications with the Windows inter-
face). Other parts of the class library are targeted directly at web development, such as
those used for web services and web pages. Still more classes can be used in various pro-
gramming scenarios and aren’t specific to web or Windows development. These include
the base set of classes that define common variable types and the classes for data access,
to name just a few.

MacDonald.book Page 16 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K 17

You’ll explore the .NET Framework throughout this book. In the meantime, here are
some general characteristics of the .NET Framework:

Open standards: Microsoft currently provides programming tools that allow you to
work with many open standards, such as XML (Extensible Markup Language). In .NET,
however, many of these standards are “baked in” to the framework. For example,
ADO.NET (Microsoft’s data access technology) uses XML natively, behind the scenes.
Similarly, web services work automatically through XML and HTTP (Hypertext
Transfer Protocol). This deep integration of open standards makes cross-platform
work much easier.

Emphasis on infrastructure: Microsoft’s philosophy is that it will provide the tedious
infrastructure so that application developers need only to write business-specific code.
For example, the .NET Framework automatically handles files, databases, and transac-
tions. You just add the logic needed for your specific application.

Performance and scalability: The .NET Framework emphasizes distributed and
Internet applications. Technologies such as ADO.NET are designed from the ground
up to be scalable even when used by hundreds or thousands of simultaneous users.

Visual Studio
The last part of .NET is the optional Visual Studio development tool, which provides a rich
environment where you can rapidly create advanced applications. Some of the features of
Visual Studio include the following:

Page design: You can create an attractive page with drag-and-drop ease using Visual
Studio’s integrated web form designer. You don’t need to understand HTML.

Automatic error detection: You could save hours of work when Visual Studio detects
and reports an error before you run your application. Potential problems are under-
lined, just like the “spell-as-you-go” feature found in many word processors.

Debugging tools: Visual Studio retains its legendary debugging tools, which allow you
to watch your code in action and track the contents of variables. And you can test web
applications just as easily as any other application type, because Visual Studio has a
built-in web server that works just for debugging.

IntelliSense: Visual Studio provides statement completion for recognized objects and
automatically lists information such as function parameters in helpful tooltips.

MacDonald.book Page 17 Wednesday, December 7, 2005 8:39 PM

18 C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K

You don’t need to use Visual Studio to create web applications. In fact, you might be
tempted to use the freely downloadable .NET Framework and a simple text editor to
create ASP.NET web pages and web services. However, in doing so you’ll multiply your
work, and you’ll have a much harder time debugging, organizing, and maintaining your
code. Chapter 4 provides a comprehensive look at the latest version of Visual Studio—
Visual Studio 2005.

.NET 2.0
ASP.NET is a resoundingly successful platform. Thousands of websites used it while it was
still in early beta, and today more than 50,000 public web servers rely on it every day.2 As
a result of its dramatic rise, ASP.NET websites overtook JSP (Java Server Pages) websites
in a single year.

With .NET version 2.0, Microsoft aims to continue its success by refining and enhanc-
ing ASP.NET. The good news is that Microsoft hasn’t removed features, replaced
functionality, or reversed direction. Instead, almost all the changes add higher-level fea-
tures that can make your programming much more productive.

■Note Officially, ASP.NET 2.0 is backward compatible with ASP.NET 1.0. In reality, 100 percent backward
compatibility is impossible, because correcting bugs and inconsistencies in the language can change how
existing code works. Microsoft maintains a list of the breaking changes (most of which are obscure) at
�������������
������������	����	�����&��.	�)�	�
������,�/. However, you’re unlikely to
ever run into a problem when migrating an ASP.NET 1.x project to ASP.NET 2.0. It’s much more likely that
you’ll find some cases where the old way of solving a problem still works, but ASP.NET 2.0 introduces a much
better approach. In these cases, it’s up to you whether to defer the change or try to reimplement your web
application to take advantage of the new features.

The following sections introduce some of the most important changes in the different
parts of the .NET Framework.

C# 2.0

C# adds several new language features in version 2.0. Some of these are exotic features
that only a language aficionado will love, while others are more generally useful. All of
them are fairly technical, and you’ll need to sort through the language overview in
Chapter 2 before you’re ready to tackle them.

2. All numbers come from the Internet research firm Netcraft. See ���������������	&�����.

MacDonald.book Page 18 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K 19

The new features include the following:

Partial classes: Partial classes allow you to split a C# class into two or more source code
files. This feature is primarily useful for hiding messy details you don’t need to see.
Visual Studio uses partial classes in some project types to tuck automatically generated
code out of sight.

Generics: Generics allow you to create classes that are flexible enough to work with
different class types but still support strong type checking. For example, you could
code a collection class using generics that can store any type of object. When you
create an instance of the collection, you “lock it in” to the class of your choice so that
it can store only a single type of data. The important part in this example is that the
locking in happens when you use the collection class, not when you code it.

Anonymous methods: Anonymous methods allow you to define a block of code on the
fly, inside another method. You can use this technique to quickly hook up an event
handler.

Iterators: Iterators give you an easy way to create classes that support enumeration,
which means you can loop through the values they contain using the C# foreach
statement.

Chapter 3 describes partial classes and generics. Anonymous methods and iterators
are more specialized and aren’t described at all in this book (although you can learn more
about both language features by reading the article at ������������
����������!��	�

������,//0�/0�/1����	����
����������).

ASP.NET 2.0

With ASP.NET 2.0, Microsoft set a bold goal—to help web developers dramatically reduce
the amount of code they need to write. To accomplish this, ASP.NET 2.0 introduces new
features for security, personalization, and data display. But instead of changing the exist-
ing features, ASP.NET 2.0 adds new, higher-level features that are built on top of the
existing infrastructure.

For the most part, this book won’t distinguish between the features that are new in
ASP.NET 2.0 and those that have existed since ASP.NET 1.0. However, here are highlights
of some of the new features:

Navigation: ASP.NET has a new higher-level model for creating site maps that describe
your website. Once you create a site map, you can use it with new navigation controls
to let users move comfortably around your website (see Chapter 11).

Master pages: Need to implement a consistent look across multiple pages? With master
pages, you can define a template and reuse it effortlessly. On a similar note, ASP.NET
themes let you define a standardized set of appearance characteristics for controls,

MacDonald.book Page 19 Wednesday, December 7, 2005 8:39 PM

20 C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K

which you can apply across your website for a consistent look. Both features appear
in Chapter 10.

Data providers: Tired of managing the retrieval, format, and display of your data? With
the new data provider model, you can extract information from a database and control
how it’s displayed without writing a single line of code. ASP.NET 2.0 also adds new data
controls that are designed to show information with much less hassle (either in a grid
or in a browser view that shows a single record at a time). You’ll learn more in Part 3.

Membership and profiles: ASP.NET adds a handful of new controls for managing
security, allowing users to log in, register, and retrieve passwords without needing any
custom code. Instead, you use the higher-level membership classes that ASP.NET
provides (see Chapter 19). Profiles offer a similar high-level approach to help you store
and retrieve user-specific information in your database, without writing any database
code (see Chapter 20).

Portals: One common type of web application is the portal, which centralizes different
information using separate panes on a single web page. Although you could create a
portal website in ASP.NET 1.x, you needed to do it by hand. In ASP.NET 2.0, a new Web
Parts feature makes life dramatically easier (see Chapter 27).

Administration: To configure an application in ASP.NET 1.x, you needed to edit a
configuration file by hand. Although this process wasn’t too difficult, ASP.NET 2.0
streamlines it with the WAT (Website Administration Tool), which works through a
web page interface. You’ll be introduced to the WAT in Chapter 5.

And of course, ASP.NET 2.0 also contains bug fixes, performance improvements, and a
slew of minor enhancements you’ll learn about throughout the book.

Visual Studio 2005

Microsoft provided two separate design tools for creating web applications with ASP.NET
1.x—the full-featured Visual Studio .NET and the free Web Matrix. Professional developers
strongly favored Visual Studio .NET, but Web Matrix offered a few innovative features of its
own. Because Web Matrix included its own scaled-down web server, programmers could
create and test web applications without needing to worry about configuring virtual direc-
tories on their computer using IIS (Internet Information Services).

With .NET 2.0, Web Matrix disappears, but Visual Studio steals some of its best fea-
tures, including the integrated web server, which lets you get up and running with a test
website in no time.

Another welcome change in Visual Studio 2005 is the support for different coding
models. While Visual Studio .NET 2003 locked developers into one approach, Visual
Studio 2005 supports a range of different coding models, making it a flexible, all-purpose
design tool. That means you can choose to put your HTML tags and event handling code

MacDonald.book Page 20 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 ■ I N T R O D U C I N G T H E . N E T F R A M E W O R K 21

in the same file or in separate files without compromising your ability to use Visual Studio
and benefit from helpful features such as IntelliSense. You’ll learn about this distinction
in Chapter 5.

Visual Studio 2005 is available in several editions. The Standard Edition has all the fea-
tures you need to build any type of application (Windows or web). The Professional
Edition and the Team Edition increase the cost and pile on more tools and frills (which
aren’t discussed in this book). For example, they incorporate features for managing
source code that’s edited by multiple people on a development team and running auto-
mated tests.

The scaled-down Visual Web Developer 2005 Express Edition is much cheaper than
any other Visual Studio edition, but it also has a few significant limitations. It gives you
full support for developing web applications, but it doesn’t support any other type of
application. This means you can’t use it to develop separate components for use in your
applications or to develop Windows applications that interact with web services. How-
ever, rest assured that Visual Web Developer is a bona fide version of Visual Studio, with a
similar set of features and development interface.

The Last Word
This chapter presented a high-level overview that gave you your first taste of ASP.NET and
the .NET Framework. You also looked at how web development has evolved, from the
basic HTML forms standard to the latest changes in .NET 2.0.

In the next chapter, you’ll get a comprehensive overview of the C# language.

MacDonald.book Page 21 Wednesday, December 7, 2005 8:39 PM

MacDonald.book Page 22 Wednesday, December 7, 2005 8:39 PM

23

■ ■ ■

C H A P T E R 2

Learning the C# Language

Before you can create an ASP.NET application, you need to choose a .NET language in
which to program it. If you’re an ASP or VB developer, the natural choice is VB 2005. If
you’re a longtime Java programmer or old-hand C coder, or you just want to learn the
official language of .NET, C# 2005 will suit you best.

This chapter presents an overview of the C# language. You’ll learn about the data types
you can use, the operations you can perform, and the code you’ll need to define functions,
loops, and conditional logic. This chapter assumes you’ve programmed before and you’re
already familiar with most of these concepts—you just need to see how they’re imple-
mented in C#.

If you’ve programmed with a similar language such as Java, you might find that the most
beneficial way to use this chapter is to browse through it without reading every section.
This approach will give you a general overview of the C# language. You can then return to
this chapter later as a reference when needed. But remember, though you can program an
ASP.NET application without mastering all the language details, this deep knowledge is
often what separates the casual programmer from the legendary programming guru.

■Note The examples in this chapter show individual lines and code snippets. You won’t actually be able
to use these code snippets in an application until you’ve learned about objects and .NET types. But don’t
despair—the next chapter builds on this information, fills in the gaps, and presents an ASP.NET example
for you to try.

The .NET Languages
The .NET Framework 2.0 ships with three core languages that are commonly used for
building ASP.NET applications: C#, VB, and J#. These languages are, to a large degree,
functionally equivalent. Microsoft has worked hard to eliminate language conflicts in the
.NET Framework. These battles slow down adoption, distract from the core framework
features, and make it difficult for the developer community to solve problems together
and share solutions. According to Microsoft, choosing to program in VB instead of C# is

MacDonald.book Page 23 Wednesday, December 7, 2005 8:39 PM

24 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

just a lifestyle choice and won’t affect the performance, interoperability, feature set,
or development time of your applications. Surprisingly, this ambitious claim is essen-
tially true.

.NET also allows other third-party developers to release languages that are just as
feature rich as C# or VB. These languages (which already include Eiffel, Pascal, Python,
and even COBOL) “snap in” to the .NET Framework effortlessly. In fact, if you want to
install another .NET language, all you need to do is copy the compiler to your computer
and add a line to register it in the machine.config configuration file (which is found in a
directory like c:\Windows\Microsoft.NET\Framework\v2.0.40607\Config). Typically, a
setup program would perform these steps for you automatically. Once installed, the new
compiler can transform your code creations into a sequence of IL (Intermediate Lan-
guage) instructions, just like the VB and C# compilers do with VB and C# code.

IL is the only language that the CLR (Common Language Runtime) recognizes. When
you create the code for an ASP.NET web form, it’s changed into IL using the C# compiler
(csc.exe), the VB compiler (vbc.exe), or the J# compiler (vjc.exe). You can perform the
compilation manually or let ASP.NET handle it automatically when a web page is
requested, as you’ll learn in Chapter 5.

C# Language Basics
New C# programmers are sometimes intimidated by the quirky syntax of the language,
which includes special characters such as semicolons (;), curly braces {}, and backward
slashes (\). Fortunately, once you get accustomed to C#, these details will quickly melt
into the background. In the following sections, you’ll learn about four general principles
you need to know about C# before you learn any other concepts.

Case Sensitivity

Some languages are case-sensitive, while others are not. Java, C, and C# are all examples
of case-sensitive languages. VB .NET is not. This difference can frustrate former VB pro-
grammers who don’t realize that keywords, variables, and functions must be entered with
the proper case. For example, if you try to create a conditional statement by entering If
instead of if, your code will not be recognized, and the compiler will flag it with an error
when you try to build your application.

C# also has a definite preference for lowercase words. Keywords—such as if, for,
foreach, while, typeof, and so on—are always written in lowercase letters. When you
define your own variables, it makes sense to follow the conventions used by other C#
programmers and the .NET Framework class library. That means you should give private
variables names that start with a lowercase letter and give public variables names that

MacDonald.book Page 24 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 25

start with an initial capital letter. For example, you might name a private variable
MyNumber in VB and myNumber in C#. Of course, you don’t need to follow this style
as long as you make sure you use the same capitalization consistently.

■Note If you’re designing code that other developers might see (for example, you’re creating components
that you want to sell to other companies), coding standards are particularly important. The MSDN Help has
information about coding standards, and you can also get an excellent summary of best practices in a white
paper by Juval Lowy at ������������	
����
�.

Commenting

Comments are descriptive text that is ignored by the compiler. C# provides two basic
types of comments. The first type is the single-line comment. In this case, the comment
starts with two slashes and continues for the entire current line. Optionally, C# program-
mers can also use multiple-line comments using the /* and */ comment brackets. This
trick is often used to quickly comment out an entire block of code. This way the code
won’t be executed, but it will still remain in your source code file if you need to refer to it
or use it later:

������������
��

������������

����������
�����

C# also includes an XML-based commenting syntax that you can use to describe your
code in a standardized way. With XML comments, you use special tags that indicate
whether your comment applies to a class, method, parameter, and so on. Here’s an
example of a comment that provides a summary for an entire application:

�������������

�������������������������	
���
�����
�

���� ������
!����
��
����
�

��������������

XML comments always start with three slashes. The benefit of XML-based comments
is that automated tools (including Visual Studio) can extract the comments from your
code and use them to build help references and other types of documentation. For more
information about XML comments, you can refer to an excellent MSDN article at
���������	�������� ��������	��������
��"#�"$�%&'�. And if you’re new to XML
syntax in general, you’ll learn about it in detail in Chapter 17.

MacDonald.book Page 25 Wednesday, December 7, 2005 8:39 PM

26 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

Line Termination

C# uses a semicolon (;) as a line-termination character. Every line of C# code must end
with this semicolon, except when you’re defining a block structure such as a method, a
conditional statement, or a looping construct. By omitting this semicolon, you can easily
split a line of code over multiple physical lines.

The following code snippet demonstrates four equivalent ways to perform the same
operation (adding three numbers together):

�������	
�����
�
����������
��������
��

��(���
�)���(���
*�+���(���
#�+

������������(���
,-

�������	
�����
�
����������
�����

���
��

��(���
�)���(���
*�+

������������(���
#�+

������������(���
,-

�������	
�����
�
����������
���
�

��(���
�)���(���
*�+���(���
#�+���(���
,-

���������	
�����
�
�����������

��(���
�)���(���
*�+���(���
#-

��(���
�)���(���
�+���(���
,-

As you can see in this example, the line-termination character gives you a wide range
of freedom to split your line in whatever way you want. The general rule of thumb is to
make your code as readable as possible. Thus, if you have a long line, split it so it’s easier
to read. On the other hand, if you have a complex code statement that performs several
operations at once, you can split the line or separate your logic into multiple code state-
ments to make it clearer.

Block Structures

The C#, Java, and C languages all rely heavily on curly braces—parentheses with a little
more attitude: {}. You can find the curly braces to the right of most keyboards (next to the
P key); they share a key with the square brackets: [].

Curly braces group multiple code statements together. Typically, the reason you’ll
want to group code statements together is because you want them to be repeated in a
loop, executed conditionally, or grouped into a function. You’ll see all these techniques in

MacDonald.book Page 26 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 27

this chapter. But in each case, the curly braces play the same role, which makes C#
simpler and more concise than other languages that need a specialized syntax for each
type of block structure:

.

���������	
�����
�
�������
�
�

/

Variables and Data Types
As with all programming languages, you keep track of data in C# using variables. Variables
can store numbers, text, dates, and times, and they can even point to full-fledged objects.

When you declare a variable, you give it a name, and you specify the type of data it will
store. To declare a local variable, you start the line with the data type, followed by the
name you want to use. A final semicolon ends the statement:

�����
��
�����
�
���������
���
	�
������	
�

���
������	
-

�����
��
����������������
���
	���0��
�

��������0��
-

■Note Remember, in C# the variables name and Name aren’t equivalent! To confuse matters even more,
C# programmers sometimes use this fact to their advantage—by using multiple variables that have the same
name but with different capitalization. Avoid this technique unless you have a good reason for using it.

Every .NET language uses the same variable data types. Different languages may
provide slightly different names (for example, a VB Integer is the same as a C# int), but the
CLR makes no distinction—in fact, they are just two different names for the same base
data type. This design allows for deep language integration. Because languages share the
same core data types, you can easily use objects written in one .NET language in an appli-
cation written in another .NET language. No data type conversions are required.

■Note The reason all .NET languages have the same data types is because they all adhere to the CTS
(common type system), a Microsoft-designed ECMA standard that sets out the ground rules that all .NET
languages must follow when dealing with data.

MacDonald.book Page 27 Wednesday, December 7, 2005 8:39 PM

28 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

To create this common data type system, Microsoft needed to iron out many of the
inconsistencies that existed between VBScript, VB 6, C++, and other languages. The solu-
tion was to create a set of basic data types, which are provided in the .NET class library.
Table 2-1 lists these core data types.

Table 2-1. Common Data Types

You can also define a variable by using the type name from the .NET class library. This
approach produces identical variables. It’s also a requirement when the data type doesn’t
have an alias built into the language. For example, you can rewrite the earlier example
that used C# data type names with this code snippet that uses the class library names:

1���
��2�,#�
������	
-

1���
��1�������0��
-

Class Library Name VB Name C# Name Contains
Byte Byte byte An integer from 0 to 255.

Int16 Short short An integer from –32,768 to 32,767.

Int32 Integer int An integer from –2,147,483,648 to 2,147,483,647.

Int64 Long long An integer from about –9.2e18 to 9.2e18.

Single Single float A single-precision floating point number from
approximately –3.4e38 to 3.4e38.

Double Double double A double-precision floating point number from
approximately –1.8e308 to 1.8e308.

Decimal Decimal decimal A 128-bit fixed-point fractional number that
supports up to 28 significant digits.

Char Char char A single 16-bit Unicode character.

String String string A variable-length series of Unicode characters.

Boolean Boolean bool A true or false value.

DateTime Date *

* If the language does not provide an alias for a given type, you can just use the .NET class name.

Represents any date and time from 12:00:00 AM,
January 1 of the year 1 in the Gregorian calendar,
to 11:59:59 PM, December 31 of the year 9999.
Time values can resolve values to 100 nanosecond
increments. Internally, this data type is stored as a
64-bit integer.

TimeSpan * * Represents a period of time, as in ten seconds or
three days. The smallest possible interval is 1 tick
(100 nanoseconds).

Object Object object The ultimate base class of all .NET types. Can
contain any data type or object.

MacDonald.book Page 28 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 29

This code snippet uses fully qualified type names that indicate that the Int32 type
is found in the System namespace (along with all the most fundamental types). In
Chapter 3, you’ll learn about types and namespaces in more detail.

Assignment and Initializers

Once you’ve created your variable, you canfreely assign values to them, as long as these
values have the correct data type. Here’s the code that shows this two-step process:

���3
 �
��������
��

���
������	
-

��������0��
-

�������������
��

������	
�)�*"-

��0��
�)�4&����
�4-

You can also assign a value to a variable in the same line that you create it. This
example compresses four lines of code into two:

���
������	
�)�*"-

��������0��
�)�4&����
�4-

C# safeguards you from errors by restricting you from using uninitialized variables.
This means the following code will not succeed:

������
�-����������������0���
�������������5
	�

���
��)����
��+�*-�������6�����

The proper way to write this code is to explicitly initialize the number variable to 0
before using it:

������
��)�"-������������0���
������������"�

���
��)����
��+�*-�������0���
������������*�

C# also deals strictly with data types. For example, the following code statement won’t
work as written:

	
��������3
������)�*7�8-

The problem is that the literal 14.5 is automatically interpreted as a double, and you
can’t convert a double to a decimal without using casting syntax, which is described later
in this chapter. To get around this problem, C# defines a few special characters that you

MacDonald.book Page 29 Wednesday, December 7, 2005 8:39 PM

30 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

can append to literal values to indicate their data type so that no conversion will be
required. These are as follows:

• M (decimal)

• D (double)

• F (float)

• L (long)

For example, you can rewrite the earlier example using the decimal indicator
as follows:

	
��������3
������)�*7�8�-

Strings and Escaped Characters

C# treats text a little differently than other languages such as VB. It interprets any embed-
ded backslash (\) as the start of a special character escape sequence. For example, \n
means add a new line (carriage return). The most useful character literals are as follows:

• \" (double quote)

• \n (new line)

• \t (horizontal tab)

• \\ (backward slash)

You can also insert a special character based on its hex code using the syntax \x123.
This inserts a single character with hex value 123.

WHAT’S IN A NAME? NOT THE DATA TYPE!

You’ll notice that the preceding examples don’t use variable prefixes. Most C and VB programmers are in the
habit of adding a few characters to the start of a variable name to indicate its data type. In .NET, this practice
is discouraged, because data types can be used in a much more flexible range of ways without any problem,
and most variables hold references to full objects anyway. In this book, variable prefixes aren’t used, except
for web controls, in which it helps to distinguish lists, text boxes, buttons, and other common user interface
elements. In your own programs, you should follow a consistent (typically companywide) standard that may
or may not adopt a system of variable prefixes.

MacDonald.book Page 30 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 31

Note that in order to specify the actual backslash character (for example, in a directory
name), you require two slashes. Here’s an example:

���������������
����	�����

�����9&����9&�:��
�������

�����)�4��99&����99&�:��
�4-

Alternatively, you can turn off C# escaping by preceding a string with an @ symbol, as
shown here:

�����)�;4��9&����9&�:��
�4-

Arrays

Arrays allow you to store a series of values that have the same data type. Each individual
value in the array is accessed using one or more index numbers. It’s often convenient to
picture arrays as lists of data (if the array has one dimension) or grids of data (if the array
has two dimensions). Typically, arrays are laid out contiguously in memory.

All arrays start at a fixed lower bound of 0. This rule has no exceptions. When you create
an array in C#, you specify the number of elements. Because counting starts at 0, the
highest index is actually one less than the number of elements. (In other words, if you
have three elements, the highest index is 2.)

�����
��
�������������� �����������< �����	
=�"�����	
=�,>�

���?���

	�����������5
���
��������������

���
��@
����	�����	
�������
����

�����AB������������)�
�������A7B-

�����
��
���#=7����	�������<�������������� �
�������
�
��>�

��ACB���������)�
����A#C�7B-

By default, if your array includes simple data types, they are all initialized to default
values (0 or false), depending on whether you are using some type of number or a Boolean
variable. You can also fill an array with data at the same time that you create it. In this
case, you don’t need to explicitly specify the number of elements, because .NET can
determine it automatically:

�����
��
�������������� ����������C��
� ���
�������
�� ����*����7�

�����AB������������)�.4*4C�4#4C�4,4C�474/-

The same technique works for multidimensional arrays, except that two sets of curly
brackets are required:

�����
��
���7=#�������<�����	������ ����������	�����������>�

��ACB���������)�..*C�#/C�.,C�7/C�.8C�$/C�.DC�E//-

MacDonald.book Page 31 Wednesday, December 7, 2005 8:39 PM

32 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

Figure 2-1 shows what this array looks like in memory.

Figure 2-1. A sample array of integers

To access an element in an array, you specify the corresponding index number in
square brackets: []. Array indices are always zero-based. That means that myArray[0]
accesses the first cell in a one-dimensional array, myArray[1] accesses the second cell,
and so on:

������
�����
�����
�������"�< ��������>C�������*�<�
��	������>�

���
�
�
�-

�
�
��)��������A"C�*B-�������6�
�
���������
�����#�

The ArrayList

C# arrays do not support redimensioning. This means that once you create an array, you
can’t change its size. Instead, you would need to create a new array with the new size and
copy values from the old array to the new, which would be a tedious process. However, if
you need a dynamic arraylike list, you can use one of the collection classes provided to all
.NET languages through the .NET class library. One such class is the ArrayList, which
always allows dynamic resizing. Here’s a snippet of C# code that uses an ArrayList:

�����
��
���
������'�����2�F������G
��C�����������C

��������
�����=�������������	�
�
��

�����'����	�����'����)�
�������'���<>-

MacDonald.book Page 32 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 33

����		��
�
����������������
������

�����
������'���������������������
	C������������		����	�������
�

	�����'�����		<4�
4>-

	�����'�����		<4���4>-

	�����'�����		<4���

4>-

���H
���
�
���
� ������������0����
��������
���G
���������
����
��
	�����

��������C��
����
���
�
F�������� ����06������
��
����������������

��������
��)����
�����1����<	�����'���A"B>-

You’ll learn more about the ArrayList and other collections in Chapter 3.

■Tip In many cases, it’s easier to dodge counting issues and use a full-fledged collection rather than an
array. Collections are generally better suited to modern object-oriented programming and are used exten-
sively in ASP.NET. The .NET class library provides many types of collection classes, including simple
collections, sorted lists, key-indexed lists (dictionaries), and queues. You’ll see examples of collections
throughout this book.

Enumerations

An enumeration is a group of related constants, each of which is given a descriptive name.
Every enumerated value corresponds to a preset integer. In your code, however, you can
refer to an enumerated value by name, which makes your code clearer and helps prevent
errors. For example, it’s much more straightforward to set the border of a label to the enu-
merated value BorderStyle.Dashed rather than the obscure numeric constant 3. In this
case, Dashed is a value in the BorderStyle enumeration, and it represents the number 3.

■Note Just to keep life interesting, the word enumeration actually has more than one meaning. As
described in this section, enumerations are sets of constant values. However, programmers often talk about
the process of enumerating, which means to loop, or iterate, over a collection. For example, it’s common to
talk about enumerating over all the characters of a string (which means looping through the string and exam-
ining each character in a separate pass).

MacDonald.book Page 33 Wednesday, December 7, 2005 8:39 PM

34 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

Here’s an example of an enumeration that defines different types of users:

���3
 �
���
��
����������
	�I�
����
���������

��������
�����
��

���I�
����

.

�����	��C

����J�
��C

����2����	

/

Now you can use the UserType enumeration as a special data type that is restricted to
one of three possible values. You assign or compare the enumerated value using the dot
notation shown in the following example:

�����
��
���
������
��	��
�����
K���������
�I�
����
��	����������

I�
����
�
�I�
����
�)�I�
����
��	��-

Internally, enumerations are maintained as numbers. In the preceding example, 0
is automatically assigned to Admin, 1 to Guest, and 2 to Invalid. You can set a number
directly in an enumeration variable, although this can lead to an undetected error if you
use a number that doesn’t correspond to one of the defined values.

In some scenarios, you might want to control what numbers are used for various values
in an enumeration. This technique is typically used when the number has some specific
meaning or corresponds to some other piece of information. For example, the following
code defines an enumeration that represents the error code returned by a legacy
component:

���6������	

.

����0�H
����
�)�*$$C

�������L����)�*$DC

����M����)�"

/

Now you can use the ErrorCode enumeration, which was defined earlier, with a func-
tion that returns an integer representing an error condition, as shown here:

6������	
�
��-

���)�3�1��
����<>-

� �<
���))�6������	
�M���>

.

�������N�
����������

	
	�

/

MacDonald.book Page 34 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 35

Clearly, enumerations create more readable code. They also simplify coding, because
once you type in the enumeration name (ErrorCode) and add the dot (.), Visual Studio will
pop up a list of possible values using IntelliSense.

■Tip Enumerations are widely used in .NET. You won’t need to create your own enumerations to use in
ASP.NET applications, unless you’re designing your own components. However, the concept of enumerated
values is extremely important, because the .NET class library uses it extensively. For example, you set colors,
border styles, alignment, and various other web control styles using enumerations provided in the .NET
class library.

Variable Operations
You can use all the standard types of variable operations in C#. When working with
numbers, you can use various math symbols, as listed in Table 2-2. C# follows the conven-
tional order of operations, performing exponentiation first, followed by multiplication
and division and then addition and subtraction. You can also control order by grouping
subexpressions with parentheses:

������
�-

���
��)�7�+�#���,-

���0���
��������
�*"�

���
��)�<7�+�#>���,-

���0���
��������
�*E�

Table 2-2. Arithmetic Operations

When dealing with strings, you can use the addition operator (+) to join two strings:

���O������

�����������
��
��

��0��
�)� ����0��
�+�4�4�+�����0��
-

Operator Description Example
+ Addition 1 + 1 = 2.

– Subtraction (and to indicate negative numbers) 5 – 2 = 3.

* Multiplication 2 * 5 = 10.

/ Division 5 / 2 = 2.5.

% Gets the remainder left after integer division 7 % 3 = 1.

MacDonald.book Page 35 Wednesday, December 7, 2005 8:39 PM

36 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

In addition, C# also provides special shorthand assignment operators. Here are a few
examples:

����		�*"������(���
������������
����
������(���
�)���(���
�+�*"-

��(���
�+)�*"-

���&������
���(���
����,������������
����
������(���
�)���(���
���,-

��(���
��)�,-

���3���	
���(���
����*#������������
����
������(���
�)���(���
���*#-

��(���
��)�*#-

Advanced Math

In the past, every language has had its own set of keywords for common math operations
such as rounding and trigonometry. In .NET languages, many of these keywords remain.
However, you can also use a centralized Math class that’s part of the .NET Framework.
This has the pleasant side effect of ensuring that the code you use to perform mathemat-
ical operations can easily be translated into equivalent statements in any .NET language
with minimal fuss.

To use the math operations, you invoke the methods of the System.Math class. These
methods are static, which means they are always available and ready to use. (The next
chapter explores the difference between static and instance members in more detail.)

The following code snippet shows some sample calculations that you can perform with
the Math class:

�����(���
-

��(���
�)�&����1K��<E*>-���������������(���
�)�P

��(���
�)�&����H��	<7#�EEPC�#>-�������(���
�)�7#�EP

��(���
�)�&�������<!*">-���������������(���
�)�*"

��(���
�)�&����'��<#7�#*#>-������������(���
�)�,�*E���<�	�����>

��(���
�)�&����M2-���������������������(���
�)�,�*7��

The features of the Math class are too numerous to list here in their entirety. The pre-
ceding examples show some common numeric operations. For more information about
the trigonometric and logarithmic functions that are available, refer to the MSDN Help
reference for the Math class.

Type Conversions

Converting information from one data type to another is a fairly common programming
task. For example, you might retrieve text input for a user that contains the number you

MacDonald.book Page 36 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 37

want to use for a calculation. Or, you might need to take a calculated value and transform
it into text you can display in a web page.

Conversions are of two types: widening and narrowing. Widening conversions always
succeed. For example, you can always convert a number into a string, or you can convert
a 32-bit integer into a 64-bit integer. You won’t need any special code:

�����1����(���
-

������'���
(���
-

��1����(���
�)�2�,#�&�=(���
-

�������������������

	���0������
����������
���1����(���
���C

����������
������
	�����'���
(���
�

��'���
(���
�)���1����(���
-

On the other hand, narrowing conversions may or may not succeed, depending on the
data. If you’re converting a 32-bit integer to a 16-bit integer, you could encounter an error
if the 32-bit number is larger than the maximum value that can be stored in the 16-bit data
type. All narrowing conversions must be performed explicitly. C# uses an elegant method
for explicit type conversion. To convert a variable, you simply need to specify the type in
parentheses before the expression you’re converting.

The following code shows how to change a 32-bit integer to a 16-bit integer:

�������,#�)�*"""-

����������*$-

������
�����
�,#!������
�
�������*$!������
�
��

���2 �����,#��������
C����������	�����
��������
��

����*$�)�<�����>����,#-

If you don’t use an explicit cast when you attempt to perform a narrowing conversion,
you’ll receive an error when you try to compile your code. However, even if you perform
an explicit conversion, you could still end up with a problem. For example, consider the
code shown here, which causes an overflow:

�����1����(���
-

������'���
(���
-

��'���
(���
�)�2�,#�&�=(���
-

��'���
(���
++-

����������������
����������

	C����������	����������
������
��

����
����
���1����(���
���������	�������
����������
�

��1����(���
�)�<��>��'���
(���
-

MacDonald.book Page 37 Wednesday, December 7, 2005 8:39 PM

38 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

The .NET languages differ in how they handle this problem. In VB, you’ll always receive
an error that you must intercept and respond to. In C#, however, you’ll simply wind up with
incorrect data in mySmallValue. To avoid this problem, you should either check that your
data is not too large before you attempt a conversion (which is always a good idea) or use the
checked block. The checked block enables overflow checking for a portion of code. If an
overflow occurs, you’ll automatically receive an error, just like you would in VB:

��
�@
	

.

���������������������
���
=�
���������
�������

������1����(���
�)�<��>��'���
(���
-

/

■Tip Usually, you won’t use the checked block, because it’s inefficient. The checked blocked catches the
problem (preventing a data error), but it throws an exception, which you need to handle using error handling
code, as explained in Chapter 7. Overall, it’s easier just to perform your own checks with any potentially
invalid numbers before you attempt an operation. However, the checked block is handy in one situation—
debugging. That way, you can catch unexpected errors while you’re still testing your application and resolve
them immediately.

In C#, you can’t use casting to convert numbers to strings, or vice versa. In this case, the
data isn’t just being moved from one variable to another—it needs to be translated to a
completely different format. Thankfully, .NET has a number of solutions for performing
advanced conversions. One option is to use the static methods of the Convert class, which
support many common data types such as strings, dates, and numbers:

�������-

����������1�����)�4*"4-

������
�����
�������4*"4������
���
��������
�*"�

�����)����
�����2�,#<����1����>-

������
�����
���
��������
�*"�������
�������4*"4�

����1�����)����
�����1����<����>-

The second step (turning a number into a string) will always work. The first step (turn-
ing a string into a number) won’t work if the string contains letters or other non-numeric
characters, in which case an error will occur. Chapter 7 discusses error handling.

MacDonald.book Page 38 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 39

The Convert class is a good all-purpose solution, but you’ll also find other static
methods that can do the work, if you dig around in the .NET class library. The following
code uses the static Int32.Parse() method to perform the same task:

�������-

����������1�����)�4*"4-

������
�����
�������4*"4������
���
��������
�*"�

�����)�2�,#�M���
<����1����>-

You’ll also find that you can use object methods to perform some conversions a little
more elegantly. The next section demonstrates this approach with the ToString() method.

Object-Based Manipulation
.NET is object-oriented to the core. In fact, even ordinary variables are really full-fledged
objects in disguise. This means that common data types have the built-in smarts to
handle basic operations (such as counting the number of letters in a string). Even better,
it means you can manipulate strings, dates, and numbers in the same way in C# and in VB.
This wouldn’t be true if developers used special keywords that were built into the C# or
VB language.

As an example, every type in the .NET class library includes a ToString() method. The
default implementation of this method returns the class name. In simple variables, a
more useful result is returned: the string representation of the given variable. The follow-
ing code snippet demonstrates how to use the ToString() method with an integer:

��������1����-

�����2�
�
��)�*""-

������
��������
����������������1�������������
���
����
���4*""4�

��1�����)���2�
�
����1����<>-

To understand this example, you need to remember that all int variables are based on
the Int32 class in the .NET class library. The ToString() method is built into the Int32 class,
so it’s available when you use an integer in any language.

The next few sections explore the object-oriented underpinnings of the .NET data
types in more detail.

MacDonald.book Page 39 Wednesday, December 7, 2005 8:39 PM

40 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

The String Class

One of the best examples of how class members can replace built-in functions is found
with strings. In the past, every language has defined its own specialized functions for
string manipulation. In .NET, however, you use the methods of the String class, which
ensures consistency between all .NET languages.

The following code snippet shows several ways to manipulate a string using its object
nature:

��������1�����)�4�����������
���������������4-

��1�����)���1���������<>-�������������������)�4�����������
��������4

��1�����)���1�����1�������<"C�7>-����������)�4����4

��1�����)���1�������I��
�<>-����������������)�4�Q214

��1�����)���1�����H
����
<4214C�4��4>-������)�4�Q��4

����
����)���1�����'
���-�����������������)�7

The first few statements use built-in methods, such as Trim(), Substring(), ToUpper(),
and Replace(). These methods generate new strings, and each of these statements replaces
the current myString with the new string object. The final statement uses a built-in Length
property, which returns an integer that represents the number of letters in the string.

■Tip A method is just a function or procedure that’s hardwired into an object. A property is similar to a vari-
able—it’s a piece of data that’s associated with an object. You’ll learn more about methods and properties in
the next chapter.

Note that the Substring() method requires a starting offset and a character length.
Strings use zero-based counting. This means that the first letter is in position 0, the
second letter is in position 1, and so on. You’ll find this standard of zero-based counting
throughout the .NET Framework for the sake of consistency. You’ve already seen it at
work with arrays.

You can even use the string methods in succession in a single (rather ugly) line:

��1�����)���1����������1��1����<"C�7>���I��
�<>�H
����
<4214C�4��4>-

Or, to make life more interesting, you can use the string methods on string literals just
as easily as string variables:

��1�����)�4�
���4���I��
�<>-����1
�����1��������4Q6''N4

MacDonald.book Page 40 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 41

Table 2-3 lists some useful members of the System.String class.

Table 2-3. Useful String Members*

* Remember, all the string methods that appear to change a string actually return a copy of the string that
has the changes.

Member Description
Length Returns the number of characters in the string (as an

integer).

ToUpper() and ToLower() Returns a copy of the string with all the characters
changed to uppercase or lowercase characters.

Trim(), TrimEnd(), and TrimStart() Removes spaces or some other characters from either (or
both) ends of a string.

PadLeft() and PadRight() Adds the specified character to either side of a string, the
number of times you indicate. For example, PadLeft(3, " ")
adds three spaces to the left side.

Insert() Puts another string inside a string at a specified (zero-
based) index position. For example, Insert(1, "pre") adds
the string pre after the first character of the current string.

Remove() Removes a specified number of strings from a specified
position. For example, Remove(0, 1) removes the first
character.

Replace() Replaces a specified substring with another string. For
example, Replace("a", "b") changes all a characters in a
string into b characters.

Substring() Extracts a portion of a string of the specified length at the
specified location (as a new string). For example,
Substring(0, 2) retrieves the first two characters.

StartsWith() and EndsWith() Determines whether a string ends or starts with a
specified substring. For example, StartsWith("pre") will
return either true or false, depending on whether the
string begins with the letters pre in lowercase.

IndexOf() and LastIndexOf() Finds the zero-based position of a substring in a string.
This returns only the first match and can start at the end
or beginning. You can also use overloaded versions of
these methods that accept a parameter that specifies the
position to start the search.

Split() Divides a string into an array of substrings delimited by a
specific substring. For example, with Split(".") you could
chop a paragraph into an array of sentence strings.

Join() Fuses an array of strings into a new string. You can also
specify a separator that will be inserted between each
element.

MacDonald.book Page 41 Wednesday, December 7, 2005 8:39 PM

42 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

The DateTime and TimeSpan Classes

The DateTime and TimeSpan data types also have built-in methods and properties. These
class members allow you to perform three useful tasks:

• Extract a part of a DateTime (for example, just the year) or convert a TimeSpan to
a specific representation (such as the total number of days or total number of minutes).

• Easily perform date calculations.

• Determine the current date and time and other information (such as the day of the
week or whether the date occurs in a leap year).

For example, the following block of code creates a DateTime object, sets it to the
current date and time, and adds a number of days. It then creates a string that indicates
the year that the new date falls in (for example, 2006):

3��
���
���3��
�)�3��
���
�0��-

��3��
�)���3��
��		3���<*"">-

������	��
1�����)���3��
�?
�����1����<>-

The next example shows how you can use a TimeSpan object to find the total number
of minutes between two DateTime objects:

3��
���
���3��
*�)�3��
���
�0��-

3��
���
���3��
#�)�3��
���
�0����		Q����<,""">-

���
1���	�
�
�
-

	�
�
�
�)���3��
#�1�������<��3��
*>-

	����
����
�N &���
�-

���
�N &���
��)�	�
�
�
������&���
�-

These examples give you an idea of the flexibility .NET provides for manipulating date
and time data. Tables 2-4 and 2-5 list some of the more useful built-in features of the
DateTime and TimeSpan objects.

MacDonald.book Page 42 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 43

Table 2-4. Useful DateTime Members

Table 2-5. Useful TimeSpan Members

Member Description
Now Gets the current date and time.

Today Gets the current date and leaves time set to 00:00:00.

Year, Date, Day, Hour, Minute, Second,
and Millisecond

Returns one part of the DateTime object as an
integer. For example, Month will return 12 for any
day in December.

DayOfWeek Returns an enumerated value that indicates the day
of the week for this DateTime, using the DayOfWeek
enumeration. For example, if the date falls on
Sunday, this will return DayOfWeek.Sunday.

Add() and Subtract() Adds or subtracts a TimeSpan from the DateTime.

AddYears(), AddMonths(), AddDays(),
AddHours(), AddMinutes(),
AddSeconds(), AddMilliseconds()

Adds an integer that represents a number of years,
months, and so on, and returns a new DateTime.
You can use a negative integer to perform a date
subtraction.

DaysInMonth() Returns the number of days in the month
represented by the current DateTime.

IsLeapYear() Returns true or false depending on whether the
current DateTime is in a leap year.

ToString() Changes the current DateTime to its string
representation. You can also use an overloaded
version of this method that allows you to specify a
parameter with a format string.

Member Description
Days, Hours, Minutes, Seconds,
Milliseconds

Returns one component of the current TimeSpan.
For example, the Hours property can return an
integer from 0 to 23.

TotalDays, TotalHours, TotalMinutes,
TotalSeconds, TotalMilliseconds

Returns the total value of the current TimeSpan,
indicated as a number of days, hours, minutes, and
so on. For example, the TotalDays property might
return a number like 234.342.

Add() and Subtract() Combines TimeSpan objects together.

FromDays(), FromHours(),
FromMinutes(), FromSeconds(),
FromMilliseconds()

Allows you to quickly specify a new TimeSpan. For
example, you can use TimeSpan.FromHours(24) to
define a TimeSpan object exactly 24 hours long.

ToString() Changes the current TimeSpan to its string
representation. You can also use an overloaded
version of this method that allows you to specify a
parameter with a format string.

MacDonald.book Page 43 Wednesday, December 7, 2005 8:39 PM

44 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

The Array Class

Arrays also behave like objects in the new world of .NET. For example, if you want to find
out the size of an array, you can use the Array.GetUpperBound() method in any language.
The following code snippet shows this technique in action:

��AB���������)�.*C�#C�,C�7C�8/-

������	-

���R
����
��
�
�����
� �����	��
����� ���������

���	�)���������J
�I��
�L��	<">-���������	�)�7

Arrays also provide a few other useful methods, which allow you to sort them, reverse
them, and search them for a specified element. Table 2-6 lists some useful members of the
System.Array class.

Table 2-6. Useful Array Members

Conditional Structures
In many ways, conditional logic—deciding which action to take based on user input,
external conditions, or other information—is the heart of programming.

All conditional logic starts with a condition: a simple expression that can be evaluated
to true or false. Your code can then make a decision to execute different logic depending
on the outcome of the condition. To build a condition, you can use any combination of
literal values or variables along with logical operators. Table 2-7 lists the basic logical
operators.

Member Description
Length Returns an integer that represents the total number of elements in all

dimensions of an array. For example, a 3×3 array has a length of 9.

GetLowerBound()
and
GetUpperBound()

Determines the dimensions of an array. As with just about everything in
.NET, you start counting at zero (which represents the first dimension).

Clear() Empties an array’s contents.

IndexOf() and
LastIndexOf()

Searches a one-dimensional array for a specified value and returns the
index number. You cannot use this with multidimensional arrays.

Sort() Sorts a one-dimensional array made up of comparable data such as
strings or numbers.

Reverse() Reverses a one-dimensional array so that its elements are backward,
from last to first.

MacDonald.book Page 44 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 45

Table 2-7. Logical Operators

You can use all the comparison operators with any numeric types. With string data
types, you can use only the equality operators (== and !=). C# doesn’t support other types
of string comparison operators—instead, you need to use the String.Compare() method.
The String.Compare() method deems that a string is “less than” another string if it occurs
earlier in an alphabetic sort. Thus, apple is less than attach. The return value from
String.Compare is 0 if the strings match, 1 if the first supplied string is greater than the
second, and –1 if the first string is less than the second. Here’s an example:

����
����-

�
�����)�1�����������
<4����
4C�4������4>-������
�����)�!*

�
�����)�1�����������
<4����
4C�4���4>-���������
�����)�*

�
�����)�1�����������
<4����
4C�4����
4>-�������
�����)�"

�������
����������
� ���������������������

���������	�)�4����
4-

�
�����)����	�������
��<4������4>-���������������
�����)�!*

The if Block

The if block is the powerhouse of conditional logic, able to evaluate any combination of
conditions and deal with multiple and different pieces of data. Here’s an example with an
if block that features two conditions:

� �<��0���
����*">

.

�������3�����
�����

/

Operator Description
== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

&& And (evaluates to true only if both expressions are true)

|| Or (evaluates to true if either expression is true)

MacDonald.book Page 45 Wednesday, December 7, 2005 8:39 PM

46 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

��
�� �<��1�����))�4�
���4>

.

�������3�����
�����

/

��

.

�������3�����
�����

/

Keep in mind that the if block matches one condition at most. For example, if
myNumber is greater than 10, the first condition will be met. That means the code in
the first conditional block will run, and no other conditions will be evaluated. Whether
myString contains the text hello becomes irrelevant, because that condition will not be
evaluated.

An if block can have any number of conditions. If you test only a single condition, you
don’t need to include any else blocks.

The switch Block

C# also provides a switch block that you can use to evaluate a single variable or expression
for multiple possible values. The only limitation is that the variable you’re evaluating
must be an int, bool, char, string, or enumeration. Other data types aren’t supported.

In the following code, each case examines the myNumber variable and tests whether
it’s equal to a specific integer:

�������<��0���
�>

.

�������
�*�

�����������3�����
�����

����������
�@-

�������
�#�

�����������3�����
�����

����������
�@-

����	
 �����

�����������3�����
�����

����������
�@-

/

MacDonald.book Page 46 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 47

You’ll notice that the C# syntax inherits the convention of C programming, which
requires that every conditional block of code is ended by a special break keyword. If you
omit this keyword, the compiler will alert you and refuse to build your application. The
only exception is if you choose to stack multiple case statements directly on top of each
other with no intervening code. This allows you to write one segment of code that handles
more than one case. Here’s an example:

�������<��0���
�>

.

�������
�*�

�������
�#�

������������������	
�
=
���
��� ���0���
�����*����#�

����������
�@-

����	
 �����

�����������3�����
�����

����������
�@-

/

Unlike the if block, the switch block is limited to evaluating a single piece of informa-
tion at a time. However, it provides a leaner, clearer syntax than the if block for situations
in which you need to test a single variable.

Loop Structures
Loop structures allow you to repeat a segment of code multiple times. C# has three basic
types of loops. You choose the type of loop based on the type of task you need to perform.
Your choices are as follows:

• You can loop a set number of times with a for loop.

• You can loop through all the items in a collection of data using a foreach loop.

• You can loop until a certain condition is met, using a while loop.

The for and foreach blocks are ideal for chewing through sets of data that have known,
fixed sizes. The while block is a more flexible construct that allows you to continue pro-
cessing until a complex condition is met. The while block is often used with repetitive
tasks or calculations that don’t have a set number of iterations.

MacDonald.book Page 47 Wednesday, December 7, 2005 8:39 PM

48 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

The for Block

The for block is a basic ingredient in many programs. It allows you to repeat a block of
code a set number of times, using a built-in counter. To create a for loop, you need to
specify a starting value, an ending value, and the amount to increment with each pass.
Here’s one example:

 ���<�����)�"-�����*"-��++>

.

��������������	
�
=
���
���
����
��

����1���
��3����������3
����S���
<�>-

/

You’ll notice that the for loop starts with brackets that indicate three important pieces
of information. The first portion, (int i = 0), creates the counter variable (i) and sets its
initial value (0). The third portion, (i++), increments the counter variable. In this example,
the counter is incremented by 1 after each pass. That means i will be equal to 0 for the first
pass, equal to 1 for the second pass, and so on. The middle portion, (i < 10), specifies the
condition that must be met for the loop to continue. This condition is tested at the start of
every pass through the block. If i is greater than or equal to 10, the condition will evaluate
to false, and the loop will end.

If you run this code using a tool such as Visual Studio, it will write the following
numbers in the Debug window:

"�#�,�7�8�$�D�E�P

It often makes sense to set the counter variable based on the number of items you’re
processing. For example, you can use a for loop to step through the elements in an array
by checking the size of the array before you begin. Here’s the code you would use:

�����AB������������)�.4�
4C�4���4C�4���

4/-

 ���<�����)�"-����)������������J
�I��
�L��	<">-��++>

.

����1���
��3����������3
����S���
<����������A�B�+�4�4>-

/

This code produces the following output:

�
��������

MacDonald.book Page 48 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 49

The foreach Block

C# also provides a foreach block that allows you to loop through the items in a set of data.
With a foreach block, you don’t need to create an explicit counter variable. Instead, you
create a variable that represents the type of data for which you’re looking. Your code will
then loop until you’ve had a chance to process each piece of data in the set.

The foreach block is particularly useful for traversing the data in collections and arrays.
For example, the next code segment loops through the items in an array using foreach.
This code is identical to the previous example but is a little simpler:

�����AB������������)�.4�
4C�4���4C�4���

4/-

 ��
����<������
�
�
��������������>

.

��������������	
����������

����
�C��������
�
�
�
���������
��
����

�������4�
4C���
�4���4C��	���
�4���

4�

����3
����S���
<
�
�
��+�4�4>-

/

BLOCK-LEVEL SCOPE

If you define a variable inside some sort of block structure (such as a loop or a conditional block), the variable
is automatically released when your code exits the block. That means you will no longer be able to access it.
The following code demonstrates the problem:

����
��(������
�-

 ���<�����)�"-�����*"-��++>

.

��������
��(������
L-

�����
��(������
��)�*-

�����
��(������
L�)�*-

/

���?�����������
����
��(������
L��
�
�

���Q��
�
�C�����������������
����
��(������
��

This change won’t affect many programs. It’s really designed to catch a few more accidental errors. If
you do need to access a variable inside and outside of some type of block structure, just define the variable
before the block starts.

MacDonald.book Page 49 Wednesday, December 7, 2005 8:39 PM

50 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

In this case, the foreach loop examines each item in the array and tries to convert it to
a string. Thus, the foreach loop defines a string variable named element. If you used a dif-
ferent data type, you’d receive an error.

The foreach block has one key limitation: it’s read-only. For example, if you wanted to
loop through an array and change the values in that array at the same time, foreach code
wouldn’t work. Here’s an example of some flawed code:

��AB���������)�.*C#C,/-

 ��
����<���������������>

.

�������+)�*-

/

In this case, you would need to fall back on a basic for block with a counter.

The while Block

Finally, C# supports a while structure that tests a specific condition after each pass
through the loop. When this condition evaluates to false, the loop is exited.

Here’s an example that loops ten times. At the beginning of each pass, the code
evaluates whether the counter (i) has exceeded a set value:

�����)�"-

����
�<����*">

.

������+)�*-

��������������	
�
=
���
���
����
��

/

You can also place the condition at the end of the loop using the slightly different
do…while syntax. In this case, the condition is tested at the end of each pass through
the loop:

�����)�"-

	�

.

������+)�*-

��������������	
�
=
���
���
����
��

/

����
�<����*">-

MacDonald.book Page 50 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 51

Both of these examples are equivalent, unless the condition you’re testing is false to
start. In that case, the while loop will skip the code entirely. The do…while loop, on the
other hand, will always execute the code at least once, because it doesn’t test the condi-
tion until the end.

■Tip Sometimes you need to exit a loop in a hurry. In C#, you can use the break statement to exit any
type of loop.

Methods
Methods are the most basic building block you can use to organize your code. Ideally,
each method will perform a distinct, logical task. By breaking your code down into meth-
ods, you not only simplify your life, but you also make it easier to organize your code into
classes and step into the world of object-oriented programming.

The first decision you need to make when creating a method is whether you want to
return any information. A method can return, at most, one piece of data. When you
declare a method in C#, the first part of the declaration specifies the data type of the
return value, and second part indicates the method name. If your method doesn’t return
any information, you should use the void keyword instead of a data type at the beginning
of the declaration.

Here are two examples:

���������
���	�	�
�F���
�������� ��������

���	�&�&
���	0�3���<>

.

���������	
���
���
�
�

/

���������
���	��
���������
�
��

���&�&
���	H
����3���<>

.

������������
=����
C��
������
����
��*"�

�����
����*"-

/

Notice that the method name is always followed by parentheses, even if the method
doesn’t accept parameters. This allows Visual Studio to recognize that it’s a method.

MacDonald.book Page 51 Wednesday, December 7, 2005 8:39 PM

52 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

In this example, the methods don’t specify their accessibility. This is just a common
C# convention. You’re free to add an accessibility keyword (such as public or private)
as follows:

������
����	�&�&
���	0�3���<>

.

���������	
���
���
�
�

/

The accessibility determines how different classes in your code can interact. Private
methods are hidden from view and are available only locally, whereas public methods can
be called by any other class in your application. The next chapter discusses accessibility in
more detail.

■Tip If you don’t specify accessibility, the method is always private. The examples in this book always
include accessibility keywords, because they improve clarity. Most programmers agree that it’s a good
approach to explicitly spell out the visibility of your code.

Invoking your methods is straightforward—you simply type the name of method, fol-
lowed by parentheses. If your method returns data, you have the option of using the data
it returns or just ignoring it:

���������������������
	�

&�&
���	0�3���<>-

���������������������
	�

&�&
���	H
����3���<>-

���������������������
	�

�����0���
�-

��0���
��)�&�&
���	H
����3���<>-

���������������F�������
	�

���&�&
���	0�3���<>�	�
������
�������� ��������

��0���
��)�&�&
���	0�3���<>-

MacDonald.book Page 52 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 53

Parameters

Methods can also accept information through parameters. Parameters are declared in a
similar way to variables. By convention, parameter names always begin with a lowercase
letter in any language.

Here’s how you might create a function that accepts two parameters and returns their sum:

�
����
�����		0���
��<������
�*C�������
�#>

.

�����
����<���
�*�+����
�#>-

/

When calling a method, you specify any required parameters in parentheses or use an
empty set of parentheses if no parameters are required:

�����������
���	�������������
�
���

&�&
���	0�3���<>-

�����������
���	�������
K���
��������
�
�������
�
���

&�&
���	0�3���#<*"C�#">-

�����������
���	������������
�
�������
�
����	�����
�
���
��������
�

����
���(���
�)��		0���
��<*"C�*">-

Method Overloading

C# supports method overloading, which allows you to create more than one function
or method with the same name, but with a different set of parameters. When you call the
method, the CLR automatically chooses the correct version by examining the parameters
you supply.

This technique allows you to collect different versions of several functions together.
For example, you might allow a database search that returns an author name. Rather
than create three functions with different names depending on the criteria, such as
GetNameFromID(), GetNameFromSSN(), and GetNameFromBookTitle(), you could
create three versions of the GetCustomerName() function. Each function would have the
same name but a different signature, meaning it would require different parameters.

This example provides two overloaded versions for the GetProductPrice() method:

������
�	
������J
�M��	���M���
<���23>

.

���������	
��
�
�

/

MacDonald.book Page 53 Wednesday, December 7, 2005 8:39 PM

54 C H A P T E R 2 ■ LE A R N I N G T H E C # L A N G U A G E

������
�	
������J
�M��	���M���
<��������
>

.

���������	
��
�
�

/

����	��������

Now you can look up product prices based on the unique product ID or the full product
name, depending on whether you supply an integer or string argument:

	
����������
-

���J
������
�������	����23�<��
� ������
����>�

����
�)�J
�M��	���M���
<*""*>-

���J
������
�������	������
�<��
��
��	��
����>�

����
�)�J
�M��	���M���
<43(3�M���
�4>-

You cannot overload a function with versions that have the same signature—that is, the
same number of parameters and parameter data types—because the CLR will not be able to
distinguish them from each other. When you call an overloaded function, the version that
matches the parameter list you supply is used. If no version matches, an error occurs.

■Note .NET uses overloaded methods in most of its classes. This approach allows you to use a flexible
range of parameters while centralizing functionality under common names. Even the methods you’ve seen so
far (such as the String methods for padding or replacing text) have multiple versions that provide similar
features with various options.

Delegates

Delegates allow you to create a variable that “points” to a method. You can use this vari-
able at any time to invoke the method. Delegates help you write flexible code that can be
reused in many situations. They’re also the basis for events, an important .NET concept
that you’ll consider in the next chapter.

The first step when using a delegate is to define its signature. A delegate variable can
point only to a method that matches its specific signature. In other words, it must have the
same return type and the same parameter types. For example, if you have a method that
accepts a single string parameter and another method that accepts two string parameters,
you’ll need to use a separate delegate type for each method.

MacDonald.book Page 54 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 55

To consider how this works in practice, assume your program has the following
function:

������
��������������
6�������:�
��<������
�����>

.

���������	
���
���
�
�

/

This function returns a string and accepts a single string argument. With those two
details in mind, you can define a delegate that matches this signature. Here’s how you
would do it:

������
�	
�
���
�������1����:�����<�������>-

Notice that the name you choose for the parameters and the name of the delegate
don’t matter. The only requirement is that the data types for the return value and param-
eters match exactly.

Once you’ve defined a type of delegate, you can create and assign a delegate variable at any
time. Using the StringFunction delegate type, you could create a delegate variable like this:

1����:������ �����H

�
�
-

Once you have a delegate variable, the fun begins. Using your delegate variable,
you can point to any method that has the matching signature. In this example, the
StringFunction delegate type requires one string parameter and returns a string.
Thus, you can use the functionReference variable to store a reference to the
TranslateEnglishToFrench() function you saw earlier. Here’s how to do it:

 �����H

�
�
�)��������
6�������:�
��-

DELEGATES ARE THE BASIS OF EVENTS

Wouldn’t it be nice to have a delegate that could refer to more than one function at once and invoke
them simultaneously? This would allow the client application to have multiple “listeners” and notify the
listeners all at once when something happens.

In fact, delegates do have this functionality, but you’re more likely to see it in use with .NET events.
Events, which are described in the next chapter, are based on delegates but work at a slightly higher level.
In a typical ASP.NET program, you’ll use events extensively, but you’ll probably never work directly with
delegates.

MacDonald.book Page 55 Wednesday, December 7, 2005 8:39 PM

56 C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E

■Note When you assign a delegate in C#, you don’t use brackets after the function name. This indicates
that you are referring to the function, not attempting to execute it. If you added the brackets, the CLR would
attempt to run your function and convert the return value to the delegate type, which wouldn’t work (and
therefore would generate a compile-time error).

Now that you have a delegate variable that references a function, you can invoke the
function through the delegate. To do this, you just use the delegate name as though it
were the function name:

���������	�
�������

��	�
�������������
�����	�	�	�
	���	�����

In the previous code example, the procedure that the functionReference delegate
points to will be invoked with the parameter value "Hello", and the return value will be
stored in the frenchString variable.

The following code shows all these steps—creating a delegate variable, assigning a
method, and calling the method—from start to finish:

�����	��	����	�	���	��������	�

���������
��������
�����	�	�	�
	

�������	����	�	�	�
	���������
������	����������	��	�	���	�

���
�����	�	�	�
	��� �������	!������ ���	�
�

���������	��	�������������
�����	�	�	�
	�"���������

���#�������
��	$����%�����	� �������	!������ ���	�
����

���������	�
�������������
�����	�	�	�
	���	�����

The value of delegates is in the extra layer of flexibility they add. It’s not apparent in
this example, because the same piece of code creates the delegate variable and uses
it. However, in a more complex application one method would create the delegate vari-
able, and another method would use it. The benefit in this scenario is that the second
method doesn’t need to know where the delegate points. Instead, it’s flexible enough
to use any method that has the right signature. In the current example, imagine a transla-
tion library that could translate between English and a variety of different languages,
depending on whether the delegate it uses points to TranslateEnglishToFrench(),
TranslateEnglishToSpanish(), TranslateEnglishToGerman(), and so on.

MacDonald02.fm Page 56 Tuesday, December 20, 2005 3:04 PM

C H A P T E R 2 ■ L E A R N I N G T H E C # L A N G U A G E 57

The Last Word
It’s impossible to do justice to an entire language in a single chapter. However, if you’ve
programmed before, you’ll find that this chapter provides all the information you need to
get started with the C# language. As you work through the full ASP.NET examples in the
following chapters, you can refer to this chapter to clear up any language issues.

In the next chapter, you’ll learn about more important language concepts and the
object-oriented nature of .NET.

MacDonald.book Page 57 Wednesday, December 7, 2005 8:39 PM

MacDonald.book Page 58 Wednesday, December 7, 2005 8:39 PM

59

■ ■ ■

C H A P T E R 3

Types, Objects, and
Namespaces

Object-oriented programming has been a popular buzzword over the last several years.
In fact, one of the few places that object-oriented programming wasn’t emphasized was in
ordinary ASP pages. With .NET, the story changes considerably. Not only does .NET allow
you to use objects, it demands it. Almost every ingredient you’ll need to use to create a
web application is, on some level, really a kind of object.

So how much do you need to know about object-oriented programming to write
.NET pages? It depends on whether you want to follow existing examples and cut and
paste code samples or have a deeper understanding of the way .NET works and gain more
control. This book assumes that if you’re willing to pick up a thousand-page book, then
you’re the type of programmer who excels by understanding how and why things work
the way they do. It also assumes you’re interested in some of the advanced ASP.NET pro-
gramming tasks that will require class-based design, such as designing custom controls
(see Chapter 25) and creating your own components (see Chapter 24).

This chapter explains objects from the point of view of the .NET Framework. It won’t
rehash the typical object-oriented theory, because countless excellent programming
books cover the subject. Instead, you’ll see the types of objects .NET allows, how they’re
constructed, and how they fit into the larger framework of namespaces and assemblies.

The Basics About Classes
As a developer, you’ve probably already created classes or at least heard about them.
Classes are the code definitions for objects. The nice thing about a class is that you can use
it to create as many objects as you need. For example, you might have a class that repre-
sents an XML file, which can be used to read some data. If you want to access multiple
XML files at once, you can create several instances of your class, as shown in Figure 3-1.
These instances are called objects.

MacDonald.book Page 59 Wednesday, December 7, 2005 8:39 PM

60 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

Figure 3-1. Classes are used to create objects.

Classes interact with each other with the help of three key ingredients:

• Properties: Properties allow you to access an object’s data. Some properties may be
read-only, so they cannot be modified, while others can be changed. For example,
the previous chapter demonstrated how you can use the read-only Length property
of a String object to find out how many letters are in a string.

• Methods: Methods allow you to perform an action with an object. Unlike properties,
methods are used for actions that perform a distinct task or may change the object’s
state significantly. For example, to open a connection to a database, you might call
an Open() method in a Connection object.

• Events: Events provide notification that something has happened. If you’ve ever
programmed an ordinary desktop application in Visual Basic, you know how
controls can fire events to trigger your code. For example, if a user clicks a button,
the Button object fires a Click event, which your code can react to. ASP.NET
controls also provide events.

In addition, classes contain their own code and internal set of private data. Classes
behave like black boxes, which means that when you use an object, you shouldn’t waste
any time wondering how it works or what low-level information it’s using. Instead, you
need to worry only about the public interface of a class, which is the set of properties,

MacDonald03.fm Page 60 Tuesday, December 13, 2005 1:14 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 61

methods, and events that are available for you to use. Together, these elements are called
class members.

In ASP.NET, you’ll create your own custom classes to represent individual web pages.
In addition, you’ll create custom classes if you design separate components. For the most
part, however, you’ll be using prebuilt classes from the .NET class library, rather than pro-
gramming your own.

Static Members

One of the tricks about .NET classes is that you really use them in two ways. You can use some
class members without creating an object first. These are called static members, and they’re
accessed by class name. For example, you can use the static property DateTime.Now to
retrieve a DateTime object that represents the current date and time. You don’t need to create
a DateTime object first.

On the other hand, the majority of the DateTime members require a valid instance. For
example, you can’t use the AddDays() method or the Hour property without a valid object.
These instance members have no meaning without a live object and some valid data to
draw on.

The following code snippet uses static and instance members:

�������������		�
���������
�����������������

�����������������
������������������
�������������

�������������������������������

�������
��
��
�����������������������

�����������������
���������������������
�����������

����������������������� !�

�������"������
���������#��
���
��

���$���	��������������
��
������������������������������
������������%

������������������������� !�

Both properties and methods can be designated as static. Static methods are a major part
of the .NET Framework, and you will use them frequently in this book. Remember, some
classes may consist entirely of static members (such as the Math class shown in the previous
chapter), and some may use only instance members. Other classes, like DateTime, provide
a combination of the two.

The next example, which introduces a basic class, will use only instance members. This
is the most common design and a good starting point.

MacDonald.book Page 61 Wednesday, December 7, 2005 8:39 PM

62 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

A Simple Class

To create a class, you must define it using a special block structure:

&����������'�(��

)

�������(��������������	��

*

You can define as many classes as you need in the same file. However, good coding
practices suggest that in most cases you use a single file for each class.

Classes exist in many forms. They may represent an actual thing in the real world
(as they do in most programming textbooks), they may represent some programming
abstraction (such as a rectangle or color structure), or they may just be a convenient way
to group related functionality (like with the Math class). Deciding what a class should rep-
resent and breaking down your code into a group of interrelated classes are part of the art
of programming.

Building a Basic Class
In the next example, you’ll see how to construct a .NET class piece by piece. This class will
represent a product from the catalog of an e-commerce company. The Product class
will store product data, and it will include the built-in functionality needed to generate a
block of HTML that displays the product on a web page. When this class is complete,
you’ll be able to put it to work with a sample ASP.NET test page.

Once you’ve defined a class, the first step is to add some basic data. The next example
defines three member variables that store information about the product, namely, its
name, price, and a URL that points to an image file:

&����������+	�����

)

����&	�,�����	�
��
����

����&	�,������������&	����

����&	�,�����	�
��������	��

*

A local variable exists only until the current procedure ends. On the other hand, a
member variable (or field) is declared as part of a class. It’s available to all the procedures
in the class, and it lives as long as the containing object lives.

When you create a member variable, you need to explicitly set its accessibility. The
accessibility determines whether other parts of your code will be able to read and alter
this variable. For example, if ObjectA contains a private variable, ObjectB will not be able

MacDonald.book Page 62 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 63

to read or modify it. Only ObjectA will have that ability. On the other hand, if ObjectA has
a public variable, any other object in your application is free to read and alter the informa-
tion it contains. Local variables don’t support any accessibility keywords, because they
can never be made available to any code beyond the current procedure. Generally, in a
simple ASP.NET application, most of your variables will be private because the majority of
your code will be self-contained in a single web page class. As you start creating separate
components to reuse functionality, however, accessibility becomes much more impor-
tant. Table 3-1 explains the access levels you can use.

Table 3-1. Accessibility Keywords

The accessibility keywords don’t just apply to variables. They also apply to methods,
properties, and events, all of which will be explored in this chapter.

■Tip By convention, all the public pieces of your class (the class name, public events, properties and proce-
dures, and so on) should use Pascal case. This means the name starts with an initial capital. (The function
name DoSomething() is one example of Pascal case.) On the other hand, private members can use any case
you want. Usually, private members will adopt camel case. This means the name starts with an initial lower-
case letter. (The variable name myInformation is one example of camel case.) Some developers begin all
private member names with _ or m_ (for member), although this is purely a matter of convention.

Creating a Live Object

When creating an object, you need to specify the new keyword. The new keyword instan-
tiates the object, which means it creates a copy of the class in memory. If you define an
object but don’t instantiate it, you’ll receive the infamous “null reference” error when you
try to use the object. That’s because the object doesn’t actually exist yet, meaning your
reference points to nothing at all.

Keyword Accessibility
public Can be accessed by any other class

private Can be accessed only by code procedures inside the current class

internal Can be accessed by code procedures in any of the classes in the current
assembly (the compiled code file)

protected Can be accessed by code procedures in the current class or by any class
that inherits from this class

protected internal Can be accessed by code procedures in the current application or by any
class that inherits from this class

MacDonald.book Page 63 Wednesday, December 7, 2005 8:39 PM

64 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

The following code snippet creates an object based on the Product class and then
releases it:

+	���������+	��������
���+	������!�

���-&���
�����������������������
�������&.

���+	���������+	������

������+	��������
���+	������!�

�������	��������������"	�������	��

���+	��������
����

In .NET, you almost never need to use the last line, which releases the object. That’s
because objects are automatically released when the appropriate variable goes out of
scope. Objects are also released when your application ends. In an ASP.NET web page,
your application is given only a few seconds to live. Once the web page is rendered to
HTML, the application ends, and all objects are automatically released.

■Tip Just because an object is released doesn’t mean the memory it uses is immediately reclaimed. The
CLR uses a long running service (called garbage collection) that periodically scans for released objects and
reclaims the memory they hold.

In some cases, you will want to define an object variable without using the new key-
word to create it. For example, you might want to assign an instance that already exists to
your object variable. Or you might receive a live object as a return value from a function.
The following code shows one such example:

�����"�
��������
/���	���������&	������

+	���������+	������

���(������"�
����
����������&����
���	���&	������$��&�	�����	0

����
��	���	
���&	�������������

���+	��������1����+	������23!�

In these cases, when you aren’t actually creating the class, you shouldn’t use the new
keyword.

MacDonald.book Page 64 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 65

Adding Properties

The simple Product class is essentially useless because your code cannot manipulate it.
All its information is private and unreachable. Other classes won’t be able to set or read
this information.

To overcome this limitation, you could make the member variables public. Unfortu-
nately, that approach could lead to problems because it would give other objects free
access to change everything, even allowing them to apply invalid or inconsistent data.
Instead, you need to add a “control panel” through which your code can manipulate
Product objects in a safe way. You do this by adding property accessors.

Accessors usually have two parts. The get accessor allows your code to retrieve data
from the object. The set accessor allows your code to set the object’s data. In some cases,
you might omit one of these parts, such as when you want to create a property that can be
examined but not modified.

Accessors are similar to any other type of procedure in that you can write as much
code as you need. For example, your property set accessor could raise an error to alert the
client code of invalid data and prevent the change from being applied. Or, your property
set accessor could change multiple private variables at once, thereby making sure the
object’s internal state remains consistent. In the Product class example, this sophistica-
tion isn’t required. Instead, the property accessors just provide straightforward access to
the private variables.

Property accessors, like any other public piece of a class, should start with an initial
capital. This allows you to give the same name to the property accessor and the under-
lying private variable, because they will have different capitalization, and C# is a case-
sensitive language. (This is one of the rare cases where it’s acceptable to differentiate
between two elements based on capitalization.) Another option would be to precede the
private variable name with an underscore.

&����������+	�����

)

����&	�,�����	�
��
����

����&	�,������������&	����

����&	�,�����	�
��������	��

����&�������	�
������

����)

�����������

��������)�	���	
�
�����*

����������

��������)�
������,������*

����*

MacDonald.book Page 65 Wednesday, December 7, 2005 8:39 PM

66 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

����&��������������+	���

����)

�����������

��������)�	���	
�&	�����*

����������

��������)�&	������,������*

����*

����&�������	�
��$�����	�

����)

�����������

��������)�	���	
�������	���*

����������

��������)�������	����,������*

����*

*

The client can now create and configure the class by using its properties and the famil-
iar dot syntax. For example, if the object is named SaleProduct, you can set the product
name using the SaleProduct.Name property. Here’s an example:

+	���������+	��������
���+	������!�

���+	�������������45�����
���	����4�

���+	������+	������67�77'�

���+	������$�����	����4���&.����������	�����&
�4�

You’ll notice that the C# example uses an M to indicate that the literal number 49.99
should be interpreted as a decimal value, not a double.

Adding a Basic Method

The current Product class consists entirely of data. This type of class is often useful in an
application. For example, you might use it to send information about a product from one
function to another. However, it’s more common to add functionality to your classes
along with the data. This functionality takes the form of methods.

Methods are simply procedures that are built into your class. When a method is called
on an object, your code responds to do something useful, such as return some calculated
data. In this example, we’ll add a GetHtml() method to the Product class. This method will
return a string representing a formatted block of HTML based on the current data in the
Product object. You could then take this block of HTML and place it on a web page to rep-
resent the product:

&����������+	�����

)

��������8�	�������
��&	�&�	������������"�	����	����!

MacDonald.book Page 66 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 67

����&�������	�
�����9����!

����)

���������	�
������:�	�
��

������������:�	�
����4;� <4�=�
����=�4;�� <;�	��<4�

������������:�	�
��=��4;�3<(��.�4�=�&	������:�	�
��!�=�4;��3<;�	��<4�

������������:�	�
��=��4;����	��4�=�������	��=�4<4�

��������	���	
�����:�	�
��

����*

*

All the GetHtml() method does is read the private data and format it in some attractive
way. This really targets the class as a user interface class rather than as a pure data class or
“business object.”

Adding a Constructor

Currently, the Product class has a problem. Ideally, classes should ensure that they are
always in a valid state. However, unless you explicitly set all the appropriate properties,
the Product object won’t correspond to a valid product. This could cause an error if you
try to use a method that relies on some of the data that hasn’t been supplied. To solve this
problem, you need to equip your class with one or more constructors.

A constructor is a method that automatically runs when the class is first created. In C#,
the constructor always has the same name as the name of the class. Unlike a normal
method, the constructor doesn’t define any return type, not even void.

The next code example shows a new version of the Product class. It adds a constructor
that requires the product price and name as arguments:

&����������+	�����

)

���������������
��������������������"�	����	����!

����&������+	�������	�
��
���0���������&	���!

����)

����������������&�	�����	���,����������
�����������
��	
���,�	������

���������������4���4�#����	��	�"�	������������,�	������

�����������4���4�	�"�	����������		�
���
��
����"�����+	����������

������������
������
����

������������&	������&	����

����*

*

MacDonald.book Page 67 Wednesday, December 7, 2005 8:39 PM

68 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

Here’s an example of the code you need to create an object based on the new Product
class, using its constructor:

+	���������+	��������
���+	������45�����
���	����40�67�77'!�

The preceding code is much leaner than the code that was required to create and ini-
tialize the previous version of the Product class. With the help of the constructor, you can
create a Product object and configure it with the basic data it needs in a single line.

If you don’t create a constructor, .NET supplies a default public constructor that does
nothing. If you create at least one constructor, .NET will not supply a default constructor.
Thus, in the preceding example, the Product class has exactly one constructor, which is
the one that is explicitly defined in code. To create a Product class, you must use this con-
structor. This restriction prevents a client from creating an object without specifying the
bare minimum amount of data that’s required:

������������
�������������0�����������	���

���
��>�	�?�	����
����
�	����	�

+	���������+	��������
���+	������!�

Most of the classes you use will have constructors that require parameters. As with
ordinary methods, constructors can be overloaded with multiple versions, each providing
a different set of parameters. When creating an object, you can choose the constructor
that suits you best based on the information that you have available. The .NET Framework
classes use overloaded constructors extensively.

Adding a Basic Event

Classes can also use events to notify your code. To define an event in C#, you must first
create a delegate that defines the signature for the event you’re going to use. Then you can
define an event based on that delegate using the event keyword.

As an illustration, the Product class example has been enhanced with a NameChanged
event that occurs whenever the Name is modified through the property procedure.
This event won’t fire if code inside the class changes the underlying private name variable
without going through the property procedure:

&����������+	�����

)

���������������
��������������������"�	����	����!

MacDonald.book Page 68 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 69

���������������	��
��������	��������������	��������

�����������
����������
�����	���
�������
������

���������������	��������

���������������������	���
�������
��������	���
�

����&�������	�
������

����)

�����������

��������)�	���	
�
�����*

����������

��������)

������������
������,�����

���������������������	������� ������
�
��	���������������������������

��������������������	���
�!"������

������������#

��������������������	���
���

������������$

��������*

����*

*

To fire an event, you just call it by name. However, before firing an event, you must
check that at least one subscriber exists by testing whether the event reference is null.
If it isn’t null, it’s safe to fire the event.

It’s quite possible that you’ll create dozens of ASP.NET applications without once
defining a custom event. However, you’ll be hard-pressed to write a single ASP.NET web
page without handling an event. To handle an event, you first create a subroutine called
an event handler. The event handler contains the code that should be executed when the
event occurs. Then, you connect the event handler to the event.

To handle the Product class, you need to begin by creating an event handler in another
class. The event handler needs to have the same syntax as the event it’s handling. In the
Product example, the event has no parameters, so the event handler would look like the
simple subroutine shown here:

&������,����(��
�����������!

)

�����������������@�������
�	�&�
�������������(��
�����,�
��

*

MacDonald.book Page 69 Wednesday, December 7, 2005 8:39 PM

70 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

The next step is to hook up the event handler to the event. First, you create a delegate
that points to the event handler method. Then, you attach this delegate to the event using
the += operation:

��������	
�������������������������

������	��������	�����	
�����������
����
��������������
���������
������

��������������
�������
������������

����������
����
�����������������	�����
���������
����
���������
������

��������
���

	
�����������
����
�����!������
����
���������
��������
�������������

���������������������������������	���	��������	�����"

	
�����������
����#$�������%
�&
��#�

It’s worth noting that if you’re using Visual Studio, you won’t need to manually hook up
event handlers for web controls at all. Instead, Visual Studio can add the code you need to
connect all the event handlers you create.

ASP.NET uses an event-driven programming model, so you’ll soon become used to
writing code that reacts to events. But unless you’re creating your own components, you
won’t need to fire your own custom events. For an example where custom events make
sense, refer to Chapter 25, which discusses how you can build your own controls.

Testing the Product Class

To learn a little more about how the Product class works, it helps to create a simple web
page. This web page will create a Product object, get its HTML representation, and then
display it in the web page. To try this example, you’ll need to use the three files that are
provided with the online samples in the Chapter03 directory:

• Product.cs: This file contains the code for the Product class. It’s in the Code subdi-
rectory, which allows ASP.NET to compile it automatically (a trick you’ll learn more
about in Chapter 5).

• Garbage.jpg: This is the image that the Product class will use.

• Default.aspx: This file contains the web page code that uses the Product class.

MacDonald03.fm Page 70 Tuesday, December 20, 2005 3:05 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 71

The easiest way to test this example is to use Visual Studio, because it includes an inte-
grated web server. Without Visual Studio, you would need to create a virtual directory for
this application using IIS, which is much more awkward.

Here are the steps you need to perform the test:

1. Start Visual Studio.

2. Select File ➤ Open ➤ Web Site from the menu.

3. In the Open Web Site dialog box, browse to the Chapter03 directory, select it, and
click Open. This loads your project into Visual Studio.

4. Choose Debug ➤ Start Without Debugging to launch the website. Visual Studio will
open a new window with your default browser and navigate to the Default.aspx page.

When the Default.aspx page executes, it creates a new Product object, configures it, and
uses the GetHtml() method. The HTML is written to the web page using the Response.Write()
method. Here’s the code:

;BC�+����D�
������4(:4�B<

;�	�&��	�
���4�	,�	4<

����&	�,����,����+���ED������������
��	0�A,�
��	���!

����)

��������+	���������+	��������
���+	������45�����
���	����40�67�77'!�

�����������+	������$�����	����4��	������&�4�

��������F�&�
��G	�������+	���������9����!!�

����*

;��	�&�<

;����<

����;�����	�
���4�	,�	4<

��������;�����<+	���������;������<

����;�����<

;�����<

The <script> block holds a subroutine named Page_Load. This subroutine is triggered
when the page is first created. Once this code is finished, the HTML is sent to the client.
Figure 3-2 shows the web page you’ll see.

MacDonald.book Page 71 Wednesday, December 7, 2005 8:39 PM

72 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

Figure 3-2. Output generated by a Product object

Interestingly, the GetHtml() method is that it’s similar to how an ASP.NET web control
works, but on a much cruder level. To use an ASP.NET control, you create an object
(explicitly or implicitly) and configure some properties. Then ASP.NET automatically
creates a web page by examining all these objects and requesting their associated HTML
(by calling a hidden GetHtml() method or by doing something conceptually similar1). It
then sends the completed page to the user. The end result is that you work with objects,
instead of dealing directly with raw HTML code.

When using a web control, you see only the public interface made up of properties,
methods, and events. However, understanding how class code actually works will help
you master advanced development.

Now that you’ve seen the basics of classes and a demonstration of how you can use a
class, it’s time to introduce a little more theory about .NET objects and revisit the basic
data types introduced in the previous chapter.

1. Actually, the ASP.NET engine calls a method named Render() in every web control.

MacDonald.book Page 72 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 73

Value Types and Reference Types
In Chapter 2, you learned how simple data types such as strings and integers are actually
objects created from the class library. This allows some impressive tricks, such as built-in
string handling and date calculation. However, simple data types differ from more com-
plex objects in one important way. Simple data types are value types, while classes are
reference types.

This means a variable for a simple data type contains the actual information you put in
it (such as the number 7). On the other hand, object variables actually store a reference
that points to a location in memory where the full object is stored. In most cases, .NET
masks you from this underlying reality, and in many programming tasks you won’t notice
the difference. However, in three cases you will notice that object variables act a little dif-
ferently than ordinary data types: in assignment operations, in comparison operations,
and when passing parameters.

Assignment Operations

When you assign a simple data variable to another simple data variable, the contents of
the variable are copied:

�
����	�����
����	H�������
����	��
����������&���"�������
��
���"��
����	H�

����������������������������	���	��������&��������
����	��
�����	��

Objects work a little differently. Copying the entire contents of an object could slow
down an application, particularly if you were performing multiple assignments. With
objects, the default is to just copy the reference in an assignment operation:

����������������H����������������
��������H�
��������&��
����������������
��

���������������������������	�����
����������
���������������������

In the preceding example, if you modify objectB by setting a property, objectA will be
automatically affected. In fact, objectA is objectB. To override this behavior, you would
need to manually create a new object and initialize its information to match the existing
object. Some objects provide a Clone() method that allows you to easily copy the object.
One example is the DataSet, which is used to store information from a database.

MacDonald.book Page 73 Wednesday, December 7, 2005 8:39 PM

74 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

Equality Testing

A similar distinction between objects and simple data types appears when you compare
two variables. When you compare simple variables, you’re comparing the contents:

�"���
����	������
����	H!

)

��������������	�������
���������
����	���,������������
��
��

*

When you compare object variables, you’re actually testing whether they’re the
same instance. In other words, you’re testing whether the references are pointing to
the same object in memory, not if their contents match:

�"�������������������H!

)

��������������	����"���������������
��������H�&��
����������������
��

�������������"�����"�������	���&�	���0��������
�����0��������

*

■Note This rule has a special exception. When classes override the == operator, they can change what
type of comparison it performs. The only significant example of this technique in .NET is the String class. For
more information, read the sidebar “Would the Real Reference Types Please Stand Up?” later in this chapter.

Passing Parameters by Reference and by Value

You can create three types of procedure parameters. The standard type is pass-by-value.
When you use pass-by-value parameters, the procedure receives a copy of the parameter
data. That means that if the procedure modifies the parameter, this change won’t affect
the calling code. By default, all parameters are pass-by-value.

The second type of parameter is pass-by-reference. With pass-by-reference, the proce-
dure accesses the parameter value directly. If a procedure changes the value of a pass-by-
reference parameter, the original variable is also modified.

To get a better understanding of the difference, consider the following code, which
shows a procedure that uses a parameter named number. This code uses the ref keyword
to indicate that number should be passed by reference. When the procedure modifies this
parameter (multiplying it by 2), the calling code is also affected:

&	�,����,����+	��������	������
��
����	!

)

����
����	�I��2�

*

MacDonald.book Page 74 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 75

The following code snippet shows the effect of calling the ProcessNumber procedure.
Note that you need to specify the ref keyword when you define the parameter in the func-
tion and when you call the function. This indicates that you are aware that the parameter
value may change:

�
��
����� J�

+	��������	�����
��!������������-
���������������&����0�������������2J�

This behavior is straightforward when you’re using value types, such as integers. How-
ever, if you use reference types, such as a Product object or an array, you won’t see this
behavior. The reason is because the entire object isn’t passed in the parameter. Instead,
it’s just the reference that’s transmitted. This is much more efficient for large objects (it
saves having to copy a large block of memory), but it doesn’t always lead to the behavior
you expect.

One notable quirk occurs when you use the standard pass-by-value mechanism. In this
case, pass-by-value doesn’t create a copy of the object, but a copy of the reference. This
reference still points to the same in-memory object. This means that if you pass a Product
object to a procedure, for example, the procedure will be able to alter your Product object,
regardless of whether you use pass-by-value or pass-by-reference.

OUTPUT PARAMETERS

C# also supports a third type of parameter: the output parameter. To use an output parameter, precede the
parameter declaration with the keyword out. Output parameters are commonly used as a way to return multi-
ple pieces of information from a single procedure.

When you use output parameters, the calling code can submit an uninitialized variable as a parameter,
which is otherwise forbidden. This approach wouldn’t be appropriate for the ProcessNumber() procedure,
because it reads the submitted parameter value (and then doubles it). If, on the other hand, the procedure used
the parameter just to return information, you could use the out keyword, as shown here:

&	�,����,����+	��������	��
��
����	0������
��������0������
���	�&��!

)

�������������
���I�2�

�����	�&�����
���I�3�

*

Remember, output parameters are designed solely for the procedure to return information to your calling
code. In fact, the procedure won’t be allowed to retrieve the value of an out parameter, because it may be
uninitialized. The only action the procedure can take is to set the output parameter.

Here’s an example of how you can call the revamped ProcessNumber() procedure:

�
��
����� J�

�
��������0��	�&���

+	��������	�
��0�����������0������	�&��!�

MacDonald.book Page 75 Wednesday, December 7, 2005 8:39 PM

76 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

Reviewing .NET Types

So far, the discussion has focused on simple data types and classes. The .NET class library
is actually composed of types, which is a catchall term that includes several objectlike
relatives:

Classes: This is the most common type in .NET Framework. Strings and arrays are two
examples of .NET classes, although you can easily create your own.

Structures: Structures, like classes, can include properties, methods, and events. Unlike
classes, they are value types, which alters the way they behave with assignment and
comparison operations. Structures also lack some of the more advanced class features
(such as inheritance) and are generally simpler and smaller. Integers, dates, and chars
are all structures.

Enumerations: An enumeration defines a set of integer constants with descriptive
names. Enumerations were introduced in the previous chapter.

Delegates: A delegate is a function pointer that allows you to invoke a procedure indi-
rectly. Delegates are the foundation for .NET event handling and were introduced in
the previous chapter.

Interfaces: They define contracts to which a class must adhere. Interfaces are an
advanced technique of object-oriented programming, and they’re useful when stan-
dardizing how objects interact. You’ll learn about interfaces with custom control pro-
gramming in Chapter 25.

MacDonald.book Page 76 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 77

WOULD THE REAL REFERENCE TYPES PLEASE STAND UP?

Occasionally, a class can override its behavior to act more like a value type. For example, the String type is a
full-featured class, not a simple value type. (This is required to make strings efficient, because they can con-
tain a variable amount of data.) However, the String type overrides its equality and assignment operations so
that these operations work like those of a simple value type. This makes the String type work in the way that
programmers intuitively expect. Arrays, on the other hand, are reference types through and through. If you
assign one array variable to another, you copy the reference, not the array (although the Array class also pro-
vides a Clone() method that returns a duplicate array to allow true copying).

Table 3-2 sets the record straight and explains a few common types.

Table 3-2. Common Reference and Value Types

Data Type Nature Behavior
Int32, Decimal,
Single, Double,
and all other basic
numeric types

Value Type Equality and assignment operations work
with the variable contents, not a reference.

DateTime,
TimeSpan

Value Type Equality and assignment operations work
with the variable contents, not a reference.

Char, Byte, and
Boolean

Value Type Equality and assignment operations work
with the variable contents, not a reference.

String Reference Type Equality and assignment operations appear to
work with the variable contents, not a
reference.

Array Reference Type Equality and assignment operations work
with the reference, not the contents.

MacDonald.book Page 77 Wednesday, December 7, 2005 8:39 PM

78 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

Understanding Namespaces and Assemblies
Whether you realize it at first, every piece of code in .NET exists inside a .NET type
(typically a class). In turn, every type exists inside a namespace. Figure 3-3 shows this
arrangement for your own code and the DateTime class. Keep in mind that this is an
extreme simplification—the System namespace alone is stocked with several hundred
classes. This diagram is designed only to show you the layers of organization.

Figure 3-3. A look at two namespaces

Namespaces can organize all the different types in the class library. Without name-
spaces, these types would all be grouped into a single long and messy list. This sort of
organization is practical for a small set of information, but it would be impractical for the
thousands of types included with .NET.

Many of the chapters in this book introduce you new .NET classes and namespaces.
For example, in the chapters on web controls, you’ll learn how to use the objects in the
System.Web.UI namespace. In the chapters about web services, you’ll study the types in
the System.Web.Services namespace. For databases, you’ll turn to the System.Data
namespace. In fact, you’ve already learned a little about one namespace: the basic System
namespace that contains all the simple data types explained in the previous chapter.

To continue your exploration after you’ve finished the book, you’ll need to turn to the
MSDN reference, which painstakingly documents the properties, methods, and events of
every class in every namespace (see Figure 3-4). If you have Visual Studio installed, you
can view the MSDN Help by selecting Start ➤ Programs ➤ Microsoft Visual Studio 2005 ➤
Microsoft Visual Studio 2005 Documentation (the exact path depends on the version of
Visual Studio you’ve installed). You can find class reference information, grouped by
namespace, under the .NET Development ➤ .NET Framework SDK ➤ Class Library
Reference node.

MacDonald.book Page 78 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 79

Figure 3-4. The MSDN Class Library reference

Using Namespaces

Often when you write ASP.NET code, you’ll just use the namespace that Visual Studio
creates automatically. If, however, you want to organize your code into multiple name-
spaces, you can define the namespace using a simple block structure, as shown here:

���&����'�(��&�
�

)

����
���&����'��&&

����)

��������&����������+	�����

��������)

���������������(����������	��

��������*

����*

*

In the preceding example, the Product class is in the namespace MyCompany.MyApp.
Code inside this namespace can access the Product class by name. Code outside it needs
to use the fully qualified name, as in MyCompany.MyApp.Product. This ensures that you

MacDonald.book Page 79 Wednesday, December 7, 2005 8:39 PM

80 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

can use the components from various third-party developers without worrying about a
name collision. If those developers follow the recommended naming standards, their
classes will always be in a namespace that uses the name of their company and software
product. The fully qualified name of a class will then almost certainly be unique.

Namespaces don’t take an accessibility keyword and can be nested as many layers
deep as you need. Nesting is purely cosmetic—for example, in the previous example, no
special relationship exists between the MyCompany namespace and the MyApp name-
space. In fact, you could create the namespace MyCompany.MyApp without using
nesting at all using this syntax:

���&����'�(��&�
��'��&&

)

����&����������+	�����

����)

�����������(����������	��

����*

*

Unlike a class, you can declare the same namespace in various code files. In fact, more than
one project can even use the same namespace. Namespaces are really nothing more than a
convenient, logical container that helps you organize your classes.

■Tip If you’re using Visual Studio, all your code will automatically be placed in a projectwide namespace.
By default, this namespace has the same name as your project. For more information, refer to Chapter 4,
which tackles Visual Studio in detail.

Importing Namespaces

Having to type long, fully qualified names is certain to tire your fingers and create overly
verbose code. To tighten code up, it’s standard practice to import the namespaces you
want to use. When you import a namespace, you don’t need to type the fully qualified
name. Instead, you can use the object as though it were defined locally.

To import a namespace, you use the using statement. These statements must appear as
the first lines in your code file, outside of any namespaces or block structures:

��
��'�(��&�
��'��&&�

Consider the situation without importing a namespace:

'�(��&�
��'��&&�+	���������+	��������
���'�(��&�
��'��&&�+	������!�

MacDonald.book Page 80 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 81

It’s much more manageable when you import the MyCompany.MyApp namespace.
Once you do, you can use this syntax instead:

+	���������+	��������
���+	������!�

Importing namespaces is really just a convenience. It has no effect on the performance
of your application. In fact, whether you use namespace imports, the compiled IL code
will look the same. That’s because the language compiler will translate your relative class
references into fully qualified class names when it generates an EXE or DLL file.

Assemblies

You might wonder what gives you the ability to use the class library namespaces in a .NET
program. Are they hardwired directly into the language? The truth is that all .NET classes
are contained in assemblies. Assemblies are the physical files that contain compiled code.
Typically, assembly files have the extension .exe if they are stand-alone applications or .dll
if they’re reusable components.

■Tip The .dll extension is also used for code that needs to be executed (or hosted) by another type of
program. When your web application is compiled, it’s turned into a DLL file, because your code doesn’t repre-
sent a stand-alone application. Instead, the ASP.NET engine executes it when a web request is received.

A strict relationship doesn’t exist between assemblies and namespaces. An assembly can
contain multiple namespaces. Conversely, more than one assembly file can contain classes
in the same namespace. Technically, namespaces are a logical way to group classes. Assem-
blies, however, are a physical package for distributing code.

The .NET classes are actually contained in a number of assemblies. For example,
the basic types in the System namespace come from the mscorlib.dll assembly. Many
ASP.NET types are found in the System.Web.dll assembly. In addition, you might want
to use other, third-party assemblies. Often, assemblies and namespaces have the same
names. For example, you’ll find the namespace System.Web in the assembly file
System.Web.dll. However, this is a convenience, not a requirement.

When compiling an application, you need to tell the language compiler what assem-
blies the application uses. By default, a wide range of .NET assemblies is automatically
supported by the compiler. (Technically, these default assemblies are defined in a
web.config configuration file that applies settings for the entire computer and is found in
a directory like c:\Windows\Microsoft.NET\Framework\v2.0.40607\Config, depending
on the version of the .NET Framework you have installed.) If you need to use additional
assemblies, you need to define them in a configuration file for your website. Visual Studio

MacDonald.book Page 81 Wednesday, December 7, 2005 8:39 PM

82 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

makes this process seamless, letting you add assembly references to the configuration file
with a couple of quick mouse clicks.

Advanced Class Programming
Part of the art of object-oriented programming is determining class relations. For exam-
ple, you could create a Product object that contains a ProductFamily object or a Car object
that contains four Wheel objects. To create this sort of class relationship, all you need to
do is define the appropriate variable or properties in the class. This type of relationship is
called containment.

For example, the following code shows a ProductCatalog class, which holds an array of
Product objects:

&����������+	�����(������

)

�����������%��
���&'����
�����

��������-���	����������������	��!

*

In ASP.NET programming, you’ll find special classes called collections that have no
purpose other than to group various objects. Some collections also allow you to sort and
retrieve objects using a unique name. In the previous chapter, you saw an example with
the ArrayList, which provides a dynamically resizable array. Here’s how you might use the
ArrayList to modify the ProductCatalog class:

&����������+	�����(������

)

�����������(��)*�������
�����"���+�(��)*������

��������-���	����������������	��!

*

This approach has benefits and disadvantages. It makes it easier to add and remove
items from the list, but it also removes a useful level of error checking, because the Array-
List supports any type of object. You’ll learn more about this issue later in this chapter (in
the “Generics” section).

In addition, classes can have a different type of relationship known as inheritance.

MacDonald.book Page 82 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 83

Inheritance

Inheritance is a form of code reuse. It allows one class to acquire and extend the function-
ality of another class. For example, you could create a class called TaxableProduct that
inherits from Product. The TaxableProduct class would gain all the same methods, prop-
erties, and events of the Product class. You could then add additional members that relate
to taxation:

&������������@����+	������.�+	�����

)

����&	�,��������������@F������ � K'�

����&�������������������+	���

����)

�����������

��������)

��������������������������
����������+	����&	�&�	������������/

�����������������&������&�	���"�������������+	������

��������������������������

������������&	�,����&	����,�	�����0�����,�	�

������������	���	
��+	����I���@F���!�

��������*

����*

*

This technique appears much more useful than it really is. In an ordinary application, most
classes use containment and other relationships instead of inheritance, which can complicate
life needlessly without delivering many benefits. Dan Appleman, a renowned .NET program-
mer, once described inheritance as “the coolest feature you’ll almost never use.”

In all honesty, you’ll see inheritance at work in ASP.NET in one place. Inheritance
allows you to create a custom class that inherits the features of a class in the .NET class
library. For example, when you create a custom web form, you actually inherit from a
basic Page class to gain the standard set of features. Similarly, when you create a custom
web service, you inherit from the WebService class. You’ll see this type of inheritance
throughout the book.

There are many more subtleties of class-based programming with inheritance. For
example, you can override parts of a base class, prevent classes from being inherited, or
create a class that must be used for inheritance and can’t be directly created. However,
these topics aren’t covered in this book, and they aren’t required to build ASP.NET
applications.

MacDonald.book Page 83 Wednesday, December 7, 2005 8:39 PM

84 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

Static Members

The beginning of this chapter introduced the idea of static properties and methods, which
can be used without a live object. Static members are often used to provide useful func-
tionality related to an object. The .NET class library uses this technique heavily (as with
the System.Math class explored in the previous chapter).

Static members have a wide variety of possible uses. Sometimes they provide basic
conversions and utility functions that support a class. To create a static property or
method, you just need to use the static keyword right after the accessibility keyword.

The following example shows a TaxableProduct class that contains a static TaxRate
property and private variable. This means there is one copy of the tax rate information,
and it applies to all TaxableProduct objects:

&������������@����+	������.�+	�����

)

��������-���	������������������"�	����	����!

����&	�,��������������������@F������ � K'�

�����������������
��������@����+	��������@F���0��,�
����������
��������

����&����������������������@F���

����)

�����������

��������)�	���	
���@F�����*

����������

��������)���@F������,������*

����*

*

You can now retrieve the tax rate information directly from the class, without needing
to create an object first:

���(��
���������@F���������������""�������������+	��������������
�"�	��
�

�����@����+	�������������

��@����+	��������@F������ �26'�

Static data isn’t tied to the lifetime of an object. In fact, it’s available throughout the life
of the entire application. This means static members are the closest thing .NET program-
mers have to global data.

A static member can’t access an instance member. To access a nonstatic member, it
needs an actual instance of your object.

MacDonald.book Page 84 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 85

■Tip You can create a class that’s entirely composed of static members. Just add the static keyword to the
declaration, as in the following:

&������������������@��������

When you declare a class with the static keyword, you ensure that it can’t be instantiated.

Casting Objects

Objects can be converted with the same syntax that’s used for simple data types. How-
ever, an object can be converted only into three things: itself, an interface that it supports,
or a base class from which it inherits. You can’t convert an object into a string or an inte-
ger. Instead, you will need to call a conversion method, if it’s available, such as ToString()
or Parse().

For example, you could convert a TaxableProduct object into a Product object. You
wouldn’t actually lose any information, but you would no longer be able to access the
TotalPrice property—unless you converted the reference back to a TaxableProduct
object. This underscores an important point: when you convert an object, you don’t
actually change that object. The same object remains floating as a blob of binary data
somewhere in memory. What you change is the way you access that object. In other
words, you don’t change the object; you change the way your code “sees” that object.

For example, if you have a Product variable that references a TaxableProduct object,
your object really is a TaxableProduct object. However, you can use only the properties
and methods that are defined in the Product class. This is one of the subtleties of manip-
ulating objects, and it’s demonstrated in the next example.

The following example creates a TaxableProduct object, converts it to a Product
reference, and then checks whether the object can be safely transformed back into a
TaxableProduct (it can). You’ll notice that the actual conversion uses the syntax intro-
duced in the previous chapter, where the data type is placed in parentheses before the
variable that you want to convert:

�����"�
��������&���,�	���������
/���������
���#����	�!�

+	���������+	������

��@����+	�����������@����+	������

���������	#0����������@����+	��������	�,��"	���+	������

���+	��������
�����@����+	������!�

MacDonald.book Page 85 Wednesday, December 7, 2005 8:39 PM

86 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

����������������	���

�"�����+	����������@����+	�����!

)

�������(�
,�	������������0��
�����
������������	�,�	������

���������@����+	�����������@����+	�����!���+	������

*

�������������+	����

���������	#�

�����+	�����������@����+	�����������+	����

���������
/����	#0��,�
�������������@����+	�������
�����+	�������	���������

���������������+	�������������
/��&	�,�����������+	����&	�&�	���

�����+	���������+	�����������+	����

At this point, it might seem that being able to convert objects is a fairly specialized
technique that will be required only when you’re using inheritance. This isn’t always true.
Object conversions are also required when you use some particularly flexible classes.

One example is the ArrayList class introduced in the previous chapter. The ArrayList is
designed in such a way that it can store any type of object. To have this ability, it treats all
objects in the same way—as instances of the root System.Object class. (Remember, all
classes in .NET inherit from System.Object at some point, even if this relationship isn’t
explicitly defined in the class code.) The end result is that when you retrieve an object
from an ArrayList collection, you need to cast it from a System.Object to its real type, as
shown here:

���(����������		��D���

�		��D���&	��������
����		��D���!�

��������,�	���+	�������������

&	����������&	����� !�

&	����������&	�����2!�

&	����������&	�����3!�

���F��	��,������"�	������0����������
��

+	������	��	��,��+	���������+	�����!&	�����LJM�

���������	#�

F�&���G	����	��	��,��+	���������9����!!�

MacDonald.book Page 86 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 87

���F��	��,������"�	������0����
����������������
/��	�N��	������
�0

�������������
/�����������������
���"�����+	��������������	�&	�&�	����

-������	��	��,��-��������&	�����LJM�

���������
�	���������&�����		�	�����	����
��-���������9����!��������

F�&���G	����	��	��,��-���������9����!!�

As you can see, if you don’t perform the casting, you won’t be able to use the methods
and properties of the object you retrieve. You’ll find many cases like this in .NET code,
where your code is handed one of several possible object types and it’s up to you to cast
the object to the correct type in order to use its full functionality.

Partial Classes

Partial classes give you the ability to split a single class into more than one source code
(.cs) file. For example, if the Product class became particularly long and intricate, you
might decide to break in into two pieces, as shown here:

�������&�	������	����
�"����+	����� ���

&����������������+	�����

)

����&	�,�����	�
��
����

����&	�,������������&	����

����&	�,�����	�
��������	��

����&�������	�
������

����)

�����������

��������)�	���	
�
�����*

����������

��������)�
������,������*

����*

����&��������������+	���

����)

�����������

��������)�	���	
�&	�����*

����������

��������)�&	������,������*

����*

MacDonald.book Page 87 Wednesday, December 7, 2005 8:39 PM

88 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

����&�������	�
��$�����	�

����)

�����������

��������)�	���	
�������	���*

����������

��������)�������	����,������*

����*

����&������+	�������	�
��
���0���������&	���!

����)

����������������&�	�����	���,����������
�����������
��	
���,�	������

���������������4���4�#����	��	�"�	������������,�	������

�����������4���4�	�"�	����������		�
���
��
����"�����+	����������

������������
������
����

������������&	������&	����

����*

*

�������&�	������	����
�"����+	�����2���

&����������������+	�����

)

����&�������	�
�����9����!

����)

���������	�
������:�	�
��

������������:�	�
����4;� <4�=�
����=�4;�� <;�	<4�

������������:�	�
��=��4;�3<(��.�4�=�&	������:�	�
��!�=�4;��3<;�	<4�

������������:�	�
��=��4;����	��4�=�������	��=�4<4�

��������	���	
�����:�	�
��

����*

*

A partial class behaves the same as a normal class. This means every method, property,
and variable you’ve defined in the class is accessible everywhere, no matter which source
file contains it. When you compile the application, the compiler tracks down each piece
of the Product class and assembles it into a complete unit. It doesn’t matter what you
name the source code files, so long as you keep the class name consistent.

Partial classes don’t offer much in the way of solving programming problems, but they
can be useful if you have extremely large, unwieldy classes. The real purpose of partial
classes in .NET is to hide automatically generated designer code by placing it in a separate
file from your code. Visual Studio uses this technique when you create web pages for a
web application and forms for a Windows application.

MacDonald.book Page 88 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S 89

Generics

Generics are a more subtle and powerful feature than partial classes. Generics allow you
to create classes that are parameterized by type. In other words, you create a class tem-
plate that supports any type. When you instantiate that class, you specify the type you
want to use, and from that point on, your object is “locked in” to the type you chose.

To understand how this works, it’s easiest to consider some of the .NET classes that
support generics. In the previous chapter, you learned how the ArrayList class allows you
to create a dynamically sized collection that expands as you add items and shrinks as you
remove them. The ArrayList has one weakness, however—it supports any type of object.
This makes it extremely flexible, but it also means you can inadvertently run into an error.
For example, imagine you use an ArrayList to track a catalog of products. You intend to
use the ArrayList to store Product objects, but there’s nothing to stop a piece of misbehav-
ing code from inserting strings, integers, or any arbitrary object in the ArrayList. Here’s
an example:

���(����������		��D���

�		��D���&	��������
����		��D���!�

��������,�	���+	�������������

&	����������&	����� !�

&	����������&	�����2!�

&	����������&	�����3!�

��������������������
��������������	���&����������		��D���

&	����������4�����	�
�����
/������
����	��4!�

The solution is a new List collection class. Like the ArrayList, the List class is flexible
enough to store different objects in different scenarios. But because it supports generics,
you can lock it into a specific type whenever you instantiate a List object. To do this, you
specify the class you want to use in angled brackets after the class name, as shown here:

���(���������D���"�	���	�
��+	�������������

D��,%��
���-�&	��������
���D��,%��
���-�!�

Now you can add only Product objects to the collection:

��������,�	���+	�������������

&	����������&	����� !�

&	����������&	�����2!�

&	����������&	�����3!�

���������
��"�����$
�"���0������
/���,�
����&����

&	����������4�����	�
����
/������
�	����4!�

MacDonald.book Page 89 Wednesday, December 7, 2005 8:39 PM

90 C H A P T E R 3 ■ T Y P E S , O B J E C T S , A N D N A M E S P A C E S

To figure out whether a class uses generics, look for the angled brackets. For example,
the List class is listed as List<T> in the .NET Framework documentation to emphasize that
it takes one type parameter. You can find this class, and many more collections that use
generics, in the System.Collections.Generics namespace. (The original ArrayList resides
in the System.Collections namespace.)

■Note Now that you’ve seen the advantage of the List class, you might wonder why .NET includes the
ArrayList at all. In truth, the ArrayList is still useful if you really do need to store different types of objects in
one place (which isn’t terribly common). However, the real answer is that generics weren’t implemented in
.NET until version 2.0, so many existing classes don’t use them because of backward compatibility.

You can also create your own classes that are parameterized by type, like the List
collection. Creating classes that use generics is beyond the scope of this book, but you
can find a solid overview at ������������	
��	������������
��	��������������
���������
���������� if you’re still curious.

The Last Word
At its simplest, object-oriented programming is the idea that your code should be organized
into separate classes. If followed carefully, this approach leads to code that’s easier to alter,
enhance, debug, and reuse. Now that you know the basics of object-oriented programming,
you can take a tour of the premier ASP.NET development tool: Visual Studio 2005.

MacDonald03.fm Page 90 Tuesday, December 13, 2005 1:14 PM

91

■ ■ ■

C H A P T E R 4

Introducing Visual Studio 2005

Before .NET was released, ASP developers overwhelmingly favored simple text editors
such as Notepad for programming web pages. Other choices were available, but each suf-
fered from its own quirks and limitations. Tools such as Visual InterDev and web classes
for Visual Basic were useful for rapid development, but often they made deployment
more difficult or obscured important features. The standard was a gloves-off approach
of raw HTML with blocks of code inserted wherever necessary.

Visual Studio changes all that. First, it’s extensible and can even work in tandem with
other straight HTML editors such as Microsoft FrontPage or Macromedia Dreamweaver.
Second, it inherits the best features from other code editors, such as the ability to drag and
drop web page interfaces into existence and troubleshoot misbehaving code. In its latest
release, Visual Studio gets even better—by finally allowing developers to create and test
websites without worrying about web server settings.

This chapter provides a lightning-fast tour that shows how to create a web application
in the Visual Studio environment. You’ll also learn how IntelliSense can dramatically
reduce the number of errors you’ll make and how to use the renowned single-step debug-
ger that lets you look under the hood and “watch” your program in action.

The Promise of Visual Studio
All .NET applications are built from plain-text source files. C# code is stored in .cs files and
VB code is stored in .vb files, regardless of whether this code is targeted for the Windows
platform or the Web. Despite this fact, you’ll rarely find C# or VB developers creating
Windows applications by hand in a text editor. The process is not only tiring, but it also
opens the door to a host of possible errors that could be easily caught at design time. The
same is true for ASP.NET programmers. Although you can write your web page classes
and code your web page controls manually, you’ll spend hours developing and testing
your code.

MacDonald04.fm Page 91 Tuesday, December 6, 2005 9:22 PM

92 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Visual Studio is an indispensable tool for developers on any platform. It provides
several impressive benefits:

Integrated error checking: Visual Studio can detect a wide range of problems, such as
data type conversion errors, missing namespaces or classes, and undefined variables.
As you type, errors are detected, underlined, and added to an error list for quick
reference.

The web form designer: To create a web page in Visual Studio, you simply drag ASP.NET
controls to the appropriate location, resize them, and configure their properties. Visual
Studio does the heavy lifting: automatically creating the underlying .aspx template file
for you with the appropriate tags and attributes and adding the control variables to
your code-behind file.

An integrated web server: To host an ASP.NET web application, you need web server
software such as IIS (Internet Information Services), which waits for web requests and
serves the appropriate pages. Setting up your web server isn’t difficult, but it is incon-
venient. Thanks to the integrated development web server in Visual Studio, you can
run a website directly from the design environment.

Productivity enhancements: Visual Studio makes coding quick and efficient, with a
collapsible code display, automatic statement completion, and color-coded syntax.
You can even create sophisticated macro programs that automate repetitive tasks.

Fine-grained debugging: Visual Studio’s integrated debugger allows you to watch code
execution, pause your program at any point, and inspect the contents of any variable.
These debugging tools can save endless headaches when writing complex code
routines.

Easy deployment: When you start an ASP.NET project in Visual Studio, all the files you
need are generated automatically, including a sample web.config configuration file.
When you compile the application, all your page classes are compiled into one DLL for
easy deployment.

Complete extensibility: You can add your own add-ins, controls, and dynamic help
plug-ins to Visual Studio and customize almost every aspect of its appearance and
behavior.

The latest version of Visual Studio is Visual Studio 2005.

■Note Almost all the tips and techniques you learn in this chapter will work equally well with the Standard
Edition, Professional Edition, and Team Edition of Visual Studio 2005 as well as Visual Web Developer 2005
Express Edition.

MacDonald04.fm Page 92 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 93

Creating a Website
You start Visual Studio by selecting Start ➤ Programs ➤ Microsoft Visual Studio 2005 ➤
Microsoft Visual Studio 2005. When the IDE (integrated development environment) first
loads, it shows an initial start page. You can access various user-specific options from this
page and access online information such as recent MSDN articles.

To create your first Visual Studio application, follow these steps:

1. Select File ➤ New Web Site from the Visual Studio menu. The New Web Site dialog
box (shown in Figure 4-1) will appear.

2. Next, you need to choose the type of application. In the New Web Site dialog box,
select the ASP.NET Web Site template.

Figure 4-1. The New Web Site dialog box

■Note Visual Studio supports two types of basic ASP.NET applications: web applications and web service
applications. These applications are actually compiled and executed in the same way. In fact, you can add
web pages to a web service application and web services to an ordinary web application. The only difference
is the files that Visual Studio creates by default. In a web application, you’ll start with one sample web page
in your project. In a web service application, you’ll start with a sample web service. Additionally, Visual Studio
includes more sophisticated templates for specific types of sites, with preconfigured pages.

MacDonald04.fm Page 93 Tuesday, December 6, 2005 9:22 PM

94 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

3. Next, you need to choose a location for the website. The location specifies where
the website files will be stored. Typically, you’ll choose File System and then use a
folder on the local computer (or a network path). You can type in a directory by
hand in the Location text box and skip straight to step 5. Alternatively, you can click
the Browse button, which shows the Choose Location dialog box (see Figure 4-2).

Figure 4-2. The Choose Location dialog box

4. Using the Choose Location dialog box, browse to the directory where you want to
place the website. Often, you’ll want to create a new directory for your web appli-
cation. To do this, select the directory where you want to place the subdirectory,
and click the Create New Folder icon (found just above the top-right corner of the
directory tree). Either way, once you’ve selected your directory, click Open. The
Choose Location dialog box also has options (represented by the buttons on the
left) for creating a web application on an IIS virtual directory or a remote web
server. You can ignore these options for now. In general, it’s easiest to develop your
web application locally and upload the files once they are perfect.

MacDonald04.fm Page 94 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 95

■Tip Remember, the location where you create your website probably isn’t where you’ll put it when you
deploy it. Don’t worry about this wrinkle—in Chapter 12 you’ll learn how to take your development website
and put in on a live web server so it can be accessible to others over a network or the Internet.

5. Click OK to create the website. At this point, Visual Studio generates an empty website
with one file—a Default.aspx page. This page is the entry point for your website.

Unlike previous versions of Visual Studio, Visual Studio 2005 doesn’t create project and
solution files to track the contents of your projects. Instead, Visual Studio does its best to
keep the website directory clean and uncluttered, with only the files you actually need.
This change simplifies deployment, and it’s especially handy if you’re developing with a
team of colleagues, because you can each work on separate pages without needing to syn-
chronize other project or solution files.

Occasionally, Visual Studio will prompt you to let it create additional files and directo-
ries if they’re needed. To see one example, select Debug ➤ Start Debugging to launch your
website, and then surf to the default page using your computer’s web browser (typically
Internet Explorer). Before Visual Studio completes this step, it will inform you that you
need to add a configuration file that specifically allows debugging or modify the existing
configuration file (see Figure 4-3). When you click OK, Visual Studio will create a new file
named web.config and add it to the web application directory. (You’ll learn about the
web.config file in Chapter 5.)

Figure 4-3. Creating other files when needed

When you run a web application, Visual Studio starts its integrated web server. Behind the
scenes, ASP.NET compiles the code in the Default.aspx page, runs it, and then returns the final
HTML to the browser. Of course, seeing as you haven’t added anything to this page, all you’ll
see is a blank web page!

MacDonald04.fm Page 95 Tuesday, December 6, 2005 9:22 PM

96 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

■Note When you run a web page, you’ll notice that the URL in the browser includes a port number.
For example, if you run a web application in a folder named OnlineBank, you might see a URL like
����������	���
�������������	������	����	
��. This URL indicates that the web server is
running on your computer (localhost), so its requests aren’t being sent over the Internet. It also indicates that
all requests are being transmitted to port number 4235. That way, the requests won’t conflict with any other
applications that might be running on your computer and listening for requests. Every time Visual Studio starts
the integrated web server, it randomly chooses an available port.

The Solution Explorer

To take a high-level look at your website, you can use the Solution Explorer—the window
at the top-right corner of the design environment that lists all the files in your web appli-
cation directory (see Figure 4-4). The Solution Explorer reflects everything that’s in the
web application directory—no files are hidden. This means if you add a plain HTML file,
graphic, or a subdirectory in Windows Explorer, the next time you fire up Visual Studio
you’ll see the new contents in the Solution Explorer. (If you add these same ingredients
while Visual Studio is open, you won’t see them right away, because Visual Studio scans
the directory only when you first open the project.)

Figure 4-4. The Solution Explorer

Of course, the whole point of the Solution Explorer is to save you from resorting to
using Windows Explorer. Instead, it allows you to perform a variety of file management
tasks within Visual Studio. You can rename, delete, or copy files with a simple right-click.
And, of course, you can add new items by choosing Website ➤ Add New Item.

You can add various types of files to your project, including web forms, web services,
stand-alone components, resources you want to track such as bitmaps and text files, and
even ordinary HTML files. Visual Studio event provides some basic designers that allow you
to edit these types of files directly in the IDE. Figure 4-5 shows some of the file types you can
add to a web application.

MacDonald04.fm Page 96 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 97

■Tip In the downloadable samples, you’ll find that many of the web pages use a style sheet named Styles.css.
This style sheet applies the Verdana font to all elements of the web page. To learn more about the CSS
(Cascading Style Sheets) standard, you can refer to the tutorial at ������������
�����
������

.
CSS is a standard supported by almost all browsers.

Figure 4-5. Supported file types

When you add a new web form, Visual Studio gives you the choice of two coding
models. You can place all the code for the file in the same file as the HTML and control
tags, or you can separate these into two distinct files, one with the markup and the other
with your C# code. This second model is closest to earlier versions of Visual Studio, and
it’s what you’ll use in this book. The key advantage of splitting the two components of a
web page into separate files is that it’s more manageable when you need to work with
complex pages. However, both approaches give you the same performance and
functionality.

In Chapter 5, you’ll explore the two code models in more detail. But for now, just select
the Place Code in Separate File check box in the Add New Item dialog box when you’re
creating a web page. Your project will end up with two files for each web page: a page that
includes the HTML control tags (with the file extension .aspx) and a source code file (with
the same name and a file extension of .aspx.cs). To make the relationship clear, the Solu-
tion Explorer displays the code file underneath the .aspx file (see Figure 4-6).

MacDonald04.fm Page 97 Tuesday, December 6, 2005 9:22 PM

98 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Figure 4-6. A code file for a web page

You can also add files that already exist by selecting Add ➤ Add Existing Item. You can
use this technique to copy files from one project into another. Visual Studio leaves the orig-
inal file alone and simply creates a copy in your web application directory. However, don’t
use this approach with a web page that has been created in an older version of Visual Studio.
Instead, refer to the sidebar “Migrating an Older Visual Studio .NET Project.”

Designing a Web Page
Now that you understand the basic organization of Visual Studio, you can begin designing a
simple web page. To start, double-click the web page you want to design. (Start with
Default.aspx if you haven’t added any additional pages.) A blank designer page will appear.

MIGRATING AN OLDER VISUAL STUDIO .NET PROJECT

If you have an existing web application created with Visual Studio .NET 2002 or 2003, you can open the project
or solution file using the File ➤ Open Project command. When you do, Visual Studio opens a conversion
wizard.

The conversion wizard is exceedingly simple. It prompts you to choose whether to create a backup and,
if so, where it should be placed. If this is your only copy of the application, a backup is a good idea in case
some aspects of your application can’t be converted successfully. Otherwise, you can skip this option.

When you click Finish, Visual Studio performs an in-place conversion, which means it overwrites your
web page files with the new versions. This conversion won’t change the code you’ve written, but it does mod-
ify the web pages and code classes to use Visual Studio’s new code model and event handling approach. Any
errors and warnings are added to a conversion log, which you can display when the conversion is complete.
A typical conversion doesn’t produce any errors but generates a long list of warnings informing you of the
changes that were made.

MacDonald04.fm Page 98 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 99

Adding Web Controls

To add a web control, drag the control you want from the Toolbox on the left and drop it
onto your web page. The controls in the Toolbox are grouped in numerous categories
based on their functions, but you’ll find basic ingredients such as buttons, labels, and text
boxes in the Standard tab.

■Tip By default, the Toolbox is enabled to automatically hide itself when your mouse moves away from it,
somewhat like the AutoHide feature for the Windows taskbar. This behavior is often exasperating, so you may
want to click the pushpin in the top-right corner of the Toolbox to make it stop in its fully expanded position.

In a web form, controls are positioned line by line, like in a word processor document. To
add a control, you need to drag and drop it to an appropriate place. To organize several con-
trols, you’ll probably need to add spaces and carriage returns to position elements the way
you want them. Figure 4-7 shows an example with a TextBox, Label, and Button control.

Figure 4-7. The Design view for a page

You’ll find that some controls can’t be resized. Instead, they grow or shrink to fit the
amount of content in them. For example, the size of a Label control depends on how
much text you enter in it. On the other hand, you can adjust the size of a Button or TextBox
control by clicking and dragging in the design environment.

As you add web controls Visual Studio automatically adds the corresponding control
tags to your .aspx file. You can even look at the .aspx code or add server control tags and
HTML tags manually by typing them in. To switch your view, click the Source button at
the bottom of the web designer. You can click Design to revert to the graphical web form
designer.

MacDonald04.fm Page 99 Tuesday, December 6, 2005 9:22 PM

100 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Figure 4-8 shows what you might see in the Source view for the page displayed in
Figure 4-7.

Figure 4-8. The Source view for a page

THE MISSING GRID LAYOUT FEATURE

If you’ve used previous versions of Visual Studio .NET, you may remember a feature called grid layout, which
allowed you to position elements with absolute coordinates by dragging them where you want them. Although
this model seems convenient, it really isn’t suited to most web pages because controls can’t adjust their posi-
tioning when the web page content changes. This leads to inflexible layouts (such as controls that overwrite
each other). To gain more control over layout, most web developers use tables.

That said, Visual Studio 2005 has a backdoor way to use grid layout. All you need to do is add a style
attribute that uses CSS to specify absolute positioning. This attribute will already exist in any pages you’ve cre-
ated with a previous version of Visual Studio .NET in grid layout mode.

Here’s an example:

�	
������������ ��� �
�!��� "�#$%$�&��	'
�����(�������)**��(�������*��(

�+��	��
�+,�+ �������-

Once you’ve made this change, you’re free to drag the button around the window at will. Of course, you
shouldn’t go this route just because it seems closer to the Windows model. Few great Web pages rely on abso-
lute positioning, because it’s just too awkward and inflexible.

MacDonald04.fm Page 100 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 101

Using the Source view, you can manually add attributes or rearrange controls. In fact,
Visual Studio even provides IntelliSense features that automatically complete opening
tags and alert you if you use an invalid tag. Whether you use the Design view or the Source
view is entirely up to you—Visual Studio keeps them both synchronized.

The Properties Window

To configure a control in Design view, you must first select it on the page or choose it by
name from the drop-down list at the top of the Properties window. Then, you can modify
any of its properties. Good ones to try include Text (the content of the control), ID (the
name you use to interact with the control in your code), and ForeColor (the color used for
the control’s text).

Every time you make a selection in the Properties window, Visual Studio translates
your change to the corresponding ASP.NET control tag attribute. Visual Studio even pro-
vides special “choosers” that allow you to select extended properties. For example, you
can select a color from a drop-down list that shows you the color (see Figure 4-9), and
you can configure the font from a standard font selection dialog box.

Figure 4-9. Setting the Color property

Finally, you can select one object in the Properties window that needs some explana-
tion—the DOCUMENT object, which represents the web page itself. These settings have
different effects. Using this object, you can set various options for the entire, page, includ-
ing the title that will be displayed in the browser, linked style sheets, and support for other
features that are discussed later in this book (such as tracing and session state).

MacDonald04.fm Page 101 Tuesday, December 6, 2005 9:22 PM

102 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Adding Ordinary HTML

Not everything in your web page needs to be a full-fledged web control. You can also add
the familiar HTML tags, such as paragraphs, headings, lists, divisions, and so on. To add
an HTML element, you can type it in using the Source view, or you can drag the element
you want from the HTML tab of the Toolbox.

Visual Studio also provides an indispensable style builder for formatting any static HTML
element. To test it, add a Div to your web page from the HTML tab of the Toolbox. Then,
right-click the panel, and choose Style. The Style Builder window (shown in Figure 4-10) will
appear, with options for configuring the colors, font, layout, and border for the element. As
you configure these properties, the web page HTML will be updated to reflect your settings.

■Note A Div is a <div> tag, or division, which is an all-purpose HTML container. A <div> doesn’t have any
default representation in HTML. However, it’s commonly used in conjunction with styles. Using a <div>, you
can group together several other elements. You can also specify a default font or color that will be applied to
all of them or add a border that will be displayed around that entire section of your web page.

Figure 4-10. Building styles

MacDonald04.fm Page 102 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 103

With the right changes, you can transform a <div> tag into a nicely shaded and bor-
dered box, as shown in Figure 4-11. You’re then free to add other HTML and web controls
inside this box. This is a technique you’ll see in the examples throughout this book.

Figure 4-11. Using a styled division

Here’s the style that was built in the style builder for the example in Figure 4-10. Note
that the style attribute is split over several lines in a way that isn’t legal in HTML, just to fit
the bounds of the printed page.

���,���������	
��
�
����������	�����������
�����������	
��
��	��������	���

��������������������	��������������
����������	��	��������

��	
��
������������	�������������������������	��������

�	
��
��	��	��������	���

��	������������
�������������� ������!"�
	#���!	�	
��$����!!�-

�����	
��.	'���$�� .	'��) �+��	��
�+,�+

�����%���� %!���
�������/���+�� �0�����)���� -��	
��.	'��-

�����	
��%�������$�� %������) �+��	��
�+,�+ -

������	
��%������-�'+��-

�����'+��-

�����	
���������$�� ������) �+��	��
�+,�+

�����%���� ������ ��-

����,-

MacDonald04.fm Page 103 Tuesday, December 6, 2005 9:22 PM

104 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Visual Studio also allows you to convert HTML elements into server controls. If you
want to configure the element as a server control so that you can handle events and inter-
act with it in code, you .need to right-click it and select Run As Server Control. This adds
the required runat="server" attribute to the control tag. Alternatively, you could switch to
Design view and type this in on your own. Keep in mind that HTML server controls are
really designed for backward compatibility, as you’ll learn in Chapter 6. When creating
new interfaces, you’re better off using the standardized web controls instead, which you’ll
find on the Standard tab of the Toolbox.

HTML Tables

One convenient way to organize content in a web page is to place it in the different cells
of an HTML table using the <table> tag. In previous versions of Visual Studio, the design-
time support for this strategy was poor. But in Visual Studio 2005, life gets easier. To try it,
drag a table from the HTML tab of the Toolbox. You’ll start off with a standard 3×3 table,
but you can quickly transform it using editing features that more closely resemble a word
processor than a programming tool. Here are some of the tricks you’ll want to use:

• To move from one cell to another in the table, press the Tab key or use the arrow
keys. The current cell is highlighted with a blue border. Inside each cell you can type
in static HTML or drag and drop controls from the Toolbox.

• To add new rows and columns, right-click inside a cell, and choose from one of the
many options in the Insert submenu to insert rows, columns, and individual cells.

• To resize a part of the table, just click and drag away.

• To format a cell, right-click inside it, and choose Style. This shows the same style
builder you saw in Figure 4-10.

• To work with several cells at once, hold down Ctrl while you click each cell. You can
then right-click to perform a batch formatting operation.

• To merge cells together (in other words, change two cells into one cell that spans
two columns), just select the cells, right-click, and choose Merge.

Figure 4-12 shows a table in Visual Studio, complete with several controls in different
cells of the first row.

MacDonald04.fm Page 104 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 105

Figure 4-12. Using an HTML table

Once you get the hang of these conveniences, you might never need to resort to a
design tool such as Macromedia Dreamweaver or Microsoft FrontPage.

Writing Code
Many of Visual Studio’s most welcome enhancements appear when you start to write the
code that supports your user interface. To start coding, you need to switch to the code-
behind view. To switch back and forth, you can use two buttons that appear just above the
Solution Explorer window. The tooltips identify these buttons as View Code and View
Designer, respectively. Another approach that works just as well is to double-click either
the .aspx page in the Solution Explorer (for the designer) or the .aspx.cs page (for the code
view). The “code” in question is the C# code, not the HTML markup in the .aspx file.

When you switch to code view, you’ll see the page class for your web page. Just before
your page class, Visual Studio imports a number of core .NET namespaces. These name-
spaces give you easy access to many commonly used ASP.NET classes:

�
��/�#!
���(

�
��/�#!
�����	�	(

�
��/�#!
����1����/�+	����(

�
��/�#!
����0�'(

�
��/�#!
����0�'�#���+��!(

�
��/�#!
����0�'�2$(

�
��/�#!
����0�'�2$�0�'1���+��
(

�
��/�#!
����0�'�2$�0�'1���+��
�0�'"	+�
(

�
��/�#!
����0�'�2$�3���1���+��
(

MacDonald04.fm Page 105 Tuesday, December 6, 2005 9:22 PM

106 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Inside your page class are methods, most of which are directly wired to control events.
The following section explains how you can create these event handlers.

Adding Event Handlers

Most of the code in an ASP.NET web page is placed inside event handlers that react to web
control events. Using Visual Studio, you have three ways to add an event handler to your code:

Type it in manually: In this case, you add the subroutine directly to the page class. You
must specify the appropriate parameters, and you’ll need to connect the event handler
to the event using your own delegate code.

Double-click a control in Design view: In this case, Visual Studio will create an event
handler for that control’s default event, if it doesn’t already exist. For example, if you
double-click the page, it will create a Page.Load event handler. If you double-click a
button or input control, it will create an event handler for the Click or Change event.

Choose the event from the Properties window: Just select the control, and click the light-
ning bolt in the Properties window. You’ll see a list of all the events provided by that
control. Double-click next to the event you want to handle, and Visual Studio will auto-
matically generate the event handler in your page class. Alternatively, if you’ve already
created the event handler, just select the event in the Properties window, and click the
drop-down arrow at the right. You’ll see a list that includes all the methods in your class
that match the signature this event requires. You can then choose a method from the
list to connect it. Figure 4-13 shows an example where the Button.Click event is con-
nected to the Button1_Click method in the page class.

Figure 4-13. Creating or attaching an event handler

MacDonald04.fm Page 106 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 107

For example, when you double-click a Button control, Visual Studio creates an event
handler like this:

�+��������,����������)41����5�'6����
����+7�8,���9+/
��:

;

�������<��+��������+�+�	����/��������'������������/��
���+��

=

When you use Visual Studio to attach or create an event handler, it adjusts the control
tag so that it’s linked to the appropriate event:

�	
��'������$�� ������) �+��	��
�+,�+ ������ ������ �%�&�!"��'#��	��(&�!"���-

Inside your event handler, you can interact with any of the control objects on your web
page using their IDs. For example, if you’ve created a TextBox control named TextBox1,
you can set the text using the following line of code:

�+��������,����������)41����5�'6����
����+7�8,���9+/
��:

;

����%������)�%������ 3�+���
�
����
	���������� (

=

This creates a simple event handler that reacts when Button1 is clicked by updating the
text in TextBox1. You’ll learn much more about the ASP.NET web form model in the next
two chapters.

IntelliSense and Outlining

Visual Studio provides a number of automatic time-savers through its IntelliSense tech-
nology. They are similar to features such as automatic spell checking and formatting in
Microsoft Office applications. We introduce most of these features in this chapter, but
you’ll need several hours of programming before you’ll become familiar with all of Visual
Studio’s time-savers. We don’t have enough space to describe advanced tricks such as the
intelligent search-and-replace features and Visual Studio’s programmable macros. These
features could occupy an entire book of their own!

Outlining

Outlining allows Visual Studio to “collapse” a method, class, structure, namespace, or
region to a single line. It allows you to see the code that interests you while hiding unimpor-
tant code. To collapse a portion of code, click the minus (–) symbol next to the first line.
Click the box again, which will now have a plus (+) symbol, to expand it (see Figure 4-14).

MacDonald04.fm Page 107 Tuesday, December 6, 2005 9:22 PM

108 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Figure 4-14. Collapsing code

You can hide any section of code you want. Simply select the code, right-click the selec-
tion, and choose Outlining ➤ Hide Selection.

Member List

Visual Studio makes it easy for you to interact with controls and classes. When you type a
class or object name, it pops up a list of available properties and methods (see Figure 4-15).
It uses a similar trick to provide a list of data types when you define a variable or to provide
a list of valid values when you assign a value to an enumeration.

MacDonald04.fm Page 108 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 109

Figure 4-15. IntelliSense at work

■Tip Forgotten the names of the controls in your web page? You can get IntelliSense to help you. Just type
the this keyword followed by the dot operator (.) Visual Studio will pop up a list with all the methods and prop-
erties of the current form class, including the control variables.

Visual Studio also provides a list of parameters and their data types when you call a
method or invoke a constructor. This information is presented in a tooltip above the code
and appears as you type. Because the .NET class library uses function overloading a lot,
these methods may have multiple versions. When they do, Visual Studio indicates the
number of versions and allows you to see the method definitions for each one by clicking
the small up and down arrows in the tooltip. Each time you click the arrow, the tooltip dis-
plays a different version of the overloaded method (see Figure 4-16).

MacDonald04.fm Page 109 Tuesday, December 6, 2005 9:22 PM

110 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Figure 4-16. IntelliSense with overloaded methods

Error Underlining

One of the code editor’s most useful features is error underlining. Visual Studio is able to
detect a variety of error conditions, such as undefined variables, properties, or methods;
invalid data type conversions; and missing code elements. Rather than stopping you to
alert you that a problem exists, the Visual Studio editor underlines the offending code.
You can hover your mouse over an underlined error to see a brief tooltip description of
the problem (see Figure 4-17).

Visual Studio won’t necessarily flag your errors immediately. But when you try to run
your application (or just compile it), Visual Studio will quickly scan through the code,
marking all the errors it finds. If your code contains at least one error, Visual Studio will
ask you whether it should continue. At this point, you’ll almost always decide to cancel the
operation and fix the problems Visual Studio has discovered. (If you choose to continue,
you’ll actually wind up using the last compiled version of your application, because Visual
Studio can’t build an application that has errors.)

Whenever you attempt to build an application that has errors, Visual Studio will display
the Error List window with a list of all the problems it detected, as shown in Figure 4-18.
You can then jump quickly to a problem by double-clicking it in the list.

MacDonald04.fm Page 110 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 111

Figure 4-17. Highlighting errors at design time

Figure 4-18. Build errors in the Error List

You may find that as you fix errors and rebuild your project, you discover more prob-
lems. That’s because Visual Studio doesn’t check for all types of errors at once. When you
try to compile your application, Visual Studio scans for basic problems such as unrecog-
nized class names. If these problems exist, they can easily mask other errors. On the other
hand, if your code passes this basic level of inspection, Visual Studio checks for more
subtle problems such as trying to use an unassigned variable.

MacDonald04.fm Page 111 Tuesday, December 6, 2005 9:22 PM

112 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Visual Studio may also generate warnings for the HTML content in the Source view of
your web pages. By default, Visual Studio will warn you when you use HTML that deviates
from the strict rules of XHTML. You can safely ignore these warnings, or you can hide
them altogether by switching the validation mode of your pages. To change the validation
mode, choose View ➤ Toolbars ➤ HTML Source Editing. Then, choose HTML 4.01 from
the drop-down box in the toolbar instead of XHTML 1.0 Transitional.

■Note XHTML is a stricter form of HTML that will eventually replace it. You won’t gain much, if anything,
by using XHTML today. However, some companies and organization mandate the use of XHTML, namely, with
a view to future standards. In the future, XHTML will make it easier to design web pages that are adaptable
to a variety of different platforms, can be processed by other applications, and are extensible with new
markup features. (For example, you could use XSLT, another XML-based standard, to transform an XHTML
document into another form.) If you want to create pages that are XHTML-compliant, you can start with the
XHTML tutorial at ������������
�����
����������.

Automatically Importing Namespaces

Sometimes, you’ll run into an error because you haven’t imported a namespace that you
need. For example, imagine you type a line of code like this:

>���#�+�	���
�������>���#�+�	�5 ����������� 7�>���?����1+�	��:(

This line creates an instance of the FileStream class, which resides in the System.IO
namespace. However, if you haven’t imported the System.IO namespace, you’ll run into
a compile-time error. Unfortunately, the error simply indicates no known class named
FileStream exists—it doesn’t indicate whether the problem is a misspelling or a missing
import, and it doesn’t tell you which namespace has the class you need.

Visual Studio offers an invaluable tool to help you in this situation. When you move the text
cursor to the unrecognized class name (FileStream in this example), a small box icon appears
underneath. If you hover over that location with the mouse, a page icon appears. Click the
page icon, and a drop-down list of autocorrect options appear (see Figure 4-19). Using these
options, you can convert the line to use the fully qualified class name or add the required
namespace import to the top of your code file, which is generally the cleanest option (partic-
ularly if you use classes from that namespace more than once in the same page).

The only case when this autocorrect feature won’t work is if Visual Studio can’t find the
missing class. This might happen if the class exists in another assembly, and you haven’t
added a reference to that assembly yet.

MacDonald04.fm Page 112 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 113

Figure 4-19. Build errors in the Error List

Auto Format and Color

Visual Studio also provides some cosmetic conveniences. It automatically colors your
code, making comments green, keywords blue, and normal code black. The result is much
more readable code. You can even configure the colors Visual Studio uses by selecting
Tools ➤ Options and then choosing the Environment ➤ Fonts and Colors section.

In additional, Visual Studio is configured by default to automatically format your code.
This means you can type your code lines freely without worrying about tabs and position-
ing. As soon as you insert a closing brace (the curly bracket: }), Visual Studio applies the
“correct” indenting. Fortunately, if you have a different preference, you can configure this
behavior—just select Tools ➤ Options, make sure the Show All Settings check box is
checked, and then find the Text Editor ➤ C# ➤ Formatting group of settings.

MacDonald04.fm Page 113 Tuesday, December 6, 2005 9:22 PM

114 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Assembly References

By default, ASP.NET makes a small set of commonly used .NET assemblies available to all
web pages. These assemblies (listed in Table 4-1) are configured through a special machine-
wide configuration file (called the machine.config). You don’t need to take any extra steps to
use the classes in these assemblies.

Table 4-1. Assemblies Available to All Web Pages

■Note Remember, assemblies can contain more than one namespace: For example, the System.Web.dll
assembly includes classes in the System.Web namespace, the System.Web.UI namespace, and many more
related namespaces.

If you want to use additional features or a third-party component, you may need to
import more assemblies. For example, if you want to use an Oracle database, you need to
add a reference to the System.Data.OracleClient.dll assembly.

Assembly Description
mscorlib.dll and System.dll Includes the core set of .NET data types, common exception

types, and numerous other fundamental building blocks.

System.Configuration.dll Includes classes for reading and writing configuration
information in the web.config file, including your custom
settings.

System.Data.dll Includes the data container classes for ADO.NET, along with
the SQL Server data provider.

System.Drawing.dll Includes classes representing colors, fonts, and shapes. Also
includes the GDI+ drawing logic you need to build graphics on
the fly.

System.Web.dll Includes the core ASP.NET classes, including classes for
building web forms, managing state, handling security, and
much more.

System.Web.Services.dll Includes classes for building web services—units of code that
can be remotely invoked over HTTP.

System.Xml.dll Includes .NET classes for reading, writing, searching,
transforming, and validating XML.

System.EnterpriseServices.dll Includes .NET classes for COM+ services such as transactions.

System.Web.Mobile.dll Includes .NET classes for the mobile web controls, which are
targeted for small devices such as web-enabled cell phones.

MacDonald04.fm Page 114 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 115

To add a reference, follow these steps:

1. Right-click the References item in the Solution Explorer, and choose Add Ref-
erence. This shows the Add Reference dialog box, with a list of assemblies that
are registered with Visual Studio.

2. In the Add Reference window, select the component you want to use. If the com-
ponent isn’t located in the centralized component registry on your computer
(known as the GAC, or global assembly cache), you’ll need to click the Browse tab
and find the DLL file from the appropriate directory.

3. Once you’ve selected the DLL, click OK to add the reference to your web
application.

When you add a reference, Visual Studio modifies the web.config file to indicate that
you use this assembly. If you add a reference to an assembly that isn’t stored in the GAC,
Visual Studio will create a Bin subdirectory in your web application and copy the DLL into
that directory so it’s readily available. This step isn’t required for assemblies in the GAC
because they are shared with all the .NET applications on the computer. You’ll learn more
about this model in Chapter 5.

Adding a reference isn’t the same as importing the namespace with the using statement.
The using statement allows you to use the classes in a namespace without typing the long,
fully qualified class names. However, if you’re missing a reference, it doesn’t matter what
using statements you include—the classes won’t be available. For example, if you import
the System.Web.UI namespace, you can write Page instead of System.Web.UI.Page in your
code. But if you haven’t added a reference to the System.Web.dll assembly that contains
these classes, you still won’t be able to access the classes in the System.Web.UI namespace.

■Tip You can create your own component assemblies. This technique allows you to share functionality
between several web applications or between several types of .NET applications. You’ll learn more about this
feat in Chapter 24.

Visual Studio Debugging
Once you’ve created an application, you can compile and run it by choosing Debug ➤
Start Debugging from the menu or by clicking the Start Debugging button on the toolbar.
Visual Studio launches your default web browser and requests the page that’s currently
selected in the Solution Explorer. This is a handy trick—if you’re in the middle of coding
SalesPage1.aspx, you’ll see SalesPage1.aspx appear in the browser, not the Default.aspx
home page.

MacDonald04.fm Page 115 Tuesday, December 6, 2005 9:22 PM

116 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Visual Studio’s built-in web server also allows you to retrieve a file listing. This means
if you create a web application named MyApp, you can request in the form
http://localhost:port/MyApp (omitting the page name) to see a list of all the files in
your web application folder (see Figure 4-20). Then, just click the page you want to test.

Figure 4-20. Choosing from a list of pages

This trick won’t work if you have a Default.aspx page. If you do, any requests that don’t
indicate the page you want are automatically redirected to this page.

Single-Step Debugging

Single-step debugging allows you to test your assumptions about how your code works
and see what’s really happening under the hood of your application. It’s incredibly easy to
use. Just follow these steps:

1. Find a location in your code where you want to pause execution, and start single-
stepping. (You can use any executable line of code but not a variable declaration,
comment, or blank line.) Click in the margin next to the line code, and a red break-
point will appear (see Figure 4-21).

MacDonald04.fm Page 116 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 117

Figure 4-21. Setting a breakpoint

2. Now start your program as you would ordinarily (by pressing the F5 key or using
the Start button on the toolbar). When the program reaches your breakpoint, exe-
cution will pause, and you’ll be switched to the Visual Studio code window. The
breakpoint statement won’t be executed.

3. At this point, you have several options. You can execute the current line by pressing
F11. The following line in your code will be highlighted with a yellow arrow, indi-
cating that this is the next line that will be executed. You can continue like this
through your program, running one line at a time by pressing F11 and following
the code’s path of execution.

4. Whenever the code is in break mode, you can hover over variables to see their
current contents (see Figure 4-22). This allows you to verify that variables contain
the values you expect.

MacDonald04.fm Page 117 Tuesday, December 6, 2005 9:22 PM

118 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Figure 4-22. Viewing variable contents in break mode

5. You can also use any of the commands listed in Table 4-2 while in break mode.
These commands are available from the context menu by right-clicking the code
window or by using the associated hot key.

Table 4-2. Commands Available in Break Mode

Command (Hot Key) Description
Step Into (F11) Executes the currently highlighted line and then pauses. If the currently

highlighted line calls a procedure, execution will pause at the first
executable line inside the method or function (which is why this feature
is called stepping into).

Step Over (F10) The same as Step Into, except it runs procedures as though they are a
single line. If you select Step Over while a procedure call is highlighted,
the entire procedure will be executed. Execution will pause at the next
executable statement in the current procedure.

Step Out (Shift-F11) Executes all the code in the current procedure and then pauses at the
statement that immediately follows the one that called this method or
function. In other words, this allows you to step “out” of the current
procedure in one large jump.

MacDonald04.fm Page 118 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 119

You can switch your program into break mode at any point by clicking the Pause
button in the toolbar or selecting Debug ➤ Break All. This might not stop your code where
you expect, however, so you’ll need to rummage around to get your bearings.

Advanced Breakpoints

Choose Debug ➤ Windows ➤ Breakpoints to see a window that lists all the breakpoints
in your current project. The Breakpoints window provides a hit count, showing you the
number of times a breakpoint has been encountered (see Figure 4-23). You can jump to
the corresponding location in code by double-clicking a breakpoint. You can also use the
Breakpoints window to disable a breakpoint without removing it. That allows you to keep
a breakpoint to use in testing later, without leaving it active. Breakpoints are automati-
cally saved with the Visual Studio project files, although they aren’t used when you
compile the application in release mode.

Figure 4-23. The Breakpoints window

Continue (F5) Resumes the program and continues to run it normally, without
pausing until another breakpoint is reached.

Run to Cursor Allows you to run all the code up to a specific line (where your cursor is
currently positioned). You can use this technique to skip a time-
consuming loop.

Set Next Statement Allows you to change the path of execution of your program while
debugging. This command causes your program to mark the current
line (where your cursor is positioned) as the current line for execution.
When you resume execution, this line will be executed, and the
program will continue from that point. Although this technique is
convenient for jumping over large loops and simulating certain
conditions, it’s easy to cause confusion and runtime errors by using it
recklessly.

Show Next Statement Brings you to the line of code where Visual Studio is currently halted.
(This is line of code that will be executed next when you continue.) This
line is marked by a yellow arrow. The Show Next Statement command
is useful if you lose your place while editing.

Command (Hot Key) Description

MacDonald04.fm Page 119 Tuesday, December 6, 2005 9:22 PM

120 C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5

Visual Studio allows you to customize breakpoints so that they occur only if certain
conditions are true. To customize a breakpoint, right-click it, and select Breakpoint
Properties. In the window that appears, you can take one of the following actions:

• Click the Condition button to set an expression. You can choose to break when this
expression is true or when it has changed since the last time the breakpoint was hit.

• Click the Hit Count button to create a breakpoint that pauses only after a break-
point has been hit a certain number of times (for example, at least twenty) or a
specific multiple of times (for example, every fifth time).

Variable Watches

In some cases, you might want to track the status of a variable without switching into
break mode repeatedly. In this case, it’s more useful to use the Autos, Locals, and Watch
windows, which allow you to track variables across an entire application. Table 4-3
describes these windows.

Table 4-3. Variable Watch Windows

Each row in the Autos, Locals, and Watch windows provides information about the
type or class of the variable and its current value. If the variable holds an object instance,
you can expand the variable and see its private members and properties. For example, in
the Locals window you’ll see the variable this, which is a reference to the current page
class. If you click the plus (+) sign next to the word this, a full list will appear that describes
many page properties (and some system values), as shown in Figure 4-24.

Window Description
Autos Automatically displays variables that Visual Studio determines are important for the

current code statement. For example, this might include variables that are accessed
or changed in the previous line.

Locals Automatically displays all the variables that are in scope in the current procedure.
This offers a quick summary of important variables.

Watch Displays variables you have added. Watches are saved with your project, so you
can continue tracking a variable later. To add a watch, right-click a variable in your
code, and select Add Watch; alternatively, double-click the last row in the Watch
window, and type in the variable name.

MacDonald04.fm Page 120 Tuesday, December 6, 2005 9:22 PM

C H A P T E R 4 ■ I N T R O D U C I N G V I S U A L S T U D I O 2 0 0 5 121

Figure 4-24. Viewing the current page class in the Locals window

If you are missing one of the Watch windows, you can show it manually by selecting it
from the Debug ➤ Windows submenu.

■Tip The Autos, Locals, and Watch windows allow you to change simple variables while your program is in
break mode. Just double-click the current value in the Value column, and type in a new value. This allows you
to simulate scenarios that are difficult or time-consuming to re-create manually and allows you to test specific
error conditions.

The Last Word
In this chapter, you took a quick look at Visual Studio 2005. If you’ve programmed with
earlier versions of Visual Studio, you’ll appreciate the new cleaner project model, which
refrains from generating extra files you won’t want to manage. You’ll also appreciate the
new built-in web server, which makes debugging a website painless on any computer.

In the next chapter, you’ll start building simple web applications with Visual Studio.

MacDonald04.fm Page 121 Tuesday, December 6, 2005 9:22 PM

MacDonald04.fm Page 122 Tuesday, December 6, 2005 9:22 PM

■ ■ ■

P A R T 2

Developing ASP.NET
Applications

MacDonald.book Page 123 Tuesday, December 13, 2005 1:11 PM

MacDonald.book Page 124 Tuesday, December 13, 2005 1:11 PM

125

■ ■ ■

C H A P T E R 5

Web Form Fundamentals

ASP.NET introduces a remarkable new model for creating web pages. In old-style ASP
development, programmers had to master the quirks and details of HTML markup before
being able to design dynamic web pages. Pages had to be carefully tailored to a specific
task, and additional content could be generated only by outputting raw HTML tags.

In ASP.NET, you can use a higher-level model of server-side web controls. These con-
trols are created and configured as objects and automatically provide their own HTML
output. Even better, ASP.NET allows web controls to behave like their Windows counter-
parts by maintaining state and even raising events that you can react to in code.

In this chapter, you’ll learn some of the core topics that every ASP.NET developer must
master. You’ll learn what makes up an ASP.NET application and what types of files it can
include. You’ll also learn how server controls work and how you can use them to build
dynamic web pages.

The Anatomy of an ASP.NET Application
It’s sometimes difficult to define exactly what a web application is. Unlike a traditional
desktop program (which users start by running a stand-alone EXE file), ASP.NET applica-
tions are almost always divided into multiple web pages. This division means a user can
enter an ASP.NET application at several different points or follow a link from the applica-
tion to another part of the website or another web server. So, does it make sense to
consider a website as an application?

In ASP.NET, the answer is yes. Every ASP.NET application shares a common set of
resources and configuration settings. Web pages from other ASP.NET applications don’t
share these resources, even if they’re on the same web server. Technically speaking, every
ASP.NET application is executed inside a separate application domain. Application domains
are isolated areas in memory, and they ensure that even if one web application causes a fatal
error, it’s unlikely to affect any other application that is currently running on the same com-
puter. Similarly, application domains restrict a web page in one application from accessing
the in-memory information of another application. Each web application is maintained sep-
arately and has its own set of cached, application, and session data.

MacDonald.book Page 125 Tuesday, December 13, 2005 1:11 PM

126 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

The standard definition of an ASP.NET application describes it as a combination of files,
pages, handlers, modules, and executable code that can be invoked from a virtual directory
(and, optionally, its subdirectories) on a web server. In other words, the virtual directory is
the basic grouping structure that delimits an application. Figure 5-1 shows a web server that
hosts four separate web applications.

Figure 5-1. ASP.NET applications

MacDonald.book Page 126 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 127

ASP.NET File Types

ASP.NET applications can include many types of files. Table 5-1 introduces the essential
ingredients.

Table 5-1. ASP.NET File Types

In addition, your web application can contain other resources that aren’t special
ASP.NET files. For example, your virtual directory can hold image files, HTML files, or
CSS files. These resources might be used in one of your ASP.NET web pages, or they might
be used independently. A website could even combine static HTML pages with dynamic
ASP.NET pages.

Most of the file types in Table 5-1 are optional. You can create a legitimate ASP.NET
application with a single web page (.aspx file) or web service (.asmx file).

File Name Description
Ends with .aspx These are ASP.NET web pages (the .NET equivalent of the .asp file in an ASP

application). They contain the user interface and, optionally, the underlying
application code. Users request or navigate directly to one of these pages to
start your web application.

Ends with .ascx These are ASP.NET user controls. User controls are similar to web pages,
except that they can’t be accessed directly. Instead, they must be hosted
inside an ASP.NET web page. User controls allow you to develop a small
piece of user interface and reuse it in as many web forms as you want
without repetitive code. You’ll learn about user controls in Chapter 25.

Ends with .asmx These are ASP.NET web services, which are described in Part 5 of this book.
Web services work differently than web pages, but they still share the same
application resources, configuration settings, and memory.

web.config This is the XML-based configuration file for your ASP.NET application. It
includes settings for customizing security, state management, memory
management, and much more. This file is referred to throughout the book.

global.asax This is the global application file. You can use this file to define global
variables (variables that can be accessed from any web page in the web
application) and react to global events (such as when a web application first
starts).

Ends with .cs These are code-behind files that contain C# code. They allow you to separate
the application from the user interface of a web page. We’ll introduce the
code-behind model in this chapter and use it extensively in this book.

MacDonald.book Page 127 Tuesday, December 13, 2005 1:11 PM

128 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

ASP.NET Application Directories

Every web application should have a well-planned directory structure. For example, you’ll
probably want to store images in a separate folder from where you store your web pages. Or,
you might want to put public ASP.NET pages in one folder and restricted ones in another so
you can apply different security settings based on the directory. (See Chapter 18 for more
about how to create authorization rules like this.)

Along with the directories you create, ASP.NET also uses a few specialized subdirectories,
which it recognizes by name (see Table 5-2). Keep in mind that you won’t see all these direc-
tories in a typical application. Visual Studio will prompt you to create them as needed.

Table 5-2. ASP.NET Directories

WHAT ABOUT ASP FILES?

ASP.NET doesn’t use any of the same files as ASP (such as .asp pages and the global.asa file). If you have a
virtual directory that contains both .aspx and .asp files, you really have two applications: an ASP.NET web
application and a legacy ASP application.

In fact, the process that manages and renders .asp files and the ASP.NET service that compiles and
serves .aspx files are two separate programs that don’t share any information. This design has a couple of
important implications:

• You can’t share state information between ASP and ASP.NET applications. The Session and Application
collections, for example, are completely separate.

• You specify ASP and ASP.NET configuration settings in different ways. If you specify an ASP setting, it
won’t apply to ASP.NET, and vice versa.

Generally, you should keep ASP and ASP.NET files in separate virtual directories to avoid confusion.
However, if you’re migrating a large website, you can safely use both types of files as long as they don’t try to
share resources.

Directory Description

Bin Contains all the compiled .NET components (DLLs) that the ASP.NET
web application uses. For example, if you develop a custom database
component (see Chapter 24), you’ll place the component here.
ASP.NET will automatically detect the assembly, and any page in the
web application will be able to use it. This seamless deployment model
is far easier than working with traditional COM components, which
must be registered before they can be used (and often reregistered
when they change).

MacDonald.book Page 128 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 129

Application Updates

One of the most useful features of ASP.NET has nothing to do with new controls or
enhanced functionality. Instead, the so-called zero-touch deployment and application
updating means you can modify your ASP.NET application easily and painlessly without
needing to restart the server.

Page Updates

If you modify a code file or a web form, ASP.NET automatically recompiles an updated
version for the next client request. This means new client requests always use the most
recent version of the page. ASP.NET even compiles the page automatically to native
machine code and caches it to improve performance.

App_Code Contains source code files that are dynamically compiled for use in
your application. You can use this directory in a similar way to the Bin
directory; the only difference is that you place source code files here
instead of compiled assemblies.

App_GlobalResources This directory stores global resources that are accessible to every page
in the web application. This directory is used in localization scenarios,
when you need to have a website in more than one language.
Localization isn’t covered in this book, although you can refer to Pro
ASP.NET 2.0 in C# (Apress, 2005) for more information.

App_LocalResources This directory serves the same purpose as App_GlobalResources,
except these resources are accessible to a specific page only.

App_WebReferences Stores references to web services that the web application uses. You’ll
learn about web services in Part 5.

App_Data This directory is reserved for data storage, including SQL Server 2005
Express Edition database files and XML files. Of course, you’re free to
store data files in other directories.

App_Browsers This directory contains browser definitions stored in XML files. These
XML files define the capabilities of client-side browsers for different
rendering actions. Although ASP.NET defines different browsers and
their capabilities in a computerwide configuration file, this directory
allows you to distinguish browsers according to different rules for a
single application.

App_Themes Stores the themes that are used by your web application. You’ll learn
about themes in Chapter 10.

Directory Description

MacDonald.book Page 129 Tuesday, December 13, 2005 1:11 PM

130 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

Component Updates

You can replace any assembly in the Bin directory with a new version, even if it’s currently
in use. The file will never be locked (except for a brief moment when the application first
starts). As a result, you can also add or delete assembly files without any problem. ASP.NET
continuously monitors the Bin directory for changes. When a change is detected, it creates
a new application domain and uses it to handle any new requests. Existing requests are
completed using the old application domain, which contains a cached copy of all the old
versions of the components. When all the existing requests are completed, the old applica-
tion domain is removed from memory.

This automatic rollover feature, sometimes called shadow copy, allows you to pain-
lessly update a website without taking it offline, even if it uses separate components.

Configuration Changes

In the somewhat painful early days of ASP programming, configuring a web application
was no easy task. You needed to either create a script that modified the IIS metabase or
use IIS Manager. Once a change was made, you would often need to stop and start the IIS
web service (again by using IIS Manager or the iisreset utility). Sometimes you would even
need to reboot the server before the modification would take effect.

Fortunately, these administrative headaches are no longer required for ASP.NET,
which manages its own configuration independently from IIS. The configuration of an
ASP.NET web application is defined using the web.config file. The web.config file stores
information in a plain-text XML format so that you can easily edit it with a tool such as
Notepad. If you change a web.config setting, ASP.NET uses the same automatic rollover
as it does when you update a component. Existing requests complete with the original
settings and new requests are served by a new application domain that uses the new
web.config settings. Once again, modifying live sites is surprisingly easy in ASP.NET.
You’ll learn more about ASP.NET configuration and the web.config file later in the
“ASP.NET Configuration” section.

A Simple One-Page Applet
The first example you’ll see demonstrates how server-based controls work using a single-
page applet. This type of program, which combines user input and the program output on
the same page, is used to provide popular tools on many sites. Some examples include
calculators for mortgages, taxes, health or weight indices, and retirement savings plans;
single-phrase translators; and stock-tracking utilities.

The page shown in Figure 5-2 allows the user to convert a number of U.S. dollars to the
equivalent amount of euros.

MacDonald.book Page 130 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 131

Figure 5-2. A simple currency converter

The following listing shows the HTML for this page. To make it as clear as possible,
we’ve omitted the style attribute of the <div> tag used for the border. This page has two
<input> tags: one for the text box and one for the submit button. These elements are
enclosed in a <form> tag, so they can submit information to the server when the button is
clicked. The rest of the page consists of static text:

������

�����	
�

������������������������������������

������	
�

�����
��

���������������
��������

�������
���

�����������������������

���������������������������������� ! �
���	������"���

��������������������

����������������������������	����#$��

��������
���

�����������

������
��

�������

As it stands, this page looks nice but provides no functionality. It consists entirely of the
user interface (HTML tags) and contains no code.

MacDonald.book Page 131 Tuesday, December 13, 2005 1:11 PM

132 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

THE LEAST YOU NEED TO KNOW ABOUT HTML

If your HTML is a little rusty, a few details in the previous web page might look a little perplexing. To help
understand it, review the basic rules of HTML:

• Anything enclosed in angled brackets (< >) is a tag, which is interpreted by the browser. For example,
in the currency converter page, the Convert text is displayed directly, but the <input> tags represents
something else—a text box and a button, respectively.

• HTML documents always start with an <html> tag and end with an </html> tag.

• Inside the HTML document, you can place code, additional information such as the web page title, and the
actual web page content. The web page content is always placed between <body> and
</body> tags. The web page title is part of the information between the <head> and </head> tags.

• Controls, the graphical widgets that users can click and type into, must always be placed inside a form.
Otherwise, you won’t be able to access the information the user enters. In ASP.NET, every control needs
to go inside the <form> tag.

• The <div> tag, on its own, doesn’t do anything. However, it’s useful to use a <div> tag to group portions
of your page that you want to format in a similar way (for example, with the same font, background
color, or border). That way, you can apply style settings to the <div> tag, and they’ll cascade down into
every tag it contains. (The <div> formatting isn’t shown in this example, because it’s too long. However,
you can check out the online currency converter example to see the full list of style settings.)

• Whitespace is ignored in HTML. This means spaces, line breaks, and so on, are collapsed. If you need
to explicitly insert additional spaces, you can use the character entity (which stands for
nonbreaking space). To insert line breaks, you can use the break tag:
.

Technically, you don’t need to understand HTML to program ASP.NET web pages—although having
some basic HTML knowledge certainly helps you get up to speed. For a quick primer, you can refer to one
of the excellent HTML tutorials on the Internet, such as �������%%% %&������� �������� or
�������	������ ���	 �� �
�'����	��(��������)))�*+,-.����� ����.

MacDonald.book Page 132 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 133

The ASP Solution—and Its Problems

In many older web programming platforms, you’d add the currency conversion function-
ality to this page by examining the posted form values and manually writing the result to
the end of the page. In classic ASP, you’d write this dynamic information using the
Response.Write() command.

This approach works well for a simple page, but it encounters the following difficulties
as the program becomes more sophisticated:

“Spaghetti” code: You need to generate the page output in the order it appears, which
often isn’t the natural order in your code. If you want to tailor different parts of the out-
put based on a single condition, you’ll need to reevaluate that condition at several
places in your code.

Lack of flexibility: Once you’ve perfected your output, it’s difficult to change it. If you
decide to modify the page several months later, you have to read through the code,
follow the logic, and try to sort out numerous details.

Combining content and formatting: Depending on the complexity of your user inter-
face, you may need to add HTML tags and style attributes on the fly. This encourages
programs to tangle formatting and content details together, making it difficult to
change just one or the other at a later date.

Complexity: Your code becomes increasingly intricate and disorganized as you add dif-
ferent types of functionality. For example, it could be extremely difficult to track the
effects of different conditions and different rendering blocks if you created a combined
tax/mortgage/interest calculator. Before you know it, you’ll be forced to write the
application using separate web pages.

Quite simply, an old-style ASP application that needs to create a sizable portion of inter-
face using Response.Write() commands encounters the same dilemmas that a Windows
program would find if it needed to manually draw its text boxes and command buttons on
an application window in response to every user action.

The ASP.NET Solution: Server Controls

In ASP.NET, you can still use Response.Write() to create a dynamic web page. But ASP.NET
provides a better approach. It allows you to turn static HTML tags into objects—called
server controls—that you can program on the server.

MacDonald.book Page 133 Tuesday, December 13, 2005 1:11 PM

134 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

ASP.NET provides two sets of server controls:

HTML server controls: These are server-based equivalents for standard HTML ele-
ments. These controls are ideal if you’re a seasoned web programmer who prefers to
work with familiar HTML tags (at least at first). They are also useful when migrating
existing ASP pages to ASP.NET, because they require the fewest changes. You’ll learn
about HTML server controls throughout this chapter.

Web controls: These are similar to the HTML server controls, but they provide a richer
object model with a variety of properties for style and formatting details. They also
provide more events and more closely resemble the controls used for Windows devel-
opment. Web controls also feature some user interface elements that have no direct
HTML equivalent, such as the GridView, Calendar, and validation controls. You’ll learn
about web controls in the next chapter.

HTML Server Controls

HTML server controls provide an object interface for standard HTML elements. They
provide three key features:

They generate their own interface: You set properties in code, and the underlying HTML
tag is updated automatically when the page is rendered and sent to the client.

They retain their state: Because the Web is stateless, ordinary web pages need to go to a
lot of work to store information between requests. For example, every time the user
clicks a button on a page, you need to make sure every control on that page is refreshed
so that it has the same information the user saw last time. With ASP.NET, this tedious
task is taken care of for you. That means you can write your program the same way you
would write a traditional Windows program.

They fire events: Your code can respond to these events, just like ordinary controls in a
Windows application. In ASP code, everything is grouped into one block that executes
from start to finish. With event-based programming, you can easily respond to individ-
ual user actions and create more structured code. If a given event doesn’t occur, the
event handler code won’t be executed.

The easiest way to convert the currency converter to ASP.NET is to start by generating
a new web form in Visual Studio. To do this, select Website ➤ Add New Item. In the Add
New Item dialog box, choose Web Form (the first item in the list), type a name for the new
page (such as CurrencyConverter.aspx), and click OK to create the page. Finally, copy all
the content from the original HTML page into the new ASP.NET web form.

MacDonald.book Page 134 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 135

When you paste your HTML content, this should overwrite everything that’s currently
in the page, except the page directive. The page directive gives ASP.NET basic information
about how to compile the page. It indicates the language you’re using for your code and
the way you connect your event handlers. If you’re using the code-behind approach,
which is recommended, the page directive also indicates where the code file is located
and the name of your custom page class.

Here’s the web form, with the page directive (in bold) followed by the HTML content
that’s copied from the original page:

���������	�
����������������
������������

������������	
�����������������������
��������	
���������������
���

������

�����	
�

������������������������������������

������	
�

�����
��

���������������
��������

�������
���

�����������������������

���������������������������������� ! �
���	������"���

��������������������

����������������������������	����#$��

��������
���

�����������

�����
��

�������

Now you need to add the attribute runat="server" to each tag that you want to trans-
form into a server control. You should also add an id attribute to each control that you
need to interact with in code. The id attribute assigns the unique name that you’ll use to
refer to the control in code.

■Tip The quickest way to add the runat="server" attribute is to use Visual Studio. First, add your HTML
page to a website. Then, select each HTML tag separately on the design surface of the page. Right-click, and
choose Run As Server from the menu to transform it into a server control.

MacDonald.book Page 135 Tuesday, December 13, 2005 1:11 PM

136 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

In the currency converter application, you can change the input text box and submit
button into server controls. In addition, the <form> element must also be processed as a
server control to allow ASP.NET to access the controls it contains, as shown here:

�/0�.	1��-	�1	1����2��3��"����)����������

������
�4��������������������� 	��� ����(���������������������������/�

������

�����	
�

������������������������������������

������	
�

�����
��

���������������
����������	�����������

�������
���

�����������������������

����������������������������	
��
�����	
������
�

���������������� ! �
���	������"���

��������������������

����������������������������	����#$����	
������
�����	
������
�

��������
���

�����������

������
��

�������

■Note ASP.NET controls are always placed inside the <form> tag of the page. The <form> tag is a part of
the standard for HTML forms, and it allows the browser to send information to the web server.

The web page still won’t do anything when you run it, because you haven’t written any
code. However, now that you’ve converted the static HTML elements to HTML server
controls, you’re ready to work with them.

View State

To try this page, launch it in Visual Studio. Then, select View ➤ Source in your browser to
look at the HTML that ASP.NET sent your way.

The first thing you’ll notice is that the HTML that was sent to the browser is slightly
different from the information in the .aspx file. First, the runat="server" attributes are

MacDonald.book Page 136 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 137

stripped out (because they have no meaning to the client browser, which can’t interpret
them). Second, and more important, an additional hidden field has been added to the
form, as shown here:

������

�����	
�

������������������������������������

������	
�

�����
��

���������������
����������	�����������

����������������	
�����
����	
�� �!"�#$#!
������	
�%&'(%)*(#�+,%)-./0	
�1�

�������
���

�����������������������

���������������������������
���!����	������������������� ! �
���	������"���

��������������������

����������������������������	����#$���
�������������	�����������

��������
���

�����������

������
��

�������

This hidden field stores information, in a compressed format, about the state of every
control in the page. It allows you to manipulate control properties in code and have the
changes automatically persisted. This is a key part of the web forms programming model.
Thanks to view state, you can often forget about the stateless nature of the Internet and
treat your page like a continuously running application.

Even though the currency converter program doesn’t yet include any code, you’ll
already notice one change. If you enter information in the text box and click the submit
button to post the page, the refreshed page will still contain the value you entered in the
text box. (In the original example that uses ordinary HTML elements, the value will be
cleared every time the page is posted back.) This change occurs because ASP.NET con-
trols automatically retain state.

The HTML Control Classes

Before you can continue any further with the currency converter, you need to know about
the control objects you’ve created. All the HTML server controls are defined in the
System.Web.UI.HtmlControls namespace. Each kind of control has a separate class.
Table 5-3 describes the basic HTML server controls and shows you the related HTML
element.

MacDonald.book Page 137 Tuesday, December 13, 2005 1:11 PM

138 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

Table 5-3. The HTML Server Control Classes

Class Name HTML Tag Represented Description
HtmlAnchor <a> A hyperlink that the user clicks to jump

to another page.

HtmlButton <button> A button that the user clicks to perform
an action. This is not supported by all
browsers, so HtmlInputButton is usually
used instead. The key difference is that
the HtmlButton is a container element.
As a result, you can insert just about
anything inside it, including text and
pictures. The HtmlInputButton, on the
other hand, is strictly text-only.

HtmlForm <form> The form wraps all the controls on a web
page. Controls that appear inside a form
will send their data to the server when
the page is submitted.

HtmlImage A link that points to an image, which will
be inserted into the web page at the
current location.

HtmlInputButton,
HtmlInputSubmit, and
HtmlInputReset

<input type="button">,
<input type="submit">,
and <input type="reset">

A button that the user clicks to perform
an action (often it’s used to submit all
the input values on the page to the
server).

HtmlInputCheckBox <input type="checkbox"> A check box that the user can check or
clear. Doesn’t include any text of its own.

HtmlInputFile <input type="file"> A Browse button and text box that can be
used to upload a file to your web server,
as described in Chapter 16.

HtmlInputHidden <input type="hidden"> Contains text-based information that
will be sent to the server when the page
is posted back but won’t be visible to
the user.

HtmlInputImage <input type="image"> Similar to the tag, but it inserts a
“clickable” image that submits the page.

HtmlInputRadioButton <input type="radio"> A radio button that can be selected in
a group. Doesn’t include any text of
its own.

HtmlInputText and
HtmlInputPassword

<input type="text"> and
<input type="password">

A single-line text box where the user can
enter information. Can also be displayed
as a password field (which displays
asterisks instead of characters to hide
the user input).

HtmlSelect <select> A drop-down or regular list box, where
the user can select an item.

HtmlTable,
HtmlTableRow, and
HtmlTableCell

<table>, <tr>, <th>, and
<td>

A table that displays multiple rows and
columns of static text.

MacDonald.book Page 138 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 139

So far, the currency converter defines three controls, which are instances of the Html-
Form, HtmlInputText, and HtmlInputButton classes, respectively. It’s important that you
know the class names, because you need to define each control class in the code-behind
file if you want to interact with it. (Visual Studio simplifies this task: whenever you add a
control using its web designer, the appropriate tag is added to the .aspx file, and the
appropriate variables are defined in the code-behind class.) Table 5-4 gives a quick over-
view of some of the most important control properties.

Table 5-4. Important HTML Control Properties

To actually add some functionality to the currency converter, you need to add some
ASP.NET code. Web forms are event-driven, which means every piece of code acts in response
to a specific event. In the simple currency converter page example, the most useful event
occurs when the user clicks the submit button (named Convert). The HtmlInputButton allows
you to react to this action by handling the ServerClick event.

Before you continue, it makes sense to add another control that can display the result of
the calculation. In this case, you can use a <div> tag named Result. The <div> tag is one way
to insert a block of formatted text into a web page. Here’s the line of HTML that you’ll need:

�
��������������5%��1�������
���
��6��������	�����������

HtmlTextArea <textarea> A large text box where the user can type
multiple lines of text.

HtmlGenericControl Any other HTML element. This control can represent a variety of
HTML elements that don’t have
dedicated control classes.

HtmlHead and
HtmlTitle

<head> and <title> Represents the header information for
the page. You can use this to dynamically
change the title or connect style sheets
(as explained in Chapter 10).

Control Most Important Properties
HtmlAnchor Href, Target, Title

HtmlImage and
HtmlInputImage

Src, Alt, Width, and Height

HtmlInputCheckBox and
HtmlInputRadioButton

Checked

HtmlInputText Value

HtmlSelect Items (collection)

HtmlTextArea Value

HtmlGenericControl InnerText

Class Name HTML Tag Represented Description

MacDonald.book Page 139 Tuesday, December 13, 2005 1:11 PM

140 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

The style attribute applies the CSS properties used to format the text. In this example,
it merely applies a bold font.

The example now has the following four server controls:

• A form (HtmlForm object). This is the only control you do not need to access in your
code-behind class.

• An input text box named US (HtmlInputText object).

• A submit button named Convert (HtmlInputButton object).

• A <div> tag named Result (HtmlGenericControl object).

Listing 5-1 shows the revised web page (CurrencyConverter.aspx), and Listing 5-2
shows the code-behind class (CurrencyConverter.aspx.cs), which calculates the currency
conversion and displays the result.

Listing 5-1. CurrencyConverter.aspx

�/0�.	1��-	�1	1����2��3��"����)����������

������
�4��������������������� 	��� ����(���������������������������/�

������

�����	
�

������������������������������������

������	
�

�����
��

���������������
����������	�����������

�������
���

�����������������������

���������������������������
���!����	������������������� ! �
���	������"���

��������������������

����������������������������	����#$���
�������������	����������

���������#�!���������7���������8!���������7��

��������������������

���������
��������������5%��1�������
���
��6��������	�������������
���

��������
���

�����������

������
��

�������

MacDonald.book Page 140 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 141

Listing 5-2. CurrencyConverter.aspx.cs

���1�!������

���1�!�����)���

���1�!�����)�� �(�

���1�!�����)�� �()�����������

���1�!�����)�� �(*������������

�������	���	����	����������������������!�����)�� �(.	1�

9

������������
����
��������8!���������7:#�;�������
��<�"����3�1���=

����9

��������
����	���!3�������
����	� .	���:�! >	��=�

��������
����	�����3��������!3�����?�@ AB,�

��������6���� (����+�������!3���� +�!����1:=�C���� ! �
���	�������

��������6���� (����+����C�����3���� +�!����1:=�C���"��� ��

����D

D

The code-behind class is a typical example of an ASP.NET page. You’ll notice the fol-
lowing conventions:

• It starts with several using statements. This provides access to all the important
namespaces. This is a typical first step in any code-behind file.

• The page class is defined with the partial keyword. That’s because your class code is
merged with another code file that you never see. This extra code, which ASP.NET
generates automatically, defines all the server controls that are used on the page.
This allows you to access them by name in your code.

• The page defines a single event handler. This event handler retrieves the value from
the text box, multiplies it by a preset conversion ratio (which would typically be
stored in another file or a database), and sets the text of the <div> tag. You’ll notice
that the event handler accepts two parameters (sender and e). This is the .NET stan-
dard for all control events. It allows your code to identify the control that sent the
event (through the sender parameter) and retrieve any other information that may
be associated with the event (through the e parameter). You’ll see examples of these
advanced techniques in the next chapter, but for now, it’s important to realize that
you won’t be allowed to handle an event unless your event handler has the correct,
matching signature.

MacDonald.book Page 141 Tuesday, December 13, 2005 1:11 PM

142 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

• The event handler is connected to the control event using the OnServerClick attrib-
ute in the <input> tag for the button. You’ll learn more about how this hookup
works in the next section.

• The event handler uses ToString() to convert the decimal value to text. Remember,
C# is notoriously strict about data type conversions. Before you can display your
information in the page, you need to convert the decimal value to a string so that it
can be added to the InnerText property.

You can launch this page to test your code. When you enter a value and click the OK
button, the page is resubmitted, the event handling code runs, and the page is returned to
you with the conversion details (see Figure 5-3).

Figure 5-3. The ASP.NET currency converter

Event Handling

This example works using a technique called automatic event wireup. To use this
approach, you use an attribute in the control tag to connect your event handler.

For example, if you want to handle the ServerClick method of the Convert button,
you simply need to set the OnServerClick attribute in the control tag with the name of
the event handler you want to use:

��������������������	����#$���
����������

�.����������2	
�����������������2
���	�����������

MacDonald.book Page 142 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 143

ASP.NET controls always use this syntax and give the attribute the event name pre-
ceded by the word On. For example, if you want to handle an event named ServerChange,
you’d set an attribute in the control tag named OnServerChange. You don’t need to
connect a small set of page events through a control tag, such as Page.Load event. Every-
thing else is hooked up using the control tag. When you double-click a control in Visual
Studio, this change takes place automatically, so you never need to hook up your event
handlers manually.

ASP.NET allows you to use another technique, called manual event wireup, which was
used in previous versions of Visual Studio .NET. With manual event wireup, every event
handler is connected with code that uses delegates, just as you saw in Chapter 3.

For example, here’s the delegate code that’s required to hook up the ServerClick event
of the Convert button using manual event wireup:

������� !���������7�C����%�"����*	�
���:���� �������8!���������7=�

Essentially, this code creates a new delegate using the EventHandler type and attaches
it to the ServerClick event. The EventHandler delegate defines the signature that the
ServerClick event handler must match. As you’ll see later, some events pass additional
information to your event handlers and have a different signature. In this case, you need
to use a different delegate.

Seeing as Visual Studio handles event wireup, why should ASP.NET 2.0 developers care
that they have two ways to hook up an event handler? Well, most of the time you won’t
worry about it. But the manual event wireup technique is useful in certain circumstances.
The most common example is if you want to create a control object and add it to a page
dynamically at runtime. In this situation, you can’t hook up the event handler through the
control tag, because there isn’t a control tag. Instead, you need to create the control and
attach its event handlers using code. (The next chapter has an example of how you can use
dynamic control creation to fill in a table.)

Behind the Scenes with the CurrencyConverter

So, what really happens when ASP.NET receives a request for the CurrencyConverter.aspx
page? The process actually unfolds over several steps:

1. First, the request for the page is sent to the web server. If you’re running a live site, the
web server is almost certainly IIS, which you’ll learn more about in Chapter 12. If
you’re running the page in Visual Studio, the request is sent to the built-in test server.

2. The web server determines that the .aspx file extension is registered with ASP.NET
and passes it to the ASP.NET worker process. If the file extension belonged to
another service (as it would for .asp files), ASP.NET would never get involved.

MacDonald.book Page 143 Tuesday, December 13, 2005 1:11 PM

144 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

3. If this is the first time a page in this application has been requested, ASP.NET
automatically creates the application domain and a special application object (tech-
nically, an instance derived from the .NET class System.Web.HttpApplication).

4. ASP.NET considers the specific .aspx file. If it has never been executed, ASP.NET
compiles and caches the page in the directory c:\[WinDir\Microsoft.NET\
Framework\[Version]\Temporary ASP.NET Files, where [Version] is the version
number of the .NET Framework. If this task has already been performed (for
example, someone else has already requested this page) and the file hasn’t been
changed, ASP.NET will use the compiled version.

5. The compiled CurrencyConverter acts like a miniature program. It starts firing
events (most notably, the Page.Load event). However, you haven’t created an event
handler for that event, so no code runs. At this stage, everything is working
together as a set of in-memory .NET objects.

6. When the code is finished, ASP.NET asks every control in the web page to render
itself into the corresponding HTML tags.

■Tip In fact, ASP.NET performs a little sleight of hand and may customize the output with additional client-side
JavaScript or DHTML if it detects that the client browser supports it. In the case of CurrencyConverter.aspx, the
output of the page is too simple to require this type of automatic tweaking.

7. The final page is sent to the user, and the application ends.

The description is lengthy, but it’s important to start with a good understanding of
the fundamentals. When you click a button on the page, the entire process repeats itself.
However, in step 5 the ServerClick event fires for HtmlInputButton right after the Page.Load
event, and your code runs.

Figure 5-4 illustrates the stages in a web page request.

MacDonald.book Page 144 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 145

Figure 5-4. The stages in an ASP.NET request

MacDonald.book Page 145 Tuesday, December 13, 2005 1:11 PM

146 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

The most important detail is that your code works with objects. The final step is to
transform these objects into the appropriate HTML output. A similar conversion from
objects to output happens with a Windows program in C#, but it’s so automatic that pro-
grammers rarely give it much thought. Also, in those environments, the code always runs
locally. In an ASP.NET application, the code runs in a protected environment on the
server. The client sees the results only once the web page processing has ended and the
program has been released from memory.

Improving the Currency Converter
Now that you’ve looked at the basic server controls, it might seem that their benefits are
fairly minor compared with the cost of learning a whole new system of web programming.
In the next section, you’ll start to extend the currency converter applet. You’ll see how you
can “snap in” additional functionality to the existing program in an elegant, modular way.
As the program grows, ASP.NET handles its complexity easily, steering you away from the
tangled and intricate code that would be required in old-style ASP applications.

Adding Multiple Currencies

The first task is to allow the user to choose a destination currency. In this case, you need
to use a drop-down list box. In HTML, a drop-down list is represented by a <select>
element that contains one or more <option> elements. Each <option> element corre-
sponds to a separate item in the list.

To reduce the amount of HTML in the currency converter, you can define a drop-down
list without any list items by adding an empty <select> tag. As long as you ensure that this
<select> tag is a server control (by giving it a name and adding the runat="server" attribute),
you’ll be able to interact with it in code and add the required items when the page loads.

Here’s the revised HTML for the CurrencyConverter.aspx page:

�/0�.	1��-	�1	1����2��3��"����)����������

������
�4��������������������� 	��� ����(���������������������������/�

������

�����	
�

������������������������������������

������	
�

�����
��

���������������
����������	�����������

�������
���

�����������������������

���������������������������
���!����	������������������� ! �
���	������������

������������������	
�������
�����	
������
��1�������

MacDonald.book Page 146 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 147

��������������������

����������������������������	����#$���
����������

���������#�!���������7���������8!���������7����	�����������

��������������������

���������
��������������5%��1�������
���
��6��������	�������������
���

��������
���

�����������

������
��

�������

The currency list can now be filled using code at runtime. In this case, the ideal event is
the Page.Load event, because this is the first event that occurs when the page is executed.
Here’s the code you need to add to the CurrencyConverter page class:

��������
����
�.	1�8-�	
:#�;�������
��<�"����3�1���=

9

�������:���� (�.���E	�7�����	���=

����9

��������������� (���� 3

:�"���=�

��������������� (���� 3

:�F	�	�����G���=�

��������������� (���� 3

:��	�	
�	��H���	��=�

����D

D

Dissecting the Code…

This example illustrates two important points:

• You can use the Items property to get items in a list control. This allows you to
append, insert, and remove <option> elements. Remember, when generating
dynamic content with a server control, you set the properties, and the control
creates the appropriate HTML tags.

• Before adding any items to this list, you need to make sure this is the first time the
page is being served. Otherwise, the page will continuously add more items to the
list or inadvertently overwrite the user’s selection every time the user interacts with
the page. To perform this test, you check the this.IsPostBack property. The this
keyword points to the current instance of the page class. In other words, IsPostback
is a property of the CurrencyConverter class, which CurrencyConverter inherited
from the generic Page class. If IsPostBack is false, the page is being created for the
first time, and it’s safe to initialize it.

MacDonald.book Page 147 Tuesday, December 13, 2005 1:11 PM

148 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

Storing Information in the List

Of course, if you’re a veteran HTML coder, you know that a select list also provides a value
attribute that you can use to store additional information. Because the currency converter
uses a short list of hard-coded values, this is an ideal place to store the conversion rate.

To set the value tag, you need to create a ListItem object and add that to the
HtmlInputSelect control. The ListItem class provides a constructor that lets you specify
the text and value at the same time that you create it, thereby allowing condensed code
like this:

��������
����
�.	1�8-�	
:#�;�������
��<�"����3�1���=

9

�������:���� (�.���E	�7�����	���=

����9

�����������+���*���(���!��������������	���������������-���(������;����

��������������� (���� 3

:��%�-���(���:�"����<��@ AB�==�

��������������� (���� 3

:��%�-���(���:�F	�	�����G���<��II@ &&�==�

��������������� (���� 3

:��%�-���(���:��	�	
�	��H���	���<��I J�==�

����D

D

To complete the example, you must rewrite the calculation code to take the selected
currency into account, as follows:

��������
����
��������8!���������7:��;�������
��<�"����3�1���=

9

����
����	��	�������H����	� .	���:�! >	��=�

�������6�������������������-���(������;�������������
��������

����-���(������������������ (����K������� !������
(�
��L�

����
����	����%3�������	�����?�H����	� .	���:���� >	��=�

����6���� (����+������	���� +�!����1:=�C���� ! �
���	�������

����6���� (����+����C����%3���� +�!����1:=�C�����C����� +����

D

Figure 5-5 shows the revamped currency converter.
All in all, this is a good example of how you can store information in HTML tags using the

value attribute. However, in a more sophisticated application, you probably wouldn’t store
the currency rate. Instead, you would just store some sort of unique identifying ID value.
Then, when the user submits the page, you would retrieve the corresponding conversion
rate from a database or some other storage location (such as an in-memory cache).

MacDonald.book Page 148 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 149

Figure 5-5. The multicurrency converter

Adding Linked Images

Adding other functionality to the currency converter is just as easy as adding a new button.
For example, it might be useful for the utility to display a currency conversion rate graph. To
provide this feature, the program would need an additional button and image control.

Here’s the revised HTML:

���������	�
����������������
������������

������������������
����
���������� ����!
"�����������
����
��������#

�"�$�#

���"���#

����������#�����
�����
�������%�����#

���%"���#

���&���#

�����'��$�$��"����������
���������#

����������#

����������
����(�)
&��*

����������
����������� �����+,���
���������#)
&��*�+�,�������������)
&��*

������������������������
�����
���������#�%������#

���������&��%#�&��%#

����������
�����������&$���������-.������
����

���������-
,���������/���
����0,���������/���
���������#

������������������	
������������	
���������������
�����������������
��	��	���

������������������

MacDonald05.fm Page 149 Tuesday, December 13, 2005 1:20 PM

150 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

�����������)���	
4����
�����	
������
�

��������������������

���������
��������������5%��1�������
���
��6��������	�������������
���

��������
���

�����������

������
��

�������

As it’s currently declared, the image doesn’t refer to a picture. For that reason, it makes
sense to hide it when the page is first loaded by using this code:

��������
����
�.	1�8-�	
:#�;�������
��<�"����3�1���=

9

�������:���� (�.���E	�7�����	���=

����9

�����������+���*���(���!��������������	���������������-���(������;����

��������������� (���� 3

:��%�-���(���:�"����<��@ AB�==�

��������������� (���� 3

:��%�-���(���:�F	�	�����G���<��IJJ &&�==�

��������������� (���� 3

:��%�-���(���:��	�	
�	��H���	���<��I MA�==�

����D

����4����� ���3���	�5����6

D

Interestingly, when a server control is hidden, ASP.NET omits it from the final HTML page.
Now you can handle the click event of the new button to display the appropriate pic-

ture. The currency converter has three possible picture files—pic0.png, pic1.png, and
pic2.png—depending on the selected currency:

��������
����
�!��%'�	��8!���������7:#�;�������
��<�"����3�1���=

9

����'�	�� !������.����C�������� !������
(�
�� +�!����1:=�C�� ��1��

����'�	�� 3��������������'�	����

����'�	�� >�������������

D

You need to make sure you link to the event handler through the button:

��������������������	����!��%�'�	�����
��!��%'�	���

�#�!���������7��!��%'�	��8!���������7����	�����������

Already the currency converter is beginning to look more interesting, as shown in
Figure 5-6.

MacDonald.book Page 150 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 151

Figure 5-6. The currency converter with an image control

Setting Styles

In addition to a limited set of properties, each HTML control also provides access to the CSS
style attributes through its Style collection. To use this collection, you need to specify the
name of the CSS style attribute and the value you want to assign to it. Here’s the basic syntax:

�������N	�� !����K�3�������N	���L����3�������>	����

For example, you could use this technique to emphasize an invalid entry in the cur-
rency converter with the color red. In this case, you’ll also need to reset the color to its
original value for valid input, because the control uses view state to remember all its set-
tings, including its style properties:

��������
����
��������8!���������7:��;�������
��<�"����3�1���=

9

����
����	��	�������H����	� .	���:�! >	��=�

�����5�7�������	�89

MacDonald.book Page 151 Tuesday, December 13, 2005 1:11 PM

152 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

����:

��������;�����������<
�����
=�	�
;��
6

��������;���������#����	�
�����5���������������3��
6

����>

��������

����:

��������;�����������<
�����
=�	�
?���2
6

�����������6�������������������-���(������;�������������
��������

��������-���(������������������ (����K������� !������
(�
��L�

��������
����	����%3�������	�����?�H����	� .	���:���� >	��=�

��������6���� (����+������	���� +�!����1:=�C���� ! �
���	�������

��������6���� (����+����C����%3���� +�!����1:=�C�����C����� +����

����>

D

The only problem with this example is that it generates an error if the user doesn’t
cooperate and types in a non-numeric value. To get around this problem, you can (and
should) use error handling, as described in Chapter 7.

■Tip The Style collection sets the style attribute in the HTML tag with a list of formatting options such as
font family, size, and color. But if you aren’t familiar with CSS styles, you don’t need to learn them now.
Instead, you should use the web control equivalents, which provide higher-level properties that allow you to
configure their appearance and automatically create the appropriate style attributes. You’ll learn about web
controls in the next chapter.

This concludes the simple currency converter applet, which now boasts automatic cal-
culation, linked images, and dynamic formatting. In the following sections, you’ll look at
the building blocks of ASP.NET interfaces more closely.

A Deeper Look at HTML Control Classes
Related classes in the .NET Framework use inheritance to share functionality. For exam-
ple, every HTML control inherits from the base class HtmlControl. The HtmlControl class
provides essential features every HTML server control uses. Figure 5-7 shows the inherit-
ance diagram.

MacDonald.book Page 152 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 153

Figure 5-7. HTML control inheritance

The next few sections dissect the ASP.NET classes that are used for HTML server con-
trols. You can use this material to help understand the common elements that are shared
by all HTML controls. For the specific details about each HTML control, you can refer to
the class library reference in the Visual Studio Help.

HTML server controls generally provide properties that closely match their tag attributes.
For example, the HtmlImage class provides Align, Alt, Border, Src, Height, and Width proper-
ties. For this reason, users who are familiar with HTML syntax will find that HTML server
controls are the most natural fit. Users who aren’t as used to HTML will probably find that
web controls (described in the next chapter) have a more intuitive set of properties.

HTML Control Events

HTML server controls also provide one of two possible events: ServerClick or ServerChange.
The ServerClick is simply a click that is processed on the server side. It’s provided by most
button controls, and it allows your code to take immediate action. This action might over-
ride the expected behavior. For example, if you intercept the click event of a hyperlink
control (the <a> element), the user won’t be redirected to a new page unless you provide
extra code to forward the request.

MacDonald.book Page 153 Tuesday, December 13, 2005 1:11 PM

154 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

The ServerChange event responds when a change has been made to a text or selection con-
trol. This event isn’t as useful as it appears because it doesn’t occur until the page is posted
back (for example, after the user clicks a submit button). At this point, the ServerChange event
occurs for all changed controls, followed by the appropriate ServerClick. The Page.Load event
is the first to fire, but you have no way to know the order of events for other controls.

Table 5-5 shows which controls provide a ServerClick event and which ones provide a
ServerChange event.

Table 5-5. HTML Control Events

Advanced Events with the HtmlInputImage Control

Chapter 4 introduced the .NET event standard, which dictates that every event should
pass exactly two pieces of information. The first parameter identifies the object (in this
case, the control) that fired the event. The second parameter is a special object that can
include additional information about the event.

In the examples you’ve looked at so far, the second parameter (e) has always been used
to pass an empty System.EventArgs object. This object doesn’t contain any additional
information—it’s just a glorified placeholder. Here’s one such example:

��������
����
��������8!���������7:#�;�������
��<�!���$�)���=

9� �D

In fact, only one HTML server control sends additional information: the HtmlInputImage
control. It sends an ImageClickEventArgs object (from the System.Web.UI namespace) that
provides X and Y properties representing the location where the image was clicked. You’ll
notice that the definition for the HtmlInputImage.ServerClick event handler is a little different
from the event handlers used with other controls:

��������
����
�(�1E����8!���������7:#�;�������
��<����)�����2!���$�)���=

9� �D

Event Controls That Provide It
ServerClick HtmlAnchor, HtmlForm,

HtmlButton,
HtmlInputButton,
HtmlInputImage

ServerChange HtmlInputText,
HtmlInputCheckBox,
HtmlInputRadioButton,
HtmlInputHidden,
HtmlSelect,
HtmlTextArea

MacDonald.book Page 154 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 155

Using this additional information, you can replace multiple button controls and image
maps with a single, intelligent HtmlInputImage control. The sample ImageTest.aspx page
shown in Figure 5-8 puts this feature to work with a simple graphical button. Depending
on whether the user clicks the button border or the button surface, a different message
is displayed.

Figure 5-8. Using an HtmlInputImage control

The page code examines the click coordinates provided by the ImageClickEventArgs
object and displays them in another control. Here’s the page code you need:

���1�!������

���1�!�����)���

���1�!�����)�� �(�

���1�!�����)�� �()�����������

���1�!�����)�� �(*������������

�������	���	����	���(�	1�+������!�����)�� �(.	1�

9

������������
����
�(�1E����8!���������7:#�;�������
��<

������(�	1�����7"����3�1���=

����9

��������6���� (����+�������G������7�
�	��:��C�� O +�!����1:=�C

����������������������������<���C�� G +�!����1:=�C��= ���

MacDonald.book Page 155 Tuesday, December 13, 2005 1:11 PM

156 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

�����������::� G���I@@=����:� G���J@=����:� O���J@=����:� O���JPB==

��������9

������������6���� (����+����C���G������7�
�����������������	�� ��

��������D

������������

��������9

������������6���� (����+����C���G������7�
��������������
�� ��

��������D

����D

D

Note that the InitializeComponent() method uses the ImageClickEventHandler
delegate instead of the generic EventHandler delegate when it connects your event han-
dler. That’s because the ImageClickEventHandler defines a special signature for the
ImageClick event. This signature includes the ImageClickEventArgs parameter that con-
tains the additional information about where the user clicked.

The HtmlControl Base Class

Every HTML control inherits from the base class HtmlControl. This relationship means
that every HTML control will support a basic set of properties and features. Table 5-6
shows these properties.

Table 5-6. HtmlControl Properties

Property Description
Attributes Provides a collection of all the tag attributes and their values. Rather than

setting an attribute directly, it’s better to use the corresponding property.
However, this collection is useful if you need to add or configure a custom
attribute or an attribute that doesn’t have a corresponding property.

Controls Provides a collection of all the controls contained inside the current control.
(For example, a <div> server control could contain an <input> server
control.) Each object is provided as a generic System.Web.UI.Control object
so that you may need to cast the reference to access control-specific
properties.

Disabled Set this to true to disable the control, thereby ensuring that the user cannot
interact with it and its events will not be fired.

EnableViewState Set this to false to disable the automatic state management for this control.
In this case, the control will be reset to the properties and formatting
specified in the control tag every time the page is posted back. If this is set to
true (the default), the control uses a hidden input field to store information
about its properties, thereby ensuring that any changes you make in code
are remembered.

MacDonald.book Page 156 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 157

The HtmlControl class also provides built-in support for data binding, which you’ll
examine in Chapter 14.

The HtmlContainerControl Class

Any HTML control that requires a closing tag also inherits from the HtmlContainer control.
For example, elements such as <a>, <form>, and <div> always use a closing tag, because
they can contain other HTML elements. On the other hand, and <input> are used
only as stand-alone tags. Thus, the HtmlAnchor, HtmlForm, and HtmlGenericControl
classes inherit from HtmlContainerControl, while HtmlImage and HtmlInput do not.

The HtmlContainer control adds two properties, as described in Table 5-7.

Table 5-7. HtmlContainerControl Properties

Page Provides a reference to the web page that contains this control as a
System.Web.UI.Page object.

Parent Provides a reference to the control that contains this control. If the control is
placed directly on the page (rather than inside another control), it will return
a reference to the page object.

Style Provides a collection of CSS style properties that can be used to format the
control.

TagName Indicates the name of the underlying HTML element (for example, img
or div).

Visible When set to false, the control will be hidden and will not be rendered to the
final HTML page that is sent to the client.

Property Description
InnerHtml The HTML content between the opening and closing tags of the control.

Special characters that are set through this property will not be converted to
the equivalent HTML entities. This means you can use this property to apply
formatting with nested tags such as , <i>, and <h1>.

InnerText The text content between the opening and closing tags of the control. Special
characters will be automatically converted to HTML entities and displayed like
text (for example, the less-than character (<) will be converted to < and will be
displayed as < in the web page). This means you can’t use HTML tags to apply
additional formatting with this property. The simple currency converter page used
the InnerText property to enter results into a <div> tag.

Property Description

MacDonald.book Page 157 Tuesday, December 13, 2005 1:11 PM

158 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

The HtmlInputControl Class

This control defines some properties (shown in Table 5-8) that are common to all the
HTML controls that are based on the <input> tag, including the <input type="text">,
<input type="submit">, and <input type="file"> elements.

Table 5-8. HtmlInputControl Properties

The Page Class
One control we haven’t discussed in detail yet is the Page class. As explained in the previ-
ous chapter, every web page is a custom class that inherits from System.Web.UI.Page. By
inheriting from this class, your web page class acquires a number of properties that your
code can use. These include properties for enabling caching, validation, and tracing,
which are discussed throughout this book.

Table 5-9 describes some of the more fundamental properties, including the traditional
built-in objects that ASP developers often used, such as Response, Request, and Session.

PROPERTIES CAN BE SET IN CODE OR IN THE TAG

To set the initial value of a property, you can configure the control in the Page.Load event handler, or you can
adjust the control tag in the .aspx file by adding special attributes. Note that the Page.Load event occurs after
the page is initialized with the default values and the tag settings. This means your code can override the prop-
erties set in the tag (but not vice versa).

The following HtmlImage control is an example that sets properties through attributes in the control tag.
The control is automatically disabled and will not fire any events.

���1�H��	���
��������
��'�	������	�����������

Remember, if you set control properties in the Properties window, you are using the control tag approach.
As you make your changes, Visual Studio updates the control tag in the .aspx file.

Property Description
Type Provides the type of input control. For example, a control based on <input

type="file"> would return file for the type property.

Value Returns the contents of the control as a string. In the simple currency converter,
this property allowed the code to retrieve the information entered in the text input
control.

MacDonald.book Page 158 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 159

Table 5-9. Basic Page Properties

The Controls Collection

The Page.Controls collection includes all the controls on the current web form. You can
loop through this collection and access each control. For example, the following code
writes the name of every control on the current page to a server control called Result:

6���� (����+�������-�������������������

����	���:�������������������� ��������=

9

����6���� (����+����C������C����� (H�

D

Property Description
Application and
Session

These collections hold state information on the server. Chapter 9 discusses
this topic.

Cache This collection allows you to store objects for reuse in other pages or for
other clients. Chapter 26 discusses caching.

Controls Provides a collection of all the controls contained on the web page. You can
also use the methods of this collection to add new controls dynamically.

EnableViewState When set to false, this overrides the EnableViewState property of the
contained controls, thereby ensuring that no controls will maintain state
information.

IsPostBack This Boolean property indicates whether this is the first time the page is
being run (false) or whether the page is being resubmitted in response to a
control event, typically with stored view state information (true). This
property is often used in the Page.Load event handler, thereby ensuring that
basic setup is performed only once for controls that maintain view state.

Request Refers to an HttpRequest object that contains information about the current
web request, including client certificates, cookies, and values submitted
through HTML form elements. It supports the same features as the built-in
ASP Request object.

Response Refers to an HttpResponse object that allows you to set the web response or
redirect the user to another web page. It supports the same features as the
built-in ASP Response object, although it’s used much less in .NET
development.

Server Refers to an HttpServerUtility object that allows you to perform some
miscellaneous tasks, such as URL and HTML encoding. It supports the
same features as the built-in ASP Server object.

User If the user has been authenticated, this property will be initialized with user
information. Chapter 18 describes this property in more detail.

MacDonald.book Page 159 Tuesday, December 13, 2005 1:11 PM

160 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

You can also use the Controls collection to add a dynamic control. The following code
creates a new button with the caption Dynamic Button and adds it to the bottom of the page:

���E��������������%����E����:=�

���� (����+�������H��	����E������

���� (H����H��	���E������

���� �������� 3

:����=�

The best place to generate new controls is in the Page.Load event handler. This ensures
that the control will be created each time the page is served. In addition, if you’re adding
an input control that uses view state, the view state information will be restored to the
control after the Page.Load event fires. This means a dynamically generated text box will
retain its text over multiple postbacks, just like a text box that is defined in the .aspx file.
Dynamically created controls are difficult to position, however. By default, they appear at
the bottom of the page. The only way to change this behavior is to create a container
control that acts as a placeholder, such as a server-side <div> tag. You can then add the
dynamic control to the Controls collection of the container control.

The HttpRequest Class

The HttpRequest class encapsulates all the information related to a client request for a
web page. Most of this information corresponds to low-level details such as posted-back
form values, server variables, the response encoding, and so on. If you’re using ASP.NET
to its fullest, you’ll almost never dive down to that level. Other properties are generally
useful for retrieving information, particularly about the capabilities of the client browser.
Table 5-10 provides a quick look at its most frequently used properties.

Table 5-10. HttpRequest Properties

Property Description

ApplicationPath and
PhysicalPath

ApplicationPath gets the ASP.NET application’s virtual directory
(URL), while PhysicalPath gets the “real” directory.

Browser Provides a link to an HttpBrowserCapabilities object that contains
properties describing various browser features, such as support for
ActiveX controls, cookies, VBScript, and frames. This replaces the
BrowserCapabilities component that was sometimes used in ASP
development.

ClientCertificate An HttpClientCertificate object that gets the security certificate for
the current request, if there is one.

MacDonald.book Page 160 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 161

The HttpResponse Class

The HttpResponse class allows you to send information directly to the client. In tradi-
tional ASP development, the Response object was used heavily to create dynamic pages.
Now, with the introduction of the new server-based control model, these relatively crude
methods are no longer needed.

The HttpResponse does still provide some important functionality, namely, caching
support, cookie features, and the Redirect method, which allows you to transfer the user
to another page:

���G���	����
���������	��������������������
��������

6������� 6�
�����:���%�	1� 	����=�

���G���	����
���������	�������%������

6������� 6�
�����:��������%%% ��������� ����=�

Table 5-11 lists the most commonly used members of the HttpResponse class.

Cookies Gets the collection cookies sent with this request. Chapter 9 discusses
cookies in more detail.

Headers and
ServerVariables

Provides a name/value collection of HTTP headers and server
variables. You can get the low-level information you need if you know
the corresponding header or variable name.

IsAuthenticated and
IsSecureConnection

Returns true if the user has been successfully authenticated and if the
user is connected over SSL (also known as the Secure Sockets Layer).

QueryString Provides the parameters that were passed along with the query string.
Chapter 9 discusses how you can use the query string to transfer
information between pages.

Url and UrlReferrer Provides a Uri object that represents the current address for the page
and the page where the user is coming from (the previous page that
linked to this page).

UserAgent A string representing the browser type. Internet Explorer provides the
value MSIE for this property.

UserHostAddress and
UserHostName

Gets the IP address and the DNS name of the remote client. You
could also access this information through the ServerVariables
collection.

UserLanguages Provides a sorted string array that lists the client’s language
preferences. This can be useful if you need to create multilingual
pages.

Property Description

MacDonald.book Page 161 Tuesday, December 13, 2005 1:11 PM

162 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

Table 5-11. HttpResponse Members

The ServerUtility Class

The ServerUtility class provides some miscellaneous helper methods, as listed in Table 5-12.

Table 5-12. ServerUtility Methods

Member Description
BufferOutput When set to true (the default), the page isn’t sent to the client until it’s

completely rendered and ready, as opposed to being sent piecemeal.

Cache References an HttpCachePolicy object that allows you to configure
how this page will be cached. Chapter 26 discusses caching.

Cookies The collection of cookies sent with the response. You can use this
property to add cookies, as described in Chapter 9.

Write(), BinaryWrite(),
and WriteFile()

These methods allow you to write text or binary content directly to the
response stream. You can even write the contents of a file. These
methods are de-emphasized in ASP.NET and shouldn’t be used in
conjunction with server controls.

Redirect() This method transfers the user to another page in your application or
a different website.

Method Description
CreateObject() Creates an instance of the COM object that is identified by its

programmatic ID (progID). This is included for backward
compatibility, because it will generally be easier to interact with
COM objects using the .NET Framework services.

HtmlEncode() and
HtmlDecode()

Changes an ordinary string into a string with legal HTML characters
and back again.

UrlEncode() and
UrlDecode()

Changes an ordinary string into a string with legal URL characters and
back again.

MapPath() Returns the physical file path that corresponds to a specified virtual
file path on the web server.

Transfer() Transfers execution to another web page in the current application.
This is similar to the Response.Redirect() method but is slightly faster.
It cannot be used to transfer the user to a site on another web server
or to a non-ASP.NET page (such as an HTML page or a ASP page).

MacDonald.book Page 162 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 163

Out of these methods, the most commonly used are UrlEncode()/UrlDecode() and
HtmlEncode()/HtmlDecode(). These functions change a string into a representation that
can safely be used as part of a URL or displayed in a web page. For example, imagine you
want to display this text on a web page:

"�����	�%��
�������

If you try to write this information to a page or place it inside a control, you end up with
this instead:

"�����	�%��

The problem is that the browser has tried to interpret the <here> as an HTML tag. A
similar problem occurs if you actually use valid HTML tags. For example, consider this text:

+�����
������������������	1

Not only will the text not appear, but the browser will interpret it as an instruction
to make the text that follows bold. To circumvent this automatic behavior, you need to
convert potential problematic values to their special HTML equivalents. For example,
< becomes < in your final HTML page, which the browser displays as the < character.

You can perform this transformation on your own, or you can circumvent the problem
by using the InnerText property. When you set the contents of a control using InnerText,
any illegal characters are automatically converted into their HTML equivalents. However,
this won’t help if you want to set a tag that contains a mix of embedded HTML tags and
encoded characters. It also won’t be of any use for controls that don’t provide an InnerText
property, such as the Label web control you’ll examine in the next chapter. In these cases,
you can use the HtmlEncode() method to replace the special characters. Here’s an example:

���)���������	���"�����	�%��
����������1�����������*+,-�����<�������

������%����%����
����	�����	���"�����	�%��
��������

���� (����*������!����� *���"���
�:�"�����	�%��
��������=�

Or consider this example, which mingles real HTML tags with text that needs to be
encoded:

���� (����*�������+��������
�������������������

���� (����*����C��!����� *���"���
�:�����=�C����	1 ��

Figure 5-9 shows the results of successfully and incorrectly encoding special HTML
characters. You can refer to the HtmlEncodeTest.aspx page included with the examples
for this chapter.

MacDonald.book Page 163 Tuesday, December 13, 2005 1:11 PM

164 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

Figure 5-9. Encoding special HTML characters

The HtmlEncode() method is particularly useful if you’re retrieving values from a data-
base and you aren’t sure whether the text is valid HTML. You can use the HtmlDecode()
method to revert the text to its normal form if you need to perform additional operations
or comparisons with it in your code. Table 5-13 lists some special characters that need to
be encoded.

Table 5-13. Common HTML Special Characters

Similarly, the UrlEncode() method changes text into a form that can be used in a URL.
Generally, this allows information to work as a query string variable, even if it contains
spaces and other characters that aren’t allowed in a URL. You’ll see this technique dem-
onstrated in Chapter 9.

Result Description Encoded Entity
Nonbreaking space

< Less-than symbol <

> Greater-than symbol >

& Ampersand &

" Quotation mark "

MacDonald.book Page 164 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 165

ASP.NET Configuration
The last topic you’ll consider in this chapter is the ASP.NET configuration file system.

Every web server starts with some basic settings that are defined in two configuration
files in the c:\[WinDir]\Microsoft.NET\Framework\[Version]\Config directory, where
[Version] is the version number of the .NET Framework. These two files are machine.config
and web.config. Generally, you won’t edit either of these files manually, because they affect
the entire computer. Instead, you’ll create a web.config in your web application folder.
Using that file, you can set additional settings or override the defaults that are configured
elsewhere.

The .config files have several advantages over traditional ASP configuration:

They are never locked: As described in the beginning of this chapter, you can update
web.config settings at any point, and ASP.NET will smoothly transition to a new appli-
cation domain.

They are easily accessed and replicated: Provided you have the appropriate network
rights, you can change a web.config file from a remote computer. You can also copy
the web.config file and use it to apply identical settings to another application or
another web server that runs the same application in a web farm scenario.

The settings are easy to edit and understand: The settings in the web.config file are
human-readable, which means they can be edited and understood without needing a
special configuration tool. In the future, it’s likely that Microsoft will provide a graphi-
cal tool that automates web.config changes. Even without it, you can easily add or
modify settings using a text editor such as Notepad.

■Note With ASP.NET, you don’t need to worry about the IIS metabase. However, you still can’t perform a
few tasks with a web.config file. For example, you can’t create or remove a virtual directory. Similarly, you
can’t change file mappings. If you want the ASP.NET service to process requests for additional file types (such
as HTML or a custom file type you define), you must use IIS Manager, as described in Chapter 12.

The web.config File

The web.config file uses a predefined XML format. The entire content of the file is nested
in a root <configuration> element. This element contains a <system.web> element, which
is used for ASP.NET settings. Inside the <system.web> element are separate elements for
each aspect of configuration.

MacDonald.book Page 165 Tuesday, December 13, 2005 1:11 PM

166 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

Here’s the basic skeletal structure of the web.config file:

�Q�������������I @������
��1����5A��Q�

������1�	�����

����������� %���

���������R55������1�	��������������1������ �55�

������������ %���

�������1�	�����

This example adds a comment in the place where you’d normally find additional settings.
XML comments are bracketed with the <!-- and --> character sequences, as shown here:

�R55�+���������������	������	��O,-�������� �55�

■Tip To learn more about XML, the format used for the web.config file, you can refer to Chapter 17.

You can include as few or as many configuration sections as you want. For example, if
you need to specify special error settings, you could add just the <customError> group.
Note that the web.config file is case-sensitive, like all XML documents, and starts every
setting with a lowercase letter. This means you cannot write <CustomErrors> instead of
<customErrors>.

If you want an at-a-glance look at all the available settings, head to the
c:\[WinDir]\Microsoft.NET\Framework\[Version]\Config directory, and look at the
web.config.comments file. This file consists of XML comments that show the available
options for every possible setting. You can also look up individual tag names in the
index of the MSDN Help. We’ll describe individual configuration sections in this book
when discussing the related topic. For example, in Chapter 9, we’ll describe the settings
in the <sessionState> group.

Nested Configuration

ASP.NET uses a multilayered configuration system that allows you to use different set-
tings for different parts of your application. To use this technique, you need to create
additional subdirectories inside your virtual directory. These subdirectories can contain
their own web.config files with additional settings.

Subdirectories inherit web.config settings from the parent directory. For example,
imagine you create a website in the directory c:\ASP.NET\TestWeb. Inside this directory,
you create a folder named Secure. Pages in the c:\ASP.NET\TestWeb\Secure directory
can acquire settings from three files, as shown in Figure 5-10.

MacDonald.book Page 166 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 167

Figure 5-10. Configuration inheritance

Any machine.config or web.config settings that aren’t explicitly overridden in the
c:\ASP.NET\TestWeb\Special\web.config file will still apply to the SecureHelloWorld.aspx
page. In this way, subdirectories can specify just a small set of settings that differ from the
rest of the web application. One reason you might want to use multiple directories in an
application is to apply different security settings. Files that need to be secured would
then be placed in a dedicated directory with a web.config file that defines more stringent
security settings.

Storing Custom Settings in the web.config File

ASP.NET also allows you to store your own settings in the web.config file, in an element called
<appSettings>. Note that the <appSettings> element is nested in the root <configuration>
element, not the <system.web> element, which contains the other groups of predefined set-
tings. Here’s the basic structure:

�Q�������������I @������
��1����5A��Q�

������1�	�����

�������������)��

���������@AA������������������������)��)��������AA�

�����1��������)��

MacDonald.book Page 167 Tuesday, December 13, 2005 1:11 PM

168 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

����������� %���

���������R55������1�	��������������1������ �55�

������������ %���

�������1�	�����

The custom settings that you add are written as simple string variables. You might want
to use a special web.config setting for several reasons:

To centralize an important setting that needs to be used in many different pages: For
example, you could create a variable that stores a database query. Any page that needs
to use this query can then retrieve this value and use it.

To make it easy to quickly switch between different modes of operation: For example,
you might create a special debugging variable. Your web pages could check for this
variable, and if it’s set to a specified value, output additional information to help you
test the application.

To set some initial values: Depending on the operation, the user might be able to
modify these values, but the web.config file could supply the defaults.

You can enter custom settings using an <add> element that identifies a unique variable
name (key) and the variable contents (value). The following example adds two special
variables, one that contains a database connection string and one that defines a suitable
SQL statement for retrieving sales records:

�Q�������������I @������
��1����5A��Q�

������1�	�����

���	��!�����1��

���������2��	
�����������)

����������	
%����������	���������6�������������)	B�3�6������%	��
1�

���������2��	
�����������
������	
�!C!�#�D��;.,������
1�

����	��!�����1��

��������� %���

���������R55������1�	��������������1������ �55�

���������� %���

�������1�	�����

■Note It’s a good idea to always use the same database connection string in all your pages, because
this ensures that SQL Server can reuse connections for different clients. (The technical term for this
performance-enhancing feature is connection pooling.) This design is so important that ASP.NET actually
defines a <connectionStrings> section in the web.config file, which you can use as an alternative to creating
a custom application setting. You’ll see this technique in action in Chapter 13.

MacDonald.book Page 168 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 169

You can create a simple test page to query this information and display the results,
as shown in the following example (which is provided with the sample code as
ShowSettings.aspx and ShowSettings.aspx.cs). You retrieve custom application settings
from web.config by key name, using the WebConfigurationManager class, which is found
in the System.Web.Configuration namespace. This class provides a static property called
AppSettings with a collection of application settings.

���1�!�����)�� �(�

���1�!�����)�� �()�����������

���1�!�����)�� �����1�	�����

�������	���	����	���!��%!�����1����!�����)�� �(.	1�

9

������������
����
�.	1�8-�	
:=

����9

�����������+��� +�������+����	���%������������%�����

�����������+��� +����C�����������������������1������������

�����������+��� +����C�

����������)�������1�	����,	�	1�� 3��!�����1�K�����������!����1�L�

�����������+��� +����C���������������������

�����������+��� +����C���3�
�%���������������!S-�!�	���������������

�����������+��� +����C��������

�����������+��� +����C��)�������1�	����,	�	1�� 3��!�����1�K�!�����!	����L�

�����������+��� +����C���������

����D

D

Dissecting the Code…

This example introduces a few new details:

• The System.Web.Configuration namespace is imported to make it easier to access
the WebConfigurationManager class.

• The += operator is used to quickly add information to the label. This is equivalent to
writing lblTest.Text = lblText.Text + "[extra content]".

• A few HTML tags are added to the label, including bold tags () to emphasize
certain words and a line break (
) to split the output over multiple lines.

Later, in Part 3 of this book, you’ll learn how to use connection strings and SQL
statements with a database. For now, the simple application just displays the custom
web.config settings, as shown in Figure 5-11.

MacDonald.book Page 169 Tuesday, December 13, 2005 1:11 PM

170 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

Figure 5-11. Displaying custom application settings

Developers commonly ask whether the web.config file constitutes a potential security
risk. Unlike code files, the web.config file can’t be deployed in a compiled form. For that
reason, it might seem like a potential security risk to store information such as a database
access password in plain text. However, ASP.NET is configured, by default, to deny any
requests for .config files. This means a remote user will not be able to access the file
through IIS. Instead, they’ll receive the error message shown in Figure 5-12.

Figure 5-12. Requests for web.config are denied.

MacDonald.book Page 170 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 171

Modifying web.config Settings Programmatically

ASP.NET also allows you to change configuration file settings (including custom applica-
tion settings and any other configuration detail).

However, you need to think twice before you use these features. The web.config file is
never a good solution for state management. Instead, it makes sense as a way to occasion-
ally update a setting that, under normal circumstances, almost never changes. That’s
because changing a configuration setting has a significant cost. In web server terms, file
access is slow, especially when multiple people could be updating the web.config at once
(using the same page simultaneously). However, the real problem is that every time a web
application’s configuration settings change, an entirely new application domain is cre-
ated, as discussed at the beginning of this chapter. Not only does this add overhead, it
also dumps out useful optimization information, such as cached data (which you’ll learn
about in Chapter 26) and application state (Chapter 9). As a rule of thumb, never store fre-
quently changed values in a configuration file—instead, use a database or one of the state
management techniques in Chapter 9.

Now that you know not to abuse this feature, you’re ready to see it in action. However, to
make it work, you need to use a slightly more complex approach. First, you need to use the
WebConfigurionManager.OpenWebConfiguration() method to retrieve a Configuration
object for the current web application. Then, you can use this object to read or change
values. When you want to commit your changes, you simply call Configuration.Save().

Here’s some code that rewrites the application setting example shown earlier so that it
updates one of the settings after reading it:

��������
����
�.	1�8-�	
:��;�������
��<�"����3�1���=

9

�������+��� +�������+����	���%������������%�����

�������+��� +����C�����������������������1������������

�������+��� +����C�

������)�������1�	����,	�	1�� 3��!�����1�K�����������!����1�L�

�������+��� +����C���������������������

�������+��� +����C���3�
�%���������������!S-�!�	���������������

�������+��� +����C��������

�������+��� +����C��)�������1�	����,	�	1�� 3��!�����1�K�!�����!	����L�

�������+��� +����C���������

�������'������������1�	�����������	��������������%���	�����	����

���������1�	����������1��

������)�������1�	����,	�	1�� #���)�������1�	����:6�T��� 3�����	����.	��=�

MacDonald.book Page 171 Tuesday, December 13, 2005 1:11 PM

172 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

����������������	��
���

����	
������������
��������
��������	�����������������

��������������� �	��!"#��������$

���������%����������	��
����&�'%��(�)����
	�� �� ��%�
������	
���� ���

��������
� (���
�

����	
������%�*+$

,

Notice that when you use OpenWebConfiguration(), you supply a path. You get the
configuration information for this path. In this example, the code gets the configuration
for the root web application directory, because it uses the Request.ApplicationPath prop-
erty when calling the OpenWebConfiguration() method.

The first time you request this page, you’ll see the initial setting "SELECT * FROM
Sales". However, the web page has already updated this value. The second time you
request the page, you’ll see the new setting "SELECT Price FROM Sales". You’ll notice
that the second request takes a little longer, because the page needs to be compiled and
cached all over again; the effect of changing a setting in the web.config file has forced the
application domain to restart.

The Website Administration Tool (WAT)

You might wonder why the ASP.NET team went to all the trouble of creating a sophisti-
cated tool like the WebConfigurationManager that performs too poorly to be used in a
typical web application. The reason is because the WebConfigurationManager isn’t really
intended to be used in your web pages. Instead, it’s designed to allow developers to build
custom configuration tools that simplify the work of configuring web applications.
ASP.NET even includes a graphical configuration tool that’s entirely based on the
WebConfigurationManager, although you’d never know it unless you dived into the code.

This tool is called the WAT (Website Administration Tool), and it lets you configure
various parts of the web.config file using a web page interface. To run the WAT to config-
ure the current web project in Visual Studio, select Website ➤ ASP.NET Configuration. A
web browser window will appear (see Figure 5-13). Internet Explorer will automatically
log you on under the current Windows user account, allowing you to make changes.

You can use the WAT to automate the web.config changes you made in the previous
example. To try this, click the Application tab. Using this tab, you can edit or remove
application settings (select the Manage Application Settings link) or create a new setting
(click the Create Application Settings link). Figure 5-14 shows how you can edit the appli-
cation settings you added by hand in the previous example.

MacDonald05.fm Page 172 Tuesday, December 13, 2005 1:23 PM

C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S 173

Figure 5-13. Running the WAT

Figure 5-14. Editing an application setting with the WAT

MacDonald.book Page 173 Tuesday, December 13, 2005 1:11 PM

174 C H A P T E R 5 ■ W E B F O R M F U N D A M E N T A L S

This is the essential idea behind the WAT. You make your changes using a graphical
interface (a web page), and the WAT generates the settings you need and adds them to the
web.config file for your application behind the scenes. Of course, the WAT has a number
of settings for configuring more complex ASP.NET settings, and you’ll see it at work
throughout this book.

The Last Word
This chapter presented you with your first look at web applications, web pages, and con-
figuration. You should now understand how to create an ASP.NET web page and use
HTML server controls.

HTML controls are a compromise between web controls and traditional ASP.NET pro-
gramming. They use the familiar HTML elements but provide a limited object-oriented
interface. Essentially, HTML controls are designed to be straightforward, predictable, and
automatically compatible with existing programs. With HTML controls, the final HTML
page that is sent to the client closely resembles the original .aspx page.

In the next chapter, you’ll learn about web controls, which provide a more sophisti-
cated object interface that abstracts away the underlying HTML. If you’re starting a new
project or need to add some of ASP.NET’s most powerful controls, web controls are the
best option.

MacDonald.book Page 174 Tuesday, December 13, 2005 1:11 PM

175

■ ■ ■

C H A P T E R 6

Web Controls

The previous chapter introduced the event-driven and control-based programming
model of ASP.NET. This model allows you to create programs for the Web using the same
object-oriented, modern code you would use to write a Windows application.

However, HTML server controls really show only a glimpse of what is possible with
ASP.NET’s new server control model. To see some of the real advantages, you need to dive
into the richer and more extensible web controls. In this chapter, you’ll explore the basic
web controls and their class hierarchy. You’ll also delve deeper into ASP.NET’s event han-
dling, learn the details of the web page life cycle, and put your knowledge to work by
creating a web page for designing greeting cards.

Stepping Up to Web Controls
Now that you’ve seen the new model of server controls, you might wonder why you need
additional web controls. But in fact, HTML controls are much more limited than server
controls need to be. For example, every HTML control corresponds directly to an HTML
tag, meaning you’re bound by the limitations and abilities of HTML. Web controls, on the
other hand, have no such restriction. They emphasize the future of web design.

These are some of the reasons you should switch to web controls:

They provide a rich user interface: A web control is programmed as an object but
doesn’t necessarily correspond to a single element in the final HTML page. For
example, you might create a single Calendar or GridView control, which will be
rendered as dozens of HTML elements in the final page. When using ASP.NET
programs, you don’t need to know anything about HTML. The control creates the
required HTML tags for you.

They provide a consistent object model: HTML is full of quirks and idiosyncrasies. For
example, a simple text box can appear as one of three elements, including <textarea>,
<input type="text">, and <input type="password">. With web controls, these three
elements are consolidated as a single TextBox control. Depending on the properties
you set, the underlying HTML element that ASP.NET renders may differ. Similarly, the
names of properties don’t follow the HTML attribute names. For example, controls

MacDonald.book Page 175 Wednesday, December 7, 2005 8:39 PM

176 C H A P T E R 6 ■ W E B C O N T R O L S

that display text, whether it’s a caption or a text box that can be edited by the user,
expose a Text property.

They tailor their output automatically: ASP.NET server controls can detect the type of
browser and automatically adjust the HTML code they write to take advantage of
features such as support for JavaScript. You don’t need to know about the client
because ASP.NET handles that layer and automatically uses the best possible set of
features.

They provide high-level features: You’ll see that web controls allow you to access addi-
tional events, properties, and methods that don’t correspond directly to typical HTML
controls. ASP.NET implements these features by using a combination of tricks.

Throughout this book, you’ll see examples that use the full set of web controls. To
master ASP.NET development, you need to become comfortable with these user-
interface ingredients and understand all their abilities. HTML server controls, on the
other hand, are less important for web development, unless you need to have fine-grained
control over the HTML code that will be generated and sent to the client. They are
de-emphasized in .NET.

Basic Web Control Classes

If you’ve ever created a Windows application before, you’re probably familiar with the
basic set of standard controls, including labels, buttons, and text boxes. ASP.NET provides
web controls for all these standbys. (And if you’ve created .NET Windows applications,
you’ll notice that the class names and properties have many striking similarities, which
are designed to make it easy to transfer the experience you acquire in one type of applica-
tion to another.)

Table 6-1 lists the basic control classes and the HTML elements they generate. Some
controls (such as Button and TextBox) can be rendered as different HTML elements. In this
case, ASP.NET uses the element that matches the properties you’ve set. Also, some controls
have no real HTML equivalent. For example, the CheckBoxList and RadioButtonList con-
trols output as a <table> that contains multiple HTML check boxes or radio buttons.
ASP.NET exposes them as a single object on the server side for convenient programming,
thus illustrating one of the primary strengths of web controls.

Table 6-1. Basic Web Controls

Control Class Underlying HTML Element
Label

Button <input type="submit"> or <input type="button">

TextBox <input type="text">, <input type="password">, or <textarea>

CheckBox <input type="checkbox">

MacDonald.book Page 176 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 177

This table omits some of the more specialized controls used for data, navigation, secu-
rity, and web portals. You’ll see these controls as you learn about the corresponding
feature throughout this book.

The Web Control Tags

ASP.NET tags have a special format. They always begin with the prefix asp: followed by
the class name. If there is no closing tag, the tag must end with />. (This syntax convention
is borrowed from XML, which you’ll learn about in much more detail in Chapter 17.)
Each attribute in the tag corresponds to a control property, except for the runat="server"
attribute, which signals that the control should be processed on the server.

The following, for example, is an ASP.NET TextBox:

��������	
������	�	������	������������

When a client requests this .aspx page, the following HTML is returned. The name is a
special attribute that ASP.NET uses to track the control.

����	�	�����	��	���������	������

Alternatively, you could place some text in the TextBox, set its size, make it read-only,
and change the background color. All these actions have defined properties. For example,
the TextBox.TextMode property allows you to specify SingleLine (the default), MultiLine
(for a textarea type of control), or Password (for an input control that displays all asterisks
when the user types in a value). You can adjust the color using the BackColor and

RadioButton <input type="radio">

Hyperlink <a>

LinkButton <a> with a contained tag

ImageButton <input type="image">

Image

ListBox <select size="X"> where X is the number of rows that are visible at once

DropDownList <select>

CheckBoxList A list or <table> with multiple <input type="checkbox"> tags

RadioButtonList A list or <table> with multiple <input type="radio"> tags

BulletedList An ordered list (numbered) or unordered list (bulleted).

Panel <div>

Table, TableRow, and
TableCell

<table>, <tr>, and <td> or <th>

Control Class Underlying HTML Element

MacDonald.book Page 177 Wednesday, December 7, 2005 8:39 PM

178 C H A P T E R 6 ■ W E B C O N T R O L S

ForeColor properties. And you can tweak the size of the TextBox using the Rows property.
Here’s an example of a customized TextBox:

��������	
������	�	��
���������������������	�������� �����

�!���"�����	��������	#�����#��	$����!�����%������	������������

The resulting HTML uses the textarea element and sets all the required style attributes.
Figure 6-1 shows it in the browser.

�	��	�����������	�	��������%�������������������������	�	�

��	�����&���'�����(������������)�������� ������	��	�����

Figure 6-1. A customized text box

Clearly, it’s easy to create a web control tag. It doesn’t require any understanding of
HTML. However, you will need to understand the control class and the properties that are
available to you.

CASE-SENSITIVITY IN ASP.NET FORMS

The .aspx layout portion of a web page tolerates different capitalization for tag names, property names, and
enumeration values. For example, the following two tags are equivalent, and both will be interpreted correctly
by the ASP.NET engine, even though their case differs:

�����
�		������
�		��*������	���������

��+��&�����,���������	��
�		����,��	(-.���//(-��������

�����&�		������
�		��0������	���������

��+��&���������������	��
�		�����
��������������������

This design was adopted to make .aspx pages behave more like ordinary HTML web pages, which ignore
case completely. However, you can’t use the same looseness in your C# code or in the tags that apply settings
in the web.config file or the machine.config file. Here, case must match exactly.

MacDonald.book Page 178 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 179

Web Control Classes
Web control classes are defined in the System.Web.UI.WebControls namespace. They
follow a slightly more tangled object hierarchy than HTML server controls, as shown in
Figure 6-2.

Figure 6-2. The web control hierarchy

This inheritance diagram includes some controls that you won’t study in this chapter,
including the data controls, such as the GridView and DetailsView, and the validation
controls. You’ll explore these controls in later chapters.

The WebControl Base Class

All web controls begin by inheriting from the WebControl base class. This class defines
the essential functionality for tasks such as data binding and includes some basic proper-
ties that you can use with any control, as described in Table 6-2.

MacDonald.book Page 179 Wednesday, December 7, 2005 8:39 PM

180 C H A P T E R 6 ■ W E B C O N T R O L S

Table 6-2. WebControl Properties

Property Description
AccessKey Specifies the keyboard shortcut as one letter. For example, if you

set this to Y, the Alt+Y keyboard combination will automatically
change focus to this web control. This feature is supported only on
Internet Explorer 4.0 and higher.

BackColor, BorderColor,
and ForeColor

Sets the colors used for the background, foreground, and border
of the control. In most controls, the foreground color sets the text
color.

BorderWidth Specifies the size of the control border.

BorderStyle One of the values from the BorderStyle enumeration, including
Dashed, Dotted, Double, Groove, Ridge, Inset, Outset, Solid,
and None.

Controls Provides a collection of all the controls contained inside
the current control. Each object is provided as a generic
System.Web.UI.Control object, so you will need to cast the
reference to access control-specific properties.

Enabled When set to false, the control will be visible, but it will not be able
to receive user input or focus.

EnableViewState Set this to false to disable the automatic state management for this
control. In this case, the control will be reset to the properties and
formatting specified in the control tag every time the page is posted
back. If this is set to true (the default), the control uses the hidden
input field to store information about its properties, ensuring that
any changes you make in code are remembered.

Font Specifies the font used to render any text in the control as a special
System.Drawing.Font object.

Height and Width Specifies the width and height of the control. For some controls,
these properties will be ignored when used with older browsers.

Page Provides a reference to the web page that contains this control as a
System.Web.UI.Page object.

Parent Provides a reference to the control that contains this control. If
the control is placed directly on the page (rather than inside
another control), it will return a reference to the page object.

TabIndex A number that allows you to control the tab order. The control with
a TabIndex of 0 has the focus when the page first loads. Pressing
Tab moves the user to the control with the next lowest TabIndex,
provided it is enabled. This property is supported only in Internet
Explorer 4.0 and higher.

ToolTip Displays a text message when the user hovers the mouse above the
control. Many older browsers don’t support this property.

Visible When set to false, the control will be hidden and will not be
rendered to the final HTML page that is sent to the client.

MacDonald.book Page 180 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 181

The next few sections describe some of the common concepts you’ll use with almost
any web control, including how to set properties that use units and enumerations and
how to use colors and fonts.

Units

All the properties that use measurements, including BorderWidth, Height, and Width,
require the Unit structure, which combines a numeric value with a type of measurement
(pixels, percentage, and so on). This means when you set these properties in a control tag,
you must make sure to append px (pixel) or % (for percentage) to the number to indicate
the type of unit.

Here’s an example with a Panel control that is 300 pixels wide and has a height equal to
50 percent of the current browser window:

�����1�������'2	��344���� �	2��%45��������������	������������

If you’re assigning a unit-based property through code, you need to use one of the static
methods of the Unit type. Use Pixel() to supply a value in pixels, and use Percentage() to
supply a percentage value:

���������	�	2�����&���344�	����6�	��&7��	

�����������	�'������8��������'��	9

���9��'2	���6�	91���:344;)

���������	�	2�����&���%4�	����6�	��&7��	

�����������	�'�������	8��������'��	9

���9 �	2���6�	91�����	�'�:%4;)

You could also manually create a Unit object and initialize it using one of the supplied
constructors and the UnitType enumeration. This requires a few more steps but allows
you to easily assign the same unit to several controls:

�������	����6�	��&7��	9

6�	���6�	�������6�	:3448�6�	����91���;)

���<��'��	2��6�	��&7��	�	�������������	��������������	��9

���9��'2	�����6�)

���9 �	2�����6�)

MacDonald.book Page 181 Wednesday, December 7, 2005 8:39 PM

182 C H A P T E R 6 ■ W E B C O N T R O L S

Enumerated Values

Enumerations are used heavily in the .NET class library to group a set of related constants.
For example, when you set a control’s BorderStyle property, you can choose one of several
predefined values from the BorderStyle enumeration. In code, you set an enumeration
using the dot syntax:

�	��9
�����-	������
�����-	���9=��2��)

In the .aspx file, you set an enumeration by specifying one of the allowed values as a
string. You don’t include the name of the enumeration type, which is assumed
automatically.

�����$�&����
����������������������	��
���������	������	���

�����	������������

Figure 6-3 shows the label with the altered border.

Figure 6-3. Modifying the border style

Colors

The Color property refers to a Color object from the System.Drawing namespace. You can
create color objects in several ways:

Using an ARGB (alpha, red, green, blue) color value: You specify each value as an
integer from 0 to 255. The alpha component represents the transparency of a color,
and usually you’ll use 255 to make the color completely opaque.

Using a predefined .NET color name: You choose the correspondingly named read-only
property from the Color class. These properties include the 140 HTML color names.

Using an HTML color name: You specify this value as a string using the ColorTranslator
class.

MacDonald.book Page 182 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 183

To use any of these techniques, you must import the System.Drawing namespace,
as follows:

���'�-��	��9=����')

The following code shows several ways to specify a color in code:

�������	����������>�������<!?
������

�	����2����0%%8�������48�'�������0%%8�&������4)

�	��9,����������������9,���<!?
:���2�8����8�'����8�&���;)

�������	�������������'���9@+������

�	��9,����������������9������)

�������	����������>���������#$�����

�	��9,�����������������������	��9,����	��:�
����;)

When defining a color in the .aspx file, you can use any one of the known color names:

��������	
����
���
�
�����������	�����	�����	�	������	������������

The HTML color names that you can use are listed in the MSDN Help. Alternatively, you
can use a hexadecimal color number (in the format #<red><green><blue>) as shown here:

��������	
����
���
�
������� �������	�����	�

��������	�	������	������������

Fonts

The Font property actually references a full FontInfo object, which is defined in the
System.Drawing namespace. Every FontInfo object has several properties that define its
name, size, and style (see Table 6-3).

Table 6-3. FontInfo Properties

Property Description
Name A string indicating the font name (such as Verdana).

Size The size of the font as a FontUnit object. This can represent an
absolute or relative size.

Bold, Italic, Strikeout,
Underline, and Overline

Boolean properties that apply the given style attribute.

MacDonald.book Page 183 Wednesday, December 7, 2005 8:39 PM

184 C H A P T E R 6 ■ W E B C O N T R O L S

In code, you can assign a font by setting the various font properties using the familiar
dot syntax:

�	��9,��	9@�������A�������)

�	��9,��	9
������	���)

You can also set the size using the FontUnit type:

���-���>���������	����.�9

�	��9,��	9-.����,��	6�	9-����)

���-���>�������&����	���.���>�*B������9

�	��9,��	9-.����,��	6�	91��	:*B;)

In the .aspx file, you need to use a special “object walker” syntax to specify object properties
such as Font. The object walker syntax uses a hyphen (-) to separate properties. For example,
you could set a control with a specific font (Tahoma) and font size (40 point) like this:

��������	
����
���!�"���	��
"��#�
��������$ �����	��-.�����	�����	�	�

�����	������������

Or you could set a relative size like this:

��������	
����
���!�"���	��
"��#�
�����������%������	��-.�����	�

����	�	������	������������

Figure 6-4 shows the altered TextBox in this example.

Figure 6-4. Modifying a control’s font

MacDonald.book Page 184 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 185

Focus

Unlike HTML server controls, every web control provides a Focus() method. The Focus()
method affects only input controls (controls that can accept keystrokes from the user).
When the page is rendered in the client browser, the user starts in the focused control.

For example, if you have a form that allows the user to edit customer information, you
might call the Focus() method on the first text box in that form. That way, the cursor
appears in this text box immediately when the page first loads in the browser. If the text
box is partway down the form, the page even scrolls down to it automatically. The user
can then move from control to control using the time-honored Tab key.

If you’re a seasoned HTML developer, you know there isn’t any built-in way to give
focus to an input control. Instead, you need to rely on JavaScript. This is the secret to
ASP.NET’s implementation. When your code is finished processing and the page is ren-
dered, ASP.NET adds an extra block of JavaScript code to the end of your page. This
JavaScript code simply sets the focus to the last control that used the Focus() method. If
you haven’t called Focus() at all, this code isn’t added to the page. If you’ve called it for
more than one control, the JavaScript code set the focus to the last control that called
Focus().

Rather than call the Focus() method programmatically, you can set a control that
should always be focused by setting the DefaultFocus property of the <form> tag:

�>�������,���*��=�>���	,���������	
��0������	����������

You can override the default focus by calling the Focus() method in your code.
Another way to manage focus is using access keys. For example, if you set the AccessKey

property of a TextBox to A, pressing Alt+A focus will switch to the TextBox. Labels can also
get into the game, even though they can’t accept focus. The trick is to set the Label.Associ-
atedControlID property to specify a linked input control. That way, the label transfers focus
to a nearby control.

For example, the following label gives focus to TextBox2 when the keyboard combina-
tion Alt+2 is pressed:

�����$�&���<�����C����0��<�����	�����	���D=�����	
��0������	����������

����	
��0�������$�&�����������	
�������	����������D=�����	
��0����

Focusing and access keys are also supported in non-Microsoft browsers, including
Firefox.

The Default Button

Along with control focusing, ASP.NET also allows you to designate a default button on a
web page. The default button is the button that is “clicked” when the user presses the
Enter key. For example, if your web page includes a form, you might want to make the

MacDonald.book Page 185 Wednesday, December 7, 2005 8:39 PM

186 C H A P T E R 6 ■ W E B C O N T R O L S

submit button into a default button. That way, if the user hits Enter at any time, the page
is posted back and the Button.Click event is fired for that button.

To designate a default button, you must set the HtmlForm.DefaultButton property
with the ID of the respective control, as shown here:

�>�������,���*��=�>���	
�		�������-�&�	������	����������

The default button must be a control that implements the IButtonControl interface.
The interface is implemented by the Button, LinkButton, and ImageButton web controls
but not by any of the HTML server controls.

In some cases, it makes sense to have more than one default button. For example, you
might create a web page with two groups of input controls. Both groups may need a dif-
ferent default button. You can handle this by placing the groups into separate panels. The
Panel control also exposes the DefaultButton property, which works when any input
control it contains gets the focus.

List Controls
The list controls include the ListBox, DropDownList, CheckBoxList, RadioButtonList, and
BulletedList. They all work in essentially the same way but are rendered differently in the
browser. The ListBox, for example, is a rectangular list that displays several entries, while
the DropDownList shows only the selected item. The CheckBoxList and RadioButtonList
are similar to the ListBox, but every item is rendered as a check box or option button,
respectively. Finally, the BulletedList is the odd one out—it’s the only list control that isn’t
selectable. Instead, it renders itself as a sequence of numbered or bulleted items.

All the selectable list controls provide a SelectedIndex property that indicates the
selected row as a zero-based index (just like the HtmlSelect control you used in the previ-
ous chapter). For example, if the first item in the list is selected, the SelectedIndex will be
0. Selectable list controls also provide an additional SelectedItem property, which allows
your code to retrieve the ListItem object that represents the selected item. The ListItem
object provides three important properties: Text (the displayed content), Value (the
hidden value from the HTML markup), and Selected (true or false depending on whether
the item is selected).

In the previous chapter, you used code like this to retrieve the selected ListItem object
from an HtmlSelect control called Currency, as follows:

$�	D	���	��)

	�������������9D	���:��������9-����	��D����;)

MacDonald.book Page 186 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 187

With a web control, you can simplify this with a clearer syntax:

$�	D	���	��)

	�������������9-����	��D	��)

Multiple-Select List Controls

Some list controls can allow multiple selections. This isn’t allowed for the DropDownList or
RadioButtonList, but it is supported for a ListBox, provided you have set the SelectionMode
property to the enumerated value ListSelectionMode.Multiple. The user can then select
multiple items by holding down the Ctrl key while clicking the items in the list. With the
CheckBoxList, multiple selections are always possible.

If you have a list control that supports multiple selections, you can find all the selected
items by iterating through the Items collection of the list control and checking the
ListItem.Selected property of each item. Figure 6-5 shows a simple web page example. It
provides a list of computer languages and indicates which selections the user made when
the OK button is clicked.

Figure 6-5. A simple CheckListBox test

MacDonald.book Page 187 Wednesday, December 7, 2005 8:39 PM

188 C H A P T E R 6 ■ W E B C O N T R O L S

The .aspx file for this page defines CheckListBox, Button, and Label controls, as
shown here:

�5E�1�'��$��'��'����F��<�	�+���	 ������	����

��������,�����2���$�	���	9����9����D�2��	����2���$�	���	��5�

�2	���

�2��������	����������

���		����2���
�����	��		���

��2����

�&����

���>������	2�������	������	����������

�����2����������>����	�����'�����'����'��'����&�����&����

����������2���
��$�	�����2���	������	�������������&�����&����

���������
�		���������"C�����	��"C��"����������"CG����������	������������

�����&�����&����

���������$�&�������&�!����	������	������������

����>����

��&����

��2	���

The code adds items to the CheckListBox at startup and iterates through the collection
when the button is clicked:

���'�-��	��)

���'�-��	��9 �&)

���'�-��	��9 �&96D)

���'�-��	��9 �&96D9 �&���	����)

���'�-��	��9 �&96D9�	�����	����)

��&������	����������2���
�����	���-��	��9 �&96D91�'�

H

�������	��	�������1�'�G$���:�&7��	�������8�-��	��9+���	<�'���;

����H

��������>�:I	2�9D�1��	
���;

��������H

�������������2���	9D	���9<��:���;)

�������������2���	9D	���9<��:��JJ�;)

�������������2���	9D	���9<��:��F�;)

�������������2���	9D	���9<��:�A�����
����K94�;)

�������������2���	9D	���9<��:�A
9@+��;)

�������������2���	9D	���9<��:�1������;)

��������L

����L

MacDonald.book Page 188 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 189

�������	��	����������"CG����:�&7��	�������8�-��	��9+���	<�'���;

����H

���������&�!����	9���	���������2�����&��)

��������>�����2�:$�	D	�����	D	������2���	9D	���;

��������H

������������>�:��	D	��9-����	������	���;

������������H

�������������������<���	��	�	����&��9

�����������������&�!����	9���	�J����&������J���	D	��9���)

������������L

��������L

���������&�!����	9���	�J�����&��)

����L

L

CONTROL PREFIXES

When working with web controls, it’s often useful to use a three-letter lowercase prefix to identify the type of
control. The preceding example (and those in the rest of this book) follows this convention to make user inter-
face code as clear as possible. Some recommended control prefixes are as follows:

• Button: cmd

• CheckBox: chk

• Image: img

• Label: lbl

• List control: lst

• Panel: pnl

• RadioButton: opt

• TextBox: txt

If you’re a veteran programmer, you’ll also notice that this book doesn’t use prefixes to identify data
types. This is in keeping with the new philosophy of .NET, which recognizes that data types can often change
freely and without consequence and that variables often point to full-featured objects instead of simple data
variables.

MacDonald.book Page 189 Wednesday, December 7, 2005 8:39 PM

190 C H A P T E R 6 ■ W E B C O N T R O L S

The BulletedList Control

The BulletedList control is a server-side equivalent of the (unordered list) and
(ordered list) elements. As with all list controls, you set the collection of items that should
be displayed through the Items property. Additionally, you can use the properties in
Table 6-4 to configure how the items are displayed.

If you choose to set the DisplayMode to use hyperlinks, you can react to the
Button.Click event to determine which item was clicked. Here’s an example:

���	��	�������
����	��$�	*G����:�&7��	�������8�
����	��$�	+���	<�'���;

H

�����	��'�	�����	���
����	��$�	*9D	���M�9D����N9���)

����$�&��*9���	���������2�����	����J�	�����)

L

Figure 6-6 shows multiple BulletedList controls with different DisplayMode values.

Table 6-4. Added BulletedList Properties

Property Description

BulletStyle Determines the type of list. Choose from Numbered (1, 2, 3…),
LowerAlpha (a, b, c…) and UpperAlpha (A, B, C…), LowerRoman
(i, ii, iii…) and UpperRoman (I, II, III…), and the bullet symbols Disc,
Circle, Square, or CustomImage (in which case you must set the
BulletStyleImageUrl property).

BulletStyleImageUrl If the BulletStyle is set to Custom, this points to the image that is placed
to the left of each item as a bullet.

FirstBulletNumber In an ordered list (using the Numbered, LowerAlpha, UpperAlpha,
LowerRoman, and UpperRoman styles), this sets the first value. For
example, if you set FirstBulletNumber to 3, the list might read 3, 4, 5 (for
Numbered) or C, D, E (for UpperAlpha).

DisplayMode Determines whether the text of each item is rendered as text (use Text,
the default) or a hyperlink (use HyperLink).

MacDonald.book Page 190 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 191

Figure 6-6. Various BulletedList styles

Table Controls
Essentially, the Table control is built out of a hierarchy of objects. Each Table object con-
tains one or more TableRow objects. In turn, each TableRow object contains one or more
TableCell objects. Each TableCell object contains other ASP.NET controls of HTML
content that displays information. If you’re familiar with the HTML table tags, this rela-
tionship (shown in Figure 6-7) will seem fairly logical.

MacDonald.book Page 191 Wednesday, December 7, 2005 8:39 PM

192 C H A P T E R 6 ■ W E B C O N T R O L S

Figure 6-7. Table control containment

To create a table dynamically, you follow the same philosophy as you would for any
other web control. First, you create and configure the necessary ASP.NET objects. Then,
ASP.NET converts these objects to their final HTML representation before the page is sent
to the client.

Consider the example shown in Figure 6-8. It allows the user to specify a number of
rows and columns as well as whether cells should have borders.

MacDonald.book Page 192 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 193

Figure 6-8. The table test options

When the user clicks the generate button, the table is filled dynamically with sample
data according to the selected options, as shown in Figure 6-9.

Figure 6-9. A dynamically generated table

MacDonald.book Page 193 Wednesday, December 7, 2005 8:39 PM

194 C H A P T E R 6 ■ W E B C O N T R O L S

The .aspx code creates the TextBox, CheckBox, Button, and Table controls:

�5E�1�'��$��'��'����F��<�	�+���	 ������	����

��������,������&�����	9����9����D�2��	�����&�����	��5�

�2	���

�2��������	����������

���		�����&������	��		���

��2����

�&����

���>������	2�������	������	����������

����!����

������������	
������	�	!���������	������������O�&��)

���������

������������	
������	�	����������	�������������&�����&����

����������2���
�������2�
�����������	���������

������������	��1�	�
������<���������������

�����&�����&����

���������
�		�������������	���"��������������	�G����������	���������

��������	������	������&�����&����

�����������&������	&�������	������������

����>����

��&������2	���

You’ll notice that the Table control doesn’t contain any actual rows or cells. To make a
valid table, you would need to nest several layers of tags. The following example creates
a table with a single cell that contains the text A Test Row:

�������&������	&�������	����������

���������&��!���������������	����������

�����������&����������	��<����	�!�����������������	����������

�������I((�D��	�����>����'�	2�����	�������	�8����������������	2���<-19@+�

��������������	����	�'��2���9�((�

������������&�������

����������&��!���

��������&���

The table test web page doesn’t have any nested elements. This means the table will be
created as a server-side control object, but unless the code adds rows and cells, the table
will not be rendered in the final HTML page.

MacDonald.book Page 194 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 195

The TablePage class uses two event handlers. When the page is first loaded, it adds a
border around the table. When the button is clicked, it dynamically creates the required
TableRow and TableCell objects in a loop:

���'�-��	��)

���'�-��	��9 �&)

���'�-��	��9 �&96D)

���'�-��	��9 �&96D9 �&���	����)

���'�-��	��9 �&96D9�	�����	����)

��&������	�����������&�����	���-��	��9 �&96D91�'�

H

�������	��	�������1�'�G$���:�&7��	�������8�-��	��9+���	<�'���;

����H

��������������>'����	2��	�&��P������������9

������������2�������������&�����>��������	2��9�����>��

����������������	2���������	�G���������	�2������9

��������	&�9
�����-	������
�����-	���9D���)

��������	&�9
����� �	2���6�	91���:*;)

����L

�������	��	��������������	�G����:�&7��	�������8�-��	��9+���	<�'���;

����H

�����������!����������	2��������	���������������9

������������2������	�����������>�+��&��A��-	�	������	�	��>����9

��������	&�9���	����9�����:;)

���������	��������D�	3091����:	�	!���9���	;)

���������	��������D�	3091����:	�	����9���	;)

����������&�����������@���������)

��������>���:�	�������4)�����������)����JJ;

��������H

�������������������	����������&��!����&7��	9

��������������&��!������@�����������&��!��:;)

���������������1�	�	2����&��!�����	2����&��9

������������	&�9���	����9<��:���@��;)

MacDonald.book Page 195 Wednesday, December 7, 2005 8:39 PM

196 C H A P T E R 6 ■ W E B C O N T R O L S

������������>���:�	�������4)�����������)����JJ;

������������H

�����������������������	����������&��������&7��	9

��������������������@�����������&������:;)

��������������������@��9���	����+������������:��J����9��-	��':;�J��8�)

��������������������@��9���	�J�����9��-	��'�J��;�)

����������������>�:�2�
�����9�2�����;

����������������H

������������������������@��9
�����-	������
�����-	���9D���)

������������������������@��9
����� �	2���6�	91���:*;)

����������������L

�������������������1�	�	2����&���������	2����&��!��9

�������������������@��9���	����9<��:����@��;)

������������L

��������L

����L

L

This code uses the Controls collection to add child controls. Every container control
provides this property. You could also use the TableCell.Controls collection to add web
controls to each TableCell. For example, you could place an Image control and a Label
control in each cell. In this case, you can’t set the TableCell.Text property. The following
code snippet uses this technique, and Figure 6-10 displays the results:

�������	����������&��������&7��	9

����@�����������&������:;)

�������	��������$�&����&7��	9

$�&����&�@���������$�&��:;)

�&�@��9���	����+������������:��J����9��-	��':;�J��8��J����9��-	��':;�J

���;�&�����)

-��	��9 �&96D9 �&���	����9D��'���'@���������-��	��9 �&96D9 �&���	����9D��'�:;)

�'@��9D��'�6������������9��'�)

MacDonald.book Page 196 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 197

���1�	�	2����&���������	������	2������9

����@��9���	����9<��:�&�@��;)

����@��9���	����9<��:�'@��;)

���1�	�	2����&���������	2����&��!��9

���@��9���	����9<��:����@��;)

Figure 6-10. A table with contained controls

The real flexibility of the table test page is that each Table, TableRow, and TableCell is
a full-featured object. If you want, you can give each cell a different border style, border
color, and text color by setting the corresponding properties.

AutoPostBack and Web Control Events
The previous chapter explained that one of the main limitations of HTML server controls is
their limited set of useful events—they have exactly two. HTML controls that trigger a post-
back, such as buttons, raise a ServerClick event. Input controls provide a ServerChange
event that doesn’t actually fire until the page is posted back.

Server controls are really an ingenious illusion. You’ll recall that the code in an
ASP.NET page is processed on the server. It’s then sent to the user as ordinary HTML.
Figure 6-11 illustrates the order of events in page processing.

MacDonald.book Page 197 Wednesday, December 7, 2005 8:39 PM

198 C H A P T E R 6 ■ W E B C O N T R O L S

Figure 6-11. The page processing sequence

This is the same in ASP.NET as it was in traditional ASP programming. The question is,
how can you write server code that will react to an event that occurs on the client? The
answer is a new innovation called the automatic postback.

The automatic postback submits a page back to the server when it detects a specific user
action. This gives your code the chance to run again and create a new, updated page. Con-
trols that support automatic postbacks include almost all input web controls. Table 6-5
provides a basic list of web controls and their events.

MacDonald.book Page 198 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 199

If you want to capture a change event for a web control, you need to set its AutoPost-
Back property to true. This means that when the user clicks a radio button or check box,
the page will be resubmitted to the server. The server examines the page, loads all the
current information, and then allows your code to perform some extra processing before
returning the page back to the user.

In other words, every time you need to update the web page, it’s actually being sent to
the server and re-created (see Figure 6-12). However, ASP.NET makes this process so
transparent that your code can treat your web page like a continuously running program
that fires events.

This postback system isn’t ideal for all events. For example, some events that you may
be familiar with from Windows programs, such as mouse movement events or key press
events, aren’t practical in an ASP.NET application. Resubmitting the page every time a key
is pressed or the mouse is moved would make the application unbearably slow and
unresponsive.

Table 6-5. Web Control Events

Event Web Controls That Provide It
Click Button, ImageButton

TextChanged TextBox (fires only after the user changes the focus to another control)

CheckChanged CheckBox, RadioButton

SelectedIndexChanged DropDownList, ListBox, CheckBoxList, RadioButtonList

MacDonald.book Page 199 Wednesday, December 7, 2005 8:39 PM

200 C H A P T E R 6 ■ W E B C O N T R O L S

Figure 6-12. The postback processing sequence

MacDonald.book Page 200 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 201

How Postback Events Work

Chapter 1 explained that not all types of web programming use server-side code like
ASP.NET. One common example of client-side web programming is JavaScript, which uses
simple code that’s limited in scope and is executed by the browser. ASP.NET uses the client-
side abilities of JavaScript to bridge the gap between client-side and server-side code.

Here’s how it works: If you create a web page that includes one or more web controls
that are configured to use AutoPostBack, ASP.NET adds a special JavaScript function to
the rendered HTML page. This function is named __doPostBack(). When called, it triggers
a postback, sending data back to the web server.

ASP.NET also adds two additional hidden input fields that are used to pass information
back to the server. This information consists of the ID of the control that raised the event
and any additional information that might be relevant. These fields are initially empty, as
shown here:

����	�	�����2������������GG+A+@��<!?+��������������

����	�	�����2������������GG+A+@�<!?6#+@��������������

The __doPostBack() function has the responsibility for setting these values with the
appropriate information about the event and then submitting the form. A sample
__doPostBack() function is shown here:

�����	����'��'���7�������	��

�I((

����>���	���GG��1��	
���:����	���'�	8�����	<�'����	;�H

������������	2�>�������������	9,���*)

��������	2�>���9GG+A+@��<!?+�9������������	���'�)

��������	2�>���9GG+A+@�<!?6#+@�9������������	<�'����)

��������	2�>���9��&�	:;)

����L

���((�

������	�

Remember, ASP.NET generates the __doPostBack() function automatically, provided
at least one control on the page uses automatic postbacks. This code grows lengthier as
you add more AutoPostBack controls to your page, because the event data must be set for
each control.

Finally, any control that has its AutoPostBack property set to true is connected to the
__doPostBack() function using the onclick or onchange attributes. These attributes indi-
cate what action the browser should take in response to the client-side JavaScript events
onclick and onchange.

The following example shows the tag for a list control named lstBackColor, which posts
back automatically. Whenever the user changes the selection in the list, the client-side

MacDonald.book Page 201 Wednesday, December 7, 2005 8:39 PM

202 C H A P T E R 6 ■ W E B C O N T R O L S

onchange event fires. The browser then calls the __doPostBack() function, which sends
the page back to the server.

������	������	
�������������2��'���GG��1��	
���:P��	
��������P8PP;�

����'��'���7�������	��

In other words, ASP.NET automatically changes a client-side JavaScript event into
a server-side ASP.NET event, using the __doPostBack() function as an intermediary.
Figure 6-13 shows this process.

Figure 6-13. An automatic postback

If you’re a seasoned ASP developer, you may have manually created a solution like this
for traditional ASP web pages. ASP.NET handles these details for you automatically, sim-
plifying life a great deal.

The Page Life Cycle

To understand how web control events work, you need to have a solid understanding of
the page life cycle. Consider what happens when a user changes a control that has the
AutoPostBack property set to true:

1. On the client side, the JavaScript __doPostBack event is invoked, and the page is
resubmitted to the server.

2. ASP.NET re-creates the Page object using the .aspx file.

MacDonald.book Page 202 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 203

3. ASP.NET retrieves state information from the hidden view state field and updates
the controls accordingly.

4. The Page.Load event is fired.

5. The appropriate change event is fired for the control. (If more than one control has
been changed, the order of change events is undetermined.)

6. The Page.Unload event fires, and the page is rendered (transformed from a set of
objects to an HTML page).

7. The new page is sent to the client.

To watch these events in action, it helps to create a simple event tracker application
(see Figure 6-14). All this application does is write a new entry to a list control every time
one of the events it’s monitoring occurs. This allows you to see the order in which events
are triggered.

Figure 6-14. The event tracker

MacDonald.book Page 203 Wednesday, December 7, 2005 8:39 PM

204 C H A P T E R 6 ■ W E B C O N T R O L S

Listing 6-1 shows the markup code for the event tracker, and Listing 6-2 shows the
code-behind class that makes it work.

Listing 6-1. EventTracker.aspx

�5E�1�'��$��'��'����F��<�	�+���	 ������	����

��������,����+���	�������9����9����D�2��	���+���	���������5�

�2	���

�2��������	����������

���		���+���	����������		���

��2����

�&����

���>������	2�������	������	����������

�����23����	�����&��'����	�����>����2��'������	����23�

������������	
�����	�	�����	����������<�	�1��	
�����	����

�����"����	�2��'�����	���2��'������

�����&�����&����

����������2���
������2������	����������<�	�1��	
�����	����

�����"��2������2��'�����	���2��'�����

�����&�����&����

���������!���
�		�������	*�����	����������?����@�����-������

���������<�	�1��	
�����	�����"��2������2��'�����	���2��'�����

���������!���
�		�������	0�����	����������?����@�����-������

���������<�	�1��	
�����	�����"��2������2��'�����	���2��'�����

�����&�����&�����&����

�����23�$�	��>�����	����23�

���������$�	
�������	+���	������	���������� �	2��3%%���

�����������'2	��%4%�������&����

����>����

��&������2	���

Listing 6-2. EventTracker.cs

���'�-��	��)

���'�-��	��9 �&)

���'�-��	��9 �&96D)

���'�-��	��9 �&96D9 �&���	����)

���'�-��	��9 �&96D9�	�����	����)

MacDonald.book Page 204 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 205

��&������	���������+���	����������-��	��9 �&96D91�'�

H

####���	��	�������1�'�G$���:�&7��	�������8�-��	��9+���	<�'���;

####H

########$�':����1�'�G$�������;)

####L

####���	��	�������+���	�������G1��!�����:�&7��	�������8�-��	��9+���	<�'���;

####H

########��� 2���	2��1�'�96�$��������	�������8�	���	�����	�

########���	���2��'��	2����	9

########$�':�1�'�G1��!������;)

####L

####���	��	��������	���2��'��:"&7��	�������8�+���	<�'���;

####H

########���,���	2�����	����D=��>�	2��������9

########����2����Q�����������	�'�	2��"&7��	�	�����	�������	���������9

########�	��'��	��@������::���	���;������;9D=)

########$�':�	��@����J����2��'���;)

####L

####����	������$�':�	��'���	��;

####H

########��	+���	�9D	���9<��:��	��;)

########���-����	�	2�����	�	���	���������	2����	����	2�����	������	

########�����	����������&��9

########��	+���	�9-����	��D���������	+���	�9D	���9����	�(�*)

####L

L

MacDonald.book Page 205 Wednesday, December 7, 2005 8:39 PM

206 C H A P T E R 6 ■ W E B C O N T R O L S

Dissecting the Code…

The following points are worth noting about this code:

• The code writes to the ListBox using a private Log() subroutine. The Log() subrou-
tine adds the text and automatically scrolls to the bottom of the list each time a new
entry is added, thereby ensuring that the most recent entries remain visible.

• All the change events are handled by the same subroutine, CtrlChanged(). The
event handling code uses the source parameter to find out what control sent
the event, and it incorporates that information in the log string.

A Simple Web Page Applet
Now that you’ve had a whirlwind tour of the basic web control model, it’s time to put it to
work with the second single-page utility. In this case, it’s a simple example for a dynamic
e-card generator. You could extend this sample (for example, allowing users to store
e-cards to the database or using the techniques in Chapter 16 to mail notification to card
recipients), but even on its own, this example demonstrates basic control manipulation
with ASP.NET.

The web page is divided into two regions. On the left is an ordinary <div> tag contain-
ing a set of web controls for specifying card options. On the right is a Panel control
(named pnlCard), which contains two other controls (lblGreeting and imgDefault) that
are used to display user-configurable text and a picture. This text and picture represents
the greeting card. When the page first loads, the card hasn’t yet been generated and the
right portion is blank (as shown in Figure 6-15).

■Tip The <div> tag is useful when you want to group text and controls and apply a set of formatting prop-
erties (such as a color or font) to all of them. The <div> tag is used in many of the examples in this book, but
it can safely be omitted—the only change will be the appearance of the formatted page.

MacDonald.book Page 206 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 207

Figure 6-15. The e-card generator

Whenever the user clicks the OK button, the page is posted back and the “card” is
updated (see Figure 6-16).

MacDonald.book Page 207 Wednesday, December 7, 2005 8:39 PM

208 C H A P T E R 6 ■ W E B C O N T R O L S

Figure 6-16. A user-configured greeting card

The .aspx layout code is straightforward. Of course, the sheer length of it makes it diffi-
cult to work with efficiently. This is an ideal point to start considering Visual Studio, which
will handle the .aspx details for you automatically and won’t require you to painstakingly
format and organize the user interface markup tags. Here’s the code:

�5E�1�'��$��'��'����F��<�	�+���	 ������	����

����D�2��	���?���	�'����#����������,����?���	�'����#����9����9����5�

�2	���

�2��������	����������

�����		���?���	�'������#������		���

��2����

MacDonald.book Page 208 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 209

�&����

���>������	2�������	������	����������

�����I((�����	�����		�&�	����>	���	�>�������	�9�((�

��������

######&'��#(���#���#���#)
���
��*#��+

�������2�������&���'�������������&����

�����������=���=���$�	������	
��������������	���������� �	2��*RB���

����������'2	��00������&�����&����

�������2�������>��	��&����

�����������=���=���$�	������	,��	@���������	���������� �	2��*RB���

����������'2	��00�������&�����&����

������-���>�����������>��	��.���&����

��������������	
������	�	,��	-.�������	�������������&�����&����

�������2�������&�������	�����&����

�����������!���
�		��$�	������	
�����������	���������� �	2��*SS���

����������'2	��%R�������&�����&����

������������2���
�������2�1�	���������	���������

�����������	��<���	2��=�>���	�1�	������������2���
����&�����&����

������+�	���	2��'���	�'�	��	�&������&����

��������������	
������	�	?���	�'������	���������� �	2��0B4������'2	��T%���

�����������	#�����#��	$�������&�����&����

�����������
�		���������6���	���"����������6���	�G�����

������������	���������� �	2��S*������'2	��0B�������	��6���	�����

���������

####&'��#(���#�#���#)���*#��+

���������1������������������	�����U(D@=+/��*4*)�$+,���3*3��)�1"-D�D"@��

�&����	�)

�������"1��*K��������	���������� �	2��33R������'2	��BT*���

���������.��	��<�'������	�����&����O�&��)

���������$�&�������&�?���	�'������	���������� �	2��0%K���

��������'2	��*%4�������&�����&�����&����

���������D��'������'=�>���	������	���������� �	2��0*0���

��������'2	��*K4������

����������1�����

����>����

��&������2	���

The code follows the familiar pattern with an emphasis on two events: the Page.Load
event, where initial values are set, and the Button.Click event, where the card is generated.

MacDonald.book Page 209 Wednesday, December 7, 2005 8:39 PM

210 C H A P T E R 6 ■ W E B C O N T R O L S

The using statements are omitted from the following listing, because the basic set of
required namespaces should be familiar to you by now:

��&������	���������?���	�'����#�������-��	��9 �&96D91�'�

H

�������	��	�������1�'�G$���:�&7��	�������8�-��	��9+���	<�'���;

����H

��������>�:I	2�9D�1��	
���;

��������H

���������������-�	���������	���9

��������������	
��������9D	���9<��:� 2	��;)

��������������	
��������9D	���9<��:�!���;)

��������������	
��������9D	���9<��:�?�����;)

��������������	
��������9D	���9<��:�
����;)

��������������	
��������9D	���9<��:��������;)

���������������-�	�>��	���	���9

��������������	,��	@���9D	���9<��:������@���!�����;)

��������������	,��	@���9D	���9<��:�<����;)

��������������	,��	@���9D	���9<��:�A�������;)

��������������	,��	@���9D	���9<��:���2����;)

���������������-�	�&�������	������	����&������'����������>

���������������$�	D	����&7��	�9

������������$�	D	���	���������$�	D	��:;)

����������������2��	���	��	�����	���	2��������>�	2����	��9

������������	��9���	���
�����-	���9@���9��-	��':;)

����������������2��	�����������������	2�������������'��	�'��

���������������>����	2���������	��9�����&	���	2�������8����

������������������	����	�	2���������	���������	������	�'��8

�������������������	2���������	�	2�����&���	�����	��'����	

�������������������&�����������	2����#$���'�9

������������	��9A�������::�	;
�����-	���9@���;9��-	��':;)

���������������<���	2��	��9

��������������	
�����9D	���9<��:	��;)

MacDonald.book Page 210 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 211

���������������@��������	�	2����������>���	����	2���&�������	����9

������������	���������$�	D	��:;)

������������	��9���	���
�����-	���9=��&��9��-	��':;)

������������	��9A�������::�	;
�����-	���9=��&��;9��-	��':;)

��������������	
�����9D	���9<��:	��;)

������������	���������$�	D	��:;)

������������	��9���	���
�����-	���9-���9��-	��':;)

������������	��9A�������::�	;
�����-	���9-���;9��-	��':;)

��������������	
�����9D	���9<��:	��;)

���������������-����	�	2��>��	�&��������	��9

��������������	
�����9-����	��D�������4)

���������������-�	�	2����	���9

�������������'=�>���	9D��'�6��������>���	��9��'�)

��������L

����L

�������	��	����������6���	�G����:�&7��	�������8�-��	��9+���	<�'���;

����H

�����������6���	��	2�������9

���������������9
����������������9,���@���:��	
��������9-����	��D	��9���	;)

�����������6���	��	2��>��	9

���������&�?���	�'9,��	9@��������	,��	@���9-����	��D	��9���)

��������>�:D�	3091����:	�	,��	-.�9���	;���4;

��������H

�������������&�?���	�'9,��	9-.���

��������������,��	6�	91��	:D�	3091����:	�	,��	-.�9���	;;)

��������L

�����������6���	��	2��&�������	���9��2����Q�����	��������������	���9

�����������,��	8�	2���������>�	2����	�	�����������	���>�������	��'

������������	������	�'��9�@��	8�	2���	�'�����������	���	�����������

�����������	2��
�����-	�����������	��9

���������	�&����A�������D�	3091����:��	
�����9-����	��D	��9A����;)

���������������9
�����-	������:
�����-	���;&�����A����)

MacDonald.book Page 211 Wednesday, December 7, 2005 8:39 PM

212 C H A P T E R 6 ■ W E B C O N T R O L S

�����������6���	��	2����	���9

��������>�:�2�1�	���9�2�����;

��������H

�������������'=�>���	9A�&�����	���)

��������L

������������

��������H

�������������'=�>���	9A�&�����>����)

��������L

�����������-�	�	2��	��	9

���������&�?���	�'9���	���	�	?���	�'9���)

����L

L

As you can see, this example limits the user to a few preset font and color choices. The
code for the BorderStyle option is particularly interesting. The lstBorder control has a list
that displays the text name of one of the BorderStyle enumerated values. You’ll remember
from the introductory chapters that every enumerated value is really an integer with a
name assigned to it. The lstBorder also secretly stores the corresponding number so that
the code can retrieve the number and set the enumeration easily when the user makes a
selection and the cmdUpdate_Click event handler fires.

Improving the Greeting Card Applet

ASP.NET pages have access to the full .NET class library. With a little exploration, you’ll
find classes that might help the greeting-card maker, such as tools that let you retrieve all
the known color names and all the fonts installed on the web server.

For example, you can fill the lstFontName control with a list of fonts using the special
System.Drawing.Text.InstalledFontCollection class. Here’s the code you’ll need:

���?�	�	2����	��>������&���>��	�8���������	2���	��	2��>��	���	9

-��	��9=����'9���	9D��	�����,��	������	���>��	�)

>��	��������-��	��9=����'9���	9D��	�����,��	������	��:;)

>�����2�:,��	,�����>�������>��	�9,�����;

H

������	,��	@���9D	���9<��:>����9@���;)

L

Figure 6-17 shows the resulting font list.

MacDonald.book Page 212 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 213

Figure 6-17. The font list

You can also get a list of color names from the System.Drawing.KnownColor enumera-
tion. To do this, you use one of basic enumeration features: the static Enum.GetNames()
method, which inspects an enumeration and provides an array of strings, with one string
for each value in the enumeration. A minor problem with this approach is that it includes
system environment colors (for example, Active Border) in the list. It may not be obvious
to the user what colors these values represent. Still, this approach works well for this
simple application.

���?�	�	2����	��>�������9

�	��'MN������<�������+���9?�	@����:	����>:-��	��9=����'9C���������;;)

��	
��������9=�	�-�������������<����)

��	
��������9=�	�
��:;)

This web page can then use data binding to automatically fill the list control with infor-
mation from the ColorArray. You’ll explore data binding in much more detail in Chapter 14.

You can use a similar technique to fill in BorderStyle options:

���-�	�&�������	������	���9

�	��'MN�&�����-	���<�������+���9?�	@����:	����>:
�����-	���;;)

��	
�����9=�	�-��������&�����-	���<����)

��	
�����9=�	�
��:;)

This code raises a new challenge: how do you convert the value that the user selects
into the appropriate constant for the enumeration? When the user chooses a border style
from the list, the SelectedItem property will have a text string like "Groove". But to apply
this border style to the control, you need a way to determine the enumerated constant
that matches this text.

MacDonald.book Page 213 Wednesday, December 7, 2005 8:39 PM

214 C H A P T E R 6 ■ W E B C O N T R O L S

You can handle this problem in a few ways. (Earlier, you saw an example in which the
enumeration integer was stored as a value in the list control.) In this case, the most direct
approach involves using an advanced feature called a TypeConverter. A TypeConverter is
a special class that is able to convert from a specialized type (in this case, the BorderStyle
enumeration) to a simpler type (such as a string), and vice versa.

To access this class, you need to import the System.ComponentModel namespace:

���'�-��	��9��������	#����)

You can then add the following code to the cmdUpdate_Click event handler:

���,���	2����������	������������	���>���	2��
�����-	�����������	��9

����������	�������	�������=�����	��9?�	������	��:	����>:
�����-	���;;)

���6���	��	2��&�������	�������'�	2��������>����	2��������	��9

�������9
�����-	����������	9������	,���-	��':

����	
�����9-����	��D	��9���	;)

Don’t worry if this example introduces a few features that look entirely alien! These fea-
tures are more advanced (and aren’t tied specifically to ASP.NET). However, they show
you some of the flavor that the full .NET class library can provide for a mature application.

Generating the Cards Automatically

The last step is to use ASP.NET’s automatic postback events to make the card update
dynamically every time an option is changed. The OK button could now be used to submit
the final, perfected greeting card, which might then be e-mailed to a recipient or stored in
a database.

To configure the controls so they automatically trigger a page postback, simply add the
AutoPostBack="true" attribute to each user input control. An example is shown here:

���2�������&���'�������������&����

�������=���=���$�	������	
�����������,�
-
����).����,�������	���������

������� �	2��*RB������'2	��00������&�����&����

Next, you need to create an event handler that can handle the change events. To save a
few steps, you can use the same event handler for all the input controls. All the event
handler needs to do is call the update routine that regenerates the greeting card.

���	��	����������	����2��'��:�&7��	�������8�-��	��9+���	<�'���;

H

�������!�>���2�	2��'���	�'������:&������������	��������������;9

����6���	�����:;)

L

MacDonald.book Page 214 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 215

���	��	����������6���	�G����:�&7��	�������8�-��	��9+���	<�'���;

H

�������!�>���2�	2��'���	�'������:&�������	2��&�		�������������;9

����6���	�����:;)

L

���	��	�������6���	�����:;

H

�������:�2�������	2�	�������	2��'���	�'������'����2���9;

L

Next, alter the control tags so that the changed event of each input control is connected
to the ControlChanged event handler. You’ll notice that the name of the change event
depends on the control. For example, the TextBox provides a TextChanged event, the
ListBox provides a SelectedIndexChanged event, and so on.

With these changes, it’s easy to perfect the more extensive card-generating program
shown in Figure 6-18. The full code for this application is provided with the online
samples.

■Tip Automatic postback isn’t always best. Sometimes an automatic postback can annoy a user, especially
when the user is working over a slow connection or when the server needs to perform a time-consuming
option. For that reason, it’s sometimes best to use an explicit submit button and not enable AutoPostBack for
most input controls.

A WORD ABOUT CONVENTIONS

From this point on, the examples will adopt a few conventions designed to make code examples more concise
and readable:

• The .aspx layout file is rarely shown with an example, unless it requires special coding (such as the
creation of a template or data-binding syntax, two topics you’ll explore in Part 3 of this book). The .aspx
files are really nothing more than an ordering of standard control tags.

• The using statements in the code-behind file are omitted, unless they reference an unusual namespace
that hasn’t been identified. Generally, you’ll reuse the same standard block of using statements for each
code-behind file.

These changes won’t affect you if you’re using an IDE such as Visual Studio, which generates the .aspx
file, control variables, and most using statements automatically. And if you want to see the full details, you’ll
find them in the downloadable code.

MacDonald.book Page 215 Wednesday, December 7, 2005 8:39 PM

216 C H A P T E R 6 ■ W E B C O N T R O L S

Figure 6-18. A more extensive card generator

MacDonald.book Page 216 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 6 ■ W E B C O N T R O L S 217

The Last Word
This chapter introduced you to web controls and their object interface. As you continue
through this book, you’ll learn more about the web controls. The following highlights are
still to come:

• In Chapter 8, you’ll learn about advanced controls such as the AdRotator, the
Calendar, and the validation controls. You’ll also learn about specialized container
controls, like the MultiView and Wizard.

• In Chapter 11, you’ll learn about navigation controls like the TreeView and Menu.

• In Chapter 15, you’ll learn about the GridView, DetailsView, and FormView—
high-level web controls that let you manipulate a complex table of data from any
data source.

• In Chapter 25, you’ll learn how you can use .NET inheritance to create your own
customized web controls.

For a good reference that shows each web control and lists its important properties,
refer to the MSDN Help.

MacDonald.book Page 217 Wednesday, December 7, 2005 8:39 PM

MacDonald.book Page 218 Wednesday, December 7, 2005 8:39 PM

219

■ ■ ■

C H A P T E R 7

Tracing, Logging, and Error
Handling

No software can run free from error, and ASP.NET applications are no exception. Sooner
or later your code will be interrupted by a programming mistake, invalid data, unexpected
circumstances, or even hardware failure. Novice programmers spend sleepless nights
worrying about errors. Professional developers recognize that bugs are an inherent part
of software applications and code defensively, testing assumptions, logging problems,
and writing error handling code to deal with the unexpected.

In this chapter, you’ll learn the error handling and debugging practices that can defend
your ASP.NET applications against common errors, can track user problems, and can
help you solve mysterious issues. You’ll learn how to use structured exception handling,
how to use logs to keep a record of unrecoverable errors, and how to configure custom
web pages for common HTTP errors. You’ll also learn how to use page tracing to see diag-
nostic information about ASP.NET pages.

Common Errors
Errors can occur in a variety of situations. Some of the most common causes of errors
include attempts to divide by zero (usually caused by invalid input or missing informa-
tion) and attempts to connect to a limited resource such as a file or a database (which can
fail if the file doesn’t exist, the database connection times out, or the code has insufficient
security credentials).

MacDonald07.fm Page 219 Tuesday, December 6, 2005 9:25 PM

220 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Another infamous type of error is the null reference exception, which usually occurs
when a program attempts to use an uninitialized object. As a .NET programmer, you’ll
quickly learn to recognize and resolve this common but annoying mistake. The following
code example shows the problem in action:

���������	
���������

���

����������	��
����
�����
������������	������������������������	
���

������������	����
�����������	��������������	��� ��������!"��	�	��	

��������#	���
�	$

�������������	
���	�
���%�&���&

���������	
����������%��������������	
���

���

�����
�����'�(�!�������	����!"��	�����!����
�
	
��
)��

����
	��	�������'�������

�������������	
���	�
���%�&���&

When an error occurs in your code, .NET checks to see whether any active error han-
dlers appear in the current scope. If the error occurs inside a function, .NET searches for
local error handlers and then checks for any active error handlers in the calling code. If no
error handlers are found, the page processing is aborted, and an error page is displayed in
the browser. Depending on whether the request came from the local computer or a
remote client, the error page may show a detailed description (as shown in Figure 7-1) or
a generic message. You’ll explore this topic a little later in the “Error Pages” section of this
chapter.

Even if an error is the result of invalid input or the failure of a third-party component,
an error page can shatter the professional appearance of any application. The application
users end up with a feeling that the application is unstable, insecure, or of poor quality—
and they’re at least partially correct.

If an ASP.NET application is carefully designed and constructed, an error page will
almost never appear. Errors may still occur because of unforeseen circumstances, but
they will be caught in the code and identified. If the error is a critical one that the applica-
tion cannot solve on its own, it will report a more useful (and user-friendly) page of
information that might include a link to a support e-mail or phone number where the cus-
tomer can receive additional assistance. You’ll look at those techniques in this chapter.

MacDonald07.fm Page 220 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 221

Figure 7-1. A sample error page

Exception Handling
Most .NET languages support structured exception handling. Essentially, when an error
occurs in your application, the .NET Framework creates an exception object that represents
the problem. You can catch this object using an exception handler. However, if you fail to
use an exception handler, your code will be aborted, and the user will see an error page.

Structured exception handling provides several key features:

Exceptions are object-based: Each exception provides a significant amount of diag-
nostic information wrapped into a neat object, instead of a simple message and error
code. These exception objects also support an InnerException property that allows you
to wrap a generic error over the more specific error that caused it. You can even create
and throw your own exception objects.

MacDonald07.fm Page 221 Tuesday, December 6, 2005 9:25 PM

222 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Exceptions are caught based on their type: This allows you to streamline error handling
code without needing to sift through obscure error codes.

Exceptions handlers use a modern block structure: This makes it easy to activate and
deactivate different error handlers for different sections of code and handle their errors
individually.

Exception handlers are multilayered: You can easily layer exception handlers on top of
other exception handlers, some of which may check only for a specialized set of errors.

Exceptions are a generic part of the .NET Framework: This means they’re completely
cross-language compatible. Thus, a .NET component written in C# can throw an
exception that you can catch in a web page written in VB.

The Exception Class

Every exception object derives from the base class System.Exception. The Exception class
includes the essential functionality for identifying any type of error. Table 7-1 lists its most
important members.

Table 7-1. Exception Properties

Member Description
HelpLink A link to a help document, which can be a relative or fully qualified URL

(uniform resource locator) or URN (uniform resource name), such as
file:///C:/ACME/MyApp/help.html#Err42. The .NET Framework doesn’t
use this property, but you can set it in your custom exceptions if you want
to use it in your web page code.

InnerException A nested exception. For example, a method might catch a simple file IO
(input/output) error and create a higher-level “operation failed” error.
The details about the original error could be retained in the
InnerException property of the higher-level error.

Message Contains a text description with a significant amount of information
describing the problem.

Source The name of the assembly where the exception was raised.

StackTrace A string that contains a list of all the current method calls on the stack, in
order of most to least recent. This is useful for determining where the
problem occurred.

TargetSite A reflection object (an instance of the System.Reflection.MethodBase
class) that provides some information about the method where the error
occurred. This information includes generic method details such as the
procedure name and the data types for its parameter and return value. It
doesn’t contain any information about the actual parameter values that
were used when the problem occurred.

GetBaseException() This method is useful for nested exceptions that may have more than one
layer. It retrieves the original (deepest nested) exception by moving to the
base of the InnerException chain.

MacDonald07.fm Page 222 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 223

When you catch an exception in an ASP.NET, it won’t be an instance of the generic
System.Exception class. Instead, it will be an object that represents a specific type of error.
This object will be based on one of the many classes that inherit from System.Exception.
These include diverse classes such as DivideByZeroException, ArithmeticException,
System.IO.IOException, System.Security.SecurityException, and many more. Some of
these classes provide additional details about the error in additional properties.

Visual Studio provides a useful tool to browse through the exceptions in the .NET class
library. Simply select Debug ➤ Exceptions from the menu (you’ll need to have a project
open in order for this work). The Exceptions dialog box will appear. Expand the Common
Language Runtime Exceptions group, which shows a hierarchical tree of .NET exceptions
arranged by namespace (see Figure 7-2).

Figure 7-2. Visual Studio’s exception viewer

The Exceptions dialog box allows you to specify what exceptions should be handled by
your code when debugging and what exceptions will cause Visual Studio to enter break
mode immediately. That means you don’t need to disable your error handling code to
troubleshoot a problem. For example, you could choose to allow your program to handle
a common FileNotFoundException (which could be caused by an invalid user selection)
but instruct Visual Studio to pause execution if an unexpected DivideByZero exception
occurs.

To set this up, add a check mark in the Thrown column next to the entry for the
DivideByZero exception. This way, you’ll be alerted as soon as the problem occurs. If you
don’t add a check mark to the Thrown column, your code will continue, run any exception
handlers it has defined, and try to deal with the problem. You’ll be notified only if an error
occurs and no suitable exception handler is available.

MacDonald07.fm Page 223 Tuesday, December 6, 2005 9:25 PM

224 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

The Exception Chain

Figure 7-3 shows how the InnerException property works. In this case, a
FileNotFoundException led to a NullReferenceException, which led to a custom
UpdateFailedException. The code returns an UpdateFailedException that references the
NullReferenceException, which references the original FileNotFoundException.

Figure 7-3. Exceptions can be chained together.

The InnerException property is an extremely useful tool for component-based pro-
gramming. Generally, it’s not much help if a component reports a low-level problem such
as a null reference or a divide-by-zero error. Instead, it needs to communicate a more
detailed message about which operation failed and what input may have been invalid.
The calling code can then often correct the problem and retry the operation.

On the other hand, sometimes you’re debugging a bug that lurks deep inside the com-
ponent itself. In this case, you need to know precisely what caused the error—you don’t
want to replace it with a higher-level exception that could obscure the root problem.
Using an exception chain handles both these scenarios: you receive as many linked
exception objects as needed, which can specify information from the least to the most
specific error condition.

MacDonald07.fm Page 224 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 225

Handling Exceptions
The first line of defense in an application is to check for potential error conditions before
performing an operation. For example, a program can explicitly check whether the divisor
is 0 before performing a calculation or if a file exists before attempting to open it:

����
*
����$%�+

,

�������-	#�������	���
*
�����������!���!���
*
����

.

������	���-��/
���0�
�	��&���
���	�	&

,

������������������������	������
���	�	��
���

�������1���*��(�������������	
������������	
��������
���!���������*��
�	����

����������!���������
�	��*�����
�����
�
��	��
��	�(������������
����(��	�� �

.

Even if you perform this basic level of “quality assurance,” your application is still vul-
nerable. For example, you have no way to protect against all the possible file access
problems that occur, including hardware failures or network problems that could arise
spontaneously in the middle of an operation. Similarly, you have no way to validate a user
ID and password for a database before attempting to open a connection—and even if
there were, that technique would be subject to its own set of potential errors. In some
cases, it may not be practical to perform the full range of defensive checks, because they
may impose a noticeable performance drag on your application. For all these reasons, you
need a way to detect and deal with errors when they occur.

The solution is structured exception handling. To use structured exception handling,
you wrap potentially problematic code in the special block structure shown here:

	��

,

�������2
�'������������������������������
������
�����

�������������	
���	������	�!��� �

.

��	��

,

�������3������������!������	��	������������������
	��
	������

.

�
�����

,

��������
���	����������(������������������	����	�����������������������	�

.

MacDonald07.fm Page 225 Tuesday, December 6, 2005 9:25 PM

226 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

The try statement enables error handling. Any exceptions that occur in the following
lines can be “caught” automatically. The code in the catch block will be executed when an
error is detected. And either way, whether a bug occurs or not, the finally section of the
code will be executed last. This allows you to perform some basic cleanup, such as closing
a database connection. The finally code is important because it will execute even if an
error has occurred that will prevent the program from continuing. In other words, if an
unrecoverable exception halts your application, you’ll still have the chance to release
resources.

The act of catching an error neutralizes it. If all you want to do is render a specific error
harmless, you don’t even need to add any code in the catch block of your error handler.
Usually, however, this portion of the code will be used to report the error to the user or log
it for future reference. In a separate component (such as a business object), this code
might handle the exception, perform some cleanup, and then rethrow it to the calling
code, which will be in the best position to remedy it or alert the user. Or, it might actually
create a new exception object with additional information and throw that.

Catching Specific Exceptions

Structured exception handling is particularly flexible because it allows you to catch
specific types of exceptions. To do so, you add multiple catch statements, each one iden-
tifying the type of exception (and providing a new variable to catch it in), as follows:

	��

,

�������2
�'����	�!�������������������

.

��	�������	���4�	�����0����	
������

,

���������	���������������!������
'��������	
����������

.

��	�������	���5���2��������0����	
������

,

���������	��������!����������	
�������������
�
	
��
)����!"��	�

.

MacDonald07.fm Page 226 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 227

An exception will be caught as long as it’s of the same class or if it’s derived from the
indicated class. In other words, if you use this statement:

��	����0����	
������

you will catch any exception, because every exception object is derived from the
System.Exception base class.

Exception blocks work a little like the switch block structure. This means as soon as a
matching exception handler is found, the appropriate catch code is invoked. Therefore,
you should organize your catch statements from most specific to least specific:

	��

,

�������2
�'����	�!�������������������

.

��	�������	���4�	�����0����	
������

,

���������	���������������!������
'��������	
����������

.

��	�������	���5���2��������0����	
������

,

���������	��������!����������	
�������������
�
	
��
)����!"��	�

.

��	�������	���0����	
������

,

���������	����������	�����������

.

Ending with a catch statement for the generic Exception class is often a good idea to
make sure no errors slip through. However, in component-based programming, you
should make sure you intercept only those exceptions you can deal with or recover from.
Otherwise, it’s better to let the calling code catch the original error.

Nested Exception Handlers

When an exception is thrown, .NET tries to find a matching catch statement in the current
procedure. If the code isn’t in a local structured exception block, or if none of the catch
statements matches the exception, the CLR will move up the call stack one level at a time,
searching for active exception handlers.

MacDonald07.fm Page 227 Tuesday, December 6, 2005 9:25 PM

228 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Consider the example shown here, where the Page.Load event handler calls a private
DivideNumbers() function:

���	��	���*�
��6���78�����!"��	�������(�0*��	3�����

,

����	��

����,

��������4
*
��5��!����9(�+

����.

������	����4
*
��:�;���0����	
������

����,

�����������2����	������������

����.

.

��
*�	�����
����4
*
��5��!�������
�������!��(����
�����
*
���

,

������	�������!����
*
���

.

In this example, the DivideNumbers() function lacks any sort of exception handler.
However, the DivideNumbers() function call is made inside an exception handler, which
means the problem will be caught further upstream in the calling code. This is a good
approach because the DivideNumbers() routine could be used in a variety of circum-
stances (or if it’s part of a component, in a variety of different types of applications). It
really has no access to any kind of user interface and can’t directly report an error. Only
the calling code is in a position to determine whether the problem is a serious or minor
one, and only the calling code can prompt the user for more information or report error
details in the web page.

You can also overlap exception handlers in such a way that different exception han-
dlers filter out different types of problems. Here’s one such example:

���	��	���*�
��6���78�����!"��	�������(�0*��	3�����

,

����	��

����,

�����������
�����*������%�<�	3*��������	�4�	��
���5��

����.

������	����4
*
��:�;���0����	
������

����,

�����������2����	������������

����.

.

MacDonald07.fm Page 228 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 229

��
*�	�����
����<�	3*��������	�4�	������4�	�

,

����	��

����,

�����������=���4�	�!���������������������	����	�
�*������	���������������

���������������	�
����	�(������������	��	����*������

����.

������	�������0����	
������

����,

�����������1����������	�!��������	������!����

����.

�����
�����

����,

�����������������	�����	�!����������	
���

����.

.

Dissecting the Code…

You should be aware of the following points:

• If an SqlException occurs during the database operation, it will be caught in the
GetAverageCost() function.

• If a DivideByZeroException occurs (for example, the function attempts to calculate
an average based on a DataSet that contains no rows), the exception will be caught
in the calling Page.Load event handler.

• If another problem occurs (such as a null reference exception), no active exception
handler exists to catch it. In this case, .NET will search through the entire call stack
without finding a matching catch statement in an active exception handler and will
generate a runtime error, end the program, and return a page with exception
information.

Exception Handling in Action

You can use a simple program to test exceptions and see what sort of information is
retrieved. This program allows a user to enter two values and attempts to divide them.
It then reports all the related exception information in the page (see Figure 7-4).

MacDonald07.fm Page 229 Tuesday, December 6, 2005 9:25 PM

230 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Figure 7-4. Catching and displaying exception information

Obviously, you can easily avoid this problem with extra code-safety checks or elegantly
resolve it using the validation controls. However, this code provides a good example of
how you can deal with the properties of an exception object. It also gives you a good idea
about what sort of information will be returned.

Here’s the page class code for this example:

��!�
�����	
���������0����1����
�����	�>�6���

,

�������	��	���*�
����������	�7��
�'��!"��	�������(�0*��	3�����

����,

��������	��

��������,

���������������
�����(�!(������	

��������������%�4��
����6�����	�	3����	

������������!�%�4��
����6�����	�	:����	

�����������������	�%�����!

�������������!�2����	����	�%������	����	�
���

�������������!�2����	�/���������%�������:���'

��������.

����������	����0����	
������

MacDonald07.fm Page 230 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 231

��������,

�������������!�2����	����	�%�&?!@A������>?�!@�&�B�����A������

�������������!�2����	����	�B%�&?!���@?!���@&

�������������!�2����	����	�B%�&?!@������>?�!@�&�B�����������

�������������!�2����	����	�B%�&?!���@?!���@&

�������������!�2����	����	�B%�&?!@�	��'������>?�!@�&�B������	��'�����

�������������!�2����	�/���������%�������2��

��������.

����.

.

Note that as soon as the error occurs, execution is transferred to an exception handler.
The code in the try block isn’t completed. It’s for that reason that the result for the label is
set in the try block. These lines will be executed only if the division code runs error-free.

You’ll see many more examples of exception handling throughout this book. The data
access chapters in Part 3 of this book show the best practices for exception handling when
accessing a database.

Mastering Exceptions

Keep in mind these points when working with structured exception handling:

Break down your code into multiple try/catch blocks: If you put all your code into one
exception handler, you’ll have trouble determining where the problem occurred. You
have no way to “resume” the code in a try block. This means that if an error occurs at
the beginning of a lengthy try block, you’ll skip a large amount of code. The rule of
thumb is to use one exception handler for one related task (such as opening a file and
retrieving information).

Use ASP.NET’s error pages during development: During development, you may not
want to implement portions of your application’s error handling code because it may
mask easily correctable mistakes in your application.

Don’t use exception handlers for every statement: Simple code statements (assigning a
constant value to a variable, interacting with a control, and so on) may cause errors
during development testing but will not cause any future problems once perfected.
Error handling should be used when you’re accessing an outside resource or dealing
with supplied data that you have no control over (and thus may be invalid).

MacDonald07.fm Page 231 Tuesday, December 6, 2005 9:25 PM

232 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Throwing Your Own Exceptions
You can also define and create your own exception objects to represent special error con-
ditions. All you need to do is create an instance of the appropriate exception class and
then use the throw statement.

The next example introduces a modified DivideNumbers() function. It explicitly
checks whether the specified divisor is 0 and then manually creates and throws an
instance of the DivideByZeroException class to indicate the problem, rather than attempt
the operation. Depending on the code, this pattern can save time by eliminating some
unnecessary steps, or it can prevent a task from being initiated if it can’t be completed
successfully.

���	��	���*�
��6���78�����!"��	�������(�0*��	3�����

,

����	��

����,

��������4
*
��5��!����9(�+

����.

������	���4
*
��:�;���0����	
������

����,

�����������2����	������������

����.

.

��
*�	�����
����4
*
��5��!�������
�������!��(����
�����
*
���

,

����
����
*
����%%�+

����,

��������4
*
��:�;���0����	
�������%�����4
*
��:�;���0����	
���

��������	��������

����.

��������

����,

����������	�������!����
*
���

����.

.

MacDonald07.fm Page 232 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 233

Alternatively, you can create a .NET exception object and specify a custom error
message by using a different constructor:

��
*�	�����
����4
*
��5��!�������
�������!��(����
�����
*
���

,

����
����
*
����%%�+

����,

��������4
*
��:�;���0����	
�������%�����4
*
��:�;���0����	
���

����������&���������
���+�����	����
*
����������	�����������	�!���	������&

��������	��������

����.

��������

����,

����������	�������!����
*
���

����.

.

In this case, any ordinary exception handler will still catch the DivideByZeroException.
The only difference is that the error object has a modified Message property that contains
the custom string. Figure 7-5 shows the resulting exception.

Figure 7-5. Standard exception, custom message

MacDonald07.fm Page 233 Tuesday, December 6, 2005 9:25 PM

234 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Throwing an error is most useful in component-based programming. In component-
based programming, your ASP.NET page is creating objects and calling methods from a
class defined in a separately compiled assembly. In this case, the class in the component
needs to be able to notify the calling code (the web application) of any errors. The compo-
nent should handle recoverable errors quietly and not pass them up to the calling code.
On the other hand, if an unrecoverable error occurs, it should always be indicated with an
exception and never through another mechanism (such as a return code). For more infor-
mation about component-based programming, refer to Chapter 24.

If you can find an exception in the class library that accurately reflects the problem that
has occurred, you should throw it. If you need to return additional or specialized informa-
tion, you can create your own custom exception class.

Custom exception classes should always inherit from System.ApplicationException,
which itself derives from the base Exception class. This allows .NET to distinguish
between two broad classes of exceptions—those you create and those that are native to
the .NET Framework.

When you create an exception class, you can add properties to record additional infor-
mation. For example, here is a special class that records information about the failed
attempt to divide by zero:

��!�
�����������	��4
*
��:�;���0����	
���>�3���
��	
��0����	
��

,

�������3�����*��
�!���	������
���	���&�	���&����!���

���������
���
��	�������
�������	������!����

������!�
�����
����4
*
�
��5��!��

.

You can throw this custom error like this:

��
*�	�����
����4
*
��5��!�������
�������!��(����
�����
*
���

,

����
����
*
����%%�+

����,

�����������	��4
*
��:�;���0����	
�������%��������	��4
*
��:�;���0����	
���

������������4
*
�
��5��!���%����!��

��������	��������

����.

��������

����,

����������	�������!����
*
���

����.

.

MacDonald07.fm Page 234 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 235

To perfect the custom exception, you need to supply it with the three standard con-
structors. This allows your exception class to be created in the standard ways that every
exception supports:

• On its own, with no arguments

• With a custom message

• With a custom message and an exception object to use as the inner exception

These constructors don’t actually need to contain any code. All these constructors
need to do is forward the parameters to the base class (the constructors in the inherited
ApplicationException class) using the base keyword, as shown here:

��!�
�����������	��4
*
��:�;���0����	
���>�3���
��	
��0����	
��

,

�������3�����*��
�!���	������
���	���&�	���&����!���

�������
����4
*
�
��5��!��

������!�
�����	��4
*
��:�;���0����	
��� �>�!����

����,.

������!�
�����	��4
*
��:�;���0����	
����	�
���������� �>�!�����������

����,.

������!�
�����	��4
*
��:�;���0����	
����	�
����������(�0����	
���
���� �>

������!�����������(�
����

����,.

.

The third constructor is particularly useful for component programming. It allows
you to set the InnerException property with the exception object that caused the original
problem. The next example shows how you could use this constructor with a component
class called ArithmeticUtility:

��!�
��������3�
	���	
�=	
�
	�0����	
���>�3���
��	
��0����	
��

,

������!�
��3�
	���	
�=	
�
	�0����	
��� �>�!����

����,.

������!�
��3�
	���	
�=	
�
	�0����	
����	�
���������� �>�!�����������

����,.

MacDonald07.fm Page 235 Tuesday, December 6, 2005 9:25 PM

236 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

������!�
��3�
	���	
�=	
�
	�0����	
����	�
����������(�0����	
���
���� �>

������!�����������(�
����

����,.

.

��!�
��������3�
	���	
�=	
�
	�

,

������
*�	�����
����4
*
������
�������!��(����
�����
*
���

����,

��������	��

��������,

��������������	�������!����
*
���

��������.

����������	����0����	
������

��������,

�������������������������	�
������������
���	��	����������	������

�

�������������������������������	�	����������	�����������������	������������

��������������	�����	���	�	��������	�����������

��������������������	�����	���	�	��������	�� ���!"

���������������5���&��	����&�	������������	
���

������������	��������5��

��������.

����.

.

Remember, custom exception classes are really just a standardized way for one class to
communicate an error to a different portion of code. If you aren’t using components or
your own utility classes, you probably don’t need to create custom exception classes.

Logging Exceptions
In many cases, it’s best not only to detect and catch errors but to log them as well. For
example, some problems may occur only when your web server is dealing with a particu-
larly large load. Other problems might recur intermittently, with no obvious causes. To
diagnose these errors and build a larger picture of site problems, you need to log errors
automatically so they can be reviewed later.

The .NET Framework provides a wide range of logging tools. When certain errors occur,
you can send an e-mail, add a database record, or create and write to a file. We describe
many of these techniques in other parts of this book. However, you should keep your

MacDonald07.fm Page 236 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 237

logging code as simple as possible. For example, you’ll probably run into trouble if you try
to log a database error to another table in the database.

One of the best logging tools is provided in the Windows event logs. To view these logs,
select Settings ➤ Control Panel ➤ Administrative Tools ➤ Event Viewers from the Start
menu. By default, you’ll see three logs, as shown in Figure 7-6. You can right-click a log to
clear the events in the log, save log entries, and import an external log file. Table 7-2
describes the logs.

Figure 7-6. The Event Viewer

Each event record identifies the source (generally, the application or service that
created the record), the type of notification (error, information, warning), and the time
it was left. You can also double-click a record to view additional information such as a text

Table 7-2. Windows Event Logs

Log Name Description
Application log Used to track errors or notifications from any application. Generally, you’ll

use this log or create your own.

Security log Used to track security-related problems but generally used exclusively by the
operating system.

System log Used to track operating system events.

MacDonald07.fm Page 237 Tuesday, December 6, 2005 9:25 PM

238 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

description. Figure 7-7 shows an example with an unhandled error that occurred in an
ASP.NET page, which ASP.NET chooses to log.

Figure 7-7. Event information

One of the potential problems with event logs is that they’re automatically overwritten
when the maximum size is reached (typically half a megabyte) as long as they’re of at least
a certain age (typically seven days). This means application logs can’t be used to log criti-
cal information that you need to retain for a long period of time. Instead, they should be
used to track information that is valuable only for a short amount of time. For example,
you can use event logs to review errors and diagnose strange behavior immediately after
it happens, not a month later.

You do have some ability to configure the amount of time a log will be retained and
the maximum size it will be allowed to occupy. To configure these settings, right-click the
application log, and select Properties. You’ll see the Application Properties window
shown in Figure 7-8.

Generally, you should not disable automatic log deletion, because it could cause a
large amount of wasted space and slow performance if information isn’t being regularly
removed. Instead, if you want to retain more log information, set a larger disk space limit.

MacDonald07.fm Page 238 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 239

Figure 7-8. Log properties

Using the EventLog Class

You can interact with event logs in an ASP.NET page by using the classes in the
System.Diagnostics namespace. Import the namespace at the beginning of your code-
behind file:

��
������	���4
�����	
��

The following example rewrites the simple ErrorTest page to use event logging:

��!�
�����	
���������0�������	8���>�6���

,

�������	��	���*�
����������	�7��
�'��!"��	�������(�0*��	3�����

����,

��������	��

��������,

���������������
�����(�!(������	

��������������%�4��
����6�����	�	3����	

������������!�%�4��
����6�����	�	:����	

�����������������	�%�����!

�������������!�2����	����	�%������	����	�
���

�������������!�2����	�/���������%�������:���'

��������.

MacDonald07.fm Page 239 Tuesday, December 6, 2005 9:25 PM

240 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

����������	����0����	
������

��������,

�������������!�2����	����	�%�&?!@A������>?�!@�&�B�����A�������B�&?!���@?!���@&

�������������!�2����	����	�B%�&?!@������>?�!@�&�B������������B�&?!���@?!���@&

�������������!�2����	����	�B%�&?!@�	��'������>?�!@�&�B������	��'�����

�������������!�2����	�/���������%�������2��

���������������#�	�������	������	�����������$��������

�������������$���%��������������$���%�� !"

����������������&�'������()	$	
	��*���("

����������������#�	������� ����+�

������$���%�������,���������!"

��������.

����.

.

EVENT LOG SECURITY

This logging code will run without a hitch when you try it in Visual Studio. However, when you deploy your
application to a web server (as described in Chapter 12), you might not be so lucky. The problem is that the
ASP.NET service runs under a Windows account that has fewer privileges than an average user. If you’re using
IIS 5, this user is the account named ASPNET, which ordinarily won’t have the permissions to create event log
entries.

To remedy this problem, you can use a different account (as explained in Chapter 12), or you can grant
the required permissions to the account that ASP.NET is already using (like the ASPNET account). To do the
latter, you need to modify the registry as described in these steps:

1. Run regedit.exe, either by using a command-line prompt or by choosing Run from the Start menu.

2. Browse to the HKEY_Local_Machine\SYSTEM\CurrentControlSet\Services\EventLog section of the
registry.

3. Select the EventLog folder if you want to give ASP.NET permission to all areas of the event log.
Or, select a specific folder that corresponds to the event log ASP.NET needs to access.

4. Choose Security ➤ Permissions.

5. Add the account that ASP.NET is using to the list. If you’re using IIS 5, this is the ASPNET account.
To add it, click the Add button, type in ASPNET, and then click OK.

6. Give the ASPNET account Full Control for this section of the registry by selecting the Allow check
box next to Full Control.

MacDonald07.fm Page 240 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 241

The event log record will now appear in the Event Viewer utility, as shown in Figure 7-9.
Note that logging is intended for the system administrator or developer. It doesn’t replace
the code you use to notify the user and explain that a problem has occurred.

Figure 7-9. A custom event

Custom Logs

You can also log errors to a custom log. For example, you could create a log with your
company name and add records to it for all your ASP.NET applications. You might even
want to create an individual log for a particularly large application and use the Source
property of each entry to indicate the page (or web service method) that caused the
problem.

Accessing a custom log is easy—you just need to use a different constructor for the
EventLog class to specify the custom log name. You also need to register an event source
for the log. This initial step needs to be performed only once—in fact, you’ll receive an
error if you try to create the same event source. Typically, you’ll use the name of the appli-
cation as the event source.

MacDonald07.fm Page 241 Tuesday, December 6, 2005 9:25 PM

242 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Here’s an example that uses a custom log named MyNewLog and registers the event
source MyNewLog:

���2��
�	���	����*��	��������
���������

���$0*��	8���������0�
�	��&6��������&

,

���������
�����
�	����	����*��	����������������	���	������	������(

�������
���������

����0*��	8�������	�0*��	�������&4
*
��:�;���3��&(�&6��������&

.

��������	��������-��	������������#	���
�	(

���
	��
���!������	�����	���	
������

0*��	8�������%�����0*��	8���&6��������&

�����������%�&4
*
��:�;���3��&

����C�
	�0�	�������A������(�0*��	8��0�	�������0����

If you specify the name of a log that doesn’t exist when you use the CreateEventSource()
method, the system will create a new, custom event log for you the first time you write an
entry.

Figure 7-10 shows the new log.

Figure 7-10. A custom log

MacDonald07.fm Page 242 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 243

■Tip Event logging uses disk space and takes processor time away from web applications. Don’t store
unimportant information, large quantities of data, or information that would be better off in another type of
storage (such as a relational database). Generally, you should use an event log to log unexpected conditions
or errors, not customer actions or performance-tracking information.

Retrieving Log Information

One of the disadvantages of the event logs is that they’re tied to the web server. This can
make it difficult to review log entries if you don’t have a way to access the server (although
you can read them from another computer on the same network). This problem has
several possible solutions. One interesting technique involves using a special administra-
tion page. This ASP.NET page can use the EventLog class to retrieve and display all the
information from the event log.

The following example retrieves all the entries that were left by the ErrorTestCustomLog
page and displays them in a simple web page (shown in Figure 7-11). The results are shown
using a label in a scrollable panel (a Panel control with the Scrollbars property set to Verti-
cal). A more sophisticated approach would use similar code but one of the data controls
discussed in Chapter 15 instead.

Figure 7-11. A log viewer page

MacDonald07.fm Page 243 Tuesday, December 6, 2005 9:25 PM

244 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Here’s the web page code you’ll need:

��!�
�����	
���������0*��	2�*
��6����>�6���

,

�������	��	���*�
�����<�	7��
�'��!"��	�������(�0*��	3�����

����,

���������!�2����	����	�%�&&

���������������'�
��	���������
�	��

��������
���$0*��	8���0�
�	��	�	8������	

��������,

�������������!�2����	����	�%�&�����*��	�����&�B�	�	8������	�

�������������!�2����	����	�B%�&������#	���
�	�&

��������.

������������

��������,

������������0*��	8�������%�����0*��	8���	�	8������	

���������������������0*��	8��0�	�����	���
������0�	�
��

������������,

�������������������C�
	��	����*��	���	�
���	��	��������

����������������
�����'3�������'���DD

��������������������	����������%%�	�	����������	

����������������,

���������������������!�2����	����	�B%�&?!@0�	�������>?�!@�&

���������������������!�2����	����	�B%���	���0�	����������	�
���

���������������������!�2����	����	�B%�&?!���@?!@A������>?�!@�&

���������������������!�2����	����	�B%���	���A������

���������������������!�2����	����	�B%�&?!���@?!@�
���<�����	��>?�!@�&

���������������������!�2����	����	�B%���	����
��<�����	��

���������������������!�2����	����	�B%�&?!���@?!���@&

����������������.

������������.

��������.

����.

MacDonald07.fm Page 244 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 245

�������	��	���*�
����'3��7����'�����������!"��	�������(

������0*��	3�����

����,

�����������������'3������	��������3�	�6��	!��'�%�	����

��������
�����'3�������'��

��������,

������������	�	����������	�%�&&

������������	�	�������0��!����%������

��������.

������������

��������,

������������	�	�������0��!����%�	���

��������.

����.

.

If you choose to display all the entries from the application log, the page will perform
slowly. Two factors are at work here. First, it takes time to retrieve each event log entry,
and a typical application log can easily hold several thousand entries. Second, the code
used to append text to the Label control is inefficient. Every time you add a new piece of
information to the Label.Text property, .NET needs to generate a new string object. A
better solution is to use the specialized System.Text.StringBuilder class, which is designed
to handle intensive string processing with a lower overhead by managing an internal
buffer or memory.

Here’s the more efficient way you could write the string processing code:

���/������
���������������(�"�
������	����*��	

���
������	
���
�	�������������	�
�����
���	��

����	�
��:�
�����

���	������	��	�
��:�
������!�%��������	������	��	�
��:�
�����

0*��	8�������%�����0*��	8���	�	8������	

���������0*��	8��0�	�����	���
������0�	�
��

,

�������C�
	��	����*��	���	�
���	��	����	�
��:�
�����

����
�����'3�������'���DD

��������	����������%%�	�	����������	

MacDonald07.fm Page 245 Tuesday, December 6, 2005 9:25 PM

246 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

����,

���������!�3������&?!@0�	�������>?�!@�&

���������!�3��������	���0�	����������	�
���

���������!�3������&?!���@?!@A������>?�!@�&

���������!�3��������	���A������

���������!�3������&?!���@?!@�
���<�����	��>?�!@�&

���������!�3��������	����
��<�����	��

���������!�3������&?!���@?!���@&

����.

������������	���������	��	��	�	��	�����!������

�����!�2����	����	�%��!����	�
���

.

■Tip You can get around some of the limitations involved with the event log by using your own custom
logging system. All the ingredients you need are built into the common class library. For example, you could
store error information in a database using the techniques described in Chapter 13.

Error Pages
As you create and test an ASP.NET application, you’ll become familiar with the rich infor-
mation pages that are shown to describe unhandled errors. These pages are extremely
useful for diagnosing problems during development, because they contain a wealth of
information. Some of this information includes the source code where the problem
occurred (with the offending line highlighted), the type of error, and a detailed error
message describing the problem. Figure 7-12 shows a sample rich error page.

MacDonald07.fm Page 246 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 247

Figure 7-12. A rich ASP.NET error page

This error page is shown only for local requests that access the ASP.NET application
through the �		�>����������	 domain. (This domain always refers to the current com-
puter, regardless of its actual server name or Internet address.) ASP.NET doesn’t create a
rich error page for requests from other computers, which receive the rather unhelpful
generic page shown in Figure 7-13.

MacDonald07.fm Page 247 Tuesday, December 6, 2005 9:25 PM

248 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Figure 7-13. A generic client error page

This generic page lacks any specific details about the type of error or the offending
code. Sharing this information with end users would be a security risk (potentially expos-
ing sensitive details about the source code), and it would be completely unhelpful,
because clients are never in a position to modify the source code themselves. Instead,
the page includes a generic message explaining that an error has occurred and describing
how to enable remote error pages.

Error Modes

Remote error pages remove this restriction and allow ASP.NET to display detailed infor-
mation for problems regardless of the source of the request. Remote error pages are
intended as a testing tool. For example, in the initial rollout of an application beta, you
might use field testers. These field testers would need to report specific information about
application errors to aid in the debugging process. Similarly, you could use remote error
pages if you’re working with a team of developers and testing an ASP.NET application
from a live web server. In this case, you might follow the time-honored code/compile/
upload pattern.

MacDonald07.fm Page 248 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 249

To change the error mode, you need to modify the <customErrors> section in the
web.config file. By default, Visual Studio creates a web.config with this section but com-
ments it out. However, the default settings are equivalent to this:

?����
����	
��@

��?���	�����!@

����?���	��0����������%&2���	�����&��@

�������

��?����	�����!@

?�����
����	
��@

Table 7-3 lists the options for the mode attribute.

A Custom Error Page

In a deployed application, you should use the On or RemoteOnly error mode. Any errors
in your application should be dealt with through error handling code, which can then
present a helpful and user-oriented message (rather than the developer-oriented code
details in ASP.NET’s rich error messages).

However, it isn’t possible to catch every possible error in an ASP.NET application.
For example, a hardware failure could occur spontaneously in the middle of an ordinary
code statement that could not normally cause an error. More commonly, the user might
encounter an HTTP error by requesting a page that doesn’t exist. ASP.NET allows you to
handle these problems with custom error pages.

Table 7-3. Error Modes

Error Mode Description
RemoteOnly This is the default setting, which uses rich ASP.NET error pages only when the

developer is accessing an ASP.NET application on the current machine.

Off This configures rich error pages (with source code and stack traces) for all
unhandled errors, regardless of the source of the request. This setting is helpful
in many development scenarios but should not be used in a deployed
application.

On ASP.NET error pages will never be shown. When an unhandled error is
encountered, a corresponding custom error page will be shown if one exists.
Otherwise, ASP.NET will show the generic message explaining that application
settings prevent the error details from being displayed and describing how to
change the configuration.

MacDonald07.fm Page 249 Tuesday, December 6, 2005 9:25 PM

250 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

You can implement custom error pages in two ways. You can create a single generic error
page and configure ASP.NET to use it by modifying the web.config file as shown here:

?����
����	
��@

��?���	�����!@

����?���	��0������������	2��
���	%&4�����	0���������&��@

��?����	�����!@

?�����
����	
��@

ASP.NET will now exhibit the following behavior:

• If ASP.NET encounters an HTTP error while serving the request, it will forward the
user to the DefaultError.aspx web page.

• If ASP.NET encounters an unhandled application error and it isn’t configured to
display rich error pages, it will forward the user to the DefaultError.aspx. Remote
users will never see the generic ASP.NET error page.

• If ASP.NET encounters an unhandled application error and it is configured to
display rich developer-targeted error pages, it will display the rich error page
instead.

■Note What happens if an error occurs in the error page itself? If an error occurs in a custom error page
(in this case, DefaultError.aspx), ASP.NET will not be able to handle it. It will not try to reforward the user to
the same page. Instead, it will display the normal client error page with the generic message.

Specific Custom Error Pages

You can also create error pages targeted at specific types of HTTP errors (such as the infa-
mous 404 Not Found error, or Access Denied). This technique is commonly used with
websites to provide friendly equivalents for common problems. Figure 7-14 shows how
one site handles this issue.

MacDonald07.fm Page 250 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 251

Figure 7-14. A sample custom error page

To define an error-specific custom page, you add an <error> element to the
<customErrors> element. The <error> element identifies the HTTP error code and the
redirect page.

?����
����	
��@

��?���	�����!@

����?���	��0������������	2��
���	%&4�����	0���������&@

������-������
���'
�����(./.(����	�����(./.��
��(��0

����?���	��0�����@

��?����	�����!@

?�����
����	
��@

In this example, the user will be redirected to the 404.aspx page when requesting an
ASP.NET page that doesn’t exist. This custom error page may not work exactly the way
you expect, because it comes into effect only if ASP.NET is handling the request.

MacDonald07.fm Page 251 Tuesday, December 6, 2005 9:25 PM

252 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

For example, if you request the nonexistent page whateverpage.aspx, you’ll be redi-
rected to 404.aspx, because the .aspx file extension is registered to the ASP.NET service.
However, if you request the nonexistent page whateverpage.html, ASP.NET will not
process the request, and the default redirect setting specified in IIS will be used. Typically,
this means the user will see the page c:\[WinDir]\Help\IISHelp\common\404b.htm. You
could change the set of registered ASP.NET file types to include .html and .htm files, but
this will slow down performance. Optionally, you could change your ASP.NET application
to use the custom IIS error page:

?����
����	
��@

��?���	�����!@

����?���	��0������������	2��
���	%&�������	����������&@

������?�������	�	������%&E+E&����
���	%&�0������E+E!��	�&��@

����?���	��0�����@

��?����	�����!@

?�����
����	
��@

When an error occurs that isn’t specifically addressed by a custom <error> element, the
default error page will be used.

Page Tracing
ASP.NET’s detailed error pages are extremely helpful when you’re testing and perfecting
an application. However, sometimes you need more information to verify that your appli-
cation is performing properly or to track down logic errors, which may produce invalid
data but no obvious exceptions. In traditional ASP development, programmers often
resorted to using Response.Write() to display debug information directly on the web page.
Unfortunately, this technique is fraught with problems:

Code entanglement: It’s difficult to separate the ordinary code from the debugging
code. Before the application can be deployed, you need to painstakingly search
through the code and remove or comment out all the Response.Write() statements.

No single point of control: If problems occur later down the road, you have no easy way
to “reenable” the write statements. Response.Write() statements are tightly integrated
into the code.

User interface problems: Response.Write() outputs information directly into the page.
Depending on the current stage of page processing, the information can appear in just
about any location, potentially scrambling your layout.

You can overcome these problems with additional effort and some homegrown solu-
tions. However, ASP.NET provides a far more convenient and flexible method built into
the framework services. It’s called tracing.

MacDonald07.fm Page 252 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 253

Enabling Tracing

To use tracing, you need to explicitly enable it. There are several ways to switch on tracing.
One of the easiest ways is by adding an attribute to the Page directive in the .aspx portion
of your page:

?FG�6���������%&	���&�����F@

You can also enable tracing using the built-in Trace object (which is an instance of the
System.Web.TraceContext class). Here’s an example of how you might turn tracing on in
the Page.Load event handler:

���	��	���*�
��6���78�����!"��	�������(�0*��	3�����

,

����������-�0��!����%�	���

.

This technique is particularly useful because it allows you to enable or disable tracing
for a page programmatically. For example, you could examine the query string collection
and enable tracing only if a special Tracing variable is received. This could allow develop-
ers to run tracing diagnostics on deployed pages, without revealing that information for
normal requests from end users.

���	��	���*�
��6���78�����!"��	�������(�0*��	3�����

,

����
���2�����	�H�����	�
���&����
��& �%%�&��&

����,

��������������-�0��!����%�	���

����.

.

Note that by default, once you enable tracing it will only apply to local requests. That
prevents actual end users from seeing the tracing information. If you need to trace a web
page from an offsite location, you should use a technique like the one shown previously
(for query string activation). You’ll also need to change some web.config settings to
enable remote tracing. Information about modifying these settings is found at the end of
this chapter, in the “Application-Level Tracing” section.

WHAT ABOUT VISUAL STUDIO?

Visual Studio provides a full complement of debugging tools that allow you to set breakpoints, step through
code, and view the contents of variables while your program executes. Though you can use Visual Studio in
conjunction with page tracing, you probably won’t need to do so. Instead, page tracing will become more use-
ful for debugging problems after you have deployed the application to a web server. Chapter 4 discussed
Visual Studio debugging.

MacDonald07.fm Page 253 Tuesday, December 6, 2005 9:25 PM

254 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Tracing Information

ASP.NET tracing automatically provides a lengthy set of standard, formatted information.
For example, Figure 7-15 shows a rudimentary ASP.NET page with a label and button.

Figure 7-15. A simple ASP.NET page

On its own, this page does very little, displaying a single line of text. When you click the
button to enable tracing, however, you end up with a lot of extra diagnostic information,
as shown in Figure 7-16.

MacDonald07.fm Page 254 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 255

Figure 7-16. Tracing the simple ASP.NET page

Tracing information is provided in several different categories, which are described in
the following sections. Depending on your page, you may not see all the sections. For
example, if the page request didn’t supply any query string parameters, you won’t see the
QueryString collection. Similarly, if there’s no data currently being held in application or
session state, you won’t see those sections either.

■Tip If you’re using style sheets, your rules may affect the formatting and layout of the trace information,
potentially making it difficult to read. If this becomes a problem, you can use application-level tracing, as
described later in this chapter (see the “Application-Level Tracing” section).

MacDonald07.fm Page 255 Tuesday, December 6, 2005 9:25 PM

256 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Request Details

This section includes some basic information such as the current session ID, the time the
web request was made, and the type of web request and encoding (see Figure 7-17).

Figure 7-17. Request details

Trace Information

This section shows the different stages of processing the page went through before being
sent to the client (see Figure 7-18). Each section has additional information about how
long it took to complete, as a measure from the start of the first stage (From First) and as
a measure from the start of the previous stage (From Last). If you add your own trace mes-
sages (a technique described shortly), they will also appear in this section.

Figure 7-18. Trace information

Control Tree

The control tree shows you all the controls on the page, indented to show their hierarchy
(which controls are contained inside other controls), as shown in Figure 7-19. In this
simple page example, the only explicitly created controls are the label (lblMessage) and
the web page. However, ASP.NET adds literal controls automatically to represent spacing
and any other static elements that aren’t server controls (such as text or ordinary HTML
tags). One useful feature of this section is the Viewstate column, which tells you how many
bytes of space are required to persist the current information in the control. This can help
you gauge whether enabling control state is detracting from performance, particularly
when working with data-bound controls such as the GridView.

MacDonald07.fm Page 256 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 257

Figure 7-19. Control tree

Session State and Application State

These sections display every item that is in the current session or application state.
(Figure 7-20 shows the Session State section.) Each item in the appropriate state collec-
tion is listed with its name, type, and value. If you’re storing simple pieces of string
information, the value is straightforward—it’s the actual text in the string. If you’re storing
an object, .NET calls the object’s ToString() method to get an appropriate string represen-
tation. For complex objects that don’t override ToString() to provide anything useful, the
result may just be the class name.

Figure 7-20. Session state

Cookies Collection

This section displays all the cookies that are sent with the response and the content and
size of each cookie in bytes (see Figure 7-21). Even if you haven’t explicitly created a
cookie, you’ll see the ASP.NET_SessionId cookie, which contains the current session ID.
If you’re using forms-based authentication, you’ll also see the security cookie.

Figure 7-21. Cookies collection

MacDonald07.fm Page 257 Tuesday, December 6, 2005 9:25 PM

258 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Headers Collection

This section lists all the HTTP headers (see Figure 7-22). Generally, you don’t need to use
this information, although it can be useful for troubleshooting unusual network problems.

Figure 7-22. Headers collection

Form Collection

This section lists the posted-back form information (see Figure 7-23).

Figure 7-23. Form collection

Query String Collection

This section lists the variables and values submitted in the query string (see Figure 7-24).
Generally, you’ll be able to see this information directly in the address box in the browser,
so you won’t need to refer to the information here.

MacDonald07.fm Page 258 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 259

Figure 7-24. Query string collection

Server Variables

This section lists all the server variables and their contents. You don’t generally need
to examine this information. Note also that if you want to examine a server variable
programmatically, you can do so by name with the built-in Request.ServerVariables col-
lection or by using one of the more useful higher-level properties from the Request object.

Writing Trace Information

The default trace log provides a set of important information that can allow you to
monitor some important aspects of your application, such as the current state contents
and the time taken to execute portions of code. In addition, you’ll often want to generate
your own tracing messages. For example, you might want to output the value of a variable
at various points in execution so you can compare it with an expected value. Similarly,
you might want to output messages when the code reaches certain points in execution
so you can verify that various procedures are being used (and are used in the order you
expect).

To write a custom trace message, you use the Write() method or the Warn() method
of the built-in Trace object. These methods are equivalent. The only difference is that
Warn() displays the message in red lettering, which makes it easier to distinguish from
other messages in the list. Here’s a code snippet that writes a trace message when the user
clicks a button:

���	��	���*�
�����C�
	�7��
�'��!"��	�������(�0*��	3�����

,

����������C�
	��&3!��	�	�����������
	���
������
����	�	��&

��������
��I&���	&J�%�&���	��	�&

����������C�
	��&6������
	���
������
����	�	��&

.

These messages appear in the trace information section of the page, along with the
default messages that ASP.NET generates automatically (see Figure 7-25).

MacDonald07.fm Page 259 Tuesday, December 6, 2005 9:25 PM

260 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Figure 7-25. Custom trace messages

You can also use an overloaded method of Write() or Warn() that allows you to specify
the category. A common use of this field is to indicate the current procedure, as shown in
Figure 7-26.

���	��	���*�
�����C�
	���	�����7��
�'��!"��	�������(�0*��	3�����

,

����������C�
	��&6���78���&(�&3!��	�	�����������
	���
������
����	�	��&

��������
��I&���	&J�%�&���	��	�&

����������C�
	��&6���78���&(�&6������
	���
������
����	�	��&

.

MacDonald07.fm Page 260 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 261

Figure 7-26. A categorized trace message

Alternatively, you can supply category and message information with an exception
object that will automatically be described in the trace log, as shown in Figure 7-27:

���	��	���*�
�����0����7��
�'��!"��	�������(�0*��	3�����

,

����	��

����,

��������4
*
��5��!����9(�+

����.

������	����0����	
������

����,

��������������C����&���0����7��
�'&(�&�����	�0����&(����

����.

.

MacDonald07.fm Page 261 Tuesday, December 6, 2005 9:25 PM

262 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

��
*�	�����
����4
*
��5��!�������
�������!��(����
�����
*
���

,

������	�������!����
*
���

.

Figure 7-27. An exception trace message

MacDonald07.fm Page 262 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 263

By default, trace messages are listed in the order they were written by your code. Alter-
natively, you can specify that messages should be sorted by category using the TraceMode
attribute in the Page directive:

?FG�6���������%&	���&�,����+����(&���1���������(�F@

or the TraceMode property of the Trace object in your code:

�����������A����%������A�������	:���	�����

Reading Trace Information

ASP.NET also allows you to interact with the trace messages programmatically. This
feature isn’t used too often, but it can be useful if you want to capture the trace informa-
tion and log it to another source (such as a database or the event log). You could save the
entire trace log or search for important trace messages.

Trace messages aren’t available at any time. If you want to access them, you need to
wait until the trace log is completed. At this point, the Trace object fires a TraceFinished
event, which you can handle. Here’s a sample event handler that loops through all the
trace messages and writes them to page with no additional formatting:

��
�	���
���������/
�
������!"��	�������(���������	��	0*��	3�����

,

���������������������	��	2��������
���������2������

����,

��������2��������C�
	������	������B�&>�&�B���A�������B�&?!���@&

����.

.

It’s up to you to hook up your trace event handler. One good place to perform this task
is in the Page.Load event handler. Here’s an example:

���	��	���*�
��6���78�����!"��	�������(�0*��	3�����

,

���������������/
�
�����B%�������������	��	0*��	1��������������/
�
����

.

MacDonald07.fm Page 263 Tuesday, December 6, 2005 9:25 PM

264 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Application-Level Tracing

Application-level tracing allows you to enable tracing for an entire application. To do this,
you need to modify settings in the web.config file, as shown here:

?����
����	
��@

��?���	�����!@

����?	��������!���%&	���&�������	8
�
	%&K+&�������	��	%&�����&

�����	����A���%&���	:��
��&����������%&	���&��@

��?����	�����!@

?�����
����	
��@

Table 7-4 lists the tracing options.

Table 7-4. Tracing Options

Attribute Values Description
Enabled true, false Turns application-level tracing on or off.

requestLimit Any integer (for example, 10) This is the number of HTTP requests for which
tracing information will be stored. Unlike page-
level tracing, this allows you collect a batch of
information from multiple requests. When the
maximum is reached, the information for the
oldest request is abandoned every time a new
request is received.

pageOutput true, false Determines whether tracing information will be
displayed on the page (as it is with page-level
tracing). If you choose false, you’ll still be able to
view the collected information by requesting
trace.axd from the virtual directory where your
application is running.

traceMode SortByTime, SortByCategory Determines the sort order of trace messages.

localOnly true, false Determines whether tracing information will
be shown only to local clients (clients using
the same computer) or can be shown to remote
clients as well. By default, this is true and
remote clients cannot see tracing information.

mostRecent true, false If true, ASP.NET keeps only the most recent trace
messages. When the requestLimit maximum is
reached, the information for the oldest request is
abandoned every time a new request is received.
If false (the default), ASP.NET stops collecting
new trace messages when the limit is reached.

MacDonald07.fm Page 264 Tuesday, December 6, 2005 9:25 PM

C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G 265

To view tracing information, you request the trace.axd file in the web application’s root
directory. This file doesn’t actually exist; instead, ASP.NET automatically intercepts the
request and interprets it as a request for the tracing information. It will then list the most
recent collected requests, provided you’re making the request from the local machine or
have enabled remote tracing (see Figure 7-28).

Figure 7-28. Traced application request

You can see the detailed information for any request by clicking the View Details link.
This provides a useful way to store tracing information for a short period of time and
allows you to review it without needing to see the actual pages (see Figure 7-29). It also
works best if you’re using Visual Studio’s grid layout, which uses absolute positioning that
can conflict with the tracing display and lead to overwritten or obscured text.

MacDonald07.fm Page 265 Tuesday, December 6, 2005 9:25 PM

266 C H A P T E R 7 ■ T R A C I N G , L O G G I N G , A N D E R R O R H A N D L I N G

Figure 7-29. Request trace information

The Last Word
The difference between an ordinary website and a professional web application is often in
how it deals with errors. In this chapter, you learned the different lines of defense you can
use in .NET, including structured error handling, logging, custom error pages, and tracing.

In the next chapter, you’ll consider how you can store information in between page
requests.

MacDonald07.fm Page 266 Tuesday, December 6, 2005 9:25 PM

267

■ ■ ■

C H A P T E R 8

Validation and Rich Controls

This chapter looks at some of the real promise of ASP.NET and the web control model.
First, you’ll learn about ASP.NET’s validation controls. These controls take a previously
time-consuming and complicated task—verifying user input and reporting errors—and
automate it with an elegant, easy-to-use collection of validators. You’ll learn how to add
these controls to an existing page and use regular expressions, custom validation func-
tions, and manual validation. And as usual, you’ll peer under the hood to see how
ASP.NET implements these features.

Next, you’ll consider two controls that have no equivalent in the ordinary HTML world:
the Calendar and AdRotator controls. These controls demonstrate how the web control
model can invent new types of web page user interfaces without breaking browser com-
patibility. The Calendar and AdRotator controls are only two of several rich controls
included with ASP.NET; you’ll explore the others throughout this book.

Finally, you’ll consider how you can create more sophisticated pages with multiple
views using advanced container controls such as the MultiView and Wizard controls.
These controls allow you to pack a miniature application into a single page. Using them,
you can handle a multistep task without redirecting the user from one page to another.

Validation
As a seasoned developer, you probably realize users will make mistakes. What’s particu-
larly daunting is the range of possible mistakes that users can make, such as the following:

• Users might ignore an important field and leave it blank.

• Users might try to type a short string of nonsense to circumvent a required field
check, thereby creating endless headaches on your end, such as invalid e-mail
addresses that cause problems for your automatic mailing programs.

MacDonald08.fm Page 267 Tuesday, December 6, 2005 9:29 PM

268 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

• Users might make an honest mistake, such as entering a typing error, entering a
nonnumeric character in a number field, or submitting the wrong type of informa-
tion. They might even enter several pieces of information that are individually
correct but when taken together are inconsistent (for example, entering a Master-
Card number after choosing Visa as the payment type).

A web application is particularly susceptible to these problems, because it relies on
basic HTML input controls that don’t have all the features of their Windows counterparts.
For example, a common technique in a Windows application is to handle the KeyPress
event of a text box, check to see whether the current character is valid, and prevent it from
appearing if it isn’t. This technique is commonly used to create text boxes that accept only
numeric input.

In web applications, however, you don’t have that sort of fine-grained control. To handle
a KeyPress event, the page would have to be posted back to the server every time the user
types a letter, which would slow down the application hopelessly. Instead, you need to per-
form all your validation at once when a page (which may contain multiple input controls) is
submitted. You then need to create the appropriate user interface to report the mistakes.
Some websites report only the first incorrect field, while others use a special table, list, or
window that describes them all. By the time you have perfected your validation routines, a
considerable amount of fine-tuned effort has gone into writing validation code.

ASP.NET aims to save you this trouble and provide you with a reusable framework of
validation controls that manages validation details by checking fields and reporting on
errors automatically. These controls can even use client-side DHTML and JavaScript to
provide a more dynamic and responsive interface while still providing ordinary validation
for older browsers (often referred to as down-level browsers).

The Validation Controls

ASP.NET provides five validator controls, which are described in Table 8-1. Four are tar-
geted at specific types of validation, while the fifth allows you to apply custom validation
routines.

Table 8-1. Validator Controls

Control Class Description
RequiredFieldValidator Validation succeeds as long as the input control doesn’t contain

an empty string.

RangeValidator Validation succeeds if the input control contains a value within a
specific numeric, alphabetic, or date range.

CompareValidator Validation succeeds if the input control contains a value that
matches the value in another, specified input control.

MacDonald08.fm Page 268 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 269

Each validation control can be bound to a single input control. In addition, you can
apply more than one validation control to the same input control to provide multiple
types of validation.

If you use the RangeValidator, CompareValidator, or RegularExpressionValidator, vali-
dation will automatically succeed if the input control is empty, because there is no value
to validate. If this isn’t the behavior you want, you should add a RequiredFieldValidator to
the control. This ensures that two types of validation will be performed, effectively
restricting blank values.

Like all other web controls, you add a validator as a tag in the form
<asp:ControlClassName />. The other validation control, ValidationSummary,
doesn’t perform any actual control checking. Instead, you can use it to provide a
list of all the validation errors for the entire page.

The Validation Process

You can use the validator controls to verify a page automatically when the user submits it
or manually in your code. The first approach is the most common.

When using automatic validation, the user receives a normal page and begins to fill in
the input controls. When finished, the user clicks a button to submit the page. Every but-
ton has a CausesValidation property, which can be set to true or false. What happens
when the user clicks the button depends on the value of the CausesValidation property:

• If CausesValidation is false, ASP.NET will ignore the validation controls, the page
will be posted back, and your event handling code will run normally.

• If CausesValidation is true (the default), ASP.NET will automatically validate the
page when the user clicks the button. It does this by performing the validation for
each control on the page. If any control fails to validate, ASP.NET will return the
page with some error information, depending on your settings. Your click event
handling code may or may not be executed—meaning you’ll have to specifically
check in the event handler whether the page is valid.

Based on this description, you’ll realize that validation happens automatically when
certain buttons are clicked. It doesn’t happen when the page is posted back because of a
change event (such as choosing a new value in an AutoPostBack list) or if the user clicks
a button that has CausesValidation set to false. However, you can still validate one or

RegularExpressionValidator Validation succeeds if the value in an input control matches a
specified regular expression.

CustomValidator Validation is performed by a user-defined function.

Control Class Description

MacDonald08.fm Page 269 Tuesday, December 6, 2005 9:29 PM

270 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

more controls manually and then make a decision in your code based on the results.
You’ll learn about this process in more detail a little later (see the “Manual Validation”
section).

■Note Many other buttonlike controls that can be used to submit the page also provide the CausesValidation
property. Examples include the LinkButton, ImageButton, and BulletedList.

Client-Side Validation

In most modern browsers (including Internet Explorer 5 or later and any version of
Firefox), ASP.NET automatically adds JavaScript code for client-side validation. In this
case, when the user clicks a CausesValidation button, the same error messages will appear
without the page needing to be submitted and returned from the server. This increases
the responsiveness of the application.

However, even if the page validates successfully on the client side, ASP.NET still reval-
idates it when it’s received at the server. This is because it’s easy for an experienced user
to circumvent client-side validation. For example, a malicious user might delete the block
of JavaScript validation code and continue working with the page. By performing the val-
idation at both ends, ASP.NET makes sure your application can be as responsive as
possible while also remaining secure.

The Validator Classes

The validation control classes are found in the System.Web.UI.WebControls namespace
and inherit from the BaseValidator class. This class defines the basic functionality for a
validation control. Table 8-2 describes its properties.

Table 8-2. Properties of the BaseValidator Class

Property Description
ControlToValidate Identifies the control that this validator will check. Each

validator can verify the value in one input control.

ErrorMessage, ForeColor, and Display If validation fails, the validator control can display a
text message (set by the ErrorMessage property). The
Display property allows you to configure whether this
error message will be added dynamically as needed
(Dynamic) or whether an appropriate space will be
reserved for the message (Static). Static is useful when
the validator is in a table and you don’t want the width
of the cell to collapse when no message is displayed.

MacDonald08.fm Page 270 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 271

When using a validation control, the only properties you need to implement are
ControlToValidate and ErrorMessage. In addition, you may need to implement the prop-
erties that are used for your specific validator. Table 8-3 outlines these properties.

Later in this chapter (in the “A Validated Customer Form” section), you’ll see a cus-
tomer form example that demonstrates each type of validation.

A Simple Validation Example
To understand how validation works, you can create a simple web page. This test uses a
single Button web control, two TextBox controls, and a RangeValidation control that vali-
dates the first text box. If validation fails, the RangeValidation control displays an error
message, so you should place this control immediately next to the TextBox it’s validating.
Figure 8-1 shows the appearance of the page after a failed validation attempt.

IsValid After validation is performed, this returns true or
false depending on whether it succeeded or failed.
Generally, you’ll check the state of the entire page by
looking at its IsValid property instead to find out if all
the validation controls succeeded.

Enabled When set to false, automatic validation will not be
performed for this control when the page is submitted.

EnableClientSideScript If set to true, ASP.NET will add JavaScript and DHTML
code to allow client-side validation on browsers that
support it.

Table 8-3. Validator-Specific Properties

Validator Control Added Members
RequiredFieldValidator None required

RangeValidator MaximumValue, MinimumValue, Type

CompareValidator ControlToCompare, Operator, Type, ValueToCompare

RegularExpressionValidator ValidationExpression

CustomValidator ClientValidationFunction, ServerValidate event

Property Description

MacDonald08.fm Page 271 Tuesday, December 6, 2005 9:29 PM

272 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Figure 8-1. Failed validation

In addition, place a Label control at the bottom of the form. This label will report when
the page has been successfully posted back and the event handling code has executed.
Disable its EnableViewState property to ensure that it will be cleared every time the page
is posted back.

The layout code defines a RangeValidator control, sets the error message, identifies the
control that will be validated, and requires an integer from 1 to 10. These properties are set
in the .aspx file, but they could also be configured in the event handler for the Page.Load
event. The Button automatically has its CauseValidation property set to true, because this
is the default.

���������	
�

������������	��������������������

����������������������

����������������� 	����!�� 	���	�������������"�

������������	
���������������	
������������������
��
��

���������������
���	
����������
��������������
����	
�

������������������������
�����������
��

�������������������
�� !�����������
�� �

����������"�
�����
	
���#$

�������"����"�

����#������ 	���	�

����������������� 	����#��!�� 	���	�������������"����"����"�

���������������� 	�$�	%&�������������������%&��"����"����"�

���������'����� 	����(����)�������������

���������*�����! �+,�������������"�

���"����

�"��	
��"�����

MacDonald08.fm Page 272 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 273

Finally, here is the code that responds to the button click:

����$��	��� 	�$�	%&-.� $/�%�0�$�����	�1�*�����)����

2

�������(����)�3��������$�	%&-.� $/����������	������$���	3�4

5

If you’re testing this web page in a modern browser (such as Internet Explorer 5 or later),
you’ll notice an interesting trick. When you first open the page, the error message is hidden.
But if you type an invalid number (remember, validation will succeed for an empty value) and
press the Tab key to move to the second text box, an error message will appear automatically
next to the offending control. This is because ASP.NET adds a special JavaScript function that
detects when the focus changes. This code uses the special WebUIValidation.js script library
file that is installed on your server with the .NET Framework (in the c:\Inetpub\wwwroot\
aspnet_client\system_web\[Version] directory) and is somewhat complicated. However,
ASP.NET handles all the details for you automatically. If you try to click the OK button with an
invalid value in txtValidated, your actions will be ignored, and the page won’t be posted back.

These features are relatively high-level, because they combine DHTML and JavaScript.
Clearly, not all browsers will support this client-side validation. To see what will happen
on a down-level browser, set the RangeValidator.EnableClientScript property to false, and
rerun the page. Now error messages won’t appear dynamically as you change focus. How-
ever, when you click the OK button, the page will be returned from the server with the
appropriate error message displayed next to the invalid control.

The potential problem in this scenario is that the click event handling code will still
execute, even though the page is invalid. To correct this problem and ensure that your
page behaves the same on modern and older browsers, you must specifically abort the
event code if validation hasn’t been performed successfully.

����$��	��� 	�$�	%&-.� $/�%�0�$�����	�1�*�����)����

2

����""���������������� ������$������ ��6����� 	3

���� ���78��)�!�� 	���39�!�� 	������4

�������(����)�3��������$�	%&-.� $/����������	������$���	3�4

5

This code solves the current problem, but it isn’t much help if the page contains multi-
ple validation controls. Fortunately, every web form provides its own IsValid property.
This property will be false if any validation control has failed. It will be true if all the vali-
dation controls completed successfully or if validation was not performed (for example, if
the validation controls are disabled or if the button has CausesValidation set to false).

MacDonald08.fm Page 273 Tuesday, December 6, 2005 9:29 PM

274 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

����$��	��� 	�$�	%&-.� $/�%�0�$�����	�1�*�����)����

2

����""���������������� ��������)�� ��6����� 	3

���� ���7�� �39�!�� 	������4

�������(����)�3��������$�	%&-.� $/����������	������$���	3�4

5

Remember, client-side validation is just nice frosting on top of your application. Server-
side validation will always be performed, ensuring that crafty users can’t “spoof” pages.

Other Display Options

In some cases, you might have already created a carefully designed form that combines
multiple input fields. Perhaps you want to add validation to this page, but you can’t refor-
mat the layout to accommodate all the error messages for all the validation controls. In
this case, you can save some work by using the ValidationSummary control.

To try this, set the Display property of the RangeValidator control to None. This
ensures the error message will never be displayed. However, validation will still be per-
formed and the user will still be prevented from successfully clicking the OK button if
some invalid information exists on the page.

Next, add the ValidationSummary in a suitable location (such as the bottom of the page):

�����!�� 	�� ��,����
� 	��*����������������"�

When you run the page, you won’t see any dynamic messages as you enter invalid
information and tab to a new field. However, when you click the OK button, the
ValidationSummary will appear with a list of all error messages, as shown in Figure 8-2.
In this case, it retrieves one error message (from the RangeValidator control). However,
if you had a dozen validators, it would retrieve all their error messages and create a list.

The ValidationSummary control also provides some useful properties you can use to
fine-tune the error display. You can set the HeaderText property to display a special title
at the top of the list (such as Your page contains the following errors:). You can also change
the ForeColor and choose a DisplayMode. The possible modes are BulletList (the default),
List, and Paragraph.

MacDonald08.fm Page 274 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 275

Figure 8-2. The validation summary

Finally, you choose to have the validation summary displayed in a pop-up dialog box
instead of on the page (see Figure 8-3). This approach has the advantage of leaving the
user interface of the page untouched, but it also forces the user to dismiss the error mes-
sages by closing the window before being able to modify the input controls. If users will
need to refer to these messages while they fix the page, the inline display is better.

To show the summary in a dialog box, set the ValidationSummary.ShowMessageBox
property to true.

Figure 8-3. A message box summary

MacDonald08.fm Page 275 Tuesday, December 6, 2005 9:29 PM

276 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Manual Validation

Your final option is to disable validation and perform the work on your own, with the help
of the validation controls. This allows you to take other information into consideration or
create a specialized error message that involves other controls (such as images or buttons).

You can create manual validation in one of three ways:

• Use your own code to verify values. In this case, you won’t use any of the ASP.NET
validation controls.

• Disable the EnableClientScript property for each validation control. This allows an
invalid page to be submitted, after which you can decide what to do with it depend-
ing on the problems.

• Add a button with CausesValidation set to false. When this button is clicked, manu-
ally validate the page by calling the Page.Validate method. Then examine the
IsValid property, and decide what to do.

The next example uses the second approach. Once the page is submitted, it examines
all the validation controls on the page by looping through the Page.Validators collection.
Every time it finds a control that hasn’t validated successfully, it retrieves the invalid value
from the input control and adds it to a string. At the end of this routine, it displays a mes-
sage that describes which values were incorrect, as shown in Figure 8-4.

Figure 8-4. Manual validation

MacDonald08.fm Page 276 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 277

This technique adds a feature that wouldn’t be available with automatic validation,
which uses the static ErrorMessage property. In that case, it isn’t possible to include the
actual incorrect values in the message.

Here’s the event handler that checks for invalid values:

����$��	��� 	�$�	%&-.� $/�%�0�$�����	�1�*�����)����

2

������ �)���(����)��������(���/�������	��"�����"��4

���""�.��������� �������������������� �����$�����3

�����������$��9����4

����""�,��$������)��������� 	�� ���$������3

��������$�������!�� 	����$��� ���� �3!�� 	�����

����2

�������� ���7$��39�!�� 	�

��������2

��������������(����)��:��$��3*�(����)��:�����"��4

������������""�; �	�����$������	 �)� �����$�����1���	�$���)�����

������������""�)��� $�.�������� ����� ���������������� ����3

������������""��� ������+���$$���������������������
3

������������$��9������������������ �3; �	.������$��3.�������!�� 	����4

��������������(����)��:����<�=������ ��+ ����� �� �������4

��������������(����)��:��$��9����3�����:�����"��4

��������5

����5

�������(����)�3���������(����)�4

5

This example uses an advanced technique: the Page.FindControl() method. It’s required
because the ControlToValidate property is just a string with the name of a control, not a refer-
ence to the actual control object. To find the control that matches this name (and retrieve its
Text property), you need to use the FindControl() method. Once the code has retrieved the
matching text box, it can perform other tasks such as clearing the current value, tweaking a
property, or even changing the text box color. Note that the FindControl() method returns a
generic Control reference, because you might search any type of control. To access all the
properties of your control, you need to cast it to the appropriate type (such as TextBox in this
example).

MacDonald08.fm Page 277 Tuesday, December 6, 2005 9:29 PM

278 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Understanding Regular Expressions
Regular expressions are an advanced tool for matching patterns. They have appeared in
countless other languages and gained popularity as an extremely powerful way to work
with strings. In fact, Visual Studio even allows programmers to perform a search-and-
replace operation in their code using a regular expression (which may represent a new
height of computer geekdom).

Regular expressions can almost be considered an entire language of their own. How
to master all the ways you can use regular expressions—including pattern matching, back
references, and named groups—could occupy an entire book (and several books are
dedicated to just that subject). Fortunately, you can understand the basics of regular
expressions without nearly that much work.

Literals and Metacharacters

All regular expressions consist of two kinds of characters: literals and metacharacters. Lit-
erals are not unlike the string literals you type in code. They represent a specific defined
character. For example, if you search for the string literal "l", you’ll find the character l and
nothing else.

Metacharacters provide the true secret to unlocking the full power of regular expres-
sions. You’re probably already familiar with two metacharacters from the DOS world (?
and *). Consider the command-line expression shown here:

>���<3<

The expression *.* contains one literal (the period) and two metacharacters (the aster-
isks). This translates as “delete every file that starts with any number of characters and
ends with an extension of any number of characters (or has no extension at all).” Because
all files in DOS implicitly have extensions, this has the well-documented effect of deleting
everything in the current directory.

Another DOS metacharacter is the question mark, which means “any single character.”
For example, the following statement deletes any file named hello that has an extension of
exactly one character.

>��������3?

The regular expression language provides many flexible metacharacters—far more
than the DOS command line. For example, \s represents any whitespace character (such
as a space or tab). \d represents any digit. Thus, the following expression would match

MacDonald08.fm Page 278 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 279

any string that started with the numbers 333, followed by a single whitespace character
and any three numbers. Valid matches would include 333 333 and 333 945 but not 334 333
or 3334 945.

@@@A�A	A	A	

One aspect that can make regular expressions less readable is that they use special
metacharacters that are more than one character long. In the previous example, \s repre-
sents a single character, as does \d, even though they both occupy two characters in the
expression.

You can use the plus (+) sign to represent a repeated character. For example, 5+7
means “one or more occurrences of the character 5, followed by a single 7.” The number
57 would match, as would 555557. You can also use parentheses to group a subexpression.
For example, (52)+7 would match any string that started with a sequence of 52. Matches
would include 527, 52527, 5252527, and so on.

You can also delimit a range of characters using square brackets. [a-f] would match any
single character from a to f (lowercase only). The following expression would match any
word that starts with a letter from a to f, contains one or more “word” characters (letters),
and ends with ing—possible matches include acting and developing.

B�C�DA+: �)

The following is a more useful regular expression that can match any e-mail address by
verifying that it contains the @ symbol. The dot is a metacharacter used to indicate any
character except newline. However, some invalid e-mail addresses would still be allowed,
including those that contain spaces and those that don’t include a dot (.). You’ll see a bet-
ter example a little later in the customer form example.

3:E3:

Finding a Regular Expression

Clearly, picking the perfect regular expression may require some testing. In fact, numer-
ous reference materials (on the Internet and in paper form) include useful regular
expressions for validating common values such as postal codes. To experiment, you can
use the simple RegularExpressionTest page included with the online samples, which is
shown in Figure 8-5. It allows you to set a regular expression that will be used to validate a
control. Then you can type in some sample values and see whether the regular expression
validator succeeds or fails.

MacDonald08.fm Page 279 Tuesday, December 6, 2005 9:29 PM

280 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Figure 8-5. A regular expression test page

The code is quite simple. The Set This Expression button assigns a new regular expres-
sion to the RegularExpressionValidator control (using whatever text you have typed). The
Validation button simply triggers a postback, which causes ASP.NET to perform valida-
tion automatically. If an error message appears, validation has failed. Otherwise, it’s
successful.

���� $���� ���$�����8�)���*����� ���������=�)�

2

��������$��	��� 	�$�	,��*����� ��-.� $/�%�0�$�����	�1�*�����)����

����2

������������!�� 	���3!�� 	�� ��*����� ��������*����� ��3����4

�����������*����� ��3��������.�����*����� �����4

�����������*����� ��3�����:�����*����� ��3����4

����5

5

Table 8-4 shows some of the fundamental regular expression building blocks. If you
need to match a literal character with the same name as a special character, you generally
precede it with a \ character. For example, *hello* matches *hello* in a string, because
the special asterisk (*) character is preceded by a slash (\).

MacDonald08.fm Page 280 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 281

Table 8-4. Regular Expression Characters

Table 8-5 shows a few of common (and useful) regular expressions.

Table 8-5. Commonly Used Regular Expressions

Character Description
* Zero or more occurrences of the previous character or subexpression. For example,

7*8 matches 7778 or just 8.

+ One or more occurrences of the previous character or subexpression. For example,
7+8 matches 7778 but not 8.

() Groups a subexpression that will be treated as a single element. For example, (78)+
matches 78 and 787878.

| Either of two matches. For example, 8|6 matches 8 or 6.

[] Matches one character in a range of valid characters. For example, [A-C] matches A,
B, or C.

[̂] Matches a character that isn’t in the given range. For example, [^A-B] matches any
character except A and B.

. Any character except newline. For example, .here matches where and there.

\s Any whitespace character (such as a tab or space).

\S Any nonwhitespace character.

\d Any digit character.

\D Any character that isn’t a digit.

\w Any “word” character (letter, number, or underscore).

Content Regular Expression Description

E-mail address* \S+@\S+\.\S+ Check for an at (@) sign and dot (.) and
allow nonwhitespace characters only.

Password \w+ Any sequence of word characters (letter,
space, or underscore).

Specific-length password \w{4,10} A password that must be at least four
characters long but no longer than ten
characters.

Advanced password [a-zA-Z]\w{3,9} As with the specific length password, this
regular expression will allow four to ten
total characters. The twist is that the first
character must fall in the range of a–z or
A–Z (that is to say it must start with a
nonaccented ordinary letter).

Continued

MacDonald08.fm Page 281 Tuesday, December 6, 2005 9:29 PM

282 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Table 8-5. Continued

Some logic is much more difficult to model in a regular expression. An example is the
Luhn algorithm, which verifies credit card numbers by first doubling every second digit,
then adding these doubled digits together, and finally dividing the sum by ten. The num-
ber is valid (although not necessarily connected to a real account) if there is no remainder
after dividing the sum. To use the Luhn algorithm, you need a CustomValidator control
that runs this logic on the supplied value. (You can find a detailed description of the Luhn
algorithm at �����""��3+ / ��	 �3�)"+ / "'���-������.)

A Validated Customer Form

To bring together these various topics, you’ll now see a full-fledged web form that combines
a variety of pieces of information that might be needed to add a user record (for example, an
e-commerce site shopper or a content site subscriber). Figure 8-6 shows this form.

Content Regular Expression Description
Another advanced password [a-zA-Z]\w*\d+\w*

* You have many different ways to validate e-mail addresses with regular expressions of varying complexity.
See �����""+++3F)�
��������3$��"+����$�"��� 	������ �3����� for a discussion of the subject and
numerous examples.

This password starts with a letter
character, followed by zero or more word
characters, a digit, and then zero or more
word characters. In short, it forces a
password to contain a number somewhere
inside it. You could use a similar pattern to
require two numbers or any other special
character.

Limited-length field \S{4,10} Like the password example, this allows
four to ten characters, but it allows special
characters (asterisks, ampersands, and
so on).

Social Security number \d{3}-\d{2}-\d{4} A sequence of three, two, then four digits,
with each group separated by a dash. You
could use a similar pattern when requiring
a phone number.

MacDonald08.fm Page 282 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 283

Figure 8-6. A sample customer form

Several types of validation are taking place on the customer form:

• Two RequiredFieldValidator controls make sure the user enters a user name and a
password.

• A CompareValidator ensures that the two versions of the masked password match.

• A RegularExpressionValidator checks that the e-mail address contains an at (@)
symbol.

• A RangeValidator ensures the age is a number from 0 to 120.

• A CustomValidator performs a special validation on the server of a “referrer code.” This
code verifies that the first three characters make up a number that is divisible by 7.

MacDonald08.fm Page 283 Tuesday, December 6, 2005 9:29 PM

284 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

The tags for the validator controls are as follows:

�����8�G� �	; ��	!�� 	���� 	����	H��#����������������

�����*�(����)���I�����������������������3�

�����.�������!�� 	��������H��#�����"�

�����8�G� �	; ��	!�� 	���� 	����	=���+�	�������������

�����*�(����)���I�������������������+�	3�

�����.�������!�� 	��������=���+�	��"�

�����.�����!�� 	���� 	����	8��
���������������

�����*�(����)���I�������+�	�	�����������$�3�

�����.�������.����������=���+�	��.�������!�� 	��������8��
����"�

�����8�)���*����� ��!�� 	���� 	����	*�� ��������������

�����*�(����)����� ����� �� ��� �� �)�����E��
����3�

�����!�� 	�� ��*����� ����3:E3:��.�������!�� 	��������*�� ���"�

�����8��)�!�� 	���� 	����	�)��������������

�����*�(����)����� ���)�� ���������+��������	��J�3���
����9���)��

�����(�� ���!�������J���(� ���!��������

�����.�������!�� 	���������)���"�

�����.�����!�� 	���� 	����	.�	��������������

�����*�(����)����
����� �)������������+ �����F3�

�����.�������!�� 	��������.�	���"�

The form provides two validation buttons—one that requires validation and one that
allows the user to cancel the task gracefully. Here’s the event handling code:

����$��	��� 	�$�	,��� �-.� $/�%�0�$�����	�1�*�����)����

2

���� ���7�� �39�!�� 	������4

�������(����)�3���������� �� ������� 	����3�4

5

����$��	��� 	�$�	.��$��-.� $/�%�0�$�����	�1�*�����)����

2

�������(����)�3��������#����������+�����	�������� 	������ �����3�4

5

MacDonald08.fm Page 284 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 285

The only form-level code that is required for validation is the custom validation code.
The validation takes place in the event handler for the CustomValidator.ServerValidate
event. This method receives the value it needs to validate (e.Value) and sets the result of
the validation to true or false (e.IsValid).

����$��	��� 	���	.�	�-,���!�� 	����%�0�$�����$�1�,���!�� 	���*�����)����

2

�����

����2

��������""�.��$/�+����������� ��������) ������	 � � �����
������3

�������� ���������9��@J3=�����3!����3,���� �)��1�@��4

�������� �������K�L������

��������2

�������������39�!�� 	������4

��������5

������������

��������2

�������������39�!�� 	��������4

��������5

����5

����$��$�

����2

��������""��������$$��	� ������$����� ��3

��������""����������� ��������� 	3

���������39�!�� 	��������4

����5

5

This example also introduces one new detail: error handling. This error handling code
ensures that potential problems are caught and dealt with appropriately. Without error
handling, your code may fail, leaving the user with nothing more than a cryptic error page.
The reason this example requires error handling code is because it performs two steps
that aren’t guaranteed to succeed. First, the Int32.Parse() method attempts to convert the
data in the text box to an integer. An error will occur during this step if the information
in the text box is nonnumeric (for example, if the user entered the characters 4G). Simi-
larly, the String.Substring() method, which extracts the first three characters, will fail if
fewer than three characters appear in the text box. To guard against these problems, you
can specifically check these details before you attempt to use the Parse() and Substring()
methods, or you can use error handling to respond to problems after they occur. (Another
option is to use the TryParse() method, which returns a Boolean value that tells you
whether the conversion succeeded.)

MacDonald08.fm Page 285 Tuesday, December 6, 2005 9:29 PM

286 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

■Tip In some cases, you might be able to replace custom validation with a particularly ingenious use of a reg-
ular expression. However, you can use custom validation to ensure that validation code is executed only at the
server. That prevents users from seeing your regular expression template (in the rendered JavaScript code) and
using it to determine how they can outwit your validation routine. For example, a user may not have a valid credit
card number, but if they know the algorithm you use to test credit card numbers, they can create a false one
more easily.

The CustomValidator has another quirk. You’ll notice that your custom server-side
validation isn’t performed until the page is posted back. This means that if you enable the
client script code (the default), dynamic messages will appear informing the user when
the other values are incorrect, but they will not indicate any problem with the referral
code until the page is posted back to the server.

This isn’t really a problem, but if it troubles you, you can use the CustomValidator.
ClientValidationFunction property. Add a client-side JavaScript or VBScript validation
function to the .aspx portion of the web page. (Ideally, it will be JavaScript for compatibil-
ity with browsers other than Internet Explorer.) Remember, you can’t use client-side
ASP.NET code, because C# and VB .NET aren’t recognized by the client browser.

Your JavaScript function will accept two parameters (in true .NET style), which identify the
source of the event and the additional validation parameters. In fact, the client-side event is
modeled on the .NET ServerValidate event. Just as you did in the ServerValidate event han-
dler, in the client validation function, you retrieve the value to validate from the Value
property of the event argument object. You then see the IsValid property to indicate whether
validation succeeds or fails.

The following is the client-side equivalent for the code in the ServerValidate event han-
dler. You’ll notice that the JavaScript code resembles C# superficially.

��$ ������)��)���M���,$ ����

�7CC

���$� ���(
.�����!�� 	�� �����0,��$�1���0�)��

2

����""�N��������3

�����������������0�)�3!����4

����""�.��$/���������	�����������3

�����������������3�������1�@�4

���� ���������K�L������

MacDonald08.fm Page 286 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 287

����2

����������0�)�39�!�� 	������4

����5

��������

����2

����������0�)�39�!�� 	��������4

����5

5

""�CC�

�"�$ ���

Once you’ve added the function, set the ClientValidationFunction property of the
CustomValidator control to the name of the function. You can add this information man-
ually or by using the Properties window in Visual Studio.

�����.�����!�� 	���� 	����	.�	��������������

�����*�(����)����
����� �)������������+ �����F3�

�����.�������!�� 	��������.�	��

�������
����������%��&������"����������������#$

ASP.NET will now call this function on your behalf when it’s required.

■Tip Even when you use client-side validation, you must still include the ServerValidate event handler, both
to provide server-side validation for clients that don’t support the required JavaScript and DHTML features
and to prevent clients from circumventing your validation by modifying the HTML page they receive.

By default, custom validation isn’t performed on empty values. However, you can
change this behavior by setting the CustomValidator.ValidateEmptyText property to true.
This is a useful approach if you create a more detailed JavaScript function (for example,
one that updates with additional information) and want it to run when the text is cleared.

YOU CAN VALIDATE LIST CONTROLS

The examples in this chapter have concentrated exclusively on validating text entry, which is the most com-
mon requirement in a web application. While you can’t validate RadioButton or CheckBox controls, you can
validate most single-select list controls.

When validating a list control, the value that is being validated is the Value property of the selected ListItem
object. Remember, the Value property is the special hidden information attribute that can be added to every list
item. If you don’t use it, you can’t validate the control (validating the text of the selection isn’t a supported option).

MacDonald08.fm Page 287 Tuesday, December 6, 2005 9:29 PM

288 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Validation Groups

In more complex pages, you might have several distinct groups of pages, possibly in sep-
arate panels. In these situations, you may want to perform validation separately. For
example, you might create a form that includes a box with login controls and a box under-
neath it with the controls for registering a new user. Each box includes its own submit
button, and depending on which button is clicked, you want to perform the validation just
for that section of the page.

This scenario is possible thanks to a feature called validation groups. To create a valida-
tion group, you need to put the input controls and the CausesValidation button controls
into the same logical group. You do this by setting the ValidationGroup property of every
control with the same descriptive string (such as "Form1" or "Login"). Every control that
provides a CausesValidation property also includes the ValidationGroup property.

For example, the following page defines two validation groups, named Group1 and
Group2. The controls for each group are placed into separate Panel controls.

����� 	��������������������

���������=�����9>��=�������������������

���������������������9>������������!�� 	�� ��N�����N������������������"�

�������������8�G� �	; ��	!�� 	����9>��8�G� �	; ��	!�� 	�����

���������*�(����)���<8�G� �	��!�� 	�� ��N�����N�����

���������������������.�������!�� 	���������������"�

��������������������9>�����������������!�� 	����N�����

���������!�� 	�� ��N�����N������������������"�

�����"����=�����

�������"�

���������=�����9>��=����J��������������

���������������������9>���������J��!�� 	�� ��N�����N���J�

���������������������"�

�������������8�G� �	; ��	!�� 	����9>��8�G� �	; ��	!�� 	���J�

���������*�(����)���<8�G� �	��!�� 	�� ��N�����N���J�

���������.�������!�� 	������������J��������������"�

��������������������9>��������J��������!�� 	����N���J�

���������!�� 	�� ��N�����N���J��������������"�

�����"����=�����

�"����

If you click the button in the topmost Panel, only the first text box is validated. If you
click the button in the second Panel, only the second text box is validated (as shown in
Figure 8-7).

MacDonald08.fm Page 288 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 289

Figure 8-7. Grouping controls for validation

What happens if you add a new button that doesn’t specify any validation group? In
this case, the button validates every control that isn’t explicitly assigned to a named vali-
dation group. In the current example, no controls fit the requirement, so the page is
posted back successfully and deemed to be valid.

If you want to make sure a control is always validated, regardless of the validation
group of the button that’s clicked, you’ll need to create multiple validators for the control,
one for each group (and one with no validation group). Alternatively, you might choose to
manage complex scenarios like these using server-side code, as shown in the following
example.

You can use an overloaded version of the Page.Validate() method to validate just a spe-
cific group. You specify the name of the group you want to validate. For example, using
the previous page, you could create a button that has no validation group assigned and
respond to the Button.Click event with this code:

����$��	��� 	�$�	!�� 	������-.� $/���0�$�����	�1�*�����)����

2

����'�����3��������!�� 	����:�=�)�39�!�� 	3��,� �)��4

����=�)�3!�� 	�����N������4

����'�����3�����:������"�N�����!�� 	����:�=�)�39�!�� 	3��,� �)��4

����=�)�3!�� 	�����N���J��4

����'�����3�����:������"�N���J�!�� 	����:�=�)�39�!�� 	3��,� �)��4

5

MacDonald08.fm Page 289 Tuesday, December 6, 2005 9:29 PM

290 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Because this button isn’t in any validation group, the two text boxes won’t be validated
automatically, and the first Page.IsValid check will always return true. However, when you
call Page.Validate(), this all changes. After validating the first group, the Page.IsValid
property will return true or false, depending on whether there is text in TextBox1. When
you call Page.Validate() again to check the second group, the page becomes valid as long
as the second group is valid (regardless of whether the first group is).

Rich Controls
Rich controls are web controls that model complex user interface elements. Although no
strict definition exists for what is and isn’t a rich control, the term commonly describes
web controls that provide an object model that is distinctly separate from the HTML it
generates. A typical rich control can often be programmed as a single object (and defined
with a single control tag) but renders itself with a complex sequence of HTML elements
and may even use client-side JavaScript.

ASP.NET includes numerous rich controls that are discussed elsewhere in this book,
including data-based list controls, security controls, and controls tailored for web portals. The
following list identifies the rich controls that don’t fall into any specialized category. The rich
controls in this list all appear in the Standard tab of the Visual Studio Toolbox.

AdRotator: A banner ad that displays one of a set of images based on a predefined
schedule that’s saved in an XML file.

Calendar: A calendar that displays and allows you to move through months and days
and to select a date or a range of days.

MultiView, View, and Wizard: You can think of these controls as more advanced
panels that let you switch between groups of controls on a page. These controls are
described later in this chapter (in the section “Pages with Multiple Views”).

TreeView and Menu: These are two of the most impressive rich controls. Both allow
you to show multilayered data, such as a menu with multiple levels or a hierarchical
tree. They’re often used for website navigation (see Chapter 11).

Xml: This takes an XML file and an XSLT style sheet file as input and displays the result-
ing HTML in a browser. You’ll learn about the Xml control in Chapter 17.

MacDonald08.fm Page 290 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 291

One of the best features of ASP.NET’s control model is that other developers can create
their own rich controls, which can then be incorporated into any ASP.NET application.
You’ll get a taste of this in Chapter 25, when you learn to create your own controls. Even
without this knowledge, however, you can already start to use some of these advanced
third-party controls. These controls provide features unlike any HTML element—includ-
ing advanced grids, charting tools, and menus.

ASP.NET custom controls act like web controls in every sense. Your web page interacts
with the appropriate control object, and the final output is rendered automatically every
time the page is sent to the client as HTML. That means the controls need to be installed
only on your server, and any client can benefit from them.

■Tip The Internet contains many hubs for control sharing. One such location is Microsoft’s own
�����""+++3���3���, which provides a control gallery where developers can submit their own ASP.NET
web controls. Some of these controls are free (at least in a limited version), and others require a purchase.

In the following sections, you’ll learn about two ASP.NET rich controls: the Calendar
and the AdRotator.

The Calendar Control

The Calendar control is one of the most impressive web controls. It’s commonly called a
rich control because it can be programmed as a single object (and defined in a single sim-
ple tag) but rendered in dozens of lines of HTML output.

�����.����	�� 	��>������������������"�

The Calendar control presents a single-month view, as shown in Figure 8-8. The user can
navigate from month to month using the navigational arrows, at which point the page is
posted back and ASP.NET automatically provides a new page with the correct month val-
ues. You don’t need to write any additional event handling code to manage this process.
When the user clicks a date, the date becomes highlighted in a gray box. You can retrieve the
selected day in your code as a DateTime object from the Calendar.SelectedDate property.

MacDonald08.fm Page 291 Tuesday, December 6, 2005 9:29 PM

292 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Figure 8-8. The default Calendar

This basic set of features may provide everything you need in your application. Alterna-
tively, you can configure different selection modes to allow users to select entire weeks or
months or to render the control as a static calendar that doesn’t allow selection. The only
fact you must remember is that if you allow month selection, the user can also select a single
week or a day. Similarly, if you allow week selection, the user can also select a single day.

You set the type of selection through the Calendar.SelectionMode property. You may
also need to set the Calendar.FirstDayOfWeek property to configure how a week is
selected. (For example, set FirstDayOfWeek to the enumerated value Monday, and weeks
will be selected from Monday to Sunday.)

When you allow multiple date selection, you need to examine the SelectedDates prop-
erty, which provides a collection of all the selected dates. You can loop through this
collection using the foreach syntax. The following code demonstrates this technique:

���>����3��������I�������$��	�������	��������"��4

����$���>���� ���	�� ��(
.����	�3,���$��	>�����

2

�������>����3�����:��	�3��'��)>���,� �)���:�����"��4

5

Figure 8-9 shows the resulting page after this code has been executed.

MacDonald08.fm Page 292 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 293

Figure 8-9. Selecting multiple dates

Formatting the Calendar

The Calendar control provides a whole host of formatting-related properties. You can set
various parts of the Calendar, like the header, selector, and various day types, by using
one of the style properties (for example, WeekendDayStyle). Each of these style properties
references a full-featured TableItemStyle object that provides properties for coloring,
border style, font, and alignment. Taken together, they allow you to modify almost any
part of the Calendar’s appearance.

Table 8-6 lists the style properties that the Calendar control provides.

Table 8-6. Properties for Calendar Styles

Member Description
DayHeaderStyle The style for the section of the Calendar that displays the days of the

week (as column headers).

DayStyle The default style for the dates in the current month.

NextPrevStyle The style for the navigation controls in the title section that move from
month to month.

Continued

MacDonald08.fm Page 293 Tuesday, December 6, 2005 9:29 PM

294 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Table 8-6. Continued

You can adjust each style using the Properties window. For a quick shortcut, you can set
an entire related color scheme using the Calendar designer. Simply right-click the Calendar
control on your design page, and select Auto Format. You’ll be presented with a list of pre-
defined formats that set the style properties, as shown in Figure 8-10.

Figure 8-10. Calendar styles

You can also use additional properties to hide some elements or configure the text they
display.

Member Description
OtherMonthDayStyle The style for the dates that aren’t in the currently displayed month.

These dates are used to “fill in” the calendar grid. For example, the first
few cells in the topmost row may display the last few days from the
previous month.

SelectedDayStyle The style for the selected dates on the Calendar.

SelectorStyle The style for the week and month date selection controls.

TitleStyle The style for the title section.

TodayDayStyle The style for the date designated as today (represented by the
TodaysDate property of the Calendar).

WeekendDayStyle The style for dates that fall on the weekend.

MacDonald08.fm Page 294 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 295

Restricting Dates

In most situations where you need to use a calendar for selection, you don’t want to allow
the user to select any date in the calendar. For example, the user might be booking an
appointment or choosing a delivery date—two services that are generally provided only
on set days. The Calendar control makes it surprisingly easy to implement this logic. In
fact, if you’ve worked with the date and time controls on the Windows platform, you’ll
quickly recognize that the ASP.NET versions are far superior.

The basic approach to restricting dates is to write an event handler for the Calendar.
DayRender event. This event occurs when the Calendar is about to create a month to dis-
play to the user. This event gives you the chance to examine the date that is being added
to the current month (through the e.Day property) and decide whether it should be select-
able or restricted.

The following code makes it impossible to select any weekend days or days in years
greater than 2010:

����$��	��� 	�>�
8��	��%�0�$�����$�1�>�
8��	�*�����)����

2

����""�8��� $��	��������������
���J������	��������������+��/��	3

���� ����3>�
39�O��/��	�PP��3>�
3>���3I�����J����

����2

���������3>�
39�,���$�������������4

����5

5

The e.Day object is an instance of the CalendarDay class, which provides various useful
properties, as described in Table 8-7.

Table 8-7. CalendarDay Properties

Property Description
Date The DateTime object that represents this date.

IsWeekend True if this date falls on a Saturday or Sunday.

IsToday True if this value matches the Calendar.TodaysDate property, which is set to
the current day by default.

IsOtherMonth True if this date doesn’t belong to the current month but is displayed to fill in
the first or last row. For example, this might be the last day of the previous
month or the next day of the following month.

IsSelectable Allows you to configure whether the user can select this day.

MacDonald08.fm Page 295 Tuesday, December 6, 2005 9:29 PM

296 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

The DayRender event is extremely powerful. Besides allowing you to tailor what dates
are selectable, it also allows you to configure the cell where the date is located through the
e.Cell property. (The Calendar is really a sophisticated HTML table.) For example, you
could highlight an important date or even add information. Here’s an example that high-
lights a single day—the fifth of May:

����$��	��� 	�>�
8��	��%�0�$�����$�1�>�
8��	�*�����)����

2

����""�.��$/����(�
�Q� ����
�
��1���	������� �3

���� ����3>�
3>���3>�
����Q�RR��3>�
3>���3(��������Q�

����2

���������3.���3��$/.������,
����3>�+ �)3.���3I����+4

��������""��		���������� $�������������$���3

��������'�������������+�'������4

�����������3�����������"�(
�� ��	�
7�4

���������3.���3.������3�		�����4

����5

5

Figure 8-11 shows the resulting calendar display.

Figure 8-11. Highlighting a day

MacDonald08.fm Page 296 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 297

The Calendar control provides two other useful events: SelectionChanged and
VisibleMonthChanged. These occur immediately after a change but before the page is
returned to the user. You can react to this event and update other portions of the web page
to correspond to the current calendar month. For example, you might want to set a corre-
sponding list of times in a list control. The following code demonstrates this approach,
using a different set of time values if a Monday is selected in the Calendar:

����$��	�,���,���$� ��.���)�	�%�0�$�����$�1�*�����)����

2

�������� ���39����3.�����4

�����+ �$���(
.����	�3,���$��	>���3>�
%�O��/�

����2

��������$����>�
%�O��/3(��	�
�

������������""�����
����$ ���(��	�
��$��	���3

���������������� ���39����3�		���������4

���������������� ���39����3�		�����@���4

���������������� ���39����3�		���������4

�����������/4

��������	�������

���������������� ���39����3�		���������4

���������������� ���39����3�		�����@���4

���������������� ���39����3�		���������4

���������������� ���39����3�		�����@���4

���������������� ���39����3�		���J�����4

���������������� ���39����3�		���J�@���4

���������������/4

����5

5

To try these features of the Calendar control, run the Appointment.aspx page from the
online samples. This page provides a formatted Calendar control that restricts some
dates, formats others specially, and updates a corresponding list control when the selec-
tion changes.

Table 8-8 gives you an at-a-glance look at almost all the members of the Calendar
control class.

MacDonald08.fm Page 297 Tuesday, December 6, 2005 9:29 PM

298 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Table 8-8. Calendar Members

Member Description
Caption and CaptionAlign Gives you an easy way to add a title to the Calendar. By default,

the caption appears at the top of the title area, just above the
month heading. However, you can control this to some extent
with the CaptionAlign property. Use Left or Right to keep the
caption at the top but move it to one side or the other, and use
Bottom to place the caption under the Calendar.

CellPadding ASP.NET creates a date in a separate cell of an invisible table.
CellPadding is the space, in pixels, between the border of each
cell and its contents.

CellSpacing The space, in pixels, between cells in the same table.

DayNameFormat Determines how days are displayed in the Calendar header.
Valid values are Full (as in Sunday), FirstLetter (S),
FirstTwoLetters (Su), and Short (Sun), which is the default.

FirstDayOfWeek Determines which day is displayed in the first column of the
calendar. The values are any day name from the
FirstDayOfWeek enumeration (such as Sunday).

NextMonthText and
PrevMonthText

Sets the text that the user clicks to move to the next or previous
month. These navigation links appear at the top of the Calendar
and are the greater-than (>) and less-than (<) signs by default.
This setting is applied only if NextPrevFormat is set to Custom.

NextPrevFormat Sets the text that the user clicks to move to the next or previous
month. This can be FullMonth (for example, December),
ShortMonth (Dec), or Custom, in which case the
NextMonthText and PrevMonthText properties are used.
Custom is the default.

SelectedDate and
SelectedDates

Sets or gets the currently selected date as a DateTime object.
You can specify this in the control tag in a format like this:
"12:00:00 AM, 12/31/2005" (depending on your computer’s
regional settings). If you allow multiple date selection, the
SelectedDates property will return a collection of DateTime
objects, one for each selected date. You can use collection
methods such as Add, Remove, and Clear to change the
selection.

SelectionMode Determines how many dates can be selected at once. The
default is Day, which allows one date to be selected. Other
options include DayWeek (a single date or an entire week)
or DayWeekMonth (a single date, entire week, or entire
month). You have no way to allow the user to select multiple
noncontiguous dates. You also have no way to allow larger
selections without also including smaller selections. (For
example, if you allow full months to be selected, you must also
allow week selection and individual day selection.)

MacDonald08.fm Page 298 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 299

The AdRotator

The basic purpose of the AdRotator is to provide a banner-type graphic on a page (often
used as an advertisement link to another site) that is chosen randomly from a group of
possible banners. In other words, every time the page is requested, a different banner
could be chosen and displayed, which is the “rotation” indicated by the name AdRotator.

In ASP.NET, it wouldn’t be too difficult to implement an AdRotator type of design on
your own. You could react to the Page.Load event, generate a random number, and then
use that number to choose from a list of predetermined image files. You could even store
the list in the web.config file so that it can be easily modified separately as part of the
application’s configuration. Of course, if you wanted to enable several pages with a ran-
dom banner, you would have to either repeat the code or create your own custom control.
The AdRotator provides these features for free.

SelectMonthText and
SelectWeekText

The text shown for the link that allows the user to select an
entire month or week. These properties don’t apply if the
SelectionMode is Day.

ShowDayHeader,
ShowGridLines,
ShowNextPrevMonth, and
ShowTitle

These Boolean properties allow you to configure whether
various parts of the calendar are shown, including the day
titles, gridlines between every day, the previous/next month
navigation links, and the title section. Note that hiding the title
section also hides the next and previous month navigation
controls.

TitleFormat Configures how the month is displayed in the title area. Valid
values include Month and MonthYear (the default).

TodaysDate Sets which day should be recognized as the current date and
formatted with the TodayDayStyle. This defaults to the current
day on the web server.

VisibleDate Gets or sets the date that specifies what month will be displayed
in the Calendar. This allows you to change the Calendar display
without modifying the current date selection.

DayRender event Occurs once for each day that is created and added to the
currently visible month before the page is rendered. This event
gives you the opportunity to apply special formatting, add
content, or restrict selection for an individual date cell.

SelectionChanged event Occurs when the user selects a day, a week, or an entire month
by clicking the date selector controls.

VisibleMonthChanged event Occurs when the user clicks the next or previous month
navigation controls to move to another month.

Member Description

MacDonald08.fm Page 299 Tuesday, December 6, 2005 9:29 PM

300 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

The Advertisement File

The AdRotator stores its list of image files in a special XML file. This file uses the format
shown here:

��	��� ��������

����	�

�����9��)�H��������$�30�)�"9��)�H��

�����#��)���H�������""+++3������$�3$���"#��)���H��

������������������=�����$��, ���"�������������

�����9����� ������"9����� ����

�����&�
+�	�.�������"&�
+�	�

���"�	�

�"�	��� ��������

This example shows a single possible advertisement. To add more advertisements, you
would create multiple <Ad> elements and place them all inside the root <Advertisements>
element:

��	��� ��������

����	�

�����7CC�; ����	����3�CC�

���"�	�

����	�

�����7CC�,�$��	��	����3�CC�

���"�	�

�"�	��� ��������

Each <Ad> element has a number of other important properties that configure the link,
the image, and the frequency, as described in Table 8-9.

Table 8-9. Advertisement File Elements

Element Description

ImageUrl The image that will be displayed. This can be a relative link (a file in the current
directory) or a fully qualified Internet URL.

NavigateUrl The link that will be followed if the user clicks the banner.

AlternateText The text that will be displayed instead of the picture if it cannot be displayed.
This text will also be used as a tooltip in some newer browsers.

MacDonald08.fm Page 300 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 301

The AdRotator Class

The actual AdRotator class provides a limited set of properties. You specify both the
appropriate advertisement file in the AdvertisementFile property and the type of window
that the link should follow (the Target window). The target can name a specific frame, or
it can use one of the values defined in Table 8-10.

Table 8-10. Special Frame Targets

Optionally, you can set the KeywordFilter property so that the banner will be chosen
from a specific keyword group. This is a fully configured AdRotator tag:

������	8������ 	���	����������������	��� ������; ����(� ��	�3����

�������)����-����/��&�
+�	; �����.��������"�

■Tip In Visual Studio, you can’t link to an advertisement file unless you have added it to the current project.

Additionally, you can react to the AdRotator.AdCreated event. This occurs when the
page is being created and an image is randomly chosen from the file. This event provides
you with information about the image that you can use to customize the rest of your page.
For example, you might display some related content or a link, as shown in Figure 8-12.

Impressions A number that sets how often an advertisement will appear. This number is
relative to the numbers specified for other ads. For example, a banner with the
value 10 will be shown twice as often as the banner with the value 5.

Keyword A keyword that identifies a group of advertisements. You can use this for
filtering. For example, you could create ten advertisements and give half of
them the keyword Retail and the other half the keyword Computer. The web
page can then choose to filter the possible advertisements to include only one
of these groups.

Target Description
_blank The link opens a new unframed window.

_parent The link opens in the parent of the current frame.

_self The link opens in the current frame.

_top The link opens in the topmost frame of the current window (so the link appears in the
full window).

Element Description

MacDonald08.fm Page 301 Tuesday, December 6, 2005 9:29 PM

302 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Figure 8-12. An AdRotator with synchronized content

The event handling code for this example simply configures the HyperLink control
based on the randomly selected advertisement:

����$��	��� 	��	�-�	.����	�%�0�$�����	�1��	.����	*�����)����

2

����""�,
�$��� S������T
��� �/�$�����3

������/�����3#��)���H�����3#��)���H�4

����""�,
�$��� S������������������� �/3

������/�����3��������.� $/�������� ������ ���������������������4

������/�����3�����:���3������������4

5

As you can see, rich controls such as the Calendar and AdRotator don’t just add a
sophisticated HTML output, they also include an event framework that allows you to take
charge of the control’s behavior and integrate it into your application.

Pages with Multiple Views
In a typical website, you’ll surf through many separate pages. For example, if you want to
add an item to your shopping cart and take it to the checkout in an e-commerce site, you’ll
need to jump from one page to another. This design has its advantages—namely, it lets
you carefully separate different tasks into different code files. It also presents some chal-
lenges; for example, you need to come up with a way to transfer information from one
page to another (a topic that’s covered in detail in Chapter 9).

MacDonald08.fm Page 302 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 303

However, in some cases it makes more sense to create a single page that can handle
several different tasks. For example, you might want to provide several views of the same
data (such as a grid-based view and a chart-based view) and allow the user to switch from
one view to the other without leaving the page. Or, you might want to handle a small mul-
tistep task in one place (such as supplying user information for an account sign-up
process). In these examples, you need a way to create dynamic pages that provide more
than one possible view. Essentially, the page hides and shows different controls depend-
ing on which view you want to present.

The simplest way to understand this technique is to create a page with several Panel
controls. Each panel can hold a group of ASP.NET controls. For example, imagine you’re
creating a simple three-step wizard. You’ll start by adding three panels to your page, one
for each step—say, panelStep1, panelStep2, and panelStep3. Then, you’ll place the appro-
priate controls inside each panel. To start, the Visible property of each panel should be
false, except for panelStep1, which appears the first time the user request the page.

■Note When you set the Visible property of a control to false, the control won’t appear in the page at
runtime—in fact, no HTML will be generated for it. Any controls inside an invisible panel are also hidden from
sight. However, the control will still appear in the Visual Studio design surface so that you can still select it
and configure it.

Finally, you’ll add one or more navigation buttons. For example, the following code
handles the click of a Next button. It checks which step the user is currently on, hides the
current panel, and shows the following panel. This way the user is moved to the next step.

����$��	��� 	�$�	#���-.� $/�	���0�$�����	�1�*�����)����

2

���� ��������,����3! � ����

����2

��������""�(������������J3

�������������,����3! � �����������4

�������������,���J3! � ���������4

����5

��������� ��������,���J3! � ����

����2

��������""�(������������@3

�������������,���J3! � �����������4

�������������,���@3! � ���������4

MacDonald08.fm Page 303 Tuesday, December 6, 2005 9:29 PM

304 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

��������""�.���)���������������������#�������; � ��3

��������$�	#���3��������; � ���4

����5

��������� ��������,���@3! � ����

����2

��������""�����+ S�	� ��� � ���	3

�������������,���@3! � �����������4

��������""��		�$�	������������������������ �������/

��������""�+ ������� ������ ���
��6���$����$��	3

�����������9���3��������O S�	�; � ���	3�4

����5

5

This approach works relatively well. Even when the panels are hidden, you can still
interact with all the controls on each panel and retrieve the information they contain. The
problem is that you need to write all the code for controlling which panel is visible. If you
make your wizard much more complex—for example, you want to add a button for
returning to a previous step—it becomes more difficult to keep track of what’s happening.
At best, this approach clutters your page with the code for managing the panels. At worst,
you’ll make a minor mistake and end up with two panels showing at the same time.

Fortunately, ASP.NET gives you a more robust option. You can use two controls that
are designed for the job—the MultiView and the Wizard. In the following sections, you’ll
see how you can use both of these controls with the GreetingCardMaker example devel-
oped in Chapter 6.

The MultiView Control

The MultiView is the simpler of the two multiple-view controls. Essentially, the MultiView
gives you a way to declare multiple views and show only one at a time. It has no default
user interface—you get only whatever HTML and controls you add. The MultiView is
equivalent to the custom panel approach explained earlier.

Creating a MultiView is suitably straightforward. You add the <asp:MultiView> tag to
your .aspx page file and then add one <asp:View> tag inside it for each separate view:

�����(��� ! �+�9>��(��� ! �+���������������

�������! �+�9>��! �+���������������333�"����! �+�

�������! �+�9>��! �+J��������������333�"����! �+�

�������! �+�9>��! �+@��������������333�"����! �+�

�"����(��� ! �+�

MacDonald08.fm Page 304 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 305

In Visual Studio, you create these tags by first dropping a MultiView control onto your
form and then using the Toolbox to add as many View controls inside it as you want. The
View control plays the same role as the Panel control in the previous example, and the
MultiView takes care of coordinating all the views so that only one is visible at a time.

Inside each view, you can add HTML or web controls. For example, consider the
GreetingCardMaker example demonstrated in Chapter 6, which allows the user to create
a greeting card by supplying some text and choosing colors, a font, and a background. As
the GreetingCardMaker grows more complex, it requires more controls, and it becomes
increasingly difficult to fit all those controls on the same page. One possible solution is to
divide these controls into logical groups and place each group in a separate view.

Creating Views

Here’s the full markup for a MultiView that splits the greeting card controls into three
views named View1, View2, and View3:

�����(��� ! �+� 	��(��� ! �+����������������

�������! �+�9>��! �+���������������

����.�����������)���	��������$��������"�

���������>��>�+�' ���9>�����;��.���������������������=�����$/������

�����%�,���$��	9�	��.���)�	��.�����.���)�	��"�

��������"�����"�

����.����������$/)���	�$��������"�

���������>��>�+�' ���9>�������$/.���������������������=�����$/������

�����%�,���$��	9�	��.���)�	��.�����.���)�	��"�

���"����! �+�

�������! �+�9>��! �+J��������������

����.����������	����
�������"�

���������8�	 �������' ���9>�������	�������������������=�����$/������

�����%�,���$��	9�	��.���)�	��.�����.���)�	��8�����.��������J��"�

��������"�

���������.��$/����9>��$�/= $���������������������=�����$/������

�����%�.��$/�	.���)�	��.�����.���)�	���������		�����>�������= $������"�

���"����! �+�

�������! �+�9>��! �+@��������������

����.����������������������"�

���������>��>�+�' ���9>�����;���#���������������������=�����$/������

�����%�,���$��	9�	��.���)�	��.�����.���)�	��"�

��������"�����"�

����,��$ �
��������� S������"�

MacDonald08.fm Page 305 Tuesday, December 6, 2005 9:29 PM

306 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

�����������������9>�����;���, S�������������������=�����$/������

�����%�����.���)�	��.�����.���)�	��"�

��������"�����"�

����*��������)��� �)����������+�����"�

�����������������9>�����N��� �)������������������=�����$/������

�����%�����.���)�	��.�����.���)�	������(�	���(��� ' ����"�

���"����! �+�

�"����(��� ! �+�

Visual Studio shows all your views at design time, one after the other (see Figure 8-13).
You can edit these regions in the same way you design any other part of the page.

Figure 8-13. Designing multiple views

MacDonald08.fm Page 306 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 307

Showing a View

If you run this example, you won’t see what you expect. The MultiView will appear empty
on the page, and all the controls in all your views will be hidden.

The reason this happens is because the MultiView.ActiveViewIndex property is, by
default, set to –1. The ActiveViewIndex property determines which view will be shown. If
you set the ActiveViewIndex to 0, however, you’ll see the first view. Similarly, you can set
it to 1 to show the second view, and so on. You can set this property using the Properties
window or using code:

""�,��+������ ���� �+3

(��� ! �+�3�$� ��! �+9�	������4

This example shows the first view (View1) and hides whatever view is currently being
displayed, if any.

■Tip To make more readable code, you can create an enumeration that defines a name for each view. That
way, you can set the ActiveViewIndex using the descriptive name from the enumeration rather than an ordi-
nary number. Refer to Chapter 3 for a refresher on enumerations.

You can also use the SetActiveView() method, which accepts any one of the view
objects you’ve created. This may result in more readable code (if you’ve chosen descrip-
tive IDs for your view controls), and it ensures that any errors are caught earlier (at
compile time instead of runtime).

(��� ! �+3,���$� ��! �+�! �+��4

This gives you enough functionality that you can create previous and next navigation
buttons. However, it’s still up to you to write the code that checks which view is visible and
changes the view. This code is a little simpler, because you don’t need to worry about hid-
ing views any longer, but it’s still less than ideal.

Fortunately, the MultiView includes some built-in smarts that can save you a lot of
trouble. Here’s how it works: The MultiView recognizes buttons controls with specific
command names. (Technically, a button control is any control that implements the
IButtonControl interface, including the Button, ImageButton, and LinkButton.) If you add
a button control to the view that uses one of these recognized command names, the but-
ton gets some automatic functionality. Using this technique, you can create navigation
buttons without writing any code.

Table 8-11 lists all the recognized command names. Each command name also has a
corresponding static field in the MultiView class, so you can easily get the right command
name if you choose to set it programmatically.

MacDonald08.fm Page 307 Tuesday, December 6, 2005 9:29 PM

308 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Table 8-11. Recognized Command Names for the MultiView

To try this, add this button to the first view:

������������9>�����������������������.�����	�)�������! �+J�

.�����	#�����,+ �$�! �+�
9>��������N�����! �+J��"�

When clicked, this button sets the MultiView to show the view specified by the
CommandArgument (View2).

Rather than create buttons that take the user to a specific view, you might want a but-
ton that moves forward or backward one view. To do this, you use the PrevView and
NextView command names. Here’s an example that defines previous and next buttons:

������������9>�������������������������������=����.�����	#�����=��! �+��"�

������������9>��������J��������������������#�������.�����	#�����#���! �+��"�

Once you add these buttons to your view, you can move from view to view easily.
Figure 8-14 shows the previous example with the second view currently visible.

Command Name MultiView Field Description
PrevView PrevViewCommandName Moves to the previous view.

NextView NextViewCommandName Moves to the next view.

SwitchViewByID SwitchViewByIDCommandName Moves to the view with a specific
ID (string name). The ID is taken
from the CommandArgument
property of the button control.

SwitchViewByIndex SwitchViewByIndexCommandName Moves to the view with a specific
numeric index. The index is taken
from the CommandArgument
property of the button control.

MacDonald08.fm Page 308 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 309

Figure 8-14. Moving from one view to another

■Tip Be careful how many views you cram into a single page. When you use the MultiView control, the
entire control model—including the controls from every view—is created on every postback and persisted to
view state. For the most part, this won’t be a significant factor. However, it increases the overall page size,
especially if you’re tweaking controls programmatically (which increases the amount of information they need
to store in view state).

MacDonald08.fm Page 309 Tuesday, December 6, 2005 9:29 PM

310 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

The Wizard Control

The Wizard control is a more glamorous version of the MultiView control. It also supports
showing one of several views at a time, but it includes a fair bit of built-in yet customizable
behavior, including navigation buttons, a sidebar with step links, styles, and templates.

Usually, wizards represent a single task, and the user moves linearly through them,
moving from the current step to the one immediately following it (or the one immediately
preceding it in the case of a correction). The ASP.NET Wizard control also supports non-
linear navigation, which means it allows you to decide to ignore a step based on the
information the user supplies.

By default, the Wizard control supplies navigation buttons and a sidebar with links for
each step on the left. You can hide the sidebar by setting the Wizard.DisplaySideBar prop-
erty to false. Usually, you’ll take this step if you want to enforce strict step-by-step navi-
gation and prevent the user from jumping out of sequence. You supply the content for
each step using any HTML or ASP.NET controls. Figure 8-15 shows the region where you
can add content to an out-of-the-box Wizard instance.

Figure 8-15. The region for step content

Wizard Steps

To create a wizard in ASP.NET, you simply define the steps and their content using
<asp:WizardStep> tags. Each step takes a few basic pieces of information, as listed in
Table 8-12.

MacDonald08.fm Page 310 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 311

Table 8-12. WizardStep Properties

To see how this works, consider a wizard that again uses the GreetingCardMaker exam-
ple. It guides the user through four steps. The first three steps allow the user to configure
the greeting card, and the final step shows the generated card.

�����O S�	�9>��O S�	����������������$� ��,���9�	������

���$/.�����'����.� ��������	�,�
����N��������	�O 	����J����

.���=�		 �)������

���O S�	,�����

���������O S�	,����������������� �����,������C�.������

������.�����������)���	��������$��������"�

�����������>��>�+�' ���9>�����;��.�����������������"�

����������"�

������.����������$/)���	�$��������"�

�����������>��>�+�' ���9>�������$/.�����������������"�

�����"����O S�	,����

���������O S�	,����������������� �����,����J�C���$/)���	��

������.����������	����
�������"�

�����������8�	 �������' ���9>�������	���������������8�����.��������J��"�

����������"�����"�

�����������.��$/����9>��$�/= $����������������

��������������		�����>�������= $������"�

�����"����O S�	,����

Property Description
Title The descriptive name of the step. This name is used for the text of the links

in the sidebar.

StepType The type of step, as a value from the WizardStepType enumeration. This
value determines the type of navigation buttons that will be shown for this
step. Choices include Start (shows a Next button), Step (shows Next and
Previous buttons), Finish (shows a Finish and Previous button), Complete
(show no buttons and hides the sidebar, if it’s enabled), and Auto (the step
type is inferred from the position in the collection). The default is Auto,
which means the first step is Start, the last step is Finish, and all other steps
are Step.

AllowReturn Indicates whether the user can return to this step. If false, once the user has
passed this step, the user will not be able to return. The sidebar link for this
step will have no effect, and the Previous button of the following step will
either skip this step or be hidden completely (depending on the AllowReturn
value of the preceding steps).

MacDonald08.fm Page 311 Tuesday, December 6, 2005 9:29 PM

312 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

���������O S�	,����������������� �����,����@�C�������

������.����������������������"�

�����������>��>�+�' ���9>�����;���#�����������������"�

����������"�����"�

������,��$ �
��������� S������"�

�������������������9>�����;���, S���������������"�

����������"�����"�

������*��������)��� �)����������+�����"�

�������������������9>�����N��� �)�������������

������������(�	���(��� ' ����"�

�����"����O S�	,����

���������O S�	,����������������,����
����.���������� �����N��� �)�.�	��

�����������=�����9>�����.�	��������������T� S�������)���.������

�����������"�R����4

�������������'�����9>�����N��� �)��������������"�

�������������9��)��9>�� �)>��������������������! � �����;������"�

�������"����=�����

�����"����O S�	,����

���"O S�	,�����

�"����O S�	�

If you look carefully, you’ll find a few differences from the original page and the
MultiView-based example. First, the controls aren’t set to automatically post back. That’s
because the greeting card isn’t rendered until the final step, at the conclusion of the wiz-
ard. (You’ll learn more about how to handle this event in the next section.) Another
change is that no navigation buttons exist. That’s because the wizard adds these details
automatically based on the step type. For example, you’ll get a Next button for the first
two steps, a Previous button for steps 2 and 3, and a Finish button for step 4. The final
step, which shows the complete card, doesn’t provide any navigation links because the
StepType is set to Complete. Figure 8-16 shows the wizard steps.

Unlike the MultiView control, you can see only one step at a time in Visual Studio.
To choose which step you’re currently designing, select it from the smart tag, as shown
in Figure 8-17. But be warned—every time you do, Visual Studio changes the
Wizard.ActiveStepIndex property to the step you choose. Make sure you set this back to
0 before you run your application so it starts at the first step.

MacDonald08.fm Page 312 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 313

Figure 8-16. A wizard with four steps

Figure 8-17. Designing a step

MacDonald08.fm Page 313 Tuesday, December 6, 2005 9:29 PM

314 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

■Note Remember, when you add controls to separate steps on a wizard, the controls are all instantiated
and persisted in view state, regardless of which step is currently shown. If you need to slim down a complex
wizard, you’ll need to split it into separate pages, use the Server.Transfer() method to move from one page to
the next, and tolerate a less elegant programming model.

Wizard Events

You can write the code that underpins your wizard by responding to several events (as
listed in Table 8-13).

Table 8-13. Wizard Events

On the whole, two wizard programming models exist:

Commit-as-you-go: This makes sense if each wizard step wraps an atomic operation that
can’t be reversed. For example, if you’re processing an order that involves a credit card
authorization followed by a final purchase, you can’t allow the user to step back and edit
the credit card number. To support this model, you set the AllowReturn property to false
on some or all steps. You may also want to respond to the ActiveStepChanged event to
commit changes for each step.

Commit-at-the-end: This makes sense if each wizard step is collecting information for
an operation that’s performed only at the end. For example, if you’re collecting user
information and plan to generate a new account once you have all the information,

Event Description
ActiveStepChanged Occurs when the control switches to a new step (either because the user

has clicked a navigation button or your code has changed the
ActiveStepIndex property).

CancelButtonClick Occurs when the Cancel button is clicked. The Cancel button is not
shown by default, but you can add it to every step by setting the
Wizard.DisplayCancelButton property. Usually, a Cancel button exits
the wizard. If you don’t have any cleanup code to perform, just set the
CancelDestinationPageUrl property, and the wizard will take care of the
redirection automatically.

FinishButtonClick Occurs when the Finish button is clicked.

NextButtonClick and
PreviousButtonClick

Occurs when the Next or Previous button is clicked on any step.
However, because there is more than one way to move from one step
to the next, it’s better to handle the ActiveStepChanged event.

SideBarButtonClick Occurs when a button in the sidebar area is clicked.

MacDonald08.fm Page 314 Tuesday, December 6, 2005 9:29 PM

C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S 315

you’ll probably allow a user to make changes midway through the process. You execute
your code for generating the new account when the wizard ends by reacting to the
FinishButtonClick event.

To implement commit-at-the-end with the current example, just respond to the
FinishButtonClick event. For example, to implement the greeting card wizard, you simply
need to respond to this event to call Update(), the private method that refreshes the greet-
ing card:

����$��	��� 	�O S�	�-; � ��������.� $/���0�$�����	�1�

O S�	#��)�� ��*�����)����

2

����H�	�����4

5

For the complete code, refer to Chapter 6 (or check out the downloadable sample
code). If you decide to use the commit-as-you go model, you would respond to the
ActiveStepChanged event and call Update() at that point to refresh the card every time the
user moves from one step to another. This assumes the greeting card is always visible. (In
other words, it’s not contained in the final step of the wizard.) The commit-as-you-go
model is similar to the previous example that used the MultiView.

Formatting the Wizard

Without a doubt, the Wizard control’s greatest strength is the way it lets you customize its
appearance. This means if you want the basic model (a multistep process with navigation
buttons and various events), you aren’t locked into the default user interface.

Depending on how radically you want to change the wizard, you have several options.
For less dramatic modifications, you can set various top-level properties. For example,
you can control the colors, fonts, spacing, and border style, as you can with any ASP.NET
control. You can also tweak the appearance of every button. For example, to change the
Next button, you can use the following properties: StepNextButtonType (use a button,
link, or clickable image), StepNextButtonText (customize the text for a button or link),
StepNextButtonImageUrl (set the image for an image button), and StepNextButtonStyle
(use a style from a style sheet). You can also add a header using the HeaderText property.

More control is available through styles. You can use styles to apply formatting options to
various portions of the Wizard control just as you can use styles to format parts of rich data
controls such as the GridView. Table 8-14 lists all the styles you can use. As with other style-
based controls, more specific style settings (such as SideBarStyle) override more general
style settings (such as ControlStyle) when they conflict. Similarly, StartNextButtonStyle
overrides NavigationButtonStyle on the first step.

MacDonald08.fm Page 315 Tuesday, December 6, 2005 9:29 PM

316 C H A P T E R 8 ■ V A L I D A T I O N A N D R I C H C O N T R O L S

Table 8-14. Wizard Styles

■Note The Wizard control also supports templates, which gives you a more radical approach to formatting.
If you can’t get the level of customization you want through properties and styles, you can use templates to
completely define the appearance of each section of the Wizard control, including the headers and navigation
links. Templates require data binding expressions and are discussed in Chapter 14 and Chapter 15.

The Last Word
This chapter showed you how validation controls, the rich Calendar and AdRotator con-
trols, and the MultiView and Wizard controls can go far beyond the limitations of ordinary
HTML elements.

Throughout this book, you’ll consider some more examples of rich controls and learn
how to use them to create rich web applications that are a world apart from HTML basics.
Some of the most exciting rich controls that are still ahead include the navigation controls
(Chapter 11) and the data controls (Chapter 15).

Style Description
ControlStyle Applies to all sections of the Wizard control

HeaderStyle Applies to the header section of the wizard, which is visible only if
you set some text in the HeaderText property

SideBarStyle Applies to the sidebar area of the wizard

SideBarButtonStyle Applies to just the buttons in the sidebar

StepStyle Applies to the section of the control where you define the step
content

NavigationStyle Applies to the bottom area of the control where the navigation
buttons are displayed

NavigationButtonStyle Applies to just the navigation buttons in the navigation area

StartNextButtonStyle Applies to the Next navigation button on the first step (when
StepType is Start)

StepNextButtonStyle Applies to the Next navigation button on intermediate steps (when
StepType is Step)

StepPreviousButtonStyle Applies to the Previous navigation button on intermediate steps
(when StepType is Step)

FinishPreviousButtonStyle Applies to the Previous navigation button on the last step (when
StepType is Finish)

CancelButtonStyle Applies to the Cancel button, if you have Wizard.
DisplayCancelButton set to true

MacDonald08.fm Page 316 Tuesday, December 6, 2005 9:29 PM

317

■ ■ ■

C H A P T E R 9

State Management

The most significant difference between programming for the Internet and program-
ming for the desktop is state management—in other words, how you retain information
for the current user. In a traditional Windows application, state is managed automatically.
Memory is plentiful and always available. In a web application, it’s a different story. Thou-
sands of users might simultaneously run the same application on the same computer (the
web server), each one communicating over the stateless HTTP of the Internet. These con-
ditions make it impossible to program a web application like a traditional Windows
program.

Understanding these state limitations is the key to creating efficient, robust web appli-
cations. In this chapter, you’ll learn why state is no trivial issue in the world of Internet
programming, and you’ll see how you can use ASP.NET’s state management features to
store and manage information carefully and consistently. You’ll explore different state
options, including view state, session state, and custom cookies, and consider how to
transfer information from page to page using cross-page posting and the query string.
You’ll also look at how you can react to application events with the global.asax file.

The Problem of State
In a traditional Windows program, users interact with a continuously running applica-
tion. A portion of memory on the desktop computer is allocated to store the current set
of working information.

In a web application, the story is quite a bit different. A professional ASP.NET site might
look like a continuously running application, but it’s really just a clever illusion. Web
applications use a highly efficient disconnected access pattern. In a typical web request,
the client connects to the web server and requests a page. When the page is delivered, the
connection is severed, and the web server abandons any information it has about the cli-
ent. By the time the user receives a page, the “application” has already stopped running.

Because clients need to be connected for only a few seconds at most, a web server
can handle thousands of requests without a performance hit. However, if you need to
retain information between user actions (and you almost always do), you need to take
additional steps.

MacDonald09.fm Page 317 Tuesday, December 6, 2005 9:31 PM

318 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

View State
In the previous chapters, you learned how ASP.NET controls use view state to remember their
state. View state information is maintained in a hidden field and automatically returned to the
server with every postback. However, view state isn’t limited to server controls. Your web page
code can add bits of information directly to the view state collection of the containing page
and retrieve it later after the page is posted back. The type of information you can store
includes simple data types and your own custom objects.

The ViewState property of the page provides the view state collection. This property is
an instance of the StateBag collection class. To add and remove items in this class, you use
a dictionary-based syntax, where every item has a unique string name.

For example, consider this code:

������������	�
���

��������������� !����� "�#�$%

This places the value 1 (or rather, an integer that contains the value 1) into the view
state collection and gives it the descriptive name Counter. If currently no item has the
name Counter, a new item will be added automatically. If an item is already indexed
under the name Counter, it will be replaced.

When retrieving a value, you use the key name. You also need to cast the retrieved value
to the appropriate data type using the casting syntax you saw in Chapter 2 and Chapter 3.
This extra step is required because the ViewState collection stores all items as generic
objects, which allows it to handle many different data types.

Here’s the code that retrieves the counter from view state and converts it to an integer:

����������%

�������#�&���'��������������� !����� "%

■Note ASP.NET provides many collections that use the same dictionary syntax. This includes the collec-
tions you’ll use for session and application state, as well as those used for caching and cookies. You’ll see
several of these collections in this chapter.

A View State Example

The following example is a simple counter program that records how many times a button
is clicked. Without any kind of state management, the counter will be locked perpetually
at 1. With careful use of view state, the counter works as expected.

MacDonald09.fm Page 318 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 319

����������������������(���!������)�����

*

�������������+�����(�����(���,!���	&-�����������.�/+���0����'

����*

������������������%

�����������&���������� !����� "�##�����'

��������*

�������������������#�$%

��������1

������������

��������*

�������������������#�&���'���������� !����� "�2�$%

��������1

������������������ !����� "�#�������%

�����������!�������3��#� !�����)� �2���������������&'%

����1

1

The code checks to make sure the item exists in view state before it attempts to retrieve
it. Otherwise, you could easily run into problems such as the infamous null reference
exception.

Figure 9-1 shows the output for this page.

Figure 9-1. A simple view state counter

You have other ways to solve the state management problem with the simple counter
example. For example, you could enable view state for the Label control and use the label
to store the counter. Every time the Increment button is clicked, you could then retrieve
the current value from the label text and convert it to an integer. However, this technique

MacDonald09.fm Page 319 Tuesday, December 6, 2005 9:31 PM

320 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

isn’t always appropriate. For example, you might create a program that tracks button
clicks but doesn’t display them on the screen. In this case, you could still store this infor-
mation in a web control, but you would have to make it hidden. That, of course, is exactly
what view state does: it stores information automatically in a special hidden field in the
page. Because ASP.NET handles these lower-level details for you, your code becomes
clearer and more concise.

Making View Sate Secure

You probably remember from Chapter 5 that view state information is stored in a single
jumbled string that looks like this:

4�������
��# ������ ���(�# ,,��/5��0�/ ���������	
��	������	�������6

As you add more information to view state, this value can become much longer.
Because this value isn’t formatted as clear text, many ASP.NET programmers assume that
their view state data is encrypted. It isn’t. Instead, the view state information is simply
patched together in memory and converted to a Base64 string. A clever hacker could
reverse-engineer this string and examine your view state data in a matter of seconds.

If you want to make view state more secure, you have two choices. First, you can make
sure the view state information is tamper-proof by instructing ASP.NET to use a hash code.

A hash code is sometimes described as a cryptographically strong checksum. The idea is
that ASP.NET examines all the data in your view state and runs it through a hashing algo-
rithm (with the help of a secret key value). The hashing algorithm creates a short segment of
data, which is the hash code. This code is then added at the end of the view state data.

When the page is posted back, ASP.NET examines the view state data and recalculates
the hash code using the same process. It then checks whether the checksum it calculated
matches the hash code that is stored in the view state for the page. If a malicious user
changes part of the view state data, ASP.NET will end up with a new hash code that
doesn’t match. At this point, it will reject the postback completely. (You might think a
really clever user could get around this by generating fake view state information and a
matching hash code. However, malicious users can’t generate the right hash code,
because they don’t have the same cryptographic key as ASP.NET. This means the hash
codes they create won’t match.)

Hash codes are actually enabled by default, so if you want this functionality, you don’t
need to take any extra steps. Occasionally, developers choose to disable this feature to pre-
vent problems in a web farm where different servers have different keys. (The problem
occurs if the page is posted back and handled by a new server, which won’t be able to verify

MacDonald09.fm Page 320 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 321

the view state information.) To disable hash codes, you can use the enableViewStateMac
attribute of the <pages> element in the web.config or machine.config file, as shown here:

4�������������3(���# ����)������(���(����������(��7��!������������+8�9 6

��4�
���(����6

����4���������������������:��# ����� ��6

�������

��4��
���(����6

4�������������6

Of course, a better way to solve this problem is configure multiple servers to use the
same key, thereby removing any problem. Chapter 12 describes this technique.

Even when you use hash codes, the view state data will still be readable by the user. In
many cases, this is completely acceptable—after all, the view state tracks information
that’s often provided directly through other controls. However, if your view state contains
some information you want to keep secret, you can enable view state encryption.

You can turn on encryption for an individual page using the ViewStateEncryption-
Mode property of the Page directive:

4;<��������������/��
�����:���# 0���
� 6

Or you can set the same attribute in a configuration file:

4�������������3(���# ����)������(���(����������(��7��!������������+8�9 6

��4�
���(����6

����4������+��������/��
�����:���# 0���
� ��6

�������

��4��
���(����6

4�������������6

Either way, this enforces encryption. You have three choices for your view state encryp-
tion setting—always encrypt (Always), never encrypt (Never), or encrypt only if a control
specifically requests it (Auto). The default is Auto, which means a control must call the
Page.RegisterRequiresViewStateEncryption() method to request encryption. If no control
calls this method to indicate it has sensitive information, the view state is not encrypted,
thereby saving the encryption overhead. On the other hand, a control doesn’t have abso-
lute power—if it calls Page.RegisterRequiresViewStateEncryption() and the encryption
mode is Never, the view state won’t be encrypted.

■Tip Don’t encrypt view state data if you don’t need to do so. The encryption will impose a performance
penalty, because the web server needs to perform the encryption and decryption with each postback.

MacDonald09.fm Page 321 Tuesday, December 6, 2005 9:31 PM

322 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

Retaining Member Variables

You have probably noticed that any information you set in a member variable for an
ASP.NET page is automatically abandoned when the page processing is finished and the
page is sent to the client. (The Counter variable in the previous code listing is an example.)
Interestingly, you can work around this limitation using view state.

The basic principle is to save all member variables to view state when the Page.PreRender
event occurs and retrieve them when the Page.Load event occurs. Remember, the Load event
happens every time the page is created. In the case of a postback, the Load event occurs first,
followed by any other control events.

The following example uses this technique with a single user variable (named Contents).
The page provides a text box and two buttons. The user can choose to save a string of text
and then restore it at a later time (see Figure 9-2). The Button.Click event handlers store and
retrieve this text using the Contents member variable. These event handlers don’t need to
save or restore this information using view state, because the PreRender and Load event
handlers perform these tasks when page processing starts and finishes.

Figure 9-2. A page with state

������������������������+�:�(����)�����

*

������������������������������
������� �������
��������!�"#$��� %&

����"�������$���'� #'��'�$(

MacDonald09.fm Page 322 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 323

�������������+��������,=���&-�����������.�/+���0����'

����*

�����������&�����������>��	'

��������*

���������������)�$�#�����������$&

������������ #'��'�$���*$���'+,��
-����.� #'��'�$�/(

��������1

����1

�������������+��������,��?����&-�����������.�/+���0����'

����*

�����������0��$�$����������$&

��������,��
-����.� #'��'�$�/��� #'��'�$(

����1

�������������+�����(���+�,!���	&-�����������.�/+���0����'

����*

��������������������������������3����3����(�(���+�������

�����������������#��3���������3�%

���������3���������3��#� %

����1

�������������+�����(�=���,!���	&-�����������.�/+���0����'

����*

�����������?������������������(�(���+������������3����3�

���������3���������3��#���������%

����1

1

The logic in the Load and PreRender event handlers allows the rest of your code to
work more or less as it would in a desktop application. However, you must be careful not
to store needless amounts of information when using this technique. If you store unnec-
essary information in view state, it will enlarge the size of the final page output and can
thus slow down page transmission times. Another disadvantage with this approach is that
it hides the low-level reality that every piece of data must be explicitly saved and restored.
When you hide this reality, it’s more likely that you’ll forget to respect it and design for it.

If you decide to use this approach to save member variables in view state, use it exclu-
sively. In other words, refrain from saving some view state variables at the PreRender stage
and others in control event handlers, because this is sure to confuse you and any other
programmer who looks at your code.

MacDonald09.fm Page 323 Tuesday, December 6, 2005 9:31 PM

324 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

■Tip The previous example reacted to the Page.PreRender event, which occurs just after page processing
is complete and just before the page is rendered in HTML. This is an ideal place to store any leftover informa-
tion that is required. You cannot store view state information in an event handler for the Page.Unload event.
Though your code will not cause an error, the information will not be stored in view state, because the final
HTML page output is already rendered.

Storing Custom Objects

You can store your own objects in view state just as easily as you store numeric and string
types. However, to store an item in view state, ASP.NET must be able to convert it into a
stream of bytes so that it can be added to the hidden input field in the page. This process
is called serialization. If your objects aren’t serializable (and by default they’re not), you’ll
receive an error message when you attempt to place them in view state.

To make your objects serializable, you need to add a [Serializable] attribute before your
class declaration. For example, here’s an exceedingly simple Customer class:

����������	��

�������������!����(�

*

�����������������@���7�(�%

�����������������=���7�(�%

�����������!����(�&����������7�(�.�����������7�(�'

����*

��������@���7�(��#�����7�(�%

��������=���7�(��#�����7�(�%

����1

1

Because the Customer class is marked as serializable, it can be stored in view state:

���������������(�����+����������

!����(�������#�����!����(�& :����� .� ��(��� '%

���������� !����!����(� "�#�����%

Remember, when using custom objects, you’ll need to cast your data when you retrieve
it from view state.

���?����+���������(����(�+����������

!����(������%

�����#�&!����(�'���������� !����!����(� "%

MacDonald09.fm Page 324 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 325

Once you understand this principle, you’ll also be able to determine which .NET objects
can be placed in view state. You simply need to find the class information in the MSDN
Help. You can view the MSDN Help library by selecting Start ➤ Programs ➤ Microsoft Visual
Studio 2005 ➤ Microsoft Visual Studio 2005 Documentation (the exact shortcut depends on
your version of Visual Studio). Once you’ve loaded the help, you can find class reference
information grouped by namespace under the .NET Development ➤ .NET Framework
SDK ➤ Class Library Reference node. Find the class you’re interested in, and examine the
documentation. If the class declaration is preceded with the [Serializable] attribute, the
object can be placed in view state. If the [Serializable] attribute isn’t present, the object isn’t
serializable, and you won’t be able to store it in view state. However, you will still be able to
use other types of state management, such as session state, which is described later in this
chapter (see the “Session State” section).

Transferring Information
One of the most significant limitations with view state is that it’s tightly bound to a specific
page. If the user navigates to another page, this information is lost. This problem has sev-
eral solutions, and the best approach depends on your requirements.

In the following sections, you’ll learn two basic techniques to transfer information
between pages: cross-page posting and the query string.

Cross-Page Posting

One approach that’s new in ASP.NET 2.0 is to trigger a postback to another page. This
technique sounds conceptually straightforward, but it’s a potential minefield. If you’re
not careful, it can lead you to create pages that are tightly coupled to others and difficult
to enhance and debug.

The infrastructure that supports cross-page postbacks is a new property named
PostBackUrl, which is defined by the IButtonControl interface and turns up in button
controls such as ImageButton, LinkButton, and Button. To use cross-posting, you simply
set PostBackUrl to the name of another web form. When the user clicks the button, the
page will be posted to that new URL with the values from all the input controls on the
current page.

Here’s an example—a page named CrossPage1.aspx that defines a form with two text
boxes and a button. When the button is clicked, it posts to a page named CrossPage2.aspx.

4;<������=�������# !A �0���/+���5����# ��� �!���@���# !�������$����3���

�����������# !�������$ �;6

4��(�6

4���������# ��+� 6

����4�����6!�������$4������6

MacDonald09.fm Page 325 Tuesday, December 6, 2005 9:31 PM

326 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

4�����6

4���
6

����4��(���# ��($ �����# ��+� �6

������4��+6

��������4���)��3�>�3�����# ��+� ��B# �3�@���7�(� 64����)��3�>�36�C����%

��������4���)��3�>�3�����# ��+� ��B# �3�=���7�(� 64����)��3�>�36

��������4���)>����������# ��+� ��B# �(����(��

�������������>��	D�# !�������8����3 ���3�# ���(�� ��6

������4���+6

����4���(6

4����
6

4���(�6

The CrossPage1.aspx page doesn’t include any code. Figure 9-3 shows how it appears
in the browser.

Figure 9-3. The source of a cross-page postback

Now if you load this page and click the button, the page will be posted back to
CrossPage2.aspx. At this point, the CrossPage2.aspx page can interact with CrossPage1.aspx
using the Page.PreviousPage property. Here’s an event handler that grabs the title from the
previous page and displays it:

��������������������!�������8�)��
���(�5���D������

*

�������������+��������,=���&������������.�/+���0����'

����*

�����������&��+���������E#�����'

MacDonald09.fm Page 326 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 327

��������*

����������������������3��#� F�����(����(��������������� �2

����������������+���������G����������%

��������1

����1

1

Note that this page checks for a null reference before attempting to access the
PreviousPage object. If it’s false, no cross-page postback took place. This means
CrossPage2.aspx was requested directly, or CrossPage2.aspx posted back to itself.
Either way, no PreviousPage object is available.

Figure 9-4 shows what you’ll see when CrossPage1.aspx posts to CrossPage2.aspx.

Figure 9-4. The target of a cross-page postback

Getting More Information from the Source Page

The previous example shows an interesting initial test, but it doesn’t really allow you to
transfer any useful information. After all, you’re probably interested in retrieving specific
details (such as the text in the text boxes of CrossPage1.aspx) from CrossPage2.aspx. The
title alone isn’t very interesting.

To get more specific details, such as control values, you need to cast the PreviousPage
reference to the appropriate page class (in this case it’s the CrossPage1 class). Here’s an
example that handles this situation properly, by checking first whether the PreviousPage
object is an instance of the expected class:

���������+��������,=���&������������.�/+���0����'

*

�������&��+���������E#�����'

MacDonald09.fm Page 327 Tuesday, December 6, 2005 9:31 PM

328 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

����*

��������!�������$���+�����#���+������������!�������$%

�����������&��+�����E#�����'

��������*

���������������&?������(������(��������(�������+����������'

��������1

����1

1

You can also solve this problem in another way. Rather than casting the reference man-
ually, you can add the PreviousPageType directive to the .aspx page, right after the Page
directive. The PreviousPageType directive indicates the expected type of the page initiat-
ing the cross-page postback. Here’s an example:

4;<���+���������
�������������# !�������$����3 �;6

Now, the PreviousPage property will automatically use the CrossPage type. However,
this approach is more fragile because it limits you to a single page class. You don’t have
the flexibility to deal with situations where more than one page might trigger a cross-page
postback. For that reason, it’s usually more flexible to use the casting approach.

Once you’ve cast the previous page to the appropriate page type, you still won’t be able
to directly access the control objects it contains. That’s because the controls are declared
as protected members, so they aren’t publicly accessible to other classes. You can work
around this by using properties.

For example, if you wanted to expose the values from two text boxes in the source page,
you might add properties wrap the control variables. Here are two properties you could
add to the CrossPage1 class to expose its TextBox controls:

���������3�>�3�@���7�(���3�>�3

*

��������*�������3�@���7�(�%�1

1

���������3�>�3�=���7�(���3�>�3

*

��������*�������3�=���7�(�%�1

1

However, this usually isn’t the best approach. The problem is that it exposes too many
details, giving the target page the freedom to read everything from the text in the text box
to its fonts and colors. If you need to change the page later to use different input controls,

MacDonald09.fm Page 328 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 329

it will be difficult to maintain these properties. Instead, you’ll probably be forced to
rewrite code in both pages.

A better choice is to define specific, limited methods that extract just the information
you need. For example, you might decide to add a GetFullName() method that retrieves
just the text from the two text boxes. Here’s the full page code for CrossPage1.aspx with
this property:

��������������������!�������$�)��
���(�5���D������

*

�����������������H��@���7�(�

����*

������������*�������3�@���7�(����3��2� � �2��3�=���7�(����3�%�1

����1

1

This way, the relationship between the two pages is clear, simple, and easy to maintain.
You can probably change the controls in the source page (CrossPage1) without needing to
change other parts of your application. For example, if you decided to use different con-
trols for name entry in CrossPage1.aspx, you would be forced to revise the code inside the
GetFullName() method. However, your changes would be confined to CrossPage1.aspx,
and you wouldn’t need to modify CrossPage2.aspx at all.

Here’s how you can rewrite the code in CrossPage2.aspx to display the information
from CrossPage1.aspx:

���������+��������,=���&������������.�/+���0����'

*

�������&��+���������E#�����'

����*

������������������3��#� F�����(����(��������������� �2

��������������+���������G�����������2� 4���6 %

��������!�������$���+�����#���+������������!�������$%

�����������&��+�����E#�����'

��������*

����������������������3��2#� F����
�����������)� �2���+�����H��@���7�(�%

��������1

����1

1

Figure 9-5 shows the new result.

MacDonald09.fm Page 329 Tuesday, December 6, 2005 9:31 PM

330 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

Figure 9-5. Retrieving specific information from the source page

■Note Cross-page postbacks are genuinely useful, but they can lead the way to more complicated pages.
If you allow multiple source pages that post to the same destination page, it’s up to you to code the logic that
figures out which page it came from and then acts accordingly. To avoid these headaches, it’s easiest to per-
form cross-page postbacks between two specific pages only.

ASP.NET uses some interesting sleight of hand to make cross-page postbacks work.
The first time the second page accesses Page.PreviousPage, ASP.NET needs to create the
previous page object. To do this, it actually starts the page processing but interrupts it just
before the PreRender stage, and it doesn’t let the page render any HTML output.

However, this still has some interesting side effects. For example, all the page events
of the previous page are fired, including Page.Load and Page.Init, and the Button.Click
event also fires for the button that triggered the cross-page post back. ASP.NET fires these
events because they might be needed to initialize the source page.

The Query String

Another common approach is to pass information using a query string in the URL. This
approach is commonly found in search engines. For example, if you perform a search on
the Google website, you’ll be redirected to a new URL that incorporates your search
parameters. Here’s an example:

����)���������������������IJ#������2��������

MacDonald09.fm Page 330 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 331

The query string is the portion of the URL after the question mark. In this case, it
defines a single variable named q, which contains the string organic+gardening.

The advantage of the query string is that it’s lightweight and doesn’t exert any kind of
burden on the server. However, it also has several limitations:

• Information is limited to simple strings, which must contain URL-legal characters.

• Information is clearly visible to the user and to anyone else who cares to eavesdrop
on the Internet.

• The enterprising user might decide to modify the query string and supply new
values, which your program won’t expect and can’t protect against.

• Many browsers impose a limit on the length of a URL (usually from 1KB to 2KB). For
that reason, you can’t place a large amount of information in the query string and
still be assured of compatibility with most browsers.

Adding information to the query string is still a useful technique. It’s particularly well
suited in database applications where you present the user with a list of items that corre-
spond to records in a database, like products. The user can then select an item and be
forwarded to another page with detailed information about the selected item. One easy
way to implement this design is to have the first page send the item ID to the second page.
The second page then looks that item up in the database and displays the detailed infor-
mation. You’ll notice this technique in e-commerce sites such as Amazon.

To store information in the query string, you need to place it there yourself. Unfortu-
nately, you have no collection-based way to do this. Typically, this means using a special
HyperLink control or a special Response.Redirect() statement such as the one shown here:

���H����������������3�����(������������J��
����������(���

�����(��������B.������������$9�

?��������?������& �����������3I�����B#$9 '%

You can send multiple parameters as long as they’re separated with an ampersand (&):

���H����������������3�����(�������J��
����������(����)

��������B�&$9'�����(����&����'�

?��������?������& �����������3I�����B#$9C(���#���� '%

The receiving page has an easier time working with the query string. It can receive the
values from the QueryString dictionary collection exposed by the built-in Request object:

�������B�#�?�J�����K��
������ �����B "%

Note that information is always retrieved as a string, which can then be converted
to another simple data type. Values in the QueryString collection are indexed by the vari-
able name.

MacDonald09.fm Page 331 Tuesday, December 6, 2005 9:31 PM

332 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

■Note Unlike view state, information passed through the query string is clearly visible and unencrypted.
Don’t use the query string for information that needs to be hidden or made tamper-proof.

A Query String Example

The next program presents a table of entries. When the user chooses an item by clicking
the appropriate hyperlink, the user is forwarded to a new page. This page displays the
received ID number. This provides a quick and simple query string test. In a sophisticated
application, you would want to combine some of the data control features that are
described later in this book in Part 3.

The first page provides a list of items, a check box, and a submission button (see
Figure 9-6).

Figure 9-6. A query string sender

MacDonald09.fm Page 332 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 333

Here’s the code for the first page:

��������������������K��
�����������)�����

*

�������������+��������,=���&-�����������.�/+���0����'

����*

�����������0�����(����+������

��������������(�����(��0��& /��������� '%

��������������(�����(��0��& ����(��=������B���
 '%

��������������(�����(��0��& ���������!���� '%

��������������(�����(��0��& 0���J���=�(� '%

��������������(�����(��0��& ?���L@������M���NN� '%

����1

�������������+�����(�H�,!���	&-�����������.�/+���0����'

����*

�����������&������(��������������3�##�L$'

��������*

���������������/����3��#� F���(�����������������(� %

��������1

������������

��������*

���������������1#�
���������$����#������'2#�����#'�"��3

���������������
��������4���!�$���'�����&

������������$���'��������5���!-���')� �"��'�&�$"67�(

����������������8����������8��$�����$&-��� �������&��6��8��9�(

����������������8����#�����8� �%	�����$&:�� %��&�#-���'*+(

������������)�$"#'$�&)����� �*���+(

��������1

����1

1

One interesting aspect of this example is that it places information in the query string
that really isn’t valid—namely, the space that appears in the item name. When you run the
application, you’ll notice that ASP.NET encodes the string for you automatically, convert-
ing spaces to the valid %20 equivalent escape sequence. The recipient page reads the
original values from the QueryString collection without any trouble. Figure 9-7 shows the
recipient page.

MacDonald09.fm Page 333 Tuesday, December 6, 2005 9:31 PM

334 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

Figure 9-7. A query string recipient

��������������������K��
�����?���������)�����

*

�������������+��������,=���&-�����������.�/+���0����'

����*

������������������3��#� ���()� �2�?�J�����K��
������ ���("%

������������������3��2#� 4���6�����@����?����)� %

������������������3��2#�?�J�����K��
������ :��� "%

����1

1

Custom Cookies
Custom cookies provide another way that you can store information for later use. Cookies
are small files that are created on the client’s hard drive (or, if they’re temporary, in the
web browser’s memory). One advantage of cookies is that they work transparently with-
out the user being aware that information needs to be stored. They also can be easily used
by any page in your application and even be retained between visits, which allows for
truly long-term storage. They suffer from some of the same drawbacks that affect query
strings—namely, they’re limited to simple string information, and they’re easily accessi-
ble and readable if the user finds and opens the corresponding file. These factors make
them a poor choice for complex or private information or large amounts of data.

MacDonald09.fm Page 334 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 335

Some users disable cookies on their browsers, which will cause problems for web
applications that require them. For the most part, cookies are widely adopted because
so many sites use them. However, they can limit your potential audience, and they aren’t
suited for the embedded browsers used with mobile devices. Also, a user might manually
delete a cookie file that is stored on their hard drive.

A good rule of thumb is to use cookies to retain preference-related information, such as
a customer’s last order item or e-mail address. You can then use this information to pro-
vide a richer experience. However, you shouldn’t require the use of cookies or assume
that they’ll always be present.

Before you can use cookies, you should import the System.Net namespace so you can
easily work with the appropriate types:

�������
���(�7��%

Cookies are fairly easy to use. Both the Request and Response objects (which are
provided through Page properties) provide a Cookies collection. The important trick to
remember is that you retrieve cookies from the Request object, and you set cookies using
the Response object.

To set a cookie, just create a new System.Net.HttpCookie object. You can then fill it
with string information (using the familiar dictionary pattern) and attach it to the current
web response:

���!������������	����������

G���!��	������	���#�����G���!��	��& ��������� '%

���������+�����������

���	��� =���������� "�#� /������ %

���0�������������������������������

?��������!��	����0��&���	��'%

A cookie added in this way will persist until the user closes the browser and will be sent
with every request. To create a longer-lived cookie, you can set an expiration date:

�����������	�����+����������
���

���	���/3�����#�B�����(��7���0��F���&$'%

You retrieve cookies by cookie name using the Request.Cookies collection:

G���!��	������	���#�?�J�����!��	���� ��������� "%

���!���	��������������������	�������������������������(��

���������������������������������	�.

������������������������������������	���.

������������������������	�������������3����

MacDonald09.fm Page 335 Tuesday, December 6, 2005 9:31 PM

336 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

��������������%

���&���	���E#�����'

*

�������������#����	��� =���������� "%

1

The only way to remove a cookie is by replacing it with a cookie that has an expiration
date that has already passed. This code demonstrates the technique:

G���!��	������	���#�����G���!��	��& =���������� '%

���	���/3�����#�B�����(��7���0��B�
�&L$'%

?��������!��	����0��&���	��'%

A Cookie Example

The next example shows a typical use of cookies to store a customer name. If the name is
found, a welcome message is displayed, as shown in Figure 9-8.

Figure 9-8. Displaying information from a custom cookie

Here’s the code for this page:

��������������������!��	��/3�(����)�����

*

�������������+��������,=���&-�����������.�/+���0����'

����*

��������G���!��	������	���#�?�J�����!��	���� ��������� "%

MacDonald09.fm Page 336 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 337

�����������&���	���##�����'

��������*

���������������5����(����3��#� 4�6D�	�����!����(�4��6 %

��������1

������������

��������*

���������������5����(����3��#� 4�6!��	���@�����4��64���64���6 %

���������������5����(����3��2#� 5����(�.� �2����	��� 7�(� "%

��������1

����1

�������������+�����(�����,!���	&-�����������.�/+���0����'

����*

�����������!���	���������	��.��������
�������������������

����������������������������
��3����

��������G���!��	������	���#�?�J�����!��	���� ��������� "%

�����������&���	���##�����'

��������*

���������������	���#�����G���!��	��& ��������� '%

��������1

�����������	��� 7�(� "�#��3�7�(����3�%

�����������	���/3�����#�B�����(��7���0��F���&$'%

��������?��������!��	����0��&���	��'%

�����������5����(����3��#� 4�6!��	���!������4��64���64���6 %

�����������5����(����3��2#� 7���!����(�)� �2����	��� 7�(� "%

����1

1

■Note You’ll find that some other ASP.NET features use cookies. Two examples are session state (which
allows you to temporarily store user-specific information in server memory) and forms security (which allows
you to restrict portions of a website and force users to access it through a login page). Chapter 18 discusses
forms security, and the next section of this chapter discusses session state.

Session State
There comes a point in the life of most applications when they begin to have more sophis-
ticated storage requirements. An application might need to store and access complex

MacDonald09.fm Page 337 Tuesday, December 6, 2005 9:31 PM

338 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

information such as custom data objects, which can’t be easily persisted to a cookie or
sent through a query string. Or the application might have stringent security require-
ments that prevent it from storing information on the client in view state or a custom
cookie. In these situations, you can use ASP.NET’s built-in session state facility.

Session state management is one of ASP.NET’s premiere features. It allows you to store
any type of data in memory on the server. The information is protected, because it is never
transmitted to the client, and it’s uniquely bound to a specific session. Every client that
accesses the application has a different session and a distinct collection of information.
Session state is ideal for storing information such as the items in the current user’s shop-
ping basket when the user browses from one page to another.

Session Tracking

ASP.NET tracks each session using a unique 120-bit identifier. ASP.NET uses a proprietary
algorithm to generate this value, thereby guaranteeing (statistically speaking) that the
number is unique and it’s random enough that a malicious user can’t reverse-engineer or
“guess” what session ID a given client will be using. This special ID is the only piece of
information that is transmitted between the web server and the client. When the client
presents the session ID, ASP.NET looks up the corresponding session, retrieves the serial-
ized data from the state server, converts it to live objects, and places these objects into
a special collection so that they can be accessed in code. This process takes place
automatically.

For this system to work, the client must present the appropriate session ID with each
request. You can accomplish this in two ways:

Using cookies: In this case, the session ID is transmitted in a special cookie (named
ASP.NET_SessionId), which ASP.NET creates automatically when the session collec-
tion is used. This is the default, and it’s also the same approach that was used in earlier
versions of ASP.

Using modified URLs: In this case, the session ID is transmitted in a specially modified
(or munged) URL. This is a new feature in ASP.NET that allows you to create applica-
tions that use session state with clients that don’t support cookies.

Session state doesn’t come for free. Though it solves many of the problems associated with
other forms of state management, it forces the server to store additional information in mem-
ory. This extra memory requirement, even if it is small, can quickly grow to performance-
destroying levels as hundreds or thousands of clients access the site.

MacDonald09.fm Page 338 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 339

In other words, you must think through any use of session state. A careless use of ses-
sion state is one of the most common reasons that a web application can’t scale to serve a
large number of clients. Sometimes, a better approach is to use caching, as described in
Chapter 26.

Using Session State

You can interact with session state using the System.Web.SessionState.HttpSessionState
class, which is provided in an ASP.NET web page as the built-in Session object. The syntax
for adding items to the collection and retrieving them is basically the same as for adding
items to a page’s view state.

For example, you might store a DataSet in session memory like this:

�������� ������ "�#�������%

You can then retrieve it with an appropriate conversion operation:

�������#�&B������'�������� ������ "%

■Note Chapter 13 explores the DataSet.

Session state is global to your entire application for the current user. However, session
state can be lost in several ways:

• If the user closes and restarts the browser.

• If the user accesses the same page through a different browser window, although
the session will still exist if a web page is accessed through the original browser win-
dow. Browsers differ on how they handle this situation.

• If the session times out due to inactivity. More information about session timeout
can be found in the configuration section.

• If the programmer ends the session in code.

In the first two cases, the session actually remains in memory, because the web server
has no idea that the client has closed the browser or changed windows. The session will
linger in memory, remaining inaccessible, until it eventually expires.

MacDonald09.fm Page 339 Tuesday, December 6, 2005 9:31 PM

340 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

Table 9-1 describes the methods and properties of the HttpSessionState class.

Table 9-1. HttpSessionState Members

A Session State Example

The next example uses session state to store several Furniture data objects. The data
object combines a few related variables and uses a special constructor so that it can be
created and initialized in one easy line. Rather than use full property procedures, the class
takes a shortcut and uses public member variables.

�������������@������

*

�����������������7�(�%

�����������������B���������%

���������������(���!���%

�����������@������&��������(�.�����������������.

����������(�������'

Member Description
Count The number of items in the current session collection.

IsCookieless Identifies whether this session is tracked with a cookie or using modified URLs.

IsNewSession Identifies whether this session was just created for the current request. If
currently no information is in session state, ASP.NET won’t bother to track the
session or create a session cookie. Instead, the session will be re-created with
every request.

Mode Provides an enumerated value that explains how ASP.NET stores session state
information. This storage mode is determined based on the web.config
configuration settings discussed in the “Session State Configuration” section
later in this chapter.

SessionID Provides a string with the unique session identifier for the current client.

Timeout The current number of minutes that must elapse before the current session will
be abandoned, provided that no more requests are received from the client.
This value can be changed programmatically, giving you the chance to make
the session collection longer term when required for more important
operations.

Abandon() Cancels the current session immediately and releases all the memory it
occupied. This is a useful technique in a logoff page to ensure that server
memory is reclaimed as quickly as possible.

Clear() Removes all the session items but doesn’t change the current session identifier.

MacDonald09.fm Page 340 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 341

����*

��������7�(��#���(�%

��������B����������#�����������%

��������!����#�����%

����1

1

Three Furniture objects are created the first time the page is loaded, and they’re stored
in session state. The user can then choose from a list of furniture piece names. When a
selection is made, the corresponding object will be retrieved, and its information will be
displayed, as shown in Figure 9-9.

Figure 9-9. A session state example with data objects

��������������������������������/3�(����)�����

*

�������������+��������,=���&-�����������.�/+���0����'

����*

�����������&E�����������>��	'

��������*

���������������!�����@���������������

������������@������������$�#�����@������& /��������� .

�� 0�(������ .�OP�QQ:'%

MacDonald09.fm Page 341 Tuesday, December 6, 2005 9:31 PM

342 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

������������@������������8�#�����@������& ������������ .

�� G�������D��� .�RSS�OT:'%

������������@������������U�#�����@������& ?����!������ .

�� ��3�����=��� .�U99�$$:'%

�������������������#�;� �$��#�$�$$�#'�$����&

������������-�$$�#'.�1��'�����<�/���"�� �<(

������������-�$$�#'.�1��'�������/���"�� ��(

������������-�$$�#'.�1��'�������/���"�� ��(

���������������0����������������������

������������������(�����(��!���&'%

������������������(�����(��0��&�����$�7�(�'%

������������������(�����(��0��&�����8�7�(�'%

������������������(�����(��0��&�����U�7�(�'%

��������1

�����������B�����
���(������������(������������������������

���

���������������������3��#� ���������B)� �2�����������������B%

���������������������3��2#� 4���67�(������-������)� %

���������������������3��2#���������!������������&'%

���������������������3��2#� 4���6:���)� �2���������:�����������&'%

���������������������3��2#� 4���6���!��	������)� %

���������������������3��2#�����������!��	��������������&'%

���������������������3��2#� 4���6���7��)� %

���������������������3��2#�����������7�����������������&'%

���������������������3��2#� 4���6��(�����&(������')� %

���������������������3��2#�����������(������������&'%

����1

�������������+�����(�:������,!���	&-�����������.�/+���0����'

����*

�����������&������(��������������3�##�L$'

��������*

���������������?�������3��#� 7�����(���������� %

��������1

������������

MacDonald09.fm Page 342 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 343

��������*

���������������!�����������������	�
���(�������������������3�

������������������	�
�#� @������ �2

������������������&������(��������������3�2�$'��������&'%

���������������)������������1��'������#�;� ��2�#��$�$$�#'�$����&

������������1��'������"�� ����*1��'�����+-�$$�#'.%�!/(

���������������B�����
���������(���������������������

���������������?�������3��#� 7�(�)� �2�������7�(�%

���������������?�������3��2#� 4���6:���������)� %

���������������?�������3��2#��������B���������%

���������������?�������3��2#� 4���6!���)�V �2�������!�����������&'%

��������1

����1

1

It’s also a good practice to add a few session-friendly features in your application. For
example, you could add a logout button to the page that automatically cancels a session
using the Session.Abandon() method. This way, the user will be encouraged to terminate
the session rather than just close the browser window, and the server memory will be
reclaimed faster.

MAKING SESSION STATE MORE SCALABLE

When web developers need to store a large amount of state information, they face a confounding problem.
They can use session state and ensure excellent performance for a small set of users, but they risk poor scal-
ability for large numbers. Alternatively, they can use a database to store temporary session information. This
allows them to store large amount of session information for long times (potentially weeks or months instead
of mere minutes). However, it also slows performance because the database must be queried for almost every
page request.

The compromise involves caching. The basic approach is to create a temporary database record with
session information and store its unique ID in session state. This ensures that the in-memory session informa-
tion is always minimal, but your web page code can easily find the corresponding session record. To reduce
the number of database queries, you’ll also add the session information to the cache (indexed under the ses-
sion identifier). On subsequent requests, your code can check for the session information in the cache first. If
the information is no longer in the cache, your code can retrieve it from the database as a last resort. This pro-
cess becomes even more transparent if you create a custom component that provides the session information
and performs the required cache lookup for you.

For more information, read about custom components in Chapter 24 and caching in Chapter 26.

MacDonald09.fm Page 343 Tuesday, December 6, 2005 9:31 PM

344 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

Session State Configuration
You configure session state through the web.config file for your current application
(which is found in the same virtual directory as the .aspx web page files). The configura-
tion file allows you to set advanced options such as the timeout and the session state
mode. If you’re creating your web application in Visual Studio, your project will include
an automatically generated web.config file.

The following is a typical web.config file, with the most important attributes you can
use to configure session state:

4I3(��+�����# $�9 ���������# ���LR �I6

4������������6

����4�
���(����6

��������4ELL�-��������������(�������LL6

��������4������������

���������������	������# D��!��	��� ����	��7�(�# 0���7/�,���������

��������������������/3�������������# �����

��������������(����# 89

������������(���# �����

�����������������!��������������# �����#$8O�9�9�$)P8P8P

�����������������7����	��(����# $9

�������������J�!��������������# ����������#$8O�9�9�$%����������������
#����

�������������J�!�((�����(����# U9 ������!����(�J�B�������# �����

�����������������(��+���#

���������6

����4��
���(����6

4�������������6

The following sections describe these settings.

Cookieless

You can set the cookieless setting to one of the values defined by the HttpCookieMode
enumeration, as described in Table 9-2.

MacDonald09.fm Page 344 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 345

Table 9-2. HttpCookieMode Values

Here’s an example that forces cookieless mode (which is useful for testing)

4����������������	������# D��D� ������6

In cookieless mode, the session ID will automatically be inserted into the URL. When
ASP.NET receives a request, it will remove the ID, retrieve the session collection, and for-
ward the request to the appropriate directory. Figure 9-10 shows a munged URL.

Figure 9-10. A munged URL with the session ID

Because the session ID is inserted in the current URL, relative links also automatically
gain the session ID. In other words, if the user is currently stationed on Page1.aspx and
clicks a relative link to Page2.aspx, the relative link includes the current session ID as part of
the URL. The same is true if you call Response.Redirect() with a relative URL, as shown here:

?��������?������& ����8����3 '%

Value Description
UseCookies Cookies are always used, even if the browser or device doesn’t support cookies

or they are disabled. This is default. If the device does not support cookies,
session information will be lost over subsequent requests, because each request
will get a new ID.

UseUri Cookies are never used, regardless of the capabilities of the browser or
device. Instead, the session ID is stored in the URL.

UseDeviceProfile ASP.NET chooses whether to use cookieless sessions by examining the
BrowserCapabilities object. The drawback is that this object indicates what
the device should support—it doesn’t take into account that the user may
have disabled cookies in a browser that supports them.

AutoDetect ASP.NET attempts to determine whether the browser supports cookies by
attempting to set and retrieve a cookie (a technique commonly used on the
Web). This technique can correctly determine whether a browser supports
cookies but has them disabled, in which case cookieless mode is used
instead.

MacDonald09.fm Page 345 Tuesday, December 6, 2005 9:31 PM

346 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

Figure 9-11 shows a sample website (included with the online samples in the
CookielessSessions directory) that tests cookieless sessions. It contains two pages and
uses cookieless mode. The first page contains a HyperLink control and two buttons. The
HyperLink’s NavigateUrl property is set to the relative path Cookieless2.aspx. If you click
this link, the session ID is retained, and the session information can be retrieved on the
new page.

Figure 9-11. Three tests of cookieless sessions

Even programmatic redirection works with cookieless session state, as long as you use a
relative path. For example, the second button in this example uses the Response.Redirect()
method to forward the user to the Cookieless2.aspx page. Here’s the code, which preserves
the munged URL with no extra steps required:

���������+�����(�=��	,!���	&-�����������.�/+���0����'

*

����?��������?������& !��	������8����3 '%

1

The only real limitation of cookieless state is that you cannot use absolute links,
because ASP.NET cannot insert the session ID into them. For example, if you use the
third command button, the current session will be abandoned. The code is as follows,
and Figure 9-12 shows the result of this code:

���������+�����(�=��	0�������,!���	&-�����������.�/+���0����'

*

������������%

�������#� ����)������������!����0���7/��!�����9Q�!��	��������������� %

MacDonald09.fm Page 346 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 347

�������2#� !��	������8����3 %

����?��������?������&��'%

1

Figure 9-12. A lost session

By default, ASP.NET allows you to reuse a session identifier. For example, if you make
a request and your query string contains an expired session, ASP.NET creates a new ses-
sion and uses that session ID. The problem is that a session ID might inadvertently appear
in a public place—such as in a results page in a search engine. This could lead to multiple
users accessing the server with the same session identifier and then all joining the same
session with the same shared data.

To avoid this potential security risk, you should include the optional
regenerateExpiredSessionId attribute and set it to true whenever you use cookieless
sessions. This way, a new session ID will be issued if a user connects with an expired
session ID. The only drawback is that this process also forces the current page to lose
all view state and form data, because ASP.NET performs a redirect to make sure the
browser has a new session identifier.

Timeout

Another important session state setting in the web.config file is the timeout. This specifies
the number of minutes that ASP.NET will wait, without receiving a request, before it aban-
dons the session.

4������������

��������#�����=���>

MacDonald09.fm Page 347 Tuesday, December 6, 2005 9:31 PM

348 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

This setting represents one of the most important compromises of session state. A dif-
ference of minutes can have a dramatic effect on the load of your server and the
performance of your application. Ideally, you will choose a timeframe that is short
enough to allow the server to reclaim valuable memory after a client stops using the appli-
cation but long enough to allow a client to pause and continue a session without losing it.

You can also programmatically change the session timeout in code. For example, if you
know a session contains an unusually large amount of information, you may need to limit
the amount of time the session can be stored. You would then warn the user and change
the timeout property. Here’s a sample line of code that changes the timeout to ten
minutes:

����������(�����#�$9%

Mode

The other session state settings allow you to configure special session state services. The
next few sections describe the different mode options.

■Note If you’re hosting ASP.NET using more than one web server (which is affectionately known as a web
farm), you’ll also need to take some extra configuration steps to make sure all the web servers are in sync.
Otherwise, one server might encode information in session state differently than another, which will cause a
problem if the user is routed from one server to another during a session. The solution is to modify the
<machineKey> section of the machine.config file so that it’s consistent across all servers. For more informa-
tion, refer to Chapter 12.

InProc

For the default mode (InProc), the other two settings have no effect. They are just
included as placeholders to show you the appropriate format. InProc is similar to how
session state was stored in previous versions of ASP. It instructs information to be stored
in the same process as the ASP.NET worker threads, which provides the best performance
but the least durability. If you restart your server, the state information will be lost.

InProc is the default option, and it makes sense for most small websites. In a web farm
scenario, though, it won’t work. To allow session state to be shared between servers, you

MacDonald09.fm Page 348 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 349

must use the out-of-process or SQL Server state service. Another reason you might want
to avoid InProc mode is if you find that your users are losing session state information at
unpredictable times. In ASP.NET, application domains can be restarted for a variety of
reasons, including configuration changes, updated pages, and when certain thresholds
are met (regardless of whether an error has occurred). If you find that you’re losing ses-
sions before the timeout limit, you may want to experiment with a more durable mode.

■Note When using the StateServer and SqlServer modes, the objects you store in session state must be seri-
alizable. Otherwise, ASP.NET will not be able to transmit the object to the state service or store it in the database.
Earlier in this chapter, you learned how to create a serializable Customer class for storing in view state.

Off

This setting disables session state management for every page in the application. This can
provide a slight performance improvement for websites that are not using session state.

StateServer

With this setting, ASP.NET will use a separate Windows service for state management.
This service runs on the same web server, but it’s outside the main ASP.NET process,
which gives it a basic level of protection if the ASP.NET process needs to be restarted. The
cost is the increased time delay imposed when state information is transferred between
two processes. If you frequently access and change state information, this can make for a
fairly unwelcome slowdown.

When using the StateServer setting, you need to specify a value for the
stateConnectionString setting. This string identifies the TCP/IP address of the computer
that is running the StateServer service and its port number (which is defined by ASP.NET
and doesn’t usually need to be changed). This allows you to host the StateServer on
another computer. If you don’t change this setting, the local server will be used (set
as address 127.0.0.1).

Of course, before your application can use the service, you need to start it. The easiest way
to do this is to use the Microsoft Management Console (MMC). Select Start ➤ Programs ➤
Administrative Tools ➤ Computer Management. (You can also access the Administrative
Tools group through the Control Panel.) Then select the Services and Applications ➤ Services
node. Find the service called ASP.NET State Service in the list, as shown in Figure 9-13.

MacDonald09.fm Page 349 Tuesday, December 6, 2005 9:31 PM

350 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

Figure 9-13. The ASP.NET state service

Once you find the service in the list, you can manually start and stop it by right-clicking
it. Generally, you’ll want to configure Windows to automatically start the service. Right-
click it, select Properties, and modify the Startup Type setting it to Automatic, as shown in
Figure 9-14.

Figure 9-14. Service properties

MacDonald09.fm Page 350 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 351

■Note When using StateServer mode, you can also set an optional stateNetworkTimeout attribute that
specifies the maximum number of seconds to wait for the service to respond before canceling the request.
The default value is 10 (seconds).

SqlServer

This setting instructs ASP.NET to use an SQL Server database to store session information,
as identified by the sqlConnectionString attribute. This is the most resilient state store but
also the slowest by far. To use this method of state management, you’ll need to have a
server with SQL Server installed.

When setting the sqlConnectionString attribute, you follow the same sort of pattern
you use with ADO.NET data access. Generally, you’ll need to specify a data source (the
server address) and a user ID and password, unless you’re using SQL integrated security.

In addition, you need to install the special stored procedures and temporary session
databases. These stored procedures take care of storing and retrieving the session infor-
mation. ASP.NET includes a Transact-SQL script for this purpose called
InstallSqlState.sql. It’s found in the C:\[WinDir]\Microsoft.NET\Framework\[Version]
directory. You can run this script using an SQL Server utility such as OSQL.exe or Query
Analyzer. It needs to be performed only once.

Ordinarily, the state database is always named ASPState. As a result, the connection
string in the web.config file doesn’t explicitly indicate the database name. Instead, it sim-
ply reflects the location of the server and the type of authentication that will be used:

4��������������J�!��������������# ����������#$8O�9�9�$%����������

������
#����

�����6

If you want to use a different database (with the same structure), simply set
allowCustomSqlDatabase to true, and make sure the connection string includes the
Initial Catalog setting, which indicates the name of the database you want to use:

4������������������!����(�J�B�������# ��� ��J�!��������������#

 ����������#$8O�9�9�$%����������������
#����%��������!������#!���B�������

�����6

When using the SqlServer mode, you can also set an optional sqlCommandTimeout
attribute that specifies the maximum number of seconds to wait for the database to
respond before canceling the request. The default is 30 seconds.

MacDonald09.fm Page 351 Tuesday, December 6, 2005 9:31 PM

352 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

Custom

When using custom mode, you need to indicate which session state store provider to use
by supplying the customProvider attribute. The customProvider attribute points to the
name of a class that’s part of your web application in the App_Code directory or in a com-
piled assembly in the Bin directory or the GAC.

Creating a custom state provider is a low-level task that needs to be handled carefully
to ensure security, stability, and scalability. Custom state providers are also beyond the
scope of this book. However, other vendors may release custom state providers you want
to use. For example, Oracle may provide a custom state provider that allows you to store
state information in an Oracle database.

Application State
Application state allows you to store global objects that can be accessed by any client. Appli-
cation state is based on the System.Web.HttpApplicationState class, which is provided in all
web pages through the built-in Application object.

Application state is similar to session state. It supports the same type of objects, retains
information on the server, and uses the same dictionary-based syntax. A common exam-
ple with application state is a global counter that tracks how many times an operation has
been performed by all the web application’s clients.

For example, you could create a global.asax event handler that tracks how many ses-
sions have been created or how many requests have been received into the application.
Or you can use similar logic in the Page.Load event handler to track how many times a
given page has been requested by various clients. Here’s an example of the latter:

���������+��������,=���&-�����������.�/+���0����'

*

��������������#�&���'0����������� G��!�����@�-������ "%

���������22%

�����""�� ���#'.�?��:#�'���1#������0���/��� #�'�(

�������!��������3��#��������������&'%

1

Once again, application state items are stored as objects, so you need to cast them
when you retrieve them from the collection. Items in application state never time out.

MacDonald09.fm Page 352 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 353

They last until the application or server is restarted, or the application domain refreshes
itself (because of automatic process recycling settings or an update to one of the pages or
components in the application).

Application state isn’t often used, because it’s generally inefficient. In the previous
example, the counter would probably not keep an accurate count, particularly in times
of heavy traffic. For example, if two clients requested the page at the same time, you could
have a sequence of events like this:

1. User A retrieves the current count (432).

2. User B retrieves the current count (432).

3. User A sets the current count to 433.

4. User B sets the current count to 433.

In other words, one request isn’t counted because two clients access the counter at the
same time. To prevent this problem, you need to use the Lock() and Unlock() methods,
which explicitly allow only one client to access the Application state collection at a time.

���������+��������,=���&-�����������.�/+���0����'

*

�������� 4������6 ��$����� �$$&

�����""�� ���#'&@# %*+(

��������������#�&���'0����������� G��!�����@�-������ "%

���������22%

����0����������� G��!�����@�-������ "�#������%

�������)����$���6 ��$����� �$$&

�����""�� ���#'&A'�# %*+(

�������!��������3��#��������������&'%

1

Unfortunately, all other clients requesting the page will now be stalled until the
Application collection is released. This can drastically reduce performance. Generally,
frequently modified values are poor candidates for application state. In fact, application

MacDonald09.fm Page 353 Tuesday, December 6, 2005 9:31 PM

354 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

state is rarely used in the .NET world because its two most common uses have been
replaced by easier, more efficient methods:

• In the past, application state was used to store application-wide constants, such as
a database connection string. As you saw in Chapter 5, this type of constant can be
stored in the web.config file, which is generally more flexible because you can
change it easily without needing to hunt through web page code or recompile your
application.

• Application state can also be used to store frequently used information that is time-
consuming to create, such as a full product catalog that requires a database lookup.
However, using application state to store this kind of information raises all sorts
of problems about how to check whether the data is valid and how to replace it
when needed. It can also hamper performance if the product catalog is too large.
Chapter 26 introduces a similar but much more sensible approach—storing fre-
quently used information in the ASP.NET cache. Many uses of application state can
be replaced more efficiently with caching.

An Overview of State Management Choices
Each state management choice has a different lifetime, scope, performance overhead,
and level of support. Table 9-3 and Table 9-4 show an at-a-glance comparison of your
state management options.

Table 9-3. State Management Options Compared (Part 1)

View State Query String Custom Cookies

Allowed Data Types All serializable .NET
data types.

A limited amount of
string data.

String data.

Storage Location A hidden field in the
current web page.

The browser’s URL
string.

The client’s computer
(in memory or a small
text file, depending on
its lifetime settings).

Lifetime Retained permanently
for postbacks to a
single page.

Lost when the user
enters a new URL or
closes the browser.
However, this can be
stored in a bookmark.

Set by the programmer.
Can be used in
multiple pages and can
persist between visits.

Scope Limited to the current
page.

Limited to the target
page.

The whole ASP.NET
application.

MacDonald09.fm Page 354 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 355

Table 9-4. State Management Options Compared (Part 2)

■Note ASP.NET has another, more specialized type of state management called profiles. Profiles allow you
to store and retrieve user-specific information from a database. The only catch is that you need to authenti-
cate the user in order to get the right information. You’ll learn about profiles in Chapter 20.

Security By default it’s tamper-
proof but easy to read.
You can issue the Page
directive to enforce
encryption.

Clearly visible and easy
for the user to modify.

Insecure, and can be
modified by the user.

Performance Implications Storing a large amount
of information will
slow transmission, but
will not affect server
performance.

None, because the
amount of data is
trivial.

None, because the
amount of data is
trivial.

Typical Use Page-specific settings. Sending a product ID
from a catalog page to
a details page.

Personalization
preferences for a
website.

View State Query String Custom Cookies

Session State Application State
Allowed Data Types All .NET data types. All .NET data types.

Storage Location Server memory. Server memory.

Lifetime Times out after a predefined
period (usually 20 minutes, but
can be altered globally or
programmatically).

The lifetime of the application
(typically, until the server is
rebooted).

Scope The whole ASP.NET application. The whole ASP.NET application.
Unlike other methods,
application data is global to all
users.

Security Very secure, because data is
never transmitted to the client.

Very secure, because data is
never transmitted to the client.

Performance Implications Storing a large amount of
information can slow down the
server severely, especially if
there are a large number of
users at once, because each user
will have a separate copy of
session data.

Storing a large amount of
information can slow down the
server, because this data will
never time out and be removed.

Typical Use Store items in a shopping
basket.

Storing any type of global data.

MacDonald09.fm Page 355 Tuesday, December 6, 2005 9:31 PM

356 C H A P T E R 9 ■ S T A T E M A N A G E M E N T

The Global.asax Application File
The global.asax file allows you to write code that responds to global application events.
These events fire at various points during the lifetime of a web application, including
when session are created. This makes the global.asax file useful in conjunction with the
state management features you’ve learned about so far. For example, you could use
the global.asax file to preinitialize a set of objects that you store in application state for the
duration of your application. Of course, you can also use these events to perform other
tasks. For example, you can run some logging code that runs every time a request is
received, no matter what page handles the request.

The global.asax file looks similar to a normal .aspx file, except that it can’t contain any
HTML or ASP.NET tags. Instead, it contains event handlers. For example, the following
global.asax file reacts to the Application.EndRequest event, which happens just before the
page is sent to the user:

4��������������# �A �����# ��+� 6

�������������+����0����������,-�/��?�J����&'

����*

��������?��������5���& 4���6����������������+������ �2

����������B�����(��7����������&''%

����1

4������6

This event handler uses the Write() method of the built-in Response object to write a
footer at the bottom of the page with the date and time that the page was created (see
Figure 9-15).

Figure 9-15. HelloWorld.aspx with an automatic footer

MacDonald09.fm Page 356 Tuesday, December 6, 2005 9:31 PM

C H A P T E R 9 ■ S T A T E M A N A G E M E N T 357

Each ASP.NET application can have one global.asax file. Once you place it in the appro-
priate virtual directory, ASP.NET recognizes it and uses it automatically. For example, if
you if you place the global.asax shown previously into a virtual directory, every web page
in that application will include a footer.

■Tip To add a global.asax file to an application in Visual Studio, choose Website ➤ Add New Item, and
select the Global Application Class file type.

Generally, adding an automatic footer is not a useful function for a professional web-
site. A more typical use might be writing an entry to a database log. That way, usage
information would be tracked automatically. However, the global.asax file is a minor
ingredient, and many web applications won’t use it at all.

The global.asax file supports the code-behind model, which allows you to split the
code into a separate class in a .cs file. However, you don’t really need to take this step,
because you won’t add any controls or markup to the global.asax file. If you create the
global.asax file in Visual Studio, it won’t use the code-behind model.

Application Events

Application.EndRequest is only one of more than a dozen events you can respond to in
your code. To create a different event handler, you simply need to create a subroutine
with the defined name. Table 9-5 lists some of the most common application events that
you’ll use.

Table 9-5. Basic Application Events

Method Name Description
Application_OnStart Occurs when the application starts, which is the first time it

receives a request from any user. It doesn’t occur on
subsequent requests. This event is commonly used to create
or cache some initial information that will be reused later.

Application_OnEnd Occurs when the application is shutting down, generally
because the web server is being restarted. You can insert
cleanup code here.

Application_OnBeginRequest Occurs with each request the application receives, just before
the page code is executed.

Application_OnEndRequest Occurs with each request the application receives, just after the
page code is executed.

Continued

MacDonald09.fm Page 357 Tuesday, December 6, 2005 9:31 PM

358 C H A P T E R 9 ■ ST A T E M A N A G E M E N T

Table 9-5. Continued

The Last Word
State management is the art of retaining information between requests. Usually, this
information is user-specific (such as a list of items in a shopping cart, a user name, or an
access level), but sometimes it’s global to the whole application (such as usage statistics
that track site activity). Because ASP.NET uses a disconnected architecture, you need to
explicitly store and retrieve state information with each request. The approach you
choose to store this data can dramatically affect the performance, scalability, and security
of your application. Remember to consult Table 9-3 and Table 9-4 to help evaluate differ-
ent types of state management and determine what is best for your needs.

Method Name Description

Session_OnStart Occurs whenever a new user request is received and a session is
started.

Session_OnEnd Occurs when a session times out or is programmatically ended.

Application_OnError Occurs in response to an unhandled error. You can find more
information about error handling in Chapter 7.

MacDonald09.fm Page 358 Tuesday, December 20, 2005 3:06 PM

359

■ ■ ■

C H A P T E R 1 0

Master Pages and Themes

Using the techniques you’ve learned so far, you can create polished web pages and let
users surf from one page to another. However, to integrate your web pages into a unified,
consistent website, you need a few more tools. In this chapter, you’ll consider two of the
most important: master pages and themes.

Essentially, a master page is a blueprint for part of your website. Using a master page,
you can define web page layout, complete with all the usual details such as headers, menu
bars, and ad banners. Once you’ve perfected a master page, you can use it to create con-
tent pages. Each content page automatically acquires the layout and the content of the
linked master page. Using this technique, you can make sure all your content pages will
have a standardized look and feel.

Another feature for standardizing websites is themes, which let you define a group of
formatting presets for virtually any ASP.NET control. With themes, you don’t need to
worry about painstakingly formatting the controls on every web page. Instead, you can
apply a premade theme to your page to effortlessly update the appearance of all the con-
trols it contains. Best of all, once you’ve standardized on a specific theme and applied it to
multiple pages, you can give your entire website a face-lift just by changing the definition
for that theme.

Master Page Basics
The best websites don’t look like a series of web pages—instead, they give the illusion of a
continuously running application. For example, try ordering a book on Amazon. While
you search, click through the links, and then head to your shopping cart, you’ll always see
a continuous user interface with a common header at the top and set of navigation links
on the left.

Creating something as polished with ASP.NET is possible, but it isn’t as easy as it
seems. For example, what if you want a navigation bar on every web page? Not only do
you need to copy the same user interface markup to each page, you also need to make
sure it ends up in the same place. An offset of a couple of pixels will completely ruin the
illusion, making it obvious that the pages aren’t really integrated. And even if you copy
your markup perfectly, you’re still left with an extremely brittle design. If you decide to

MacDonald.book Page 359 Wednesday, December 7, 2005 8:39 PM

360 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

update your navigation bar later, you’ll need to modify every web page to apply the
same change.

So, how can you deal with the complexity of different pages that need to look and act
the same? One option is to subdivide the page into frames. Frames are an HTML feature
that lets the browser show more than one web page alongside another. Unfortunately,
frames have problems of their own, including that each frame is treated as a separate doc-
ument and requested separately by the browser. This makes it difficult to create code that
communicates between frames. A better choice is to use ASP.NET’s master pages feature,
which allows you to define page templates and reuse them across your website.

■Note Frames are also out of favor because they limit your layout options. That’s because each frame
occupies a separate, fixed portion of a window. When you scroll one frame, the other frames remain fixed in
place. To create frames that work properly, you need to make assumptions about the target device and its
screen size. Most popular websites (think Google, Amazon, and eBay) don’t use frames.

Master pages are similar to ordinary ASP.NET pages. Like ordinary pages, master pages
are text files that can contain HTML, web controls, and code. However, master pages have
a different file extension (.master instead of .aspx), and they can’t be viewed directly by a
browser. Instead, master pages must be used by other pages, which are known as content
pages. Essentially, the master page defines the page structure and the common ingredi-
ents. The content pages adopt this structure and just fill it with the appropriate content.

For example, if a website such as ������������	�
����	 had been created using
ASP.NET, a single master page might define the layout for the entire site. Every page
would use that master page, and as a result every page would have the same basic organi-
zation and the same title, footer, and so on. However, each page would also insert its
specific information, such as product descriptions, book reviews, or search results, into
this template.

A Simple Master Page and Content Page

To see how this works, it helps to create a simple example. To create a master page in
Visual Studio, select Website ➤ Add New Item from the menu. Select Master Page, give it
a file name, and click OK.

When you create a new master page in Visual Studio, you start with a blank page that
includes a single ContentPlaceHolder control (see Figure 10-1). The ContentPlaceHolder
is the portion of the master page that a content page can change. Or, to look at it another
way, everything else in a master page is unchangeable. If you add a header, that header
appears in every content page. If you want to give the content page the opportunity to
supply content in a specific section of the page, you need to add a ContentPlaceHolder.

MacDonald.book Page 360 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 361

Figure 10-1. A new master page

When you first create a master page, you’ll start with nothing more than a single
ContentPlaceHolder. To make the example more practical, try adding a header before
the ContentPlaceHolder and a footer after it, as shown in Figure 10-2.

Figure 10-2. A simple master page with a header and footer

MacDonald.book Page 361 Wednesday, December 7, 2005 8:39 PM

362 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

Now you’re ready to create a content page based on this master page. To take this step,
select Website ➤ Add New Item from the menu. Select Web Form, and choose to select a
master page (see Figure 10-3). Click OK. When you’re prompted to choose a master page,
use the one you created with the header and footer.

Figure 10-3. Creating a content page

Now you’ll see something a little more interesting. Your content page will have all the
elements of the master page, but the elements will be shaded in gray, indicating you
can’t select or change them in any way. However, you can add content or drag and drop
new controls into the ContentPlaceHolder region to create a page like the one shown in
Figure 10-4. In fact, this is the only editable portion of your page.

MacDonald.book Page 362 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 363

Figure 10-4. A simple content page at design time

The design-time representation is a little misleading. That’s because when you run the
page, the ContentPlaceHolder section will expand or collapse to fit the content you place
in it. If you’ve added volumes of text, the footer won’t appear until the end. And if you’ve
included only a single line of text, you’ll see something more compact, as in Figure 10-5.

Figure 10-5. A simple content page at runtime

MacDonald.book Page 363 Wednesday, December 7, 2005 8:39 PM

364 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

The real magic starts when you create multiple pages that use the same master page.
Now, each page will have the same header and footer, creating a seamless look across
your entire website.

How Master Pages and Content Pages Are Connected

Now that you’ve seen a master page example, it’s worth taking a look behind the scenes to
see how you implement the master page.

When you create a master page, you’re building something that looks much like an
ordinary ASP.NET web form. The key difference is that although web forms start with the
Page directive, a master page starts with a Master directive that specifies the same infor-
mation. Here’s the Master directive for the simple master page shown in the previous
example:

���������������������������������� !������������

��"�#!$���%!��&�	�$����	��������

����'����!����%!��&�	�$���(��������)

The ContentPlaceHolder is less interesting. You declare it like any ordinary control.
Here’s the complete code for the simple master page:

���������������������������������� !������������

��"�#!$���%!��&�	�$����	��������

����'����!����%!��&�	�$���(��������)

����"���������������)

������!�$�)*��!�$�"�+������!�$�)

�����")

�,�"-)

�����.��	�!"��.��	/����������������)

���������!	�������������0�����)�,���)

���������������	
�	
����������������	
�	
��������������	�
����������

����������������	
�	
����������

���������!)&�!��!�����!	�$��.��������!)

������.��)

��,�"-)

����	$)

When you create a content page, ASP.NET links your page to the master page by adding
an attribute to the Page directive. This attribute, named MasterPageFile, indicates the
associated master page. Here’s what it looks like:

����+������������������������+���#!$���1�%!��&�	�$����	������

������������� !��������������"�#!$���%!	�$��������+�������2���

����'����!����%!	�$��������+���(���2��&!�$���*��!�$�"�+������)

MacDonald.book Page 364 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 365

Notice that the MasterPageFile attribute begins with the path ~/ to specify the root
website folder. If you specify just the filename, ASP.NET checks a predetermined sub-
folder (named MasterPages) for your master page. If you haven’t created this folder or
your master page isn’t there, ASP.NET checks the root of your web folder next. Using the
~/ syntax is better, because it indicates unambiguously where ASP.NET can find your
master page.

■Note You can use the ~/ characters to create a root-relative path—a path that always starts from the root
folder of your web application. This is a special syntax understood by ASP.NET and its server controls. You
can’t use this syntax with ordinary HTML. For example, this syntax won’t work in an ordinary hyperlink that
isn’t a server control (such as the <a> tag).

The Page directive has another new attribute—Title. That’s because the master page,
as the outermost shell of the page, always defines the <head> section of the page, which
includes its title. Remember, your content page can’t modify anything that’s in the master
page. However, this is an obvious shortcoming with the title information, so to circum-
vent it ASP.NET adds the Title attribute, which you can set to override the title specified in
the master page with something more appropriate. This system works as long as the mas-
ter page has the runat="server" attribute in the <head> tag, which is the default.

The rest of the content page looks a little different from an ordinary web form. That’s
because the content page can’t define anything that’s already provided in the master
page, including the <head> section, the root <html> element, the <body> element, and
so on. In fact, the content page can do only one thing—it can supply a Content tag that
corresponds to the ContentPlaceHolder in the master page. This is where you insert the
content for this page. As a result, your content pages are a little bit simpler than ordinary
web pages.

Here’s the complete code for the simple content page, with a single line of text and two
line breaks added:

����+������������������������+���#!$���1�%!��&�	�$����	������

������������� !��������������"�#!$���%!	�$��������+�������2���

����'����!����%!	�$��������+���(���2��&!�$���*��!�$�"�+������)

�������������'3���������/���������+$��4�$"��'3���������+$��4�$"��/�

���������%������)

����������

����������������	�����	
�	
�

����������

�������������)

For ASP.NET to process this page successfully, the ContentPlaceHolderID attribute in
the <Content> tag must match the ContentPlaceHolder specified in the master page

MacDonald.book Page 365 Wednesday, December 7, 2005 8:39 PM

366 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

exactly. This is how ASP.NET knows where it should insert your content in the master
page template.

■Tip If a master page defines a ContentPlaceHolder but your content page doesn’t define a corresponding
Content control, you’ll see a black box in its place when you design the page in Visual Studio. To add the
required Content control, right-click that section of the page, and choose Create Custom Content.

You should realize one important fact by looking at the content page markup. Namely,
the content from the master page (the address bar and the footer) isn’t inserted into the
content file. Instead, ASP.NET grabs these details from the master page when it processes
the page. This has an important effect. It means that if you want to change the header or
footer that’s used in all your content pages, you need to change only one file—the master
page. When you make this change, it will appear in all content pages automatically. In
other words, master pages don’t just let you reuse standard elements; they also make it
easy to update these details later.

■Tip Now that you understand how to hook up master pages and child pages, you can easily take an exist-
ing page and modify it to use your master page. However, you’ll need to remove some of the basic boilerplate
tags, such as <html>, <head>, and <body>, and wrap all the content in one or more <Content> tags. Visual
Studio won’t add the Content control automatically except when you’re creating a new content page from
scratch.

A Master Page with Multiple Content Regions

Master pages aren’t limited to one ContentPlaceHolder. Instead, you can insert as many
as you need to give the client the ability to intersperse content in various places. All you
need to do is add multiple ContentPlaceHolder controls and arrange them appropriately.

Figure 10-6 shows a master page that needs more careful consideration. It includes an ini-
tial ContentPlaceHolder where the user can insert content and then a shaded box (created by
a <div> tag) that contains a heading (OTHER LINKS) and second ContentPlaceHolder. The
idea here is that the page is split into two logical sections. In the content page, you won’t need
to worry about how to format each section or how to position the other links box. Instead, you
simply supply content for each portion, and ASP.NET will insert it into the correct location in
the master page.

MacDonald.book Page 366 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 367

Figure 10-6. A master page with two content regions

Here’s the code for the master page (with the style portion of the <div> tag omitted to
save space):

���������������������������������� !�����������

������"�#!$�����$�!�$���������	���������'����!������$�!�$��������(��������)

���	$�2	$����������������5�����/666�2��	$��)

����"�!"��4��"/����������������)

������!�$�)*��!�$�"�+������!�$�)

�����")

�,�"-)

�����.��	�!"��.��	/����������������)

���������!	�������������0�����)�,���)

��������������������+$��4�$"���!"����!������������������������)

���������������������+$��4�$"��)

MacDonald.book Page 367 Wednesday, December 7, 2005 8:39 PM

368 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

���������!)

�������������"!����-$�������)

�����������������,)7&4�8��'9:%��,)

�����������������,���)

����������������������������+$��4�$"���!"��7�����!�;������������������������)

�����������������������������+$��4�$"��)

��������������"!�)

������������&�!��!�����!	�$��.������

�����������!)

������.��)

��,�"-)

����	$)

■Tip The most underrated part of a master page is the line break, or
 tag. If you forget to include it,
you can easily end up having child content run into your headings. Further compounding the problem is that
this isn’t always obvious at design time. To avoid this problem, make sure you add the necessary whitespace
in your master page. Never rely on adding it in your content pages, because content pages may not insert the
correct amount of space (or insert it in the correct place).

When you create a new content page based on this master page, Visual Studio will start
you with one Content control for each ContentPlaceHolder in the master page, making
your life easy. All you need to do is insert the appropriate information. Here’s a slightly
shortened example:

����+������������������������+���#!$���1���$�!�$���������	������

������������� !��������������"�#!$�����$�!�$��������+�������2���

����'����!������$�!�$��������+���(���2��&!�$���*��!�$�"�+������)

�������������'3���������/���������+$��4�$"��'3����!�����������������%������)

����&�!��!�����������!��������.�����!��������4����-���	!��������!"����	���!��

�������!.!���2�������������������)

�������������'3���������<���������+$��4�$"��'3��7�����!�;���������

���������%������)

����4���=����������.�����������������������	�)$!�;���)��,���)

�������

�������������)

Figure 10-7 shows the final result. Notice how the two content sections flow into their
designated locations seamlessly.

MacDonald.book Page 368 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 369

Figure 10-7. Using the multiple content master page

Another important trick is at work in this example. The master page doesn’t just define
the structure of the web page; it also supplies some important style characteristics (such
as a default font and background color) through the <div> tag. This is another handy trick
to offload the formatting work to the master page, which allows you to maintain it and
modify it much more easily. In the second half of this chapter, you’ll find out about
themes, which give you another way to reuse formatting in a website.

■Caution If you create a master page without a single ContentPlaceHolder, content pages won’t be able
to supply any content at all, and they’ll always show the master page exactly!

Default Content

So far, you’ve seen master page examples with two types of content: fixed content and
page-supplied content. However, in some cases your situation might not be as clear-cut.
You might have some content that the content page may or may not want to replace. You
can deal with this using default content.

MacDonald.book Page 369 Wednesday, December 7, 2005 8:39 PM

370 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

Here’s how it works: You create a master page and create a ContentPlaceHolder for the
content that might change. Inside that tag, you place the appropriate HTML or web con-
trols. (You can do this by hand using the .aspx markup or just by dragging and dropping
controls into the ContentPlaceHolder.)

For example, here’s a version of the simple header-and-footer master page shown
earlier, with default content:

���������������������������������� !������������

��"�#!$���%!��&�	�$����	��������

����'����!����%!��&�	�$���(��������)

����"���������������)

������!�$�)*��!�$�"�+������!�$�)

�����")

�,�"-)

�����.��	�!"��.��	/����������������)

���������!	�������������0�����)�,���)

��������������������+$��4�$"���!"���������+$��4�$"��/����������������)

���������� ��������!��
���	
�	
"������

���������������������+$��4�$"��)

���������!)&�!��!�����!	�$��.��������!)

������.��)

��,�"-)

����	$)

So, what happens when you create a content page based on this master page? If you
use Visual Studio, you won’t see any change. That’s because Visual Studio automatically
creates a <Content> tag for each ContentPlaceHolder. When a content page includes a
<Content> tag, it automatically overrides the default content.

However, something interesting happens if you delete the <Content> tag. Now when
you run the page, you’ll see the default content. In other words, default content appears
only when the content page chooses not to specify any content for that placeholder.

You might wonder whether the content pages can use some of the default content or
just edit it slightly. This isn’t possible because the default content is stored only in the
master page, not in the content page. As a result, you need to decide between using the
default content as is or replacing it completely.

Master Pages and Relative Paths

One quirk that can catch unsuspecting developers is the way that master pages handle rela-
tive paths. If all you’re using is static text, this issue won’t affect you. However, if you add
 tags or any other HTML tag that points to another resource, problems can occur.

MacDonald.book Page 370 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 371

The problem shows up if you place the master page in a different directory from the con-
tent page that uses it. This is a recommended best practice for large websites. In fact,
Microsoft encourages you to use a dedicated folder for storing all your master pages. How-
ever, if you’re not suitably careful, this can cause problems when you use relative paths.

For example, imagine you put a master page in a subfolder named MasterPages and
add the following tag to the master page:

�!	������,������0�����)

Assuming the file \MasterPages\banner.jpg exists, this appears to work fine. The image
will even appear in the Visual Studio design environment. However, if you create a con-
tent page in another subfolder, the image path is interpreted relative to that folder. If the
file doesn’t exist there, you’ll get a broken link instead of your graphic. Even worse, you
could conceivably get the wrong graphic if another image has the same file name.

This problem occurs because the tag is ordinary HTML. As a result, ASP.NET
won’t touch it. Unfortunately, when ASP.NET processes your content page, the relative
path in this tag is no longer appropriate. The same problem occurs with <a> tags that pro-
vide relative links to other pages.

To solve your problem, you could try to think ahead and write your URL relative to the
content page where you want to use it. But this creates confusion and limits where your
master page can be used. A better fix is to turn your tag into a server-side control,
in which case ASP.NET will fix the mistake:

�!	������,������0�������������������)

This works because ASP.NET uses this information to create an HtmlImage server con-
trol. This object is created after the Page object for the master page is instantiated. At this
point, ASP.NET interprets all the paths relative to the location of the master page.

And as with all server-side controls, you can further clear things up by using the ~/
characters to create a root-relative path. Here’s an example that clearly points to a picture
in an Images folder in the root web application folder:

�!	������1�'	�����,������0�������������������)

Remember, the ~/ syntax is understood only by ASP.NET controls, so you can’t use this
trick with an tag that doesn’t include the runat="server" attribute.

Advanced Master Pages
Using what you’ve learned, you can create and reuse master pages across your website.
However, still more tricks and techniques can help you take master pages to the next level
and make them that much more practical. In the following sections, you’ll look at how
tables can help you organize your layout and how your content pages can interact with
the master page class in code.

MacDonald.book Page 371 Wednesday, December 7, 2005 8:39 PM

372 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

Table-Based Layouts

For the most part, HTML uses a flow-based layout. That means as more content is added,
the page is reorganized and other content is bumped out of the way. This layout can make
it difficult to get the result you want with master pages. For example, what happens if you
craft the perfect layout, only to have the structure distorted by a huge block of information
that’s inserted into a <Content> tag?

Although you can’t avoid this problem completely, master pages can use HTML tables
to help control the layout. With an HTML table, a portion of your page is broken into col-
umns and rows. You can then add a ContentPlaceHolder in a single cell, ensuring that
the other content is aligned more or less the way you want. However, you’ll need to type
the HTML table tags into the .aspx portion of the master page by hand, as Visual Studio
doesn’t provide any way to design an HTML table at design time.

For a good example, consider a traditional web application with a header, footer, and
navigation bar. Figure 10-8 shows how this structure is broken up into a table.

Figure 10-8. A table-based layout

MacDonald.book Page 372 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 373

In HTML, tables are delineated with the <table> tag. Each row is defined with a nested
<tr> tag, and inside each row you can place a <td> tag for each cell. You place the content
inside the various <td> tags. Content can include any combination of HTML or web
controls.

The number of <td> tags you add in a <tr> defines the number of columns in your table.
If you aren’t consistent (and usually you won’t be), the table takes the dimensions of the
row with the most cells.

To create the table shown in Figure 10-8, you start by creating a table and giving it a
width of 100% so it fills the browser window:

���,$���!"����/>>��)

�������

����,$�)

The next step is to add your first row. However, you can use a trick here. The complete
table actually has two columns, but the first row (with the header) and the last row (with
the footer) need to fill the full width of the table. To accomplish this, you add the colspan
attribute and set it to 2, indicating that the header spans two columns:

���,$���!"����/>>��)

�������)��"��$������<�)�-�4��"�����")����)

�������

����,$�)

You can fill in the rest of the table in a similar fashion. The second row has two col-
umns. The first column holds the navigation links (or, in this example, the text Navigation
Controls) and has a fixed width of 150 pixels. The second column, which fills the remain-
ing space, holds a ContentPlaceHolder where the content page can supply information.

The following code shows the complete table, with some added formatting and back-
ground colors that make it easier to distinguish the different sections of the table. Also, the
text in the navigation controls section has been replaced with a TreeView.

���,$���!"����/>>��)

�������)

����������"��$������<��,��$�����....�)

��������������/)�-�4��"�����/)

�����������")

��������)

�������)

����������"��!"����/?>�2��,��$�����....�)

�����������������&���@!���'3����������������������� !"����/?>�2�)

������������������&���@!��)

�����������")

MacDonald.book Page 373 Wednesday, December 7, 2005 8:39 PM

374 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

����������")

������������������������+$��4�$"���!"���������+$��4�$"��/����������������)

�������������������������+$��4�$"��)

�����������")

��������)

�������)

����������"��$������<��,��$�����..55�)�!)�-�#�������!)���")

��������)

����,$�)

■Tip To learn more about HTML tables and how to specify borders, cell sizes, alignment, and more, refer
to the examples at ������������5����$���	���	$���	$(��,$������.

Figure 10-9 shows the resulting master page and a content page that uses the master
page (both in Visual Studio).

Figure 10-9. A master page and content page using a table

To convert this example into something more practical, just replace the static text in
the master page with the actual header, navigation controls, and footer you really want.
(For example, you may want to use the site map features described in Chapter 11.) All the
child pages will acquire these features automatically. This is the first step to defining a
practical structure for your entire website.

MacDonald.book Page 374 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 375

Code in a Master Page

In all the examples in this chapter, master pages have provided static layout. However,
just like a web page, master pages also include a code portion that can respond to events
in the page life cycle or the constituent controls. For example, you could respond to the
Page.Load event to initialize a master page using code, or you could handle clicks in a set
of navigation controls to direct a user to the right page.

Interacting with a Master Page Programmatically

A master control isn’t limited to event handling code. It can also provide methods that the
content page can trigger as needed or provide properties that the content page can set
according to its needs. This allows the content page to interact with the master page.

For example, imagine you want to give the user the ability to collapse the cell with the
navigation controls to have more room to see the page content. You don’t want to imple-
ment this feature in the master page, because you want it to be available only on certain
pages. However, the content page obviously can’t implement this feature on its own,
because it involves modifying a fixed portion of the master page. The solution is to create
a way for the content page to interact with the master page so that it can politely ask the
master page to collapse or hide the navigation controls as needed.

NESTING MASTER PAGES

You can nest master pages so that one master page uses another master page. This is not used too often, but
it could allow you to standardize your website to different degrees. For example, you might have two sections
of your website. Each section might require its own navigation controls. However, both sections may need the
same header. In this case, you could create a top-level master page that adds the header. Then, you would
create a second master page that uses the first master page (through the MasterPageFile attribute). This
second master page would get the header and could add the navigation controls. You would create two ver-
sions of this second master page, one for each section of your website. Finally, your content pages would use
one of the two second-level master pages to standardize their layout.

Be careful when implementing this approach—although it sounds like a nifty way to make a modular
design, it can tie you down more than you realize. For example, you’ll need to rework your master page hier-
archy if you decide later that the two website sections need similar but slightly different headers. Another
problem is that Visual Studio doesn’t support nested master pages, so you’ll need to code them by hand (not
graphically). For these reasons, it’s usually better to use only one level of master pages and copy the few ele-
ments that are in common. In most cases, you won’t be creating many master pages, so this won’t add a
significant amount of duplication.

MacDonald.book Page 375 Wednesday, December 7, 2005 8:39 PM

376 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

One good way to implement this design is by adding a new CollapseNavigationCon-
trols property to the master page class. This property, when set to true, could then
automatically hide the navigation controls. Here’s the property you need to add to the
master page class:

��,$!�,��$�%���9��!���!��������$�

A

�������

����A

��������&����!��/�@!�!,$������$��B

����C

�������

����A

���������������&����!��/�@!�!,$�B

����C

C

You should notice a few important facts about this property. First, it’s public so that
other classed (and therefore other pages) can access it. Second, it just wraps the Visible
property in the TreeView control on the master page. Whatever value is passed to Col-
lapseNavigationControls is simply applied to TreeView.Visible. This is useful because
ordinarily the TreeView.Visible property isn’t directly accessible to the content page.

To access this page, the content page uses the built-in Page.Master property. This
page always returns the linked object for the master page. However, you can’t access
the ShowNavigationControls property directly as Page.Master.ShowNavigationControls,
because .NET doesn’t know you’ve added this property. Instead, you need to cast
the Page.Master object to the appropriate type. Only then can you call the
ShowNavigationControls method.

Here’s the button handling code for a content page that hides or shows the navigation
controls depending on whether a Hide or Show button is clicked:

�������"���!"�	"4!"�(�$!;D�,0������"��E������������F

A

����&�,$�������(������	��������D&�,$�������(�����F��!��������B

����	������%���9��!���!��������$����.�$��B

C

�������"���!"�	"%���(�$!;D�,0������"��E������������F

A

����&�,$�������(������	��������D&�,$�������(�����F��!��������B

����	������%���9��!���!��������$��������B

C

MacDonald.book Page 376 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 377

Figure 10-10 shows this content page in action.

Figure 10-10. A content page that interacts with its master page

Note that when you navigate from page to another, all the web page objects are re-created.
Even if you move to another content page that uses the same master page, ASP.NET creates a
different instance of the master page object. As a result, the TreeView.Visible property of the
navigation controls is reset to its default value (true) every time the user navigates to a new
page. If this isn’t the effect you want, you would need to store the setting somewhere else
(such as in a cookie or in session state). Then you could write code in the master page that
always checks the last saved value. Chapter 9 has more about the ways you can store informa-
tion for longer.

Themes
Master pages are a great way to enforce a consistent layout across all your web pages.
However, once you make sure your content ends up in the right place, you’re still faced
with another challenge: formatting. Even though your content pages use the same layout,
they won’t necessarily adopt the same formatting rules, which means fonts, colors, and
other formatting details are sure to clash.

ASP.NET addresses this problem with themes. Here’s how it works: You define all the
style characteristics for your controls in a separate file. For example, if you want all your
check boxes to have bold text and a light-gray background, you define this in your theme
file. If you want all your radio buttons to match, you define that in your theme file as well.
You can then link your theme file to a web page, which automatically applies all the for-
matting options to all the check boxes and radio buttons in that page. Best of all, you
maintain the style information in themes separately from the page (as with master pages).
This means once themes are in place, you can revamp your entire website by modifying
the information in your theme.

MacDonald.book Page 377 Wednesday, December 7, 2005 8:39 PM

378 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

If you are savvy with HTML, you may recognize that theming sounds a lot like CSS
(Cascading Style Sheets), a standard for formatting web pages. However, a significant dif-
ference exists between the two. Whereas style sheets apply formatting to HTML elements,
themes configure ASP.NET controls. In other words, you would use a style sheet to config-
ure every <p> tag on your page but a theme to configure every Label control.

The two are different in another respect. Because you apply themes to controls, you
have the opportunity to standardize a much richer set of properties. Style sheets are lim-
ited to a few characteristics, including font, background and foreground color, alignment,
spacing, and borders. Themes can set almost any control property. For example, you
could create themes that format a complete Calendar control, use a set of node pictures
for multiple TreeView controls, or define a set of templates for multiple GridView con-
trols. Obviously, none of these controls corresponds directly to an HTML tag, so you can’t
get anywhere near this functionality with style sheets.

■Note Unlike style sheets, themes are applied by ASP.NET on the server. As a result, you don’t have to
worry that your page won’t display correctly on a different browser because it implements CSS differently.

How Themes Work

All themes are application-specific. To use a theme in a web application, you need to cre-
ate a folder that defines it. This folder needs to be placed in a folder named App_Theme,
which must be placed inside the top-level directory for your web application. In other
words, a web application named SuperCommerce might have a theme named
FunkyTheme in the folder SuperCommerce\App_Theme\FunkyTheme. An application
can contain definitions for multiple themes, as long as each theme is in a separate folder.
Only one theme can be active on a given page at a time.

To actually make your theme accomplish anything, you need to create at least one skin
file in the theme folder. A skin file is a text file with the .skin extension. ASP.NET never
serves skin files directly—instead, they’re used behind the scenes to define a theme.

A skin file is essentially a list of control tags—with a twist. The control tags in a skin file
don’t need to completely define the control. Instead, they need to set only the properties
that you want to standardize. For example, if you’re trying to apply a consistent color
scheme, you might be interested in setting only properties such as ForeColor and Back-
Color. When you add a control tag for the ListBox, it might look like this:

������!��G�2����������������#�����$���� �!����G�;��$����7�������)

MacDonald.book Page 378 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 379

The runat="server" portion is always required. Everything else is optional. You should
avoid setting the ID attribute in your skin, because the page that contains the ListBox
needs to define a unique name for the control.

It’s up to you whether you create multiple skin files or place all your control tags in a
single skin file. Both approaches are equivalent, because ASP.NET treats all the skin files
in a theme directory as part of the same theme definition. Often, it makes sense to put
the control tags for complex controls (such as the data controls) in separate skin files.
Figure 10-11 shows the relationship between themes and skins in more detail.

Figure 10-11. Themes and skins

ASP.NET also supports global themes. These are themes you place in the
c:\Inetpub\wwwroot\aspnet_client\system_web\[Version]\Themes folder. However,
it’s recommended that you use local themes, even if you want to create more than one
website that has the same theme. Using local themes makes it easier to deploy your web
application, and it gives you the flexibility to introduce site-specific differences in the
future.

If you have a local theme with the same name as a global theme, the local theme takes
precedence, and the global theme is ignored. The themes are not merged together.

■Tip ASP.NET doesn’t ship with any predefined themes. This means you’ll need to create your own from
scratch or download sample themes from websites such as ������������������.

MacDonald.book Page 379 Wednesday, December 7, 2005 8:39 PM

380 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

Applying a Simple Theme

To add a theme to your project, select Website ➤ Add New Item, and choose Skin File. Visual
Studio will warn you that skin files need to be placed in a subfolder of the App_Themes
folder and ask you whether that’s what you intended. If you choose Yes, Visual Studio will
create a folder with the same name as your theme file. You can then rename the folder and
the file to whatever you’d like to use. Figure 10-12 shows an example with a theme that con-
tains a single skin file.

Figure 10-12. A theme in the Solution Explorer

Unfortunately, Visual Studio doesn’t include any design-time support for creating
themes, so it’s up to you to copy and paste control tags from other web pages.

Here’s a sample skin that sets background and foreground colors for several common
controls:

������!��G�2����������������#�����$���� �!����G�;��$����7�������)

�����&�2�G�2����������������#�����$���� �!����G�;��$����7�������)

�����G���������������������#�����$���� �!����G�;��$����7�������)

To apply the theme in a web page, you need to set the Theme attribute of the Page
directive to the folder name for your theme. (ASP.NET will automatically scan all the skin
files in that theme.)

����+��������������������������� !����������������� �����#�	$%� ������)

You can make this change by hand, or you can select the DOCUMENT object in the
Properties window at design time and set the Theme property (which provides a handy
drop-down list of all your web application’s themes). Visual Studio will modify the Page
directive accordingly.

MacDonald.book Page 380 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 381

When you apply a theme to a page, ASP.NET considers each control on your web page
and checks your skin files to see whether they define any properties for that control. If
ASP.NET finds a matching tag in the skin file, the information from the skin file overrides
the current properties of the control.

Figure 10-13 shows the result of applying the FunkyTheme to a simple page. You’ll
notice that conflicting settings (such as the existing background for the list box) are over-
written. However, changes that don’t conflict (such as the custom font for the buttons) are
left in place.

Figure 10-13. A simple page before and after theming

Handling Theme Conflicts

As you’ve seen, when properties conflict between your controls and your theme, the
theme wins. However, in some cases you might want to change this behavior so that your
controls can fine-tune a theme by specifically overriding certain details. ASP.NET gives
you this option, but it’s an all-or-nothing setting that applies to all the controls on the
entire page.

To make this change, just use the StyleSheetTheme attribute instead of the Theme
attribute in the Page directive. (The StyleSheet designation indicates that this setting
works more like CSS.) Here’s an example:

����+��������������������������� !����������������&
%�& ��
� �����#�	$%� ������)

Now the custom yellow background of the ListBox control takes precedence over the
background color specified by the theme. Figure 10-14 shows the result—and a potential
problem. Because the foreground color has been changed to white, the lettering is now

MacDonald.book Page 381 Wednesday, December 7, 2005 8:39 PM

382 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

difficult to read. Overlapping formatting specifications can cause glitches like this, which
is why it’s often better to let your themes take complete control by using the Theme
attribute.

Figure 10-14. Giving the control tag precedence over the theme

■Note It’s possible to use both the Theme attribute and the StyleSheetTheme attribute at the same time so
that some settings are always applied (those in the Theme attribute) and others are applied only if they aren’t
already specified in the control (those in the StyleSheetTheme attribute). However, in practice this design is
terribly confusing and not recommended.

Another option is to configure specific controls so they opt out of the theming process
entirely. To do this, simply set the EnableTheming property of the control to false.
ASP.NET will still apply the theme to other controls on the page, but it will skip over the
control you’ve configured.

�����G������'3��G�����/���������������������'	���� ���	(��!������)

MacDonald.book Page 382 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 383

Creating Multiple Skins for the Same Control

Having each control locked into a single format is great for standardization, but it’s prob-
ably not flexible enough for a real-world application. For example, you might have several
types of text boxes that are distinguished based on where they’re used or what type of data
they contain. Labels are even more likely to differ, depending on whether they’re being
used for headings or body text. Fortunately, ASP.NET allows you to create multiple decla-
rations for the same control.

APPLYING A THEME TO AN ENTIRE WEBSITE

Using the Page directive, you can bind a theme to a single page. However, you might decide that your theme
is ready to be rolled out for the entire web application. The cleanest way to apply this theme is by configuring
the <pages> element in the web.config file for your application, as shown here:

���.!�����!��)

����-���	���,)

����������&��	���#��;-&��	����)

�����-���	���,)

����.!�����!��)

If you want to use the style sheet behavior so that the theme doesn’t overwrite conflicting control prop-
erties, use the StyleSheetTheme attribute instead of Theme:

���.!�����!��)

����-���	���,)

����������%�-$�%����&��	���#��;-&��	����)

�����-���	���,)

����.!�����!��)

Either way, when you specify a theme in the web.config file, the theme will be applied throughout all the
pages in your website, provided these pages don’t have their own theme settings. If a page specifies the
Theme attribute, the page setting will take precedence over the web.config setting. If your page specifies
the Theme attribute with a blank string (Theme=""), no theme will be applied at all.

Using this technique, it’s just as easy to apply a theme to part of a web application. For example, you can
create a separate web.config file for each subfolder and use the <pages> setting to configure different themes.

MacDonald.book Page 383 Wednesday, December 7, 2005 8:39 PM

384 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

Ordinarily, if you create more than one theme for the same control, ASP.NET will give
you a build error stating that you can have only a single default skin for each control. To
get around this problem, you need to create a named skin by supplying a SkinID attribute.
Here’s an example:

������!��G�2����������������#�����$���� �!����G�;��$����7��������)

�����&�2�G�2����������������#�����$���� �!����G�;��$����7��������)

�����G���������������������#�����$���� �!����G�;��$����7��������)

�����&�2�G�2����������������#�����$���� �!����G�;��$����3��;7������

�#���HG�$"��&�����&$�)*��*����
����)

�����G���������������������#�����$���� �!����G�;��$����3��;7������

�#���HG�$"��&�����&$�)*��*����
����)

The catch is that named skins aren’t applied automatically like default skins. To use a
named skin, you need to set the SkinID of the control on your web page to match. You can
choose this value from a drop-down list that Visual Studio creates based on all your
defined skin names, or you can type it in by hand:

�����G������'3��G�����/���������������������&$�)*��*����
�����)

If you don’t like the opt-in model for themes, you can make all your skins named. That
way, they’ll never be applied unless you set the control’s SkinID.

ASP.NET is intelligent enough to catch if you try to use a skin name that doesn’t exist,
in which case you’ll get a build warning. The control will then behave as though you set
EnableTheming to false, which means it will ignore the corresponding default skin.

■Tip The SkinID doesn’t need to be unique. It just has to be unique for each control. For example, imagine
you want to create an alternate set of skinned controls that use a slightly smaller font. These controls match
your overall theme, but they’re useful on pages that display a large amount of information. In this case, you
can create new Button, TextBox, and Label controls, and give each one the same skin name (such as Smaller).

Skins with Templates and Images

So far, the theming examples have applied relatively simple properties. However, you
could create much more detailed control tags in your skin file. Most control properties
support theming. If a property can’t be declared in a theme, you’ll receive a build error
when you attempt to launch your application.

MacDonald.book Page 384 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 385

For example, many controls support styles that specify a range of formatting informa-
tion. The data controls are one example, and the Calendar control provides another.
Here’s how you might define Calendar styles in a skin file to match your theme:

�������$��"���'3����$��"��/�����������������G�;��$���� �!����#�����$����G$�;�

�G��"����$����G$�;��G��"��%�-$���%�$!"����$$%��!����/�

�#���H9�	����@��"�����#���H%!
���6����4�!�����<?>�2�� !"����?>>�2�

�9�2�+���#��	����%�����������%�$��!����"���3�-�)

���%�$���"3�-%�-$��G�;��$����3��;7�������#�����$���� �!�����)

���3�-%�-$��G�;��$����7�������#���HG�$"��&�����#�����$���� �!�����)

���9�2�+���%�-$��#���HG�$"��&�����#���H%!
���I����#�����$���� �!�����)

���3�-4��"��%�-$��#���HG�$"��&�����#���H%!
���I����#�����$�����555555�

���4�!�����I�����)

���&!�$�%�-$��G�;��$����#!��,�!;��G��"��%�-$���9�����#���HG�$"��&����

���#���H%!
���/<����#�����$���� �!����4�!�����/<�����)

���7���������3�-%�-$��G�;��$����9���0� �!����#���HG�$"��#�$���

���#�����$����3��;J��-���)

��������$��"��)

This skin defines the font, colors, and styles of the Calendar control. It also sets the
selection mode, the formatting of the month navigation links, and the overall size of the
calendar. As a result, all you need to use this formatted calendar is the following stream-
lined tag:

�������$��"���'3����$��"��/������������������)

■Caution When you create skins that specify details such as sizing, be careful. When these settings are
applied to a page, they could cause the layout to change with unintended consequences. If you’re in doubt,
set a SkinID so that the skin is applied only if the control specifically opts in.

Another powerful technique is to reuse images by making them part of your theme. For
example, imagine you perfect an image that you want to use for OK buttons throughout
your website and another one for all Cancel buttons. The first step to implement this
design is to add the images to your theme folder. For the best organization, it makes sense
to create one or more subfolders just for holding images. In this example, the images are
stored in a folder named ButtonImages (see Figure 10-15).

MacDonald.book Page 385 Wednesday, December 7, 2005 8:39 PM

386 C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S

Figure 10-15. Adding images to a theme

Now, you need to create the skins that use these images. In this case, both of these tags
should be named skins. That’s because you’re defining a specific type of standardized
button that should be available to the page when needed. You aren’t defining a default
style that should apply to all buttons.

�����'	���G���������������������%;!�'3��7:G������

�'	���*�$��G�����'	�����,�����7:�0�����)

�����'	���G���������������������%;!�'3������$G������

�'	���*�$��G�����'	�����,���������$�0�����)

When you add a reference to an image in a skin file, always make sure the image URL is
relative to the theme folder, not the folder where the page is stored. When this theme is
applied to a control, ASP.NET automatically inserts the Themes\ThemeName portion at
the beginning of the URL.

APPLYING THEMES DYNAMICALLY

In some cases, themes aren’t used to standardize website appearance but to make that appearance
configurable for each user. All you need to do to implement this design is to simply set the Page.Theme or
Page.StyleSheet property dynamically in your code. For example, set Page.Theme to the string "FunkyTheme"
to apply the theme in the FunkyTheme directory. The only caveat is that you need to complete this step in the
Page.Init event stage. After this point, attempting to set the property causes a compilation error. Similarly, you
can also set the SkinID property of a control dynamically to attach it to a different named skin. But be careful—
if a theme or skin change leads to a control specifying a skin name that doesn’t exist in the current theme, an
exception will be thrown.

MacDonald.book Page 386 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 0 ■ M A S T E R P A G E S A N D T H E M E S 387

Now to apply these images, simply create an ImageButton in your web page that refer-
ences the corresponding skin name:

�����'	���G������'3��'	���G�����/�����������������%;!�'3��7:G��������)

�����'	���G������'3��'	���G�����<�����������������%;!�'3������$G��������)

You can use the same technique to create skins for other controls that use images. For
example, you can standardize the node pictures of a TreeView, the bullet image used for
the BulletList control, or the icons used in a GridView.

The Last Word
Building a professional web application involves much more than designing individual
web pages. You also need the tools to integrate your web pages in a complete, unified
website. In this chapter, you considered two new ASP.NET features that let you do that.
Master pages allow you to standardize the layout of your website. Themes effortlessly
apply groups of formatting settings. Both features make it easy to bring your pages
together into a well-integrated web application.

MacDonald.book Page 387 Wednesday, December 7, 2005 8:39 PM

MacDonald.book Page 388 Wednesday, December 7, 2005 8:39 PM

389

■ ■ ■

C H A P T E R 1 1

Website Navigation

You’ve already learned simple ways to send a website visitor from one page to another.
For example, you can add HTML links (or HyperLink controls) to your page to let users
surf through your site. If you want to perform page navigation in response to another
action, you can call the Response.Redirect() method or the Response.Transfer() method
in your code. But in professional web applications, the navigation requirements are more
intensive. These applications need a system that allows users to surf through a hierarchy
of pages, without forcing you write the same tedious navigation code in every page.

Fortunately, ASP.NET includes a navigation model that makes it easy to let users surf
through your web applications. Before you can use this model, you need to determine the
hierarchy of your website—in other words, how pages are logically organized into groups.
You then define that structure in a dedicated file and bind that information to specialized
navigation controls. Best of all, these navigation controls include nifty widgets such as the
TreeView and Menu.

In this chapter, you’ll learn everything you need to know about the new site map model
and the navigation controls that work with it.

Site Maps
If your website has more than a handful of pages, you’ll probably want some sort of navi-
gation system to let users move from one page to the next. Obviously, you can use the
ASP.NET toolkit of controls to implement almost any navigation system, but this requires
that you perform all the hard work. Fortunately, ASP.NET has a set of navigation features
that can simplify the task dramatically.

MacDonald11.fm Page 389 Thursday, December 15, 2005 8:41 AM

390 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

As with all the best ASP.NET features, ASP.NET navigation is flexible, configurable, and
pluggable. It consists of three components:

• A way to define the navigational structure of your website. This part is the XML site
map, which is (by default) stored in a file.

• A convenient way to read the information in the site map file and convert it to an
object model. The SiteMapDataSource control and the XmlSiteMapProvider per-
form this part.

• A way to use the site map information to display the user’s current position and give
the user the ability to easily move from one place to another. This part takes place
through the navigation controls you bind to the SiteMapDataSource control, which
can include breadcrumb links, lists, menus, and trees.

You can customize or extend each of these ingredients separately. For example, if you
want to change the appearance of your navigation controls, you simply need to bind dif-
ferent controls to the SiteMapDataSource. On the other hand, if you want to read site map
information from a different type of file or from a different location, you need to change
your site map provider.

Figure 11-1 shows how these pieces fit together.

Figure 11-1. ASP.NET navigation with site maps

MacDonald11.fm Page 390 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 391

Defining a Site Map

The starting point in site map–based navigation is the site map provider. ASP.NET ships
with a single site map provider, named XmlSiteMapProvider, which is able to retrieve site
map information from an XML file. If you want to retrieve a site map from another loca-
tion or in a custom format, you’ll need to create your own site map provider or look for a
third-party solution on the Web.

The XmlSiteMapProvider looks for a file named Web.sitemap in the root of the virtual
directory. Like all site map providers, the task of the XmlSiteMapProvider is to extract the
site map data and create the corresponding SiteMap object. This SiteMap object is then
made available to the SiteMapDataSource, which you place on every page that uses navi-
gation. The SiteMapDataSource provides the site map information to navigation controls,
which are the final link in the chain.

You can create a site map using a text editor such as Notepad, or you can create it in
Visual Studio by selecting Website ➤ Add New Item and then choosing the Site Map
option. Either way, it’s up to you to enter all the site map information by hand. The only
difference is that if you create it in Visual Studio, the site map will start with a basic struc-
ture that consists of three nodes.

Before you can fill in the content in your site map file, you need to understand the rules
that all ASP.NET site maps must follow. The following sections break these rules down
piece by piece.

■Note Before you begin creating site maps, it helps to have a basic understanding of XML, the format
that’s used for the site map file. You should understand what an element is, how to start and end an element,
and why exact capitalization is so important. If you’re new to XML, you may find that it helps to refer to
Chapter 17 for a quick introduction before you read this chapter.

Rule 1: Site Maps Begin with the <siteMap> Element

Every Web.sitemap file begins by declaring the <siteMap> element and ends by closing
that element. You place the actual site map information between the start and end tag
(where the three dots are shown):

��������	
���

				���

����������

MacDonald11.fm Page 391 Thursday, December 15, 2005 8:41 AM

392 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

Rule 2: Each Page Is Represented by a <siteMapNode> Element

So, what does the site map content look like? Essentially, every site map defines an organi-
zation of web pages. To insert a page into the site map, you add the <siteMapNode> element
with some basic information. Namely, you need to supply the title of the page (which
appears in the navigation controls), a description (which you may or may not choose to
use), and the URL (the link for the page). You add these three pieces of information using
three attributes. The attributes are named title, description, and url, as shown here:

���������� �	�������!����	 �����������!����	"����#�$���"������
�	��

Notice that this element ends with the characters />. This indicates it’s an empty ele-
ment that represents a start tag and an end tag in one. Empty elements (an XML concept
described in Chapter 17) never contain other nodes.

And here’s a complete, valid site map file that uses this page to define a website with
exactly one page:

��������	
���

				���������� �	�������!����	 �����������!����	"����#�$���"������
�	��

����������

Notice that the URL for each page begins with the ~/ character sequence. This is quite
important. The ~/ characters represent the root folder of your web application. In other
words, the URL ~/Default.aspx points to the Default.aspx file in the root folder. This style
of URL isn’t required, but it’s strongly recommended, because it makes sure you always
get the right page. If you were to simply enter the URL Default.aspx without the ~/ prefix,
ASP.NET would look for the Default.aspx page in the current folder. If you have a web
application with pages in more than one folder, you’ll run into a problem.

For example, if the user browses into a subfolder and clicks the Default.aspx link,
ASP.NET will look for the Default.aspx page in that subfolder instead of in the root folder.
Because the Default.aspx page isn’t in this folder, the navigation attempt will fail with a
404 Not Found error.

Rule 3: A <siteMapNode> Element Can Contain Other <siteMapNode> Elements

Site maps don’t consist of simple lists of pages. Instead, they divide pages into groups. To
represent this in a site map file, you place one <siteMapNode> inside another. Instead of
using the empty element syntax shown previously, you’ll need to split your <siteMapNode>
element into a start tag and an end tag:

���������� �	�������!����	 �����������!����	"����#�$���"������
��

				���

����������� ��

MacDonald11.fm Page 392 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 393

Now you can slip more nodes inside. For example, here’s an example where a Home
group contains two more pages:

���������� �	�������!����	 �����������!����	"����#�$���"������
��

				���������� �	�������%�� "����	 �����������&"�	��� "����

						"����#�%�� "�������
��

				���������� �	�������!�� '����	 �����������!�� '���	��������

						"����#�!�� '�������
�	��

����������� ��

Essentially, this represents the hierarchical group of links shown in Figure 11-2.

Figure 11-2. Three nodes in a site map

In this case, all three nodes are links. This means the user could surf to one of three
pages. However, when you start to create more complex groups and subgroups, you
might want to create nodes that serve only to organize other nodes but aren’t themselves
as links. In this case, just omit the url attribute, as shown here with the Products node:

���������� �	�������%�� "����	 �����������%�� "�����

				���������� �	�������(����)�	 �����������%�� "���	����	���	�*����+���

						"����#������)����
��

				���������� �	����������	(����)�	 �����������%�� "���	����	���	�	�� ���

						"����#��"�������)����
�	��

����������� ��

When you show this part of the site map in a web page, the Products node will appear
as ordinary text, not a clickable link.

MacDonald11.fm Page 393 Thursday, December 15, 2005 8:41 AM

394 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

No limit exists to how many layers deep you can nest group and subgroups. However,
it’s a good rule to go just two or three levels deep; otherwise, it may be difficult for users
to grasp the hierarchy when they see it in a navigation control. If you find that you need
more than two or three levels, you may need to reconsider how you are organizing your
pages into groups.

Rule 4: Every Site Map Begins with a Single <siteMapNode>

Another rule applies to all site maps. A site map always must have a single root node. All
the other nodes must be contained inside this root-level node.

That means the following is not a valid site map, because it contains two top-level nodes:

��������	
���

				���������� �	�������(����)�	 �����������%�� "���	����	���	�*����+���

						"����#������)����
��

				���������� �	����������	(����)�	 �����������%�� "���	����	���	�	�� ���

						"����#��"�������)����
�	��

����������

However, the following one is valid, because it has a single top-level node (Home),
which then contains two more nodes:

��������	
���

				���������� �	�������!����	 �����������!����	"����#� ���"������
��

								���������� �	�������(����)�	 �����������%�� "���	����	���	�*����+���

										"����#������)����
��

								���������� �	����������	(����)�	

										 �����������%�� "���	����	���	�	�� ���

										"����#��"�������)����
�	��

				����������� ��

����������

As long as you use only one top-level node, you can nest nodes as deep as you want, in
groups as large or as small as you want.

Rule 5: Duplicate URLs Are Not Allowed

You cannot create two site map nodes with the same URL. This might seem to present a
bit of a problem in cases where you want to have the same link in more than one place—
and it does. However, it’s a requirement because the default SiteMapProvider included
with ASP.NET stores nodes in a collection, with each item indexed by its unique URL.

This limitation doesn’t prevent you from creating more than one URL that points to the
same page but has a minor difference. For example, the following two nodes are accept-
able, even though they lead to the same page (products.aspx). That’s because the two
URLs have different query string arguments at the end.

MacDonald11.fm Page 394 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 395

���������� �	�������(����)�	 �����������%�� "���	����	���	�*����+���

		"����#���� "�������
,����)����

���������� �	����������	(����)�	 �����������%�� "���	����	���	�	�� ���

		"����#���� "�������
,����)���	��

As a general rule of thumb, you shouldn’t use this technique just to create multiple
entries that point to the same page. However, if you really do use the query string argu-
ment in your page code, this is a valid technique. For example, you might use this
approach to tell a single page to display different information, depending on which link
the user clicks. Chapter 9 describes the query string in more detail.

Seeing a Simple Site Map in Action

A typical site map can be a little overwhelming at first glance. However, if you keep the five
rules described previously in mind, you’ll be able to sort out exactly what’s taking place.

The following is an example that consists of seven nodes. (Remember, each node is a
link to an individual page or a heading used to organize a group of pages.) The example
defines a simple site map for a company named RevoTech.

��������	
���

				���������� �	�������!����	 �����������!����	"����#� ���"������
��

								���������� �	�������(���������	 �����������-���	�+�"�	�"�	�����.��

												���������� �	��������+�"�	/��	 �����������!�'	0�*�1���	'��	��" � �

														"����#��+�"�"�����
�	��

												���������� �	�������(*����2�

														 ������������������	�������	� 	�*�����	���.����

														"����#������������
�	��

								����������� ��

								���������� �	�������%�� "����	 �����������-���	�+�"�	�"�	��� "�����

												���������� �	�������0�*�����)�

														 �����������(*������	����'���	���	����)	������2�

														"����#���� "�������
�	��

												���������� �	�������0�*����.3��

														 �����������(*������	����'���	���	.��� 	���.����

														"����#���� "��4����
�	��

								����������� ��

				����������� ��

����������

MacDonald11.fm Page 395 Thursday, December 15, 2005 8:41 AM

396 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

■Note The URL in the site map is not case-sensitive.

In the following section, you’ll bind this site map to the controls in a page, and you’ll
see its structure emerge.

Binding an Ordinary Page to a Site Map

Once you’ve defined the Web.sitemap file, you’re ready to use it in a page. First, it’s a good
idea to make sure you’ve created all the pages that are listed in the site map file, even if
you leave them blank. Otherwise, you’ll have trouble testing whether the site map naviga-
tion actually works.

 The next step is to add the SiteMapDataSource control to your page. You can drag and
drop it from the Data tab of the Toolbox. It creates a tag like this:

������������$�����"���	($���������$�����"�����	�"�������*���	��

The SiteMapDataSource control appears as a gray box on your page in Visual Studio,
but it’s invisible when you run the page.

The last step is to add controls that are linked to the SiteMapDataSource. Although you
can use any of the data controls described in Part 3, in practice you’ll find that you’ll get
the results you want only with the three controls that are available in the Navigation tab of
the Toolbox. That’s because these controls support hierarchical data (data with multiple
nested levels), and the site map is an example of hierarchical data. In any other control,
you’ll see only a single level of the site map at a time, which is impractical.

These are the three navigation controls:

TreeView: The TreeView displays a “tree” of grouped links that shows your whole site
map at a glance.

Menu: The Menu displays a multilevel menu. By default, you’ll see only the first level,
but other levels pop up (thanks to some nifty JavaScript) when you move the mouse
over the subheadings.

SiteMapPath: The SiteMapPath is the simplest navigation control—it displays the full
path you need to take through the site map to get to the current page. For example, it
might show Home > Products > RevoStock if you’re at the product1.aspx page. Unlike the
other navigation controls, the SiteMapPath is useful only for moving up the hierarchy.

To connect a control to the SiteMapDataSource, you simply need to set its DataSourceID
property to match the name of the SiteMapDataSource. For example, if you added a Tree-
View, you should tweak the tag so it looks like this:

�����1���5��'	($��1���5��'��	�"�������*���	$�����"���($���������$�����"�����	��

MacDonald11.fm Page 396 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 397

Figure 11-3 shows the result—a tree that displays the structure of the site, as defined in
the website. Notice that the TreeView doesn’t use the description information; instead, it
displays only the node titles.

Figure 11-3. A site map in the TreeView

Best of all, this tree is created automatically; as long as you link it to the SiteMapDataSource
control, you don’t need to write any code.

When you click one of the nodes in the tree, you’ll automatically be taken to the page
you defined in the URL. Of course, unless that page also includes a navigation control
such as the TreeView, the site map will disappear from sight. The next section shows a
better approach.

Binding a Master Page to a Site Map

Website navigation works best when combined with another ASP.NET feature—master
pages. That’s because you’ll usually want to show the same navigation controls on every page.
The easiest way to do this is to create a master page that includes the SiteMapDataSource and
the navigation controls. You can then reuse this template for every other page on your site.

Here’s how you might define a basic structure in your master page that puts navigation
controls on the left:

�67	������	-�2"�2���89�	�"��:*��;���"�����"��

		8� �������������%�2������������	(��������������%�2��	6�

������

���� 	�"�������*����

		���������*�2����	1�����������

����� �

MacDonald11.fm Page 397 Thursday, December 15, 2005 8:41 AM

398 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

�+� .�

�����	� ��������	�"�������*����

		���+���

				����

						�� 	��.����'� ���	44<�
=*�����������2�	���=��

								�����1���5��'	($��1���5��'��	�"�������*���

									$�����"���($���������$�����"�����	��

						��� �

						�� 	��.����*�����������2�	���=��

								�����8����%����!�� ��	� ��8����%����!�� ����	�"�������*���	��

						��� �

				�����

		����+���

		������������$�����"���	($���������$�����"�����	�"�������*���	��

�������

��+� .�

�������

Then, create a child with some simple static content:

�67	%�2�	-�2"�2���89�	������%�2�������#�������%�2���������	

�"��:*��;���"�����"��

		8� ������� ���"������
����	(��������> ���"���	1������/����� 	%�2��	6�

�����8����	($��8������	8����%����!�� ��($��8����%����!�� ����

		�"�������*����

				�+�	��

				�+�	��

				?�"	���	�"�����.	�	���	 ���"������
	��2�	@!���A�

������8�����

In fact, while you’re at it, why not create a second page so you can test the navigation
between the two pages?

�67	%�2�	-�2"�2���89�	������%�2�������#�������%�2���������	

�"��:*��;���"�����"��	8� ���������� "�������
����	

(����������� "����	1������/����� 	%�2��	6�

�����8����	($��8������	8����%����!�� ��($��8����%����!�� ����

		�"�������*����

				�+�	��

				�+�	��

				?�"	���	�"�����.	�	���	��� "�������
	��2�	@0�*�����)A�

������8�����

MacDonald11.fm Page 398 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 399

Now you can jump from one page to another using the TreeView (see Figure 11-4).
Because both pages use the same master, and the master page includes the TreeView, the
site map always remains visible.

Figure 11-4. Navigating from page to page with the TreeView

You can do a lot more to customize the appearance of your pages and navigation con-
trols. You’ll consider these topics in the following sections.

Binding Portions of a SiteMap

In the current example, the TreeView shows the structure of the site map file exactly. How-
ever, this isn’t always what you want. For example, you might not like the way the Home
node sticks out because of the XmlSiteMapProvider rule that every site map must begin
with a single root.

MacDonald11.fm Page 399 Thursday, December 15, 2005 8:41 AM

400 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

One way to clean this up is to configure the properties of the SiteMapDataSource. For
example, you can set the ShowStartingNode property to false to hide the root node:

������������$�����"���	($���������$�����"�����	�"�������*���

		���'������2�� ���������	��

Figure 11-5 shows the result.

Figure 11-5. A site map without the root node

This example shows how you can hide the root node. Another option is to show just a
portion of the complete site map, starting from the current node. For example, you might
use a control such as the TreeView to show everything in the hierarchy starting from the
current node. If the user wants to move up a level, they could use another control (such as
the SiteMapPath).

Showing Subtrees

By default, the SiteMapDataSource shows a full tree that starts with the root node. How-
ever, the SiteMapDataSource has several properties that can help you configure the
navigation tree and limit the display to just a specific branch. Typically, this is useful if you
have a deeply nested tree. Table 11-1 describes the full set of properties.

MacDonald11.fm Page 400 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 401

Table 11-1. SiteMapDataSource Properties

Figuring out these properties can take some work, and you might need to do a bit of
experimenting to decide the right combination of SiteMapDataSource settings you want
to use. To make matters more interesting, you can use more than one SiteMapDataSource
on the same page. This means you could use two navigation controls to show different
sections of the site map hierarchy.

Before you can see this in practice, you need to modify the site map file used for the
previous few examples into something a little more complex. Currently, the site map has
three levels, but only the first level (the Home node) and the third level (the individual
pages) have URL links. The second-level groupings (Information and Products) are just
used as headings, not links. To get a better feel for how the SiteMapDataSource properties
work with multiple navigation levels, modify the Product node as shown here:

���������� �	�������%�� "����	 �����������-���	�+�"�	�"�	��� "����

		���������	
���������

Property Description
ShowStartingNode Set this property to false to hide the first (top-level) node that would

otherwise appear in the navigation tree. The default is true.

StartingNodeUrl Use this property to change the starting node. Set this value to the
URL of the node that should be the first node in the navigation tree.
This value must match the url attribute in the site map file exactly.
For example, if you specify a StartingNodeUrl of "~/home.aspx", then
the first node in the tree is the Home node, and you will see nodes
only underneath that node.

StartFromCurrentNode Set this property to true to set the current page as the starting node.
The navigation tree will show only pages beneath the current page
(which allows the user to move down the hierarchy). For this to work,
the site map provider must be able to find a node that matches the
current page in the site map file.

StartingNodeOffset Use this property to shift the starting node up or down the hierarchy.
It takes an integer that instructs the SiteMapDataSource to move
from the starting node down the tree (if the number is positive) or up
the tree (if the number is negative). The actual effect depends on how
you combine this property with other SiteMapDataSource properties.
For example, if StartFromCurrentNode is false, you’ll use a positive
number to move down the tree from the starting node toward the
current node. If StartFromCurrentNode is true, you’ll use a negative
number to move up the tree away from the current node and toward
the starting node.

MacDonald11.fm Page 401 Thursday, December 15, 2005 8:41 AM

402 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

And change the Information node:

���������� �	�������%�� "����	 �����������-���	�+�"�	�"�	�����.�

		����������	�����	�������

Next, create the products.aspx and information.aspx pages.
The interesting feature of the Products node is that not only is it a navigable page, but

it’s a page that has other pages both above it and below it in the navigation hierarchy. This
makes it ideal for testing the SiteMapDataSource properties. For example, you can create
a SiteMapDataSource that shows pages only below the current page like this:

������������$�����"���	($���������$�����"�����	�"�������*���

			���������8"������ �	�	���"��	��

And you can create one that always shows pages under the Information group like this:

������������$�����"���	($���������$�����"���4�	�"�������*���

		������2�� �/��	�	�#��������������
�		��

■Note For this technique to work, ASP.NET must be able to find a page in the Web.sitemap file that
matches the current URL. Otherwise, it won’t know where the current position is, and it won’t provide any
navigation information to the bound controls.

Now, just bind two navigation controls. In this case, one TreeView is linked to each
SiteMapDataSource:

%�2��	" ��	���	�"����	��2��

�����1���5��'	($��1���5��'��	�"�������*���

		$�����"���($���������$�����"�����	��

�+�	��

1��	(��������	2��"�	��	��2����+�	��

�����1���5��'	($��1���5��'4�	�"�������*���

		$�����"���($���������$�����"���4�	��

Figure 11-6 shows the result as you navigate from products.aspx down the tree to
products1.aspx. The first TreeView shows the portion of the tree under the current page,
and the second TreeView is always fixed on the Information group.

MacDonald11.fm Page 402 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 403

Figure 11-6. Showing portions of the site map

You’ll need to get used to the SiteMapDataSource.StartingNodeOffset property. It
takes an integer that instructs the SiteMapDataSource to move that many levels down the
tree (if the number is positive) or up the tree (if the number is negative). An important
detail that’s often misunderstood is that when the SiteMapDataSource moves down the
tree, it moves toward the current node. If it’s already at the current node, or your offset
takes it beyond the current node, the SiteMapDataSource won’t know where to go, and
you’ll end up with a blank navigation control.

MacDonald11.fm Page 403 Thursday, December 15, 2005 8:41 AM

404 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

To understand how this works, it helps to consider an example. Imagine you’re at this
location in a website:

!���	�	%�� "���	�	����'���	�	8"����	�	8�����	/�

If the SiteMapDataSource is starting at the Home node (the default) and you apply a
StartingNodeOffset of 2, it will move down the tree two levels and bind to the tree of pages
that starts at the Software node.

On the other hand, if you’re currently at the Products node, you won’t see anything!
That’s because the starting node is Home, and the offset tries to move it down two levels.
However, you’re only one level deep in the hierarchy. Or, to look at it another way, no
node exists between the top node and the current node that’s two levels deep.

Now, what happens if you repeat the same test but set the site map provider to begin
on another node? Consider what happens if you set StartFromCurrentNode to true and
surf to the Contact Us page. Once again, you won’t see any information, because the site
map provider attempts to move two levels down from the current node, Contact Us, and
it has nowhere to go. On the other hand, if you set StartFromCurrentNode to true and use
a StartingNodeOffset of -2, the SiteMapDataSource will move up two levels from Contact
Us and bind the subtree starting at Software.

Overall, you won’t often use the StartingNodeOffset property. However, it can be useful
if you have a deeply nested site map and you want to keep the navigation display simple
by showing just a few levels up from the current position.

■Note All the examples in this section have filtered out higher-level nodes than the starting node. For
example, if you’re positioned at the Home > Products > RevoStock page, you’ve seen how to hide the Home
and Products levels. You haven’t seen how to filter out lower-level nodes. For example, if you’re positioned at
the Home page, you’ll always see the full site map, because you don’t have a way to limit the number of levels
you see below the starting node. You have no way to change this behavior with the SiteMapDataSource, but
later you’ll explore the TreeView control (in the section “The TreeView Control”) and see that the Tree-
View.MaxDataBindDepth property serves this purpose.

Using Different Site Maps in the Same File

Imagine you want to have a dealer section and an employee section on your website. You
might split this into two structures and define them both under different branches in the
same file, like this:

��������	
��	�

		���������� �	�������0����	 �����������0����	"����#���

				���������� �	�������$�����	!����	 �����������!����	"����#� ���"������
��

						���

				����������� ��

MacDonald11.fm Page 404 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 405

				���������� �	�������:����.��	!����	 �����������!����	"����#�

 ���"��>�������
��

						���

				����������� ��

		����������� ��

����������

Now, to bind the menu to the dealer view, you set the StartingNodeUrl property to
"~/default.aspx". You can do this programmatically or, more likely, by creating an entirely
different master page and implementing it in all your dealer pages. In your employee
pages, you set the StartingNodeUrl property to "~/default_emp.aspx". This way, you’ll
show only the pages under the Dealer Home branch of the site map.

You can even make your life easier by breaking a single site map into separate files
using the siteMapFile attribute, like this:

��������	
��	�

		���������� �	�������0����	 �����������0����	"����#���

				���������� �	�������������$���������������	��

				���������� �	�������������:����.������������	��

		����������� ��

����������

Even with this technique, you’re still limited to a single site map tree, and it always
starts with the Web.sitemap file. However, you can manage your site map more easily
because you can factor some of its content into separate files.

However, this seemingly nifty technique is greatly limited because the site map pro-
vider doesn’t allow duplicate URLs. This means you have no way to reuse the same page
in more than one branch of a site map. Although you can try to work around this problem
by creating different URLs that are equivalent (for example, by adding query string
parameters on the end), this raises more headaches. Sadly, this problem has no solution
with the default site map provider that ASP.NET includes.

Navigating Programmatically

You aren’t limited to no-code data binding in order to display navigation hierarchies.
You can interact with the navigation information programmatically. This allows you to
retrieve the current node information and use that to configure details such as the page
heading and title. All you need to do is interact with the objects that are readily available
through the Page class.

The site map API is remarkably straightforward. To use it, you need to work with two
classes from the System.Web namespace. The starting point is the SiteMap class, which pro-
vides the static properties CurrentNode (the site map node representing the current page)
and RootNode (the root site map node). Both of these properties return a SiteMapNode

MacDonald11.fm Page 405 Thursday, December 15, 2005 8:41 AM

406 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

object. Using the SiteMapNode object, you can retrieve information from the site map,
including the title, description, and URL values. You can branch out to consider related nodes
using the navigational properties in Table 11-2.

■Note You can also search for nodes using the methods of the current SiteMapProvider object, which is
available through the SiteMap.Provider static property. For example, the SiteMap.Provider.FindSiteMapNode()
method allows you to search for a node by its URL.

Table 11-2. SiteMapNode Navigational Properties

To see this in action, consider the following code, which configures two labels on a
page to show the heading and description information retrieved from the current node:

�������� 	*�� 	%�2�>-�� @�+B���	�� ��C	:*����2�	�A

D

				�+�!�� �1�
�	�	��������8"������ ��1����=

				�+�$����������1�
�	�	��������8"������ ��$���������=

E

The next example is a little more ambitious. It implements a Previous/Next set of links,
allowing the user to traverse an entire set of subnodes. The code checks for the existence
of sibling nodes, and if there aren’t any in the required position, it simply hides the links.

�������� 	*�� 	%�2�>-�� @�+B���	�� ��C	:*����2�	�A

D

				��	@��������8"������ ����
���+��2	F�	"��A

Property Description
ParentNode Returns the node one level up in the navigation hierarchy, which contains the

current node. On the root node, this returns a null reference.

ChildNodes Provides a collection of all the child nodes. You can check the HasChildNodes
property to determine whether child nodes exist.

PreviousSibling Returns the previous node that’s at the same level (or a null reference if no
such node exists).

NextSibling Returns the next node that’s at the same level (or a null reference if no such
node exists).

MacDonald11.fm Page 406 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 407

				D

								�)��
����*�2���/��	�	��������8"������ ����
���+��2�/��=

								�)��
��5���+��	�	��"�=

				E

				����

				D

								�)��
��5���+��	�	�����=

				E

E

Figure 11-7 shows the result.

Figure 11-7. Creating a Next page link

Mapping URLs

In some situations, you might want to have several URLs lead to the same page. This might
be the case for a number of reasons—maybe you want to implement your logic in one page
and use query string arguments but still provide shorter and easier-to-remember URLs to
your website users (often called friendly URLs). Or maybe you have renamed a page, but you
want to keep the old URL functional so it doesn’t break user bookmarks. Although web serv-
ers sometimes provide this type of functionality, ASP.NET includes its own URL mapping
feature.

MacDonald11.fm Page 407 Thursday, December 15, 2005 8:41 AM

408 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

The basic idea behind ASP.NET URL mapping is that you map a request URL to a dif-
ferent URL. The mapping rules are stored in the web.config file, and they’re applied
before any other processing takes place. Of course, for ASP.NET to apply the remapping,
it must be processing the request, which means the request URL must use a file type
extension that’s mapped to ASP.NET. (See Chapter 12 for more information about how
to configure ASP.NET to handle file extensions that it wouldn’t ordinarily handle.)

You define URL mapping in the <urlMappings> section of the web.config file. You
supply two pieces of information—the request URL (as the attribute url) and the new des-
tination URL (mappedUrl). Here’s an example:

�����2"�����	
��������������������������������������8���2"������*4����

		��.�����'�+�

				�"�������2�	��+�� ����"���

						�� 	"����#�8���2��.����
�

							����� /����#�$���"������
,����2��.� ���"���	��

						�� 	"����#�����'�������
�

							����� /����#�$���"������
,����2��.�����'����	��

				��"�������2��

				���

		���.�����'�+�

������2"������

To make a match, the incoming URL must be requesting the same page. However,
the case of the request URL is ignored, as are query string arguments. Unfortunately,
ASP.NET doesn’t support advanced matching rules, such as wildcards or regular
expressions.

When you use URL mapping, the redirection takes place in the same way as the
Server.Transfer() method, which means no round-trip happens and the URL in the
browser will still show the original request URL, not the new page. In your code, the
Request.Path and Request.QueryString properties reflect the new (mapped) URL.
The Request.RawUrl property returns the original, friendly request URL.

This can introduce some complexities if you use it in conjunction with site maps—
namely, does the site map provider try to use the original request URL or the destination
URL when looking for the current node in the site map? The answer is both. It begins by
trying to match the request URL (provided by the Request.RawUrl property), and if no
value is found, it then uses the Request.Path property instead. This is the behavior of the
XmlSiteMapProvider, so you could change it in a custom provider if desired.

MacDonald11.fm Page 408 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 409

The SiteMapPath Control
The TreeView shows the available pages, but it doesn’t indicate where you’re currently
positioned. To solve this problem, it’s common to use the TreeView in conjunction with
the SiteMapPath control. Because the SiteMapPath is always used for displaying naviga-
tional information (unlike the TreeView, which can also show other types of data), you
don’t even need to explicitly link it to the SiteMapDataSource:

������������%���	($���������%�����	�"�������*���	��

The SiteMapPath provides breadcrumb navigation, which means it shows the user’s
current location and allows the user to navigate up the hierarchy to a higher level using
links. Figure 11-8 shows an example with a SiteMapPath control when the user is on
the product1.aspx page. Using the SiteMapPath control, the user can return to the
default.aspx page. (If a URL were defined for the Products node, you would also be able
to click that portion of the path to move to that page.) Once again, the SiteMapPath has
been added to the master page, so it appears on all the content pages in your site.

Figure 11-8. Breadcrumb navigation with SiteMapPath

The SiteMapPath control is useful because it provides both an at-a-glance view that
shows the current position and a way to move up the hierarchy. However, you always
need to combine it with other navigation controls that let the user move down the site
map hierarchy.

MacDonald11.fm Page 409 Thursday, December 15, 2005 8:41 AM

410 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

Customizing the SiteMapPath

The SiteMapPath control is also thoroughly customizable. Table 11-3 lists some of its
most commonly configured properties.

Table 11-3. SiteMapPath Appearance-Related Properties

Using SiteMapPath Styles and Templates

For even more control, you can configure the SiteMapPath control with styles or even
redefine the controls and HTML with templates (see Table 11-4).

Table 11-4. SiteMapPath Styles and Templates

Styles are easy enough to grasp—they define formatting settings that apply to one part
of the SiteMapPath control. Templates are a little trickier, because they rely on data bind-
ing expressions. Essentially, a template is a bit of HTML (that you create) that will be

Property Description
ShowToolTips Set this to false if you don’t want the description text to appear

when the user hovers over a part of the site map path.

ParentLevelsDisplayed Sets the maximum number of levels above the current page that
will be shown at once. By default, this setting is –1, which means
all levels will be shown.

RenderCurrentNodeAsLink If true, the portion of the page that indicates the current page is
turned into a clickable link. By default, this is false because the
user is already at the current page.

PathDirection You have two choices: RootToCurrent (the default) and
CurrentToRoot (which reverses the order of levels in the path).

PathSeparator Indicates the characters that will be placed between each level in
the path. The default is the greater-than symbol (>). Another
common path separator is the colon (:).

Style Template Applies To

NodeStyle NodeTemplate All parts of the path except the root and current
node.

CurrentNodeStyle CurrentNodeTemplate The node representing the current page.

RootNodeStyle RootNodeTemplate The node representing the root. If the root node
is the same as the current node, the current
node template or styles are used.

PathSeparatorStyle PathSeparatorTemplate The separator in between each node.

MacDonald11.fm Page 410 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 411

shown for a specific part of the SiteMapPath control. For example, if you want to config-
ure how the root node displays in a site map, you could create this template:

������������%���	($���������%�����	�"�������*����

		�0����� �1��������

				�+�0�����+�

		��0����� �1��������

�������������%����

This template ignores the information for the root node and simply displays the word
Root in bold.

Usually, you’ll use a data binding expression to retrieve some site map information—
chiefly, the description, text, or URL that’s defined for the current node in the site map
file. Chapter 14 covers data binding expressions in detail, but this section will present a
simple example that shows you all you need to know to use them with the SiteMapPath.

Imagine you want to change how the current node is displayed so that it’s shown in
italics. To get the name of the current node, you need to write a data binding expression
that retrieves the title. This data binding expression is bracketed between <%# and %>
characters and uses a method named Eval(). Here’s what it looks like:

������������%���	($���������%�����	�"�������*����

		�8"������ �1��������

				���������������������������

		��8"������ �1��������

�������������%����

Data binding also gives you the ability to retrieve other information from the site map
node, such as the description. Consider the following example:

������������%���	($���������%�����	�"�������*����

		�%������������1��������

				�����(��2�	($��(��2���	(��2�/����#�����'��2���2���

					�"�������*���	��

		��%������������1��������

		�0����� �1��������

				�+�0�����+�

		��0����� �1��������

		�8"������ �1��������

				�69	:*��@�������A	6�	�+�	��

				�����������69	:*��@� ����������A	6�������������

		��8"������ �1��������

�������������%����

MacDonald11.fm Page 411 Thursday, December 15, 2005 8:41 AM

412 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

This SiteMapPath uses several templates. First, it uses the PathSeparatorTemplate to
define a custom arrow image that’s used between each part of the path. This template
uses an Image control instead of an ordinary HTML tag because only the Image
control understands the ~/ characters in the image URL, which represent the applica-
tion’s root folder. If you don’t include these characters, the image won’t be retrieved
successfully if you place your page in a subfolder.

Next, the SiteMapPath uses the RootNodeTemplate to supply a fixed string of bold text
for the root portion of the site map path. Finally, the CurrentNodeTemplate uses two data
binding expressions to show two pieces of information—both the title of the node and its
description (in smaller text, underneath). Figure 11-9 shows the final result.

Figure 11-9. A SiteMapPath with templates

Adding Custom Site Map Information

In the site maps you’ve seen so far, the only information that’s provided for a node is the
title, description, and URL. This is the bare minimum of information you’ll want to use.
However, the schema for the XML site map is open, which means you’re free to insert cus-
tom attributes with your own data.

You might want to insert additional node data for a number of reasons. This additional
information might be descriptive information that you intend to display or contextual infor-
mation that describes how the link should work. For example, you could add attributes that
specify a target frame or indicate that a link should open in a pop-up window. The only
catch is that it’s up to you to act on the information later. In other words, you need to con-
figure your user interface so it uses this extra information.

For example, the following code shows a site map that uses a target attribute to indicate
the frame where the link should open. This technique is useful if you’re using frames-based

MacDonald11.fm Page 412 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 413

navigation. In this example, one link is set with a target of _blank so it will open in a new
(pop-up) browser window.

���������� �	�������0�*�����)�

		 �����������(*������	����'���	���	����)	������2�

		"����#���� "�������
�	�������� !���"�	��

Now in your code, you have several options. If you’re using a template in your navi-
gation control, you can bind directly to the new attribute. Here’s an example with the
SiteMapPath from the previous section:

��� ���.���

		��	�����G�69	:*��@�"���A	6�G

			�������#����������$������%�����G��69	:*��@�1�����A	6�����

���� ���.���

This creates a link that uses the node URL (as usual) but also uses the target informa-
tion. The one trick in this example is that you need to put square brackets around the
attribute name to indicate that the value is being looked up (by name) in the data item’s
indexer.

If your navigation control doesn’t support templates (or you don’t want to create
one), you’ll need to find another approach. Both the TreeView and Menu classes expose
an event that fires when an individual item is bound (TreeNodeDataBound and
MenuItemDataBound). You can then customize the current item. To apply the new tar-
get, you use this code:

�������� 	*�� 	1���5��'�>1����� �$���H�" @�+B���	�� ��C	1����� �:*����2�	�A

D

				���� ��1��2��	�	@@��������� �A���� ��$���(���AI����2���J=

E

Notice that you can’t retrieve the custom attribute from a strongly typed property.
Instead, you retrieve it by name using the SiteMapNode indexer.

The TreeView Control
You’ve already seen the TreeView at work for displaying navigational information. As
you’ve learned, the TreeView can show a portion of the full site map or the entire site map.
Each node becomes a link that, when clicked, takes the user to the new page. If you hover
over a link, you’ll see the corresponding description information appear in a tooltip.

In the following sections, you’ll learn how to change the appearance of the TreeView.
In later chapters, you’ll learn how to use the TreeView for other tasks, such as displaying
data from a database.

MacDonald11.fm Page 413 Thursday, December 15, 2005 8:41 AM

414 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

■Note The TreeView is one of the most impressive controls in ASP.NET. Not only does it allow you to show
site maps, but it also supports showing information from a database and filling portions of the tree on demand
(and without refreshing the entire page). But most important, it supports a wide range of styles that can trans-
form its appearance.

TreeView Properties

The TreeView has a slew of properties that let you change how it’s displayed on the page.
Table 11-5 describes some of the most useful properties.

Table 11-5. Useful TreeView Properties

For example, Figure 11-10 shows a TreeView with a NodeIndent of 0 and shows cus-
tom images next to each node set through the CollapseImageUrl, ExpandImageUrl, and
NoExpandImageUrl properties.

Property Description
MaxDataBindDepth Determines how many levels the TreeView will show. By default,

MaxDataBindDepth is –1, and you’ll see the entire tree. However, if
you used a value such as 2, you’d see two only levels under the starting
node. This can help you pare down the display of long, multileveled
site maps.

ExpandDepth Ordinarily, when you first request a page that contains a TreeView, every
level in the TreeView is expanded, which means all the nodes are visible
on the page. If this isn’t the behavior you want, you can set the
ExpandDepth to a specific number. If you use 0, the TreeView begins
completely closed. If you use 1, only the first level is expanded, and so on.

NodeIndent Sets the number of pixels between each level of nodes in the TreeView.
Set this to 0 to create a nonindented TreeView, which saves space.

CollapseImageUrl,
ExpandImageUrl, and
NoExpandImageUrl

Sets the pictures that are shown next to nodes for collapsing and
expanding a node (which are usually represented by plus and minus
icons). The NoExpandImageUrl is used if the node doesn’t have any
children (in which case no image is shown by default).

NodeWrap Set this to true to let node text wrap over more than one line.

ShowExpandCollapse Set this to false to hide the expand/collapse boxes. This isn’t
recommended, because the user won’t have a way to expand or
collapse a level without clicking it (which causes the browser to
navigate to the page).

ShowLines Set this to true to add lines that connect every node.

ShowCheckBoxes Set this to true to show a check box next to every node. This isn’t
terribly useful for site maps, but it is useful with other types of trees.

MacDonald11.fm Page 414 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 415

Figure 11-10. A no-indent TreeView with custom node icons

Properties give you a fair bit of customizing power, but without a doubt the most inter-
esting and powerful formatting features come from styles.

TreeView Styles

Styles are represented by the TreeNodeStyle class, which derives from the more conven-
tional Style class. As with other rich controls, the styles give you options to set background
and foreground colors, fonts, and borders. Additionally, the TreeNodeStyle class adds the
node-specific style properties shown in Table 11-6. These properties deal with the node
image and the spacing around a node.

Table 11-6. TreeNodeStyle-Added Properties

Property Description

ImageUrl The URL for the image shown next to the node

NodeSpacing The space (in pixels) between the current node and the node above and
below

VerticalPadding The space (in pixels) between the top and bottom of the node text and
border around the text

HorizontalPadding The space (in pixels) between the left and right of the node text and
border around the text

ChildNodesPadding The space (in pixels) between the last child node of an expanded parent
node and the following sibling node

MacDonald11.fm Page 415 Thursday, December 15, 2005 8:41 AM

416 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

Because a TreeView is rendered using an HTML table, you can set the padding of vari-
ous elements to control the spacing around text, between nodes, and so on. One other
property that comes into play is TreeView.NodeIndent, which sets the number of pixels of
indentation (from the left) in each subsequent level of the tree hierarchy. Figure 11-11
shows how these settings apply to a single node.

Figure 11-11. Node spacing

MacDonald11.fm Page 416 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 417

Clearly, styles give you a lot of control over how different nodes are displayed. To make
a change that affects every node in the TreeView, you can modify the TreeNodeStyle
object that’s provided by the TreeView.NodeStyle property. But if you want to tweak a
specific part of the tree, you need to understand how different styles apply to different
nodes, as described in the following sections.

Applying Styles to Node Types

The TreeView allows you to individually control the styles for types of nodes—for exam-
ple, root nodes, nodes that contain other nodes, selected nodes, and so on. Table 11-7 lists
different TreeView styles and explains what nodes they affect.

Table 11-7. TreeView Style Properties

Styles are listed in this table in order of most general to most specific. This means the
SelectedNodeStyle style settings override any conflicting settings in a RootNodeStyle, for
example. (If you don’t want a node to be selectable, set the TreeNode.SelectAction to
None.) However, the RootNodeStyle, ParentNodeStyle, and LeafNodeStyle settings never
conflict, because the definitions for root, parent, and leaf nodes are mutually exclusive.
You can’t have a node that is simultaneously a parent and a root node, for example—the
TreeView simply designates this as a root node.

Applying Styles to Node Levels

Being able to apply styles to different types of nodes is interesting, but often a more useful
feature is being able to apply styles based on the node level. That’s because many trees use
a rigid hierarchy. (For example, the first level of nodes represents categories, the second
level represents products, the third represents orders, and so on.) In this case, it’s not so
important to determine whether a node has children. Instead, it’s important to determine
the node’s depth.

The only problem is that a TreeView can have a theoretically unlimited number of
node levels. Thus, it doesn’t make sense to expose properties such as FirstLevelStyle,

Property Description

NodeStyle Applies to all nodes.

RootNodeStyle Applies only to the first-level (root) nodes.

ParentNodeStyle Applies to any node that contains other nodes, except root nodes.

LeafNodeStyle Applies to any node that doesn’t contain child nodes and isn’t a root node.

SelectedNodeStyle Applies to the currently selected node.

HoverNodeStyle Applies to the node the user is hovering over with the mouse. These
settings are applied only in up-level clients that support the necessary
dynamic script.

MacDonald11.fm Page 417 Thursday, December 15, 2005 8:41 AM

418 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

SecondLevelStyle, and so on. Instead, the TreeView has a LevelStyles collection that can
have as many entries as you want. The level is inferred from the position of the style in the
collection, so the first entry is considered the root level, the second entry is the second
node level, and so on. For this system to work, you must follow the same order, and you
must include an empty style placeholder if you want to skip a level without changing the
formatting.

For example, here’s a TreeView that differentiates levels by applying different amounts
of spacing and different fonts:

�����1���5��'	�"�������*���	!�*���� ���.�������/ ���������"��

	���':
�� 8���������������	�� �(����K�	$�����"���($���������$�����"������

		�-�*����.����

				�����1����� ���.��	8��� �� ��%� �2�����	����H�� 	������3����4���

					����8������$��)L������

				�����1����� ���.��	8��� �� ��%� �2��M�	����H�� 	������3��������	��

				�����1����� ���.��	8��� �� ��%� �2��M�	����/ ��-��	������3��������	��

		��-�*����.����

������1���5��'�

If you apply this to the category and product list shown in earlier examples, you’ll see a
page like the one shown in Figure 11-12.

Figure 11-12. A TreeView with styles

MacDonald11.fm Page 418 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 419

Using TreeView Themes

Using the right combination of style settings can dramatically transform your TreeView.
However, for those less artistically inclined (or those who don’t have the right set of
images handy), it’s comforting to know that Microsoft has made many classic designs
available in a skin file. This skin file includes formatting settings and links to graphics that
allow you to implement many common TreeView designs. Using these themes, you can
easily adapt the TreeView to display anything from logged errors to an MSN Messenger
contact list.

As with any skin file, you can apply these settings to a TreeView simply by attaching the
skin file to the page and setting the TreeView.SkinID property to the skin you want to use.
(See Chapter 11 for the full details.) Visual Studio makes this even easier—just click the
Auto Format link in the smart tag, and you’ll be able to choose from one of several built-
in skins. Figure 11-13 shows some of your options.

Figure 11-13. Different looks for a TreeView

MacDonald11.fm Page 419 Thursday, December 15, 2005 8:41 AM

420 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

The Menu Control
The new ASP.NET 2.0 Menu control is another rich control that supports hierarchical
data. Like the TreeView, you can bind the Menu control to a data source, or you can fill it
by hand using MenuItem objects.

To try the Menu control, remove the TreeView from your master page, and add the fol-
lowing Menu control tag:

�������"	($����"��	�"�������*���	$�����"���($���������$�����"�����	��

Notice that this doesn’t configure any properties—it uses the default appearance. The
only step you need to perform is setting the DataSourceID property to link the menu to
the site map information.

When the Menu first appears, you’ll see only the starting node, with an arrow next to it.
However, when you move your mouse over the starting node, the next level of nodes will
pop into display. You can continue this process to drill down as many levels as you want,
until you find the page you want to click (see Figure 11-14).

Figure 11-14. Navigating through the menu

MacDonald11.fm Page 420 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 421

Overall, the Menu and TreeView controls expose strikingly similar programming
models, even though they render themselves quite differently. They also have a similar
style-based formatting model. But a few noteworthy differences exist:

• The Menu displays a single submenu. The TreeView can expand an arbitrary
number of node branches at a time.

• The Menu displays a root level of links in the page. All other items are displayed
using fly-out menus that appear over any other content on the page. The TreeView
shows all its items inline in the page.

• TreeView supports on-demand filling and client callbacks. The Menu does not.

• The Menu supports templates. The TreeView does not.

• The TreeView supports check boxes for any node. The Menu does not.

• The Menu supports horizontal and vertical layouts, depending on the Orientation
property. The TreeView supports only vertical layout.

Menu Styles

The Menu control provides an overwhelming number of styles. Like the TreeView, the Menu
derives a custom class from the Style base class—in fact, it derives two (MenuStyle and
MenuItemStyle). These styles add spacing properties (ItemSpacing, HorizontalPadding, and
VerticalPadding). However, you can’t set menu item images through the style, because it
doesn’t have an ImageUrl property.

Much like the TreeView, the Menu supports defining different menu styles for different
menu levels. However, the key distinction that the Menu control encourages you to adopt
is between static items (the root-level items that are displayed in the page when it’s first
generated) and dynamic items (the items in fly-out menus that are added when the user
moves the mouse over a portion of the menu). Most websites have a definite difference in
the styling of these two elements. To support this, the Menu class defines two parallel sets
of styles, one that applies to static items and one that applies to dynamic items, as shown
in Table 11-8.

MacDonald11.fm Page 421 Thursday, December 15, 2005 8:41 AM

422 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

Table 11-8. Menu Styles

Along with these styles, you can set level-specific styles so that each level of menu
and submenu is different. You do this using three collections: LevelMenuItemStyles,
LevelSubMenuStyles, and LevelSelectedStyles. These collections apply to ordinary
menus, menus that contain other items, and selected menu items, respectively.

It might seem like you have to do a fair bit of unnecessary work when separating
dynamic and static styles. The reason for this model becomes obvious when you consider
another remarkable feature of the Menu control—it allows you to choose the number of
static levels. By default, only one static level exists, and everything else is displayed as a
fly-out menu when the user hovers over the corresponding parent. But you can set the
Menu.StaticDisplayLevels property to change all that. If you set it to 2, for example, the
first two levels of the menu will be rendered in the page, using the static styles. (You can
control the indentation of each level using the StaticSubMenuIndent property.)

Figure 11-15 shows the previous example with this change (and some styles applied
through the Auto Format link). Note that the items still change as you hover over them,
and selection works in the same way. If you want, you can make your entire menu static.

Static Style Dynamic Style Description
StaticMenuStyle DynamicMenuStyle Sets the appearance of the

overall “box” in which all the
menu items appear. In the case
of StaticMenuStyle, this box
appears on the page, and with
DynamicMenuStyle it appears
as a pop-up.

StaticMenuItemStyle DynamicMenuItemStyle Sets the appearance of individual
menu items.

StaticDynamicSelectedStyle DynamicSelectedStyle Sets the appearance of the selected
item. Note that the selected item isn’t
the item that’s currently being
hovered over; it’s the item that was
previously clicked (and that triggered
the last postback).

StaticHoverStyle DynamicHoverStyle Sets the appearance of the item that
the user is hovering over with the
mouse.

MacDonald11.fm Page 422 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 423

Figure 11-15. A menu with two static levels

■Tip The Menu control exposes many more top-level properties for tweaking specific rendering aspects.
For example, you can set the delay before a pop-up menu disappears (DisappearAfter), the default images
used for expansion icons and separators, the scrolling behavior (which kicks into gear when the browser win-
dow is too small to fit a pop-up menu), and much more. Consult MSDN for a full list of properties.

Menu Templates

The Menu control also supports templates through the StaticMenuItemTemplate and
DynamicMenuItemTemplate properties. These templates determine the HTML that’s
rendered for each menu item, giving you complete control.

Interestingly, whether you fill the Menu class declaratively or programmatically, you
can still use a template. From the template’s point of view, you’re always binding to a
MenuItem object. This means your template always needs to extract the value for the item
from the MenuItem.Text property, as shown here:

�������"	($����"��	�"�������*����

		�������(���1��������

				�69	:*��@�1�
��A	6�

		��������(���1��������

��������"�

MacDonald11.fm Page 423 Thursday, December 15, 2005 8:41 AM

424 C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N

One reason you might want to use the template features of the Menu is to show multiple
pieces of information from a data object. For example, you might want to show both the title
and the description from the SiteMapNode for this item (rather than just the title). Unfortu-
nately, that’s not possible. The problem is that the Menu binds directly to the MenuItem
object. The MenuItem object does expose a DataItem property, but by the time it’s added to
the menu, that DataItem no longer has the reference to the SiteMapNode that was used to
populate it. So, you’re mostly out of luck.

If you’re really desperate, you can write a custom method in your class that looks up
the SiteMapNode based on its URL. This is extra work that should be unnecessary, but it
does make the description information available to the menu item template. Here’s an
example:

���*���	����2	������2$���������	�	��=

�������� 	����2	L��$�������������1����@����2	�����A

D

				��	1���	���"���	�����G�	��.	��	� �	'���	����	������

				��������� �	� �	�	��������0����� �=

				�������� ��@� �C	�����A=

				���"�	������2$���������=

E

���*���	*�� 	�������� ��@��������� �	� �C	����2	�����A

D

				��	@� ��1����	��	�����A

				D

								������2$���������	�	� ��$���������=

								���"�=

				E

				����

				D

								�������	@��������� �	���� 	�	� ��8��� �� ��A

								D

												��	%������	���"���*�	�������

												�������� ��@���� C	�����A=

								E

				E

E

MacDonald11.fm Page 424 Thursday, December 15, 2005 8:41 AM

C H A P T E R 1 1 ■ W E B S I T E N A V I G A T I O N 425

Now you can use the GetDescriptionFromTitle() method in a template:

�������"	($����"��	�"�������*���	$�����"���($���������$�����"������

		�������(���1��������

				�69	:*��@�1�
��A	6��+�	��

				�������

				�69	L��$�������������1����@@@��"(���A8�������$���(���A�1�
�A	6�

				��������

		��������(���1��������

		�$.����(���1��������

				�69	:*��@�1�
��A	6��+�	��

				�������

				�69	L��$�������������1����@@@��"(���A8�������$���(���A�1�
�A	6�

				��������

		��$.����(���1��������

��������"�

Figure 11-16 shows the new, more descriptive menu.

Figure 11-16. Showing node descriptions in a menu

The Last Word
In this chapter, you explored the new navigation model and learned how to define site
maps and bind the navigation data. You then considered three controls that are specifi-
cally designed for navigation data: the SiteMapPath, TreeView, and Menu. Using these
controls, you can add remarkably rich site maps to your websites with very little coding.
But before you begin, make sure you’ve finalized the structure of your website. Only then
will you be able to create the perfect site map and choose the best ways to present the site
map information in the navigation controls.

MacDonald11.fm Page 425 Thursday, December 15, 2005 8:41 AM

MacDonald11.fm Page 426 Thursday, December 15, 2005 8:41 AM

427

■ ■ ■

C H A P T E R 1 2

Deploying ASP.NET
Applications

The .NET Framework makes it almost painless to deploy any type of application, includ-
ing ASP.NET websites. Often, you won’t need to do much more than copy your web
application directory to the web server and then configure it as a virtual directory. The
headaches of the past—registering components and troubleshooting version conflicts—
are gone. This simplicity makes it practical to deploy websites by manually copying files,
rather than relying on a dedicated setup tool.

In this chapter, you’ll begin by learning about IIS (Internet Information Services), the
Windows operating system component that acts as a web server. You’ll explore how to
create virtual directories for your web applications, making them available to other clients
on the network or on the Internet. Finally, you’ll consider the tools in Visual Studio 2005
that simplify website deployment.

ASP.NET Applications and the Web Server
ASP.NET applications always work in conjunction with a web server—a specialized piece
of software that accepts requests over HTTP (Hypertext Transport Protocol) and serves
content. Web servers run special software to support mail exchange, FTP and HTTP
access, and everything else clients need in order to access web content. Before you can go
any further, you need to understand a little more about how web servers work.

How Web Servers Work

The easiest job a web server has is to provide ordinary HTML pages. When you request
such a file, the web server simply reads it off the hard drive (or retrieves it from an in-
memory cache) and sends the complete document to the browser, which displays it. In
this case, the web server is just a glorified file server that waits for network requests and
dishes out the corresponding documents.

MacDonald.book Page 427 Wednesday, December 7, 2005 8:39 PM

428 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

When you use a web server in conjunction with dynamic content such as an ASP.NET
page, something more interesting takes place. On its own, the web server has no idea how
to process ASP.NET tags or run C# code. However, it’s able to enlist the help of the
ASP.NET engine to perform all the heavy lifting. Figure 12-1 diagrams how this process
works for ASP and ASP.NET pages. For example, when you request the page Default.aspx,
the web server sends the request over the ASP.NET engine (which starts automatically if
needed). The ASP.NET engine loads the requested page, runs the code it contains, and
then creates the final HTML document, which it passes back to IIS. IIS then sends the
HTML document to the client.

Figure 12-1. How IIS handles an ASP file request

At this point, you might be wondering how the web server knows when it needs to get
the ASP or ASP.NET engine involved. Essentially, the web server looks at the file extension
of the requested page (such as .asp or .aspx) to determine the type of content. The web
server compares this extension against a list to determine what program owns this file
type. For example, the web server’s list indicates that the .aspx extension is owned by the
aspnet_isapi.dll component in the c:\[WinDir]\Microsoft.NET\Framework\[Version]
directory. The aspnet_isapi.dll component is known as an ISAPI extension, because it uses
the ISAPI (Internet Server API) model to plug into the web server.

■Note In theory, you can tweak the file type registrations differently for each application. This way, you can
have an application in one directory use the ASP.NET 1.1 engine while another application uses ASP.NET 2.0.
You’ll see how to do this in the “Registering the ASP.NET File Mappings” section.

All web servers perform the same task as that shown in Figure 12-1. However, when you
run an ASP.NET application in Visual Studio, you don’t need to worry about deployment
and file type registration. That’s because Visual Studio 2005 includes a component that
acts like a built-in web server. It receives the requests for the pages in your web applica-
tion and then runs the corresponding code.

MacDonald.book Page 428 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 429

But to run your web application outside the development environment, you need
something more—you need a web server. The web server software runs continuously on
your computer (or, more likely, a dedicated web server computer). This means it’s ready
to handle HTTP requests at any time and provide your pages to clients who connect from
the same network or over the Internet. On Microsoft Windows operating systems, the web
server you’ll use is IIS.

■Note IIS is available only if your computer is running Windows 2000, Windows 2000 Server, Windows XP
Professional, or Windows Server 2003. Each version of Windows has a slightly different version or configura-
tion of IIS. As a general rule, when you want to publish your website, you should use a server version of
Windows to host it. Desktop versions, like Windows 2000 and Windows XP Professional, are fine for develop-
ment testing, but they implement a connection limit of ten simultaneous users, which makes them less
suitable for real-world use.

In most cases, you won’t be developing on the same computer you use to host your
website. If you do, you will hamper the performance of your web server by tying it up with
development work. You will also frustrate clients if a buggy test application crashes the
computer and leaves the website unavailable or if you accidentally overwrite the deployed
web application with a work in progress! Generally, you’ll perfect your web application on
another computer and then copy all the files to the web server.

Web Application URLs

You can use ASP.NET applications in a variety of different environments, including LANs
(local area networks) and over the Internet. To understand the difference, it helps to
review a little about how web servers work with networks and the Internet.

A network is defined simply as a group of devices connected by communication links.
A traditional LAN connects devices over a limited area, such as within a company site or
an individual’s house. Multiple LANs are connected into a WAN (wide area network)
using a variety of technologies. In fact, the Internet is nothing more than a high-speed
backbone that joins millions of LANs.

The cornerstone of the Internet is IP (Internet Protocol). On an IP network, each com-
puter is given a unique 32-bit number called an IP address. An IP address is typically
written as four numbers from 0 to 255 separated by periods (as in 192.145.0.1). To access
another computer over a network, you need to use its IP address.

Of course, IP addresses aren’t easy to remember and don’t make for great marketing
campaigns. To make life easier, web servers on the Internet usually register unique
domain names such as www.amazon.com. This domain name is mapped to the IP
address by a special catalog, which is maintained by a network of servers on the Internet.

MacDonald.book Page 429 Wednesday, December 7, 2005 8:39 PM

430 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

This network, called the DNS (Domain Name Service), is a core part of the infrastructure
of the Internet. When you type������������	
�������	 in a web browser, the browser
contacts a DNS server, looks up the IP address that’s mapped to ����	
�������	,
and contacts it.

So, what effect does all this have on the accessibility of your website? To be easily reached
over the Internet, the web server you use needs to be in the DNS registry. To get in the DNS
registry, you must have a fixed IP address. Commercial Internet service providers won’t give
you a fixed IP address unless you’re willing to pay a sizable fee. In fact, most will place you
behind a firewall or some type of NAT (network address translation), which will hide your
computer’s IP address. The same is true in most company networks, which are shielded
from the outside world.

However, ASP.NET applications don’t need to be accessible over the Internet. Many are
useful within an internal network. In this case, you don’t need to worry about the DNS
registry. Other computers can access your website using either the IP address of your
machine or, more likely, the network computer name.

For example, imagine you deploy an application to a virtual directory named
MyWebApp. On the web server, you can access it like this:

�����������������������

■Tip Remember, ������� is a special part of the URL called a loopback alias. It always points to the
current computer, whatever its name it. Technically, the loopback alias is mapped to something called the
loopback address, which is the number 127.0.0.1. You can use the alias or the numeric address inter-
changeably.

Assuming the computer is named MyWebServer, here’s how you can access the virtual
web directory on another computer on the same LAN:

���������������������������

■Tip If you don’t know the name of your computer, right-click the My Computer icon either on your desktop or in
Windows Explorer, and select Properties. Then, choose the Computer Name tab. Look for Full Computer Name.

MacDonald.book Page 430 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 431

Now, assume that MyWebServer is registered in the DNS as �����������������	 and
is exposed to the Internet. You could then use the following URL:

������������������������	���������

Finally, you can always use the computer’s IP address, provided the computer is on the
same network or visible on the Internet. Assuming the IP address is 123.5.123.4, here’s the
URL you would use:

���������������������������

Internal networks often use dynamic IP addresses, and DNS registration changes. For
these reasons, using the computer name or domain name is usually the best approach for
accessing a website.

If you study the URLs that the built-in web server in Visual Studio uses, you’ll notice
they’re a little different than what you usually see when surfing the Internet. Namely, they
include a port number. That means instead of requesting a page like this:

���������������������������� ������!

you might request a page like this:

����������������"�"�������������� ������!

That’s because the Visual Studio web server watches requests on a dynamically chosen
port number. (In this example, the port number is 2040, but you’ll see that it changes each
time you run Visual Studio.) By using a dynamic port number, Visual Studio makes sure
its built-in web server doesn’t infringe on any other web server software you have on the
computer.

Real web servers are almost always configured to monitor port 80 (and port 443 for
encrypted traffic). If you don’t type in a port number for a URL, the browser assumes
you’re using port 80.

Web Farms

Some applications run on web farms, a group of server computers that share the respon-
sibility of handling requests. Usually web farms are reserved for high-powered web
applications that need to be able to handle heavy loads, because multiple computers can
deal with more simultaneous surfers than a single web server. However, web farms are
overkill for many small- and mid-sized websites.

MacDonald.book Page 431 Wednesday, December 7, 2005 8:39 PM

432 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

The way a web farm works is deceptively simple. Essentially, instead of placing web
application files on a single web server, you place a copy on several separate web servers.
When a request is received for your website, it’s directed to one of these web servers
(based on which one has the lightest load). That web server then deals with the request.
Obviously, if you decide to update your application, you need to make sure you update
each web server in the web farm with the same version to prevent discrepancies.

Some web hosting companies use web farms to host multiple websites. For example,
your website might be running on more than one web server, but each of these web serv-
ers might also host multiple websites. This provides a flexible deployment model that lets
different web applications share resources.

Web farms pose a few new challenges. For example, if you decide to use session state,
it’s important you use StateServer or SqlServer mode, as described in Chapter 9. Other-
wise, a user’s session information might get trapped on one server. If a subsequent
request is directed to another server, the information will be lost, and a new session will
be created.

Another wrinkle occurs with view state (discussed in Chapter 9) and forms authentica-
tion (Chapter 18). The problem in both cases is the same—ASP.NET encodes some
information to prevent tampering and verifies the information later. For example, with
view state ASP.NET adds a hash code, which double-checks the next time the page is
posted back to make sure the user hasn’t changed the hidden view state field (in which
case the request is rejected). The problem that can happen with web farms is that the hash
code one web server creates might not match the hash code expected by another web
server that uses a different secret key. As a result, if a page is posted back to a web farm and
a different web server gets involved, an error can occur.

To resolve this problem, you can disable view state hash codes (as described in Chapter 9).
This isn’t recommended. A better solution is to configure each web server in the web farm to
use the same key. In a web hosting provider, this step will have already been performed. How-
ever, if you have your own web farm, it won’t be—instead, the default is for every server to
create its own random key. Obviously, these keys won’t match.

To configure web servers to use the same key, head to the c:\Windows\Microsoft.NET\
Framework\[Version]\Config directory, and crack open the machine.config file in a text
editor. In the <system.web> section, add a <machineKey> element, like this:

#	���
$�%������
&��
$%��'(�)�*"*+,-.)��),*.�,�,��*"��+���+��-,,���/,����"����(

�&������
$%��'("����-+.�/�0,�)/�//0.+�-+-���.)"+���(����
&��
$'(�1��(��2

This key explicitly sets a validation key and a decryption key. As long as you set all the
servers in the web farm to use the same key, they can share view state (and use other fea-
tures, such as forms authentication). Of course, you can’t create the key string on your
own and have it sufficiently random. Instead, you should use a tool (such as the key gen-
erator at ��������������$����� ������	�����3������������!).

MacDonald.book Page 432 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 433

IIS (Internet Information Services)
As you’ve probably guessed by now, deploying a web application is just the process of
copying your web application files to a web server. By taking this step, you accomplish
three things:

• You ensure your web applications are available even when Visual Studio isn’t
running.

• You allow users on other computers to run your web applications. (The Visual
Studio web server handles only local requests.)

• Your web application URLs will no longer need a port number.

Depending on your organization, you may be in charge of deploying web applications,
or a dedicated web administrator may handle the process. Either way, it’s worth learning
the deployment process, which is quite straightforward. But before you can deploy a web
application, you need to make sure the target computer has the required IIS web server
software.

If you’re running Windows 2000, Windows Server 2000, or Windows XP Professional,
you need IIS 5. If you’re running Windows Server 2003, you need IIS 6. The following sec-
tions explain how to get set up.

■Tip As a quick test to find out whether IIS is installed, try firing up a browser and requesting �������
��������������������� on the current computer. If IIS is installed, this request should retrieve a help
page from the default website.

Installing IIS 5

Installing IIS is easy Here are the steps you follow on a Windows 2000, Windows Server
2000, or Windows XP Professional computer:

1. Click Start, and select Settings ➤ Control Panel.

2. Choose Add or Remove Programs.

3. Click Add/Remove Windows Components.

MacDonald.book Page 433 Wednesday, December 7, 2005 8:39 PM

434 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

4. If Internet Information Services (ISS) is checked (see Figure 12-2), you already have
this component installed. Otherwise, click it, and then click Next to install the
required IIS files. You’ll probably need to have your Windows setup CD handy.

Figure 12-2. Installing IIS

5. Now it’s time to install ASP.NET (if you haven’t already). You have several ways to
install ASP.NET, but one of the easiest is to choose it from the list of optional down-
loads available through the Windows Update feature. Just select Windows Update
from the Start menu.

■Note You can also install ASP.NET through the free SDK (available for download at �������
��������$��), or you can install Visual Studio 2005, which includes it. However, best security practices
encourage you not to include any development tools on the web server but to install only the .NET runtime
(which includes the ASP.NET engine).

MacDonald.book Page 434 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 435

Installing IIS 6

If you’re using Windows Server 2003, you can install IIS through the Add/Remove
Windows Components dialog box, but it’s more likely you’ll use the Manage Your Server
Wizard. Here’s how it works:

1. Select Add or Remove a Role from the main Manage Your Server window. This
launches the Configure Your Server Wizard.

2. Click Next to continue past the introductory window. The setup wizard will test your
available and enabled network connections and then continue to the next step.

3. Now you choose the roles to enable. Select Application Server (IIS, ASP.NET) from
the list, as shown in Figure 12-3, and click Next.

Figure 12-3. Choosing an application server role

4. Check the Enable ASP.NET box on the next window (shown in Figure 12-4). If you
don’t, IIS will be enabled, but it will be able to serve only static content such as
ordinary HTML pages. Click Next to continue.

MacDonald.book Page 435 Wednesday, December 7, 2005 8:39 PM

436 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

Figure 12-4. Enabling other services

5. The next window summarizes the options you’ve chosen. Click Next to continue by
installing IIS 6.0 and ASP.NET. Once the process is complete, you’ll see a final con-
firmation message.

At this point, you may have extra installation steps to go through—it all depends which
release of Windows Server 2003 you’re using. The original release includes ASP.NET 1.1,
so you’ll need to use the Windows Update feature to add the ASP.NET 2.0 engine. On the
other hand, if you’re using the more recent minor update known as Windows Server 2003
R2, you’ll already have the right version.

■Note The rest of this chapter uses IIS 5 as an example. If you’re working with IIS 6, you’ll still be able to
use most of the instructions in this chapter, but you may want to supplement your knowledge with the online
help for IIS 6 or a dedicated book about IIS 6 administration.

Registering the ASP.NET File Mappings

Ideally, you’ll install IIS before you install ASP.NET. That’s because when you perform the
ASP.NET setup, it configures IIS to recognize all the right file types (such as .aspx). If you
install ASP.NET before IIS, you’ll run into a problem because IIS won’t recognize your

MacDonald.book Page 436 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 437

ASP.NET files and won’t hand them off to the ASP.NET worker process to execute your code.
Instead, it sends the raw text of the page (the .aspx tags) directly to the requesting browser.
The next section demonstrates this problem.

Fortunately, it’s easy to correct this problem by repairing your IIS file mappings. You
need to use the aspnet_regiis.exe command-line utility. Here’s the syntax you’ll need:

��45�
$�
�64�
������7)84,��	���3459���
$64���$��:��;

���!��<

At this point, ASP.NET will check all your virtual directories and register the ASP.NET
file types.

■Note If you have more than one version of ASP.NET installed on the computer, make sure you run the cor-
rect version of aspnet_regiis (the one in the latest version’s directory). If you use the version of aspnet_regiis
included with an older version of ASP.NET, like 1.1, you’ll reset all your web applications to use ASP.NET 1.1.

In some cases, this approach is more drastic than what you really want, because it
affects every web application on the web server. In some cases, you might have more than
one version of ASP.NET on the same web server, and you might want some applications
to execute with the older ASP.NET 1.1 and others to use ASP.NET 2.0. (This might occur if
you’re in the process of updating several web applications and the migration isn’t yet
tested.) In this case, you need to use aspnet_regiis carefully so that it applies its magic to
individual applications only.

To change file mappings for a single web application, you use the -s parameter, fol-
lowed by the full path to your web application. This path always starts with W3SVC/1/
ROOT/ followed by the application folder name, as shown here:

���$��:��;

��<�����9*���=>>8���	�������

Remember, if you want to register an application to use a different version of ASP.NET,
you need to use the version of aspnet_regiis that’s included with that version, along with
the -s parameter.

Every version of aspnet_regiis is able to give you a list of all the versions of ASP.NET that
are installed on the computer (and where they are). Just use the -lv option, as shown here:

���$��:��;

��<��

You can get more information about aspnet_regiis.exe from the MSDN Help, and you
can see all the parameters by using the -? parameter. Later in this chapter (in the “Manag-
ing Websites with IIS Manager” section), you’ll learn how you can configure virtual
directories using the graphical IIS Manager tool. One of the features it provides is a way
to set the ASP.NET version for each web application, without requiring you to run
aspnet_regiis.

MacDonald.book Page 437 Wednesday, December 7, 2005 8:39 PM

438 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

Verifying That ASP.NET Is Correctly Installed

After installing ASP.NET, it’s a good idea to test that it’s working. All you need to do is
create a simple ASP.NET page, request it in a browser, and make sure it’s processed
successfully.

To perform this test, create a text file in the c:\Inetpub\wwwroot directory. Name this
file test.aspx. The file name isn’t that important, but the extension is. It’s the .aspx exten-
sion that tells IIS this file needs to be processed by the ASP.NET engine.

Inside the test.aspx file, paste the following code:

#��	�2

����#�&�2

��������#��28���&����
��#?�=���$�����
��@����8
	��7��8A$;�������
$;@BB�?2

��������#���2

����#��&�2

#���	�2

When you request this file in a browser, ASP.NET will load the file, execute the embed-
ded code statement (which retrieves the current date and inserts it into the page), and
then return the final HTML page. This example isn’t a full-fledged ASP.NET web page,
because it doesn’t use the web control model. However, it’s still enough to test that
ASP.NET is working properly. When you enter �����������������������! in the
browser, you should see a page that looks like the one shown in Figure 12-5.

Figure 12-5. ASP.NET is correctly installed.

If you see only the plain text, as in Figure 12-6, ASP.NET isn’t installed correctly. This
problem commonly occurs if ASP.NET is installed but the ASP.NET file types aren’t regis-
tered in IIS. In this case, ASP.NET won’t actually process the request. Instead, the raw
page will be sent directly to the user, and the browser will display only the content that
isn’t inside a tag or script block.

MacDonald.book Page 438 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 439

Figure 12-6. ASP.NET isn’t installed or configured correctly.

To solve this problem, use the aspnet_regiis.exe tool described in the previous section
to register the ASP.NET file mappings.

Managing Websites with IIS Manager
When IIS is installed, it automatically creates a directory named c:\Inetpub\wwwroot,
which represents your website. Any files in this directory will appear as though they’re in
the root of your web server.

To add more pages to your web server, you can copy HTML, ASP, or ASP.NET
files directly to the c:\Inetpub\wwwroot directory. For example, if you add the file
TestFile.html to this directory, you can request it in a browser through the URL
���������������8���,
�����	�. You can even create subdirectories to group related
resources. For example, you can access the file c:\Inetpub\wwwroot\MySite\MyFile.html
through a browser using the URL�������������������
�����,
�����	�. If you’re using
Visual Studio 2005 to create new web projects, you’ll find that it automatically generates
new subdirectories in the wwwroot directory. So, if you create a web application named
WebApplication1, the files will be stored in c:\Inetpub\wwwroot\WebApplication1 and
made available through ����������������������
���
$�.

Using the wwwroot directory is straightforward, but it makes for poor organization.
To properly use ASP or ASP.NET, you need to make your own virtual directory for each
web application you create. With a virtual directory, you can expose any physical direc-
tory (on any drive on your computer) on your web server as though it were located in the
c:\Inetpub\wwwroot directory.

Creating a Virtual Directory

When you’re ready to create a new website, the first step you’ll usually take is to create the
physical directory where the pages will be stored (for example, c:\MySite). The second
step is to expose this physical directory as a virtual directory through IIS. This means the

MacDonald.book Page 439 Wednesday, December 7, 2005 8:39 PM

440 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

website becomes publicly visible to other computers that are connected to your com-
puter. Ordinarily, a remote computer won’t be allowed to access your c:\MySite directory.
However, if you map c:\MySite to a virtual directory, the remote user will be able to
request the files in the directory through IIS.

Before going any further, choose the directory you want to expose as a virtual directory.
You can use any directory you want, on any drive, and you can place it as many levels deep
as makes sense. You can use a directory that already has your website files, or you can
copy these files after you create the virtual directory. Either way, the first step is to register
this directory with IIS.

The easiest and most flexible way to create a virtual directory is to use the IIS Manager
utility. Here’s how it works:

1. To start IIS Manager, select Settings ➤ Control Panel ➤ Administrative Tools ➤
Internet Services Manager from the Start menu.

2. To create a new virtual directory for an existing physical directory, right-click the
Default Website item in the IIS tree, and choose New ➤ Virtual Directory from the
context menu. A wizard will start to manage the process. As you step through the
wizard, you’ll need to provide three pieces of information: an alias, a directory, and
a set of permissions.

3. Choose an alias (see Figure 12-7). The alias is the name a remote client will use
to access the files in this virtual directory. For example, if your alias is MyApp
and your computer is MyServer, you can request pages using URLs such as
������������������������C�;�����!.

Figure 12-7. Choosing an alias

MacDonald.book Page 440 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 441

4. Click Next.

5. Choose a directory (see Figure 12-8). The directory is the physical directory on your
hard drive that will be exposed as a virtual directory. For example, c:\Inetpub\
wwwroot is the physical directory that is used for the root virtual directory of your
web server. IIS will provide access to all the allowed file types in this directory.

Figure 12-8. Choosing a physical directory

6. Click Next.

7. Choose your permissions (see Figure 12-9). To host an ASP.NET application, you
need only to enable the read and execute permissions (the first two check boxes). If
you’re using a development computer that will never act as a live web server, you
can allow additional permissions. (Keep in mind, however, that this could allow
other users on a local network to access and modify files in the virtual directory.)

MacDonald.book Page 441 Wednesday, December 7, 2005 8:39 PM

442 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

Figure 12-9. Setting permissions

■Note If you’re unsure, leave the default permission settings as they are. You can also change the virtual
directory permissions after you have created the virtual directory, as described in the following sections.

8. Click Next and then Finish to create the virtual directory.

When you finish these steps, you’ll see your new virtual directory appear in the list in
IIS Manager. You can remove an existing virtual directory by selecting it and pressing the
Delete key, or you can change its settings by right-clicking it and choosing Properties.

Once you’ve created your virtual directory, fire up a browser to make sure it works.
For example, if you’ve created the virtual directory with the alias MyApplication and it
contains the page MyPage.aspx, you should be able to request ���������������
������
���
$���C�;�����!.

Virtual Directories and Web Applications

You can manage all the virtual directories on your computer in the Internet Information
Services utility by expanding the tree under the Default Website item. You’ll notice that
items in the tree use different types of icons, as shown in Figure 12-10.

MacDonald.book Page 442 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 443

Figure 12-10. Web folders

Different icons have different meanings:

• An ordinary folder: This represents a subdirectory inside another virtual directory.
For example, if you create a virtual directory and then add a subdirectory to the
physical directory, it will be displayed here.

• A folder with a globe: This represents a virtual directory.

• A package folder: This represents a virtual directory that is also a web application. By
default, when you use the wizard to create a virtual directory, it’s also configured as
a web application. This means it will share a common set of resources and run in its
own application domain. Chapter 5 explained web applications.

• An error icon: This indicates a virtual directory for a physical directory that no
longer exists. You can delete these virtual directories and re-create them with the
correct information.

When you create a virtual directory with the Virtual Directory Creation Wizard, it’s also
configured as a web application. This is almost always what you want.

If your virtual directory isn’t a web application, you won’t be able to control its ASP.NET
configuration settings. This leads to a common problem—when you try to run the applica-
tion, you receive an error page informing you that the settings in the web.config file aren’t

MacDonald.book Page 443 Wednesday, December 7, 2005 8:39 PM

444 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

valid. The problem is that certain settings are restricted to web applications only. If your
web application is configured as a virtual directory but not as a web application, these set-
tings aren’t valid.

You can easily solve this problem. Just right-click on the virtual directory, choose
Properties, and select the Virtual Directory tab. Finally, click the Create button next to the
Application Name box.

Configuring an Existing Virtual Directory

IIS makes it easy to configure virtual directories after you’ve created them. Simply right-
click the virtual directory in the list, and choose Properties. The Properties window will
appear, with its information divided into several tabs.

The following sections briefly explain the most important settings you’ll want to con-
figure. Many other settings are designed specifically for classic ASP and have no effect on
ASP.NET, and others are rarely changed (and can have performance implications if they
are). For more information, consult a dedicated IIS book.

■Note Any changes you make in the Properties window are automatically applied to all subdirectories. If
your change conflicts with the custom settings you have set for a virtual directory, IIS will warn you. It will
present a list of the directories that will be affected and give you the chance to specify exactly which ones you
want to change and which ones you want to leave as is. If you want to make a change that will affect all the
virtual directories on your server, right-click the Default Website item, and choose Properties.

Virtual Directory

The Virtual Directory tab contains basic information about your virtual directory (see
Figure 12-11).

VIRTUAL DIRECTORIES ALLOW ACCESS TO SUBDIRECTORIES

Imagine you create a virtual directory called MyApp on a computer called MyServer. The virtual directory cor-
responds to the physical directory c:\MyApp. If you add the subdirectory c:\MyApp\MoreFiles, this directory will
automatically be included in the IIS tree as an ordinary folder. Clients will be able to access files in this folder
by specifying the folder name, as in �������������������������,
�����	�,
�����	�.

By default, the subdirectory will inherit all the permissions of the virtual directory. However, you can
change these settings using the Internet Information Services utility. This is a common technique used to
break a single application into different parts (for example, if some pages require heightened security
settings).

MacDonald.book Page 444 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 445

Figure 12-11. Web directory properties

At the top of the tab is information about the physical path for this virtual directory. If
you’re looking at the root of a virtual directory, you can set the local path to point to a dif-
ferent physical directory by clicking the Browse button. If you’re looking at an ordinary
subdirectory inside a virtual directory, the local path will be read-only.

Underneath the path are the four permission options you saw in the last step of the
Virtual Directory Creation Wizard:

Read: This is the most basic permission—it’s required in order for IIS to provide any
requested files to the user. If this is disabled, the client will not be able to access ASP
or ASP.NET pages or static files such as HTML and images. Note that even when you
enable read permissions, you have several other layers of possible security in IIS. For
example, some file types (such as those that correspond to ASP.NET configuration
files) are automatically restricted, even if they’re in a directory that has read
permission.

Run scripts: This permission allows the user to request an ASP or ASP.NET page. If you
enable read but don’t allow script permission, the user will be restricted to static file
types such as HTML documents. ASP and ASP.NET pages require a higher permission
because they could conceivably perform operations that would damage the web server
or compromise security.

MacDonald.book Page 445 Wednesday, December 7, 2005 8:39 PM

446 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

Execute: This permission allows the user to run an ordinary executable file or CGI
application. This is a possible security risk as well and shouldn’t be enabled unless you
require it (which you won’t for ordinary ASP or ASP.NET applications).

Write: This permission allows the user to add, modify, or delete files on the web server.
This permission should never be granted, because it could easily allow the computer to
upload and then execute a dangerous script file (or at the least, use all your available
disk space). Instead, use an FTP site, or create an ASP.NET application that allows the
user to upload specific types of information or files.

Browse: This permission allows you to retrieve a full list of files in the virtual directory,
even if the contents of those files are restricted. Browse is generally disabled because it
allows users to discover additional information about your website and its structure as
well as exploit possible security holes. On the other hand, it’s quite useful for testing, so
you might want to enable it on a development computer.

■Note Remember, virtual directory permissions are used only when you’re requesting a page through IIS.
If you can directly access the computer’s hard drive using Windows Explorer or some other tool, these per-
missions won’t come into effect.

Further down is the information about the application name for your virtual directory.
Remember, when you create a virtual directory with the wizard, it’s also configured as a
web application. You can change this by clicking the Remove button next to the applica-
tion name. Similarly, you can click the Create button to transform an ordinary virtual
directory into a full-fledged application. Usually you won’t need to perform these tasks,
but it’s nice to know they are available if you need to make a change.

Documents

This tab allows you to specify the default documents for a virtual directory. For example,
consider the virtual directory ������������������
��. A user can request a specific page
in this directory using a URL such as ������������������
�����C�;������!. But what
happens if the user simply types ������������������
�� into a web browser?

In this case, IIS will examine the list of default documents defined for that virtual direc-
tory. It will scan the list from top to bottom and return the first matching page. Using the
list in Figure 12-12, IIS will check first for a Default.htm file, then for Default.asp,
index.htm, iisstart.asp, and Default.aspx.

MacDonald.book Page 446 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 447

Figure 12-12. The default document list

If IIS doesn’t find any of these pages, it will either return an error message or, if you’ve
enabled the Browse permission (which usually you won’t), provide a file list.

You can configure the default document list by removing entries or adding new ones.
Most ASP.NET applications simply use Default.aspx as their home page.

Custom Errors

The Custom Errors tab allows you to specify an error page that will be displayed for spe-
cific types of HTTP errors (see Figure 12-13). As you learned, you can use various ASP.NET
features to replace HTTP errors or application errors with custom messages. However,
these techniques won’t work if the web request never makes it to the ASP.NET service (for
example, if the user requests an HTML file that doesn’t exist). In this case, you may want
to supplement custom ASP.NET error handling with the appropriate IIS error pages for
other generic error conditions.

MacDonald.book Page 447 Wednesday, December 7, 2005 8:39 PM

448 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

Figure 12-13. IIS custom errors

File Mappings

As explained earlier in this chapter, IIS hands off requests for ASP pages to the ASP service
and requests for ASP.NET pages to the ASP.NET service. However, both ASP and ASP.NET
support a variety of file types. How does IIS know which files belong to ASP.NET and
which ones belong to ASP?

You can find the answer in the application file mappings. To view file mappings, click
the Configuration button on the Virtual Directory tab. You’ll see the dialog box shown in
Figure 12-14.

MacDonald.book Page 448 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 449

Figure 12-14. File mappings

You’ll notice that ASP files are mapped differently than ASP.NET files. For example,
.asp requests are handled by c:\[WinDir]\System32\inetsrv\asp.dll, and .aspx requests
are handled by c:\[WinDir]\Microsoft.NET\Framework\[Version]\aspnet_isapi.dll. Every
version of ASP.NET uses a different version of aspnet_isapi.dll (which is stored in a differ-
ent directory), which allows a single web server to host many different types and versions
of website. If a file type isn’t mapped (such as .html), its contents are sent directly to the
user as plain text, without any processing.

One reason you might want to work with file mapping is to explicitly remove file map-
pings you don’t need or mappings that could be security risks. For example, if you don’t
want to support classic ASP files, you may choose to remove the .asp file mapping. How-
ever, keep in mind that when you remove a mapping, you simply prevent it from being
processed in its usual program. You don’t prevent the user from requesting it. In other
words, if you remove the mapping for ASP files, a user who requests an .asp page will
receive the text that’s stored in that file, which may include sensitive code that users
shouldn’t be allowed to see.

MacDonald.book Page 449 Wednesday, December 7, 2005 8:39 PM

450 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

■Caution You should never remove any of the ASP.NET file type mappings! If you remove the .aspx or
.asmx file types, web pages and web services won’t work. Instead of being processed by the ASP.NET service,
the raw file will be sent directly to the browser. If you remove other files types such as .cs or .config, you’ll
compromise security. ASP.NET will no longer process requests for these types of files, which means malicious
users will be able to request them through IIS and inspect the code and configuration information for your web
application.

In other cases, you might want to add a file mapping. For example, you could specify
that the ASP.NET service will handle any requests for GIF images by adding a mapping
for the GIF file type that points to the aspnet_isapi.dll file. This would allow you to use
ASP.NET security services and logging for GIF file requests. (Note that this sort of change
can slow down performance for GIF requests because these requests will need to trickle
through more layers on the server.) ASP.NET uses this technique to improve security with
configuration and source code files. ASP.NET is registered to handle all requests for .con-
fig, .cs, and .vb files so that it can explicitly deny these requests, regardless of the IIS
security settings.

ASP.NET

The ASP.NET tab provides several useful features (as shown in Figure 12-15):

• It gives you at-a-glance information about the current version of ASP.NET you’re
using for this application.

• It allows you to choose any version of ASP.NET that’s installed on the computer just
by selecting it from a drop-down list. This is an easy way to configure different appli-
cations to use different versions of ASP.NET, without using the aspnet_regiis.exe tool
described earlier.

• It provides an Edit Configuration button that, when clicked, launches another set of
tabs that you can use to tweak the settings in the web.config file. There’s no differ-
ence between changing settings through this window and changing them by hand.
However, harried website administrators might find this approach makes it easier
to monitor and tweak the configuration of different applications without hunting
for files.

MacDonald.book Page 450 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 451

Figure 12-15. The ASP.NET configuration tab

Directory Security

The Directory Security tab allows you to set security settings that restrict your virtual
directory to specific Windows users. You’ll learn about this technique, and other types of
ASP.NET authentication, in Chapter 18.

Adding a Virtual Directory to Your Neighborhood

Working with a web application can sometimes be a little awkward. If you use Windows
Explorer and look at the physical directory for the website, you can see the full list of files,
but you can’t execute any of them directly. On the other hand, if you use your browser and
go through the virtual directory, you can run any page, but you have no way to browse
through a directory listing because virtual directories almost always have directory
browsing permission disabled.

While you’re developing an application, you may want to circumvent this limitation.
That way you can examine exactly what your web application comprises and run several
different pages easily, without needing to constantly type a full file name or dart back and
forth between Internet Explorer and Windows Explorer. All you need to do is enable direc-
tory browsing for your virtual directory. You can easily enable or disable this setting from
inside IIS Manager.

MacDonald.book Page 451 Wednesday, December 7, 2005 8:39 PM

452 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

To make life even easier, you can add a virtual directory to your My Network Places list.
This task varies slightly in different versions of Windows, but the basic process is as follows:

1. First, open Windows Explorer.

2. Then click Network, and double-click Add Network Place from the file list. (In
Windows XP, you can click the same shortcut in the task list.)

3. The Add Network Place Wizard will appear. This wizard allows you to create a
network folder in Windows Explorer that represents your virtual directory. The
only important piece of information you need to specify is the address for your
virtual directory (see Figure 12-16). Don’t use the physical directory path.

Figure 12-16. Specify the virtual directory

4. Now choose the name that will be used for this virtual directory.

MacDonald.book Page 452 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 453

Once you finish the wizard, the directory will appear in your Network Neighborhood,
and you can browse through the remote files (see Figure 12-17). Interestingly, when you
browse this directory, you’re actually receiving all the information you need over HTTP.
You can also execute an ASP or ASP.NET file by double-clicking—which you can’t do
directly from the physical directory.

Figure 12-17. The mapped virtual directory

Deploying a Simple Site
You now know enough to deploy an ordinary ASP.NET website. All you need to do is fol-
low these two simple steps:

1. Create the virtual directory on the web server.

2. Copy the entire site (including subdirectories) to the virtual directory.

MacDonald.book Page 453 Wednesday, December 7, 2005 8:39 PM

454 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

How you transfer these files depends on the Internet hosting service you’re using. Usu-
ally, you’ll need to use an FTP program to upload the files to a designated area. However,
if both your computer and the web server are on the same internal network, you might
just use Windows Explorer or the command prompt to copy files.

If you’re using a commercial web host, the virtual directory will already be created for
you, and you’ll simply need to transfer the files.

Before you transfer your application files, you should make sure debug mode isn’t
enabled in the deployed version. To do so, find the debug attribute in the compilation tag,
if it is present, and set it to false, as shown here:

#�$�
; ���
$2

����#�����	����2

��������#�	�
���
$�&��� ��A�$; �;�'(��(���������	
�����2

��������#D<<�>���������
$;��	
���&��<<2

����#������	����2

#�$�
; ���
$2

When debugging is enabled, the compiled ASP.NET web page code will be larger and
execute more slowly. For that reason, you should use debugging only while testing your
web application.

Web Applications and Components

It’s just as straightforward to deploy web applications that use other components. That’s
because any custom components your website uses are copied into the Bin subdirectory
when you add a reference in Visual Studio. No additional steps are required to register
assemblies or to copy them to a specific system directory.

■Note Private assemblies are quite a boon for web hosting companies that need to host dozens, hundreds,
or thousands of web applications on the same computer. Their web servers can’t install risky components into
a system directory just because one website requires it—especially when the version that one site requires
might conflict with the version needed by another site on the same computer.

Of course, this principle doesn’t hold true if you’re using shared assemblies, which are
stored in a special system location called the GAC (global assembly cache). Usually, you
won’t store components in this location, because it complicates development and offers

MacDonald.book Page 454 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 455

few benefits. The core .NET assemblies are located in the GAC because they’re large and
likely to be used in almost every .NET application. It doesn’t make sense to force you to
deploy the .NET assemblies with every website you create. However, this means it’s up to
the administrator of the web server to install the version of the .NET Framework you
require. This detail just isn’t in your website’s control.

Other Configuration Steps

The simple model of deployment you’ve seen so far is often called zero-touch deployment,
because you don’t need to manually configure web server resources. (It’s also sometimes
called XCopy deployment, because transferring websites is as easy as copying directories.)
However, some applications are more difficult to set up on a web server. Here are some
common factors that will require additional configuration steps:

Databases: If your web application uses a database, you’ll need to transfer the database
to the web server. You can do this by generating an SQL script that will automatically
create the database and load it with data. Alternately, you could back up the database
and then restore it on the web server. In either case, an administrator needs to use a
database management tool.

Alternate machine.config settings: You can control the settings for your web application
in the web.config file that you deploy. However, problems can occur if your web appli-
cation relies on settings in the machine.config file that aren’t present on the web
server.

Windows account permissions: Usually, a web server will run web page code under a
restricted account. This account might not be allowed to perform the tasks you rely on,
such as writing to files or the Windows event log. In this case, an administrator needs
to specifically grant the permissions you need to the account that runs the ASP.NET
engine for your website.

IIS security settings: If your website uses SSL encryption or Windows authentication (as
described in Chapter 18), the virtual directory settings will need to be tweaked. This
also requires the help of an administrator.

To solve these problems in the most effective way, it helps to work with an experienced
Windows administrator. That’s especially true if the web server is using IIS 6 (the version
of IIS provided with Windows 2003). IIS 6 provides a number of configuration options and
allows every web application on a server to run under a different Windows account. This
ensures that your website can be granted the exact permission set it requires, without
affecting any other web application.

MacDonald.book Page 455 Wednesday, December 7, 2005 8:39 PM

456 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

The ASPNET Account

Some of the subtlest issues with ASP.NET deployment involve security. When the web
server launches the aspnet_isapi.dll for the first time, it loads under a specific Windows
user account. The actual account that’s used depends on the version of IIS you’re using:

• If you’re using IIS 5, the account is ASPNET (which is created automatically when
you install the .NET Framework).

• If you’re using IIS 6 (the version that’s included with Windows Server 2003), it’s the
local network service account.

• If you’re using the integrated test server in Visual Studio, the server runs under your
account. That means it has all your permissions, and as a result you generally won’t
run into permission problems while you’re testing your application.

When you’re running your website through IIS, this setting is just a default, and you can
change it. Under IIS 5, you change the account by editing the machine.config file that
defines settings for the entire web server. In IIS 6, you configure this account in IIS Manager.

■Note You might wonder how virtual directory permissions and the ASP.NET account settings interact.
Essentially, the virtual directory permissions determine what files a user can request. If the user successfully
requests an ASP.NET file, the ASP.NET engine will then execute the corresponding web page code. The
ASP.NET account settings determine what this code is allowed to do.

New ASP.NET programmers often ask why ASP.NET code doesn’t run under another
account—say, the account of the user who is making the request from the browser. How-
ever, if you consider this situation, you’ll quickly realize the problems. It’s almost certain
that the end user doesn’t have a Windows account defined on the web server. Even if the
user has a corresponding user account, that account shouldn’t have the same rights as the
ASP.NET engine.

The trick is to use an account that’s limited enough that it can’t be abused by attackers
but still has the required permissions to run your code. Both the ASPNET account and the
network account achieve that goal, because they have a set of carefully limited privileges.

By default, the ASPNET account won’t be allowed to perform tasks such as reading
the Windows registry, retrieving information from a database, or writing to most locations
on the local hard drive. On the other hand, it will have the permissions that are essential
for normal functioning. For example, the ASPNET account is allowed to access the
c:\[WinDir]\Microsoft.NET\[Version]\Temporary ASP.NET Files directory so that it can
compile and cache web pages.

MacDonald.book Page 456 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 457

The limited security settings of the ASPNET and network service accounts are designed
to prevent attacks on your web server. In most cases, the goal is to prevent any attacks that
could exploit flaws in your application and trick it into undertaking actions that it’s tech-
nically allowed to do (such as deleting a file) but should never perform. Although this is a
worthwhile goal, you’ll probably find that your applications require some additional per-
missions beyond those given to the ASPNET and network service accounts. For example,
you might need access to a specific file or a database. To make this possible, you grant
additional permissions to these account in the same way you would grant them to any
other Windows user account. However, the process isn’t always obvious—so you might
want to consult a good handbook about Windows system administration before you take
these steps.

Alternatively, you might want to change the account that’s used to run the worker process
to a different account with the required permissions. The following sections explain how.

■Note Before changing the account used to run ASP.NET code, make sure you fully understand the effects.
If you use an account with more permissions than you need, you open the door to a wide range of potential
hacks and attacks. It’s always best to use a dedicated user for running ASP.NET code and to restrict what it
can do to the bare minimum.

Changing the Account in IIS 5

To change the ASP.NET settings to use a different account, you need to perform the fol-
lowing steps:

1. Open the machine.config file in the c:\[WinDir]\Microsoft.NET\[Version]\Config
directory using Notepad.

2. Search for the setting userName="Machine". You’ll find this setting in the process-
Model tag, which looks something like this:

#�������&����$����'(�� �(����

�����	�����	�������������&'(� �E�$�����(������2

3. The userName="Machine" instruction tells ASP.NET to run using the special
ASPNET account. You can modify userName and password to use any other
account that’s defined on the web server. Alternatively, you can modify this
attribute to be userName="System" and leave the password as AutoGenerate. This
tells ASP.NET to use the local system account, which is a local account with wide-
ranging permissions.

MacDonald.book Page 457 Wednesday, December 7, 2005 8:39 PM

458 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

■Note It’s tempting to use the local system account, because it has complete power to perform any task
on the computer. Although this may make sense for test web server scenarios, it’s a dangerous habit. First,
using the local system account makes developers less conscious of security while they program, which is
never a good approach in the threat-conscious world of modern programming. Second, it also means you are
less aware of the minimum permissions the application requires, which can complicate your life when you
need to deploy the application to a production server.

4. Now you must restart the ASP.NET service. To do this, either you can reboot the
computer or you can use Task Manager to manually terminate the ASP.NET
service. In the latter case, look for the process named aspnet_wp.exe. Select it, and
click End Process.

■Note The ASP.NET account is a global setting that affects all web applications on the computer.

Changing the Account in IIS 6

If you’re using Windows Server 2003, you must use configure the IIS 6 application pool
settings using IIS Manager. Editing the machine.config file (as described in the previous
section) will have no effect.

Here’s what you need to do:

1. In IIS Manager, right-click the pool, and select Properties.

2. Select the Identity tab.

3. You can choose one of the predefined account types from the drop-down list,
including Network Service (the default), Local Service (which is essentially the
same as ASPNET), or Local System. Alternatively, you can supply the user name
and password for a specific user. If you take this approach, the information you
enter is encrypted for the current computer (unlike with IIS 5, where it’s stored in
ordinary text in the machine.config file.

4. Finally, you must restart the ASP.NET service or reboot the computer so that the
application pool starts with the new identity.

MacDonald.book Page 458 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 459

Code Compilation

By default, when you deploy an application you’ve created with Visual Studio 2005, you
deploy the uncompiled source files. The first time a web server requests a page, it’s com-
piled dynamically and cached in a temporary directory for reuse. The advantage of this
approach is that it’s easy to make last-minute changes directly to your files without need-
ing to go through any compilation steps. However, this approach has some clear
disadvantages:

• The first request for a page is slow. Once each page has been requested at least once,
this problem disappears.

• The web server contains all your source code and is clearly visible to anyone who
has access to the server. Even though visitors can’t see your code, website adminis-
trators can (and they could even change it).

To improve performance and prevent other people from seeing your code, you have
another option—you can use ASP.NET’s precompilation feature. Essentially, you use
a command-line tool named aspnet_compiler.exe, which is stored in the familiar
c:\[WinDir]\Microsoft.NET\Framework\[Version] directory. You use this compiler on
your development machine before you deploy the application. It compiles the entire web-
site into binary files.

Here’s the syntax for the aspnet_compiler tool:

���$��:�	�
����<	�	�������C�������;���
������

Essentially, you need to specify the source (where the web application currently resides)
and the target directory (where the compiled version of the application should be copied).

To specify the source, you use the -m option and specify the metabase path in the form
W3SVC/1/ROOT/[VirtualDirectoryName], just as you would with aspnet_regiis. Here’s an
example:

���$��:�	�
����<	����9*���=>>8�������*�4����������

You can then copy the files from the target directory to your web server (or if you’re
really crafty, you can use aspnet_compiler to send the compiled files straight to the target
directory as part of your build process).

If you use the command line shown previously, the c:\MyAppDeploy directory will
contain all the .aspx files but no .cs files—meaning all the source code is compiled into
assemblies in the Bin directory and hidden. Even more interestingly, the information in
the .aspx files has also been removed. If you open a web page, you’ll find that it doesn’t

MacDonald.book Page 459 Wednesday, December 7, 2005 8:39 PM

460 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

contain any tags. Instead, it just contains the statement “This is a marker file generated by
the precompilation tool and should not be deleted!” All the tags have been moved into the
compiled files in the Bin directory, along with the source code. The aspnet_compiler just
keeps the .aspx files so you can remember what web pages actually exist in your web page.

■Note In all these examples, the aspnet_compiler is compiling a web application to prepare it for deploy-
ment. However, you have another option—you can compile a website after it’s transferred to the web server.
This is called an in-place compilation, and it won’t remove your code. Instead, it simply creates and caches
the compiled versions of your web pages so that there won’t be any delay for the first set of requests. In-place
compilation is useful when you want to optimize performance but don’t want to (or need to) hide the code. To
perform an in-place compilation, omit the target directory when you use aspnet_compiler.

Deploying with Visual Studio 2005
Visual Studio 2005 aims to simplify web application deployment in the same way it sim-
plifies the task of designing rich web pages. Although you need to understand how IIS
works in order to manage virtual directories effectively (and fix the inevitable configura-
tion problems), Visual Studio includes features that integrate with IIS and allow you to
create virtual directories without leaving the comfort of your design-time environment.

Visual Studio has three key deployment-related features:

• You can create a virtual directory when you create a new project.

• You can use the Copy Web Site feature to transfer an existing website to a virtual
directory.

• You can use the Publish feature to compile your website and transfer it to another
location.

Creating a Virtual Directory for a New Project

When you create a website in Visual Studio, you can simultaneously create a virtual direc-
tory for that website. If you choose to do so, Visual Studio won’t use its built-in web server.
Instead, all your requests will flow through IIS. (Happily, you’ll still see the same behavior
and have access to the same debugging tools.)

MacDonald.book Page 460 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 461

To try this, select File ➤ New Web Site. In the New Web Site dialog box, choose HTTP
for the location (instead of File System). You can then supply a URL. For example, if you
supply ���������������������
��, Visual Studio will create the virtual directory
MyWebSite on the current computer. Figure 12-18 shows an example.

Figure 12-18. Creating a virtual directory to hold a new project

■Note If you specify a virtual directory that already exists, Visual Studio won’t create it—it will just use the
existing directory. This is convenient, because it allows you to set up the virtual directory ahead of time with
exactly the options you want and then create the website in it.

This approach often isn’t the best way to create a virtual directory. It has several
limitations:

• It forces you to set the virtual directory up when you first create the application. If
you’ve already created an application, this option isn’t available.

• The virtual directory is always created in the c:\Inetpub\wwwroot directory. This
can make it hard to keep track of where your files are. (As you’ll discover shortly,
you can work around this limitation.)

MacDonald.book Page 461 Wednesday, December 7, 2005 8:39 PM

462 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

• You can configure other settings, such as default pages, custom errors, and virtual
directory permissions.

• Any change you make and debugging you perform act on the live version of your
application that’s running on the web server. If you’re using a production web
server, this is an unacceptable risk. If you’re using a test web server, you may have
opened potential security issues because remote users can request pages in your
application from other computers.

For these reasons, it’s more common for developers to create their application using
the built-in web server in Visual Studio and then create a virtual directory by hand when
they’re ready to deploy it to a test or production web server.

Visual Studio doesn’t give you the full options of IIS Manager, but you can get a little
more control. In the New Web Site dialog box, type http://localhost (for the current com-
puter), and click the Browse button. You’ll see all the virtual directories that are defined in
IIS, just as in IIS Manager (see Figure 12-19).

Figure 12-19. Viewing virtual directories in Visual Studio

MacDonald.book Page 462 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 463

You can’t view or change their properties, but you can choose an existing virtual direc-
tory where you want to create your application. You can also use the Create New Virtual
Directory button in the top-right corner of the window (it appears as a folder icon). Click
this button, and you’ll get the chance to supply the virtual directory alias and its physical
file path (see Figure 12-20).

Figure 12-20. Creating a virtual directory in a specific location

Copying a Website

Visual Studio also includes a quick and easy way to transfer your web application files
without using a separate program or leaving the design environment. You simply need to
open your web project and select Project ➤ Copy Web Site from the menu. This opens a
new Visual Studio dialog box that will be familiar to anyone who has used Microsoft
FrontPage (see Figure 12-21).

MacDonald.book Page 463 Wednesday, December 7, 2005 8:39 PM

464 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

Figure 12-21. Copying a website

This window includes two file lists. On the left are the files in the current project (on
your local hard drive). On the right are the files on the target location (the remote web
server). When you first open this window, you won’t see anything on the right, because
you haven’t specified the target. You need to click the Connect button at the top of the
window to supply this information.

When you click Connect, Visual Studio shows a familiar dialog box—it looks almost the
same as what you see when you create a virtual directory for a new project. Using this win-
dow, you can specify one of the following types of locations:

File System: This is the easiest choice—you simply need to browse through a tree of
drives and directories or through the shares provided by other computers on the net-
work. If you want to create a new directory for your application, just click the Create
New Folder icon above the top-right corner of the directory tree.

MacDonald.book Page 464 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 465

Local IIS: This choice allows you to browse the virtual directories made available on
the local computer through IIS. You can create a new virtual directory by clicking the
Create New Web Application icon at the top-right corner of the virtual directory tree.

FTP Site: This option isn’t quite as convenient as browsing for a directory—instead,
you’ll need to enter all the connection information, including the FTP site, port, direc-
tory, and a user name and password before you can connect (see Figure 12-22).

Remote Web Server: This option accesses a website at a specified URL using HTTP. For
this to work, the web server must have the FrontPage Extensions installed. When you
connect, you’ll be prompted for a user name and password.

Figure 12-22. Setting the target site

Once you choose the appropriate destination, click Open. Visual Studio will attempt to
connect to the remote site and retrieve a list of its files.

The Copy Web Site feature is particularly useful for updating a web server. That’s
because Visual Studio compares the file list on the local and remote websites, and it flags
files that exist in one location only (with the status New) or those that are newer versions
(with the status Changed). You can then select the files you want to transfer and click one
of the arrow buttons to transfer them from one location to the other (see Figure 12-23).

MacDonald.book Page 465 Wednesday, December 7, 2005 8:39 PM

466 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

Figure 12-23. Synchronizing a remote website

Publishing a Website

The website copying feature is great for transferring files to a test server. However, it
doesn’t give you the option of precompiling your code. If you’re deploying your applica-
tion to a live web server and you want to keep the source code tightly locked down, you’ll
want something more.

As described earlier in this chapter, you can use the aspnet_compiler command-line
utility to compile ASP.NET applications. This functionality is also available in Visual Studio
through the website publishing feature. While the website copying feature is designed to let

MacDonald.book Page 466 Wednesday, December 7, 2005 8:39 PM

C H A P T E R 1 2 ■ D E P LO Y I N G A S P . NE T A P P L I C A T I O N S 467

you update individual files (which is ideal when updating a test server), the publishing fea-
ture is intended to transfer your entire website in compiled form with a couple of clicks.

Here’s what you need to do:

1. Select Build ➤ Publish from the menu. The Publish Web Site dialog box will appear
(see Figure 12-24).

Figure 12-24. Publishing a website

2. Enter a file path or a URL for an FTP site or FrontPage-enabled site in the Target
Location text box. To get some help, click the ellipsis (…) next to the Target Location
text box. This opens the familiar dialog box with options for choosing (or creating) a
virtual directory, file path, FTP site, or remote server.

3. Leave the other check boxes unselected. You can choose to allow updates, in which
case the code-behind files are compiled, but the .aspx files with the HTML and tags
aren’t compiled. This option allows you to make only limited changes (and it
increases the potential for accidental changes or tampering), so it isn’t terribly
useful.

4. Click OK. Your website files will be compiled with aspnet_compiler and then trans-
ferred to the target location.

MacDonald.book Page 467 Wednesday, December 7, 2005 8:39 PM

468 C H A P T E R 1 2 ■ D E P L O Y I N G A S P . N E T A P P L I C A T I O N S

The Last Word
This chapter covered IIS (the web server that powers ASP.NET websites) and the deploy-
ment model for ASP.NET. You also considered the tools that Visual Studio includes to
make deployment easier. This rounds out Part 2 of this book, and you now have all the
fundamentals you need to create a basic ASP.NET website. In the next part, you’ll dive
into practical database programming with ADO.NET.

MacDonald.book Page 468 Wednesday, December 7, 2005 8:39 PM

■ ■ ■

P A R T 3

Working with Data

MacDonald.book Page 469 Friday, December 16, 2005 3:55 PM

MacDonald.book Page 470 Friday, December 16, 2005 3:55 PM

471

■ ■ ■

C H A P T E R 1 3

ADO.NET Fundamentals

So far, you’ve learned that ASP.NET isn’t just a new way to create modern web applica-
tions—it’s also part of an ambitious multilayered strategy called .NET. ASP.NET is only
one component in Microsoft’s .NET platform, which includes new languages, a new
philosophy for cross-language integration, a new way of looking at components and
deployment, and a shared class library with components that allow you to do everything
from handling errors to analyzing XML documents. In this chapter, you’ll discover that
the .NET Framework has yet another surprise in store: ADO.NET, Microsoft’s latest data
access model.

ADO.NET allows you to interact with relational databases and other data sources.
Quite simply, ADO.NET is the technology that ASP.NET applications use to communicate
with a database, whether they need to add a new customer record, log a purchase, or dis-
play a product catalog.

In this chapter, you’ll learn about ADO.NET and the family of objects that provides its
functionality. You’ll also learn how to put these objects to work by creating simple pages
that use ADO.NET to retrieve information from a database and apply changes.

■Note ASP.NET 2.0 includes a new data binding framework that can hide the underlying ADO.NET plumb-
ing in your web pages. You can skip to Chapter 14 to start learning about these features right away. However,
to build scalable, high-performance web applications, you’ll need to write custom database code. That means
you’ll need a thorough understanding of the concepts presented in this chapter.

ADO.NET and Data Management
Almost every piece of software ever written works with data. In fact, a typical Internet
application is often just a thin user interface shell on top of a sophisticated database
program that reads and writes information from a database on the web server. At its sim-
plest, a database program might allow a user to perform simple searches and display
results in a formatted table. A more sophisticated ASP.NET application might use a data-
base behind the scenes to retrieve information, which is then processed and displayed in

MacDonald.book Page 471 Friday, December 16, 2005 3:55 PM

472 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

the appropriate format and location in the browser. The user might not even be aware (or
care) that the displayed information originates from a database. Using a database is an
excellent way to start dividing the user interface logic from the content, which allows you
to create a site that can work with dynamic, easily updated data.

The Role of the Database

The most common way to manage data is to use a database. Database technology is par-
ticularly useful for business software, which typically requires hierarchical sets of related
information. For example, a typical database for a sales program consists of a list of cus-
tomers, a list of products, and a list of sales that draws on information from the other two
tables. This type of information is best described using a relational model, which is the
philosophy that underlies all modern database products, including SQL Server, Oracle,
and even Microsoft Access. (In a relational model, information is broken down into its
smallest and most concise units. For example, a sales record doesn’t store all the informa-
tion about the products that were sold. Instead, it stores just a product ID that refers to a
full record in a product table, as shown in Figure 13-1.)

Figure 13-1.Basic table relationships

Although it’s technically possible to organize data into tables and store it on the hard
drive as an XML file, this wouldn’t be very flexible. Instead, a web application needs a full
relational database management system (RDBMS), such as SQL Server. The RDBMS
handles the data infrastructure, ensuring optimum performance and reliability. These
products take the responsibility of providing data to multiple users simultaneously and
making sure that certain rules are followed (for example, disallowing conflicting changes
or invalid data types).

MacDonald.book Page 472 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 473

In most ASP.NET applications, you’ll need to use a database for some tasks. Here are
some basic examples of data-driven ASP.NET applications:

• E-commerce sites involve managing sales, customers, and inventory information.
This information might be displayed directly on the screen (as with a product cata-
log) or used unobtrusively to record transactions or customer information.

• Online knowledge bases and customized search engines involve less structured
databases that store vast quantities of information or links to various documents
and resources.

• Information-based sites such as web portals can’t be easily scalable or manageable
unless all the information they use is stored in a consistent, strictly defined format.
Typically, a site like this is matched with another ASP.NET program that allows an
authorized user to add or update the displayed information by modifying the corre-
sponding database records through a browser interface.

You probably won’t have any trouble thinking about where you need to use database
technology in an ASP.NET application. What Internet application couldn’t benefit from a
guest book that records user comments or a simple e-mail address submission form that
uses a back-end database to store a list of potential customers or contacts? This is where
ADO.NET comes into the picture. ADO.NET is a technology designed to let an ASP.NET
program (or any other .NET program, for that matter) access data.

Database Access in the Internet World

Accessing a database in an Internet application is a completely different scenario than
accessing a database in a typical desktop or client/server program. Most developers hone
their database skills in the desktop world and run into serious problems when they try to
apply what they have learned with stand-alone applications in the world of the Web.
Quite simply, web applications raise a whole new set of considerations and potential
problems.

Problems of Scale

A web application has the potential to be used by hundreds of simultaneous users. This
means it can’t be casual about using server memory or limited resources such as database
connections. If you design an ASP application that acquires a database connection and
holds it for even a few minutes, other users may notice a definite slowdown or even be
locked out of the database completely. And if you don’t carefully consider database con-
currency issues, problems such as locked records and conflicting updates can make it
difficult to provide consistent data to all users.

MacDonald.book Page 473 Friday, December 16, 2005 3:55 PM

474 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

All of these problems are possible with traditional client/server database development.
The difference is that they are far less likely to have any negative effect because the typical
load (the number of simultaneous users) is dramatically lower. Database practices that
might slightly hamper the performance of a client/server application can multiply rapidly
and cause significant problems in a web application.

Problems of State

As you already know, HTTP is a stateless protocol. When a user browses to a page in an
ASP.NET application, a connection is made, the code is processed, an HTML page is
returned, and the connection is immediately severed. Although users may have the illu-
sion that they are interacting with a continuously running application, they are really just
receiving a string of static pages. (ASP.NET makes this illusion so convincing that it’s
worth asking if it can really be considered an illusion at all.)

With data-driven web applications, the stateless nature of HTTP can be a thorny prob-
lem. The typical approach is to connect to a database, read information, display it, and
then close the database connection. This approach runs into difficulties if you want the
user to be able to modify the retrieved information. In this scenario, the application
requires a certain amount of intelligence in order to be able to identify the original record,
build a SQL statement to select it, and update it with the new values.

Introducing ADO.NET

ADO.NET has a few characteristics that make it different from previous data access tech-
nologies (such as ADO, the database library that was used in classic ASP pages).

The DataSet

Many ADO.NET tasks revolve around a new object called the DataSet. The DataSet is a
cache of information that has been queried from your database. The innovative features
of the DataSet are that it’s disconnected (see the next section) and can store more than
one table. For example, a DataSet could store a list of customers, a list of products, and a
list of customer orders. You can even define all these relationships in the DataSet to pre-
vent invalid data and make it easier to answer questions such as “What products did Joe
Smith order?”

Disconnected Access

Disconnected access is the one of the most important characteristics of ADO.NET and
perhaps the single best example of the new .NET philosophy for accessing data.

With previous database access technologies, it’s easy to hold open a connection with
the database server while your code does some work. This live connection allows you to
make immediate updates, and you can even see the changes made by other users in real
time. Unfortunately, database servers can provide only a limited number of connections

MacDonald.book Page 474 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 475

before they reject connection requests. The longer you keep a connection open, the
greater the chance becomes that another user will be prevented from accessing the data-
base. In a poorly written program, the database connection is kept open while other tasks
are being performed. But even in a well-written program using an old data access technol-
ogy such as ADO, the connection must be kept open until all the data is processed and the
query results are no longer needed.

ADO.NET has an entirely different philosophy. In ADO.NET you still create a connec-
tion to a database, but you’re able to close the connection much faster. That’s because
you’re able to fill a DataSet object with a copy of the information drawn from the database.
You can then close the connection before you start processing the data. This means you
can easily process and manipulate the data without worrying, because you aren’t using a
valuable database connection. (Of course, if you change the information in the DataSet,
the information in the corresponding table in the database isn’t changed. You’ll need to
reconnect to commit any changes.)

XML Integration

ADO.NET has deep support for XML. This fact isn’t immediately obvious when you’re
working with a DataSet object, because you’ll usually use the built-in methods and prop-
erties of the DataSet to perform all the data manipulation you need. But if you delve a little
deeper, you’ll discover that you can access the information in the DataSet as an XML doc-
ument. You can even modify values, remove rows, and add new records by modifying the
XML, and the DataSet will be updated automatically.

SQL Server 2005 Express Edition

This chapter includes code that works with SQL Server 7 or later. If you don’t have a test
database server handy, you may want to use SQL Server 2005 Express Edition, the free
data engine included with some versions of Visual Studio and downloadable separately.
SQL Server 2005 Express Edition is a scaled-down version of SQL Server 2005 that’s free to
distribute. SQL Server 2005 Express Edition has certain limitations—for example, it can

DISCONNECTED ACCESS RAISES NEW ISSUES

Disconnected access is a key requirement for Internet applications, and it’s also an approach that often
requires additional consideration and precautions. Disconnected access makes it easy for users to create
inconsistent updates, a problem that won’t be resolved (or even identified) until the update is committed to the
original data source. Disconnected access can also require special considerations because changes aren’t
applied in the order they were entered. This design can cause problems when you modify related records.

Fortunately, ADO.NET provides a rich set of features to deal with all these possibilities. However, you do
need to be aware that the new disconnected model may introduce new considerations and require extra care.

MacDonald.book Page 475 Friday, December 16, 2005 3:55 PM

476 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

use only one CPU and a maximum of 1GB of RAM, databases can’t be larger than 4GB, and
graphical tools aren’t included. However, it’s still remarkably powerful and suitable for
many mid-scale websites. Even better, you can easily upgrade from SQL Server 2005
Express Edition to a for-fee version of SQL Server 2005 if you need more features later. For
more information about SQL Server 2005 Express Edition, refer to the MSDN Help or the
white paper at ����������	
��������
�����������	�����	�������������������
���.

■Note This part uses examples drawn from the pubs and Northwind databases, which are sample data-
bases included with many versions of Microsoft SQL Server. If you aren’t using SQL Server, or if you’re using
SQL Server 2005, you won’t have these databases preinstalled. However, you can easily install them using
the scripts provided with the online samples. See the readme for full instructions.

Browsing and Modifying Databases in Visual Studio

As an ASP.NET developer, you may have the responsibility of creating the database
required for a web application. Alternatively, it may already exist, or it may be the respon-
sibility of a dedicated database administrator. If you’re using a full version of SQL Server,
you’ll probably use a graphical tool such as Enterprise Manager to create and manage
your databases. If you’re using SQL Server 2005 Express Edition, you won’t have any ded-
icated tools, so you’ll need to use the support that’s built into Visual Studio.

Here’s how you can get started: First, choose View ➤ Server Explorer to show the Server
Explorer window. Then, using the Data Connections node in the Server Explorer, you can
connect to existing databases or create new ones. Assuming you’ve installed the pubs
database (see the readme file for instructions), you can create a connection to it by follow-
ing these steps:

1. Right-click the Data Connections node, and choose Add Connection.

2. If you’re using a full version of SQL Server, enter localhost as your server name.
This indicates the database server is the default instance on the local computer.
(Replace this with the name of a remote computer if needed.) If you’re using SQL
Server Express Edition, you’ll need to use the server name localhost\SQLEXPRESS
instead, as shown in Figure 13-2. The second part indicates that you’re connecting
to a named instance of SQL Server, with the name SQLEXPRESS. This is the default
for SQL Server 2005 Express Edition.

MacDonald.book Page 476 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 477

Figure 13-2. Creating a connection in Visual Studio

3. Click Test Connection to verify that this is the location of your database. If you
haven’t installed a database product yet, and you didn’t choose to install SQL
Server 2005 Express Edition when you installed Visual Studio, this step will fail.
Otherwise, you’ll know that your database server is installed and running.

4. In the Select or Enter a Database Name list, choose the pubs database. If you’re
using SQL Server 2005 Express Edition, you’ll begin with no databases at all, and
you’ll need to install the pubs database using the script that’s included with the
sample code. Similarly, the full version of SQL Server 2005 doesn’t include the pubs
database.

■Tip Alternatively, you can choose to create a new database by right-clicking the Data Connections node
and choosing Create New SQL Server Database.

MacDonald.book Page 477 Friday, December 16, 2005 3:55 PM

478 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

5. Click OK. The database connection will appear in the Server Explorer window. You
can now explore its groups to see and edit tables, stored procedures, and more. For
example, if you right-click a table and choose Show Table Data, you’ll see a grid of
records that you can browse and edit, as shown in Figure 13-3.

Figure 13-3. Editing table data in Visual Studio

SQL Basics
When you interact with a data source through ADO.NET, you use SQL to retrieve, modify,
and update information. In some cases, ADO.NET will hide some of the details for you or
even generate required SQL statements automatically. However, to design an efficient
database application with a minimal amount of frustration, you need to understand the
basic concepts of SQL.

MacDonald.book Page 478 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 479

SQL (Structured Query Language) is a standard data access language used to interact
with relational databases. Different databases differ in their support of SQL or add other
features, but the core commands used to select, add, and modify data are common. In a
database product such as SQL Server, it’s possible to use SQL to create fairly sophisticated
SQL scripts for stored procedures and triggers (although they have little of the power of a
full object-oriented programming language). When working with ADO.NET, however,
you’ll probably use only the following standard types of SQL statements:

• A Select statement retrieves records.

• An Update statement modifies existing records.

• An Insert statement adds a new record.

• A Delete statement deletes existing records.

If you already have a good understanding of SQL, you can skip the next few sections.
Otherwise, read on for a quick tour of SQL fundamentals.

■Tip To learn more about SQL, use one of the SQL tutorials available on the Internet, such as the one at
����������
���������
�������. If you’re working with SQL Server, you can use Microsoft’s thorough
Books Online reference to become a database guru.

Running Queries in Visual Studio

If you’ve never used SQL before, you may want to play around with it and create some
sample queries before you start using it in an ASP.NET site. Most database products pro-
vide some sort of tool for testing queries. If you’re using a full version of SQL Server, you
can try the SQL Query Analyzer. If you’re using SQL Server 2005, or you just don’t want to
use the design environment, you can use the Server Explorer feature described earlier.
Just follow these steps:

1. Right-click your connection, and choose New Query.

2. Choose the table (or tables) you want to use in your query from the Add Table
dialog box (as shown in Figure 13-4), and then click Close.

MacDonald.book Page 479 Friday, December 16, 2005 3:55 PM

480 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Figure 13-4. Adding tables to a query

3. You’ll now see a handy query-building window. You can create your query by
adding check marks next to the fields you want, or you can edit the SQL by hand
in the lower portion of the window. Best of all, if you edit the SQL directly, you can’t
type in anything—you don’t need to stick to the tables you selected in step 2, and
you don’t need to restrict yourself to Select statements.

4. When you’re ready to run the query, select Query Designer ➤ Execute SQL.
Assuming your query doesn’t have any errors, you’ll get one of two results. If
you’re selecting records, the results will appear at the bottom of the window (see
Figure 13-5). If you’re deleting or updating records, a message box will appear
informing you how many records were affected.

■Tip When programming with ADO.NET, it always helps to know your database. If you have information on
hand about the data types it uses, the stored procedures it provides, and the user account you need to use,
you’ll be able to work more quickly and with less chance of error.

MacDonald.book Page 480 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 481

Figure 13-5. Executing a query

The Select Statement

To retrieve one or more rows of data, you use a Select statement. A basic SQL statement
has the following structure:

������ !�����	�" #$%& !������" '(�$� !�����)��	�����	"

 %$*�$ +, !���)�-������	 .�� / *���"

This format really just scratches the surface of SQL. If you want, you can create more
sophisticated queries that use subgrouping, averaging and totaling, and other options
(such as setting a maximum number of returned rows). By performing this work in a query
(instead of in your application), you can often create far more efficient applications.

MacDonald.book Page 481 Friday, December 16, 2005 3:55 PM

482 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

The next few sections present sample Select statements. After each example, a series of
bulleted points breaks the SQL down to explain how each part of it works.

A Sample Select Statement

The following is a typical (and rather inefficient) Select statement for the pubs database.
It works with the Authors table, which contains a list of authors:

������ 0 #$%& .�����

• The asterisk (*) retrieves all the columns in the table. This isn’t the best approach for
a large table if you don’t need all the information. It increases the amount of data
that has to be transferred and can slow down your server.

• The From clause identifies that the Authors table is being used for this statement.

• The statement doesn’t have a Where clause. This means all the records will be
retrieved from the database, regardless of whether it has ten or ten million records.
This is a poor design practice, because it often leads to applications that appear to
work fine when they’re first deployed but gradually slow down as the database
grows. In general, you should always include a Where clause to limit the possible
number of rows (unless you absolutely need them all). Often, queries are limited by
a date field (for example, including all orders that were placed in the last three
months).

• The statement doesn’t have an Order By clause. This is a perfectly acceptable
approach, especially if order doesn’t matter or you plan to sort the data on your own
using the tools provided in ADO.NET.

Improving the Select Statement

Here’s another example that retrieves a list of author names:

������ ��)�	���1 ��)�	��� #$%& .����� '(�$� �����23&43 %$*�$ +, ��)�	��� .��

• Only two columns are retrieved (au_lname and au_fname). They correspond to the
first and last names of the author.

• A Where clause restricts results to those authors who live in the specified state. Note
that the Where clause requires apostrophes around the value you want to match
(unless it is a numeric value).

• An Order By clause sorts the information alphabetically by the author’s last name.

MacDonald.book Page 482 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 483

An Alternative Select Statement

Here’s one last example:

������ �%5 677 0 #$%& ����� %$*�$ +, ��)���� *���

• This example uses the Top clause instead of a Where statement. The database rows
will be sorted, and the first 100 matching results will be retrieved. In this case, it’s
the 100 most recent orders. You could also use this type of statement to find the
most expensive items you sell or the best-performing employees.

• This example uses a more sophisticated Order By expression, which sorts authors
with identical last names in a subgroup by their first name.

The Where Clause

In many respects, the Where clause is the most important part of the Select statement.
You can combine multiple conditions with the And keyword, and you can specify greater-
than and less-than comparisons by using the greater-than (>) and less-than (<) operators.

The following is an example with a different table and a more sophisticated Where
statement:

������ 0 #$%& ����� '(�$� ��)���� 8 39777�76�763 .:* ��)���� ; 36<=>�76�763

• This example uses the international date format to compare date values. Although
SQL Server supports many date formats, yyyy/mm/dd is recommended to prevent
ambiguity.

• If you were using Microsoft Access, you would need to use the U.S. date format
mm/dd/yyyy and replace the apostrophes around the date with the number (#)
symbol.

String Matching with the Like Operator

The Like operator allows you to perform partial string matching to filter records where
a particular field starts with, ends with, or contains a certain set of characters. For exam-
ple, if you wanted to see all store names that start with B, you could use the following
statement:

������ 0 #$%& ����� '(�$� ���)	��� �4?� 3+@3

To see a list of all stores ending with B, you would put the percent sign before the B,
like this:

������ 0 #$%& ����� '(�$� ���)	��� �4?� 3@+3

MacDonald.book Page 483 Friday, December 16, 2005 3:55 PM

484 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

The third way to use the Like operator is to return any records that contain a certain
character or sequence of characters. For example, suppose you want to see all stores that
have the word BOOK somewhere in the name. In this case, you could use a SQL statement
like this:

������ 0 #$%& ����� '(�$� ���)	��� �4?� 3@���A@3

By default, SQL is not case-sensitive, so this syntax finds instances of BOOK, book, or
any variation of mixed case.

Finally, you can indicate one of a set of characters, rather than just any character, by
listing the allowed characters within square brackets. Here’s an example:

������ 0 #$%& ����� '(�$� ���)	��� �4?� 3!����"@3

This SQL statement will return stores with names starting with a, b, c, or d.

Aggregate Queries

The SQL language also defines special aggregate functions. Aggregate functions work
with a set of values but return only a single value. For example, you can use an aggregate
function to count the number of records in a table or to calculate the average price of a
product. Table 13-1 lists the most commonly used aggregate functions

Table 13-1. SQL Aggregate Functions

For example, here’s a query that returns a single value—the number of records in the
Authors table:

������ �%B:�C0D #$%& .�����

And here’s how you could calculate the total quantity of all sales by adding together the
qty field in each record:

������ �B&C���D #$%& �����

Command Description
Avg(fieldname) Calculates the average of all values in a given numeric

field

Sum(fieldname) Calculates the sum of all values in a given numeric field

Min(fieldname) and Max(fieldname) Finds the minimum or maximum value in a number field

Count(*) Returns the number of rows in the result set

Count(DISTINCT fieldname) Returns the number of unique (and non-null) rows in
the result set for the specified field

MacDonald.book Page 484 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 485

The SQL Update Statement

The SQL Update statement selects all the records that match a specified search expression
and then modifies them all according to an update expression. At its simplest, the Update
statement has the following format:

B5*.�� !�����" ��� !������)�-������	" '(�$� !�����)��	�����	"

Typically, you’ll use an Update statement to modify a single record. The following
example adjusts the phone column in a single author record. It uses the unique author ID
to find the correct row.

B5*.�� .����� ��� ���	�23E7= E<F�99993 '(�$� ��)��236>9��9�66>F3

This statement returns the number of affected rows. (See Figure 13-6 for an example in
Visual Studio.) However, it won’t display the change. To do that, you need to request the
row by performing another SQL statement:

������ ���	� #$%& .����� '(�$� ��)��236>9��9�66>F3

Figure 13-6. Executing an update query in Visual Studio

MacDonald.book Page 485 Friday, December 16, 2005 3:55 PM

486 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

As with a Select statement, you can use an Update statement with several criteria:

B5*.�� .����� ��� ��)�	���23'������	31 ��)�	���23G��	3

 '(�$� ��)�	���23'����3 .:* ��)�	���23G��	��	3

You can even use the Update statement to update an entire range of matching
records. The following example modifies the phone number for every author who lives in
California:

B5*.�� .����� ��� ���	�23E7= E<F�99993 '(�$� �����23�.3

The SQL Insert Statement

The SQL Insert statement adds a new record to a table with the information you specify. It
takes the following form:

4:��$� 4:�% !�����" C!�����)����"D H.�B�� C!�����)����"D

You can provide the information in any order you want, as long as you make sure the
list of column names and the list of values correspond exactly.

4:��$� 4:�% .����� C��)��1 ��)�	���1 ��)�	���1 I��1 ��	����D

 H.�B�� C3<<=�>9��JFF31 3G��	31 3?��	31 =E6J91 7D

This example leaves out some information, such as the city and address, in order to
provide a simple example. The earlier example shows the bare minimum required to cre-
ate a new record in the Authors table.

AUTO-INCREMENT FIELDS ARE INDISPENSABLE

If you’re designing a database, make sure you add an auto-incrementing identity field to every table. It’s the
fastest, easiest, and least error-prone way to assign a unique identification number to every record. Without
an automatically generated identity field, you’ll need to go to considerable effort to create and maintain your
own unique field. Often, programmers fall into the trap of using a data field for a unique identifier, such as a
Social Security number (SSN) or name. This almost always leads to trouble at some inconvenient time far in
the future, when you need to add a person who doesn’t have an SSN (for example, a foreign national) or you
need to account for an SSN or name change (which will cause problems for other related tables, such as a pur-
chase order table that identifies the purchaser by the name or SSN field). A much better approach is to use a
unique identifier and have the database engine assign an arbitrary unique number to every row automatically.

If you create a table without a unique identification column, you’ll have trouble when you need to select
that specific row for deletion or updates. Selecting records based on a text field can also lead to problems if
the field contains special embedded characters (such as apostrophes). You’ll also find it extremely awkward
to create table relationships.

MacDonald.book Page 486 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 487

Remember, database tables often have requirements that can prevent you from adding
a record unless you fill in all the fields with valid information. Alternatively, some fields may
be configured to use a default value if left blank. In the Authors table, some fields are
required, and a special format is defined for the ZIP code and author ID.

One feature the Authors table doesn’t use is an automatically incrementing identity
column. This feature, which is supported in most relational database products, assigns a
unique value to a specified column when you perform an insert operation. When you
insert a record into a table that has a unique incrementing ID, you shouldn’t specify a
value for the ID. Instead, allow the database to choose one automatically.

The SQL Delete Statement

The Delete statement is even easier to use. It specifies criteria for one or more rows that
you want to remove. Be careful: once you delete a row, it’s gone for good!

*����� #$%& !�����" '(�$� !�����)��	�����	"

The following example removes a single matching row from the Authors table:

*����� #$%& .����� '(�$� ��)��236>9��9�66>F3

The Delete and Update commands return a single piece of information: the number of
affected records. You can examine this value and use it to determine whether the opera-
tion was successful or executed as expected.

The rest of this chapter shows how you can combine SQL with the ADO.NET objects to
retrieve and manipulate data in your web applications.

ADO.NET Basics
ADO.NET relies on the functionality in a small set of core objects. You can divide these
objects into two groups: those that are used to contain and manage data (such as DataSet,
DataTable, DataRow, and DataRelation) and those that are used to connect to a specific
data source (such as Connection, Command, and DataReader).

The data container objects are completely generic. No matter what data source you
use, once you extract the data, it’s stored using the same DataSet class. Think of the
DataSet as playing the same role as a collection or an array—it’s a package for data. The
difference is that the DataSet is customized for relational data, which means it under-
stands concepts such as rows, columns, and table relationships natively.

The second group of objects exists in several different flavors. Each set of data interac-
tion objects is called an ADO.NET data provider. Data providers are customized so that
each one uses the best-performing way of interacting with its data source. For example,
the SQL Server data provider is designed to work with SQL Server 7 or later. Internally, it

MacDonald.book Page 487 Friday, December 16, 2005 3:55 PM

488 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

uses SQL Server’s TDS (tabular data stream) protocol for communicating, thus guarantee-
ing the best possible performance. If you’re using Oracle, you’ll need to use the Oracle
provider objects instead.

It’s important to understand that you can use any data provider in almost the same
way, with almost the same code. The provider objects derive from the same base classes,
implement the same interfaces, and expose the same set of methods and properties. In
some cases, a data provider object will provide custom functionality that’s available only
with certain data sources, such as SQL Server’s ability to perform XML queries. However,
the basic members used for retrieving and modifying data are identical.

Microsoft includes the following four providers:

SQL Server provider: Provides optimized access to a SQL Server database (version 7.0
or later).

OLE DB provider: Provides access to any data source that has an OLE DB driver.

Oracle provider: Provides optimized access to an Oracle database (version 8i or later).

ODBC provider: Provides access to any data source that has an ODBC (Open Database
Connectivity) driver.

In addition, third-party developers and database vendors have released their own
ADO.NET providers, which follow the same conventions and can be used in the same way
as those that are included with the .NET Framework.

When choosing a provider, you should first try to find one that’s customized for your
data source. If you can’t find a suitable provider, you can use the OLE DB provider, as long
as you have an OLE DB driver for your data source. The OLE DB technology has been
around for many years as part of ADO, so most data sources provide an OLE DB driver
(including SQL Server, Oracle, Access, MySQL, and many more). In the rare situation that
you can’t find a full provider or an OLE DB driver, you can fall back on the ODBC provider,
which works in conjunction with an ODBC driver.

■Tip Microsoft includes the OLE DB provider with ADO.NET so that you can use your existing OLE DB driv-
ers. However, if you can find a provider that’s customized specifically for your data source, you should use it
instead. For example, you can connect to SQL Server database using either the SQL Server provider or the OLE
DB provider, but the first approach will perform best.

To help understand the different layers that come into play with ADO.NET, refer to
Figure 13-7.

MacDonald.book Page 488 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 489

Figure 13-7. The layers between your code and the data source

Data Namespaces

The ADO.NET components live in seven namespaces in the .NET class library. Together,
these namespaces hold all the functionality of ADO.NET. Table 13-2 describes each data
namespace.

MacDonald.book Page 489 Friday, December 16, 2005 3:55 PM

490 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Table 13-2. ADO.NET Namespaces

The Data Provider Objects

On their own, the data objects can’t accomplish much. You might want to add tables,
rows, and data by hand, but in most cases, the information you need is located in a data
source such as a relational database. To access this information, extract it, and insert it
into the appropriate data objects, you need the objects described in this section. Remem-
ber, each one of these objects has a database-specific implementation. That means you
use a different, but essentially equivalent, object depending on whether you’re interact-
ing with SQL Server, Oracle, or the OLE DB provider.

The goal of the data source objects is to create a connection and move information into
a DataSet or into a DataReader.

Regardless of which provider you use, your code will look almost the same. Often, the
only differences will be the namespace that’s used and the name of the ADO.NET data
access objects (as listed in Table 13-3).

Namespace Purpose
System.Data Contains fundamental classes with the core ADO.NET

functionality. This includes DataSet and DataRelation, which allow
you to manipulate structured relational data. These classes are
totally independent of any specific type of database or the way you
use to connect to it.

System.Data.Common These classes aren’t used directly in your code. Instead, they are
used by other data provider classes that inherit from them and
provide versions customized for a specific data source.

System.Data.OleDb Contains the classes you use to connect to an OLE DB data source,
including OleDbCommand and OleDbConnection.

System.Data.SqlClient Contains the classes you use to connect to a Microsoft SQL Server
database (version 7.0 or later). These classes, such as SqlCommand
and SqlConnection, provide all the same properties and methods
as their counterparts in the System.Data.OleDb namespace. The
only difference is that they are optimized for SQL Server and
provide better performance by eliminating the extra OLE DB layer
(and by connecting directly to the optimized TDS interface).

System.Data.SqlTypes Contains structures for SQL Server–specific data types such as
SqlMoney and SqlDateTime. You can use these types to work with
SQL Server data types without needing to convert them into the
standard .NET equivalents (such as System.Decimal and
System.DateTime). These types aren’t required, but they do allow
you to avoid any potential rounding or conversion problems that
could adversely affect data.

System.Data.OracleClient Contains the classes you use to connect to an Oracle database, such
as OracleCommand and OracleConnection.

System.Data.Odbc Contains the classes you use to connect to a data source through an
ODBC driver. These classes include OdbcCommand and
OdbcConnection.

MacDonald.book Page 490 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 491

Each provider designates its own prefix for naming objects. Thus, the SQL Server pro-
vider includes SqlConnection and SqlCommand objects, and the Oracle provider
includes OracleConnection and OracleCommand objects. Internally, these objects work
quite differently, because they need to connect to different databases using different low-
level protocols. Externally, however, these objects look quite similar and provide an iden-
tical set of basic methods because they implement the same common interfaces. This
means your application is shielded from the complexity of different standards and can
use the SQL Server provider in the same way the Oracle provider uses it. In fact, you can
often translate a block of code for interacting with a SQL Server database into a block of
Oracle-specific code just by renaming the objects.

Table 13-3. The ADO.NET Data Provider Objects

The examples in this chapter make note of any differences between the OLE DB and
SQL Server providers. Remember, though the underlying technical details differ, the
objects are almost identical. The only real differences are as follows:

• The names of the Connection, Command, DataReader, and DataAdapter classes
are different in order to help you distinguish them.

• The connection string (the information you use to connect to the database) differs
depending on what data source you’re using, where it’s located, and what type of
security you’re using.

• Occasionally, a provider may choose to add features, such as methods for specific
features or classes to represent specific data types. For example, the SQL Server
Command class includes a method for executing XML queries that aren’t part of the
SQL standard. In this chapter, you’ll focus on the standard functionality, which is
shared by all providers and used for the majority of data access operations.

In the rest of this chapter, you’ll consider two ways to program web pages with
ADO.NET. First, you’ll consider the most straightforward approach—direct data access.
Next, you’ll consider disconnected data access, which allows you to retrieve data in the
DataSet and cache it for longer periods of time. Both approaches complement each other,
and in most web applications you’ll use a combination of the two.

SQL Server
.NET Provider

OLE DB
.NET Provider

Oracle
.NET Provider

ODBC
.NET Provider

Connection SqlConnection OleDbConnection OracleConnection OdbcConnection

Command SqlCommand OleDbCommand OracleCommand OdbcCommand

DataReader SqlDataReader OleDbDataReader OracleDataReader OdbcDataReader

DataAdapter SqlDataAdapter OleDbDataAdapter OracleDataAdapter OdbcDataAdapter

MacDonald.book Page 491 Friday, December 16, 2005 3:55 PM

492 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Direct Data Access
The easiest way to access data is to perform all your database operations directly and not
worry about maintaining disconnected information. This model is closest to traditional
ADO programming, and it allows you to sidestep potential concurrency problems, which
occur when multiple users try to update information at once. It’s also well suited to
ASP.NET web pages, which don’t need to store disconnected information for long periods
of time. Remember, an ASP.NET web page is loaded when the page is requested and shut
down as soon as the response is returned to the user. That means a page typically has a
lifetime of only a few seconds.

With simple data access, a disconnected copy of the data isn’t retained. This means
that data selection and data modifications are performed separately. Your program must
keep track of the changes that need to be committed to the data source. For example, if a
user deletes a record, you need to explicitly specify that record using a SQL Delete
statement.

Simple data access is ideal if you need only to read information or if you need to perform
only simple update operations, such as adding a record to a log or allowing a user to modify
values in a single record (for example, the customer information for an e-commerce site).
Simple data access may not be as useful if you want to modify several different records or
tables at the same time.

To retrieve information with simple data access, follow these steps:

1. Create Connection, Command, and DataReader objects.

2. Use the DataReader to retrieve information from the database, and display it in a
control on a web form.

3. Close your connection.

4. Send the page to the user. At this point, the information your user sees and the
information in the database no longer have any connection, and all the ADO.NET
objects have been destroyed.

To add or update information, follow these steps:

1. Create new Connection and Command objects.

2. Execute the Command (with the appropriate SQL statement).

This chapter demonstrates both of these approaches. Figure 13-8 shows a high-level
look at how the ADO.NET objects interact to make direct data access work.

MacDonald.book Page 492 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 493

Figure 13-8. Direct data access with ADO.NET

Importing the Namespaces

Before continuing, make sure you import the ADO.NET namespaces. In this chapter,
we assume you’re using the SQL Server provider, in which case you need these two
namespace imports:

���	K ������
*���L

���	K ������
*���
�������	�L

If you’re using Visual Studio, you’ll find that the using statement for the System.Data
namespace is automatically added to your web page files. However, you’ll still need to
import the namespace for your specific provider (in this case, System.Data.SqlClient).

Creating a Connection
Before you can retrieve or update data, you need to make a connection to the data source.
Generally, connections are limited to some fixed number, and if you exceed that number
(either because you run out of licenses or because your database server can’t accommo-
date the user load), attempts to create new connections will fail. For that reason, you
should try to hold a connection open for as short a time as possible. You should also write
your database code inside a try/catch error handling structure so that you can respond if
an error does occur and make sure you close the connection even if you can’t perform all
your work.

MacDonald.book Page 493 Friday, December 16, 2005 3:55 PM

494 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

When creating a Connection object, you need to specify a value for its Connection-
String property. This ConnectionString defines all the information the computer needs to
find the data source, log in, and choose an initial database. Out of all the details in the
examples in this chapter, the ConnectionString is the one value you might have to tweak
before it works for the database you want to use. Luckily, it’s quite straightforward. Here’s
an example that uses a connection string to connect to SQL Server through the OLE DB
provider:

%��*���		�����	 ����		�����	 2 	�� %��*���		�����	CDL

����		�����	
��		�����	���	K 2 M5�����2�N�%��*+
6L*��� �����2���������LM O

 M4	����� ������K25���L4	��K���� �������2��54ML

For optimum performance, you should use the SqlConnection object from the SQL
Server provider instead. The connection string for the SqlConnection object is quite sim-
ilar and just omits the Provider setting:

�����		�����	 ����		�����	 2 	�� �����		�����	CDL

����		�����	
��		�����	���	K 2 M*��� �����2���������LM O

 M4	����� ������K25���L4	��K���� �������2��54ML

And if you’re using SQL Server 2005 Express Edition, your connection string will
include an instance name, as shown here:

�����		�����	 ����		�����	 2 	�� �����		�����	CDL

����		�����	
��		�����	���	K 2 M*��� �����2���������������������LM O

 M4	����� ������K25���L4	��K���� �������2��54ML

■Note When you add the instance name in C#, you must add two backslash characters, as in
localhost\\SQLEXPRESS. This is because a single backslash is interpreted as a special character. However,
if you define the connection string in a configuration file, as described in the next section, you need only one
backslash, because you’re no longer dealing with pure C# code.

MacDonald.book Page 494 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 495

The Connection String

The connection string is actually a series of distinct pieces of information separated by
semicolons (;). In the preceding example, the connection string identifies the following
pieces of information:

Data source: This indicates the name of the server where the data source is located. If
the server is on the same computer that hosts the ASP.NET site, localhost is sufficient.
The only exception is if you’re using a named instance of SQL Server. For example, if
you’ve installed SQL Server 2005 Express Edition, you’ll need to use the data source
localhost\SQLEXPRESS, because the instance name is SQLEXPRESS.

Initial catalog: This is the name of the database that this connection will be access-
ing. It’s only the “initial” database because you can change it later by using the
Connection.ChangeDatabase() method.

Integrated security: This indicates you want to connect to SQL Server using the Win-
dows user account that’s running the web page code. Alternatively, you can supply a
user ID and password that’s defined in the database for SQL Server authentication.

ConnectionTimeout: This determines how long your code will wait, in seconds, before
generating an error if it cannot establish a database connection. Our example connec-
tion string doesn’t set the ConnectionTimeout, so the default of 15 seconds is used.
You can use 0 to specify no limit, but this is a bad idea. This means that, theoretically,
the code could be held up indefinitely while it attempts to contact the server.

You can set some other, lesser-used options for a connection string. For more informa-
tion, refer to the .NET Help files. Look under the appropriate Connection object (such as
SqlConnection or OleDbConnection).

Windows Authentication

The previous example uses integrated Windows authentication, which is the default secu-
rity standard for new SQL Server installations. You can also use SQL Server authentication.
In this case, you will explicitly place the user ID and password information in the connec-
tion string. However, SQL Server authentication is disabled by default in SQL Server 2000
and SQL Server 2005, because it’s not considered to be as secure.

MacDonald.book Page 495 Friday, December 16, 2005 3:55 PM

496 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Here’s the lowdown on both types of authentication:

• With SQL Server authentication, SQL Server maintains its own user account infor-
mation in the database. It uses this information to determine whether you are
allowed to access specific parts of a database.

• With integrated Windows authentication, SQL Server automatically uses the Win-
dows account information for the currently logged-in process. In the database, it
stores information about what database privileges each user should have.

■Tip You can set what type of authentication your SQL Server uses using a tool such as Enterprise
Manager. Just right-click your server in the tree, which will be named (local), and select Properties. Choose
the Security tab to change the type of authentication. You can choose either Windows Only or SQL Server and
Windows, which allows both Windows authentication and SQL Server authentication. This option is also
known as mixed-mode authentication.

For Windows authentication to work, the currently logged-on Windows user must have
the required authorization to access the SQL database. This isn’t a problem while you test
your websites, because Visual Studio launches your web applications using your user
account. However, when you deploy your application to a web server running IIS, you
might run into trouble. In this situation, all ASP.NET code is run by a more limited user
account that might not have the rights to access the database. (See Chapter 12 for the full
details.) In this case, you’ll need to grant database access to this account, or your web
pages will receive a security error whenever they try to connect to the database.

Connection String Tips

Typically, all the database code in your application will use the same connection string.
For that reason, it usually makes the most sense to store a connection string in a class
member variable or, even better, a configuration file:

���	K ��		�����	���	K 2 M

ML

MacDonald.book Page 496 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 497

You can also create a Connection object and supply the connection string in one step
by using a different constructor:

�����		�����	 ����		�����	 2 	�� �����		�����	C��		�����	���	KDL

�� ����		�����	
��		�����	���	K �� 	�� ��� �� ��		�����	���	K

You don’t need to hard-code a connection string. The <connectionStrings> section of
the web.config file is a handy place to store your connection strings. Here’s an example:

8��	��K�����	 -��	�2M��������������
��������
����
:����	��K�����	��9
7M;

 8��		�����	���	K�;

 8��� 	���2M5���M ��		�����	���	K2

M*��� �����2���������L4	����� ������K25���L4	��K���� �������2��54M�;

 8���		�����	���	K�;

8���	��K�����	;

You can then retrieve your connection string by name from the WebConfiguration-
Manager.ConnectionStrings collection, like so:

���	K ��		�����	���	K 2

 '����	��K�����	&�	�K�
��		�����	���	K�!M5���M"
��		�����	���	KL

This approach helps to ensure all your web pages are using the same connection string.
It also makes it easy for you to change the connection string for an application, without
needing to edit the code in multiple pages. The examples in this chapter all store their
connection strings in the web.config file in this way.

Making the Connection

Before you can use a connection, you have to explicitly open it, as shown here:

����		�����	
%��	CDL

To verify that you have successfully connected to the database, you can try displaying
some basic connection information. The following example writes some basic informa-
tion to a Label control named lblInfo (see Figure 13-9).

MacDonald.book Page 497 Friday, December 16, 2005 3:55 PM

498 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Here’s the code using a try/catch error handling block:

�� *���	� ��� .*%
:�� ��		�����	 ��P���

���	K ��		�����	���	K 2 M*��� �����2���������QQ�N��R5$���L4	�����

������K25���LML

�����		�����	 ����		�����	 2 	�� �����		�����	C��		�����	���	KDL

��

S

 �� �� �� ���	 ��� ��		�����	

 ����		�����	
%��	CDL

 ���4	��
��-� 2 M8�;���� H����	�8��; M O ����		�����	
����H����	L

 ���4	��
��-� O2 M8� �;8�;��		�����	 4��8��; M O

 ����		�����	
�����
�����	KCDL

T

����� C�-������	 �D

S

 �� (�	��� �	 �� �� ��������	K ��� �	�������	

 ���4	��
��-� 2 M�� ����	K ��� ��������
 ML

 ���4	��
��-� O2 �
&����K�L

T

��	����

S

 �� ����� ���1 ��A� ��� ��� ��		�����	 �� ������ ������

 �� C���	 �� ��� ��		�����	 ���	3� ���	�� ������������1

 �� �����	K �����CD ��	3� ����� �	 ��
D

 ����		�����	
�����CDL

 ���4	��
��-� O2 M8� �;8�;:�� ��		�����	 4��8��; ML

 ���4	��
��-� O2 ����		�����	
�����
�����	KCDL

T

MacDonald.book Page 498 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 499

Figure 13-9. Testing your connection

Once you use the Open() method, you have a live connection to your database. One
of the most fundamental principles of data access code is that you should reduce the
amount of time you hold a connection open as much as possible. Imagine that as soon as
you open the connection, you have a live, ticking time bomb. You need to get in, retrieve
your data, and throw the connection away as quickly as possible in order to ensure your
site runs efficiently.

Closing a connection is just as easy, as shown here:

����		�����	
�����CDL

Another approach is to use the C# using statement. The using statement declares that
you are using a disposable object for a short period of time. As soon as you finish using
that object and the using block ends, the common language runtime will release it imme-
diately by calling the Dispose() method. Here’s the basic structure of the using block:

���	K C��P���D

S

T

MacDonald.book Page 499 Friday, December 16, 2005 3:55 PM

500 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

It just so happens that calling the Dispose() method of a connection object is equiva-
lent to calling Close(). That means you can shorten your database code with the help of a
using block. The best part is that you don’t need to write a finally block—the using state-
ment releases the object you’re using even if you exit the block as the result of an
unhandled exception.

Here’s how you could rewrite the earlier example with a using block:

�����		�����	 ����		�����	 2 	�� �����		�����	C��		�����	���	KDL

���	K C����		�����	D

S

 �� �� �� ���	 ��� ��		�����	

 ����		�����	
%��	CDL

 ���4	��
��-� 2 M8�;���� H����	�8��; M O ����		�����	
����H����	L

 ���4	��
��-� O2 M8� �;8�;��		�����	 4��8��; M O

 ����		�����	
�����
�����	KCDL

T

���4	��
��-� O2 M8� �;8�;:�� ��		�����	 4��8��; ML

���4	��
��-� O2 ����		�����	
�����
�����	KCDL

Defining a Select Command
The Connection object provides a few basic properties that supply information about
the connection, but that’s about all. To actually retrieve data, you need a few more
ingredients::

• A SQL statement that selects the information you want

• A Command object that executes the SQL statement

• A DataReader or DataSet object to catch the retrieved records

Command objects represent SQL statements. To use a Command, you define it, specify
the SQL statement you want to use, specify an available connection, and execute the
command.

You can use one of the earlier SQL statements, as shown here:

��������	� �������	� 2 	�� ��������	�CDL

�������	�
��		�����	 2 ����		�����	L

�������	�
�����	���-� 2 M������ 0 #$%& .�����ML

Or you can use the constructor as a shortcut:

��������	� �������	� 2 	�� ��������	�CM������ 0 #$%& .�����M1 ����		�����	DL

MacDonald.book Page 500 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 501

The process is identical for the SqlCommand:

��������	� �������	� 2 	�� ��������	�CM������ 0 #$%& .�����M1 ����		�����	DL

■Note It’s also a good idea to dispose of the Command object when you’re finished, although it isn’t as crit-
ical as closing the Connection object.

Using a Command with a DataReader

Once you’ve defined your command, you need to decide how you want to use it. The sim-
plest approach is to use a DataReader, which allows you to quickly retrieve all your results.
The DataReader uses a live connection and should be used quickly and then closed. The
DataReader is also extremely simple. It supports fast-forward-only read-only access to
your results, which is generally all you need when retrieving information. Because of the
DataReader’s optimized nature, it provides better performance than the DataSet. It
should always be your first choice for simple data access.

Before you can use a DataReader, make sure you’ve opened the connection:

����		�����	
%��	CDL

To create a DataReader, you use the ExecuteReader() method of the command object,
as shown here:

�� ,�� ��	3� 	��� ��� 	�� A�����1 �� ��� �����	� ���� ����� ��� *���$����

���*���$���� ��$����L

��$���� 2 �������	�
�-�����$����CDL

These two lines of code define a DataReader object and then create it by executing your
command. Once you have the reader, you retrieve a single row at a time using the Read
method:

��$����
$���CDL �� ��� ���� �� �	 ��� ����� ��� �� 	�� ���������

You can then access the values in the current row using the corresponding field names.
The following example adds an item to a list box with the first name and last name for the
current row:

���:����
4����
.��C��$����!M��)�	���M" O M1 M O ��$����!M��)�	���M"DL

To move to the next row, use the Read() method again. If this method returns true, a
row of information has been successfully retrieved. If it returns false, you’ve attempted to
read past the end of your result set. There is no way to move backward to a previous row.

Each field is stored as a generic object. This means you’ll often need to explicitly cast
fields to the data type you need. In the preceding code statement, no problem occurs

MacDonald.book Page 501 Friday, December 16, 2005 3:55 PM

502 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

because the C# compiler realizes that you’re joining strings because it sees the snippet of
literal text (", ") in the expression. If this hint wasn’t provided, you’d receive a compile-
time error, which you could easily correct using casting syntax or the ToString() method,
as shown here:

���:����
4����
.��C��$����!M��)�	���M"
�����	KCDDL

As soon as you’ve finished reading all the results you need, close the DataReader and
Connection:

��$����
�����CDL

����		�����	
�����CDL

Putting It All Together

The next example demonstrates how you can use all the ADO.NET ingredients together to
create a simple application that retrieves information from the Authors table. You can
select an author record by last name using a drop-down list box, as shown in Figure 13-10.

Figure 13-10. Selecting an author

MacDonald.book Page 502 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 503

The full record is then retrieved and displayed in a simple label, as shown in Figure 13-11.

Figure 13-11. Author information

Filling the List Box

To start, the connection string is defined as a private variable for the page class and
retrieved from the connection string:

������ ���	K ��		�����	���	K 2

 '����	��K�����	&�	�K�
��		�����	���	K�!M5���M"
��		�����	���	KL

The list box is filled when the Page.Load event occurs. Because the list box is set to per-
sist its view state information, this information needs to be retrieved only once, the first
time the page is displayed. It will be ignored on all postbacks.

Here’s the code that fills the list from the database:

�������� ���� 5�K�)����C%�P��� ��	��1 ���	�.K� �D

S

 �� CU����
4�5���+��AD

 S

 #���.��������CDL

 T

T

MacDonald.book Page 503 Friday, December 16, 2005 3:55 PM

504 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

������ ���� #���.��������CD

S

 ���.����
4����
����CDL

 �� *���	� ��� ������ �������	�

 �� ���� ������ �� �	�������	 �� 	������ ��� �	���� ��

 �� �	� ��� ���� �	� ���� 	���

 ���	K �������N� 2 M������ ��)�	���1 ��)�	���1 ��)�� #$%& .�����ML

 �� *���	� ��� .*%
:�� ��P����

 �����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

 ��������	� ��� 2 	�� ��������	�C�������N�1 ��	DL

 ���*���$���� ����L

 �� �� �� ���	 �������� �	� ��� �	�������	

 ��

 S

 ��	
%��	CDL

 ���� 2 ���
�-�����$����CDL

 �� #� ���� ����1 ��� ��� ����� 	��� �� ��� ���������

 �� ���� ��- ��-�1 �	� ���� ��� �	���� 4* �	 ��� H���� ������

 ����� C����
$���CDD

 S

 ����4��� 	��4��� 2 	�� ����4���CDL

 	��4���
��-� 2 ����!M��)�	���M" O M1 M O ����!M��)�	���M"L

 	��4���
H���� 2 ����!M��)��M"
�����	KCDL

 ���.����
4����
.��C	��4���DL

 T

 ����
�����CDL

 T

 ����� C�-������	 �D

 S

 ���$������
��-� 2 M�� ����	K ���� �� 	����
 ML

 ���$������
��-� O2 �
&����K�L

 T

MacDonald.book Page 504 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 505

 ��	����

 S

 ��	
�����CDL

 T

T

This example looks more sophisticated than the previous bite-sized snippets in this
chapter, but it really doesn’t introduce anything new. It uses the standard Connection,
Command, and DataAdapter objects. The Connection is opened inside an error handling
block so that your page can handle any unexpected errors and provide information. A
finally block makes sure the connection is properly closed, even if an error occurs.

The actual code for reading the data uses a loop. With each pass, the Read() method is
called to get another row of information. When the reader has read all the available infor-
mation, this method will return false, the while condition will evaluate to false, and the
loop will end gracefully.

The unique ID (the value in the au_id field) is stored in the Value property of the list box
for reference later. This is a crucial ingredient that is needed to allow the corresponding
record to be queried again. If you tried to build a query using the author’s name, you
would need to worry about authors with the same name. You would also have the addi-
tional headache of invalid characters (such as the apostrophe in O’Leary) that would
invalidate your SQL statement.

Retrieving the Record

The record is retrieved as soon as the user changes the selection in the list box. To make
this possible, the AutoPostBack property of the list box is set to true so that its change
events are detected automatically.

�������� ���� ���.����)��������4	��-���	K��C%�P��� ��	��1 ���	�.K� �D

S

 �� ����� � ������ �������	� ���� ������� �� � ����

 �� ������	K ��� �������� ����� 4* ��� ��� H���� ������

 ���	K �������N�L

 �������N� 2 M������ 0 #$%& .����� ML

 �������N� O2 M'(�$� ��)��23M O ���.����
��������4���
H���� O M3ML

 �� *���	� ��� .*%
:�� ��P����

 �����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

 ��������	� ��� 2 	�� ��������	�C�������N�1 ��	DL

 ���*���$���� ����L

MacDonald.book Page 505 Friday, December 16, 2005 3:55 PM

506 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

 �� �� �� ���	 �������� �	� ��� �	�������	

 ��

 S

 ��	
%��	CDL

 ���� 2 ���
�-�����$����CDL

 ����
$���CDL

 ���$������
��-� 2 M8�;M O ����!M��)�	���M"L

 ���$������
��-� O2 M1 M O ����!M��)�	���M" O M8��;8� �;ML

 ���$������
��-� O2 M5��	�� M O ����!M���	�M" O M8� �;ML

 ���$������
��-� O2 M.������ M O ����!M������M" O M8� �;ML

 ���$������
��-� O2 M����� M O ����!M����M" O M8� �;ML

 ���$������
��-� O2 M������ M O ����!M�����M" O M8� �;ML

 ����
�����CDL

 T

 ����� C�-������	 �D

 S

 ���$������
��-� 2 M�� K����	K �����
 ML

 ���$������
��-� O2 �
&����K�L

 T

 ��	����

 S

 �� C���� U2 	���D ����
�����CDL

 ��	
�����CDL

 T

T

The process is similar to the procedure used to retrieve the last names. There are only
a couple of differences:

• The code dynamically creates a SQL statement based on the selected item in the
drop-down list box. It uses the Value property of the selected item, which stores the
unique identifier. This is a common (and useful) technique.

• Only one record is read. The code assumes that only one author has the matching
au_id, which is reasonable as this field is unique.

MacDonald.book Page 506 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 507

■Note This example shows how ADO.NET works to retrieve a simple result set. Of course, ADO.NET also
provides handy controls that go beyond this generic level and let you provide full-featured grids with sorting
and editing. These controls are described in Chapter 14 and Chapter 15. For now, you should concentrate on
understanding the fundamentals about ADO.NET and how it works with data.

Updating Data
Now that you understand how to retrieve data, it isn’t much more complicated to perform
simple delete and update operations. Once again, you use the Command object, but this
time you don’t need a DataReader because no results will be retrieved. You also don’t use
a SQL Select command. Instead, you use one of three new SQL commands: Update,
Insert, or Delete.

To execute an Update, Insert, or Delete statement, you need to create a Command
object. You can then execute the command with the ExecuteNonQuery() method. This
method returns the number of rows that were affected, which allows you to check your
assumptions. For example, if you attempt to update or delete a record and are informed
that no records were affected, you probably have an error in your Where clause that is pre-
venting any records from being selected. (If, on the other hand, your SQL command has a
syntax error or attempts to retrieve information from a nonexistent table, an exception
will occur.)

Enhancing the Author Page

To demonstrate how to Update, Insert, and Delete simple information, the previous exam-
ple has been enhanced. Instead of being displayed in a label, the information from each
field is added to a separate text box. Two additional buttons allow you to update the record
(Update) or delete it (Delete). You can also insert a new record by clicking Create New,
entering the information in the text boxes, and then clicking Insert New. Figure 13-12 shows
the updated web page.

MacDonald.book Page 507 Friday, December 16, 2005 3:55 PM

508 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Figure 13-12. A more advanced author manager

The record selection code is identical from an ADO.NET perspective, but it now uses
the individual text boxes:

�������� ���� ���.����)��������4	��-���	K��C%�P��� ��	��1 ���	�.K� �D

S

 �� *���	� .*%
:�� ��P����

 ���	K �������N�L

 �������N� 2 M������ 0 #$%& .����� ML

 �������N� O2 M'(�$� ��)��23M O ���.����
��������4���
H���� O M3ML

 �����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

 ��������	� ��� 2 	�� ��������	�C�������N�1 ��	DL

 ���*���$���� ����L

MacDonald.book Page 508 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 509

 �� �� �� ���	 �������� �	� ��� �	�������	

 ��

 S

 ��	
%��	CDL

 ���� 2 ���
�-�����$����CDL

 ����
$���CDL

 �� #��� ��� ��	����

 �-�4*
��-� 2 ����!M��)��M"
�����	KCDL

 �-�#���:���
��-� 2 ����!M��)�	���M"
�����	KCDL

 �-�����:���
��-� 2 ����!M��)�	���M"
�����	KCDL

 �-�5��	�
��-� 2 ����!M���	�M"
�����	KCDL

 �-�.�����
��-� 2 ����!M������M"
�����	KCDL

 �-�����
��-� 2 ����!M����M"
�����	KCDL

 �-������
��-� 2 ����!M�����M"
�����	KCDL

 �-�V��
��-� 2 ����!MI��M"
�����	KCDL

 ��A��	����
����A�� 2 C����D����!M��	����M"L

 ����
�����CDL

 ���������
��-� 2 MML

 T

 ����� C�-������	 �D

 S

 ���������
��-� 2 M�� K����	K �����
 ML

 ���������
��-� O2 �
&����K�L

 T

 ��	����

 S

 ��	
�����CDL

 T

T

To see the full code, refer to the online samples for this chapter. If you play with the
example at length, you’ll notice that it lacks a few niceties that would be needed in a pro-
fessional website. For example, when creating a new record, the name of the last selected
user is still visible, and the Update and Delete buttons are still active, which can lead to
confusion or errors. A more sophisticated user interface could prevent these problems by
disabling inapplicable controls (perhaps by grouping them in a Panel control) or by using
separate pages. In this case, however, the page is useful as a quick way to test some basic
data access code.

MacDonald.book Page 509 Friday, December 16, 2005 3:55 PM

510 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Adding a Record

To start adding a new record, click Create New to blank the fields. Technically speaking,
this step isn’t required, but it simplifies the user’s life.

�������� ���� ���:��)����AC%�P��� ��	��1 ���	�.K� �D

S

 �-�4*
��-� 2 MML

 �-�#���:���
��-� 2 MML

 �-�����:���
��-� 2 MML

 �-�5��	�
��-� 2 MML

 �-�.�����
��-� 2 MML

 �-�����
��-� 2 MML

 �-������
��-� 2 MML

 �-�V��
��-� 2 MML

 ��A��	����
����A�� 2 �����L

 ���������
��-� 2 M����A 4	��� :�� �� ��� ��� ��������� ����
ML

T

The Insert New button performs the actual ADO.NET code to insert the finished record
using a dynamically generated Insert statement:

�������� ���� ���4	���)����AC%�P��� ��	��1 ���	�.K� �D

S

 �� 5���� ��������	�� ����A�

 �� .���	�������1 ��� ����� ��� $������#����H������� ��	����

 �� C�-�4*
��-� 22 MM // �-�#���:���
��-� 22 MM // �-�����:���
��-� 22 MMD

 S

 ���������
��-� 2 M$����� ����� �	 4*1 ���� 	���1 �	� ���� 	���
ML

 ���	L

 T

 �� *���	� .*%
:�� ��P����

 ���	K �	����N�L

 �	����N� 2 M4:��$� 4:�% .����� CML

 �	����N� O2 M��)��1 ��)�	���1 ��)�	���1 ML

 �	����N� O2 M���	�1 ������1 ����1 �����1 I��1 ��	����D ML

 �	����N� O2 MH.�B�� C3ML

 �	����N� O2 �-�4*
��-� O M31 3ML

 �	����N� O2 �-�#���:���
��-� O M31 3ML

 �	����N� O2 �-�����:���
��-� O M31 3ML

MacDonald.book Page 510 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 511

 �	����N� O2 �-�5��	�
��-� O M31 3ML

 �	����N� O2 �-�.�����
��-� O M31 3ML

 �	����N� O2 �-�����
��-� O M31 3ML

 �	����N� O2 �-������
��-� O M31 3ML

 �	����N� O2 �-�V��
��-� O M31 3ML

 �	����N� O2 ��	���
4	�6FC��A��	����
����A��D O M3DML

 �����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

 ��������	� ��� 2 	�� ��������	�C�	����N�1 ��	DL

 �� �� �� ���	 ��� �������� �	� �-����� ��� ������

 �	� ����� 2 7L

 ��

 S

 ��	
%��	CDL

 ����� 2 ���
�-�����:�	N���CDL

 ���������
��-� 2 �����
�����	KCD O M ����� �	�����
ML

 T

 ����� C�-������	 �D

 S

 ���������
��-� 2 M�� �	����	K ����
 ML

 ���������
��-� O2 �
&����K�L

 T

 ��	����

 S

 ��	
�����CDL

 T

 �� 4� ��� �	��� ���������1 ����� ��� ����� ����

 �� C����� ; 7D

 S

 #���.��������CDL

 T

T

If the insert fails, the problem will be reported to the user in a rather unfriendly way
(see Figure 13-13). This is typically the result of not specifying valid values. In a more pol-
ished application, you would use validators (as shown in Chapter 8) and provide more
useful error messages. If the insert operation is successful, the page is updated with the
new author list.

MacDonald.book Page 511 Friday, December 16, 2005 3:55 PM

512 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Figure 13-13. A failed insertion

Creating More Robust Commands

The previous example performed its database work using a dynamically pasted-together
SQL string. This off-the-cuff approach is great for quickly coding database logic, and it’s
easy to understand. However, it has two potentially serious drawbacks:

• Users may accidentally enter characters that will affect your SQL statement. For
example, if a value contains an apostrophe ('), the pasted-together SQL string will
no longer be valid.

• Users might deliberately enter characters that will affect your SQL statement. Exam-
ples include using the single apostrophe to close a value prematurely and then
following the value with additional SQL code.

MacDonald.book Page 512 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 513

The second of these is known as SQL injection attack, and it facilitates an amazingly
wide range of exploits. Crafty users can use SQL injection attacks to do anything from
returning additional results (such as the orders placed by other customers) or even exe-
cuting additional SQL statements (such as deleting every record in another table in
the same database). In fact, SQL Server includes a special system stored procedure that
allows users to execute arbitrary programs on the computer, so this vulnerability can be
extremely serious!

You could address these problems by carefully validating the supplied input and
checking for dangerous characters such as apostrophes. One approach is to sanitize your
input by doubling all apostrophes in the user input (in other words, replace ' with '').
Here’s an example:

���	K �����4* 2 �-�4*
��-�
$������CM3M1 M33MDL

A much more robust and convenient approach is to use a parameterized command. A
parameterized command is one that replaces hard-coded values with placeholders. The
placeholders are then added separately and automatically encoded.

For example, this SQL statement:

������ 0 #$%& �������� '(�$� �������4* 2 3.�#?43

would become this:

������ 0 #$%& �������� '(�$� �������4* 2 W�������4*

The syntax used for parameterized commands differs from provider to provider. For the
SQL Server provider, parameterized commands used named placeholders, with unique
names. You can use any name you want, as long as it begins with the @ character. Usually,
you’ll choose a parameter name that matches the field name (such as @CustomerID for the
CustomerID value in the previous example). The OLE DB provider uses a different syntax. It
requires that each hard-coded value is replaced with a question mark. Parameters aren’t
identified by name but by their position in the SQL string.

������ 0 #$%& �������� '(�$� �������4* 2 X

In either case, you need to supply a Parameter object for each parameter, which you insert
in the Command.Parameters collection. In OLE DB, you must make sure you add the param-
eters in the same order they appear in the SQL string. In SQL Server this isn’t a requirement,
because the parameters are matched to the placeholders based on their name.

The following example rewrites the insert code of the record author manager example
with a parameterized command:

�������� ���� ���4	���)����AC%�P��� ��	��1 ���	�.K� �D

S

 �� 5���� ��������	�� ����A�

 �� C�-�4*
��-� 22 MM // �-�#���:���
��-� 22 MM // �-�����:���
��-� 22 MMD

MacDonald.book Page 513 Friday, December 16, 2005 3:55 PM

514 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

 S

 ���������
��-� 2 M$����� ����� �	 4*1 ���� 	���1 �	� ���� 	���
ML

 ���	L

 T

 �� *���	� .*%
:�� ��P����

 ���	K �	����N�L

 �	����N� 2 M4:��$� 4:�% .����� CML

 �	����N� O2 M��)��1 ��)�	���1 ��)�	���1 ML

 �	����N� O2 M���	�1 ������1 ����1 �����1 I��1 ��	����D ML

				
�������	��	�������	���

				
�������	��	�����
��	���������	���� ����	��

				
�������	��	��!"#��	��������	�$
�%�	������	�&
!�	�$#����$�'��

 �����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

 ��������	� ��� 2 	�� ��������	�C�	����N�1 ��	DL

				((���	�"	!�������)

				$��)��������)���*
�"�� �������
���	�+�,-).+�'�

				$��)��������)���*
�"�� �������������	�+�/
���0��).+�'�

				$��)��������)���*
�"�� �������������	�+�����0��).+�'�

				$��)��������)���*
�"�� ����!"#���	�+��"#�).+�'�

				$��)��������)���*
�"�� ������������	�+�������).+�'�

				$��)��������)���*
�"�� ����$
�%��	�+�1
�%).+�'�

				$��)��������)���*
�"�� ����������	�+�����).+�'�

				$��)��������)���*
�"�� ����&
!��	�+�2
!).+�'�

				$��)��������)���*
�"�� ����$#����$���	

						1#�3��).#,��45�$"61#����$�)1"$6�''�

 �� �� �� ���	 ��� �������� �	� �-����� ��� ������

 �	� ����� 2 7L

 ��

 S

 ��	
%��	CDL

 ����� 2 ���
�-�����:�	N���CDL

 ���������
��-� 2 �����
�����	KCD O M ����� �	�����
ML

 T

 ����� C�-������	 �D

 S

 ���������
��-� 2 M�� �	����	K ����
 ML

 ���������
��-� O2 �
&����K�L

 T

MacDonald.book Page 514 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 515

 ��	����

 S

 ��	
�����CDL

 T

 �� 4� ��� �	��� ���������1 ����� ��� ����� ����

 �� C����� ; 7D

 S

 #���.��������CDL

 T

T

For basic security, it’s recommended that you always use parameterized commands.
In fact, many of the most infamous attacks on e-commerce websites weren’t fueled by
hard-core hacker knowledge but were made using simple SQL injection by modifying val-
ues in web pages or query strings.

Updating a Record

When the user clicks the Update button, the information in the text boxes is applied to the
database as follows:

�������� ���� ���B�����)����AC%�P��� ��	��1 ���	�.K� �D

S

 �� *���	� .*%
:�� ��P����

 ���	K �������N�L

 �������N� 2 MB5*.�� .����� ��� ML

 �������N� O2 M��)��2W��)��1 ��)�	���2W��)�	���1 ��)�	���2W��)�	���1 ML

 �������N� O2 M���	�2W���	�1 ������2W������1 ����2W����1 �����2W�����1 ML

 �������N� O2 MI��2WI��1 ��	����2W��	����ML

 �������N� O2 M'(�$� ��)��2W��)��)��K�	��ML

 �����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

 ��������	� ��� 2 	�� ��������	�C�������N�1 ��	DL

				((���	�"	!�������)

				$��)��������)���*
�"�� �������
���	�+�,-).+�'�

				$��)��������)���*
�"�� �������������	�+�/
���0��).+�'�

				$��)��������)���*
�"�� �������������	�+�����0��).+�'�

				$��)��������)���*
�"�� ����!"#���	�+��"#�).+�'�

				$��)��������)���*
�"�� ������������	�+�������).+�'�

				$��)��������)���*
�"�� ����$
�%��	�+�1
�%).+�'�

				$��)��������)���*
�"�� ����������	�+�����).+�'�

				$��)��������)���*
�"�� ����&
!��	�+�2
!).+�'�

MacDonald.book Page 515 Friday, December 16, 2005 3:55 PM

516 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

				$��)��������)���*
�"�� ����$#����$���		

						1#�3��).#,��45�$"61#����$�)1"$6�''�

				$��)��������)���*
�"�� �������
��#�
7
�� ��	

						 �����"#�)� $��,��)�� �'�

 �� �� �� ���	 �������� �	� �-����� ��� ������

 ��

 S

 ��	
%��	CDL

 �	� ������� 2 ���
�-�����:�	N���CDL

 ���������
��-� 2 �������
�����	KCD O M ����� �������
ML

 T

 ����� C�-������	 �D

 S

 ���������
��-� 2 M�� ������	K �����
 ML

 ���������
��-� O2 �
&����K�L

 T

 ��	����

 S

 ��	
�����CDL

 T

T

The update code is similar to the record selection code. The main differences are
as follows:

• No DataReader is used, because no results are returned.

• A dynamically generated Update command is used for the Command object. It
selects the corresponding author records, and changes all the fields to correspond
to the values entered in the text boxes.

• The ExecuteNonQuery() method returns the number of affected records. This infor-
mation is displayed in a label to confirm to the user that the operation was
successful.

Deleting a Record

When the user clicks the Delete button, the author information is removed from the
database. The number of affected records is examined, and if the Delete operation was
successful, the FillAuthorList() function is called to refresh the page.

MacDonald.book Page 516 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 517

�������� ���� ���*�����)����AC%�P��� ��	��1 ���	�.K� �D

S

 �� *���	� .*%
:�� ��P����

 ���	K �������N�L

 �������N� 2 M*����� #$%& .����� ML

 �������N� O2 M'(�$� ��)��2W��)��ML

 �����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

 ��������	� ��� 2 	�� ��������	�C�������N�1 ��	DL

				$��)��������)���*
�"�� �������
�	��	 �����"#�)� $��,��)�� �'�

 �� �� �� ���	 ��� �������� �	� ������ ��� ����

 �	� ������� 2 7L

 ��

 S

 ��	
%��	CDL

 ������� 2 ���
�-�����:�	N���CDL

 T

 ����� C�-������	 �D

 S

 ���������
��-� 2 M�� ������	K �����
 ML

 ���������
��-� O2 �
&����K�L

 T

 ��	����

 S

 ��	
�����CDL

 T

 �� 4� ��� ������ ���������1 ����� ��� ����� ����

 �� C������� ; 7D

 S

 #���.��������CDL

 T

T

Interestingly, delete operations rarely succeed with the records in the pubs database,
because they have corresponding child records linked in another table of the pubs data-
base. Specifically, each author can have one or more related book titles. Unless the
author’s records are removed from the TitleAuthor table first, the author cannot be
deleted. Because of the careful error handling used in the previous example, this problem
is faithfully reported in your application (see Figure 13-14) and doesn’t cause any real
problems.

MacDonald.book Page 517 Friday, December 16, 2005 3:55 PM

518 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Figure 13-14. A failed delete attempt

To get around this limitation, you can use the Create New and Insert New buttons to
add a new record and then delete this record. Because this new record won’t be linked to
any other records, its deletion will be allowed.

Disconnected Data Access
With disconnected data, you need to code a little differently. First, you’ll make your
changes through the DataSet rather than with direct commands. Also, you’ll need to
watch for the problems that can occur if more than one user attempts to make conflicting
changes at the same time or if you need to commit changes to multiple tables. In this sim-
ple one-page scenario, disconnected data access won’t present much of a problem. If,
however, you use disconnected data access to make a number of changes and commit
them all at once, you’re more likely to run into trouble.

MacDonald.book Page 518 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 519

With disconnected data access, a copy of the data is retained in memory while your
code is running. Changes are tracked automatically using the built-in features of the
DataSet object. Figure 13-15 shows a model of the DataSet.

Figure 13-15. The data modeling objects

You fill the DataSet in much the same way that you connect a DataReader. However,
although the DataReader holds a live connection, information in the DataSet is always
disconnected.

Selecting Disconnected Data

The following example shows how you could rewrite the FillAuthorList() subroutine to
use a DataSet instead of a DataReader. The changes are highlighted in bold.

������ ���� #���.��������CD

S

 ���.����
4����
����CDL

MacDonald.book Page 519 Friday, December 16, 2005 3:55 PM

520 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

 �� *���	� .*%
:�� ��P����

 ���	K �������N�L

 �������N� 2 M������ ��)�	���1 ��)�	���1 ��)�� #$%& .�����ML

 �����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

 ��������	� ��� 2 	�� ��������	�C�������N�1 ��	DL

				�8 -������!��	���!��	�	�9	�8 -������!���$��'�

				-�����	!�:�	�	�9	-������'�

 �� �� �� ���	 �������� �	� ��� �	�������	

 ��

 S

 ��	
%��	CDL

								((� 	�"	
��#����
#�	
�	���������	9
�"	#�	$#�����)

								���!��)/
 �!�:��	����"#���'�

 T

 ����� C�-������	 �D

 S

 ���������
��-� 2 M�� ����	K ���� �� 	����
 ML

 ���������
��-� O2 �
&����K�L

 T

 ��	����

 S

 ��	
�����CDL

 T

				�#��$"	�-����#9	�#9	
�	!�:�).�: �;����"#���<)�#9�'

				=

 ����4��� 	��4��� 2 	�� ����4���CDL

								�9,��).+�	�	�#9;���� ����<	�	��	�	�	

										�#9;���������<�

								�9,��)�� �	�	�#9;����
��<).#���
�7�'�

 ���.����
4����
.��C	��4���DL

				>

T

To fill a DataSet, you always use a DataAdapter. Every DataAdapter can hold four com-
mands: SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand. This
allows you to use a single DataAdapter object for multiple tasks. The Command object sup-
plied in the constructor is automatically assigned to the DataAdapter.SelectCommand
property. Figure 13-16 shows how the DataAdapter interacts with your web application.

MacDonald.book Page 520 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 521

Figure 13-16. Using a DataSet with ADO.NET

The DataAdapter.Fill() method takes a DataSet and inserts one table of information. In
this case, the table is named Authors, but any name could be used. That name is used later
to access the appropriate table in the DataSet.

To access the individual DataRows, you can loop through the Rows collection of the
appropriate table. Each piece of information is accessed using the field name, as it was
with the DataReader.

Selecting Multiple Tables

A DataSet can contain as many tables as you need, and you can even add relationships
between the tables to better emulate the underlying relational data source. Unfortu-
nately, you have no way to connect tables together automatically based on relationships
in the underlying data source. However, you can add relations with a few extra lines of
code, as shown in the next example.

In the pubs database, authors are linked to titles using three tables. This arrangement
(called a many-to-many relationship, shown in Figure 13-17) allows several authors to be
related to one title and several titles to be related to one author. Without the intermediate

MacDonald.book Page 521 Friday, December 16, 2005 3:55 PM

522 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

TitleAuthor table, the database would be restricted to a one-to-many relationship, which
would allow only a single author for each title.

Figure 13-17. A many-to-many relationship

In an application, you would rarely need to access these tables individually. Instead,
you would need to combine information from them in some way (for example, to find out
what author wrote a given book). On its own, the Titles table indicates only the author ID.
It doesn’t provide additional information such as the author’s name and address. To link
this information together, you can use a special SQL Select statement called a Join query.
Alternatively, you can use the features built into ADO.NET, as demonstrated in this
section.

The next example provides a simple page that lists authors and the titles they have
written. The interesting thing about this page is that it’s generated using ADO.NET table
linking.

To start, the standard ADO.NET data access objects are created, including a DataSet.
All these steps are performed in a custom CreateList() method, which is called from the
Page.Load event handler so that the output is created when the page is first generated.

�� *���	� .*%
:�� ��P����

���	K �������N� 2 M������ ��)�	���1 ��)�	���1 ��)�� #$%& .�����ML

�����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

��������	� ��� 2 	�� ��������	�C�������N�1 ��	DL

���*���.����� ������ 2 	�� ���*���.�����C���DL

*������ ��5��� 2 	�� *������CDL

Next, the information for all three tables is pulled from the database and placed in the
DataSet. This task could be accomplished with three separate Command objects, but to
make the code a little leaner, this example uses only one and modifies the CommandText
property as needed.

MacDonald.book Page 522 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 523

��

S

 ��	
%��	CDL

 ������
#���C��5���1 M.�����MDL

 �� ���� �����	� �� ����� ��	A�� �� ��� ���� ������

 ���
�����	���-� 2 M������ ��)��1 �����)�� #$%& �����.����ML

 ������
#���C��5���1 M�����.����MDL

 �� ���� �����	� �� ����� ��	A�� �� ��� ���� ������

 ���
�����	���-� 2 M������ �����)��1 ����� #$%& ������ML

 ������
#���C��5���1 M������MDL

T

����� C�-������	 �D

S

 �������
��-� 2 M�� ����	K ���� �� 	����
 ML

 �������
��-� O2 �
&����K�L

T

��	����

S

 ��	
�����CDL

T

Now that all the information is in the DataSet, you can create two DataRelation objects to
make it easier to navigate through the linked information. In this case, these DataRelation
objects match the foreign key restrictions that are defined in the database.

To create a DataRelation, you need to specify the linked fields from two different
tables, and you need to give your DataRelation a unique name. The order of the linked
fields is important. The first field is the parent, and the second field is the child. (The idea
here is that one parent can have many children, but each child can have only one parent.
In other words, the parent-to-child relationship is another way of saying a one-to-many
relationship.) In this example, each book title can have more than one entry in the
TitleAuthor table. Each author can also have more than one entry in the TitleAuthor table.

*���$������	 ������)�����.���� 2 	�� *���$������	CM������)�����.����M1

 ��5���
������!M������M"
�����	�!M�����)��M"1

 ��5���
������!M�����.����M"
�����	�!M�����)��M"DL

*���$������	 .�����)�����.���� 2 	�� *���$������	CM.�����)�����.����M1

 ��5���
������!M.�����M"
�����	�!M��)��M"1

 ��5���
������!M�����.����M"
�����	�!M��)��M"DL

MacDonald.book Page 523 Friday, December 16, 2005 3:55 PM

524 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Once you’ve create these DataRelation objects, you must add them to the DataSet:

��5���
$������	�
.��C������)�����.����DL

��5���
$������	�
.��C.�����)�����.����DL

The remaining code loops through the DataSet. However, unlike the previous example,
which moved through one table, this example uses the DataRelation objects to branch to
the other linked tables. It works like this:

1. Select first record from the Author table.

2. Using the Authors_TitleAuthor relationship, find the child records that correspond
to this author. This step uses the GetChildRows method of the DataRow.

3. For each matching record in TitleAuthor, look up the corresponding Title record to
get the full text title. This step uses the GetParentRows method of the DataRow.

4. Move to the next Author record, and repeat the process.

The code is lean and economical:

������ C*���$�� ��.���� �	 ��5���
������!M.�����M"
$���D

S

 �������
��-� O2 M8� �;8�;M O ��.����!M��)�	���M"L

 �������
��-� O2 M M O ��.����!M��)�	���M" O M8��;8� �;ML

 ������ C*���$�� �������.���� �	

 ��.����
Y�������$���C.�����)�����.����DD

 S

 ������ C*���$�� ������� �	

 �������.����
Y��5��	�$���C������)�����.����DD

 S

 �������
��-� O2 MZ	���LZ	���LML

 �������
��-� O2 �������!M�����M" O M8� �;ML

 T

 T

T

Figure 13-18 shows the final result.

MacDonald.book Page 524 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 525

Figure 13-18. Hierarchical information from two tables

If authors and titles have a simple one-to-many relationship, you could leave out the
inner foreach statement and use simpler code, as follows:

������ C*���$�� ��.���� �	 ��5���
������!M.�����M"
$���

S

 �� *������ �����

 ������ C*���$�� ������� �	 ��.����
Y�������$���C.�����)������D

 S

 �� *������ �����

 T

T

MacDonald.book Page 525 Friday, December 16, 2005 3:55 PM

526 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

However, having seen the more complicated example, you’re ready to create and
manage multiple DataRelation objects on your own.

■Note Using a DataRelation implies certain restrictions. For example, if you try to create a child row that
refers to a nonexistent parent, ADO.NET will generate an error. Similarly, you can’t delete a parent that has
linked children records. These restrictions are already enforced by the data source, but by adding them to the
DataSet, you ensure that they will be enforced by ADO.NET as well. This technique can allow you to catch
errors as soon as they occur rather than waiting until you attempt to commit changes to the data source.

Modifying Disconnected Data

You can easily modify the information in the DataSet. The only complication is that these
changes aren’t committed until you update the data source with a DataAdapter object.

Updating and deleting rows are two of the most common changes you’ll make to a
DataSet. They are also the easiest. The following example modifies one author’s last name.
You can place this logic into a function and call it multiple times to swap the last name back
and forth.

������ C*���$�� ��.���� �	 ��5���
������!M.�����M"
$���D

S

 �� C��.����!M��)�	���M"
�����	KCD 22 M+�		��MD

 S

 ��.����!M��)�	���M" 2 M�����	ML

 T

 ���� �� C��.����!M��)�	���M"
�����	KCD 22 M�����	MD

 S

 ��.����!M��)�	���M" 2 M+�		��ML

 T

T

Deleting a record is just as easy:

������ C*���$�� ��.���� �	 ��5���
������!M.�����M"
$���D

S

 �� C��.����!M��)�	���M" 22 M�����MD

 S

 ��.����
*�����CDL

 T

T

MacDonald.book Page 526 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 527

Alternatively, if you know the exact position of a record, you can modify or delete it
using the index number rather than enumerating through the collection:

��5���
������!M.�����M"
$���!�"
*�����CDL

The DataSet is always disconnected. Any changes you make will appear in your pro-
gram but won’t affect the original data source unless you take additional steps. In fact,
when you use the Delete method, the row isn’t actually removed, only marked for dele-
tion. (If the row were removed entirely, ADO.NET would be unable to find it and delete it
from the original data source when you reconnect later.)

If you use the Delete() method, you need to be aware of this and take steps to avoid try-
ing to use deleted rows, as follows:

������ C*���$�� �� �	 ��5���
������!M.�����M"
$���D

S

 �� C��
$������� U2 *���$�������
*������D

 S

 �� 4�3� %? �� ������� ��� �� �����1 ������ ��1 � ��� ��

 T

 ����

 S

 �� ���� ���� �� ��������� �� �������	

 �� ,�� ������ P��� �K	�� ��

 T

T

If you try to read a field of information from a deleted item, an error will occur. As
warned earlier, life with disconnected data isn’t always easy.

■Note You can use the DataSet.Rows.Remove() method to delete a record completely. However, if you use
this method, the record won’t be deleted from the data source when you reconnect and update it with your
changes. Instead, it will just be eliminated from your DataSet.

Adding Information to a DataSet

You can also add a new row using the Add() method of the Rows collection. Before you can
add a row, however, you need to use the NewRow() method first to get a blank copy. The
following example uses this technique with the original web page for viewing and adding
authors:

*���$�� ��:��L

��:�� 2 ��5���
������!M.�����M"
:��$��CDL

MacDonald.book Page 527 Friday, December 16, 2005 3:55 PM

528 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

��:��!M��)��M" 2 �-�4*
��-�L

��:��!M��)�	���M" 2 �-�#���:���
��-�L

��:��!M��)�	���M" 2 �-�����:���
��-�L

��:��!M���	�M" 2 �-�5��	�
��-�L

��:��!M������M" 2 �-�.�����
��-�L

��:��!M����M" 2 �-�����
��-�L

��:��!M�����M" 2 �-������
��-�L

��:��!MI��M" 2 �-�V��
��-�L

��:��!M��	����M" 2 ��	��
��4	�6FC��A��	����
����A��DL

��5���
������!M.�����M"
$���
.��C��:��DL

The full code needed to update the data source with these changes is included a little
later in this chapter, in the “A Disconnected Update Example” section.

Updating Disconnected Data
Earlier, you saw how the DataAdapter object allows you to retrieve information. Unlike
the DataReader, DataAdapter objects can transfer data in both directions.

Updating the data source is a more complicated operation than reading from it. Depend-
ing on the changes that have been made, the DataAdapter may need to perform Insert,
Update, or Delete operations. Luckily, you don’t need to create these Command objects by
hand. Instead, you can use ADO.NET’s special utility class: the CommandBuilder object.
Each provider includes its own CommandBuilder. SqlCommandBuilder is the class used
with the SQL Server provider, and SqlCommandBuilder is used with the OLE DB provider.

The CommandBuilder

The CommandBuilder examines the DataAdapter object you used to create the DataSet,
and it adds the additional Command objects for the InsertCommand, DeleteCommand,
and UpdateCommand properties. The process works like this:

�� ����� ��� �����	�+�����

��������	�+����� �� 2 	�� ��������	�+�����C������DL

�� $������ �	 ������� *���.�����

������ 2 ��
*���.�����L

MacDonald.book Page 528 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 529

■Note Using a CommandBuilder is a convenient approach, but it’s not always ideal. That’s because you
have no real control over the commands that the CommandBuilder generates. If you want to tweak these
commands to optimize performance (for example, using a stored procedure) or to enforce different types of
concurrency, you’ll need to create your Command objects by hand. For more information about getting into
the nitty-gritty details of ADO.NET, consult one of the books referenced at the end of this chapter.

Updating a DataTable

With the correctly configured DataAdapter, you can update the data source using the
Update() method. Here’s the code to commit the changes for the Authors table:

��	
%��	CDL

�	� ���.������� 2 ������
B�����C��5���1 M.�����MDL

��	
�����CDL

If you need to update more than one table, you’ll need to create a separate
DataAdapter for each table. You must then use the CommandBuilder to configure
the DataAdapter so that it has the commands required to update the given table. You
can then open the connection, use the Update() method of each DataAdapter, and close
the connection.

The DataSet stores information about the current state of all the rows and their original
state. This allows ADO.NET to find the changed rows. It adds every new row (rows with
the state DataRowState.Added) with the DataAdapter.InsertCommand. It removes every
deleted row (DataRowState.Deleted) using the DataAdapter.DeleteCommand. It also updates
every changed row (DataRowState.Modified) with the DataAdapter.UpdateCommand. There
is no guaranteed order in which these operations will take place. Once the update is success-
fully completed, all rows will be reset to DataRowState.Unchanged.

■Tip If you use the DataAdapter.Update() method without opening the connection, the connection will be
opened automatically and closed once the update is complete. However, it’s usually best to explicitly control
when the connection is opened and closed. That allows you more flexibility. For example, you could open the
connection once and perform two operations, rather than opening the connection separately for each table
you want to update.

MacDonald.book Page 529 Friday, December 16, 2005 3:55 PM

530 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

Controlling Updates

If you used linked tables, the standard way of updating the data source can cause some
problems, particularly if you’ve deleted or added records. These problems occur because
changes usually aren’t committed in the same order they were made. (To provide this
type of tracking, the DataSet object would need to store much more information and
waste valuable memory on the server.)

You can control the order in which tables are updated, but that’s not always enough to
prevent a conflict. For example, if you update the Authors table first, ADO.NET might try
to delete an Author record before it deletes the TitleAuthor record that is still using it.
It you update the TitleAuthor table first, ADO.NET might try to create a TitleAuthor that
references a nonexistent Title. At some point, ADO.NET may be enhanced with the intel-
ligence needed to avoid these problems, provided you use DataRelations. Currently, you
need to resort to other techniques for more fine-grained control.

Using features built into the DataSet, you can pull out the rows that need to be added,
modified, or deleted into separate DataSets and choose an update order that will not
place the database into an inconsistent state at any point. Generally, you can safely
update a database by performing all the record inserts, followed by all the modifications,
and then all the deletions. Each time you perform one of these stages (insert, update, or
deletions), start with the child tables, and then update the parent table.

By using the DataSet.GetChanges() method, you can implement this exact pattern:

�� ����� ���� *�������1 �	� ���� ���� ��� ��5���

*������ ��:�� 2 ��5���
Y�����	K��C*���$�������
.����DL

*������ ��&����� 2 ��5���
Y�����	K��C*���$�������
&�������DL

������ ������� 2 ��5���
Y�����	K��C*���$�������
*�����DL

�� B����� ����� *������� ���������
 $������1 ���� *������ ��� ���� ������U

�� .��� 	��� ���� ��� ��� �������	 �� ��� .����� �	� ������ ������

�� ���� �� ����� ��� ����� ��� ��� �������	 �� ��� �����.���� �����

.�����.�����
B�����C��:��1 M.�����MDL

������.�����
B�����C��:��1 M������MDL

�.).�����
B�����C��:��1 M�����.����MDL

.�����.�����
B�����C��&�����1 M.�����MDL

������.�����
B�����C��&�����1 M������MDL

�.).�����
B�����C��&�����1 M�����.����MDL

.�����.�����
B�����C��*�����1 M.�����MDL

������.�����
B�����C��*�����1 M������MDL

������.�����
B�����C��*�����1 M�����.����MDL

MacDonald.book Page 530 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 531

This adds a layer of complexity and a significant amount of extra code. However, in
cases where you make many different types of modifications to several different tables at
once, this is the only solution. To avoid these problems, you can commit changes earlier
(rather than committing an entire batch of changes at once), or you can use Command
objects directly instead of relying on the disconnected data features of the DataSet.
Batched updates are almost always more trouble than they’re worth in a web application.
(On the other hand, they are indispensable in some desktop applications that need to
work with data even when a network connection isn’t present.)

A Disconnected Update Example

The next example rewrites the code for adding a new author in the update page
with equivalent DataSet code. You can find this example in the online samples as
AuthorManager_Disconnected.aspx. (AuthorManager.aspx is the original, command-
based version.)

�������� ���� ���4	���)����AC%�P��� ��	��1 ���	�.K� �D

S

 �� *���	� .*%
:�� ��P����

 ���	K �������N�L

 �������N� 2 M������ 0 #$%& .�����ML

 �����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

 ��������	� ��� 2 	�� ��������	�C�������N�1 ��	DL

 ���*���.����� ������ 2 	�� ���*���.�����C���DL

 *������ ��5��� 2 	�� *������CDL

 �� Y�� ��� ������ �	�������	

 ��

 S

 ��	
%��	CDL

 ������
#���������C��5���1 ����������
&�����1 M.�����MDL

 T

 ����� C�-������	 �D

 S

 ���$������
��-� 2 M�� ����	K ������
 ML

 ���$������
��-� O2 �
&����K�L

 T

 ��	����

 S

 ��	
�����CDL

 T

MacDonald.book Page 531 Friday, December 16, 2005 3:55 PM

532 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

 *���$�� ��:��L

 ��:�� 2 ��5���
������!M.�����M"
:��$��CDL

 ��:��!M��)��M" 2 �-�4*
��-�L

 ��:��!M��)�	���M" 2 �-�#���:���
��-�L

 ��:��!M��)�	���M" 2 �-�����:���
��-�L

 ��:��!M���	�M" 2 �-�5��	�
��-�L

 ��:��!M������M" 2 �-�.�����
��-�L

 ��:��!M����M" 2 �-�����
��-�L

 ��:��!M�����M" 2 �-������
��-�L

 ��:��!MI��M" 2 �-�V��
��-�L

 ��:��!M��	����M" 2 ��	���
��4	�6FC��A��	����
����A��DL

 ��5���
������!M.�����M"
$���
.��C��:��DL

 �� 4	��� ��� 	�� ����

 �	� ����� 2 7L

 ��

 S

 �� ����� ��� �����	�+�����

 ��������	�+����� �� 2 	�� ��������	�+�����C������DL

 �� $������ �	 ������� *���.�����

 ������ 2 ��
*���.�����L

 �� B����� ��� �������� ���	K ��� *������

 ��	
%��	CDL

 ����� 2 ������
B�����C��5���1 M.�����MDL

 T

 ����� C�-������	 �D

 S

 ���$������
��-� 2 M�� �	����	K ����
 ML

 ���$������
��-� O2 �
&����K�L

 T

 ��	����

 S

 ��	
�����CDL

 T

 �� 4� ��� �	��� ���������1 ����� ��� ����� ����

 �� C����� ; 7D

 S

 #���.��������CDL

 T

T

MacDonald.book Page 532 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 533

In this case, the example is quite, inefficient. To add a new record, a DataSet needs to
be created, with the required tables and a valid row. To retrieve information about what
this row should look like, the DataAdapter. FillSchema() method is used. The FillSchema()
method creates a table with no rows but with other information about the table, such as
the name of each field and the requirements for each column (the data type, the maxi-
mum length, any restriction against null values, and so on). If you wanted, you could use
the FillSchema() method followed by the Fill() method.

After this step, the information is entered into a new row in the DataSet, the Data-
Adapter is updated with the CommandBuilder, and the changes are committed to the
database. The whole operation took two database connections and required the use of a
DataSet that was then abruptly abandoned. In this scenario, disconnected data is proba-
bly an extravagant solution to a problem that would be better (and more efficiently)
solved with ordinary Command objects.

■Tip Many database tables use identity columns that increment automatically. For example, an alternate
design of the Authors table might use au_id as an auto-incrementing column. In this case, the database would
automatically assign a unique ID to each inserted author record. When adding new authors, you wouldn’t
specify any value for the au_id field; instead, this number would be generated when the changes are commit-
ted to the database.

Concurrency Problems

As you discovered earlier, ADO.NET maintains information in the DataSet about the cur-
rent and the original value of every piece of information in the DataSet. When updating a
row, ADO.NET searches for a row that matches every “original” field exactly and then
updates it with the new values. If another user changes even a single field in that record
while your program is working with the disconnected data, an exception is thrown. The
update operation is then halted, potentially preventing other valid rows from being
updated.

You can handle these potential problems in an easier way: using the Data-
Adapter.RowUpdated event. This event occurs after every individual insert, update, or
delete operation, but before an exception is thrown. It gives you the chance to examine
the results, note any errors, and prevent an error from occurring.

The first step is to create an appropriate event handler for the DataAdapter.Row-
Updated event, as follows:

�������� ���� %	$��B������C%�P��� ��	��1 ���$��B���������	�.K� �D

S

 �� ����A ������ �	� ����� ��� ��������

 �� 4� 	� ����� ��� ��������1 ��� �������	� ���	3� �-����� �� �-������

MacDonald.book Page 533 Friday, December 16, 2005 3:55 PM

534 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

 �� C�
$�����.������� 8 6D

 S

 �� #�	� ��� ��� ���� �� ������ ��

 ������ C�
�������	�����D

 S

 ���� �������	�����
*������

 ������
4����
.��CM:�� �������� M O �
$��!M��)��M"DL

 ���AL

 ���� �������	�����
4	����

 ������
4����
.��CM:�� �	������ M O �
$��!M��)��M"DL

 ���AL

 ���� �������	�����
B������

 ������
4����
.��CM:�� �������� M O �
$��!M��)��M"DL

 ���AL

 T

 �� B��	K ��� %���*�$��B���������	�.K� �����1 ��� ��	 ���� .*%
:��

 �� �� �K	�� ��� ������ �	� A��� ������	K ��� ���� ���

 �
������ 2 B�����������
�A�����	�$��L

 T

T

The SqlRowUpdatedEventArgs object provides this event handler with information
about the row that ADO.NET just attempted to modify (e.Row), the type of modification
(e.StatementType), and the result (e.RecordsAffected). In this example, errors are
detected, and information about the unsuccessfully updated rows is added to a list con-
trol. Now that the problem has been noted, the e.Status property can be used to instruct
ADO.NET to continue updating other changed rows in the DataSet.

Remember, this event occurs while the DataAdapter is in mid-update and using a live
database connection. For that reason, you should not try to perform anything too compli-
cated or time-consuming in this event handler. Instead, quickly log or display the errors
and continue.

Now that the event handler has been created, you need to attach it to the DataSet
before your perform the update. You connect this event the same way you connect the
web control events:

�� ��		��� ��� ���	� ��	���

������
$��B������ O2 	�� ���$��B���������	�(�	���C%	$��B������DL

�� 5���� ��� ������

�	� ���.������� 2 ������
B�����C��5���1 M.�����MDL

MacDonald.book Page 534 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 535

A Concurrency Example

It can be hard to test the code you write to deal with concurrency problems, because it’s
executed only in specific circumstances. These circumstances may be common for a fully
deployed large-scale application, but they’re more difficult to re-create when a single
developer is doing the testing.

The ConcurrencyHandler.aspx file in the online samples simulates a concurrency
problem by making invalid changes to a database using two separate DataSets. When the
code attempts to commit these changes, the OnRowUpdated code springs into action and
reports the problem (see Figure 13-19).

The full-page code is as follows:

������ ������ ����� ��	���	��(�	��� � 5�K�

S

 �� ��		�����	 ���	K ���� �� ��� ��		�����	�

 ������ ��		�����	���	K 2

 '����	��K�����	&�	�K�
��		�����	���	K�!M5���M"
��		�����	���	KL

 ������ ���� %	$��B������C%�P��� ��	��1 ���$��B���������	�.K� �D

 S

 �� ����A ������ �	� ����� ��� ��������

 �� C�
$�����.������� 8 6D

 S

 �� #�	� ��� ��� ���� �� ������ ��

 ������ C�
�������	�����D

 S

 ���� �������	�����
*������

 ���$�����
��-� O2 M8� �;:�� �������� ML

 ���AL

 ���� �������	�����
4	����

 ���$�����
��-� O2 M8� �;:�� �	������ ML

 ���AL

 ���� �������	�����
B������

 ���$�����
��-� O2 M8� �;:�� �������� ML

 ���AL

 T

 ���$�����
��-� O2 MCM O �
$��!M��)��M" O M M O �
$��!M��)�	���M"L

 ���$�����
��-� O2 M1 M O �
$��!M��)�	���M" O MDML

MacDonald.book Page 535 Friday, December 16, 2005 3:55 PM

536 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

 �� ��	��	�� �������	K

 �
������ 2 B�����������
�A�����	�$��L

 T

 T

 �������� ���� �������)����AC%�P��� ��	��1 ���	�.K� �D

 S

 ���$�����
��-� 2 MML

 �� *���	� .*%
:�� ��P����

 ���	K �������N� 2 M������ 0 #$%& .�����ML

 �����		�����	 ��	 2 	�� �����		�����	C��		�����	���	KDL

 ��������	� ��� 2 	�� ��������	�C�������N�1 ��	DL

 ���*���.����� ������ 2 	�� ���*���.�����C���DL

 �� ����� ��� �����	�+�����

 ��������	�+����� �� 2 	�� ��������	�+�����C������DL

 �� $������ �	 ������� *���.�����

 ������ 2 ��
*���.�����L

 �� ��		��� ��� ���	� ��	���

 ������
$��B������ O2 	�� ���$��B���������	�(�	���C%	$��B������DL

 �� ����� ��� *�������

������ �� ��	������	K ����

 *������ ��5���6 2 	�� *������CDL

 *������ ��5���9 2 	�� *������CDL

 ��

 S

 ��	
%��	CDL

 �� #��� ���� *������� ���� ��� ���� �����

 ������
#���C��5���61 M.�����MDL

 ������
#���C��5���91 M.�����MDL

 �� M#���M ��� ��	���� ����� �	 ��� ���� �� �� ��5���6

 �� CC����D��5���6
������!7"
$���!7"!M��	����M" 22 ���D

 S

 ��5���6
������!7"
$���!7"!M��	����M" 2 �����L

 T

MacDonald.book Page 536 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A L S 537

 ����

 S

 ��5���6
������!7"
$���!7"!M��	����M" 2 ���L

 T

 �� B����� ��� ��������

 ������
B�����C��5���61 M.�����MDL

 �� &�A� � ���	K� �	 ��� ����	� *������

 ��5���9
������!7"
$���!7"!M��)�	���M" 2 M+���ML

 ��5���9
������!7"
$���!7"!M��)�	���M" 2 MY����ML

 �� �� �� ������ ���� ��
 ���	 ����K� ����� ���	K�� ��	3� ��	�����1

 �� ��� ������ ���� ���� ������� ��� �� ��� ���	 ���	K��

 ������
B�����C��5���91 M.�����MDL

 T

 ����� C�-������	 �D

 S

 ���$�����
��-� O2 M�� ����	K ������
 ML

 ���$�����
��-� O2 �
&����K�L

 T

 ��	����

 S

 ��	
�����CDL

 T

 T

T

Figure 13-19. Reporting concurrency problems

MacDonald.book Page 537 Friday, December 16, 2005 3:55 PM

538 C H A P T E R 1 3 ■ A D O . N E T F U N D A M E N T A LS

The Last Word
The chapter gave you a comprehensive introduction to ADO.NET and its new discon-
nected data model. Although you’ve seen all the core concepts, you still have much more
to learn. For a comprehensive book that focuses exclusively on ADO.NET, you may be
interested in a book such as Microsoft ADO.NET 2.0: Core Reference (Microsoft Press,
2005), which investigates some of the techniques you can use to optimize ADO.NET data
access code.

In the next two chapters, you’ll learn about ASP.NET’s new data binding features and
see how you can use them with a little ADO.NET code to write practical data-driven pages.

DIRECT COMMANDS OR THE DATASET—WHICH WORKS BEST?

As you’ve seen in this chapter, ADO.NET gives you two ways to solve the same problems. Direct commands
are the leanest, most straightforward approach, and they sidestep some of the headaches you’ll face with dis-
connected data. On the other hand, DataSets really shine when you need to work with more than one related
table, and they also work well with the data binding techniques you’ll use in Chapter 14 and Chapter 15.
Which one you use depends on the situation, but in many cases, both approaches will work equally well.

The key fact you should realize is that the simpler approach—using direct commands—often makes
perfect sense. Overeager .NET converts sometimes try to use the DataSet everywhere, needlessly complicat-
ing life. But if you’re happy with forward-only, read-only data and you don’t need to convert your data to XML
or send it to another component, there’s no embarrassment in using ADO.NET’s DataReader.

MacDonald.book Page 538 Friday, December 16, 2005 3:55 PM

539

■ ■ ■

C H A P T E R 1 4

Data Binding

In the previous chapter, you learned how to use ADO.NET to retrieve information from
a database, how to work with an ASP.NET application, and how to apply your changes to
the original data source. These techniques are flexible and powerful, but they aren’t
always convenient.

For example, you can use the DataSet or the DataReader to retrieve rows of infor-
mation, format them individually, and add them to an HTML table on a web page. Con-
ceptually, this isn’t too difficult. However, it still requires a lot of repetitive code to move
through the data, format columns, and display it in the correct order. Repetitive code may
be easy, but it’s also error-prone, difficult to enhance, and unpleasant to read. Fortu-
nately, ASP.NET adds a feature that allows you to skip this process and pop data directly
into HTML elements and fully formatted controls. It’s called data binding.

Introducing Data Binding
The basic principle of data binding is this: you tell a control where to find your data and
how you want it displayed, and the control handles the rest of the details. Data binding in
ASP.NET is superficially similar to data binding in the world of desktop or client/server
applications, but in truth, it’s fundamentally different. In those environments, data bind-
ing involves creating a direct connection between a data source and a control in an
application window. If the user changes a value in the on-screen control, the data in the
linked database is modified automatically. Similarly, if the database changes while the
user is working with it (for example, another user commits a change), the display can be
refreshed automatically.

This type of data binding isn’t practical in the ASP.NET world, because you can’t effec-
tively maintain a database connection over the Internet. This “direct” data binding also
severely limits scalability and reduces flexibility. In fact, data binding has acquired a bad
reputation for exactly these reasons.

ASP.NET data binding, on the other hand, has little in common with direct data bind-
ing. ASP.NET data binding works in one direction only. Information moves from a data
object into a control. Then the data objects are thrown away, and the page is sent to the

MacDonald.book Page 539 Friday, December 16, 2005 3:55 PM

540 C H A P T E R 1 4 ■ D A T A B I N D I N G

client. If the user modifies the data in a data-bound control, your program can update the
corresponding record in the database, but nothing happens automatically.

ASP.NET data binding is much more flexible than traditional data binding. Many of the
most powerful data binding controls, such as the Repeater, DataList, and GridView, allow
you to configure formatting options and even add repeating controls and buttons for each
record. This is all set up through special templates, which are a new addition to ASP.NET.
Templates are examined in detail in the next chapter.

Types of ASP.NET Data Binding

Two types of ASP.NET data binding exist: single-value binding and repeated-value bind-
ing. Single-value data binding is by far the simpler of the two, whereas repeated-value
binding provides the foundation for the most advanced ASP.NET data controls.

Single-Value, or “Simple,” Data Binding

You can use single-value data binding to add information anywhere on an ASP.NET
page. You can even place information into a control property or as plain text inside
an HTML tag. Single-value data binding doesn’t necessarily have anything to do with
ADO.NET. Instead, single-value data binding allows you to take a variable, property,
or expression and insert it dynamically into a page. Single-value binding also helps you
create templates for the rich data controls you’ll study in Chapter 15.

Repeated-Value, or “List,” Binding

Repeated-value data binding allows you to display an entire table or all the values from a
single field in a table. Unlike single-value data binding, this type of data binding requires a
special control that supports it. Typically, this will be a list control such as CheckBoxList or
ListBox, but it can also be a much more sophisticated control such as the GridView (which
is described in Chapter 15). You’ll know a control supports repeated-value data binding if
it provides a DataSource property. As with single-value binding, repeated-value binding
doesn’t necessarily need to use data from a database, and it doesn’t have to use the
ADO.NET objects. For example, you can use repeated-value binding to bind data from a
collection or an array.

How Data Binding Works

Data binding works a little differently depending on whether you’re using single-value or
repeated-value binding. In single-value binding, a data binding expression is inserted
into the HTML markup in the .aspx file (not the code-behind file). In repeated-value bind-
ing, data binding is configured by setting the appropriate control properties (typically in
the Page.Load event handler). You’ll see specific examples of both these techniques later
in this chapter.

MacDonald.book Page 540 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 541

Once you specify data binding, you need to activate it. You accomplish this task by
calling the DataBind() method. The DataBind() method is a basic piece of functionality
supplied in the Control class. It automatically binds a control and any child controls that
it contains. With repeated-value binding, you can use the DataBind() method of the spe-
cific list control you’re using. Alternatively, you can bind the whole page at once by calling
the DataBind() method of the current Page object. Once you call this method, all the data
binding expressions in the page are evaluated and replaced with the specified value.

Typically, you call the DataBind() method in the Page.Load event handler. If you forget
to use it, ASP.NET will ignore your data binding expressions, and the client will receive a
page that contains empty values.

This is a general description of the whole process. To really understand what’s happen-
ing, you need to work with some specific examples.

Single-Value Data Binding
Single-value data binding is really just a different approach to dynamic text. To use it, you
add special data binding expressions into your .aspx files. These expressions have the fol-
lowing format:

���������		
�����	�������

This may look like a script block, but it isn’t. If you try to write any code inside this tag,
you will receive an error. The only thing you can add is a valid data binding expression.
For example, if you have a public or protected variable on your page named Country, you
could write the following:

��������������

When you call the DataBind() method for the page, this text will be replaced with the
value for Country (for example, Spain). Similarly, you could use a property or a built-in
ASP.NET object as follows:

���������	������	�������	�����

This would substitute a string with the current browser name (for example, IE). In fact,
you can even call a public or protected function defined on your page or execute a simple
expression, provided it returns a result that can be converted to text and displayed on the
page. Thus, the following data binding expressions are all valid:

��������	������� !"���

����#�$��%�&�%'"���

����()����(�$�(*�
��(���

Remember, you place these data binding expressions in the HTML tags of your .aspx file.
This means if you’re relying on Visual Studio to manage your HTML code automatically,

MacDonald.book Page 541 Friday, December 16, 2005 3:55 PM

542 C H A P T E R 1 4 ■ D A T A B I N D I N G

you may have to venture into slightly unfamiliar territory. To examine how you can add a
data binding expression, and see why you might want to, it helps to review a simple
example.

A Simple Data Binding Example

This section shows a simple example of single-value data binding. The example has been
stripped to the bare minimum amount of detail needed to illustrate the concept.

You start with a special variable defined in your Page class, which is called
TransactionCount:

��+,
-�����
�,�-,�		�*
��,�!����
�.
���/�0���

1

���������-��.�
���2���	�-�
�������3

����44��5..
�
���,�-�.����
���.�"

6

Note that this variable must be designated as public or protected, not private.
Otherwise, ASP.NET will not be able to access it when it’s evaluating the data binding
expression.

Now, assume that this value is set in the Page.Load event handler using some database
lookup code. For testing purposes, the example skips this step and hard-codes a value:

�����-��.�7�
.�0���8��.��+9�-��	��.��:�;7���5��	��"

1

����44��<���-��,.��	��.���+�	��-�.������

����44����,��=������7�,���>���2���	�-�
��������"

����2���	�-�
��������?�#'3

����44�����-��7�����,,�����.����+
�.
��������		
��	�������������

������
	�!����
�.�"3

6

Two actions actually take place in this event handler: the TransactionCount variable is
set to 10, and all the data binding expressions on the page are bound. Currently, no data
binding expressions exist, so this method has no effect. Notice that this example uses the
this keyword to refer to the current page. You could just write DataBind() without the this
keyword, because the default object is the current Page object. However, using the this key-
word makes it a bit clearer what object is being used.

MacDonald.book Page 542 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 543

To make this data binding accomplish something, you need to add a data binding
expression. Usually, it’s easiest to add this value directly to the presentation code in the
.aspx file. If you’re using Notepad to create your ASP.NET pages, you won’t have any trou-
ble with this approach. If, on the other hand, you’re using Visual Studio to create your
controls, you can add a Label control and then configure the data binding expression in
the HTML view by clicking the Source button at the bottom of the web page design win-
dow (see Figure 14-1).

Figure 14-1. Source view in the web page designer

To add your expression, find the tag for the Label control. Modify the Text property as
shown in the following code.

��	�/8�+�,�
.?(,+,!����
-(������?(��7��(�@���A*
B�?(CA8����(�

2������������������	�
���������������	�-�
��	���.���

 �	�����������������	
������������	�����	������	������

�4�	�/8�+�,�

This example uses two separate data binding expressions, which are inserted along
with the normal static text. The first data binding expression references the Transaction-
Count variable, and the second uses the built-in Request object to determine some
information about the user’s browser. When you run this page, the output looks like
Figure 14-2.

MacDonald.book Page 543 Friday, December 16, 2005 3:55 PM

544 C H A P T E R 1 4 ■ D A T A B I N D I N G

Figure 14-2. The result of data binding

The data binding expressions have been automatically replaced with the appropriate
values. If the page is posted back, you could use additional code to modify TransactionCount,
and as long as you call the DataBind() method, that information will be popped into the page
in the data binding expression you’ve defined.

If, however, you forget to call the DataBind() method, the data binding expressions will
be ignored, and the user will see a somewhat confusing window that looks like Figure 14-3.

Figure 14-3. The non-data-bound page

You also need to be a little careful with your data-bound control in the design environ-
ment so that you don’t inadvertently clear a data binding expression by entering different
values in the Properties window.

MacDonald.book Page 544 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 545

■Note When using single-value data binding, you need to consider when you should call the DataBind()
method. For example, if you made the mistake of calling it before you set the TransactionCount variable, the
corresponding expression would just be converted to 0. Remember, data binding is a one-way street. This
means changing the TransactionCount variable after you’ve used the DataBind() method won’t produce any
visible effect. Unless you call the DataBind() method again, the displayed value won’t be updated.

Simple Data Binding with Properties

The previous example uses a data binding expression to set static text information inside
a label tag. However, you can also use single-value data binding to set other types of infor-
mation on your page, including control properties. To do this, you simply have to know
where to put the data binding expression.

For example, consider the following page, which defines a variable named URL and
uses it to point to a picture in the application directory:

��+,
-�����
�,�-,�		�!����
�.
����,�/�0���

1

������+,
-�	��
�����83

���������-��.�7�
.�0���8��.�D+9�-��	��.��:�;7���5��	��"

����1

����������8�?�*��7���E��0����(�
-�����9��("3

����������
	�!����
�.�"3

����6

6

You can now use this URL to create a label, as shown here:

��	�/8�+�,�
.?(,+,!����
-(������?(��7��(������������4�	�/8�+�,�

You can also use it for a check box caption:

��	�/���-=����
.?(-�=!����
-(�2���?(����������(������?(��7��(�4�

Or you can use it for a target for a hyperlink:

��	�/F����,
�=�
.?(,�=!����
-(�2���?(�,
-=�����G(���7
������,?(����������(�

������?(��7��(�4�

You can even use it for a picture:

��	�/ �����
.?(
��!����
-(�*�-?(����������(������?(��7��(�4�

MacDonald.book Page 545 Friday, December 16, 2005 3:55 PM

546 C H A P T E R 1 4 ■ D A T A B I N D I N G

The only trick is that you need to edit these control tags manually. Figure 14-4 shows
what a page that uses all these elements would look.

Figure 14-4. Multiple ways to bind the same data

To examine this example in more detail, try the sample code for this chapter.

Problems with Single-Value Data Binding

Before you start using single-value data binding techniques in every aspect of your
ASP.NET programs, you should consider some of the serious drawbacks this approach
can present:

Putting code into a page’s user interface: One of ASP.NET’s great advantages is that it
finally allows developers to separate the user interface code (the HTML and control
tags in the .aspx file) from the actual code used for data access and all other tasks (in the
code-behind file). However, overenthusiastic use of single-value data binding can
encourage you to disregard that distinction and start coding function calls and even
operations into your page. If not carefully managed, this can lead to complete disorder.

Fragmenting code: When using data binding expressions, it may not be obvious to
other developers where the functionality resides for different operations. This is partic-
ularly a problem if you blend both approaches (modifying the same control using a
data binding expression and then directly in code). Even worse, the data binding code
may have certain dependencies that aren’t immediately obvious. If the page code
changes, or a variable or function is removed or renamed, the corresponding data
binding expression could stop providing valid information without any explanation or
even an obvious error.

MacDonald.book Page 546 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 547

Of course, some developers love the flexibility of single-value data binding and use it to
great effect, making the rest of their code more economical and streamlined. It’s up to you
to be aware of (and avoid) the potential drawbacks.

■Note In one case, single-value data binding is quite useful—when building templates. Templates declare
a block of HTML that’s reused for each record in an entire table. However, they work only with certain rich
data controls, such as the GridView. You’ll learn more about this control in Chapter 15.

Using Code Instead of Simple Data Binding

If you decide not to use single-value data binding, you can accomplish the same thing
using code. For example, you could use the following event handler to display the same
output as the first label example:

�����-��.�7�
.�0���8��.�D+9�-��	��.��:�;7���5��	��"

1

����2���	�-�
��������?�#'3

����,+,!����
-�2����?�(2����������(�$�2���	�-�
��������2�*��
���"3

����,+,!����
-�2����$?�(����	�-�
��	���.����(3

����,+,!����
-�2����$?�(�	�����������������	
���(�$������	������	�������	��3

6

This code dynamically fills in the label without using data binding. The trade-off is
more code. Instead of importing ASP.NET code into the .aspx file, you end up doing the
reverse: importing the user interface (the specific text) into your code file!

■Tip As much as possible, stick to one approach for using dynamic text. If you decide to use data binding,
try to reduce the number of times you modify a control’s text in code. If you do both, you may end up confusing
others or just canceling your own changes! For example, if you call the DataBind() method on a control that
uses a data expression after changing its values in code, your data binding expression will not be used.

Repeated-Value Data Binding
Although using simple data binding is optional, repeated-value binding is so useful that
almost every ASP.NET application will want to use it somewhere. Repeated-value data
binding uses one of the special list controls included with ASP.NET. You link one of these
controls to a data list source (such as a field in a data table), and the control automatically

MacDonald.book Page 547 Friday, December 16, 2005 3:55 PM

548 C H A P T E R 1 4 ■ D A T A B I N D I N G

creates a full list using all the corresponding values. This saves you from having to write
code that loops through the array or data table and manually adds elements to a control.
Repeated-value binding can also simplify your life by supporting advanced formatting
and template options that automatically configure how the data should look when it’s
placed in the control.

To create a data expression for list binding, you need to use a list control that explicitly
supports data binding. Luckily, ASP.NET provides a whole collection, many of which
you’ve probably already used in other applications or examples:

ListBox, DropDownList, CheckBoxList, and RadioButtonList: These web controls
provide a list for a single-column of information.

HtmlSelect: This server-side HTML control represents the HTML <select> element and
works essentially the same way as the ListBox web control. Generally, you’ll use this
control only for backward compatibility or when upgrading an existing ASP page.

GridView, DetailsView, and FormView: These rich web controls allow you to provide
repeating lists or grids that can display more than one column (or field) of information
at a time. For example, if you were binding to a Hashtable (a special type of collection),
you could display both the key and the value of each item. If you were binding to a full-
fledged table in a DataSet, you could display multiple fields in any combination. These
controls offer the most powerful and flexible options for data binding.

With repeated-value data binding, you can write a data binding expression in your
.aspx file, or you can apply the data binding by setting control properties. In the case of the
simpler list controls, you’ll usually just set properties. Of course, you can set properties in
many ways, such as by using code in a code-behind file or by modifying the control tag in
the .aspx file, possibly with the help of Visual Studio’s Properties window. The approach
you take doesn’t matter. The important detail is that you don’t use any <%# expression %>
data binding expressions.

To continue any further with data binding, it helps to divide the subject into a few basic
categories. You’ll start by looking at data binding with the list controls.

Data Binding with Simple List Controls

In some ways, data binding to a list control is the simplest kind of data binding. You need
to follow only three steps:

1. Create and fill some kind of data object. You have numerous options, including an
Array, ArrayList, Collection, Hashtable, DataTable, and DataSet. Essentially, you
can use any type of collection that supports the IEnumerable interface, although
you’ll discover each class has specific advantages and disadvantages.

MacDonald.book Page 548 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 549

2. Link the object to the appropriate control. To do this, you need to set only a couple of
properties, including DataSource. If you’re binding to a full DataSet, you’ll also need
to set the DataMember property to identify the appropriate table you want to use.

3. Activate the binding. As with single-value binding, you activate data binding by
using the DataBind() method, either for the specific control or for all contained
controls at once by using the DataBind() method for the current page.

This process is the same whether you’re using the ListBox, the DropDownList, the
CheckBoxList, the RadioButtonList, or even the HtmlSelect control. All these controls pro-
vide the same properties and work the same way. The only difference is in the way they
appear on the final web page.

A Simple List Binding Example

To try this type of data binding, add a ListBox control to a new web page. Use the Page.Load
event handler to create an ArrayList collection to use as a data source as follows:

5����8
	��>��
��?�����5����8
	��"3

>��
��5..�(H
�
("3

>��
��5..�(0���("3

>��
��5..�(E����("3

>��
��5..�(�,��+����("3

>��
��5..�(5��
-��("3

>��
��5..�(������("3

>��
��5..�(0��-�("3

>��
��5..�(0,��("3

Now, you can link this collection to the ListBox control:

,	� ���	�!���*���-��?�>��
�3

Because an ArrayList is a straightforward, unstructured type of object, this is all the
information you need to set. If you were using a DataTable (which has more than one
field) or a DataSet (which has more than one DataTable), you would have to specify addi-
tional information.

To activate the binding, use the DataBind() method:

��
	�!����
�.�"3

You could also use lstItems.DataBind() to bind just the ListBox control. Figure 14-5
shows the resulting web page.

MacDonald.book Page 549 Friday, December 16, 2005 3:55 PM

550 C H A P T E R 1 4 ■ D A T A B I N D I N G

Figure 14-5. A data-bound list

This technique can save quite a few lines of code. This example doesn’t offer a lot of savings
because the collection is created just before it’s displayed. In a more realistic application,
however, you might be using a function that returns a ready-made collection to you:

5����8
	��>��
�3

>��
��?����@��
�	 �*��	���(*�����("3

In this case, it’s extremely simple to add the extra two lines needed to bind and display
the collection in the window:

,	� ���	�!���*���-��?�>��
�3

��
	�!����
�.�"3

Or you could even change it to the following, even more compact, code:

,	� ���	�!���*���-��?����@��
�	 �*��	���(*�����("3

��
	�!����
�.�"3

On the other hand, consider the extra trouble you would have to go through if you
didn’t use data binding. This type of savings compounds rapidly, especially when you
start combining data binding with multiple controls, advanced objects such as DataSets,
or advanced controls that apply formatting through templates.

Generic Collections

You can use data binding with the Hashtable and ArrayList, two of the more useful collec-
tion classes in the System.Collections namespace. However, as you learned in Chapter 3,
.NET 2.0 adds a new set of collections in another namespace—System.Collections.Generic.

MacDonald.book Page 550 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 551

These collections are ideal in cases where you want your collection to hold just a single type
of object (such as a string or an instance of a specific class). When you use the generic col-
lections, you choose the item type you want to use, and the collection object is “locked in”
to your choice (similar to how an array works). This means if you try to add another type of
object in your code, it results in a compile-time error. Similarly, when you pull an item from
the collection, you don’t need to write casting code to convert it to the right type, because
the compiler already knows what type of objects you’re using. This behavior is safer and
more convenient, and it’s what you’ll want most of the time.

To use a generic collection, you must import the right namespace:

�	
���*�	������,,�-�
��	������
-

The generic version of the ArrayList class is named List. Here’s how you create a List
collection object that can only store strings:

8
	��	��
����>��
��?�����8
	��	��
����"3

>��
��5..�(H
�
("3

>��
��5..�(0���("3

All you need to do is specify the type you want to use in angled brackets after the class
name when you declare and create the collection object. The List collection provides the
same basic methods as the ArrayList.

Multiple Binding

You can bind the same data list object to multiple different controls. Consider the follow-
ing example, which compares all the types of list controls at your disposal by loading them
with the same information:

�����-��.�7�
.�0���8��.�D+9�-��	��.��:�;7���5��	��"

1

����44����������.�>
,,�����-�,,�-�
���

����8
	��	��
����>��
��?�����8
	��	��
����"3

����>��
��5..�(H
�
("3

����>��
��5..�(0���("3

����>��
��5..�(E����("3

����>��
��5..�(�,��+����("3

����>��
��5..�(5��
-��("3

����>��
��5..�(������("3

����>��
��5..�(0��-�("3

����>��
��5..�(0,��("3

MacDonald.book Page 551 Friday, December 16, 2005 3:55 PM

552 C H A P T E R 1 4 ■ D A T A B I N D I N G

����44�!�>
�������+
�.
���>�������,
	��-�����,	�

����E�8
	�����!���*���-��?�>��
�3

����E�!���!���8
	�����!���*���-��?�>��
�3

����E�F2E8*�,�-��!���*���-��?�>��
�3

����E����-=���8
	��!���*���-��?�>��
�3

����E���.
�������8
	��!���*���-��?�>��
�3

����44�5-�
7��������+
�.
���

������
	�!����
�.�"3

6

Figure 14-6 shows the rendered page.

Figure 14-6. Multiple bound lists

MacDonald.book Page 552 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 553

This is another area where ASP.NET data binding may differ from what you have expe-
rienced in a desktop application. In traditional data binding, all the different controls are
sometimes treated like “views” on the same data source, and you can work with only one
record from the data source at a time. In this type of data binding, when you select Pear in
one list control, the other list controls automatically refresh so that they too have Pear
selected (or the corresponding information from the same row). This isn’t how ASP.NET
uses data binding.

Data Binding and View State

Remember, the original collection is destroyed as soon as the page is completely pro-
cessed into HTML and sent to the user. However, the information will remain in the
controls if you’ve set their EnableViewState properties to true. This means you don’t need
to re-create and rebind the control every time the Page.Load event occurs, and you should
check the IsPostBack property first.

Of course, in many cases, especially when working with databases, you’ll want to
rebind on every pass. For example, if you presented information corresponding to values
in a database table, you might want to let the user make changes or specify a record to be
deleted. As soon as the page is posted back, you would execute a SQL command and
rebind the control to show the new data (thereby confirming to the user that the data
source was updated with the change). In this case, you’ll rebind the data with every
postback.

The important concept to realize now is that you need to be consciously evaluating
state options. If you don’t need view state for a data-bound list control, you should disable
it, because it can slow down response times if a large amount of data is displayed on the
screen. This is particularly, true for the multiple binding example, because each control
will have its own view state and its own separate copy of the identical data.

Data Binding with a Dictionary Collection

A dictionary collection is a special kind of collection in which every item (or definition, to use
the dictionary analogy) is indexed with a specific key (or dictionary word). This is similar to
the way that built-in ASP.NET collections such as Session, Application, and Cache work.

Dictionary collections always need keys, which make them more efficient for retrieving
and sorting. Ordinary collections, on the other hand, are like large canvas bags that
accommodate anything. Generally, you need to go through every item in a generic collec-
tion to find what you need, which makes them ideal for cases where you always need to
display or work with all the items at the same time.

You can use two basic dictionary-style collections in .NET. The Hashtable collection (in
the System.Collections namespace) allows you to store any type of object and use any type
of object for the key values. The Dictionary collection (in the System.Collections.Generic

MacDonald.book Page 553 Friday, December 16, 2005 3:55 PM

554 C H A P T E R 1 4 ■ D A T A B I N D I N G

namespace) uses generics to provide the same “locking in” behavior as the List collection.
You choose the item type and the key type upfront to prevent errors and reduce the amount
of casting code you need to write.

The following example uses the Dictionary collection class. You create a Dictionary
object in much the same way you create an ArrayList or List collection. The only differ-
ence is that you need to supply a unique key for every item. This example uses the lazy
practice of assigning a sequential number for each key:

�����-��.�7�
.�0���8��.�D+9�-��	��.��:�;7���5��	��"

1

����
>��G��
	� 	0�	���-="

����1

��������44��	��
������	����
�.�����-��
�����;�-��
����
	���	��
���

��������!
-�
������
��:�	��
����>��
��?�����!
-�
������
��:�	��
����"3

��������>��
��5..�#:�(H
�
("3

��������>��
��5..�%:�(0���("3

��������>��
��5..�I:�(E����("3

��������>��
��5..�J:�(�,��+����("3

��������>��
��5..�K:�(5��
-��("3

��������>��
��5..�L:�(������("3

��������>��
��5..�M:�(0��-�("3

��������>��
��5..�N:�(0,��("3

��������44�!�>
�������+
�.
���>�������,
	��-�����,	�

��������E�8
	�����!���*���-��?�>��
�3

��������44�����	�������������������.
	�,���
������,
	��

��������E�8
	�����!���2���@
�,.�?�(O�,��(3

��������44�5-�
7��������+
�.
���

����������
	�!����
�.�"3

����6

6

There’s one new detail here. It’s this line:

E�8
	�����!���2���@
�,.�?�(O�,��(3

MacDonald.book Page 554 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 555

Each item in a dictionary-style collection has both a key and a value associated with
it. If you don’t specify which property you want to display, ASP.NET simply calls the
ToString() method on each collection item. This may or may not produce the result you
want. However, by inserting this line of code you control exactly what appears in the list.
The page will now appear as expected, with all the fruit names.

■Note Notice that you need to enclose the property name in quotation marks. ASP.NET uses reflection to
inspect your object and find the property that has the name Value at runtime.

You might want to experiment with what other types of collections you can bind to a
list control. One interesting option is to use a built-in ASP.NET control such as the Session
object. An item in the list will be created for every currently defined Session variable, mak-
ing this trick a nice little debugging tool to quickly check current session information.

Using the DataValueField Property

Along with the DataTextField property, all list controls that support data binding also pro-
vide a DataValueField property, which adds the corresponding information to the value
attribute in the control element. This allows you to store extra (undisplayed) information
that you can access later. For example, you could use these two lines to define your data
binding with the previous example:

E�8
	�����!���2���@
�,.�?�(O�,��(3

E�8
	�����!���O�,��@
�,.�?�(H��(3

The control will appear the same, with a list of all the fruit names in the collection.
However, if you look at the rendered HTML that’s sent to the client browser, you’ll see that
value attributes have been set with the corresponding numeric key for each item:

�	�,�-������?(E�8
	����(�
.?(E�8
	����(��

��������
���7�,��?(N(�0,���4���
���

��������
���7�,��?(M(�0��-��4���
���

��������
���7�,��?(L(��������4���
���

��������
���7�,��?(K(�5��
-���4���
���

��������
���7�,��?(J(��,��+�����4���
���

��������
���7�,��?(I(�E�����4���
���

��������
���7�,��?(%(�0����4���
���

��������
���7�,��?(#(�H
�
�4���
���

�4	�,�-��

MacDonald.book Page 555 Friday, December 16, 2005 3:55 PM

556 C H A P T E R 1 4 ■ D A T A B I N D I N G

You can retrieve this value later using the SelectedItem class to get additional informa-
tion. For example, you could enable AutoPostBack for the list control and add the
following code:

�����-��.�7�
.�E�8
	����*�,�-��. �.��������.�D+9�-��	��.��:�

�;7���5��	��"

1

����,+,E�		����2����?�(<����
-=�./�(�$�E�8
	�����*�,�-��. ����2���3

����,+,E�		����2����$?�(���
-����	�����=��/�(�$�E�8
	�����*�,�-��. ����O�,��3

6

Figure 14-7 demonstrates the result. This technique is particularly useful with a data-
base. You could embed a unique ID into the value property and be able to quickly look up
a corresponding record depending on the user’s selection by examining the value of the
SelectedItem object.

Figure 14-7. Binding to the key and value properties

Note that for this to work, you must not be regenerating the list with every postback. If
you are, the selected item information will be lost, and an error will occur. The preceding
example uses the Page.IsPostBack property to determine whether to build the list.

MacDonald.book Page 556 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 557

Data Binding with ADO.NET

So far the examples in this chapter have dealt with data binding that doesn’t involve data-
bases or any part of ADO.NET. Although this is an easy way to familiarize yourself with the
concepts, and a useful approach in its own right, you get the greatest advantage of data
binding when you use it in conjunction with a database.

The data binding process still takes place in the same three steps with a database. First
you create your data source, which will be a DataReader or DataSet object. A DataReader
generally offers the best performance, but it limits your data binding to a single control, so
a DataSet is a more common choice. In the following example, the DataSet is filled by
hand, but it could just as easily be filled using a DataAdapter object:

44�!�>
�����!���*����
�����	
��,��!���2�+,��

!���*���.	 ������,�?�����!���*���"3

.	 ������,�2�+,�	�5..�(�	��	("3

44�!�>
�������-�,���	�>�����
	���+,��

.	 ������,�2�+,�	P(�	��	(Q���,���	�5..�(����(";

.	 ������,�2�+,�	P(�	��	(Q���,���	�5..�(�������("3

44�5..�	�����-���,�
�>�����
���
����������+,��

!��������������?�.	 ������,�2�+,�	P(�	��	(Q��������"3

������P(����(Q�?�()���(3

������P(�������(Q�?�(����.�(3

.	 ������,�2�+,�	P(�	��	(Q����	�5..�������"3

�������?�.	 ������,�2�+,�	P(�	��	(Q��������"3

������P(����(Q�?�(*�������(3

������P(�������(Q�?�(��,�
��(3

.	 ������,�2�+,�	P(�	��	(Q����	�5..�������"3

�������?�.	 ������,�2�+,�	P(�	��	(Q��������"3

������P(����(Q�?�(�
-�(3

������P(�������(Q�?�()����(3

.	 ������,�2�+,�	P(�	��	(Q����	�5..�������"3

Next, you bind a table from the DataSet to the appropriate control. In this case, you
need to specify the appropriate field using the DataTextField property:

44�!�>
�������+
�.
���

,	��	���!���*���-��?�.	 ������,�2�+,�	P(�	��	(Q3

,	��	���!���2���@
�,.�?�(����(3

MacDonald.book Page 557 Friday, December 16, 2005 3:55 PM

558 C H A P T E R 1 4 ■ D A T A B I N D I N G

Alternatively, you could use the entire DataSet for the data source, instead of just the
appropriate table. In that case, you would have to select a table by setting the control’s
DataMember property. This is an equivalent approach, but the code is slightly different:

44�!�>
�������+
�.
���

,	��	���!���*���-��?�.	 ������,3

,	��	���!���E��+���?�(�	��	(3

,	��	���!���2���@
�,.�?�(����(3

As always, the last step is to activate the binding:

��
	�!����
�.�"3

The final result is a list with the information from the specified database field, as shown
in Figure 14-8. The list box will have an entry for every single record in the table, even if it
appears more than once, from the first row to the last.

Figure 14-8. DataSet binding

■Tip The simple list controls require you to bind their Text or Value property to a single data field in the data
source object. However, much more flexibility is provided by the more advanced data binding controls exam-
ined in the next chapter. They allow fields to be combined in any way using templates.

MacDonald.book Page 558 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 559

Creating a Record Editor

The next example is more practical. It’s a good example of how you might use data bind-
ing in a full ASP.NET application. This example allows the user to select a record and
update one piece of information by using data-bound list controls.

The first step is to add the connection string to your web.config file. This example uses
the Products table from the Northwind database included with many versions of SQL
Server. Here’s how you can define the connection string for SQL Server:

�-��>
�����
�����,�	?(����/44	-����	��
-��	�>��-��4�������>
�����
��47%�'(�

���-����-�
��*��
��	�

������..�����?(������
�.(�-����-�
��*��
��?

(!����*���-�?,�-�,��	�3 �
�
�,�����,��?������
�.3 ��������.�*�-��
��?**0 (�4�

���4-����-�
��*��
��	�

�����

�4-��>
�����
���

The next step is to retrieve the connection string and store it in a private variable in the
Page class so that every part of your page code can access it easily:

��
7����	��
���-����-�
��*��
���?

��R�+���>
�����
��E������������-�
��*��
��	P(������
�.(Q������-�
��*��
��3

The next step is to create a drop-down list that allows the user to choose a product for
editing. The Page.Load event handler takes care of this task—retrieving the data, binding
it to the drop-down list control, and then activating the binding:

�����-��.�7�
.�0���8��.�D+9�-��	��.��:�;7���5��	��"

1

����
>��G��
	� 	0�	���-="

����1

��������44�!�>
�������5!D��;2��+9�-�	�>���	�,�-�
���0��.�-�	�

��������	��
���	�,�-�*S8�?�(*;8;�2�0��.�-�����:�0��.�-� !�@�DE�0��.�-�	(3

��������*�,�����-�
���-���?�����*�,�����-�
���-����-�
��*��
��"3

��������*�,������.�-�.�?�����*�,������.�	�,�-�*S8:�-��"3

��������44�D��������-����-�
���

��������-���D����"3

��������44�!�>
�������+
�.
���

��������,	�0��.�-��!���*���-��?�-�.�;��-������.���"3

��������,	�0��.�-��!���2���@
�,.�?�(0��.�-�����(3

��������,	�0��.�-��!���O�,��@
�,.�?�(0��.�-� !(3

MacDonald.book Page 559 Friday, December 16, 2005 3:55 PM

560 C H A P T E R 1 4 ■ D A T A B I N D I N G

��������44�5-�
7��������+
�.
���

��������,	�0��.�-��!����
�.�"3

��������-����,�	��"3

��������44�E�=��	��������
���
	�-������,��	�,�-��.�

��������,	�0��.�-��*�,�-��. �.���?�A#3

����6

6

The actual database code is similar to what was used in the previous chapter. The
example uses a Select statement but carefully limits the returned information to just the
ProductName field, which is the only piece of information it will use. The resulting win-
dow lists all the products defined in the database, as shown in Figure 14-9.

Figure 14-9. Product choices

MacDonald.book Page 560 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 561

The drop-down list enables AutoPostBack, so as soon as the user makes a selection,
a lstProduct.SelectedItemChanged event fires. At this point, your code performs the
following tasks:

• It reads the corresponding record from the Products table and displays additional
information about it in a label. In this case, a special Join query links information
from the Products and Categories tables. The code also determines what the cate-
gory is for the current product. This is the piece of information it will allow the user
to change.

• It reads the full list of CategoryNames from the Categories table and binds this
information to a different list control.

• It highlights the row in the category list that corresponds to the current product. For
example, if the current product is a Seafood category, the Seafood entry in the list
box will be selected.

This logic appears fairly involved, but it’s really just an application of what you’ve
learned over the past two chapters. The full listing is as follows:

�����-��.�7�
.�,	�0��.�-�*�,�-��. �.��������.��+9�-��	��.��:�;7���5��	��"

1

����44����������-�����.�>���	�,�-�
����������-�
������.�-����-��.�

����	��
���	�,�-�0��.�-��?�(*;8;�2�0��.�-�����:�S����
��0����
�:�(�$

�����(�������������@�DE�0��.�-�	� ��;��)D ���������
�	�D��(�$

�����(�������
�	��������� !?0��.�-�	��������� !�(�$

�����(RF;�;�0��.�-� !?T0��.�-� !(3

����44�����������������-�
�����.�������.��+9�-�	�

����*�,�����-�
���-���?�����*�,�����-�
���-����-�
��*��
��"3

����*�,������.�-�.0��.�-�	�?�����*�,������.�	�,�-�0��.�-�:�-��"3

����44�����
�7������
�>�����
���>�������	�,�-��.����.�-��

�����	
����-��"

����1

��������-���D����"

��������*�,!������.������.���?�-�.0��.�-�	�;��-������.���"3

�����������.������.�"3

MacDonald.book Page 561 Friday, December 16, 2005 3:55 PM

562 C H A P T E R 1 4 ■ D A T A B I N D I N G

��������44���.��������.
	�,���

��������,+,��-��. �>��2����?�(�+�0��.�-�/�4+��(�$�

�������������.��P(0��.�-�����(Q�$�(�+��4�(3

��������,+,��-��. �>��2����$?�(�+�S����
��/�4+��(�$�

�������������.��P(S����
��0����
�(Q�$�(�+��4�(3

��������,+,��-��. �>��2����$?�(�+���������/�4+��(�$����.��P(������������(Q3

��������44�*���������-����	���.
����������������>���>��������>����-��

��������	��
������-����������?����.��P(������������(Q�2�*��
���"3

��������44��,�	���������.���

�����������.����,�	��"3

��������44��������������������.�>���	�,�-�
���-������
�	�

��������	��
���	�,�-����������?�(*;8;�2�������������:�(�$

����������(�������� !�@�DE��������
�	(3

��������*�,������.�-�.�������
�	�?�����*�,������.�	�,�-���������:�-��"3

��������-�.0��.�-�	�0��������	�5..R
��O�,���(T0��.�-� !(:

����������,	�0��.�-��*�,�-��. ����O�,��"3

��������44�����
�7������-��������
�>�����
��:���.�+
�.�
��

��������,	����������!���*���-��?�-�.�������
�	�;��-������.���"3

��������,	����������!���2���@
�,.�?�(������������(3

��������,	����������!���O�,��@
�,.�?�(�������� !(3

��������,	����������!����
�.�"3

��������44�F
��,
�����������-�
���-��������
������,
	��

��������,	���������� ���	�@
�.��2�������-���������"�*�,�-��.�?�����3

���6

����,	����������O
	
+,��?�����3

����-�.��.����O
	
+,��?�����3

6

You could improve this code in several ways. It probably makes the most sense to
remove these data access routines from this event handler and put them into more
generic functions. For example, you could use a function that accepts a ProductName and
returns a single DataRow with the associated product information. Another improvement
would be to use a stored procedure to retrieve this information, rather than a full-fledged
DataReader.

MacDonald.book Page 562 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 563

The end result is a window that updates itself dynamically whenever a new product is
selected, as shown in Figure 14-10.

Figure 14-10. Product information

This example still has one more trick in store. If the user selects a different category and
clicks Update, the change is made in the database. Of course, this means creating new
Connection and Command objects, as follows:

�����-��.�7�
.�-�.��.����,
-=��+9�-��	��.��:�;7���5��	��"

1

����44�!�>
�������������.�

����	��
�����.���������.�?�(�0!52;�0��.�-�	�(�$

�����(*;2��������� !?T�������� !�RF;�;�0��.�-� !?T0��.�-� !(3

����*�,�����-�
���-���?�����*�,�����-�
���-����-�
��*��
��"3

����*�,������.�-�.�?�����*�,������.���.���������.:�-��"3

����-�.�0��������	�5..R
��O�,���(T�������� !(:�,	����������*�,�-��. ����O�,��"3

����-�.�0��������	�5..R
��O�,���(T0��.�-� !(:�,	�0��.�-��*�,�-��. ����O�,��"3

MacDonald.book Page 563 Friday, December 16, 2005 3:55 PM

564 C H A P T E R 1 4 ■ D A T A B I N D I N G

����44�0��>����������.����

�����	
����-��"

����1

��������-���D����"3

��������-�.�;��-������S�����"3

����6

6

You could easily extend this example so that it allows you to edit all the properties in a
product record. But before you try that, you might want to experiment with template-
based data binding, which is introduced in the next chapter. Using templates, you can
create sophisticated lists and grids that provide automatic features for selecting, editing,
and deleting records.

Data Source Controls
In Chapter 13, you saw how to directly connect to a database, execute a query, loop
through the records in the result set, and display them on a page. In this chapter, you’ve
already seen a simpler option—with data binding, you can write your data access logic
and then show the results in the page with no looping or control manipulation required.
Now, it’s time to introduce another convenience—data source controls. Amazingly
enough, data source controls allow you to create data-bound pages without writing any
data access code.

■Note As you’ll soon see, often a gap exists between what you can do and what you should do. In most
professional applications, you’ll need to write and fine-tune your data access code for optimum performance
or access to specific features. That’s why you’ve spent so much time learning how ADO.NET works, rather
than jumping straight to the data source controls.

The data source controls include any control that implements the IDataSource inter-
face. The .NET Framework includes the following data source controls:

SqlDataSource: This data source allows you to connect to any data source that has an
ADO.NET data provider. This includes SQL Server, Oracle, and OLE DB or ODBC data
sources. When using this data source, you don’t need to write the data access code.

ObjectDataSource: This data source allows you to connect to a custom data access class.
This is the preferred approach for large-scale professional web applications, but it forces
you to write much more code. You’ll tackle the ObjectDataSource in Chapter 24.

MacDonald.book Page 564 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 565

XmlDataSource: This data source allows you to connect to an XML file. You’ll learn
more in Chapter 17.

SiteMapDataSource: This data source allows you to connect to a .sitemap file that describes
the navigational structure of your website. You saw this data source in Chapter 11.

You can find all the data source controls in the Data tab of the Toolbox in Visual Studio.
Data source controls are new in ASP.NET 2.0, and it’s expected that more will become
available, both from Microsoft and from third-party vendors.

When you drop a data source control onto your web page, it shows up as a gray box in
Visual Studio. However, this box won’t appear when you run your web application and
request the page (see Figure 14-11).

Figure 14-11. A data source control at design time and runtime

If you perform more than one data access task in the same page (for example, you need
to be able to query two different tables), you’ll need more than one data access control. If
you find that the clutter of data source controls is disturbing your page layout at design
time, just select View ➤ Non Visual Controls from the menu to hide them. You can still select
each data source control from the Properties window when you want to configure it.

The Page Life Cycle with Data Binding

Data source controls can perform two key tasks:

• They can retrieve data from a data source and supply it to linked controls.

• They can update the data source when edits take place in linked controls.

MacDonald.book Page 565 Friday, December 16, 2005 3:55 PM

566 C H A P T E R 1 4 ■ D A T A B I N D I N G

To use the data source controls, you need to understand the page life cycle. The follow-
ing steps explain the sequence of stages your page goes through in its lifetime. The two
steps in bold (4 and 6) are the steps where the data source controls will spring into action.

1. The page object is created (based on the .aspx file).

2. The page life cycle begins, and the Page.Init and Page.Load events fire.

3. All other control events fire.

4. The data source controls perform any updates. If a row is being updated, the
Updating and Updated events fire. If a row is being inserted, the Inserting and
Inserted events fire. If a row is being deleted, the Deleting and Deleted events fire.

5. The Page.PreRender event fires.

6. The data source controls perform any queries and insert the retrieved data in the
linked controls. The Selecting and Selected events fire at this point.

7. The page is rendered and disposed.

In the rest of this chapter, you’ll take a closer look at the SqlDataSource control, and
you’ll use it to build the record editor example demonstrated earlier—with a lot less code.

The SqlDataSource

Data source controls turn up in the .aspx markup portion of your web page like ordinary
controls. Here’s an example:

��	�/*�,!���*���-�� !?(*�,!���*���-�#(������?(��7��(�����4�

The SqlDataSource represents a database connection that uses an ADO.NET provider.
However, this has a catch. The SqlDataSource needs a generic way to create the Connec-
tion, Command, and DataReader objects it requires. The only way this is possible is if your
data provider includes something called a data provider factory. The factory has the
responsibility of creating the provider-specific objects that the SqlDataSource needs to
access the data source. Fortunately, .NET includes a data provider factory for each of its
four data providers:

• System.Data.SqlClient

• System.Data.OracleClient

MacDonald.book Page 566 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 567

• System.Data.Sql

• System.Data.Odbc

These are registered in the machine.config file, and as a result you can use any of them
with the SqlDataSource. You choose a data source by setting the provider name. Here’s a
SqlDataSource that connects to a SQL Server database using the SQL Server provider:

��	�/*�,!���*���-��0��7
.������?(*�	����!����*�,�,
���(�����4�

■Tip Technically, you can omit this piece of information, because the System.Data.SqlClient provider fac-
tory is the default.

The next step is to supply the required connection string—without it, you cannot
make any connections. Although you can hard-code the connection string directly in the
SqlDataSource tag, it’s always better to keep it in the <connectionStrings> section of the
web.config file to guarantee greater flexibility and ensure you won’t inadvertently change
the connection string.

To refer to a connection string in your .aspx markup, you use a special syntax in
this format:

��U������-�
��*��
��	/P����D>�����-�
��*��
��Q���

This looks like a data binding expression, but it’s slightly different. (For one thing, it
begins with the character sequence <%$ instead of <%#.)

For example, if you have a connection string named Northwind in your web.config file
that looks like this:

�-��>
�����
���

���-����-�
��*��
��	�

������..�����?(������
�.(�-����-�
��*��
��?

(!����*���-�?,�-�,��	�3 �
�
�,�����,��?������
�.3 ��������.�*�-��
��?**0 (�4�

���4-����-�
��*��
��	�

�����

�4-��>
�����
���

you would specify it in the SqlDataSource using this syntax:

��	�/*�,!���*���-�������-�
��*��
��?(��U������-�
��*��
��	/������
�.���(�����4�

Once you’ve specified the provider name and connection string, the next step is to add
the query logic that the SqlDataSource will use when it connects to the database.

MacDonald.book Page 567 Friday, December 16, 2005 3:55 PM

568 C H A P T E R 1 4 ■ D A T A B I N D I N G

Selecting Records

You can use each SqlDataSource control you create to retrieve a single query. Optionally,
you can also add corresponding commands for deleting, inserting, and updating rows.
For example, one SqlDataSource is enough to query and update the Customers table in
the Northwind database. However, if you need to independently retrieve or update Cus-
tomers and Orders information, you’ll need two SqlDataSource controls.

The SqlDataSource command logic is supplied through four properties—
SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand—each of
which takes a string. The string you supply can be inline SQL (in which case the corre-
sponding SelectCommandType, InsertCommandType, UpdateCommandType, or
DeleteCommandType property should be Text, the default) or the name of a stored pro-
cedure (in which case the command type is StoredProcedure). You need to define
commands only for the types of actions you want to perform. In other words, if you’re
using a data source for read-only access to a set of records, you need to define only the
SelectCommand property.

■Note If you configure a command in the Properties window, you’ll see a property named SelectQuery
instead of SelectCommand. The SelectQuery is actually a virtual property that’s displayed as a design-time
convenience. When you edit the SelectQuery (by clicking the ellipsis next to the property name), you can use
a special designer to write the command text (the SelectCommand) and add command parameters (the
SelectParameters) at the same time.

Here’s a complete SqlDataSource that defines a Select command for retrieving product
information from the Products table:

��	�/*�,!���*���-�� !?(���-�0��.�-�	(������?(��7��(

��0��7
.������?(*�	����!����*�,�,
���(

�������-�
��*��
��?(��U������-�
��*��
��	/������
�.���(

��*�,�-�������.?(*;8;�2�0��.�-�����:�0��.�-� !�@�DE�0��.�-�	(

4�

■Tip You can write the data source logic by hand or by using a design-time wizard that lets you create a
connection and create the command logic in a graphical query builder. To launch this tool, select the data
source control, and choose Configure Data Source from the smart tag.

MacDonald.book Page 568 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 569

This is enough to build the first stage of the record editor example shown earlier—
namely, the drop-down list box that shows all the products. All you need to do is set the
ListBox.DataSourceID property to point to the SqlDataSource you’ve created. The easi-
est way to do this is using the Properties window, which provides a drop-down list of all
the data sources on your current web page. At the same time, make sure you set the
DataTextField and DataValueField properties. Once you make these changes, you’ll
wind up with a control tag like this:

��	�/!���!���8
	�� !?(,	�0��.�-�(������?(��7��(�5���0�	���-=?(����(

��!���*���-� !?(���-�0��.�-�	(�!���2���@
�,.?(0��.�-�����(

��!���O�,��@
�,.?(0��.�-� !(�4�

The best part about this example is that you don’t need to write any code. When you
run the page, the ListBox asks the SqlDataSource for the data it needs. At this point, the
SqlDataSource executes the query you defined, fetches the information, and binds it to
the ListBox. The whole process unfolds automatically.

How the Data Source Controls Work

As you learned earlier in this chapter, you can bind to a DataReader or a DataSet. So it’s
worth asking—which approach does the SqlDataSource control use? It’s actually in your
control, based on whether you set the DataSourceMode to SqlDataSourceMode.DataSet
(the default) or to SqlDataSourceMode.DataReader. The DataSet mode is almost always
better, because it supports advanced sorting, filtering, and caching settings that depend
on the DataSet. All these features are disabled in DataReader mode. However, you can use
the DataReader mode with extremely large grids, because it’s more memory-efficient.
That’s because the DataReader holds only one record in memory at a time—just long
enough to copy the record’s information to the linked control.

Another important fact to understand about the data source controls is that when you
bind more than one control to the same data source, you cause the query to be executed
multiple times. For example, if two controls are bound to the same data source, the data
source control performs its query twice—once for each control. This is somewhat ineffi-
cient—after all, if you wrote the data binding code yourself by hand, you’d probably
choose to perform the query once and then bind the returned DataSet twice. Fortunately,
this design isn’t quite as bad as it seems at first.

First, you can avoid this multiple-query overhead using caching, which allows you to
store the retrieved data in a temporary memory location where it will be reused automat-
ically. The SqlDataSource supports automatic caching if you set EnableCaching to true.
Chapter 26 provides a full discussion of how caching works and how you can use it with
the SqlDataSource.

MacDonald.book Page 569 Friday, December 16, 2005 3:55 PM

570 C H A P T E R 1 4 ■ D A T A B I N D I N G

Second, contrary to what you might expect, most of the time you won’t be binding
more than one control to a data source. That’s because the rich data controls you’ll learn
about in Chapter 15—the GridVew, DetailsView, and FormsView—have the ability to
present multiple pieces of data in a flexible layout. If you use these controls, you’ll need to
bind only one control, which allows you to steer clear of this limitation.

It’s also important to note that data binding is performed at the end of your web page
processing, just before the page is rendered. This means the Page.Load event will fire, fol-
lowed by any control events, followed by the Page.PreRender event, and only then will the
data binding take place. The data binding is performed on every postback (unless you
redirect to another page). If you need to write code that springs into action after the data
binding is complete, you need to override the Page.OnPreRenderComplete() method.
This method is called immediately after the PreRender stage but just before the view state
is serialized and the final HTML is rendered.

Parameterized Commands

In the previous example, the complete query was hard-coded. Often, you won’t have this
flexibility. Instead, you’ll want to retrieve a subset of data, such as all the products in a
given category or all the employees in a specific city.

The record editor offers an ideal example. Once you select a product, you want to exe-
cute another command to get the full details for that product. (You might just as easily
execute another command to get records that are related to this product.) To make this
work, you need two data sources. You’ve already created the first SqlDataSource, which
fetches limited information about every product. Here’s the second SqlDataSource,
which gets more extensive information about a single product (the query is split over sev-
eral lines to fit the printed page):

��	�/*�,!���*���-�� !?(���-�;��,����	(������?(��7��(

��0��7
.������?(*�	����!����*�,�,
���(

�������-�
��*��
��?(��U������-�
��*��
��	/������
�.���(

��*�,�-�������.?(*;8;�2�&�@�DE�0��.�-�	�RF;�;�0��.�-� !?T0��.�-� !(

4�

But this example has a problem. It defines a parameter (@ProductID) that identifies the
ID of the product you want to retrieve. How do you fill in this piece of information? It turns
out you need to add a <SelectParameters> section to the SqlDataSource tag. Inside this
section, you must define each parameter that’s referenced by your SelectCommand and

MacDonald.book Page 570 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 571

tell the SqlDataSource where to find the value it should use. You do that by mapping the
parameter to a value in a control.

Here’s the corrected command:

��	�/*�,!���*���-�� !?(���-�0��.�-�!���
,	(������?(��7��(

��0��7
.������?(*�	����!����*�,�,
���(

�������-�
��*��
��?(��U������-�
��*��
��	/������
�.���(

��*�,�-�������.?(*;8;�2�&�@�DE�0��.�-�	�RF;�;�0��.�-� !?T0��.�-� !(�

���*�,�-�0��������	�

������	�/������,0���������������, !?(,	�0��.�-�(�����?(0��.�-� !(

�����0�����������?(*�,�-��.O�,��(�4�

���4*�,�-�0��������	�

�4�	�/*�,!���*���-��

You always indicate parameters with an @ symbol, as in @City. You can define as many
symbols as you want, but you must map each provider to another value. In this example,
the value for the @ProductID parameter comes from the lstProduct.SelectedValue prop-
erty. In other words, you are binding a value that’s currently in a control to place it into a
database command. (You could also use the SelectedText property to get the currently
displayed text.)

Now all you need to do is bind this to the remaining controls where you want to display
information. This is where the example takes a slightly different turn. In the previous ver-
sion of the record editor, you took the information and used a combination of values to fill
in details in a label and a list control. This type of approach doesn’t work well with data
source controls. First, you can bind only a single data field to most simple controls such as
lists. Second, each bound control makes a separate request to the SqlDataSource, trigger-
ing a separate database query. This means if you bind a dozen controls, you’ll perform the
same query a dozen times, with terrible performance. You can alleviate this problem with
data source caching (see Chapter 26), but it indicates you aren’t designing your applica-
tion in a way that lends itself well to the data source control model.

The solution is to use one of the rich data controls, such as the GridView, DetailsView,
or FormView. These controls have the smarts to show multiple fields at once, in a highly
flexible layout. You’ll learn about these three controls in detail in the next chapter, but the
following example shows a simple demonstration of how to use the DetailsView.

The DetailsView is a rich data control that’s designed to show multiple fields in a data
source. As long as AutoGenerateRows is true (the default), it creates a separate row for
each field, with the field caption and value. Figure 14-12 shows the result.

MacDonald.book Page 571 Friday, December 16, 2005 3:55 PM

572 C H A P T E R 1 4 ■ D A T A B I N D I N G

Figure 14-12. Displaying full product information in a DetailsView

Here’s the basic DetailsView tag that makes this possible:

��	�/!���
,	O
��� !?(!���
,	O
��#(������?(��7��(

��!���*���-� !?(���-�0��.�-�!���
,	(�4�

As you can see, the only property you need to set is DataSourceID. That binds the
DetailsView to the SqlDataSource you created earlier. This SqlDataSource gets the full
product information for a single row, based on the selection in the list control. Best of all,
this whole example still hasn’t required a line of code.

Other Types of Parameters

In the previous example, the @ProductID parameter in the second SqlDataSource is con-
figured based on the selection in a drop-down list. This type of parameter, which links to
a property in another control, is called a control parameter. But parameter values aren’t
necessarily drawn from other controls. You can map a parameter to any of the parameter
types defined in Table 14-1.

Table 14-1. Parameter Types

Source Control Tag Description

Control property <asp:ControlParameter> A property from another control on
the page.

Query string value <asp:QueryStringParameter> A value from the current query string.

MacDonald.book Page 572 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 573

For example, you could split the earlier example into two pages. In the first page, define
a list control that shows all the available products:

��	�/*�,!���*���-�� !?(���-�0��.�-�	(������?(��7��(

��0��7
.������?(*�	����!����*�,�,
���(

�������-�
��*��
��?(��U������-�
��*��
��	/������
�.���(

��*�,�-�������.?(*;8;�2�0��.�-�����:�0��.�-� !�@�DE�0��.�-�	(

4�

��	�/!���!���8
	�� !?(,	�0��.�-�(������?(��7��(�5���0�	���-=?(����(

��!���*���-� !?(���-�0��.�-�	(�!���2���@
�,.?(0��.�-�����(

��!���O�,��@
�,.?(0��.�-� !(�4�

Now, you’ll need a little extra code to copy the selected city to the query string and redi-
rect the page. Here’s a button that does just that:

�����-��.�7�
.�-�.���,
-=��+9�-��	��.��:�;7���5��	��"

1

������	���	����.
��-��(S����0��������%��	��V���. !?(�$�,	��
�
�	�*�,�-��.O�,��"3

6

Finally, the second page can bind the DetailsView according to the city value that’s
supplied in the query string:

��	�/*�,!���*���-�� !?(���-�0��.�-�!���
,	(������?(��7��(

��0��7
.������?(*�	����!����*�,�,
���(

�������-�
��*��
��?(��U������-�
��*��
��	/������
�.���(

��*�,�-�������.?(*;8;�2�&�@�DE�0��.�-�	�RF;�;�0��.�-� !?T0��.�-� !(�

���*�,�-�0��������	�

������	�/S����*��
��0�������������?(0��.�-�(�S����*��
��@
�,.?(���. !(�4�

���4*�,�-�0��������	�

�4�	�/*�,!���*���-��

Session state value <asp:SessionParameter> A value stored in the current user’s
session.

Cookie value <asp:CookieParameter> A value from any cookie attachedt to the
current request.

Profile value <asp:ProfileParameter> A value from the current user’s profile (see
Chapter 20 for more about profiles).

A form variable <asp:FormParameter> A value posted to the page from an input
control. Usually, you’ll use a control
property instead, but you might need to
grab a value straight from the Forms
collection if you’ve disabled view state for
the corresponding control.

Source Control Tag Description

MacDonald.book Page 573 Friday, December 16, 2005 3:55 PM

574 C H A P T E R 1 4 ■ D A T A B I N D I N G

Handling Errors

When you deal with an outside resource such as a database, you need to protect your code
with a basic amount of error-handling logic. Even if you’ve avoided every possible coding
mistake, you still need to defend against factors outside your control—for example, if the
database server isn’t running or the network connection is broken.

You can count on the SqlDataSource to properly release any resources (such as con-
nections) if an error occurs. However, the underlying exception won’t be handled.
Instead, it will bubble up to the page and derail your processing. As with any other unhan-
dled exception, the user will receive a cryptic error message or an error page. This design
is unavoidable—if the SqlDataSource suppressed exceptions, it could hide potential
problems and make debugging extremely difficult. However, it’s a good idea to handle
the problem in your web page and show a more suitable error message.

To do this, you need to handle the data source event that occurs immediately after the
error. If you’re performing a query, that’s the Selected event. If you’re performing an
update, delete, or insert operation, you would handle the Updated, Deleted, or Inserted
event instead. (If you don’t want to offer customize error messages, you could handle all
these events with the same event handler.)

In the event handler, you can access the exception object through the
SqlDataSourceStatusEventArgs.Exception property. If you want to prevent the error from
spreading any further, simply set the SqlDataSourceStatusEventArgs.ExceptionHandled
property to true. Then, make sure you show an appropriate error message on your web
page to inform the user that the command was not completed.

Here’s an example:

�����-��.�7�
.�	���-�;��,����	*�,�-��.��+9�-��	��.��:�

�*�,!���*���-�*����	;7���5��	��"

1

����
>����;�-���
���G?���,,"

����1

��������,+,;�����2����?�(5����-���
����--����.����>���
�������������(3

��������44����	
.����������������.,�.�

����������;�-���
��F��.,�.�?�����3

����6

6

Updating Records

Selecting data is only half the equation. The SqlDataSource can also apply changes. The
only catch is that not all controls support updating. For example, the humble ListBox
doesn’t provide any way for the user to edit values, delete existing items, or insert new

MacDonald.book Page 574 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 575

ones. Fortunately, ASP.NET’s rich data controls—including the GridView, DetailsView,
and FormView—all have editing features you can switch on.

Before you can switch on the editing features in a given control, you need to define
suitable commands for the operations you want to perform in your data source. That
means supplying commands for inserting (InsertQuery), deleting (DeleteQuery), and
updating (UpdateQuery). If you know you will allow the user to perform only certain oper-
ations (such as updates) but not others (such as insertions and deletions), you can safely
omit the commands you don’t need.

You define the InsertCommand, DeleteCommand, and UpdateCommand in the same
way you define the command for the SelectCommand property—by using a parameter-
ized query. For example, here’s a revised version of the SqlDataSource for product
information that defines a basic update command to update every field:

��	�/*�,!���*���-�� !?(���-�0��.�-�!���
,	(������?(��7��(

��0��7
.������?(*�	����!����*�,�,
���(

�������-�
��*��
��?(��U������-�
��*��
��	/������
�.���(

��*�,�-�������.?(*;8;�2�0��.�-� !:�0��.�-�����:���
�0�
-�:���
�	 �*��-=:

��
�	D�D�.��:�����.��8�7�,:�!
	-���
���.�@�DE�0��.�-�	�RF;�;�

0��.�-� !?T0��.�-� !(

����.���������.?(�0!52;�0��.�-�	�*;2�0��.�-�����?T0��.�-�����:�

��
�0�
-�?T��
�0�
-�:

��
�	 �*��-=?T��
�	 �*��-=:���
�	D�D�.��?T��
�	D�D�.��:�

����.��8�7�,?T����.��8�7�,:

!
	-���
���.?T!
	-���
���.�RF;�;�0��.�-� !?T0��.�-� !(�

���*�,�-�0��������	�

������	�/������,0���������������, !?(,	�0��.�-�(�����?(0��.�-� !(

�����0�����������?(*�,�-��.O�,��(�4�

���4*�,�-�0��������	�

�4�	�/*�,!���*���-��

■Note In this chapter, the text for some of the commands is too long to a fit on a single line. In this case,
it appears on several lines to fit the dimensions of the page. However, in your .aspx page, you need to place
the entire text of an individual command on one line.

In this example, the parameter names aren’t chosen arbitrarily. As long as you give
each parameter the same name as the field it affects and preface it with the @ symbol (so
ProductName becomes @ProductName), you don’t need to define the parameter. That’s
because the ASP.NET data controls automatically submit a collection of parameters with
the new values before triggering the update. Each parameter in the collection uses this
naming convention, which is a major timesaver.

MacDonald.book Page 575 Friday, December 16, 2005 3:55 PM

576 C H A P T E R 1 4 ■ D A T A B I N D I N G

You also need to give the user a way to enter the new values. Most rich data controls
make this fairly easy—with the DetailsView, it’s simply a matter of setting the
AutoGenerateEditButton property to true, as shown here:

��	�/!���
,	O
��� !?(!���
,	O
��#(������?(��7��(

��!���*���-� !?(���-�0��.�-�!���
,	(�5�����������;.
�������?(����(�4�

Now when you run the page, you’ll see an edit link. When clicked, this link switches the
DetailsView into edit mode. All fields are changed to edit controls (typically text boxes),
and the Edit link is replaced with an Update link and a Cancel link (see Figure 14-13).

Figure 14-13. Editing with the DetailsView

The Cancel link returns the row to its initial state. The Update link passes the values
to the SqlDataSource.UpdateParameters collection (using the field names) and then trig-
gers the SqlDataSource.Update() method to apply the change to the database. Once
again, you don’t have to write any code.

You can create similar parameterized commands for the DeleteCommand and
InsertCommand. To enable deleting and inserting, you need to set the
AutoGenerateDeleteButton and AutoGenerateInsertButton properties of the
DetailsView to true.

MacDonald.book Page 576 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 577

Strict Concurrency Checking

The update command in the previous example matches the record based on its ID. You
can tell this by examining the Where clause:

��.���������.?(�0!52;�0��.�-�	�*;2�0��.�-�����?T0��.�-�����:�

��
�0�
-�?T��
�0�
-�:

���
�	 �*��-=?T��
�	 �*��-=:���
�	D�D�.��?T��
�	D�D�.��:�

����.��8�7�,?T����.��8�7�,:

�!
	-���
���.?T!
	-���
���.�RF;�;�0��.�-� !?T0��.�-� !(

The problem with this approach is that it opens the door to an update that overwrites
the changes of another user, if these changes are made between the time your page is
requested and the time your page commits its updated.

For example, imagine Chen and Lucy are viewing the same table of product records.
Lucy commits a change to the price of a product. A few seconds later, Chen commits a
name change to the same product record. However, that update command not only
applies the new name but it also overwrites every field with the values in Chen’s page—
effectively replacing the price Lucy entered with the old price.

This is the same sort of concurrency problem you considered in Chapter 13 with the
DataSet. The difference is that the DataSet used automatically generated updating com-
mands that were created with the CommandBuilder. The CommandBuilder uses a different
approach. It always attempts to match every field. As a result, if the original has been
changed, the update command won’t find it, and the update won’t be performed at all. So
in the scenario described previously, Chen will receive an error when he attempts to apply
the new product name, and he’ll need to edit the record and apply the change again.

You can use the same approach that the CommandBuilder uses with the SqlData-
Source. All you need to do is write your commands a little differently so that the Where
clause tries to match every field. Here’s what the modified command would look like:

��.���������.?(�0!52;�0��.�-�	�*;2�0��.�-�����?T0��.�-�����:�

��
�0�
-�?T��
�0�
-�:

���
�	 �*��-=?T��
�	 �*��-=:���
�	D�D�.��?T��
�	D�D�.��:�

����.��8�7�,?T����.��8�7�,:

�!
	-���
���.?T!
	-���
���.�RF;�;�0��.�-� !?0��.�-� !�5�!

�0��.�-�����?T��
�
��,0��.�-������5�!���
�0�
-�?T��
�
��,��
�0�
-��5�!

���
�	 �*��-=?T��
�
��,��
�	 �*��-=�5�!���
�	D�D�.��?T��
�
��,��
�	D�D�.���5�!

�����.��8�7�,?T��
�
��,����.��8�7�,�5�!�!
	-���
���.?T��
�
��,!
	-���
���.(

MacDonald.book Page 577 Friday, December 16, 2005 3:55 PM

578 C H A P T E R 1 4 ■ D A T A B I N D I N G

Although this makes sense conceptually, you’re not finished yet. Before this com-
mand can work, you need to tell the SqlDataSource to maintain the old values from the
data source and to give them parameter names that start with original_. You do this by
setting to properties. First, set the SqlDataSource.ConflictDetection property to
ConflictOptions.CompareAllValues instead of ConflictOptions.OverwriteChanges (the
default). Next, set the long-winded OldValuesParameterFormatString property to the
text "original_{0}". This tells the SqlDataSource to insert the text original_ before the
field name to create the parameter that stores the old value. Now your command will
work as written.

The SqlDataSource doesn’t raise exception to notify you if no update is performed. So,
if you use the command shown in this example, you need to handle the SqlDataSource.
Updated event and check the SqlDataSourceStatusEventArgs.AffectedRows property. If
it’s 0, no records have been updated, and you should notify the user about the concur-
rency problem so the update can be attempted again, as shown here:

�����-��.�7�
.�	���-�0��.�-�!���
,	��.���.��+9�-��	��.��:

��*�,!���*���-�*����	;7���5��	��"

1

����
>����5>>�-��.���	�??�'"

����1

��������,+, �>��2����?�(�����.������	����>����.��(�$�

(5�-��-�����-��������
	�,
=�,�:��������-�����.�
	�
�-����-�,����
�����(3

����6

�����,	�

����1

��������,+, �>��2����?�(��-��.�	�--�		>�,,����.���.�(3

����6

6

The Last Word
This chapter presented a thorough overview of data binding in ASP.NET. First, you
learned an interesting way to create dynamic text with simple data binding. Although this
is a reasonable approach to get information into your page, it doesn’t surpass what you
can already do with pure code. However, you also learned how ASP.NET builds on this
infrastructure with much more useful features, including repeated-value binding for
quick-and-easy data display in a list control and the data source controls, which let you
create code-free bound pages.

Using the techniques in this chapter, you can create a wide range of data-bound pages.
However, if you want to create a page that incorporates record editing, sorting, and other
more advanced tricks, the data binding features you’ve learned about so far are just the

MacDonald.book Page 578 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 4 ■ D A T A B I N D I N G 579

first step. You’ll also need to turn to specialized controls, such as the DetailsView and
GridView, which build upon these data binding features. You’ll learn how to master these
controls in the next chapter. You’ll also learn how to extend your data binding skills to
work with data access components in Chapter 24.

MacDonald.book Page 579 Friday, December 16, 2005 3:55 PM

MacDonald.book Page 580 Friday, December 16, 2005 3:55 PM

581

■ ■ ■

C H A P T E R 1 5

The Data Controls

When it comes to data binding, not all ASP.NET controls are created equal. In the previ-
ous chapter, you saw how data binding could help you automatically insert single values
and lists into all kinds of common controls. In this chapter, you’ll concentrate on three
more advanced controls—the GridView, DetailsView, and FormView—that allow you to
bind entire tables of data.

The rich data controls are quite a bit different from the simple list controls—for one
thing, they are designed exclusively for data binding. They also have the ability to display
more than one field at a time, often in a table-based layout or according to what you’ve
defined. They also support higher-level features such as selecting, editing, and sorting.

The rich data controls include the following:

GridView: The GridView is an all-purpose grid control for showing large tables of
information. The GridView is the heavyweight of ASP.NET data controls—it’s also the
successor to the ASP.NET 1.x DataGrid.

DetailsView: The DetailsView is ideal for showing a single record at a time, in a table
that has one row per field. The DetailsView also supports editing.

FormView: Like the DetailsView, the FormView shows a single record at a time and
supports editing. The difference is that the FormView is based on templates, which
allow you to combine fields in a much more flexible layout that doesn’t need to be
table-based.

In this chapter, you’ll explore the rich data controls in detail.

The GridView
The GridView is an extremely flexible grid control that displays a multicolumn table. Each
record in your data source becomes a separate row. Each field in the record becomes a
separate column.

MacDonald.book Page 581 Friday, December 16, 2005 3:55 PM

582 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

The GridView is the most powerful of the three rich data controls you’ll learn about in
this chapter, because it comes equipped with the most ready-made functionality. This
functionality includes features for automatic paging, sorting, selecting, and editing. The
GridView is also the only data control that can show more than one record at a time.

Automatically Generating Columns

The GridView provides a DataSource property for the data object you want to display,
much like the list controls you saw in Chapter 14. Once you’ve set the DataSource prop-
erty, you call the DataBind() method to perform the data binding and display each
record in the DataGrid. However, the GridView doesn’t provide properties, such as
DataTextField and DataValueField, that allow you to choose what column you want to
display. That’s because the GridView automatically generates a column for every field,
as long as the AutoGenerateColumns property is true (which is the default).

Here’s all you need to create a basic grid with one column for each field:

��������	
����������	
���������������������

Once you’ve added this GridView tag to your page, you can fill it with data. Here’s
an example that performs a query using the ADO.NET objects and binds the retrieved
DataSet:

��������	���	��������	�� !������	��"#����$����%

&

����'����(�$�)*+#,� !����*

����������������-������

.� /��'���������0������*/���������-������1�+���(���	�2*/���������-�����3

��������4���-5���-#�#/,���	�����"���	���+�6�"7��������89)0���	�����3

-:4/����������������-:4/��������������������-�����%3

-:4/�66��	�6	����-:4/�66��	���4���-5�"���%3

-:4����$	������	���������-:4����$	�������6	%3

��8�44�(�����-��

����-���� ���������-���%3

�	�����*8�44��� �"�$��(����%3

�����'��6�(� ��	���*

���	
����*����-�������� �3

���	
����*����;��	�%3

<

Figure 15-1 shows the GridView this code creates.

MacDonald.book Page 582 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 583

Figure 15-1. The bare-bones GridView

Of course, you don’t need to write this data access code by hand. As you learned in the
previous chapter, you can use the SqlDataSource control to define your query. You can
then link that query directly to your data control, and ASP.NET will take care of the entire
data binding process.

Here’s how you would define a SqlDataSource to perform the query shown in the pre-
vious example:

�����-:4����-���������-:4����-���������������������

/���������-��������=>/���������-�������+���(���	=��

-�4���/�66��	��-#�#/,���	�����"���	���+�6�"7��������89)0���	�������

Next, set the GridView.DataSourceID property to link the data source to your grid:

��������	
����������	
�����������������������-������������������	�������

These two tags duplicate the example in Figure 15-1 but with significantly less effort.
Now you don’t have to write any code to execute the query and bind the DataSet.

Using the SqlDataSource has positive and negative sides. Although it gives you less
control, it streamlines your code quite a bit, and it allows you to remove all the database
details from your code-behind class. In this chapter, we’ll focus on the data source
approach, because it’s much simpler when creating complex data-bound pages that sup-
port features such as editing. In Chapter 24, you’ll learn how to adapt these examples to
use the ObjectDataSource instead of the SqlDataSource. The ObjectDataSource is a great
compromise—it allows you to write customized data access code in a database compo-
nent without giving up the convenient design-time features of the data source controls.

MacDonald.book Page 583 Friday, December 16, 2005 3:55 PM

584 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

Defining Columns

By default, the GridView.AutoGenerateColumns property is true, and the GridView cre-
ates a column for each field. This automatic column generation is good for creating quick
test pages, but it doesn’t give you the flexibility you’ll usually want. For example, what if
you want to hide columns, change their order, or configure some aspect of their display,
such as the formatting or heading text? In all these cases, you need to set AutoGenerate-
Columns to false and define the columns in the <Columns> section of the GridView
control tag.

■Tip It’s possible to have AutoGenerateColumns set to true and define columns in the <Columns> section.
In this case, the columns you explicitly defined are added before the autogenerated columns. However, for the
most flexibility you’ll usually want to explicitly define every column.

Each column can be any of several types, as described in Table 15-1. The order of your
column tags determines the left-to-right order of columns in the GridView.

Table 15-1. Column Types

Column Description
BoundField This column displays text from a field in the data source.

ButtonField This column displays a button for each item in the list.

CheckBoxField This column displays a check box for each item in the list. It’s used
automatically for true/false fields (in SQL Server, these are fields that use
the bit data type).

CommandField This column provides selection or editing buttons.

HyperlinkField This column displays its contents (a field from the data source or static text)
as a hyperlink.

ImageField This column displays image data from a binary field (providing it can be
successfully interpreted as a supported image format).

TemplateField This column allows you to specify multiple fields, custom controls, and
arbitrary HTML using a custom template. It gives you the highest degree of
control but requires the most work.

MacDonald.book Page 584 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 585

The most basic column type is BoundField, which binds to one field in the data object.
For example, here’s the definition for a single data-bound column that displays the
EmployeeID field:

�����;���	8��4	����8��4	�����	������?��	��,�@��������

This tag demonstrates how you can change the header text at the top of a column from
ProductID to just ID.

Here’s a complete GridView declaration with explicit columns:

��������	
����������	
�����������������������-������������������	�����

$�����������/�4�6����'�4����

�/�4�6���

�����;���	8��4	����8��4	�����	������?��	��,�@��������

�����;���	8��4	����8��4	�����	���+�6��?��	��,�@������	���+�6����

�����;���	8��4	����8��4	��7���������?��	��,�@�����������

��/�4�6���

���������	
����

Explicitly defining columns has several advantages:

• You can easily fine-tune your column order, column headings, and other details by
tweaking the properties of your column object.

• You can hide columns you don’t want to show by removing the column tag. (How-
ever, don’t overuse this technique, because it’s better to reduce the amount of data
you’re retrieving if you don’t intend to display it.)

• You’ll see your columns in the design environment (in Visual Studio). With auto-
matically generated columns, the GridView simply shows a few generic placeholder
columns.

• You can add extra columns to the mix for selecting, editing, and more.

This example shows how you can use this approach to change the header text. How-
ever, the HeaderText property isn’t the only column property you can change in a
column. In the next section, you’ll learn about a few more.

MacDonald.book Page 585 Friday, December 16, 2005 3:55 PM

586 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

Configuring Columns

When you explicitly declare a bound field, you have the opportunity to set other proper-
ties. Table 15-2 lists these properties.

Table 15-2. BoundField Properties

Property Description

DataField The name of the field you want to display in this column.

DataFormatString A format string that formats the field. This is useful for getting the
right representation of numbers and dates.

ApplyFormatInEditMode If true, the format string will be used to format the value even
when it appears in a text box in edit mode. The default is false,
which means the underlying value will be used (such as 1143.02
instead of $1,143.02).

FooterText, HeaderText,
and HeaderImageUrl

Sets the text in the header and footer region of the grid, if this grid
has a header (ShowHeader is true) and Footer (ShowFooter is
true). The header is most commonly used for a descriptive label
such as the field name; the footer can contain a dynamically
calculated value such as a summary. To show an image in the
header instead of text, set the HeaderImageUrl property.

ReadOnly If true, the value for this column can’t be changed in edit mode.
No edit control will be provided. Primary key fields are often
read-only.

InsertVisible If false, the value for this column can’t be set in insert mode. If
you want a column value to be set programmatically or based on
a default value defined in the database, you can use this feature.

Visible If false, the column won’t be visible in the page (and no HTML
will be rendered for it). This property gives you a convenient way
to programmatically hide or show specific columns, changing the
overall view of the data.

SortExpression An expression that can be applied to your results to sort them
based on one or more columns. You’ll learn about sorting later in
the “Sorting and Paging the GridView” section of this chapter.

HtmlEncode If true (the default), all text will be HTML encoded to prevent
special characters from mangling the page. You could disable
HTML encoding if you want to embed a working HTML tag (such
as a hyperlink), but this approach isn’t safe. It’s always a better
idea to use HTML encoding on all values and provide other
functionality by reacting to GridView selection events.

NullDisplayText The text that will be displayed for a null value. The default is an
empty string, although you could change this to a hard-coded
value, such as "(not specified)".

ConvertEmptyStringToNull If this is true, before an edit is committed, all empty strings will be
converted to null values.

ControlStyle, HeaderStyle,
FooterStyle, and ItemStyle

Configures the appearance for just this column, overriding the
styles for the row. You’ll learn more about styles throughout this
chapter.

MacDonald.book Page 586 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 587

Generating Columns with Visual Studio

When you first create a GridView, the AutoGenerateColumns property is set to false. When
you bind it to a data source control, nothing changes. However, Visual Studio also allows
you to create all the column tags you need automatically using a nifty trick.

Here’s how it works: Select the GridView control, and click Refresh Schema in the
smart tag. At this point, Visual Studio will retrieve the basic schema information from your
data source (for example, the names and data type of each column) and then add one
<BoundField> tag for each field.

■Tip If you modify the data source so it returns a different set of columns, you can regenerate the GridView
columns. Just select the GridView, and click the Refresh Schema link in the smart tag. This step will wipe out
any custom columns you’ve added (such as editing controls).

Once you’ve created your columns, you can also use some helpful design-time support
to configure the properties of each column (rather than editing the column tag by hand).
To do this, select the GridView, and click the ellipsis (…) next to the Columns property in
the Properties window. You’ll see a Fields dialog box that lets you add, remove, and refine
your columns (see Figure 15-2).

Figure 15-2. Configuring columns in Visual Studio

MacDonald.book Page 587 Friday, December 16, 2005 3:55 PM

588 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

Now that you understand the underpinnings of the GridView, you’ve still only started
to explore its higher-level features. In the following sections, you’ll tackle these topics:

Formatting: How to format rows and data values

Selecting: How to let users select a row in the GridView and respond accordingly

Editing: How to let users commit record updates, inserts, and deletes

Sorting: How to dynamically reorder the GridView in response to clicks on a
column header

Paging: How to divide a large result set into multiple pages of data

Templates: How to take complete control of designing, formatting, and editing by
defining templates

Formatting the GridView
Formatting consists of several related tasks. First, you want to ensure that dates, curren-
cies, and other number values are presented in the appropriate way. You handle this job
with the DataFormatString property. Next, you’ll want to apply the perfect mix of colors,
fonts, borders, and alignment options to each aspect of the grid, from headers to data
items. The GridView supports these features through styles. Finally, you can intercept
events, examine row data, and apply formatting to specific values programmatically. In
the following sections, you’ll consider each of these techniques.

The GridView also exposes several self-explanatory formatting properties that aren’t
covered here. These include GridLines (for adding or hiding table borders), CellPadding
and CellSpacing (for controlling the overall spacing between cells), and Caption and
CaptionAlign (for adding a title to the top of the grid).

■Tip Want to create a GridView that scrolls—inside a web page? It’s easy. Just place the GridView inside
a Panel control, set the appropriate size for the panel, and set the Panel.Scrollbars property to Auto, Vertical,
or Both.

Formatting Fields

Each BoundField column provides a DataFormatString property you can use to configure
the appearance of numbers and dates using a format string.

MacDonald15.fm Page 588 Friday, December 16, 2005 4:03 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 589

Format strings generally consist of a placeholder and format indicator, which are
wrapped inside curly brackets. A typical format string looks something like this:

&A�/<

In this case, the 0 represents the value that will be formatted, and the letter indicates
a predetermined format style. In this case, C means currency format, which formats a
number as a dollar figure (so 3400.34 becomes $3,400.34). Here’s a column that uses this
format string:

�����;���	8��4	����8��4	��7���/����?��	��,�@���������

����8��6��-�������&A�/<�?�64#���	���'�4�����

■Note Because of a bug in the way the GridView uses HTML encoding, you may need to set the
HtmlEncode property of the column to false. (Refer to Table 15-2 for more information about this property.)
Otherwise, the encoding will be performed before the formatting, which can cause the formatting to fail. If you
attempt to use a format string but the value doesn’t appear to be changed in the grid, this is the most likely
problem.

Table 15-3 shows some of the other formatting options for numeric values.

Table 15-3. Numeric Format Strings

You can find other examples in the MSDN Help. For date or time values, you’ll find an
extensive list. For example, if you want to write the BirthDate value in the format month/
day/year (as in 12/30/05), you use the following column:

�����;���	8��4	����8��4	��;���(�����?��	��,�@���;���(�����

����8��6��-�������&A�00�		�BB<���

Table 15-4 shows some more examples.

Type Format String Example
Currency {0:C} $1,234.50

Brackets indicate negative values: ($1,234.50). The
currency sign is locale-specific: (?1,234.50).

Scientific (Exponential) {0:E} 1.234.50E+004

Percentage {0:P} 45.6%

Fixed Decimal {0:F?} Depends on the number of decimal places you set.
{0:F3} would be 123.400. {0:F0} would be 123.

MacDonald.book Page 589 Friday, December 16, 2005 3:55 PM

590 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

Table 15-4. Time and Date Format Strings

The format characters are not specific to the GridView. You can use them with other
controls, with data-bound expressions in templates (as you’ll see later in the “GridView
Templates” section), and as parameters for many methods. For example, the Decimal and
DateTime types expose their own ToString() methods that accept a format string, allow-
ing you to format values manually.

Using Styles

The GridView exposes a rich formatting model that’s based on styles. Altogether, you can
set eight GridView styles, as described in Table 15-5.

Table 15-5. GridView Styles

Type
Format
String Syntax Example

Short Date {0:d} M/d/yyyy 10/30/2005

Long Date {0:D} dddd, MMMM dd, yyyy Monday, January 30, 2005

Long Date and
Short Time

{0:f} dddd, MMMM dd, yyyy HH:mm aa Monday, January 30, 2005
10:00 AM

Long Date and
Long Time

{0:F} dddd, MMMM dd, yyyy HH:mm:ss aa Monday, January 30, 2005
10:00:23 AM

ISO Sortable
Standard

{0:s} yyyy-MM-dd HH:mm:ss 2005-01-30 10:00:23

Month and
Day

{0:M} MMMM dd January 30

General {0:G} M/d/yyyy HH:mm:ss aa (depends on
locale-specific settings)

10/30/2002 10:00:23 AM

Style Description
HeaderStyle Configures the appearance of the header row that contains column

titles, if you’ve chosen to show it (if ShowHeader is true).

RowStyle Configures the appearance of every data row.

AlternatingRowStyle If set, applies additional formatting to every other row. This formatting
acts in addition to the RowStyle formatting. For example, if you set a font
using RowStyle, it is also applied to alternating rows, unless you
explicitly set a different font through AlternatingRowStyle.

SelectedRowStyle Configures the appearance of the row that’s currently selected. This
formatting acts in addition to the RowStyle formatting.

EditRowStyle Configures the appearance of the row that’s in edit mode. This
formatting acts in addition to the RowStyle formatting.

MacDonald.book Page 590 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 591

Styles are not simple single-value properties. Instead, each style exposes a Style object
that includes properties for choosing colors (ForeColor and BackColor), adding borders
(BorderColor, BorderStyle, and BorderWidth), sizing the row (Height and Width), aligning
the row (HorizontalAlign and VerticalAlign), and configuring the appearance of text (Font
and Wrap). These style properties allow you to refine almost every aspect of an item’s
appearance.

Here’s an example that changes the style of rows and headers in a GridView:

��������	
����������	
�����������������������-������������������	�����

$�����������/�4�6����'�4����

�����������	
������	����������������
��	���������������

������
��
����	
������	����������������� ��	���!�"
�����
��	���������������

�/�4�6���

�����;���	8��4	����8��4	�����	������?��	��,�@��������

�����;���	8��4	����8��4	�����	���+�6��?��	��,�@������	���+�6����

�����;���	8��4	����8��4	��7���������?��	��,�@�����������

��/�4�6���

���������	
����

In this example, every column is affected by the formatting changes. However, you can
also define column-specific styles. To create a column-specific style, you simply need to
rearrange the control tag so that the formatting tag becomes a nested tag inside the appro-
priate column tag. Here’s an example that formats just the ProductName column:

��������	
����������	
���C�������������������-������������������	�����

$�����������/�4�6����'�4����

�/�4�6���

�����;���	8��4	����8��4	�����	������?��	��,�@��������

�����;���	8��4	����8��4	�����	���+�6��?��	��,�@������	���+�6���

���������#�
$���	
������	����������������
��	���������������

����������
��
����	
������	����������������� ��	���!�"
�����
��	���������������

������;���	8��4	�

�����;���	8��4	����8��4	��7���������?��	��,�@�����������

��/�4�6���

���������	
����

EmptyDataRowStyle Configures the style that’s used for the single empty row in the special
case where the bound data object contains no rows.

FooterStyle Configures the appearance of the footer row at the bottom of the
GridView, if you’ve chosen to show it (if ShowFooter is true).

PagerStyle Configures the appearance of the row with the page links, if you’ve
enabled paging (set AllowPaging to true).

Style Description

MacDonald.book Page 591 Friday, December 16, 2005 3:55 PM

592 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

Figure 15-3 compares these two examples. You can use a combination of ordinary style
settings and column-specific style settings (which override ordinary style settings if they
conflict).

Figure 15-3. Formatting the GridView

One reason you might use column-specific formatting is to define specific column
widths. If you don’t define a specific column width, ASP.NET makes each column just
wide enough to fit the data it contains (or, if wrapping is enabled, to fit the text without
splitting a word over a line break). If values range in size, the width is determined by the
largest value or the width of the column header, whichever is larger. However, if the grid
is wide enough, you might want to expand a column so it doesn’t appear to be crowded
against the adjacent columns. In this case, you need to explicitly define a larger width.

Configuring Styles with Visual Studio

There’s no reason to code style properties by hand in the GridView control tag, because
the GridView provides rich design-time support. To set style properties, you can use the
Properties window to modify the style properties. For example, to configure the font of
the header, expand the HeaderStyle property to show the nested Font property, and set
that. The only limitation of this approach is that it doesn’t allow you to set the style for

MacDonald.book Page 592 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 593

individual columns—if you need that trick, you must first call up the Fields dialog box
(shown in the earlier Figure 15-2) by editing the Columns property. Then, select the
appropriate column, and set the style properties accordingly.

You can even set a combination of styles using a preset theme by clicking the Auto
Format link in the GridView smart tag. Figure 15-4 shows the Auto Format dialog box with
some of the preset styles you can choose. Select Remove Formatting to clear all the style
settings.

Figure 15-4. Automatically formatting a GridView

Once you’ve chosen a theme, the style settings are inserted into your GridView tag, and
you can tweak them by hand or by using the Properties window.

Formatting-Specific Values

The formatting you’ve learned so far isn’t that fine-grained. At its most specific, this for-
matting applies to a single column of values. But what if you want to change the
formatting for a specific row or even just a single cell?

The solution is to react to the GridView.RowCreated event. This event is raised when a part
of the grid (the header, footer, pager, or a normal, alternate, or selected item) is being created.
You can access the current row as a GridViewRow control. The GridViewRow.DataItem prop-
erty provides the data object for the given row, and the GridViewRow.Cells collection allows
you to retrieve the row content. You can use the GridViewRow to change colors and align-
ment, add or remove child controls, and so on.

MacDonald.book Page 593 Friday, December 16, 2005 3:55 PM

594 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

The following example handles the RowCreated event and changes the background
color to highlight high prices (those more expensive than $50):

��������	���	���	
�����9��/�����	�� !������	��"���	
���9��#����$����%

&

�'��*9��*9��,B��������/�����49��,B��*����9��%

&

������(������'���(�����*

	���6�4�������	���6�4%����;��	��*#��4��*9��*�������6"�7���������%3

�'�������DA%

&

�*9��*;��E/�4���-B���6*�������*/�4��*0�����3

�*9��*8���/�4���-B���6*�������*/�4��*.(���3

�*9��*8���*;�4	�����3

<

<

<

First, the code checks whether the item being created is an item or an alternate item. If
neither, it means the item is another interface element, such as the pager, footer, or
header, and the procedure does nothing. If the item is the right type, the code extracts the
UnitPrice field from the data-bound item.

To get a value from the bound data object (provided through the GridViewRowEventArgs.
Row.DataItem property), you need to cast the data object to the correct type. The trick is that
the type depends on the way you’re performing your data binding. In this example, you’re
binding to the SqlDataSource in DataSet mode, which means each data item will be a
DataRowView object. (If you were to bind in DataReader mode, a DbDataRecord represents
each item instead.) To avoid coding these details, which can make it more difficult to change
your data access code, you can rely on the DataBinder.Eval() helper method, which under-
stands all these types of data objects. That’s the techniques used in this example.

Figure 15-5 shows the resulting page.

MacDonald.book Page 594 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 595

Figure 15-5. Formatting individual rows based on values

Selecting a GridView Row
Selecting an item refers to the ability to click a row and have it change color (or become
highlighted) to indicate that the user is currently working with this record. At the same
time, you might want to display additional information about the record in another
control. With the GridView, selection happens almost automatically once you set up a
few basics.

MacDonald.book Page 595 Friday, December 16, 2005 3:55 PM

596 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

Before you can use item selection, you must define a different style for selected items.
The SelectedItemStyle determines how the selected row or cell will appear. If you don’t
set this style, it will default to the same value as RowStyle, which means the user won’t be
able to tell which row is currently selected. Usually, selected rows will have a different
BackColor property.

To find out what item is currently selected (or to change the selection), you can use the
SelectedItem property. It will be –1 if no item is currently selected. Also, you can react to
the SelectedIndexChanged event to handle any additional related tasks. For example, you
might want to update another control with additional information about the selected
record.

Adding a Select Button

The GridView provides built-in support for selection. You simply need to add a
CommandField column with the ShowSelect property set to true. ASP.NET can render
the CommandField as a hyperlink, a button, or a fixed image. You choose the type using
the ButtonType property. You can then specify the text through the SelectText property
or specify the link to the image through the SelectImageUrl property.

Here’s an example that displays a select button:

�����/�66��	8��4	-(��-�4���;�������,����;�����,B����;������

-�4���,�@���-�4������

And here’s an example that shows a small clickable icon:

�����/�66��	8��4	-(��-�4���;�������,����;�����,B�����6����

-�4����6���7�4����4���*��'���

Figure 15-6 shows a page with a text select button (and product 14 selected).
When you click a select button, the page is posted back, and a series of steps unfolds.

First, the GridView.SelectedIndexChanging event fires, which you can intercept to cancel
the operation. Next, the GridView.SelectedIndex property is adjusted to point to the
selected row. Finally, the GridView.SelectedIndexChanged event fires, which you can
handle if you want to manually update other controls to reflect the new selection. When
the page is rendered, the selected row is given the selected row style.

MacDonald.book Page 596 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 597

■Tip Rather than add the select button yourself, you can choose Enable Selection from the GridView’s
smart tag, which adds a basic select button for you.

Figure 15-6. GridView selection

Using a Data Field As a Select Button

You don’t need to create a new column to support row selection. Instead, you can turn an
existing column into a link. This technique is commonly used to allow users to select rows
in a table by the unique ID value.

MacDonald.book Page 597 Friday, December 16, 2005 3:55 PM

598 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

To use this technique, remove the CommandField column, and add a ButtonField col-
umn instead. Then, set the DataTextField to the name of the field you want to use.

�����;�����8��4	;�����,B����;����������,�@�8��4	�����	��������

This field will be underlined and turned into a link that, when clicked, will post back
the page and trigger the GridView.RowCommand event. You could handle this event,
determine which row has been clicked, and programmatically set the SelectedIndex prop-
erty. However, you can use an easier method. Instead, just configure the link to raise the
SelectedIndexChanged event by specifying a CommandName with the text Select, as
shown here:

�����;�����8��4	��$$���%�$
���
	
��;�����,B����;������

����,�@�8��4	�����	��������

Now clicking the data field automatically selects the record.

Using Selection to Create a Master-Details Form

As demonstrated in the previous chapter, you can bind other data sources to a property in
a control using parameters. For example, you could add two GridView controls and use
information from the first GridView to perform a query in the second.

In the case of the GridView, the property you need to bind is SelectedIndex. However,
this has one problem. SelectedIndex returns a zero-based index number representing
where the row occurs in the grid. This isn’t the information you need to insert into the
query that gets the related records. Instead, you need a unique key field from the corre-
sponding row. For example, if you have a table of products, you need to be able to get the
ProductID for the selected row. Unfortunately, you have no way to pull this information
out of the original data object, because all the data objects are discarded the moment the
grid is filled. However, the GridView has the ability to track important fields—fields that
represent unique key values—if you tell it to do so.

The trick is to set the DataKeyNames property for the GridView. This property requires a
comma-separated list of one or more key fields. Each name you supply must match one of
the fields in the bound data source. Usually, you’ll have only one key field, as shown here:

��������	
����������	#6�4�B����������������������-������������������	�����

&���'
�%�$
(��)���"�#&��

Once you’ve established this link, the GridView is nice enough to keep track of the key
fields for the selected record. It allows you to retrieve this information at any time through
the SelectedDataKey property.

MacDonald.book Page 598 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 599

The following example puts it all together. It defines two GridView controls. The first
shows a list of categories. The second shows the products that fall into the currently selected
category. (Or, if no category has been selected, this GridView doesn’t appear at all.)

Here’s the page markup for this example:

/����������� ���

��������	
����������	/����������������������������-���������������/����������

����F�B+�6����/������B����

�/�4�6���

�����/�66��	8��4	-(��-�4���;�������,������

��/�4�6���

�-�4����	9��-�B4�;��E/�4����G88//HH�8���I;�4	��,����8���/�4����GHHJJKK���

���������	
����

�����-:4����-���������������/������������������������

/���������-��������=>/���������-�������+���(���	=��

-�4���/�66��	��-#�#/,L89)0/�����������������-:4����-������

� ���

���	�������(���������B�� ���

��������	
����������	���	�����������������������-������������������	������

�-�4����	9��-�B4�;��E/�4����G88//HH�8���I;�4	��,����8���/�4����GHHJJKK���

���������	
����

�����-:4����-������������������	�������������������

/���������-��������=>/���������-�������+���(���	=��

-�4���/�66��	��-#�#/,���	�����"���	���+�6�"7��������89)0���	����.?#9#

/������B���M/������B����

�-�4�������6������

�����/�����4����6����+�6���/������B���/�����4�������	/����������

�������B+�6���-�4����	����F�B*
�4�����

��-�4�������6������

������-:4����-������

As you can see, you need two data sources, one for each GridView. The second data source
uses a ControlParameter that links it to the SelectedDataKey property of the first GridView.
Best of all, you still don’t need to write any code or handle the SelectedIndexChanged event on
your own.

Figure 15-7 shows this example in action.

MacDonald.book Page 599 Friday, December 16, 2005 3:55 PM

600 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

Figure 15-7. A master-details page

Editing with the GridView
The GridView provides support for editing that’s almost as convenient as its support for
selection. To switch a row into select mode, you simply set the SelectedIndex property to
the corresponding row number. To switch a row into edit mode, you set the EditIndex
property in the same way.

Of course, both of these tasks can take place automatically if you use specialized button
types. For selection, you use a CommandField column with the ShowSelectButton prop-
erty set to true. To add edit controls, you follow almost the same step—once again, you
use the CommandField column, but now you set ShowEditButton to true.

Here’s an example of a GridView that supports editing:

��������	
����������	���	�����������������������-������������������	�����

$�����������/�4�6����8�4�������F�B8��4	������	�������

MacDonald.book Page 600 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 601

�/�4�6���

�����;���	8��4	����8��4	�����	������?��	��,�@������9��)�4B��,������

�����;���	8��4	����8��4	�����	���+�6��?��	��,�@������	���+�6����

�����;���	8��4	����8��4	��7���������?��	��,�@�����������

��������(*+��$$����,
	���-����,��"������!�"
����

��/�4�6���

���������	
����

And here’s a revised data source control that can commit your changes:

�����-:4����-������	�����������	�������������������

/���������-��������=>/���������-�������+���(���	=��

-�4���/�66��	��-#�#/,���	�����"���	���+�6�"7��������89)0���	�����

7�	���/�66��	��7��$,#���	����-#,���	���+�6��M���	���+�6�"

7���������M7��������.?#9#���	������M���	��������

Remember, you don’t need to define the update parameters, as long as you make sure
they match the field names (with an at sign [@] at the beginning). Chapter 14 has more
information about using update commands with the SqlDataSource control.

When you add a CommandField with the ShowEditButton property set to true, the
GridView editing controls appear in an additional column. When you run the page and
the GridView is bound and displayed, the edit column shows an Edit link next to every
record (see Figure 15-8).

Figure 15-8. The editing controls

MacDonald.book Page 601 Friday, December 16, 2005 3:55 PM

602 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

When clicked, this link switches the corresponding row into edit mode. All fields are
changed to text boxes, with the exception of read-only fields (which are not editable) and
true/false bit fields (which are shown as check boxes). The Edit link is replaced with an
Update link and a Cancel link (see Figure 15-9).

Figure 15-9. Editing a record

The Cancel link returns the row to its initial state. The Update link passes the values
to the SqlDataSource.UpdateParameters collection (using the field names) and then trig-
gers the SqlDataSource.Update() method to apply the change to the database. Once
again, you don’t have to write any code, provided you’ve filled in the UpdateCommand
for the linked data source control.

You can use a similar approach to add support for record deleting and inserting. To
enable deleting and inserting, you need to add a column to the GridView that has the
ShowInsertButton and ShowDeleteButton properties set to true. As long as your linked
SqlDataSource has the InsertCommand and DeleteCommand properties filled in, these
operations will work automatically. If you want to write your own code that plugs into this
process (for example, updating a label to inform the user the update has been made), con-
sider reacting to the GridView event that fires after an update operation is committed,
such as RowDeleted and RowUpdated. You can also prevent changes you don’t like by
reacting to the RowDeleting and RowUpdating events and setting the cancel flag in the
event arguments.

MacDonald.book Page 602 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 603

■Note The basic built-in updating features of the GridView don’t give you a lot of flexibility. You can’t
change the types of controls that are used for editing, format these controls, or add validation. However, you
can add all these features by building your own editing templates, a topic you’ll consider later in the “GridView
Templates” section.

Sorting and Paging the GridView
The GridView is a great all-in-one solution for displaying all kinds of data, but it becomes
a little unwieldy as the number of fields and rows in your data source grows. Dense grids
contribute to large pages that are slow to transmit over the network and difficult for the
user to navigate. The GridView has two features that address these issues and make data
more manageable: sorting and paging.

Both sorting and paging can be performed by the database server, provided you craft
the right SQL using the Order By and Where clauses. In fact, sometimes this is the best
approach for performance. However, the sorting and paging provided by the GridView
SqlDataSource is easy to implement and thoroughly flexible. These techniques are partic-
ularly useful if you need to show the same data in several ways and you want to let the user
decide how the data should be ordered.

Sorting

The GridView sorting features allow the user to reorder the results in the GridView by
clicking a column header. It’s convenient—and easy to implement.

Although you may not realize it, when you bind to a DataTable, you actually use
another object called the DataView. The DataView sits between the ASP.NET web page
binding and your DataTable. Usually it does little aside from providing the information
from the associated DataTable. However, you can customize the DataView so it applies its
own sort order. That way, you can customize the data that appears in the web page, with-
out needing to actually modify your data.

You can create a new DataView object by hand and bind the DataView directly to a data
control such as the GridView. However, the GridView and SqlDataSource controls make it
even easier. They provide several properties you can set to control sorting. Once you’ve
configured these properties, the sorting is automatic, and you still won’t need to write any
code in your page class.

MacDonald.book Page 603 Friday, December 16, 2005 3:55 PM

604 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

To enable sorting, you must set the GridView AllowSorting property to true. Next, you
need to define a SortExpression for each column that can be sorted. In theory, a sort
expression can use any syntax that’s understood by the data source control. In practice, a
sort expression almost always takes the form used in the ORDER BY clause of a SQL query.
This means the sort expression can include a single field or a list of comma-separated
fields, optionally with the word ASC or DESC added after the column name to sort in
ascending or descending order.

Here’s how you could define the ProductName column so it sorts by alphabetically
ordering rows:

�����;���	8��4	����8��4	�����	���+�6��?��	��,�@������	���+�6��

�����.*�
((,����)���"�%�$
���

Note that if you don’t want a column to be sort-enabled, you simply don’t set its
SortExpression property. Figure 15-10 shows an example with a grid sorted by product name.

Figure 15-10. Sorting the GridView

Once you’ve associated a sort expression with the column and set the AllowSorting
property to true, the GridView will render the headers with clickable links, as shown in
Figure 15-10. However, it’s up to the data source control to implement the actual sorting
logic. How the sorting is implemented depends on the data source you’re using. Not all
data sources support sorting, but the SqlDataSource does. Essentially, when the user
clicks a column link, the SqlDataSource sets the DataView.Sort property behind the
scenes by using the sorting expression for that column. The end result is a perfectly
sorted, code-free grid.

MacDonald.book Page 604 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 605

With DataView sorting, the data is retrieved unordered from the database, and the
results are sorted in memory. This is not the speediest approach (sorting in memory
requires more overhead and is slower than having SQL Server do the same work), but it is
more scalable when you add caching to the mix. That’s because you can cache a single
copy of the data and sort it dynamically in several ways. (Chapter 26 has much more about
this technique.) Without DataView sorting, you need a separate query to retrieve the
newly sorted data.

■Note The sort is according to the data type of the column. Numeric and date columns are ordered from
smallest to largest. String columns are sorted alphanumerically without regard to case. Columns that contain
binary data cannot be sorted.

Sorting and Selecting

If you use sorting and selection at the same time, you’ll discover another issue. To see this
problem in action, select a row, and then sort the data by any column. You’ll see that the
selection will remain, but it will shift to a new item that has the same index as the previous
item. In other words, if you select the second row and perform a sort, the second row will
still be selected in the new page, even though this isn’t the record you selected. The only
way to solve this problem is to programmatically change the selection every time a header
link is clicked.

The simplest option is to react to the GridView.Sorted event to clear the selection, as
shown here:

��������	���	���	
�����-����	�� !������	��"���	
���-���#����$����%

&

��/4�����4����	��	�@*

���	
����*-�4����	��	�@�I�3

<

In some cases you’ll want to go even further and make sure a selected row remains
selected when the sorting changes. The trick here is to store the selected value of the key
field in view state each time the selected index changes:

��������	���	���	
�����-�4����	��	�@/(����	�� !������	��"#����$����%

&

��-����(���4����	��4��*

�'����	
����*-�4����	��	�@N�I�%

&

���-����1�-�4����	
�4���2����	
����*-�4����	
�4��*,�-������%3

<

<

MacDonald.book Page 605 Friday, December 16, 2005 3:55 PM

606 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

Now, when the grid is bound to the data source (for example, after a sort operation),
you can reapply to the last selected index:

��������	���	���	
���������;���	�� !������	��"#����$����%

&

�'�
���-����1�-�4����	
�4���2N���44%

&

��������4����	
�4����������%
���-����1�-�4����	
�4���23

��9���4����(�4�����4����	���*

'�����(����	
���9����������	
����*9���%

&

������E�B
�4������	
����*����F�B�1���*9����	�@2*
�4��*,�-������%3

�'�E�B
�4������4����	
�4��%

&

���	
����*-�4����	��	�@����*9����	�@3

������3

<

<

<

<

Keep in mind that this approach can be confusing if you also have enabled paging
(which is described in the next section). This is because a sorting operation might move
the current row to another page, rendering it not visible but keeping it selected. This
makes sense but is quite confusing in practice.

Paging

Often, a database search will return too many rows to be realistically displayed in a single
page. If the client is using a slow connection, sending an extremely large GridView can
take a frustrating amount of time to arrive. Once the data is retrieved, the user m
ay find out it doesn’t contain the right content anyway or that the search was too broad
and they can’t easily wade through all the results to find the important information.

The GridView handles this scenario with an automatic paging feature. When you use
automatic paging, the full results are retrieved from the data source and placed into a
DataSet. Once the DataSet is bound to the GridView, however, the data is subdivided into
smaller groupings (for example, with 20 rows each), and only a single batch is sent to the
user. The other groups are abandoned when the page finishes processing. To allow the
user to skip from one page to another, the GridView automatically displays a group of
pager controls at the bottom of the grid. These pager controls could be previous/next
links (often displayed as < and >) or number links (1, 2, 3, 4, 5, …) that lead to specific
pages. If you’ve ever used a search engine, you’ve seen paging at work.

MacDonald.book Page 606 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 607

By setting a few properties, you can make the GridView control manage the paging for
you. Table 15-6 describes the key properties.

Table 15-6. Paging Members of the GridView

To use automatic paging, you need to set AllowPaging to true (which shows the page con-
trols), and you need to set PageSize to determine how many rows are allowed on each page.

Here’s an example of a GridView control declaration that sets these properties:

��������	
����������	
�����������������������-������������������	�����

����-�O���D�$44����������,����***�

���������	
����

PAGING AND PERFORMANCE

When you use paging, every time a new page is requested, the full DataSet is queried from the database. This
means paging does not reduce the amount of time required to query the database. In fact, because the infor-
mation is split into multiple pages and you need to repeat the query every time the user moves to a new page,
the database load actually increases. However, the client will see an improvement. Because any given page
contains only a subset of the total data, the page size is smaller and will be transmitted faster, reducing the
client’s wait. The end result is a more responsive and manageable page.

You can use paging in certain ways without increasing the amount of work the database needs to per-
form. One option is to cache the entire DataSet in server memory. That way, every time the user moves to a
different page, you simply need to retrieve the data from memory and rebind it, avoiding the database alto-
gether. You’ll learn how to use this technique in Chapter 26.

Property Description
AllowPaging Enables or disables the paging of the bound records. It is false by

default.

PageSize Gets or sets the number of items to display on a single page of the
grid. The default value is 10.

CurrentPageIndex Gets or sets the zero-based index of the currently displayed page, if
paging is enabled.

PagerSettings Provides a PagerSettings object that wraps a variety of formatting
options for the pager controls. These options determine where the
paging controls are shown and what text or images they contain.
You can set these properties to fine-tune the appearance of the
pager controls, or you can use the defaults.

PagerStyle Provides a style object you can use to configure fonts, colors, and
text alignment for the paging controls.

PageIndexChanged event Occurs when one of the page selection elements is clicked.

MacDonald.book Page 607 Friday, December 16, 2005 3:55 PM

608 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

This is enough to start using paging. Figure 15-11 shows an example with ten records
per page (for a total of eight pages).

Figure 15-11. Paging the GridView

Using GridView Templates
So far, the examples have used the GridView control to show data using separate bound
columns for each field. If you want to place multiple values in the same cell, or you have
the unlimited ability to customize the content in a cell by adding HTML tags and server
controls, you need to use a TemplateField.

The TemplateField allows you to define a completely customized template for a col-
umn. Inside the template you can add control tags, arbitrary HTML elements, and data
binding expressions. You have complete freedom to arrange everything the way you want.

For example, imagine you want to create a column that combines the in stock, on
order, and reorder level information for a product. To accomplish this trick, you can con-
struct an ItemTemplate like this:

�����,�6�4���8��4	?��	��,�@���-�������

����6,�6�4����

� ���-���E��� �

�/���0�	1�2�,�(#������3�/�� ���

� �)�)�	����� �

MacDonald.book Page 608 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 609

�=G�0�	1�2�,�(4�4��
��3�/�� ���

� �9���	����� �

�/���0�	1��
���
�5
0
	�3�/�

�����6,�6�4����

������,�6�4���8��4	�

To create the data binding expressions, the template uses the Eval() method, which is a
static method of the System.Web.UI.DataBinder class. Eval() is an indispensable conve-
nience—it automatically retrieves the data item that’s bound to the current row, uses
reflection to find the matching field, and retrieves the value.

■Tip The Eval() method also adds the extremely useful ability to format data fields on the fly. To use this
feature, you must implement the overloaded version of the Eval() method that accepts an additional format
string parameter. Here’s an example:

�=G#��4��;���(�����"�&A�00�		�BB<�%=�

You can use any of the format strings defined in Table 15-3 and Table 15-4 with the Eval() method.

You’ll notice that this example template includes three data binding expressions.
These expressions get the actual information from the current row. The rest of the content
in the template defines static text, tags, and controls.

You also need to make sure the data source provides these three pieces of information.
If you attempt to bind a field that isn’t present in your result set, you’ll receive a runtime
error. If you retrieve additional fields that are never bound to any template, no problem
will occur.

Here’s the revised data source with these fields:

�����-:4����-������������������	�������������������

/���������-��������=>/���������-�������+���(���	=��

-�4���/�66��	��-#�#/,���	�����"���	���+�6�"7��������"7������-���E"

7����)�)�	��"9���	������489)0���	�����

7�	���/�66��	��7��$,#���	����-#,���	���+�6��M���	���+�6�"

7���������/)+
#9,�6���B"M7��������%.?#9#���	������M���	�������

������-:4����-������

When you bind the GridView, the GridView fetches the data from the data source and
walks through the collection of items. It processes the ItemTemplate for each item, evalu-
ates the data binding expressions, and adds the rendered HTML to the table. You’re free
to mix template columns with other column types. Figure 15-12 shows an example with
several normal columns and the template column at the end.

MacDonald.book Page 609 Friday, December 16, 2005 3:55 PM

610 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

Figure 15-12. A GridView with a template column

Using Multiple Templates

The previous example used a single template to configure the appearance of data items.
However, the ItemTemplate isn’t the only template that the GridView provides. In fact,
the GridView allows you to configure various aspects of its appearance with a number of
templates. Inside every template column, you can use the templates listed in Table 15-7.

Table 15-7. GridView Templates

Mode Description

HeaderTemplate Determines the appearance and content of the header cell

FooterTemplate Determines the appearance and content of the footer cell

ItemTemplate Determines the appearance and content of each data cell (if you
aren’t using the AlternatingItemTempalte) or every odd-numbered
data cell (if you are)

AlternatingItemTemplate Used in conjunction with the ItemTemplate to format even-
numbered and odd-numbered rows differently

EditItemTemplate Determines the appearance and controls used in edit mode

MacDonald.book Page 610 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 611

Of the templates listed in Table 15-7, the EditItemTemplate is one of the most useful,
because it gives you the ability to control the editing experience for the field. If you don’t
use template fields, you’re limited to ordinary text boxes, and you won’t have any valida-
tion. The GridView also defines two templates you can use outside any column. These are
the PagerTemplate, which lets you customize the appearance of pager controls, and the
EmptyDataTemplate, which lets you set the content that should appear if the GridView is
bound to an empty data object.

Editing Templates in Visual Studio

Visual Studio 2005 includes greatly improved support for editing templates in the web
page designer. To try this, follow these steps:

1. Create a GridView with at least one template column.

2. Select the GridView, and click Edit Templates in the smart tag. This switches the
GridView into template edit mode.

3. In the smart tag, use the Display drop-down list to choose the template you want to
edit (see Figure 15-13). You can choose either of the two templates that apply to the
whole GridView (EmptyDataTemplate or PagerTemplate), or you can choose a spe-
cific template for one of the template columns.

Figure 15-13. Editing a template in Visual Studio

MacDonald.book Page 611 Friday, December 16, 2005 3:55 PM

612 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

4. Enter your content in the control. You can enter static content, drag and drop con-
trols, and so on.

5. When you’re finished, choose End Template Editing from the smart tag.

Handling Events in a Template

In some cases, you might need to handle events that are raised by the controls you add to
a template column. For example, imagine you wanted to add a clickable image link by
adding an ImageButton control. This is easy enough to accomplish:

�����,�6�4���8��4	?��	��,�@���-�������

����6,�6�4����

������6���;����������6���;���������������������

�6���7�4�����������*��'���

�����6,�6�4����

������,�6�4���8��4	�

The problem is that if you add a control to a template, the GridView creates multiple
copies of that control, one for each data item. When the ImageButton is clicked, you need
a way to determine which image was clicked and to which row it belongs.

The way to resolve this problem is to use an event from the GridView, not the contained
button. The RowCommand event serves this purpose, because it fires whenever any but-
ton is clicked in any template. This process, where a control event in a template is turned
into an event in the containing control, is called event bubbling.

Of course, you still need a way to pass information to the RowCommand event to iden-
tify the row where the action took place. The secret lies in two string properties of all
button controls: CommandName and CommandArgument. CommandName sets a
descriptive name you can use to distinguish clicks on your ImageButton from clicks on
other button controls in the GridView. The CommandArgument supplies a piece of row-
specific data you can use to identify the row that was clicked. You can supply this informa-
tion using a data binding expression.

Here’s the revised ImageButton tag:

�����,�6�4���8��4	?��	��,�@���-�������

����6,�6�4����

������6���;����������6���;���������������������

�6���7�4�����������*��'�

/�66��	+�6���-�����/4��E�/�66��	$���6����P�=G#��4�����	������%=�P��

�����6,�6�4����

������,�6�4���8��4	�

MacDonald.book Page 612 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 613

And here’s the code you need in order to respond when an ImageButton is clicked:

��������	���	���	
�����9��/�66��	�� !������	��"���	
���/�66��	#����$����%

&

�'��*/�66��	+�6����-�����/4��E�%

4 4��'�*,�@���Q���4��E�	���	���G�R�*/�66��	$���6���3

<

This example simply displays the ProductID in a label.

Editing with a Template

One of the best reasons to use a template is to provide a better editing experience. In the
previous chapter, you saw how the GridView provides automatic editing capabilities—all
you need to do is switch a row into edit mode by setting the GridView.EditItemIndex
property. The easiest way to make this possible is to add a CommandField column with
the ShowEditButton set to true. Then, the user simply needs to click a link in the appropri-
ate row to begin editing it. At this point, every label in every column is replaced by a text
box (unless the field is read-only).

The standard editing support has several limitations:

It’s not always appropriate to edit values using a text box: Certain types of data are best
handled with other controls (such as drop-down lists), large fields need multiline text
boxes, and so on.

You get no validation: It would be nice to restrict the editing possibilities so that cur-
rency figures can’t be entered as negative numbers, and so on. You can do that by
adding validator controls to an EditItemTemplate.

The visual appearance is often ugly: A row of text boxes across a grid takes up too much
space and rarely seems professional.

In a template column, you don’t have these issues. Instead, you explicitly define the
edit controls and their layout using the EditItemTemplate. This can be a somewhat labo-
rious process.

Here’s the template column used earlier for stock information with an editing
template:

�����,�6�4���8��4	?��	��,�@���-�������

����6-�B4�.�	�(���AA�@���

����6,�6�4����

� ���-���E��� ��=G#��4��7������-���E�%=�� ���

� �)�)�	����� ��=G#��4��7����)�)�	���%=�� ���

� �9���	����� ��=G#��4��9���	������4�%=�

�����6,�6�4����

MacDonald.book Page 613 Friday, December 16, 2005 3:55 PM

614 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

�#	�����6,�6�4����

� ���-���E��� ��=G#��4��7������-���E�%=�� ���

� �)�)�	����� ��=G#��4��7����)�)�	���%=�� ���� ���

� �9���	����� �

������(*+!
.���.�!
.��6�/���,��1��
���
�5
0
	�3�/�6�7,��-��89*.�

������"�����(
�0
���,����.��
���
�����

��#	�����6,�6�4����

������,�6�4���8��4	�

Figure 15-14 shows the row in edit mode.

Figure 15-14. Using an edit template

When binding an editable value to a control, you must use the Bind() method in your
data binding expression instead of the ordinary Eval() method. Only the Bind() method
creates the two-way link, ensuring that updated values will be returned to the server.

One interesting detail here is that even though the item template shows three fields, the
editing template allows only one of these to be changed. When the GridView commits an
update, it will submit only the bound, editable parameters. In the previous example, this
means the GridView will pass back a @ReorderLevel parameter but not a @UnitsInStock or

MacDonald.book Page 614 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 615

@UnitsOnOrder parameter for the Notes field. This is important, because when you write
your parameterized update command, it must use only the parameters you have available.
Here’s the correct command:

�����-:4����-������������������	�������������������

/���������-��������=>/���������-�������+���(���	=��

-�4���/�66��	��-#�#/,���	�����"���	���+�6�"7��������"7������-���E"

7����)�)�	��"9���	������489)0���	�����

7�	���/�66��	��7��$,#���	����-#,���	���+�6��M���	���+�6�"

7���������M7��������"

9���	������4�M9���	������4.?#9#���	������M���	�������

������-:4����-������

Editing with Validation

Now that you have your template ready, why not add an extra fill, such as a validator, to
catch editing mistakes? In the following example, a RangeValidator prevents changes that
put the ReorderLevel at less than 0 or more than 100:

�����,�6�4���8��4	?��	��,�@���-�������

����6-�B4�.�	�(���AA�@���

����6,�6�4����

� ���-���E��� ��=G#��4��7������-���E�%=�� ���

� �)�)�	����� ��=G#��4��7����)�)�	���%=�� ���

� �9���	����� ��=G#��4��9���	������4�%=�

�����6,�6�4����

�#	�����6,�6�4����

� ���-���E��� ��=G#��4��7������-���E�%=�� ���

� �)�)�	����� ��=G#��4��7����)�)�	���%=�� ���� ���

� �9���	����� �

������(*+!
.���.�!
.��6�/���,��1��
���
�5
0
	�3�/�6�7,��-��89*.�

������"�����(
�0
���,����.��
���
�����

������(*+���:
;�	,������,�����:;�	,�������<,�,$"$;�	"
��=��<�.,$"$;�	"
��>==�

�����������	!�;�	,���
���.��
���
����"�����(
�0
��

����������<
((�:
��;�	"
��"���?����:
@��!�*
��#��
:
����

��#	�����6,�6�4����

������,�6�4���8��4	�

Figure 15-15 shows the validation at work.

MacDonald.book Page 615 Friday, December 16, 2005 3:55 PM

616 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

Figure 15-15. Creating an edit template with validation

Editing Without a Command Column

So far, all the examples you’ve seen have used a CommandField that automatically gener-
ates edit controls. However, now that you’ve made the transition over to a template-based
approach, it’s worth considering how you can add your own edit controls.

It’s actually quite easy. All you need to do is add a button control to the item template
and set the CommandName to Edit. This automatically triggers the editing process, which
fires the appropriate events and switches the row into edit mode.

����6,�6�4����

� ���-���E��� ��=G#��4��7������-���E�%=�� ���

� �)�)�	����� ��=G#��4��7����)�)�	���%=�� ���

� �9���	����� ��=G#��4��9���	������4�%=�

� ���� ���

����(*+5,���"������"�����(
�0
���!
.�����,��

�����$$���%�$
����,���#&��5,��A"����>����

�����6,�6�4����

MacDonald.book Page 616 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 617

In the edit item template, you need two more buttons with CommandName values of
"Update" and "Cancel":

�#	�����6,�6�4����

� ���-���E��� ��=G#��4��7������-���E�%=�� ���

� �)�)�	����� ��=G#��4��7����)�)�	���%=�� ���� ���

� �9���	����� �

����(*+!
.���.�!
.��6�/���,��1��
���
�5
0
	�3�/�6�7,��-��89*.�

����"�����(
�0
���,����.��
���
�����

� ���� ���

����(*+5,���"������"�����(
�0
���!
.���2*���
�

�����$$���%�$
��2*���
��#&��5,��A"����>����

����(*+5,���"������"�����(
�0
���!
.������
	�

�����$$���%�$
�����
	��#&��5,��A"����8����

��#	�����6,�6�4����

As long as you use these names, the GridView editing events will fire and the data
source controls will react in the same way as if you were using the automatically generated
editing controls. Figure 15-16 shows the custom edit buttons.

Figure 15-16. Custom edit controls

MacDonald.book Page 617 Friday, December 16, 2005 3:55 PM

618 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

The DetailsView and FormView
The GridView excels at showing a dense table with multiple rows of information. However,
sometimes you want to provide a detailed look at a single record. Although you could work
out a solution using a template column in a GridView, ASP.NET also includes two controls
that are tailored for this purpose: the DetailsView and FormView. Both show a single record
at a time but can include optional pager buttons that let you step through a series of records
(showing one per page). The difference between the DetailsView and the FormView is their
support for templates. The DetailsView is built from field objects, in the same way the
GridView is built from column objects. On the other hand, the FormView is based on tem-
plates that work in the same way as a GridView template column, which requires a little
more work but gives you much more flexibility.

Now that you understand the features of the GridView, you can get up to speed with the
DetailsView and FormView quite quickly. That’s because both the DetailsView and the
FormView borrow a portion of the GridView model.

The DetailsView

The DetailsView displays a single record at a time. It places each field in a separate row of
a table.

You saw how to create a basic DetailsView to show the currently selected record in
Chapter 14. The DetailsView also allows you to move from one record to the next using
paging controls, if you’ve set the AllowPaging property to true. You can configure the
paging controls using the PagingStyle and PagingSettings properties in the same way as
you tweak the pager for the GridView. The only difference is that there’s no support for
custom paging, which means the full data source object is always retrieved.

Figure 15-17 shows the DetailsView when it’s bound to a set of product records, with
full product information.

It’s tempting to use the DetailsView pager controls to make a handy record browser.
Unfortunately, this approach can be quite inefficient. One problem is that a separate
postback is required each time the user moves from one record to another (whereas a grid
control can show multiple records on the same page). But the real drawback is that each
time the page is posted back, the full set of records is retrieved, even though only a single
record is shown. This results in needless extra work for the database server. If you choose
to implement a record browser page with the DetailsView, at a bare minimum you must
enable caching to reduce the database work (see Chapter 26).

MacDonald.book Page 618 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 619

Figure 15-17. The DetailsView with paging

■Tip It’s almost always a better idea to use another control to let the user choose a specific record (for
example, by choosing an ID from a list box) and then show the full record in the DetailsView using a parame-
terized command that matches just the selected record. Chapter 14 demonstrates this technique.

Defining Fields

The DetailsView uses reflection to generate the fields it shows. This means it examines the
data object and creates a separate row for each field it finds, just like the GridView. You
can disable this automatic row generation by setting AutoGenerateRows to false. It’s then
up to you to declare information you want to display.

Interestingly, you use the same field tags to build a DetailsView as you use to design a
GridView. For example, fields from the data item are represented with the BoundField tag,
buttons can be created with the ButtonField, and so on. For the full list, refer to the earlier
Table 15-1. The only GridView column type that the DetailsView doesn’t support is the
TemplateField.

MacDonald.book Page 619 Friday, December 16, 2005 3:55 PM

620 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

The following code defines a DetailsView that shows product information. This tag cre-
ates the same grid of information shown in Figure 15-17, when AutoGenerateRows was
set to true.

����������4�
������������4�
�������������������$�����������9�����8�4���

����-������������������	������

�8��4	��

�����;���	8��4	����8��4	�����	������?��	��,�@������	������

9��)�4B��,������

�����;���	8��4	����8��4	�����	���+�6��?��	��,�@������	���+�6����

�����;���	8��4	����8��4	��-���4������?��	��,�@���-���4��������

�����;���	8��4	����8��4	��/������B���?��	��,�@���/������B�����

�����;���	8��4	����8��4	��5������B���7����?��	��,�@���5������B���7������

�����;���	8��4	����8��4	��7���������?��	��,�@���7�����������

�����;���	8��4	����8��4	��7������-���E�?��	��,�@���7������-���E���

�����;���	8��4	����8��4	��7����)�)�	���?��	��,�@���7����)�)�	�����

�����;���	8��4	����8��4	��9���	������4�?��	��,�@���9���	������4���

�����/(��E;�@8��4	����8��4	�������������	�?��	��,�@��������������	���

��8��4	��

�����������4�
����

You can use the BoundField tag to set properties such as header text, formatting string,
editing behavior, and so on (refer to Table 15-2). In addition, you can use the ShowHeader
property. When it’s false, the header text is left out of the row, and the field data takes up
both cells.

■Tip Rather than coding each field by hand, you can use the same shortcut you used with the GridView.
Simply select the control at design time, and select Refresh Schema from the smart tag.

The field model isn’t the only part of the GridView that the DetailsView control adopts.
It also uses a similar set of styles, a similar set of events, and a similar editing model. The
only difference is that instead of creating a dedicated column for editing controls, you sim-
ply set Boolean properties such as AutoGenerateDeleteButton, AutoGenerateEditButton,
and AutoGenerateInsertButton. The links for these tasks are added to the bottom of the
DetailsView. When you add or edit a record, the DetailsView always uses standard text box
controls such as the GridView (see Figure 15-18). For more editing flexibility, you’ll want to
use the FormView control.

MacDonald.book Page 620 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 621

Figure 15-18. Editing in the DetailsView

The FormView

The DetailsView supports every type of GridView column except for template columns. If
you need the ultimate flexibility of templates, the FormView provides a template-only
control for displaying and editing a single record.

The beauty of the FormView template model is that it matches the model of the
TemplateField in the GridView quite closely. This means you can work with the following
templates:

• ItemTemplate

• EditItemTemplate

• InsertItemTemplate

• FooterTemplate

• HeaderTemplate

• EmptyDataTemplate

• PagerTemplate

MacDonald.book Page 621 Friday, December 16, 2005 3:55 PM

622 C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S

You can use the same template content you use with a TemplateField in a GridView
in the FormView. Earlier in this chapter, you saw how you can use a template field to com-
bine the stock information of a product into one column (shown in the earlier Figure 15-12).
Here’s how you can use the same template in the FormView:

�����8��6
�������8��6
�����������������������-������������������	������

����6,�6�4����

� ���-���E��� �

�=G#��4��7������-���E�%=�

� ���

� �)�)�	����� �

�=G#��4��7����)�)�	���%=�

� ���

� �9���	����� �

�=G#��4��9���	������4�%=�

� ���

�����6,�6�4����

������8��6
����

Like the DetailsView, the FormView can show only a single record at a time. (If the data
source has more than one record, you’ll see only the first one.) You can deal with this issue
by setting the AllowPaging property to true so that paging links are automatically created.
These links allow the user to move from one record to the next, as in the previous example
with the DetailsView.

Another option is to bind to a data source that returns just one record. Figure 15-19
shows an example where a drop-down list control lets you choose a product, and a second
data source shows the matching record in the FormView control. The FormView uses the
template from the previous example (it’s the shaded region on the page).

Figure 15-19. A FormView that shows a single record

MacDonald.book Page 622 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 5 ■ T H E D A T A C O N T R O L S 623

■Note If you want to support editing with the FormView, you need to add button controls that trigger the
edit and update processes, as described in the “Editing with a Template” section.

The Last Word
In this chapter, you considered everything you need to build rich data-bound pages. You
took a detailed tour of the GridView and considered its support for formatting, selecting,
sorting, paging, using templates, and editing. You also considered the DetailsView and
FormView, which allow you to display and edit individual records. Using these three con-
trols, you can build all-in-one pages that display and edit data, without needing to write
pages of ADO.NET code. Best of all, every data control is thoroughly configurable, which
means you can tailor it to fit just about any web application.

MacDonald.book Page 623 Friday, December 16, 2005 3:55 PM

MacDonald.book Page 624 Friday, December 16, 2005 3:55 PM

625

■ ■ ■

C H A P T E R 1 6

Files and Streams

You examined ADO.NET before considering simpler data access techniques such as writ-
ing and reading to ordinary files for good reason. Traditional file access is generally much
less useful in a web application than it is in a desktop program. Databases, on the other
hand, are designed from the ground up to support a large load of simultaneous users with
speed, safety, and efficiency. Most web applications will rely on a database for some fea-
tures, but many won’t have any use for straight file access.

Of course, enterprising ASP.NET developers can find a use for almost any technology.
If this book didn’t cover file access, no doubt many developers would be frustrated when
they designed web applications with legitimate (and innovative) uses for ordinary files. In
fact, file access is so easy and straightforward in .NET that it may be perfect for simple,
small-scale solutions that don’t need a full external database.

This chapter explains how you can use the input/output classes in .NET to read and
change file system information and even build a simple file browser. You’ll also learn how
to create simple text and binary files of your own. Finally, you’ll consider how you can
allow users to upload their own files to your web server.

Files and Web Applications
Why is it that most web applications don’t use files? There are several limitations to files:

File naming limitations: Every file you create needs to have a unique name (or it will
overwrite another file). Unfortunately, no easy way exists to ensure that a file’s name is
unique. Although relational databases provide an auto-increment data type that auto-
matically fills the field with a unique number when you create the record, files have no
such niceties. Usually, you need to let the user specify the file name or fall back on
some random number system. For example, you might create a file name based on a
random number combined with the current date and time or create a file name that
uses a GUID (globally unique identifier). With both of these approaches, file names
would be statistically unique, which means duplicates would be extremely unlikely.

MacDonald.book Page 625 Tuesday, December 13, 2005 1:11 PM

626 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

Multiuser limitations: As you’ve seen in the ADO.NET chapters, relational databases
provide features to manage locking, inconsistent updates, and transactions. Compara-
tively, the web server’s file system is woefully backward. Although you can allow
multiple users to read a file at once, it’s almost impossible to let multiple users update
the same file at the same time without catastrophe.

Scalability problems: File operations suffer from some overhead. In a simple scenario,
file access may be faster than connecting to a database and performing a query. But
when multiple users are working with files at the same time, these advantages disap-
pear, and your web server may slow down dramatically.

Security risks: If you allow the user to specify a file or path name, the user could devise a
way to trick your application into accessing or overwriting a protected system file. Even
without this ability, a malicious or careless user might use an ASP.NET page that creates
or uploads files to fill up your web server hard drive and cause it to stop working.

Of course, file access does have its uses. Maybe you need to access information that’s
already stored in a specific file and directory structure by another application (and you
can’t change that organization). Or maybe you don’t have a local database, and you need
to create only a small internal application (such as one hosted on an intranet). In this sit-
uation, you may be able to assume a smaller number of simultaneous users, as well as a
set of trusted users who are less likely to try to battle your web server.

File System Information
Many of the considerations mentioned previously apply to web applications that create
their own files. However, the simplest level of file access just involves retrieving informa-
tion about existing files and directories and performing typical file system operations
such as copying files and creating directories.

ASP.NET provides five basic classes for retrieving this sort of information. They are all
located in the System.IO namespace (and, incidentally, can be used in desktop applica-
tions in exactly the same way they are used in web applications).

• The Directory and File classes provide static methods that allow you to retrieve
information about any files and directories visible from your server.

• The DirectoryInfo and FileInfo classes use similar instance methods and properties
to retrieve the same sort of information.

• The DriveInfo class provides static methods that allow you to retrieve information
about a drive and the amount of free space it provides.

MacDonald.book Page 626 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 627

In Chapter 3, you saw how a class can provide two types of members. Static members
are always available—you just use the name of the class. To access an instance member,
you need to create an object first and then access the property or method through the
object’s variable name.

With the file access classes, static methods are more convenient to use because they
don’t require you to create the class. On the other hand, if you need to retrieve several
pieces of information, it’s easier to use an instance class. That way, you don’t need to keep
specifying the name of the directory or file each time you call a method. It’s also faster.
That’s because the FileInfo and DirectoryInfo classes perform their security checks
once—when you create the object instance. The Directory and File classes perform a
security check every time you invoke a method.

The Directory and File Classes

The Directory and File classes provide a number of useful methods. Table 16-1 and
Table 16-2 tell the whole story. Note that every method takes the same parameter: a
fully qualified path name identifying the directory or file you want the operation to act
on. A few methods, such as Delete(), have optional parameters.

Table 16-1. Directory Class Members

Method Description
CreateDirectory() Creates a new directory. If you specify a directory inside

another nonexistent directory, ASP.NET will thoughtfully
create all the required directories.

Delete() Deletes the corresponding empty directory. To delete a
directory along with its contents (subdirectories and files),
add the optional second parameter of true.

Exists() Returns true or false to indicate whether the specified
directory exists.

GetCreationTime(),
GetLastAccessTime(), and
GetLastWriteTime()

Returns a DateTime object that represents the time the
directory was created, accessed, or written to. Each “Get”
method has a corresponding “Set” method, which isn’t
shown in this table.

GetDirectories(), GetFiles(), and
GetLogicalDrives()

Returns an array of strings, one for each subdirectory, file,
or drive in the specified directory (depending on which
method you’re using). This method can accept a second
parameter that specifies a search expression (such as
ASP*.*). Drive letters are in this format: c:\.

GetParent() Parses the supplied directory string and tells you what the
parent directory is. You could do this on your own by
searching for the \ character (or, more generically, the
Path.DirectorySeparatorChar), but this function makes life
a little easier.

Continued

MacDonald.book Page 627 Tuesday, December 13, 2005 1:11 PM

628 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

Table 16-1. Continued

Table 16-2. File Class Members

Method Description
GetCurrentDirectory() and
SetCurrentDirectory()

Allows you to set and retrieve the current directory, which
is useful if you need to use relative paths instead of full
paths. Generally, these functions shouldn’t be relied on
and aren’t necessary.

Move() Accepts two parameters: the source path and the
destination path. The directory and all its contents can be
moved to any path, as long as it’s located on the same drive.

GetAccessControl() Returns a System.Security.AccessControl.
DirectorySecurity object. You can use this object to
examine the Windows ACLs (access control lists) that
are applied to this directory and even change them
programmatically.

Method Description
Copy() Accepts two parameters: the fully qualified source file

name and the fully qualified destination file name. To
allow overwriting, use the version that takes a Boolean
third parameter and set it to true.

Delete() Deletes the specified file but doesn’t throw an exception if
the file can’t be found.

Exists() Indicates true or false whether a specified file exists.

GetAttributes() and SetAttributes() Retrieves or sets an enumerated value that can include any
combination of the values from the FileMode
enumeration.

GetCreationTime(),
GetLastAccessTime(), and
GetLastWriteTime()

Returns a DateTime object that represents the time the file
was created, accessed, or last written to. Each “Get”
method has a corresponding “Set” method, which isn’t
shown in this table.

Move() Accepts two parameters: the fully qualified source file
name and the fully qualified destination file name. You
can move a file across drives and even rename it while you
move it (or rename it without moving it).

GetAccessControl() Returns a System.Security.AccessControl.
DirectorySecurity object. You can use this object to
examine the Windows ACLs that are applied to this file
and even change them programmatically.

MacDonald.book Page 628 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D ST R E A M S 629

The File class also includes some methods that allow you to create and open files as
streams. You’ll explore these features in the “Reading and Writing with Streams” section.
The only feature the File class lacks (and the FileInfo class provides) is the ability to
retrieve the size of a specified file.

The File and Directory methods are completely intuitive. For example, consider the
code for a simple page that displays some information about the files in a specific direc-
tory. You might use this code to create a simple admin page that allows you to review the
contents of an FTP directory (see Figure 16-1). Clients could use this page to review their
documents and remove suspicious files.

Figure 16-1. An admin page with file information

Begin by importing the namespace that has the IO classes:

���������	
����

MacDonald16.fm Page 629 Tuesday, December 13, 2005 1:27 PM

630 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

The code for this page is as follows:

����������	������������
����
�������

�

���������	
��	������	����
�	���� �!"��#�
	���#������	"�

�������	
�	
$����$����
%&��$'��(
�	��
�$
�)�*�
�	+����
,

�����

�����������'-	.�������	/��0,

���������

������������1�
�	
���
&��	',�

��������2

����2

���������	
����$�1�
�	
���
&��	',

�����

��������33�4
	��
�
�	.
����	�������
�)���$�$��������	����	.
����
�

��������33�5.�����$
������$�����
��	.
�$
�
	
���		��)�
��������	.

��������33���
�����	���
��	.
����
��������	�����
���
�$
�
	�����	�

���������	����67����
&��	� ����
�	����8
	���
�'�	����
�	���,�

����������	���
����	������
� ����
&��	�

����������	���
����	�/��$',�

��������������
����5
9	� �""�

����������$�
�
	
�*����
$� �����
�

����2

�������	
�	
$����$���$4
��
�.%1���0'��(
�	��
�$
�)�*�
�	+����
,

�����

��������1�
�	
���
&��	',�

����2

�������	
�	
$����$���	���
�%�
�
�	
$�$
91.���
$'��(
�	��
�$
�)

������*�
�	+����
,

�����

��������33���������	.
��
�
�	
$����
��������	����

��������33�:�
�	.
��	����/���$
������	.
����	
�	�����	������$�	.
��	����

��������33�	.�	�������
�$������
$�

MacDonald.book Page 630 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 631

���������	����/���$
��$������5
9	� ��
���	����/���$
�',�

���������	��������
;��
� ���	���
���
�
�	
$	
��5
9	�

��������$������5
9	�+��
�$'"<�=",�

��������$������5
9	�+��
�$'���
;��
,�

��������$������5
9	�+��
�$'"<3�=<���3=1�
�	
$���",�

��������$������5
9	�+��
�$'���
�8
	1�
�	���5��
'���
;��
,�5��	����',,�

��������$������5
9	�+��
�$'"<���3=&��	�+��
��
$���",�

��������$������5
9	�+��
�$'���
�8
	&��	+��
��5��
'���
;��
,�5��	����',,�

��������$������5
9	�+��
�$'"<���3=",�

��������33��.����		����	
��������	�����8
	+		����	
�',������
	�������������	���

��������33����
���
��	
$�����
�)���������

$�	��
�����	
��	���	.�	.

��������33���	���
���$�'>,���
��	���

�����������
+		����	
���		����	
�� ����
�8
	+		����	
�'���
;��
,�

�����������''�		����	
��>����
+		����	
��?�$$
�,� ����
+		����	
��?�$$
�,

���������

������������$������5
9	�+��
�$'"5.��������.�$$
�����
�<���3=",�

��������2

�����������''�		����	
��>����
+		����	
��4
�$����,� ����
+		����	
��4
�$����,

���������

������������$������5
9	�+��
�$'"5.���������
�$@��������
�<���3=",�

��������������$�
�
	
�*����
$� �����
�

��������2

��������
��

���������

��������������$�
�
	
�*����
$� �	��
�

��������2

��������33��.���	.
��
�
��	
$�	
9	���������
��

��������������
����5
9	� �$������5
9	�5��	����',�

����2

�������	
�	
$����$���$�
�
	
%1���0'��(
�	��
�$
�)�*�
�	+����
,

�����

�����������
��
�
	
'��	���
���
�
�	
$	
��5
9	,�

��������1�
�	
���
&��	',�

����2

2

MacDonald.book Page 631 Tuesday, December 13, 2005 1:11 PM

632 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

Dissecting the Code…

• The string with the file path c:\Inetpub\wwwroot is preceded by a special at sign
(@) character. This tells C# to interpret the string exactly as written. Without this
character, C# would assume the directory separation character (\) indicates the
start of a special character sequence. Another option is to use the special character
sequence \\, which C# reads as a single literal slash. In this case, the path would
become c:\\Inetpub\\wwwroot.

• The CreateFileList() procedure is easy to code, because it uses the data binding fea-
ture of the ListBox. The array returned from the GetFiles() methods can be attached
to the list with no extra code.

• When the user chooses an item in the list, the control posts the page back immedi-
ately and allows your code to refresh the file information.

• When evaluating the FileAttributes enumeration, you need to use the & operator to
perform bitwise arithmetic. This is because the value returned from GetAttributes()
can actually contain a combination of more than one attribute.

• The code that gets the file information builds a long string of text, which is then dis-
played in a label. For optimum performance, the System.Text.StringBuilder is used.
Without the StringBuilder, every time you added a piece of text to the string, you
would be creating a new string object, which takes longer.

• The code that displays file information could benefit from a switch to the FileInfo
class (as shown in the next section) . As it is, every method needs to specify the file,
which requires a separate security check.

One ingredient this code lacks is error handling. It’s always a good idea to wrap your
file access code in a try/catch block, in case the file isn’t accessible or the account running
the code doesn’t have the required permissions to access the file. When you’re testing
your application in Visual Studio, you’re unlikely to run into file permission errors. How-
ever, when you deploy your application, life gets more complicated. As you learned in
Chapter 12, in a deployed website ASP.NET runs under an account with carefully limited
privileges. (If you’re using IIS 5, this is the ASPNET account.) If you attempt to access a file
without the required permissions, you’ll receive a SecurityException.

To solve problems like these, you can modify the permissions for a file or an entire
directory. To do so, right-click the file or directory, select Properties, and choose the
Security tab. Here you can add or remove users and groups and configure what opera-
tions they’re allowed to do. Alternatively, you might find it easier to modify the account
ASP.NET uses. For more information, refer to Chapter 12, which explains how to config-
ure the account used for ASP.NET applications.

MacDonald.book Page 632 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 633

The DirectoryInfo and FileInfo Classes

The DirectoryInfo and FileInfo classes mirror the functionality in the Directory and File
classes. In addition, they make it easy to walk through directory and file relationships. For
example, you can easily retrieve the FileInfo objects of files in a directory represented by
a DirectoryInfo object.

Note that while the Directory and File classes expose only methods, DirectoryInfo and
FileInfo provide a combination of properties and methods. For example, while the File
class had separate GetAttributes and SetAttributes methods, the FileInfo class exposes a
read-write Attributes property.

Another nice thing about the DirectoryInfo and FileInfo classes is that they share a com-
mon set of properties and methods because they derive from the common FileSystemInfo
base class. Table 16-3 describes the members they have in common.

Table 16-3. DirectoryInfo and FileInfo Members

In addition, the FileInfo and DirectoryInfo classes have a couple of unique members,
as indicated in Table 16-4 and Table 16-5.

Member Description
Attributes Allows you to retrieve or set attributes using a combination of values

from the FileAttributes enumeration.

CreationTime,
LastAccessTime, and
LastWriteTime

Allows you to set or retrieve the creation time, last-access time, and last-
write time using a DateTime object.

Exists Returns true or false depending on whether the file or directory exists. In
other words, you can create FileInfo and DirectoryInfo objects that don’t
actually correspond to current physical directories, although you
obviously won’t be able to use properties such as CreationTime and
methods such as MoveTo().

FullName, Name,
and Extension

Returns a string that represents the fully qualified name, the directory or
file name (with extension), or the extension on its own, depending on
which property you use.

Delete() Removes the file or directory, if it exists. When deleting a directory, it
must be empty, or you must specify an optional parameter set to true.

Refresh() Updates the object so it’s synchronized with any file system changes
that have happened in the meantime (for example, if an attribute was
changed manually using Windows Explorer).

Create() Creates the specified directory or file.

MoveTo() Copies the directory and its contents or the file. For a DirectoryInfo
object, you need to specify the new path; for a FileInfo object, you
specify a path and file name.

MacDonald.book Page 633 Tuesday, December 13, 2005 1:11 PM

634 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

Table 16-4. Unique DirectoryInfo Members

Table 16-5. Unique FileInfo Members

When you create a DirectoryInfo or FileInfo object, you specify the full path in the
constructor:

���
�	������������
�	���� ��
�����
�	������'!"��#5
��",�

���
���������
� ��
�����
���'!"��#5
��#�
�$�
�	9	",�

This path may or may not correspond to a real physical file or directory. If it doesn’t,
you can always use the Create() method to create the corresponding file or directory:

33��
���
�	.
��
��$��
�	������$����
�

���
�	������������
�	���� ��
�����
�	������'!"��#5
��#5
�	",�

���
���������
� ��
�����
���'!"��#5
��#5
�	#�
�$�
�	9	",�

33�;�����
�	
�	.
�����$
��.
�
���������	��	�

33�A������B	���
�	
������
������$��
�	����	.�	�$�
��B	�
9��	��
	�

�����
�	����1�
�	
',�

�����
�1�
�	
',�

Member Description
Parent and Root Returns a DirectoryInfo object that represents the parent or root

directory.

CreateSubdirectory() Creates a directory with the specified name in the directory represented
by the DirectoryInfo object. It also returns a new DirectoryInfo object
that represents the subdirectory.

GetDirectories() Returns an array of DirectoryInfo objects that represent all the
subdirectories contained in this directory.

GetFiles() Returns an array of FileInfo objects that represent all the files contained
in this directory.

Member Description
Directory Returns a DirectoryInfo object that represents the parent directory.

DirectoryName Returns a string that identifies the name of the parent directory.

Length Returns a Long with the file size in bytes.

CopyTo() Copies a file to the new path and file name specified as a parameter. It also
returns a new FileInfo object that represents the new (copied) file. You can
supply an optional additional parameter of true to allow overwriting.

MacDonald.book Page 634 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 635

The DriveInfo Class

The DriveInfo class allows you to retrieve information about a drive on your computer.
Just a few pieces of information will interest you—typically, the DriveInfo class is merely
used to retrieve the total amount of used and free space.

Table 16-6 shows the DriveInfo members. Unlike the FileInfo and DriveInfo classes, no
Drive class provides instance versions of these methods.

Table 16-6. DriveInfo Members

■Tip Attempting to read from a drive that’s not ready (for example, a CD drive that doesn’t currently have
a CD in it) will throw an exception. To avoid this problem, check the DriveInfo.IsReady property, and attempt
to read other properties only if it returns true.

Member Description
TotalSize Gets the total size of the drive, in bytes. This includes allocated and free

space.

TotalFreeSpace Gets the total amount of free space, in bytes.

AvailableFreeSpace Gets the total amount of available free space, in bytes. Available space
may be less than the total free space if you’ve applied disk quotas limiting
the space the ASP.NET process can use.

DriveFormat Returns the name of the file system used on the drive (such as NTFS or
FAT32).

DriveType Returns a value from the DriveType enumeration, which indicates
whether the drive is a Fixed, Network, CDRom, Ram, or Removable drive
(or Unknown if the drive’s type cannot be determined).

IsReady Returns whether the drive is ready for reading or writing operations.
Removable drives are considered “not ready” if they don’t have any
media. For example, if there’s no CD in a CD drive, IsReady will return
false. In this situation, it’s not safe to query the other DriveInfo
properties. Fixed drives are always read.

Name Returns the drive letter name of the drive (such as C: or E:).

VolumeLabel Returns the descriptive volume label for the drive. In an NTFS-formatted
drive, the volume label can be up to 32 characters. If not set, this property
returns null.

RootDirectory Returns a DirectoryInfo object for the root directory in this drive.

GetDrives() Retrieves an array of DriveInfo objects, representing all the logical drives
on the current computer.

MacDonald.book Page 635 Tuesday, December 13, 2005 1:11 PM

636 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

A Sample File Browser

You can use methods such as DirectoryInfo.GetFiles() and DirectoryInfo.GetDirectories()
to create a simple file browser. Be warned that although this code is a good example of
how to use the DirectoryInfo and FileInfo classes, it isn’t a good example of security. Gen-
erally, you wouldn’t want a user to find out so much information about the files on your
web server.

The sample file browser program allows the user to see information about any file in
any directory in the current drive, as shown in Figure 16-2.

Figure 16-2. A web server file browser

MacDonald.book Page 636 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 637

The code for the file browser page is as follows:

����������	�������������
/����
�������

�

�������	
�	
$����$����
%&��$'��(
�	��
�$
�)�*�
�	+����
,

�����

�����������'-	.�������	/��0,

���������

�������������	������	��	������� �!"��#"�

���������������1���
�	����5
9	� ��	��	�������

�������������.�����
��'�	��	������,�

�������������.�����
�	���
��'�	��	������,�

��������2

����2

���������	
����$��.�����
��'�	�����$��,

�����

�����������
�	�������$������ ��
�����
�	������'$��,�

����������	���
��	
���1�
��',�

�����������
��.�'���
�������
	
�����$������8
	���
�',,

���������

��������������	���
��	
���+$$'���
	
��;��
,�

��������2

����2

���������	
����$��.�����
�	���
��'�	�����$��,

�����

�����������
�	�������$������ ��
�����
�	������'$��,�

����������	�����	
���1�
��',�

�����������
��.�'���
�	�������$��	
�����$������8
	���
�	���
�',,

���������

��������������	�����	
���+$$'$��	
��;��
,�

��������2

����2

MacDonald.book Page 637 Tuesday, December 13, 2005 1:11 PM

638 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

�������	
�	
$����$���$/����
%1���0'��(
�	��
�$
�)�*�
�	+����
,

�����

��������33�/����
�	��	.
�����
�	����
�
�	
$����$��
�	����

�����������'��	������
�
�	
$�$
9�- �@C,

���������

�������������	������
����� ���	.�1�����
'���1���
�	����5
9)

����������������	������
�
�	
$	
��5
9	,�

���������������1���
�	����5
9	� ��
�����

�������������.�����
��'�
����,�

�������������.�����
�	���
��'�
����,�

��������2

����2

�������	
�	
$����$���$���
�	%1���0'��(
�	��
�$
�)�*�
�	+����
,

�����

��������33�/����
����	��	.
�����
�	�$��
�	���B�����
�	�

��������33�5.
����
�	����8
	���
�	',��
	.�$�.
���������	�

�����������'���
�	����8
	���
�	'���1���
�	����5
9	,� �����,

���������

������������33�5.������	.
����	�$��
�	�����	.
�
���
�������
��
�
���

��������2

��������
��

���������

�������������	������
����� ����
�	����8
	���
�	'���1���
�	����5
9	,�����;��
�

���������������1���
�	����5
9	� ��
�����

�������������.�����
��'�
����,�

�������������.�����
�	���
��'�
����,�

��������2

����2

�������	
�	
$����$���$�.�����%1���0'��(
�	��
�$
�)�*�
�	+����
,

�����

��������33��.����������	��������	.
�����
�	����
�
�	
$����
�

�����������'��	���
���
�
�	
$�$
9�- �@C,

���������

�������������	��������
;��
� ���	.�1�����
'���1���
�	����5
9)

����������������	���
���
�
�	
$	
��5
9	,�

���������������
�����
����
� ��
�����
���'���
;��
,�

MacDonald.book Page 638 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 639

�������������	����/���$
��$������5
9	� ��
���	����/���$
�',�

������������$������5
9	�+��
�$'"<�=",�

������������$������5
9	�+��
�$'�
����
�;��
,�

������������$������5
9	�+��
�$'"<3�=<���3=��D
��",�

������������$������5
9	�+��
�$'�
����
�&
��	.,�

������������$������5
9	�+��
�$'"<���3=",�

������������$������5
9	�+��
�$'"1�
�	
$��",�

������������$������5
9	�+��
�$'�
����
�1�
�	���5��
�5��	����',,�

������������$������5
9	�+��
�$'"<���3=&��	�+��
��
$��",�

������������$������5
9	�+��
�$'�
����
�&��	+��
��5��
�5��	����',,�

������������������
����5
9	� �$������5
9	�5��	����',�

��������2

����2

2

Dissecting the Code…

• The list controls in this example don’t post back immediately. Instead, the web page
relies on the Browse to Selected and Show Info buttons.

• By default, directory names don’t end with a trailing backslash (\) character. (For
example, c:\Temp is used instead of c:\Temp\.) However, when referring to the root
drive, a slash is required. This is because only c:\ refers to the root drive; c: refers to
the current directory, whatever it may be. This can cause problems when you’re
manipulating strings that contain file names, because you don’t want to add an
extra trailing slash to a path (as in the invalid path c:\\myfile.txt). To solve this prob-
lem, the page uses the dedicated Path class in the System.IO namespace, which
provides a static Combine() method that correctly joins any file and path name
together.

• The ShowFilesIn() and ShowDirectoriesIn() subroutines loop through the file and
directory collections to build the lists. Another approach is to use data binding
instead, as shown in the following code sample. Just remember that when you bind
a collection of objects, you need to specify which property will be used for the list.
In this case, it’s the DirectoryInfo.Name or FileInfo.Name property.

33�+��	.
������	���������	���
��

��	���
����	������
� ��������8
	���
�',�

��	���
����	�E
��
�� �";��
"�

��	���
����	�/��$',�

MacDonald.book Page 639 Tuesday, December 13, 2005 1:11 PM

640 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

Reading and Writing with Streams
The .NET Framework makes it easy to create simple “flat” files in text or binary format.
Unlike a database, these files don’t have any internal structure (that’s why they’re called
flat). Instead, these files are really just a list of whatever information you want.

Text Files

You can write to a file and read from a file using a StreamWriter and a StreamReader—
dedicated classes that abstract away the process of file interaction. There really isn’t much
to it. You can create the StreamWriter and StreamReader classes on your own, or you can
use one of the helpful static methods included in the File class, such as CreateText() or
OpenText().

Here’s an example that gets a StreamWriter for writing data to the file c:\myfile.txt:

33��
���
����	�
��F��	
��'�.��.����$
����
$��������	����	
9	����
�,�

�	�
��F��	
����

33�1�
�	
�	.
����
)���$��
	����	�
��F��	
�������	�

�� ����
�1�
�	
5
9	'!"��#�����
�	9	",�

Once you have the StreamWriter, you can use the WriteLine() method to add informa-
tion to the file. The WriteLine method is overloaded so it can write many simple data
types, including strings, integers, and other numbers. These values are essentially all con-
verted into strings when they’re written to a file and must be converted back into the
appropriate types manually when you read the file.

��F��	
&��
'"5.������
��
�
��	
$����+���;*5",���33�F��	
����	�����

��F��	
&��
'GH,���������������������������������33�F��	
�������
��

When you finish with the file, you must make sure to close it. Otherwise, the changes may
not be properly written to disk, and the file could be locked open. At any time, you can also
call the Flush() method to make sure all data is written to disk, as the StreamWriter will per-
form some in-memory caching to optimize performance.

33�5�$�����

������.',�

��1���
',�

Finally, it’s always a good idea to look at what you wrote in Notepad while debugging
an application that writes to files. Figure 16-3 shows the contents that are created in
c:\myfile.txt with the simple code you’ve considered.

MacDonald.book Page 640 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 641

Figure 16-3. A sample text file

To read the information, you use the corresponding StreamReader class. It provides a
ReadLine() method that gets the next available value and returns it as a string. ReadLine()
starts at the first line and advances the position to the end of the file, one line at a time.

�	�
��4
�$
���� ����
���
�5
9	'!"��#�����
�	9	",�

�	���������	�	�����

����	�	����� ���4
�$&��
',�����33� �"5.������
��
�
��	
$����+���;*5"

���	�	����� ���4
�$&��
',�����33� �"GH"

ReadLine() returns a null reference when there is no more data in the file. This means
you can read all the data in a file using code like this:

33�4
�$���$�$�������	.
����
�������	.
����
���	���	.
�
�$

33����	.
����
�����
��.
$�

�	��������
�

$�

�

�������
� ���4
�$&��
',�

�������'���
�- �����,

�����

��������33�'����
���	.
����
�.
�
�,

����2

2��.��
�'���
�- �����,�

The code you’ve seen so far opens a file in single-user mode. If a second user tries to
access the same file at the same time, an exception will occur. You can reduce this prob-
lem when opening files using the more generic four-parameter version of the File.Open()
method instead of File.OpenText(). You must specify FileShare.Read for the final param-
eter. Unlike the OpenText() method, the Open() method returns a FileStream object, and
you must manually create a StreamReader that wraps it.

MacDonald.book Page 641 Tuesday, December 13, 2005 1:11 PM

642 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

Here’s the complete code you need to create a multiuser-friendly StreamReader:

���
�	�
������ ����
���
�'!"��#�����
�	9	")����
E�$
���
�)����
+��
���4
�$)

�����
�.��
�4
�$,�

�	�
��4
�$
���� ��
���	�
��4
�$
�'��,�

■Tip In Chapter 9, you saw how you can create a cookie for the current user, which can be persisted to disk
as a simple text file. This is probably a more common technique for a web application, but it’s quite a bit dif-
ferent from the file access code you’ve seen in this chapter. Cookies are created on the client side rather than
on the server. This means your ASP.NET code may be able to use them on subsequent requests, but they
aren’t useful for tracking other information you need to retain.

Binary Files

You can also write to a binary file. Binary data uses space more efficiently but also creates
files that aren’t human-readable. If you open a file in Notepad, you’ll see a lot of extended
ASCII characters (politely known as gibberish).

To open a file for binary writing, you need to create a new BinaryWriter class. The class
constructor accepts a stream, which you can retrieve using the File.OpenWrite() method.
Here’s the code to open the file c:\binaryfile.bin for binary writing:

/�����F��	
���� ��
��/�����F��	
�'���
���
�F��	
'!"��#���������
����",,�

.NET concentrates on stream objects, rather than the source or destination for the
data. This means you can write binary data to any type of stream, whether it represents a
file or some other type of storage location, using the same code. In addition, writing to a
binary file is almost the same as writing to a text file.

�	������	�� �"+���;*5�/���������
�5
�	"�

��	���	
�
�� �GH�

��F��	
'�	�,�

��F��	
'��	
�
�,�

������.',�

��1���
',�

MacDonald.book Page 642 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 643

Unfortunately, you need to know the data type you want to retrieve. To retrieve a
string, you use the ReadString() method. To retrieve an integer, you must use ReadInt32().
That’s why the preceding code example writes variables instead of literal values. If the
value 42 were hard-coded as the parameter for the Write() method, it wouldn’t be clear if
the value would be written as a 16-bit integer, 32-bit integer, decimal, or something else.
Unfortunately, you may need to micromanage binary files in this way to prevent errors.

/�����4
�$
���� ��
��/�����4
�$
�'���
���
�4
�$'!"��#���������
����",,�

�	������	��

��	���	
�
��

�	�� ���4
�$�	����',�

��	
�
�� ���4
�	�	IH',�

Once again, if you want to use file sharing, you need to use File.Open() instead of
File.OpenRead(). You can then create a BinaryReader by hand, as shown here:

���
�	�
������ ����
���
�'!"��#���������
����")����
E�$
���
�)����
+��
���4
�$)

�����
�.��
�4
�$,�

/�����4
�$
���� ��
��/�����4
�$
�'��,�

■Note You have no easy way to jump to a location in a text or binary file without reading through all the
information in order. Although you can use methods such as Seek() on the underlying stream, you need to
specify an offset in bytes, which involves some fairly involved calculations to determine variable sizes. If you
need to store a large amount of information and move through it quickly, you need a dedicated database, not
a binary file.

Shortcuts for Reading and Writing Files

.NET includes functionality for turbo-charging your file writing and reading. This func-
tionality comes from several static methods in the File class that let you read or write an
entire file in a single line of code.

For example, here’s a quick code snippet that writes a three-line file and then retrieves
it into a single string:

�	����67����
�� ��
���	����67�"5.������	.
�����	����
����	.
����
�")

��"5.������	.
��
���$����
����	.
����
�")

��"5.������	.
�	.��$����
����	.
����
�"2

MacDonald.book Page 643 Tuesday, December 13, 2005 1:11 PM

644 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

33�F��	
�	.
����
������
��.�	�

���
�F��	
&��
�'!"��#	
�	���
�	9	")����
�,�

33�4
�$�	.
����
������
��.�	�'��	�����������
����
$����	
�	,�

�	��������	
�	� ����
�4
�$+��'!"��#	
�	���
�	9	",�

Table 16-7 describes the full set of quick file access methods.

Table 16-7. File Methods for Quick Input/Output

The quick file access methods are certainly convenient for creating small files. They
also ensure a file is kept only for as short a time as possible, which is always the best
approach to minimize concurrency problems. But are they really practical? It all depends
on the size of the file. If you have a large file (say, one that’s several megabytes), reading
the entire content into memory at once is a terrible idea. It’s much better to read one
piece of data at a time and process the information bit by bit. Even if you’re dealing with
medium-sized files (say, several hundreds of kilobytes), you might want to steer clear of
the quick file access methods. That’s because in a popular website you might have multi-
ple requests dealing with files at the same time, and the combined overhead of keeping
every user’s file data in memory might reduce the performance of your application.

Method Description
ReadAll() Reads the entire contents of a file and returns it as a single string. If the file

already exists, it is overwritten.

ReadLines() Reads the entire contents of a file and returns it as an array of strings, one for
each line. If the file already exists, it is overwritten.

ReadBytes() Reads the entire file and returns its contents as an array of bytes. If the file
already exists, it is overwritten.

WriteAll() Creates a file, writes a supplied string to the file, and closes it.

WriteLines() Creates a file, writes a supplied array of strings to the file (separating each line
with a hard return), and closes the file.

WriteBytes() Creates a file, writes a supplied bytes array to the file, and closes it.

MacDonald.book Page 644 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 645

A Simple Guest Book

The next example demonstrates the file access techniques described in the previous
sections to create a simple guest book. The page actually has two parts. If there are no
current guest entries, the client will see only the controls for adding a new entry, as
shown in Figure 16-4.

Figure 16-4. The initial guest book page

When the user clicks Submit, a file will be created for the new guest book entry. As long
as at least one guest book entry exists, a GridView control will appear at the top of the
page, as shown in Figure 16-5.

MacDonald.book Page 645 Tuesday, December 13, 2005 1:11 PM

646 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

Figure 16-5. The full guest book page

The GridView that represents the guest book is constructed using data binding, which
you explored in Chapters 14 and 15. Technically speaking, the GridView is bound to a col-
lection that contains instances of the BookEntry class. The BookEntry class definition is
included in the code-behind file for the web page and looks like this:

�������������/��0*�	��

�

���������	
��	�������	.���

������������	�����+�	.��

�����

���������
	����
	������	.����2

���������
	�����	.��� �����
��2

����2

MacDonald.book Page 646 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 647

���������	
���	
5��
������		
$�

�������������	
5��
������		
$

�����

���������
	����
	���������		
$��2

���������
	��������		
$� �����
��2

����2

���������	
��	������
����
�

������������	�����E
����

�����

���������
	����
	�����
����
��2

���������
	����
����
� �����
��2

����2

2

The GridView uses a single template column, which fishes out the values it needs to
display. Here’s what the template looks like:

<	
�5
����	
=

����&
�	�/��

����<JK�*���'"+�	.��",�J=

����<���3=

����<�=<JK�*���'"E
����
",�J=<3�=

����<���3=

����&
�	����

����<JK�*���'"�����		
$",�J=

<3	
�5
����	
=

It also adds some style information that isn’t included here, because it isn’t necessary
to understand the logic of the program. In fact, these styles were applied in Visual Studio
using the GridView’s Auto Format feature.

As for the entries, the guest book page uses a special directory (GuestBook) to store a col-
lection of files. Each file represents a separate entry in the guest book. A better approach
would usually be to create a GuestBook table in a database and make each entry a separate
record.

The code for the web page is as follows:

����������	����������8�
�	/��0������

�

���������	
��	�������
�	/��0;��
�

MacDonald.book Page 647 Tuesday, December 13, 2005 1:11 PM

648 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

�������	
�	
$����$����
%&��$'��(
�	��
�$
�)�*�
�	+����
,

�����

����������
�	/��0;��
� ��
��
��E����	.'"8�
�	/��0",�

�����������'-	.�������	/��0,

���������

������������8�
�	/��0&��	���	������
� �8
	+��*�	��
�',�

������������8�
�	/��0&��	���	�/��$',�

��������2

����2

�������	
�	
$����$���$�����	%1���0'��(
�	��
�$
�)�*�
�	+����
,

�����

��������33�1�
�	
����
��/��0*�	�����(
�	�

��������/��0*�	����
�*�	��� ��
��/��0*�	��',�

���������
�*�	���+�	.��� �	9	;��
�5
9	�

���������
�*�	��������		
$� ���	
5��
�;���

���������
�*�	���E
����
� �	9	E
����
�5
9	�

��������33�&
	�	.
����
*�	�������
$��
���
�	
�	.
�����
����$�������
�

�����������
*�	��'�
�*�	��,�

��������33�4
��
�.�	.
�$�������

��������8�
�	/��0&��	���	������
� �8
	+��*�	��
�',�

��������8�
�	/��0&��	���	�/��$',�

��������	9	;��
�5
9	� �""�

��������	9	E
����
�5
9	� �""�

����2

���������	
�&��	</��0*�	��=�8
	+��*�	��
�',

�����

��������33�4
	�������+����&��	�	.�	����	�����/��0*�	�����(
�	�

��������33�����
��.����
����	.
�8�
�	/��0�$��
�	����

��������33�5.�������	�����
��
�����	.
�8
	*�	���������
�����	����

��������&��	</��0*�	��=�
�	��
�� ��
��&��	</��0*�	��=',�

�����������
�	���������
�	/��0���� ��
�����
�	������'��
�	/��0;��
,�

MacDonald.book Page 648 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 649

�����������
��.�'���
�������
	
�������
�	/��0����8
	���
�',,

���������

������������
�	��
��+$$'8
	*�	���������
'���
	
�,,�

��������2

���������
	����
�	��
��

����2

���������	
�/��0*�	���8
	*�	���������
'���
����
�	�����
,

�����

��������33�5����	.
����
��������	������	����/��0�*�	�����(
�	�

��������/��0*�	����
�*�	��� ��
��/��0*�	��',�

���������	�
��4
�$
���� �
�	�����
���
�5
9	',�

���������
�*�	���+�	.��� ���4
�$&��
',�

���������
�*�	��������		
$� ���	
5��
�����
'��4
�$&��
',,�

���������
�*�	���E
����
� ���4
�$&��
',�

����������1���
',�

���������
	�����
�*�	���

����2

���������	
����$����
�	��'/��0�	���
�	��,

�����

��������33�1�
�	
����
�����
�����	.���
�	��)���	.������
����
�	.�	��.���$

��������33��
��	�	��	����������L�
�

��������4��$������$��� ��
��4��$��',�

���������	��������
;��
� ���
�	/��0;��
�M�!"#"�

�����������
;��
�M ���	
5��
�;���5��0��5��	����',�M����$���;
9	'CNN,�5��	����',�

�����������
�����
����
� ��
�����
���'���
;��
,�

���������	�
��F��	
���� ��
����
�1�
�	
5
9	',�

��������33�F��	
�	.
��������	����	��	.
����
�

����������F��	
&��
'
�	���+�	.��,�

����������F��	
&��
'
�	��������		
$�5��	����',,�

����������F��	
&��
'
�	���E
����
,�

��������������.',�

����������1���
',�

����2

2

MacDonald.book Page 649 Tuesday, December 13, 2005 1:11 PM

650 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

Dissecting the Code…

• The code uses text files so that you can easily review the information on your own
with Notepad. You could use binary files just as easily, which would save a small
amount of space.

• The file name for each entry is generated using a combination of the current date
and time (in ticks) and a random number. Practically speaking, this makes it impos-
sible for a file to be generated with a duplicate file name.

• This program doesn’t use any error handling, which is an obvious limitation. When-
ever you try to access a file, you should use a try/catch block, because all kinds of
unexpected events can occur and cause problems.

• Careful design makes sure this program isolates file writing and reading code in
separate functions, such as SaveEntry(), GetAllEntries(), and GetEntryFromFile().
For even better organization, you could move these routines in a separate class or
even a separate component. This would allow you to use the ObjectDataSource to
reduce your data binding code. For more information, read Chapter 24.

Allowing File Uploads
Although you’ve seen detailed examples about how to work with files and directories on
the web server, you haven’t yet considered the question of how to allow file uploads. The
problem with file uploading is that you need some way to retrieve information from the
client—and as you already know, all ASP.NET code executes on the server.

Fortunately, ASP.NET includes a control that allows website users to upload files to the
web server. Once the web server receives the posted file data, it’s up to your application to
examine it, ignore it, or save it to a back-end database or a file on the web server. The
FileUpload control does this work, and it represents the <input type="file"> HTML tag.

Declaring the FileUpload control is easy. It doesn’t expose any new properties or
events you can use through the control tag.

<�������
:����$�� ":����$
�"�����	 "�
��
�"�3=

The <input type="file"> tag doesn’t give you much choice as far as user interface is con-
cerned (it’s limited to a text box that contains a file name and a Browse button). When the
user clicks Browse, the browser presents an Open dialog box and allows the user to choose
a file. This part is hard-wired into the browser, and you can’t change this behavior. Once

MacDonald.book Page 650 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 651

the user selects a file, the file name is filled into the corresponding text box. However, the
file isn’t uploaded yet—that happens later, when the page is posted back. At this point, all
the data from all input controls (including the file data) is sent to the server. For that rea-
son, it’s common to add a button to post back the page.

To get information about the posted file content, you can access the FileUpload.PostedFile
object. You can save the content by calling the PostedFile.SaveAs() method:

:����$
�����	
$���
����
+�'!"��#�
����
",�

ASP.NET also includes an HTML server control that represents the <input type="file">
HTML tag. The only real difference is that the FileUpload control takes care of automatically
setting the encoding of the form to multipart/form-data. If you use the HtmlInputFile con-
trol, it’s up to you to make this change using the enctype attribute of the <form> tag—if you
don’t, the HtmlInputFile control won’t work. That means you need to make sure your form
tag has this information:

<������$ "����C"����������	
����������	���������	 "�
��
�"=

��<-@@��
��
�����	��������.
�
)������$����	.
�?	�����	����	�����@@=

<3����=

The only real reason you’ll use HtmlInputFile is for backward compatibility, because
previous versions of ASP.NET didn’t include the FileUpload control.

Figure 16-6 shows a complete web page that demonstrates how to upload a user-
specified file. This example introduces a twist—it allows the upload of only those files with
the extensions .bmp, .gif, and .jpg.

Figure 16-6. A simple file uploader

MacDonald.book Page 651 Tuesday, December 13, 2005 1:11 PM

652 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

Here’s the code for the upload page:

����������	����������:����$���
������

�

���������	
��	����������$���
�	���� �!"��#"�

�������	
�	
$����$���$:����$%1���0'��(
�	��
�$
�)�*�
�	+����
,

�����

��������33�1.
�0�	.�	������
������	�������
���������		
$�

�����������'���
���	����	
$���
����
;��
� �"",

���������

�������������������5
9	� �";�����
���
����
$�"�

��������2

��������
��

���������

������������33�1.
�0�	.
�
9	
������

������������33�1.
�0�	.
�
9	
������

�������������	�����
9	
������ ���	.�8
	*9	
�����'���
���	����	
$���
����
;��
,�

���������������	�.�'
9	
������5�&��
�',,

�������������

�������������������
�"����"�

�������������������
�"����"�

�������������������
�"�(��"�

����������������������
�0�

����������������$
����	�

���������������������������5
9	� �"5.������
�	��
������	������
$�"�

���������������������
	����

������������2

������������33�:�����	.�����$
)�	.
����
$����
�������
	�����	����������

������������33����
����
)���	��
��	��
$����	.
�����
�	��
��
�

������������33��������	����$��
�	����

�������������	������
��
����
;��
� ���	.�8
	���
;��
'

�����������������
���	����	
$���
����
;��
,�

�������������	���������:����$��	.� ���	.�1�����
'�����$���
�	���)

���������������
��
����
;��
,�

������������	��

�������������

�������������������
���	����	
$���
����
+�'����:����$��	.,�

MacDonald.book Page 652 Tuesday, December 13, 2005 1:11 PM

C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S 653

�����������������������5
9	� �"���
�"�M��
��
����
;��
�

�����������������������5
9	�M �"������$
$�����
��������	�"�

�����������������������5
9	�M �����:����$��	.�

������������2

��������������	�.�'*9�
�	����
��,

�������������

�����������������������5
9	� �
���E
����
�

������������2

��������2

����2

2

Dissecting the Code…

• The saved file keeps its original (client-side) name. The code uses the
Path.GetFileName() static method to transform the fully qualified name provided
by FileInput.PostedFile.FileName and retrieve just the file, without the path.

• The FileInput.PostedFile object contains only a few properties. One interesting prop-
erty is ContentLength, which returns the size of the file in bytes. You could examine
this setting and use it to prevent a user from uploading excessively large files.

THE MAXIMUM SIZE OF A FILE UPLOAD

By default, ASP.NET will reject a request that’s larger than 4MB. However, you can alter this maximum by
modifying the maxRequestLength setting in the web.config file. This sets the largest allowed file in kilobytes.
The following sample setting configures the server to accept files up to 8MB:

<O9����
����� "C�N"�
���$��� "�	�@P"�O=

<���������	���=

��<���	
���
�=

����<-@@��	.
���
		��������		
$����������	���@@=

����<.		�4��	��
���94
L�
�	&
��	. "PCQH"

����3=

��<3���	
���
�=

<3���������	���=

Be careful, though. When you allow an 8MB upload, your code won’t run until that full request has been
received. This means a malicious server could cripple your server by sending large request messages to your
application. Even if your application ultimately rejects these messages, the ASP.NET worker process threads
will still be tied up waiting for the requests to complete. This type of attack is called a denial-of-service attack,
and the larger your allowed request size is, the more susceptible your website becomes.

MacDonald.book Page 653 Tuesday, December 13, 2005 1:11 PM

654 C H A P T E R 1 6 ■ F I L E S A N D S T R E A M S

The Last Word
Although databases and websites make a perfect fit, nothing is preventing you from using
the classes in the .NET Framework to access other types of data, including files. In fact, the
code you use to interact with the file system is the same as what you would use in a desk-
top application or any .NET program. Thanks to the .NET Framework, you can finally
solve common programming problems in the same way, regardless of the type of applica-
tion you’re creating.

MacDonald.book Page 654 Tuesday, December 13, 2005 1:11 PM

655

■ ■ ■

C H A P T E R 1 7

XML

XML is woven right into the fabric of .NET, and it powers key parts of the ASP.NET
technology. In this chapter, you’ll learn why XML comes into play in every ASP.NET web
application—whether you realize it or not.

You’ll also learn how you can create and read XML documents on your own by using
the classes of the .NET library. Along the way, you’ll sort through some of the near-
hysteric XML hype and consider what practical role XML can play in a web application.
You may find that ASP.NET’s built-in XML support is all you need and decide you don’t
want to manually create and manipulate XML data. On the other hand, you might want to
use the XML classes to communicate with other applications and components, or just as
a convenient replacement for simple text files. This chapter assesses all these issues real-
istically—which is a departure from many of today’s ASP.NET articles, seminars, and
books. The chapter starts with a whirlwind introduction to XML that explains how it works
and why it exists.

XML’s Hidden Role in .NET
The most useful place for XML isn’t in your web applications but in the infrastructure that
supports them. Microsoft has taken this philosophy to heart with ASP.NET. Instead of
providing separate components that allow you to add a basic XML parser or similar func-
tionality, ASP.NET uses XML quietly behind the scenes to accomplish a wide range of
tasks. If you don’t know much about XML yet, the first thing you should realize is that
you’re already using it.

Configuration Files

ASP.NET stores settings in a human-readable XML format using configuration files such
as machine.config and web.config, which were first introduced in Chapter 5. Arguably, a
plain-text file could be just as efficient. However, that would force the designers of the
ASP.NET platform to create their own proprietary format, which developers would then
need to learn. XML provides an all-purpose syntax for storing any data in a customized yet

MacDonald.book Page 655 Friday, December 16, 2005 3:55 PM

656 C H A P T E R 1 7 ■ X M L

consistent and standardized way using tags. Anyone who understands XML will immedi-
ately understand how the ASP.NET configuration files are organized.

ADO.NET Data Access

The ADO.NET DataSet can represent any data as an XML document, without requiring an
error-prone conversion step. This has a number of interesting consequences. For exam-
ple, it allows you to easily save the information you’ve retrieved from the database in an
XML file so you can retrieve it for later use. This feature is particularly useful for client
applications that aren’t always connected to the network, but you may choose to use it
occasionally in a web application.

Web Services

Web services, which are described in Part 5 of this book, are one of the best examples of
integrated XML in ASP.NET. To create or use a web service in a .NET program, you don’t
actually have to understand anything about XML, because the .NET Framework handles
all the details for you. However, because web services are built on these accepted stan-
dards, other programmers can develop clients for your web services in completely
different programming languages, operating systems, and computer platforms with little
extra work. In fact, they can even use a competitor’s toolkit to create a web service that
you can call from a .NET application! Cross-platform programming is clearly one of XML’s
key selling points.

Anywhere Miscellaneous Data Is Stored

Just when you think you’ve identified everywhere XML markup is used, you’ll find it
appearing somewhere new. You’ll find XML when you write an advertisement file defin-
ing the content for the AdRotator control or when you use .NET serialization to write an
object to a file. That these formats use XML probably won’t change the way they work, but
it does open up other possibilities for integrating the data with other applications and
tools. It’s also one more example that the developers of the .NET Framework have
embraced XML in unprecedented ways, abandoning Microsoft’s traditional philosophy of
closed standards and proprietary technologies.

XML Explained
The basic premise of XML is fairly simple, although the possible implementations of it
(and the numerous extensions to it) can get quite complex. XML is designed as an all-
purpose format for organizing data. In many cases, when you decide to use XML, you’re

MacDonald.book Page 656 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 657

deciding to store data in a standardized way, rather than creating your own new (and to
other developers, unfamiliar) format conventions. The actual location of this data—in
memory, in a file, in a network stream—is irrelevant.

The best way to understand the role XML plays is to consider the evolution of a simple
file format without XML. For example, consider a simple program that stores product
items as a list in a file. Say when you first create this program, you decide it will store three
pieces of product information (ID, name, and price), and you’ll use a simple text file for-
mat for easy debugging and testing. The file format you use looks like this:

�

�����

��	

�

���

�

��	��

����������������

��	��

This is the sort of format you might create by using .NET classes such as the Stream-
Writer. It’s easy to work with—you just write all the information, in order, from top to
bottom. Of course, it’s a fairly fragile format. If you decide to store an extra piece of infor-
mation in the file (such as a flag that indicates whether an item is available), your old code
won’t work. Instead, you might need to resort to adding a header that indicates the ver-
sion of the file:

�������������	
��

��������	
�

�

�����

��	

���

�

���

�

��	��

���

����������������

��	��

�����

Now, you could check the file version when you open it and use different file reading
code appropriately. Unfortunately, as you add more and more possible versions, the file

MacDonald.book Page 657 Friday, December 16, 2005 3:55 PM

658 C H A P T E R 1 7 ■ X M L

reading code will become incredibly tangled, and you may accidentally break compatibil-
ity with one of the earlier file formats without realizing it. A better approach would be to
create a file format that indicates where every product record starts and stops. Your code
would then just set some appropriate defaults if it finds missing information in an older
file format.

Here’s a relatively crude solution that improves the SuperProProductList by adding a
special sequence of characters (##Start##) to show where each new record begins:

�������������	
��

���������
�

���������

�

�����

��	

����

���������

�

���

�

��	��

����

���������

����������������

��	��

�����

�

All in all, this isn’t a bad effort. Unfortunately, you may as well use the binary file format
at this point—the text file is becoming hard to read, and it’s even harder to guess what
piece of information each value represents. On the code side, you’ll also need some basic
error checking abilities of your own. For example, you should make your code able to skip
over accidentally entered blank lines, detect a missing ##Start## tag, and so on, just to
provide a basic level of protection.

The central problem with this homegrown solution is that you’re reinventing the
wheel. While you’re trying to write basic file access code and create a reasonably flexible
file format for a simple task, other programmers around the world are creating their own
private, ad hoc solutions. Even if your program works fine and you can understand it,
other programmers will definitely not find it easy.

MacDonald.book Page 658 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 659

Improving the List with XML

This is where XML comes into the picture. XML is an all-purpose way to identify any type
of data using tags. These tags use the same sort of format found in an HTML file, but while
HTML tags indicate formatting, XML tags indicate content. (Because an XML file is just
about data, there is no standardized way to display it in a browser, although Internet
Explorer shows a collapsible view that lets you show and hide different portions of the
document.)

The SuperProProductList could use the following, clearer XML syntax:

����������������	 ��!

�"�#��$��$��%�&�'���!

�����$��%�&�!

���������()!��*()!

���������+���!������*+���!

���������$��&�!��	

�*$��&�!

���������,�����-��!�����*,�����-��!

���������"�����!
�*"�����!

�����*$��%�&�!

�����$��%�&�!

���������()!��*()!

���������+���!����*+���!

���������$��&�!�

��	���*$��&�!

���������,�����-��!�����*,�����-��!

���������"�����!
�*"�����!

�����*$��%�&�!

�����$��%�&�!

���������()!
�*()!

���������+���!�����������������*+���!

���������$��&�!��	���*$��&�!

���������,�����-��!������*,�����-��!

���������"�����!��*"�����!

�����*$��%�&�!

�*"�#��$��$��%�&�'���!

This format is clearly understandable. Every product item is enclosed in a <Product>
tag, and every piece of information has its own tag with an appropriate name. Tags are
nested several layers deep to show relationships. Essentially, XML provides the basic tag
syntax, and you (the programmer) define the tags you want to use. That’s why XML is
often described as a metalanguage—it’s a language you use to create your own language.
In the SuperProProductList example, this custom XML language defines tags such as
<Product>, <ID>, <Name>, and so on.

MacDonald.book Page 659 Friday, December 16, 2005 3:55 PM

660 C H A P T E R 1 7 ■ X M L

Best of all, when you read this XML document in most programming languages
(including those in the .NET Framework), you can use XML parsers to make your life eas-
ier. In other words, you don’t need to worry about detecting where a tag starts and stops,
collapsing whitespace, and identifying attributes (although you do need to worry about
capitalization, because XML is case-sensitive). Instead, you can just read the file into
some helpful XML data objects that make navigating the entire document much easier.

XML Basics

Part of XML’s popularity is a result of its simplicity. When creating your own XML docu-
ment, you need to remember only a few rules. The following two considerations apply to
both XML and HTML markup:

• Whitespace is ignored, so you can freely use tabs and hard returns to properly align
your information. To add a real space, you need to use the entity equivalent,
as in HTML.

• You can use only valid characters. You can’t enter special characters, such as the
angle brackets (< >) and the ampersand (&), as content. Instead, you’ll have to use
the entity equivalents (such as < and > for angle brackets, and & for the
ampersand). These equivalents are the same as in HTML coding and will be auto-
matically converted to the original characters when you read them into your
program with the appropriate .NET classes.

XML FILES VS. DATABASES

You can perform many tasks with XML—perhaps including some things it was never designed to do. This
book is not intended to teach you XML programming but good ASP.NET application design. For most ASP.NET
programmers, XML file processing is an ideal replacement for custom file access routines and works best in
situations where you need to store a small amount of data for relatively simple tasks.

XML files aren’t a good substitute for a database, because they have the same limitations as any other
type of file access. In a web application, only a single user can access a file at a time without causing an error,
regardless of whether the file contains an XML document or binary content. Database products provide a far
richer set of features for managing multiuser concurrency and providing optimized performance. Of course,
nothing is stopping you from storing XML data in a database, which many database products actively encour-
age. In fact, the newest versions of leading database products such as SQL Server and Oracle even included
extended XML features that support some of the standards you’ll see in this chapter.

MacDonald.book Page 660 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 661

In addition, XML imposes rules not found in ordinary HTML:

• XML tags are case-sensitive, so <ID> and <id> are completely different tags.

• Every start tag must have an end tag, or you must use the special “empty tag”
format, which includes a forward slash at the end. For example, you can use
<Name>Content</Name> or <Name />, but you cannot use <Name> on its own.
This is similar to the syntax for ASP.NET controls.

• All tags must be nested in a root tag. In SuperProProductList example, the root tag
is <SuperProProductList>. As soon as the root tag is closed, the document is fin-
ished, and you cannot add any more content. In other words, if you omit the
<SuperProProductList> tag and start with a <Product> tag, you’ll be able to enter
information for only one product; this is because as soon as you add the closing
</Product>, the document is complete. (HTML has a similar rule and requires that
all page content be nested in a root <html> tag, but most browsers let you get away
without following this rule.)

• Every tag must be fully enclosed. In other words, when you open a subtag, you need
to close it before you can close the parent. <Product><ID></ID></Product> is valid,
but <Product><ID></Product></ID> isn’t. As a general rule, indent when you open
a new tag, because this will allow you to see the document’s structure and notice if
you accidentally close the wrong tag first.

If you meet these requirements, your XML document can be parsed and displayed
as a basic tree. This means your document is well formed, but it doesn’t mean it is valid.
For example, you may still have your elements in the wrong order (for example,
<ID><Product></Product></ID>), or you may have the wrong type of data in a given
field (for example, <ID>Chair</ID><Name>2</Name). You can impose these additional
rules on your XML documents, as you’ll see later in this chapter when you consider XML
schemas.

The combination of an XML starting and ending tag and its data is known as an
element. These elements are the primary units for organizing information (as demon-
strated with the SuperProProductList example), but they aren’t the only option. You can
also use attributes.

■Note XHTML is a new standard that aims to replace HTML with a revised markup language enforcing
many of these rules. For the most part, XHTML pages look like HTML pages, but they require closing tags,
proper nesting, and so on. They also don’t tolerate any deviance from these rules. Although XHTML hasn’t yet
gained enough widespread standardization in client browsers to replace HTML, you can read about it at
���#.**///	/
	��0*12*������.

MacDonald.book Page 661 Friday, December 16, 2005 3:55 PM

662 C H A P T E R 1 7 ■ X M L

Attributes

Attributes add extra information to an element. Instead of putting information into a sub-
element, you can use an attribute. In the XML community, deciding whether to use
subtags or attributes—and what information should go into an attribute—is a matter of
great debate, with no clear consensus.

Here’s the SuperProProductList example with an ID and Name attribute instead of an
ID and Name subtag:

����������������	 ��!

�"�#��$��$��%�&�'���!

�����$��%�&���������������������!

���������$��&�!��	

�*$��&�!

���������,�����-��!�����*,�����-��!

���������"�����!
�*"�����!

�����*$��%�&�!

�����$��%�&������	������������!

���������$��&�!�

��	���*$��&�!

���������,�����-��!�����*,�����-��!

���������"�����!
�*"�����!

�����*$��%�&�!

�����$��%�&���������������������������������!

���������$��&�!��	���*$��&�!

���������,�����-��!������*,�����-��!

���������"�����!��*"�����!

�����*$��%�&�!

�*"�#��$��$��%�&�'���!

Of course, you’ve already seen this sort of syntax with HTML tags and ASP.NET server
controls:

���#.)��#)�/�'�����%�������&��������,���$�����&��������

�����������������3�%�������#���4��0������#��*!

Attributes are also common in the configuration file:

��������"�������%���(�#��&��&���������������������������� ��*!

Note that using attributes in XML is more stringent than in HTML. In XML, attributes
must always have values, and these values must use quotation marks. For example,
<Product Name="Chair" /> is acceptable, but <Product Name=Chair /> or <Product Name />
isn’t. (ASP.NET control tags don’t need to follow these rules.)

MacDonald.book Page 662 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 663

■Tip Order is not important when dealing with attributes. XML parsers treat attributes as a collection of
unordered information relating to an element. On the other hand, the order of elements often is important.
Thus, if you need a way of arranging information and preserving its order, or if you have repeated items with
the same name, then use elements, not attributes.

Comments

You can also add comments to an XML document. Comments go just about anywhere and
are ignored for data processing purposes. Comments are bracketed by the <!-- and --> char-
acter sequences. The following listing includes three valid comments:

����������������	 ��!

�"�#��$��$��%�&�'���!

 !""�#������������������
�""$

�����$��%�&��()�����+�����������!

���������$��&�!��	

�566�3�7������#��������66!�*$��&�!

���������,�����-��!�����*,�����-��!

���������"�����!
�*"�����!

�����*$��%�&�!

���� !""�%�����&��'(���������'�����(�����)
�""$

�*"�#��$��$��%�&�'���!

The only place you can’t put a tag is embedded within a start or end tag (as in
<myData <!-- A comment should not go here --></myData>).

The XML Classes
.NET provides a rich set of classes for XML manipulation in several namespaces that start
with System.Xml. One of the most confusing aspects of using XML with .NET is deciding
which combination of classes you should use. Many of them provide similar functionality
in a slightly different way, optimized for specific scenarios or for compatibility with spe-
cific standards.

The majority of the examples you’ll explore use the types in the core System.Xml
namespace. The classes here allow you to read and write XML files, manipulate XML data
in memory, and even validate XML documents.

MacDonald.book Page 663 Friday, December 16, 2005 3:55 PM

664 C H A P T E R 1 7 ■ X M L

In this chapter, you’ll look at the following options for dealing with XML data:

• Reading and writing XML directly, just like you read and write text files using
XmlTextWriter and XmlTextReader

• Dealing with XML as a collection of in-memory objects, such as XmlDocument and
XmlNode

• Binding to the XmlDataSource to display XML information with minimum fuss

• Dealing with XML as an interface to relational data using the XmlDataDocument
class

The XML TextWriter

One of the simplest ways to create or read any XML document is to use the basic
XmlTextWriter and XmlTextReader classes. These classes work like their StreamWriter
and StreamReader relatives, except that they write and read XML documents instead of
ordinary text files. This means you follow the same process you saw in Chapter 16 for
creating a file. First, you create or open the file. Then, you write to it or read from it,
moving from top to bottom. Finally, you close it and get to work using the retrieved data
in whatever way you’d like.

Before beginning this example, you’ll need to import the namespaces for file handling
and XML processing:

����0�"7����	(89

����0�"7����	:��9

Here’s an example that creates a simple version of the SuperProProductList document:

���"�������������/����"�����;<�&.="�#��$��$��%�&�'���	����>

�����?�%�	������@9

:��1���3������/�����/�:��1���3�����;��>�����@9

/	3����"����)�&�����;@9

/	3����"����A������;�"�#��$��$��%�&�'����@9

/	3�����������;�1���������0�������%�-7�����:��1���3������&����	�@9

**�3���������������#��%�&�	

/	3����"����A������;�$��%�&��@9

/	3����,����-���"����0;�()�>���>����@9

/	3����,����-���"����0;�+����>���>��������@9

MacDonald.book Page 664 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 665

/	3����"����A������;�$��&��@9

/	3����"����0;���	

�@9

/	3����A�%A������;@9

/	3����A�%A������;@9

**�3�����������&��%�#��%�&�	

/	3����"����A������;�$��%�&��@9

/	3����,����-���"����0;�()�>���>����@9

/	3����,����-���"����0;�+����>���>������@9

/	3����"����A������;�$��&��@9

/	3����"����0;��

��	���@9

/	3����A�%A������;@9

/	3����A�%A������;@9

**�3�������������%�#��%�&�	

/	3����"����A������;�$��%�&��@9

/	3����,����-���"����0;�()�>���>��
�@9

/	3����,����-���"����0;�+����>���>�������������������@9

/	3����"����A������;�$��&��@9

/	3����"����0;���	���@9

/	3����A�%A������;@9

/	3����A�%A������;@9

**�����������������������	

/	3����A�%A������;@9

/	3����A�%)�&�����;@9

/	�����;@9

This code is similar to the code used for writing a basic text file. It does have a few
advantages, however. You can close elements quickly and accurately, the angle brackets
(< >) are included for you automatically, and some errors (such as closing the root ele-
ment too soon) are caught automatically, thereby ensuring a well-formed XML document
as the final result.

To check that your code worked, open the file in Internet Explorer, which automati-
cally provides a collapsible view for XML documents (see Figure 17-1).

MacDonald.book Page 665 Friday, December 16, 2005 3:55 PM

666 C H A P T E R 1 7 ■ X M L

Figure 17-1. SuperProProductList.xml

The XML Text Reader

Reading the XML document in your code is just as easy with the corresponding
XmlTextReader class. The XmlTextReader moves through your document from top to
bottom, one node at a time. You call the Read() method to move to the next node. This
method returns true if there are more nodes to read or false once it has read the final node.
The current node is provided through the properties of the XmlTextReader class, such as
NodeType and Name.

FORMATTING YOUR XML

By default, the XmlTextWriter will create an XML file that has all its tags lumped together in a single line with-
out any helpful carriage returns or indentation. Although additional formatting isn’t required (and doesn’t
change how the data will be processed), it can make a significant difference if you want to read your XML files
in Notepad or another text editor. Fortunately, the XmlTextWriter supports formatting; you just need to enable
it, as follows:

**�"�����������%�������#��	

/	��������0�����������0	(�%����%9

**�"����������-��������%�����#�&��	

/	(�%������������9

MacDonald.book Page 666 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 667

A node is a designation that includes comments, whitespace, opening tags, closing
tags, content, and even the XML declaration at the top of your file. To get a quick under-
standing of nodes, you can use the XmlTextReader to run through your entire document
from start to finish and display every node it encounters. The code for this task is as
follows:

���"�������������/����"�����;<�&.="�#��$��$��%�&�'���	����>����?�%�	8#��@9

:��1���2��%���������/�:��1���2��%��;��@9

**�"���������/���������������"����03������;��&��B��&�������������0

**������0��#��������@	

"����03������/����������/�"����03�����;@9

**�$�������������>���%����%���&����%�	

/�����;�	2��%;@@

C

����/�����	3����;��-!17#�.�*-!��@9

����/�����	3����;�	+�%�17#�	1�"����0;@@9

����/�����	3����;��-�!�@9

�������;�	+����5����@

����C

��������/�����	3����;��-!+���.�*-!��@9

��������/�����	3����;�	+���@9

��������/�����	3����;��-�!�@9

����D

�������;�	E�����5����@

����C

��������/�����	3����;��-!E����.�*-!��@9

��������/�����	3����;�	E����@9

��������/�����	3����;��-�!�@9

����D

�������;�	,����-���������!� @

����C

��������/�����	3����;��-!,����-����.�*-!��@9

������������;�������� 9������	,����-��������9��FF@

��������C

������������/�����	3����;����@9

������������/�����	3����;�	G��,����-���;�@@9

������������/�����	3����;����@9

MacDonald.book Page 667 Friday, December 16, 2005 3:55 PM

668 C H A P T E R 1 7 ■ X M L

��������D

��������/�����	3����;��-�!�@9

����D

����/�����	3����;��-�!�@9

D

�	�����;@9

**���#7����������0�&����������������-������%��#��7���	

�-�:��	1������/�����	1�"����0;@9

To test this, try the XmlText.aspx page included with the online samples (as shown in
Figure 17-2).

Figure 17-2. Reading XML structure

MacDonald.book Page 668 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 669

The following is a list of all the nodes that are found, shortened to include only one
product:

�����������	����
���

+���.����

E����.�����������	 �

,����-����.��	

#)&�*�+������

+���.�"�#��$��$��%�&�'���

#)&�*��������

E����.�1���������0�������%�-7�����:��1���3������&����	

#)&�*�+������

+���.�$��%�&�

,����-����.��>������

#)&�*�+������

+���.�$��&�

#)&�*�#�,�

E����.���	

#)&�*�+�'+������

+���.�$��&�

#)&�*�+�'+������

+���.�$��%�&�

#)&�*�+�'+������

+���.�"�#��$��$��%�&�'���

In a typical application, you would need to go fishing for the elements that interest you. For
example, you might read information from an XML file such as SuperProProductList.xml and
use it to create Product objects based on the Product class shown here:

#�-��&�&�����$��%�&�

C

����#������������%9

����#������������0�����9

����#�������%�&�����#��&�9

MacDonald.book Page 669 Friday, December 16, 2005 3:55 PM

670 C H A P T E R 1 7 ■ X M L

����#�-��&�����()

����C

��������0���C���������%9�D

������������C��%��������9�D

����D

����#�-��&������0�+���

����C

��������0���C������������9�D

������������C�������������9�D

����D

����#�-��&�%�&�����$��&�

����C

��������0���C��������#��&�9�D

������������C�#��&���������9�D

����D

D

Nothing is particularly special about this class—all it does is allow you to store three
related pieces of information (a price, name, and ID). Note that this class uses property
procedures and so is eligible for data binding.

A typical application might read data from an XML file and place it directly into the corre-
sponding objects. The next example (also a part of the XmlWriterTest.aspx page) shows how
you can easily create a group of Product objects based on the SuperProProductList.xml file:

**�8#�����������������������	

���"�������������/����"�����;<�&.="�#��$��$��%�&�'���	����>����?�%�	8#��@9

:��1���2��%���������/�:��1���2��%��;��@9

**����������0�����&�&����&��������#��%�&��	

'����$��%�&�!�#��%�&�������/�'����$��%�&�!;@9

MacDonald.book Page 670 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 671

**�'��#������0������#��%�&��	

/�����;�	2��%;@@

C

�������;�	+�%�17#�����:��+�%�17#�	A�������HH��	+��������$��%�&��@

����C

��������$��%�&����/$��%�&������/�$��%�&�;@9

����������/$��%�&�	()���(��
�	$����;�	G��,����-���; @@9

����������/$��%�&�	+�������	G��,����-���;�@9

��������**�G���������������������-��0�����������#��%�&�	

��������/�����;�	+�%�17#��5��:��+�%�17#�	A�%A������@

��������C

�������������	2��%;@9

������������**�'��������$��&����-��0�	

���������������;�	+��������$��&��@

������������C

����������������/�����;�	+�%�17#��5��:��+�%�17#�	A�%A������@

����������������C

���������������������	2��%;@9

�����������������������;�	+�%�17#�����:��+�%�17#�	1���@

��������������������C

��������������������������/$��%�&�	$��&����)�&����	$����;�	E����@9

��������������������D

����������������D

������������D

������������**�I���&���%�&��&������������$��%�&����%��

������������**�;��&�����,�����-��>�"�����>���&	@�����	

��������D

��������**�,%%�����#��%�&�������������	

��������#��%�&��	,%%;��/$��%�&�@9

����D

D

MacDonald.book Page 671 Friday, December 16, 2005 3:55 PM

672 C H A P T E R 1 7 ■ X M L

�	�����;@9

**�)��#��7�������������%�%�&�����	

0��%2������)���"���&����#��%�&��9

0��%2������)������%;@9

Dissecting the Code…

• This code uses a nested looping structure. The outside loop iterates over all the prod-
ucts, and the inner loop searches through all the product tags (in this case, there is
only a possible Price tag). This keeps the code well organized. The EndElement node
alerts you when a node is complete and the loop can end. Once all the information is
read for a product, the corresponding object is added into the ArrayList collection.

• All the information is retrieved from the XML file as a string. Thus, the Int32.Parse()
method is used to convert this text to a numeric value.

• Data binding is used to display the contents of the collection. A GridView set to gen-
erate columns automatically creates the table shown in Figure 17-3.

Figure 17-3. Reading XML content

MacDonald.book Page 672 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 673

■Note The XmlTextReader provides many more properties and methods. These additional members don’t
add new functionality; they allow for increased flexibility. For example, you can read a portion of an XML doc-
ument into a string using methods such as ReadString(), ReadInnerXml(), and ReadOuterXml(). These
members are all documented in the MSDN class library reference. Generally, the most straightforward
approach is just to work your way through the nodes, as shown in the SuperProProductList example.

Working with XML Documents

The XmlTextReader and XmlTextWriter use XML as a backing store. These classes are
streamlined for getting XML data into and out of a file quickly. You don’t actually work
with the XML data in your program. Instead, you open the file, use the data to create the
appropriate objects or fill the appropriate controls, and close it soon after. This approach
is ideal for storing simple blocks of data. For example, you could slightly modify the guest
book page in the previous chapter to store data in an XML format, which would provide
greater standardization but wouldn’t change how the application works.

The XmlDocument class provides a different approach to XML data. It provides an in-
memory model of an entire XML document. You can then browse through the document,
reading, inserting, or removing nodes at any location. You can load the content from a file
into an XML document and save it to the file later, but the XmlDocument class doesn’t
maintain a direct connection to the file. In this respect, the XmlDocument is analogous to
the DataSet in ADO.NET programming: it’s always disconnected. The XmlTextWriter and
XmlTextReader, on the other hand, are always connected to a stream, which is usually a file.

When you use the XmlDocument class, your XML file is created as a series of linked
.NET objects in memory. Figure 17-4 shows the object model.

MacDonald.book Page 673 Friday, December 16, 2005 3:55 PM

674 C H A P T E R 1 7 ■ X M L

Figure 17-4. An XML document in memory

MacDonald.book Page 674 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 675

The following is an example that creates the SuperProProductList in memory, using an
XmlDocument class. When it’s finished, the XML document is transferred to a file using
the XmlDocument.Save() method.

**�"�����/������-�������6�����7�%�&�����	

:��)�&������%�&�����/�:��)�&�����;@9

**������������������-���������/����-������������

**�����#������0�:?'�%���	

:��A�����������A������>�#��%�&�A������>�#��&�A������9

:��,����-����#��%�&�,����-���9

:����������&������9

**������������%�&��������	

:��)�&���������%�&��������9

%�&�����������%�&	������:��)�&��������;��	 �>�����>��7���@9

**�(����������%�&������������������������%�	

%�&	(�����������;%�&��������>�%�&)�&�����A������@9

**�,%%���&������	

&���������%�&	�������������;�������%�/��������:��)�&������&����	�@9

%�&	(�����,����;&������>�%�&��������@9

**�,%%������������%�	

����A���������%�&	������A������;�"�#��$��$��%�&�'����@9

%�&	(�����,����;����A������>�&������@9

**�,%%�����������#��%�&�	

#��%�&�A���������%�&	������A������;�$��%�&��@9

����A������	,##��%����%;#��%�&�A������@9

**�"�����%��%%�����#��%�&�������-����	

#��%�&�,����-������%�&	������,����-���;�()�@9

#��%�&�,����-���	E����������9

#��%�&�A������	"��,����-���+�%�;#��%�&�,����-���@9

#��%�&�,����-������%�&	������,����-���;�+����@9

#��%�&�,����-���	E��������������9

#��%�&�A������	"��,����-���+�%�;#��%�&�,����-���@9

MacDonald.book Page 675 Friday, December 16, 2005 3:55 PM

676 C H A P T E R 1 7 ■ X M L

**�,%%�����#��&����%�	

#��&�A���������%�&	������A������;�$��&��@9

#��&�A������	(����1���������	

�9

#��%�&�A������	,##��%����%;#��&�A������@9

**�;��%������%%��/�������#��%�&���������%	@

**�"��������%�&�����	

%�&	"���;<�&.="�#��$��$��%�&�'���	����@9

One of the best features of the XmlDocument class is that it doesn’t rely on any under-
lying file. When you use the Save() method, the file is created, a stream is opened, the
information is written, and the file is closed, all in one line of code. This means this is
probably the only line you need to put inside a try/catch error handling block.

While you’re manipulating data with the XML objects, your text file isn’t being
changed. Once again, this is conceptually similar to the ADO.NET DataSet.

Dissecting the Code…

• Every separate part of the XML document is created as an object. Elements (tags)
are created as XmlElement objects, comments are created as XmlComment objects,
and attributes are represented as XmlAttribute objects.

• To create a new element, comment, or attribute for your XML document, you
need to use one of the XmlDocument class methods, such as CreateComment(),
CreateAttribute(), or CreateElement(). This ensures the XML is generated cor-
rectly for your document, but it doesn’t actually place any information into the
XmlDocument.

• Once you have created the appropriate object and entered any additional inner infor-
mation, you need to add it to your document. You can do so using XmlDocument
methods such as InsertBefore() or InsertAfter(). To add a child element (such as the
Product element inside the SuperProProductList element), you need to find the appro-
priate parent object and use its AppendChild() method. In other words, you need to
keep track of some object references; you can’t write a child element directly to the doc-
ument in the same way you could with the XmlTextWriter.

• You can insert nodes anywhere. While the XmlTextWriter and XmlTextReader
forced you to read every node, from start to finish, the XmlDocument is a much
more flexible collection of objects.

MacDonald.book Page 676 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 677

Figure 17-5 shows the file written by this code (as displayed by Internet Explorer).

Figure 17-5. The XML file

Reading an XML Document

To read information from your XML file, all you need to do is create an XmlDocument
object and use its Load() method. Depending on your needs, you may want to keep the
data in its XML form, or you can extract by looping through the collection of linked
XmlNode objects. This process is similar to the XmlTextReader example, but the code is
noticeably cleaner.

**������������%�&�����	

:��)���)�&������%�&�����/�:��)���)�&�����;@9

%�&	'��%;<�&.="�#��$��$��%�&�'���	����@9

**�'��#������0������������%��>���%�&����������,���7'���	

,���7'����#��%�&�������/�,���7'���;@9

�����&��;:��A������������������%�&)�&�����A������	����%+�%��@

C

����$��%�&����/$��%�&������/�$��%�&�;@9

������/$��%�&�	()���(��
�	$����;�������	G��,����-���;�()�@@9

������/$��%�&�	+�������������	G��,����-���;�+����@9

MacDonald.book Page 677 Friday, December 16, 2005 3:55 PM

678 C H A P T E R 1 7 ■ X M L

����**�(��������/������������������&���%���%�>�7���/���%�#��-�-�7����

����**������������A�&�����#��������%�����������0�����

����**�A������	����%+�%���&����&����	

������/$��%�&�	$��&����)�&����	$����;�������	����%+�%��J K	(����1���@9

����#��%�&��	,%%;��/$��%�&�@9

D

**�)��#��7������������	

0��%2������)���"���&����#��%�&��9

0��%2������)������%;@9

■Tip Whether you use the XmlDocument or the XmlTextReader class depends on a number of factors. Gen-
erally, you use XmlDocument when you want to deal directly with XML, rather than just use XML as a way to
persist some information. In general, the XmlTextReader is best for large XML files, because it won’t attempt
to load the entire document into memory at once.

You have a variety of other options for manipulating your XmlDocument and extract-
ing or changing pieces of data. Table 17-1 provides an overview.

Table 17-1. XmlNode Manipulation

Technique Description Example
Finding a
node’s relative

Every XmlNode leads to other
XmlNode objects. You can use
properties such as FirstChild,
LastChild, PreviousSibling,
NextSibling, and ParentNode to
return a reference to a related node.

ParentNode = MyNode.ParentNode;

Cloning a
portion of an
XmlDocument

You can use the CloneNode()
method with any XmlNode to create
a duplicate copy. You need to specify
true or false to indicate whether you
want to clone all children (true) or
just the single node (false).

NewNode = MyNode.Clone(true);

Removing or
adding nodes

Find the parent node, and then use
one of its node-adding methods. You
can use AppendChild() to add the
child to the end of the child list and
PrependChild() to add the node to
the start of the child list. You can also
remove nodes with RemoveChild(),
ReplaceChild(), and RemoveAll(),
which deletes all the children and all
the attributes for the current node.

MyNode.RemoveChild(NodeToDelete);

MacDonald.book Page 678 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 679

The XmlDocument class provides a rich set of events that fire before and after nodes
are inserted, removed, and changed. The likelihood of using these events in an ordinary
ASP.NET application is fairly slim, but it represents an interesting example of the features
.NET puts at your fingertips.

Adding inner
content

Find the node, and add a
NodeType.Text child node. One
possible shortcut is just to set the
InnerText property of your node,
but that will erase any existing child
nodes.

Manipulating
attributes

Every node provides an
XmlAttributeCollection of
all its attributes through the
XmlNode.Attributes property.
To add an attribute, you must create
an XmlAttribute object and use
methods such as Append(),
Prepend(), InsertBefore(), or
InsertAfter(). To remove an attribute,
you can use Remove() and
RemoveAll().

MyNode.Attributes.Remove(AttributeToDelete);

Working with
content as
string data

You can retrieve or set the content
inside a node using properties such
as InnerText, InnerXml, and
OuterXml. Be warned that the inner
content of a node includes all child
nodes. Thus, setting this property
carelessly could wipe out other
information, such as subtags.

Technique Description Example

THE DIFFERENCE BETWEEN XMLNODE AND XMLELEMENT

You may have noticed that the XmlDocument is created with specific objects such as XmlComment
and XmlElement but read back as a collection of XmlNode objects. The reason is that XmlComment and
XmlElement are customized classes that inherit their basic functionality from XmlNode.

The ChildNodes collection allows you to retrieve all the content contained inside any portion of an XML
document. Because this content could include comments, elements, and any other types of node,
the ChildNodes collection uses the lowest common denominator. Thus, it provides child nodes as a collection
of standard XmlNode objects. Each XmlNode has basic properties similar to what you saw with the
XmlTextReader, including NodeType, Name, Value, and Attributes. You’ll find that you can do all your XML
processing with XmlNode objects.

MacDonald.book Page 679 Friday, December 16, 2005 3:55 PM

680 C H A P T E R 1 7 ■ X M L

Searching an XML Document

One of the pleasures of the XmlDocument is its support of searching, which allows you
to find nodes when you know they are there—somewhere—but you aren’t sure how
many matches exist or where the elements are.

To search an XmlDocument, all you need to do is use the GetElementById()
or GetElementsByTagName() method. The following code example puts the
GetElementsByTagName() method to work and creates the output shown in
Figure 17-6:

:��)���)�&������%�&�����/�:��)���)�&�����;@9

%�&	'��%;<�&.="�#��$��$��%�&�'���	����@9

**���%��������&���	

:��+�%�'��������������%�&	G��A��������71�0+���;�$��&��@9

**�)��#��7������������	

�-�:��	1��������-!���%���F��������	�����	1�"����0;@�F���?��&�����9

�-�:��	1����F������������$��&����0.��*-!�-�!�-�!�9

�����&��;:��+�%�������������������@

C

�����-�:��	1����F��������	��������%	E�����F���-�!�9

D

Figure 17-6. Searching an XML document

MacDonald.book Page 680 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 681

This technique works well if you want to find an element based on its name. If you want
to use more sophisticated searching, match only part of a name, or examine only part of a
document, you’ll have to fall back on the traditional standard: looping through all the
nodes in the XmlDocument.

■Tip The search method provided by the XmlDocument class is relatively primitive. For a more advanced
tool, you might want to learn the XPath language, which is a W3C recommendation (defined at
���#.**///	/
	��0*12*�#���) designed for performing queries on XML data. .NET provides XPath
support through the classes in the System.Xml.XPath namespace, which include an XPath parser and evalu-
ation engine. Of course, these aren’t much use unless you learn the syntax of the XPath language.

XML Validation
XML has a rich set of supporting standards, many of which are far beyond the scope of this
book. One of the most useful in this family of standards is XSD (XML Schema Definition).
XSD defines the rules to which a specific XML document should conform. When you’re
creating an XML file on your own, you don’t need to create a corresponding XSD file—
instead, you might just rely on the ability of your code to behave properly. While this is
sufficient for tightly controlled environments, if you want to open your application to
other programmers or allow it to interoperate with other applications, you should create
an XSD document. Think of it this way: XML allows you to create a custom language for
storing data, and XSD allows you to define the syntax of the language you create.

XML Namespaces

Before you can create an XSD document, you’ll need to understand one other XML stan-
dard, called XML namespaces. XML namespaces uniquely identify different XML-based
languages. For example, you could tell the difference between your SuperProProductList
standard and another organization’s product catalog because they would use different
namespaces. Namespaces are particularly important for applications, which need an easy
way to determine what type of XML file they’re processing. By examining the namespace,
your code can determine whether it will be able to process a given XML file.

■Note XML namespaces aren’t directly related to .NET namespaces. XML namespaces identify different
XML languages. .NET namespaces are a code construct used to organize types.

MacDonald.book Page 681 Friday, December 16, 2005 3:55 PM

682 C H A P T E R 1 7 ■ X M L

To specify that an element belongs to a specific namespace, you simply need to add the
xmlns attribute to the start tag and indicate the namespace. For example, here’s how you
could put all the elements in an XML document into the namespace SuperProProductList:

����������������	 ��!

�"�#��$��$��%�&�'����,�������&��-��-��'(�.����!

�����$��%�&�!

���������()!��*()!

���������+���!������*+���!

���������$��&�!��	

�*$��&�!

���������,�����-��!�����*,�����-��!

���������"�����!
�*"�����!

�����*$��%�&�!

�����566�8�����#��%�&���������%	�66!

�*"�#��$��$��%�&�'���!

This code example defines a default namespace. All elements, including the Product,
ID, and Name elements, are automatically placed in this namespace.

■Tip Many XML namespaces use URIs (universal resource identifiers). Typically, these URIs look like a web
page URL. For example, ���#.**///	�7&��#��7	&��*�7����%��% is a typical name for a namespace.
Though the namespace looks like it points to a valid location on the Web, this isn’t required (and shouldn’t be
assumed). The reason URIs are used for XML namespaces is because they’re more likely to be unique. Typically,
if you create a new XML markup, you’ll use a URI that points to a domain or website you control. That way, you
can be sure no one else is likely to use that URI. For example, the namespace ���#.**///	�7&��#��7	&��*
"�#��$��$��%�&�'��� is much more likely to be unique than just SuperProProductList if you own the domain
///	�7&��#��7	&��.

Another approach is to use namespace prefixes. A namespace prefixes a short charac-
ter sequence that you can insert in front of a tag name to indicate its namespace. You
define the prefix in the xmlns attribute by inserting a colon (:) followed by the characters
you want to use for the prefix. Here’s how the SuperProProductList would look using this
commonly used technique:

����������������	 ��!

��&��*"�#��$��$��%�&�'����,����*�&�����&��-��-��'(�.����!

������&��*$��%�&�!

����������&��*()!��*�&��*()!

����������&��*+���!������*�&��*+���!

����������&��*$��&�!��	

�*�&��*$��&�!

MacDonald.book Page 682 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 683

����������&��*,�����-��!�����*�&��*,�����-��!

����������&��*"�����!
�*�&��*"�����!

�����*�&��*$��%�&�!

�����566�8�����#��%�&���������%	�66!

�*�&��*"�#��$��$��%�&�'���!

Namespace prefixes simply map an element to a namespace. The actual prefix you use
isn’t important as long as it remains consistent. It also doesn’t matter whether you use
namespace prefixes or a default namespace, provided the namespaces match.

■Tip Namespace names must match exactly. If you change the capitalization in part of a namespace, add
a trailing / character, or modify any other detail, the XML parser will interpret it as a different namespace.

XSD Documents

An XSD document, or schema, defines what elements a document should contain and the
way these elements are organized (the structure). It can also identify the appropriate data
types for all the content. XSD documents are written using an XML syntax with special tag
names. All the XSD tags are placed in the ���#.**///	/
	��0*� �*:?'"&���� namespace.
Often, this namespace uses the prefix xsd: or xs:, as in the following example.

The full XSD specification is out of the scope of this chapter, but you can learn a lot
from a simple example. The following is the slightly abbreviated SuperProProductList.xsd
file. All it does is define the elements and attributes used in the SuperProProductList.xml
document and their data types. It indicates the file is a list of Product elements, which are
a complex type made up of a string (Name), a decimal value (Price), and an integer (ID).
This example uses the second version of the SuperProProductList.xsd document to dem-
onstrate how to use attributes in a schema file.

����������������	 ��!

���.�&������%��"�#��$��$��%�&�'����

�������0��+����#�&���"�#��$��$��%�&�'����

���������.��������#.**///	/
	��0*� �*:?'"&������!

�����.��������������"�#��$��$��%�&�'����!

�������.&��#���17#�!

���������.&���&�����8&&�������-���%�%�!

�����������.��������������$��%�&��!

�������������.&��#���17#�!

���������������.��B���&�!

�����������������.��������������$��&����7#�����.%�&�����

���������������������8&&����� ��*!

MacDonald.book Page 683 Friday, December 16, 2005 3:55 PM

684 C H A P T E R 1 7 ■ X M L

�������������*��.��B���&�!

���������������.�����-����������()����������B�������%�

�����������������7#�����.�����0��*!

���������������.�����-����������+�������������B�������%�

�����������������7#�����.�����*!

�����������*��.&��#���17#�!

���������*��.�������!

�������*��.&���&�!

�����*��.&��#���17#�!

���*��.�������!

�*��.�&����!

In the XSD file, you need to specify the namespace for the documents you want to val-
idate. You do this by adding the targetNamespace attribute to the first element in the XSD
document:

���.�&������%��"�#��$��$��%�&�'����

�������/�������&�(����&��-��-��'(�.����

���������.��������#.**///	/
	��0*� �*:?'"&������!

Validating an XML File

To validate an XML document against a schema, you need to create an XmlReader that
has validation features built in.

The first step when performing validation is to import the System.Xml.Schema
namespace, which contains types such as XmlSchema and XmlSchemaCollection:

����0�"7����	:��	"&����9

You must perform two steps to create the validating reader. First, you create an Xml-
ReaderSettings object that specifically indicates you want to perform validation. You do
this by setting the ValidationType property and loading your XSD schema file into the
Schemas collection, as shown here:

:��2��%��"�����0��������0������/�:��2��%��"�����0�;@9

������0�	E���%�����17#����E���%�����17#�	"&����9

������0�	"&�����	,%%;�"�#��$��$��%�&�'����>

��2�B����	$�7��&��,##��&�����$����F�<�="�#��$��$��%�&�'���	��%�@9

MacDonald.book Page 684 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 685

Second, you need to create the validating reader using the static XmlReader.Create()
method. This method has several overloads, but the version used here requires a
FileStream (with the XML document) and the XmlReaderSettings object that has your val-
idation settings:

**�8#�������:?'�����	

���"�������������/����"�����;����$���>����?�%�	8#��@9

**����������������%����0����%��	

:��2��%�������:��2��%��	������;��>�������0�@9

This XmlReader in this example works in the same way as the XmlTextReader you’ve
been using up until now, but it adds the ability to verify that the XML document follows
the schema rules. This reader throws an exception (or raises an event) to indicate errors as
you move through the XML file.

The following example shows how you can create an XmlValidatingReader that uses the
SuperProProductList.xsd file and use it to verify that the XML in SuperProProductList.xml
is valid:

**�"�����������%������������0�	

:��2��%��"�����0��������0������/�:��2��%��"�����0�;@9

������0�	"&�����	,%%;�"�#��$��$��%�&�'����>

��2�B����	$�7��&��,##��&�����$����F�<�="�#��$��$��%�&�'���	��%�@9

������0�	E���%�����17#����E���%�����17#�	"&����9

**�8#�������:?'�����	

���"�������������/����"�����;����$���>����?�%�	8#��@9

**����������������%����0����%��	

:��2��%�������:��2��%��	������;��>�������0�@9

**�2��%������0������%�&�����	

/�����;�	2��%;@@

C

����**�$��&����%�&����������	

����**�(������������������%>������&�#�����/����-������/�	

D

�	�����;@9

MacDonald.book Page 685 Friday, December 16, 2005 3:55 PM

686 C H A P T E R 1 7 ■ X M L

Using the current file, this code will succeed, and you’ll be able to access the current node
through the XmlValidatingReader object in the same way you could with the XmlTextReader.
However, consider what happens if you make the minor modification shown here:

�$��%�&��()��,��+�����������!

Now when you try to validate the document, an XmlSchemException (from the
System.Xml.Schema namespace) will be thrown, alerting you to the invalid data type, as
shown in Figure 17-7.

Figure 17-7. An XmlSchemException

Instead of catching errors, you can react to the ValidationEventHandler event. If you react
to this event, you’ll be provided with information about the error, but no exception will be
thrown. To connect an event handler to this event, create a new ValidationEventHandler del-
egate, and assign it to the XmlReaderSettings.ValidationEventHandler event before you create
the reader:

**������&��������������%�����%�E���%���4��%���	

������0�	E���%�����A����4��%����F����/�E���%�����A����4��%���;E���%���4��%���@9

MacDonald.book Page 686 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 687

The event handler receives a ValidationEventArgs class, which contains the exception,
a message, and a number representing the severity:

#�-��&����%�E���%���4��%���;8-L�&�����%��>�E���%�����A����,�0���@

C

�����-�"�����	1����F���A����.���F��	?����0��F���-�!�9

D

To test the validation, you can use the XmlValidation.aspx page in the online samples.
It allows you to validate a valid SuperProProductList, as well as two other versions, one
with incorrect data and one with an incorrect tag (see Figure 17-8).

Figure 17-8. The validation test page

XML Display and Transforms
Another standard associated with XML is XSL, which uses a style sheet to transform an
XML document. XSL can extract a portion of an XML document or convert an XML
document into another type of XML document. An even more popular use of XSL trans-
formations is to convert an XML document into an HTML document that can be
displayed in a browser.

XSL is easy to use from the point of view of the .NET class library. All you need to under-
stand is how to create an XmlTransform object (found in the System.Xml.Xsl namespace).

MacDonald.book Page 687 Friday, December 16, 2005 3:55 PM

688 C H A P T E R 1 7 ■ X M L

You use its Load() method to specify a style sheet and its Transform() method to output
the result to a file or stream:

:��1�������������������������/�:��1��������9

**�'��%�����:"'���7��������	

�����������	'��%;�"�#��$��$��%�&�'���	�����@9

**��������������������%�:?'�����	

**�"�#��$��$��%�&�'���	������������������0�#����	

�����������	1��������;�"�#��$��$��%�&�'���	����>��+�/	����@9

However, this doesn’t spare you from needing to learn the XSL syntax. Once again, the
intricacies of XSL aren’t directly related to core ASP.NET programming, so they’re outside
the scope of this book. To get started with XSL, however, it helps to review a simple style
sheet example:

����������������	 ����&�%��0��M16N���!

����.��7�������������.��������#.**///	/
	��0*����*:"'*1���������

��������������	 ��!

������.���#��������&���"�#��$��$��%�&�'����!

���������!�-�%7!���-���-��%������!

��������.�##�76���#����������&���$��%�&��*!

�����*��-��!�*-�%7!�*����!

���*���.���#����!

������.���#��������&���$��%�&��!

�������!

������%!����.�����6�������&���<()�*!�*�%!

������%!����.�����6�������&���<+����*!�*�%!

������%!����.�����6�������&���$��&��*!�*�%!

�����*��!

���*���.���#����!

�*���.��7�������!

Every XSL file has a root xsl:stylesheet element. The style sheet can contain one or more
templates (the sample file SuperProProductList.xslt has two). In this example, the first
template searches for the root SuperProProductList element. When it finds it, it outputs
the tags necessary to start an HTML table and then uses the xsl:apply-templates com-
mand to branch off and perform processing for any contained Product elements.

MacDonald.book Page 688 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 689

����.���#��������&���"�#��$��$��%�&�'����!

�������!�-�%7!���-���-��%������!

������.�##�76���#����������&���$��%�&��*!

When that process is complete, the HTML tags for the end of the table will be written:

�*��-��!�*-�%7!�*����!

When processing each Product element, information about the ID, Name, and Price is
extracted and written to the output using the xsl:value-of command. The at sign (@) indi-
cates that the value is being extracted from an attribute, not a subtag. Every piece of
information is written inside a table row. For more advanced formatting, you could use
additional HTML tags to format some text in bold or italics:

����.���#��������&���$��%�&��!

�����!

����%!����.�����6�������&���<()�*!�*�%!

����%!����.�����6�������&���<+����*!�*�%!

����%!����.�����6�������&���$��&��*!�*�%!

���*��!

�*���.���#����!

The final result of this process is the HTML file shown here:

�����!

���-�%7!

�������-���-��%������!

���������!

����������%!��*�%!

����������%!������*�%!

����������%!��	

�*�%!

�������*��!

���������!

����������%!��*�%!

����������%!����*�%!

����������%!�

�N	���*�%!

�������*��!

���������!

����������%!
�*�%!

����������%!�����������������*�%!

����������%!��	���*�%!

�������*��!

�����*��-��!

���*-�%7!

�*����!

MacDonald.book Page 689 Friday, December 16, 2005 3:55 PM

690 C H A P T E R 1 7 ■ X M L

In the next section, you’ll look at how this output appears in an Internet browser.
Generally speaking, if you aren’t sure you need XSL, you probably don’t. The .NET

Framework provides a rich set of tools for searching and manipulating XML files using
objects and code, which is the best approach for small-scale XML use.

■Tip To learn more about XSL, consider Jeni Tennison’s excellent book Beginning XSLT 2.0: From Novice
to Professional (Apress, 2005).

The Xml Web Control

If you use an XLST transform such as the one demonstrated in the previous example, you
might wonder what your code should do with the generated HTML. You could try to write
it directly to the browser or save it to the hard drive, but these approaches are awkward,
especially if you want to display the generated HTML inside a normal ASP.NET web page
that contains other controls. The XmlTransform object just converts XML files—it doesn’t
provide any way to insert the output into your web page.

ASP.NET includes an Xml web control that fills this gap and can display XML content. You
can specify the XML content for this control in several ways: by assigning an XmlDocument
object to the Document property, by assigning a string containing the XML content to the
DocumentContent property, or by specifying a string that refers to an XML file using the
DocumentSource property.

**�)��#��7�������������������������:?'�������������:���&������	

:��)�&�����"���&����2�B����	$�7��&��,##��&�����$����F

��<�="�#��$��$��%�&�'���	����9

If you assign the SuperProProductList.xml file to the Xml control, you’re likely to be
disappointed. The result is just a string of the inner text (the price for each product),
bunched together without a space (see Figure 17-9).

However, you can also apply an XSL transformation, either by assigning an XslTransform
object to the Transform property or by using a string that refers to the XSLT file with the
TransformSource property:

**�"#�&��7���:"'1�����	

:��	1�������"���&����2�B����	$�7��&��,##��&�����$����F

��<�="�#��$��$��%�&�'���	�����9

Now the output is automatically formatted according to your style sheet (see Figure 17-10).

MacDonald.book Page 690 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 691

Figure 17-9. Unformatted XML content

Figure 17-10. Transformed XML content

MacDonald.book Page 691 Friday, December 16, 2005 3:55 PM

692 C H A P T E R 1 7 ■ X M L

XML Data Binding
The Xml control is a great way to display XML data in a web page by converting it to
HTML. But what if you want to display data in another type of control, such as a GridView?
You could use the XML classes you learned about earlier, which is definitely the most flex-
ible approach. However, if you don’t need that much control, you may be interested in the
XmlDataSource control, which allows you to take XML from a file and feed it right into
another control.

The XmlDataSource control works much like the SqlDataSource and ObjectDataSource
controls you learned about in Chapter 14. However, it has two key differences:

• The XmlDataSource extracts information from an XML file, rather than a database
or data access class. It provides other controls with an XmlDocument object for
data binding.

• XML content is hierarchical and can have an unlimited number of levels. By con-
trast, the SqlDataSource and ObjectDataSource return flat tables of data.

The XmlDataSource also provides a few features in common with the other data source
controls, including caching.

■Note The XmlDataSource is a more limited approach than the XML classes you’ve learned about so far.
The XmlDataSource assumes you’re using files, doesn’t give you as much flexibility for processing your data,
and doesn’t support updateable binding (saving the changes you make in a control to the original XML file).
However, it also makes some scenarios much simpler.

Nonhierarchical Binding

The simplest way to deal with the hierarchical nature of XML data is to ignore it. In other
words, you can bind the XML data source directly to an ordinary grid control such as the
GridView.

The first step is to define the XML data source and point it to the file with the content
you want to implement using the DataFile property:

���#.:��)���"���&��()������&�:������������������

�)��������"�#��$��$��%�&�'���	�����*!

MacDonald.book Page 692 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 693

Now you can bind the GridView with automatically generated columns, in the same
way you bind it to any other data source:

���#.G��%E��/�()��G��%E��/������������������,���G����������������1����

�)���"���&�()������&�:����*!

■Note Remember, you don’t need to use automatically generated columns. If you refresh the schema at
design time, Visual Studio will read the linked XML file, determine its structure, and define the corresponding
GridView columns explicitly.

Now, when you run the page, the XmlDataSource will extract the data from the
SuperProProductList.xml file, provide it to the GridView as an XmlDocument object,
and call DataBind(). However, this approach has a catch. As explained earlier,
the XmlDocument.Nodes collection contains only the first level of nodes. Each node
can contain nested nodes through its own XmlNode.Nodes collection. However, the
XmlDataSource doesn’t take this into account. It walks over the upper level of XmlNode
objects, and as a result you’ll see only the top level of nodes. This works fine for the
SuperProProductList (as shown in Figure 17-11). However, it doesn’t work as well for an
XML document with a deep, multilayered structure.

Figure 17-11. XML data binding (attributes only)

MacDonald.book Page 693 Friday, December 16, 2005 3:55 PM

694 C H A P T E R 1 7 ■ X M L

For example, imagine you use the following XML that divides its products into
categories:

����������������	 ������%�������7����!

�"�#��$��$��%�&�'�����������"�#��$��$��%�&�'�����!

�� ����/��)�������0��'1����$

�����$��%�&��()�����+�����������!

�������$��&�!��	

�*$��&�!

�����*$��%�&�!

�����$��%�&��()�����+���������!

�������$��&�!�

�N	���*$��&�!

�����*$��%�&�!

�� 2����/��)$

�� ����/��)�������-��'(��$

�����$��%�&��()��
��+����������������������!

�������$��&�!��	���*$��&�!

�����*$��%�&�!

�� 2����/��)$

�*"�#��$��$��%�&�'���!

Now all you’ll see is the list of categories, because these make up the first level of nodes
(see Figure 17-12).

Figure 17-12. XML data binding (top-level nodes only)

Clearly, the XmlDataSource has two significant limitations. First, it displays only
attribute values, not the text inside elements (in this case, the product price). Second,

MacDonald.book Page 694 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 695

it shows only the top level of nodes, which may not be what you want. To solve these
problems, you need to return to the XML classes, or you need to use one of the following
approaches:

• You can use XPath to filter out the important elements, even if they’re several
layers deep.

• You can use an XSL transformation to flatten the XML into exactly the structure
you want. Just make sure all the information is in the top level of nodes and in
attributes only.

• You can nest one data control inside another (however, this can get quite complex).

• You can use a control that supports hierarchical data. The only ready-made .NET
control that fits is the TreeView.

All of these options require considerably more work. In the next section, you’ll see how
to use the TreeView.

Hierarchical Binding with the TreeView

Some controls have the built-in smarts to show hierarchical data. In .NET, the principal
example is the TreeView. When you bind the TreeView to an XmlDataSource, it uses the
XmlDataSource.GetHierarchcialView() method and displays the full structure of the XML
document (see Figure 17-13).

Figure 17-13. Automatically generated TreeView bindings

MacDonald.book Page 695 Friday, December 16, 2005 3:55 PM

696 C H A P T E R 1 7 ■ X M L

The TreeView’s default XML representation still leaves a lot to be desired. It shows
only the document structure (the element names), not the document content (the ele-
ment text). It also ignores attributes. To improve this situation, you need to set the
TreeView.AutomaticallyGenerateDataBindings property to false, and you then need to
explicitly map different parts of the XML document to TreeView nodes.

���#.1���E��/�()��1���E��/������������������)���"���&�()������&�)E)�

�,���G�������)������%��0��������!

��			

�*��#.1���E��/!

To create a TreeView mapping, you need to add <TreeNodeDataBinding> elements to
the <DataBinding> section. You must start with the root element and then add a binding
for each level you want to show. You cannot skip any levels.

Each <TreeNodeDataBinding> must name the node it binds to (through the
DataMember property), the text it should display (DataField), and the hidden value for
the node (ValueField). Unfortunately, both DataField and ValueField are designed to bind
to attributes. If you want to bind to element content, you can use an ugly hack and specify
the #InnerText code. However, this shows all the inner text, including text inside other,
more deeply nested nodes.

The next example defines a basic set of nodes to show the product information:

���#.1���E��/�()��1���E��/������������������)���"���&�()������&�:���

�,���G�������)������%��0��������!

���)������%��0�!

�������#.1���+�%����%��0�)���?��-����"�#��$��$��%�&�'�����1�����$��%�&��'�����*!

�������#.1���+�%����%��0�)���?��-��������0��7��1������%��+�����*!

�������#.1���+�%����%��0�)���?��-����$��%�&���1������%��+�����*!

�������#.1���+�%����%��0�)���?��-����$��&���1������%��O(����1�����*!

���*)������%��0�!

�*��#.1���E��/!

Figure 17-14 shows the result.

■Tip To learn how to format the TreeView, including how to tweak gridlines and node pictures, refer to
Chapter 11.

MacDonald.book Page 696 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 697

Figure 17-14. Binding to specific content

Binding to XML Content from Other Sources

So far, all the examples you’ve seen have bound to XML content in a file. This is the stan-
dard scenario for the XmlDataSource control, but it’s not your only possibility. The other
option is to supply the XML as text through the XmlDataSource.Data property.

You can set the Data property at any point before the binding takes place. One conve-
nient time is during the Page.Load event:

#����&��%����%�$�0�P'��%;�-L�&�����%��>�A����,�0���@

C

���������0�����������9

����**�;2��������:?'�&����������������������&�����	@

��������&�:��)����������������9

D

■Tip If you use this approach, you may find it’s still a good idea to set the XmlDataSource.DataFile property
at design time in order for Visual Studio to load the schema information about your XML document and make
it available to other controls. Just remember to remove this setting when you’re finished developing.

MacDonald.book Page 697 Friday, December 16, 2005 3:55 PM

698 C H A P T E R 1 7 ■ X M L

This allows you to read XML content from another source (such as a database) and still
work with the bound data controls. However, it requires adding some custom code.

Even if you do use the XmlDataSource.Data property, XML data binding still isn’t
nearly as flexible as the XML classes you learned about earlier in this chapter. One of the
key limitations is that the XML content needs to be loaded into memory all at once as a
string object, which isn’t all that efficient. If you’re dealing with large XML documents, or
you just need to ensure the best possible scalability for your web application, you might
be able to reduce the overhead considerably by using the XmlTextReader instead, even
though it will require much more code. Handling the XML parsing process yourself also
gives you unlimited flexibility to rearrange and aggregate your data into a meaningful
summary, which isn’t always easy using XSLT alone.

XML in ADO.NET
The integration between ADO.NET and XML is straightforward and effortless, but it isn’t
likely to have a wide range of usefulness. Probably the most interesting feature is the abil-
ity to serialize a DataSet to an XML file (with or without a corresponding XSD schema file).
The following code example demonstrates this technique:

**�"������)���"��	

�7)���"��	3����:��;2�B����	$�7��&��,##��&�����$����F�<�=%����������	����@9

**�"������)���"����&����������%���������������&������������)���"�����-���	

�7)���"��	3����"&����;2�B����	$�7��&��,##��&�����$����F�<�=%����������	��%�@9

**�2������������)���"���/���������&����	�M���0������&����

**����������%�����7#�������&����#��%���%��������&�������������������������	

)���"����7)���"��������/�)���"��;@9

�7)���"���	2��%:��"&����;2�B����	$�7��&��,##��&�����$����F�<�=%����������	��%�@9

�7)���"���	2��%:��;2�B����	$�7��&��,##��&�����$����F�<�=%����������	����@9

This technique could be useful for permanently storing the results of a slow-running
query. A web page that needs this information could first check for the presence of the file
before trying to connect to the database. This type of system is similar to many home-
grown solutions used in traditional ASP programming. It’s useful, but it raises additional
issues. For example, every web page that needs the data must check the file’s age to deter-
mine whether it’s still valid. Presumably, the XML file will need to be refreshed at periodic
intervals, but if more than one executing web page finds that the file needs to be refreshed
and tries to create it at the same time, a file access problem will occur. You can solve all
these problems with a little painful coding, although caching provides a more streamlined
and elegant solution. It also offers much better performance, because the data is stored in
memory. Chapter 26 describes caching.

MacDonald.book Page 698 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 699

■Tip You can also use the ReadXml(), WriteXml(), ReadXmlSchema(), and WriteXmlSchema() methods on
DataTable objects to read or write XML for a single table in a DataSet.

Of course, sometimes you may need to exchange the results of a query with an applica-
tion on another platform, or you may need to store the results permanently (caching
information will be automatically removed if it isn’t being used or the server memory is
becoming scarce). In these cases, the ability to save a DataSet can come in handy. But
whatever you do, don’t try to work with the retrieved DataSet and commit changes back
to the data source. Handling concurrency issues is difficult enough without trying to use
stale data from a file!

Accessing a DataSet As XML

Another option provided by the DataSet is the ability to access it through an XML interface.
This allows you to perform XML-specific tasks (such as hunting for a tag or applying an XSL
transformation) with the data you’ve extracted from a database. To do so, you create an
XmlDataDocument that wraps the DataSet. When you create the XmlDataDocument, you
supply the DataSet you want as a parameter:

:��)���)�&������%���)�&����������/�:��)���)�&�����;�7)���"��@9

Now you can look at the DataSet in two ways. Because XmlDataDocument inherits
from XmlDocument class, it provides all the same properties and methods for examining
nodes and modifying content. You can use this XML-based approach to deal with your
data, or you can manipulate the DataSet through the XmlDataDocument.DataSet prop-
erty. In either case, the two views are kept automatically synchronized—when you change
the DataSet, the XML is updated immediately, and vice versa.

For example, consider the pubs database, which includes a table of authors. Using the
XmlDataDocument, you could examine a list of authors as an XML document and even
apply an XSL transformation with the help of the Xml web control. Here’s the complete
code you’d need:

�����0�&����&����"����0��

��3�-�����0�������?���0��	�����&����"����0�J�$�-��K	�����&����"����09

�����0�"Q'����"A'A�1�R�28?���������34A2A�&��7�S8�����%S�9

**������������,)8	+A1��-L�&��	

"B������&�����&�������/�"B������&����;&����&����"����0@9

"B�������%�&�%�����/�"B�������%;"Q'>�&��@9

"B�)���,%�#�����%�#��������/�"B�)���,%�#���;&�%@9

)���"���%������/�)���"��;�,������)���"���@9

MacDonald.book Page 699 Friday, December 16, 2005 3:55 PM

700 C H A P T E R 1 7 ■ X M L

**�2������������%���	

&��	8#��;@9

�%�#���	���;%�>��,������1�-���@9

&��	�����;@9

**������������:��)���)�&�����������/��#�������)���"��	

:��)���)�&������%���)�&�����/�:��)���)�&�����;%�@9

**�)��#��7�����:?'�%����;/�����������#�������:"'1@��������:?'�/�-�&������	

:���������)�&��������%���)�&9

:���������	1��������"���&������������	�����9

Figure 17-15 shows the processed data.

Figure 17-15. Displaying the results of a query through XML and XSLT

MacDonald.book Page 700 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 701

Remember, when you interact with your data as XML, all the customary database-
oriented concepts such as relationships and unique constraints go out the window. The
only reason you should interact with your DataSet as XML is if you need to perform an
XML-specific task, not to replace the ADO.NET approach for updating data. In most cases,
you’ll find it easier to use advanced controls such as the DataList and DataGrid, rather
than creating a dedicated XSL transform to transform data into the HTML you want to
display.

Accessing XML Through the DataSet

Often, a more useful way to implement the XmlDataDocument is to access an ordinary
XML file as though it were one or more tables. This means you don’t need to work with
the XML syntax you’ve explored, and you don’t need to go to the work of extracting all the
information and creating the appropriate objects and collections. Instead, you can use
the familiar ADO.NET objects to manipulate the underlying XML document.

Consider these few remarkable lines of code:

:��)���)�&������%���)�&�����/�:��)���)�&�����;@9

**�"��������&����>���%��������������%���	

%���)�&)���"��	2��%:��"&����;2�B����	$�7��&��,##��&�����$����F

��<�="�#��$��$��%�&�'���	��%�@9

%���)�&	'��%;2�B����	$�7��&��,##��&�����$����F�<�="�#��$��$��%�&�'���	����@9

**�)��#��7�������������%�%���	

0��%)���)���"���&����%���)�&)���"��9

0��%)���)������%;@9

In this example, a new XmlDataDocument is created, an XML file is loaded into it, and
the information is automatically provided through a special DataSet “attached” to the
XmlDataDocument. This allows you to use the ADO.NET objects to work with data (such
as the DataTable and DataRow objects), as well as the standard XmlDocument members
(such as the GetTagsByElementName() method and the ChildNodes property). You could
even use both approaches at the same time, because both the XML and the ADO.NET
interface access the same underlying data.

Figure 17-16 shows the retrieved data.

MacDonald.book Page 701 Friday, December 16, 2005 3:55 PM

702 C H A P T E R 1 7 ■ X M L

Figure 17-16. Accessing XML data through ADO.NET

The only catch is that your XML file must have a schema for ASP.NET to be able to
determine the proper structure of your data. Before you retrieve the XML file, you must
use the XmlDataDocument.DataSet.ReadXmlSchema() method. Otherwise, you won’t be
able to access the data through the DataSet. In addition, the structure of your XML docu-
ment must conform to the table-based and row-based structure used by ADO.NET. You’ll
find that some XML files can be loaded into an XmlDataDocument more successfully than
others.

Clearly, if you need to store hierarchical data in an XML file and are willing to create an
XSD schema, the XmlDataDocument is a great convenience. It also allows you to bridge
the gap between ADO.NET and XML—some clients can look at the data as XML, and oth-
ers can access it through the database objects without losing any information or requiring
an error-prone conversion process.

The Last Word
Now that your lightning tour of XML and ASP.NET is drawing to a close, you should have
a basic understanding of what XML is, how it looks, and why you might use it in a web
page. XML represents a new tool for breaking down the barriers between businesses and
platforms—it’s nothing less than a universal model for storing and communicating all
types of information.

MacDonald.book Page 702 Friday, December 16, 2005 3:55 PM

C H A P T E R 1 7 ■ X M L 703

XML on its own is a remarkable innovation. However, to get the most out of XML, you
need to embrace other standards that allow you to validate XML, transform it, and search
it for specific information. The .NET Framework provides classes for all these tasks in the
System.Xml namespaces. To continue your exploration, start with a comprehensive
review of XML standards (such as the one provided at ���#.**///	/
�&�����	&��*���)
and then dive into the class library.

MacDonald.book Page 703 Friday, December 16, 2005 3:55 PM

MacDonald.book Page 704 Friday, December 16, 2005 3:55 PM

■ ■ ■

P A R T 4

Website Security

MacDonald.book Page 705 Wednesday, December 21, 2005 9:06 PM

MacDonald.book Page 706 Wednesday, December 21, 2005 9:06 PM

707

■ ■ ■

C H A P T E R 1 8

Security Fundamentals

By default your ASP.NET applications are available to any user who can connect to your
server (whether it’s over a local network or the Internet). Although this is ideal for many
web applications (and it suits the original spirit of the Internet), it isn’t always appropri-
ate. For example, an e-commerce site needs to provide a secure shopping experience to
win customers. A subscription-based site needs to limit content or site access to extract a
fee. Even a wide-open public site may provide some resources or features (such as an
administrative report or configuration page) that shouldn’t be available to all users.

ASP.NET provides a multilayered security model that makes it easy to protect your web
applications. Although this security is powerful and profoundly flexible, it can appear
somewhat confusing because of, in large part, the number of layers where security can be
applied. Much of the work in applying security to your application doesn’t come from
writing code but from determining the appropriate places to implement your strategy.

In this chapter, you’ll sort out the different security subsystems and consider how you
can use Windows, IIS, and ASP.NET services to protect your application. You’ll also look
at some examples that use ASP.NET forms-based security, which provides a quick and
easy model for adding a database-backed user authentication system.

Determining Security Requirements
The first step in securing your applications is deciding where you need security and what
it needs to protect. For example, you may need to block access in order to protect private
information, or maybe you just need to enforce a subscription policy. Perhaps you don’t
need any sort of security at all, but you want a login system to provide personalization for
frequent visitors. These requirements will determine the approach you use.

Security doesn’t need to be complex, but it does need to be wide-ranging. For example,
even if you force users to log into a part of your site, you still need to make sure the infor-
mation is stored in the database under a secure account with a password that couldn’t
easily be guessed by a user on your local network. You also need to guarantee your appli-
cation can’t be tricked into sending private information (a possibility if the user modifies
a page or a query string to post back different information than you expect).

MacDonald.book Page 707 Wednesday, December 21, 2005 9:06 PM

708 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

Restricted File Types

ASP.NET automatically provides a basic level of security by blocking requests for certain
file types (such as configuration and source code files). To accomplish this, ASP.NET reg-
isters the file types with IIS but specifically assigns them to the HttpForbiddenHandler
class. This class has a single role in life—it denies every request it receives.

Some of the restricted file types include the following:

�����

�����

�����	

���

������

���

������

�����

����������

To see the full list, refer to the web.config.default file in the c:\[WindowsDir]\
Microsoft.NET\Framework\[version]\Config folder, and search for the text
System.Web.HttpForbiddenHandler.

Security Concepts

Three concepts form the basis of any discussion about security:

Authentication: This is the process of determining a user’s identity and forcing users to
prove they are who they claim to be. Usually, this involves entering credentials (typi-
cally a user name and password) into some sort of login page or window. These
credentials are then authenticated against the Windows user accounts on the com-
puter, a list of users in a file, or a back-end database.

Authorization: Once a user is authenticated, authorization is the process of determin-
ing whether that user has sufficient permissions to perform a given action (such as
viewing a page or retrieving information from a database). Windows imposes some
authorization checks (for example, when you open a file), but your code will probably
want to impose its own checks (for example, when a user performs a task in your web
application such as submitting an order, assigning a project, or giving a promotion).

Impersonation: In ASP.NET, all code runs under a fixed account defined in the
machine.config file. Impersonation allows a portion of your code to run under a
different identity, with a different set of Windows permissions.

MacDonald.book Page 708 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 709

Authentication and authorization are the two cornerstones of creating a secure user-
based site. The Windows operating system provides a good analogy. When you first boot
up your computer, you supply a user ID and password, thereby authenticating yourself to
the system. After that point, every time you interact with a restricted resource (such as a
file, database, registry key, and so on), Windows quietly performs authorization checks to
ensure your user account has the necessary rights.

The ASP.NET Security Model
As you’ve seen in previous chapters, web requests are fielded first by IIS, which then
passes the request to ASP.NET if the file type is registered with the ASP.NET service.
Figure 18-1 shows how these levels interact.

Figure 18-1. IIS and ASP.NET interaction

MacDonald.book Page 709 Wednesday, December 21, 2005 9:06 PM

710 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

You can apply security at several places in this chain. First, consider the process for an
ordinary (non-ASP.NET) web page request:

1. IIS attempts to authenticate the user. Generally, IIS allows requests from all anon-
ymous users and automatically logs them in under the IUSR_[ServerName]
account. IIS security settings are configured on a per-directory basis.

2. If IIS authenticates the user successfully, it attempts to send the user the appro-
priate HTML file. The operating system performs its own security checks to verify
that the authenticated user (typically IUSR_[ServerName]) is allowed access to the
specified file and directory.

An ASP.NET request requires several additional steps (as shown in Figure 18-2). The
first and last steps are similar, but the process has intermediary layers:

1. IIS attempts to authenticate the user. Generally, IIS allows requests from all anon-
ymous users and automatically logs them in under the IUSR_[ServerName]
account.

2. If IIS authenticates the user successfully, it passes the request to ASP.NET with
additional information about the authenticated user. ASP.NET can then use its own
security services, depending on the settings in the web.config file and the page that
was requested.

3. If ASP.NET authenticates the user, it allows requests to the .aspx page or .asmx web
service. Your code can perform additional custom security checks (for example,
manually asking for another password before allowing a specific operation).

4. When the ASP.NET code requests resources (for example, tries to open a file or
connect to a database), the operating system performs its own security checks. All
ASP.NET code runs under a fixed account that’s defined in the machine.config file.
However, if you enable impersonation, these system operations will be performed
under the account of the authenticated user (or a different account you specify).

MacDonald.book Page 710 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 711

Figure 18-2. Authenticating a request

MacDonald.book Page 711 Wednesday, December 21, 2005 9:06 PM

712 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

One important and easily missed concept is that the ASP.NET code doesn’t run under
the IUSR_[ServerName] account, even if you’re using anonymous user access. The reason
is the IUSR_[ServerName] account doesn’t have sufficient privileges for ASP.NET code,
which needs to be able to create and delete temporary files in order to manage the com-
pilation process. Instead, the ASP.NET account is set through the machine.config file
(if you’re using IIS 5) or the application pool identity (under IIS 6), as described in
Chapter 12. When designing ASP.NET pages, you must keep this in mind and ensure your
program can’t be used to make dangerous modifications or delete important files.

Security Strategies

The IIS and ASP.NET security settings can interact in several ways, and these combina-
tions often give new ASP.NET developers endless headaches. In reality, you can use two
central strategies to add ASP.NET security or personalization to a site:

• Allow anonymous users but use ASP.NET’s forms authentication model to secure
parts of your site. This allows you to create a subscription site or e-commerce store,
allows you to manage the login process easily, and lets you write your own login
code for authenticating users against a database or simple user account list.

• Forbid anonymous users, and use IIS authentication to force every user to log in
using Basic, Digest, or Integrated Windows authentication. This system requires all
users have Windows user accounts on the server (although users could share
accounts). This scenario is poorly suited for a public web application but is often
ideal with an intranet or company-specific site designed to provide resources for a
limited set of users. You can also use this approach to secure web services.

You’ll concentrate on these two approaches in this chapter. First, you’ll explore the
forms authentication model, which is perfect for publicly accessible websites. Then, you’ll
consider Windows authentication, which makes sense in smaller network environments
where you have a group of known users.

MacDonald.book Page 712 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 713

Certificates

One topic this chapter doesn’t treat in detail is certificates and SSL (Secure Sockets Layer)
connections. These technologies are supported by IIS and are really independent from
ASP.NET programming. However, they are an important ingredient in creating a secure
website.

Essentially, certificates allow you to demonstrate that your site and your organization
information are registered and verified with a certificate authority. This generally encour-
ages customer confidence, although it doesn’t guarantee the company or organization
acts responsibly or fairly. A certificate is a little like a driver’s license—it doesn’t prove you
can drive, but it demonstrates that a third party (in this case, a department of the govern-
ment) is willing to attest to your identity and your qualifications. Your web server requires
a certificate in order to use SSL, which automatically encrypts all the information sent
between the client and server.

To add a certificate to your site, you first need to purchase one from a certificate
authority. These are some well-known certificate authorities:

• VeriSign (��������������	�	
�����)

• GeoTrust (�����������
�����������)

• GlobalSign (�����������
������	
�����)

• Thawte (���������������������)

The first step in this process of getting a certificate is to e-mail a certificate request for
your web server. IIS Manager allows you to create a certificate request automatically. In
IIS 5, begin by launching IIS Manager (select Settings ➤ Control Panel ➤ Administrative
Tools ➤ Internet Information Services from the Start menu). Expand the Web Sites group,
right-click your website item (usually titled Default Web Site), and choose Properties.
Under the Directory Security tab, you’ll find a Server Certificate button (see Figure 18-3).
Click this button to start a Web Server Certificate Wizard that requests some basic organi-
zation information and generates a request file. You’ll also need to supply a bit length for
the key—the higher the bit length, the stronger the key.

MacDonald.book Page 713 Wednesday, December 21, 2005 9:06 PM

714 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

Figure 18-3. Directory security settings

You can save the generated file as a text file, but you must ultimately e-mail it to a cer-
tificate authority. The following is a sample (slightly abbreviated) request file:

��������������	�	������������	�	���������������

�������� !� "

#�������$	��������%���$���
�������&&#�'���	���(�)

*�����"�������������������������

+�
��	,��	����-���+�
��	,��	��

"""""./0&1�1/��*/23&4&*53/�2/67/#3"""""

$&&.89**53)*565�
:$�*,5;.
1'.5-35�'3$2/�9�-9'66&/��+:<�
��=��,/6

$5(0587/.�$>6�'�:�4��,/�$.�0587/*�$''� ���'��?�)�#.��*.*��:�-���

$2��0
-9'66@/�1#:<1�-<;�*.0�A'�:04)��=�$#/�>�-9'669/��A�A����',

:�4�-?
�-�'�:�4��� �:>7�
:B�96-;%�:&���156/..659
-)5$&0;5�0.5@;+

���*�
>1(%$��C�,)0���;��>B;D&74'4	A ?���58 �:�*��8B%1�4�.���)��

"""""/19�1/��*/23&4&*53/�2/67/#3"""""

The certificate authority will return a certificate that you can install according to its
instructions.

MacDonald.book Page 714 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 715

Secure Sockets Layer

SSL technology encrypts communication between a client and a website. Although it
slows performance, it’s often used when private or sensitive information needs to be
transmitted between an authenticated user and a web application. Without SSL, any
information that’s sent over the Internet, including passwords, credit card numbers, and
employee lists, is easily viewable to an eavesdropper with the right network equipment.
This is also true with web services, which send their information in plain-text SOAP
messages.

Even with the best encryption, you have another problem to wrestle with—just how
can a client be sure a web server is who it claims to be? For example, consider a clever
attacker who uses some sort of IP spoofing to masquerade as Amazon.com. Even if you
use SSL to transfer your credit card information, the malicious web server on the other
end will still be able to decrypt all your information seamlessly. To prevent this type of
deception, SSL uses certificates. The certificate establishes the identity, and SSL protects
the communication. If a malicious user abuses a certificate, the certificate authority can
revoke it.

To use SSL, you need to install a valid certificate. You can then set IIS directory settings
specifying that individual folders require an SSL connection. To access this page over SSL,
the client simply types the URL with a preceding https instead of http at the beginning
of the request.

In your ASP.NET code, you can check whether a user is connecting over a secure con-
nection using code like this:

������������	����
�E@����+�����������F�/����5�
���!

G

����	���2�D�����&�#�����*������	��!

����G

�����������#������3����H�I3�	����
��	������	�
�������##@�IJ

����K

��������

����G

�����������#������3����H�I3�	����
��	��L���������M����NIJ

�����������#������3����OH�I���������D�����	���	�������IJ

�����������#������3����OH�I����	�����������	�����������������IJ

����K

K

MacDonald.book Page 715 Wednesday, December 21, 2005 9:06 PM

716 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

Forms Authentication
In traditional ASP programming, developers often had to create their own security sys-
tems. A common approach was to insert a little snippet of code at the beginning of every
secure page. This code would check for the existence of a custom cookie. If the cookie
didn’t exist, the user would be redirected to a login page, where the cookie would be cre-
ated after a successful login.

ASP.NET uses the same approach in its forms authentication model. You are still
responsible for writing the code for your login page. However, you no longer have to cre-
ate or check for the cookie manually, and you don’t need to add any code to secure pages.
You also benefit from ASP.NET’s support for sophisticated validation algorithms, which
make it all but impossible for users to spoof their own cookies or try other hacking tricks
to fool your application into giving them access.

HOW DOES SSL WORK?

With SSL, the client and web server start a secure session before they communicate any information. This
secure session uses a randomly generated encryption key.

Here’s how the process works:

1. The client requests an SSL connection.

2. The server signs its digital certificate and sends it to the client.

3. The client verifies the certificate was issued by a certificate authority it trusts, matches the web
server it wants to communicate with, and has not expired or been revoked. If the certificate is
valid, the client continues to the next step.

4. The client tells the server what encryption key sizes it supports.

5. The server chooses the strongest key length that is supported by both the client and server. It then
informs the client what size this is.

6. The client generates a session key (a random string of bytes). It encrypts this session key using
the server’s public key (which was provided through the server’s digital certificate). It then sends
this encrypted package to the server.

7. The server decrypts the session key using its private key. Both the client and server now have the
same random session key, which they can use to encrypt communication for the duration of the
session.

MacDonald.book Page 716 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 717

Figure 18-4 shows a simplified security diagram of the forms authentication model in
ASP.NET.

Figure 18-4. ASP.NET forms authentication

MacDonald.book Page 717 Wednesday, December 21, 2005 9:06 PM

718 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

To implement forms-based security, you need to follow three steps:

1. Set the authentication mode in the web.config file (or use the WAT).

2. Restrict anonymous users from a specific page or directory in your application.

3. Create the login page.

Web.config Settings

You define the type of security in the web.config file by using the <authentication> tag.
The following example configures the application to use forms authentication by using

the <authentication> tag. It also sets several of the most important settings using a nested
<forms> tag. Namely, it sets the name of the security cookie, the length of time it will be
considered valid, and the page that allows the user to log in.

M����	
����	��N

����M����������N

��������MP""�+���������	�
����	������""N

��������M�������	���	�������HI4����IN

������������M����������HI$�5��*��Q	�I

���������������������
	�7��HIR�@�
	������I

��������������������������	��HI5��I

��������������������	�����HIA)I�����HI�I��N

��������M��������	���	��N

����M�����������N

M�����	
����	��N

Table 18-1 describes these settings. They all supply default values, so you don’t need to
set them explicitly.

Table 18-1. Forms Authentication Settings

Attribute Description

name The name of the HTTP cookie to use for authentication (defaults to .ASPXAUTH).
If multiple applications are running on the same web server, you should give each
application’s security cookie a unique name.

loginUrl Your custom login page, where the user is redirected if no valid authentication
cookie is found. The default value is default.aspx.

protection The type of encryption and validation used for the security cookie (can be All,
None, Encryption, or Validation). Validation ensures the cookie isn’t changed
during transit, and encryption (typically Triple-DES) is used to encode its
contents. The default value is All.

MacDonald.book Page 718 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 719

For a complete list of supported attributes, consult the MSDN reference.

Authorization Rules

If you make these changes to an application’s web.config file and request a page, you’ll
notice that nothing unusual happens, and the web page is served in the normal way. This
is because even though you have enabled forms authentication for your application, you
have not restricted anonymous users. In other words, you’ve chosen the system you want
to use for authentication, but none of your pages needs authentication!

To control who can and can’t access your website, you need to add access control rules
to the <authorization> section of your web.config file. Here’s an example that duplicates
the default behavior:

M����	
����	��N

����M����������N

��������MP""�+���������	�
����	������""N

��������M������	,��	��N

���������������������	
�������

��������M�������	,��	��N

����M�����������N

M�����	
����	��N

The asterisk (*) is a wildcard character that explicitly permits all users to use the appli-
cation, even those who haven’t been authenticated. Even if you don’t include this line in
your application’s web.config file, this is the still the behavior you’ll see, because the
default settings inherited from the machine.config file allow all users. To change this
behavior, you need to explicitly add a more restrictive rule, as shown here:

M����	
����	��N

����M����������N

��������MP""�+���������	�
����	������""N

��������M������	,��	��N

��������������	�����	
��������

��������M�������	,��	��N

����M�����������N

M�����	
����	��N

timeout The number of minutes before the cookie expires. ASP.NET will refresh the cookie
when it receives a request, as long as half of the cookie’s lifetime has expired. The
default value is 30.

path The path for cookies issued by the application. The default value (\) is
recommended, because case mismatches can prevent the cookie from being
sent with a request.

Attribute Description

MacDonald.book Page 719 Wednesday, December 21, 2005 9:06 PM

720 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

The question mark (?) is a wildcard character that matches all anonymous users. By
including this rule in your web.config file, you specify that anonymous users are not
allowed. Every user must be authenticated, and every user request will require the secu-
rity cookie. If you request a page in the application directory now, ASP.NET will detect
that the request isn’t authenticated and attempt to redirect the request to the login page
(which will probably cause an error, unless you’ve already created this file).

Now consider what happens if you add more than one rule to the authorization
section:

M������	,��	��N

����M�����������HISI��N

����M����������HITI��N

M�������	,��	��N

When evaluating rules, ASP.NET scans through the list from top to bottom and then con-
tinues with the settings in any .config file inherited from a parent directory, ending with the
settings in the base machine.config file. As soon as it finds an applicable rule, it stops its
search. Thus, in the previous case, it will determine that the rule <allow users="*"> applies
to the current request and will not evaluate the second line. This means these rules will
allow all users, including anonymous users.

But consider what happens if these two lines are reversed:

M������	,��	��N

����M����������HITI��N

����M�����������HISI��N

M�������	,��	��N

Now these rules will deny anonymous users (by matching the first rule) and allow all
other users (by matching the second rule).

Controlling Access to Specific Directories

A common application design is to place files that require authentication in a separate
directory. With ASP.NET configuration files, this approach is easy. Just leave the default
<authorization> settings in the normal parent directory, and add a web.config file that
specifies stricter settings in the secured directory. This web.config simply needs to deny
anonymous users (all other settings and configuration sections can be omitted).

M����	
����	��N

����M����������N

��������M������	,��	��N

������������M����������HITI��N

��������M�������	,��	��N

����M�����������N

M�����	
����	��N

MacDonald.book Page 720 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 721

■Note You cannot change the <authentication> tag settings in the web.config file of a subdirectory in your
application. Instead, all the directories in the application must use the same authentication system. However,
each directory can have its own authorization rules.

Controlling Access to Specific Files

Generally, setting file access permissions by directory is the cleanest and easiest approach.
However, you also have the option of restricting specific files by adding <location> tags to
your web.config file.

The location tags sit outside the main <system.web> tag and are nested directly in the
base <configuration> tag, as shown here:

M����	
����	��N

����M����������N

��������MP""�+���������	�
����	������""N

��������M������	,��	��N

������������M�����������HISI��N

��������M�������	,��	��N

����M�����������N

���������������������	��
	����	�������

�������������	���	��

������������������
� ������

������������������	�����	
��������

�������������������
� ������

��������������	���	��

���������������

��������������������!����	
�	��
	����	�������

�������������	���	��

������������������
� ������

������������������	�����	
��������

�������������������
� ������

��������������	���	��

���������������

M�����	
����	��N

In this example, all files in the application are allowed, except SecuredPage.aspx and
AnotherSecuredPage.aspx, which have an additional access rule denying anonymous users.

MacDonald.book Page 721 Wednesday, December 21, 2005 9:06 PM

722 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

■Tip You can also use the location tags to set rules for a specific subdirectory. It’s up to you whether you
want to use this approach or you prefer to create separate web.config files for each subdirectory, as described
in the previous section.

Controlling Access for Specific Users

The <allow> and <deny> rules don’t need to use the asterisk or question mark wildcards.
Instead, they can specifically identify a user name or a list of comma-separated user
names. For example, the following list specifically restricts access from three users. These
users will not be able to access the pages in this directory. All other authenticated users
will be allowed.

M������	,��	��N

����M����������HITI��N

����M����������HI�������F�����I��N

����M����������HI���I��N

����M�����������HISI��N

M�������	,��	��N

You’ll notice that the first rule in this example denies all anonymous users. Otherwise,
the following rules won’t have any effect, because users won’t be forced to authenticate
themselves.

The following rules explicitly allow two users. All other user requests will be denied
access, even if they are authenticated.

M������	,��	��N

����M����������HITI��N

����M�����������HI�������F�����I��N

����M����������HISI��N

M�������	,��	��N

■Tip Your application assigns the user names when a user logs in through the login page. These names might
correspond to a name or ID in a database—it’s up to you. They won’t correspond to a Windows user account.

The WAT

You have another way to set up your authentication and authorization rules. Rather than
edit the web.config file by hand, you can use the WAT (website administration tool) from
inside Visual Studio. The WAT guides you through the process, although you’ll find it’s still

MacDonald.book Page 722 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 723

important to understand what changes are actually being made to your web.config file. It’s
also often quicker to enter a list of authorization rules by hand rather than use the WAT.

To use the WAT for this type of configuration, select Website ➤ ASP.NET Configuration
from the menu. Next, click the Security tab. You’ll see the window shown in Figure 18-5,
which gives you links to set the authentication type, define authorization rules (using the
Access Rules section), and enable role-based security. (Role-based security is an optional
higher-level feature you can use with forms authentication. You’ll learn more about how
it works and how to enable it in the next chapter.)

Figure 18-5. The Security tab in the WAT

To set an application to use forms authentication, follow these steps:

1. Click the Select authentication type link.

2. Choose the From the Internet option. (If you chose From a Local Network instead,
you’d wind up using the built-in Windows authentication approach described later
in the “Windows Authentication” section.)

3. Click Done. The appropriate <authorization> tag will be created in the web.config file.

MacDonald.book Page 723 Wednesday, December 21, 2005 9:06 PM

724 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

■Tip The Select Authentication options are worded in a slightly misleading way. It’s true applications that
have users connecting from all over the Internet are sure to use forms authentication. However, applications
that run on a local network might also use forms authentication—it all depends on how they connect and
whether you want to use the information in existing accounts. The truth is, a local intranet gives you the option
to use Windows authentication but doesn’t require it.

Next, it’s time to define the authorization rules. To do so, click the Create Access Rules
link. (You can also change existing rules by clicking the Manage Access Rules link.) Using
the slightly convoluted page shown in Figure 18-6, you’ll have the ability to create a rule
allowing or restricting specific users to the entire site or a specific page or subfolder. For
example, the rule in Figure 18-6 will deny the user jenny from the entire site once you click
OK to add it. This takes you to the Security tab.

Figure 18-6. Adding an authorization rule

MacDonald.book Page 724 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 725

To manage multiple rules, you’ll need to click the Manage Access Rules link. Now you’ll
have the chance to change the order of rules (and hence the priority, as described earlier),
as shown in Figure 18-7. If you have a large number of rules to create, you may find it’s
easier to edit the web.config file by hand. You might just want to create one initial rule to
make sure it’s in the right place and then copy and paste your way to success.

Figure 18-7. Ordering authorization rules

The Security tab is a little overwhelming at first glance because it includes a few fea-
tures you haven’t been introduced to yet. For example, the Security tab also allows you to
create and manage user records and roles, as long as you’re willing to use the prebuilt
database structure that ASP.NET requires. You’ll learn more about these details, which
are a part of a broad feature called membership, in the next chapter. For now, you’ll con-
centrate on the authentication and authorization process.

MacDonald.book Page 725 Wednesday, December 21, 2005 9:06 PM

726 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

The Login Page

Once you’ve specified the authentication mode and the authorization rules, you need to
build the actual login page, which is an ordinary .aspx page that requests information
from the user and decides whether the user should be authenticated.

ASP.NET provides a special FormsAuthentication class in the System.Web.Security
namespace, which provides static methods that help manage the process. Table 18-2
describes the most important methods of this class.

Table 18-2. Members of the FormsAuthentication Class

A simple login page can put these methods to work with little code. For example, con-
sider the Login.aspx page in Figure 18-8.

Member Description
FormsCookieName A read-only property that provides the name of the

forms authentication cookie.

FormsCookiePath A read-only property that provides the path set for the
forms authentication cookie.

Authenticate() Checks a user name and password against a list of
accounts that can be entered in the web.config file.

RedirectFromLoginPage() Logs the user into an ASP.NET application by creating
the cookie, attaching it to the current response, and
redirecting the user to the page originally requested.

SignOut() Logs the user out of the ASP.NET application by
removing the current encrypted cookie.

SetAuthCookie() Logs the user into an ASP.NET application by creating
and attaching the forms authentication cookie.
Unlike the RedirectFromLoginPage() method, it
doesn’t forward the user back to the initially
requested page.

GetRedirectUrl() Provides the URL of the originally requested page.
You could use this with SetAuthCookie() to log a user
into an application and make a decision in your code
whether to redirect to the requested page or use a
more suitable default page.

GetAuthCookie() Creates the authentication cookie but doesn’t attach
it to the current response. You can perform additional
cookie customization and then add it manually to the
response, as described in Chapter 10.

HashPasswordForStoringInConfigFile() Encrypts a string of text using the specified algorithm
(SHA1 or MD5). This hashed value provides a secure
way to store an encrypted password in a file or
database.

MacDonald.book Page 726 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 727

Figure 18-8. A typical login page

This page checks whether the user has typed in the password Secret and then uses the
RedirectFromLoginPage() method to log the user in. Here’s the complete page code:

����	������	���������@�
	������
�

G

����������������	�����@�
	�E*�	�Q�+�����������F�/����5�
���!

����G

��������	���������������3����3�@�����!�HH�I������I!

��������G

������������4����5������	���	���2��	����4���@�
	���
��

�����������������1����3���F������!J

��������K

������������

��������G

���������������#������3����H�I3����
�	��IJ

��������K

����K

K

The RedirectFromLoginPage() method requires two parameters. The first sets the
name of the user. The second is a Boolean variable that creates a persistent forms authen-
tication cookie when set to true or an ordinary forms authentication cookie when set to
false. A persistent cookie will be stored on the user’s hard drive with an expiration date set
to 50 years in the future. This is a convenience that’s sometimes useful when you’re using
the forms authentication login for personalization instead of security. It’s also a security
risk because another user could conceivably log in from the same computer, acquiring the

MacDonald.book Page 727 Wednesday, December 21, 2005 9:06 PM

728 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

cookie and the access to the secured pages. If you want to allow the user to create a persis-
tent cookie, you should make it optional, because the user may want to access your site
from a public or shared computer. Generally, sites that use this technique include a check
box with text such as Persist Cookie or Keep Me Logged In.

4����5������	���	���2��	����4���@�
	���
�����1����3���F���Q����	���*���Q��!J

Obviously, the approach used in the login page isn’t terribly secure—it simply checks
that the user supplies a hard-coded password. In a real application, you’d probably check
the user name and password against the information in a database and sign the user in
only if the information matches exactly. You could write this code easily using the
ADO.NET programming you learned in Part 3, although it requires a bit of tedious code.
You’ll consider more practical ways to accomplish this task in the next chapter.

You can test this example with the FormsSecurity sample included with the online
code. If you request the SecuredPage.aspx file, you’ll be redirected to Login.aspx. After
entering the correct password, you’ll return to SecuredPage.aspx. As the user is logged in,
you can retrieve the identity through the built-in User object, as shown in Figure 18-9.

������������	����
�E@����+�����������F�/����5�
���!

G

�������$����
��3����H�I-������������������������������
�F�IJ

�������$����
��3����OH�7����&����	���1����O�I�IJ

K

Figure 18-9. Accessing a secured page

MacDonald.book Page 728 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 729

Your application should also feature a prominent logout button that destroys the forms
authentication cookie:

��	�������	�����#	
�+��E*�	�Q�+�����������F�/����5�
���!

G

����4����5������	���	���#	
�+���!J

����2��������2��	�����IR�@�
	������I!J

K

■Tip In the next chapter, you’ll learn how to simplify life with the login controls. These controls allow you
to build login pages (and other types of security-related user interfaces) with no code. However, they require
another feature—membership—in order to work.

Windows Authentication
With Windows authentication, IIS takes care of the authentication process. ASP.NET sim-
ply uses the authenticated IIS user and makes this identity available to your code for your
security checks.

If your virtual directory uses the default settings, users will be authenticated under the
anonymous IUSER_[ServerName] account. But when you use Windows authentication,
you’ll force users to log into IIS before they’re allowed to access secure content in your
website. The user login information can be transmitted in several ways, but the end result
is that the user is authenticated using a local Windows account. Typically, this makes
Windows authentication best suited to intranet scenarios, in which a limited set of known
users is already registered on a network server.

The advantages of Windows authentication are that it can be performed transparently
(depending on the client’s operating system and browser) and your ASP.NET code can
examine all the account information. For example, you can use the User.IsInRole()
method to check which groups a user belongs to.

To implement Windows-based security with known users, you need to follow three steps:

1. Set the authentication mode in the web.config file (or use the WAT).

2. Disable anonymous access for a directory by using an authorization rule (or by dis-
abling access in IIS Manager). You can also choose the protocol that will be used to
transmit the user name and password information with IIS Manager.

3. Configure the Windows user accounts on your web server (if they aren’t already
present).

MacDonald.book Page 729 Wednesday, December 21, 2005 9:06 PM

730 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

■Note Most of the discussion in this chapter describes how IIS behaves with Windows authentication.
However, when you’re testing a web application, you’re probably not using IIS. Instead, you’re using the built-
in web server that’s included with Visual Studio. For the most part, this web server works the same as IIS but
has one important distinction—it doesn’t support anonymous use. This means Visual Studio always logs you
into the web server using your Windows account. In IIS, you need to force the user to log in by explicitly deny-
ing anonymous access to a page or subdirectory with authorization rules. To see the difference, you may want
to test your application with IIS (as explained in Chapter 12).

IIS Settings

To disable anonymous access, start IIS Manager (select Settings ➤ Control Panel ➤
Administrative Tools ➤ Internet Information Services). Then right-click a virtual directory
or a subdirectory inside a virtual directory, and choose Properties. Select the Directory
Security tab, which is shown in Figure 18-10.

Figure 18-10. Directory security settings

Click the Edit button to modify the directory security settings (see Figure 18-11). In the
bottom half of the window, you can enable one of the Windows authentication methods.
However, none of these methods will be used unless you explicitly clear the Anonymous
Access check box. Table 18-3 describes the authentication methods.

MacDonald.book Page 730 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 731

Figure 18-11. Directory authentication methods

Table 18-3. Windows Authentication Methods

Mode Description
Anonymous Anonymous authentication is technically not a true authentication method,

because the client isn’t required to submit any information. Instead, users are
given free access to the website under a special user account,
IUSR_[ServerName]. Anonymous authentication is the default.

Basic Basic authentication is a part of the HTTP 1.0 standard, and almost all browsers
and web servers support it. When using Basic authentication, the browser
presents the user with a login box with a user name and password field. This
information is then transmitted to IIS, where it’s matched with a local Windows
user account. The disadvantage of Basic authentication is that the password is
transmitted in clear text and is visible over the Internet (unless you combine it
with SSL technology).

Digest Digest authentication remedies the primary weakness of Basic authentication:
sending passwords in plain text. Digest authentication sends a digest (also
known as a hash) instead of a password over the network. The primary
disadvantage is that Digest authentication is supported only by Internet Explorer
5.0 and later. Your web server also needs to use Active Directory or have access to
an Active Directory server.

Integrated Integrated Windows authentication (formerly known as NTLM authentication
and Windows NT Challenge/Response authentication) is the best choice for
most intranet scenarios. When using Integrated authentication, Internet
Explorer can send the required information automatically using the currently
logged-in Windows account on the client, provided it’s on a trusted domain.
Integrated authentication is supported only on Internet Explorer 2.0 and later
and won’t work across proxy servers.

MacDonald.book Page 731 Wednesday, December 21, 2005 9:06 PM

732 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

You can enable more than one authentication method. In this case, the client will use
the strongest authentication method it supports, as long as anonymous access is not
enabled. If anonymous access is enabled, the client will automatically access the website
anonymously, unless the web application explicitly denies anonymous users with this
rule in the web.config file:

M����������HITI��N

Web.config Settings

Once you’ve enabled the appropriate virtual directory security settings, you should make
sure your application is configured to use Windows authentication. In a Visual Studio
project, this is the default.

M����	
����	��N

����M����������N

��������MP""�+���������	�
����	������""N

�������������	�������������	��"����������

����M�����������N

M�����	
����	��N

Next, you can add <allow> and <deny> elements to specifically allow or restrict users
from specific files or directories. You can also restrict certain types of users, provided their
accounts are members of the same Windows group, by using the roles attribute:

M������	,��	��N

����M����������HITI��N

����M�����������HI5��	�	�������F#����7���I��N

����M����������HI�������I��N

M�������	,��	��N

In this example, all users who are members of the Administrator or SuperUser group will
be automatically authorized to access ASP.NET pages in this directory. Requests from the
user matthew will be denied, unless he is a member of the Administrator or SuperUser
group. Remember, ASP.NET examines rules in the order they appear and stops when it
finds a match. Reversing these two authorization lines would ensure that the user matthew
was always denied, regardless of group membership.

MacDonald.book Page 732 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 733

If you using Windows authentication, you must use the more explicit syntax shown
here, which precedes the user name with the name of the domain or server:

M�����������HI$�9���	�1���U�������I��N

You can also examine a user’s group membership programmatically in your code.
Since the string includes a backslash, you need to remember to double it, or you can turn
off C# escaping with a preceding at sign (@), as shown here:

������������	����
�E@����+�����������F�/����5�
���!

G

����	���7����&�&�2�����I$�9���	�1���U#����5��	�	��������I!!

����G

�����������9������	�
J�������
��������������������������������������

���������������������������	�	����������	�	��
���

����K

��������

����G

�����������9��L����������	����
���&������F����	�������������������
��

��������2��������2��	�����I������������I!J

����K

K

In this example, the code checks for membership in a custom Windows group called
SalesAdministrators. If you want to check whether a user is a member of one of the built-in
groups, you don’t need to specify a computer or domain name. Instead, you use this syntax:

	���7����&�&�2�����I.7&@3&1U5��	�	��������I!!

G

��������*����
���������!

K

For more information about the <allow> and <deny> rules and configuring individual
files and directories, refer to the discussion in the “Authorization Rules” section earlier in
this chapter.

Note that you have no way to retrieve a list of available groups on the web server (that
would violate security), but you can find out the names of the default built-in Windows
roles using the System.Security.Principal.WindowsBuiltInRole enumeration. Table 18-4
describes these roles. Not all will apply to ASP.NET use, although Administrator, Guest,
and User probably will.

MacDonald.book Page 733 Wednesday, December 21, 2005 9:06 PM

734 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

Table 18-4. Default Windows Roles

A Windows Authentication Test

One of the nice features of Windows authentication is that no login page is required. Once you
enable it in IIS, your web application can retrieve information directly from the User object.
You can access some additional information by converting the generic Identity object to a
WindowsIdentity object (which is defined in the System.Security.Principal namespace).

The following is a sample test page that uses Windows authentication (see Figure 18-12):

����	������	���������#��������
������
�

G

����������������	����
�E@����+�����������F�/����5�
���!

����G

��������#��	�
.�	������	�����3����H�����#��	�
.�	�����!J

���������	�����3����5������I-������������������������������
�F�I!J

���������	�����3����5������7����&����	���1���!J

���������	�����&����	����	�&����	���H���	�����&����	��!7����&����	��J

���������	�����3����5������I�M����NM����N5������	���	���3�����I!J

���������	�����3����5�������	�&����	���5������	���	��3���!J

���������	�����3����5������IM����N5����������I!J

Role Description
AccountOperator Users with the special responsibility of managing the user accounts on a

computer or domain.

Administrator Users with complete and unrestricted access to the computer or domain.

BackupOperator Users who can override certain security restrictions only as part of backing
up or restore operations.

Guest Like the User role but even more restrictive.

PowerUser Similar to Administrator but with some restrictions.

PrintOperator Like User but with additional privileges for taking control of a printer.

Replicator Like User but with additional privileges to support file replication in a
domain.

SystemOperator Similar to Administrator with some restrictions. Generally, system
operators manage a computer.

User Users are prevented from making systemwide changes and can run only
certified applications (see ������������	�������������	�����?)))��������
�������	������	���������	�	������ for more information).

MacDonald.book Page 734 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 735

���������	�����3����5�������	�&����	���&�5��������!J

���������	�����3����5������IM����N5������	�������I!J

���������	�����3����5�������	�&����	���&�5������	�����!J

���������	�����3����5������IM����N0������I!J

���������	�����3����5�������	�&����	���&�0����!J

���������	�����3����5������IM����N#�������I!J

���������	�����3����5�������	�&����	���&�#�����!J

���������	�����3����5������IM����N5��	�	���������I!J

���������	�����3����5������7����&�&�2�����I.7&@3&1U5��	�	��������I!!J

�����������$����
��3����H��	�����3����3�#��	�
�!J

����K

K

Figure 18-12. Retrieving Windows authentication information

Impersonation
Impersonation is an additional option that’s available in Windows or forms authentica-
tion, although it’s most common with Windows users in an intranet scenario. For
impersonation to work, the authenticated user account must correspond to a Windows
account, which isn’t guaranteed (or even likely) with forms authentication.

With impersonation, your ASP.NET code interacts with the system under the identity
of the authenticated user—not the normal system account. You’ll usually choose this
technique when you don’t want to worry about authorization details in your code.

MacDonald.book Page 735 Wednesday, December 21, 2005 9:06 PM

736 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

For example, if you have a simple application that displays XML files, you can set spe-
cific permissions for each XML file, restricting them from some users and allowing them
to others. Unfortunately, your ASP.NET XML viewer utility always executes under the
ASPNET or local system account, which probably has the authority to view all these files.
Thus, any authenticated user can view any file. To remedy this situation, you can specifi-
cally add user verification checks in your code and refuse to open files that aren’t allowed.
However, this will typically result in a lot of extra code. On the other hand, if imperson-
ation is enabled, your ASP.NET code will be prevented from accessing any XML files the
current user isn’t allowed to view. Of course, this means your application will encounter
an error when you try to read the file—so you’ll need to use exception handling code to
deal with the situation gracefully.

To enable impersonation, you simply add an <identity> tag to the web.config file, as
shown here:

M����	
����	��N

����M����������N

��������MP""�+���������	�
����	������""N

��������M	����	���	����������HI����I�N

����M�����������N

M�����	
����	��N

Keep in mind the user account will require read-write access to the Temporary
ASP.NET Files directory where the compiled ASP.NET files are stored, or the user will
not be able to access any pages. This directory is located under the path
C:\[WinDir]\Microsoft.NET\Framework\[Version]\Temporary ASP.NET Files.

ASP.NET also provides the option to specifically set an account that will be used for
running code. This technique is less common, although it can be useful if you want differ-
ent ASP.NET applications to execute with different, but fixed, permissions. In this case,
the user’s authenticated identity isn’t used by the ASP.NET code.

M����	
����	��N

����M����������N

��������MP""�+���������	�
����	������""N

��������M	����	���	����������HI����I�����1���HI�������I���������HI������I�N

����M�����������N

M�����	
����	��N

This approach is more flexible than changing the machine.config account setting. The
machine.config setting determines the default account that will be used for all web appli-
cations on the computer. The impersonation settings, on the other hand, override the
machine.config setting for individual websites.

MacDonald.book Page 736 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A L S 737

Unfortunately, the password for the impersonated account cannot be encrypted in the
web.config file. This may constitute a security risk if other users have access to the com-
puter and can read the password.

Programmatic Impersonation

Sometimes it’s more useful to use impersonation programmatically through the
WindowsIdentity.Impersonate() method. This allows you to execute some code in the
identity of a specific user (such as your file access routine) but allows the rest of your code
to run under the local system account, guaranteeing it won’t encounter any problems.

To use programmatic impersonation, you need to use Windows authentication by
disabling anonymous access for the virtual directory. You also need to make sure imper-
sonation is disabled for your web application. (In other words, make sure you do not add
the <identity> tag to your web.config file.) This way, the standard account defined in the
machine.config file will be used by default, but the authenticated Windows identity will
be available for you to use when you need it.

The following code shows how your code can use the Impersonate() method to switch
identities:

	���7����0��3����!�HH���������	�������	��	���!!

G

�����	�����&����	���	�J

����	��H���	�����&����	��!7����&����	��J

�����	�����&���������	��*�������	����������*������J

����	����������*�������H�	��&�����������!J

�������1��������������Q������������	������������&9�

�������3�	��������	���������������������������������Q

��������������������	�
����	��!��

�������2���������������	
	����&9����������������

����	����������*�������7����!J

K

����

G

�������7����	��L���	�������������	������

�������3�������������������Q��������������

K

MacDonald.book Page 737 Wednesday, December 21, 2005 9:06 PM

738 C H A P T E R 1 8 ■ S E C U R I T Y F U N D A M E N T A LS

The Last Word
In this chapter, you learned about the multilayered security architecture in ASP.NET and
IIS and how you can safeguard your web pages and web services by using a custom login
page or Windows authentication. You also learned the basics about certificates and SSL.

In the next chapter, you’ll continue to build on your knowledge by considering some
add-on features that can simplify your life and enhance your security. You’ll learn how to
get ASP.NET to create a basic user database for your site (complete with password encryp-
tion), saving you from creating it yourself or writing any ADO.NET code. You’ll also extend
your authorization rules by learning how you can group forms-authenticated users into
logical groups, each of which can be assigned its own permissions.

MacDonald.book Page 738 Wednesday, December 21, 2005 9:06 PM

739

■ ■ ■

C H A P T E R 1 9

Membership

In the previous chapter, you learned how you can use ASP.NET forms authentication as
the cornerstone of your website security. With forms authentication, you can identify
users and restrict them from pages they shouldn’t access. Best of all, ASP.NET manages
the whole process for you by creating and checking the forms authentication cookie.

As convenient as forms authentication is, it isn’t a complete solution. It’s still up to you
to take care of a variety of related tasks. For example, you need to maintain a user list and
check it during the authentication process. You also need to create the login page, decide
how to separate public from private content, and decide what each user should be
allowed to do. These tasks aren’t insurmountable, but they can be tedious. That’s why
Microsoft decided to add another layer of features to its authentication framework in
ASP.NET 2.0. This extra layer is known as membership.

The membership features fall into three broad categories:

User record management: Rather than create your own user database, if you use the
membership features, ASP.NET can create and maintain this catalog of user informa-
tion. It can even implement advanced rules (such as requiring e-mail addresses, asking
security questions, and implementing strong passwords).

Security controls: Every secure website needs a login page. With ASP.NET’s security
controls, you don’t need to design your own—instead, you can use a ready-made ver-
sion straight from the Toolbox. And along with the basic Login control are other
controls for displaying secure content, creating new users, and changing passwords.
Best of all, you can customize how every security control works by setting properties
and reacting to events.

Role-based security: In many websites, you need to give different permissions to differ-
ent users. Of course, life would be far too complex if you had to maintain a different set
of settings for each user, so instead it’s useful to assemble users into groups that define
certain permissions. These groups are called roles, and ASP.NET’s membership fea-
tures include tools for automatically creating a database with role information.

In this chapter, you’ll explore all three of these feature areas and see how you can cre-
ate secure sites with surprisingly little code.

MacDonald.book Page 739 Wednesday, December 21, 2005 9:06 PM

740 C H A P T E R 1 9 ■ M E M B E R S H I P

The Membership Data Store
The key membership feature is the ability of ASP.NET to store user credentials in a data-
base. The idea is that you make a few choices about the information that will be stored
and the security policy that will be used. From that point on, ASP.NET manages the user
database for you—adding new user information, checking credentials when users try to
log in, and so on.

Clearly, the membership data store has the ability to greatly reduce the amount of code
you need to write. You can create a secure website with much less code and hence much
less work. You also don’t need to worry about inevitable bugs, because the ASP.NET mem-
bership module is a well-known, carefully tested component.

So, why wouldn’t you want to use the membership data store? A few possible reasons exist:

You don’t want to store your data in a database: In theory, you can store your user list in
any type of data store, from an XML file to an Oracle database. Technically, each data
store requires a different membership provider. However, ASP.NET includes only two
providers—the SQL Server provider you’ll use in this chapter and a provider for Active
Directory. If you want to use another data store, such as a different relational database,
you’ll need to find a corresponding membership, or you’ll need to forgo membership
altogether.

You need backward compatibility: If you’ve already created a table to store user infor-
mation, it may be too much trouble to switch over to the membership data store. That’s
because the SQL Server membership provider expects a specific table structure. It
won’t work with existing tables, because they’ll have a subtly different combination of
fields and data types. And even if you don’t need to keep the current table structure,
you might find it’s just too much work to re-create all your user records in the member-
ship data store.

You want to manage user information in non-ASP.NET applications: As you’ll see in
this chapter, ASP.NET gives you a powerful set of objects for interacting with member-
ship data. For example, you can update user records, delete user records, retrieve user
records based on certain criteria, and so on. However, if you’re creating another appli-
cation outside ASP.NET that needs to perform these tasks, you might find it’s not as
easy, because you’ll need to understand the membership table structure. In this case,
you may find that it’s easier to manage users with straight SQL statements that work
with your own user table.

If you decide not to use the membership data store, it’s up to you to write ADO.NET
code to retrieve user records and check user credentials. Using these techniques, you can
create your own login pages the hard way, as explained in Chapter 18.

MacDonald.book Page 740 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 741

Before continuing any further, you should set up your website to use forms authentica-
tion by adding the <forms> tag. Here’s what you need to add:

��������	
�����

������������

�
��������
������������	�����

�������������

���������	
�����

Optionally, you can define additional details such as the location of the login page and
the time before the security cookie times out, as described in Chapter 18. You may also
want to add an authorization rule that prevents anonymous users from accessing a spe-
cific page or subfolder so that you can better test your website security.

Membership with SQL Server 2005 Express

Assuming you do decide to use membership, you need to create the membership data-
base. However, if you’re using SQL Server 2005 Express Edition, the task is a lot easier than
you might expect. In fact, it all happens automatically.

By default, membership is enabled for every new website you create. The default mem-
bership provider makes the following assumptions:

• You want to store your membership database using SQL Server 2005 Express
Edition.

• SQL Server 2005 Express Edition is installed on the current computer, with the
instance name SQLEXPRESS.

• Your membership data store will be a file named aspnetdb.mdf, which will be
stored in the App_Data subdirectory of the web application.

These assumptions make a lot of sense. They allow you to create as many web applica-
tions as you want while still keeping the user databases separate. That’s because each
website will have its own aspnetdb.mdf file. These files are never registered in SQL Server,
which means when you open a connection in another application, you won’t see dozens
of user databases. Instead, the only way to connect to them is to specify the file path in the
connection string, which ASP.NET does.

Another advantage of this setup is that it’s potentially easier to deploy your website.
Assuming the web server where you’ll deploy your application has SQL Server 2005
Express Edition, you won’t need to change the connection string. You also don’t need to
perform any extra steps to install the database—you simply copy the aspnetdb.mdf file
with your website. If the target server is using the full version of SQL Server 2005, your

MacDonald.book Page 741 Wednesday, December 21, 2005 9:06 PM

742 C H A P T E R 1 9 ■ M E M B E R S H I P

application will still work, provided the default connection string in the machine.config
file has been adjusted accordingly. You still won’t need to worry about installing the data-
base manually. This is clearly a great advantage for large web hosting companies, because
it’s otherwise quite complex to support multiple websites, each with its own custom data-
base that needs to be installed and maintained.

To see how this works, it helps to create a new web project with a simple test page. Drag
the CreateUserWizard control onto your page from the Login section of the Toolbox. Now
run the page (shown in Figure 19-1), without adding any code or configuring the control.

Figure 19-1. The CreateUserWizard control

Fill in all the text boxes with user information. Note that by default you need to supply
a password that includes at least one character that isn’t a number or letter (such as an
underscore or asterisk). Once you’ve filled in all the information, click Create User.

At this point, the CreateUserWizard control uses the ASP.NET Membership class
behind the scenes to create a new user. The default membership provider creates the
aspnetdb.mdf file (if it doesn’t exist already) and then adds the new user record. Once this
process is complete, the CreateUserWizard control shows a message informing you that
the user was created. Miraculously, all of this takes place automatically even though you
haven’t configured anything in the web.config file and you didn’t create the database file
in advance.

To reassure yourself that the user really was created, you can check for the
aspnetdb.mdf file. In the Solution Explorer, right-click the App_Data folder, and select
Refresh Folder. You’ll see the aspnetdb.mdf file appear immediately. Using Visual Studio,
you can even dig into the contents of the aspnetdb.mdf file. To do so, double-click the file
in the Solution Explorer. Visual Studio will configure a new connection and add it to the

MacDonald.book Page 742 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 743

Server Explorer on the left. Using the Server Explorer, you can roam freely through the
database, examining its tables and stored procedures.

Check the aspnet_Users table to find the user record you created. Just right-click
the table name, and choose Show Table Data. You’ll see something like the record shown
in Figure 19-2. Among other details, you’ll find a randomly generated GUID that uniquely
identifies the user and the date the user last used your web application. You won’t see
the password and password question—that’s stored in a linked record in the
aspnet_Membership table, and it’s encrypted to prevent casual snooping.

Figure 19-2. A user record in the aspnetdb.mdf database

■Note At first glance, you’ll find the membership database includes a dizzying number of tables. Some of
these tables are for other related features you may or may not use, such as role-based security (discussed
later in the “Role-Based Security” section) and profiles (discussed in Chapter 20).

Before diving into the rest of ASP.NET’s membership features in detail, it’s important
to consider what you should do if you don’t want the default membership data store. For
example, you might decide to store your membership tables in a different database, or
you might want to configure one of the many options for the membership provider. You’ll
learn how to do so in the next two sections.

MacDonald.book Page 743 Wednesday, December 21, 2005 9:06 PM

744 C H A P T E R 1 9 ■ M E M B E R S H I P

Configuring the Membership Provider

If you’re using the automatically generated database for SQL Server 2005 Express Edition,
you don’t need to touch the web.config file. In any other case, you’ll need to do a bit of
configuration tweaking.

The simplest case is if you are using the full version of SQL Server 2005. In this case, you
can still use the default membership settings. However, you need to change the connec-
tion string.

■Tip The default membership settings and local connection string are set in the machine.config file. You
can take a look at this file (and even edit it to update the settings for all web applications on your computer).
Look in the C:\[WinDir]\Microsoft.NET\Framework\[Version]\CONFIG directory.

The default connection string that’s used with membership is named LocalSqlServer.
You can edit this setting directly in the machine.config. However, if you just need to tweak
it for a single application, it’s better to adjust the web.config file for your web application.
First, you need to remove all the existing connection strings using the <clear> element.
Then, add the LocalSqlServer connection string—but this time with the right value:

��������	
�����

�������������	�����

����
	��

�
���
�������
������	��	� 	�����	!
�����������"
�
����#������

������������	�����"
�
���	������
�����$%����	
�������	������&%$

'��
��"(�����
���)"
�
"�	����	�)
� ���������$*��	%���
�����	�����

��������������	�����

���

���������	
�����

This <connectionStrings> section removes all connection strings and then creates a new
connection string. This new connection string is almost identical to the version in the
machine.config file—the only difference is that it specifies the Data Source value of local-
host rather than localhost\SQLEXPRESS. This means the connection string connects to the
default instance of SQL Server. By default, the full edition of SQL Server installs itself as a
named instance, and SQL Server 2005 Express Edition installs itself as a named instance
with the instance name SQLEXPRESS. The changed connection string still uses the
AttachDBFileName parameter, which allows it to connect directly to a database file in the

MacDonald.book Page 744 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 745

App_Data directory. As with the default settings, this file will be named aspnetdb.mdf, and
it will be created automatically if required. If you want, you could change the file name by
modifying the AttachDBFilename parameter.

If you’re an older version of SQL Server, such as SQL Server 2000, you need to go to a lit-
tle more work. SQL Server 2000 doesn’t support the AttachDBFilename option, so you’ll
need to supply the name of a database on your server. By convention, this database usu-
ally has the name aspnetdb (although you will probably change this if you want to support
several distinct web applications with the same database server).

Here’s a connection string that uses the aspnetdb database and is suitable for SQL
Server 2000:

��������	
�����

�������������	�����

����
	��

�
���
�������
������	��	� 	�����	!
�����������"
�
����#������

������������	����

�"
�
���	������
�����$%����	
�������	������&%$%����
�#
�
����
� ������

��

��������������	�����

���

���������	
�����

The only catch is that the aspnetdb database won’t be created automatically. Instead,
you’ll need to perform the steps in the following section to generate it with the
aspnet_regsql.exe command-line tool.

Configuring the connection string is the simplest change you can make when setting
up the membership data store. However, you may also want to tweak other membership
settings. For example, you can change the default password policy.

■Note As with the connection string, the default membership provider is defined in the machine.config file.
You can edit the machine.config file to change these defaults for all applications on the computer, but you
shouldn’t, because it will complicate your life when you deploy the application. Instead, you should make the
changes by configuring a new membership provider in your application’s web.config file.

To configure your membership provider, you need to add the <membership> element
to your web application. Inside the <membership> element, you define a new member-
ship provider with your custom settings. Then, you set the defaultProvider attribute of the
<membership> element so it refers to your membership provider by name.

MacDonald.book Page 745 Wednesday, December 21, 2005 9:06 PM

746 C H A P T E R 1 9 ■ M E M B E R S H I P

Here’s the basic structure you need to follow:

��������	
�����

���

������������

������	��� ���
���&	�����	��+�+����	��� &	�����	��

� 	�����	��

�,--#��
	
���.������ 	�����	��--�

����
	��

�,--"��������	 	�����	/�������������������--�

�
���
����+�+����	��� &	�����	������

�� 	�����	��

�������	��� �

���

�������������

���������	
�����

Of course, the interesting part is the attributes you use in the <add> tag to configure
your membership provider. Here’s an example that defines a membership provider with
relaxed password settings. The first three attributes supply required settings (the name,
type, and connection string for the membership provider). The remaining settings
remove the requirement for a security question and allow a password to be as short as
one character and contain only letters.

������	��� ���
���&	�����	��+�+����	��� &	�����	��

� 	�����	��

����
	��

�
��

�
����+�+����	��� &	�����	�

�� ����������0�������	�������+����	��� &	�����	�

������������	���!
�������
������	��	�

	����	��1�������'��'����	���
����

���2����	��&
����	���������3�

���2����	��!��
� �
����	��#�
	
���	���4���

�� 	�����	��

�������	��� �

MacDonald.book Page 746 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 747

Table 19-1 describes the most commonly used membership settings.

Table 19-1. Attributes for Configuring a Membership Provider

Attribute Description
name* Specifies a name for the membership provider.

You can choose any name you want. This is the
name you use later to reference the provider (for
example, when you set the defaultProvider
attribute). You can also use it to get provider
information programmatically.

type* The type of membership provider. In this chapter,
you will always be using the System.Web.
Security.SqlMembershipProvider. ASP.NET also
includes an ActiveDirectoryMembershipProvider,
which allows you to use the membership features
with Windows authentication through an Active
Directory server. (For more information on this
topic, consult the MSDN Help.) Finally, you can
use a custom membership provider that you or a
third-party developer creates.

applicationName The name of the web application. This setting
is primarily useful if you have several web
applications using the same membership
database. If you give each one a separate
application name, all the information (including
user, profiles, and so on) is completely separated
so it’s usable only in the appropriate application.

connectionStringName* The name of the connection string setting. This
must correspond to a connection string defined in
the <connectionStrings> section of web.config or
machine.config.

description An optional description for the membership
provider.

passwordFormat Sets the way passwords are stored in the database.
You can use Clear (passwords are stored as is,
with no encryption), Encrypted (passwords are
encrypted using a computer-specific key), or Hash
(passwords are hashed, and the hash value is
stored in the database). Hashing passwords offers
similar protection to encrypting them (namely, if
you look at the hash you’ll have a difficult time
reverse-engineering the password). However,
when passwords are hashed, they can never be
retrieved—only reset.

minRequiredPasswordLength Specifies the minimum length of a password. If
the user enters fewer characters, it will be rejected
with an error message.

Continued

MacDonald.book Page 747 Wednesday, December 21, 2005 9:06 PM

748 C H A P T E R 1 9 ■ M E M B E R S H I P

Table 19-1. Continued

Now that you’ve seen the settings you can tweak, it’s worth asking what the defaults are.
If you look at the <membership> section in the machine.config file, here’s what you’ll find:

������	��� �

� 	�����	��

�
���
����'� !�����+����	��� &	�����	�

�� ����������0�������	�������+����	��� &	�����	�

������������	���!
�������
������	��	�

Attribute Description
minRequiredNonAlphanumericCharacters Specifies the number of nonalphanumeric

characters (characters other than numbers and
letters) the password needs to have. If the user
enters fewer, it will be rejected with an error
message. Although requiring nonalphanumeric
characters makes for stronger (less guessable)
passwords, it also can confuse users, causing
them to forget their passwords more often or
(worse) write them down in a conspicuous place,
where they might be stolen.

maxInvalidPasswordAttempts Specifies the number of times a user can supply
an invalid password for their login before the user
account is locked and made inaccessible.

passwordAttemptWindow The internal time in which
maxInvalidPasswordAttempts is measured.
For example, if you set a window of 30 minutes,
after 30 minutes the number of invalid password
attempts is reset. If the user surpasses the
maxInvalidPasswordAttempts within
passwordAttemptWindow, the account is locked.

enablePasswordReset Determines whether a password can be reset,
which is useful if a password is forgotten.

enablePasswordRetrieval Determines whether a password can be requested
(and e-mailed to the user), which is useful if a user
forgets a password. This feature is never
supported if passwordFormat is set to Hash,
because the password isn’t stored in that case.

requiresQuestionAndAnswer Determines whether the membership security
answer will be required when you request or reset
a user password.

requiresUniqueEmail If false, more than one user can have the same
e-mail address. The e-mail address information is
always optional.

* This setting is required.

MacDonald.book Page 748 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 749

��
���&
����	�2��	���
����
������
���&
����	�2�������	���

	����	��1�������'��'����	���	���
 ���
����!
������

	����	��*�����5�
�����
����
����	���	�
���6
�����

���2����	��&
����	���������7�

���2����	��!��
� �
����	��#�
	
���	���3�

����	�'���� �0�������34��
.%��
���&
����	�'���� ����8���

�� 	�����	��

�������	��� �

As you can see, the default membership provider is AspNetSqlMembershipProvider. It
connects using the LocalSqlServer connection string and supports password resets but
not password retrieval. Accounts require a security question but not a unique e-mail. The
passwords themselves are hashed in the database for security, so they can’t be retrieved.
Passwords must be seven characters long with one nonalphanumeric character. Finally, if
a user makes five invalid password attempts in ten minutes, the account is disabled.

Manually Creating the Membership Tables

If you don’t want to use the automatically created SQL Server 2005 database, you’ll need
to create the membership data tables on your own. ASP.NET includes a tool for this pur-
pose, aspnet_regsql. Rather than hunt around for this file, the easiest way to launch it is to
fire up the Visual Studio command prompt (choose Programs ➤ Visual Studio 2005 ➤
Visual Studio Tools ➤ Visual Studio 2005 Command Prompt from the Start menu) and
then type it in.

You can use aspnet_regsql in two ways. If you use it without adding any command-line
parameters, a Windows wizard will appear that leads you through the process. You’ll be
asked to supply the connection information for your database server. The database will be
named aspnetdb, which is the recommended default. The contents of aspnetdb will be
the same as the contents of the aspnetdb.mdf file demonstrated in the previous section.

Your other option is to specify exactly what you want to happen using command-line
switches. This is particularly useful when deploying your application—you can use
aspnet_regsql as part of a setup batch file, which will then create the membership data
store automatically. This is the option you’ll use if you want to choose the database name
or if you want to install only some of the database tables. By default, the aspnet_regsql tool
installs tables that can be used for user authentication, role-based authorization, profiles,
and Web Parts personalization. This gives you maximum flexibility, but you may feel it’s
overkill if you aren’t planning to use some of these features.

Table 19-2 describes all the command-line options. Here’s an example command line
that connects to an unnamed SQL Server instance on the current computer (using the -S
parameter), connects with the current Windows account (using the -E parameter), installs

MacDonald.book Page 749 Wednesday, December 21, 2005 9:06 PM

750 C H A P T E R 1 9 ■ M E M B E R S H I P

all tables (using the -A parameter), and places them all in a database named AspDatabase
(with the -d parameter):

� ���9	�����-�:���
�;-5-'
��-�'� "
�
�
��

■Tip It’s a good idea to install all the tables at once (using the -A all option). This way, your database will
be ready for the profile feature discussed in the next chapter. Once you’ve finished testing your application
and you’re ready to create the final database, you can create a database that just has the options you’ve
decided to use. (For example, use -A mr to use membership and role management but nothing else.)

Table 19-2. Command-Line Switches for aspnet_regsql.exe

Of course, once you’ve taken this step, you’ll need to configure the membership pro-
vider so it knows where to find the membership data store, or it will simply continue
trying to use an autogenerated SQL Server 2005 Express Edition database. You do this by
tweaking the connection string, as described in the previous section.

Switch Description
-S ServerName Specifies the location of the SQL Server instance where you

want to install the database.

-E Connects to the server through Windows authentication,
using the currently logged-in Windows account.

-U UserName and -P Password Specifies the user name and password you need to connect to
the SQL Server database. Usually, you’ll use -E instead.

-A Specifies the features that you want to use (and determines
the database tables that are created). Valid options for this
switch are all, m (membership), r (role-based security), p
(profiles), c (Web Part personalization), and w (for database
cache dependencies with SQL Server 2000).

-R Removes the databases specified by the -A switch.

-d DatabaseName Allows you to specify the name of the database in which the
tables will be created. If you don’t specify this parameter, a
database named aspnetdb is created automatically.

-sqlexportonly Creates SQL scripts for the specified options but doesn’t
actually create the tables in the database. Instead, you can
run the script afterward. This is useful technique for
deploying your application.

MacDonald.book Page 750 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 751

Creating Users with the WAT

Once you’ve created the membership data store and (optionally) configured the member-
ship provider, you’re ready to use membership-backed security in your web application.
As you’ve already seen, you can create new users with the CreateUserWizard control.
You’ll consider the CreateUserWizard control and the other security controls later in this
chapter. First, it’s worth considering your other options for setting up your user list.

One option is to use the WAT. Choose Website ➤ ASP.NET Web Configuration to
launch this tool. Next, click the Security tab. In the bottom-left corner, a box indicates
how many users are currently in the database (see Figure 19-3). This box also provides
links that allow you to examine the existing user records or add new ones.

Figure 19-3. Managing website security with the WAT

MacDonald.book Page 751 Wednesday, December 21, 2005 9:06 PM

752 C H A P T E R 1 9 ■ M E M B E R S H I P

If you want to browse the current user list or update an existing user record, click the
Manage Users link. To add new users, click Create User. You’ll see a set of controls that are
similar to the CreateUserWizard control used in the test page earlier (see Figure 19-4).
After you’ve created a few users, you may want to take another look at the aspnet_Users
and aspnet_Membership tables in your database to see what the user records look like.

Figure 19-4. Creating a new user

Although the WAT is a perfectly sensible way to add user records, you might find the
web interface is a little sluggish if you have a large number of users to create. Another
option is to use the Membership class, as shown here:

��#	�
��
���		���	��
����������	�
��/
����	�/
���-�
������	�
�����

+����	��� �#	�
��*��	:���	!
��/
����	�/��
��;$

MacDonald.book Page 752 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 753

Here’s an example with hard-coded values:

+����	��� �#	�
��*��	:�<����/����	���3=99�/�<���>���
��������;$

This creates a new user with just a single line of code. Of course, the CreateUser()
method has multiple overloads, which you can use to supply details such as the password
question and answer. If you haven’t changed the default membership settings, you won’t
be able to create an account unless you provide these details. Instead, you’ll need to use
this more complex overload:

+����	��� #	�
����
����	�
����
���$

+����	��� �#	�
��*��	:�<����/����	���3=99�/�<���>���
��������/

�0�
������	�
��	���	���
�	
��?�/��
�����/�	��/����	�
����
���;$

The first few parameters are self-explanatory—they take the user name, password,
e-mail address, password question, and password answer. The second-to-last parame-
ter takes a Boolean value that determines whether the account is given the IsApproved
flag. If you supply false, the account won’t be usable until you modify it using the
Membership.UpdateUser() method. In the simpler overload that doesn’t include this
parameter, accounts are always marked as approved.

The last parameter returns a value from the MembershipCreateStatus enumeration.
If this value isn’t MembershipCreateStatus.Success, an error occurred when creating
the record. The value indicates the exact error condition (for example, a password that
wasn’t strong enough, a duplicate e-mail address when your membership provider
doesn’t allow duplicates, and so on). In the simpler overload that doesn’t include the
MembershipCreateStatus, any error results in an exception object being thrown that
has the same information.

■Tip Clearly, if you needed to transfer a large number of user accounts from a custom database into the
membership data store, the quickest option would be to write a routine that loops through the existing records
and use the CreateUser() method to insert the new ones.

The Membership and MembershipUser Classes

There wouldn’t be much point to using the membership data store if you still needed to
write handcrafted ADO.NET code to retrieve or modify user information. That’s why
ASP.NET offers a more convenient, higher-level model with the Membership class.

Membership is a useful class that’s full of practical static methods such as
CreateUser(). You can find it in the System.Web.Security namespace. Table 19-3 provides
a snapshot of its most useful methods.

MacDonald.book Page 753 Wednesday, December 21, 2005 9:06 PM

754 C H A P T E R 1 9 ■ M E M B E R S H I P

Table 19-3. Membership Methods

The Membership class also provides static read-only properties that let you retrieve
information about the configuration of your membership provider, as set in the configu-
ration file. For example, you can retrieve the required password length, the maximum
number of password attempts, and all the other details described in Table 19-1.

Many of these methods use the MembershipUser class, which represents a user record.
For example, when you call GetUser(), you receive the information as a MembershipUser
object. If you want to update that user, you can change its properties and then call
Membership.UpdateUser() with the modified MembershipUser object.

Method Description
CreateUser() Adds a new user to the database.

DeleteUser() Deletes an existing user from the database. You specify the user
by the user name. You can also choose whether you want to
delete all related data in other tables (the default is to remove it).

GetUser() Gets a specific user from the database, by user name.

GetUserNameByEmail() Retrieves a user name for the user that matches a given e-mail
address. Keep in mind that duplicate e-mail addresses are
allowed by default, in which case this method will find only the
first match.

FindUsersByName() Gets users from the membership database that match a given
user name. This supports partial matches, so User will match
TestUser, User001, and so on.

FindUsersByEmail() Gets users from the membership database that match a specific
e-mail address. You can also supply part of an e-mail address
(such as the domain name), in which case you’ll get every user
who has an e-mail address that contains this text.

GetAllUsers() Gets a collection that represents all the users in the database. An
overloaded version of this method allows you to get just a
portion of the full user list (a single page of users, based on a
starting index and length).

GetNumberOfUsersOnline() Gets the number of logged-in users currently accessing an
application. This calculation assumes a user is online if that
user’s last activity time stamp falls within a set time limit (such
as 20 minutes).

GeneratePassword() Generates a random password of the specified length. This is
useful when programmatically creating new user records.

UpdateUser() Updates the database with new information for a specific user.

ValidateUser() Tests whether the supplied user name and password are valid.

MacDonald.book Page 754 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 755

■Note The MembershipUser object combines the details from the aspnet_Users table and the linked
aspnet_Membership table. For example, it includes the password question. However, the password answer
and the password itself aren’t available.

The MembershipUser class also provides its own smaller set of methods, as detailed in
Table 19-4.

Table 19-4. Membership User Methods

To get a sense of how the Membership class works, you can create a simple test page that
displays a list of all the users in the membership database. Figure 19-5 shows this page.

Method Description
UnlockUser() Reactivates a user account that was locked out for too

many invalid login attempts.

GetPassword() Retrieves a user password. If
requiresQuestionAndAnswer is true in the
membership configuration (which is the default),
you must supply the answer to the password question
in order to retrieve a password. Note that this method
won’t work at all if the passwordFormat setting is
Hash, which is also the default.

ResetPassword() Resets a user password using a new, randomly
generated password, which this method returns. If
requiresQuestionAndAnswer is true in the
membership configuration (which is the default), you
must supply the answer to the password question in
order to reset a password. You can display the new
password for the user or send it in an e-mail.

ChangePassword() Changes a user password. You must supply the
current password in order to apply a new one.

ChangePasswordQuestionAndAnswer() Changes a user password question and answer. You
must supply the current password in order to change
the security question.

MacDonald.book Page 755 Wednesday, December 21, 2005 9:06 PM

756 C H A P T E R 1 9 ■ M E M B E R S H I P

Figure 19-5. Getting a list of users

To create this page, you simply need to call the Membership.GetAllUsers() method and
bind the results to a GridView, as shown here:

 	�����������&
��9��
�:��<��������	/5����'	���;

@

A	��B���3�"
�
���	���+����	��� �A��'��*��	�:;$

A	��B���3�"
�
(���:;$

C

To make the example more interesting, when a record is selected, the corresponding
MembershipUser object is retrieved. This object is then added to a collection so it can be
bound to the DetailsView for automatic display:

 	�����������A	��B���39��������%���.#�
����:��<��������	/5����'	���;

@

�����+����	��� *��	��������������+����	��� *��	�:;$

�����'��:+����	��� �A��*��	:A	��B���3���������B
����D���	���:;;;$

"��
���B���3�"
�
���	�������$

"��
���B���3�"
�
(���:;$

C

MacDonald.book Page 756 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 757

Figure 19-6 shows the information that’s available in a single record. Among other
details, you can use the MembershipUser object to check whether a user is online, when
they last accessed the system, and what their e-mail address is.

Figure 19-6. The information in a MembershipUser object

Authentication with Membership

Now that you’ve switched to membership, and all your users are stored in the member-
ship data store, you need to change the way your login page works. Life now gets a lot
simpler—rather than create ADO.NET objects to query a database and see whether a
matching user record exists, you can let the Membership class perform all the work for
you. The method you need is Membership.ValidateUser(). It takes a user name and pass-
word and returns true if there’s a valid match in the database.

MacDonald.book Page 757 Wednesday, December 21, 2005 9:06 PM

758 C H A P T E R 1 9 ■ M E M B E R S H I P

Here’s the new login page you need:

 	�������������������9#���E:��<��������	/5����'	���;

@

��:+����	��� �B
���
��*��	:�.�*��	�
���D�.�/�.�&
����	��D�.�;;

@

��	��'��������
�����2���	����	�������&
��:�.�*��	�
���D�.�/�
���;$

C

����

@

�����
����D�.���%��
������	�
���	
����	���$

C

C

Actually, a fair bit of work is taking place behind the scenes. If you’re using the default
membership provider settings, passwords are hashed. That means when you call
ValidateUser(), ASP.NET hashes the newly supplied password using the same hashing
algorithm and then compares it to the hashed password that’s stored in the database.

Disabled Accounts

An account can become disabled in the membership database in two ways:

The account isn’t approved: This occurs if you create an account programmatically
and supply false for the isApproved parameter. You might take this step if you want
to create an account automatically but allow an administrator to review it before it
becomes live. To make this account active, you need to get a MembershipUser object
for the corresponding user record, set MembershipUser.IsApproved to true, and call
Membership.UpdateUser().

The account is locked out: This occurs if the user makes multiple attempts to access a
user account with an invalid password. In this case, you need to get a MembershipUser
object for the user, and call MembershipUser.Unlock(). You may also want to call
MembershipUser.ResetPassword() to prevent another lockout.

To help you with these tasks, you might want to create an administrative page like the
one shown in Figure 19-6. For example, you can allow a user to review all accounts that
aren’t yet approved and approve them by clicking a button.

Similarly, if you want to disable an account at any time, you can retrieve a
MembershipUser object for that user and set the IsApproved property to false.
However, you have no way to programmatically lock a user account.

You’re probably already thinking of a wide range of pages you can create using the
Membership and MembershipUser classes. For example, you can build pages that allow

MacDonald.book Page 758 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 759

users to request a password reset or check whether they are locked out. However, you
might not need to create all these pages, because ASP.NET includes a rich set of security
controls that automate many common tasks. You’ll learn more about the security controls
in the next section.

The Security Controls
The basic membership features are a remarkable time-saver. They allow you to concen-
trate on programming your web application, without worrying about managing security
and crafting the perfect database or user information. Instead, you can use the higher-
level Membership and MembershipUser classes to do everything you need.

However, the ASP.NET membership feature doesn’t stop there. Not only does the
Membership class simplify common security tasks, it also standardizes them. As a result,
other components and controls can user the Membership class to integrate themselves
with the ASP.NET security model, without worrying about the specifics of each web appli-
cation. You can find the best example of this new flexibility in ASP.NET’s security controls.
These controls interact with the membership provider using the methods of the Member-
ship and MembershipUser classes to implement common bits of user interfaces such as a
login page, a set of user creation controls, and a password recovery wizard.

Table 19-5 lists all the ASP.NET security controls that work with membership. In Visual
Studio, you can find these controls in the Login section of the Toolbox.

Table 19-5. Security Controls

Control Description
Login Displays the familiar user name and password text boxes, with a login

button.

LoginStatus A simple control that varies itself based on whether the user is logged in.
If not, the control shows a login button that redirects the user to the
configured login page. Otherwise, it displays a sign-out button. You can
choose the test used for the login and sign-out buttons, but that’s about it.

LoginName A simple control that displays the user name of the logged-in user.

LoginView A powerful control that displays different content depending on whether
the user is logged in. You can even use this control to show different
content for different groups of users, or roles.

PasswordRecovery Allows the user to request a password via e-mail or reset it. Typically, the
user must supply the answer to the security question to get the password.

ChangePassword Allows the user to set a new password (as long as the user can supply the
current password).

CreateUserWizard Allows a user to create a new record, complete with e-mail address and a
password question and answer.

MacDonald.book Page 759 Wednesday, December 21, 2005 9:06 PM

760 C H A P T E R 1 9 ■ M E M B E R S H I P

A simple way and a complex way to use most of these controls exist. At their simplest,
you merely drop the control on a page, without writing a line of code. (You saw this
approach with the CreateUserWizard control at the beginning of this chapter.) You can
also modify properties, handle events, and even create templates to customize these
controls.

In the following sections, you’ll take a closer look at the Login, PasswordRecovery, and
CreateUserWizard controls. And later in the “Role-Based Security” section, you’ll put the
LoginView control to work to show different content to users in different roles.

The Login Control

So far, the secure websites you’ve seen have used handmade login pages. In many web-
sites this is what you’ll want—after all, it gives you complete control to adjust the user
interface exactly the way you want it. However, a login page is standard, so it makes sense
for ASP.NET to give developers some extra shortcuts that can save them work.

Along these lines, ASP.NET includes a Login control that pairs a user name and pass-
word text box with a login button. The Login control also adds a few features:

• It includes validator controls that prevent the page from being posted back until a
user name and password have been entered.

• It automatically handles the signing in and redirection process when the user logs
in successfully. If invalid login credentials are entered, it shows an error message.

• It provides a Remember Me check box that, if selected, stores a persistent cookie
that remains indefinitely on the user’s computer; therefore, the user doesn’t need to
log back in at the beginning of each visit.

In other words, if the basic Login control is right for your needs (in other words, it gives
the user interface you want), you won’t need to write a line of code.

To try this, drop the Login control onto a new page. Make sure this page is named
Login.aspx so it’s used as the default login page for forms authentication (or edit the
<forms> tag to choose a different login page, as explained in the previous chapter). Then,
run the page. You’ll see the basic interface shown in Figure 19-7.

Although the Login control takes care of the login process for you automatically, you
can step in with your own custom code. To do so, you must react to one of the Login con-
trol events, as listed in Table 19-6.

MacDonald.book Page 760 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 761

Figure 19-7. The Login control and a failed login attempt

Table 19-6. Events of the Login control

The LoggingIn, LoggedIn, and LoginError events are primarily useful if you want to
update other controls to display certain information based on the login process. For
example, after the first login failure, you might choose to show a link that redirects the
user to a password retrieval page:

 	����������������39�����5		�	:��<��������	/5����'	���;

@

�����
����D�.���6
�������	���������	
����	�?�$

��E2���	���D�&
����	�2��	���
��B��������	��$

C

However, the Authenticate event is the most important event. It allows you to write
your own authentication logic, as you did in the previous chapter. This is typically useful
in two situations. First, you might want to supplement the default checking in the Login
control with other requirements (for example, prevent any users from logging in at spe-
cific times of day, allow users to log in only if they’ve entered information in another
control, and so on). The other reason you might handle the Authenticate event is if you
aren’t using the membership provider at all. In this case, you can still use the Login con-
trol, as long as you provide the authentication logic.

Event Description
LoggingIn Raised before the user is authenticated.

LoggedIn Raised after the user has been authenticated by the control.

LoginError Raised when the login attempt fails (for example, if the user enters the wrong
password).

Authenticate Raised to authenticate the user. If you handle this event, it’s up to you to supply
the login code—the Login control won’t perform any action.

MacDonald.book Page 761 Wednesday, December 21, 2005 9:06 PM

762 C H A P T E R 1 9 ■ M E M B E R S H I P

In the Authenticate event handler, you can check the user name and password using
the UserName and Password properties of the Login control. You then set the Authenti-
cated property of the AuthenticateEventArgs to true or false. If true, the LoggedIn event is
raised next, and then the user is redirected to the Login.DestinationPageUrl, or if that
property is not set, the original page the user came from. If you set Authenticated to false,
the LoginError event is raised next, and the control displays the error message defined by
the Login.FailureText property.

Here’s an event handler for the Authenticated event that uses the membership classes
directly:

 	����������������39'��������
��:��<��������	/'��������
��5����'	���;

@

��:+����	��� �B
���
��*��	:�����3�*��	!
��/�����3�&
����	�;;

@

��'��������
�����	��$

C

����

@

��'��������
�����
���$

C

C

That covers everything you need to know about interacting with the Login control, but
you can tweak many properties to configure the appearance of the Login control. There’s
even an Auto Format link you can choose from the Properties window to give the Login
control a face-lift with a single click.

The most powerful formatting properties for the Login control are style properties,
which allow you to tweak fonts, coloring, and alignment for individual parts of the con-
trol. You’ve already seen styles at work with several other controls, including the Calendar
(Chapter 8) and the GridView (Chapter 15), and they work in the same way with the secu-
rity controls. Table 19-7 details the style properties of the Login control.

Table 19-7. Style Properties of the Login Control

Style Description
TitleTextStyle Defines a style for the title text of the Login control.

LabelStyle Defines the style for the Username and Password labels.

TextBoxStyle Defines the style for the user name and password text boxes.

LoginButtonStyle Defines the style for the login button.

FailureStyle Defines the style for the text displayed if the login attempt fails.

MacDonald.book Page 762 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 763

Of course, styles aren’t the only feature you can change in the Login control. You can
adjust several properties to change the text it uses and to add links. For example, the fol-
lowing tag for the Login control adjusts the formatting and uses the CreateUserUrl and
PasswordRecoveryUrl properties to add links to a page for registering a new user and
another for recovering a lost password. (Obviously, you’ll need to create both of these
pages in order for the links to work.)

�
� F�����%"�������3�	��
�����	��	�(
�E#���	��G5��H�(�(�	��	#���	��G(8#7"5�

(�	��	&
�������I�(�	��	�������������(�	��	0������3 .�����-!
�����B�	�
�
�

��	�#���	��GHHHHHH�6�������=8J .�0������HJK .�

#	�
��*��	D�.���2������	��	�����	�������#	�
��*��	*	���2������	�
� .�

&
����	�2�����	�D�.�����	������	
����	�?�

&
����	�2�����	�*	���&
����	�2�����	��
� .�

%���	������D�.��

�&��
������	���	���	�
��
��
����	���	�����������������������

�D����D�.������(
�E#���	��G847#"3�����-(�����D	�������-��L����
	���

��	�#���	��0�����6�������H8 .���

�%���	������D�.����������-%�
�����D	�����	�#���	��(�
�E���

������(����������(
�E#���	��0�����

(�	��	#���	��G847#"3�(�	��	�������������

(�	��	0������3 .�����-!
�����B�	�
�
���	�#���	��G=KI5MK���

��
� F������

Figure 19-8 shows the revamped Login control. Table 19-8 explains the other proper-
ties of the Login control.

CheckBoxStyle Defines the style properties for the Remember Me check box.

ValidatorTextStyle Defines styles for RequiredFieldValidation controls that validate the user
name and password information. These style properties tweak how the
error text looks. (By default, the error text is simply an asterisk that
appears next to the empty text box.)

HyperLinkStyle The Login control provides properties that allow you to show several
additional links (such as links for creating a new user record, retrieving a
password, and so on). This property configures them all.

InstructionTextStyle The Login control allows you to add some helpful instructions under the
title, by setting the Login.InstructionText property. This style formats
this text. By default, the Login control has no instruction text.

Style Description

MacDonald.book Page 763 Wednesday, December 21, 2005 9:06 PM

764 C H A P T E R 1 9 ■ M E M B E R S H I P

Figure 19-8. A formatted Login control

Table 19-8. Useful Properties of the Login Control

Property Description
TitleText The text that’s displayed in the heading of the control.

InstructionText The text that’s displayed just below the heading but above
the login controls. By default, the Login control has no
instruction text.

FailureText The text that’s displayed when a login attempt fails.

UserNameLabelText The text that’s displayed before the user name text box.

PasswordLabelText The text that’s displayed before the password text box.

UsernameRequiredErrorMessage The error message that’s shown by the
RequiredFieldValidator if the user doesn’t type in a user
name. By default, this is simply an asterisk (*).

PasswordRequiredErrorMessage The error message that’s shown by the
RequiredFieldValidator if the user doesn’t type in a
password. By default, this is simply an asterisk (*).

LoginButtonText The text displayed for the login button.

LoginButtonType The type of button control that’s used as the login button. It
can be displayed as Link, Button, or Image.

MacDonald.book Page 764 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 765

To round out the example in Figure 19-8, you must create the Register.aspx and
PasswordRecovery.aspx pages. In the next sections, you’ll learn how you can do this easily
using two more of the ASP.NET security controls.

LoginButtonImageUrl If you display the login button as an image (by tweaking the
LoginButtonStyle), you must provide a URL that points to
the button image you want to use.

DestinationPageUrl The page to which the user is redirected if the login attempt
is successful. This property is blank by default, which
means the Login control uses the forms infrastructure and
redirects the user to the originally requested page (or to the
defautlUrl configured in web.config file).

DisplayRememberMe Determines whether the Remember Me check box will be
shown. You may want to remove this option to ensure
stricter security so that malicious users can’t gain access to
your website through another user’s computer.

RememberMeSet Sets the default value for the Remember Me check box. By
default, this option is set to false, which means the check
box is not checked initially.

VisibleWhenLoggedIn If set to false, the Login control automatically hides itself if the
user is already logged in. If set to true (the default), the Login
control is displayed even if the user is already logged in.

CreateUserUrl Supplies a URL to a user registration page. This property is
used in conjunction with the CreateUserText.

CreateUserText Sets the text for a link to the user registration page. If this
text is not supplied, this link is not displayed in the Login
control.

CreateUserIconUrl Supplies a URL to an image that will be displayed alongside
the CreateUserText for the user registration link.

HelpPageUrl Supplies a URL to a page with help information.

HelpPageText Sets the text for the link to the help page. If this text is not
supplied, this link is not displayed in the Login control.

HelpPageIconUrl Supplies a URL to an image that will be displayed alongside
the HelpPageText for the help page link.

PasswordRecoveryUrl Supplies a URL to a password recovery page.

PasswordRecoveryText Sets the text for the link to the password recovery page. If
this text is not supplied, this link is not displayed in the
Login control.

PasswordRecoveryIconUrl Supplies a URL to an image that will be displayed
alongside the PasswordRecoveryText for the password
recovery page link.

Property Description

MacDonald.book Page 765 Wednesday, December 21, 2005 9:06 PM

766 C H A P T E R 1 9 ■ M E M B E R S H I P

The CreateUserWizard Control

You already used the CreateUserWizard control to create a basic user record at the begin-
ning of this chapter. Now that you’ve seen the flexibility of the Login control, it should
come as no surprise to learn that you have just as many options for tweaking the appear-
ance and behavior of the CreateUserWizardControl.

The CreateUserWizard control operated in two steps. The first step collects the user
information that’s needed to generate the user record. The second step displays a confir-
mation message once the account is created.

Overall, the CreateUserWizard provides a dizzying number of properties you can
adjust. However, it helps to understand that really only three types of properties exist:

Style properties that format just a section of the control: For example, TitleTextStyle
configures how the text heading is formatted.

Properties that set the text for the control: For example, you can configure each label,
the success text, and the messages shown under different error conditions. You can
also retrieve or set the values in each text box.

Properties that hide or show a part of the control: For example, you can use
DisplaySidebar, DisplayCancelButton, and RequireEmail to show or hide the sidebar,
cancel button, and e-mail text box, respectively.

The CreateUserWizard control also provides a familiar set of events, including
CreatingUser, CreatedUser, and CreateUserError. Once again, these events are handy
for synchronizing other controls on the page or for overriding the user creation process if
you decide not to use the membership features.

■Tip By default, newly created users are automatically logged in. You can change this behavior by setting
the CreateUserWizard.LoginCreatedUser property to false. You also set the ContinueDestinationPage property
to set the URL where the user should be redirected once the new record is created.

Interestingly enough, the CreateUserWizard control inherits from the Wizard control
you explored in Chapter 8. As a result, you can add as many extra steps as you want, just
as you can with the Wizard control. These steps might perform other tasks, such as sign-
ing the user up to receive a regular newsletter. However, the actual user creation process
must always take place in a single step.

MacDonald.book Page 766 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 767

For example, consider the markup for the basic CreateUserWizard (with style tags
omitted):

�
� F#	�
��*��	0�L
	�%"��#	�
��*��	0�L
	�3�	��
�����	��	�����

�0�L
	���� ��

�
� F#	�
��*��	0�L
	���� 	��
�����	��	�D������#	�
��*��	��

��
� F#	�
��*��	0�L
	���� �

�
� F#�� ����0�L
	���� 	��
�����	��	��

��
� F#�� ����0�L
	���� �

��0�L
	���� ��

��
� F#	�
��*��	0�L
	��

Essentially, the CreateUserWizard is a Wizard control that supports two specialized
step types: a CreateUserWizardStep where the user information is collected and the user
record is created and a CompleteWizardStep where the confirmation message is shown.

The following example shows how you can add an ordinary WizardStep into this
sequence. In this case, the extra step simply provides some additional options for the
newly created user (namely, the choice to subscribe to automatic e-mail newsletters).

�
� F#	�
��*��	0�L
	�%"��#	�
��*��	0�L
	�3�	��
�����	��	�����

�0�L
	���� ��

�
� F#	�
��*��	0�L
	���� 	��
�����	��	�D������#	�
��*��	��

��
� F#	�
��*��	0�L
	���� �

�
� F0�L
	���� 	��
�����	��	�D�����������	�����

0���������E�������� ��	���������������������	�?��	��

��	��

�
� F#���E(�.����%"��#���E(�.����3�	��
�����	��	��

�
� F����%����+�!D��
���
� F����%����

�
� F����%����#G&�
�����
� F����%����

�
� F����%����D��6���-D���6�	
����
� F����%����

��
� F#���E(�.�����

��
� F0�L
	���� �

�
� F#�� ����0�L
	���� 	��
�����	��	��

��
� F#�� ����0�L
	���� �

��0�L
	���� ��

��
� F#	�
��*��	0�L
	��

Figure 19-9 shows the first two steps. Notice that the sidebar appears (by setting
CreateUserWizard.DisplaySidebar to true) to show the order of steps.

MacDonald.book Page 767 Wednesday, December 21, 2005 9:06 PM

768 C H A P T E R 1 9 ■ M E M B E R S H I P

Figure 19-9. A CreateUserWizard with a custom step

It’s still up to you to take the appropriate action in your code by reacting to one of the
CreateUserWizard events. In this case, you use the FinishButtonClick event, because it
occurs on the last step before the completion message. If you place your step earlier in the
sequence, you’ll need to react to NextButtonClick. In the current example, you might
want to add this information to the user’s profile table. You’ll learn how to use profiles in
the next chapter.

For complete layout and formatting power, you can convert one of the CreateUserWizard
steps into a template. You’re then free to rearrange the existing content and add new controls
and HTML content. However, be careful not to remove any of the required elements. The
CreateUserWizard will throw an exception if you try to use it but you’re missing one of the
required text boxes for account information.

The easiest way to convert a step into a template is to use the smart tag links. First,
select the CreateUserControl in Visual Studio. Then, select the Customize Create User
Step link or the Customize Complete Step link, depending on which step you want to
modify. ASP.NET will then insert the controls into a template in the CreateUserWizard
control tag.

For example, imagine you want to show the options the user selected in your custom
step in the final summary. In this case, you might want to add a new Label control, as
shown here:

�
� F#�� ����0�L
	���� 	��
�����	��	��

�#������D�� �
���

��
�����	��	��4�������������

��	�

MacDonald.book Page 768 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 769

���
�����������	�����
���=�������������

#�� ����

�����

���	�

��	�

����

N��	
�������
������������������	�
������	����	��

�������������������������������	
����

���������������������������	�����������������������������������	��	���

����������������������������	��

�����

���	�

��	�

���
������	���������
���=��

�
� F(�����%"��#�������(������	��
�����	��	�

(
�E#���	��0�����

(�	��	#���	��G847#"3�(�	��	�������������(�	��	0������3 .�

#
����B
���
�������
����#���
��!
����#��������

����-!
�����B�	�
�
���	�#���	��G=KI5MK�D�.���#��������

B
���
����A	�� ��#	�
��*��	0�L
	�3���

�����

���	�

���
����

��#������D�� �
���

��
� F#�� ����0�L
	���� �

Now, when the user moves to the last step, you can fill in the label with the information
from the CheckBoxList control. However, because the Label control is placed inside a
template, you can’t access it directly by name. Instead, you need to extract it from the
CreateUserWizard control. To do so, you need to access the complete step, grab the first
control it contains (which is the content template), and then use the FindControl()
method to search for the label. Here’s the code that performs this task:

 	�����������#	�
��*��	0�L
	�39������(�����#���E:��<��������	/

0�L
	�!
���
����5����'	���;

@

�
�������:�
���;#	�
��*��	0�L
	�3�#�� ������� �#���	���O4P�����#���	��:

���������	� ���������;$

��	���������������$

��	�
��:����%�����������E�����	� �����%����;

MacDonald.book Page 769 Wednesday, December 21, 2005 9:06 PM

770 C H A P T E R 1 9 ■ M E M B E R S H I P

@

��:�������������;���������Q����	���Q�����D�.�$

C

����D�.�����������$

C

Figure 19-10 shows the final step.

Figure 19-10. Enhancing the complete step with extra content

The PasswordRecovery Control

The PasswordRecovery comes in handy when users forget their passwords. The
PasswordRecovery control leads the user through a short wizard that begins by asking for
a user name and then showing the relevant security question. If the user correctly pro-
vides the matching security answer, the password is automatically mailed to the e-mail
that’s configured for the user.

The PasswordRecovery control has three steps. First, it requests the user name. Next, it
shows the security questions and requests the answer. Finally, if the correct answer was
provided, the PasswordRecovery sends an e-mail to the user’s e-mail address. If you use
a password format of Encrypted or Clear (refer to Table 19-1), the e-mail contains the
original password. If you are using the default password format Hash, a new, random
password is generated, and that password is sent in the e-mail. Either way, the last step
shows a confirmation message informing you that the e-mail was sent.

MacDonald.book Page 770 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 771

Figure 19-11 shows the PasswordRecovery control in action.

Figure 19-11. Requesting a password

For the PasswordRecovery control to do its work, your computer must have a correctly
configured SMTP server, and the user must have an e-mail address in the user record.

MacDonald.book Page 771 Wednesday, December 21, 2005 9:06 PM

772 C H A P T E R 1 9 ■ M E M B E R S H I P

■Note You can configure your SMTP server by selecting the PasswordRecovery control and choosing
Administer Website from the smart tag. Then, choose the Application tab, and click the Configure SMTP
E-mail Settings link.

If your application doesn’t meet these two requirements—either you’re not able to
send e-mail messages or users aren’t guaranteed to have an e-mail address—you can
display the newly password directly in the page. The easiest approach is to handle the
PasswordRecovery.SendingMail event. First, set the MailMessageEventArgs.Cancel
property to true to prevent the message from being sent. Next, you can retrieve the mes-
sage content from the MailMessageEventArgs.Message object and display it on the page.
Here’s an example:

 	�����������&
����	�2�����	�39�������+
��:��<��������	/+
��+���
��5���-

�'	���;

@

��#
������	��$

&
����	�2�����	�3��������D�.����+���
���(���$

C

When you use this event handler, you’ll see a final step like the one shown in Figure 19-12.

Figure 19-12. Displaying the retrieved or regenerated password

MacDonald.book Page 772 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 773

Of course, for complete flexibility you can create your own page that resets passwords.
You just need to use the methods of the Membership and MembershipUser classes
described earlier.

Role-Based Security
The authentication examples you’ve examined so far provide an all-or-nothing approach
that either forbids or allows a user. In many cases, however, an application needs to recog-
nize different levels of users Some users will be provided with a limited set of capabilities,
and other users might be allowed to perform potentially dangerous changes or use the
administrative portions of a website.

To allow this type of multitiered access, you need ASP.NET’s role-based authorization
feature. As with membership, ASP.NET takes care of storing the role information and
making it available to your code. All you need to do is create the roles, assign users to each
role, and then test for role membership in your code.

Before you can use role-based authorization, you need to enable it. Although you can
perform this step using the WAT (just click the Enable Roles link in the Security tab), it’s
easy enough just to add the required line to your web.config file directly:

��������	
�����

������������

�	���+
�
��	��
�������	�����

���

�������������

���������	
�����

As with the membership data store, ASP.NET will automatically create the role infor-
mation in the aspnetdb.mdf file using SQL Server 2005. If you want to use a different
database, you need to follow the steps earlier in this chapter to create the database using
aspnet_regsql.exe and modify the connection string.

Creating and Assigning Roles

Once you’ve enable role management, you need to create a basic set of roles (for example,
User, Administrator, Guest, and so on). You can then assign users to one or more groups.

You can create roles in two ways. You can do so programmatically, or you can do so by
hand using the WAT.

MacDonald.book Page 773 Wednesday, December 21, 2005 9:06 PM

774 C H A P T E R 1 9 ■ M E M B E R S H I P

To use the WAT, follow these steps:

1. Launch the WAT by selecting Website ➤ ASP.NET Configuration.

2. Click the Security tab.

3. Click the Create or Manage Roles link.

4. To add a new role, type it into the provided text box, and click Add Role (see
Figure 19-13). Or, use the Manage and Delete links in the role list to modify or
delete an existing role record.

Figure 19-13. Creating roles

MacDonald.book Page 774 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 775

To place a user into a role, you’ll need to head back to the main security page (click the
Back button in the role management page). Then follow these steps:

1. Select Manage Users from the Security tab. You’ll see the full list of users for your
website (subdivided into pages).

2. Find the user you want to change, and click the Edit Roles link next to that user.

3. Fill in the check box for each role you want to assign to that user.

Figure 19-14 shows an example where the user joes is being given the User role.

Figure 19-14. Applying roles

MacDonald.book Page 775 Wednesday, December 21, 2005 9:06 PM

776 C H A P T E R 1 9 ■ M E M B E R S H I P

Of course, you don’t need to use the WAT. You can also use the Roles class. The Roles
class serves the same purpose for role management as the Membership class did for
membership—it provides a number of static utility methods that let you modify role
information. Table 19-9 lists the methods you can use.

Table 19-9. Methods of the Roles class

For example, you could use the following event handler with the CreateUserWizard
control to assign a newly created user into a specific role:

 	�����������#	�
��*��	0�L
	�39#	�
���*��	:��<��������	/5����'	���;

@

2�����'��*��	D�2���:#	�
��*��	0�L
	�3�*��	!
��/�*��	�;$

C

Method Description
CreateRole() Adds a new role to the database.

DeleteRole() Deletes an existing role from the database.

RoleExists() Checks whether a specific role name exists in the database.

GetAllRoles() Retrieves a list of all the roles for this application.

AddUserToRole(),
AddUserToRoles(),
AddUsersToRole()

Assigns a role to a user, assigns several roles to a user at
once, or assigns a role to several users in one operation. If you
want to assign a role to a large number of users, it’s generally
much quicker to use the Membership class to retrieve the
corresponding user names (if needed) and the Roles class to
apply the change at once.

RemoveUserFromRole(),
RemoveUserFromRoles(),
RemoveUsersFromRole(), and
RemoveUsersFromRoles()

Allows you to remove a user from a role. You can perform this
operation on multiple users at once or remove a user from
multiple roles at once, depending on which method you use.

IsUserInRole() Checks whether a user is part of a specific role.

GetRolesForUser() Retrieves all the roles for a specific user.

GetUsersInRole() Retrieves all the users who are part of a specific role.

FindUsersInRole() Retrieves all the users who are part of a specific role (much like
FindUsersInRole()). However, it allows you to limit the results
to users who have a specific piece of text in their user names.

MacDonald.book Page 776 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 777

Restricting Access Based on Roles

Once you’ve created and assigned your roles, you need to adjust your application to take
the role information into account. You can use several techniques:

• You can write authorization rules that specifically deny certain roles from specific
pages or subfolders. You can write these rules by hand by adding the <authorization>
section to your web.config file, or you can define them with the help of the WAT by
clicking the Manage Access Rules link.

• You can use the User.IsInRole() method in your code to test whether the user
belongs to a specific role and then decide whether to allow an action or show cer-
tain content accordingly.

• You can use the LoginView control to set different content for different roles.

You already learned how to use the first two techniques in the previous chapter. For
example, you already know how to write web.config rules that restrict a specific group,
like this:

�
����	�L
�����

��������	���?���

�����	������A�������

��
����	�L
�����

These rules deny all anonymous users and any users in the Guest role. Remember, a
user may be part of more than one role, so the order of the <deny> tags matters. The first
rule that matches determines whether the user is allowed or denied.

Similarly, you know how to use the User.IsInRole() method to make a programmatic
authorization decision:

 	��
������&
��9��
�:R�<��������	/5����'	���;

@

���+���
���D�.���N���
��	�
�����������	��
��/�$

���+���
���D�.�Q�*��	�%��������!
��Q���$

��:*��	�%�%�2���:�'�������	
��	�;;

@

���+���
���D�.�Q����	����	��#���	
���
�����F�$

���+���
���D�.�Q�����
	�
�
�������	
��	��$

C

C

The only remaining technique is to consider the LoginView control.

MacDonald.book Page 777 Wednesday, December 21, 2005 9:06 PM

778 C H A P T E R 1 9 ■ M E M B E R S H I P

The LoginView Control

The LoginView is a view control like the Panel or MultiView control you learned about in
Chapter 8. The difference is that the user doesn’t choose which view is used. Instead, the
view is set based on the authentication status of the user.

The simplest way to use the LoginView is to show separate content for authenti-
cated and anonymous users. To use this design, you simply fill some content in the
<AnonymousTemplate> and <LoggedInTemplate> sections of the control. Here’s an
example:

�
� F�����B���%"�������B���3�	��
�����	��	��

��������������	�����	�

��3�N��
	�
�����������3�

0�����S�����
�	����������
� .���������
�?

���������������	�����	�

������ 	
���	�����	�

��3�N��
	������������3�

� �N��
	����	�
������������� �	-���	������������ �

������� 	
���	�����	�

��
� F�����B����

Figure 19-15 shows the two ways this control can appear, depending on whether the
user is currently logged in.

Figure 19-15. Showing different content with the LoginView

MacDonald.book Page 778 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 1 9 ■ M E M B E R S H I P 779

■Tip You can also react to the ViewChanging and ViewChanged events of the LoginView control to initialize
the controls that are shown in a specific view when it becomes the current view. This approach is faster than
initializing all the controls every time the page is served.

The LoginView also supports one other tag—the RoleGroups tag. Inside the RoleGroups
tag, you add one or more RoleGroup controls. Each role group is specifically mapped to one
or more roles. In other words, when you use the RoleGroups template, you can show differ-
ent content for authenticated users, depending to which role they belong.

Here’s an example:

�
� F�����B���%"�������B���3�	��
�����	��	��

��������������	�����	�

��3�N��
	�
�����������3�

0�����S�����
�	����������
� .���������
�?

���������������	�����	�

�2���A	�� ��

�
� F2���A	�� 2������*��	/A������

�#������D�� �
���

� �%�����
��������/���
	�
�����	�����

*��	�	A����	������� �

��#������D�� �
���

��
� F2���A	�� �

�
� F2���A	�� 2������'�������	
��	��

�#������D�� �
���

� �#���	
���
�����/���
	�
�
�������	
��	��� �

��#������D�� �
���

��
� F2���A	�� �

��2���A	�� ��

��
� F�����B����

Remember, a user can belong to more than one role. However, only one template can
display at a time. When matching the role to a RoleGroup, the LoginView control steps
through the RoleGroup tags in order and uses the first match. If it can’t find a match, it
uses the ordinary <LoggedInTemplate>, if provided.

The LoginView is a fairly powerful control. It gives you an effective way to separate
secure content from ordinary content declaratively—that is, without writing custom code
to hide and show labels. This approach is clearer, more concise, and less error-prone.

MacDonald.book Page 779 Wednesday, December 21, 2005 9:06 PM

780 C H A P T E R 1 9 ■ M E M B E R S H I P

The Last Word
ASP.NET’s membership features give you several high-level services that work with the
basic form authentication and Windows authentication systems you learned about in
Chapter 18.

In this chapter, you saw how to use membership to maintain a database of users, either
with the free SQL Server 2005 Express Edition or with another version of SQL Server. You
also learned how to use the prebuilt security controls, which give you a convenient and
flexible way to add user management features and organize secure content. Finally, you
considered how you can use role management in conjunction with membership to deter-
mine exactly what actions a user should—and shouldn’t—be allowed to perform in your
applications.

MacDonald.book Page 780 Wednesday, December 21, 2005 9:06 PM

781

■ ■ ■

C H A P T E R 2 0

Profiles

You can store information for the users of your website in a variety of ways. In Chapter 9,
you learned how to use techniques such as view state, session state, and cookies to keep
track of information for a short period of time. However, if you need to store information
between visits, the only realistic option is a server-side database. Using the ADO.NET
skills you’ve learned so far, it’s fairly easy to save information such as customer addresses
and user preferences in a database and retrieve it later.

The only problem with the database approach is that it’s up to you to write all the code
for retrieving information and updating records. This code isn’t terribly complex—Chap-
ter 13 covers everything you need to know—but it can be tedious. ASP.NET includes a
feature that allows you to avoid this tedium, if you’re able to work within certain limita-
tions. This feature is called profiles, and it’s designed to keep track of user-specific
information automatically.

When you use profiles, ASP.NET handles the unglamorous work of retrieving the infor-
mation you need and updating the database when it changes. You don’t need to write any
ADO.NET code, or even design the appropriate database tables, because ASP.NET takes
care of all the details. Best of all, the profiles feature integrates with ASP.NET authentica-
tion so that the information for the currently logged-in user (referred to as that user’s
profile) is always available to your web page code.

The only drawback to the profiles feature is that it forces you to use a preset database
structure. This limits your ability to use tables you’ve already created to store user-specific
details, and it poses a new challenge if you want to use the same information in other
applications or reporting tools. If the locked-in structure is too restricting, your only
choice is to create a custom profile provider that extends the profiles feature (which is a
more challenging task outside the scope of this book) or forgo profiles altogether and
write your own ADO.NET code by hand.

In this chapter, you’ll learn how to use profiles, how the profile system works, and
when profiles make the most sense.

MacDonald.book Page 781 Thursday, December 22, 2005 3:04 PM

782 C H A P T E R 2 0 ■ P R O F I L E S

Understanding Profiles
One of the most significant differences between profiles and other types of state manage-
ment is that profiles are designed to store information permanently, using a back-end
data source such as a database. Most other types of state management are designed to
maintain information for a series of requests occurring in a relatively short space of time
(such as session state) or in the current browser session (such as cookies and view state)
or to transfer information from one page to another (such as cross-page posting and the
query string). If you need to store information for the longer term in a database, profiles
simply provide a convenient model that manages the retrieval and persistence of this
information for you.

Before you begin using profiles, you need to assess them carefully. In the following sec-
tions, you’ll learn how they stack up.

Profile Performance

The goal of ASP.NET’s profiles feature is to provide a transparent way to manage user-
specific information, without forcing you to write custom data access code using the
ADO.NET data classes. Unfortunately, many features that seem convenient suffer from
poor performance or scalability. This is particularly a concern with profiles, because they
involve database access, and database access can easily become a scalability bottleneck
for any web application.

So, do profiles suffer from scalability problems? This question has no simple answer. It
all depends on how much data you need to store and how often you plan to access it. To
make an informed decision, you need to know a little more about how profiles work.

Profiles plug into the page life cycle in two ways:

• The first time you access the Profile object in your code, ASP.NET retrieves the com-
plete profile data for the current user from the database. From this point on, you
can read the profile information in your code without any database work.

• If you change any profile data, the update is deferred until the page processing is
complete. At that point (after the PreRender, PreRenderComplete, and Unload
events have fired for the page), the profile is written back to the database. This way,
multiple changes are batched into one operation. If you don’t change the profile
data, no extra database work is incurred.

Overall, the profiles feature could result in two extra database trips for each request (in
a read-write scenario) or one extra database trip (if you are simply reading profile data).
The profiles feature doesn’t integrate with caching, so every request that uses profile data
requires a database connection.

MacDonald.book Page 782 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 783

From a performance standpoint, profiles work best when the following is true:

• You have a relatively small number of pages accessing the profile data.

• You are storing small amounts of data.

They tend to work less well when the following is true:

• You have a large number of pages needing to use profile information.

• You are storing large amounts of data. This is particularly inefficient if you need to
use only some of that data in a given request (because the profile model always
retrieves the full block of profile data).

Of course, you can combine profiles with another type of state management. For exam-
ple, imagine your website includes an order wizard that walks the user through several
steps. At the beginning of this process, you could retrieve the profile information and
store it in session state. You could then use the Session collection for the remainder of the
process. Assuming you’re using the in-process or out-of-process state server to maintain
session data, this approach is more efficient because it saves you from needing to connect
to the database repeatedly.

How Profiles Store Data

The most significant limitation with profiles doesn’t have anything to do with perfor-
mance—instead, it’s a limitation of how the profiles are serialized. The default profile
provider included with ASP.NET serializes profile information into a block of data that’s
inserted into a single field in a database record. For example, if you serialize address infor-
mation, you’ll end up with something like this:

���������	
�����������������	�������������
�������������

Another field indicates where each value starts and stops, using a format like this:

 ��	!�!"!��!���		�!�!��!��!����!�!�"!�!����	!�!��!�"!#����$!�!��!!���
���!�!�!�

Essentially, this string identifies the value (Name, Street, City, and so on), the way it’s
stored (S for string), the starting position, and the length. So the first part of this string:

 ��	!�!"!��

indicates that the first profile property is Name, which is stored as a string, starts at posi-
tion 0, and is 11 characters long.

Although this approach gives you the flexibility to store just about any combination of
data, it makes it more difficult to use this data in other applications. You can write custom
code to parse the profile data to find the information you want, but depending on the

MacDonald.book Page 783 Thursday, December 22, 2005 3:04 PM

784 C H A P T E R 2 0 ■ P R O F I L E S

amount of data and the data types you’re using, this can be an extremely tedious process.
And even if you do this, you’re still limited in the ways you can reuse this information. For
example, imagine you use profiles to store customer address information. Because of the
proprietary format, it’s no longer possible to generate customer lists in an application
such as Microsoft Word or perform queries that filter or sort records using this profile
data. (For example, you can’t easily perform a query to get all the customers living in a
specific city.)

This problem has two solutions:

• Use your own custom ADO.NET code instead of profiles.

• Create a custom profile provider that’s designed to store information using your
database schema.

Of the two options, creating a custom data access component is easier, and it gives you
more flexibility. You can design your data component to have any interface you want, and
you can then reuse that component with other .NET applications. Currently, ASP.NET
developers are more likely to use this approach because it has been around since .NET 1.0
and is well understood.

The second option is interesting because it allows your page to keep using the profile
model. In fact, you could create an application that uses the standard profile serialization
with the SqlProfileProvider and then switch it later to use a custom provider. To make this
switch, you don’t need to change any code. Instead, you simply modify the profile settings
in the web.config file. As it becomes more common for websites to use the profiles fea-
tures, custom profile providers will become more attractive.

■Note It’s also important to consider the type of data that works best in a profile. As with many other types
of state management, you can store any serializable types into a profile, including simple types and custom
classes.

One significant difference between profiles and other types of state management is
that profiles are stored as individual records, each of which is uniquely identified by user
name. This means profiles require you to use some sort of authentication system. It
makes no difference what type of authentication system you use (Windows, forms, or a
custom authentication system)—the only requirement is that authenticated users are
assigned a unique user name. That user name is used to find the matching profile record
in the database.

MacDonald.book Page 784 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 785

■Note Later in this chapter (in the section “Anonymous Profiles”), you’ll also learn how the anonymous
identification feature lets you temporarily store profile information for users who haven’t logged in.

When deciding whether to use profiles, it’s natural to compare the profiles feature with
the kind of custom data access code you wrote in Chapter 13 (and the database components
you’ll learn to build in Chapter 24). Clearly, writing your own ADO.NET code is far more
flexible. It allows you to store other types of information and perform more complex busi-
ness tasks. For example, an e-commerce website could realistically use profiles to maintain
customer address information (with the limitations discussed in the previous section).
However, you wouldn’t use a profile to store information about previous orders. Not only is
it far too much information to store efficiently, it’s also awkward to manipulate.

■Tip In general, use a profile to store only the same sort of information you’d place in the user table. Don’t
use it to store related data that you’d place in separate tables.

Using the SqlProfileProvider
The SqlProfileProvider allows you to store profile information in a SQL Server 7.0 (or later)
database (including SQL Server 2005 Express Edition). You can choose to create the pro-
file tables in any database. However, you can’t change any of the other database schema
details, which means you’re locked into specific table names, column names, and serial-
ization format.

From start to finish, you need to perform the following steps to use profiles:

1. Enable authentication for a portion of your website.

2. Configure the profile provider. (This step is optional if you’re using SQL Server 2005
Express Edition. Profiles are enabled by default.)

3. Create the profile tables. (This step isn’t required if you’re using SQL Server 2005
Express Edition.)

4. Define some profile properties.

5. Use the profile properties in your web page code.

You’ll tackle these steps in the following sections.

MacDonald.book Page 785 Thursday, December 22, 2005 3:04 PM

786 C H A P T E R 2 0 ■ P R O F I L E S

Enabling Authentication

Because profiles are stored in a user-specific record, you need to authenticate the current
user before you can read or write profile information. You can use any type of authentica-
tion system, including Windows- and forms-based authentication. The profile system
doesn’t care—it simply stores the user-specific information in a record that’s identified
based on the user ID. Seeing as every authentication system identifies users uniquely by
user ID, any authentication system will work.

The following web.config file uses Windows authentication. This way, you don’t need
to create any user records, because you’ll use your existing Windows user account. You
also don’t need to create a login page.

%��
��&������
'

�����

��%(�(�	��)	*'

����%����	
�������
���$	+,-�
$�)(,.'

����%�������/����
'

������%$	
���(�(+,0,.'

����%.�������/����
'

�������

��%.(�(�	��)	*'

%.��
��&������
'

If you decide to use forms authentication instead, you’ll need to decide whether you
want to perform the authentication using your own custom user list (Chapter 18) or in
combination with the membership features (Chapter 19). In most cases, the membership
and profiles features are used in conjunction—after all, if you’re using the profiles feature
to store user-specific information automatically, why not also store the list of user creden-
tials (user names and passwords) automatically in the same database?

■Tip The downloadable examples for this chapter show profiles in action in one site that uses forms
authentication and in another site that uses Windows authentication.

Once you’ve chosen your authentication system (and taken care of any other chores
that may be necessary, such as creating a user list and generating your login page), you’re
ready to use profiles. Remember, profiles store user-specific information, so the user
needs to be authenticated before their profile is available. In the web.config file shown
previously, an authorization rule ensures this by denying all anonymous users.

MacDonald.book Page 786 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 787

Profiles with SQL Server 2005 Express Edition

In the previous chapter, you learned that no special steps are required to configure a web
application to use membership with SQL Server 2005 Express Edition. The same is true of
profiles. As with the membership details, profile information is stored in the automati-
cally generated aspnetdb.mdf file. If this file doesn’t exist, it’s created the first time you
use any membership or profiles features, and it’s placed in the App_Data subdirectory of
your web application.

If you’re happy using this automatic support, you can skip ahead to the “Defining
Profile Properties” section. However, sometimes this might not be enough. Here are two
examples:

• If you want to use the full version SQL Server 2005, you need to configure the pro-
file connection string, as described in the next section (“Configuring the Profile
Provider to Use a Different Database”).

• If you want to use an older version of SQL Server, such as SQL Server 2000, you
need to change the connection string (see “Configuring the Profile Provider to Use
a Different Database”) and create the database tables you need (see “Manually
Creating the Profile Tables”).

■Tip Keep in mind that the profiles feature uses the same database as the membership feature. That
means if you followed the steps in Chapter 19, you may have already created the database you need.

Configuring the Profile Provider to Use a Different Database

If you’re using a different database, the first step is to change the connection string.
By default, the connection strings are set using a connection string named

LocalSqlServer. You can edit this file directly in the machine.config file.

■Tip The default membership settings and local connection string are set in the machine.config file. You
can look at this file (and even edit it to update the settings for all web applications on your computer). Look in
the C:\[WinDir]\Microsoft.NET\Framework\[Version]\CONFIG directory.

MacDonald.book Page 787 Thursday, December 22, 2005 3:04 PM

788 C H A P T E R 2 0 ■ P R O F I L E S

However, if you just need to tweak a single application, it’s better to adjust the web.config
file for your web application. First, you need to remove all the existing connection strings
using the <clear> element. Then, add the LocalSqlServer connection string again—but this
time with the right value:

%��
��&������
'

����%��

	����
����
&('

��������%��	���.'

��������%�$$�
��	+,������1��	��	�,������$	� ��	+,��(�	��������1����	
�,�

��

	����
����
&+,����������	+�������(�23
�	&���	$��	������+��432

�������56��	
��	+7�������	�����7�(�
	�$*��$�2�(��3
(��
�	+���	,�.'

����%.��

	����
����
&('

�������

%.��
��&������
'

This is the same process you used in Chapter 19, because both the membership feature
and the profiles feature use the LocalSqlServer connection string. In this example, the
new connection string is for the full version of SQL Server 2005. It uses the same database
(a file named aspnetdb.mdf in the App_Data directory), but it sets the data source to local-
host instead of localhost\SQLEXPRESS. If you’re using SQL Server 2000, you can use the
same basic approach, but the AttachDBFilename option isn’t supported. Instead, you
need to supply the Initial Catalog option with the database name, as shown here:

%��
��&������
'

����%��

	����
����
&('

��������%��	���.'

��������%�$$�
��	+,������1��	��	�,������$	� ��	+,��(�	��������1����	
�,�

��

	����
����
&+,����������	+�������(�23
�	&���	$��	������+��432

3
������������&+�(�
	�$*,�.'

����%.��

	����
����
&('

�������

%.��
��&������
'

You’ll then need to create the aspnetdb database in your database server by following
the steps in the next section (“Manually Creating the Profile Tables”).

You have one other option. Instead of modifying the LocalSqlServer connection string,
you can explicitly reregister the profile provider. You might take this approach in the
unlikely case that you want the profile provider to use a different connection string than
the membership provider.

To pull this off, start by defining a connection string for the profile database. Then, use
the <profile> section to remove any existing providers (with the <clear> element), and add

MacDonald.book Page 788 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 789

a new instance of the System.Web.Profile.SqlProfileProvider (with the <add> element).
Here are the configuration settings you need:

%��
��&������
'

��%��

	����
����
&('

����%�$$�
��	+,�1��	����	(,���

	����
����
&+

����,����������	+�������(�23
�	&���	$��	������+��4323
������������&+�(�
	�$*2,�

.'

��%.��

	����
����
&('

��%(�(�	��)	*'

����%������	�$	�����4����$	�+,�1�4����$	�,'

������%�����$	�('

��������%��	���.'

��������%�$$�
��	+,�1�4����$	�,

�������������	+,��(�	��-	*�4�����	��1�4�����	4����$	�,

������������

	����
����
& ��	+,�1��	����	(,

��������������������
 ��	+,8	(�����������
,�.'

������%.�����$	�('�

����%.������	'

�������

��%.(�(�	��)	*'

%.��
��&������
'

When you define a profile provider, you need to supply a name (which the <profile>
element can then reference as the default provider), the exact type name, a connection
string, and a web application name. Use different application names to separate the pro-
file information between web applications (or use the same application name to share it).

Manually Creating the Profile Tables

If you’re using SQL Server 2005, ASP.NET will create the profile database automatically, as
long as you use the AttachDBFilename option in the connection string. However, if you’re
using an older version of SQL Server, or you want to share a single database between sev-
eral web applications, you’ll need to create it yourself.

To create the profile tables, you use the aspnet_regsql.exe command-line utility,
the same tool that allows you to generate databases for other ASP.NET features,
such as SQL Server–based session state, membership, roles, database cache dependen-
cies, and Web Parts personalization. You can find the aspnet_regsql.exe tool in the
c:\[WinDir]\Microsoft.NET\Framework\[Version] folder.

MacDonald.book Page 789 Thursday, December 22, 2005 3:04 PM

790 C H A P T E R 2 0 ■ P R O F I L E S

 To create the tables, views, and stored procedures required for profiles, you use the
-A p command-line option. The only other detail you need to supply is the server location
(-S), database name (-d), and authentication information for connecting to the database
(use -U and -P to supply a password and user name, or use -E to use the current Windows
account). If you leave out the server location and database name, aspnet_regsql.exe uses
the default instance on the current computer and creates a database named aspnetdb.

To try this with SQL Server 2005 Express, select Programs ➤ Visual Studio 2005 ➤ Visual
Studio Tools ➤ Visual Studio 2005 Command Prompt from the Start menu. (The exact
location of the Visual Studio 2005 Command Prompt shortcut may vary depending on the
edition of Visual Studio you’re using.)

Now you can create the profile database with aspnet_regsql. The following is an exam-
ple that creates a database named AspDatabase with the default name on the current
computer by logging into the database using the current Windows account:

�(�
	�9�	&(1��	:	�;��<�����=�;>�;������;$��(�����*�(

Even if you don’t use the default database name (aspnetdb), you should use a
new, blank database that doesn’t include any other custom tables. That’s because
aspnet_regsql.exe creates several tables for profiles (see Table 20-1 in the next section),
and you shouldn’t risk confusing them with business data.

■Note This command line uses the -A all option to create tables for all of ASP.NET’s database features,
including profiles and membership. You can also choose to add tables for just one feature at a time. For more
information about -A and the other command-line parameters you can use with aspnet_regsql, refer to
Table 19-2 in Chapter 19.

The Profile Databases

Whether you use aspnet_regsql to create the profile databases on your own or use SQL
Server 2005 and let ASP.NET create them automatically, you’ll wind up with the same
tables. Table 20-1 briefly describes them. (The rather unexciting views aren’t included.) If
you want to look at these tables, you can use a tool that’s included with the database (such
as Enterprise Manager) or the Server Explorer in Visual Studio.

MacDonald.book Page 790 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 791

Table 20-1. Database Tables Used for Profiles

Figure 20-1 shows the relationships between the most important profile tables.

Figure 20-1. The profile tables

Table Name Description
aspnet_Applications Lists all the web applications that have records in this database. It’s

possible for several ASP.NET applications to use the same aspnetdb
database. In this case, you have the option of separating the profile
information so it’s distinct for each application (by giving each
application a different application name when you register the
profile provider) or of sharing it (by giving each application the same
application name).

aspnet_Profile Stores the user-specific profile information. Each record contains the
complete profile information for a single user. The PropertyNames
field lists the property names, and the PropertyValuesString and
PropertyValuesBinary fields list all the property data, although you’ll
need to do some work if you want to parse this information for use in
other non-ASP.NET programs. Each record also includes the last
update date and time (LastUpdatedDate).

aspnet_SchemaVersions Lists the supported schemas for storing profile information. In the
future, this could allow new versions of ASP.NET to provide new
ways of storing profile information without breaking support for old
profile databases that are still in use.

aspnet_Users Lists user names and maps them to one of the applications in
aspnet_Applications. Also records the last request date and
time (LastActivityDate) and whether the record was generated
automatically for an anonymous user (IsAnonymous). You’ll learn
more about anonymous user support later in this chapter (in the
section “Anonymous Profiles”).

MacDonald.book Page 791 Thursday, December 22, 2005 3:04 PM

792 C H A P T E R 2 0 ■ P R O F I L E S

ASP.NET also creates several stored procedures that allow it to manage the information
in these tables more easily. Table 20-2 lists the most noteworthy stored procedures.

Table 20-2. Database Stored Procedures Used for Profiles

Stored Procedure Description
aspnet_Applications_CreateApplications Checks whether a specific application name

exists in the aspnet_Applications table and
creates the record if needed.

aspnet_CheckSchemaVersion Checks for support of a specific schema version
for a specific feature (such as profiles) using the
aspnet_SchemaVersions table.

aspnet_Profile_GetProfiles Retrieves the user name and update times for
all the profile records in the aspnet_Profile table
for a specific web application. This doesn’t
return the actual profile data.

aspnet_Profile_GetProperties Retrieves the profile information for a specific
user (which you specify by user name).
The information is not parsed in any way—
instead, this stored procedure simply returns
the underlying fields (PropertyNames,
PropertyValuesString, and
PropertyValuesBinary).

aspnet_Profile_SetProperties Sets the profile information for a specific
user (which you specify by user name). This
stored procedure requires values for the
PropertyNames, PropertyValuesStrings, and
PropertyValuesBinary fields. You have no way
to update just a single property in a profile.

aspnet_Profile_GetNumberOfInactiveProfiles Returns profile records that haven’t been used
within a time window you specify.

aspnet_Profile_DeleteInactiveProfiles Removes profile records that haven’t been used
within a time window you specify.

aspnet_Users_CreateUser Creates a new record in the aspnet_Users table
for a specific user. Checks whether the user
exists (in which case no action is taken) and
creates a GUID to use for the UserID field if
none is specified.

aspnet_Users_DeleteUser Removes a specific user record from the
aspnet_Users table.

MacDonald.book Page 792 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 793

Defining Profile Properties

Before you can store anything in the aspnet_Profile table, you need to define it specifi-
cally. You do this by adding the <properties> element inside the <profile> section of
the web.config file. Inside the <properties> element, you place one <add> tag for each
user-specific piece of information you want to store. At a minimum, the <add> element
supplies the name for the property, like this:

%������	�$	�����4����$	�+,�1�4����$	�,'

��%�����$	�('

�������

��%.�����$	�('

��%����	���	('

����%�$$�
��	+,6��(� ��	,.'

����%�$$�
��	+,��(� ��	,.'

��%.����	���	('

%.������	'

Usually, you’ll also supply the data type. (If you don’t, the property is treated as a
string.) You can specify any serializable .NET class as the type, as shown here:

%�$$�
��	+,6��(� ��	,����	+,����
&,.'

%�$$�
��	+,��(� ��	,����	+,����
&,.'

%�$$�
��	+,���	?�5����,����	+,���	8��	,.'

You can set a few more property attributes to create the more advanced properties
shown in Table 20-3.

Table 20-3. Profile Property Attributes

Attribute (for the
<add> Element) Description

name The name of the property.

type The fully qualified class name that represents the data type for this
property. By default, this is String.

serializeAs Indicates the format to use when serializing this value (String, Binary, Xml,
or ProviderSpecific). You’ll look more closely at the serialization model in
the section “Profile Serialization.”

Continued

MacDonald.book Page 793 Thursday, December 22, 2005 3:04 PM

794 C H A P T E R 2 0 ■ P R O F I L E S

Using Profile Properties

With these details in place, you’re ready to access the profile information using the Profile
property of the current page. When you run your application, ASP.NET creates a new class
to represent the profile by deriving from System.Web.Profile.ProfileBase, which wraps a
collection of profile settings. ASP.NET adds a strongly typed property to this class for each
profile property you’ve defined in the web.config file. These strongly typed properties
simply call the GetPropertyValue() and SetPropertyValue() methods of the ProfileBase
base class to retrieve and set the corresponding profile values.

For example, if you’ve defined a string property named FirstName, you can set it in
your page like this:

4�����	�6��(� ��	�+�,@	
��,2

Figure 20-2 presents a complete test page that allows the user to display the profile
information for the current user or set new profile information.

Table 20-3. Continued

Attribute (for the
<add> Element) Description
readOnly Add this attribute with a value of true to create a property that can be read

but not changed. (Attempting to change the property will cause a compile-
time error.) By default, this is false.

defaultValue A default value that will be used if the profile doesn’t exist or doesn’t
include this particular piece of information. The default value has no effect
on serialization—if you set a profile property, ASP.NET will commit the
current values to the database, even if they match the default values.

allowAnonymous A Boolean value that indicates whether this property can be used with the
anonymous profiles feature discussed later in this chapter. By default, this
is false.

Provider The profile provider that should be used to manage just this property. By
default, all properties are managed using the provider specified in the
<profile> element, but you can assign different properties to different
providers.

Group Allows you to organize profiles into groups of related properties. You’ll
learn more about profile groups in the section “Profile Groups.”

MacDonald.book Page 794 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 795

Figure 20-2. Testing profiles

The first time this page runs, no profile information is retrieved, and no database
connection is used. However, if you click the Show Profile Data button, the profile infor-
mation is retrieved and displayed on the page:

����	��	$����$���$���)9����A<�*B	���(
$	�C�>�	
���&(�	=

D

�����*��8	:��+�,6��(�� ��	!�,�E�4�����	�6��(� ��	�E�,%*��.',�E

������,��(�� ��	!�,�E�4�����	���(� ��	�E�,%*��.',�E

������,���	����5����!�,�E�4�����	����	?�5�����8�����
&<=2

F

At this point, an error will occur if the profile database is missing or the connection
can’t be opened. Otherwise, your page will run without a hitch, and you’ll see the newly
retrieved profile information. Technically, the complete profile is retrieved when your
code accesses the Profile.FirstName property in the first line and is used for the subse-
quent code statements.

MacDonald.book Page 795 Thursday, December 22, 2005 3:04 PM

796 C H A P T E R 2 0 ■ P R O F I L E S

■Note Profile properties behave like any other class member variable. This means if you read a profile
value that hasn’t been set, you’ll get a default initialized value (such as an empty string or 0).

If you click the Set Profile Data button, the profile information is set based on the cur-
rent control values:

����	��	$����$���$�	�9����A<�*B	���(
$	�C�>�	
���&(�	=

D

����4�����	�6��(� ��	�+��:�6��(��8	:�2

����4�����	���(� ��	�+��:���(��8	:�2

����4�����	����	?�5�����+����	
$�����	�	��	$���	2

F

Now the profile information is committed to the database when the page request fin-
ishes. If you want to commit some or all of the information earlier (and possibly incur
multiple database trips), just call the Profile.Save() method. As you can see, the profiles
feature is unmatched for simplicity.

■Tip The Profile object doesn’t just include the properties you’ve defined. It also provides LastActivityDate
and LastUpdatedDate properties with information drawn from the database.

Profile Serialization

Earlier, you learned how properties are serialized into a single string. For example, if you
save a FirstName of Harriet and a LastName of Smythe, both values are crowded together
in the PropertyValuesString field, saving space:

@����	������	

The PropertyNames field gives the information you need to parse each value from
the PropertyValuesString field. Here’s what you’ll see in the PropertyNames field in this
example:

6��(� ��	!�!"!G!��(� ��	!�!G!�!

The colons (:) are used as delimiters. The basic format is as follows:

4���	��� ��	!����
&?�5�
����	�����/����
!������
&�������	�3
$:!�	
&��!

MacDonald.book Page 796 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 797

Something interesting happens if you create a profile with a DateTime data type. When
you look at the PropertyValuesString field, you’ll see something like this:

%0:����	�(��
+,��",�	
��$�
&+,���;��,0'%$��	8��	'H"";"G;�H8""!""!"";"�!""

%.$��	8��	'@����	������	

Initially, it looks like the profile data is serialized as XML, but the PropertyValuesString
clearly doesn’t contain a valid XML document (because of the text at the end). What has
actually happened is that the first piece of information, the DateTime, is serialized (by
default) as XML. The following two profile properties are serialized as ordinary strings.

The ProperyNames field makes it slightly clearer:

���	?�5����!�!"!IG!6��(� ��	!�!IG!G!��(� ��	!�!��!�!

Interestingly, you have the ability to change the serialization format of any profile
property by adding the serializeAs attribute to its declaration in the web.config file.
Table 20-4 lists your choices.

Table 20-4. Serialization Options

For example, here’s how you can change the serialization for the profile settings:

%�$$�
��	+,6��(� ��	,����	+,����
&,�(�����/	�(+,J��,.'

%�$$�
��	+,��(� ��	,����	+,����
&,�(�����/	�(+,J��,.'

%�$$�
��	+,���	?�5����,����	+,���	8��	,�(�����/	�(+,����
&,.'

Now the next time you set the profile, the serialized representation in the
PropertyValuesString field will take this form:

G.�H.H""%0:����	�(��
+,��",�	
��$�
&+,���;��,0'%(���
&'@����	�%.(���
&'

%0:����	�(��
+,��",�	
��$�
&+,���;��,0'%(���
&'�����	%.(���
&'

SerializeAs Description
String Converts the type to a string representation. Requires a type converter that

can handle the job.

Xml Converts the type to an XML representation, which is stored in a string, using
the System.Xml.XmlSerialization.XmlSerializer (the same class that’s used
with web services).

Binary Converts the type to a proprietary binary representation that only .NET
understands using the System.Runtime.Serialization.Formatters.Binary.
BinaryFormatter. This is the most compact option but the least flexible.
Binary data is stored in the PropertyValuesBinary field instead of the
PropertyValues.

ProviderSpecific Performs customized serialization that’s implemented in a custom provider.

MacDonald.book Page 797 Thursday, December 22, 2005 3:04 PM

798 C H A P T E R 2 0 ■ P R O F I L E S

If you use the binary serialization mode, the property value will be placed in the
PropertyValuesBinary field instead of the PropertyValuesString field. The only indication
of this shift is the use of the letter B instead of S in the PropertyNames field. Here’s an
example where the FirstName property is serialized in the PropertyValuesBinary field:

���	?�5����!�!"!�!6��(� ��	!5!"!��!��(� ��	!�!�!��!

All of these serialization details raise an important question—what happens when you
change profile properties or the way they are serialized? Profile properties don’t have any
support for versioning. However, you can add or remove properties with relatively minor
consequences. For example, ASP.NET will ignore properties that are present in the
aspnet_Profile table but not defined in the web.config file. The next time you modify part
of the profile, these properties will be replaced with the new profile information. Simi-
larly, if you define a profile in the web.config file that doesn’t exist in the serialized profile
information, ASP.NET will just use the default value. However, more dramatic changes—
such as renaming a property, changing its data type, and so on, are likely to cause an
exception when you attempt to read the profile information. Even worse, because the
serialized format of the profile information is proprietary, you have no easy way to
migrate existing profile data to a new profile structure.

■Tip Not all types are serializable in all ways. For example, classes that don’t provide a parameterless con-
structor can’t be serialized in Xml mode. Classes that don’t have the [Serializable] attribute can’t be serialized
in Binary mode. You’ll consider this distinction when you consider how to use custom types with profiles (see
the “Profiles and Custom Data Types” section), but for now just keep in mind that you may run across types
that can be serialized only if you choose a different serialization mode.

Profile Groups

If you have a large number of profile settings, and some settings are logically related to
each other, you may want to use profile groups to achieve better organization.

For example, you may have some properties that deal with user preferences and others
that deal with shipping information. Here’s how you could organize these profile proper-
ties using the <group> element:

%������	�$	�����4����$	�+,�1�4����$	�,'

��%����	���	('

����%&�����
��	+,4�	�	�	
�	(,'

������%�$$�
��	+,��
&��(������$,�$	�����K���	+,���	,����	+,5���	�
,�.'

������%�$$�
��	+,���)�������,�$	�����K���	+,���	,����	+,5���	�
,�.'

����%.&����'

MacDonald.book Page 798 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 799

����%&�����
��	+,�$$�	((,'

������%�$$�
��	+, ��	,����	+,����
&,�.'

������%�$$�
��	+,���		�,����	+,����
&,�.'

������%�$$�
��	+,����,����	+,����
&,�.'

������%�$$�
��	+,#����$,����	+,����
&,�.'

������%�$$�
��	+,����	,����	+,����
&,�.'

������%�$$�
��	+,���
���,����	+,����
&,�.'

����%.&����'

��%.����	���	('

%.������	'

Now you can access the properties through the group name in your code. For example,
here’s how you retrieve the country information:

�*����
����8	:��+�4�����	��$$�	((����
���2

Groups are really just a poor man’s substitute for a full-fledged custom structure or
class. For example, you could achieve the same effect as in the previous example by
declaring a custom Address class. You’d also have the ability to add other features (such
as validation in the property procedures). The next section shows how.

Profiles and Custom Data Types

Using a custom class with profiles is easy. You need to begin by creating the class that
wraps the information you need. In your class, you can use public member variables or
full-fledged property procedures. The latter choice, though longer, is the preferred option
because it ensures your class will support data binding, and it gives you the flexibility to
add property procedure code later.

Here’s a slightly abbreviated Address class that ties together the same information you
saw in the previous example:

L�	�����/�*�	<=M

��*�������((��$$�	((

D

����������	�(���
&�
��	2

������*����(���
&� ��	�D���F

����������	�(���
&�(��		�2

������*����(���
&����		��D���F

����������	�(���
&�����2

������*����(���
&������D���F

MacDonald.book Page 799 Thursday, December 22, 2005 3:04 PM

800 C H A P T E R 2 0 ■ P R O F I L E S

����������	�(���
&�/����$	2

������*����(���
&�#����$	�D���F

����������	�(���
&�(���	2

������*����(���
&�����	�D���F

����������	�(���
&����
���2

������*����(���
&����
����D���F

������*�����$$�	((<(���
&�
��	C�(���
&�(��		�C�(���
&�����C

������(���
&�/����$	C�(���
&�(���	C�(���
&����
���=

����D

�������� ��	�+�
��	2

�����������		��+�(��		�2

�������������+�����2

��������#����$	�+�/����$	2

������������	�+�(���	2

�����������
����+����
���2

����F

������*�����$$�	((<=

����D�F

F

You can place this class in the App_Code directory (or compile it and place the DLL
assembly in the Bin directory). The final step is to add a property that uses it:

%����	���	('

��%�$$�
��	+,�$$�	((,����	+,�$$�	((,�.'

%.����	���	('

Now you can create a test page that uses the Address class. Figure 20-3 shows a simple
example that simply allows you to load, change, and save the address information in a
profile.

MacDonald.book Page 800 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 801

Figure 20-3. Editing complex information in a profile

Here’s the page class that makes this possible:

��*���������������((������	:8��	(�!���(�	��-	*��3�4�&	

D

��������	��	$����$�4�&	9���$<�*B	���(
$	�C�>�	
���&(�	=

����D

�����������<N4�&	�3(4�(�5��A=

�������������$4�����	<=2

����F

��������	��	$����$���$O	�9����A<�*B	���(
$	�C�>�	
���&(�	=

����D

�����������$4�����	<=2

����F

MacDonald.book Page 801 Thursday, December 22, 2005 3:04 PM

802 C H A P T E R 2 0 ■ P R O F I L E S

����������	����$����$4�����	<=

����D

���������:� ��	�8	:��+�4�����	��$$�	((� ��	2

���������:����		��8	:��+�4�����	��$$�	((����		�2

���������:������8	:��+�4�����	��$$�	((�����2

���������:�#���8	:��+�4�����	��$$�	((�#����$	2

���������:�����	�8	:��+�4�����	��$$�	((�����	2

���������:����
����8	:��+�4�����	��$$�	((����
���2

����F

��������	��	$����$���$���	9����A<�*B	���(
$	�C�>�	
���&(�	=

����D

��������4�����	��$$�	((�+�
)��$$�	((<�:� ��	�8	:�C�

�����������:����		��8	:�C��:������8	:�C��:�#���8	:�C

�����������:�����	�8	:�C��:����
����8	:�=2

����F

F

Dissecting the Code…

• When the page loads (and when the user clicks the Get button), the profile informa-
tion is copied from the Profile.Address object into the various text boxes. A private
LoadProfile() method handles this task.

• The user can make changes to the address values in the text boxes. However, the
change isn’t committed until the user clicks the Save button.

• When the Save button is clicked, a new Address object is created using the construc-
tor that accepts name, street, city, zip code, state, and country information. This
object is then assigned to the Profile.Address property. Instead of using this
approach, you could modify each property of the current Profile.Address object to
match the text values.

• The content of the Profile object is saved to the database automatically when the
request ends. No extra work is required.

Custom Type Serialization

You need to keep in mind a few points, depending on how you decide to serialize your cus-
tom class. By default, all custom data types use XML serialization with the XmlSerializer.

MacDonald.book Page 802 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 803

This class is relatively limited in its serialization ability. It simply copies the value from every
public property or member variable into a straightforward XML format like this:

%�$$�	(('

��% ��	'���%. ��	'

��%���		�'���%.���		�'

��%����'���%.����'

��%#����$	'���%.#����$	'

��%����	'���%.����	'

��%���
���'���%.���
���'

%.�$$�	(('

When deserializing your class, the XmlSerializer needs to be able to find a parameter-
less public constructor. In addition, none of your properties can be read-only. If you
violate either of these rules, the deserialization process will fail.

If you decide to use binary serialization instead of XmlSerialization, .NET uses a com-
pletely different approach:

%�$$�
��	+,�$$�	((,����	+,�$$�	((,�(�����/	�(+,5�
���,.'

In this case, ASP.NET enlists the help of the BinaryFormatter. The BinaryFormatter can
serialize the full public and private contents of any class, provided the class is decorated
with the [Serializable] attributes. Additionally, any class it derives from or references must
also be serializable.

Automatic Saves

The ProfileModule that saves profile information isn’t able to detect changes in complex
data types (anything other than strings, simple numeric types, Boolean values, and so on).
This means if your profile includes complex data types, ASP.NET saves the profile infor-
mation at the end of every request that accesses the Profile object.

This behavior obviously adds unnecessary overhead. To optimize performance when
working with complex types, you have several choices. One option is to set the correspond-
ing profile property to be read-only (if you know it never changes). Another approach is to
disable the autosave behavior completely by adding the automaticSaveEnabled attribute
on the <profile> element and setting it to false, as shown here:

%������	�$	�����4����$	�+,�1�4����$	�,������������	
����
�������
�'���%.������	'

If you choose this approach, it’s up to you to call Profile.Save() to explicitly commit
changes. Generally, this approach is the most convenient, because it’s easy to spot the
places in your code where you modify the profile. Just add the Profile.Save() call at the end:

4�����	��$$�	((�+�
)��$$�	((<�:� ��	�8	:�C��:����		��8	:�C��:������8	:�C

���:�#���8	:�C��:�����	�8	:�C��:����
����8	:�=2

������
���	
���

MacDonald.book Page 803 Thursday, December 22, 2005 3:04 PM

804 C H A P T E R 2 0 ■ P R O F I L E S

For example, you could modify the earlier example (shown in Figure 20-3) to save
address information only when it changes. The easiest way to do this is to disabled auto-
matic saves but call Profile.Save() when the Save button is clicked. You could also handle
the TextBox.TextChanged event to determine when changes are made and save the pro-
file immediately at this point.

The Profile API

Although your page automatically gets the profile information for the current user, this
doesn’t prevent you from retrieving and modifying the profiles of other users. In fact, you
have two tools to help you—the ProfileBase class and the ProfileManager class.

The ProfileBase object (provided by the Page.Profile property) includes a useful
GetProfile() function that retrieves the profile information for a specific user by user
name. Figure 20-4 shows an example with a Windows-authenticated user.

Figure 20-4. Retrieving a profile manually

Here’s the code that gets the profile:

����	��	$����$���$O	�9����A<�*B	���(
$	�C�>�	
���&(�	=

D

����4�����	�����
�������	�+�4�����	�O	�4�����	<�:��(� ��	�8	:�=2

�����*��8	:��+�,8��(��(�����	(��
�,�E�������	��$$�	((����
���2

F

MacDonald.book Page 804 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 805

Notice that once you have a Profile object, you can interact with it in the same way you
interact with the profile for the current user. You can even make changes. The only differ-
ence is that changes aren’t saved automatically. If you want to save a change, you need to
call the Save() method of the Profile object.

■Note If you try to retrieve a profile that doesn’t exist, you won’t get an error. Instead, you’ll simply end up
with blank data. If you change and save the profile, a new profile record will be created.

If you need to perform other tasks with profiles, you can use the ProfileManager class
in the System.Web.Profile namespace, which exposes the useful static methods described
in Table 20-5. Many of these methods work with a ProfileInfo class, which provides infor-
mation about a profile. The ProfileInfo includes the user name (UserName), last update
and last activity dates (LastActivityDate and LastUpdateDate), the size of the profile in
bytes (Size), and whether the profile is for an anonymous user (IsAnonymous). It doesn’t
provide the actual profile values.

Table 20-5. ProfileManager Methods

Method Description
DeleteProfile() Deletes the profile for the user you specify.

DeleteProfiles() Deletes multiple profiles at once. You supply an array of
user names.

DeleteInactiveProfiles() Deletes profiles that haven’t been used since a time
you specify. You also must supply a value from the
ProfileAuthenticationOption enumeration to indicate
what type of profiles you want to remove (All,
Anonymous, or Authenticated).

GetNumberOfProfiles() Returns the number of profile records in the data source.

GetNumberOfInactiveProfiles() Returns the number of profiles that haven’t been used
since the time you specify.

GetAllInactiveProfiles() Retrieves profile information for profiles that haven’t
been used since the time you specify. The profiles are
returned as ProfileInfo objects.

GetAllProfiles() Retrieves all the profile data from the data source as a
collection of ProfileInfo objects. You can choose what
type of profiles you want to retrieve (All, Anonymous, or
Authenticated). You can also use an overloaded version of
this method that uses paging and retrieves only a portion
of the full set of records based on the starting index and
page size you request.

Continued

MacDonald.book Page 805 Thursday, December 22, 2005 3:04 PM

806 C H A P T E R 2 0 ■ P R O F I L E S

For example, if you want to remove the profile for the current user, you need only a sin-
gle line of code:

4�����	��
�&	���	�	�	4�����	<�(��3$	
����� ��	=2

And if you want to display the full list of users in a web page (not including anonymous
users), just add a GridView with AutoGenerateColumns set to true and use this code:

����	��	$����$�4�&	9���$<�*B	���(
$	�C�>�	
���&(�	=

D

����O��$K�)�����������	�+�4�����	��
�&	��O	����4�����	(<

������4�����	����	
�������
?����
�����	
�����	$=2

����O��$K�)������5�
$<=2

F

Figure 20-5 shows the result.

Figure 20-5. Retrieving information about all the profiles in the data source

Table 20-5. Continued

Method Description
FindProfilesByUserName() Retrieves a collection of ProfileInfo objects matching a

specific user name. The SqlProfileProvider uses a LIKE
clause when it attempts to match user names, which
means you can use wildcards such as the % symbol. For
example, if you search for the user name user%, you’ll
return values such as user1, user2, user_guest, and so on.
You can use an overloaded version of this method that
uses paging.

FindInactiveProfilesByUserName() Retrieves profile information for profiles that haven’t
been used since the time you specify. You can also filter
out certain types of profiles (All, Anonymous, or
Authenticated) or look for a specific user name (with
wildcard matching). The return value is a collection of
ProfileInfo objects.

MacDonald.book Page 806 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 807

Anonymous Profiles

So far, all the examples have assumed that the user is authenticated before any profile
information is accessed or stored. Usually, this is the case. However, sometimes it’s useful
to create a temporary profile for a new, unknown user. For example, most e-commerce
websites allow new users to begin adding items to a shopping cart before registering. If
you want to provide this type of behavior and you choose to store shopping cart items in
a profile, you’ll need some way to uniquely identify anonymous users.

ASP.NET provides an anonymous identification feature that fills this gap. The basic
idea is that the anonymous identification feature automatically generates a random iden-
tifier for any anonymous user. This random identifier stores the profile information in the
database, even though no user ID is available. The user ID is tracked on the client side
using a cookie (or in the URL, if you’ve enabled cookieless mode). Once this cookie disap-
pears (for example, if the anonymous user closes and reopens the browser), the
anonymous session is lost and a new anonymous session is created.

Anonymous identification has the potential to leave a lot of abandoned profiles, which
wastes space in the database. For that reason, anonymous identification is disabled by
default. However, you can enable it using the <anonymousIdentification> element in the
web.config file, as shown here:

%��
��&������
�:��
(+,����!..(��	��(������(�������.� 	���
��&������
.�H�",'

�����

��%(�(�	��)	*'

����%�
�
����(3$	
���������
�	
�*�	$+,���	,�.'

�������

��%.(�(�	��)	*'

%.��
��&������
'

You also need to flag each profile property that will be retained for anonymous users by
adding the allowAnonymous attribute and setting it to true. This allows you to store just
some basic information and restrict larger objects to authenticated users.

%����	���	('

��%�$$�
��	+,�$$�	((,����	+,�$$�	((,��������������������
��.'

�����

%.����	���	('

The <anonymousIdentification> element also supports numerous optional attributes
that let you set the cookie name and timeout, specify whether the cookie will be issued
only over an SSL connection, control whether cookie protection (validation and encryp-
tion) is used to prevent tampering and eavesdropping, and configure support for
cookieless ID tracking. Here’s an example:

%�
�
����(3$	
���������
�	
�*�	$+,���	,����A�	 ��	+,���4J� ? P�?��,�

�����A�	8��	���+,��H"",����A�	4���+,.,����A�	Q	1���	���+,���(,

MacDonald.book Page 807 Thursday, December 22, 2005 3:04 PM

808 C H A P T E R 2 0 ■ P R O F I L E S

�����A�	���$�
&>:�������
+,���	,����A�	4���	����
+,���,

�����A�	�	((+,�(���A�	(,.'

For more information, refer to the MSDN Help.

■Tip If you use anonymous identification, it’s a good idea to delete old anonymous sessions regularly using
the aspnet_Profile_DeleteInactiveProfiles stored procedure, which you can run at scheduled intervals using
the SQL Server Agent. You can also delete old profiles using the ProfileManager class, as described in the pre-
vious section.

Migrating Anonymous Profiles

One challenge that occurs with anonymous profiles is what to do with the profile informa-
tion when a previously anonymous user logs in. For example, in an e-commerce website
a user might select several items and then register or log in to complete the transaction. At
this point, you need to make sure the shopping cart information is copied from the anon-
ymous user’s profile to the appropriate authenticated (user) profile.

Fortunately, ASP.NET provides a solution through the ProfileModule.MigrateAnonymous
event. This event (which can be handled in the global.asax file) fires whenever an anonymous
identifier is available (either as a cookie or in the URL if you’re using cookieless mode) and the
current user is authenticated.

The basic technique when handling the MigrateAnonymous event is to load the profile
for the anonymous user by calling Profile.GetProfile() and passing in the anonymous ID,
which is provided to your event handler through the ProfileMigrateEventArgs.

Once you’ve loaded this data, you can then transfer the settings to the new profile
manually. You can choose to transfer as few or as many settings as you want, and you
can perform any other processing that’s required. Finally, your code should remove the
anonymous profile data from the database and clear the anonymous identifier so the
MigrateAnonymous event won’t fire again. For example:

���$�4�����	9��&���	�
�
����(<?*B	���(
$	�C�4�����	��&���	>�	
���&(��	=

D

����..�O	����	��
�
����(�������	�

����4�����	�����
��
�
4�����	�+�4�����	�O	�4�����	<�	��
�
����(3�=2

����..�������
��������
������	�����	
�����	$�������	

����..�<*����
��������	�	R(��
��������
���	�	=�

�������<�
�
4�����	��$$�	((� ��	�N+�
����77��
�
4�����	��$$�	((� ��	�N+�,,=

����D

��������4�����	��$$�	((�+��
�
4�����	��$$�	((2������

����F

MacDonald.book Page 808 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 0 ■ P R O F I L E S 809

����..��	�	�	���	��
�
����(�������	��������	�$���*�(�

����..�<P�������$�$	��$	����(A������(�(�	������
��	�(��	������
�	

����..������������	���$	$����	$�B�*�(��	$��	$��
���	�$���*�(�(��	�

����..������	���	���$��
�
����(�������	(�=

������(�	��-	*�4�����	�4�����	��
�&	���	�	�	4�����	<�	��
�
����(3�=2

����..�Q	���	���	��
�
����(��$	
����	��

�����
�
����(3$	
���������
��$��	���	���
�
����(3$	
����	�<=2

F

You need to handle this task with some caution. If you’ve enabled anonymous identifi-
cation, the MigrateAnonymous event fires every time a user logs in, even if the user hasn’t
entered any information into the anonymous profile. That’s a problem—if you’re not
careful, you could easily overwrite the real (saved) profile for the user with the blank
anonymous profile. The problem is further complicated by the fact that complex types
(such as the Address object) are created automatically by ASP.NET, so you can’t just check
for a null reference to determine whether the user has anonymous address information.

In the previous example, the code tests for a missing Name property in the Address
object. If this information isn’t part of the anonymous profile, no information is migrated.
A more sophisticated example might test for individual properties separately or might
migrate an anonymous profile only if the information in the user profile is missing or
outdated.

The Last Word
In this chapter, you learned how to use profiles and how they store information in the
database. Many ASP.NET developers will prefer to write their own ADO.NET code for
retrieving and storing user-specific information. Not only does this allow you to use your
own database structure, but it also allows you to add your own features, such as caching,
logging, validation, and encryption. However, profiles are handy for quickly building
modest applications that don’t store a lot of user-specific information and don’t have spe-
cial requirements for how this information is stored.

MacDonald.book Page 809 Thursday, December 22, 2005 3:04 PM

MacDonald.book Page 810 Thursday, December 22, 2005 3:04 PM

■ ■ ■

P A R T 5

Web Services

MacDonald.book Page 811 Wednesday, December 21, 2005 9:06 PM

MacDonald.book Page 812 Wednesday, December 21, 2005 9:06 PM

813

■ ■ ■

C H A P T E R 2 1

Web Services Architecture

Microsoft has promoted ASP.NET web services more than almost any other part of the
.NET Framework. But despite Microsoft’s efforts, confusion is still widespread about what
web services are and, more important, what they’re meant to accomplish. This chapter
introduces web services and explains their role in Microsoft’s vision of the programmable
Web. Along the way, you’ll learn about the open-standards plumbing that allows web ser-
vices to work, including technical standards such as WSDL (Web Services Description
Language) and SOAP.

Internet Programming Then and Now
To understand the place of web services, you have to understand the shortcomings of the
current architecture of Internet applications. In many respects, Internet applications are
at the same point in their development that client/server desktop applications were sev-
eral years ago—the monolithic era. Today’s Internet is dominated by full-featured
websites that are written entirely from scratch and aren’t able to share functionality
between each other.

The Era of Monolithic Applications

Most of the applications you use over the Internet today can be considered “monolithic”
because they combine a variety of services behind a single proprietary user interface. For
example, you may already use your bank’s website to do everything from checking

MacDonald.book Page 813 Wednesday, December 21, 2005 9:06 PM

814 C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E

exchange rates and reviewing stock quotes to paying bills and transferring funds. This is a
successful model of development, but it has the following unavoidable shortcomings:

• Monolithic applications take a great deal of time and resources to create. They are
often tied to a specific platform or to specific technologies, and they can’t be easily
extended and enhanced.

• Getting more than one application to work together is a full project of its own. Usu-
ally, an integration project involves a lot of custom work that’s highly specific to a
given scenario. And what’s worse, every time you need to interact with another
business, you need to start the integration process all over again. Currently, most
websites limit themselves to extremely simple methods of integration. For example,
you might be provided with a link that opens another website in an existing frame
on the current web page.

• Most important, units of application logic can’t easily be reused between one appli-
cation and another. With ASP.NET, source code can be shared using .NET classes,
but this isn’t possible for applications created by different companies or written
using different programming languages. And if you want to perform more sophisti-
cated or subtle integration, such as between a website and a Windows application,
or between applications hosted on different platforms, no easy solutions are
available.

• Sometimes, you might want to get extremely simple information from a web appli-
cation, such as an individual stock quote. To get this information, you usually need
to access and navigate through the entire web application, locate the correct page,
and then perform the required task. You have no way to access information or per-
form a task without working through the graphical user interface, which can be
cumbersome over a slow connection or unworkable on a portable device such as a
cell phone.

Components and the COM Revolution

This state of affairs may sound familiar if you know the history of the Windows platform.
A similar situation existed in the world of desktop applications many years ago. Develop-
ers found they were spending the majority of their programming time solving problems
they had already solved. Programmers needed to structure in-house applications care-
fully with DLLs or source code components in order to have any chance of reusing their
work. Third-party applications usually could be integrated only through specific pipe-
lines. For example, one program might need to export to a set file format, which would
then be manually imported into a different application. Companies focused on features
and performance but had no easy way to share data or work together.

MacDonald.book Page 814 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E 815

The story improved dramatically when Microsoft introduced its COM technology
(parts of which also go by the more market-friendly name ActiveX). With COM, develop-
ers found they could develop components in their language of choice and reuse them in a
variety of programming environments, without needing to share source code. Similarly,
less need existed to export and import information using proprietary file formats. Instead,
COM components allowed developers to package functionality into succinct and reus-
able chunks with well-defined interfaces.

COM helped end the era of monolithic applications. Even though we all still use data-
base and office productivity applications, such as Microsoft Word, that seem to be mono-
lithic, integrated applications, much of the functionality in these applications is delegated
to separate components behind the scenes. As with all object-oriented programming, this
makes code easier to debug, alter, and extend.

Web Services and the Programmable Web

Web services enable the same evolution that COM did, with a twist. Web services are indi-
vidual units of programming logic that exist on a web server. They can be easily integrated
into all sorts of applications, including everything from other ASP.NET applications to
simple command-line applications. The twist is that, unlike COM, which is a platform-
specific standard, web services are built on a foundation of open standards. These stan-
dards allow web services to be created with .NET but consumed on other platforms—
or vice versa. In fact, the idea of web services didn’t originate at Microsoft. Other major
computer forces such as IBM helped to develop the core standards that Microsoft uses
natively in ASP.NET.

The root standard for all the individual web service standards is XML. Because XML is
text-based, web service invocations can pass over normal HTTP channels. Other distrib-
uted object technologies, such as DCOM, are much more complex, and as a result, they
are exceedingly difficult to configure correctly, especially if you need to use them over the
Internet. So not only are web services governed by cross-platform standards, but they’re
also easier to use.

You can look at web services in two ways. Application programmers (and the .NET
Framework) tend to treat a web service as a set of methods that you can call over the
Internet. Of course, these methods have all the capabilities that ASP.NET programmers
are used to, such as the automatic security and session state facilities discussed in other
parts of this book. XML gurus take a different perspective. They prefer to treat web ser-
vices as a way to exchange XML messages.

Which perspective you take depends to some extent on the type of web service you are
creating. For example, if you need to pass messages through several intermediaries as part
of a long-running business-to-business transaction, you’ll have an easier time looking at
your web service as a message-passing system. On the other hand, if you’re calling a web
service just to get some information—such as a product catalog or stock quote—you’ll
probably treat it like any other useful function.

MacDonald.book Page 815 Wednesday, December 21, 2005 9:06 PM

816 C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E

When Web Services Make Sense

With the overbearing web services hype, developers sometimes forget to ask tough ques-
tions about when web services should and should not be used. Although web services are
an impressive piece of technology, they aren’t the best choice for all applications.

Microsoft recommends you use web services when your application needs to cross
platform boundaries or trust boundaries. You cross a platform boundary when your sys-
tem incorporates a non-.NET application. In other words, web services are a perfect
choice if you need to provide data to a Java client running on a Unix computer. Because
web services are based on open standards, Java developers simply need to use a web ser-
vice toolkit that’s designed for the Java platform. They can then call your .NET web
services seamlessly, without worrying about any conversion issues.

You cross a trust boundary when your system incorporates applications from more
than one company or organization. In other words, web services work well if you need to
provide some information from a database (such as a product catalog or customer list) to
an application written by other developers. If you use web services, you won’t need to
supply the third-party developers with any special information—instead, they can get all
the information using an automated tool that reads the WSDL document. You also won’t
need to give them access to privileged resources. For example, instead of connecting
directly to your database or to a proprietary component, they can interact with the web
service, which will retrieve the data for them. In fact, you can even use some of the same
security settings that you use with web pages to protect your web services.

If you aren’t crossing platform or trust boundaries, web services might not be a great
choice. For example, web services are generally a poor way to share functionality between
two web applications on your web server or to share functionality between different types of
applications in your company. Instead, it’s a much better idea to develop and share a dedi-
cated .NET component. This technique ensures optimum performance, because you do not
need to translate data into XML or send messages over the network. You’ll find more details
of this technique in Chapter 24, which tackles component-based development.

The Open-Standards Plumbing

Before using web services, it helps to understand a little about the architecture that makes
it all possible. Strictly speaking, this knowledge isn’t required to work with web services.
In fact, you can skip to the next chapter and start creating your first web service right now.
However, understanding a little bit about the way web services work can help you deter-
mine how to use them best.

Remember, web services are designed from the ground up with open-standard com-
patibility in mind. To ensure the greatest possible compatibility and extensibility, the web
service architecture has been made as generic as possible. This means few assumptions
are made about the format and encoding used to send information to and from a web ser-
vice. Instead, all these details are explicitly defined, in a flexible way, using standards such

MacDonald.book Page 816 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E 817

as SOAP and WSDL. And as you’ll see, in order for a client to be able to connect to a web
service, a lot of mundane work has to go on behind the scenes to process and interpret
this SOAP and WSDL information. This mundane work does exert a bit of a performance
overhead, but it won’t hamper most well-designed web services.

Table 21-1 summarizes the standards this chapter examines.

Table 21-1. Web Service Standards

Web Services Description Language
WSDL is an XML-based standard that specifies how a client can interact with a web ser-
vice, including details such as how parameters and return values should be encoded in a
message and what protocol should be used for transmission over the Internet. Currently,
three standards are supported for the actual transmission of web service information:
HTTP GET, HTTP POST, and SOAP (over HTTP).

You can find the full WSDL standard at ��������������	
��������. The standard is
fairly complex, but its underlying logic is hidden from the developer in ASP.NET program-
ming, just as ASP.NET web controls abstract away the messy details of HTML tags and
attributes. As you’ll see in the next chapter, ASP.NET creates WSDL documents for your web
services automatically. ASP.NET can also create a proxy class based on a WSDL document.
This proxy class allows a client to call a web service without worrying about networking or
formatting issues. Many non-.NET platforms provide similar tools to make these chores rel-
atively painless. For example, Visual Basic 6 or C++ developers can use Microsoft’s SOAP
Toolkit (which is freely downloadable from ���������������
	�	����	���	���	���������
����
�����).

In the next few sections, you’ll examine a sample WSDL document for a simple web
service, consisting of a single method called GetStockQuote(). This method accepts a
string specifying a stock ticker and returns a numeric value that represents a current price

Standard Description
WSDL Tells a client what methods are present in a web service, what parameters and

return values each method uses, and how to communicate with them.

SOAP The preferred way to encode information (such as data values) before sending it to a
web service.

HTTP The protocol over which all web service communication takes place. For example,
SOAP messages are sent over HTTP channels.

DISCO The discovery standard that contains links to web services or that can be used to
provide a dynamic list of web services in a specified path.

UDDI A standard for creating business registries that list information about companies,
the web services they provide, and the corresponding URLs for DISCO file or WSDL
contracts. Unfortunately, UDDI is still too new to be widely accepted and useful.

MacDonald.book Page 817 Wednesday, December 21, 2005 9:06 PM

818 C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E

quote. The web service is called StockQuote, and you’ll peer into its actual ASP.NET code
in the next chapter.

■Note The WSDL document contains information for communication between a web service and client.
It doesn’t contain information that has anything to do with the code or implementation of your web service
methods—that is unnecessary and would compromise security.

The <definitions> Element

The WSDL document is quite long, so the next few sections will consider it section by sec-
tion, in order. Don’t worry about understanding it in detail—the .NET Framework will
handle that—but do use it to get an idea about how web services communicate.

The header and root namespace look like this:

��������
��	��� �!�����	������"��#$���%

���������	��������������������������	
��&!! �'()*������

���������������������������������	���	
�������������

���������������������������������	���	
�������������

����������������������
	�	����	����������������(���������

���������	�����������������������	���	
��������	����

���������	��������������������������	���	
���	������	������

���������!�������������"
��	
������
���+���������������������"
��	
���

����������������������������	���	
��������%

���,##������������
����������
����	������-*.)��	�"������	���

��/0�����������������	������������"������������	���������

��
����	������������
��##%

����������	��%

Looking at the WSDL document, you’ll notice that all the information appears in a root
<definitions> element.

The <types> Element

The first element contained inside the <description> element is a <types> element that
defines information about the data types of the return value and parameters your web
service method uses. If your web service returns an instance of a custom class, ASP.NET

MacDonald.book Page 818 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E 819

will add an entry to define your class (although only data members will be preserved, not
methods, which can’t be converted into an XML representation).

The following code shows the <types> element for StockQuote. By looking at it, you can
tell that the function GetStockQuote() uses a string parameter, called Ticker, and a deci-
mal return value (shown in bold).

��1���%

���������������
��"��2	
�.���"����3"����������������2	
�.���"����3"��������

�������
���+����������������������
	��������	��*�	�4���%

���������������������5��*�	�46"	���%

����������	������1��%

�������������3"����%

�������������������	��
�������������������������������
�����

��������������
��������	����	��������	�
�����

��������������3"����%

�����������	������1��%

���������������%

���������������������5��*�	�46"	�����	����%

����������	������1��%

�������������3"����%

�������������������	��
�����������������������

���������������������	�	�����	� ���	��	�������!��
������

��������������3"����%

�����������	������1��%

���������������%

�������������������������������1���������������%

������������%

���1���%

Here’s the corresponding method in the web service:

�"�������������5��*�	�46"	��7��
�������4�
8

9

�������7:	����	�����
��8

;

Incidentally, the information in the <types> section is defined using the XML schema
standard (XSD). Chapter 17 introduced this standard when covering XML validation. Web
services use the same technique to validate the messages that are exchanged between a
web service and a client, although the process is completely seamless.

MacDonald.book Page 819 Wednesday, December 21, 2005 9:06 PM

820 C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E

The <message> Elements

Messages represent the information exchanged between a web service method and a cli-
ent. When you request a stock quote from the simple web service, ASP.NET sends a
message, and the web service returns a different message. You can find the definition for
these messages in the <message> section of the WSDL document. Here’s an example:

���������������5��*�	�46"	��*	��/��%

�����
����������
�����
�������������!�5��*�	�46"	����%

���������%

���������������5��*�	�46"	��*	��<"��%

�����
����������
�����
�������������!�5��*�	�46"	�����	�����%

���������%

In this example, you’ll notice that ASP.NET creates both a GetStockQuoteSoapIn and a
GetStockQuoteSoapOut message. The naming is a matter of convention, but it under-
scores that a separate message is required for input (sending parameters and invoking a
web service method) and output (retrieving a return value from a web service method).

The data used in these messages is defined in terms of the information in the <types>
section. For example, the GetStockQuoteSoapIn request message sends the GetStockQuote
element, which is defined in the <types> section as a string named Ticker.

Similar message definitions are used for the other two types of communication, HTTP
POST and HTTP GET. These are simpler communication methods that are primarily used
for testing. Instead of using a full-fledged SOAP message, they just send simple XML:

���������������5��*�	�46"	��=���5��/��%

�����
�����������4�
���1��������
�����%

���������%

���������������5��*�	�46"	��=���5��<"��%

�����
��������>	�1������������!����������%

���������%

���������������5��*�	�46"	��=���?	��/��%

�����
�����������4�
���1��������
�����%

���������%

���������������5��*�	�46"	��=���?	��<"��%

����
��������>	�1������������!����������%

���������%

Remember, StockQuote contains only one method. The three versions of it that you
see in WSDL are provided and supported by ASP.NET automatically to give the client a
chance to choose a preferred method of communication.

MacDonald.book Page 820 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E 821

The <portType> Elements

The information in the <portType> section of the WSDL document provides an overview
of all the methods available in the web service. Each method is defined as an <operation>,
and each operation includes the request and response messages.

For example, you’ll see that for the SOAP port type (StockQuoteSoap), the GetStockQuote()
method requires an input message called GetStockQuoteIn and a matching output message
called GetStockQuoteOut:

��	
��1���������*�	�46"	��*	���%

���	��
���	��������5��*�	�46"	���%

�����
��	�����������"���	�	�����	�����#����

������	�	�����������"���	�	�����	������	���

����	��
���	�%

���	
��1��%

��	
��1���������*�	�46"	��=���5���%

���	��
���	��������5��*�	�46"	���%

��������"������������!�5��*�	�46"	��=���5��/���%

�����	"��"������������!�5��*�	�46"	��=���5��<"���%

����	��
���	�%

���	
��1��%

��	
��1���������*�	�46"	��=���?	���%

���	��
���	��������5��*�	�46"	���%

��������"������������!�5��*�	�46"	��=���?	��/���%

�����	"��"������������!�5��*�	�46"	��=���?	��<"���%

����	��
���	�%

���	
��1��%

The <binding> Elements

The <binding> elements link the abstract data format to the protocol used for transmis-
sion over an Internet connection. So far, the WSDL document has specified the data type
used for various pieces of information, the required messages used for an operation, and
the structure of each message. With the <binding> element, the WSDL document speci-
fies the low-level communication protocol you can use to talk to a web service.

For example, the StockQuote WSDL document specifies that the SOAP-specific Get-
StockQuote operation communicates using SOAP messages. The HTTP POST and HTTP
GET operations receive information as an XML document (type mimeXML) and send it
encoded either as a query string argument (type http:urlEncoded) or in the body of a
posted form (type application/x-www-form-urlencoded).

MacDonald.book Page 821 Wednesday, December 21, 2005 9:06 PM

822 C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E

���������������*�	�46"	��*	�����1�����!�*�	�46"	��*	���%

����	������������
����	
����������������������	���	
���	��������

�����1�����	�"������%

���	��
���	��������5��*�	�46"	���%

������	���	��
���	���	��@���	���������������
	��������	��*�	�4��5��*�	�46"	���

�������1�����	�"������%

��������"�%

��������������!�������
	�������

���������"�%

�����	"��"�%

��������������!�������
	�������

������	"��"�%

����	��
���	�%

���������%

���������������*�	�46"	��=���5�����1�����!�*�	�46"	��=���5���%

������������������
���5A���%

���	��
���	��������5��*�	�46"	���%

����������	��
���	���	����	����5��*�	�46"	����%

��������"�%

�������$		����%���!�!��

���������"�%

�����	"��"�%

��������
����
��&������	��'�!����

������	"��"�%

����	��
���	�%

���������%

���������������*�	�46"	��=���?	�����1�����!�*�	�46"	��=���?	���%

������������������
���?<*���%

���	��
���	��������5��*�	�46"	���%

����������	��
���	���	����	����5��*�	�46"	����%

��������"�%

��������
������	��	�	���������
��	
����()))(*���(������!�!���

���������"�%

�����	"��"�%

��������
����
��&������	��'�!����

������	"��"�%

����	��
���	�%

���������%

MacDonald.book Page 822 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E 823

■Note You’ll actually see two versions of the same binding information for a .NET web service. That’s
because .NET web services support two versions of SOAP (the original SOAP 1.1 and the similar but less com-
mon SOAP 1.2). The WSDL document includes binding information for both, with similar instructions.

The <service> Element

The <service> element defines the entry points into your web service. This is how a client
accesses the web service.

An ASP.NET web service defines three different <port> elements in the <service> ele-
ment, one for each protocol. Inside each <port> element is another element that identifies
the Internet address (URL) needed to access the web service. Most web services (and all
ASP.NET web services) use the same URL address for all types of communication.

���
�����������*�	�46"	���%

����	
��������*�	�46"	��*	��������������!�*�	�46"	��*	���%

������	������
���

��������������	
����$		���������$��	�+�����,
�����	�����	�-�������

�����	
�%

����	
��������*�	�46"	��=���5��������������!�*�	�46"	��=���5���%

�������������
���

��������������	
����$		���������$��	�+�����,
�����	�����	�-�������

�����	
�%

����	
��������*�	�46"	��=���?	��������������!�*�	�46"	��=���?	���%

�������������
���

��������������	
����$		���������$��	�+�����,
�����	�����	�-�������

�����	
�%

����
����%

■Tip Here’s a neat trick: any ASP.NET service will display its corresponding WSDL document if you add
?WSDL to the query string. For example, you could look at the WSDL document for the preceding web service
example by navigating to ��������	����	���-��*�
������*�	�46"	��������-*.). The greatest
benefits of web services are their autodiscovery and self-description features.

MacDonald.book Page 823 Wednesday, December 21, 2005 9:06 PM

824 C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E

SOAP
A client can use three protocols to communicate with a web service in .NET:

• HTTP GET, which communicates with a web service by encoding information in the
query string and retrieves information as a basic XML document.

• HTTP POST, which places parameters in the request body (as form values) and
retrieves information as a basic XML document.

• SOAP, which uses XML for both request and response messages. Like HTTP GET
and HTTP POST, SOAP works over HTTP, but it uses a more detailed XML-based
language for bundling information. SOAP messages are widely supported by many
platforms.

Although .NET has the ability to support all three of these protocols, it restricts the first
two for better security. By default, it disables HTTP GET, and it restricts HTTP POST to the
local computer. This means you can use it to test a web service (as you’ll see in the next
chapter), but you can’t use it to call a web service from a remote computer. You can
change this setup by modifying the web.config file, but that’s not recommended.

A Sample SOAP Message

Essentially, when you use SOAP, you’re simply using the SOAP standard to encode the
information in your messages. SOAP messages follow an XML-based standard and look
something like this:

��������
��	��� �!�����	������B�2#$���������	�����	��%

��	���A����	�����������������������������	���	
���	��������	����%

����	���>	�1%

�����5��*�	�46"	�����������������������
	��������	��*�	�4���%

����������4�
%(*2������4�
%

������5��*�	�46"	��%

�����	���>	�1%

���	���A����	��%

Looking at the preceding SOAP message, you can see that the root element is a
<soap:envelope>, which contains the <soap:body> of the request. Inside the body is
information indicating that the GetStockQuote() method is being called with a Ticker
parameter of MSFT. Although this is a fairly straightforward method call, SOAP messages
can easily contain entire structures representing custom objects or DataSets.

MacDonald.book Page 824 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E 825

In response to this request, a SOAP output message will be returned. Here’s an example
of what you can expect:

��������
��	��� �!�����	������"��#$��%

��	���A����	�����������������������������	���	
���	��������	����%

����	���>	�1%

�����5��*�	�46"	�����	�����������������������
	��������	��*�	�4��%

�������5��*�	�46"	����"��%&C�&���5��*�	�46"	����"��%

������5��*�	�46"	�����	���%

�����	���>	�1%

���	���A����	��%

This example demonstrates why the SOAP message format is superior to HTTP GET
and HTTP POST. When using SOAP, both request and response messages are formatted
using XML. When using HTTP GET and HTTP POST, the response messages use XML, but
the request messages use simple : name/value pairs to supply the parameter information.
This means HTTP GET and HTTP POST won’t allow you to use complex objects as param-
eters and won’t be natively supported on most non-.NET platforms. HTTP GET and HTTP
POST are primarily included for testing purposes.

Remember, your applications won’t directly handle SOAP messages. Instead, .NET will
translate the information in a SOAP message into the corresponding .NET data types
before the data reaches your code. This allows you to interact with web services in the
same way you interact with any other object.

For information about the SOAP standard, you can read the full specification at
��������������	
����*<@?. (Once again, these technical details explain a lot about how
SOAP works but are rarely implemented in day-to-day programming.)

Communicating with a Web Service
The WSDL and SOAP standards enable the communication between web services and cli-
ents, but they don’t show how it happens. The following three components play a role:

• A custom web service class that provides some piece of functionality.

• A client application that wants to use this functionality.

• A proxy class that acts as the interface between the two. The proxy class contains a
representation of all the web service methods and takes care of the details involved
in communicating with the web service by the chosen protocol.

MacDonald.book Page 825 Wednesday, December 21, 2005 9:06 PM

826 C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E

The actual process works like this (see Figure 21-1):

1. The client creates an instance of a proxy class.

2. The client invokes the method on the proxy class, exactly as though it were using a
normal, local class.

3. Behind the scenes, the proxy class sends the information to the web service in the
appropriate format (usually SOAP) and receives the corresponding response,
which is converted to the corresponding data or object.

4. The proxy class returns the result to the calling code.

Figure 21-1. Web service communication

Perhaps the most significant detail is that the client doesn’t need to be aware that a
remote function call to a web service is taking place. The process is completely transpar-
ent and works as though you were calling a function in your own local code!

Of course, the following additional limitations and considerations apply:

• Not all data types are supported for method parameters and return values. For
example, you can’t pass many .NET class library objects (the DataSet is one impor-
tant exception).

• The network call takes a short but measurable amount of time. If you need to use
several web service methods in a row, this delay can start to add up.

MacDonald.book Page 826 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E 827

• Unless the web service takes specific steps to remember its state information,
this data will be lost. Basically, this means you should treat a web service like a
stateless utility class, composed of as many independent methods as you need. You
shouldn’t think of a web service as an ordinary object with properties and member
variables.

• A variety of new errors can occur and interrupt your web method (for example, net-
work problems). You may need to take this into account when building a robust
application.

You’ll examine all these issues in detail throughout the next two chapters.

Web Service Discovery
Imagine you’ve created a web service that uses WSDL to describe how it works and trans-
mits information in SOAP packets. Inevitably, you’ll start to ask how clients can find your
web services. At first thought, it seems to be a trivial question. Clearly, a web service is
available at a specific URL address. Once clients have this address, they can retrieve the
WSDL document by adding ?WSDL to the URL, and all the necessary information is avail-
able. So why is a discovery standard required at all?

The straightforward process described earlier works great if you need to share a web
service only with specific clients or inside a single organization. However, as web services
become more and more numerous and eventually evolve into a common language for
performing business transactions over the Web, this manual process seems less practical.
For instance, if a company provides 12 web services, how does it communicate each of
these 12 URLs to prospective clients? E-mailing them to individual developers is sure to
take time and create inefficiency. Trying to recite them over the telephone is worse. Pro-
viding an HTML page that consolidates all the appropriate links is a start, but it will still
force client application developers to manually enter information into their programs. If
this information changes later, it will result in painstaking minor changes that could cause
countless headaches. Sometimes, trivial details aren’t so trivial.

The DISCO Standard

The DISCO standard picks up where the “HTML page with links” concept ends. When fol-
lowing the DISCO standard, you provide a .disco file that specifies where a web service is
located. Tools such as Visual Studio can read the .disco file and automatically provide you
with the list of corresponding web services.

MacDonald.book Page 827 Wednesday, December 21, 2005 9:06 PM

828 C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E

Here is a sample .disco file:

�����	�����	��
1������������	���������������������	���	
������	�

���������������������������������	���	
������	������%

�����������	��
�����

����������
������������	����	"���-��*�
������*�	�46"	��������-*.)��%

������	�����	��
1%

The benefit of a .disco file is that it is clearly used for web services (while .html and .aspx
files can contain any kind of content). The other advantage is that you can insert <disco>
elements for as many web services as you want, including ones that reside on other web
servers. In other words, a .disco file provides a straightforward way to create a repository
of web service links that can be used automatically by .NET. However, you don’t need to
create a .disco file to use a web service.

■Note The DISCO standard is Microsoft-specific, and it’s a bit of a dead end. It’s slated for eventual
replacement by WS-Inspection, a similar standard that’s backed by all web service vendors.

Universal Description, Discovery, and Integration

UDDI is one of the youngest and most rapidly developing standards in the web service
family. UDDI is an initiative designed to make it easier for you to locate web services on
any server.

With discovery files, the client still needs to know the specific URL location of the dis-
covery file. Discovery files may make life easier by consolidating multiple web services
into one document, but they don’t provide any obvious way to examine the web services
offered by a company without navigating to its website and looking for a .disco hyperlink.
The goal of UDDI, on the other hand, is to provide repositories where businesses can
advertise all the web services they have. For example, a company might list the services it
has for business document exchange, which describe how purchase orders can be sub-
mitted and tracking information can be retrieved. To submit this information, a business
must be registered with the service.

In some ways, UDDI is the equivalent of Google for web services, with one significant
difference. Most web search engines attempt to catalog the entire Internet. Setting up a
UDDI registry with all the web services of the world doesn’t have much point, because dif-
ferent industries have different needs, and a single disorganized collection won’t please
anyone. Instead, it’s much more likely that groups of companies and consortiums will
band together to set up their own UDDI registries organized into specific industries. In all
likelihood, many of these registries will be restricted so that they aren’t publicly available.

MacDonald.book Page 828 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E 829

Interestingly enough, the UDDI registry defines a complete programming interface
that specifies how SOAP messages can be used to retrieve information about a business or
register the web services for a business. In other words, the UDDI registry is itself a web
service! This standard is still not in widespread use, but you can find detailed specifica-
tions at �������"�������
	�	����	�.

WS-Interoperability
Web services have developed rapidly, and standards such as SOAP and WSDL are still
evolving. In early web service toolkits, different vendors interpreted parts of these stan-
dards in different ways, leading to interoperability headaches. Adding to the confusion is
that some features from the original standards are now considered obsolete.

Negotiating these subtle differences is a small minefield, especially if you need to
create web services that will be accessed by clients using other programming platforms
and web service toolkits. Fortunately, another standard has appeared recently that sets

WHERE ARE WEB SERVICES TODAY?

Currently, first-generation web services are being used to bridge the gap between modern applications
and older technologies. For example, an organization might use a web service to provide access to a legacy
database. Internal applications can then contact the web service instead of needing to interact directly with the
database, which could be much more difficult. Similar techniques are being used to allow different applica-
tions to interact. For example, web services can act as a kind of “glue” that allows a payroll system to interact
with another type of financial application in the same company. Second-generation web services are those
that allow partnering companies to work together. For example, an e-commerce company might need to sub-
mit orders or track parcels through the web service provided by a shipping company. Second-generation web
services require two companies to work closely together to devise a strategy for exposing the functionality they
each need. Second-generation web services are in their infancy but are gaining ground quickly.

The third generation of web services will allow developers to create much more modular applications by
aggregating many different services into one application. For example, you might add a virtual hard drive to
your web applications using a third-party web service. You would pay a subscription fee to the web service
provider, but the end user wouldn’t be aware of what application functionality is provided by you and what
functionality relies on third-party web services. This third generation of web services will require new stan-
dards and enhancements that will allow web services to better deal with issues such as reliability, discovery,
and performance. These standards are constantly evolving, and it’s anyone’s guess how long it will be before
third-generation web services begin to flourish, but it’s probably just a matter of time.

Already, you can use third-party web services from companies such as eBay, Amazon, and Google.
These web services act as part of a value-added proposition and may eventually evolve into separate cost-
based services. But if you’re curious, you can seek these web services out today and use them in your own
.NET applications.

MacDonald.book Page 829 Wednesday, December 21, 2005 9:06 PM

830 C H A P T E R 2 1 ■ W E B S E R V I C E S A R C H I T E C T U R E

out a broad range of rules and recommendations designed to guarantee interoperability
across the web service implementations of different vendors. This document is the
WS-Interoperability Basic Profile (see �������������#��	
�). It specifies a recommended
subset of the full SOAP 1.1 and WSDL 1.1 specifications and lays out a few ground rules.
WS-Interoperability is strongly backed by all web service vendors (including Microsoft,
IBM, Sun, and Oracle).

 Ideally, as a developer, you shouldn’t need to worry about the specifics of WS-
Interoperability. However, you’ll be happy to learn that ASP.NET 2.0 web services
follow its guidelines automatically.

■Note With a fair bit of work, you can configure your web service to break these rules, but by default .NET
won’t let you. Instead, your web service will throw an exception when it’s compiled. In the next chapter, you’ll
learn how to turn WS-Interoperability checking on and off.

The Last Word
This chapter introduced web services, explained the role they play in distributed applica-
tions, and dissected the standards and technologies they rely on to provide their magic. In
the next chapter, you’ll see just how easy .NET makes it to create your own web services.

MacDonald.book Page 830 Wednesday, December 21, 2005 9:06 PM

831

■ ■ ■

C H A P T E R 2 2

Creating Web Services

Web services have the potential to dramatically simplify the way distributed applica-
tions are built. They might even lead to a new generation of applications that seamlessly
integrate multiple remote services into a single web page or desktop interface. However,
the greatest programming concept in the world is doomed to fail if it isn’t supported by
powerful, flexible tools that make its use not only possible but also convenient. Fortu-
nately, ASP.NET doesn’t disappoint. It provides classes that allow you to create a web
service quickly and easily.

In the previous chapter, you looked at the philosophy that led to the creation of web
services and the XML infrastructure that makes it all possible. This chapter delves into the
practical side of web services, leading you through the process of creating and using a
basic service.

Web Service Basics
As you’ve already seen in this book, ASP.NET is based on object-oriented principles.
Instead of dealing with a slew of miscellaneous functions, you work with discrete classes
that wrap code into neat, reusable objects. Web services follow that pattern—in fact, every
web service is really an ordinary class. Even better, a client can create an instance of
your web service and use its methods just as though it were any other locally defined class.
The underlying HTTP transmission and data type conversion that has to happen takes
place behind the scenes.

How does this magic work? It’s made possible by the .NET Framework and the types in
the System.Web.Services namespace.

MacDonald.book Page 831 Wednesday, December 21, 2005 9:06 PM

832 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

A typical web service consists of a few basic ingredients:

• An .asmx file: This is the web service end point—the URL where the client sends its
request messages. The .asmx file plays the same role with web services as the .aspx
file plays with web pages.

• The web service class: This contains the functionality (the code) for the web service.
As with web pages, you can place the web service class directly in the .asmx file or
in a separate code-behind file. Typically, your web service class will inherit from
System.Web.Services.WebService, but it doesn’t need to do so.

• One or more web service methods: These are ordinary methods in the web service
class that are marked with the WebMethod attribute. This attribute indicates that
the corresponding method should be made available though ASP.NET.

As long as you have these basic ingredients in place, ASP.NET will manage the lower-
level details for you. For example, you never need to create a WSDL document or a SOAP
message. ASP.NET automatically generates the WSDL document for your web service when
it’s requested and converts ordinary .NET method calls to SOAP messages transparently.

The only layer you need to worry about is the business-specific code that actually
performs the task (such as inserting data into a database, creating a file, performing a cal-
culation, and so on). You write this code like any other C# method.

Configuring a Web Service Project

You can add web services to any web application. In fact, the only difference between the
ASP.NET Web Site and ASP.NET Web Service project types in Visual Studio is that the Web
Site project type starts off with one web page, while the Web Service project type has one
default web service. Other than that, the project types (and their configurations) are
identical.

However, if you want to use web services in a client application (which you usually do),
you need to take some extra steps to set up your project. The problem is that you can’t rely
on the built-in Visual Studio web server to host your web services. The Visual Studio web
server dynamically chooses a new port each time you run it, which means your client appli-
cation would have serious difficulties tracking down the web service. Instead, you need to
create a virtual directory for your web application (as described in Chapter 12). Once you’ve
taken this step, you can create the web project in this location. That way, your web applica-
tion is hosted by IIS at a fixed location, which allows clients to connect to it.

MacDonald.book Page 832 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 833

Chapter 12 contains a great deal of information about IIS and web services. However,
here’s a quick series of steps that will get you started. (These steps assume you’re using
Windows 2000 or Windows XP—consult Chapter 12 for information about Windows 2003.)

1. First, create the virtual directory for your application. For example, create the
directory c:\ASP.NET\WebServices using Windows Explorer.

2. The next step is to turn this folder into a virtual directory and a web application.
Start IIS Manager (select Start ➤ Programs ➤ Administrative Tools ➤ Internet
Information Services), right-click the Default Website item, and select New Virtual
Directory.

3. Follow the Virtual Directory Creation Wizard, choosing WebServices for the virtual
folder alias and supplying the physical path you created in step 1. Use the default
security settings.

4. Now fire up Visual Studio. Select File ➤ New Web Site, and choose the ASP.NET Web
Site or ASP.NET Web Service project type (either one works for web services).

5. In the Location box, choose HTTP. Then, supply the virtual path to your web
service, which is ����������	���
�� followed by the virtual directory alias, as in
����������	���
�����������
.

6. Click OK to create your web service project in the virtual directory.

7. To add a web service to your project, right-click the project in the Solution
Explorer, and choose Add ➤ Add New Item. In the Add New Item dialog box, pick
Web Service (see Figure 22-1). You can choose to place the code in a separate code-
behind file (which is the usual approach) or directly in the web service file. Click
OK to add the file.

MacDonald.book Page 833 Wednesday, December 21, 2005 9:06 PM

834 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

Figure 22-1. Adding a web service to any project

■Tip You need to use a similar approach to use the web service examples included with the book. You can
place the folder with the web services wherever you want, as long as you create the correct virtual directory
(����������	���
�����������
). The readme file has complete instructions.

In the following sections, you’ll look at the code for a simple web service and learn how
it works.

The StockQuote Web Service
The previous chapter examined the WSDL document generated for a simple web service
that contained only one method. Now you’ll get a chance to look at the actual code and
see how it works.

MacDonald.book Page 834 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 835

The following listing shows the StockQuote web service code. In this simple example,
all the code is placed in a single .asmx file (so no code-behind file is used).

���������������	���	����������	

���������������

�
�����!
��"#

�
�����!
��"$��#

�
�����!
��"$��$�������
#

��������	

�����������������������

%

������������	
�

����������&���"	��'������������(
������������)

����%

�����������(*��+��"�&	�		
�������������$)

����,

,

As you can see, the StockQuote class looks more or less the same as any .NET class. The
two differences—inheriting from WebService and using the WebMethod attribute—are
highlighted in bold in the example.

An .asmx file is similar to the standard .aspx file used for graphical ASP.NET pages. As
with .aspx files, .asmx files start with a directive that specifies the language and are com-
piled the first time they are requested in order to increase performance. You can create
them with Notepad or any other text editor, but professional developers use Visual Studio.
The letter m indicates “method” because all web services are built from one or more web
methods that provide the actual functionality.

Understanding the StockQuote Service

The code for the StockQuote web service is quite straightforward. The first line specifies
the file is used for a web service and is written in C#. The next line imports the web service
namespace so all the classes you need are at your fingertips. As with other core pieces of
ASP.NET technology, web service functionality is provided through prebuilt types in the
.NET class library.

The remainder of the code is the actual web service, which is built from a single class
that derives from WebService. In the previous example, the web service class contains a
method called GetStockQuote(). This is a normal C# function with a [WebMethod]
attribute before its definition.

MacDonald.book Page 835 Wednesday, December 21, 2005 9:06 PM

836 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

.NET attributes are used to describe code. The WebMethod attribute doesn’t change
how your function works, but it does tell ASP.NET that this is one of the procedures it
must make available over the Internet. Methods that don’t have this attribute won’t be
accessible (or even visible) to remote clients, regardless of whether they are defined with
the private or public keyword.

The best way to understand a web service is to think of it as a business object. Business
objects support your programs but don’t take part in creating any user interface. For
example, business objects might have helper functions that retrieve information from a
database, perform calculations, or process custom data. Your code creates business
objects whenever it needs to retrieve or store specific information, such as report infor-
mation from a database. Sometimes business objects are called service providers because
they perform a task (a service), but they rarely retain any information in memory.

The most remarkable part of this example is that the StockQuote web service is already
complete. All you need to do is place this .asmx file on your web server in a virtual direc-
tory that other clients can access, as you would with an .aspx page. Other clients can then
start creating instances of your class and can call the GetStockQuote() method as though
it were a locally defined procedure. All they need to do is use .NET to create a proxy class.

Web Services with Code-Behind

As you’ve seen with web pages, Visual Studio uses code-behind files so you can separate
design and code. In the case of .asmx files, this feature isn’t really necessary because web
service files consist entirely of code and don’t contain any user interface elements. How-
ever, it’s still usually done as a matter of convention.

Visual Studio presents web service code files a little differently than web page code
files. Web service code files are automatically placed in the App_Code subfolder (see
Figure 22-2). This is because of a minor difference in the way ASP.NET compiles web
services. If you don’t place the web service code file here, it won’t be compiled.

Figure 22-2. A web service with a code-behind file

MacDonald.book Page 836 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 837

The code-behind version of the StockQuote web service is almost identical. Listing 22-1
shows StockQuote.asmx, and Listing 22-2 shows StockQuote.asmx.cs.

Listing 22-1. StockQuote.asmx

���������������	���	�������

����&�-����&��.�/��0��&��������������$�
����	

�����������������

Listing 22-2. StockQuote.asmx.cs

�
�����!
��"#

�
�����!
��"$��#

�
�����!
��"$��$�������
#

��������	

�����������������������

%

����1��2����&()3

����������&���"	��'������������(
������������)

����%

�����������(*��+��"�&	�		
�������������$)

����,

,

Note that the client always connects to web service using a URL that points to the
.asmx file, much as a client requests a web page using a URL that points to an .aspx file.
That means clients find the StockQuote service at ����������	���
�����������
�
����������$	
"4.

The ASP.NET Intrinsic Objects

When you inherit from System.Web.Services.WebService, you gain access to several of the
standard built-in ASP.NET objects that you can use in an ordinary Web Forms page. These
include the following:

Application: Used to store data globally so that it’s available to all clients (as described
in Chapter 9).

Server: Used for utility functions, such as encoding strings, so they can be safely dis-
played on a web page (as described in Chapter 5).

Session: Used for client-specific state information. However, you’ll need to take some
extra steps to make it work with web services. Chapter 23 has the full details.

MacDonald.book Page 837 Wednesday, December 21, 2005 9:06 PM

838 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

User: Used to retrieve information about the current client, if the client has been
authenticated. Chapter 23 discusses web services and security.

Context: Provides access to Request and Response and, more usefully, the Cache object
(described in Chapter 26).

On the whole, these built-in objects won’t often be used in web service programming,
with the exception of the Cache object. Generally, a web service should look and work like
a business object and not rely on retrieving or setting additional information through a
built-in ASP.NET object. However, if you need to use per-user security or state manage-
ment, these objects will be useful. For example, you could create a web service that
requires the client to log on and subsequently stores important information in the Session
collection. Or you could create a web service that retrieves a large object (such as a
DataSet), stores it in server memory using the Session collection, and returns whatever
information you need through other web methods that can be invoked as required.

Documenting Your Web Service
Web services are self-describing, which means ASP.NET automatically provides all the
information the client needs about what methods are available and what parameters they
require. This is all accomplished through the WSDL document. However, although the
WSDL document describes the mechanics of the web service, it doesn’t describe its pur-
pose or the meaning of the information supplied to and returned from each method. Most
web services will provide this information in separate developer documents. However,
you can (and should) include a bare minimum of information with your web service by
using attributes.

YOU DON’T NEED TO INHERIT FROM WEBSERVICE

Remember, inheriting from WebService is just a convenience for accessing a few common ASP.NET objects.
If you don’t need to use any of these objects (or if you’re willing to go through the static HttpContext.Current
property to access them), you don’t need to inherit.

Here’s how you would access application state in a web service if you derive from the base WebService
class:

���������	���"������
�

����
�	��$

/�����	����1���������3�5��6#

Here’s the equivalent code you would need to use if your web service class doesn’t derive from
WebService:

���������	���"������
�

����
�	��$

7��������4�$�������$/�����	����1���������3�5��6#

MacDonald.book Page 838 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 839

■Tip Attributes are a special language construct that’s built into the .NET Framework. Essentially, attributes
describe your code to the .NET runtime by adding extra metadata. The attributes you use for web service
description are recognized by the .NET Framework and provided to clients in automatically generated descrip-
tion documents and through the browser test page. Attributes are used in many other situations, and even if
you haven’t encountered them before, you’re sure to encounter them again in .NET programming.

Descriptions

You can add descriptions to each function through the WebMethod attribute and to the
entire web service as a whole using a WebService attribute. For example, you could
describe the StockQuote service like this:

���������	�
���	��	�����

��������	

�����������������������

%

������������	
���������	������������	����	������������	�� �!�

����������&���"	��'������������(
������������)

����%

�����������(*��+��"�&	�		
�������������$)

����,

,

In this example, the Description property is added as a named argument using the =
operator.

These custom descriptions will appear in two important places. First, they will be
added to the WSDL document that ASP.NET generates automatically. The descriptive
information is added as <documentation> tags:

�
��������	"��������������

��"
	��#������	�$����	
���	�%������	�#���	����	�����������
����$

��&���"���	����

��$$$

��
������

Second, the descriptive information will also appear in the automatically generated
browser test page, which is more likely to be viewed by the programmer who is designing
the client application. The test page is described later in this chapter (in the “Testing Your
Web Service” section).

MacDonald.book Page 839 Wednesday, December 21, 2005 9:06 PM

840 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

The XML Namespace

You should specify a unique namespace for your web service that can’t be confused with
the namespaces used for other web services on the Internet. Note that this is an XML
namespace, not a .NET namespace. It doesn’t affect how your code works or how the client
uses your web service. Instead, this namespace uniquely identifies your web service in the
WSDL document. XML namespaces look like URLs, but they don’t need to correspond to a
valid Internet location. For more information, refer to the XML overview in Chapter 17.

■Tip Think of XML namespaces as one of the ways that an application or a web service catalog can distin-
guish between different web services.

Ideally, the namespace you use will refer to a URL address that you control. Often, this
will incorporate your company’s Internet domain name as part of the namespace. For
example, if your company uses the website �������888$"!��"�	�!$��", you might give the
stock quote web service a namespace like �������888$"!��"�	�!$��"�����������. If you
don’t specify a namespace, the default (���������"����$����) will be used. This is fine for
development, but you’ll see a warning message in the test page advising you to use some-
thing more distinctive.

You specify the namespace through the WebService attribute, as shown here:

1���������(9�
����������'��
�	�:�����+���	�;/�9/��
����$�<

�;	"�
�	�����������888$���
�����$��"������
�)3

��������	

�����������������������

%�$$$�,

Conformance Claims

As you learned in Chapter 21, web services have developed rapidly, and the standards
web services use (such as SOAP and WSDL) are still evolving. To deal with the confusion,
web gurus created yet another standard: WS-Interoperability, which sets out a series of
guidelines and recommendations web services must follow. If the web services and web
clients follow the same WS-Interoperability rules, they shouldn’t have any trouble
communicating.

When you create a new web service, Visual Studio adds a [WebServiceBinding] attribute
to your web service declaration. This attribute indicates the level of compatibility you’re tar-
geting. Currently, the only option is WsiProfiles.BasicProfile1_1, which represents the

MacDonald.book Page 840 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 841

WS-Interoperability Basic Profile 1.1. However, as standards evolve, you’ll see newer ver-
sions of SOAP and WSDL, as well as newer versions of the WS-Interoperability profile to go
along with them.

���������	��������
 �������!�������"����#�������	"����#�$%$��

1���������(9�
����������=����������+��"	�����	����	�
����$�)3

��������	

�����������������������

%�$$$�,

Once you have the WebServiceBinding attribute in place, .NET will warn you with a
compile error if your web service strays outside the bounds of allowed behavior. By
default, all .NET web services are compliant, but you can inadvertently create a noncom-
pliant service by adding certain attributes. For example, it’s possible to create two web
methods with the same name, as long as their signatures differ and you give them differ-
ent message names using the MessageName property of the WebMethod attribute. This
strange feature isn’t recommended, and this behavior isn’t allowed according to the
WS-Interoperability profile. If you use this feature and try to run your web service, you’ll
get a compilation error explaining that you’ve violated the standard.

You can also choose to advertise your conformance with the EmitConformanceClaims
property, as shown here:

1���������-��&���(���+��"
>���
�*��+���
$-	
��*��+���606<

�?"�����+��"	�����	�"
�����)3

1���������(9�
����������=����������+��"	�����	����	�
����$�)3

��������	

�����������������������

%�$$$�,

In this case, additional information is inserted into the WSDL document to indicate that
your web service is conformant. It’s important to understand that this is for informational
purposes only—your web service can be conformant without explicitly stating that it is.

In rare cases you might choose to violate one of the WS-Interoperability rules in order
to create a web service that can be consumed by an older, noncompliant application. In
this situation, your first step is to turn off compliance by removing the WebServiceBinding
attribute. Alternatively, you can disable compliance checking and document this by using
the WebServiceBinding attribute without a profile:

���������	��������
 �������!�����"����#���&�����

1���������(9�
����������=����������+��"	�����	����	�
����$�)3

��������	

�����������������������

%�$$$�,

MacDonald.book Page 841 Wednesday, December 21, 2005 9:06 PM

842 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

Testing Your Web Service
Even without creating a client for your web service, you can use the built-in features of the
.NET Framework to view information about your web service and perform a rudimentary test.

The most useful testing feature is the ASP.NET test page: an automatically generated
HTML page that lets you execute the methods in a web service and review its WSDL
document. You don’t have to perform any special steps to see this page—ASP.NET gener-
ates it automatically when you request an .asmx web service file.

Before continuing, you should modify the GetStockQuote() method in the same web ser-
vice so it returns a hard-coded value. This will allow you to test that it’s working with the test
page. For example, you could use the statement Return Ticker.Length. That way, the return
value will be the number of characters you supplied in the Ticker parameter.

1��2����&(9�
����������'��
�	�:�����+���	�;/�9/��
����$�)3

������&���"	��'������������(
������������)

%

����������������� &��%��'

,

The Web Service Test Page

To view the web service test page, you can have one of two options:

• Seeing as you’re using IIS to host your web service project, you don’t need to run
Visual Studio to get the test page. Just fire up a browser, and request the web service
URL (such as ����������	���
�����������
�����������$	
"4).

• Inside Visual Studio you can quickly launch the current web service in the same way
you launch a web page—just click the Run button.

Either way, you’ll see a simple web page (shown in Figure 22-3) that lists all the avail-
able web service methods. (In this case, only one, GetStockQuote(), is available.) The test
page also lists whatever description information you may have added through the Web-
Method and WebService attributes.

MacDonald.book Page 842 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 843

Figure 22-3. The web service test page

Remember, you don’t need to write any special code to make this page appear, and you
can make the request using any browser. ASP.NET generates the page for you automati-
cally, and the page is intended purely as a testing convenience. Clients using your web
service won’t browse to this page to interact with your web service, but they might use it
to find out some basic information about how to use it.

Service Description

You can also click the Service Descriptions link to display the WSDL description of your
web service (see Figure 22-4), which you examined in detail in Chapter 21.

MacDonald.book Page 843 Wednesday, December 21, 2005 9:06 PM

844 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

Figure 22-4. A portion of the StockQuote WSDL document

When you click this link, the browser makes a request to the .asmx file with a WSDL
parameter in the query string:

����������	���
�����������
�����������$	
"4@��9�

If you know the location of an ASP.NET web service file, you can always retrieve its
WSDL document by adding ?WSDL to the URL. This provides a standard way for a client
to find all the information it needs to make a successful connection. Whenever ASP.NET
receives a URL in this format, it generates and returns the WSDL document for the web
service.

MacDonald.book Page 844 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 845

Method Description

You can find out information about the methods in your web service by clicking
the corresponding link. For example, in the StockQuote web service, you can click the
GetStockQuote link (see Figure 22-5).

Figure 22-5. The GetStockQuote() method description

This window provides two sections. The first part consists of a text box and Invoke but-
ton that allows you to run the function without needing to create a client. The second part
is a list of the different protocols you can use to connect with the web service (HTTP POST,
HTTP GET, and SOAP) and a technical description of the message format for each one.

Testing a Method

To test your method, enter a ticker, and click the Invoke button. The result will be
returned to you as an HTML page (see Figure 22-6).

MacDonald.book Page 845 Wednesday, December 21, 2005 9:06 PM

846 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

Figure 22-6. The result from GetStockQuote()

This may not be the result you expected, but the information is there—wrapped inside
the tags of an XML document. This format allows a web service to return complex infor-
mation, such as a class with several members or even an entire DataSet. If you followed
the suggestions for modifying the StockQuote service, you should see a number repre-
senting the length of the stock ticker you supplied.

The web service test page is a relatively crude way of accessing a web service. It’s never
used for any purpose other than testing. In addition, it supports a smaller range of data
types. For example, the test page can’t call a web method that requires a custom structure
or DataSet as a parameter, because the browser won’t be able to create and supply these
objects.

One question that many users have after seeing this page is, where does this function-
ality come from? For example, you might wonder whether the test page has additional
script code for running your method or whether it relies on features built into the latest
version of Internet Explorer. In fact, all that happens when you click the Invoke button is
a normal HTTP operation. In version 1.1 of the .NET Framework, this operation is an
HTTP POST that submits the parameters you supply. If you look at the URL for the result
page, you’ll see something like this:

����������	���
�����������
�����������$	
"4�'������������

The request URL follows this format:

����������	���
��1A����	�9�������!3�1/
"4B���3�12����&3

The actual parameter values are posted to this URL in the body of the request (similar
to a web page postback), so you won’t see them in the URL. The results are sent back to
your browser as an XML document.

MacDonald.book Page 846 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 847

The clients that use your web service will almost never use this HTTP POST approach
Instead, they will send full SOAP messages over HTTP. The actual physical connection
(also known as the transport protocol) remains the same. The only difference is in the data
you send (otherwise known as the message protocol). With HTTP POST, you send the val-
ues in a simple name/value collection, according to the HTML standard. With SOAP over
HTTP, you post the data in an XML package called a SOAP message.

SOAP allows for more flexibility. Because it was designed with web services in mind, it
lets you send custom objects or DataSets as parameters. But the fact that you can access
your web method through a simple HTTP request demonstrates the simplicity of web ser-
vices. Surely, if you can run your code this easily in a basic browser, true cross-platform
integration can’t be that much harder.

Web Service Data Types
Although the client can interact with a web service method as though it were a local func-
tion or subroutine, some differences exist. The most significant of these are the restrictions
on the data types you can use. Table 22-1 lists the data types that are supported for web ser-
vice parameters and return values.

■Tip These limitations are designed to ensure cross-platform compatibility. There’s no reason .NET
couldn’t create a way to convert objects to XML and back and then use that to allow you to send complex
objects to a web service. However, this “extension” would limit the ability of non-.NET clients to use the web
services.

Table 22-1. Web Service Data Types

Data Type Description
The basics Standard types such as integers and floating-point numbers, Boolean

variables, dates and times, and strings are fully supported.

Enumerations Enumeration types (defined in C# with the enum keyword) are fully
supported.

DataSet and DataTable This gives you an easy package to send information drawn from a
relational database. For this to work, the web service actually converts
the DataSet or DataTable into an XML document. The client converts
it back into an object (if it’s a .NET client) or just works with the XML
(if it’s a client on another platform). The DataRow class isn’t
supported.

Continued

MacDonald.book Page 847 Wednesday, December 21, 2005 9:06 PM

848 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

The full set of objects is supported for return values and for parameters when you’re
communicating through SOAP. If you’re communicating through HTTP GET or HTTP
POST, you’ll be able to use only basic types, enumerations, and arrays of basic types or
enumerations. This is because complex classes and other types cannot be represented in
the query string (for HTTP GET) or form body (for an HTTP POST operation).

The StockQuote Service with a Data Object

If you’ve ever used a stock quote service over the Internet, you’ve probably noticed that
the example so far is somewhat simplified. The GetStockQuote() function returns one
piece of information—a price quote—whereas popular financial sites usually produce a
full quote with a 52-week high and 52-week low and other information about the volume
of shares traded on a particular day. You could add more methods to the web service to
supply this information, but that would require multiple similar function calls, which
would slow down performance, because more time would be spent sending messages
back and forth over the Internet. The client code would also become more tedious.

A better solution is to use a data object that encapsulates all the information you need.
You can define the class for this object in the same file and then use it as a parameter or
return value for any of your functions. The data object is a completely ordinary C# class,
and it shouldn’t derive from System.Web.Services.WebService. It can contain public
member variables that use any of the data types supported for web services. It can’t con-
tain methods—if it does, they will simply be ignored and won’t be available to the client.

The client will receive the data object and be able to work with it exactly as though it
were defined locally. In fact, it will be—the automatically generated proxy class will con-
tain a copy of the class definition.

Table 22-1. Continued

Data Type Description
XmlNode Objects based on System.Xml.XmlNode are representations of a

portion of an XML document. Under the hood, all web service data is
passed as XML. This class allows you to directly support a portion of
XML information whose structure may change.

Custom objects You can pass any object you create based on a custom class or
structure. The only limitation is that only public data members are
transmitted. If you use a class with defined methods, these methods
will not be transmitted to the client, and they will not be accessible to
the client. You won’t be able to successfully use most other .NET
classes.

Arrays and collections You can use arrays of any supported type, including DataSets,
XmlNodes, and custom objects. You can also use many collection
types, such as the ArrayList and generic lists.

MacDonald.book Page 848 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 849

Here’s how the StockQuote service would look with the addition of a convenient data
object:

1���������-��&���(���+��"
>���
�*��+���
$;���)3

1���������(9�
����������2����&
��������
�������+��"	����$�<

�;	"�
�	�����������888$���
�����$��"������
�)3

��������	

�����������09	�	CD���������������

%

����1��2����&(9�
����������'��
�	�������:�����+���	�
����$�)3

���������������E�+��'������������(
������������)

����%

�������������E�+��:���������8������E�+�()#

��������:����$�!"�����������#

��������:�������B��������B��"9-(:����)#

���������������:����#

����,

��������	��������E�+��B��������B��"9-(�����E�+��������)

����%

�����������F����	��	&&�����	�������	���&	�		
����&������$

�����������B�����
�������
�
����
�+���������	�&G��&�

�����������
�"��
	"������+��"	����$

��������������$��"�	�!;	"�����>�	��H��&�#

��������������$*�������IJJ#

��������������$7���0KL�������I6J#

��������������$��80KL�������LJ#

���������������������#

����,

,

��������	

������E�+�

%

����������&���"	��*����#

����������
�������!"��#

����������&���"	��7���0KL����#

����������&���"	����80KL����#

����������
��������"�	�!;	"�#

,

MacDonald.book Page 849 Wednesday, December 21, 2005 9:06 PM

850 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

Dissecting the Code…

Here’s what happens in the GetStockQuote() function:

1. A new StockInfo object is created.

2. The corresponding Symbol is specified for the StockInfo object.

3. The StockInfo object is passed to another function that fills it with information.
This function is called FillQuoteFromDB().

The FillQuoteFromDB() function isn’t visible to remote clients because it lacks the
WebMethod attribute. It isn’t even visible to other classes or code modules, because it’s
defined with the Private keyword. Typically, this function will perform some type of data-
base lookup. It might return information that is confidential and should not be made
available to all clients. By putting this logic into a separate function, you can separate the
code that determines what information the client should receive and still have the ability
to retrieve the full record if your web service code needs to examine or modify other infor-
mation. Generally, most of the work that goes into creating a web service—once you
understand the basics—will be spent trying to decide the best way to divide its function-
ality into separate procedures.

You might wonder how the client will understand the StockInfo object. In fact, the
object is really just returned as a blob of XML or SOAP data. If you invoke this method
through the test page, you’ll see the result shown in Figure 22-7.

Figure 22-7. The result from GetStockQuote() as a data object

MacDonald.book Page 850 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 851

But ASP.NET is extremely clever about custom objects. When you use a class like
StockInfo in your web service, it adds the definition directly into the WSDL document:

��!��

��$$$

���
���"���4>!����	"��������E�+��

�����
�
�:�����

�������
����"����"��C����
��6��"	4C����
��6���	"���*�����

����������!����
�&���"	����

�������
����"����"��C����
��6��"	4C����
��6���	"����!"���

�������������	�����������!����
�
��������

�������
����"����"��C����
��6��"	4C����
��6���	"���7���0KL�����

����������!����
�&���"	����

�������
����"����"��C����
��6��"	4C����
��6���	"�����80KL�����

����������!����
�&���"	����

�������
����"����"��C����
��6��"	4C����
��6���	"�����"�	�!;	"��

�������������	�����������!����
�
��������

������
�
�:�����

����
���"���4>!��

���!��

When you generate a client for this web service, a proxy class will be created automati-
cally. It will define the StockInfo class and convert the XML data into a StockInfo object.
The end result is that all the information will return to your application in the form you
expect, just as if you had used a local function. You’ll see an example in the next chapter.

Incidentally, it’s up to you whether you use full property procedures or just public vari-
ables—the effect is the same. This means you could just as easily rewrite the StockInfo
class using property procedures like this:

��������	

������E�+�

%

��������	���&���"	�������#

��������	���
������
!"��#

��������	���&���"	������0KL����#

��������	���&���"	����80KL����#

��������	���
��������"�	�!;	"�#

MacDonald.book Page 851 Wednesday, December 21, 2005 9:06 PM

852 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

����������&���"	��*����

����%

������������%������������#,

��������
���%�	�����������#,

����,

����������
�������!"��#

����%

������������%�������
!"��#,

��������
���%�	������
!"��#,

����,

�������(=�"	��&����+��������!������&���
��"����&$)

,

From the standpoint of the web service client, this version of the StockInfo class is
completely equivalent to the version shown earlier. That’s because any code you place in
a property procedure (other than the code that sets or gets the value) is ignored when the
class is generated on the client side. If you think about it, this makes sense. The StockInfo
class definition is used to create the WSDL definition, and the client code is generated
based on the WSDL document. The WSDL document never contains code.

RETURNING HISTORICAL DATA FROM STOCKQUOTE

It may interest you to model a class for a web service that returns historical information that is used to create
a price graph. You could implement this in a few ways. For example, you might use a function that requires
the starting and ending dates and returns an array that contains a number of chronological price quotes. Your
client code would then determine how much information was returned by checking the upper bound of the
array. The web method definition would look something like this:

1��2����&()3

������&���"	�13�'��7�
���!(
������������<

�9	��>�"��
�	��<�9	��>�"����&)

Alternatively, you might use a function that accepts a parameter specifying the number of required
entries and the time span:

1��2����&()3

������&���"	�13�'��7�
���!(
������������<

��>�"���	�������&<�������"��C+?�����
)

In either case, it’s up to you to find the best way to organize a web service. The process is a long and
incremental one that often involves performance tuning and usability concerns. Of course, it also gives you a
chance to put everything you’ve learned into practice and get into the fine details of ASP.NET programming.

MacDonald.book Page 852 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 853

Consuming a Web Service
Microsoft has repeatedly declared that its ambition with programming tools such as
Visual Studio, the CLR, and the .NET class library is to provide a common infrastructure
for application developers, who will then need to create only the upper layer of business-
specific logic. Web services hold true to that promise. In the following sections, you’ll see
how you can call a web service method as easily as a method in a local class.

Configuring a Web Service Client in Visual Studio

When developing and testing a web service in Visual Studio, it’s often easiest to add both
the web service and the client application to the same solution. This allows you to test and
change both pieces at the same time. You can even use the integrated debugger to set
breakpoints and step through the code in both the client and the server as though they
were really a single application!

To work with both projects at once in Visual Studio, follow these steps:

1. Open the web service application (in this case, the StockQuote service).

2. Select File ➤ Add ➤ New Web Site (assuming you want to create a web client).

3. Choose ASP.NET Web Site, give it a title (for example, enter StockQuoteClient), and
click OK.

4. You should set the new project as the start-up project (otherwise, you’ll just see the
web service test page when you click the Start button). To make this adjustment,
right-click the new project in the Solution Explorer, and choose Set As StartUp
Project.

Your Solution Explorer should now look like Figure 22-8.

Figure 22-8. Two projects in Solution Explorer

MacDonald.book Page 853 Wednesday, December 21, 2005 9:06 PM

854 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

Once you’ve created a solution that has both the web service and the client, you might
want to save a solution file so you can quickly load this combination again. To do this,
select the first item in the Solution Explorer (the solution name). Then, choose File ➤ Save
[SolutionName].sln As.

By default, Visual Studio saves the solution file in a user-specific temporary location.
However, you can save it somewhere that’s more easily accessible for future use. Once
you’ve saved the .sln solution file, you can double-click it in Windows Explorer to launch
Visual Studio with both projects.

■Note You don’t need to create a virtual directory in advance for your web client project. You do need to
create a virtual directory for your web service project (as described in the previous chapter), because the cli-
ent needs to know where to find the web service.

The Role of the Proxy Class

Web services communicate with other .NET applications through a special ingredient
called the proxy class. The proxy class sits between the code in your client application and
the web service.

When you (the client) want to call a web method, you call the corresponding method of
the proxy object. The proxy class then silently fetches the results for you using SOAP calls.
Strictly speaking, you don’t need to use a proxy class—you could create and receive the
SOAP messages on your own. However, this process is quite difficult and involves a degree
of low-level understanding and complexity that would make web services much less use-
ful. The proxy class simplifies life because it takes care of details such as communicating
over the network, waiting for a response, parsing the result out of the SOAP message that’s
returned from the web service, and so on.

You can create a proxy class in .NET in two ways:

• You can use the WSDL.exe command-line tool.

• You can use the Visual Studio web reference feature.

Both of these approaches produce essentially the same result because they use the
same classes in the .NET Framework to perform the actual work. In the following sections,
you’ll try both approaches.

MacDonald.book Page 854 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 855

Creating a Web Reference in Visual Studio

Even when two projects are added to the same solution, they still have no way to commu-
nicate with each other. To set up this layer of interaction, you need to create a special
proxy class. In Visual Studio, you create this proxy class by adding a web reference. Web
references are similar to ordinary references, but instead of pointing to assemblies with
ordinary .NET types, they point to a URL with a WSDL contract for a web service.

■Note Before you can add a web reference, you should save and compile the web service application
(right-click the project, and choose Build Web Site in Visual Studio). Otherwise, the client might get outdated
information about the web services you provide or be unable to see them.

To create a web reference, follow these steps:

1. Right-click the client project in the Solution Explorer, and select Add Web
Reference.

2. The Add Web Reference dialog box opens, as shown in Figure 22-9. This dialog box
provides options for searching web registries or entering a URL directly.

Figure 22-9. The Add Web Reference dialog box

MacDonald.book Page 855 Wednesday, December 21, 2005 9:06 PM

856 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

3. You can browse directly to your web service by entering a URL that points to the .asmx
file. The test page will appear in the previous window (as shown in Figure 22-10), and
the Add Reference button will be enabled.

Figure 22-10. Adding a web reference

4. Change the value for the web reference name if you want to put your web reference
in a different namespace. By default, the namespace is chosen to match the name
of the server where the web service resides (and is localhost for web services on the
current computer).

5. To add the reference to this web service, click Add Reference at the bottom of the
window.

6. Now your computer (the web server for this service) will appear in the Web
References group for your project in the Solution Explorer (see Figure 22-11).

■Note The web reference you create uses the WSDL contract and information that exists at the time you
add the reference. If the web service changes, you’ll need to update your proxy class by right-clicking the
server name (localhost, in this case) and choosing Update Web Reference.

MacDonald.book Page 856 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 857

Figure 22-11. The web reference

You can add a web reference only to a single .asmx file at a time. If you have more than
one web service in the same web application, you need to add a separate web service for
each one you want to use. For example, the downloadable examples have two versions of
the StockQuote web service—one that uses a data object and one that doesn’t. If you
decide to use both, you’ll need to add two web references.

Creating a Proxy with WSDL.exe

You can also generate the proxy class by hand; you just use a utility called WSDL.exe that is
included with the .NET Framework. (You can find this file in the .NET Framework directory,
which is typically in a path similar to c:\Program Files\Microsoft.NET\SDK\v2.0\Bin. Visual
Studio users have the WSDL.exe utility in the C:\Program Files\Microsoft Visual Studio
2005\SDK\v2.0\Bin directory.)

In most cases, you’ll use the Visual Studio web reference feature instead of WSDL.exe.
But sometimes WSDL.exe makes more sense:

• You need to configure advanced options that Visual Studio doesn’t provide. For
example, you can use WSDL.exe to generate proxies for different web services that
use the same set of objects.

• You want to look at the proxy class code. With an ASP.NET client, the proxy class
code is created when the application executes for the first time, and you never get
to see it.

• You aren’t using Visual Studio.

MacDonald.book Page 857 Wednesday, December 21, 2005 9:06 PM

858 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

WSDL.exe is a command-line utility, so it’s easiest to use by opening a command
prompt window. (Click the Start button, and choose Programs ➤ Visual Studio 2005 ➤
Visual Studio Tools ➤ Visual Studio 2005 Command Prompt.)

The syntax for WSDL.exe is as follows:

8
&����	���	����	���	�������������������������	"�
�	���"!;	"���	��������+����	"�

�������
���	"���
���	"����	

8��&��	

8��&��&�"	���&�"	������������	��

Table 22-2 describes these parameters, along with a few additional details.

Table 22-2. WSDL.exe Command-Line Parameters

A typical WSDL.exe command might look something like this:

8
&����	"�
�	������	���
������������	���
�����������
�����������$	
"4@��9�

Parameter Meaning

language This is the language in which the class is written. If you don’t make a
choice, the default is C#.

protocol Usually, you’ll omit this option and use the default (SOAP). However,
you could also specify HttpGet and HttpPost for slightly more limiting
protocols.

namespace This is the .NET namespace that your proxy class will use. If you omit
this parameter, no namespace is used, and the classes in this file are
available globally. For better organization, you should probably
choose a logical namespace.

out This allows you to specify the name for the generated file. By default,
this is the name of the service followed by an extension indicating the
language (such as StockQuote.cs). You can always rename this file after
it’s generated.

username, password,
and domain

You should specify these values if the web server requires
authentication to access the discovery and WSDL documents.

url or path This is the last portion of the WSDL.exe command line, and it specifies
the location of the WSDL file for the web service.

appsettingurlkey The is the configuration setting that’s used to store the web service URL.
You can change this configuration setting if your web service moves to
another server.

fields If you use this option, any data objects that the web service uses will be
generated with public member variables instead of public properties.

sharetypes This allows you to add a reference to two or more web services that use
the same data objects. This ensures that any data object classes are
created only once. More important, you can use the same data objects
with both web services.

MacDonald.book Page 858 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 859

In this case, a StockQuote.cs file is created with the proxy class code. You can add this
class to your ASP.NET application (in the App_Code folder) and use it to communicate
with the web service.

■Note You can use a web service without WSDL.exe or Visual Studio. In fact, you don’t even need a proxy
class. All you need is a program that can send and receive SOAP messages. After all, web services are
designed to be cross-platform. However, unless you have significant experience with another tool (such as the
Microsoft SOAP Toolkit), the details are generally frustrating and unpleasant. .NET provides the prebuilt infra-
structure you need to guarantee easy, error-free operation.

Dissecting the Proxy Class

On the surface, Visual Studio makes it seem like all you need is a simple link to your web
service. In reality, whenever you add a web reference, Visual Studio creates a proxy class
for you automatically. To really understand how web service clients work, you need to
take a look at this class.

Unfortunately, you won’t see the file for the proxy class in your client project. That’s
because ASP.NET generates it automatically when you run your application. If you want
to study the proxy class code, you’ll need to create the proxy class using WSDL.exe (as
described in the previous section), or you’ll need to add a web reference to another type
of application that doesn’t use the same compile-on-demand model (such as a Windows
application).

■Note You’ll learn how to create a Windows client in Chapter 23. For now, you can experiment with the
WSDL.exe tool or just review the code that’s shown next.

The proxy class has the same name as the web service class. It inherits from
SoapHttpClientProtocol, which has a fair bit of built-in functionality. Here’s the declara-
tion for the proxy class that provides communication with the StockQuote service:

��������	

�������������

��!
��"$��$�������
$*�������
$��	�7���������*�������

%�$$$�,

MacDonald.book Page 859 Wednesday, December 21, 2005 9:06 PM

860 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

The StockQuote class contains the same methods as the StockQuote web service.
This class acts as a stand-in for the remote StockQuote web service. When you call a
StockQuote method, you’re really calling a method of this local class. This class then per-
forms the SOAP communication as required to contact the “real” remote web service. The
proxy class acquires its ability to communicate in SOAP through the .NET class library. It
inherits from the SoapHttpClientProtocol class and binds its local methods to web service
methods with prebuilt .NET attributes. In other words, the low-level SOAP details are hid-
den not only from you but also from the proxy class, which relies on ready-made .NET
components from the System.Web.Services.Protocols namespace.

For example, here’s the GetStockQuote() method as it’s defined in the proxy class:

1�!
��"$��$�������
$*�������
$��	�9���"���2����&/�������()3

������&���"	��'������������(
������������)

%

������D���13���
���
������
$E�����(�'�������������<

���������8��D���13�%������,)#

�����������((&���"	�)(��
���
1J3))#

,

You’ll notice that this method doesn’t contain any of the business code you created in
the web service. (In fact, the client has no way to get any information about the internal
workings of your web service code—if it could, this would constitute a serious security
breach.) Instead, the proxy class contains the code needed to query the remote web ser-
vice and convert the results. In this case, the method calls the base
SoapHttpClientProcotol.Invoke() to create the SOAP message and start waiting for the
response. The final line of code converts the returned object into a decimal value.

If you’re using the version, of the StockService that uses the StockInfo data object,
you’ll see a similar version of the GetStockQuote() method, with one key difference:

1�!
��"$��$�������
$*�������
$��	�9���"���2����&/�������()3

��������	��(��	�'������������(
������������)

%

������D���13���
���
������
$E�����(�'�������������<

���������8��D���13�%������,)#

�����������((��	��(��)(��
���
1J3))#

,

As you can see, the proxy class not only handles the SOAP communication layer but
also handles the conversion from XML to .NET objects and data types as needed. If .NET
types were used directly with web services, it would be extremely difficult to use them
from other non-Microsoft platforms.

Of course, you might wonder how the client can manipulate a StockInfo object—after
all, you defined this object in the web service, not the client. This is another web service
trick. When Visual Studio builds the proxy class, it automatically checks the parameter

MacDonald.book Page 860 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 861

and return types of each method that’s defined in the WSDL document. If it determines
that a custom class is required, it creates a definition for that class in the proxy file.

You’ll see this class definition after the proxy class in the same file:

�������	���	����	

������E�+�

%

��������	���&���"	�������B���&#

��������	���
������
!"��B���&#

��������	���&���"	������0KL����B���&#

��������	���&���"	����80KL����B���&#

��������	���
��������"�	�!;	"�B���&#

����������&���"	��*����

����%

������������%�����������
$�����B���&#�,

��������
���%����
$�����B���&����	���#�,

����,

����������
�������!"��

����%

������������%�����������
$
!"��B���&#�,

��������
���%����
$
!"��B���&����	���#�,

����,

����������&���"	��7���0KL����

����%

������������%�����������
$����0KL����B���&#�,

��������
���%����
$����0KL����B���&����	���#�,

����,

����������&���"	����80KL����

����%

������������%�����������
$��80KL����B���&#�,

��������
���%����
$��80KL����B���&����	���#�,

����,

����������
��������"�	�!;	"�

����%

������������%�����������
$��"�	�!;	"�B���&#�,

��������
���%����
$��"�	�!;	"�B���&����	���#�,

����,

,

MacDonald.book Page 861 Wednesday, December 21, 2005 9:06 PM

862 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

Because you now have a definition for the StockInfo class, you can create your own
StockInfo objects directly and work with them locally. Unlike the StockQuote proxy class,
the StockInfo class doesn’t participate in any SOAP messages or Internet communication;
it’s just a simple data class.

■Note Remember, the data class on the client won’t necessarily match the data class in the web service.
Visual Studio simply looks for all public properties and member variables in the web service version and cre-
ates a client-side version that consists entirely of public properties. (Visual Studio uses properties instead of
public variables because that gives you support for data binding.) Any code you’ve placed in the web service
version of the class (whether it’s in methods, property procedures, or constructors) is ignored completely.

The proxy class also contains some additional code you haven’t seen for implementing
asynchronous functionality, which allows a client to initiate a web service request and
continue working, without waiting for the response. The client will be notified later when
the response is received.

This is a useful technique in desktop applications where you don’t want to become
bogged down waiting for a slow Internet connection. However, the examples in this chapter
focus on ASP.NET clients, which don’t benefit as much from asynchronous consumption
because the page isn’t returned to the client until all the code has finished processing.

Dynamic Web Service URLs

When you create a web reference with Visual Studio, the location is stored in a configura-
tion file. This is useful because it allows you to change the location of the web service
when you deploy the application, without forcing you to regenerate the proxy class.

The exact location of this setting depends on the type of application. If the client is a
web application, this information will be added to the web.config file, as shown here:

�@4"�����
�����6$J������&�������+GM�@

����+����	����

���	���������

�����	&&���!�����	���
�$?"���!��
��������

������	���������������	���
�����������
6�?"���!��
�������$	
"4��

����	���������

��$$$

�����+����	����

If you’re creating a different type of client application, such as a Windows applica-
tion, the configuration file will have a name in the format [AppName].exe.config.

MacDonald.book Page 862 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 863

For example, if your application is named SimpleClient.exe, the configuration file will be
SimpleClient.exe.config. You must follow this naming convention.

■Tip Visual Studio uses a little sleight of hand with named configuration files. In the design environment,
the configuration file will have the name App.config. However, when you build the application, this file will be
copied to the build directory and given the appropriate name (to match the executable file). The only exception
is if the client application is a web application. All web applications use a configuration file named web.config,
no matter what filenames you use. That’s what you’ll see in the design environment as well.

If you use WSDL.exe to generate your proxy class, the default URL isn’t stored in a
configuration file—it’s hard-coded in the constructor. To change this behavior, just use
/appsettingurlkey. For example, you could use this command line:

8
&������������	���
�����������
�����������$	
"4��	��
�����������!��
N��

In this case, the key is stored with the key WsUrl in the <appSettings> section.

Using the Proxy Class
Using the proxy class is easy. In most respects, it isn’t any different from using a local
class. The following sample page uses the StockQuote service and displays the informa-
tion it retrieves in a label. You could place this snippet of code into a Page.Load event
handler.

������	���	������E�+���D����+���!������
���
$

���	���
�$�����E�+��8
E�+�#

������	�������	���	��8��
����������4!���	

$

���	���
�$�����������8
�����8����	���
�$����������()#

����	�������8��
�������"����&$

8
E�+����8
$'������������(�2�B>�)#

��=�
���$>�4����8
E�+�$��"�	�!;	"��5����
�	�����5�8
E�+�$*����$>�������()#

The whole process is quite straightforward. First, the code creates a StockInfo object to
hold the results. Then the code creates an instance of the proxy class, which allows access
to all the web service functionality. Finally, the code calls the web service method using
the proxy class and catches the returned data in the StockInfo object. Notice that the
proxy class is placed in the localhost namespace, because this proxy class was created

MacDonald.book Page 863 Wednesday, December 21, 2005 9:06 PM

864 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

through the Visual Studio web reference feature with a web reference name of localhost.
If you create a proxy class using WSDL.exe, this isn’t the case—in fact, the proxy class isn’t
placed into any namespace, which means it’s in the global namespace and is always
available.

Figure 22-12 shows the result in a test web page.

Figure 22-12. Calling a web service in a web page

As you experiment with your project, remember that it doesn’t have a direct connec-
tion to your web service. Whenever you change the web service, you’ll have to rebuild
it (right-click the web service project, and select Build), and then update the web refer-
ence (right-click the client project’s localhost reference, and select Update Web
Reference). Until you perform these two steps, your client will not be able to access any
new methods or methods that have modified signatures (different parameter lists).

Waiting and Timeouts

You might have noticed that the proxy class (StockQuote) really contains many more mem-
bers than just the three methods shown in the source code. In fact, it acquires a substantial
amount of extra functionality because it inherits from the SoapHttpClientProtocol class. In
many scenarios, you won’t need to use any of these additional features. In some cases, how-
ever, they will become useful. One example is with the Timeout property.

The Timeout property allows you to specify the maximum amount of time you’re will-
ing to wait, in milliseconds. The default (–1) indicates that you’ll wait as long as it takes,
which could make your web application unacceptably slow if you attempt to perform a
number of operations with an unresponsive web service.

When using the Timeout property, you need to include error handling. If the Timeout
period expires without a response, an exception will be thrown, giving you the chance
to notify the user about the problem. By default, the timeout is 100,000 milliseconds
(10 seconds).

MacDonald.book Page 864 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 865

In the following example, the simple StockQuote client has been rewritten to use a
timeout:

���	���
�$����������09	�	CD����8
�����8����	���
�$����������09	�	CD���()#

���>��
���"�����8����	���!����	���8��"����&��	��
���������O
���	���&$

8
$>�"�������PJJJ#�����P<JJJ�"����
����&
��
�P�
����&
$

��!

%

��������	�������8��
�������"����&$

�������	���
�$�����E�+��8
E�+����8
$'������������(�2�B>�)#

������=�
���$>�4����8
E�+�$��"�	�!;	"��5����
�	�����5�8
E�+�$*����$>�������()#

,

�	����(�!
��"$;��$��?4�����������)

%

�����+�(���$��	��
������?4���������	��
$>�"����)

����%

����������=�
���$>�4��������
���������"�&�����	+����P�
����&
$�#

����,

������
�

����%

����������=�
���$>�4�����/��������!����+������"��������&$�#

����,

,

Web Service Errors

Of course, a typical web service call could lead to other types of errors. For example, the
code in your web method could generate an error. To try this, you can create the following
error-prone web method:

1��2����&3

���������&��	�
�/�?����()

%

��������8���8�9���&�-!Q���?4�������()#

,

You might assume (quite reasonably) that when the client calls this method, it will
receive a DivideByZeroException. However, this actually isn’t the case. That’s because web
services are designed to be thoroughly interoperable, and as a result they don’t support the
idea of .NET exceptions. And that makes sense—after all, you might call a .NET web service,
or you might call a web service created with some other programming framework with a

MacDonald.book Page 865 Wednesday, December 21, 2005 9:06 PM

866 C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S

different set of exception objects or a different way of handling errors. (And even if ASP.NET
supported .NET exceptions in SOAP messages, you can imagine how a problem could occur
if a web method threw a custom exception. The client might not have the required custom
exception class, leaving it unable to process the error.)

Instead, when an unhandled exception occurs in a web method, ASP.NET catches the
exception and sends a SOAP fault message to the client. When the proxy class receives this
fault message, it throws a System.Web.Services.Protocols.SoapException. In other words,
no matter what caused the error condition, your code will receive a SoapException. The
SoapException.Message property will reveal more details, including the original excep-
tion name.

Here’s how you can catch this exception on the client:

���	���
�$?������������8
�����8����	���
�$?�����������#

��!

%

��������	�������8��
�������"����&$

����?�����������$�	�
�/�?����()#

,

�	����(�!
��"$��$�������
$*�������
$��	�?4�����������)

%

������=�
���$>�4�����/���������������&��������8��"����&���&�$���� �#

������=�
���$>�4��5���>����������
���5����$2�

	��#

,

■Tip Whenever you make a web service call, you should add exception handlers for WebException and
SoapException.

Connecting Through a Proxy

The proxy class also has some built-in intelligence that allows you to reroute its HTTP
communication with special Internet settings. By default, the proxy class uses the Internet
settings on the current computer. In some networks, this may not be the best approach.
You can override these settings by using the Proxy property of the web service proxy class.

■Tip In this case, the term proxy is being used in two ways: as a proxy that manages communication
between a client and a web service and as a proxy server in your organization that manages communication
between a computer and the Internet.

MacDonald.book Page 866 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 2 ■ C R E A T I N G W E B S E R V I C E S 867

For example, if you need to connect through a computer called ProxyServer using
port 80, you could use the following code before you called any web service methods:

��*��4!�����������*��4!�����8���*��4!(�*��4!�������<�MJ)#

���	���
�$�����������8
�����8����	���
�$����������()#

8
$*��4!�������������*��4!#

The WebProxy class has many other options that allow you to configure connections in
more complicated scenarios.

The Last Word
In ASP.NET, designing a web service is almost as easy as creating an ordinary business
class. But to use web services well, you need to understand the role they play in enterprise
applications. Web services aren’t the best way to share functionality between different
web pages or web applications on a web server, because of the overhead needed to send
SOAP messages over the network. However, they are an excellent way to connect different
software packages or glue together the internal systems of separate companies.

In the next chapter, you’ll learn how to go further with web services. You’ll use more
advanced features such as state management, security, and transactions, and you’ll learn
how to call a web service from Windows application.

MacDonald.book Page 867 Wednesday, December 21, 2005 9:06 PM

MacDonald.book Page 868 Wednesday, December 21, 2005 9:06 PM

869

■ ■ ■

C H A P T E R 2 3

Enhancing Web Services

The past couple of chapters examined how to create and consume basic web services.
You learned how to code the StockQuote web service and how to call it from an ASP.NET
web client. In this chapter, you’ll add a few more frills to the mix, including state manage-
ment, security, and transactions. As you’ll see, not all of these features lend themselves
easily to the web services model. Although these features are available, some complicate
your web service and don’t keep to the cross-platform ideal of SOAP. In many cases the
best web services are the simplest web services.

Finally, for a little more fun, you’ll see how to access a real, mature web service on the
Internet: Microsoft’s TerraService, which exposes a vast library of millions of satellite pic-
tures from a database that is 1.5 terabytes in size. You’ll build both a web client and a
Windows client that perform a few basic tasks with TerraService.

State Management
Web services are usually designed as stateless classes. This means a web service provides
a collection of utility functions that don’t need to be called in any particular order and
don’t retain any information between requests.

This design is used for a number of reasons. First, retaining any kind of state uses mem-
ory on the web server, which reduces performance as the number of clients grows.
Another problem is that contacting a web service takes time. If you can retrieve all the
information you need at once and process it on the client, it’s generally faster than making
several separate calls to a web service that maintains state.

Several kinds of state management are available in ASP.NET, including using the
Application and Session collections or using custom cookies. All of these techniques are
also applicable to web services. However, with web services, session management is dis-
abled by default. Otherwise, the server needs to check for session information each time a
request is received, which imposes a slight overhead.

You can enable session state management for a specific method by using the
EnableSession property of the WebMethod attribute:

���������	
�������������������

MacDonald.book Page 869 Wednesday, December 21, 2005 9:06 PM

870 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

Before you implement state management, make sure you review whether you can
accomplish your goal in another way. Many ASP.NET gurus believe that maintaining state
is, at best, a performance drag and is, at worse, a contradiction to the philosophy of light-
weight stateless web services. For example, instead of using a dedicated function to
submit client preferences, you could add extra parameters to all your functions to accom-
modate the required information. Similarly, instead of allowing a user to manipulate a
large DataSet stored in the Session collection on the server, you could return the entire
object to the client and then clear it from memory.

■Tip When evaluating state management, you have to consider many application-specific details. But in
general, it’s always a good idea to reduce the amount of information stored in memory on the web server,
especially if you want to create a web service that can scale to serve hundreds of simultaneous users.

What happens when you have a web service that enables session state management for
some methods but disables it for others? Essentially, disabling session management just
tells ASP.NET to ignore any in-memory session information and withhold the Session col-
lection from the current procedure. It doesn’t cause existing information to be cleared
from the collection (that will happen only when the session times out). The only perfor-
mance benefit you’re receiving is from not having to look up session information when it
isn’t required.

The StockQuote Service with State Management

The following example introduces state management into the StockQuote web service:

������������
������������������	�������������������� ����!�"

�# �����������$%%&&&!���������!�� %���������

�����������������'����(������������$�����������

)

����������	
�������������������

�����������	��� ��*�������'����
��������������

����)

��������%%�+���� ������������!�,��������������������������������

��������%%������������������������-�������.�����������!

��������/���������!0���
�1

�����������
/��������������������������

MacDonald.book Page 870 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 871

��������)

������������/��������������������21

��������3

������������

��������)

������������/��������������������
����/������������������4�21

��������3

��������/���������!5�0���
�1

�����������
������������������������

��������)

������������������������������21

��������3

������������

��������)

������������������������������
��������������������4�21

��������3

��������%%�6���!

���������������������!0�����1

����3

�������������	
�������������������

�����������7������+����*�������5���
��������������

����)

��������7������+���������������&�7������+���
�1

��������������!*����6�8��������
����/�����������������1

��������������!�������6�8��������
�������������������1

���������������������1

����3

3

������������7������+���

)

���������������*����6�8�����1

����������������������6�8�����1

3

MacDonald.book Page 871 Wednesday, December 21, 2005 9:06 PM

872 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

This example allows the StockQuote service to record how much it has been used.
Every time the GetStockQuote() method is called, two counters are incremented. One is a
global counter that tracks the total number of requests for that stock quote from all cli-
ents. The other one is a session-specific counter that represents how many times the
current client has requested a quote for the specified stock. The Ticker string is used to
name the stored item. This means if a client requests quotes for 50 different stocks, 50 dif-
ferent counter variables will be created. Clearly, this system wouldn’t be practical for
large-scale use. One practice that this example does follow correctly is that of locking the
Application collection before updating it. This can cause a significant performance slow-
down, but it guarantees that the value will be accurate even if multiple clients are
accessing the web service simultaneously.

To view the counter information, you can call the GetStockUsage() function with the
ticker for the stock you’re interested in. A custom object, CounterInfo, is returned to you
with both pieces of information.

It’s unlikely that you’d design an application to store this much usage information in
memory, but it gives you a good indication of how you can use session and application state
management in a web service just as easily as in an ASP.NET page. Note that session state
automatically expires after a preset amount of time, and both the Session and Application
collections will be emptied when the application is stopped. For more information about
ASP.NET state management, refer to Chapter 9.

Consuming a Stateful Web Service

If you try to use a stateful web service, you’re likely to be frustrated. Every time you re-create
the proxy class, a new session ID is automatically assigned, which means you won’t be able
to access the session information from the previous request. To counter this problem, you
need to take extra steps to preserve the cookie that has the session ID.

In a web client, you’ll need to store the session ID between requests and then reapply
it to the proxy object just before you make a call to the web service. You can use just about
any type of storage: a database, a local cookie, view state, or even the Session collection for
the current web page. In other words, you could store information for your web service
session in your current (local) page session.

If the previous discussion seems a little confusing, it’s because you need to remind
yourself that this example really has two active sessions. The web service client has one
session, which is maintained as long as the user reading your site doesn’t close the
browser. The web service itself also has its own session. (In fact, the web service could
even be hosted on a different web server.) The web service session can’t be maintained
automatically because you don’t communicate with it directly. Instead, the proxy class
bears the burden of holding the web service session information. Figure 23-1 illustrates
the difference.

MacDonald.book Page 872 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 873

Figure 23-1. Session cookies with a web client

The next example sheds some light on this situation. This example uses a variant, called
StockQuote_SessionState, of the original web service that you saw in the previous chapter.
It provides two methods: the standard GetStockQuote() method and a GetStockUsage()
method that returns a CounterInfo object with information about how many times the
web method was used.

Your client is a simple web page with two buttons and a label. Every time the Call
Service button is clicked, the GetStockQuote() method is invoked with a default parame-
ter. When the Get Usage Info button is clicked, the GetStockUsage() method is called,
which returns the current usage statistics. Information is added to the label, creating a log
that records every action.

������������������9���	��������������,����$�:��

)

�������������������!�����'����(������������&���

�������&���������!�����'����(�����������
�1

������������	����	�� 	*��7������(7����
;�<�������	��"������/������

����)

����������������!7������+����&�+���1

��������&�+������&�!*�������5���
���9,��1

��������%%�/		����������� ����������������!

�����������6�����!,�=��4���>�?*����$���4�&�+���!*����6�8�����!,�������
�1

�����������6�����!,�=��4���>���%?�������$��1

�����������6�����!,�=��4��&�+���!�������6�8�����!,�������
��4��>���%?>%�?�1

����3

MacDonald.book Page 873 Wednesday, December 21, 2005 9:06 PM

874 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

������������	����	�� 	7���������(7����
;�<�������	��"������/������

����)

��������	��� �����������&�!*�������'����
���9,��1

��������%%�/		������� ����� �����������������!

�����������6�����!,�=��4���*�������'������������9,�6������	��1

�����������6�����!,�=��4��������!,�������
��4��>���%?�1

����3

3

Unfortunately, every time this button is clicked, the proxy class is re-created, and a
new session is used. The output on the page tells an interesting story: after clicking cmd-
CallService four times and cmdGetCounter once, the web service reports the right
number of global application requests but the wrong number of session requests, as
shown in Figure 23-2.

Figure 23-2. A failed attempt to use session state

To fix this problem, you need to set the CookieContainer property of the proxy class. First
be sure to import the System.Net class, which has the cookie classes this example needs:

�������-��� !#��1

The next step is to modify the event handlers. In the following example, the event han-
dlers call two private functions: GetCookie() and SetCookie(). These methods are called
immediately before and after the web method call.

��������	����	�� 	*��7������(7����
;�<�������	��"������/������

)

������������!7������+����&�+���1

MacDonald.book Page 874 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 875

����*��7�����
�1

����&�+������&�!*�������5���
���9,��1

�������7�����
�1

����%%�/		����������� ����������������!

�������6�����!,�=��4���>�?*����$���4�&�+���!*����6�8�����!,�������
�1

�������6�����!,�=��4���>���%?�������$��1

�������6�����!,�=��4��&�+���!�������6�8�����!,�������
��4��>���%?>%�?�1

3

��������	����	�� 	7���������(7����
;�<�������	��"������/������

)

����*��7�����
�1

����	��� �����������&�!*�������'����
���9,��1

�������7�����
�1

����%%�/		������� ����� �����������������!

�������6�����!,�=��4���*�������'������������9,�6������	��1

�������6�����!,�=��4��������!,�������
��4��>���%?�1

3

The GetCookie() method initializes the CookieContainer for the proxy class, enabling it
to send and receive cookies. It also tries to retrieve the cookie from the current session.

����������	�*��7�����
�

)

����%%�+������.���������=-������7�����7��������������������������������!

����&�!7�����7������������&�7�����7�������
�1

����%%�+�����������������	"�������������������=-�����!

����%%�,������-����������&��@���������	��������������������������� �����

����%%����������������������	!

�������
�������������������7��������A�������

����)

��������%%�7���������������<���"��	���-������������������� �������������!

��������7�������������7�����1

���������������7��������
7�������������������������7�������1

��������&�!7�����7�������!/		
�������7������1

����3

3

MacDonald.book Page 875 Wednesday, December 21, 2005 9:06 PM

876 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

The SetCookie() method explicitly stores the web service session cookie in session state:

����������	����7�����
�

)

����%%�6���������	��������������������������������=���� �!

����%%�,���������������&-�������	������������������

����%%�����	�/�:!#�,(�������+	!

����5���&�5�������&�5��
�����$%%����������1

����7�����7��������������������&�!7�����7�������!*��7������
&�5���1

�����������������������7�������������������/�:!#�,(�������+	��1

3

The code could have been simplified somewhat if it stored the whole cookie collection
instead of just the session cookie, but this approach is more controlled.

Now the page works correctly, as shown in Figure 23-3.

DOES SESSION STATE MANAGEMENT MAKE SENSE WITH A WEB SERVICE?

Because web services are destroyed after every method call, they don’t provide a natural mechanism for stor-
ing state information. You can use the Session collection to compensate for this limitation, but this approach
raises the following complications:

• Session state will disappear when the session times out. The client will have no way of knowing when
the session times out, which means the web service may behave unpredictably.

• Session state is tied to a specific user, not to a specific class or object. This can cause problems if the
same client wants to use the same web service in two different ways or creates two instances of
the proxy class at once.

• Session state is maintained only if the client preserves the session cookie. The state management you
use in a web service won’t work if the client fails to take these steps.

MacDonald.book Page 876 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 877

Figure 23-3. A successful use of session state

Web Service Security
Most of the security issues that relate to web pages also affect web services. For example,
web services transmit messages using clear text, which means a malicious user with
access to the network could easily spy on confidential information or even modify a mes-
sage as it’s transmitted. To prevent both of these possibilities in a web service that
requires complete confidentiality, your best bet is SSL, as described in Chapter 18. SSL
doesn’t mesh perfectly with the world of web services—it’s a little more heavyweight than
is ideal, and it complicates business-to-business transactions with multiple web ser-
vices—but it’s the safest choice for today’s web services. Other SOAP-based encryption
and signing standards that address these problems are evolving, but they’re still in flux.
You can get more information and even try them in your web services by downloading
Microsoft’s WSE (Web Services Enhancements) toolkit at ����$%% �	�! ��������!�� %
&����������%����	���%&��. Just expect to adapt as the standards of today continue to
change.

Along with the issue of encryption, web services may also need the same ability to
authenticate users as web pages. For example, you may want to verify that a user is
allowed to access a web service (or a particular web method) before you perform a task.

MacDonald.book Page 877 Wednesday, December 21, 2005 9:06 PM

878 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

You have two options for setting up authentication with a web service:

• Your first option is to use the Windows authentication features that are built into IIS
and ASP.NET. Chapter 18 describes these standard security features. The only dif-
ference between ASP.NET security in a web service and in a web page is that a web
service doesn’t present any user interface, so it cannot request user credentials on
its own. It has to rely on the calling code or rely on having the user logged on under
an authorized account.

■Note Windows authentication is a realistic solution only if all your users are on the same network, running
Windows, and have preexisting user accounts.

• For maximum flexibility, you can create and use your own login and authentication
code. Sadly, forms authentication won’t help you here—its reliance on cookies and
its assumption that end user will log in through a web page mean it won’t work in a
web service scenario. However, you can use the membership features discussed in
Chapter 19 to reduce the code you write for the login process.

In the following sections, you’ll consider both approaches.

Windows Authentication with a Web Service

Windows authentication works with a web service in much the same way it works with a
web page. The difference is that a web service is executed by another application, not
directly by the browser. For that reason, a web service has no built-in way to prompt the
user for a user name and password. Instead, the application that’s using the web service
needs to supply this information. The application might read this information from a con-
figuration file or database, or it might prompt the user for this information before
contacting the web service.

For example, consider the following web service, which provides a single
TestAuthenticated() method. This method checks whether the user is authenticated.
If the user is authenticated, it returns the full user name.

��������������������������$��-��� !���!��������!����������

)

�������������	
��

������������������,���/����������	
�

����)

�����������
A5���!+	�����-!+�/����������	�

MacDonald.book Page 878 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 879

��������)

��������������������#�������������	!�1

��������3

������������

��������)

��������������������/����������	��$���4�5���!+	�����-!# �1

��������3

����3

3

■Note To use this approach, you also need to ensure the <authentication> tag is set to use Windows
authentication (the default), and you need to configure the authentication protocols you want to support
using IIS Manager. Chapter 18 has the full details about configuring a web application to use Windows
authentication.

The first time you test this web service, you’ll find that the user isn’t authenticated.
As with a web page, authentication springs into action only when you explicitly deny
anonymous users. To do this, you can configure the virtual directory in IIS Manager (as
described in Chapter 18) or add an authorization rule that targets a specific page or folder.
For example, here’s what you need to require authentication for the SecureService.asmx
method:

>������������?

������������	�
�����������������������

��������������������

�������������������������	�

�������������������	�����������

��������������������������	�

���������������������

�������������	�

����>�-��� !&��?

������!!!

����>%�-��� !&��?

>%������������?

It’s not possible to turn authentication on or off for individual methods. As a result, if
you want some methods to use authentication and others to not require it, you’ll need to
code these methods in separate web services.

MacDonald.book Page 879 Wednesday, December 21, 2005 9:06 PM

880 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

If you request this page in a browser, you’ll get the expected result. The browser will
authenticate you, and the web service will return your full user name, which is a string in
the form [DomainName]\[UserName] or [ComputerName]\[UserName]).

However, if you try to call your web service from a client, you won’t be as lucky. Instead,
you’ll receive an Access Denied error message. This indicates that authentication was
required but the client didn’t supply the correct authentication credentials.

The problem is that, by default, the proxy class won’t supply any authentication infor-
mation (unlike a browser, which prompts the user to log in). To submit user credentials to
this service, the client needs to modify the NetworkCredential property of the proxy class.
You have two options:

• You can create a new NetworkCredential object and attach this to the
NetworkCredential property of the proxy object. When you create the Network-
Credential object, you’ll need to specify the user name and password you want to
use. This approach works with all forms of Windows authentication.

• If the web service is using Integrated Windows authentication, you can
automatically submit the credentials of the current user by using the static
DefaultCredentials property of the CredentialCache class and applying that to the
NetworkCredential property of the proxy object.

Both the CredentialCache and NetworkCredential classes are found in the System.Net
namespace. Thus, before continuing, you should import this namespace:

�������-��� !#��1

You’ll also need to add a reference to the System.Security.dll assembly that defines
the credential classes. To do this, choose Website ➤ Add Reference, and select the
System.Security entry in the .NET tab.

The following code shows a web page with two buttons. One button performs an unau-
thenticated call, while the user submits some user credentials. The unauthenticated call
will fail if you’ve disabled anonymous users for the web application. Otherwise, the unau-
thenticated call will succeed, but the TestAuthenticated() method will return a string
informing you that authentication wasn’t performed. The authenticated call will always
succeed as long as you submit credentials that correspond to a valid user on the web
server.

������������������,���������	��������$�:��

)

������������	����	�� 	5�����������	(7����
;�<�������	��"������/������

MacDonald.book Page 880 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 881

����)

����������������!��������������&������&���������!�������������
�1

�����������+���!,�=����&�!,���/����������	
�1

����3

������������	����	�� 	/����������	(7����
;�<�������	��"������/������

����)

����������������!��������������&������&���������!�������������
�1

��������%%�������-��� ����������	���������������&����������!

��������%%�,�����= ��������������������������*����/��������&�����������&��	

��������%%��*�����!

��������#��&���7��	���������	�����������&�#��&���7��	�����

�����������*����/�������"��*������1

��������&�!7��	������������	������1

�����������+���!,�=����&�!,���/����������	
�1

����3

3

Figure 23-4 shows what the web page looks like after a successfully authenticated call
to the computer fariamat.

Figure 23-4. Successful authentication through a web service

MacDonald.book Page 881 Wednesday, December 21, 2005 9:06 PM

882 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

If you wanted to use the credentials of the currently logged-in account with Integrated
Windows authentication, you would use this code instead:

��������!��������������&������&���������!�������������
�1

&�!7��	���������7��	�����7���!������7��	������1

���+���!,�=����&�!,���/����������	
�1

Keep in mind that this probably won’t have the result you want in a deployed web
application. On a live web server, the current user account is always the account that
ASP.NET is using, not the user account of the remote user who is requesting the web page.
(For example, if you’re using IIS 5, the ASPNET account runs all ASP.NET code.) However,
this technique makes sense in a Windows application. In this case, when you retrieve the
default credentials, you’ll submit the account information of the user who is running the
application.

■Note Forms authentication won’t work with a web service because there’s no way for a web service to
direct the user to a web page. In fact, the web service might not even be accessed through a browser—it
might be used by a Windows application or even an automated Windows service.

Ticket-Based Authentication

Many web services use their own custom authentication systems. Usually, they use a form
of ticket-based authentication to increase performance and make the coding model. With
ticked-based authentication, clients call a specific web method in the web service to log
in, at which point they will supply credentials (such as a user name and password combi-
nation). The login method will then create a new, unique ticket and return it to the client.
From this point, the client can use any method in the web service, as long the client sup-
plies the ticket.

The benefit of ticket-based authentication is that you need only one authentication step,
which is properly separated from the rest of your code. On subsequent requests, your web
service can verify the ticket rather than authenticating the user against the database, which
is always faster (in a properly designed ticket system). Finally, ticket-based authentication
allows you to take advantage of SOAP headers (which you’ll see shortly). SOAP headers
make the ticket management and authorization process transparent to the client.

Fortunately, you can get most of the benefits of a ticked-based authentication system
without writing your own authentication logic. Instead, you can use the membership and
role management features that ASP.NET provides (as discussed in Chapter 19). It’s still up
to you to transfer the user credentials and keep track of who has logged in by issuing and
verifying tickets. However, you don’t need to write the authentication code that checks
whether a user and password combination is valid.

MacDonald.book Page 882 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 883

The following example shows how you could adapt the StockQuote service to use
ticked-based authentication:

������������
������������������	�������������������� ����!�"

�# �����������$%%&&&!���������!�� %���������

�����������������'����(�������-�$�����������

)

�������������	�

�����������0������B�-�0����
�����������# �"�����������&��	�

����)

�����������
�� �������!C��	��5���
����# �"����&��	��

��������)

������������%%�*������������������-� 	�������

������������%%��� ����	� ���8�����������������!

������������0������B�-���-�����&�0������B�-
�1

��������������-!,��������*��	!#�&*��	
�!,�������
�1

������������%%�/		�������-���<���������������������!

������������/������������-!,�����������-1

���������������������-1

��������3

������������

��������)

������������%%�7����������������&��������������	��������������!

����������������&���&��������-�=�������
�5�������.�	!��1

��������3

����3

�������������	�

���������������*�������'����
�������������"�0������B�-���-�

����)

�����������
AC����-B�-
��-!,�������

��������)

����������������&���&��������-�=�������
�5�������.�	!��1

��������3

������������

��������)

������������%%�#�� ��*�������'�������	�����������!

�������������������������!0�����1

��������3

����3

MacDonald.book Page 883 Wednesday, December 21, 2005 9:06 PM

884 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

����������������C����-B�-
��������������

����)

��������%%�0��������������-���� ����������@�����	!

��������0������B�-���-���/��������������������0������B�-1

���������������
�������A�������1

����3

3

������������0������B�-

)

������������������,�����1

3

Dissecting the Code…

• Before using any method in this class, the client must call the Login() method and
store the received license key. Every other web method will require that license key.

• The Login() method uses the Membership class, which performs the user authenti-
cation for you. To use membership in a web application, you need to configure the
membership database. However, if you’re using SQL Server 2005 Express Edition,
the default settings will create the required database for you in the App_Data direc-
tory automatically. Chapter 19 has the full details.

• The LicenseKey class uses a GUID. This is a randomly generated 128-bit number
that is guaranteed to be statistically unique. (In other words, the chance of generat-
ing two unique GUIDs in a web service or guessing another user’s GUID is
astronomically small.) You could also add other information to the LicenseKey class
about the current user to retrieve later as needed. For example, you could keep track
of the date when the license was issued.

• The same private function—VerifyKey()—is used regardless of what web method is
invoked. This ensures that the license verification code is written in only one place
and is used consistently.

• The Login() method stores the key in server memory using application state. The
Application collection has certain limitations, including no support for multiple
web servers (web farms). The tickets will also be lost if the web application restarts.

MacDonald.book Page 884 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 885

■Note You could add data caching to this design to get around the limitations of the Application class. With
data caching, you would store every key in two places—in the database, which would be used as a last resort,
and duplicated in the in-memory cache. The VerifyKey() function would perform the database lookup only if
the cached item was not found. For more information about caching, refer to Chapter 26. However, even if
you make this enhancement, the essential design of this web service remains the same. The only difference
is how the LicenseKey is stored and retrieved in between requests.

Ticket-Based Authentication with SOAP Headers

The potential problem with this example is that it requires a license key to be submitted
with each method call as a parameter. This can be a bit tedious. To streamline this pro-
cess, you can use a custom SOAP header.

SOAP headers are separate pieces of information that are sent, when required, in the
header section of a SOAP message. These headers can contain all the same data types you
use for method parameters and return values. The advantage of SOAP headers is just the
convenience. The client specifies a SOAP header once, and the header is automatically
sent to every method that needs it, making the coding clearer and more concise. You can
also change the header details without being forced to edit the signature of every web
method.

To create a custom SOAP header, you first need to define a class that inherits from the
SoapHeader class (which is found in the System.Web.Services.Protocols namespace). You
can then add all the additional pieces of information you want it to contain as member
variables. In the following example, the SOAP header simply stores the license key:

������������0������B�-D�	���$��-��� !���!��������!:��������!���D�	��

)

������������������,�����1

�����������0������B�-D�	��
��������������

����)

��������,��������������1

����3

�����������0������B�-D�	��
�

����)

��������,��������*��	!#�&*��	
�!,�������
�

����3

3

MacDonald.book Page 885 Wednesday, December 21, 2005 9:06 PM

886 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

Notice that this class is slightly enhanced over the previous version. The default con-
structor now generates a random ticket value automatically.

Next, your web service needs a public member variable to receive the SOAP header:

�����������������'����(����������-�$�����������

)

����
����������	�� ��!������ ��!�����"

����%%�
;�����&�������������	�����������!�

3

The web service requires one last ingredient. Each web service method that wants
to access the LicenseKeyHeader must explicitly indicate this requirement with a
SoapHeader attribute. The attribute indicates the web service member variable where the
header should be placed.

���������	�

#���
!�����$ ��!�����%�&�������	����
!�����&�������	�'	()

�����������*�������'����
��������������

)�!!!�3

The Direction parameter indicates that this method receives the header with the ticket
information. That’s different from the Login() method, which creates the header and
returns it to the client.

The complete web service is quite similar to the earlier example. The chief difference is
that when the client calls the Login() method, no information is provided as a return
value. Instead, a LicenseKeyHeader is created and sent silently to the client. The next time
the client calls any methods, this header is transmitted automatically, which means those
methods don’t need to accept key information through their parameters.

Here’s the full code:

������������
������������������	�������������������� ����!�"

�# �����������$%%&&&!���������!�� %���������

�����������������'����(�������-�$�����������

)

�����������0������B�-D�	���B�-D�	��1

�������������	�

��������D�	��
�B�-D�	���"��������������D�	�����������!;����

��������������	�0����
�����������# �"�����������&��	�

MacDonald.book Page 886 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 887

����)

�����������
�� �������!C��	��5���
����# �"����&��	��

��������)

������������%%�*������������������-"��	������������������;/:���	��!

������������B�-D�	�������&�0������B�-
�1

������������%%�����������B�-D�	�����<���������������������!

������������/����������B�-D�	��!,���������B�-D�	��1

��������3

������������

��������)

������������%%�7����������������&��������������	��������������!

����������������&���&��������-�=�������
�5�������.�	!��1

��������3

����3

�������������	�

��������D�	��
�B�-D�	���"��������������D�	�����������!+���

���������������*�������'����
��������������

����)

��������%%�*���������-���� ������;/:���	��!

�����������
AC����-B�-
B�-D�	����

��������)

����������������&���&��-��� !�������-!�������-�=�������
�5�������.�	!��1

��������3

������������

��������)

������������%%�#�� ��*�������'�������	�����������!

�������������������������!0�����1

��������3

����3

����������������C����-B�-
��������������

����)

��������%%�0��������������-���� ����������@�����	!

��������0������B�-D�	�����-���/��������������������0������B�-D�	��1

���������������
�������A�������1

����3

3

MacDonald.book Page 887 Wednesday, December 21, 2005 9:06 PM

888 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

■Caution SOAP messages are sent over the network as ordinary text. This means if you create an authen-
tication system like this, malicious users could watch network traffic and intercept passwords as they are sent
from the client to the web service. To solve this problem, you can use SSL with your web service to encrypt
all the messages that are exchanged. Refer to Chapter 18 for more information.

Using SOAP Headers in the Client

Some web services allow information to be specified once and used for multiple methods
automatically. This technique works through SOAP headers. In the previous chapter, you
saw a web service that used a SOAP header to receive and maintain security credentials.
When you create a client for this service, the custom SoapHeader class is copied into the
proxy file.

Using this web service is remarkably easy. First you call the login method and supply
your user credentials:

%%�7���������&��������������=-�����!

��������!�����'����(����������-�&������&���������!�����'����(����������-
�1

%%�0�����!

&�!0����
�����5����"��������� ���1

If this test succeeds, the web service issues a new ticket, which is attached to the proxy
object. From this point, whenever you call a web method that needs the SecurityHeader,
it will be transmitted automatically.

	��� ����������&�!*�������'����
���9,��1

In other words, you set the header once and don’t need to worry about supplying any
additional security information, as long as you use the same instance of the proxy class.
The online examples include a simple example of a web service client that uses a SOAP
header for authentication.

Web Service Transactions
Transactions are an important feature in many business applications. They ensure that a
series of operations either succeeds or fails as a unit. Transactions also prevent the possi-
bility of inconsistent or corrupted data that can occur if an operation fails midway
through after committing only some of its changes. The most common example of a
transaction is a bank account transfer. When you move $100 from one account to another,
two actions take place: a withdrawal in the first account and a deposit in the second. If

MacDonald.book Page 888 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 889

these two tasks are a part of a single transaction, they will either both succeed or both fail.
It will be impossible for one account to be debited if the other isn’t credited.

Web services can participate in COM+ transactions but in a somewhat limited way.
Because of the stateless nature of HTTP, web service methods can act only as the root
object in a transaction. This means a web service method can start a transaction and use
it to perform a series of related tasks, but multiple web services cannot be grouped into
one transaction. As a result, you may have to put in some extra thought when you’re cre-
ating a transactional web service. For example, it won’t make sense to create a financial
web service with separate DebitAccount() and CreditAccount() methods, because they
won’t be able to be grouped into a transaction. Instead, you can make sure both tasks exe-
cute as a single unit using a transactional TransferFunds() method.

To use a transaction in a web service, you first have to add a reference to the
System.EnterpriseServices.dll assembly. To do this, choose Website ➤ Add Reference, and
select the System.EnterpriseServices entry on the .NET tab.

You can now import the corresponding namespace so the types you need
(TransactionOption and ContextUtil) are at your fingertips:

�������-��� !������������������1

To start a transaction in a web service method, set the TransactionOption property of
the WebMethod attribute. TransactionOption is an enumeration providing several values
that allow you to specify whether a code component uses or requires transactions.
Because web services must be the root of a transaction, most of these options don’t apply.
To create a web service method that starts a transaction automatically, use the following
attribute:

���������	
,��������;������,��������;�����!6�8�����#�&��

The transaction is automatically committed when the web method completes. The
transaction is rolled back if any unhandled exception occurs or if you explicitly instruct
the transaction to fail using the following code:

7����=�5���!���/����
�1

Most databases support COM+ transactions. The moment these databases are used in
a transactional web method, they will automatically be enlisted in the current transac-
tion. If the transaction is rolled back, the operations you perform with these databases
(such as adding, modifying, or removing records) will be automatically reversed. How-
ever, some operations (such as writing a file to disk) aren’t inherently transactional. That
means these operations will not be rolled back if the transaction fails.

Now consider the following web method, which takes two actions: it deletes records in
a database and then tries to read from a file. However, if the file operation fails and the
exception isn’t handled, the entire transaction will be rolled back, and the deleted records
will be restored.

MacDonald.book Page 889 Wednesday, December 21, 2005 9:06 PM

890 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

���������	
,��������;������,��������;�����!6�8�����#�&��

����������	�5�	�������
�

)

����%%�7�����/�;!#�,���<����!

�����������������������������

���������7����������������!7������������������#����&��	��!7���������������1

�����8�7������������������&��8�7���������
�����������������1

�����8�7� �	�� 	�����&��8�7� �	
���0�,��E�96;���������"�����1

����%%�/���-�������	��!�,����&����������������	�����������������������!

����������
����

����)

�����������!;���
�1

��������� 	!�=�����#��'���-
�1

����3

����%%�,�-���������������!�,����������������=���������������@����	��	!

����%%�,���&��� ����	�&������������	"��	������������&������������	����!

����9������� ��������&�9�������
�	���(���(�=���!����"�9�����	�!;����1

����%%�
+�����������������������	"�����	�����������

����%%������ ����	������&�������� ����	���	��!

3

Another way to handle this code is to catch the error, perform any cleanup that’s
required, and then explicitly roll back the transaction if necessary:

���������	
,��������;������,��������;�����!6�8�����#�&��

����������	�5�	�������
�

)

����%%�7�����/�;!#�,���<����!

�����������������������������

���������7����������������!7������������������#����&��	��!7���������������1

�����8�7������������������&��8�7���������
�����������������1

�����8�7� �	�� 	�����&��8�7� �	
���0�,��E�96;���������"�����1

����%%�/���-�������	��!

������-

����)

�����������!;���
�1

��������� 	!�=�����#��'���-
�1

MacDonald.book Page 890 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 891

��������9������� ��������&�9�������
�	���(���(�=���!����"�9�����	�!;����1

����3

��������

����)

��������7����=�5���!���/����
�1

����3

���������-

����)

�����������!7����
�1

����3

3

Does a web service need to use COM+ transactions? It all depends on the situation. If
multiple updates are required in separate data stores, you may need to use transactions to
ensure your data’s integrity. If, on the other hand, you’re modifying values only in a single
database, you can probably use the data provider’s built-in transaction features instead.

An Example with TerraService
Now that you know how to use a web service, you aren’t limited just to using the web ser-
vices that you create. In fact, the Internet is brimming with sample services you can use to
test your applications or to try new techniques. In the future, you’ll even be able to buy
prebuilt functionality you can integrate into your ASP.NET applications by calling a web
service. Typically, you’ll pay for these services using some kind of subscription model.
Because they’re implemented through .NET web services and WSDL contracts, you won’t
need to install anything extra on your web server.

The next sections cover how to use one of the more interesting web services:
Microsoft’s TerraService. TerraService is based on the hugely popular TerraServer site
where web surfers can view topographic maps and satellite photographs of most of the
globe. The site was developed by Microsoft’s research division to test SQL Server and
increase Microsoft’s boasting ability. Under the hood, a 1.5TB SQL Server 2000 database
stores all the pictures that are used as a collection of millions of different tiles. You can
find out more about TerraServer at ����$%%�����������!���.

To promote .NET, Microsoft has equipped TerraServer with a web service interface
that allows you to access the TerraServer information. Using this interface (called
TerraService) isn’t difficult, but creating a polished application with it is. Before you can
really understand how to stitch together different satellite tiles to create a large picture,
you need to have some basic understanding of geography and projection systems. You
can find plenty of additional information about it at the TerraServer site. However,
because this book is about .NET and not geography, your use of TerraService will be fairly

MacDonald.book Page 891 Wednesday, December 21, 2005 9:06 PM

892 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

straightforward. Once you understand the basics, you can continue experimenting with
additional web methods and create a more extensive application based on TerraService.

Adding the Reference

The first step is to create a new ASP.NET application and add a web reference. In Visual
Studio, you start by returning to the Add Web Reference dialog box. The TerraService web
service is located at ����$%%�����������!���%,����������!� =. Type it into the
Address text box, and press Enter. The TerraService text page will appear (see Figure 23-5).

Figure 23-5. Adding a TerraService web reference

You can see from the displayed test page that there are approximately 15 functions. At
the time of this writing, no additional information is provided on the test page (indicating
that Microsoft doesn’t always follow its own recommendations). To read about these
methods, you’ll have to browse the site on your own.

Click Add Reference to create the Web Reference. The WSDL document and discovery
files will be created under the namespace net.terraservice, as shown in Figure 23-6.

MacDonald.book Page 892 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 893

Figure 23-6. The TerraService files in Visual Studio

Testing the Client

Before continuing too much further, it makes sense to try a simple method to see whether
the web service works as expected. A good choice to start is the simple GetPlaceFacts()
method, which retrieves some simple information about a geographic location that you
supply. In this case, the TerraService documentation (and the Visual Studio IntelliSense)
informs you that this method requires the use of two special classes: a Place class (which
specifies what you’re searching for) and a PlaceFacts class (which provides you with the
information about your place). These classes are available in the net.terraservice
namespace.

The following example retrieves information about a place named Seattle when a but-
ton is clicked and displays it in a label. The process is split into two separate subroutines
for better organization, although this isn’t strictly required.

����������!�����������!,������������������&����!�����������!,����������
�1

����������	�� 	���&(7����
;�<�������	��"������/������

)

����%%�7���������:������<��������������!

�������!�����������!:���������:��������&����!�����������!:���
�1

���������:���!7��-�����������1

���������:���!������������������1

���������:���!7�����-����5��1

����%%������������:���9������<�����������������-��������� ����!

�������!�����������!:���9��������1

MacDonald.book Page 893 Wednesday, December 21, 2005 9:06 PM

894 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

����%%�7�������&����������� ����	!

�������������!*��:���9���
�����:����1

����%%������-�������������&���������������������������!

�������&:���9���
�����1

3

����������	����&:���9���
���!�����������!:���9���������

)

�������6�����!,�=��4���>�?:���$���4�����!:���!7��-�4��>%�?>���%?>���%?�1

�������6�����!,�=��4������!:���!�����4��"���4�����!:���!7�����-1

�������6�����!,�=��4���>���%?�0�$���4�����!7�����!0�!,�������
�1

�������6�����!,�=��4���>���%?�0���$���4�����!7�����!0��!,�������
�1

�������6�����!,�=��4���>���%?>���%?�1

3

The result is a successful retrieval of information about the city of Seattle, including its
longitude, latitude, and country, as shown in Figure 23-7.

Figure 23-7. Retrieving information from TerraService

MacDonald.book Page 894 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 895

Searching for More Information

The TerraService documentation doesn’t recommend relying on the GetPlaceFacts()
method, because it’s able to retrieve information only about the first place with the
matching name. Typically, many locations share the same name. Even in the case of
Seattle, several landmark locations are stored in the TerraServer database along with the
city itself. All these places start with the word Seattle.

The GetPlaceList() method provides a more useful approach, because it returns an
array with all the matches. When using GetPlaceList(), you have to specify a maximum
number of allowed matches to prevent your application from becoming tied up with an
extremely long query. You also have a third parameter, which you can set to true to
retrieve only results that have corresponding picture tiles in the database or to false to
return any matching result. Typically, you would use true if you were creating an applica-
tion that displays the satellite images for searched locations. You’ll also notice that the
GetPlaceList() function accepts a place name directly and doesn’t use a Place object.

To demonstrate this method, add a second button to the test page, and use the follow-
ing code:

����������	�� 	���&/��(7����
;�<�������	��"������/������

)

����%%�6������������ ������������
�����������-�B��������!

�������!�����������!:���9����������/��-1

��������/��-�����!*��:���0���
�B��������"�2FF"������1

����%%�0��������������������������"��	�	����-���� !

�����������
���!�����������!:���9����������������/��-�

����)

�����������&:���9���
�����1

����3

3

The result is a list of about 50 matches for places with the name Kingston, as shown in
Figure 23-8.

MacDonald.book Page 895 Wednesday, December 21, 2005 9:06 PM

896 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

Figure 23-8. Retrieving place matches

Displaying a Tile

By this point, you’ve realized that using TerraService isn’t really different from using any
other DLL or code library. The only difference is that you’re accessing it over the Internet.
In this case, it’s no small feat: the TerraServer database contains so much information that
it would be extremely difficult to download over the Internet. Providing an organized,
carefully limited view through a web service interface solves all these problems.

The next example shows your last trick for a web service. It retrieves the closest matching
tile for the city of Seattle and displays it. To display the tile, the example takes the low-level
approach of using Response.WriteBinary(). In a more advanced application, a significant
amount of in-memory graphical manipulation might be required to get the result you want.
Figure 23-9 shows the retrieved tile.

MacDonald.book Page 896 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 897

����������	�� 	���&:��(7����
;�<�������	��"������/������

)

����%%�����������������!

�������!�����������!:���������:��������&����!�����������!:���
�1

���������:���!7��-�����������1

���������:���!������������������1

���������:���!7�����-����5��1

����%%�*�������:���9��������������!

�������!�����������!:���9��������1

�������������!*��:���9���
�����:����1

����%%�6������������� ���"������

����%%�����������	�,�� ����� ����������� ������������������ �����!

�������!�����������!,�������������1

���������������!*��,������9�� 0��0�:�
����!7�����"

��������!�����������!,�� �!:����"����!�����������!����!����2G �1

����%%�6������������� ��!

�����-������ �������!*��,���
������!+	�1

����%%������-������ ��!

����6�������!H���-�����
� ���1

3

Figure 23-9. A tile from TerraService

MacDonald.book Page 897 Wednesday, December 21, 2005 9:06 PM

898 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

This example uses two additional TerraService methods. GetTileMetaFromLonLatPt()
retrieves information about the tile at a given point. This function finds out what tile con-
tains the center of Seattle. The GetTile() method retrieves the binary information
representing the tile by using the TileID provided by GetTileMetaFromLonLatPt().

You’ll probably also want to combine several tiles, which requires the use of other
TerraService methods. You can find the full set of supported methods documented at
����$%%�����������!���%. Once again, using these methods requires an understanding
of graphics and geography, but the method don’t require any unusual use of web services.
The core concept—remote method calls through SOAP communication—remains
the same.

Windows Clients
Because this book focuses on ASP.NET, you haven’t had the chance to see one of the main
advantages of web services. Quite simply, they allow desktop applications to use pieces of
functionality from the Internet. This allows you to provide a rich, responsive desktop
interface that periodically retrieves any real-time information it needs from the Internet.
The process is almost entirely transparent. As high-speed access becomes more common,
you may not even be aware of which portions of functionality depend on the Internet and
which ones don’t.

You can use web service functionality in a Windows application in the same way you
would use it in an ASP.NET application. First, you create the proxy class using Visual
Studio or the WSDL.exe utility. Then, you add code to create an instance of your web ser-
vice and call a web method. The only difference is the upper layer: the user interface the
application uses.

If you haven’t explored desktop programming with .NET yet, you’ll be happy to know
you can reuse much of what you’ve learned in ASP.NET development. Many web controls
(such as labels, buttons, text boxes, and lists) closely parallel their .NET desktop equiva-
lents, and the code you write to interact with them can often be transferred from one
environment to the other with few changes. In fact, the main difference between desktop
programming and web programming in .NET is the extra steps you need to take in web
applications to preserve information between postbacks and when transferring the user
from one page to another.

MacDonald.book Page 898 Wednesday, December 21, 2005 9:06 PM

C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S 899

The following example shows the form code for a simple Windows TerraService client
that uses the GetPlaceList() web method. It has been modified to search for a place that
the user enters in a text box and display the results in a list box. The basic designer code,
which creates the controls and sets their initial properties, has been omitted. (This plays
the same role as the control tags in the .aspx web page file.)

���������������������	�&�,���7������$��-��� !���	�&�!9�� �!9��

)

����%%�
+������.�������	��� ����	!�

��������������!�����������!,������������������&���������

���������!�����������!,����������
�1

��������������	�� 	���&(7����
;�<�������	��"������/������

����)

��������%%�6������������ �����������!

�����������!�����������!:���9����������/��-1

������������/��-�����!*��:���0���
�=�:���!,�=�"�2FF"������1

��������%%�0��������������������������"��	�	����-���� !

���������������
���!�����������!:���9����������������/��-�

��������)

���������������&:���9���
�����1

��������3

����3

��������������	����&:���9���
���!�����������!:���9���������

����)

�����������������&+�� 1

����������&+�� ����:���$���4�����!:���!7��-�4��"��1

����������&+�� �4������!:���!�����4��"���4�����!:���!7�����-1

�����������:����!+�� �!/		
��&+�� �1

����3

3

Figure 23-10 shows the interface for this application.

MacDonald.book Page 899 Wednesday, December 21, 2005 9:06 PM

900 C H A P T E R 2 3 ■ E N H A N C I N G W E B S E R V I C E S

Figure 23-10. A Windows client for TerraService

Of course, Windows development contains many other possibilities, which are covered
in many other excellent books. The interesting part from your vantage point is that a
Windows client can interact with a web service just like an ASP.NET application does. This
raises a world of new possibilities for integrated Windows and web applications.

The Last Word
This chapter explored some more ideas for developing your web services. You took an
in-depth look at web service security and considered when (and if) it makes sense to use
session state and transactions in a web service.

To keep learning about web services, it helps to look at examples on the Web, such
as TerraService. For even more experimentation, consider some of the following web
services:

• XMethods (����$%%&&&!= ����	�!��) is a more general web service catalog. It
includes many web services you can use in .NET applications, such as a currency
exchange reporter and a delayed stock quote. Even though most of these web ser-
vices run on non-.NET platforms, you can use them in your .NET applications
seamlessly.

• Microsoft’s MapPoint (����$%% �	�! ��������!�� %�����-%��I��%	������%
�� �%���(������ ��!��) is an interesting example that enables you to access
high-quality maps and geographical information. MapPoint isn’t free, but you can
use a free trial of the web service.

MacDonald.book Page 900 Wednesday, December 21, 2005 9:06 PM

■ ■ ■

P A R T 6

Advanced ASP.NET

MacDonald.book Page 901 Thursday, December 22, 2005 3:04 PM

MacDonald.book Page 902 Thursday, December 22, 2005 3:04 PM

903

■ ■ ■

C H A P T E R 2 4

Component-Based
Programming

Component-based programming is a simple, elegant idea. When used properly, it allows
your code to be more organized, consistent, and reusable. It’s also incredibly easy to
implement in a .NET application, because you never need to use the Windows registry or
perform any special configuration.

A component, at its simplest, is one or more classes that are compiled into a separate
DLL assembly file. These classes provide some unit of logically related functionality. You
can access a component in a single application, or you can share the component between
multiple applications. Your web pages (or any other .NET application) can use the classes
in your components in the same way they use any other .NET class. Best of all, your com-
ponent provides exactly the features your code requires and hides all the other messy
details.

When combined with careful organization, component-based programming is the
basis of good ASP.NET application design. In this chapter, you’ll examine how you can
create components (and why you should) and consider examples that show you how to
encapsulate database functionality with a well-written business object. You’ll also learn
how to bind your database component to the web controls on a page using the
ObjectDataSource.

Why Use Components?
To master ASP.NET development, you need to become a skilled user of the .NET class
library. So far, you’ve learned how to use .NET components designed for storing user ses-
sions, reading files, and interacting with databases. Though these class library ingredients
are powerful, they aren’t customizable, which is both an advantage and a weakness.

For example, if you want to retrieve data from a SQL Server database, you need to
weave database details (such as SQL queries) directly into your code-behind class or (if
you’re using the SqlDataSource) into the .aspx markup portion of your web page file.
Either way if the structure of the database changes even slightly, you could be left with

MacDonald.book Page 903 Thursday, December 22, 2005 3:04 PM

904 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

dozens of pages to update and retest. To solve these problems, you need to create an extra
layer between your web page code and the database. This extra layer takes the form of a
custom component.

This database scenario is only one of the reasons you might want to create your own
components. Component-based programming is really just a logical extension of good
code-organizing principles, and it offers a long list of advantages:

Safety: Because the source code isn’t contained in your web page, you can’t modify it.
Instead, you’re limited to the functionality your component provides. For example,
you could configure a database component to allow only certain operations with spe-
cific tables, fields, or rows. This is often easier than setting up complex permissions in
the database. Because the application has to go through the component, it needs to
play by its rules.

Better organization: Components move the clutter out of your web page code. It also
becomes easier for other programmers to understand your application’s logic when it’s
broken down into separate components. Without components, commonly used code
has to be copied and pasted throughout an application, making it extremely difficult to
change and synchronize.

Easier troubleshooting: It’s impossible to oversell the advantage of components when
testing and debugging an application. Component-based programs are broken down
into smaller, tighter blocks of code, making it easier to isolate exactly where a problem
is occurring.

More manageability: Component-based programs are much easier to enhance and
modify because the component and web application code can be modified separately.
That means you don’t necessarily have to recompile your web application to use an
updated data access routine.

Code reuse: Components can be shared with any ASP.NET application that needs the
component’s functionality. Even better, any .NET application can use a component,
meaning you could create a common “backbone” of logic that’s used by a web applica-
tion and an ordinary Windows application.

Simplicity: Components can provide multiple related tasks for a single client request
(writing several records to a database, opening and reading a file in one step, or even
starting and managing a database transaction). Similarly, components hide details—
an application programmer can use a database component without worrying about

MacDonald.book Page 904 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 905

the database name, the location of the server, or the user account needed to connect.
Even better, you can perform a search using certain criteria, and the component itself
can decide whether to use a dynamically generated SQL statement or stored
procedure.

Performance: If you need to perform a long, time-consuming operation, you can create
a component that works asynchronously. That allows you to perform other tasks with
the web page code and return to pick up the result later.

■Note Some of these advantages are possible just by using separate classes in your web application. How-
ever, separate components offer a higher level of code separation and reuse, including the ability to manage
and compile different code units separately and even write them in different .NET languages.

Component Jargon
Component-based programming is sometimes shrouded in a fog of specialized jargon.
Understanding these terms helps sort out exactly what a component is supposed to do,
and it also allows you to understand MSDN articles about application design. If you’re
already familiar with the fundamentals of components, feel free to skip ahead.

Three-Tier Design

The idea of three-tier design is that the functionality of most complete applications can be
divided into three main levels (see Figure 24-1). The first level is the user interface (or pre-
sentation tier), which displays controls and receives and validates user input. All the event
handlers in your web page are in this first level. The second level is the business tier, where
the application-specific logic takes place. For an e-commerce site, application-specific
logic includes rules such as how shipping charges are applied to an order, when certain
promotions are valid, and what customer actions should be logged. It doesn’t involve
generic .NET details such as how to open a file or connect to a database. The third level is
the data tier, where the application’s information is stored in files or a database. The third
level contains logic about how to retrieve and update data, such as SQL queries or stored
procedures.

MacDonald.book Page 905 Thursday, December 22, 2005 3:04 PM

906 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

Figure 24-1. Three-tier design

The important detail about three-tier design is that information travels from only one
level to an adjacent level. In other words, your user interface code shouldn’t try to directly
access the database and retrieve information. Instead, it should go through the second
level and then arrive at the database.

This basic organization principle can’t always be adhered to, but it’s a good model to
follow. When you create a component it’s almost always used in the second level to bridge
the gap between the data and the user interface. In other words, if you want to fill a list of
product categories in a list box, your user interface code calls a component, which gets the

MacDonald.book Page 906 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 907

list from the database and then returns it to your code. Your web page code is isolated
from the database—and if the database structure changes, you need to change one con-
cise component instead of every page on your site.

Encapsulation

If three-tier design is the overall goal of component-based programming, encapsulation is
the best rule of thumb. Encapsulation is the principle that you should create your appli-
cation out of “black boxes” that hide information. So, if you have a component that logs a
purchase on an e-commerce site, that component handles all the details and allows only
the essential variables to be specified.

For example, this component might accept a user ID and an order item ID and then
handle all the other details. The calling code doesn’t need to worry about how the compo-
nent works or where the data is coming from—it just needs to understand how to use the
component. (This principle is described in a lot of picturesque ways. For example, you
know how to drive a car because you understand its component interface—the steering
wheel and pedals—not because you understand the low-level details about internal com-
bustion and the engine. As a result, you’re able to transfer your knowledge to many
different types of automobiles, even if they have dramatically different internal workings.)

Data Objects

Data objects are used in a variety of ways. In this book, the term refers to a custom object
that you make that represents a certain grouping of data. For example, you could create a
Person class that has properties such as Height, Age, and EyeColor. Your code can then
create data objects based on this class. You might want to use a data object to pass infor-
mation from one portion of code to another. (Note that data objects are sometimes used
to describe objects that handle data management. This isn’t the way you’ll see me use
them in this book.)

Business Objects

The term business object often means different things to different people. Generally, busi-
ness objects are the components in the second level of your application that provide the
extra layer between your code and the data source. They are called business objects
because they enforce business rules. For example, if you try to submit a purchase order
without any items, the appropriate business object would throw an exception and refuse
to continue. In this case, no .NET error has occurred—instead, you’ve detected the pres-
ence of a condition that shouldn’t be allowed according to your application’s logic.

MacDonald.book Page 907 Thursday, December 22, 2005 3:04 PM

908 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

In this chapter’s examples, business objects are also going to contain data access code.
In an extremely complicated, large, and changeable system, you might want to further
subdivide components and actually have your user interface code talking to a business
object, which in turn talks to a data object that interacts with the data source. However,
for most programmers, this extra step is overkill, especially with the increased level of
consistency ADO.NET provides.

Creating a Simple Component
Technically, a component is just a collection of one or more classes that are compiled
together as a unit. For example, Microsoft’s System.Web.dll is a single (but very large)
component that provides the objects found in many of the System.Web namespaces.

So far, the code examples in this book have used only a few types of classes—mainly
custom web page classes that inherit from System.Web.UI.Page and contain mostly event
handling procedures. Component classes, on the other hand, usually won’t include any
user interface logic (which would limit their use unnecessarily) and don’t need to inherit
from an existing class. They are more similar to the custom web service classes described
in Part 4 of this book, which collect related features together in a series of utility methods.

The Component Class
To create a component, you create a new class library project in Visual Studio. Just select
File ➤ New Project, and choose the Class Library project template in the Add New Project
dialog box (see Figure 24-2). You’ll need to choose a file location and project name.

WEB SERVICES VS. COMPONENTS

Web services provide some of the same opportunities for code reuse as custom components. However, web
services are primarily designed as an easy way to share functionality across different computers and plat-
forms. A component, on the other hand, isn’t nearly as easy to share with the wide world of the Internet, but
it is far more efficient for sharing internally (for example, between different applications in the same company
or different websites on the same server). For that reason, web services and components don’t directly com-
pete—in fact, a web service could even use a component (or vice versa). In some cases, you might find
yourself programming a site with a mixture of the two, putting the code that needs to be reused in-house into
components and putting the functionality that needs to be made publicly available into web services.

MacDonald.book Page 908 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 909

Figure 24-2. Creating a component in Visual Studio

Rather than just choosing File ➤ New Project to create the class library, you can add
it to the same solution as your website. This makes it easy to debug the code in your
component while you’re testing it with a web page. (On its own, there’s no way to run
a component, so there’s no way to test it.) To create a new class library in an existing web
solution, start by opening your website, and then choose File ➤ Add ➤ New Project. Spec-
ify the directory and project name in the Add New Project dialog box.

Figure 24-3 shows a solution with both a website and a class library named
Components. The website is in bold in the Solution Explorer to indicate that it runs on
start-up (when you click the Start button).

Figure 24-3. A solution with a website and class library project

MacDonald.book Page 909 Thursday, December 22, 2005 3:04 PM

910 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

To make it easy to open this solution, you might want to take a moment to save your solu-
tion. Click the solution name in the Solution Explorer (which is named ComponentTest in
Figure 24-3). Then, choose File ➤ Save [SolutionName] As. You can open this .sln file later to
load both the website and class library project.

You can compile your class library at any point by right-clicking the project in the
Solution Explorer and choosing Build. This creates a DLL assembly file (Components.dll).
You can’t run this file directly, because it isn’t an application, and it doesn’t provide any
user interface.

■Note Unlike web pages and web services, you must compile a component before you can use it. Compo-
nents aren’t hosted by the ASP.NET service and IIS; thus, they can’t be compiled automatically when they are
needed. However, you can easily recompile your component in Visual Studio (and depending on the refer-
ences and project settings you use, Visual Studio may perform this step automatically when you launch your
web application in the design environment).

Classes and Namespaces

Once you’ve created your class library project, you’re ready to add a class in a .cs file.
Here’s an example that creates a class named SimpleTest:

����������		�
������	�

�

����������������	���������	����������������������	��

�

Remember, a component can contain more than one class. You can create these other
classes in the same file, or you can use separate files for better organization. In either case,
all the classes and source code files are compiled together into one assembly:

����������		�
������	�

�������

����������		�
������	��

�������

MacDonald.book Page 910 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 911

To add functionality to your class, add public methods or properties. The web page
code calls these methods to retrieve information or perform a task. The following example
shows one of the simplest possible components, which does nothing more than return a
string to the calling code:

����������		�
������	�

�

�����������	����������� ��	������������

�����

���������������!"�����#�$���
������	������� ����%����&!�'

���������������������'�!&!(

�����

�

����������		�
������	��

�

�����������	����������� ��	������������

�����

���������������!"�����#�$���
������	�������� ����%����&!�'

���������������������'�!&!(

�����

�

Usually, these classes are organized in a namespace. In the following example, the
classes are accessed in other applications such as SimpleComponent.SimpleTest and
SimpleComponent.SimpleTest2:

����	��������������	

�

��������������		�
������	�

�����

���������������		���������������

�����

��������������		�
������	��

�����

���������������		���������������

�����

�

MacDonald.book Page 911 Thursday, December 22, 2005 3:04 PM

912 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

If you need to do so, you can create multiple levels of nested namespaces. In Visual
Studio, every time you add a new class file, your code is automatically placed in
a namespace block with the default namespace for your project. You can then edit this
namespace if you want, and you can even change the default project namespace. To do
so, right-click the project in the Solution Explorer, and select Properties. Look for the
Default Namespace text box. You can also use this window to configure the name that is
given to the compiled assembly file (the assembly name).

■Tip The general rule for naming namespaces is to use the company name followed by the technology
name and optionally followed by a feature-specific division, as in CompanyName.TechnologyName.Feature.
Example namespaces that follow this syntax include Microsoft.Media and Microsoft.Media.Audio. These
namespace conventions dramatically reduce the possibility that more than one company might release com-
ponents in the same namespaces, which would lead to naming conflicts. The only exception to the naming
guidelines is in the base assemblies that are part of .NET. They use namespaces that begin with System.

 Adding a Reference to the Component

Using the component in an actualASP.NET page is easy. Essentially, your website needs a
copy of your component in its Bin directory. ASP.NET automatically monitors this direc-
tory and makes all of its classes available to any web page in the application. To create this
copy, you use a Visual Studio feature called project references.

Here’s how it works: First, select your website in the Solution Explorer. Then, select
Website ➤ Add Reference from the menu. This brings you to the Add Reference dialog
box. You can take two approaches here:

• If your class library project is in the same solution, use the Projects tab. This shows
you a list of all the class library projects in your assembly (see Figure 24-4). Select
the class library, and click OK.

• If your class library is in a different solution, or you have the compiled DLL file only
(perhaps the component was created by another developer), use the Browse tab
(see Figure 24-5). Browse through your directories until you find the DLL file, select
it, and click OK.

MacDonald.book Page 912 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 913

Figure 24-4. Adding a project reference

Figure 24-5. Adding a file reference

MacDonald.book Page 913 Thursday, December 22, 2005 3:04 PM

914 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

Either way, .NET copies the compiled DLL file to the Bin directory of your web applica-
tion (see Figure 24-6). The nice feature is that this file is automatically overwritten with the
most recent compiled version of the assembly every time you run the project. (When you
use a project reference instead of a file reference, Visual Studio goes one step further and
compiles the class library project for you automatically if you change the code and then
run the web application that uses it.)

Figure 24-6. A component in the Bin directory

When you add a reference, Visual Studio also allows you to use its classes in your code
with the usual syntax checking and IntelliSense. If you don’t add the reference, you won’t be
able to use the component classes (and if you try, Visual Studio interprets your attempts to
use the class as mistakes and refuses to compile your code).

Using the Component

Once you’ve added the reference, you can use the component by creating instances of the
SimpleTest or SimpleTest2 class, as shown here:

�	�������������	(

������������������		��	�)����*�)���

�

��������������#����)���+,����-�.����	�������/#���0��	���

�����

��������
������	����	�����������1���%�
������	���(

��������
������	�����	������������1���%�
������	����(

�����������2�	�����3��1���	���������������� ��!4����!��'�!5��65��6!(

�����������2�	�����3��'1���	����������������� ��!78�!�(

�����

�

MacDonald.book Page 914 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 915

The output for this page, shown in Figure 24-7, combines the return value from both
GetInfo() methods.

Figure 24-7. The SimpleTest component output

To make this code slightly simpler, you can choose to use static methods so that you
don’t need to create an object before using the method. A static GetInfo() method looks
like this:

����������		�
������	�

�

�����������	������	����������� ��	������������

�����

���������������!"�����#�$���
������	������� ����%����&!�'

���������������������'�!&!(

�����

�

In this case, the web page accesses the static GetInfo() method through the class name
and doesn’t need to create an object:

����������#����)���+,����-�.����	�������/#���0��	���

�

�������2�	�����3��1�
������	������� ��!4����!�(

�

MacDonald.book Page 915 Thursday, December 22, 2005 3:04 PM

916 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

Properties and State
The SimpleTest classes provide functionality through public methods. If you’re familiar
with class-based programming (as described in Chapter 4), you’ll remember that classes
can also store information in private member variables and provide property procedures
that allow the calling code to modify this information. For example, a Person class might
have a FirstName property.

When you use properties to provide access to member variables, you’re using stateful
design. In stateful design, the class has the responsibility of maintaining certain pieces of
information. In stateless design, like the one found in the SimpleTest component, no
information is retained between method calls. Compare that to the stateful SimpleTest
class shown here:

����������		�
������	�

�

�������#����	����������(

�����������	������9���

�����

�����������

���������������������(��

��������	��

���������������1�#����(��

�����

�����������	����������� ���

�����

���������������!"�����#�$���
������	������� ����!�'

���������������!����������	�&!�'������'�!&!(

�����

�

In the programming world, great debates have occurred about whether stateful or
stateless programming is best. Stateful programming is the most natural, object-oriented
approach, but it also has a few disadvantages. To accomplish a common task, you might
need to set several properties before calling a method. Each of these steps adds a little bit
of unneeded overhead. A stateless design, on the other hand, often performs all its work
in a single method call. However, because no information is retained in state, you may
need to specify several parameters, which can make for tedious programming. A good
example of stateful versus stateless objects is shown by the FileInfo and File classes, which
are described in Chapter 17.

MacDonald.book Page 916 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 917

There is no short answer about whether stateful or stateless design is best, and it often
depends on the task at hand. Components that are high-performance, components that
use transactions, or components that need to be invoked remotely (such as web services)
usually use stateless design, which is the simplest and most reliable approach. Because no
information is retained in memory, fewer server resources are used, and no danger exists
of losing valuable data if a software or hardware failure occurs. The next example illus-
trates the difference with two ways to design an Account class.

A Stateful Account Class

Consider a stateful account class that represents a single customer account. Information
is read from the database when it’s first created in the constructor method, and this infor-
mation can be updated using the Update() method.

����������		���	�����0������

�

�������#���������������:�����(

�������#�������������������(

�������������������7������

�����

�����������

������������������������(��

��������	��

������������������1�#����(��

�����

�����������0������������������:������

�����

�� ����������	�����	�������

�����

�����������#����;�������

�����

���������������������������������	������������	�������

�����

�

MacDonald.book Page 917 Thursday, December 22, 2005 3:04 PM

918 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

If you have two CustomerAccount objects that expose a Balance property, you need to
perform two separate steps to transfer money from one account to another. Conceptually,
the process works like this:

�����������������������.���� ����������������

����	�����������������������

��	�����0��������������-���1���%���	�����0�������<��=<>�(

��	�����0��������������%��1���%���	�����0�������<�?==@�(

���������������1�<AAA(

���B������%�����8� ����������������

�������-���7�������C1�������(

���9���	�������8����������������������

�������%��7�������'1�������(

���;����������������8����������	��������	��	�������;�������������

�������-���;�������(

�������%��;�������(

The problem here is that if this task is interrupted halfway through by an error, you’ll
end up with at least one unhappy customer.

A Stateless AccountUtility Class

A stateless object, on the other hand, might expose only a static method called
FundTransfer(), which performs all its work in one method:

����������		�0������;�����8

�

�����������	������#����D������	 ��������������-���

�����������������%������������������

�����

�������������������������������#�	������%��������	��������	�

������������������	�����������������	�������

�����

�

The calling code can’t use the same elegant CustomerAccount objects, but it can be
assured that account transfers are protected from error. Because all the database opera-
tions are performed at once, they can use a database stored procedure for greater

MacDonald.book Page 918 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 919

performance and can use a transaction to ensure that the withdrawal and deposit either
succeed or fail as a whole:

���
�����������������������	 ���������	�

���������������1�<AAA(

������������9-���1�<��=<>(

������������9%��1�<�?==@(

0������;�����8�D������	 �����������9-������������9%��

���������(

In a mission-critical system, transactions are often required. For that reason, classes
that retain little state information are often the best design approach, even though they
aren’t quite as satisfying from an object-oriented perspective.

■Tip There is one potential compromise. You can create stateful classes to represent common items such
as accounts, customers, and so on, without adding any functionality. Then, you can use these classes as data
packages to send information to and from a stateless utility class.

Database Components
Clearly, components are extremely useful. But if you’re starting a large programming
project, you may not be sure what features are the best candidates for being made into
separate components. Learning how to break an application into components and classes
is one of the great arts of programming, and it takes a good deal of practice and fine-
tuning.

One of the most common types of components is a database component. Database
components are an ideal application of component-based programming for several
reasons:

Databases require extraneous details: These details include connection strings, field
names, and so on, all of which can distract from the application logic and can easily be
encapsulated by a well-written component.

Databases change frequently: Even if the underlying table structure remains constant
and additional information is never required (which is far from certain), queries may
be replaced by stored procedures, and stored procedures may be redesigned.

MacDonald.book Page 919 Thursday, December 22, 2005 3:04 PM

920 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

Databases have special connection requirements: You may even need to change the
database access code for reasons unrelated to the application. For example, after pro-
filing and testing a database, you might discover that you can replace a single query
with two queries or a more efficient stored procedure. In either case, the returned data
remains constant, but the data access code is dramatically different.

Databases are used repetitively in a finite set of ways: In other words, a common data-
base routine should be written once and is certain to be used many times.

A Simple Database Component

To examine the best way to create a database component, you’ll consider a simple appli-
cation that provides a classifieds page that lists items that various individuals have for
sale. The database uses two tables: one is an Items table that lists the description and price
of a specific sale item, and the other is a Categories table that lists the different groups you
can use to categorize an item. Figure 24-8 shows the relationship.

Figure 24-8. The AdBoard database relationships

In this example, you’re connecting with a SQL Server database using the OLE DB part of
the class library. You can create this database yourself, or you can refer to the online sam-
ples, which include a SQL script that generates it automatically. To start, the Categories
table is preloaded with a standard set of allowed categories.

The database component is simple. It’s an instance class that retains some basic infor-
mation (such as the connection string to use), but it doesn’t allow the client to change this
information. Therefore, it doesn’t need any property procedures. Instead, it performs
most of its work in methods such as GetCategories() and GetItems(). These methods
return DataSets with the appropriate database records. This type of design creates a fairly
thin layer over the database—it handles some details, but the client is still responsible for
working with familiar ADO.NET classes such as the DataSet.

�	����
8	���(

�	����
8	����9���(

�	����
8	����9����
E�������(

�	����
8	����B������ ���������(

MacDonald.book Page 920 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 921

����	�����9�����	����������

�

��������������		�97;���

�����

�����������#����	����������������
�����(

���������������97;�����

���������

����������������������
������1

��������������B����� ���������F�����������������
�����	G

��������������!0�7����!H�����������
�����(

���������

���������������9���
���������������	��

���������

������������	������E���8�1�!
/,/��I�D2-F����������	!(

������������
E�������������1���%�
E���������E���8�(

�������������������D���9���
��������!���������	!�(

���������

���������������9���
����������	��

���������

������������	������E���8�1�!
/,/��I�D2-F�����	!(

������������
E�������������1���%�
E���������E���8�(

�������������������D���9���
��������!����	!�(

���������

���������������9���
����������	������������8�9�

���������

����������������������������������

������������	������E���8�1�!
/,/��I�D2-F�����	�B4/2/��������8+�91J�������8�9!(

������������
E�������������1���%�
E���������E���8�(

����������������)��������	�0��B���K�����!J�������8�9!���������8�9�(

���������������D��������9���
���

�������������������D���9���
��������!����	!�(

���������

���������������#����0���������8�	�����������

���������

������������
E����������������1���%�
E����������������������
������(

MacDonald.book Page 921 Thursday, December 22, 2005 3:04 PM

922 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

����������������������������������

������������	��������	���
L,�1�!�:
/2��:-����������	�!(

��������������	���
L,�'1�!�:�����K0,;/
�J:���!(

������������
E�������������1���%�
E�����������	���
L,������(

����������������)��������	�0��B���K�����!J:���!��!����!�(

��������������8

�������������

��������������������-�����(

��������������������/3�����:��L���8��(

�������������

������������ �����8

�������������

�����������������������	���(

�������������

���������

���������������#����0�������	�������������	��������	���������

��8�9�

���������

������������
E����������������1���%�
E����������������������
������(

����������������������������������

������������	��������	���
L,�1�!�:
/2��:-�����	�!(

��������������	���
L,�'1�!�������9�	����������)�������������8+�9�!(

��������������	���
L,�'1�!K0,;/
��J������J9�	����������J)������J�������8�9�!(

������������
E�������������1���%�
E�����������	���
L,������(

����������������)��������	�0��B���K�����!J����!��������(

����������������)��������	�0��B���K�����!J9�	��������!����	���������(

����������������)��������	�0��B���K�����!J)����!��������(

����������������)��������	�0��B���K�����!J�������8�9!���������8�9�(

��������������8

�������������

��������������������-�����(

��������������������/3�����:��L���8��(

�������������

������������ �����8

�������������

�����������������������	���(

�������������

���������

MacDonald.book Page 922 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 923

�����������#����9���
���D���9���
���
E��������������	�����������:����

���������

������������
E����������������1���%�
E����������������������
������(

���������������������������1����(

������������
E�9���0���������������1���%�
E�9���0�����������(

������������9���
����	�1���%�9���
����(

��������������8

�������������

��������������������-�����;
������������������������D�����	�������:����(

�������������

������������ �����8

�������������

�����������������������	���(

�������������

��������������������	(

���������

�����

�

Dissecting the Code…

• This code automatically retrieves the connection string from the web.config file
when the class is created, as described in Chapter 5. This trick enhances encapsula-
tion, but if the client web application doesn’t have the appropriate setting, the
component doesn’t work.

• This class uses an overloaded GetItems() method. This means the client can call
GetItems() with no parameters to return the full list or with a parameter indicating
the appropriate category. (Chapter 3 provides an introduction to overloaded
functions.)

• Each method that accesses the database opens and closes the connection. This is a
far better approach than trying to hold a connection open over the lifetime of the
class, which is sure to result in performance degradation in multiuser scenarios.

• The code uses its own private FillDataSet() function to make the code more concise.
This isn’t made available to clients. Instead, the GetItems() and GetCategories()
methods use the FillDataSet() function.

MacDonald.book Page 923 Thursday, December 22, 2005 3:04 PM

924 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

■Note To use this example as written, you need to add a reference to the System.Configuration and
System.Web assemblies to the class library. Otherwise, you can’t use the WebConfigurationManager to dig
up the connection string you need. To add this reference, select Project ➤ Add Reference, and look in the
.NET tab.

Consuming the Database Component

To use this component in a web application, you first have to make sure the appropriate
connection string is configured in the web.config file, as shown here:

5M3���#��	���1!<�A!���������1!�� CN!�M6

5��� ���������6

��5����������
�����	6

����5��������1!0�7����!�����������
�����1

!9����
�����1�������	�(���������������10�7����(�����������
������81

)�!��6

��5�����������
�����	6

�����

5���� ���������6

Next, compile and copy the component DLL file, or add a reference to it if you’re using
Visual Studio. The only remaining task is to add the user interface.

To test this component, you can create a simple test page. In the example shown in
Figure 24-9, this page allows users to browse the current listing by category and add new
items. When the user first visits the page, it prompts the user to select a category.

Figure 24-9. The AdBoard categories

MacDonald.book Page 924 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 925

Once a category is chosen, the matching items display, and a panel of controls appears,
which allows the user to add a new entry to the AdBoard under the current category, as
shown in Figure 24-10.

Figure 24-10. The AdBoard listing

The page code creates the component to retrieve information from the database and
displays it by binding the DataSet to the drop-down list or GridView control:

������������������		�0�7�����*�)���

�

��������������#����)���+,����-�.����	�������/#���0��	���

�����

��������� ��O���	��)�	�7��$�

���������

������������9�����	�����������97;����97�1���%�9�����	�����������97;�����(

MacDonald.book Page 925 Thursday, December 22, 2005 3:04 PM

926 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

�������������	����������	�9���
������1�97�������������	��(

�������������	����������	�9����3�D�����1�!:���!(

�������������	����������	�9���K����D�����1�!�9!(

�������������	����������	�9���7�����(

���������������:�%�K�	�����1� ��	�(

���������

�����

��������������#�������9�	���8+����$�-�.����	�������/#���0��	���

�����

��������9�����	�����������97;����97�1���%�9�����	�����������97;�����(

����������������	�9���
������1�97��������	�

�������������?��)��	���	����������	�
������������K������(

����������������	�9���7�����(

�����������:�%�K�	�����1�����(

�����

��������������#�������0��+����$�-�.����	�������/#���0��	���

�����

��������9�����	�����������97;����97�1���%�9�����	�����������97;�����(

����������8

���������

������������97�0��������3�������3����3�9�	����������3��

��������������9�������)��	���3�)������3���

�����������������?��)��	���	����������	�
������������K������(

��������������������	�9���
������1�97��������	�

�����������������?��)��	���	����������	�
������������K������(

��������������������	�9���7�����(

���������

���������������D�����/3������������

���������

���������������0�������������	�� ������	�����	�����������

�����������������#���������������C�����������������	��

���������������������	���	�����$������������

���������������0���������������	����������#����������������

��������������� ���������������3����3�������#������#�����������

���������

�����

�

MacDonald.book Page 926 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 927

Dissecting the Code…

• Not all the functionality of the component is used in this page. For example, the
page doesn’t use the AddCategory() method or the version of GetItems() that
doesn’t require a category number. This is completely normal. Other pages may use
different features from the component.

• The page is free of data access code. It does, however, need to understand how to
use a DataSet, and it needs to know specific field names to create a more attractive
GridView with custom templates for layout (instead of automatically generated
columns).

• The page could be improved with error handling code or validation controls. As it is,
no validation is performed to ensure that the price is numeric or even to ensure that
the required values are supplied.

Enhancing the Component with Error Handling

One way you could enhance the component is with better support for error reporting.
As it is, any database errors that occur are immediately returned to the calling code. In
some cases (for example, if there is a legitimate database problem), this is a reasonable
approach, because the component can’t handle the problem.

However, the component fails to handle one common problem properly. This problem
occurs if the connection string isn’t found in the web.config file. Though the component
tries to read the connection string as soon as it’s created, the calling code doesn’t realize a
problem exists until it tries to use a database method.

A better approach is to notify the client as soon as the problem is detected, as shown in
the following code example:

����������		�97;���

�

�������#����	����������������
�����(

�����������97;�����

�����

��������� ��B����� ���������F�����������������
�����	G!0�7����!H�11������

���������

����������������%���%�0����������/3��������

��������������!F�		��������������
������#�����������%������ ���!�(

���������

����������	�

MacDonald.book Page 927 Thursday, December 22, 2005 3:04 PM

928 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

���������

����������������������
������1

��������������B����� ���������F�����������������
�����	G

��������������!0�7����!H�����������
�����(

���������

�����

��������-��������		���������������

�

This code throws an ApplicationException with a custom error message that indicates
the problem. To provide even better reporting, you could create your own exception class
that inherits from ApplicationException, as described in Chapter 11.

■Tip If you’re debugging your code in Visual Studio, you’ll find you can single-step from your web page
code right into the code for the component, even if it isn’t a part of the same solution. The appropriate
source code file is loaded into your editor automatically, as long as it’s available (and you’ve compiled the
component in debug mode).

Enhancing the Component with Aggregate Information

The component doesn’t have to limit the type of information it provides to DataSets.
Other information is also useful. For example, you might provide a read-only property
called ItemFields that returns an array of strings representing the names for fields in the
Items table. Or you might add another method that retrieves aggregate information about
the entire table, such as the average cost of an item or the total number of currently listed
items, as shown here:

����������		�97;���

�

��������-��������		���������������

����������������������0#�����)������

�����

��������	������E���8�1�!
/,/��0K��)������D2-F�����	!(

MacDonald.book Page 928 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 929

��������
E����������������1���%�
E����������������������
������(

��������
E�������������1���%�
E���������E���8������(

������������-�����(

�����������������#������1��������������/3�����
�������(

���������������	���(

����������������#�����(

�����

��������������������������	��

�����

��������	������E���8�1�!
/,/��������I��D2-F�����	!(

��������
E����������������1���%�
E����������������������
������(

��������
E�������������1���%�
E���������E���8������(

������������-�����(

������������������1����������/3�����
�������(

���������������	���(

��������������������(

�����

�

These commands use some customized SQL that may be new to you (namely, the
Count and AVG functions). However, these methods are just as easy to use from the cli-
ent’s perspective as GetItems() and GetCategories():

9�����	�����������97;����97�1���%�9�����	�����������97;�����(

���������#�����)�����1�97����0#�����)������(

�������������	�1�97������������	��(

It may have occurred to you that you can return information such as the total number
of items through a read-only property procedure (such as TotalItems) instead of a method
(in this case, GetTotalItems). Though this does work, property procedures are better left
to information that is maintained with the class (in a private variable) or is easy to recon-
struct. In this case, it takes a database operation to count the number of rows, and this
database operation can cause an unusual problem or slow down performance if used fre-
quently. To help reinforce that fact, a method is used instead of a property.

MacDonald.book Page 929 Thursday, December 22, 2005 3:04 PM

930 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

The ObjectDataSource
Using a dedicated database component is a great way to keep your code efficient and well
organized. It also makes it easy for you to apply changes later. However, this has a draw-
back—namely, you need to write quite a bit of code to create a web page and a separate
database component. In Chapter 14, you saw that you could simplify your life by using
components such as the SqlDataSource to encapsulate all your data access details. Unfor-
tunately, that code-free approach won’t work if you’re using a separate component—or
will it?

It turns out there is a way to get the best of both worlds and use a separate database
component and easier web page data binding. Instead of using the SqlDataSource, you
use the ObjectDataSource, which defines a link between your web page and your compo-
nent. This won’t save you from writing the actual data access code in your component,
but it will save you from writing the tedious code in your web page to call the methods in
your component, extract the data, format it, and display it in the page.

■Note The ObjectDataSource allows you to create code-free web pages, but you still need to write the
code in your component. You shouldn’t view this as a drawback—after all, you need to write this code to get
fine-grained control over exactly what’s taking place and thereby optimize the performance of your data
access strategy.

In the following sections, you’ll learn how to take the existing DBUtil component pre-
sented earlier and use it in a data-bound web page. You’ll learn how to replicate the
example shown in Figure 24-9 and Figure 24-10 without writing any web page code.

Making Classes the Object Data Source Can Understand

Essentially, the ObjectDataSource allows you to create a declarative link between your
web page controls and a data access component that queries and updates data. Although
the ObjectDataSource is remarkably flexible, it can’t support every conceivable compo-
nent you could create. In fact, for your data component to be usable with the
ObjectDataSource, you need to conform to a few rules:

• Your class must be stateless. That’s because the ObjectDataSource will create an
instance only when needed and destroy it at the end of every request.

• Your class must have a default, no-argument constructor.

MacDonald.book Page 930 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 931

• All the logic must be contained in a single class. (If you want to use different classes
for selecting and updating your data, you’ll need to wrap them in another higher-
level class.)

• Your class must provide the query results when a single method is called.

• None of the methods you want to use can be static.

• The query results must be provided as a DataSet, DataTable, or some sort of collec-
tion of objects. (If you decide to use a collection of objects, each data object needs
to expose all the data fields as public properties.)

Fortunately, many of these rules are best practices that you should be already follow-
ing. Even though the DBUtil class wasn’t expressly designed for the ObjectDataSource, it
meets all these criteria.

Selecting Records

You can learn a lot about the ObjectDataSource by building the page shown in Figure 21-10.
In the following sections, you’ll tackle this challenge.

The first step is to create the list box with the list of categories. For this list, you need an
ObjectDataSource that links to the DBUtil class and calls the GetCategories() method to
retrieve the full list of category records.

The first step is to define the ObjectDataSource and indicate the name of the class that
contains the data access methods. You do this by specifying the fully qualified class name
with the TypeName property, as shown here:

5�	�*-�.���9���
�������91!	��������������	!������1!	��#��!

����������	
����������������
�����	������6

Once you’ve attached the ObjectDataSource to a class, the next step is to point it to the
methods it can use to select and update records.

The ObjectDataSource defines SelectMethod, DeleteMethod, UpdateMethod, and
InsertMethod properties that you use to link your data access class to various tasks. Each
property takes the name of the method in the data access class. In this example, you sim-
ply need to enable querying, so you need to set the SelectMethod property so it calls the
GetCategories() method:

5�	�*-�.���9���
�������91!	��������������	!������1!	��#��!

�8��:���1!9�����	�����������97;���!��������������	������������	��6

MacDonald.book Page 931 Thursday, December 22, 2005 3:04 PM

932 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

Once you’ve set up the ObjectDataSource, you can bind your web page controls in the
same way you do with the SqlDataSource. Here’s the tag you need for the list box:

5�	�*9���9�%�,�	���91!�	����������	!������1!	��#��!

��9���
������91!	��������������	!�9����3�D����1!:���!�9���K����D����1!�9!6

5��	�*9���9�%�,�	�6

This tag shows a list of category names (thanks to the DataTextField property) and also
keeps track of the category ID (using the DataValueField property).

This example works fine so far. You can run the test web page and see the list of catego-
ries in the list box (as in Figure 24-9).

Using Method Parameters

The next step is to show the list of items in the current category in the GridView under-
neath. As with the SqlDataSource, the ObjectDataSource can be used only for a single
query. That means you’ll need to create a second ObjectDataSource that’s able to retrieve
the list of items by calling GetItems().

The trick here is that the GetItems() method requires a single parameter (named cate-
goryID). That means you need to create an ObjectDataSource that includes a single
parameter. You can use all the same types of parameters used with the SqlDataSource to
get values from the query string, other controls, and so on. In this case, the category ID is
provided by the SelectedValue property of the list box, so you can use a control parameter
that points to this property.

Here’s the ObjectDataSource definition you need:

5�	�*-�.���9���
�������91!	���������	!������1!	��#��!�
�����F�����1!�������	!

�8��:���1!9�����	�����������97;���!�6

��5
�����)��������	6

������5�	�*�������)�����������������91!�	����������	!�:���1!�������8�9!

��������)������8:���1!
�������K����!�8��1!���?�!��6

��5�
�����)��������	6

5��	�*-�.���9���
�����6

Again, you use the DBUtil component, but this time it’s the GetItems() method you
need. Even though the GetItems() method has two methods (one that takes a categoryID
parameter and one that doesn’t), don’t worry. The ObjectDataSource automatically uses
the correct overload by looking at the parameters you’ve defined.

In this case, you use a single parameter that extracts the selected category ID from
the list box and passes it to the GetItems() method. Notice that the name defined in the
ControlParameter tag matches the parameter name of the GetItems() method. This is
an absolute requirement. When the ObjectDataSource calls the method, it uses reflection
to examine the method and find the corresponding method. If you have several parame-
ters, you can put them in any order, as the ObjectDataSource will determine the order

MacDonald.book Page 932 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 933

of arguments based on the order of the parameters as defined in the method. If the
ObjectDataSource can’t find the method, or the method has a different name, an excep-
tion is raised at this point.

■Tip If you’re ever in doubt what method is being called in your database component, place a breakpoint
on the possible methods, and use Visual Studio’s debugging features (as described in Chapter 4).

The final step is to link the GridView to the new ObjectDataSource using the DataSourceID.
Here’s the tag that does it:

5�	�*����K��%��91!����K��%<!������1!	��#��!�9���
������91!	���������	!�6

This is all you need. You should keep the Display button, because it triggers a page
postback and allows the ObjectDataSource to get to work. (If you don’t want to use this
button, set the AutoPostback property on the list box to true so it posts back whenever you
change the selection.) You don’t need to write any event handling code to react when the
button is clicked. The queries are executed automatically, and the controls are bound
automatically.

Updating Records

The final step is to provide a way for the user to add new items. The easiest way to make
this possible is to use a rich data control that deals with individual records—either the
DetailsView or the FormsView. The DetailsView is the simpler of the two, because it
doesn’t require a template. It’s the one used in the following example.

Ideally, you’d define the DetailsView using a tag like this and let it generate all the fields
it needs based on the bound data source:

5�	�*9�����	K��%��91!9�����	K��%<!������1!	��#��!�9���
������91!	���������	!�6

Unfortunately, this won’t work in this example. The problem is that this approach cre-
ates too many fields. In this example, you don’t want the user to specify the item ID (that’s
set by the database automatically) or the category ID (that’s based on the currently
selected category). So neither of these details should appear. The only way to make sure
this is the case is to turn off automatic field generation and define each field you want
explicitly, as shown here:

5�	�*9�����	K��%��91!9�����	K��%<!������1!	��#��!

��9���
������91!	���������	!�0�����������2�%	1! ��	�!6

��5D����	6

����5�	�*7����D�����9���D����1!����!�4������3�1!����!��6

����5�	�*7����D�����9���D����1!)����!�4������3�1!)����!�6

MacDonald.book Page 933 Thursday, December 22, 2005 3:04 PM

934 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

����5�	�*7����D�����9���D����1!9�	��������!�4������3�1!9�	��������!��6

��5�D����	6

5��	�*9�����	K��%6

You need to make a couple of other changes. To allow inserting, you need to set the
AutoGenerateInsertButton to true. This way, the DetailsView creates the links that allow
you to start entering a new record and then insert it. At the same time, you can set the
DefaultMode property to Insert. This way, the DetailsView is always in insert mode and is
used exclusively for adding records (not displaying them), much like the non-data-bound
page shown earlier.

5�	�*9�����	K��%��91!9�����	K��%<!������1!	��#��!

��
��� �������	!����	�" ����������!����� �����	�� �	

��9���
������91!	���������	!�0�����������2�%	1! ��	�!6

�����

5��	�*9�����	K��%6

The ObjectDataSource provides the same type of support for updatable data binding
as the SqlDataSource. The first step is to specify the UpdateMethod, which needs to be a
public instance method in the same class:

5�	�*-�.���9���
�������91!	�����/����8��	!������1!	��#��!

�8��:���1!9�����	�����������97;���!

�
�����F�����1!�������	!��������������	"��!���	�6

5��	�*-�.���9���
�����6

The challenge is in making sure the UpdateMethod has the right signature. As with the
SqlDataSource, updates, inserts, and deletes automatically receive a collection of param-
eters from the linked data control. These parameters have the same names as the
corresponding field names. So in this case, the fields are Title, Price, and Description,
which exactly match the parameter names in the AddItem() method. (The capitalization
is not the same, but the ObjectDataSource is not case-sensitive, so this isn’t a problem.)

This still has a problem, however. When the user commits an edit, the GridView sub-
mits the three parameters you expect (Title, Price, and Description). However, the
AddItem() method needs a fourth parameter—CategoryID. We’ve left that parameter out
of the DetailsView fields, because you don’t want the user to be able to set the category ID.
However, you still need to supply it to the method.

So where can you get the current category ID from? The easiest choice is to extract it
from the list box, just as you did for the GetItems() method. All you need to do is add a

MacDonald.book Page 934 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G 935

ControlParameter tag that defines a parameter named CategoryID and binds it to the
SelectedValue property of the list box. Here’s the revised tag for the ObjectDataSource:

5�	�*-�.���9���
�������91!	���������	!������1!	��#��!�
�����F�����1!�������	!

�8��:���1!9�����	�����������97;���!���	���F�����1!0������!�6

��5
�����)��������	6

�������

��5�
�����)��������	6

��#!����$��������%

����#��&�������$����������������!
�	�����������	������	��������!
	

�����$������������	��������'�� �	������	!��()	�*%

��#*!����$��������%

5��	�*-�.���9���
�����6

Now you have all the parameters you need—the three from the DetailsView and
the one extra from the list box. When the user attempts to insert a new record, the
ObjectDataSource collects these four parameters, makes sure they match the signature
for the AddItem() method, puts them in order, and then calls the method.

Figure 24-11 shows an insert in progress.

Figure 24-11. Inserting with the DetailsView

MacDonald.book Page 935 Thursday, December 22, 2005 3:04 PM

936 C H A P T E R 2 4 ■ C O M P O N E N T - B A S E D P R O G R A M M I N G

■Note In some cases, you might need to supply an extra parameter that you need to set programmatically.
In this case, you need to define a plain-vanilla Parameter tag (instead of a ControlParameter tag), with a name
and data type but no value. Then, you can respond to the ObjectDataSource.Updating event to fill in the value
you need just in time. It’s a little messy (and it forces you to write code in your web page), but it’s sometimes
a necessity.

The Last Word
The components used in this chapter are business objects. They perform a service such as
querying a database. Generally, business components return data but don’t get involved
in how this data is formatted or displayed to the user.

The next chapter shows how you can use the same component-oriented approach to
reuse a user interface in multiple web pages with custom controls.

MacDonald.book Page 936 Thursday, December 22, 2005 3:04 PM

937

■ ■ ■

C H A P T E R 2 5

Custom Controls

Component-based development encourages you to divide the logic in your application
into discrete, independent blocks. Once you’ve made the jump to custom classes and
objects, you can start creating modular web applications that are built with reusable units
of code. But while these objects help work out thorny data access procedures or custom
business logic, they don’t offer much when it comes to simplifying your user interface
code. If you want to create web applications that reuse a customized portion of user inter-
face, you’re still stuck rewriting control tags and reconfiguring page initialization code in
several places.

It doesn’t have to be this way. ASP.NET includes tools for modularizing and reusing
portions of user interface code that are just as powerful as those that allow you to design
custom business objects. You have two main tools at your fingertips, both of which you’ll
explore in this chapter:

• User controls allow you to reuse a portion of a page by placing it in a special .ascx
file. ASP.NET also allows you to make smart user controls that provide methods and
properties and configure their contained controls automatically.

• Custom-derived controls allow you to build a new control by inheriting from an
ASP.NET control class. With custom controls, there is no limit to what you can do,
whether it’s adding a new property or tweaking the rendered HTML output.

User Controls
User controls look pretty much the same as ASP.NET web forms. Like web forms, they are
composed of an HTML-like portion with control tags (the .ascx file) and can optionally
use a .cs code-behind file with event handling logic. They can also include the same range
of HTML content and ASP.NET controls, and they experience the same events as the Page

MacDonald.book Page 937 Thursday, December 22, 2005 3:04 PM

938 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

object (such as Load and PreRender). The only differences between user controls and web
pages are as follows:

• User controls begin with a <%@ Control %> directive instead of a <%@ Page %>
directive.

• User controls use the file extension .ascx instead of .aspx, and their code-behind
files inherit from the System.Web.UI.UserControl class. In fact, the UserControl
class and the Page class both inherit from the same base classes, which is why they
share so many of the same methods and events, as shown in the inheritance dia-
gram in Figure 25-1.

• User controls can’t be requested directly by a client. Instead, they are embedded
inside other web pages.

Figure 25-1. The Page and UserControl inheritance chain

MacDonald.book Page 938 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 939

Creating a Simple User Control

You can create a user control in Visual Studio in much the same way you add a web page.
Just select Website ➤ Add New Item, and choose Web User Control from the list.

The following user control contains a single Label control:

��������	�
������������������������	������	���

���������
��������	������������� �	����������	���!

����"��#�
�����
#
�����	��	��������	��	��$!

Note that the Control directive uses the same attributes used in the Page directive for a
web page, including Language, AutoEventWireup, and Inherits.

The code-behind class for this sample user control is similarly straightforward. It uses
the UserControl.Load event to add some text to the label:

��#
�����	���
��
���������	�"�%��	����	�

&

�����	�������������'��(����)*#+���������	,�������	���-

����&

��������
#
�����	�.�������. �������/�����	��������0

��������
#
�����	�.����1��2���.�3��4�/�.�5�	��)-0

����6

6

To test this user control, you need to insert it into a web page. This is a two-step pro-
cess. First, you need to add a <%@ Register %> directive to identify the control you want to
use and associate it with a unique control prefix:

����7�����	�.�'	�8������	�����.�4�3��������	��5	��������	��������!

The Register directive specifies a tag prefix and name. Tag prefixes group sets of related
controls (for example, all ASP.NET web controls use the tag prefix asp). Tag prefixes are
usually lowercase—technically, they are case-insensitive—and should be unique for your
company or organization. The Src directive identifies the location of the user control tem-
plate file, not the code-behind file.

Second, you can now add the user control whenever you want (and as many times as
you want) by inserting its control tag. Consider this page example:

����'����������"���������������	������	���
����������
��������	9��������������� �	����������	9�����!

����7�����	�.�'	�8������	�����.�4�3��������	��5	��������	��������!

MacDonald.book Page 939 Thursday, December 22, 2005 3:04 PM

940 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

� �3
��3
���� ���"$$///�/:��	$;<<<$� �3
��!

� ����	��������	��	�!

��������
�!�����	�9����$���
�!

�$ ���!

�#��=!

�����8�	3�����8�	3;��	��������	��	�!

��������!

������� ;!��'������ ��������	�$;!� 	�$!

������5������'���.����#	�$!�#	�$!

���������	���"�����	����������	;��	��������	��	��$!

�����$���!

�����$8�	3!

�$#��=!

�$ �3
!

This example (shown in Figure 25-2) demonstrates a simple way that you can create a
header or footer and reuse it in all the pages in your website just by adding a user control.
In the case of your simple footer, you won’t save much code. However, this approach will
become much more useful for a complex control with extensive formatting or several
contained controls.

Figure 25-2. A page with a user control footer

Of course, this only scratches the surface of what you can do with a user control. In the
following sections, you’ll learn how to enhance a control with properties, methods, and
events—transforming it from a simple “include file” into a full-fledged object.

MacDonald.book Page 940 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 941

■Note The Page class provides a special LoadControl() method that allows you to create a user control
dynamically at runtime from an .ascx file. The user control is returned to you as a control object, which you
can then add to the Controls collection of a container control on the web page (such as PlaceHolder or Panel)
to display it on the page. This technique isn’t a good substitute for declaratively using a user control, because
it’s more complex. However, it does have some interesting applications if you want to generate a user inter-
face dynamically.

In Visual Studio, you have a few shortcuts available when working with user controls.
Once you’ve created your user control, simply build your project, and then drag the .ascx
file from the Solution Explorer and drop it onto the drawing area of a web form. Visual
Studio automatically adds the Register directive for you, as well as an instance of the user
control tag.

Independent User Controls

Conceptually, two types of user controls exist: independent and integrated. Independent
user controls don’t interact with the rest of the code on your form. The Footer user control
is one such example. Another example might be a LinkMenu control that contains a list
of buttons offering links to other pages. This LinkMenu user control can handle the events
for all the buttons and then run the appropriate Response.Redirect() code to move
to another web page. Or it can just be an ordinary HyperLink control that doesn’t have
any associated server-side code. Every page in the website can then include the same
LinkMenu user control, enabling painless website navigation with no need to worry about
frames.

The following sample defines a simple control that presents an attractively formatted
list of links. Note that the style attribute of the <div> tag (which defines fonts and format-
ting) has been omitted for clarity.

��������	�
������������������������	������	���

����������
������>?��������������� �	��������>?������!

����!

��'	������"

������"9=��	���>�����
�>@��>���	��������	��	�

����4������%	
��?���9��������A�	������@��>��!@��>�

���$���"9=��	���>!�#	�$!

������"9=��	���>�����
�>.�=���	��������	��	�

����4������%	
��?���9��������A�	������.�=��!.�=�

���$���"9=��	���>!�#	�$!

MacDonald.book Page 941 Thursday, December 22, 2005 3:04 PM

942 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

������"9=��	���>�����
�>5��	����	��������	��	�

����4������%	
��?���9��������A�	������5��	���!5��	��

���$���"9=��	���>!�#	�$!

������"9=��	���>�����
�>��	����	���	��������	��	�

����4������%	
��?���9��������A�	��������	����	��!��	����	�

���$���"9=��	���>!

�$���!

The links don’t actually trigger any server-side code—instead, they render themselves
as ordinary HTML anchor tags with a hard-coded URL.

To test this menu, you can use the following MenuHost.aspx web page. It includes two
controls: the Menu control and a Label control that displays the product query string
parameter. Both are positioned using a table.

����'�������������"������������	������	���
����������
���?���9��������������� �	�����?���9�����!

����7�����	�.�'	�8������	�����.�4�3������>?�����5	������>?�����������!

� �3
��3
���� ���"$$///�/:��	$;<<<$� �3
��!

� ����	��������	��	�!

��������
�!?����9����$���
�!

�$ ���!

�#��=!

�����8�	3�����8�	3;��	��������	��	�!

��������!

���������#
�!

����������	!

�������������!���	���"���>?��������?���;��	��������	��	��$!�$��!

���������$�	!

����������	!

�������������!����"��#�
�����
#
5�
��������	��������	��	��$!�$��!

���������$�	!

�������$��#
�!

�����$���!

�����$8�	3!

�$#��=!

�$ �3
!

MacDonald.book Page 942 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 943

When the MenuHost.aspx page loads, it adds the appropriate information to the
lblSelection control:

�	�������������'��(����)*#+���������	,�������	���-

&

�����8�)7�B�����'�	�3�C��	������D�E����

-

����&

��������
#
5�
�������.�������F���� ���"��0

��������
#
5�
�������.����1��7�B�����'�	�3�C��	������D0

����6

6

Figure 25-3 shows the end result. Whenever you click a button, the page is posted back,
and the text is updated.

Figure 25-3. The LinkMenu user control

You could use the LinkMenu control to repeat the same menu on several pages. This is
particularly handy in a situation where you can’t use master pages to standardize layout
(possibly because the pages are too different).

Integrated User Controls

Integrated user controls interact with the web page that hosts them in one way or another.
When you’re designing these controls, the class-based design tips you learned in Chapter 4
really become useful.

MacDonald.book Page 943 Thursday, December 22, 2005 3:04 PM

944 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

A typical example is a user control that allows some level of configuration through
properties. For example, you can create a footer that supports two different display
formats: long date and short time. To add a further level of refinement, the Footer user
control allows the web page to specify the appropriate display format using an
enumeration.

The first step is to create an enumeration in the custom Footer class. Remember, an
enumeration is simply a type of constant that is internally stored as an integer but is set in
code by using one of the allowed names you specify. Variables that use the FooterFormat
enumeration can take the value FooterFormat.LongDate or FooterFormat.ShortTime:

��#
������3������	��	3��

&����2���,�5 �	�.�3��6

The next step is to add a property to the Footer class that allows the web page to
retrieve or set the current format applied to the footer. The actual format is stored in a pri-
vate variable called format, which is set to the long date format by default when the object
is first created. (You can accomplish the same effect, in a slightly sloppier way, by using a
public member variable named Format instead of a full property procedure.) If you’re
hazy on how property procedures work, feel free to review the explanation in Chapter 3.

�	�����������	��	3���8�	3����������	��	3������2���0

��#
��������	��	3�����	3��

&

�������&�	���	��8�	3��0�6

��������&�8�	3�������
��0�6

6

Finally, the UserControl.Load event handler needs to take account of the current footer
state and format the output accordingly. The following is the full Footer class code:

��#
�����	���
��
���������	�"�%��	����	�

&

�����	����������#�
�
#
�����	0

������#
������3������	��	3��

����&����2���,�5 �	�.�3��6

�����	�����������	��	3���8�	3����������	��	3������2���0

������#
��������	��	3�����	3��

����&

����������

��������&�	���	��8�	3��0�6

MacDonald.book Page 944 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 945

�����������

��������&�8�	3�������
��0�6

����6

�����	�������������'��(����)*#+���������	,�������	���-

����&

��������
#
�����	�.�������. �������/�����	��������0

���������8�)8�	3�����������	��	3������2���-

��������&

������������
#
�����	�.����1��2���.�3��4�/�.����2���5�	��)-0

��������6

���������
����8�)8�	3�����������	��	3���5 �	�.�3�-

��������&

������������
#
�����	�.����1��2���.�3��4�/�.�5 �	�.�3�5�	��)-0

��������6

����6

6

To test this footer, you need to create a page that modifies the Format property of the
Footer user control. Figure 25-4 shows an example page, which automatically sets the
Format property for the user control to match a radio button selection whenever the page
is posted back.

Figure 25-4. The modified footer

MacDonald.book Page 945 Thursday, December 22, 2005 3:04 PM

946 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

Note that the user control property is modified in the Page.Load event handler, not the
cmdRefresh.Click event handler. The reason is that the Load event occurs before the user
control has been rendered each time the page is created. The Click event occurs after the
user control has been rendered, and though the property change is visible in your code, it
doesn’t affect the user control’s HTML output, which has already been added to the page.

��#
�����	���
��
���������	9����"�'��

&

�����	�������������'��(����)*#+���������	,�������	���-

����&

���������8�)�������� ��>��-

��������&

�����������������	;���	3����������	������	��	3������2���0

��������6

���������
����8�)���5 �	��� ��>��-

��������&

�����������������	;���	3����������	������	��	3���5 �	�.�3�0

��������6

���������
��

��������&

������������$$�. ����8��
����
������� �������	��
����/�

����
=�

��������6

����6

6

You can also set the initial appearance of the footer in the control tag:

���	���"�����	���	3����5 �	�.�3������������	;��	��������	��	��$!

User Control Events

Another way that communication can occur between a user control and a web page is
through events. With methods and properties, the user control reacts to a change made by
the web page code. With events, the story is reversed: the user control notifies the web
page about an action, and the web page code responds.

Creating a web control that uses events is fairly easy. In the following example, you’ll
see a version of the LinkMenu control that uses events. Instead of navigating directly to
the appropriate page when the user clicks a button, the control raises an event, which the
web page can choose to handle.

MacDonald.book Page 946 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 947

The first step to create this control is to define the events. Remember, to define an
event, you use the event keyword and specify a delegate that represents the signature of
the event. The .NET standard for events specifies that every event should use two param-
eters. The first one provides a reference to the control that sent the event, while the
second incorporates any additional information. This additional information is wrapped
into a custom EventArgs object, which inherits from the System.EventArgs class. (If your
event doesn’t require any additional information, you can just use the generic EventArgs
object, which doesn’t contain any additional data. Many events in ASP.NET, such as
Page.Load or Button.Click, follow this pattern.) You can refer to Chapter 4 for a quick
overview of how to use events in .NET.

The LinkMenu2 control uses a single event, which indicates when a link is clicked:

��#
��������������9���
�	����>�
��>��0

This statement defines an event named LinkClicked, with the signature specified by
the System.EventHandler delegate. This is the most basic event definition you can create.
It includes two parameters—the event sender and the EventArgs class. That means any
event handler you create to handle the LinkClicked event must look like this:

�	����������������>?���(���>�
��>��)�#+���������	,�������	���-

&�����6

This takes care of creating the event, but what about raising it? This part is easy. To
fire the event, the LinkMenu2 control simply uses the event name and passes in the two
parameters, like this:

$$�7������ �����>�
��>��������,����������	�8�	�������

$$�� ����		�����#+����)� �������	-���������3��=�������	���#+����

���>�
��>��)� ��,�������	���3��=-0

The LinkMenu2 control actually needs a few more changes. The original version used the
HyperLink control. This won’t do, because the HyperLink control doesn’t fire an event
when the link is clicked. Instead, you’ll need to use the LinkButton. The LinkButton fires the
Click event, which the LinkMenu2 control can intercept, and then raises the LinkClicked
event to the web page.

The following is the full user control code:

��#
����#��	�����
�������>?���G�"�%��	����	�

&

������#
��������������9���
�	����>�
��>��0

MacDonald.book Page 947 Thursday, December 22, 2005 3:04 PM

948 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

�����	�������������
�>(�
��>)�#+���������	,�������	���-

����&

��������$$�*����8�� �����>@����������	�
�� ���#�����
��>���

��������$$�7������������������ ������

���������8�)���>�
��>���E����

-

��������&

���������������>�
��>��)� ��,�������	���3��=-0

��������6

����6

6

Notice that before raising the LinkClicked event, the LinkMenu2 control needs to test
for a null reference. A null reference exists if no event handlers are attached to the event.
In this case, you shouldn’t try to raise the event, because it would only cause an error.

You can create a page that uses the LinkMenu2 control and add an event handler.
Unfortunately, you won’t be able to connect these event handlers using the Visual Studio
Properties window, because the Properties window won’t show the custom events that
the user control provides. Instead, you’ll need to modify the LinkMenu2 tag directly, as
shown here:

���	���"���>?���G�����?���;��	��������	��	��*����>�
��>�������>�
��>����$!

And here’s the event handler that responds in the web page:

�	����������������>�
��>��)�#+���������	,�������	���-

&

����
#
�
��>�.��������
��>�����������0

6

Figure 25-5 shows the result.

Figure 25-5. Using the LinkMenu2 user control

MacDonald.book Page 948 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 949

Conceptually, this approach should give your web page more power to customize how
the user control works. Unfortunately, that’s not the case at the moment, because a key
piece of information is missing. When the LinkClicked event occurs, the web page has no
way of knowing what link was clicked, which prevents it from taking any kind of reason-
able action. The only way to solve this problem is to create a more intelligent event that
can transmit some information through event arguments. You’ll see how in the next
section.

Using Events with Parameters

In the current LinkMenu2 example, no custom information is passed along with the
event. In many cases, however, you want to convey additional information that relates to
the event. To do so, you need to create a custom class that derives from EventArgs.

The EventArgs class that follows allows the LinkMenu2 user control to pass the URL
that the user selected through a Url property. It also provides a Cancel property. If set to
true, the user control will stop its processing immediately. But if Cancel remains false (the
default), the user control will send the user to the new page. This way, the user control still
handles the task of redirecting the user, but it allows the web page to plug into this process
and change or stop it (for example, if there’s unfinished work left on the current page).

��#
����
�������>�
��>��������	��"�������	�

&

�����	��������	����	
0

������#
�����	���%	

����&

�����������&�	���	���	
0�6

������������&��	
�����
��0�6

����6

�����	������#��
������
���8�
��0

������#
���#��
������

����&

�����������&�	���	�������
0�6

������������&������
�����
��0�6

����6

������#
������>�
��>��������	�)��	����	
-

����&

��������%	
����	
0

����6

6

MacDonald.book Page 949 Thursday, December 22, 2005 3:04 PM

950 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

To use this EventArgs class, you need to create a new delegate that represents the
LinkClicked event signature. Here’s what it looks like:

��#
�����
�������������>�
��>�������9���
�)�#+���������	,

�����>�
��>��������	���-0

Both the LinkClickedEventArgs and LinkClickedEventHandler delegate must be placed
in the App_Code directory. That way, these classes will be compiled automatically and
made available to all web pages.

Now you can modify the LinkClicked event to use the LinkClickedEventHandler
delegate:

��#
������������>�
��>�������9���
�	����>�
��>��0

Next, your user control code for raising the event needs to submit the required informa-
tion when calling the event. But how does the user control determine what link was clicked?
The trick is to switch from the LinkButton.Click event to the LinkButton.Command event.
The Command event automatically gets the CommandArgument that’s defined in the tag.
So if you define your LinkButton controls like this:

����"���>@�������2��
�>@��>���	��������	��	�

����33����	�3�����?���G9��������A�	������@��>���*���33�����
�>(��33����!@��>�

�$���"���>@�����!�#	�$!

����"���>@�������2��
�>.�=���	��������	��	�

����33����	�3�����?���G9��������A�	������.�=���*���33�����
�>(��33����!.�=�

�$���"���>@�����!�#	�$!

����"���>@�������2��
�>5��	����	��������	��	�

����33����	�3�����?���G9��������A�	������5��	����*���33�����
�>(��33����!5��	��

�$���"���>@�����!�#	�$!

����"���>@�������2��
�>��	����	���	��������	��	�

����33����	�3�����?���G9��������A�	��������	����	���*���33�����
�>(��33����!

��	����	��$���"���>@�����!

you can pass the link along to the web page like this:

���>�
��>��������	���	������/����>�
��>��������	�))��	��-����33����	�3���-0

���>�
��>��)� ��,��	�-0

Here’s the complete user control code. It implements one more feature. After the event
is raised (as has been handled by the web page), it checks the Cancel property. If it’s false,
it goes ahead and performs the redirect using Reponse.Redirect().

��#
�����	���
��
�������>?���G�"�5=���3���#�%��%��	����	�

&

������#
������������>�
��>�������9���
�	����>�
��>��0

MacDonald.book Page 950 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 951

�����	�������������
�>(��33���)�#+���������	,���33���������	���-

����&

��������$$�*����8�� �����>@����������	�
�� ���#�����
��>���

��������$$�7������������������ ������

���������8�)���>�
��>���E����

-

��������&

������������$$�'�����
���� ��
��>���8�	3������

���������������>�
��>��������	���	���

����������������/����>�
��>��������	�))��	��-����33����	�3���-0

���������������>�
��>��)� ��,��	�-0

������������$$�'�	8�	3�� ��	���	����

�������������8�)E�	�������
-

������������&

����������������$$�4������/������� ��%	
�8	�3�� �����>�
��>��������	�

����������������$$��#+���,������ ���	����
�
��>��. ���3������ ��/�#����

����������������$$������ ����� ��
��>��8�����	���#�8�	��� ��	���	����

����������������7��������7���	���)�	��%	
-0

������������6

��������6

����6

6

Finally, your receiving code needs to update its event handler to use the new signature.
In the following code, it checks the URL and allows it in all cases except one:

�	����������������>�
��>��)�#+���������	,����>�
��>��������	���-

&

�����8�)��%	
�����?���G9��������A�	��������	����	��-

����&

��������
#
�
��>�.�������. ���
��>���������

�/����0

���������������
����	��0

����6

�����
��

����&

��������$$��

�/�� ��	���	���,��������H��3�>����=�� ��������� ��%7��

����6

6

If you click the Furniture link, you’ll see the message shown in Figure 25-6.

MacDonald.book Page 951 Thursday, December 22, 2005 3:04 PM

952 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

Figure 25-6. Handling a user control event in the page

User Control Limitations

User controls provide a great deal of flexibility when you want to combine several web
controls (and additional HTML content) in a single unit and possibly add some higher-
level business logic. However, they are less useful when you want to modify or extend
individual web controls.

For example, imagine you want to create a custom text box–like control that adds a few
convenient features. This text box resembles the ordinary TextBox control that’s included
in ASP.NET, but it adds some new features. For example, you might add some new meth-
ods that automate common tasks for parsing or reformatting the text in the text box.

To create this sort of custom control with the user control model, you need to design a
user control that contains a single TextBox control. You can then add the methods you
need to your user control. This is called a model of containment, because the user control
contains the text box.

The problem is that this model often raises more problems than it solves. Although
you can easily add your custom methods to the user control (which is good), you end up
hiding the control inside the user control (which is bad). That means when a developer
drops your new user control into a web page, they’ll have access to all your new features,
but they won’t be able to access the original text box properties and methods. For exam-
ple, they won’t be able to set the text box font, colors, or size. In other words, you can
create a specialized text box, but even as you add new features, you end up obscuring the
existing ones.

To deal with these problems, you can add more properties to your user control that
duplicate the properties of the control inside. In the text box user control example, you
could add a ForeColor property that exposes the TextBox.ForeColor property. This strat-
egy works, but it’s tedious. Web controls are complex and have a lot of properties. Trying
to duplicate these details in every user control you create is a lot of extra work.

MacDonald.book Page 952 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 953

The next section describes a better, more fine-grained approach for extending or fine-
tuning individual controls. Instead of using containment to wrap a control, you’ll use
inheritance to extend it.

Derived Custom Controls
Thanks to the class-based .NET Framework, you can create specialized controls using
inheritance in an easier way. All you need to do is find the control you want to extend in
the .NET class library and derive a new class from it that adds the additional functionality
you need.

You can create a derived custom control for an ASP.NET application in two ways:

• You can create the custom control as a part of the web application. In this case, you
must put the custom control class in the App_Code directory so that it’s compiled
automatically and made available to all your pages.

• You can create the custom control in a separate project and compile it into a DLL
component. That way, you can keep your control code separate, and you can reuse
it in a variety of different web applications.

In the following sections, you’ll start with the simpler approach (creating the control in
the current project) and then graduate to creating a complete, separate, custom control
library.

Creating a Simple Derived Control

Imagine you want to create a control that looks and acts like a text box but adds some new
features that are tailored for working with names (such as Smith, Joe). Thanks to inherit-
ance, this is easier than you’d expect.

Consider the following example—a NameTextBox that adds GetFirstName() and
GetLastName() methods. These methods examine the entered text and parse it into a first and
last name using one of two recognized formats: space-separated (FirstName LastName) or
comma-separated (LastName, FirstName). This way, the user can enter a name in either for-
mat, and your code doesn’t have to go through the work of parsing the text. Instead, the
NameTextBox control handles it automatically.

��#
����
����4�3�.���@���"�.���@��

&

�����	��������	���8�	��4�3�0

�����	��������	���
���4�3�0

MacDonald.book Page 953 Thursday, December 22, 2005 3:04 PM

954 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

������#
�����	���I����	��4�3�)-

����&

��������%�����4�3��)-0

��������	���	��8�	��4�3�0

����6

������#
�����	���I������4�3�)-

����&

��������%�����4�3��)-0

��������	���	��
���4�3�0

����6

�����	�����������%�����4�3��)-

����&

��������������33�'������ ���.���������*8)H,H-0

�����������������'������ ���.���������*8)H�H-0

����������	��CD���3��		�=0

���������8�)��33�'���E��J;-

��������&

��������������3��		�=���� ���.����5�
��)H,H-0

������������8�	��4�3������3��		�=C;D0

������������
���4�3������3��		�=CKD0

��������6

���������
����8�)�����'���E��J;-

��������&

��������������3��		�=���� ���.����5�
��)H�H-0

������������8�	��4�3������3��		�=CKD0

������������
���4�3������3��		�=C;D0

��������6

���������
��

��������&

������������$$�. ������� ��������33���	�������

������������$$�����������#�������	�����������3��

������������� 	�/���/�����
��*��	��������������)-0

��������6

����6

6

MacDonald.book Page 954 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 955

You should place this class in the App_Code folder.
In this example, the custom NameTextBox class inherits from the TextBox class (which

is found in the System.Web.UI.WebControls namespace). Because the NameTextBox
class extends the TextBox class, all the original TextBox members (such as Font and
ForeColor) are still available to the web page programmer and can be set in code or
through the control tag. The NameTextBox works directly with the Text property, which it
inherits from the TextBox class.

Using a Derived Control

You can’t use a derived control in the same way as a user control. Dragging and dropping
it onto a page won’t have any effect. Instead, you need to first compile your project by
selecting Build ➤ Build Website from the menu. When you perform this step, Visual
Studio scans your assembly looking for any web control classes (quite simply, classes that
derive directly or indirectly from System.Web.UI.Control). When it finds one, it adds it to
the Toolbox automatically, as shown in Figure 25-7.

Figure 25-7. A custom control in the Toolbox

MacDonald.book Page 955 Thursday, December 22, 2005 3:04 PM

956 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

You can now add this control to any web page. When you do, ASP.NET adds a Register
directive that looks something like this:

���	���"4�3�.���@�������4�3�.���@��;��	��������	��	��$!

Figure 25-8 shows a simple page that allows you to test the NameTextBox control. It
retrieves the first and last name entered in the text box when the user clicks a button.

�	��������������3�I��4�3��(�
��>)*#+���������	,�������	���-

&

����
#
4�3���.��������#!��	�����3�"�$#!��0

����
#
4�3���.����1��4�3�.���@��;�I����	��4�3�)-0

����
#
4�3���.����1����#	�$!�#!�������3�"�$#!��0

����
#
4�3���.����1��4�3�.���@��;�I������4�3�)-0

6

Figure 25-8. A derived control based on the text box

You can set properties of the NameTextBox in code or through the tag. These can
include any additional properties you’ve defined or the properties from the base class:

���	���"4�3�.���@�������4�3�.���@��;��@��>��
�	���� �F�

�/�

����������L�	������.���������	�4�3��9�	���	��������	��	��$!

The technique of deriving custom control classes is known as subclassing, and it allows
you to easily add the functionality you need without losing the basic set of features inherent
in a control. Subclassed controls can add new properties, events, and methods, or they can
override the existing ones. For example, you could add a ReverseText() or EncryptText()
method to the NameTextBox class that loops through the text contents and modifies them.

MacDonald.book Page 956 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 957

The process of defining and using custom control events, methods, and properties is the
same as with user controls.

Creating a Custom Control Library

For better organization, it’s best to develop custom controls in a separate class library
project. You can then compile the assembly into a DLL file and add a reference to the
assembly in any website. This approach allows you to manage the custom control code
separately from the rest of your website, and it enhances the design-time support for your
controls.

■Tip To simplify your life a little, choose the web control library project. A web control library project is
identical to an ordinary class library project, except that it includes references to some of the assemblies you’ll
need to use, such as System.Web.dll.

To try this, follow these steps:

1. Create a new website as you would ordinarily.

2. Select File ➤ Add ➤ New Project.

3. Choose the Web Control Library project type.

4. Choose a name and a location for your control assembly. Keep in mind that this
location is separate from your web application. When you use your control library
with a web application, the compiled DLL file is automatically copied into that
website’s Bin directory. As a result, you don’t need to deploy the control library sep-
arately—it’s always deployed as a part of the web application that uses it.

5. Click OK to create your project. Now, in the Solution Explorer you’ll see two
projects: your website and your custom control library (see Figure 25-9).

6. To make it easy to open these two projects in combination again, you should save
a solution (.sln) file that points to both projects. To do this, select the name of the
solution in the Solution Explorer (it’s the first item at the top of the tree), and
choose File ➤ Save [SolutionName] As. You can choose the exact directory where
you want to store this file so you can find it easily later.

MacDonald.book Page 957 Thursday, December 22, 2005 3:04 PM

958 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

Figure 25-9. A solution with a website and custom control library

■Tip Remember, the solution file is a small file that simply points to the website and control library projects.
If you move these projects to a different location on your hard drive, the solution file won’t work any longer.
You’ll need to create a new solution and add the website and the custom control project to that solution.

To place an instance of your custom control page, you use the same approach
described earlier. Compile your solution (choose Build ➤ Build Solution), and then use
the Toolbox to drop the control onto a web page. The first time you do, Visual Studio will
copy the custom control library to your web application’s Bin directory. From that point
on, it will check for a newer version every time you compile the website and update your
website by copying the latest control library automatically.

You’ll notice that when you use this approach, the Register directive has a slightly dif-
ferent set of attributes than the directive you used for user controls. Here’s an example:

����7�����	�.�'	�8������	�����4�3��������5�	��	����	�
��#	�	=�

��������3#
=�������3��	
����!

This register directive identifies the compiled assembly file and the namespace that
holds the custom control. When you register a custom control assembly in this fashion,
you gain access to all the control classes in it. You can insert a control by using the tag pre-
fix followed by a colon (:) and the class name.

���	���"4�3�.���@�������4�3�.���@��;��	��������	��	��$!

Custom Controls and Default Values

One common reason for subclassing a control is to add default values. For example, you
might create a custom Calendar control that automatically modifies some properties in

MacDonald.book Page 958 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 959

its constructor. When you first create the control, these default properties are applied
automatically.

��#
����
������	3�������
����	�"���
����	

&

������#
�����	3�������
����)-

����&

��������$$����8��	��� �������	������8�� ����
����	���#
��

��������� �����

'��������M0

��������� �����

5��������M0

��������� ���@��>��
�	�����
�	��� �F�

�/0

��������� ���@�	��	5�=
����@�	��	5�=
��I	����0

��������� ���@�	��	���� ���%����'���
)G-0

��������� ���5 �/I	�����������	��0

��������$$����8��	��� ��8����

��������� ��������4�3�����L�	�����0

��������� ��������5�N��������%����OO53�

0

��������$$����8��	����
����	���������

��������� �����	��2�=*8���>�����	��2�=*8���>�?����=0

��������� ���'	��?��� .��������JJ�0

��������� ���4���?��� .�������JJ!�0

��������$$�5�
����� ����		���������#=���8��
��

��������� ���5�
�����2������2���.�3��.���=0

����6

6

You can even add event handling logic to this class that uses the Calendar’s DayRender
event to configure a custom date display. This way, the Calendar class itself handles all the
required formatting and configuration; your page code doesn’t need to work at all!

�	���������������	3�������
����	(2�=7����)*#+���������	,

��2�=7����	������	���-

&

�����8�)��2�=���*� �	?��� -

����&

����������2�=���5�
����#
����8�
��0

������������

�.��������0

����6

MacDonald.book Page 959 Thursday, December 22, 2005 3:04 PM

960 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

�����
��

����&

������������

������@�
�����	��0

����6

6

The preferred way to handle this is actually to override the OnDayRender() method,
which is automatically called just before the event is fired. That way, you don’t need to
write delegate code to connect your event handlers. When you override a method like this,
make sure you call the base method using the base keyword. This ensures that any basic
tasks (such as firing the event) are performed.

The effect of the following code is equivalent to the event-based approach:

�	�����������		���������*�2�=7����).�#
���

���

,���
����	2�=���=-

&

����$$���

�� ��#������
����	�*�2�=7����	�3�� ���

����#����*�2�=7����)��

,���=-0

�����8�)��=���*� �	?��� -

����&

����������=���5�
����#
����8�
��0

����������

�.��������0

����6

�����
��

����&

����������

������@�
�����	��0

����6

6

Figure 25-10 contrasts two Calendar controls: the normal one and the custom
FormattedCalendar control class.

■Tip Even though you set these defaults in the custom class code, this doesn’t prevent you from modifying
them in your web page code. The constructor code runs when the Calendar control is created, after which the
control tag settings are applied. Finally, the event handling code in your web page also has the chance to
modify the FormattedCalendar properties.

MacDonald.book Page 960 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 961

Figure 25-10. A subclassed Calendar control

Changing Control Rendering

You can also subclass a control and add low-level refinements by manually configuring
the HTML that is generated from the control. To do this, you need to follow only a few
basic guidelines:

• Override one of the render methods (Render(), RenderContents(), RenderBeginTag(),
and so on) from the base control class. To override the method successfully, you need
to specify the same access level as the original method (such as public or protected).
Visual Studio helps you out on this account by warning you if you make a mistake. If
you’re coding in another editor, just check the MSDN reference first.

• Use the base keyword to call the base method. In other words, you want to make
sure you’re adding functionality to the method, not replacing it with your code. The
original method may perform some required cleanup task that you aren’t aware of,
or it may raise an event that the web page could be listening for.

• Add the code to write out any additional HTML. Usually, this code uses the
HtmlWriter class, which supplies a helpful Write() method for direct HTML output.

MacDonald.book Page 961 Thursday, December 22, 2005 3:04 PM

962 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

The following is an example of a TextBox control that overrides the Render() method to
add a title. The content for this title is taken from the custom Title property.

��#
����
����.��
��.���@���"�.���@��

&

�����	��������	������
�0

������#
�����	���.��
�

����&

�����������&�	���	�����
�0�6

������������&����
������
��0�6

����6

�����	�����������		���������7����)9�3
.����	���	�/	���	-

����&

��������$$�������/�9.?��

��������/	���	��	���)�� ;!��1����
��1���$;!�-0

��������$$���

�� ��#����3�� ���)���� ���� �������#������	����	��-�

��������#����7����)/	���	-0

����6

6

Figure 25-11 shows what the TitledTextBox control looks like in the design
environment.

Figure 25-11. A subclassed text box with a title

MacDonald.book Page 962 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 963

Remember, ASP.NET creates a page by moving through the list of controls and
instructing each one to render itself (by calling the Render() method). It collects the
total HTML output and sends it as a complete page.

The only limitation in this approach is that you lose the ability to use the control-based
style model. For example, if you want to create a heading with a specific font, specific
alignment, and specific color characteristics, you need to render all the style code. On the
other hand, if you create a user control or a composite control (a special type of server
control discussed in the “Creating a Composite Control” section later in this chapter), the
heading would be represented by a separate Label control, and you’d be able to tweak all
of its properties.

You can use a similar technique to add attributes to the HTML text box tag. For exam-
ple, you might want to link a little JavaScript code to the OnBlur attribute to make a
message box appear when the control loses focus. No TextBox property exposes this
attribute, but you can add it manually in the AddAttributesToRender() method. The code
you need is as follows:

��#
����
�������������.���@���"�.���@��

&

�����	�����������		���������������	�#����.�7����)

������9�3
.����	���	�/	���	-

����&

��������#����������	�#����.�7����)/	���	-0

��������/	���	�������	�#���)�*�@
�	�,

�����������+�����	���"�
�	�)HF�������������H-�-0

����6

6

The resulting HTML for the LostFocusTextBox looks something like this:

��������=�����������������������.���@��G�

�������*�@
�	��+�����	���"�
�	�)HF�������������H-��$!

Figure 25-12 shows what happens when the text box loses focus. You can extend the
usefulness of this control by making the alert message configurable, as shown here:

��#
����
�������������.���@���"�.���@��

&

�����	��������	����
�	�0

������#
�����	����
�	�?�����

����&

�����������&�	���	���
�	�0�6

������������&��
�	������
��0�6

����6

MacDonald.book Page 963 Thursday, December 22, 2005 3:04 PM

964 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

�����	�����������		���������������	�#����.�7����)

������9�3
.����	���	�/	���	-

����&

��������#����������	�#����.�7����)/	���	-0

��������/	���	�������	�#���)�*�@
�	�,

�����������+�����	���"�
�	�)H��1��
�	��1��H-�-0

����6

6

Figure 25-12. The LostFocusTextBox control

Creating a Web Control from Scratch

Once you start experimenting with altering the TextBox control’s HTML, it might occur to
you to design a control entirely from scratch. This is an easy task in ASP.NET—all you
need to do is inherit from the System.Web.UI.WebControls.WebControl class, which is
the base of all ASP.NET web controls. Figure 25-13 shows the inheritance hierarchy for
web controls.

■Note Technically, you can inherit from the base System.Web.UI.Control class instead, but it provides
fewer features. The main difference with the WebControl class is that it provides a basic set of formatting
properties such as Font, BackColor, and ForeColor. These properties are automatically implemented by
adding the appropriate HTML attributes to your HTML tag and are also persisted in view state for you auto-
matically. If you inherit from the more basic Control class, you need to provide your own style-based
properties, add them as attributes using the HtmlTextWriter, and store the settings in view state so they’ll be
remembered across postbacks.

MacDonald.book Page 964 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 965

Figure 25-13. Web control inheritance

To create your own control from scratch, you need to do little more than add the appro-
priate properties and implement your own custom RenderContents() or Render() method,
which writes the HTML output using the HtmlTextWriter class. The RenderContents()
method takes place after the Render() method, which means the formatting attributes have
already been applied.

The code is quite similar to the earlier TextBox examples. It creates a repeater type of
control that lists a given line of text multiple times. The RepeatTimes property sets the
number of repeats.

��#
����
�������8��	�#
�7������	�"���#����	�

&

�����	����������	�����.�3�����:0

�����	��������	�����������.����0

������#
�������7�����.�3��

����&

MacDonald.book Page 965 Thursday, December 22, 2005 3:04 PM

966 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

�����������&�	���	��	�����.�3��0�6

������������&�	�����.�3�������
��0�6

����6

������#
�����	���.���

����&

�����������&�	���	������0�6

������������&����������
��0�6

����6

�����	�����������		���������7����	��������)9�3
.����	���	�/	���	-

����&

��������#����7����	��������)/	���	-0

��������8�	�)��������K0�����	�����.�3��0��11-

��������&

������������/	���	��	���)�����1���#	�$!�-0

��������6

����6

6

Because you’ve used a WebControl-derived class instead of an ordinary Control-
derived class and because the code writes the output inside the RenderContents()
method, the web page programmer can set various style attributes. Figure 25-14 shows a
sample formatted ConfigurableRepeater. If you want to include a title or another portion
that you don’t want rendered with formatting, add it to the Render method.

Figure 25-14. WebControl formatting for repeating control

MacDonald.book Page 966 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 967

Maintaining State Information

Currently, the repeater control provides an EnableViewState property, but it doesn’t actually
abide by it. You can test this by creating a simple page with two buttons (see Figure 25-15).
One button changes the RepeatTimes to 5, while the other button simply triggers a postback.
You’ll find that every time you click the Postback button, RepeatTimes is reset to the default of
3. If you change the Text property in your code, you’ll also find that it reverts to the value spec-
ified in the control tag.

Figure 25-15. Testing view state

This problem has an easy solution: store the value in the control’s view state. As with
web pages, the values in the member variables in a custom web control class are automat-
ically abandoned after the page is returned to the client.

Here’s a rewritten control that uses a variable stored in view state instead of a member
variable:

��#
����
�������8��	�#
�7������	�"���#����	�

&

������#
������8��	�#
�7������)-

����&

��������7�����.�3�����:0

��������.��������0

����6

MacDonald.book Page 967 Thursday, December 22, 2005 3:04 PM

968 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

������#
�������7�����.�3��

����&

�������������	���	��)���-L��/5����C�7�����.�3���D0��

��������������L��/5����C�7�����.�3���D�����
��0��

����6

������#
�����	���.���

����&

�������������	���	��)��	��-L��/5����C�.����D0��

��������������L��/5����C�.����D�����
��0��

����6

�����	�����������		���������7����	��������)9�3
.����	���	�/	���	-

����&

��������#����7����	��������)/	���	-0

��������8�	�)��������K0�����7�����.�3��0��11-

��������&

������������/	���	��	���).����1���#	�$!�-0

��������6

����6

6

The code is essentially the same, although it now uses a constructor to initialize the
RepeatTimes and Text values. You must take extra care to make sure the view state object
is converted to the correct data type. Performing this conversion manually ensures that
you won’t end up with difficult-to-find bugs or quirks. Note that although the code looks
the same as the code used to store a variable in a Page object’s view state, the collections
are different. This means the web page programmer won’t be able to access the control’s
view state directly.

You’ll find that if you set the EnableViewState property to false, changes aren’t remem-
bered, but no error occurs. When view state is disabled, ASP.NET still allows you to write
items to view state, but they won’t persist across postbacks.

If the EnableViewState property of your control is set to false, the view state collection
isn’t maintained. Your code will still work, but the values you attempt to store will actually
be ignored. With the ConfigurableRepeater, you’ll see the same behavior you saw without
view state—at the start of each postback, the property values will be reset to their defaults.

Although this sounds inconvenient, it’s actually the behavior you want. For example,
the web page developer may decide to set certain properties at the beginning of every
postback, in which case there’s no point in maintaining them in view state. You should

MacDonald.book Page 968 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 969

ensure that your control should still work when view state is switched off, even if changes
won’t persist.

■Note In some advanced control scenarios, you may need to retain a bare minimum of state information
just to make your control functional. In this scenario, you can use a control state feature that ASP.NET pro-
vides. The basic idea is that you override the SaveControlState() method to store the information you need and
the LoadControlState() method to retrieve it. The information is still placed in the page’s view state, but it
won’t be removed even if EnableViewState is set to false. Microsoft recommends you use this feature with
caution and only when it is absolutely required. To learn more about this feature, consult the documentation
for the SaveControlState() and LoadControlState() methods in the MSDN Help.

Design-Time Support

Any properties you add for the custom control automatically appear in the Properties
window under the Misc heading. You can further customize the design-time behavior of
your control by using various attributes from the System.ComponentModel namespace:

�����5=���3���3������?���
0

For example, the property defined next will always appear in the Layout category of
the Properties window. It indicates this to Visual Studio through the System.Component-
Model.Category attribute.

C�����	=)���=����-D

��#
�������7�����.�3��

&

�������&�	���	��	�����.�3��0�6

��������&�	�����.�3�������
��0�6

6

Note that attributes are always enclosed in square brackets and must appear on the
same line as the code element they refer to (in this case, the property procedure declara-
tion) or be separated from it using the underscore continuation character. (You may
remember that .NET attributes were also used when programming web services. In that
case, the attributes were named WebMethod and WebService.)

You can specify more than one attribute at a time, as long as you separate them using
commas. The example here includes a Category attribute and a Description attribute.
Figure 25-16 shows the result in the Properties window.

C2���	������)�. ����3#�	��8���3���.����/�

�#��	��������-,������	=)���=����-D

MacDonald.book Page 969 Thursday, December 22, 2005 3:04 PM

970 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

Figure 25-16. Custom control design-time support

Table 25-1 lists some useful attributes for configuring a control’s design-time support.

Table 25-1. Attributes for Design-Time Support

Attribute Description
[Browsable(true|false)] If false, this property doesn’t appear in the

Properties window (although the programmer can
still modify it in code or by manually adding the
control tag attribute, as long as you include a Set
property procedure).

 [Category("")] A string that indicates the category under which the
property appears in the Properties window.

[Description("")] A string that indicates the description the property
has when selected in the Properties window.

[DefaultValue()] Sets the default value that is displayed for the
property in the Properties window.

[ParenthesizePropertyName(true|false)] If true, Visual Studio displays parentheses around
this property in the Properties window (as it does
with the ID property).

[ToolboxData("")] Lets you control what the control tag looks
like when you drop the control into a page
from the Toolbox. Usually, the tag takes the
format <TagPrefix:ClassName> as in
<apress:NameTextBox>. However, you can tweak
this so the tag name is different from the class
name. To do so, use this attribute and a string in
the format "<{0}:NameTextBox runat=server>
</{0}:NameTextBox>" where {0} represents the tag
prefix and everything else is entered as is.

MacDonald.book Page 970 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 971

Creating a Composite Control

So far, you’ve seen how user controls are generally used for aggregate groups of controls
with some added higher-level business logic, while custom controls allow you to create
the final HTML output from scratch. You’ll also find that user controls are generally
quicker to create, easier to work with in a single project, and simpler to program. Custom
controls, on the other hand, provide extensive low-level control features you haven’t even
considered in this chapter, such as templates and data binding.

One technique you haven’t considered is composite controls—custom controls that are
built from other controls. Composite controls are a little bit closer to user controls,
because they render their user interface at least partly from other controls. For example,
you might find that you need to generate a complex user interface using an HTML table.
Rather than write the entire block of HTML manually in the Render() method (and try to
configure it based on various higher-level properties), you could dynamically create and
insert a Table web control. This pattern is quite common with ASP.NET server controls—
for example, it’s logical to expect that advanced controls such as the Calendar and Data-
Grid rely on simpler table-based controls such as Table to generate their user interfaces.

Generating composite controls is quite easy. All you need to do is derive from a control
class such as Control or WebControl, override the CreateChildControls() method, create
the control objects you want to use, and add them to the Controls collection of your cus-
tom control.

The following example creates a grid of buttons, based on the Rows and Cols proper-
ties. Figure 25-17 shows a simple test page for this control.

��#
����
����@�����I	���"�����	�

&

������#
���@�����I	��)-

����&

��������7�/����G0

����������
����G0

����6

������#
���������
�

����&

�����������&�	���	��)���-L��/5����C���
��D0�6

������������&�L��/5����C���
��D�����
��0�6

����6

������#
�������7�/�

����&

�����������&�	���	��)���-L��/5����C�7�/��D0�6

������������&�L��/5����C�7�/��D�����
��0�6

����6

MacDonald.book Page 971 Thursday, December 22, 2005 3:04 PM

972 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

�����	�����������		����������	����� �
�����	�
�)-

����&

��������������������K0

��������8�	�)����	�/���K0�	�/���)���-L��/5����C�7�/��D0�	�/11-

��������&

������������8�	�)������
���K0���
���)���-L��/5����C���
��D0���
11-

������������&

���������������������110

����������������$$��	������������8��	����#������

����������������@��������	
@�����/�@�����)-0

������������������	
@����� ���%����'���
)PK-0

������������������	
@�.������������.�5�	��)-0

����������������$$������ ��#������

����������������� �������	�
�����)��	
@-0

������������6

������������$$�������
����#	��>�

����������������	�
����	�
���	
������/�����	�
����	�
)��#	�$!�-0

������������� �������	�
�����)��	
�-0

��������6

����6

6

Figure 25-17. A composite control using buttons

MacDonald.book Page 972 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 973

Custom Control Events and Postbacks

Raising an event from a control is just as easy as it was with a user control. All you need to
do is define the event (and any special EventArgs class) and then fire it with the RaiseEvent
statement.

However, to raise an event, your code needs to be executing—and for your code to be
triggered, the web page needs to be posted back to the server. If you need to create a con-
trol that reacts to user actions instantaneously and then refreshes itself or fires an event to
the web page, you need a way to trigger and receive a postback.

In an ASP.NET web page, web controls fire postbacks by calling a special JavaScript func-
tion called __doPostBack(). This function was described in Chapter 7. The __doPostBack()
function accepts two parameters: the name of the control that triggered the postback
and a string representing additional postback data. You can retrieve a reference to the
__doPostBack() function using the special Page. GetPostBackEventReference() method in
your rendering code. (Every control provides the Page property, which provides a reference
to the web page where the control is situated.)

The GetPostBackEventReference() method allows you to perform an interesting trick—
namely, creating a control or HTML link that invokes the __doPostBack function. The eas-
iest way to perform this magic is usually to add a JavaScript onClick attribute to an HTML
element. Anchors, images, and buttons all support the onClick attribute.

Consider the ButtonGrid control. Currently, the buttons are created, but there is no
way to receive their events. You can change this by setting each button’s onClick attribute
to refer to the __doPostBack() function. The added lines are highlighted in bold in the fol-
lowing code:

�	�����������		����������	����� �
�����	�
�)-

&

��������>���K0

����8�	�)��������K0�����7�/�0��11-

����&

��������8�	�)����+���K0�+�����
�0�+11-

��������&

������������>110

������������$$��	������������8��	����#������

������������@��������	
@�����/�@�����)-0

��������������	
@����� ���%����'���
)PK-0

��������������	
@�.������>�.�5�	��)-0

MacDonald.book Page 973 Thursday, December 22, 2005 3:04 PM

974 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

�����������������������	
��������������������������
����	

������������������	�	�����������
��������������������������

����������������	��������	����������
���	
��	���
�������

�����������������������
����� ��	��������

������������������!��������"#	
����#$�%

����������������������
�������&���	������'(�
�)�����
��*�����������+� �,-

������������$$������ ��#������

������������� �������	�
�����)��	
@-0

��������6

��������$$�������
����#	��>�

������������	�
����	�
���	
������/�����	�
����	�
)��#	�$!�-0

��������� �������	�
�����)��	
�-0

����6

6

To handle the postback, your custom control also needs to implement the IPostBack-
EventHandler interface, as shown here:

��#
����
����@�����I	���"���3����������	�
,�.�	������'(�
�/�
����

&

����$$�)����	�
���������� �	��-

6

You then need to create a method that implements the IPostBackEvent-
Handler.RaisePostBackEvent() method. This method is triggered when your control
fires the postback, and it receives any additional information that is submitted through
the GetPostBackEventReference() method. In the ButtonGrid control, this extra infor-
mation is the text of the button that was clicked.

��#
�����	���
������7����'���@��>�����)��	���������	�3���-

&

����$$�)7��������������#��>� �	��-

6

Once you receive the postback, you can modify the control or even raise another event
to the web page. To enhance the ButtonGrid example to use this method, you’ll define an
additional EventArgs class, delegate, and event:

��#
����
����I	���
��>������	��"�������	�

&

������#
�����	���@�����4�3�0

MacDonald.book Page 974 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 975

������#
���I	���
��>������	�)��	���#�����4�3�-

����&

��������@�����4�3����#�����4�3�0

����6

6

��#
�����
����������I	���
��>�����9���
�)�#+���������	,

��I	���
��>������	���-0

��#
���������I	���
��>�����9���
�	�I	���
��>0

This event handler raises an event to the web page, with information about the selected
button.

The RaisePostBackEvent() method can then trigger the GridClick event. Here’s the
complete, revised code for the ButtonGrid:

��#
����
����@�����I	���"���3����������	�
,��'���@��>�����9���
�	

&

������#
���������I	���
��>�����9���
�	�I	���
��>0

������#
���@�����I	��)-

����&

��������7�/����G0

����������
����G0

����6

������#
���������
�

����&

�����������&�	���	��)���-L��/5����C���
��D0�6

������������&�L��/5����C���
��D�����
��0�6

����6

������#
�������7�/�

����&

�����������&�	���	��)���-L��/5����C�7�/��D0�6

������������&�L��/5����C�7�/��D�����
��0�6

����6

������#
�����	���
������7����'���@��>�����)��	���������	�3���-

����&

���������8�)I	���
��>�E����

-

MacDonald.book Page 975 Thursday, December 22, 2005 3:04 PM

976 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

��������&

������������I	���
��>)� ��,���/�I	���
��>������	�)������	�3���--0

��������6

����6

�����	�����������		����������	����� �
�����	�
�)-

����&

������������>���K0

��������8�	�)��������K0�����7�/�0��11-

��������&

������������8�	�)����+���K0�+�����
�0�+11-

������������&

����������������>110

����������������$$��	������������8��	����#������

����������������@��������	
@�����/�@�����)-0

������������������	
@����� ���%����'���
)PK-0

������������������	
@�.������>�.�5�	��)-0

������������������	
@����	�#����C����
��>�D��

������������������'����
����5�	����I��'���@��>�����7�8�	����)� ��,���	
@�.���-0

����������������$$������ ��#������

����������������� �������	�
�����)��	
@-0

������������6

������������$$�������
����#	��>�

����������������	�
����	�
���	
������/�����	�
����	�
)��#	�$!�-0

������������� �������	�
�����)��	
�-0

��������6

����6

6

Figure 25-18 shows a web page that allows you to test the ButtonGrid. It handles the
GridClick event and displays a message indicating which button was clicked. It also allows
the user to specify the number of rows and columns that should be added to the grid.

■Note One of the nice things about compiling controls in a separate assembly is that it gives you enhanced
design-time support. Not only can you add these controls to the Toolbox, but you can also create event han-
dlers for any of their custom events (such as the ButtonGrid.GridClick event) using the Properties window.
Unfortunately, the same feat isn’t possible with user controls.

MacDonald.book Page 976 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 977

Figure 25-18. Handling custom control events

Here’s the web page code:

��#
�����	���
��
����@�����I	��9����"�'��

&

�����	��������������3�%�����(�
��>)*#+���������	,�������	���-

����&

��������@�����I	��;�7�/�������:G�'�	��)���7�/��.���-0

��������@�����I	��;���
�������:G�'�	��)�����
��.���-0

����6

�����	�������������@�����I	��;(I	���
��>)�#+���������	,

�����������3����	�
��I	���
��>������	���-

����&

��������
#
��8��.�������F����
��>��"���1���@�����4�3�0

����6

6

Dynamic Graphics
One of the features of the .NET Framework is GDI+, a set of classes designed for creating
bitmaps. You can use GDI+ in a Windows or an ASP.NET application to draw dynamic
graphics. In a Windows application, the graphics you draw would be copied to a window
for display. In ASP.NET, the graphics can be rendered right into the HTML stream and be
sent directly to the client browser.

MacDonald.book Page 977 Thursday, December 22, 2005 3:04 PM

978 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

In general, using GDI+ code to draw a graphic is slower than using a static image file.
However, it gives you much more freedom. For example, you can tailor the graphic to suit
a particular purpose, incorporating information such as the date or current user name.
You can also mingle text, shapes, and other bitmaps to create a complete picture.

Basic Drawing

You need to follow four basic steps when using GDI+. First, you have to create an in-memory
bitmap. This is the drawing space where you’ll create your masterpiece. To create the bitmap,
declare a new instance of the System.Drawing.Bitmap class. You must specify the height and
width of the image in pixels. Be careful—don’t make the bitmap larger than required, or you’ll
needlessly waste memory.

$$��	����������J3�3�	=�#��3���/ �	��=���/�

��	�/�� ���3���

$$�. ��@��3������:KK�����
��/��������QK�����
�� � �

@��3����3�������/�@��3��):KK,�QK-0

The next step is to create a GDI+ graphics context for the image, which is represented
by the System.Drawing.Graphics object. This object provides the methods that allow you
to render content to the in-memory bitmap. To create a Graphics object from an existing
Bitmap object, you just use the static Graphics.FromImage() method, as shown here:

I	�� �������I	�� �����	�3�3��)�3��-0

Now comes the interesting part. Using the methods of the Graphics class, you can draw
text, shapes, and images on the bitmap. Table 25-2 lists some of the most fundamental
Graphics class methods. The methods that begin with the word Draw draw outlines, while
the methods that begin with the word Fill draw solid regions. The only exceptions are the
DrawString() method, which draws filled-in text using a font you specify, and the methods
for copying bitmap images, such as DrawIcon() and DrawImage().

Table 25-2. Graphics Class Methods for Drawing

Method Description
DrawArc() Draws an arc representing a portion of an ellipse specified by a pair of

coordinates, a width, and a height

DrawBezier() and
DrawBeziers()

Draws the infamous and attractive Bezier curve, which is defined by
four control points

DrawClosedCurve() Draws a curve and then closes it off by connecting the end points

DrawCurve() Draws a curve (technically, a cardinal spline)

DrawEllipse() Draws an ellipse defined by a bounding rectangle specified by a pair
of coordinates, a height, and a width

DrawIcon() and
DrawIconUnstreched()

Draws the icon represented by an Icon object and (optionally)
stretches it to fit a given rectangle

MacDonald.book Page 978 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 979

When calling the Graphics class methods, you need to specify several parameters to
indicate the pixel coordinates for what you want to draw. For example, when drawing a
rectangle, you need to specify the location of the top-left corner and its width and height.
Here’s an example of how you might draw a solid rectangle in yellow:

$$�2	�/���	�����
�����	�������
��������)K,�K-

$$�� ������:KK�����
��/��������QK�����
�� � �

���

7�����
�)@	�� ���F�

�/,�K,�K,�:KK,�QK-0

When measuring pixels, the point (0, 0) is the top-left corner of your image in (x, y)
coordinates. The x coordinate increases as you go farther to the right, and the y coordinate
increases as you go farther down. In the current example, the image is 300 pixels wide and
50 pixels high, which means the point (300, 50) is the bottom-right corner.

You’ll also notice you need to specify either a Brush or a Pen object when you create any
graphic. Methods that draw shape outlines require a Pen, while methods that draw filled-in
regions require a Brush. You can create your own custom Pen and Brush objects, but .NET
provides an easier solution with the Brushes and Pens classes. These classes expose static
properties that provide various Brushes and Pens for different colors. For example,
Brushes.Yellow returns a Brush object that fills regions using a solid yellow color.

Once the image is complete, you can send it to the browser using the Image.Save()
method. Conceptually, you “save” the image to the browser’s response stream. It then
gets sent to the client and displayed in the browser.

DrawImage() and
DrawImageUnscaled()

Draws the image represented by an Image-derived object and
(optionally) stretches it to fit a given rectangle

DrawLine() and
DrawLines()

Draws a line connecting the two points specified by coordinate pairs

DrawPie() Draws a “piece of pie” shape defined by an ellipse specified by a
coordinate pair, a width, a height, and two radial lines

DrawPolygon() Draws a multisided polygon defined by an array of points

DrawRectangle() and
DrawRectangles()

Draws an ordinary rectangle specified by a starting coordinate pair
and width and height

DrawString() Draws a string of text in a given font

FillClosedCurve() Draws a curve, closes it off by connecting the end points, and fills it

FillEllipse() Fills the interior of an ellipse

FillPie() Fills the interior of a “piece of pie” shape

FillPolygon() Fills the interior of a polygon

FillRectangle() and
FillRectangles()

Fills the interior of a rectangle

FillRegion() Fills the interior of a Region object

Method Description

MacDonald.book Page 979 Thursday, December 22, 2005 3:04 PM

980 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

$$�7����	�� ���3������� ��9.?�����������	��3�

�3���5���)7��������*�����5�	��3,

��5=���3�2	�/����3�����3����	3���I�8-0

■Tip You can save an image to any valid stream, including a FileStream. This technique allows you to save
dynamically generated images to disk so that you can use them later in other web pages.

Finally, you should explicitly release your image and graphics context when you’re fin-
ished, because both hold onto some unmanaged resources that might not be released
right away if you don’t:

�2������)-0

�3���2������)-0

GDI+ is a specialized approach, and its more advanced features are beyond the scope
of this book. However, you can learn a lot by considering a couple of simple examples.

Drawing Custom Text

Using the techniques you’ve learned, it’s easy to create a simple web page that uses GDI+.
The next example uses GDI+ to render some text in a bordered rectangle with a happy-
face graphic next to it.

Here’s the code you’ll need:

�	�������������'��(����)*#+���������	,�������	���-

&

����$$��	����������J3�3�	=�#��3���/ �	��=���/�

��	�/�� ���3���

����$$�. ��@��3������:KK�����
��/��������QK�����
�� � �

����@��3����3�������/�@��3��):KK,�QK-0

����$$�I���� ��	�� ������������8�	�� ��#��3���

����I	�� �������I	�� �����	�3�3��)�3��-0

����$$�2	�/�����
���=�

�/�	�����
��/�� ���	���#�	��	�

�������

7�����
�)@	�� ����� �F�

�/,�K,�K,�:KK,�QK-0

�����2	�/7�����
�)'����7��,�K,�K,�G<<,�R<-0

����$$�2	�/���3��������������8���=�8����

���������8��������/�����)��
#��5���	�,�GK,�����5�=
��7��
�	-0

�����2	�/5�	��)�. ��������������,�8���,�@	�� ���@
��,�;K,�K-0

MacDonald.book Page 980 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 981

����$$����=����3�

�	��8������� ���3���8	�3���8�
��

�����3�����������3����	�3��
�)5�	��	�?��'��)��3�
�=��8�--0

�����2	�/�3��%����
��)����,�GRK,�K-0

����$$�7����	�� ������	��#��3������� ��9.?�����������	��3�

�����3���5���)7��������*�����5�	��3,

������5=���3�2	�/����3�����3����	3���I�8-0

����$$��
�������

�����2������)-0

�����3���2������)-0

6

Figure 25-19 shows the resulting web page.

Figure 25-19. Drawing a custom image

■Tip Because this image is generated on the server, you can use any font that the server has installed
when it’s creating the graphic. The client doesn’t need to have the same font, because the client receives the
text as a rendered image.

Placing Custom Images Inside Web Pages

The Image.Save() approach demonstrated so far has one problem. When you save an
image to the response stream, you overwrite whatever information ASP.NET would other-
wise use. If you have a web page that includes other static content and controls, this
content won’t appear at all in the final web page. Instead, the dynamically rendered
graphics replace it.

MacDonald.book Page 981 Thursday, December 22, 2005 3:04 PM

982 C H A P T E R 2 5 ■ C U S T O M C O N T R O L S

Fortunately, this has a simple solution: you can link to a dynamically generated image
using the HTML tag or the Image web control. But instead of linking your image to
a static image file, link it to the .aspx file that generates the picture.

For example, you could create a file named GraphicalText.aspx that writes a dynami-
cally generated image to the response stream. In another page, you could show the
dynamic image by adding an Image web control and setting the ImageUrl property to
GraphicalText.aspx. In fact, you’ll even see the image appear in Visual Studio’s design-
time environment before you run the web page!

When you use this technique to embed dynamic graphics in web pages, you also need
to think about how the web page can send information to the dynamic graphic. For exam-
ple, what if you don’t want to show a fixed piece of text, but instead you want to generate
a dynamic label that incorporates the name of the current user? (In fact, if you do want to
show a static piece of text, it’s probably better to create the graphic ahead of time and
store it in a file, rather than generating it using GDI+ code each time the user requests the
page.) One solution is to pass the information using the query string. The page that ren-
ders the graphic can then check for the query string information it needs.

Here’s how you’d rewrite the dynamic graphic generator with this in mind:

$$�I���� �����	���3��

�8�)7�B�����S��	=5�	��C�4�3��D������

-

&

����$$�4����3��/�������
����

����$$�2��H������
�=���=� ���

6

�
��

&

������	�����3����7�B�����S��	=5�	��C�4�3��D0

����$$��	����������J3�3�	=�#��3���/ �	��=���/�

��	�/�� ���3���

����@��3����3�������/�@��3��):KK,�QK-0

����$$�I���� ��	�� ������������8�	�� ��#��3���

����I	�� �������I	�� �����	�3�3��)�3��-0

�������

7�����
�)@	�� ����� �F�

�/,�K,�K,�:KK,�QK-0

�����2	�/7�����
�)'����7��,�K,�K,�G<<,�R<-0

����$$�2	�/���3�������#��������� ��B��	=���	���

���������8��������/�����)��
#��5���	�,�GK,�����5�=
��7��
�	-0

�����2	�/5�	��)��3�,�8���,�@	�� ���@
��,�;K,�K-0

MacDonald.book Page 982 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 5 ■ C U S T O M C O N T R O L S 983

����$$�7����	�� ������	��#��3������� ��9.?�����������	��3�

�����3���5���)7��������*�����5�	��3,

������5=���3�2	�/����3�����3����	3���I�8-0

�����2������)-0

�����3���2������)-0

6

Figure 25-20 shows a page that uses this dynamic graphic page, along with two Label
controls. The page passes the query string argument Joe Brown to the page. The full
Image.ImageUrl thus becomes GraphicalText.aspx?Name=Joe%20Brown.

Figure 25-20. Mingling custom images and controls on the same page

The Last Word
ASP.NET custom control creation could be a book in itself. To master it, you’ll want to
experiment with the online samples for this chapter. Once you’ve perfected your controls,
pay special attention to the attributes described in Table 25-1. These are the key to making
your control behave properly and work conveniently in design environments such as
Visual Studio.

MacDonald.book Page 983 Thursday, December 22, 2005 3:04 PM

MacDonald.book Page 984 Thursday, December 22, 2005 3:04 PM

985

■ ■ ■

C H A P T E R 2 6

Caching and Performance
Tuning

ASP.NET applications are a bit of a contradiction. On the one hand, because they’re
hosted over the Internet, they have unique requirements—namely, they need to be able to
serve hundreds of clients as easily and quickly as they deal with a single user. On the other
hand, ASP.NET includes some remarkable tricks that let you design and code a web appli-
cation in the same way you program a desktop application. These tricks are useful, but
they can lead developers into trouble. The problem is that ASP.NET makes it easy to forget
you’re creating a web application—so easy that you might introduce programming prac-
tices that will slow or cripple your application when it’s used by a large number of users in
the real world.

Fortunately, middle ground exists. You can use the incredible timesaving features such
as view state, web controls, and session state that you’ve spent the last 20-odd chapters
learning about and still create a robust web application. But to finish the job properly,
you’ll need to invest a little extra time to profile and optimize your website’s performance.

This chapter discusses the strategies you can use to ensure performance. They fall into
three main categories:

Design for performance: A few key guidelines, if you keep them in mind, can steer you
toward efficient, scalable designs.

Profile your application: One problem with web applications is that it’s sometimes
hard to test them under the appropriate conditions and really get an idea of what their
problems may be. However, Microsoft provides several useful tools that allow you to
benchmark your application and put it through a rigorous checkup.

Implement caching: A little bit of caching may seem like a novelty in a single-user test,
but it can make a dramatic improvement in real-world scenarios. You can easily incor-
porate output and fragment caching into most pages and use data caching to replace
less memory-friendly approaches such as state management.

MacDonald.book Page 985 Thursday, December 22, 2005 3:04 PM

986 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

Designing for Performance
The chapters throughout this book have combined practical how-to information with tips
and insight about the best designs you can use (and the possible problems you’ll face).
Now that you’re a more accomplished ASP.NET programmer, it’s a good idea to review a
number of considerations—and a few minor ways that you can tune all aspects of your
application.

ASP.NET Code Compilation

ASP.NET provides dramatically better performance than ASP, although it’s hard to quote
a hard statistic because the performance increases differ widely depending on the ways
you structure your pages and the type of operations you perform. The greatest perfor-
mance increase results from ASP.NET’s automatic code compilation. With traditional ASP
pages, the script code in a web page was processed for every client request. With ASP.NET,
each page class is compiled to native code the first time it’s requested; then it’s cached for
future requests.

This system has one noticeable side effect. The very first time a user accesses a partic-
ular web page (or the first time a user accesses it after it has been modified), they will see
a longer delay while the page compiles. To remove this delay, you can use the precompi-
lation technique described in Chapter 12. This way, pages are ready to go from the
moment you upload them to the web server.

Server Controls

Most of the examples in this book use server controls extensively. Server controls are the
basic ingredient in an ASP.NET page, and they don’t carry a significant performance over-
head—in fact, they usually provide better performance than dynamically writing a page
with tricks such as the Response.Write() method.

However, ASP.NET server controls can be unnecessary in some situations. For exam-
ple, if you have static text that never needs to be accessed or modified in your code, you
don’t need to use a Label web control. Instead, you can enter the text as static HTML in
your .aspx layout file. In Visual Studio, you can choose the Div control from the HTML
section of the Toolbox. The Div control is just an ordinary <div> tag. Unless you specifi-
cally check the Run As Server Control option, it will be created as a static element rather
than a full server control.

Another potential refinement involves view state. If you don’t need view state for a con-
trol, you should disable it by setting the control’s EnableView state to false. Two cases in
which you don’t need view state are when the control is set at design time and never
changes and when the control is refreshed with every postback and doesn’t need to keep
track of its previous set of information. The latter case has one catch: if you need to

MacDonald.book Page 986 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 987

retrieve the user’s selection when the page is posted back, you’ll still need to enable view
state for the control. For example, this is why you use view state with data-bound web
pages, even though the controls are refilled from the data source after every postback.
View state won’t materially slow down your server, but it will increase the page size and
hence the time required to send the page to the client. From the user’s point of view, the
application will feel less responsive, particularly if connecting over a slow connection.

Generally, view state becomes most significant when dealing with large controls that
can contain large amounts of data. The problem is that this data exerts a greater toll on
your application because it’s added to the web page twice: directly in the HTML for the
control and again in the hidden label used for view state. It’s also sent both to the client
and then back to the server with each postback. To get a handle on whether view state
could be an issue, use page tracing (as described in Chapter 7) to see how many bytes the
current page’s view state is consuming.

■Tip Both of these issues (static text and view state) are fairly minor refinements. They can speed up down-
load times, particularly if your application is being used by clients with slow Internet connections. However,
these issues will almost never cause a serious problem in your application the way poor database or session
state code can. Don’t spend too much time tweaking your controls, but do keep these issues in mind while
programming so that you can optimize your pages when the opportunity presents itself.

ADO.NET Database Access

The rules for accessing a database are relatively straightforward, but they can’t be over-
emphasized. Open a connection to the database only at the point where you need it, and
close it properly as soon as possible. Database connections are a limited resource and
represent a potential bottleneck if you don’t design your web pages carefully.

In addition to making sure you treat your database with this basic degree of respect,
you can take a number of additional steps to improve performance:

Improve your database with stored procedures: Relational database management sys-
tems such as SQL Server are remarkably complex products. They provide a number of
configuration options that have nothing to do with ASP.NET but can make a substan-
tial difference in performance. For example, a database that uses intelligently designed
stored procedures instead of dynamically generated queries will often perform much
better because stored procedures can be compiled and optimized in advance. This
is particularly true if a stored procedure needs to perform several related operations
at once.

Improve your database with profiling and indexes: Defining indexes that match the
types of searches you need to perform can result in much quicker row-lookup capabil-
ities. To perfect your database, you’ll need to examine it with a profiling tool (such as

MacDonald.book Page 987 Thursday, December 22, 2005 3:04 PM

988 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

SQL Server Profiler). These tools record database activity into a special log that can be
reviewed, analyzed, and replayed. The profiling utility can usually identify problem
areas (such as slow executing queries) and even recommend a new set of indexes that
will provide better performance. However, to properly profile the database, you’ll need
to simulate a typical load by running your application.

Get only the information you need: One of the simplest ways to improve any database
code is to reduce the amount of information it retrieves, which will reduce the network
load, the amount of time the connection needs to be open, and the size of the final
page. For example, all searches should be limited to present a small set of rows at a time
(perhaps by filtering by date) and should include only the fields that are truly impor-
tant. Note, however, that while this is an excellent rule of thumb, it isn’t always the right
solution. For example, if you’re providing a page that allows a user to edit a database
record, it’s often easier to retrieve all the information for all the rows at once rather
than requery the database every time the user selects a record to get additional
information.

Use connection pooling: In a typical web application, your RDBMS receives requests on
behalf of countless clients from several web pages. Generally, these connections are
open and active for only a short amount of time, and creating them is the most time-
consuming step. However, if every web page uses the same connection string, data-
base products such as SQL Server will be able to use their built-in connection pooling
to reuse a connection for more than one consecutive client, speeding up the process
dramatically. This happens transparently and automatically, provided you always use
the same connection string (even a minor difference such as the order of settings will
prevent a connection from being reused). To ensure that the connection string is the
same, centralize it in the web.config file.

Use data binding: The fastest way to get information out of a database and into a page
is to use a DataReader or DataSet and bind it directly to a data control. This approach
may involve a little more work with custom templates, but it’s better than moving
through the rows manually and writing to the page yourself.

Use caching: If a certain set of data is frequently requested and changes slowly, it’s an
ideal candidate for caching. With caching, the information will be read from the data-
base and loaded into temporary memory the first time a client requests it, and it will be
made directly available to future requests without any database access required. Out-
put and data caching are discussed in detail throughout the second half of this chapter.

MacDonald.book Page 988 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 989

Session State

Session state was the single greatest restriction on performance in traditional ASP devel-
opment. Although ASP.NET introduces some features that make session state more
scalable, it still needs to be used carefully.

Generally, you won’t run into problems if you’re just storing a customer’s ID in session
state. You can create a simple shopping basket by storing a list of currently selected prod-
ucts. However, if you plan to store large amounts of information such as a DataSet, you
need to tread carefully and consider the multiplying effect of a successful application. If
each session reserves about 1MB of information, 100 simultaneous sessions (not neces-
sarily all corresponding to users who are still at your site) can easily chew up more than
100MB of memory. To solve this sort of problem, you have two design choices:

• Store everything in a database record, and store the ID for that database in session
state. When the client returns, look up the information. Nothing is retained in
memory, and the information is durable—it won’t expire until you remove the
record. Of course, this option can reclaim server memory, but it slows down the
application with database access, which is the other vulnerable part of your
application.

• Often a better solution is to store information in a database record and then cache
some of the information in memory. Then you can still retrieve the information
quickly when needed, but ASP.NET can reclaim the memory if the server’s perfor-
mance is suffering. You’ll learn much more about data caching throughout this
chapter.

Also keep in mind that with session state, the best state facility is almost always the
default in-process session state store. The other options (such as storing session state in a
SQL database) impose additional performance overhead and are necessary only when
hosting your website in a web farm with multiple web servers.

Profiling
To judge the success of an attempted performance improvement, you need to be able to
measure the performance of your application. In cases where performance is lagging, you
also need enough information to diagnose the possible bottleneck so that you can make a
meaningful change.

MacDonald.book Page 989 Thursday, December 22, 2005 3:04 PM

990 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

Stress Testing

 You can use many testing tools and .NET Framework features to profile your ASP.NET
applications. Being able to bridge the gap from test results to application insight is often
not as easy. You may be able to record important information such as TTFB and TTLB (the
time taken to serve the first byte and the time taken to deliver the last byte and complete
the delivery), but without a way to gauge the meaning of these settings, it isn’t clear
whether your application is being held back by a slow hard drive, a poor choice of
ASP.NET settings, an overtasked database, or bad application design. In fact, perfor-
mance testing is an entire science of its own.

Most basic tests use a dedicated web server, a set of dedicated client machines that
are interacting with your web server over a fast isolated network, and a load-generating
tool that runs on each client. The load-generating tool automatically requests a steady
stream of pages, simulating a heavy load. You might use a utility such as Microsoft’s ACT
(Application Center Test), which is included with some versions of Visual Studio, or the
ASP favorite, WAST (Web Service Applications Stress Tool), which is available for free
download from ������������	
������
�����
�������
�	���	�����	���	��������
�������������������. (With ACT, you can create tests directly in Visual Studio simply
by adding the appropriate project type to your solution.) Note that if you try to test the
server using a load-testing tool running from the same computer, you’ll retrieve data that
is much less accurate and much less useful.

Both ACT and WAST simulate real-world conditions by continuously requesting pages
through several connections simultaneously. You can configure how many requests are
made at once and what files are requested. You can even use a wizard that records typical
browser activity while you use the site and then replays it later.

Most load-generating tools record some kind of report as they work. Both ACT and
WAST create text summaries. Additionally, you can record results using Windows perfor-
mance counters, which you’ll examine in the next section.

Performance Counters

Windows performance counters are the basic unit of measurement for gauging the
performance of your application. You can add or configure counters from a testing utility
such as WAST, or you can monitor performance directly from the system Performance

MacDonald.book Page 990 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 991

dialog box. To do so, choose Settings ➤ Control Panel ➤ Administrative Tools ➤
Performance from the Start menu. Figure 26-1 shows the Performance dialog box.

Figure 26-1. Monitoring performance counters

By default, you’ll see performance counters only for measuring basic information such
as the computer’s CPU and disk drive use. However, ASP.NET installs much more useful
counters for tracking web application performance. To add these counters, right-click the
counter list, and choose Properties. You can configure numerous options (such as chang-
ing the appearance of the graph and logging information to a report), but the most
important tab is Data, which allows you to add and remove counters from the current list.
To start, remove the default counters, and click Add to choose more useful ones, as shown
in Figure 26-2.

MacDonald.book Page 991 Thursday, December 22, 2005 3:04 PM

992 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

Figure 26-2. Adding ASP.NET performance counters

You’ll notice several important features in the Add Counters dialog box. First, you can
specify a computer name—in other words, you can monitor the performance of a remote
computer. Monitoring the web server’s performance on a client computer is ideal,
because it ensures that the act of monitoring doesn’t have as much of an effect on the
server. The next important feature of this window is the performance object, which allows
you to choose a performance counter category. You can use dozens of different
categories.

For ASP.NET, you’ll find four main categories. The ASP.NET category provides infor-
mation about the overall performance of ASP.NET, while the ASP.NET Applications
category provides information about a single specified web application. Also, two similar
categories include the version number (such as ASP.NET [Version] and ASP.NET Apps
[Version]). These categories provide the same list of counters as the corresponding cate-
gories that don’t indicate the version. This design supports the side-by-side execution
features of .NET, which allow you to install two (or more) versions of the .NET Framework
at the same time and use them to host different websites. In this case, you would find one
ASP.NET [Version] category and one ASP.NET Apps [Version] category for each version
of ASP.NET that is installed on your server. The ASP.NET and ASP.NET Application cate-
gories automatically map to the most recent version.

Table 26-1 lists some of the most useful counter types by category and name. The aster-
isked rows indicate counters that can help you diagnose a problem, while the other rows
represent counters that are always useful.

MacDonald.book Page 992 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 993

Table 26-1. Useful Performance Counters

.NET provides some interesting features that let you interact with the system perfor-
mance counters programmatically. For example, you can add new performance counters,
or retrieve the current value of a performance counter in your code, and then display the
relevant information in a web page or desktop application. To use these features, you sim-
ply need to explore the types in the System.Diagnostics namespace. Table 26-2 gives an
overview of the .NET classes you can use to interact with performance counters. For more
information, refer to the MSDN class library reference.

Category Counter Description
Processor % CPU Utilization The percentage of the CPU’s processing time

that is being used. If your CPU use remains
consistently low regardless of the client load,
your application may be trapped waiting for a
limited resource.

ASP.NET Requests Queued The number of requests waiting to be processed.
Use this counter to gain an idea about the
maximum load that your web server can support.
The default machine.config setting specifies a
limit of 5,000 queued requests.

ASP.NET Applications Requests/Sec The throughput of the web application.

ASP.NET Applications * Errors Total This counter should remain at or close to zero. If
a web application generates errors, it can exert a
noticeable performance slowdown (required for
handling the error), which will skew performance
results.

ASP.NET * Application
Restarts, Worker
Process Restarts

The ASP.NET process may restart based on a fatal
crash or automatically in response to recycling
options set in the machine.config file. These
counters can give you an idea about how often
the ASP.NET process is being reset and can
indicate unnoticed problems.

System * Context
Switches/sec

Indicates the rate at which thread contexts are
switched. A high number may indicate that
various threads are competing for a limited
resource.

ASP.NET Applications Pipeline Instance
Count

The number of request pipelines for an
application. This gives an idea of the maximum
number of concurrent requests being served. If
this number is low under a load, it often signifies
that the CPU is being used well.

.NET * CLR Exceptions,
of Exceps
Thrown

The number of exceptions thrown in a .NET
application. This can indicate that unexpected
errors are occurring (as with the ErrorsTotal
counter), but it can also indicate the normal
operation of error handling code in response to a
missing file or invalid user action.

MacDonald.book Page 993 Thursday, December 22, 2005 3:04 PM

994 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

Table 26-2. Performance Counter Classes

Caching
ASP.NET has taken some dramatic steps forward with caching. Many developers who first
learn about caching see it as a bit of a frill, but nothing could be further from the truth.
Used intelligently, caching could provide a twofold, threefold, or even tenfold perfor-
mance improvement by retaining important data for just a short period of time.

ASP.NET really has two types of caching. Your applications can and should use both
types, because they complement each other:

• Output caching: This is the simplest type of caching. It stores a copy of the final ren-
dered HTML page that is sent to the client. The next client that submits a request for
this page doesn’t actually run the page. Instead, the final HTML output is sent auto-
matically. The time that would have been required to run the page and its code is
completely reclaimed.

• Data caching: This is carried out manually in your code. To use data caching, you
store important pieces of information that are time-consuming to reconstruct
(such as a DataSet retrieved from a database) in the cache. Other pages can check
for the existence of this information and use it, thereby bypassing the steps ordi-
narily required to retrieve it. Data caching is conceptually the same as using
application state, but it’s much more server-friendly because items will be removed
from the cache automatically when it grows too large and performance could be
affected. Items can also be set to expire automatically.

Class Description
PerformanceCounter Represents an individual counter, which includes information

such as the counter name and the type of data it records. You
can create your own counter to represent application-specific
performance measures (such as number of purchases per
second).

PerformanceCounterCategory Represents a counter category, which will contain one or more
counters.

CounterCreationData Represents the data required to create a new counter. It can
be used for more control or as a shortcut when creating
PerformanceCounter objects.

CounterSample Represents a single piece of information recorded by the
counter. It provides a RawValue (the recorded number), a
TimeStamp (when the value was recorded), and additional
information about the type of counter and how frequently the
counter is read. A typical performance counter might create
samples several times per second.

MacDonald.book Page 994 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 995

Also, two specialized types of caching build on these models:

• Fragment caching: This is a specialized type of output caching—instead of caching
the HTML for the whole page, it allows you to cache the HTML for a portion of it.
Fragment caching works by storing the rendered HTML output of a user control on
a page. The next time the page is executed, the same page events fire (and so your
page code will still run), but the code for the appropriate user control isn’t executed.

• Data source caching: This is the caching that’s built into the data source controls,
including the SqlDataSource, ObjectDataSource, and XmlDataSource. Technically,
data source caching uses data caching. The difference is that you don’t need to han-
dle the process explicitly. Instead, you simply configure the appropriate properties,
and the data source control manages the caching storage and retrieval.

In the remainder of this chapter, you’ll consider every caching option. You’ll begin by
learning the basics of output caching and data caching. Next, you’ll examine the caching
in the data source controls. Finally, you’ll explore one of ASP.NET’s hottest new fea-
tures—linking cached items to tables in a database with SQL cache dependencies.

Output Caching
With output caching, the final rendered HTML of the page is cached. When the same page
is requested again, the control objects are not created, the page life cycle doesn’t start, and
none of your code executes. Instead, the cached HTML is served. Clearly, output caching
gets the theoretical maximum performance increase, because all the overhead of your
code is sidestepped.

To see output caching in action, you can create a simple page that displays the current
time of day. Figure 26-3 shows this page.

Figure 26-3. Displaying the time a page is served

MacDonald.book Page 995 Thursday, December 22, 2005 3:04 PM

996 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

The code for this task is elementary:

����	
�����	���
�����������
�	���������

�

���������
������	����������� ��!�
�������"�#����$����%

�����

�����������&����'����(�)'����	���	�����*����+),

�����������&����'����-(�&���'	���.���'�/��	�� %,

����0

0

You can cache an ASP.NET page in two ways. The most common approach is to insert
the OutputCache directive at the top of your .aspx file, as shown here:

*12���������
���&����	��()34)�5��676�����().���)�1+

The Duration attribute instructs ASP.NET to cache the page for 20 seconds. The Vary-
ByParam attribute is also required—but you’ll learn about its effect in the “Caching and
the Query String” section.

When you run the test page, you’ll discover some interesting behavior. The first time
you access the page, you will see the current time displayed. If you refresh the page a short
time later, however, the page will not be updated. Instead, ASP.NET will automatically
send the cached HTML output to you, until it expires in 20 seconds. When the cached
page expires, ASP.NET will run the page code again, generate a new cached copy, and use
that for the next 20 seconds.

Twenty seconds may seem like a trivial amount of time, but in a high-volume site, it
can make a dramatic difference. For example, you might cache a page that provides a list
of products from a catalog. By caching the page for 20 seconds, you limit database access
for this page to three operations per minute. Without caching, the page will try to connect
to the database once for each client and could easily make dozens of requests in the
course of 20 seconds.

Of course, just because you request that a page should be stored for 20 seconds doesn’t
mean that it actually will be. The page could be evicted from the cache early if the system
finds that memory is becoming scarce. This allows you to use caching freely, without wor-
rying too much about hampering your application by using up vital memory.

■Tip When you recompile a cached page, ASP.NET will automatically remove the page from the cache. This
prevents problems where a page isn’t properly updated, because the older, cached version is being used.
However, you might still want to disable caching while testing your application. Otherwise, you may have trou-
ble using variable watches, breakpoints, and other debugging techniques, because your code will not be
executed if a cached copy of the page is available.

MacDonald.book Page 996 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 997

Caching on the Client Side

Another option is to cache the page exclusively on the client side. In this case, the browser
stores a copy and will automatically use this page if the client browses back to the page
or retypes the page’s URL. However, if the user clicks the Refresh button, the cached copy
will be abandoned, and the page will be rerequested from the server, which will run
the appropriate page code once again. You can cache a page on the client side using
the Location attribute, which specifies a value from the System.Web.UI.OutputCache-
Location enumeration. Possible values include Server (the default), Client, None, and All.

����������	
������
�����������
�����
�
�����������
������	��������

Client-side caching is less common than server-side caching. Because the page is still
re-created for every separate user, it won’t reduce code execution or database access
nearly as dramatically as server-side caching (which shares a single cached copy among
all users). However, client-side caching can be a useful technique if your cached page uses
some sort of personalized data. Even though each user is in a separate session, the page
will be created only once and reused for all clients, ensuring that most will receive the
wrong greeting. Instead, you can either use fragment caching to cache the generic portion
of the page or use client-side caching to store a user-specific version on each client’s
computer.

Caching and the Query String

One of the main considerations in caching is deciding when a page can be reused and
when information must be accurate up to the latest second. Developers, with their love of
instant gratification (and lack of patience), generally tend to overemphasize the impor-
tance of real-time information. You can usually use caching to efficiently reuse slightly
stale data without a problem and with a considerable performance improvement.

Of course, sometimes information needs to be dynamic. One example is if the page
uses information from the current user’s session to tailor the user interface. In this case,
full page caching just isn’t appropriate (although fragment caching may help). Another
example is if the page is receiving information from another page through the query
string. In this case, the page is too dynamic to cache—or is it?

The current example sets the VaryByParam attribute to None, which effectively tells
ASP.NET that you need to store only one copy of the cached page, which is suitable for all
scenarios. If the request for this page adds query string arguments to the URL, it makes no
difference—ASP.NET will always reuse the same output until it expires. You can test this
by adding a query string parameter manually in the browser window. For example, try
tacking on ?a=b to the end of your URL. The cached output is still used.

Based on this experiment, you might assume that output caching isn’t suitable for
pages that use query string arguments. But ASP.NET actually provides another option.
You can set the VaryByParam attribute to * to indicate that the page uses the query string

MacDonald26.fm Page 997 Thursday, December 22, 2005 3:16 PM

998 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

and to instruct ASP.NET to cache separate copies of the page for different query string
arguments:

*12���������
���&����	��()34)�5��676�����()8)�1+

Now when you request the page with additional query string information, ASP.NET
will examine the query string. If the string matches a previous request and a cached copy
of that page exists, it will be reused. Otherwise, a new copy of the page will be created and
cached separately.

To get a better idea of how this process works, consider the following series of requests:

1. You request a page without any query string parameter and receive page copy A.

2. You request the page with the parameter ProductID=1. You receive page copy B.

3. Another user requests the page with the parameter ProductID=2. That user
receives copy C.

4. Another user requests the page with ProductID=1. If the cached output B has not
expired, it’s sent to the user.

5. The user then requests the page with no query string parameters. If copy A has not
expired, it’s sent from the cache.

You can try this on your own, although you might want to lengthen the amount of time
that the cached page is retained to make it easier to test.

■Note Output caching works well with pages that vary only based on server-side data (for example, the
data in a database) and the data in query string. However, output caching doesn’t work if the page output
depends on user-specific information such as session data or cookies. Output caching also won’t work with
event-driven pages that use forms. In these cases, events will be ignored, and a static page will be re-sent
with each postback, effectively disabling the page. To avoid these problems, use fragment caching instead to
cache a portion of the page or use data caching to cache specific information.

Caching with Specific Parameters

Setting VaryByParam to the wildcard asterisk (*) is unnecessarily vague. It’s usually better
to specifically identify an important query string variable by name. Here’s an example:

*12���������
���&����	��()34)�5��676�����()�����
�9&)�1+

In this case, ASP.NET will examine the query string looking for the ProductID parame-
ter. Requests with different ProductID parameters will be cached separately, but all other

MacDonald.book Page 998 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 999

parameters will be ignored. This is particularly useful if the page may be passed additional
query string information that it doesn’t use. ASP.NET has no way to distinguish the
“important” query string parameters without your help.

You can specify several parameters as long as you separate them with semicolons:

*12���������
���&����	��()34)�5��676�����()�����
�9&,������
6'6��)�1+

In this case, ASP.NET will cache separate versions provided the query string differs by
ProductID or CurrencyType.

A Multiple Caching Example

The following example uses two web pages to demonstrate how multiple versions of a
web page can be cached separately. The first page, QueryStringSender.aspx, isn’t cached.
It provides three buttons, as shown in Figure 26-4.

Figure 26-4. Three page options

A single event handler handles the Click event for all three buttons. The event handler
navigates to the QueryStringRecipient.aspx page and adds a Version parameter to the
query string to indicate which button was clicked—cmdNormal, cmdLarge, or cmdSmall:

�����
������	��
��5��	�����	
: ��!�
�������"�#����$����%

�

����;������;��	��
�)<���6/��	��;�
	�	�������)�-�)=5��	��()�-

������ �������%�����%�9&%,

0

The QueryStringRecipient.aspx destination page displays the familiar date message.
The page uses an OutputCache directive that looks for a single query string parameter
(named Version):

*12���������
���&����	��()>4)�5��676�����()5��	��)�1+

MacDonald.book Page 999 Thursday, December 22, 2005 3:04 PM

1000 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

In other words, this has three separately maintained HTML outputs: one where
Version equals cmdSmall, one where Version equals cmdLarge, and one where Version
equals cmdNormal.

Although it isn’t necessary for this example, the Page.Load event handler tailors the
page by changing the font size of the label accordingly. This makes it easy to distinguish
the three versions of the page and verify that the caching is working as expected.

�����
������	����������� ��!�
�������"�#����$����%

�

�������&����'����(�)'����	���	�����*����+)�-�&���'	���.���'�/��	�� %,

�����	�
�� ;�?����<���6/��	��@)5��	��)A%

�����

��������
���)
�������)�

���������������&����B����/	C��(�B���D�	��E�����,

����������������:,

��������
���)
��.�����)�

���������������&����B����/	C��(�B���D�	�������,

����������������:,

��������
���)
��/����)�

���������������&����B����/	C��(�B���D�	��/����,

����������������:,

����0

0

Figure 26-5 shows one of the cached outputs for this page.

Figure 26-5. One page with three cached outputs

MacDonald.book Page 1000 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1001

Custom Caching Control

Varying by query string parameters isn’t the only option when storing multiple cached
versions of a page. ASP.NET also allows you to create your own procedure that decides
whether to cache a new page version or reuse an existing one. This code examines what-
ever information is appropriate and then returns a string. ASP.NET uses this string to
implement caching. If your code generates the same string for different requests,
ASP.NET will reuse the cached page. If your code generates a new string value, ASP.NET
will generate a new cached version and store it separately.

One way you could use custom caching is to cache different versions of a page based on
the browser type. That way, Netscape browsers will always receive Netscape-optimized
pages, and Internet Explorer users will receive IE-optimized HTML. To set up this sort of
logic, you start by adding the OutputCache directive to the pages that will be cached. Use
the VaryByCustom attribute to specify a name that represents the type of custom caching
you’re creating. The following example uses the name Browser because pages will be
cached based on the client browser:

*12���������
���&����	��()F4)�5��676�����().���)�5��676�����()7�����)�1+

Next, you need to create the procedure that will generate the custom caching string.
This procedure must be coded in the global.asax application file (or its code-behind file)
and must use the following syntax:

����	
������	�����	���G��5��676�����/��	��

��H�����������
������"���	������%

�

����������
:�����������?�������6������
�
�	���

����	�� ����((�)������)%

�����

����������&�����	�������
��������������

���������	���������.���,

�������������.����(���������;�?����7������7�����,

����������9��	
�����������	���	����������������������6�
�
�	���

��������������������.���,

����0

�������

�����

�����������B�����6��������6������
�
�	��"�������������������	
�

�������������������G��5��676�����/��	��
������"����%,

����0

0

MacDonald.book Page 1001 Thursday, December 22, 2005 3:04 PM

1002 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

The GetVaryByCustomString() function passes the VaryByCustom name in the arg
parameter. This allows you to create an application that implements several types of cus-
tom caching in the same function. Each type would use a different VaryByCustom name
(such as Browser, BrowserVersion, or DayOfWeek). Your GetVaryByCustomString() func-
tion would examine the VaryByCustom name and then return the appropriate caching
string. If the caching strings for different requests match, ASP.NET will reuse the cached
copy of the page. Or to look at it another way, ASP.NET will create and store a separate
cached version of the page for each caching string it encounters.

The OutputCache directive has a third attribute that you can use to define caching.
This attribute, VaryByHeader, allows you to store separate versions of a page based on the
value of an HTTP header received with the request. You can specify a single header or a list
of headers separated by semicolons. Multilingual sites could use this technique to cache
different versions of a page based on the client browser language.

*12���������
���&����	��()34)�5��676�����().���)

����5��676H�����()$

���I��������)�1+

Interestingly, the base implementation of the GetVaryByCustomString() method
already includes the logic for browser-based caching. That means you don’t need to code
the method shown previously. The base implementation of GetVaryByCustomString()
creates the cached string based on the browser name and major version number. If you
want to change how this logic works (for example, to vary based on name, major version,
and minor version), you could override the GetVaryByCustomString() method, as in the
previous example.

Fragment Caching

In some cases, you may find that you can’t cache an entire page, but you would still like to
cache a portion that is expensive to create and doesn’t vary. One way to implement this
sort of scenario is to use data caching to store just the underlying information used for the
page. You’ll examine this technique in the next section. Another option is to use fragment
caching.

To implement fragment caching, you need to create a user control for the portion of
the page you want to cache. You can then add the OutputCache directive to the user con-
trol. The result is that the page will not be cached, but the user control will.

Fragment caching is conceptually the same as page caching. It has only one catch—if
your page retrieves a cached version of a user control, it cannot interact with it in code.
For example, if your user control provides properties, your web page code cannot modify
or access these properties. When the cached version of the user control is used, a block of
HTML is simply inserted into the page. The corresponding user control object is not
available.

MacDonald.book Page 1002 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1003

Cache Profiles

One problem with output caching is that you need to embed the instruction into the
page—either in the .aspx markup portion or in the code of the class. Although the first
option (using the OutputCache) is relatively clean, it still produces management prob-
lems if you create dozens of cached pages. If you want to change the caching for all these
pages (for example, moving the caching duration from 30 to 60 seconds), you need to
modify every page. ASP.NET also needs to recompile these pages.

ASP.NET 2.0 introduces a new option that’s suitable if you need to apply the same
caching settings to a group of pages. This feature, called cache profiles, allows you to
define the caching settings in a web.config file, associate a name with these settings, and
then apply these settings to multiple pages using the name. That way, you have the free-
dom to modify all the linked pages at once simply by changing the caching profile in the
web.config file.

To define a cache profile, you use the <add> tag in the <outputCacheProfiles> section,
as follows. You assign a name and a duration.

*
���	�����	��+

��*6�������+

����*
�
�	��+

������*��������
��/���	��+

��������*��������
������	��+

����������*��������()�����
�9�����
������	��)������	��()>4)��+

��������*���������
������	��+

������*���������
��/���	��+

����*�
�
�	��+

�����

��*�6�������+

*�
���	�����	��+

You can now use this profile in a page through the CacheProfile attribute:

*12���������
�����
������	��()�����
�9�����
������	��)�5��676�����().���)�1+

Interestingly, if you want apply other caching details, such as the VaryByParam behav-
ior, you can set it either as an attribute in the OutputCache directive or as an attribute of
the <add> tag for the profile. Just make sure you start with a lowercase letter if you use the
<add> tag, because the property names are camel cased, as are all configuration settings,
and case is important in XML.

MacDonald.book Page 1003 Thursday, December 22, 2005 3:04 PM

1004 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

Output Caching in a Web Service

You can also use output caching for individual methods in a web service. To do so, you
need to add the CacheDuration value to the WebMethod before the appropriate method
declaration. The following example caches a web method’s result for 30 seconds:

@J��K����� ��
��&����	��(L4%A�

��	�������	���K6K����� 	����6���������%

�

������� ��������������%

0

When using output caching with a web service, you don’t need to enable any type of
cache varying. Responses are reused only for requests that supply an identical set of
parameters. For example, if three clients invoke MyMethod(), each with a different value
of myParameter, three separate strings will be stored in the cache. If another client calls
MyMethod() with a matching myParameter value before the 30-second time limit elapses,
that client will receive the cached data, and the web method code will not be executed.

Data Caching
Data caching is the most flexible type of caching, but it also forces you to take specific
additional steps in your code to implement it. The basic principle of data caching is that
you add items that are expensive to create to a built-in collection object called Cache. This
object works much like the Application object you saw in Chapter 11. It’s globally avail-
able to all requests from all clients in the application. But it has three key differences:

The Cache object is thread-safe: This means you don’t need to explicitly lock or unlock
the Cache collection before adding or removing an item. However, the objects in the
Cache collection will still need to be thread-safe themselves. For example, if you create
a custom business object, more than one client could try to use that object at once,
which could lead to invalid data. You can code around this limitation in various ways—
one easy approach that you’ll see in this chapter is to just make a duplicate copy of the
object if you need to work with it in a web page.

Items in the Cache collection are removed automatically: ASP.NET will remove an item
if it expires, if one of the objects or files it depends on changes, or if the server becomes
low on memory. This means you can freely use the cache without worrying about wast-
ing valuable server memory, because ASP.NET will remove items as needed. But
because items in the cache can be removed, you always need to check whether a cache
object exists before you attempt to use it. Otherwise, you could generate a null refer-
ence exception.

MacDonald.book Page 1004 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1005

Items in the cache support dependencies: You, can link a cached object to a file, a data-
base table, or another type of resource. If this resource changes, your cached object is
automatically deemed invalid and released.

Adding Items to the Cache

You can insert an object into the cache in several ways. You can simply assign it to a new
key name (as you would with the Session or Application collection), but this approach is
generally discouraged because it does not allow you to have any control over the amount
of time the object will be retained in the cache. A better approach is to use the Insert()
method.

The Insert() method has four overloaded versions. The most useful and commonly
used one requires four parameters:

��
���9���� :�6"�	���"���������
	�"��������#��	���	��"��	�	��#��	���	��%,

Table 26-3 describes these parameters.

Table 26-3. Cache.Insert() Parameters

Typically, you won’t use all of these parameters at once. Cache dependencies, for exam-
ple, are a special tool you’ll consider a little later in the “Caching with Dependencies”
section. Also, you cannot set both a sliding expiration and an absolute expiration policy at
the same time. If you want to use an absolute expiration, set the slidingExpiration parame-
ter to TimeSpan.Zero:

��
���9����)K69���)"���!"�����"

��&���'	���.���$��K	���� >4%"�'	��/����M���%,

Parameter Description
key A string that assigns a name to this cached item in the collection and

allows you to look it up later.

item The actual object you want to cache.

dependencies A CacheDependency object that allows you to create a dependency for
this item in the cache. If you don’t want to create a dependent item, just
specify null for this parameter.

absoluteExpiration A DateTime object representing the time at which the item will be
removed from the cache.

slidingExpiration A TimeSpan object represents how long ASP.NET will wait between
requests before removing a cached item. For example, if this value is 20
minutes, ASP.NET will evict the item if it isn’t used by any code for a
20-minute period.

MacDonald.book Page 1005 Thursday, December 22, 2005 3:04 PM

1006 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

Absolute expirations are best when you know the information in a given item can be
considered valid only for a specific amount of time (such as a stock chart or weather
report). Sliding expiration, on the other hand, is more useful when you know that a
cached item will always remain valid (such as with historical data or a product catalog)
but should still be allowed to expire if it isn’t being used. To set a sliding expiration policy,
set the absoluteExpiration parameter to DateTime.Max, as shown here:

��
���9����)K69���)"���!"�����"

��&���'	���K��5����"�'	��/����B���K	���� F4%%,

A Simple Cache Test

The following page presents a simple caching test. An item is cached for 30 seconds and
reused for requests in that time. The page code always runs (because the page itself isn’t
cached), checks the cache, and retrieves or constructs the item as needed. It also reports
whether the item was found in the cache.

����	
�����	���
���/	����&�����
���������

�

���������
������	����������� ��!�
�������"�#����$����%

�����

��������	�� ��	�9���7�
:%

���������

���������������9����'����-(�)�������������
:�*����+),

��������0

�����������

���������

���������������9����'����-(�)�����
�������*����+),

��������0

��������	�� ��
��@)'��9���)A�((�����%

���������

���������������9����'����-(�)�����	���'��9������*����+),

������������&���'	������9����(�&���'	���.��,

���������������9����'����-(�)/���	���'��9����	��
�
���),

���������������9����'����-(�)����L4��
����*����+),

��������������
���9����)'��9���)"����9���"�����"

��������������&���'	���.���$��/�
��� L4%"�'	��/����M���%,

��������0

MacDonald.book Page 1006 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1007

�����������

���������

���������������9����'����-(�);���	��	���'��9������*����+),

������������&���'	������9����(� &���'	��%��
��@)'��9���)A,

���������������9����'����-(�)'��9����	�N)�-����9����'�/��	�� %,

���������������9����'����-(�)N*����+),

��������0

�����������9����'����-(�)*����+),

����0

0

Figure 26-6 shows the result after the page has been loaded and posted back several
times in the 30-second period.

Figure 26-6. A simple cache test

Caching to Provide Multiple Views

The next example shows a more interesting demonstration of caching, which includes
retrieving information from a database and storing it in a DataSet. This information is
then displayed in a GridView. However, the output for the web page can’t be efficiently
cached because the user is given the chance to customize the display by hiding any com-
bination of columns. Note that even with just ten columns, you can construct more than

MacDonald.book Page 1007 Thursday, December 22, 2005 3:04 PM

1008 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

a thousand different possible views by hiding and showing various columns. These are far
too many columns for successful output caching!

Figure 26-7 shows the page.

Figure 26-7. Filtering information from a cached DataSet

The DataSet is constructed in the dedicated RetrieveData() function shown here:

��	�����&���/���;���	���&��� %

�

������	���
����
�	��/��	���(

������J������	�����	��K������������
�	��/��	��@).�����	��)A������
�	��/��	��,

������	���/<�/���
��(�)/#�#�'�8�B;�K��������),

����/?������
�	���
���(�����/?������
�	��
����
�	��/��	��%,

����/?���������
���(�����/?�������� /<�/���
�"�
��%,

����/?�&���$���������������(�����/?�&���$������
��%,

����&���/�����(�����&���/�� %,

MacDonald.book Page 1008 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1009

������6

�����

��������
������� %,

����������������B	�� �"�)�������)%,

����0

�����	����6

�����

��������
������� %,

����0

������������,

0

When the page is first loaded, the check box list of columns is filled:

�:�������&���/���
��(���'����@4A�������,

�:�������&���K������(�)9���),

�:�������&���7	�� %,

The DataSet is inserted into the cache with a sliding expiration of two minutes when
the page is loaded:

��
���9����)&���/��)"��"�����"�&���'	���K��5����"

��'	��/����B���K	���� 3%%,

Every time the Filter button is clicked, the page attempts to retrieve the DataSet from
the cache. If it cannot retrieve the DataSet, it calls the RetrieveData function and then
adds the DataSet to the cache. It then reports on the page whether the DataSet was
retrieved from the cache or generated manually.

To provide the configurable grid, the code actually loops through the DataTable,
removing all the columns that the user has selected to hide before binding the data. Many
other alternatives are possible (another approach is just to hide columns), but this strat-
egy demonstrates an important fact about the cache. When you retrieve an item, you
actually retrieve a reference to the cached object. If you modify that object, you’re actually
modifying the cached item as well. For the page to be able to delete columns without
affecting the cached copy of the DataSet, the code needs to create a duplicate copy before
performing the operations using the DataSet.Copy() method.

The full code for the Filter button is as follows:

�����
������	��
��B	�������	
: ��!�
�������"�#����$����%

�

����&���/����,

����	�� ��
��@)&���/��)A�((�����%

MacDonald.book Page 1009 Thursday, December 22, 2005 3:04 PM

1010 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

�����

����������(�;���	���&��� %,

����������
���9����)&���/��)"��"�����"�&���'	���K��5����"

����������������������'	��/����B���K	���� 3%%,

�������������
��/�����'����(�)���������������������
�
���),

����0

�������

�����

����������(� &���/��%��
��@)'	���)A,

����������(������6 %,

�������������
��/�����'����(�);���	����������
�
���),

����0

���������
�� �	�9����	����	��
�:�������9���%

�����

��������	�� 	����/���
���%

���������

��������������'����@4A��������;����� 	����'���%,

��������0

����0

������	�����&���/���
��(���'����@4A,

������	�����&���7	�� %,

0

Data Caching in a Web Service

A web service can use data caching just as easily as a web page. In fact, you can store data
in a web method and retrieve it in a web page, or vice versa. The only difference is that to
access the Cache object in a web service, you need to use the HttpContext.Current.Cache
property. It isn’t provided as a property of the web service class.

The following web service presents a simple example of caching at work. It provides two
web methods: GetAuthorData() and GetAuthorNames(). Both of these web methods call the
same private GetAuthorDataSet() method, which returns a DataSet with the full customer
table. GetAuthorData() returns this DataSet directly, while the GetAuthorNames() retrieves
this DataSet, extracts just the author names, and returns it as an array of strings.

@J��/���	
� %A

����	
�
���&�����
�	��'�����J��/���	
�

MacDonald.book Page 1010 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1011

�

������	���
����
�	��/��	���(

������J������	�����	��K������������
�	��/��	��@)���)A������
�	��/��	��,

����@J��K����� %A

��������	
�&���/���G��$�����&��� %

�����

�����������;����������������������&���/��� ���������
�
���	����	���%�

���������������G��$�����&���/�� %,

����0

����@J��K����� %A

��������	
���	��@A�G��$�����.��� %

�����

�����������G�������
�������&���/��� ���������
�
���	����	���%�

��������&���'��������(�G��$�����&���/�� %�'����@4A,

�������������������������6�������	����������������������
��
�������

����������	��@A������(�������	��@���;��������A,

�����������B	�����������6�

��������	���	�(�4,

�������������
�� &���;�������	�����;��%

���������

����������������@	A�(����@)��������)A�-�)�)�-����@)��������)A,

������������	--,

��������0

�������������������,

����0

������	�����&���/���G��$�����&���/�� %

�����

��������/6����J�����
�	�����
���
�
��,

��������
�
���(�H���������������������
�� ,

��������������
:�����
�
����	����

��������&���/�����(� &���/��%
�
��@)&���/��)A,

��������	�� ��((�����%

MacDonald.book Page 1011 Thursday, December 22, 2005 3:04 PM

1012 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

���������

���������������;�I
����������	����

��������������(�����&���/��)&���/��)%,

������������/?������
�	���
���(�����/?������
�	��
����
�	��/��	��%,

������������/?���������
���(�����/?��������)/#�#�'�8�B;�K�$�����)"�
��%,

������������/?�&���$���������������(�����/?�&���$������
��%,

��������������6

�������������

����������������
������� %,

������������������������B	�� �"�)$�����)%,

������������0

�������������	����6

�������������

����������������
������� %,

������������0

���������������/���������	����	������
�
��� ����>4��
���%�

������������
�
���9����)&���/��)"��"�����"

��������������&���'	���.���$��/�
��� >4%"�'	��/����M���%,

��������0

����������������,

����0

0

The GetCustomerDataSet() method includes all the caching logic. If the DataSet is in
the cache, it returns it immediately. Otherwise, it queries the database, creates the
DataSet, and inserts it in the cache. The end result is that both web methods can use the
same cached data.

Caching with the Data Source Controls

The SqlDataSource (Chapter 15), ObjectDataSource (Chapter 24), and XmlDataSource
(Chapter 17) all support built-in data caching. Using caching with these controls is highly
recommended, because unlike your own custom data code, the data source controls
always requery the data source in every postback. They also query the data source once
for every bound control, so if you have three controls bound to the same data source,

MacDonald.book Page 1012 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1013

three separate queries are executed against the database just before the page is rendered.
Even a little caching can reduce this overhead dramatically.

■Note Although many data source controls support caching, it’s not a required data source control feature,
and you’ll run into data source controls that don’t support it or for which it may not make sense (such as the
SiteMapDataSource).

To support caching, the data source controls all use the same properties, which are
listed in Table 26-4.

Table 26-4. Values for the CacheItemRemovedReason Enumeration

Caching with SqlDataSource

When you enable caching for the SqlDataSource control, you cache the results of
the SelectQuery. However, if you create a select query that takes parameters, the
SqlDataSource will cache a separate result for every set of parameter values.

For example, imagine you create a page that allows you to view employees by city. The
user selects the desired city from a list box, and you use a SqlDataSource control to fill in
the matching employee records in a grid (see Figure 26-8).

Property Description
EnableCaching If true, caching is switched on. It’s false by default.

CacheExpirationPolicy Uses a value from the DataSourceCacheExpiry enumeration—
Absolute for absolute expiration (which times out after a fixed
interval of time) or Sliding for sliding expiration (which resets the
time window every time the data object is retrieved from the cache).

CacheDuration The number of seconds to cache the data object. If you are using
sliding expiration, the time limit is reset every time the object is
retrieved from the cache. The default, DataSourceCacheExpiry.
Infinite, keeps cached items perpetually.

CacheKeyDependency
and SqlCacheDependency

Allows you to make a cached item dependent on another item in
the data cache (CacheKeyDependency) or on a table in your
database (SqlCacheDependency). Dependencies are discussed in
the “Cache Dependencies” section.

MacDonald.book Page 1013 Thursday, December 22, 2005 3:04 PM

1014 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

Figure 26-8. Retrieving data from the cache

To fill the grid, you use the following SqlDataSource:

*���/?�&���/���
��9&()���
�#����6��)������()�����)

�����	���.���()/6����&����/?���	���)

������
�	��/��	��()*1O������
�	��/��	���.�����	���1+)

�/���
��������()/#�#�'�#����6��9&"�B	��.���"����.���"�'	���"��	�6�B;�K�

#����6���JH#;#��	�6(2�	�6)+

��*/���
����������+

����*���������������������������9&()���	�	�)�.���()�	�6)

������������6.���()/���
���5����)��+

��*�/���
����������+

*����/?�&���/���
�+

In this example, each time you select a city, a separate query is performed to get just the
matching employees in that city. The query is used to fill a DataSet, which is then cached.
If you select a different city, the process repeats, and the new DataSet is cached sepa-
rately. However, if you pick a city that you or another user has already requested, the
appropriate DataSet is fetched from the cache (provided it hasn’t yet expired).

■Note SqlDataSource caching works only when the DataSourceMode property is set to DataSet (the
default). That’s because the DataReader object can’t be efficiently cached, because it represents a live con-
nection to the database.

MacDonald.book Page 1014 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1015

Caching separate results for different parameter values works well if some parameter
values are used much more frequently than others. For example, if the results for London
are requested much more often than the results for Redmond, this ensures that the Lon-
don results stick around in the cache even when the Redmond DataSet has been released.
Assuming the full set of results is extremely large, this may be the most efficient approach.

On the other hand, if the parameter values are all used with similar frequency, this
approach isn’t as suitable. One of the problems it imposes is that when the items in the cache
expire, you’ll need multiple database queries to repopulate the cache (one for each parameter
value), which isn’t as efficient as getting the combined results with a single query.

If you fall into the second situation, you can change the SqlDataSource so that it
retrieves a DataSet with all the employee records and caches that. The SqlDataSource can
then extract just the records it needs to satisfy each request from the DataSet. This way, a
single DataSet with all the records is cached, which can satisfy any parameter value.

To use this technique, you need to rewrite your SqlDataSource to use filtering. First, the
select query should return all the rows and not use any SELECT parameters:

*���/?�&���/���
��9&()���
�#����6��)������()�����)

�/���
��������(

)/#�#�'�#����6��9&"�B	��.���"����.���"�'	���"��	�6�B;�K�#����6��)

����+

*����/?�&���/���
�+

Second, you need to define the filter expression. This is the portion that goes in the
WHERE clause of a typical SQL query, and you write it in the same as you used the
DataView.RowFilter property in Chapter 9. (In fact, the SqlDataSource uses the
DataView’s row filtering abilities behind the scenes.) However, this has a catch—if you’re
supplying the filter value from another source (such as a control), you need to define one
or more placeholders, using the syntax {0} for the first placeholder, {1} for the second, and
so on. You then supply the filter values using the <FilterParameters> section, in much the
same way you supplied the select parameters in the first version.

Here’s the completed SqlDataSource tag:

*���/?�&���/���
��9&()���
�#����6��)������()�����)

�����	���.���()/6����&����/?���	���)

������
�	��/��	��()*1O������
�	��/��	���.�����	���1+)

�/���
��������(

)/#�#�'�#����6��9&"�B	��.���"����.���"�'	���"��	�6�B;�K�#����6��)

�B	����#����	��()�	�6(N�40N)�#�������
�	��()'���)+

��*B	�������������+

����*���������������������������9&()���	�	�)�.���()�	�6)

������������6.���()/���
���5����)��+

��*�B	�������������+

*����/?�&���/���
�+

MacDonald.book Page 1015 Thursday, December 22, 2005 3:04 PM

1016 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

■Tip Don’t use filtering unless you are using caching. If you use filtering without caching, you are essen-
tially retrieving the full result set each time and then extracting a portion of its records. This combines the
worst of both worlds—you have to repeat the query with each postback, and you fetch far more data than you
need each time.

Caching with ObjectDataSource

The ObjectDataSource caching works on the data object returned from the SelectMethod.
If you are using a parameterized query, the ObjectDataSource distinguishes between
requests with different parameter values and caches them separately. Unfortunately, the
ObjectDataSource caching has a significant limitation—it works only when the select
method returns a DataSet or DataTable. If you return any other type of object, you’ll
receive a NotSupportedException.

This limitation is unfortunate, because there’s no technical reason you can’t cache
custom objects in the data cache. If you want this feature, you’ll need to implement data
caching inside your method by manually inserting your objects into the data cache and
retrieving them later. In fact, caching inside your method can be more effective, because
you have the ability to share the same cached object in multiple methods. For example,
you could cache a DataTable with a list of product categories and use that cached item in
both the GetProductCategories() and GetProductsByCategory() methods.

■Tip The only consideration you should keep in mind is to make sure you use unique cache key names that
aren’t likely to collide with the names of cached items that the page might use. This isn’t a problem when
using the built-in data source caching, because it always stores its information in a hidden slot in the cache.

If your custom class returns a DataSet or DataTable, and you do decide to use the built-in
ObjectDataSource caching, you can also use filtering as discussed with the SqlDataSource
control. Just instruct your ObjectDataSource to call a method that gets the full set of data, and
set the FilterExpression to retrieve just those items that match the current view.

Caching with Dependencies
As time passes, the data source may change in response to other actions. However, if your
code uses caching, you may remain unaware of the changes and continue using out-of-
date information from the cache. To help mitigate this problem, ASP.NET supports cache
dependencies. Cache dependencies allow you to make a cached item dependent on

MacDonald.book Page 1016 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1017

another resource so that when that resource changes, the cached item is removed
automatically.

ASP.NET includes three types of dependencies:

• Dependencies on other cached items

• Dependencies on files or folders

• Dependencies on a database query

To create a cache dependency, you need to create a CacheDependency object and then
use it when adding the dependent cached item. For example, the following code creates a
cached item that will automatically be evicted from the cache when an XML file is changed:

��������������������
6��������������
��	�������	���

��
��&�������
6�����&�������
6�(�������
��&�������
6

��/������K������)�����
��	�����)%%,

���$�����
�
���	����������	���������������������	��	���

��
���9����)�����
�9���)"�����9���"�����&�������
6%,

CacheDependency monitoring begins as soon as the object is created. If the XML file
changes before you have added the dependent item to the cache, the item will expire
immediately once it’s added.

The CacheDependency object provides several constructors. You’ve already seen how
it can make a dependency based on a file by using the file name constructor. You can also
specify a directory that needs to be monitored for changes, or you can use a constructor
that accepts an array of strings that represent multiple files and directories.

Yet another constructor accepts an array of file names and an array of cache keys. The
following example uses this constructor to create an item that is dependent on another
item in the cache:

��
��)P�6�F)%�(�)��
���9����F),

���K�:����
��)P�6�3)%����������������
��)P�6�F)%�

��	��@A���������
6P�6�(�������	��@FA,

��������
6P�6@4A�(�)P�6�F),

��
��&�������
6���������
6�(�������
��&�������
6 ����"���������
6P�6%,

��
���9����)P�6�3)"�)��
���9����3)"���������
6%,

Now, when Cache("Key 1") changes or is removed from the cache, Cache("Key 2") will
automatically be dropped.

MacDonald.book Page 1017 Thursday, December 22, 2005 3:04 PM

1018 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

Figure 26-9 shows a simple test page that is included with the online samples for this
chapter. It sets up a dependency, modifies the file, and allows you to verify that the cached
item has been dropped from the cache.

Figure 26-9. Testing cache dependencies

A more complex kind of cache dependency is the SQL Server cache dependency. It’s
one of the most widely touted new ASP.NET 2.0 features. In a nutshell, SQL cache depen-
dencies provide the ability to automatically invalidate a cached data object (such as a
DataSet) when the related data is modified in the database. This feature is supported in
both SQL Server 2005 (including the Express Edition) and in SQL Server 2000, although
the underlying plumbing is quite a bit different.

■Tip Using SQL cache dependencies still entails more complexity than just using a time-based expiration
policy. If it’s acceptable for certain information to be used without reflecting all the most recent changes (and
developers often overestimate the importance of up-to-the-millisecond live information), you may not need
it at all.

MacDonald.book Page 1018 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1019

Cache Notifications in SQL Server 2000 or SQL Server 7

ASP.NET uses a polling model for SQL Server 2000 and SQL Server 7. Older versions of SQL
Server and other databases aren’t supported (although third parties can implement their
own solutions by creating a custom dependency class).

With the polling model, ASP.NET keeps a connection open to the database and checks
periodically whether a table has been updated. The effect of tying up one connection in
this way isn’t terribly significant, but the extra database work involved with polling does
add some database overhead. For the polling model to be effective, the polling process
needs to be quicker and lighter than the original query that extracts the data.

You must take several steps to enable notification with SQL Server 2000. Here’s an
overview of the process:

1. The first step is to determine which tables need notification support.

2. Next, use the aspnet_regsql.exe command-line utility to create the notification
tables for your database.

3. Then, you need to register each table that requires notification support. You also
use the aspnet_regsql.exe command for this step.

4. Finally, you enable ASP.NET polling through a web.config file. You’re now ready to
create SqlCacheDependency objects.

The following sections describe these steps.

Enabling Notifications

Before you can use SQL Server cache invalidation, you need to enable notifications for the
database. This task is performed with the aspnet_regsql.exe command-line utility, which
is located in the c:\[WinDir]\Microsoft.NET\Framework\[Version] directory. To enable
notifications, you need to use the -ed command-line switch. You also need to identify the
server (use -E for a trusted connection and -S to choose a server other than the current
computer) and the database (use -d). Here’s an example that enables notifications for the
Northwind database on the current server:

���������?��I���I#�I��$�.��

MacDonald.book Page 1019 Thursday, December 22, 2005 3:04 PM

1020 C H A P T E R 2 6 ■ C A C H I N G A N D P ER F O R M A N C E T U N I N G

When you take this step, a new table named SqlCacheTablesForChangeNotification
is added to the database named AspNet (which must already exist). The
SqlCacheTablesForChangeNotification table has three columns: tableName,
notificationCreated, and changeId. This table is used to track changes. Essentially,
when a change takes place, SQL Server writes a record to this table. ASP.NET’s polling
service queries this table.

This design achieves a number of benefits:

• Because the change notification table is much smaller than the table with the
cached data, it’s much faster to query.

• Because the change notification table isn’t used for other tasks, reading these
records won’t risk locking and concurrency issues.

• Because multiple tables in the same database will use the same notification table,
you can monitor several tables at once without increasing the polling overhead.

Figure 26-10 shows an overview of how SQL Server 2000 cache invalidation works.

Figure 26-10. Monitoring a database for changes in SQL Server 2000

Even once you’ve created the SqlCacheTablesForChangeNotification table, you still
need to enable notification support for each table. You can do this manually using the
SqlCacheRegisterTableStoredProcedure, or you can rely on aspnet_regsql by using the -et

MacDonald26.fm Page 1020 Thursday, December 22, 2005 3:19 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1021

parameter to turn on the notifications and the -t parameter to name the table. Here’s an
example that enables notifications for the Employees table:

���������?��I���I#�I��.�����	���I��#����6��

This step generates the notification trigger for the Employees table.

How Notifications Work

Now you have all the ingredients in place to use the notification system. For example,
imagine you cache the results of a query like this:

/#�#�'�8�B;�K�#����6��

This query retrieves records from the Employees table. To check for changes that might
invalidate your cached object, you need to know whether any record in the Employees
table is inserted, deleted, or updated. You can watch for these operations using triggers.
For example, here’s the trigger on the Employees table that aspnet_regsql creates:

�;#$'#�';9GG#;�����@#����6���$�.���/?���
��.��	�	
��	���'�	����A

���.�@#����6��A

��B�;�9./#;'"�D�&$'#"�&#�#'#�$/�7#G9.

��/#'�.���D.'��.

��#E#������$�.���/?���
��D�����������9�/��������
������.N#����6��N

#.&

In other words, when a change takes place on the table that’s being monitored, that
change triggers the AspNet_SqlCacheUpdateChangeIdStoredProcedure stored proce-
dure. This stored procedure simply increments the changeId of the corresponding row in
the change notification table:

�;#$'#��;��#&D;#�����$�.���/?���
��D�����������9�/��������
�����

��2�����.����.5$;�H$; QR4%

$/

��7#G9.

��D�&$'#�����$�.���/?���
��'����B��������.��	�	
��	���J9'H� ;�J���P%

����/#'�
�����9��(�
�����9��-�F

����JH#;#������.����(�2�����.���

��#.&

G�

The AspNet_SqlCacheTablesForChangeNotification contains a single record for every
table you’re monitoring. As you can see, when you make a change in the table (such as
inserting a record), the changeId column is incremented by 1. ASP.NET queries this table

MacDonald.book Page 1021 Thursday, December 22, 2005 3:04 PM

1022 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

repeatedly and keeps track of the most recent changeId values for every table. When this
value changes in a subsequent read, ASP.NET knows that the table has changed.

This hints at one of the major limitations of cache invalidation as implemented in SQL
Server 2000 and SQL Server 7. Any change to the table is deemed to invalidate any query
for that table. In other words, if you use this query:

/#�#�'�8�B;�K�#����6���JH#;#��	�6(N������N

the caching still works in the same way. That means if any employee record is touched,
even if the employee resides in another city (and therefore isn’t one of the cached
records), the notification is still sent and the cached item is considered invalid. Keeping
track of what changes do and do not invalidate a cached data object is simply too much
work for SQL Server 2000 (although it is possible in SQL Server 2005).

■Tip The implementation of cache invalidation with SQL Server 2000 has more overhead than the imple-
mentation with SQL Server 2005 and isn’t as fine-grained. As a result, it doesn’t make sense for tables that
change frequently or for narrowly defined queries that retrieve only a small subset of records from a table.

Enabling ASP.NET Polling

The next step is to instruct ASP.NET to poll the database. You do this on a per-application
basis. In other words, every application that uses cache invalidation will hold a separate
connection and poll the notification table on its own.

To enable the polling service, you use the <sqlCacheDepency> element in the
web.config file. You set the enabled attribute to true to turn it on, and you set the pollTime
attribute to the number of milliseconds between each poll. (The higher the poll time, the
longer the potential delay before a change is detected.) You also need to supply the con-
nection string information.

For example, this web.config file checks for updated notification information every 15
seconds:

*
���	�����	�������()�������
������	
������
����.������	�����	����3�4)+

��*
����
�	��/��	��+

����*��������().�����	��)�
����
�	��/��	��(

)&����/���
�(��
�����,9�	�	����������(.�����	��,9����������/�
��	�6(//�9)�+

��*�
����
�	��/��	��+

��*6�������+

����*
�
�	��+

������*?���
��&�������
6��������()����)�����'	��()FR444)�+

MacDonald.book Page 1022 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1023

��������*�������+

����������*��������().�����	��)�
����
�	��/��	��.���().�����	��)��+

��������*��������+

������*�?���
��&�������
6+

����*�
�
�	��+

�������

��*�6�������+

*�
���	�����	��+

Creating the Cache Dependency

Now that you’ve seen how to set up your database to support SQL Server notifications, the
only remaining detail is the code, which is quite straightforward. You can use your cache
dependency with programmatic data caching, a data source control, and output caching.

For programmatic data caching, you need to create a new SqlCacheDependency
and supply that to the Cache.Insert() method, much as you did with file dependencies.
In the SqlCacheDependency constructor, you supply two strings. The first is the name of
the database you defined in the <add> element in the <sqlCacheDependency> section
of the web.config file. The second is the name of the linked table.

Here’s an example:

��������������������
6���������#����6���������

/?���
��&�������
6����&�������
6�(�����/?���
��&�������
6

��).�����	��)"�)#����6��)%,

���$�����
�
���	����������	������	����	������	����	�������
������

��
���9����)#����6��)"��#����6��"����&�������
6%,

To perform the same trick with output caching, you simply need to set the
SqlCacheDependency property with the database dependency name and the table name,
separated by a colon:

*12���������
���&����	��()>44)������������	
����������������
����

����5��676�����()����)�1+

You can also set the dependency using programmatic output caching with the
Response.AddCacheDependency() method:

;������$����
��&�������
6 ���&�������
6%

���D���������
�
�	���������	������ ����>4��
����������	������������
�����%�

;��������
���/����
����	�	�6 H�����
����	�	�6�����	
%,

;��������
���/��#��	�� &���'	���.���$��/�
��� >4%%,

;��������
���/��5��	�D��	�#��	�� ����%,

MacDonald.book Page 1023 Thursday, December 22, 2005 3:04 PM

1024 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

Finally, the same technique works with the SqlDataSource and ObjectDataSource
controls:

*���/?�&���/���
��#�������
�	��()'���)

������	����������	
����������������
����������+

To try a complete example, you can use the downloadable code for this chapter.

Cache Notifications in SQL Server 2005

SQL Server 2005 gets closest to the ideal notification solution, because the notification
infrastructure is built into the database with a messaging system called the Service Broker.
The Service Broker manages queues, which are database objects that have the same
standing as tables, stored procedures, or views.

Essentially, you can instruct SQL Server 2005 to send notifications for specific events
using the CREATE EVENT NOTIFICATION command. ASP.NET offers a higher-level
model—you register a query, and ASP.NET automatically instructs SQL Server 2005 to
send notifications for any operations that would affect the results of that query. This
mechanism works in a similar way to indexed views. Every time you perform an opera-
tion, SQL Server determines whether your operation affects a registered command. If
it does, SQL Server sends a notification message and stops the notification process.

When using notification with SQL Server, you get the following benefits over SQL
Server 2000:

Notification is much more fine-grained: Instead of invalidating your cached object
when the table changes, SQL Server 2005 invalidates your object only when a row that
affects your query is inserted, updated, or deleted.

Notification is more intelligent: A notification message is sent the first time the data is
changed but not if the data is changed again (unless you reregister for notification mes-
sages by adding an item back to the cache).

No special steps are required to set up notification: You do not run aspnet_regsql or
add polling settings to the web.config file. However, you do need to call the
SqlDependency.Start() method somewhere in your code to start the polling service.

MacDonald.book Page 1024 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1025

Notifications work with SELECT queries and stored procedures. However, some
restrictions exist for the SELECT syntax you can use. To properly support notifications,
your command must adhere to the following rules:

• You must fully qualify table names in the form [Owner].table, as in dbo.Employees
(not just Employees).

• Your query cannot use an aggregate function, such as COUNT(), MAX(), MIN(), or
AVERAGE().

• You cannot select all columns with the wildcard * (as in SELECT * FROM Employees).
Instead, you must specifically name each column so that SQL Server can properly
track changes that do and do not affect the results of your query.

Here’s an acceptable command:

/#�#�'�#����6��9&"�B	��.���"����.���"��	�6�B;�K�����#����6��

These are the most important rules, but the SQL Server Books Online has a lengthy list
of caveats and exceptions. If you break one of these rules, you won’t receive an error.
However, the notification message will be sent as soon as you register the command, and
the cached item will be invalidated immediately.

Initializing the Caching Service

Before you can use SQL cache dependencies with SQL Server 2005, you need to call the
static SqlDependency.Start() method. This initializes the listening service on the web
server.

��	���
����
�	��/��	���(�J������	�����	��K������������
�	��/��	��@

��).�����	��)A������
�	��/��	��,

/?�&�������
6�/����
����
�	��/��	��%

You need to call the Start() method only once over the lifetime of your web application,
so it often makes sense to place the call in the Application_Start() method of the global.asax
file so it’s triggered automatically. It’s safe to call the Start() method even if the listener is
already started, as this won’t cause an error. You can also use the Stop() method to halt the
listener.

MacDonald.book Page 1025 Thursday, December 22, 2005 3:04 PM

1026 C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G

Creating the Cache Dependency

You need a different syntax to use SQL cache dependencies with SQL Server 2005. That’s
because it’s not enough to simply identify the database name and table—instead, SQL
Server needs to know the exact command.

If you use programmatic caching, you must create the SqlCacheDependency using the
constructor that accepts a SqlCommand object. Here’s an example:

��������������$&��.#'���!�
��

/?������
�	���
���(�����/?������
�	��
����
�	��/��	��%,

��	���?���6�(

�)/#�#�'�#����6��9&"�B	��.���"����.���"��	�6�B;�K�����#����6��),

/?���������
���(�����/?�������� ?���6"�
��%,

/?�&���$���������������(�����/?�&���$������
��%,

���B	�������&���/���

&���/�����(�����&���/�� %,

��������B	�� �"�)#����6��)%,

FAILED NOTIFICATIONS

If your cached item never expires, the ASP.NET polling service is not receiving the invalidation message. This
has several possible causes. The most common is that you haven’t enabled the CLR for SQL Server. The pro-
cedure that sends notification messages is a .NET procedure, so it requires this support.

To enable CLR support, fire up the Visual Studio 2005 Command Prompt window, and run the
SqlCmd.exe command-line utility:

/?�����I/���
�����S/<�#E�;#//

You may need to change the server name, depending where your database is installed. The previous
command line is for SQL Server 2005 Express Edition on the local computer.

Next, enter the following SQL statements:

#E#����
���	�����N���������
������	��N"�NFN

G�

;#��.B9GD;#

G�

#E#����
���	�����N
����������N"�F

G�

;#��.B9GD;#

Then type quit to exit the SqlCmd tool.
If your cached item expires immediately, the most likely problem is that you’ve broken one of the rules

for writing commands that work with notifications, as described earlier.

MacDonald.book Page 1026 Thursday, December 22, 2005 3:04 PM

C H A P T E R 2 6 ■ C A C H I N G A N D P E R F O R M A N C E T U N I N G 1027

��������������	�
��	����

����������
��	������
��
��	��������������������
��	������	��

����		���������������������������������	���	��������������������	������ ��

������������������	�����		�	���������������� ���

������!������"#�
�����"$�	�$���
��
��	�����

If you’re using the OutputCache directive or a data source control, ASP.NET takes
care of the registration for you. You simply need to supply the string value Command-
Notification, as shown here:

%&'�()�
)��������)�������"*++"������������	
��������������	������

����,��-.�����"����"�&/

The Last Word
The most performance-critical area in most web applications is the data layer. But many
ASP.NET developers don’t realize that you can dramatically reduce the burden on your data-
base and increase the scalability of all your web applications with just a little caching code.

However, with any performance-optimization strategy, the only way to gauge the value
of a change is to perform stress testing and profiling. Without this step, you might spend
a great deal of time perfecting code that will achieve only a minor improvement in perfor-
mance or scalability, at the expense of more effective changes.

MacDonald26.fm Page 1027 Thursday, December 22, 2005 3:19 PM

MacDonald.book Page 1028 Thursday, December 22, 2005 3:04 PM

1029

■ ■ ■

C H A P T E R 2 7

Web Parts

There has been a growing interest in portals, sites that let users customize one or more
pages to suit their needs and tastes. You’ve seen a fully customizable portal if you’ve ever
used My MSN (see Figure 27-1), and several other major sites, including Yahoo and
Google, are also moving toward full customization.

Figure 27-1. The My MSN customizable portal page

Portals aggregate content, pulling in information from various sources and letting
users choose what they want to see, whether it is weather reports, news headlines, sports
results, or the content of their inboxes.

You may also have seen portals in action in Microsoft SharePoint Portal Server, a
Microsoft server product especially designed to host portal applications. SharePoint
introduced the concept of Web Parts: building blocks that are used to create portal pages
and that users of the page could pick and choose and then customize to suit their own

MacDonald27.fm Page 1029 Wednesday, December 28, 2005 12:10 PM

1030 C H A P T E R 2 7 ■ W E B P A R T S

uses. Web Parts could be written as ASP.NET custom controls, which were then hosted
within SharePoint server and served to browsers as HTML. Because Web Parts were
ASP.NET controls, they could operate in a typical, interactive ASP.NET manner, so users
could interact with the web page to customize its appearance and content.

With ASP.NET 2.0, the idea of building portals using Web Parts is now a core part of
ASP.NET. You no longer need SharePoint Portal Server to host portal pages, so the devel-
opment of portals is now within the reach of every ASP.NET developer. The intention
is that ASP.NET Web Parts will in the future be able to interoperate seamlessly with
SharePoint.

What could you do with Web Parts? Here are two suggestions:

• First, you could create a company, department, or project website that users can
customize. Do you want the company phone list on your page, a stock price ticker,
or your to-do list? Developers may want information on builds and bug counts and
the latest headlines from Slashdot or the Register, while sales and marketing people
may be more interested in share prices and PR announcements. Using Web Parts
makes it possible for all users to customize their own experience and use of the site.

• Second, a vendor could sell a website “kit,” containing a collection of Web Parts
that a customer such as an ISP can put together to form a portal. The kit is intended
for use by the customer, so in this case modification may be restricted to the cus-
tomer’s administrators.

Introducing Web Part Basics
Web Parts are implemented as an integrated set of ASP.NET server controls that let users cus-
tomize web pages directly from their browsers. The customizations fall into three groups:

Content: Users can determine which controls appear on the page. They can add and
remove controls, as well as minimize those they do not want to see in full. Controls can
also be imported and exported via XML files, which helps to promote reuse.

Appearance: Users can change fonts and colors and drag controls to where they want
them on the page.

Behavior: Connections can be established between controls, such that events fired by
one control will cause a change in a dependent control. The ability to fire and handle
events is built into the controls themselves, but the user can wire them together at
runtime.

Customization relies heavily on personalization: when a user modifies a page, the
modifications are saved as personalization data. This means that to use Web Parts to their
fullest, you will need to start with a website that supports membership.

MacDonald27.fm Page 1030 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1031

■Note Several important concepts are peculiar to the Web Parts technology. This section introduces the
concepts, and you’ll get a fuller idea of what they are and how they work as you progress through the chapter.

Web Parts are the building blocks of portal pages. A Web Part can be any ASP.NET
server control, which means you can use any of the following:

• Standard ASP.NET server controls

• ASP.NET user controls

• ASP.NET custom controls

For maximum flexibility, you can also write custom Web Part controls by deriving from
the System.Web.UI.WebControls.WebParts.WebPart class.

Zones are containers for Web Parts, and four zone types exist:

• A WebPartZone holds the visible parts on the page, and it defines the default layout
and behavior of the Web Parts it contains. Customizable pages may allow users to
drag Web Parts between zones, thus altering the layout of the page. WebPartZones
don’t have formatting properties of their own, and it is common to use HTML tables
to place the zones exactly where you want them on the page.

• An EditorZone contains editor Web Parts that are used for interacting with page
content. EditorZones aren’t visible until the page is put into edit mode.

• A CatalogZone is used to manage the “catalog” of parts that aren’t visible on the
page. These can include parts that are not displayed by default, parts that the user
has elected to close, and parts imported from outside the application. Like the
EditorZone, a CatalogZone isn’t visible until the page is put into catalog mode.

• The fourth zone type, ConnectionsZone, edits dynamic connections between Web
Parts. It too is invisible until the user chooses to edit connections.

The WebPartManager control orchestrates the operation of Web Parts and zones. It
knows exactly what is on the page, it maintains page state, and it fires events when page
state changes. It also manages personalization of pages and handles communication
between Web Parts.

■Note You can have only one WebPartManager object per page. It has no UI, and so it appears as a gray
rectangle in the Visual Studio designer.

MacDonald27.fm Page 1031 Wednesday, December 28, 2005 12:10 PM

1032 C H A P T E R 2 7 ■ W E B P A R T S

You can view pages in several modes:

• Browse mode, which (as the name implies) is used for normal browsing

• Design mode, which allows you to play with the content on the page, rearranging
and hiding parts

• Editor mode, which allows you to edit the properties of parts

• Connect mode, which allows the editing of dynamic connections between parts

• Catalog mode, which you use to display a catalog of hidden or extra parts, so that
you can add content to the page

Just which modes clients can use will depend on what access they’re granted. For a
company website, everyone may be able to customize the home page, while an ISP creat-
ing a portal with Web Parts may not allow much customization at all.

Verbs are the buttons, links, and menu items on the title bar of a Web Part, which you
use to interact with the part. Exactly what verbs you’ll see depends on how much you’re
allowed to customize the page.

And finally, chrome refers to the UI elements that frame Web Parts, such as the border,
icons, title bar, and text; it’s probable that the term comes from the chrome used to deco-
rate automobiles. You set the chrome at zone level, so all the parts within a zone share the
same chrome.

Using Web Parts
The following sections will show you how to use Web Parts: how to create them, place
them on a page, edit them, and connect them.

■Note This introduction to Web Parts concentrates on using them declaratively. It is also possible to inter-
act with Web Parts from code, and a full object model comes with .NET that supports this.

MacDonald27.fm Page 1032 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1033

Getting Started

You’ll need to start with a website that has personalization and membership set up.
Although you can create Web Part pages without personalization, users won’t be able to
customize them—or save their customizations—without being logged in.

■Note You will find details on how membership works in Chapter 19.

A typical site will have a LoginStatus control on the main page. This will tell users when
they need to log in and will display their status when they are logged in. To use Web Parts,
add a new Web Form to the project, and then add a link to it from the LoggedInTemplate
of the LoginStatus control, as shown in Figure 27-2.

Figure 27-2. A LoginStatus control with a link to the Web Part page

Adding the link to the LoggedInTemplate means the user will see the link only once
they are logged in. Make sure that login works before going further.

Adding Web Parts to a Page

To use Web Parts on a page, you need to add a WebPartManager, which you’ll find in the
WebParts section of the Toolbox. Because this control doesn’t have a runtime representation,
it will display as a gray rectangle in the designer. The default HTML for the WebPartManager
is simple:

��������	�
������
��������	�
������
���
�������
��
�����������	�
������
�

MacDonald27.fm Page 1033 Wednesday, December 28, 2005 12:10 PM

1034 C H A P T E R 2 7 ■ W E B P A R T S

The next step is to create the zones to contain the parts. You’re responsible for laying
out the parts on the page, and you can use an HTML table or CSS positioning. We’ve cre-
ated a simple table with three cells, and in Figure 27-3 we’ve dragged three WebPartZone
controls from the Toolbox and dropped them into the cells of the table. We’ve changed
the IDs of the controls to describe their location.

Figure 27-3. A Web Part page showing an HTML table containing WebPartZone controls

Now we’ll start adding some Web Parts to the zones. To add a simple piece of text, drag
a Label control from the Standard section in the Toolbox, and drop it onto the content
area of the LeftZone control. To set the text in the label, switch to Source view, and enter
a string such as <h3>Here’s a web part</h3> as content for the <asp:Label> element.
Each Web Part displays as a mini-window with a title bar, so it is useful to add the title
attribute for the label, which will show up in the title bar of the part.

When you’ve added the Label control to the zone, you’ll see that in the designer it has
a title, with a tiny, black downward-pointing arrow to the right of it. This arrow displays
editing commands at runtime.

GENERICWEBPART

If you use a standard server control as a Web Part, you’ll often want to use the title attribute to set the title for
the part. When you add this into the HTML, you’ll find that the HTML editor objects, because title isn’t an
attribute for a server control.

So that server controls and user controls can be used as Web Parts, they get wrapped in a GenericWebPart
wrapper at runtime. It is this object that provides the necessary mechanism to allow the control to function as a
Web Part, and it is also this object that uses the title attribute.

MacDonald27.fm Page 1034 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1035

The WebPartZone and its new Web Part are represented in the HTML like this:

��������	�
������������������
�������
��
�������
�� �������������

��������!�"����

�������������"���������"���
�������
��
���� �������"���#�"���$�����"��

���������%&���
�'����(�����
���%&�����������"�

���������!�"����

���������	�
�����

You can see that the control being used as a Web Part is enclosed in a ZoneTemplate
element: all the Web Parts in a zone must be in a ZoneTemplate, but apart from that, they
are simply references to ASP.NET controls.

You can add user controls just as easily as standard ASP.NET server controls. If you add
a user control to the project, simply drag it from Solution Explorer, and drop it into the
content area of a WebPartZone to add it to the zone. Figure 27-4 shows the completed
simple design, with Label and Calendar controls in the top two WebPartZones, and a sim-
ple To Do List user control in the bottom zone.

Figure 27-4. WebPartZone controls hosting Web Parts

MacDonald27.fm Page 1035 Wednesday, December 28, 2005 12:10 PM

1036 C H A P T E R 2 7 ■ W E B P A R T S

Running the Page

Save all files, and run the application. When you have logged in, use the link to navigate
to the demo page. Figure 27-5 shows what you should see: the three Web Parts display
with the default formatting, and each has a title with an arrow next to it.

Figure 27-5. A page containing Web Parts, with default formatting

You can now start to see some of the power of Web Parts. Click the arrow next to one of
the parts, and you’ll see a small menu appear. The two options on this menu let you min-
imize the part or remove it from display altogether; try minimizing the parts and then
restoring them again. Figure 27-6 shows the page with two of the parts minimized.

MacDonald27.fm Page 1036 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1037

Figure 27-6. The page with minimized Web Parts.

Here’s the really neat bit. Exit the application, and then start it up, and log in again.
You’ll find that the page displays just as you left it, because personalization has saved the
changes you made to the page.

■Caution By all means try closing a part, but for now there’s no easy way to get it back! It will still be there
in the project, but ASP.NET will remember that you didn’t want to see it, so it won’t appear whenever you view
the page. For this reason, you may want to leave closing parts alone until we cover editing later in the “Making
Pages Editable” section.

MacDonald27.fm Page 1037 Wednesday, December 28, 2005 12:10 PM

1038 C H A P T E R 2 7 ■ W E B P A R T S

Formatting Parts

The default formatting for Web Parts is rather boring, and as you might expect, you can
control their appearance in many ways. The simplest way is to use autoformat. If you’ve
ever used tables in Word or a DataGrid in ASP.NET, you’ll be familiar with the idea of
autoformat. Select one of the zone controls in the Designer, and click the small right-
facing arrow that appears at the top-right of the control. This will display a context menu
entitled WebPartZone Tasks, which has a single item, Autoformat. Select this, and a famil-
iar autoformat dialog box will appear. Figure 27-7 shows the context menu along with an
autoformatted control:

Figure 27-7. Autoformatting Web Parts

■Note Formatting is applied to zones, so all Web Parts placed in a zone will display with that zone’s
formatting.

When you format a control, style information is added to the HTML. You can control
the appearance of all aspects of the zone using style elements, from the color used for
pop-up menus to the font used for the titles of Web Parts. Although the autoformat styles
define preset selections of style elements, you can also modify and define your own styles by
using the appropriate elements. Table 27-1 shows some of the commonly used style ele-
ments; if you want to explore all of them, you’ll find them documented as properties of the
WebPartZoneBase class.

Table 27-1. Common Style Elements for WebPartZones

Element Description
EmptyZoneTextStyle The style elements for the placeholder text in an empty zone

HeaderStyle The style elements for a zone’s header area

MacDonald27.fm Page 1038 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1039

Here’s how a typical formatted WebPartZone looks in HTML:

��������	�
������������	�
����)��
�������
��
��*�
��
+�"�
��,++++++�

������-��./�!����0�
�����	���#���1��

����������	
�����������	�	�������������	�����	�	������������

�������	�����
� ��!���������	���	�	���"�#���$%

���&��'(�)��*	+��������	���	�	������������$%

����
,�-	��.�/�������	����#0���123�
��$%

���&��'(�)��������	���	�	���"�#����$%

���&��'!��)*	+������������	�	�������������	�����	�	������������

�������	�����������	�#����	����"#�����4,/���	���	�	������������$%

���*�����������	����#0���12��
���	���	�	������������

������*	�#0	����5�#6�����������$%

���&��'!��)������	�����	�	����7���8����	�����������	�#���

�������	����"#�����4,/���	���	�	���"�#����$%

�������������	����#0���123�
���	���	�	������������$%

���.#������!��)������	����#0���12��
���	���9�����#������� ���

�������	���	�	���"�#����$%

���&��'�	,',����������	�	����7���8����	�����	�	������������

�������	����"#�����4,/���	�����
� ��!���������	����#0���12��
��$%

�������.#�������������	�	����7���8����	����	����.�'���

�������	����#0���123�
���	���	�	���"�#����$%

��������!�"����

��������
������!��#��"�2(����
��
�������
��
��

���������#�����!��#��"�2(����
�����

���������!�"����

���������	�
�����

Each of these elements is represented in code by a style object. For example, the
PartTitleStyle element is implemented by a System.Web.UI.WebControls.WebParts.TitleStyle
object, which has more than a dozen properties, including BackColor, ForeColor,

MenuLabelStyle The style elements for the verb menu label

MenuPopupStyle The style elements for pop-up menus in this zone

MenuVerbHoverStyle The style elements for verb menu items when the mouse hovers
over them

MenuVerbStyle The style elements for verb menu items

PartChromeStyle The style elements for the chrome of Web Parts within the zone

PartStyle The style elements for Web Parts within the zone

PartTitleStyle The style elements for the title of a Web Part in the zone

Element Description

MacDonald27.fm Page 1039 Wednesday, December 28, 2005 12:10 PM

1040 C H A P T E R 2 7 ■ W E B P A R T S

HorizontalAlign, VerticalAlign, and Wrap. You can easily find the details of what properties
are supported by a given element by consulting the documentation, and it is easy to use
them as HTML attributes.

Controlling Page Modes

Now that you can display a simple Web Part page, you can explore how to allow users to
control the page by editing the behavior and appearance of parts, using a catalog to add
and remove parts, and creating connections between parts.

Before you get there, however, you need to do one job first. You need to provide a way
for the user to switch between the various display modes available for the page. For exam-
ple, if you allow editing, the page will have browse and edit modes. If you then add the
ability to select parts from the catalog, the page will have browse, edit, and catalog modes.

Beta 1 provided a WebPartPageMenu control that provided a simple way to switch
between page modes using a simple drop-down menu. This provided limited functional-
ity and has been removed from Beta 2. As a result, you need to code your own way of
switching between page modes, and you can easily do this using a user control.

You can make this control work any way you like, but this example uses a simple menu.
Start by creating a user control called PageMode.ascx.

Figure 27-8 shows the UI for the control:

• The top combo box displays the page modes and allows the user to select one.

• The bottom combo box controls the scope of personalization (that is, whether the
personalization is going to be for this user only or for all users). If shared personal-
ization is not enabled for the current user, there will be only one entry in this drop-
down list.

Figure 27-8. A user control for controlling page modes

■Note Shared scope means the changes this user makes will affect everyone using the page. This obvi-
ously isn’t something you want every user to be able to do, so you have to grant permission in the web.config
file. We discuss this further in the “Editing Behavior with BehaviorEditorPart” section.

MacDonald27.fm Page 1040 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1041

In the code-behind page, you’ll need a field to represent the current WebPartManager
for the page on which the control is being used. You also need to add a handler for the Init
event for the control and implement it to hook the InitComplete event for the hosting
page. This will ensure that the InitComplete handler will be called when the host page has
finished initializing:

����%�����	�
������
���
��%��3�

�������4

�
#��������	�
������
�5!�
6

������"�
���
��%��	���5�#������4

��#��	���5�#�7��8�3������
9�:���$
�����;

<

�����$�����%��"�
����(�'
����#�#���(%�������##�#�"#=��#��#��3�!�"���4

��	���4�#�+�!�"����>��(�:������"�
7	���5�#�+�!�"���;6

?

The Page_InitComplete method initializes the state of the controls. This method first
gets a reference to the WebPartManager for the page and then asks it for the current set of
supported display modes. What modes are supported will depend on the zones that have
been added to the page. For example, if a ConnectionsZone appears on the page, then
Connect mode will be supported. Each mode has a name, but since modes can be enabled
and disabled from code, the name is added to the list only after ensuring that it is enabled.

���+�""���(%���%�������%����##�%���##�#�"#=#�4��%#��%��"�
�#�������

��������������%��3���������%��3��
�"�����%������4

��#��	���5�#�+�!�"���7��8�3������
9�:���$
�����;

<

�����@����%��!����
���
��%������4

��5!�
������	�
������
4@��+�

�����	�
������
7	���;6

�����$�A��%��!����
���
��%��"#�����������!����4������!����#�����"��9

���������#������%��"#�����������
����!����4

����
��3%�7���	�
��#��"�2�����(��!�#�5!�
4B����
����#��"�2�����;

��<

����#��7(��!4��:��"��75!�
;;

����<

��������
#��!���/�!����(��!4/�!�6

������3�����4���!�4$��7�(��#�����!7!���/�!�9�!���/�!�;;6

����?

��?

MacDonald27.fm Page 1041 Wednesday, December 28, 2005 12:10 PM

1042 C H A P T E R 2 7 ■ W E B P A R T S

�����$����%���""�(����3���������%��"#��4�:��
2���%���'���
'��3���4

��3�B3���4���!�4$��7�C��
�;6

���������%�����
�3�������%�
����3���9������%��4

��#��75!�
4	�
���"#=��#�4+�:��
B%�
��B3���;

����3�B3���4���!�4$��7�B%�
���;6

�����B�"�3���%��#��!���
��%��3�

����3���4

��#��75!�
4	�
���"#=��#�4B3�������	�
���"#=��#�B3���4B%�
��;

����3�B3���4B�"�3������ ����6

���"��

����3�B3���4B�"�3������ ���D6

?

A handler for the PreRender event sets the selected item in the combo box equal to the
current mode of the host page:

�����A����
���%��3��
�"�#���#��"�2#���%��3�

���!���4

��#��	���5	
�E���
7��8�3������
9�:���$
�����;

<

�����B����%����"�3����#��!�#��%��!�����
��.��(�"#�������%��!����
'��

�����3�

���!���4

��3�����4B�"�3������ ���

�������3�����4���!�4��� F�7

�����������3�����4���!�4-#�*2�� �75!�
4�#��"�2����4/�!�;;6

?

The handler for the SelectedIndexChanged event on the combo box named Page Mode
changes the page mode to the one selected:

���+�""���(%���%�����
�3%������%��!���4

�
���3������#��3�����5B�"�3������ +%����7��8�3������
9�:���$
����;

<

�����	�
��#��"�2�����(��!���

�����������5!�
4B����
����#��"�2�����G3�����4B�"�3���0�"��H6

��#��7(��!�I���"";

����5!�
4�#��"�2�������(��!6

?

In the same way, the handler for the combo box named Scope changes the personaliza-
tion scope:

���+�""���(%���%�����
�3%������%���3���4�J���3�'��3%����������

����
��%�
����3����� �"#3#�"29����#��#���3����
2����3%�3A�(%�
�

���2����
���������"���%���3�������(����%���(������#��4

�
���3������#��3�B3���5B�"�3������ +%����7��8�3������
9�:���$
����;

<

MacDonald27.fm Page 1042 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1043

��#��73�B3���4B�"�3���0�"��4:K��"�7�B%�
���;�LL�

�������5!�
4	�
���"#=��#�4B3�������	�
���"#=��#�B3���4C��
;�

��<

����5!�
4	�
���"#=��#�4����"�B3���7;6

��?

��#��73�B3���4B�"�3���0�"��4:K��"�7�C��
�;�LL�

�������5!�
4	�
���"#=��#�4B3�������	�
���"#=��#�B3���4B%�
��;

��<

����5!�
4	�
���"#=��#�4����"�B3���7;6

��?

?

Once you’ve completed the control, you can drag on onto the page, placing it just
below the WebPartManager control.

You can test this immediately: run the page, and choose Design from the page mode
combo box. The page layout will change to show the outline of the zones, and you’ll be
able to drag items from one zone to another. Figure 27-9 shows a Web Part being dragged
from the left zone on a page to the right zone.

Figure 27-9. A Web Part being dragged between zones

MacDonald27.fm Page 1043 Wednesday, December 28, 2005 12:10 PM

1044 C H A P T E R 2 7 ■ W E B P A R T S

Making Pages Editable

Four editor Web Parts enable editing behavior for the page: AppearanceEditorPart,
BehaviorEditorPart, LayoutEditorPart, and PropertyGridEditorPart.

The AppearanceEditorPart lets the user edit the following UI properties of a control:

• The title of the Web Part.

• The height and width of the part.

• The ChromeType, which defines the border type for the control.

• Whether the control is hidden or displayed.

• The direction in which the part’s content is displayed, which will affect (for exam-
ple) on which side of radio buttons the text is displayed. For English text, the value
will be left to right.

The BehaviorEditorPart lets the user edit the following UI properties that relate to
behavior:

• A description of the part.

• The TitleUrl, a URL that provides extra information about the part.

• TitleIconImageUrl, a URL used to represent the part on a title bar.

• CatalogIconImageUrl, a URL used to represent the part in a catalog.

• HelpUrl, a URL for help on this part.

• HelpMode, which determines how help for the part is displayed. This can include
opening a separate browser window or replacing the Web Parts page.

• An error message that is displayed if an error is found in an imported control.

• ExportMode, which determines which of a part’s properties will be exported.

• AuthorizationFilter, which is used to determine whether a part can be added to
a page.

MacDonald27.fm Page 1044 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1045

• Whether the part can be closed.

• Whether the part allows other parts to connect to it.

• Whether the part can be edited.

• Whether the part can be hidden by the user.

• Whether the part can be minimized.

• Whether the part can be moved between zones.

The LayoutEditorPart lets the user edit UI attributes that control layout:

• The ChromeState, that is, whether the part is in minimized or normal state

• The zone the part is in

• The ZoneIndex, which gives the index of the part within the zone

The PropertyGridEditorPart lets users edit custom properties, if those properties were
declared in the source code with a WebBrowsable attribute.

Editing controls are held in an EditorZone, and you add one of these to a page exactly
as you did for WebPartZones. Typically, an EditorZone is placed in an HTML table cell and
is not visible until the user selects edit mode.

■Note Although these four controls let you modify the most commonly used control properties, you can
also derive your own editor controls by inheriting from the EditorPart class.

Figure 27-10 shows an EditorZone containing an AppearanceEditorPart and a
LayoutEditorPart.

■Note EditorPart controls can be placed only in EditorZones, and EditorZones will not host any controls
except EditorParts.

MacDonald27.fm Page 1045 Wednesday, December 28, 2005 12:10 PM

1046 C H A P T E R 2 7 ■ W E B P A R T S

Figure 27-10. An EditorZone containing editing Web Parts

If you look at the source for the web page, you’ll see the editor parts inside the zone:

�����:�#��
��������:�#��
������
�������
��
��

��������!�"����

���������$����
�3�:�#��
	�
������$����
�3�:�#��
	�
����
�������
��
����

�����������2���:�#��
	�
��������2���:�#��
	�
����
�������
��
����

���������!�"����

������:�#��
����

As with standard Web Parts, editor parts are placed in a ZoneTemplate element and
can have styles applied to them to alter their appearance on the page.

Here’s how editing works: when you run the page, the mode change combo box will
display three modes. Because the page now contains an EditorZone, one of these will be
Edit. When you select this mode, the page display will change to show all the parts and
outline the zones. If you select the menu for one of the parts, you’ll see that it now con-
tains an Edit entry; select it, and the EditorZone will appear, with its fields filled in with
values for the part you’re editing. You can see this in Figure 27-11.

MacDonald27.fm Page 1046 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1047

Figure 27-11. The EditorZone in action

Edit the properties as required, and then hit OK to apply them. The page will reflect
the new appearance of the part, and the changes will be saved in the personalization
database.

Editing Behavior with BehaviorEditorPart

You can use the LayoutEditorPart and AppearanceEditorPart controls by simply includ-
ing them on a page, but the BehaviorEditorPart control needs some special setup. This
editor control appears only when the page is in shared mode, so you need to switch the
page mode before it will appear. The user control presented earlier will let you change to
and from shared mode.

In addition, because you can use a BehaviorEditorPart to change the characteristics of
a control for all users, it isn’t something that you want enabled by default. So before you
can use one on a page, you need to edit web.config to give permission to the users and

MacDonald27.fm Page 1047 Wednesday, December 28, 2005 12:10 PM

1048 C H A P T E R 2 7 ■ W E B P A R T S

roles that you want to be able to configure controls. Here’s how the authorization looks in
web.config:

�M !"���
�#����4D���3��#������.N�M�

�3��#��
��#�� !"���%�������3%�!��4!#3
�����43�!�4/��+��#��
��#���)4D��

����2���!4(���

��������%��#3��#��!�����-�
!�����

�����:�)���� %

�������,�� 	���#0��#	�%

����������'��	�#0��#	�%

��������������	:�' �� ��;'�#�����	�� ����
#���+��) ���������������	,��$%

���������$�'��	�#0��#	�%

�������$,�� 	���#0��#	�%

�����$:�)���� %

�����2���!4(���

��3��#��
��#��

The enterSharedScope verb tells ASP.NET that the user julian, and anyone in the
admin role is allowed to change the page scope to shared. It is also possible to use the
<deny> element to deny users and roles access to shared scope.

■Tip The previous web.config file will enable shared scope for all pages in the application. If you want to
enable it for individual pages, use the <location> element to restrict the scope. For example:

�"�3��#�����%���2	���4��� ��

����2���!4(���

����444

�����2���!4(���

��"�3��#��

Using Catalogs

You can maintain a catalog of Web Parts that aren’t being used on the page currently. This
makes it possible to provide optional content for the page and also provides somewhere
for the user to store parts that they currently don’t want to see but without losing access
to them.

As you might expect by now, a catalog is implemented by a collection of Web Parts,
held in a CatalogZone. As with the EditorZone, a CatalogZone is displayed only when the
page is switched to display in catalog mode.

You can use three types of parts in a CatalogZone. A DeclarativeCatalogPart holds a set
of parts that users may later choose to add to the page and is a useful way to provide

MacDonald27.fm Page 1048 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1049

optional content. Developers can provide a set of parts declaratively as part of the HTML,
and users can add them to the page with no extra coding required.

A PageCatalogPart holds the parts that the user may have closed on the page, so that
they can add them back later. Only closed controls are added to the catalog: when a con-
trol is closed, it isn’t visible on the page, it isn’t rendered, and it doesn’t participate in the
page lifecycle. It is also possible that a part may be configured so that it cannot be closed,
in which case it will never be added to the catalog.

■Caution Closing a control is not the same as deleting it. If a control is deleted from the page, it isn’t
added to the catalog and cannot be retrieved later.

An ImportCatalogPart allows the user to import the settings for a control so that set-
tings can easily be shared. Note that this doesn’t import a control itself, only the settings;
the control, as an assembly in a DLL or a user control in an .ascx file, must be accessible
from the server.

Using the PageCatalogPart

Figure 27-12 shows a CatalogZone on a page, configured with a single PageCatalogPart. At
runtime, the PageCatalogPart will display a list of parts that have been deleted from the
page; checking the box next to a part will let you add it back to the page again.

Figure 27-12. A CatalogZone containing a PageCatalogPart

When you run the application, you’ll see that a Catalog has been added to the page
mode drop-down list. When you select this, the CatalogZone will appear on the page.
Figure 27-13 shows part of a page: the My Tasks part has been closed so that it appears in
the PageCatalogPart, and now nothing is in the Bottom Zone area. Checking the box next
to the part name and pressing Add will add the part back into the selected zone.

MacDonald27.fm Page 1049 Wednesday, December 28, 2005 12:10 PM

1050 C H A P T E R 2 7 ■ W E B P A R T S

Figure 27-13. Closed parts are listed in the PageCatalogPart

Using the DeclarativeCatalogPart

A DeclarativeCatalogPart holds optional parts that the user can add to the page as
required.

To use a DeclarativeCatalogPart, drag one and drop it onto the CatalogZone. Click the
arrow at its top-right corner to display the tasks menu, and select Edit Templates. You can
now use the designer in Visual Studio to add any controls to the catalog that you want. If
you look at the source, you will see that the catalog is represented by a WebPartsTemplate
element; you can manually add references to Web Parts and other ASP.NET server con-
trols if you don’t want to use the designer.

�������3"�
��#��+���"��	�
��������3"�
��#��+���"��	�
����
�������
��
��

������	�
����!�"����

������3&�����%�
+��
�"���������%�
+��
�"���
�������
��
����

�������	�
����!�"����

��������3"�
��#��+���"��	�
��

Figure 27-14 shows a DeclarativeCatalogPart open for editing in the designer. It cur-
rently contains one user control, a WeatherControl that is used to display the weather at a
selected location.

Figure 27-14. A DeclarativeCatalogPart

MacDonald27.fm Page 1050 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1051

The CatalogZone on this page now contains a DeclarativeCatalogPart and a
PagePartCatalog. When you view the page in catalog mode, the zone displays one
catalog, along with a link to allow you to view the other one (see Figure 27-15).

Figure 27-15. A CatalogZone containing two CatalogParts at runtime

As with the PageCatalog, select a part by checking the box, and then click Add to add it to
the selected zone. Unlike the PageCatalog, however, adding a part from a declarative cata-
log doesn’t remove it from the catalog listing, so you could add more than one to a page.

Creating Custom Web Parts

You can create custom Web Parts in two ways: as user controls and as code-based custom
controls. Which one you use depends on the functionality you require: it is easier to create
user controls, but custom controls can provide more functionality.

You create custom Web Part controls by deriving from the System.Web.UI.Web-
Controls.WebParts.WebPart class, an abstract class that provides the base functionality
for all Web Parts. You will probably want to create a custom control for three reasons:

• You want to specify the content of the control.

• You want to expose custom properties at runtime.

• You want to provide connections for other controls to use.

This section covers the first two topics here, and the “Connecting Parts” section covers
connections. The simple control used in this section displays a set of possible temperature
units (that is, Celsius and Fahrenheit) as radio buttons, along with an explanatory string.
Later in the chapter you’ll see how to connect to this control so that changing the unit selec-
tion causes a change in other parts on the page. Figure 27-16 shows the control in the
designer: you can see the RadioButtonList with two options and the Label control display-
ing Choose Your Units.

MacDonald27.fm Page 1051 Wednesday, December 28, 2005 12:10 PM

1052 C H A P T E R 2 7 ■ W E B P A R T S

Figure 27-16. A custom Web Part control

A custom server control is simply created as a source file, and the code must be avail-
able when the page is run. In ASP.NET 2.0, the App_Code directory holds code needed by
a web application; you place source code in this directory, and it will be compiled as
needed.

■Note In Visual Studio 2005, you can create this directory by right-clicking the solution name in the
Solution Explorer. Choose Add Folder and then App_Code Folder from the context menu. You can then create
the control class within App_Code by right-clicking the folder and choosing Add Item from the context menu.

Before starting on content, you may want to specify how the control can be used as a
Web Part. The WebPart class has a number of properties controlling how it acts when on
a page, and these can conveniently be set in the constructor:

���"#3�3"������!�C#����	�
�������	�
�

<

�����+���
�3��
4

�����"#3���!�C#����	�
�7;

��<

�������$""�(�!##!#=#�9�3"��#�9������#�#����
��%#����
�4

�����%#�4$""�(+"�������
��6

�����%#�4$""�(�##!#=�����
��6

�����%#�4$""�(:�#�����
��6

�������B���"2����#�"�4

�����%#�4�#�"�������!��
���
��C#���6

����444

��?

Table 27-2 describes the most commonly used properties for the WebPart class.

MacDonald27.fm Page 1052 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1053

Table 27-2. Common Properties of the WebPart Class

The content of a custom Web Part control is commonly provided in one of two ways.
The control developer can override the RenderControl method in order to write HTML
directly. Alternatively, if the control is composed of a set of child controls, the developer
can override the CreateChildControls method.

The following code shows how to create the child controls:

�
���3�������

#�����#��+
����+%#"�+��
�"�7;

<

�����+"��
��%��3�

����������3��
�"�4

��+��
�"�4+"��
7;6

Property Description
AllowClose If true, the control can be closed.

AllowConnect If true, other controls can connect to this one.

AllowEdit If true, the control can be edited through parts in an EditorZone.

AllowHide If true, the control can be hidden.

AllowMinimize If true, the control can be minimized.

AllowZoneChange If true, the user can drag the control to another zone.

BackColor Specifies the background color for the Web Part.

BorderColor Specifies the border color for the Web Part.

BorderStyle Specifies the border style for the Web Part.

ChromeState Specifies whether a control and its border are in a normal or collapsed state.

ChromeType Specifies the kind of border that surrounds the part.

Enabled If true, the control is enabled.

ForeColor Gets or sets the foreground color of the page.

Hidden Returns true if the control is hidden.

IsClosed Returns true if the control is closed on the page.

IsShared Returns true if the control is shared, that is, visible to all users of the page.

IsStatic Returns true if the control is static, that is, it has been declared in the
HTML and not added dynamically.

Page Gets a reference to the page that contains this control.

Title Gets or sets a string representing the title displayed for this part.

Verbs Represents the collection of custom verbs for this control.

Zone At runtime, gets the zone in which the control is located.

MacDonald27.fm Page 1053 Wednesday, December 28, 2005 12:10 PM

1054 C H A P T E R 2 7 ■ W E B P A R T S

�����+
�����������"9��������#���3����4

�����5�� �B�
#��(#""����� �������������#���"���
���
�24

��5�� �����(�����"7;6

��5�� �4�� ����5�� �B�
#�6

�����$����%������"�����%��3��
�"����

���%#�4+��
�"�4$��75�� �;6

�����+
������%��E��#�*�����#��9���������(��#��!�4

��5
��#������(�E��#�*�����#��7;6

��5"#+�"�#������(��#�����!7�+�"�#���;6

��5"#-�%
����(��#�����!7�-�%
�%�#��;6

��5
��#��4���!�4$��75"#+�"�#��;6

��5
��#��4���!�4$��75"#-�%
;6

�����$����%��E��#�*�����#�������%��3��
�"����4

���%#�4+��
�"�4$��75
��#��;6

�����B�"�3���%�����"���#��!4

�����7B�����"�(;

�����B#��"��%���(�'
�����4

��+%#"�+��
�"�+
���������
��6

?

The control’s _useCelsius field determines the currently selected item; this is main-
tained by an event handler that is called when the selection changes:

���B�"�3���%�����"���#��!4

#��75���+�"�#��;

��5"#+�"�#��4B�"�3�������
��6

�"��

��5"#-�%
4B�"�3�������
��6

5
��#��4B�"�3������ +%�����>���(�:������"�
7
��#��5B�"�3������ +%����;6

You’ve already seen how the appearance and behavior of Web Parts can be edited at
runtime using the EditorZone. You can add custom properties to a control, and these can
then be edited using a PropertyGridEditorPart in an EditorZone.

MacDonald27.fm Page 1054 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1055

For a property to be editable at runtime, it needs to be marked with two attributes, as
shown in the following code fragment:

G	�
���"#=��"�7;9����*
�(���"�H

���"#3���
#���� �B�
#�

<

������<�
���
�5�� �B�
#�6�?

������<�5�� �B�
#������"��6�?

?

The Personalizable attribute ensures that this property will be persisted when the con-
trol is used as a Web Part. For a property to be personalizable, it must meet the following
criteria:

• It must be public, with public get/set accessors.

• It must be read/write.

• It must not have parameters.

• It cannot be indexed.

The WebBrowsable attribute enables the property for runtime editing by the user, and
it will appear in a PropertyGridEditorPart if one is added to the page.

To use custom controls on a page, you can simply drag the control name from the
Solution Explorer and drop it onto a zone in the designer. This will add a Register directive
to the top of the page source, establishing a prefix for the control’s namespace:

�OP�E��#���
����	
��# ����
�����/�!����3���$�
���4���	�
����O��

An element representing the control itself will be added to the WebPartZone:

��������	�
������������	�
����)��E�������
��
��

��������!�"����

������3���� �#���3��
�"�
�������
��
��#����� �����+��
�"�����

������,�� <��
,'�#�:�),�����'����� ��+����#���.�
,9�#�:�),���4�$%

���������!�"����

���������	�
������

Figure 27-17 shows the TextString property being edited using a PropertyGridEditorPart.

MacDonald27.fm Page 1055 Wednesday, December 28, 2005 12:10 PM

1056 C H A P T E R 2 7 ■ W E B P A R T S

Figure 27-17. A PropertyGridEditorPart control editing custom properties on a Web Part

You can see that the grid displays the name of the property, plus displays a textbox to
edit its value. The editor control will display text boxes for scalar properties (in other
words, string, int, float, Unit, DateTime), check boxes for Boolean properties, and
DropDownLists for enumerations.

Connecting Parts

For Web Parts to be truly useful, you need some way for them to interact. For example, if
the user chooses a city from a Location part, the other parts on the page, such as news or
weather displays, may want to change their contents to reflect the chosen location. Web
Part connections make this possible.

A part (also known as a provider) can make data available for other parts (consumers) to
use. It is a pull model, because the consumer queries the provider to get the data.

Two types of connections exist. Static connections are set up in the HTML of the hosting
page within a ConnectionsZone and are created during the prerendering of the page. Dynamic
connections use the ConnectionsZone to display a UI with which the user can create and
destroy connections at runtime. As you would expect, connections are personalized.

MacDonald27.fm Page 1056 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1057

How Do Connections Work?

Communication between parts is defined by interfaces: a provider exposes methods,
properties, and events by defining and implementing an interface, and consumers use the
interface. A consumer obviously has to know about the interfaces it wants to use,
although it doesn’t have to implement any specific interfaces itself.

How does the WebPartManager know that a Web Part is a provider? After all, the fact
that a class defines and implements an interface doesn’t necessarily mean anything
particular.

The WebPartManager can connect controls that implement connection points. Both
providers and consumers can implement connection points, and the WebPartManager
uses them to connect controls together. You can think of connection points as plugs (for
the consumers) and sockets (for the providers). But note that just because one part imple-
ments a consumer connection point and another implements a provider connection
point doesn’t necessarily mean that they can be connected; the consumer has to be
expecting to work with the provider and know what methods to call. The connection
points just provide the mechanism.

■Note f you've ever worked with ActiveX controls, you may have come across the term connection point
before. The concept here is the same, although the implementation is very different.

Creating Providers

Here’s an example of an interface that the temperature unit part might define in order to
make information on the current units available to consumers:

#��
��3�����!�C#��

<

�����"���+�"�#���<����6�?

?

The class would implement the interface in the normal way:

���"#3�3"������!�C#����	�
�������	�
�9����!�C#��

<

��444

�����"#3����"���+�"�#��

��<

��������

MacDonald27.fm Page 1057 Wednesday, December 28, 2005 12:10 PM

1058 C H A P T E R 2 7 ■ W E B P A R T S

�����<

�������
���
�5���+�"�#��6

�����?

��?

��444

?

You can create a provider connection point in several ways, but the simplest is to use
the ConnectionProvider attribute, like this:

G+��3�#�	
��#��
7���!�C#���9����!�C#���;H

�
#��������!�C#���	
��#����!�C#��7;

<

��
���
��%#�6

?

The method—its name is not important—has a return type matching the provider
interface, and it returns a reference to the object. You can see that this gives the caller
access to the interface methods on the object, without giving access to any other
functionality.

The ConnectionProvider attribute takes two parameters, which are often identical. The
first is a display name to label the connection, and the second is a unique ID to identify
this connection.

■Note If a class exposes more than one interface via connection points, you have to specify a third param-
eter that gives the type of the interface, for example typeof(ITempUnits). This is not necessary when you
expose only one interface.

Creating Consumers

A Web Part that is going to act as a consumer has to implement a consumer connection
point for the interface it wants to use. It goes without saying that a consumer can connect
to a number of interfaces if necessary, defining a connection point for each. Here’s what a
consumer might implement to use the ITempUnits interface:

G+��3�#�+���!�
7���!�C��
�9����!�C��
�;H

�
#�������#��@����!�C#��7���!�C#���#��;

<

���������%��
���
�3��#���""9��%�
�'����3��3�#�4

��#��7#�������"";

�����%
�(��(�: 3���#�7�/��3��3�#��;6

MacDonald27.fm Page 1058 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1059

�����Q��
2��%���
��#��
9���������!��%#�4

��#��7#��4��+�"�#�������
��;

����5"���"�� ����5��
�� ��>�5��
+�"�#��6

���"��

����5"���"�� ����5��
�� ��>�5��
-�%
6

?

The runtime creates a consumer connection point as a callback. If the property on the
ITempUnits interface changes, the runtime will invoke this method, so the consumer will
instantly see—and respond to—the change in the provider.

Setting Up Static Connections

Static connections are declared in the HTML as part of the WebPartManager element.
Here’s an example:

��������	�
������
��������	�
������
���
�������
��
��

���B���#3+��3�#���

������������	�
�+��3�#������3��3�#���

�������	
��#��
������!�C#�(����
����	
��#��
+��3�#�	�#�������!�C#���

�������+���!�
������!��#��"�2(����
����+���!�
+��3�#�	�#�������!�C��
����

����B���#3+��3�#���

���������	�
������
�

Static connections are set up using a StaticConnections element, which in turn contains
one or more WebPartConnection elements. Each connection has to have an ID attribute,
along with ProviderID and ConsumerID attributes that define the Web Parts acting as the
provider and consumer; these IDs must obviously match those of two controls elsewhere on
the page. If the parts expose only a single producer or consumer connection point, you can
omit the ProviderConnectionPointID and ConsumerConnectionPointID attributes; if
either end implements more than one connection point, you must use these attributes to
specify which one is taking part in the connection.

■Note Static connections are not personalized, because they are a property of the page rather than a pref-
erence of any one user. They can therefore be used on pages that don’t support personalization.

Using Dynamic Connections

Static connections cannot be made or broken at runtime. If you want to allow users to con-
nect and disconnect parts, you will need to use dynamic connections instead. You can
implement them by adding a ConnectionsZone part to the page, as shown in Figure 27-18.
Unlike some of the other Zone controls, the ConnectionsZone has no content.

MacDonald27.fm Page 1059 Wednesday, December 28, 2005 12:10 PM

1060 C H A P T E R 2 7 ■ W E B P A R T S

Figure 27-18. A ConnectionsZone Web Part on a page in design mode

Adding a ConnectionsZone to a page adds another possible page display mode. When
you select Connect mode, the Connect verb will appear on the menus of all connectable
controls. When you choose this verb, the ConnectionsZone part will appear. If there is no
connection to the control, the ConnectionsZone will prompt you to make a selection, as
shown in Figure 27-19.

Figure 27-19. The ConnectionsZone in Connect mode

Clicking the link will show you the parts that your chosen control can interact with; in
other words, those parts that implement the same provider/consumer interface contract.
Figure 27-20 shows this in action, choosing the Temperature Units part as the provider for
the TempUnits connection point.

MacDonald27.fm Page 1060 Wednesday, December 28, 2005 12:10 PM

C H A P T E R 2 7 ■ W E B P A R T S 1061

Figure 27-20. Using the ConnectionsZone to choose a provider

Once you have made a connection between two parts, they will work together auto-
matically. Since a user can choose which parts to connect or disconnect, dynamic
connections are personalized so that each user’s choices will be saved.

If you execute the Connect verb on a part that already has connections, the
ConnectionsZone will list the connections and allow you to disconnect any that you no
longer need.

The Last Word
In this chapter, you saw how Web Part technology makes is possible to create highly cus-
tomizable pages. The support for editing part behavior and appearance, together with the
ability to add and remove parts to give a personal view of the page, makes it possible to
produce complex, personalized pages with little effort.

And if a website has been set up for personalization, any changes that a user makes to
their view of the Web Parts on a page will be saved and reapplied when they next log on.

MacDonald27.fm Page 1061 Wednesday, December 28, 2005 12:10 PM

MacDonald27.fm Page 1062 Wednesday, December 28, 2005 12:10 PM

1063

Index

■Symbols
-- HTML special character 164

% (percentage)

Unit structure 181

& HTML special character 164

<

interpreting special characters 163

(<) less than operator 45

(<=) less than or equal to operator 45

(!=) not equal to operator 45

(&&) and operator 45

(-) subtraction operator 35

(*) multiplication operator 35

(+) addition operator 35

(/) division operator 35

(==) equal to operator 45

(>) greater than operator 45

(>=) greater than or equal to operator 45

(\) backward slashes 24

(||) or operator 45

(;) semicolons 24

.ascx files. See ascx files

.asmx files. See asmx files

.asp files. See asp files

.aspx files See aspx files

.ASPXAUTH value, name attribute

forms authentication settings 718

.cs files

description 127

.dll files

assembly files 81

.exe files

assembly files 81

.NET. See NET

< HTML special character 164

> HTML special character 164

__doPostBack() function 201, 973

receiving button events 973

_blank frame targets 301

_parent frame targets 301

_self frame targets 301

_top frame targets 301

{} curly braces 24

uses of 26

■A
<a> tag

HtmlAnchor class 138

related control classes 177

Abandon method

HttpSessionState class 340, 343

absoluteExpiration parameter

Insert method, Cache object 1005, 1006

accessibility

DNS (Domain Name Service) 430

keywords in C# 63

methods 52

AccessKey property

WebControl class 180

account 712, 729

Anonymous authentication 731

ASP.NET code 712

ASP.NET security 710

MacDonaldIndex.fm Page 1063 Friday, December 30, 2005 12:28 PM

1064 ■I N D E X

account (continued)

non-ASP.NET security 710

Windows authentication 729

Account class

Balance property 918

stateful design 917, 918

AccountOperator role

default Windows roles 734

AccountUtility class

FundTransfer method 918

ACT (Application Center Test)

creating project 990

ActiveStepChanged event

Wizard control 314, 315

ActiveStepIndex property

Wizard control 312

ActiveViewIndex property

MultiView control 307

Ad elements 300

Ad/Advertisement File

elements 300

AdBoard component

database component, using 924

AdCreated event

AdRotator control 301

Add Counters window

performance counters 992

Add method

DateTime class 43

Rows collection 527

TimeSpan class 43

Add Network Place wizard 452

Add New Item dialog box

Web Services 833

<add> tag

adding SqlProfileProvider instance 788

profile property attributes 793, 794

web.config file 168

Add Web Reference window

Solution Explorer 855

AddCacheDependency method

Response object 1023

AddDays method

DateTime class 61

Added value

DataRowState enumeration 529

AddItem method

ObjectDataSource class 934

addition operator (+) 35

Address property

Profile class 802

AddUsersToRole method

Roles class 776

AddUserToRole method

Roles class 776

AddUserToRoles method

Roles class 776

Addxyz methods

DateTime class 43

administration

new features in ASP.NET 2.0 20

Administrator role

default Windows roles 734

ADO.NET

as data access model 471

basics 487, 488, 489

data namespaces 489

data provider objects 490

data access 656

data binding with 557, 558

data management 471

database access 473, 474

role of database 472, 473

data providers 487

database access, designing 987, 988

DataSet class 475

importing namespaces 493

MacDonaldIndex.fm Page 1064 Friday, December 30, 2005 12:28 PM

1065■I N D E X

introduction 474

DataSet class 474

disconnected access 474, 475

XML integration 475

updating database 475

XML and 698, 699

accessing a DataSet as XML 699, 701

accessing XML through the DataSet
701, 702

adoptive repeater control

view state, testing 967

AdRotator class

AdvertisementFile property 301

AdRotator control 267, 290, 299, 301

AdCreated event 301

event handling 302

frame targets 301

properties 301

AdvertismentFile property 300, 301

KeywordFilter property 301

Advertisement file

AdRotator control 300, 301

Advertisment elements 300

AffectedRows property

SqlDataSourceStatusEventArgs class 578

aggregate functions

SQL statements 484

using in database component 928, 929

aliases, creating virtual directories 440

Align property

HtmlImage class 153

allow rule

<authorization> tag 722

web.config settings 732

allowAnonymous profile property attribute

<add> tag 794

AllowClose property

WebPart class 1053

AllowConnect property

WebPart class 1053

allowed, state management options 354, 355

AllowEdit property

WebPart class 1053

AllowHide property

WebPart class 1053

AllowMinimize property

WebPart class 1053

AllowPaging property

DetailsView control 618

GridView control 607

AllowReturn property

Wizard control 311

AllowSorting property

GridView control 604

AllowZoneChange property

WebPart class 1053

Alt property

HtmlImage class 139, 153

HtmlInputImage class 139

AlternateText element

Advertisement File 300

AlternatingItemTemplate class 610

AlternatingRowStyle property

GridView control 590

and keyword

Where clause 483

and operator (&&) 45

angle brankets (tags)

interpreting special characters 163

anonymous access

authentication if enabled 732

disabling 730

programmatic impersonation 737

Anonymous mode

Windows authentication methods 731

anonymous profiles 807

migrating 808, 809

MacDonaldIndex.fm Page 1065 Friday, December 30, 2005 12:28 PM

1066 ■I N D E X

anonymous users

accessing specific directories 720

accessing specific files 721

allowing 712

ASP.NET security 710

authorization rules 719

forbidding 712

forms authentication 718

multiple authorization rules 720

non-ASP.NET security 710

question mark wildcard 720

restricting 719, 720

anonymousIdentification element

web.config file 807

AnonymousTemplate section

LoginView control 778

App_Browsers directory

description 129

App_Code directory

description 129

App_Data directory

description 129

App_GlobalResources directory

description 129

App_LocalResources directory

description 129

App_Themes directory

description 129

App_WebReferences directory

description 129

AppearanceEditorPart class 1044

Append method

XmlAttribute class 679

AppendChild method

XmlDocument class 676

XmlNode class 678

applets

single-page applet 130, 131

Application Center Test (ACT)

stress testing 990

Application class

ASP.NET intrinsic objects 837

EndRequest event 356

application domain

creating a simple application 144

application events 357

Application log

Windows Event Logs 237

Application Properties window

configuring event logging settings 238

Application property

Page class 159

Application Restarts counter

performance counters 993

application state 352, 353, 354

data caching compared 994

performance 353

tracing 257

Application state collection

Lock() method 353

Unlock() method 353

Application_OnBeginRequest event 357

Application_OnEnd event 357

Application_OnEndRequest event 357

Application_OnError event 358

Application_OnStart event 357

ApplicationException class

component error handling 928

constructors 235

System namespace 234

application-level tracing 264, 265

applicationName attribute

configuring membership provider 747

ApplicationPath property

HttpRequest class 160

applications, ASP.NET. See ASP.NET
applications

MacDonaldIndex.fm Page 1066 Friday, December 30, 2005 12:28 PM

1067■I N D E X

ApplyFormatInEditMode property

BoundField class 586

appSettings element

web.config file 167

AppSettings property

ConfigurationSettings class 169

appsettingurlkey parameter

WSDL.exe parameters 858

arcs, drawing 978

arithmetic operations 35

ArithmeticException class 223

Array class 44

Clone method 77

GetUpperBound() method 44

members 44

nature and behavior data type 77

ArrayList class 32, 33

arrays 31, 32

accessing an element 32

ArrayList class 32, 33

lower bound 31

multidimensional arrays 31

repeated-value data binding 540

web service data types 848

.ascx files

description 127

extension used by user controls 938

user controls 937

.asmx file type

description 127

method indication 835

web services 832

ASP

ASP.NET compared 7

ASP.NET solutions 133

problems 9, 10

.asp files

creating a simple application 143

description 128

asp- prefixed tags 177

ASP solution and problems

currency converter example 133

asp tag prefix 939

ASP.NET

ASP compared 7

automatic generation of SOAP messages
and WSDL documents 832

built-in objects 837

code compilation compared to ASP 986

collections 318

description 10

forms authentication model 717

HTML server controls 134

ISAPI link 6

performance counters 992

performance tuning 985

Security Model 709

IIS interaction 709

server-side programming 6–7

server-side web controls 125

solution to ASP difficulties 133

stages in request 146

state management. See state management

verifying installation is correct on IIS 438

version 2.0 3

Web controls 134

ASP.NET 2.0

introduction 18

new features 19–20

ASP.NET applications 125

See also deployment

configuration 165

changes 130

nesting 166–167

controls placed inside <form> tag 136

data binding 540

directories 128

examples of data driven applications 473

MacDonaldIndex.fm Page 1067 Friday, December 30, 2005 12:28 PM

1068 ■I N D E X

ASP.NET applications (continued)

file types 127

forms, case-sensitivity of 178

global.asax file 356

navigation features 390

performance counters 993

Security Model

certificates 713

IIS interaction 712

SSL 715

testing web services 842

updating 129–30

virtual directories 450

visibility 429–431

web farms 431–432

web forms, user controls compared to 937

web pages 125

web servers 427–429

web.config file, storing custom settings
167–168

ASPNET account

changing account in IS 5 457–458

changing account in IS 6 458

aspnet_Applications table 791

aspnet_Applications_CreateApplications
stored procedure 792

aspnet_CheckSchemaVersion stored
procedure 792

aspnet_Profile table 791

aspnet_Profile_DeleteInactiveProfiles stored
procedure 792

aspnet_Profile_GetNumberOfInactiveProfile
s stored procedure 792

aspnet_Profile_GetProfiles stored
procedure 792

aspnet_Profile_GetProperties stored
procedure 792

aspnet_Profile_SetProperties stored
procedure 792

aspnet_regsql.exe

command-line switches 750

aspnet_SchemaVersions table 791

aspnet_Users table 791

aspnet_Users_CreateUser stored
procedure 792

aspnet_Users_DeleteUser stored
procedure 792

.aspx files

code examples 215

creating a simple application 143

description 127

OutputCache directive 996

assemblies 78, 81

component classes compiled into 910

namespaces and assemblies 114

private assemblies 454

shared assemblies 454

updating 130

assembly references

Intellisense 114

assignment 29

assignment operations

reference types 73

String class 77

value types 73

attributes

.NET Framework 839

properties and attributes 158

Xml documents 676

XML tags 661, 662

Attributes property

DirectoryInfo class 633

FileInfo class 633

HtmlControl class 156

Authenticate event

Login control 761

Authenticate method

FormsAuthentication class 726

Authenticated property

AuthenticateEventArgs class 762

MacDonaldIndex.fm Page 1068 Friday, December 30, 2005 12:28 PM

1069■I N D E X

AuthenticateEventArgs class

Authenticated property 762

authenticating users

web.config file 719

authentication

* (wildcard character) 719

ASP.NET request 710

authorization rules 719

directory authentication methods 731

enabling for profiles 786

forms authentication 716

membership 739

non-ASP.NET request 710

passwords 708

SQL Server authentication 496

user authentication 159

Windows authentication 495, 729–735

methods 731

authentication rules

setting up with WAT 722, 724, 725

<authentication> tag

web.config file 718

changing for subdirectory 721

authorization 708

access for specific users 722

access to specific directories 720

accessing specific files 721

authorization rules 719

multiple authorization rules 720

permissions 708

authorization rules 719, 720

setting up with WAT 722, 724, 725

authorization section

web.config file 777

<authorization> tag

allow and deny rules 722

web.config file

forms authentication 719

Auto Format dialog box 593, 1038

Auto Format feature

GridView control 647

auto increment columns

FillSchema() method 533

importance of 486

relational databases 487

AutoDetect value

HttpCookieMode enumeration 345

autoformat dialog box 593, 1038

AutoGenerateColumns property

GridView control 582, 584, 806

AutoGenerateDeleteButton property

DetailsView class 576

AutoGenerateEditButton property

DetailsView class 576

AutoGenerateInsertButton property

DetailsView class 576

AutoGenerateRows method

DetailsView class 571

AutoGenerateRows property

DetailsView control 619

automatic event wireup 142, 143

automatic postback and web control events
197–202

page life cycle 202–206

automatic postback events 214

automatic validation

validator controls 269

AutomaticallyGenerateDataBindings
property

TreeView control 696

automaticSaveEnabled attribute

profile element 803

AutoPostBack property

__doPostBack() function 201

capturing a change event 199

data-bound list controls example 561

list control 556

MacDonaldIndex.fm Page 1069 Friday, December 30, 2005 12:28 PM

1070 ■I N D E X

AutoPostBack property (continued)

ListBox control class, 933

data retrieval example 505

page life cycle 202

web controls 201

Autos variable watch window

Visual Studio 120

AvailableFreeSpace method

DriveInfo class 635

Avg() function 484

■B
BackColor property

rows 596

TextBox control class 177

TitleStyle class 1040

WebControl class 180

WebPart class 1053

backslash (\) character 24

creating a file browser 639

BackupOperator role

default Windows roles 734

backward compatibility and COM objects 162

Balance property

Account class 918

base keyword 235, 961

BaseValidator class, properties 270

Basic mode

Windows authentication methods 731

BehaviorEditorPart class 1044, 1045

editing behavior with 1047, 1048

bezier curve, drawing with Graphics class 978

Bin directory, description 128

binary files

reading and writing 642–643

binary option

serializeAs attribute 797

BinaryFormatter class

System.Runtime.Serialization.Formatters.
Binary namespace 797

BinaryReader class

ReadInt32 method 643

ReadString method 643

BinaryWrite() method

HttpResponse class 162

BinaryWriter class

opening file for binary writing 642

binding elements

WSDL document 821

Bitmap class

System.Drawing namespace 978

block structures 26

block-level scope 49

Bold property

FontInfo class 183

Boolean class 28

nature and behavior of data type 77

Border property

HtmlImage class 153

BorderColor property

WebControl class 180

WebPart class 1053

BorderStyle enumeration

values 180

BorderStyle property

e-card applet 212

WebControl class 180

WebPart class 1053

BorderWidth property

WebControl class 180

BoundField class

DataFormatString property 588

GridView control 584

HtmlEncode property 589

properties 586

SortExpression property 604

<BoundField> tag 587

breadcrumb navigation 409

break keyword 47

MacDonaldIndex.fm Page 1070 Friday, December 30, 2005 12:28 PM

1071■I N D E X

breakpoints

advanced 119

Breakpoints window 119, 120

commands in break mode 118

single-step debugging 116

Browsable attribute

control design time support 970

Browse mode 1032

browse permission

Virtual Directory Creation Wizard 446

Browser property

HttpRequest class 160

BrowserCapabilities component

replacing 160

browsers

determining type 543

interpreting special characters 163

using caching to optimize pages for 1001

Brush object

graphics context 979

BufferOutput member

HttpResponse class 162

built-in objects

accessing via WebService class 837

BulletedList control

not selectable 186

 or tags underlying 177

properties 190

BulletStyle property

BulletedList control 190

BulletStyleImageUrl property

BulletedList control 190

business layer

three-tier design 905

business objects 907

service providers 836

web service comparison 836

Button class

adding linked images 149

CausesValidation property 272, 273

Click event 330

implements IButtonControl interface 186

input tag underlying 176

<button> tag 138

HtmlButton class 138

ButtonField class 598

CommandName property 598

creating buttons 619

GridView control 584

ButtonGrid control

receiving button events 973

ButtonType property

GridView control 596

Byte class 28

nature and behavior of data type 77

■C
C#

accessibility keywords 63

choosing a .NET language 23

choosing between languages 23

conditional structures 44–45

if blocks 45–46

switch block 46–47

data type conversions 142

introduction 12

language basics

block structures 26

case sensitivity 24–25

commenting 25

line termination 26

special characters 24

loop structures 47

for block 48

foreach block 49–50

while block 50–51

MacDonaldIndex.fm Page 1071 Friday, December 30, 2005 12:28 PM

1072 ■I N D E X

C# (continued)

methods 51

delegates 54–56

overloading 53–54

parameters 53

object-based manipulation 39

Array class 44

DateTime class 42

String class 40

TimeSpan class 42

variable operations 35–36

advanced math 36

type conversions 36–39

variables and data types 27

arrays 31–33

enumerations 33–34

initialization and assignment 29

intialization and assignment 29

strings and escaped characters 30

C# 2.0, introduction 18

Cache member

HttpResponse class 162

cache notifications

SQL Server 2000 and SQL Server 7 1019

creating cache dependency 1023–1024

enabling ASP.NET polling 1022–1023

enabling notifications 1019–1021

workings of notifications 1021–1022

Cache object

ASP.NET intrinsic objects 838

data caching 1004

expiry of object 1004

Insert method 1005

inserting an object into cache 1005

modifying cached objects 1009

support for dependencies 1005

testing 1006–1010

thread-safety 1004

Cache property

HttpContext.Current class 1010

Page class 159

CacheDependency object

creating 1017

creating dependency for cached item 1005

CacheDuration property

adding to WebMethod attribute 1004

CacheDuration value

CacheItemRemovedReason
enumeration 1013

CacheExpirationPolicy value

CacheItemRemovedReason
enumeration 1013

CacheItemRemovedReason enumeration

values 1013

CacheKeyDependency value

CacheItemRemovedReason
enumeration 1013

caching

basing on HTTP header 1002

data caching 1004

data source controls 1012–1016

inserting an object into cache 1005

simple cache test 1006, 1007–1010

web services 1010–1012

dependencies 1016–1027

disabling caching while testing 996

improving database performance 988

inserting an object into cache 1005

modifying cached objects 1009

output caching 995–996

cache profiles 1003

client side caching 997

custom caching control 1001–1002

multiple caching example 999–1000

reusability of cached page 997–998

specifying parameters 998–999

web services 1004

performance tuning 985–995

MacDonaldIndex.fm Page 1072 Friday, December 30, 2005 12:28 PM

1073■I N D E X

Calendar class

DayRender event 959

Calendar control 267, 290–292

adding to zone 1035

DayRender event 295

FirstDayOfWeek property 292

formatting 293–294

members 298

multiple date selection 292

restricting dates 295

SelectedDate property 291

SelectionChanged event 297

SelectionMode property 292

styles 293

subclassing controls 958–960

VisibleMonthChanged event 297

CalendarDay class 295

DayRender event 296

properties 295

Cancel property

MailMessageEventArgs class 772

CancelButtonClick event

Wizard control 314

CancelButtonStyle property

Wizard control 316

Caption property

GridView control 588

CaptionAlign property

GridView control 588

Cascading Style Sheets (CSS)

compared to themes 378

case blocks 47

case-sensitivity 24, 25

ASP.NET forms 178

web.config file 166

XML 661

casting objects 85–87

Catalog mode 1032

catalogs, using 1048–1051

CatalogZone class 1031

Web Parts held in 1048

catch statements

catching specific exceptions 226, 227

nested exception handling 227

catching exceptions

based on types 222

Category attribute

control design time support 970

CategoryAttribute class

System.ComponentModel namespace 969

CausesValidation property

Button class 273

manual validation 276

validator controls 269

CauseValidation property

Button class 272

CellPadding property

Calendar control class 298

GridView control 588

Cells collection

GridViewRow control 593

CellSpacing property

Calendar control class 298

GridView control 588

certificates

authorities 713

SSL 715–716

CGI (Common Gateway Interface)

scalability 6

chains

exception chains 224

Challenge/Response authentication

Windows authentication methods 731

ChangePassword control 759

ChangePassword method

MembershipUser class 755

ChangePasswordQuestionAndAnswer method

MembershipUser class 755

MacDonaldIndex.fm Page 1073 Friday, December 30, 2005 12:28 PM

1074 ■I N D E X

Char class 28

nature and behavior of data type 77

character literals 30

characters and character matching 281

CheckBox control class

input tag underlying 176

CheckBoxField class

GridView control 584

CheckBoxList control 186, 769

multiple selections 187

repeated-value data binding 548

select tag underlying 177

CheckBoxStyle property

Login control 763

CheckChanged event

web controls providing 199

Checked property

HtmlInputCheckBox class 139

HtmlInputRadioButton class 139

CheckListBox control class

simple example 187

ChildNodes collection

XmlNode objects 679

ChildNodes property

SiteMapNode class 406

XmlDocument class 701

ChildNodesPadding property

TreeNodeStyle class 415

Choose Location dialog box

Visual Studio 94

chrome 1032

ChromeState property

WebPart class 1053

ChromeType property

WebPart class 1053

class library

.NET Framework 10

common data types 28

compiling 910

data types 28

namespaces 78

classes

advanced class programming 82

casting objects 85–87

generics 89–90

inheritance 83

partial classes 87–88

static members 84

building 62–63

adding a constructor 67–68

adding methods 66–67

adding properties 65–66

creating a live object 63–64

building a basic class

adding events 68

event handling 69–70

testing 70–72

creating components 911

description 76

introduction 59–61

MSDN Class Library reference 78

namespaces and 81

objects and classes 60

simple class 62

static members 61

subclassing controls 956

web controls 176

clear element

removing connection strings 788

removing existing providers 788

Clear method

HttpSessionState class 340

Clear() method

Array class 44

Click event

Button class 330

LinkButton control 950

web controls 199

MacDonaldIndex.fm Page 1074 Friday, December 30, 2005 12:28 PM

1075■I N D E X

client side caching 997

OutputCacheLocation enumeration 997

server-side caching compared 997

ClientCertificate property

HttpRequest class 160

client-side programming

introduction 7

reasons to avoid 8

client-side validation 270

client-side web programming

bridging the gap to server-side code 201

ClientValidationFunction property

CustomValidator control 286–287

Clone method

Array class 77

DataSet class 73

CloneNode method

XmlNode class 678

Close method

Connection class 502

DataReader class 502

CLR (Common Language Runtime)

benefits 15

brief description 10

description 14

drawbacks 15

IL and 24

CLR Exceptions counter

performance counters 993

CLS (Common Language Specification)

defining requirements and standards 14

introduction 13

code blocks

exception handlers 222

code fragmentation

data binding 546

code productivity

Visual Studio 92

code reuse

advantage of components 904

code transparency

IL and 16

code verification 14

code view

switching to design view 105

code-behind class

adding controls 139

creating a user control 939

single event handler 141

using statements 141

code-behind files

StockQuote web service 837

user interface code distinction 546

web services 836

code-behind view

Visual Studio 105

coding web forms

Visual Studio 105, 106

CollapseImageUrl property

TreeView control 414

CollapseNavigationControls property

master page class 376

collections

ASP.NET 318

Controls collection 159, 160

repeated-value data binding 540

collections class

converting objects to real type 86

Color class

System.Drawing namespace 182

color property

setting in Visual Studio 101

colors

IntelliSense 113

column types

GridView control 584

MacDonaldIndex.fm Page 1075 Friday, December 30, 2005 12:28 PM

1076 ■I N D E X

Columns property

GridView control 593

COM objects

backward compatibility 162

COM technology

Internet applications 814, 815

COM+ transactions

web service transactions 889

Combine() method

Path class 639

Command class

CommandText property 522

data provider objects 491

data retrieval example 503

ExecuteNonQuery method 507

data update example 516

ExecuteReader method 501

retrieving data 500

SQL statements 500

using with DataReader 501

Command event

LinkButton control 950

CommandArgument property

button controls 612

CommandBuilder class

updating disconnected data 528

CommandField class 596, 597

ShowDeleteButton property 602

ShowEditButton property 613

ShowInsertButton property 602

ShowSelectButton property 600, 601

CommandName property

button controls 612

ButtonField class 598

CommandText property

Command class 522

comments

C# and 25

XML 166

XML document 663, 676

commit-as-you-go programming model

Wizard control 314

commit-at-the-end programming model

Wizard control 315

common data types 28

object manipulation 39

Compare() method

String class 45

CompareAllValues value

ConflictOptions enumeration 578

CompareValidator control 268

added members 271

example form 283

comparison operators 45

<compilation> tag

debug attribute 454

compiling class library 910

compiling components 910

Component class 908, 910

component-based programming 903

adding reference to component 912–915

advantages 903–904

classes and namespaces 910–912

Component class 908, 910

creating simple component 908

database components 919–920

aggregate functions 928–929

consuming 924–928

error handling 927

example 920–923

ObjectDataSource class 930

making classes that can be understood
by 930–931

selecting records 931–932

updating records 933–935

using method parameters 932–933

properties and state 916–917

stateful Account class example 917–919

MacDonaldIndex.fm Page 1076 Friday, December 30, 2005 12:28 PM

1077■I N D E X

terminology 905

business objects 907

data objects 907

encapsulation 907

three-tier design 905–906

using component 914

components

classes contained 910

compiling 910

database components 919

namespaces for classes 911

reasons for using 903

registering 128

simple component 911

updating 130

web services compared 908

composite controls

creating 971–973

concurrency

direct data access 492

example 535–538

RowUpdated event 533

updating disconnected data 533

web applications 473

conditional structures 44–45

if blocks 45–46

logical operators 45

switch block 46–47

configuration

ASP problems 9

ASP.NET configuration 165

changes 130

database deployment 455

no sharing between ASP and ASP.NET 128

session state 344–352

web farms 348

web service client 853–854

XCopy deployment 455

<configuration> element

web.config file 165

configuration files

naming conventions 863

XML 655

configuration settings

nested configuration 166, 167

ConfigurationSettings class

AppSettings property 169

System.Configuration namespace 169

ConflictDetection property

SqlDataSource class 578

ConflictOptions enumeration

CompareAllValues value 578

OverwriteChanges value 578

Connect mode 1032, 1041

Connect verb 1060, 1061

connecting via proxy class 866

Connection class

Close method 502

ConnectionString property 494

data provider objects 491

data retrieval example 503–505

Dispose method 499–500

Open method 499

retrieving data 500

connection pooling

improving database performance 988

connection strings

data provider differences 491

database access 496–497

not found in web.config file 927

retrieving from web.config file 923

ConnectionProvider attribute class 1058

connections

ADO.NET database access 987

database components 920

when to open and close 987

MacDonaldIndex.fm Page 1077 Friday, December 30, 2005 12:28 PM

1078 ■I N D E X

ConnectionString property

Connection class 494

information contained 495

OleDbConnection class 494

SqlConnection class 494

storing value for reuse 496, 497

connectionStringName attribute

configuring membership provider 747

connectionStrings section

web.config file 567

ConnectionsZone class 1031, 1041, 1059,
1061

ConnectionTimeout value

ConnectionString property 495

constructors

building a basic class 67, 68

custom exception classes 235

overloading 68

containment 82, 952

content pages 360

connection to master pages 364–366

example 360–366

<Content> tag 370, 372

ContentPlaceHolderID attribute 365

ContentPlaceHolder region

adding content 362

ContentPlaceHolderID attribute

<Content> tag 365

Context object

ASP.NET intrinsic objects 838

Context Switches counter

performance counters 993

Continue command

break mode 119

Control class

CreateChildControls method 971

DataBind method 541

LoadControlState method 968

SaveControlState method 968

Visible property 303

control classes

HTML elements underlying 176

WebControl and Control classes 966

Control directive

creating a user control 939

user controls 938

control prefixes

naming conventions 189

<control> tag

adding user controls 939

control tree

tracing 256

controls

See also controls, ASP.NET; custom
controls; derived custom controls;
user controls

configuring in Visual Studio 101

composite controls 971–973

HTML control properties 139

HTML forms 5

repeated-value data binding 547

rich controls 291

subclassing controls 956

visibility of 180

Controls collection 159, 160

adding child controls 196

TableCell control class 196

Controls property

HtmlControl class 156

Page class 159

WebControl class 180

controls, ASP.NET

generating new controls 160

workings of 72

ControlStyle property

BoundField class 586

Wizard control 316

ControlToValidate property

BaseValidator class 270

MacDonaldIndex.fm Page 1078 Friday, December 30, 2005 12:28 PM

1079■I N D E X

Convert class 39

ConvertEmptyStringToNull property

BoundField class 586

CookieContainer property

proxy class 874

cookieless state, limitations 346

cookies

cookie customization 726

custom cookies 334–336

disabled cookies 335

example 336–337

file access 642

persistence 335

persistent cookies 728

removing 336

rule of thumb for use 335

security cookies 718–720

session state 337

session tracking 338

state management 872

timeouts 719

Cookies collection

objects providing 335

tracing 257

Cookies member

HttpResponse class 162

Cookies property

HttpRequest class 161

coordinates

x coordinate 979

y coordinate 979

Copy method

DataSet class 1009

File class 628

CopyTomethod

FileInfo class 634

Count property

HttpSessionState class 340

Count() function

DISTINCT keyword 484

SQL statements 484

CounterCreationData class 994

counters

view state example 318–320

CounterSample class 994

CPU Utilization counter

performance counters 993

Create Access Rules link, WAT 724

CREATE EVENT NOTIFICATION command
1024

Create method

DirectoryInfo class 633–634

FileInfo class 633–634

XmlReader class 685

CreateAttribute method

XmlDocument class 676

CreateChildControls method

Control class 971

WebControl class 971

WebPart class 1053

CreateComment method

XmlDocument class 676

CreateDirectory method

Directory class 627

CreatedUser event

CreateUserWizard control 766

CreateElement method

XmlDocument class 676

CreateEventSource method

custom event logs 242

CreateFileList() procedure

creating a file list 632

CreateObject method

ServerUtility class 162

CreateRole method

Roles class 776

MacDonaldIndex.fm Page 1079 Friday, December 30, 2005 12:28 PM

1080 ■I N D E X

CreateSubdirectory method

DirectoryInfo class 634

CreateText method

File class 640

CreateUser method

Membership class 754

CreateUserError event

CreateUserWizard control 766

CreateUserIconUrl property

Login control 765

CreateUserText property

Login control 765

CreateUserUrl property

Login control 763, 765

CreateUserWizard control 742, 759

converting step into template 768–770

events 766–768

FindControl() method 769

LoginCreatedUser property 766

types of properties 766

CreatingUser event

CreateUserWizard control 766

CreationTime property

DirectoryInfo class 633

FileInfo class 633

CredentialCache class

DefaultCredentials property 880

System.Net namespace 880

credentials

Windows authentication 880

credit card numbers

regular expression 282

cross-page posting 325–327

getting more information from the source
page 327–330

cross-platform compatibility

web services data types 847

cross-platform support

CLR 16

CSS (cascading style sheet)

compared to themes 378

style attributes 151

Style property 157

CtrlChanged() subroutine

change events 206

curly braces {} 24

uses of 26

currency converter example 131

adding linked images 149–150

adding multiple currencies 146–147

ASP solution and problems 133

ASP.NET solution 144

behind the scenes 143–144

converting to ASP.NET 134–136

dissecting the code 147

event handling 142, 143, 146

HTML server controls 139–142

improving 146

setting styles 151–152

storing information in the list 148

Currency data type

numeric format string 589

Current property

HttpContext class 838

CurrentNode property

SiteMap class 405

CurrentNodeStyle property

SiteMapPath control 410

CurrentNodeTemplate template

SiteMapPath control 410, 412

CurrentPageIndex property

GridView control 607

curves

drawing a curve with Graphics class 978

filling a curve 979

custom control library

creating 957–958

MacDonaldIndex.fm Page 1080 Friday, December 30, 2005 12:28 PM

1081■I N D E X

custom controls 937

See also derived custom controls

as Web Parts 1031

base keyword 961

creating web control 964–969

default values 958–960

design time support, attributes 970

event handling 977

mixing with custom images 983

overriding Render methods 961

postbacks 973

custom cookies 334–336

example 336–337

forms authentication 716

state management options 354–355

custom error pages 249–250

sample 251

targeting specific HTTP errors 250–252

Custom Errors tab

virtual directories 447

custom exception classes

constructors 235

inheritance 234, 235, 236

custom images

mixing with custom controls 983

custom logs

logging events 241, 242, 243

custom objects

adding definition intoWSDL documents
851

storing in view state 324–325

custom settings

AppSettings property 169

custom templates

defining with TemplateField class 608

custom text

drawing with GDI+ 980–981

custom Web Parts

deriving from WebPart class 1051–1056

<customErrors> tag 251

CustomValidator class 269

added members 271

ClientValidationFunction property 286, 287

example form 283

Luhn algorithm 282

ServerValidate event 285

ValidateEmptyText property 287

■D
Dashed value

BorderStyle enumeration 180

data

deleting data 516–518

retrieving data 505

updating a record 516

updating data 507, 529

example 531

data access

connection string 495

tips 496–497

creating the connection 493–494

direct data access 492

importing namespaces 493

making the connection 497–500

simple data access 492

Windows authentication 495–496

data access model, ADO.NET 471

data binding

ADO.NET 557, 558

code fragmentation 546

creating a file browser 639

creating a file list 632

database component, using 925

data-bound list controls example 559–564

DataSet class 558

error checking 547

improving database performance 988

introduction 539, 540

repeated-value binding 540

MacDonaldIndex.fm Page 1081 Friday, December 30, 2005 12:28 PM

1082 ■I N D E X

data binding (continued)

repeated-value data binding 547–548

single-value data binding 540–541

example 542–544

types in ASP.NET 540

workings 540, 541

XmlTextReader class 672

data caching 994, 1004

Application state compared 994

data source controls 1012–1016

ObjectDataSource 1016

SqlDataSource 1013–1015

inserting an object into cache 1005

replacing state management 985

simple cache test 1006–1010

web services 1010–1012

data layer, three-tier design 905

data management, ADO.NET 471–478

data namespaces 489

data objects 907

description 848

Data property

XmlDataSource class 697, 698

data provider factories 566

data provider objects 490–491

data providers

ADO.NET 487

class derivation 488

description 488

differences 491

different operations 491

from code to data source 488

naming conventions 491

new features in ASP.NET 2.0 20

SQL Server data provider 487, 491

translating code between 491

data retrieval 500, 501

automatic postback 505

example 502–506

improving database performance 988

data source caching 995

data source controls 564–565

concurrency checking 577–578

handling errors 574

other types of parameters 572–573

Page lifecycle 565

parameterized commands 570–572

selecting records 568–569

SqlDataSource class 566–567

updating records 574–576

workings 569–570

Data Source value

ConnectionString property 495

data table, updating 529

data type conversions

C# strictness 142

web services 831

data types

See also variables and datatypes

and .NET languages 27

class library 28

common data types 28

reference types 73

value types 73

variable prefixes 30

web services 847–848

communication limitations 826

DataAdapter class

CommandBuilder object 528

data binding with databases 557

data provider objects 491

methods

DeleteCommand method 529

Fill method 521, 533

FillSchema method 533

InsertCommand method 529

Update method 529

modifying disconnected data 526

MacDonaldIndex.fm Page 1082 Friday, December 30, 2005 12:28 PM

1083■I N D E X

properties 520

RowUpdated event 533

selecting disconnected data 519

updating disconnected data 528

database access

ADO.NET 987, 988

connection strings 496, 497

output caching 996

database components 919

advantages 919

aggregate functions 928–929

consuming 924–928

error handling 927

example 920, 923

database connection string

adding special variable 168

database connections

ADO.NET classes 487

ConnectionString property 495

making a connection 497–500

number of connections 493

problems of state 474

SQL Server authentication 496

try ... catch ... block 493

verifying connection 497

Windows authentication 495

database profiling 987

databases

accessing data 471

browsing and modifying in Visual Studio
476–478

common errors 219

components 919

connections 920

deployment configuration 455

encapsulation 919

file access 625

internet access 473–474

isolation from web page 907

obtaining sample database 476

relational databases 472

stored procedures 919

System.Data namespace 78

transactions in web services 888–891

DataBind method

Control class 541

GridView control 582

Page class 541

single-value data binding 541

timing of calling method 545

DataBind() method

ListBox control 549

DataBinder class

Eval method 594, 609

System.Web.UI namespace 609

DataField property

BoundField class 586

DataFile property

XmlDataSource class 697

DataFormatString property

BoundField class 586, 588

GridView control 588

DataItem property

GridViewRow control 593, 594

MenuItem control 424

DataKeyNames property

GridView control 598

DataMember property

Control class 558

TreeView control 696

DataReader class

Close method 502

data binding with databases 557

data provider objects 491

data retrieval example 503–505

defining 501

Read method 501

retrieving data 500

MacDonaldIndex.fm Page 1083 Friday, December 30, 2005 12:28 PM

1084 ■I N D E X

DataReader class (continued)

using with Command object 501

DataReader value

SqlDataSourceMode enumeration 569

DataRelation class

adding objects to DataSet 524

instantiating 523

restrictions 526

DataRow class

Delete method 527

Rows collection 521

DataRowState enumeration

DataSet, storing row state 529

DataSet class

adding DataRelation objects 524

Clone method 73

concurrency 533

Copy method 1009

data as XML 656

data binding 558

data binding with databases 557

data caching 994

data caching in web service 1010

database access 475

database component example 920

filtering cached DataSet 1008

GetChanges method 530

introduction to ADO.NET 474

modifying disconnected data 526

package for data 487

ReadXmlSchema method 702

Remove method 527

retrieving data 500

selecting disconnected data 519

storing row state 529

updating database 475

using disconnected data 518

web service data types 847

working with related tables 538

XML in ADO.NET 698

DataSet property

XmlDataDocument class 699

DataSet value

SqlDataSourceMode enumeration 569

DataSource property

GridView control 582

DataSourceID property

GridView class 583

ListBox control 569

Menu control 420

DataSourceMode property

SqlDataSource class 569

DataTable class

caching 1016

filtering cached DataSet 1009

web service data types 847

DataValueField property

list controls 555

SelectedItem class 556

DataView control

RowFilter property 1015

Sort property 604

Date data types

format strings 590

Date property

CalendarDay class 295

DateTime class 43

DateTime structure 28, 42, 43

AddDays method 61

creating a profile 797

Hour property 61

members 43

nature and behavior of data type 77

Now property 61

ToString() method 590

Day property

DateTime class 43

MacDonaldIndex.fm Page 1084 Friday, December 30, 2005 12:28 PM

1085■I N D E X

DayHeaderStyle property

Calendar control class styles 293

DayNameFormat property

Calendar control class 298

DayOfWeek property

DateTime class 43

DayRender event

Calendar class 959

Calendar control 295, 299

CalendarDay class 296

Days property

TimeSpan class 43

DaysInMonth method

DateTime class 43

DayStyle style property

Calendar control class styles 293

DBUtil class 931, 932

DCOM 815

debug attribute

<compilation> tag 454

debugging

commands in break mode 118

components using Visual Studio 928

disabling caching while testing 996

tracing 252

debugging with Visual Studio 17, 92, 115, 253

single-step debugging 116–118

Decimal class 28

nature and behavior 77

numeric format string 589

DeclarativeCatalogPart class 1048

using 1050, 1051

default.aspx

default login page 718

DefaultButton property

HtmlForm class 186

Panel control 186

DefaultCredentials property

CredentialCache class 880

DefaultMode property

DetailsView class 934

defaultValue attribute

<add> tag 794

control design time support 970

definitions element

WSDL document 818

delegates 54–56

description 76

events 55

Delete method

DataRow class 527

Directory class 627

DirectoryInfo class 633

File class 628

FileInfo class 633

Delete statement 487

data deletion example 516–518

executing 507

SQL basic concepts 479

DeleteCommand property

DataAdapter class 520, 529

SqlDataSource class 568, 575, 602

DeleteCommandType property

SqlDataSource class 568

Deleted event

data source controls 566

SqlDataSource class 574

DeleteInactiveProfiles method

ProfileManager class 805

DeleteMethod method

ObjectDataSource class 931

DeleteProfile method

ProfileManager class 805

DeleteProfiles method

ProfileManager class 805

DeleteRole method

Roles class 776

MacDonaldIndex.fm Page 1085 Friday, December 30, 2005 12:28 PM

1086 ■I N D E X

DeleteUser method

Membership class 754

deleting data

modifying disconnected data 526

Deleting event

data source controls 566

deny rule

<authorization> tag 722

web.config settings 732

dependencies

Cache object support for 1005

caching 1016–1027

dependencies parameter

Insert method, Cache object 1005

deploying a simple site 453–454

ASPNET account 456–458

code compilation 459–460

configuration steps 455

web applications and components 454

deployment 427

database configuration 455

IIS security settings 455

registering components 128

Visual Studio 92

Windows account permissions 455

XCopy deployment 455

deployment with Visual Studio 2005 460

copying a new website 463–465

creating a virtual directory for a new
project 460–463

publishing a new website 466–467

derived controls 953

changing control rendering 961, 963

composite controls, creating 971–973

creating a custom control library 957, 958

creating simple derived control 953, 955

creating Web Control 964–969

custom controls and default values 958,
959, 960

design time support 969–970

events and postbacks 973–977

maintaining state information 967–969

using a derived control 955–956

Description attribute

control design time support 970

description attribute

configuring membership provider 747

description element

types element 818–819

Design mode 1032

design time support

attributes 970

custom controls 970

design view

switching to code view 105

DestinationPageUrl property

Login control 762, 765

DetailsView class

AutoGenerateDeleteButton property 576

AutoGenerateEditButton property 576

AutoGenerateInsertButton property 576

AutoGenerateRows method 571

DefaultMode property 934

defining 933

DetailsView control 581, 618

defining fields 619–621

introduction 618

repeated-value data binding 548

Dictionary collection

data binding 553–555

System.Collections.Generic namespace
554

Digest mode

Windows authentication methods 731

digital certificates

SSL workings 716

direct data access 492

introduction 492

MacDonaldIndex.fm Page 1086 Friday, December 30, 2005 12:28 PM

1087■I N D E X

directories

authorizating access to 720

creating virtual directories 441

getting 160

directory authentication methods 731

Directory class

methods 627

intuitive nature of 629

System.IO namespace 626

Directory property

FileInfo class 634

directory security settings 730

Directory Security tab

virtual directories 451

DirectoryInfo class

creating 634

GetDirectories method 636

GetFiles method 636

methods 633–634

Name property 639

properties 633–634

System.IO namespace 626, 633

DirectoryName property

FileInfo class 634

DirectorySecurity class

System.Security.AccessControl
namespace 628

disabled accounts 758–759

Disabled property

HtmlControl class 156

DISCO

Web Service Discovery 827

web service standards 817

disconnected access 317

ADO.NET characteristics 474–475

updating data issues 475

disconnected data

adding information to DataSet 527

DataSet class 518

modifying 526–527

multiple tables 521–526

selecting data 519–520

updating 528

discovery files

TerraService web service 892

Display property

BaseValidator class 270

RangeValidator control 274

DisplayMode property

BulletedList control 190

ValidationSummary control 274

DisplayRememberMe property

Login control 765

DisplaySideBar property

Wizard control 310

Dispose method

Connection class 499–500

DISTINCT keyword 484

distributed technologies

.NET Framework characteristics 17

<div> tag 141, 206, 366, 369

grouping 132

inserting formatted text 139

related control classes 177

style attribute 131, 941

DivideByZeroException class 219, 223, 225,
229, 865

catching 233

throwing exceptions 232

division operator (/) 35

DNS (Domain Name Service)

DNS registry 430

getting name161

networks 430

Document object

configuring in Visual Studio 101

document tab

virtual directories 446

MacDonaldIndex.fm Page 1087 Friday, December 30, 2005 12:28 PM

1088 ■I N D E X

documentation tags

WSDL document 839

domain names

DNS (Domain Name Service) 430

IP addresses 429

domain parameter

WSDL.exe parameters 858

Dotted value

BorderStyle enumeration 180

Double class 28

nature and behavior 77

Double value

BorderStyle enumeration 180

drawing space

GDI+ 978

DrawXyz methods

Graphics class 978

DriveFormat method

DriveInfo class 635

DriveInfo class

methods 635

System.IO namespace 626

DriveType method

DriveInfo class 635

DropDownList control 186–187

repeated-value data binding 548

<select> tag underlying 177

Duration attribute

OutputCache directive 996

dynamic graphics

basic drawing 978–980

drawing custom text 980–981

GDI+ 977, 982

placing images inside web pages 981–983

dynamic web pages

ISAPI and ASP.NET 6

dynamically generated table

example 193–194

DynamicHoverStyle property

Menu control 422

DynamicMenuItemStyle property

Menu control 422

DynamicMenuItemTemplate property

Menu control 423

DynamicMenuStyle property

Menu control 422

DynamicSelectedStyle property

Menu control 422

■E
e-card applet 206–212

generating automatically 214–215

improving 212–214

E-commerce sites

data driven ASP.NET applications 473

EditItemIndex property

GridView control 613

EditItemTemplate class 610

Editor mode 1032

EditorZone class 1031

editing appearance and behavior of Web
Parts 1054

editing controls held in 1045

EditRowStyle property

GridView control 590

elements

specifying XML namespace 682

Xml documents 676

ellipse

drawing an ellipse with Graphics class 978

filling an ellipse with Graphics class 979

email address

regular expression 281

EmptyDataRowStyle property

GridView control 591

EmptyDataTemplate class 611

EmptyZoneTextStyle property

WebPartZoneBase class 1038

MacDonaldIndex.fm Page 1088 Friday, December 30, 2005 12:28 PM

1089■I N D E X

EnableCaching property

SqlDataSource class 569

EnableCaching value

CacheItemRemovedReason enumeration
1013

EnableClientScript property

manual validation 276

RangeValidator control 273

EnableClientSideScript property

BaseValidator class 271

Enabled attribute

tracing 264

Enabled property

BaseValidator class 271

WebControl class 180

WebPart class 1053

enablePasswordReset attribute

configuring membership provider 748

enablePasswordRetrieval attribute

configuring membership provider 748

EnableSession property

WebMethod attribute 869

EnableView state

disabling view state 986

EnableViewstate properties

data binding and view state 553

EnableViewState property

HtmlControl class 156

Label control 272

Page class 159

repeater control 967, 968

WebControl class 180

enableViewStateMac attribute

<pages> element 321

encapsulation 907

database components 919

example 923

encryption

forms authentication 726

impersonation 737

security cookies 718

SSL 715

workings 716

view state 320

enctype attribute

<form> tag 651

end of line character. See line-termination
character

EndRequest event

Application class 356, 357

EndsWith() method

String class 41

enumerations 33, 34

brief description 944

description 76

introduction 182

values 182

web service data types 847

equal to operator (==) 45

equality testing 74

String class 77

error checking

data binding 547

Visual Studio 92

error detection

Visual Studio .NET 17

error handling 219

.NET 220

database component 927

error modes 248

modifying web.config file 249

error pages 220, 246, 248

custom error pages 249–252

structured exception handling 231

<error> tag 251

error underlining

IntelliSense 110, 111

ErrorCode enumeration 34

MacDonaldIndex.fm Page 1089 Friday, December 30, 2005 12:28 PM

1090 ■I N D E X

ErrorMessage property

BaseValidator class 270

manual validation 277

errors

behaviors 250

CLR and 15

common errors 219–220

custom exception classes 234–236

type conversion 37

Errors Total counter

performance counters 993

escape character (\)

C# and VB.NET 30

Eval() method

DataBinder class 594, 609

SiteMapPath control 411

event handling 142, 143

adding handlers in Properties window 106

adding handlers in Visual Studio 106, 107

AdRotator control 302

building a basic class 69, 70

code-behind class 141

HtmlInputButton class 139

multiple events 999

subclassing controls 959

TablePage class 195, 196

validator controls 284

event logging

potential problems 238

tips 242, 246

event logs. See logging events

Event Viewer utility 237, 241

EventArgs object

passing additional information 154

using 949

EventHandler delegate

System namespace 947

EventLog Class

security 240

EventLog class

creating custom logs 241–243

retrieving log information 243

System.Diagnostics namespace 239

events

application events 357

AutoPostBack property 199, 214

building a basic class 68

CtrlChanged() subroutine 206

custom control events and postbacks
973–977

delegates 55

event tracker application 203

EventArgs object 154

HTML server controls 134, 153

HtmlInputImage control 154–156

introduction to classes 60

Page.Load event 147

runat="server" attribute 146

user control events 946–949

using events with parameters 949–951

web controls 199

web forms 139

XmlDocument class 679

Exceps Thrown counter

performance counters 993

Exception class

catching exceptions inherited from 227

classes that inherit from 223

InnerException property 224

properties 222

System namespace 222

throwing exceptions 233

exception handling

catch statements 226–227

DivideByZero exception 225

example 229–231

exception chains 224

Exception class 222

MacDonaldIndex.fm Page 1090 Friday, December 30, 2005 12:28 PM

1091■I N D E X

exception classes represent tyes of errors
223

key features 221–222

logging exceptions 236–238

nested exception handlers 227–229

null reference exception 229

overlapping handlers 228

structured exception handling 221–222

key points 231

Try ... Catch ... Finally block 225–226

troubleshooting 223

Exception property

SqlDataSourceStatusEventArgs class 574

exception types 222

ExceptionHandled property

SqlDataSourceStatusEventArgs class 574

exceptions

catching same class exceptions 227

custom exception classes 234–236

throwing exceptions 232–234

Try ... Catch ... Finally block 227

execute permission

Virtual Directory Creation Wizard 446

ExecuteNonQuery method

Command class 507, 516

ExecuteReader method

Command class 501

Exists method

Directory class 627

File class 628

Exists property

DirectoryInfo class 633

FileInfo class 633

ExpandDepth property

TreeView control 414

ExpandImageUrl property

TreeView control 414

Exponential data type

numeric format string 589

extensibility and Visual Studio 92

Extension property

DirectoryInfo class 633

FileInfo class 633

■F
FailureStyle property

Login control 762

FailureText property

Login control 762, 764

fields, declaring 62

Fields dialog box 592

file access

cookies 642

databases 625

guest book example 645–650

simple file access 626

static methods or instance classes 627

web applications 625, 626

file browser

creating 636–640

File class

CreateText method 640

GetAttributes method 632

methods 628, 644

intuitive nature of 629

Open method 641

OpenText method 640, 641

OpenWrite method 642

state 916

System.IO namespace 626

file mappings

changing

web.config file 165

registering 436, 437

virtual directories 448, 449, 450

file references 913

file types

restricted file types 708

file types, ASP 128

MacDonaldIndex.fm Page 1091 Friday, December 30, 2005 12:28 PM

1092 ■I N D E X

file types, ASP.NET 127

.ascx files 127

.asmx files 127

.aspx files 127

global.asax file 127

web.config files 127

file uploads 650

maximum size 653

FileAttributes enumeration

creating a file list 632

FileInfo class

creating 634

creating a file list 632

methods 633–634

Name property 639

properties 633–634

state 916

System.IO namespace 626, 633

FileNotFoundException class 224

files

authorizating access to 721

creating a file list 630

reading and writing binary files 642

reading and writing flat files 640–642

retrieving file size 629

retrieving information about 626

shortcuts for reading and writing files
643–645

using files with web applications 625

FileStream class

saving images to valid stream 980

FileUpload control

input type=file tag 650

PostedFile class 651

Fill method

DataAdapter class 533

selecting disconnected data 521

FillSchema method

DataAdapter class 533

FillXyz methods

Graphics class 979

FindControl method

CreateUserWizard control 769

Page class 277

FindInactiveProfilesByUserName method

ProfileManager class 806

FindProfilesByUserName method

ProfileManager class 806

FindSiteMapNode method

SiteMapProvider class 406

FindUsersByEmail method

Membership class 754

FindUsersByName method

Membership class 754

FindUsersInRole method

Roles class 776

FinishButtonClick event

CreateUserWizard control 768

Wizard control 314

FinishPreviousButtonStyle property

Wizard control 316

FirstBulletNumber property

BulletedList control 190

FirstChild property

XmlNode class 678

FirstDayOfWeek property

Calendar control 292, 298

FirstName property

Profile class 795

flat files

reading and writing streams 640

Flush method

StreamWriter class 640

focus

control losing focus 963

Focus()method

web control classes 185

MacDonaldIndex.fm Page 1092 Friday, December 30, 2005 12:28 PM

1093■I N D E X

folders with a globe icon 443

Font property

FontInfo class 183

WebControl class 180

FontInfo class

properties 183

fonts, drawing custom images 981

FontUnit type 184

Footer class

code for integrated user control 944–946

footer user controls

non interactive controls 941

footers

user control footers 940

FooterStyle property

BoundField class 586

GridView control 591

FooterTemplate class 610

FooterText property

BoundField class 586

for block 48

foreach block 49, 50

ForeColor property

BaseValidator class 270

TextBox class 177, 952

TitleStyle class 1040

ValidationSummary control 274

WebControl class 180

WebPart class 1053

Form class

IsValid property 273, 276

<form> tag 5, 131, 138

ASP.NET controls 136

enctype attribute 651

HtmlForm class 138

processing as a server control 135

forms

cookie security 337

forms authentication 716

ASP.NET model 717

attributes/settings 718

authorization rules 719

access for specific users 722

access to specific directories 720

accessing specific files 721

setting up with WAT 722–725

custom cookies 716

impersonation 735

login page 726–729

restricting anonymous users 719

steps to implement 718

web services 878, 882

web.config settings 718

forms collection

tracing 258

<forms> tag

web.config settings 718

FormsAuthentication class

login page 726

methods and properties 726

RedirectFromLoginPage method 727

System.Web.Security namespace 726

FormsCookieName property

FormsAuthentication class 726

FormsCookiePath property

FormsAuthentication class 726

FormsView class

defining 933

FormView control 581, 618

introduction 621–622

repeated-value data binding 548

fragment caching 995

caching generic portion of page 997

OutputCache directive 1002

frame targets

AdRotator class 301

MacDonaldIndex.fm Page 1093 Friday, December 30, 2005 12:28 PM

1094 ■I N D E X

frames

compared to master pages 360

Friend keyword

description 63

From clause

Select statement 482

FromImage method

Graphics class 978

Fromxyz methods

TimeSpan structure 43

FTP directory

reviewing contents 629

FullName property

DirectoryInfo class 633

FileInfo class 633

functions

methods using functions 923

parameter signatures 53

web service visibility 850

FundTransfer method

AccountUtility class 918

■G
GAC (Global Assembly Cache)

shared assemblies 454

garbage collection 14

GDI+ 977

advanced features 980

Bitmap class 978

drawing custom images 981

drawing custom text 980–981

drawing space 978

dynamic graphics 977, 982

graphics context 978

General data type

format string 590

GeneratePassword method

Membership class 754

generic collections

repeated-value data binding 550–551

generics 89–90

GenericWebPart class

using server controls and user controls as
Web Parts 1034

GeoTrust certificate authority 713

get accessor 65

GetAccessControl method

Directory class 628

File class 628

GetAllInactiveProfiles method

ProfileManager class 805

GetAllProfiles method

ProfileManager class 805

GetAllRoles method

Roles class 776

GetAllUsers method

Membership class 754

GetAttributes method

File class 628, 632

GetAuthCookie method

FormsAuthentication class 726

GetBaseException method

Exception class 222

GetCategories method

database component example 920

ObjectDataSource class 931

GetChanges method

DataSet class

updating a data table 530

GetCreationTime method

Directory class 627

File class 628

GetCurrentDirectory method

Directory class 628

GetDirectories method

Directory class 627

DirectoryInfo class 634, 636

GetDrives method

DriveInfo class 635

MacDonaldIndex.fm Page 1094 Friday, December 30, 2005 12:28 PM

1095■I N D E X

GetElementById method

XmlDocument class 680

GetElementsByTagName method

XmlDocument class 680

GetFileName method

Path class 653

GetFiles method

Directory class 627, 632

DirectoryInfo class 634, 636

GetInfo method

creating components 915

GetItems method

database component example 920

ObjectDataSource class 932

overloading in database component
example 923

GetLastAccessTime method

Directory class 627

File class 628

GetLastWriteTime method

Directory class 627

File class 628

GetLogicalDrives method

Directory class 627

GetLowerBound() method

Array class 44

GetNames() method

Enum class 213

GetNumberOfInactiveProfiles method

ProfileManager class 805

GetNumberOfProfiles method

ProfileManager class 805

GetNumberOfUsersOnline method

Membership class 754

GetParent method

Directory class 627

GetPassword method

MembershipUser class 755

GetPlaceFacts method

TerraService web service 895

GetPlaceList method

TerraService web service 895

Windows clients 899

GetPostBackEventReference method

IPostBackEventHandler interface 974

Page class 973

GetProfile method

Profile class 808

GetPropertyValue method

ProfileBase class 794

GetRedirectUrl method

FormsAuthentication class 726

GetRolesForUser method

Roles class 776

GetTagsByElementName method

XmlDocument class 701

GetTile method

TerraService web service 898

GetTileMetaFromLonLatPt method

TerraService web service 898

GetUpperBound method

Array class 44

GetUser method

Membership class 754

GetUserNameByEmail method

Membership class 754

GetUsersInRole method

Roles class 776

global.asa file

description 128

global.asax file 356, 357

description 127

GlobalSign certificate authority 713

graphics

embedding dynamic graphics 982

Graphics class

drawing methods 978

MacDonaldIndex.fm Page 1095 Friday, December 30, 2005 12:28 PM

1096 ■I N D E X

Graphics class (continued)

DrawXyz methods 978

FillXyz methods 979

FromImage method 978

System.Drawing namespace and GDI+ 978

working with pixels 979

graphics context

Brush object 979

GDI+ 978

Pen object 979

greater than operator (>) 45

greater than or equal to operator (>=) 45

greeting card applet 206–212

generating automatically 214–215

improving 212–214

grid layout feature

Visual Studio 100

GridLines property

GridView control 588

GridView class

DataSourceID property 583

GridView control 581

Auto Format feature 647

AutoGenerateColumns property 806

automatically generating columns
582–583

configuring columns 586

configuring styles with Visual Studio
592–593

defining columns 584–585

editing templates in Visual Studio 611–612

editing with 600–602

editing with templates 613–615

validation 615

without Command column 616–617

file access example 645

formatting 588

fields 588–590

specific values 593–594

generating columns with Visual Studio
587–588

handling events in templates 612–613

multiple templates 610

paging 603, 606–607

repeated-value data binding 548

selecting rows 595

adding select button 596

sorting 603–606

styles 590–592

templates 608–609

using a data field as select button 597–598

using selection to create master-details
form 598–599

GridViewRow control

Cells collection 593

DataItem property 593, 594

GridViewRowEventArgs class

Row property 594

Groove value

BorderStyle enumeration 180

<group> element

organizing profile properties 798–799

Group profile property attribute

<add> tag 794

groups, profiles 798–799

guest book

file access example 645–650

Guest role

default Windows roles 734

GUID (globally unique identifier)

using files with web applications 625

■H
HashPasswordForStoringInConfigFile

method

FormsAuthentication class 726

Hashtable collection

System.Collections namespace 553

MacDonaldIndex.fm Page 1096 Friday, December 30, 2005 12:28 PM

1097■I N D E X

<head> tag

HtmlHead class 139

runat=server attribute 365

HeaderImageUrl property

BoundField class 586

headers

caching based on HTTP header 1002

user control headers 940

headers collection

tracing 258

Headers property

HttpRequest class 161

HeaderStyle property

BoundField class 586

GridView control 590, 592

WebPartZoneBase class 1038

Wizard control 316

HeaderTemplate class 610

HeaderText property

BoundField class 586

ValidationSummary control 274

Height property

HtmlImage class 139, 153

HtmlInputImage class 139

WebControl class 180

HelpLink property

Exception class 222

HelpPageIconUrl property

Login control 765

HelpPageText property

Login control 765

HelpPageUrl property

Login control 765

Hidden property

WebPart class 1053

HorizontalAlign property

TitleStyle class 1040

HorizontalPadding property

TreeNodeStyle class 415

Hour property

DateTime class 43, 61

Hours property

TimeSpan class 43

HoverNodeStyle property

TreeView control 417

Href property

HtmlAnchor class 139

HTML

adding to web pages in Visual Studio 104

basic syntax rules 132

currency converter 131

formatting text 4

special characters 164

style builder, Visual Studio 102, 104

tutorial resources 5

web site 132

HTML controls

properties 139

HTML elements

interface with HTML server controls 134

HTML encoding

HttpServerUtility class 159

HTML forms

controls 5

description 5

HTML server controls 134, 152

adding

.aspx file variables 139

code-behind class 139

classes 138

event handling 142

EventArgs object 154

events 153

inheritance 156

postback 197

runat="server" attribute 135

ServerChange event 154

ServerClick event 154

MacDonaldIndex.fm Page 1097 Friday, December 30, 2005 12:28 PM

1098 ■I N D E X

HTML server controls (continued)

state 134

Style collection 151

web controls compared 175

HTML special characters 164

HTML tables

adding to web pages in Visual Studio
104–105

HTML tags 4

<a> tag 138, 177

adding controls 139

<button> tag 138

compared to XML tags 659

<div> tags 131, 139, 141, 177, 206

<form> tag 5, 131, 135, 138

<head> tag 139

 tag 138, 177

<input> tag 131, 138, 176

 tag 177

<select> tag 138, 146, 177

server control classes 138

 tag 176

<table> tag 138, 177

<td> tag 138, 177

<textarea> tag 139

<th> tag 138, 177

<title> tag 139

<tr> tag 138, 177

 tag 177

HtmlAnchor class 138

properties 139

HtmlButton class 138

HtmlContainerControl class 157

properties 157

HtmlControl class

as base class 156

inheritance from 152

properties 156

HtmlDecode method

ServerUtility class 162, 164

HtmlEncode method

encoding special HTML characters 164

replacing special characters 163

ServerUtility class 162, 164

HtmlEncode property

BoundField class 586, 589

HtmlForm class 138

currency converter example 140

DefaultButton property 186

HtmlGenericControl class 139

currency converter example 140

properties 139

HtmlHead class 139

HtmlImage class 138

properties 139, 153

HtmlImputButton class

ServerClick event 142

HtmlInputButton class 138

currency converter example 140

ServerClick event 139

HtmlInputCheckBox class 138

properties 139

HtmlInputControl class

properties 158

HtmlInputFile class 138, 651

HtmlInputHidden class 138

HtmlInputImage class 138

properties 139

ServerClick event handler 154

using 155

HtmlInputImage control

EventArgs object 154

events 154, 155, 156

HtmlInputPassword class 138

HtmlInputRadioButton control 138

properties 139

MacDonaldIndex.fm Page 1098 Friday, December 30, 2005 12:28 PM

1099■I N D E X

HtmlInputReset class 138

HtmlInputSelect class

storing information in the list 148

HtmlInputSubmit class 138

HtmlInputText class 138

currency converter example 140

properties 139

HtmlSelect class 138

properties 139

repeated-value data binding 548

HtmlTable class 138

HtmlTableCell class 138

HtmlTableRow class 138

HtmlTextArea class 139

properties 139

HtmlTextWriter class 965

HtmlTitle class 139

HtmlWriter class

Write method 961

HTTP

stateless protocol 474

transmission of web services 831

web service standards 817

HTTP channels

web services 815

HTTP GET 824

SOAP message format compared 825

WSDL message definition 820

HTTP headers

name/value collection 161

HTTP POST 824

SOAP message format compared 825

web services testing 847

WSDL message definition 820

HttpApplication class

System.Web namespace 144

HttpBrowserCapabilities class

linking to 160

HttpContext

Current property 838

HttpContext.Current class

Cache property 1010

HttpCookie class

setting cookies 335

System.Net

HttpCookieMode enumeration

values 345

HttpForbiddenHandler class

restricted file types 708

System.Web namespace 708

HttpRequest class 160

See also Request class

current web request 159

properties 160

HttpResponse class 161

See also Response class

members 162

setting web response 159

HttpServerUtility class

URL and HTML encoding 159

HttpSessionState class

Abandon method 343

members 340

System.Web.SessionState namespace 339

Hyperlink control class

a tag underlying 177

query strings 331

HyperlinkField class

GridView control 584

HyperLinkStyle property

Login control 763

■I
IButtonControl interface

implementation 186

PostBackUrl property 325

MacDonaldIndex.fm Page 1099 Friday, December 30, 2005 12:28 PM

1100 ■I N D E X

icons

drawing with Graphics class 978

web folders 443

IDataSource interface

implemented by data source controls 564

<identity> tag

web.config file 736

If blocks 45, 46

IIS (Internet Information Services) 433

ASP.NET interaction 712

ASP.NET Security Model

interaction 709

configuration changes 130

creating a simple application 143, 833

deployment configuration 455

installing IIS 5 433–434

installing IIS 6 435–436

managing virtual directories 442

registering file mappings 436–437

verifying ASP.NET installation 438

web requests 709

web services 816

Windows authentication 729–730

IIS Manager 439

IL (Intermediate Language)

and code transparency 16

converting code to 24

description 12

Image control

adding linked images 149

img tag underlying 177

placing images inside web pages 982

Save class 979, 981

ImageButton control 612

implements IButtonControl interface 186

<input> tag underlying 177

ImageClickEventArgs class 154

System.Web.UI namespace 154

ImageField class

GridView control 584

images

adding linked images 149

drawing an image with Graphics class 979

drawing custom images, GDI+ 981

graphics context 978

saving to valid stream 980

sizing bitmaps correctly 978

ImageUrl element

Advertisement File 300

ImageUrl property

TreeNodeStyle class 415

 tag 370, 371

HtmlImage class 138

placing images inside web pages 982

related control classes 177

Impersonate method

WindowsIdentity class 737

impersonation 708, 735

encryption 737

programmatic impersonation 737

ImportCatalogPart class 1049

Impressions element

Advertisement File 301

independent user controls

introduction 941–943

indexes

improving database performance 987

IndexOf method

Array class 44

String class 41

infrastructure

.NET Framework characteristics 17

inheritance 83

configuration inheritance 166

custom exception classes 234–236

derived custom controls 953

HTML server controls 152

MacDonaldIndex.fm Page 1100 Friday, December 30, 2005 12:28 PM

1101■I N D E X

HtmlControl class 156

subdirectories 166

UserControl and Page classes 938

web controls 179, 965

web pages 158

Init method

Page class 330, 566

Initial Catalog value

ConnectionString property 495

InitializeComponent method

generating cards automatically 215

Visual Studio .NET 143

initializers 29

InnerException property

Exception class 221, 222, 224, 235

InnerHtml property

HtmlContainerControl class 157

InnerText property

HtmlContainerControl class 157

HtmlGenericControl class 139

transformations 163

XmlNode class 679

InnerXml property

XmlNode class 679

InProc value

mode attribute, <sessionState> tag 348

<input> tag 131

HtmlXyz classes 138

OnServerClick attribute 142

related control classes 176

type attribute 138

input type=file tag

FileUpload control 650

Insert method

Cache object 1005

String class 41

Insert statement 486, 487

data insertion example 510

executing 507

SQL basic concepts 479

InsertAfter method

XmlAttribute class 679

XmlDocument class 676

InsertBefore method

XmlAttribute class 679

XmlDocument class 676

InsertCommand method

DataAdapter class 529

InsertCommand property

DataAdapter class 520

SqlDataSource class 568, 575, 602

InsertCommandType property

SqlDataSource class 568

Inserted event

SqlDataSource class 574

InsertVisible property

BoundField class 586

Inset value

BorderStyle enumeration 180

InstalledFontCollection class

System.Drawing.Text namespace 212

InstallSqlState.sql script 351

instance class

database component example 920

instance members 61

instantiation

new keyword 63, 64

InstructionText property

Login control 763, 764

InstructionTextStyle property

Login control 763

Int16 class 28

Int32 class 28

Parse() method 39, 285

TryParse() method 285

Int32 data type

nature and behavior 77

Int64 class 28

MacDonaldIndex.fm Page 1101 Friday, December 30, 2005 12:28 PM

1102 ■I N D E X

Integrated mode

Windows authentication methods 731

integrated security setting

ConnectionString property 495

integrated user controls

compared to independent user controls
941

introduction 943–946

IntelliSense

automatically importing namespaces 112

colors 113

error underlining 110, 111

member list 108

overloading 109

Visual Studio 17, 107

interactive controls. See integrated user
controls

interfaces

HTML server controls 134

internal keyword

description 63

Internet, evolution of 3

Internet applications

COM revolution 814–815

monolithic applications 813–814

shortcomings of current architecture 813

web services 815

Internet Information Services. See IIS

intranet security 712

Invoke method

SoapHttpClientProcotol class 860

IOException class

System.IO namespace 223

IP (Internet Protocol) 429

IP addresses 429

IP addresses

domain names 429

getting 161

IPostBackEventHandler interface

GetPostBackEventReference method 974

handling postbacks 974

RaisePostBackEvent method 974, 975

IsAnonymous property

ProfileInfo class 805

ISAPI (Internet Server Application
Programming Interface)

ASP.NET link 6

introduction 6

IsApproved property

MembershipUser class 758

IsAuthenticated property

HttpRequest class 161

IsClosed property

WebPart class 1053

IsCookieless property

HttpSessionState class 340

IsInRole method

User class 777

IsLeapYear method

DateTime class 43

IsNewSession property

HttpSessionState class 340

ISO Sortable Standard data type

format string 590

isolation, reasons to avoid client-side
programming 8

IsOtherMonth property

CalendarDay class 295

IsPostBack property

data binding and view state 553

Page class 147, 159, 556

IsReady method

DriveInfo class 635

IsSecureConnection property

HttpRequest class 161

IsSelectable property

CalendarDay class 295

MacDonaldIndex.fm Page 1102 Friday, December 30, 2005 12:28 PM

1103■I N D E X

IsShared property

WebPart class 1053

IsStatic property

WebPart class 1053

IsToday property

CalendarDay class 295

IsUserInRole method

Roles class 776

IsValid property

BaseValidator class 271

Form class 273, 276

Page class 290

IsWeekend property

CalendarDay class 295

Italic property

FontInfo class 183

item parameter

Insert method, Cache object 1005

Items property

HtmlSelect class 139

list control 147

ItemStyle property

BoundField class 586

ItemTemplate class 610

constructing 608

■J
J#, choosing between languages 23

Java web services 816

JavaScript functions

__doPostBack() function 201

Join() method

String class 41

■K
key parameter

Insert method, Cache object 1005

Keyword element

Advertisement File 301

KeywordFilter property

AdRotator control 301

KnownColor enumeration

System.Drawing namespace 213

■L
Label control

adding to zone 1034

enabling view state for 319

EnableViewState property 272

 tag, underlying 176

Text property 245, 543

validation example 271–273

LabelStyle property

Login control 762

LAN (Local Area Network) 429

language integration 15

language parameter

WSDL.exe parameters 858

language preferences, getting 161

languages

choosing a .NET language 23

LastAccessTime property

DirectoryInfo class 633

FileInfo class 633

LastActivityDate property

ProfileInfo class 805

LastChild property

XmlNode class 678

LastIndexOf() method

Array class 44

String class 41

LastUpdateDate property

ProfileInfo class 805

LastWriteTime property

DirectoryInfo class 633

FileInfo class 633

LayoutEditorPart class 1045

LeafNodeStyle property

TreeView control 417

MacDonaldIndex.fm Page 1103 Friday, December 30, 2005 12:28 PM

1104 ■I N D E X

Length property

Array class 44

FileInfo class 634

Length method

String class 41

less than operator (<) 45

less than or equal to operator (<=) 45

LevelMenuItemStyles collection 422

LevelSelectedStyles collection 422

LevelStyles collection

TreeView control 418

LevelSubMenuStyles collection 422

LicenseKey class

web services security 884

LicenseKeyHeader class

creating 886

lifetime

state management options 354–355

Like comparison operator 483

lines, drawing with Graphics class 979

line-termination character 26

LinkButton control

<a> tag underlying 177

Click event 950

Command event 950

implements IButtonControl interface 186

LinkClickedEventArgs class 950

LinkClickedEventHandler delegate 950

LinkMenu user control 943

example that uses events 946

non interactive controls 941

list binding 540

list control

AutoPostBack property 556

Items property 147

list controls 186

BulletedList control 190

data binding with 548

multiple binding 551

data-bound list controls example 559–564

DataSource property 549

DataValueField property 555

multiple-select list controls 187–189

repeated-value data binding 548

SelectedIndex property 186

validation 287

ListBox control

AutoPostback property 505, 933

DataBind method 549

DataSourceID property 569

data retrieval example 503

multiple selections 187

repeated-value data binding 548

SelectedValue property 932, 935

<select> tag underlying 177

ListItem class

properties 186

storing information in the list 148

ListSelectionMode enumeration

Multiple value 187

literals

regular expressions 278–279

Load event

Page class 147, 566, 946

UserControl class 939

Load method

Page class 330

XmlDocument class 677

XmlTransform class 688

LoadControl method

Page class 941

LoadControlState method

Control class 968

load-generating tool

stress testing 990

localOnly attribute

tracing 264

MacDonaldIndex.fm Page 1104 Friday, December 30, 2005 12:28 PM

1105■I N D E X

Locals variable watch window

Visual Studio 120

Location attribute

client side caching 997

<location> tag

web.config, 721

Lock method

Application state collection 353

locking

performance 353

using files with web applications 626

web.config file 165

Log subroutine

logging events 206

LoggedIn event

Login control 761

LoggedInTemplate property

LoginStatus control 1033

LoginView control 778

logging 219

logging events

custom logs 241–243

event Log security 240

event tracker application 203

EventLog class 239–241

Log() subroutine 206

retrieving log information 243–245

logging exceptions 236, 238

logging in

forms authentication 726

logging out

forms authentication 726

logging tools 236

LoggingIn event

Login control 761

logical operators 45

Login control 759–760

CreateUserUrl property 763

events 761

InstructionText property 763

PasswordRecoveryUrl property 763

properties 762–765

style properties 762–763

login page

default 718

forms authentication 718, 726–29

FormsAuthentication class 726

LoginButtonImageUrl property

Login control 765

LoginButtonStyle property

Login control 762

LoginButtonText property

Login control 764

LoginButtonType property

Login control 764

LoginCreatedUser property

CreateUserWizard control 766

LoginError event

Login control 761

LoginName control 759

LoginStatus control 759, 1033

LoggedInTemplate property 1033

loginUrl attribute

forms authentication settings 718

LoginView control 759, 778, 779

setting content for roles 777

Long Date and Long Time data type

format string 590

Long Date and Short Time data type

format string 590

Long Date data types

format string 590

loop structures 47

for block 48

foreach block 49, 50

while block 50, 51

lstFontName control

filling with font list 212

MacDonaldIndex.fm Page 1105 Friday, December 30, 2005 12:28 PM

1106 ■I N D E X

Luhn algorithm

CustomValidator control 282

regular expression 282

■M
machine.config file

deployment configuration 455

membership section 748

restricted file types 708

XML 655

MailMessageEventArgs class

Cancel property 772

Message class 772

Manage Access Rules link, WAT 725

manageability, advantage of components 904

manual event wireup 143

manual validation 276–277

many-to-many relationships

using disconnected data 522

MapPath method

ServerUtility class 162

mapping urls 407–408

MapPoint and web services 900

Master directive 364

master pages 359

advanced 371

code 375

interacting with programmatically
375–377

table-based layouts 372–374

binding to site maps 397–399

connection to content pages 364–366

default content 369–370

introduction 359

multiple content regions 366–369

nesting 375

new features in ASP.NET 2.0 19

relative paths 370–371

simple master page and content page
example 360–364

Master property

Page class 376

MasterPageFile attribute

Page directive 365

matching patterns

regular expressions 278

Math class

System namespace 36

use of static members 84

Max function 484

MaxDataBindDepth property

TreeView control 404, 414

maxInvalidPasswordAttempts attribute

configuring membership provider 748

maxRequestLength setting

web.config file 653

member variables

declaring 62

retaining using view state 322, 323

session state example 340

members

introduction to classes 60

members list

IntelliSense 108

membership 739

catagories 739

membership data store 740–741

authentication 757–758

configuring membership provider
744–749

creating users with WAT 751–753

disabled accounts 758–759

manually creating membership tables
749–750

Membership and MembershipUser
classes 753–756

SQL Server 2005 Express 741–743

role-based security 773

creating and assigning roles 773–776

LoginView control 778–779

MacDonaldIndex.fm Page 1106 Friday, December 30, 2005 12:28 PM

1107■I N D E X

restricting access based on roles 777

security controls 759

CreateUserWizard control 766–770

Login control 760–765

PasswordRecovery control 770, 772, 773

membership and profiles

new features in ASP.NET 2.0 20

Membership class

creating users 752–753

introduction 754–756

methods 753

System.Web.Security namespace 753

UpdateUser method 753, 758

ValidateUser method 757

web services security 884

membership data store 740–741

authentication 757–758

configuring membership provider
744–749

creating users with WAT 751–753

disabled accounts 758–759

manually creating membership tables
749–750

Membership and MembershipUser
classes 753–756

SQL Server 2005 Express 741–743

membership element

adding to web application 745

membership provider

attributes 747

membership section

machine.config file 748

MembershipCreateStatus enumeration

Success value 753

MembershipUser class

introduction 753–756

IsApproved property 758

methods 755

ResetPassword method 758

Unlock method 758

Menu control 290

DataSourceID property 420

description 396

introduction 420, 421

StaticDisplayLevels property 422

StaticSubMenuIndent property 422

styles 421–423

templates 423–425

MenuItem control

DataItem property 424

Text property 423

MenuItemStyle class

properties 421

MenuLabelStyle property

WebPartZoneBase class 1039

MenuPopupStyle property

WebPartZoneBase class 1039

MenuStyle class

properties 421

MenuVerbHoverStyle property

WebPartZoneBase class 1039

MenuVerbStyle property

WebPartZoneBase class 1039

Message class

MailMessageEventArgs class 772

<message> elements

WSDL document 820

Message property

Exception class 222

SoapException class 866

MessageName property

WebMethod attribute 841

metacharacters

regular expressions 278

metadata

adding with .NET Framework attributes
839

metalanguage

XML as 659

MacDonaldIndex.fm Page 1107 Friday, December 30, 2005 12:28 PM

1108 ■I N D E X

methods

building a basic class 66, 67

description 40

introduction to classes 60

overloading 53, 54

parameters 53

specifying accessibility 52

MigrateAnonymous event

ProfileModule class 808, 809

migrating anonymous profiles 808–809

Millisecond property

DateTime class 43

Milliseconds property

TimeSpan class 43

Min function 484

minRequiredNonAlphanumericCharacters
attribute

configuring membership provider 748

minRequiredPasswordLength attribute

configuring membership provider 747

Minute property

DateTime class 43

Minutes property

TimeSpan class 43

mixed-mode authentication 496

mode attribute

sessionState tag 348

Mode property

HttpSessionState class 340

Modified value

DataRowState enumeration 529

Month and Day data type

format string 590

mostRecent attribute

tracing 264

Move method

Directory class 628

File class 628

MoveTo method

DirectoryInfo class 633

FileInfo class 633

MSDN Class Library reference 78

multilayering of exception handlers 222

MultiLine value

TextBox control class 177

multiple binding

list controls 551

multiple caching example 999–1000

multiple content regions

master pages 366–369

multiple templates

GridView control 610

Multiple value

ListSelectionMode enumeration 187

multiple views. See pages with multiple views

multiple-view controls

MultiView control 304–309

Wizard control 310–316

multiplication operator (*) 35

multiuser limitations

using files with web applications 626

MultiView control 304, 305

ActiveViewIndex property 307

command names 307

creating views 305–306

examples 308

SetActiveView() method 307

showing views 307

munged URL 345

■N
name attribute

configuring membership provider 747

forms authentication settings 718

Name method

DriveInfo class 635

MacDonaldIndex.fm Page 1108 Friday, December 30, 2005 12:28 PM

1109■I N D E X

name profile property attribute

<add> tag 793

Name property

DirectoryInfo class 633, 639

FileInfo class 633, 639

FontInfo class 183

XmlTextReader class 666

name/value collection

HTTP headers 161

namespace parameter

WSDL.exe parameters 858

namespace prefixes

XML namespaces 682

namespaces 78

assemblies and namespaces 114

automatically importing with IntelliSense
112

class library 78

classes and 81

creating components 911

data namespaces 489

defining the namespace 79–80

importing 80, 493

MSDN Class Library reference 78

naming conventions

configuration files 863

control prefixes 189

data providers 491

data type variable prefixes 30

using files with web applications 625

XML namespaces 683

narrowing conversions 37

NavigateUrl element

Advertisement File 300

navigation

new features in ASP.NET 2.0 19

using LinkMenu user control 941

navigation bars 359

NavigationButtonStyle property

Wizard control 316

NavigationStyle property

Wizard control 316

nested configuration 166–167

nested exception handlers 227–229

nesting master pages 375

.NET

error handling 220

event parameters 947

proxy class 836

XML and .NET 655

.NET 2.0

ASP.NET 2.0 18

new features 19

C# 2.0 18

Visual Studio 2005 20, 21

.NET assemblies

GAC (Global Assembly Cache) 455

.NET class library

.NET types 76

assemblies 81

.NET components

customizing 903

.NET Framework

attributes 839

characteristics 17

GDI+ 977

introduction 3, 10

object-oriented programming 39, 59

web services 831

.NET Framework class library

description 10

introduction 16

.NET languages

ASP.NET 10

C# 12

choosing between 23

MacDonaldIndex.fm Page 1109 Friday, December 30, 2005 12:28 PM

1110 ■I N D E X

.NET languages (continued)

CLS 14

data types 27

common data types 28

variable prefixes 30

description 10

installing 24

third-party languages 24

using for ASP.NET applications 23

Visual Basic .NET 12

.NET performance counter 993

.NET types

interfaces 76

reviewing 76

Network Neighborhood

adding virtual directories 451, 453

NetworkCredential class

creating new object 880

System.Net namespace 880

NetworkCredential property

proxy class 880

networks

defined 429

DNS (Domain Name Service) 430

web service communication limitations
826

new keyword 63–64

New Project window

Visual Studio 93

New Web Site dialog box 462

NewRow method

DataRow class 527

NextButtonClick event

Wizard control 314

NextMonthText property

Calendar control class 298

NextPrevFormat property

Calendar control class 298

NextPrevStyle property

Calendar control class styles 293

NextSibling property

SiteMapNode class 406

XmlNode class 678

NextView command name

MultiView control 308

NodeIndent property

TreeView control 414, 416

nodes

manipulating XML nodes 678

XmlDocument class 676

NodeSpacing property

TreeNodeStyle class 415

NodeStyle property

SiteMapPath control 410

TreeView control 417

NodeTemplate template

SiteMapPath control 410

NodeType property

XmlTextReader class 666

NodeWrap property

TreeView control 414

NoExpandImageUrl property

TreeView control 414

None value

BorderStyle enumeration 180

Northwind database

obtaining 476

not equal to operator (!=) 45

NotSupportedException class 1016

Now property

DateTime class 43, 61

NTLM authentication

Windows authentication methods 731

NullDisplayText property

BoundField class 586

NullReferenceException class 224, 229

MacDonaldIndex.fm Page 1110 Friday, December 30, 2005 12:28 PM

1111■I N D E X

numeric format strings

data types 589

■O
Object class 28

nature and behavior of data type 77

object interface

HTML elements 134

object model

web controls advantage 175

object-based manipulation 39

Array class 44

DateTime class 42

String class 40

TimeSpan class 42

ObjectDataSource class 930

data caching 1016

implementing IDataSource interface 564

making classes that can be understood by
930–931

selecting records 931–932

updating records 933–935

using instead of SqlDataSource 583

using method parameters 932–933

object-oriented programming 59

advanced class programming 82–90

classes

building a basic class 62–72

introduction 59–62

exceptions 221

namespaces and assemblies 78–82

value types and reference types 73–77

objects

casting objects 85–87

classes and objects 60

instantiation 63–64

ODBC data provider 488

Off error mode 249

Off value

mode attribute, <sessionState> tag 349

 tag

related to BulletedList control 177

OldValuesParameterFormatString property

SqlDataSource class 578

OLE DB data provider 488

alternative providers 488

OleDbCommandBuilder class

updating disconnected data 528

OleDbConnection class

ConnectionString property 494

On error mode 249

OnPreRenderComplete method

Page class 570

OnRowUpdated event

concurrency example 535

OnServerClick attribute

<input> tag 142

Open method

Connection class 499

File class 641

open standards

.NET Framework characteristics 17

web services 816

OpenText method

File class 640, 641

OpenWebConfiguration method

WebConfigurionManager class 171, 172

OpenWrite method

File class 642

operators

comparison operators 45

greater than operator 483

lesser operator 483

Like comparison operator 483

logical operators 45

optimization 14

or operator (||) 45

Oracle data provider 488

objects 491

MacDonaldIndex.fm Page 1111 Friday, December 30, 2005 12:28 PM

1112 ■I N D E X

OracleCommand class 491

OracleConnection class 491

Order By clause

Select statement 482, 483

ordinary folder icon 443

OtherMonthDayStyle property

Calendar control class styles 294

out keyword 75

out parameter

WSDL.exe parameters 858

OuterXml property

XmlNode class 679

outlining 107

output automatically tailored

web controls advantage 176

Output caching 994

output caching 994–996

cache profiles 1003

client side caching 997

custom caching control 1001–1002

database access 996

multiple caching example 999–1000

query string 997–998

specifying parameters 998–999

web services 1004

output parameter 75

OutputCache directive 996

attributes 996

custom caching 1001

fragment caching 1002

multiple caching example 999

VaryByHeader attribute 1002

VaryByParam attribute 997

OutputCacheLocation enumeration

client side caching 997

System.Web.UI namespace 997

outputCacheProfiles section

web.config file 1003

Outset value

BorderStyle enumeration 180

Overline property

FontInfo class 183

overloading constructors 68

overriding Render methods 961–962

OverwriteChanges value

ConflictOptions enumeration 578

■P
package folders 443

PadLeft() method

String class 41

PadRight() method

String class 41

Page class 158

Controls collection 159–160

creating in Visual Studio 105

current instance of 147

DataBind method 541

single-value data binding 541

defining with partial keyword 141

events 782

FindControl method 277

GetPostBackEventReference method 973

inheritance 938

Init method 330, 566

IsPostBack property 147, 556

IsValid property 290

Load event 147, 566, 946

Load method 330

LoadControl method 941

Master property 376

OnPreRenderComplete method 570

PreRender event 322, 566, 570

PreviousPage property 326, 328

Profile property 804

properties 159

RegisterRequiresViewStateEncryption
method 321

MacDonaldIndex.fm Page 1112 Friday, December 30, 2005 12:28 PM

1113■I N D E X

System.Web.UI namespace 158, 908

Validate method 276, 289, 290

ViewState property 318

page design

Visual Studio .NET 17

Page directive

MasterPageFile attribute 365

StyleSheetTheme attribute 381

Theme attribute 382

Title attribute 365

TraceMode attribute 263

ViewStateEncryptionMode property 321

web pages 938

page life cycle 202

page modes

controlling 1040–1043

viewing pages 1032

Page property

HtmlControl class 157

WebControl class 180

WebPart class 1053

Page.Load event handler

data binding 541, 542

data-bound list controls example 559

generating new controls 160

setting value of properties 158

PageCatalogPart class 1049

using 1049, 1051

pageOutput attribute

tracing 264

PagerIndexChanged property

GridView control 607

PagerSettings property

GridView control 607

PagerStyle property

GridView control 591, 607

PagerTemplate class 611

<pages> element

enableViewStateMac attribute 321

pages with multiple views 302–304

MultiView control 304–309

Wizard control 310–316

PageSize property

GridView control 607

Panel control

DefaultButton property 186

<div> tag underlying 177

parameterized commands 513

parameters

methods 53

passing by reference and by value 74–75

types, list 572

using events with parameters 949–951

Parent property

DirectoryInfo class 634

HtmlControl class 157

WebControl class 180

ParenthesizePropertyName attribute

control design time support 970

ParentLevelsDisplayed property

SiteMapPath control 410

ParentNode property

SiteMapNode class 406

XmlNode class 678

ParentNodeStyle property

TreeView control 417

Parse method

Int32 class 39, 285

parsing XML document 660–661

PartChromeStyle property

WebPartZoneBase class 1039

partial classes 87–88

partial keyword

defining Page class 141

PartStyle property

WebPartZoneBase class 1039

PartTitleStyle property

WebPartZoneBase class 1039

MacDonaldIndex.fm Page 1113 Friday, December 30, 2005 4:00 PM

1114 ■I N D E X

pass-by-reference parameter 74

pass-by-value parameter 74

password regular expression 281

password parameter

WSDL.exe parameters 858

Password property

Login control 762

Password value

TextBox control class 177

passwordAttemptWindow attribute

configuring membership provider 748

passwordFormat attribute

configuring membership provider 747

PasswordLabelText property

Login control 764

PasswordRecovery control 759

introduction 770, 772, 773

SendingMail event 772

PasswordRecoveryIconUrl property

Login control 765

PasswordRecoveryText property

Login control 765

PasswordRecoveryUrl property

Login control 763, 765

PasswordRequiredErrorMessage property

Login control 764

passwords 708

forms authentication 726

path attribute

forms authentication settings 719

Path class

Combine() method 639

GetFileName method 653

path parameter

WSDL.exe parameters 858

Path property

Request class 408

PathDirection property

SiteMapPath control 410

PathSeparator property

SiteMapPath control 410

PathSeparatorStyle property

SiteMapPath control 410

PathSeparatorTemplate template

SiteMapPath control 410, 412

pattern matching

regular expressions 278

Pen object

graphics context 979

percentage (%)

Unit structure 181

Percentage data type

numeric format string 589

performance

advantage of components 905

application state 353

drawbacks of CLR 15

locking 353

maintaining state 870

session state 338

state management options 354–355

static text 987

view state 987

encryption 321

web services 816

performance counters 990–994

classes 994

System.Diagnostics namespace 993

performance tuning 985

caching 985, 994–998

cache profiles 1003

caching with specific parameters
998–999

client side caching 997

custom caching control 1001–1002

data caching 1004–1005

data source controls 1012–1016

dependencies 1016–1027

MacDonaldIndex.fm Page 1114 Friday, December 30, 2005 4:00 PM

1115■I N D E X

multiple caching example 999–1000

output caching 995–996

output caching in a web service 1004

providing multiple views 1007–1010

simple cache test 1006–1007

web service 1010–1012

designing for performance 985–986

ADO.NET database access 987–988

ASP.NET code compilation 986

server controls 986–987

session state 989

profiling 985–989

performance counters 990–994

stress testing 990

PerformanceCounter class 994

PerformanceCounterCategory class 994

permissions 708

ASPNET account 457

Windows account permissions 455

persistence

cookies 335

Personalizable attribute class 1055

PhysicalPath property

HttpRequest class 160

Pipeline Instance Count counter

performance counters 993

pixels

indicating pixel coordinates 979

measuring 979

Unit structure 181

Place class

TerraService web service 893

PlaceFacts class

TerraService web service 893

platform boundaries 816

when to use web services 816

polygon

drawing a polygon with Graphics class 979

filling a polygon with Graphics class 979

portals 1029

new features in ASP.NET 2.0 20

portType elements

WSDL document 821

postbacks

__doPostBack() function 973

automatic postback 198

automatic postback events 214

capturing a change event 199

creating a file browser 639

disabling view state 986

events not ideal for 199

GetPostBackEventReference method,
Page class 973

HTML server controls 197

IPostBackEventHandler interface 974

page validation on 286

view state 318

workings of PostBack events 201

PostBackUrl property

IButtonControl interface 325

PostedFile class

FileUpload control 651

SaveAs method 651

PowerUser role

default Windows roles 734

Prepend method

XmlAttribute class 679

PrependChild method

XmlNode class 678

PreRender event

Page class 322, 566, 570, 782

PreRenderComplete event

Page class 782

PreviousButtonClick event

Wizard control 314

PreviousPage property

Page class 326, 328

PreviousPageType directive 328

MacDonaldIndex.fm Page 1115 Friday, December 30, 2005 4:00 PM

1116 ■I N D E X

PreviousSibling property

SiteMapNode class 406

XmlNode class 678

PrevMonthText property

Calendar control class 298

PrevView command name

MultiView control 308

PrintOperator role

default Windows roles 734

private assemblies 454

private keys

SSL workings 716

private keyword

description 63

web service function visibility 850

private variables

defining 62

Processor performance counter 993

Profile class

Address property 802

FirstName property 795

GetProfile method 808

Save method 796, 803, 804, 805

profile element

automaticSaveEnabled attribute 803

Profile property

Page class 804

profile property attributes

<add> tag 793, 794

ProfileBase class 804

methods 794

System.Web.Profile namespace 794

ProfileInfo class

members 805

ProfileManager class 804

methods 805

ProfileMigrateEventArgs class 808

ProfileModule class 803

MigrateAnonymous event 808, 809

profiles 781

See also membership and profiles

improving database performance 987

limitations 781

performance 782, 783

performance counters 990, 992, 993, 994

performance tuning 985, 989

SQL Server 2005 Express Edition 787

SqlProfileProvider 785

anonymous profiles 807–809

configuring to use different database
787–789

defining profile properties 793–794

enabling authentication 786

manually creating profile tables 789–790

profile API 804–806

profile database 790–792

profile groups 798–799

profile serialization 796–798

profiles and custom data types 799–804

using profile properties 794–796

storing data 783–785

stress testing 990

understanding 782

programmatic impersonation 737

programming

See component-based programming;
object-oriented
programming;server-side
programming; client-side
programming

project references 913

properties

attributes and properties 158

brief description 40

building a basic class 65, 66

introduction to classes 60

setting value of 158

stateful or stateless design 916

MacDonaldIndex.fm Page 1116 Friday, December 30, 2005 4:00 PM

1117■I N D E X

properties element

<add> tag 793

Properties window

adding event handlers 106

configuring controls in Visual Studio 101

property accessors 65

property procedures

using in integrated user control 944

PropertyGridEditorPart class 1045

PropertyGridEditorPart control

editing TextString property 1055–1056

protected keyword

description 63

protection attribute

forms authentication settings 718

protocol parameter

WSDL.exe parameters 858

Provider profile property attribute

<add> tag 794

Provider property

SiteMap class 406

ProviderSpecific option

serializeAs attribute 797

proxy class

connecting through 866

CookieContainer property 874

creating proxy with WSDL.exe 857–859

introduction 859–862

NetworkCredential property 880

role in web services 854

SOAP headers 888

TerraService web service 892

using 863–864

waiting and timeouts 864–865

web services 836

communications 825

errors 865–866

state management 872–876

public keyword

description 63

public member variables

session state example 340

public methods

adding functionality to class 911

publishing a new website 466, 467

pubs database

obtaining 476

px (pixel)

Unit structure 181

■Q
query string parameter

caching multiple page versions 998

multiple caching example 999

reusability of cached pages 997–998

query strings

example 332–333

passing information using 330–331

state management options 354–355

QueryString collection

tracing 258

QueryString property

HttpRequest class 161

Request class 408

question mark wildcard 720

■R
RadioButton control class

<input> tag underlying 177

RadioButtonList control 186–187

repeated-value data binding 548

<table> tag underlying 177

RaiseEvent statement

custom control events 973

RaisePostBackEvent method

IPostBackEventHandler interface 974–975

RangeValidator control 268, 615

added members 271

MacDonaldIndex.fm Page 1117 Friday, December 30, 2005 4:00 PM

1118 ■I N D E X

RangeValidator control (continued)

Display property 274

EnableClientScript property 273

example form 283

validation example 271–273

RawUrl property

Request class 408

RDBMS (Relational Database Management
System) 472

Read method

DataReader class 501

data retrieval example 505

XmlTextReader class 666

read permission

Virtual Directory Creation Wizard 445

ReadAll method

File class 644

ReadBytes method

File class 644

ReadInnerXml method

XmlTextReader class 673

ReadInt32 method

BinaryReader class 643

ReadLine method

StreamReader class 641

ReadLines method

File class 644

readOnly profile property attribute

<add> tag 794

ReadOnly property

BoundField class 586

ReadOuterXml method

XmlTextReader class 673

ReadString method

BinaryReader class 643

XmlTextReader class 673

Record Editor creation 559–564

records

adding 510

deleting 516–518

updating 516

rectangle

drawing a rectangle with Graphics class
979

filling a rectangle with Graphics class 979

Redirect method

HttpResponse class 162, 331, 345, 346, 941,
950

RedirectFromLoginPage method

FormsAuthentication class 726, 727

ref keyword

passing parameters 75

reference types 73

assignment operations 73

references

adding file reference 913

adding project reference 913

compared to using statement 115

Refresh method

DirectoryInfo class 633

FileInfo class 633

Region object

filling interior of with Graphics class 979

Register directive

consuming custom controls 958

creating a user control 939

registering components 128

RegisterRequiresViewStateEncryption
method

Page class 321

regular expressions

common examples 281

credit card numbers 282

introduction 278

literals 278–279

Luhn algorithm 282

metacharacters 278

regular expression characters 281

testing 279–280

MacDonaldIndex.fm Page 1118 Friday, December 30, 2005 4:00 PM

1119■I N D E X

RegularExpressionTest page

Set This Expression button 280

RegularExpressionValidator control 269

added members 271

example form 283

Relational Database Management System.
See RDBMS

relational databases

auto increment column 486–487

identity column 487

many-to-many relationships 522

overview 472

table relationships 472

relative paths

master pages 370, 371

RememberMeSet property

Login control 765

RemoteOnly error mode 249

Remove method

DataSet class 527

String class 41

RemoveAll method

XmlNode class 678

RemoveChild method

XmlNode class 678

RemoveUserFromRole method

Roles class 776

RemoveUserFromRoles method

Roles class 776

RemoveUsersFromRole method

Roles class 776

RemoveUsersFromRoles method

Roles class 776

RenderControl method

WebPart class 1053

RenderCurrentNodeAsLink property

SiteMapPath control 410

RenderXyx methods

implementing custom methods 965

overriding in custom controls 961

example 962

repeated-value data binding 540

creating Record Editor 559–564

data binding with a Dictionary collection
553

DataValueField property 555

generic collections 550, 551

introduction 547–548

multiple binding 551

setting control properties 540

simple list controls 548–549

example 549–550

view state and data binding 553

RepeatTimes property

web control inheritance 965

Replace method

String class 40, 41

ReplaceChild method

XmlNode class 678

Replicator role

default Windows roles 734

Request class

See also HttpRequest class

Cookies collection 335

finding information about the users
browser 543

Path property 408

QueryString property 408

RawUrl property 408

request details

tracing 256

Request property

Page class 159

requestLimit attribute

tracing 264

Requests counters

performance counters 993

RequiredFieldValidator control 268

added members 271

MacDonaldIndex.fm Page 1119 Friday, December 30, 2005 4:00 PM

1120 ■I N D E X

RequiredFieldValidator control (continued)

example form 283

requiresQuestionAndAnswer attribute

configuring membership provider 748

requiresUniqueEmail attribute

configuring membership provider 748

ResetPassword method

MembershipUser class 755, 758

Response class

See also HttpResponse class

AddCacheDependency method 1023

Cookies collection 335

Redirect method 331, 345, 346, 941, 950

Write method 133, 252, 356

WriteBinary method 896

Response property

Page class 159

restricted file types 708

Reverse() method

Array class 44

rich controls 267, 290–291, 581

AdRotator control 299–302

Calendar control 291–295

Ridge value

BorderStyle enumeration 180

role-based security 739, 773

creating and assigning roles 773–776

LoginView control 778–779

restricting access based on roles 777

RoleExists method

Roles class 776

<RoleGroups> tag

LoginView control 779

roles, default Windows roles 734

Roles class

methods 776

Root property

DirectoryInfo class 634

RootDirectory method

DriveInfo class 635

RootNode property

SiteMap class 405

RootNodeStyle property

SiteMapPath control 410

TreeView control 417

RootNodeTemplate template

SiteMapPath control 410, 412

Row property

GridViewRowEventArgs class 594

row state

DataSet storing 529

RowCommand event

GridView control 598, 612

RowCreated event

GridView control 593

RowFilter property

DataView class 1015

rows, retrieving with Select statement 482

Rows collection

Add method 527

DataRow class 521

Rows property

TextBox control class 177

RowStyle property

GridView control 590

RowUpdated event

DataAdapter class 533

run scripts permission

Virtual Directory Creation Wizard 445

Run To Cursor command

break mode 119

runat="server" attribute

configuring HTML elements as server
controls 104

head tag 365

HTML server controls 135

MacDonaldIndex.fm Page 1120 Friday, December 30, 2005 4:00 PM

1121■I N D E X

runtime events 146

web control tags 177

■S
sample database, obtaining 476

Save class

Image control class 979, 981

Save method

Profile class 796, 803–805

XmlDocument class 675–676

SaveAs method

PostedFile class 651

SaveControlState method

Control class 968

scalability

CGI applications 6

database access 473

ISAPI 6

profiles 782

session state 343

state management 870

using files with web applications 626

schema, XSD documents 683

Scientific data type

numeric format string 589

scope

state management options 354–355

scripting limitations

ASP limitations 9

search engines

data driven ASP.NET applications 473

Second property

DateTime class 43

Seconds property

TimeSpan class 43

security

ASP.NET and IIS interaction 709, 712

ASP.NET Security Model 709

authentication 708

authorization 708

certificates 713

checking secure connection 715

ClientCertificate property 160

component-based programming 904

deployment configuration 455

determining requirements 707

directory security settings 730

event Logs 240

forms authentication 716

impersonation 708

intranet 712

query strings 330

reasons to avoid client-side programming
8

restricted file types 708

SSL (Secure Sockets Layer) 888

state management options 354–355

using files with web applications 626

view state 320–321

web services 816, 877–891

Windows authentication 729–735

security controls 739

CreateUserWizard control 766–770

Login control 760–765

membership 759

PasswordRecovery control 770–773

security cookies

anonymous users 720

encryption 718

unique naming 718

Security log

Windows Event Logs 237

Security tab

WAT 725

SecurityException class

System.Security namespace 223

Seek method

Stream class 643

MacDonaldIndex.fm Page 1121 Friday, December 30, 2005 4:00 PM

1122 ■I N D E X

Select command

defining 500, 501

Select statement 481, 482

From clause 482

Order By clause 482, 483

retrieving data 500

retrieving rows 482

sample 482–484

SQL basic concepts 479

Top clause 483

Where clause 482, 483

<select> tag 146

HtmlSelect class 138

related control classes 177

SelectCommand property

DataAdapter class 520

SqlDataSource class 568, 575

SelectCommandType property

SqlDataSource class 568

Selected event

data source controls 566

SqlDataSource class 574

Selected property

ListItem control 186

SelectedDataKey property

GridView control 598–599

SelectedDate property

Calendar control 291, 298

SelectedDates property

Calendar control class 298

SelectedDayStyle property

Calendar control class styles 294

SelectedIndex property

GridView control 596, 598

list controls 186

SelectedIndexChanged event

GridView control 596, 599

web controls providing 199

SelectedIndexChanging event

GridView control 596

SelectedItem class

DataValueField property 556

SelectedItem property

GridView control 596

SelectedItemStyle property

GridView control 596

SelectedNodeStyle property

TreeView control 417

SelectedRowStyle property

GridView control 590

SelectedValue property

ListBox class 932, 935

SelectImageUrl property

GridView control 596

Selecting event

data source controls 566

SelectionChanged event

Calendar control 297, 299

SelectionMode property

Calendar control 292, 298

ListBox control class 187

SelectMethod method

ObjectDataSource class 931

SelectMonthText property

Calendar control class 298

SelectorStyle property

Calendar control class styles 294

SelectText property

GridView control 596

SelectWeekText property

Calendar control class 298

semicolons (24

SendingMail event

PasswordRecovery control 772

Serializable attribute

adding before class declaration 324

MacDonaldIndex.fm Page 1122 Friday, December 30, 2005 4:00 PM

1123■I N D E X

serialization

custom types 802–803

profiles 783–798

storing objects in view state 324

serializeAs attribute

options 797

serializeAs profile property attribute

<add> tag 793

Server class

Transfer() method 408

server controls

as Web Parts 1031

designing for performance 986–987

HTML controls compared 175

necessity of 986

view state 986

Server object

ASP.NET intrinsic objects 837

Server property

Page class 159

server variables

tracing 259

ServerChange event 154

HTML controls providing 154

HTML server controls 197

ServerClick event 153

HTML control events 197

HTML controls providing 154

HtmlInputButton class 139, 142

ServerClick event handler

HtmlInputImage class 154

server-side caching

client side caching compared 997

server-side programming

ASP.NET 7

evolution 6

server-side web controls 125

ServerUtility class 162, 163

methods 162

ServerValidate event

client-side equivalent for code 286

CustomValidator control 285

ServerVariables property

HttpRequest class 161

service element

WSDL document 823

service providers

business objects 836

session cookies

state management 872

session keys

SSL workings 716

Session object

ASP.NET intrinsic objects 837

Session property

Page class 159

session state 337

accessing in web services 838

cookies 337

designing for performance 989

disabling session management 870

example 340–343

losing session state 339

management with web service 876

performance 338

scalability 343

session tracking 338

sessionState tag, web.config 344

tracing 257

using 339–340

using proxy class 874

WebMethod attribute enabling 870–872

session state configuration 344

cookieless 344–347

custom mode 352

InProc mode 348–349

mode 348

Off mode 349

MacDonaldIndex.fm Page 1123 Friday, December 30, 2005 4:00 PM

1124 ■I N D E X

session state configuration (continued)

SqlServer mode 351

StateServer mode 349–350

timeout 347–348

Session_OnEnd event 358

Session_OnStart event 358

SessionID property

HttpSessionState class 340

<sessionState> tag

mode attribute 348

timeout attribute 347

web.config file 344

set accessor 65

Set Next Statement command

break mode 119

SetActiveView method

MultiView control 307

SetAttributes method

File class 628

SetAuthCookie method

FormsAuthentication class 726

SetCookie method

proxy class 876

SetCurrentDirectory method

Directory class 628

SetPropertyValue method

ProfileBase class 794

shared assemblies 454

SharePoint Portal Server

portals 1029

sharetypes parameter

WSDL.exe parameters 858

Short Date data type

format string 590

shorthand assignment operators 36

Show Next Statement command

break mode 119

ShowCheckBoxes property

TreeView control 414

ShowDayHeader property

Calendar control class 299

ShowDeleteButton property

CommandField class 602

ShowDirectoriesIn subroutine

creating a file browser 639

ShowEditButton property

CommandField class 613

ShowExpandCollapse property

TreeView control 414

ShowFilesIn subroutine

creating a file browser 639

ShowGridLines property

Calendar control class 299

ShowHeader property

DetailsView control 620

ShowInsertButton property

CommandField class 602

ShowLine property

TreeView control 414

ShowMessageBox property

ValidationSummary control 275

ShowNavigationControls property 376

ShowNextPrevMonth property

Calendar control class 299

ShowSelect property

GridView control 596

ShowSelectButton property

CommandField class 600, 601

ShowStartingNode property

SiteMapDataSource control 401

ShowTitle property

Calendar control class 299

ShowToolTips property

SiteMapPath control 410

side by side execution 15

SideBarButtonClick event

Wizard control 314

MacDonaldIndex.fm Page 1124 Friday, December 30, 2005 4:00 PM

1125■I N D E X

SideBarButtonStyle property

Wizard control 316

SideBarStyle property

Wizard control 316

signatures

delegates 54–56

overloading 53

SignOut method

FormsAuthentication class 726

simple data access

steps in simple data access 492

simple data binding. See single-value data
binding

simple data types

System namespace 78

Single class 28

single data type

nature and behavior 77

SingleLine value

TextBox control class 177

single-page applet 130–131

single-step debugging with Visual Studio
116–118

single-value data binding 540

inserting value 540

problems with 546–547

simple data binding

example 542–544

using code instead 547

with properties 545, 546

workings of 541

site maps 389, 390

binding a master page to site map 397–399

binding an ordinary page to site map
396–397

binding portions of a site map 399–400

showing subtrees 400–404

using different site maps in same file
404–405

defining a site map 391

duplicate urls 394–395

<siteMap> tag 391

<siteMapNode> tag 392, 393, 394

mapping urls 407, 408

Menu control 420, 421

styles 421–423

templates 423, 425

navigating programmatically 405–407

simple site map in action 395–396

SiteMapPath control 409

adding custom site map information
412–413

customizing 410

styles and templates 410–412

TreeNodeStyle class

styles 415–417

TreeView control 413

applying styles to node levels 417–418

properties 414

styles 417

themes 419

SiteMap class

CurrentNode property 405

Provider property 406

RootNode property 405

System.Web namespace 405

<siteMap> tag

site maps begin with 391

SiteMapDataSource control

adding to page 396

ASP.NET navigation 390

implementing IDataSource interface 565

linking TreeView control 402

properties 400, 401

StartingNodeUrl property 405

siteMapFile attribute

breaking single site map into separate files
405

SiteMapNode class 424

navigational properties 406

MacDonaldIndex.fm Page 1125 Friday, December 30, 2005 4:00 PM

1126 ■I N D E X

<siteMapNode> tag 392

elements containing other elements 392,
393

site maps begin with 394

SiteMapPath control

adding custom site map information 412,
413

CurrentNodeTemplate template 412

customizing 410

description 396

Eval method 411

introduction 409

RootNodeTemplate template 412

styles and templates 410–412

SiteMapProvider class

FindSiteMapNode method 406

Size property

FontInfo class 183

SkinID property

TreeView control 419

skins

creating multiple skins for same control
383–384

relationship with themes 378

templates and images 384–387

slidingExpiration parameter

Insert method, Cache object 1005

SOAP 824

automatic generation of messages 832

<body> element 824

<envelope> element 824

example of SOAP message 824

HTTP GET/POST compared 825

toolkit 817

using web service without proxy class 859

web services 816

communications 825

proxy class 860

standards 817

testing 847

SOAP headers

proxy class 888

ticket-based authentication 885–888

using in the client 888

<soap-body> element 824

<soap-envelope> element 824

SoapException class

Message property 866

SoapHeader class

System.Web.Services.Protocols
namespace 885

SoapHttpClientProcotol class

Invoke method 860

SoapHttpClientProtocol class 859

proxy class inherits from 864

social security number

regular expression 282

Solid value

BorderStyle enumeration 180

Solution Explorer 96–98

Add Web Reference window 855

Sort property

DataView control 604

Sort method

Array class 44

Sorted event

GridView control 605

SortExpression property

BoundField class 586, 604

Source property

Exception class 222

Source view

Visual Studio 101

 tag

related to Label control class 176

special characters, HTML 164

special characters, XML 660

Split method

String class 41

MacDonaldIndex.fm Page 1126 Friday, December 30, 2005 4:00 PM

1127■I N D E X

SQL (Structured Query Language)

basic concepts 478

learning 479

online tutorials 479

running queries in Visual Studio 479–480

SQL statements 479

Delete statement 487

Insert statement 486–487

Select statement 481–484

Update statement 485–486

SQL injection attacks 513

SQL Query Analyzer 479

Update statement 486

SQL Server

data provider 487

obtaining sample database 476

SQL Server 2000 and SQL Server 7

cache notifications 1019–1024

SQL Server 2005

cache notifications 1024–1025

creating cache dependency 1026

initializing service 1025

SQL Server 2005 Express Edition 475

membership data store 741–743

profiles 787

SQL Server 7 475

SQL Server authentication 496

SQL Server data provider 488

objects 491

SQL statements 479

adding special variable 168

aggregate functions 484

Command object 500

creating more robust commands 512–515

deleting a record 516–518

updating a record 516

data retrieval example 503

Delete statement 487

Insert statement 486–487

Select statement 481–484

Update statement 485–486

SqlCacheDependency value

CacheItemRemovedReason enumeration
1013

SqlCommand class 491

SqlCommandBuilder class

updating disconnected data 528

SqlConnection class 491

ConnectionString property 494

sqlConnectionString attribute

<sessionState> tag 351

SqlDataReader class

creating 501

SqlDataSource class

command logic 568

compared to ObjectDataSource class 930

data caching 1013–1015

data source controls 566–567

defining 583

events 574

implementing IDataSource interface 564

positive and negative sides 583

properties

ConflictDetection property 578

DataSourceMode property 569

DeleteCommand property 602

EnableCaching property 569

InsertCommand property 602

OldValuesParameterFormatString
property 578

SelectCommand property 575

Update method 576–602

UpdateParameters collection 576, 602

SqlDataSourceMode enumeration

DataReader value 569

DataSet value 569

SqlDataSourceStatusEventArgs class

AffectedRows property 578

Exception property 574

MacDonaldIndex.fm Page 1127 Friday, December 30, 2005 4:00 PM

1128 ■I N D E X

SqlDataSourceStatusEventArgs class
(continued)

ExceptionHandled property 574

SqlException exception 229

SqlProfileProvider

anonymous profiles 807

migrating 808–809

configuring to use different database
787–789

defining profile properties 793–794

enabling authentication 786

manually creating profile tables 789–790

profile API 804–806

profile groups 798–799

profile serialization 796–798

profiles and custom data types 799–802

automatic saves 803–804

custom type serialization 802–803

using 785

using profile properties 794–796

SqlProfileProvider class

standard profile serialization 784

SqlRowUpdatedEventArgs class 534

SqlServer value

mode attribute, <sessionState> tag 351

Src directive 939

Src property

HtmlImage class 139, 153

HtmlInputImage class 139

SSL (Secure Sockets Layer) 715

certificates 713

web services security 888

workings of 716

StackTrace property

Exception class 222

StartFromCurrentNode property

SiteMapDataSource control 401, 404

StartingNodeOffset property

SiteMapDataSource control 401, 403, 404

StartingNodeUrl property

SiteMapDataSource control 401, 405

StartNextButtonStyle property

Wizard control 316

StartsWith method

String class 41

state

application state 352–354

ASP problems 9

cookieless state 346

database access 474

File class 916

FileInfo class 916

HTML server controls 134

HTTP 474

maintaining state information 967–969

no sharing between ASP and ASP.NET 128

problem of state 317

state management 317

stateful Account class example 917–918

stateful or stateless design 916

view state 318

web service communication limitations 827

state management 317

data caching replacing 985

options compared 354

performance considerations 870

proxy class 872–876

scalability 870

session cookies 872

session state 338

StockQuote web service 870–872

web services 869, 870, 876

StateBag collection class 318

stateConnectionString attribute

sessionState tag 349

stateful web services

consuming 872–876

MacDonaldIndex.fm Page 1128 Friday, December 30, 2005 4:00 PM

1129■I N D E X

stateless classes

web services as 869

StateServer value

mode attribute, <sessionState> tag 349

static elements

server controls 986

static keyword 85

static members 61

use of in Math class 84

static text, performance 987

StaticDisplayLevels property

Menu control 422

StaticDynamicSelectedStyle property

Menu control 422

StaticHoverStyle property

Menu control 422

StaticMenuItemStyle property

Menu control 422

StaticMenuItemTemplate property

Menu control 423

StaticMenuStyle property

Menu control 422

StaticSubMenuIndent property

Menu control 422

Step Into command

break mode 118

Step Out command

break mode 118

Step Over command

break mode 118

StepNextButtonStyle property

Wizard control 316

StepPreviousButtonStyle property

Wizard control 316

StepStyle property

Wizard control 316

StepType property

Wizard control 311

StockQuote web service 834

code explained 835

code-behind files 837

configuring web service client 853–854

consuming a stateful web service 872–876

dissecting code 850–852

returning historical data 852

state management 870–872

StockQuote class 860

ticket-based authentication 883–884

SOAP headers 885–888

using proxy class 863–864

using SOAP headers in the client 888

web service data objects 848

storage location

state management options 354–355

stored procedures

databases 919

improving database performance 987

Stream class

Seek method 643

StreamReader class

reading and writing flat files 640

ReadLine method 641

streams, reading and writing flat files 640

StreamWriter class 657

Flush method 640

reading and writing flat files 640

WriteLine method 640

stress testing 990

Strikeout property

FontInfo class 183

String class 28, 40

assignment operations 77

built-in methods 40

Compare method 45

equality operations 77

members 41

methods 40

MacDonaldIndex.fm Page 1129 Friday, December 30, 2005 4:00 PM

1130 ■I N D E X

String class (continued)

nature and behavior of data type 77

Substring method 285

string option

serializeAs attribute 797

StringBuilder class

System.Text namespace 245, 632

strings

HTML encoding and decoding 162

URL encoding and decoding 162, 164

structured exception handling 221–222

key points 231

Try ... Catch ... Finally block 225–226

structures, description 76

style attribute

<div> tag 131, 941

style elements

WebPartZones 1038

Style property

HtmlControl class 157

styles and CSS 151

StyleSheetTheme attribute

Page directive 381

subclassing controls 956

Calendar control 958–960

event handling 959

text box with a title 962

subdirectories, accessing 444

Substring method

String class 40, 41, 285

Subtract method

DateTime class 43

TimeSpan class 43

subtraction operator (-) 35

Success value

MembershipCreateStatus enumeration 753

Sum() function 484

switch block 46–47

SwitchViewByID command name

MultiView control 308

SwitchViewByIndex command name

MultiView control 308

System log

Windows Event Logs 237

System namespace

ApplicationException class 234

EventHandler delegate 947

Exception class 222

Math class 36

System performance counter 993

System.Collections namespace

Hashtable collection 553

System.Collections.Generic namespace

Dictionary collection 554

System.Collections.Generics namespace 90

System.ComponentModel namespace

CategoryAttribute class 969

customizing design-time support 969

TypeConverter class 214

System.Configuration namespace

ConfigurationSettings class 169

System.Data namespace 490

databases 78

System.Data.Common namespace 490

System.Data.Odbc namespace 490

System.Data.OleDb namespace 490

System.Data.OracleClient namespace 490

System.Data.SqlClient namespace 490

importing 493

System.Data.SqlTypes namespace 490

System.Diagnostics namespace

EventLog Class 239

performance counters 993

System.Drawing namespace

Bitmap class 978

Color class 182

MacDonaldIndex.fm Page 1130 Friday, December 30, 2005 4:00 PM

1131■I N D E X

Graphics class 978

importing 183

KnownColor enumeration 213

System.Drawing.Text namespace

InstalledFontCollection class 212

System.EnterpriseServices assembly

referencing for web service transactions
889

System.IO namespace

Directory class 626

DirectoryInfo class 626, 633

DriveInfo class 626

methods 635

File class 626

FileInfo class 626, 633

IOException class 223

retrieving information about files 626

System.Net namespace

CredentialCache class 880

NetworkCredential class 880

System.Runtime.Serialization.Formatters.Bi
nary namespace

BinaryFormatter class 797

System.Security namespace

SecurityException class 223

System.Security.AccessControl namespace

DirectorySecurity class 628

System.Text namespace

StringBuilder class 245, 632

system.web element

web.config file 165

System.Web namespace

HttpApplication class 144

HttpForbiddenHandler class 708

SiteMap class 405

TraceContext class 253

System.Web.Configuration namespace

WebConfigurationManager class 169

System.Web.Profile namespace

ProfileBase class 794

SqlProfileProvider 788

System.Web.Security namespace

FormsAuthentication class 726

Membership class 753

System.Web.Services namespace

web services 78, 831

WebService class 832

System.Web.Services.Protocols namespace

SoapException class 866

SoapHeader class 885

System.Web.UI namespace

DataBinder class 609

ImageClickEventArgs class 154

OutputCacheLocation enumeration 997

Page class 158, 908

UserControl class 938

web controls 78

System.Web.UI.Control namespace

web control classes 955

System.Web.UI.HtmlControls namespace

HTML server controls 137

System.Web.UI.WebControls namespace 179

BaseValidator class 270

TextBox class 955

validation control classes 270

System.Web.UI.WebControls.WebParts
namespace

TitleStyle class 1040

WebPart class 1031, 1051

System.Xml namespace 663

System.Xml.Schema namespace

types 684

XmlSchemaException class 686

System.Xml.XmlSerialization namespace

XmlSerializer class 797

System.Xml.Xsl namespace

XmlTransform class 687

SystemOperator role

default Windows roles 734

MacDonaldIndex.fm Page 1131 Friday, December 30, 2005 4:00 PM

1132 ■I N D E X

■T
TabIndex property

WebControl class 180

Table controls 191, 192, 194, 197

dynamically generating 193, 194

HTML elements underlying 177

<table> tag 138

HtmlTable class 138

related control classes 177

table-based layouts

advanced master pages 372–374

TableCell class 191

Controls collection 196

HTML elements underlying 177

Text property 196

TablePage class

event handling 195–196

TableRow class 191

HTML elements underlying 177

tables and relational databases 472

Tag prefixes

creating a user control 939

TagName property

HtmlControl class 157

tags

HTML and XML 659

introduction to HTML 4

validator controls 284

web control tags 177

Xml documents 676

Target property

HtmlAnchor class 139

TargetSite property

Exception class 222

<td> tag 138

related control classes 177

td tags 373

TemplateField class

defining custom templates 608

GridView control 584

not supported by DetailsView 619

templates

editing in Visual Studio with GridView
control 611, 612

editing with GridView 613, 615

validation 615

without Command column 616–617

GridView control 608–609

handling events with GridView 612–613

model for FormView control 621

TerraService web service

adding reference to 892

displaying a tile 896–898

searching for information 895

testing the client 893–894

using a web service 891

testing

advantage of components 904

building a basic class 70–72

Cache object 1006–1010

disabling caching while testing 996

performance testing 990

stress testing 990

web services 842

text

drawing custom text, GDI+ 980–981

retaining text in web page 160

text files

reading and writing flat files 640

Text property

Label control 245, 543

ListItem control 186

MenuItem control 423

TableCell control class 196

<textarea> tag

HtmlTextArea class 139

TextBox class

ForeColor property 952

MacDonaldIndex.fm Page 1132 Friday, December 30, 2005 4:00 PM

1133■I N D E X

input tag underlying 176

properties 177

System.Web.UI.WebControls namespace
955

TextChanged event 804

validation example 271–273

TextBoxStyle property

Login control 762

TextChange event

web controls 199

TextChanged event

TextBox class 804

TextMode property

TextBox control class 177

TextString property

editing with PropertyGridEditorPart
control 1055–1056

<th> tag 138

related control classes 177

Thawte certificate authority 713

Theme attribute

Page directive 382

themes 359

applying simple theme 380, 381

applying to entire website 383

creating multiple skins for same control
383–384

handling theme conflicts 381–382

introduction 377–378

skins with templates and images 384–387

workings 378–379

thin clients

reasons to avoid client-side programming 9

third-party languages and .NET 24

this keyword 542

current instance of Page class 147

thread-safety

data caching 1004

three-tier design 905

ticket-based authentication 882

SOAP headers 885–888

StockQuote web service 883–884

TileID

TerraService web service 898

Time data types

format strings 590

timeout attribute

forms authentication settings 719

<sessionState> tag 347

Timeout property

HttpSessionState class 340

proxy class 864

TimeSpan class 28, 42

members 43

nature and behavior of data type 77

Title attribute

Page directive 365

Title property

HtmlAnchor class 139

WebPart class 1053

Wizard control 311

<title> tag

HtmlTitle class 139

TitleFormat property

Calendar control class 299

TitleStyle class

properties 1040

System.Web.UI.WebControls.WebParts
namespace 1040

TitleStyle property

Calendar control class styles 294

TitleText property

Login control 764

TitleTextStyle property

Login control 762

To Lower method

String class 41

MacDonaldIndex.fm Page 1133 Friday, December 30, 2005 4:00 PM

1134 ■I N D E X

To Upper method

String class 41

Today property

DateTime class 43

TodayDayStyle property

Calendar control class styles 294

TodaysDate property

Calendar control class 299

ToolboxData attribute

control design time support 970

ToolTip property

WebControl class 180

Top clause

Select statement 483

ToString method

DateTime class 43, 590

object manipulation 39

TimeSpan class 43

TotalFreeSpace method

DriveInfo class 635

TotalSize method

DriveInfo class 635

Totalxyz properties

TimeSpan class 43

ToUpper method

String class 40

<tr> tag 138, 373

related control classes 177

Trace class

TraceFinished event 263

TraceMode property 263

Warn method 259

Write method 259

trace information

reading trace log 263

writing trace log 259–263

TraceContext class

System.Web namespace 253

TraceFinished event

Trace class 263

TraceMode attribute

Page directive 263

traceMode attribute

tracing 264

TraceMode property

Trace object 263

tracing 219

application state 257

application-level tracing 264–265

attributes 264

control tree 256

cookies collection 257

debugging 252

enabling tracing 253

forms collection 258

headers collection 258

page tracing 252

QueryString collection 258

reading trace information 263

request details 256

server variables 259

session state 257

trace information 256

tracing information 254

web.config file 264

writing trace information 259–263

TransactionOption property

WebMethod attribute 889

transactions

web services 888–891

Transfer method

Server class 408

ServerUtility class 162

transferring information

query string example 332–333

view state 325

MacDonaldIndex.fm Page 1134 Friday, December 30, 2005 4:00 PM

1135■I N D E X

Transform method

XmlTransform class 688

transformations

interpreting special characters 163

TreeNodeStyle class

properties 415

styles 415–417

TreeView

hierarchical binding 695–696

TreeView control 290

applying styles to node levels 417–418

compared to Menu control 421

description 396

introduction 413

LevelStyles collection 418

linking to SiteMapDataSource control 402

mapping 696

properties 414

AutomaticallyGenerateDataBindings
property 696

DataMember property 696

MaxDataBindDepth property 404

NodeIndent property 416

NodeStyle property 417

SkinID property 419

Visible property 376

style properties 417

themes 419

Trim method

String class 40, 41

troubleshooting

advantage of components 904

trust boundaries 816

try ... catch ... block

database connections 493

verifying database connection 498

Try ... Catch ... Finally block

data retrieval example 505

exception handling example 230

exceptions 227

file access example 650

structured error handling 225–226

structured exception handling 231

TryParse() method

Int32 class 285

type attribute

configuring membership provider 747

<input> tag 138

type conversions errors 37

type profile property attribute

<add> tag 793

Type property

HtmlInputControl class 158

TypeConverter class 214

System.ComponentModel namespace 214

types

object and type behaviors 77

reference types 73

value types 73

<types> element

WSDL document 818

typical option

state management options 354–355

■U
UDDI (Universal Description, Discovery, and

Integration) 828

web service standards 817

 tag

related to BulletedList control 177

Unchanged value

DataRowState enumeration 529

Underline property

FontInfo class 183

Unit structure 181

Use Pixel method 181

UnitType enumeration 181

Universal Description, Discovery, and
Integration. See UDDI

MacDonaldIndex.fm Page 1135 Friday, December 30, 2005 4:00 PM

1136 ■I N D E X

Unload event

Page class 782

Unlock method

MembershipUser class 758

Application state collection 353

UnlockUser method

MembershipUser class 755

Update method

DataAdapter class 529

SqlDataSource class 576, 602

Wizard control 315

Update statement 485, 486

example 516

executing 507

SQL basic concepts 479

SQL Query Analyzer 486

UpdateCommand property

DataAdapter class 520

SqlDataSource class 568, 575

UpdateCommandType property

SqlDataSource class 568

Updated event

data source controls 566

SqlDataSource class 574

UpdateFailedException class 224

UpdateMethod method

ObjectDataSource class 931, 934

UpdateParameters collection

SqlDataSource class 576, 602

UpdateUser method

Membership class 753, 754, 758

updating components

ASP problems 9

updating data 507–511

adding a record 510

modifying disconnected data 526

parameterized commands 513

updating disconnected data

CommandBuilder class 528

concurrency 533

concurrency example 535, 538

conflicts 530–533

DataAdapter class 528

example 531

updating a table 529

Updating event

data source controls 566

URIs (Universal Resource Identifiers)

XML namespaces 682

URL addresses

specifying web service namespace 840

URL encoding

HttpServerUtility class 159

url parameter

WSDL.exe parameters 858

Url property

HttpRequest class 161

UrlDecode method

ServerUtility class 162

UrlEncode method

ServerUtility class 162

UrlEncode method

changing text 164

urlMappings section

web.config file 408

UrlReferrer property

HttpRequest class 161

URLs (Universal Resource Locators)

munged URL 345

query string parameter 330, 331

requested page URL 726

session tracking 338

Use Pixel method

Unit structure 181

UseCookies value

HttpCookieMode enumeration 345

UseDeviceProfile value

HttpCookieMode enumeration 345

MacDonaldIndex.fm Page 1136 Friday, December 30, 2005 4:00 PM

1137■I N D E X

User accounts

role for managing 734

user authentication 159

User class

ASP.NET intrinsic objects 838

IsInRole method 777

user controls

as Web Parts 1031

.ascx files 937

compared to ASP.NET web forms 937

creating 939–941

custom user control based on text box 958

events 946–949

independent user controls 941–943

integrated user controls 943–946

introduction 937–938

limitations 952–953

support in Visual Studio 941

using events with parameters 949–951

user interface

code-behind files distinction 546

three-tier design 905

validating input 267

web controls advantage 175

User property

Page class 159

user record management 739

User role

default Windows roles 734

UserAgent property

HttpRequest class 161

UserControl class

inheritance 938

Load event 939

System.Web.UI namespace 938

UserHostAddress property

HttpRequest class 161

UserHostName property

HttpRequest class 161

UserLanguages property

HttpRequest class 161

username parameter

WSDL.exe parameters 858

UserName property

Login control 762

ProfileInfo class 805

UserNameLabelText property

Login control 764

UsernameRequiredErrorMessage property

Login control 764

users, authorizating access for 722

UserType enumeration 34

UseUri value

HttpCookieMode enumeration 345

using statement 499

code examples 215

compared to adding references 115

namespaces 80

using statements

code-behind class 141

■V
Validate method

Page class 276, 289, 290

ValidateEmptyText property

CustomValidator class 287

ValidateUser method

Membership class 754, 757

validation

client-side validation 270

control classes 270

display options 274

editing templates with GridView 615

example 271–274

introduction 267–268

list controls 287

manual validation 276–277

process explained 269

security cookies 718

MacDonaldIndex.fm Page 1137 Friday, December 30, 2005 4:00 PM

1138 ■I N D E X

validation (continued)

validated customer form 282–287

validation controls 268–269

validation groups 288–289

web services 819

validation controls 267–269

event handling 284

tags 284

ValidationEventArgs class 687

ValidationEventHandler event

XmlReaderSettings class 686

XmlValidatingReader class 686

ValidationGroup property

validation controls 288

ValidationSummary control 274

DisplayMode property 274

ForeColor property 274

HeaderText property 274

ShowMessageBox property 275

ValidationType property

XmlReaderSettings class 684

ValidatorTextStyle property

Login control 763

Value property

HtmlInputControl class 158

HtmlInputText class 139

HtmlTextArea class 139

ListItem control 186

value types 73

assignment operations 73

value types and reference types 73

values and enumerations 33–34

variable operations 35–36

advanced math 36

type conversions 36–39

variable watch windows

Visual Studio 120

variables

adding special variable 168

data type prefixes 30

variables and data types 27

arrays 31–33

initialization and assignment 29

strings and escaped characters 30

VaryByHeader attribute

OutputCache directive 1002

VaryByParam attribute

caching multiple page versions 997

multiple caching example 999

OutputCache directive 996

reusability of cached pages 997

specifying parameters 998

verbs 1032

Verbs property

WebPart class 1053

Verisign certificate authority 713

VerticalAlign property

TitleStyle class 1040

VerticalPadding property

TreeNodeStyle class 415

View control 290

view state 136–318

data binding and 553

description 320

encryption and performance 321

example 318–320

maintaining control state 967

performance 987

postbacks 318

retaining member variables 322–323

retrieving values 318

security 320–321

server controls 986

state management options 354–355

storing custom objects 324–325

testing adoptive repeater control 967

transferring information 325

MacDonaldIndex.fm Page 1138 Friday, December 30, 2005 4:00 PM

1139■I N D E X

viewing pages

modes 1032

ViewState property

Page class 318

ViewStateEncryptionMode property

Page directive 321

virtual directories

accessing subdirectories 444

adding to Network Neighborhood 451–453

ASP.NET tab 450

configuring 444

creating 439–442

web.config file 165

creating for a new project 460–463

creating web service application 833

Custom Errors tab 447

Directory Security tab 451

document tab 446

file mappings 448–450

getting 160

managing with IIS 442

no sharing between ASP and ASP.NET 128

removing 165

Virtual Directory tab 444

web folders and icons 443

website management 439

Virtual Directory Creation wizard

creating a virtual directory 443

settings required 440

Web Services 833

visibility 429–431

Visible property

BoundField class 586

Control class 303

HtmlControl class 157

TreeView control 376

WebControl class 180

VisibleDate property

Calendar control class 299

VisibleMonthChanged event

Calendar control 297, 299

VisibleWhenLoggedIn property

Login control 765

Visual Basic. NET

choosing languages 23

migration to .NET 12

VB6 compatibility 12

Visual Studio

See also deployment

additional features, using 114

benefits 92

Breakpoints window 119–120

browsing and modifying databases
476–478

Choose Location dialog box 94

configuring DOCUMENT object 101

configuring styles with GridView control
592–593

configuring web service client 853–854

consuming web services 853

creating a user control 939–941

creating a website 93–95

Solution Explorer 96–98

creating components 909

creating Page class 105

creating web reference 855–857

debugging 115

single-step debugging 116–118

debugging components 928

debugging tools 253

description 10, 17

designing a web page 98

adding HTML 104

adding HTML tables 104–105

adding web controls 99–100

configuring controls 101

dissecting the proxy class 859–862

editing templates with GridView control
611–612

MacDonaldIndex.fm Page 1139 Friday, December 30, 2005 4:00 PM

1140 ■I N D E X

Visual Studio (continued)

event handling 143

Exceptions window 223

generating columns with GridView control
587–588

Intellisense and outlining 107

assembly references 114

auto format and color 113

automatically importing namespaces
112

error underlining 110–111

members list 108–109

outlining 107

introduction 91

latest version 92

migrating older Visual Studio .NET
projects 98

named configuration files 863

New Project window 93

project references 912

running SQL queries 479–480

setting color property 101

Source view 101

support for user controls 941

usefulness of web reference 862–863

variable watch windows 120

view state 136–137

Windows authentication

web.config default setting 732

writing code 105–106

adding event handlers 106–107

VolumeLabel method

DriveInfo class 635

■W
WAN (Wide Area Network) 429

Warn method

Trace object 259

WAST (Web Service Applications Stress Tool)

performance counters 990

stress testing 990

WAT (Website Administration Tool) 172

creating and assigning roles 773–776

creating users 751–753

Manage Access Rules link 777

setting up authorization and
authentication rules 722–725

Watch variable watch window

Visual Studio 120

web applications

database concurrency 473

file access 625–626

performance counters 991

scalability 473

security requirements 707

state 474

using files with 625

web browsers

client side caching 997

web control tags 177

attributes 177

control properties 177

runat="server" attribute 177

tracking the control 177

web controls 134, 175

adding to web pages with Visual Studio
99–100

AdRotator control 299–302

advantages 175

automatic postback and events 197–202

page life cycle 202–206

AutoPostBack property 199, 201

Calendar control 291–295

classes 176, 179–186

colors 182

default button 185

enumerated values 182

Focus()method 185

fonts 183, 184

inheritance 179

MacDonaldIndex.fm Page 1140 Friday, December 30, 2005 4:00 PM

1141■I N D E X

Unit structure 181

combining or modifying 952

creating 964–969

events 199

HTML elements underlying 176

HTML server controls compared 175

inheriting from base class 964

postbacks 973

System.Web.UI namespace 78

user control events 946

visibility 180

web development

client-side programming 7

evolution 3

HTML and HTML forms 5–6

problems with ASP 9–10

server-side programming 6–7

web farms 431–432

configuration 348

web folders

icons 443

settings 444

Web Form controls

rich controls 290

Web Form designer

Visual Studio 92

web forms 125

events 139

validated form 282–287

web hosting

private assemblies 454

web page applet

e-card 206–212

generating automatically 214–215

improving 212–214

web pages

adding HTML server controls 139

ASP limitations 9

ASP.NET applications 125

buffering server output 162

caching 162

caching multiple page versions 997

current address 161

designing in Visual Studio 98

adding HTML 104

adding HTML tables 104–105

adding web controls 99–100

configuring controls 101

dynamic web pages 6

embedding dynamic graphics 982

headers and footers 940

inheritance 158

isolation from database 907

life cycle 202

multiple caching example 1000

order of events in processing 197

OutputCache directive 1001

previous page address 161

reference to 180

simplifying code structure with
components 904

transferring execution to another 162

transferring information between 161

transferring user to another 162

updating 129

user controls compared 938

Web Parts 1029

adding Web Parts to a page 1033–1035

connecting Parts 1056

creating consumers 1058–1059

creating providers 1057–1058

setting up static connections 1059

using dynamic connections 1059–1061

workings of connections 1057

controlling page modes 1040–1043

creating custom Web Parts 1051–1056

formatting Parts 1038–1039

introduction 1030–1032

MacDonaldIndex.fm Page 1141 Friday, December 30, 2005 4:00 PM

1142 ■I N D E X

Web Parts (continued)

making pages editable 1044–1047

editing behavior with
BehaviorEditorPart 1047–1048

using catalogs 1048

using DeclarativeCatalogPart 1050–1051

using PageCatalogPart 1049

running the page 1036

uses 1030

using

declaratively 1032

getting started 1033

web portals

data driven ASP.NET applications 473

web reference

creating in Visual Studio 855–857

TerraService web service 892

web server 427

workings 427–429

web server file browser 637

Web Service Applications Stress Tool. See
WAST

Web Service Discovery 827

DISCO 827

web service test page 842–843

web services

accessing Session state 838

accessing web methods 836

architecture 813

as example of integrated XML 656

business objects comparison 836

client data exchange 820

code-behind files 836

communication limitations 826–827

components compared 908

configuring web service project 832–833

consuming 853

configuring web service client 853–854

creating proxy with WSDL.exe 857–859

creating web reference in Visual Studio
855–857

dissecting the proxy class 859–860

dissectiong the proxy class 860–862

dynamic web service urls 862–863

role of proxy class 854

creating 831

cross-platform compatibility and data
type restrictions 847

current situation 829

data caching 1010–1012

data types 847–848

documenting

conformance claims 840–841

descriptions 839

specifying namespace 840

enhancing 869

forms authentication 882

function visibility 850

future ideas 829

IIS (Internet Information Services) 816

Integrated Windows authentication 880

Internet applications 815

introduction 831, 832

MapPoint 900

open standards 816

output caching 1004

performance 816

proxy class 836

returning historical data 852

security 816–878

session state management 876

SOAP 816

SOAP communications 825

state management 869–870

consuming a stateful web service
872–876

StockQuote Service 870–872

System.Web.Services namespace 78

TerraService web service 891–988

MacDonaldIndex.fm Page 1142 Friday, December 30, 2005 4:00 PM

1143■I N D E X

testing 842

method description 845

method testing 845–847

viewing service description 843

web service test page 842–843

ticket-based authentication 882–884

SOAP headers 885–888

transactions 888–891

using a real web service 891

using SOAP headers in the client 888

using the proxy class 863–864

connecting through proxy 866

waiting and timeouts 864–865

web service errors 865–866

using without proxy class 859

using without Visual Studio 859

validation 819

web service standards 817

when to use 816

Windows authentication 878–881

Windows clients 898–900

WSDL 817

communications 825

XMethods 900

web.config file

accessing specific directories 720

accessing specific files 721

<add> element 168

advantages 165

<anonymousIdentification> element 807

<appSettings> element 167

authenticating users 719

authorization section 777

<authorization> tag 719

case-sensitivity 166

<configuration> element 165

connection string not found 927

connectionStrings section 567

custom error pages 250

description 127

dynamic web service URLs 862

forms authentication 718

<identity> tag 736

maximum size of file uploads 653

maxRequestLength setting 653

modifying error modes 249

modifying settings programmatically 171

outputCacheProfiles section 1003

profile section

adding properties element 793

question mark wildcard 720

retrieving connection strings from 923

serializeAs attribute 797

session state configuration 344

<sessionState> tag 344

storing custom settings 167, 168

subdirectory inheritance 166

system.web element 165

tracing 264

urlMappings section 408

Windows authentication 786

settings 732, 733

XML 655

structure of 165

WebBrowsable attribute class 1045

WebConfigurationManager class

System.Web.Configuration namespace 169

WebConfigurionManager class

OpenWebConfiguration() method
171–172

performance of 172

WebControl class

as base class 179–181

CreateChildControls method 971

formatting for repeating control 966

inheriting from 964

properties 180

units 181

MacDonaldIndex.fm Page 1143 Friday, December 30, 2005 4:00 PM

1144 ■I N D E X

WebMethod attribute 832

adding descriptions to functions 839

EnableSession property 869

enabling session state 870, 872

example using 835

MessageName property 841

StockQuote web service 836

TransactionOption property 889

web service function visibility 850

WebPart class

CreateChildControls method 1053

creating custom Web Parts 1051–1056

RenderControl method 1053

System.Web.UI.WebControls.WebParts
namespace 1031, 1051

WebPartManager control 1031

connecting Parts 1057

controlling page modes 1040–1043

default HTML 1033

WebPartZone control 1031

dragging onto table cells 1034

WebPartZone Tasks menu

Autoformat option 1038

WebPartZoneBase class

properties 1038

WebProxy class

connection options 867

WebService attribute

adding descriptions to web services 839

specifying namespaces 840

WebService class

data object should not derive from 848

inheritance from 835

inheriting access to standard built-in
objects 837–838

methods 832

System.Web.Services namespace 832

WebServiceBinding attribute 841

Website Administration Tool (WAT) 172

website management 439

virtual directories 439–443

configuring 444

website navigation 389

site maps 389–390

binding a master page to site map
397–399

binding an ordinary page to site map
396–397

binding portions of a site map 399–405

defining a site map 391–395

mapping urls 407–408

Menu control 420–425

navigating programmatically 405–406

simple site map in action 395–396

SiteMapPath control 409–413

TreeView control 413–419

websites

See also deployment

applying theme to 383

creating in Visual Studio 93–95

Solution Explorer 96–98

navigation with LinkMenu 941

updating 130

WeekendDayStyle property

Calendar control class styles 294

Where clause

And keyword 483

Like comparison operator 483

Select statement 482–483

while block 50–51

widening conversions 37

Width property

HtmlImage class 139, 153

HtmlInputImage class 139

WebControl class 180

wildcard character (*)

anonymous users 719

Windows account permissions

deployment configuration 455

MacDonaldIndex.fm Page 1144 Friday, December 30, 2005 4:00 PM

1145■I N D E X

Windows authentication 495, 729

advantages 729

connecting to SQL Server 496

default roles 734

IIS settings 730

impersonation 735

Integrated Windows authentication 712,
731, 880, 882

methods 731

test page 734–735

web services 878–881

web.config file 786

web.config settings 732–733

WindowsBuiltInRole enumeration 733

Windows clients

TerraService web service 899

web services 898, 900

Windows Event Logs 237

WindowsBuiltInRole enumeration 733

WindowsIdentity class

Impersonate method 737

Wizard control 290, 310

ActiveStepChanged event 315

ActiveStepIndex property 312

DisplaySideBar property 310

events 314

formatting 315

programming models 314

properties 310

steps 312

styles 315

Update method 315

Worker Process Restarts counter

performance counters 993

Wrap property

TitleStyle class 1040

Write method

HtmlWriter class 961

Response class 356

Response object 133

Trace object 259

write permission

Virtual Directory Creation Wizard 446

Write method

HttpResponse class 162

WriteAll method

File class 644

WriteBinary method

Response object 896

WriteBytes method

File class 644

WriteFile method

HttpResponse class 162

WriteLine method

StreamWriter class 640

WriteLines method

File class 644

WSDL (Web Service Description Language) 817

?WSDL 823

accessing web service 823

automatic generation of documents 832

creating proxy with WSDL.exe 857–859

creating web reference 856

data types 818

documenting web services

conformance claims 840–841

descriptions 839

specifying namespace 840

messages 820

methods 821

retrieving WDSL document 844

web services

communication 825–827

standards 817

using without WSDL.exe 859

WSDL document 818

WSDL documents

adding custom objects information 851

MacDonaldIndex.fm Page 1145 Friday, December 30, 2005 4:00 PM

1146 ■I N D E X

WSDL documents (continued)

<binding> elements 821

<definitions> element 818

documentation tags 839

<message> elements 820

<portType> elements 821

<service> element 823

TerraService web service 892

<types> element 818

viewing web services description 843

WSDL.exe

command syntax 858

command-line parameters 858

WS-Interoperability 829, 830

wwwroot directory

website management 439

■X
x coordinate 979

XCopy deployment 455

XMethods

web services 900

XML 655

ADO.NET data access 656

classes for reading nodes 666–672

comments 166

configuration files 655

display and transforms 687–690

Xml web control 690

introduction 656–658

attributes 662

basics 660

comments 663

files compared to databases 660

special characters 660

tags 659

role in .NET 655

uses 656

validation 681

namespaces 681–682

XML file 684–687

XSD documents 683–684

web services 656

web.config file format 165

XML classes 663

XmlDocument class 673

XmlTextReader class 666–672

XmlTextWriter class 664–665

Xml control 290

XML data binding

binding to XML content from other
sources 697–698

hierarchical binding with TreeView 695–696

introduction 692

nonhierarchical binding 692–695

XML document

parsing 661

XML documents

comments 663

parsing 660

parts created as objects 676

reading XML file 677

searching 680, 681

using 673

validation against schema 684

XML in ADO.NET 698–699

accessing a DataSet as XML 699–701

accessing XML through the DataSet
701–702

XML integration

ADO.NET characteristics 475

XML namespaces 681–682

namespace prefixes 682

naming conventions 683

specifying that elements belong 682

URIs (Universal Resource Identifiers) 682

URL address reference 840

XSD 681

xml option

serializeAs attribute 797

MacDonaldIndex.fm Page 1146 Friday, December 30, 2005 4:00 PM

1147■I N D E X

XML tags 659

attributes 661–662

elements 661

nesting in root tag 661

overlapping tags 661

tagging in pairs 661

Xml web control 690

XmlAttribute class

attributes as 676

XmlAttributeCollection

changing node attributes 679

XmlComments class

comments as 676

XmlDataDocument class 664

acccessing DataSet class as XML 699

acccessing XML through DataSet 701

DataSet property 699

XmlDataSource control 693

Data property 697, 698

DataFile property 697

implementing IDataSource interface 565

introduction 692

limitations 694

XmlDocument class 664, 673

ChildNodes property 701

events 679

methods

AppendChild method 676

CreateAttribute method 676

CreateComment method 676

CreateElement method 676

GetElementById method 680

GetElementsByTagName method 680

GetTagsByElementName method 701

InsertAfter method 676

InsertBefore method 676

Load method 677

Save method 675, 676

nodes 676

searching XML document 680, 681

XmlElement class

elements as 676

XmlNode compared to 679

XmlNode class 664

adding content 679

adding/removing nodes 678

changing attributes 679

CloneNode method 678

manipulating nodes 678

properties 678

web service data types 848

working with content as string data 679

XmlElement compared 679

XmlReader class

Create method 685

XmlReaderSettings class

ValidationEventHandler event 686

ValidationType property 684

XmlSchema class

System.Xml.Schema namespace 684

XmlSchemaCollection class

System.Xml.Schema namespace 684

XmlSchemaException class

System.Xml.Schema namespace 686

XmlSerializer class

System.Xml.XmlSerialization namespace
797

XmlSiteMapProvider control

ASP.NET navigation 390

XmlTextReader class 664, 666–672, 698

properties and methods 673

Read method 666

XmlTextWriter class 664–665

formatting 666

XmlTransform class

Load method 688

System.Xml.Xsl namespace 687

MacDonaldIndex.fm Page 1147 Friday, December 30, 2005 4:00 PM

1148 ■I N D E X

XmlTransform class (continued)

Transform method 688

XmlValidatingReader class

creating 685

ValidationEventHandler event 686

XPath 681

XSD (XML Schema Definition)

XML namespaces 681

XML validation 681

XSD documents

element structure 683

schema 683

xsl

<apply-templates> element 688

<stylesheet> element 688

<value-of> element 689

XSLT

stylesheet transformations 687–690

Xml web control 690

■Y
y coordinate 979

Year property

DateTime class 43

■Z
zero-based counting 40

zero-touch deployment 129, 455

Zone property

WebPart class 1053

zones, types 1031

ZoneTemplate element

editor parts placed in 1046

Web Parts in a zone must be in 1035

MacDonaldIndex.fm Page 1148 Friday, December 30, 2005 4:00 PM

MacDonaldIndex.fm Page 1150 Friday, December 30, 2005 12:28 PM

CONGRATULATIONS!
You are holding one of the very first copies of

Beginning ASP.NET 2.0 in C# 2005.

We believe this complete guide to ASP.NET 2.0 and C# 2005 will prove so indis-

pensable that you will want to carry it with you everywhere. Which is why, for a

limited time, we are offering the identical eBook absolutely free—a $25 value—to

customers who purchase the book now. This fully searchable PDF will be your con-

stant companion for quick code and topic searches.

Once you purchase your book, getting the free eBook is simple:

1 Visit www.apress.com/promo/free.

2 Complete a basic registration form to receive a randomly

generated question about this title.

3 Answer the question correctly in 60 seconds, and you will

receive a promotional code to redeem for the free eBook.

For more information about Apress eBooks, contact pr@apress.com.

2560 Ninth Street • Suite 219 • Berkeley, CA 94710

MacDonaldIndex.fm Page 1149 Friday, December 30, 2005 4:17 PM

	Beginning ASP.NET 2.0 in C# 2005: From Novice to Professional
	Table of Content
	PART 1 Introducing .NET
	Chapter 1 Introducing the .NET Framework
	Chapter 2 Learning the C# Language.
	Chapter 3 Types, Objects, and Namespaces
	Chapter 4 Introducing Visual Studio 2005.

	PART 2 Developing ASP.NET Applications
	Chapter 5 Web Form Fundamentals
	Chapter 6 Web Controls
	Chapter 7 Tracing, Logging, and Error Handling.
	Chapter 8 Validation and Rich Controls
	Chapter 9 State Management.
	Chapter 10 Master Pages and Themes
	Chapter 11 Website Navigation
	Chapter 12 Deploying ASP.NET Applications

	PART 3 Working with Data
	Chapter 13 ADO.NET Fundamentals
	Chapter 14 Data Binding.
	Chapter 15 The Data Controls
	Chapter 16 Files and Streams.
	Chapter 17 XML

	PART 4 Website Security
	Chapter 18 Security Fundamentals
	Chapter 19 Membership
	Chapter 20 Profiles

	PART 5 Web Services
	Chapter 21 Web Services Architecture
	Chapter 22 Creating Web Services
	Chapter 23 Enhancing Web Services

	PART 6 Advanced ASP.NET
	Chapter 24 Component-Based Programming.
	Chapter 25 Custom Controls
	Chapter 26 Caching and Performance Tuning
	Chapter 27 Web Parts

	Index

